

A VITERBI DECODER USING SYSTEM C FOR AREA EFFICIENT

 VLSI IMPLEMENTATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERKAN SÖZEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science

 Prof. Dr. İsmet Erkmen

 Head of the Department

This is to certify that we have read this thesis and in our opinion it is fully adequate,
in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Murat Aşkar

 Supervisor

Examining Committee Members

Prof. Dr. Tayfun Akın (METU, EE) ______________________

Prof. Dr. Murat Aşkar (METU, EE) ______________________

Assoc. Prof. Dr. Aydın Alatan (METU, EE) ______________________

Assist. Prof. Dr. Çağatay Candan (METU, EE) ______________________

Hayrettin Kesim (ASELSAN A.S.) ______________________

iii

PLAGIARISM

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name : Serkan Sözen

 Signature :

iv

ABSTRACT

A VITERBI DECODER USING SYSTEM C FOR AREA EFFICIENT

VLSI IMPLEMENTATION

Sözen, Serkan

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Murat Aşkar

September 2006, 153 pages

In this thesis, the VLSI implementation of Viterbi decoder using a design and

simulation platform called SystemC is studied. For this purpose, the architecture of

Viterbi decoder is tried to be optimized for VLSI implementations. Consequently,

two novel area efficient structures for reconfigurable Viterbi decoders have been

suggested.

The traditional and SystemC design cycles are compared to show the advantages of

SystemC, and the C++ platforms supporting SystemC are listed, installation issues

and examples are discussed.

The Viterbi decoder is widely used to estimate the message encoded by

Convolutional encoder. For the implementations in the literature, it can be found

that special structures called trellis have been formed to decrease the complexity

and the area.

v

In this thesis, two new area efficient reconfigurable Viterbi decoder approaches are

suggested depending on the rearrangement of the states of the trellis structures to

eliminate the switching and memory addressing complexity.

The first suggested architecture based on reconfigurable Viterbi decoder reduces

switching and memory addressing complexity. In the architectures, the states are

reorganized and the trellis structures are realized by the usage of the same

structures in subsequent instances. As the result, the area is minimized and power

consumption is reduced. Since the addressing complexity is reduced, the speed is

expected to increase.

The second area efficient Viterbi decoder is an improved version of the first one

and has the ability to configure the parameters of constraint length, code rate,

transition probabilities, trace-back depth and generator polynomials.

Keywords: Viterbi Algorithm, Reconfigurable Viterbi Decoder, SystemC,

Convolutional Encoder, Maximum Likelihood Method.

vi

ÖZ

SYSTEM C KULLANILARAK BİR VITERBI KOD ÇÖZÜCÜSÜNÜN

ALANI VERİMLİ TÜMDEVRE OLARAK GERÇEKLENMESİ

Sözen, Serkan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Murat Aşkar

Eylül 2006, 153 sayfa

Bu tez çalışmasında, SystemC olarak bilinen tasarım ve simülasyon ortamı

kullanılarak Viterbi Kod Çözücüsünün tümdevre gerçeklenmesi üzerine

çalışılmıştır. Bu amaçla, tümdevre gerçeklemesine yönelik Viterbi Kod

Çözücüsünün mimarisi iyileştirilmeye çalışılmıştır. Sonuç olarak, iki yeni alan

bakımından verimli biçimlendirilebilir Viterbi kod çözücü yapı önerilmiştir.

SystemC’nin avantajlarını sergilemek için geleneksel ve SystemC tabanlı tasarım

aşamaları karşılaştırılmış ve SystemC’yi destekleyen C++ ortamları listelenmiş,

örneklerle kurulumundan bahsedilmiştir.

Viterbi kod çözücü sıklıkla Evrişimsel şifrelenmiş mesajların yakınsanmasında

kullanılmaktadır. Kaynaklardaki gerçeklemelerde özel kafes yapılar

biçimlendirilerek karmaşıklığın ve alanın azaltılmasına çalışıldığı görülmektedir.

vii

Bu tezde, anahtarlama ve hafıza adreslemesindeki karmaşayı yok etmek için kafes

yapısının statülerinin yeniden düzenlenmesine dayanan iki yeni alan bakımından

verimli biçimlendirilebilir Viterbi kod çözücü yaklaşımı önerilmektedir.

Biçimlendirilebilir Viterbi Kod çözücüsü için önerilen ilk mimari, anahtarlama ve

hafıza adreslemesindeki karmaşayı azaltmaktadır. Önerilen mimaride statüler

yeniden organize edilmekte ve ardışık zaman aralıklarında aynı yapıların tekrar

kullanılmasıyla kafes yapıları gerçekleştirilmektedir. Sonuçta, alan küçültülmekte

ve güç tüketimi azaltılmaktadır. Adresleme karmaşası azaltıldığı için de hızın

artması beklenmektedir.

İkinci alanı verimli Viterbi kod çözücü ise birinci yapının geliştirilmiş bir

versiyonudur ve kod oranı, kısıt uzunluğu, değişim olasılığı, geriye iz sürüm

derinliği ve üreteç polinomu gibi parametrelerin biçimlendirilmesine olanak

sağlamaktadır.

Anahtar Kelimeler: Viterbi Algoritması, Biçimlendirilebilir Viterbi Kod Çözücüsü,

SystemC, Evrişimsel Kodlayıcı, En Büyük Olabilirlik Yöntemi.

viii

ACKNOWLEDGEMENTS

I would like to express my special thanks to Prof. Dr. Murat Aşkar for his guidance

and supervision throughout this thesis work.

I am also grateful to my colleagues in ASELSAN for their encouragements towards

the realization of this thesis work.

Finally, I would like to thank my family for their great support during this thesis

work.

ix

TABLE OF CONTENTS

PLAGIARISM.. iii

ABSTRACT ... iv

ÖZ... vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES .. xii

CHAPTERS..1

 1.INTRODUCTION..1

 2.HARDWARE DESCRIPTION LANGUAGES AND SYSTEM C...................5

2.1 General ...5

2.2 Requirements to Establish SystemC Compiler In This Thesis...............8

2.3 Example Usage of SystemC...8

 3.CONVOLUTIONAL CODER AND VITERBI DECODER...........................14

3.1 General ...14

3.2 Convolutional Encoder...15

3.2.1 Convolutional Encoder Examples ..17

3.2.2 Operation of the K=3 r=1/2 Convolutional Encoder....................19

3.2.3 Representations of Convolutional Encoders23

3.3 Viterbi Decoder ..27

3.3.1 Viterbi Algorithm ...27

3.3.2 Viterbi Decoding ..31

3.3.3 Generic Viterbi Decoding Examples..39

 4.IMPLEMENTATION OF BASIC BUILDING BLOCKS OF VITERBI

DECODER ...49

4.1 General ...49

4.2 Implementation of Hard Decision Viterbi Decoder49

4.2.1 Dual Port RAM ..50

4.2.2 Add Compare Select Unit (ACS) ...52

x

4.2.3 Branch Metric Unit (BMU)..53

4.2.4 ACSDPRAM..55

4.2.5 MinDetector..59

4.2.6 Trace-Back Unit (TBU)..60

4.2.7 Hard Decision Viterbi Decoder Module65

4.3 Implementation of Soft Decision Viterbi Decoder...............................69

4.3.1 BMU...74

4.3.2 ACS ..75

4.3.3 DPRAM and MinDetector..75

4.3.4 ACSDPRAM..77

4.3.5 Soft Decision Viterbi Decoder ...79

 5.RECONFIGURABLE VITERBI DECODER IMPLEMENTATION.............81

5.1 General ...81

5.2 Reconfigurable Viterbi Decoder with Normal and Complemented State

Identifiers at Subsequent Iterations ..81

5.2.1 Trellis Structure ..81

5.2.2 Complemented Identifier Reconfigurable Foldable Viterbi

Decoder 85

5.2.3 Hardware Structure...92

5.3 Implementation of Reconfigurable Viterbi Decoder with Normal And

Complemented State Identifiers At The Same Iteration97

5.3.1 Theory ..97

5.3.2 Implementation...103

5.3.2.1 Viterbi Decoder ..104

5.3.2.2 Collector ...105

5.3.2.3 Input FIFO..107

5.3.2.4 State Controller (State Decoder) ..110

5.3.2.5 BMU...113

5.3.2.6 SubTrellis ...115

5.3.2.7 STATEMUX ..117

5.3.2.8 ACS ..118

xi

5.3.2.9 DRDPRAM ..119

5.3.2.10 Survivor Memory ..120

5.3.2.11 Min_Path ...123

5.3.2.12 Min_Path_Conv...124

5.3.2.13 TraceBack Controller ..126

5.3.2.14 Main Controller ...127

5.3.3 Simulations...128

5.3.3.1 Configuration of Constraint Length129

5.3.3.2 Configuration of Traceback Depth...134

5.3.3.3 Configuration of Code Rate ...136

5.3.3.4 K=7 Viterbi Decoder with Different Messages......................138

5.3.3.5 Error Correction Examples of Viterbi Decoder143

 6.CONCLUSION ..148

REFERENCES...152

xii

LIST OF TABLES

Table 2-1 Requirements ...8

Table 3-1 State Table Representation of Convolutional Encoder24

Table 4-1 Truth Table of Mux2x4...64

Table 4-2 Probability of quantized voltages vs. the transmitted logic72

Table 4-3 Logaritmic Probabilities of quantized voltages vs. the transmitted logic

..73

Table 4-4 Scaled Logaritmic Probabilities ..74

Table 5-1 Constraint Length, Number of Butterflies and Iterations Relation..........90

Table 5-2 State Table Representation K=5 ...101

Table 5-3 State Controller Truth Table ...111

 1

CHAPTERS

CHAPTER 1

INTRODUCTION

The communication deals with the transportation of information from one place to

another. In a typical communication scheme, a group of symbols are generated by a

source. Then, the source data passes through some encoding and modulation

processes in the transmitter side to increase the noise immunity of source data and

the modulated data is transmitted to the channel. But due to noise and interference

in the channel corruption occurs in the received data. In the receiver side, after

inverse processing of received data by demodulation and decoding stage, the

original data is aimed to be reached.

To decrease the error in the data transmission several methods have been

considered like Maximum Likelihood Decoding. In Maximum Likelihood

Decoding technique, some correlation bits are added to the transmitted data so that

any errors introduced in the communication channel can be corrected at the receiver

end.

One of the most popular Maximum Likelihood error correction methods is the

Viterbi Algorithm [1] [2]. The Viterbi Algorithm is used in many applications

including speech recognition, digital sequence detection for magnetic storage

devices and wireless communication. For the wireless communication, the Viterbi

Algorithm generally decodes the convolutionally coded data to purify the original

message from received data transferred in a noisy channel. Depending on the

applications different implementation issues has been studied by several researches,

including high speed Viterbi decoders [12] [22], reconfigurable constraint length

Viterbi decoders [14] [15] [18] [21] [23] [25], several trellis structures [5], shared

ACS units between separate states in the trellis [4], the block-based decoding

approach [6], bit-serial approaches [8] [10], path metric computations [8], hardware

 2

size reduction [4] [24] [25], radix4 based architectures [3] [19] and low power

consumption [7] [9] [10].

The objective of this thesis is the VLSI implementation of an area efficient

reconfigurable Viterbi decoder using SystemC tool. For the Viterbi Decoding

usually two methods are used namely Register-Exchange and the trace-back. The

Register-Exchange method is suitable for only a small number of states containing

trellis’, however, the trace-back approach is acceptable for trellis’ with a large

number of states. In the thesis, the configurable constraint length ranges from 4 to

7, so the maximum number of states is 64. For this reason, the trace-back method is

preferred and used in the implementations.

The design environment SystemC [20] [11] [13] [17] is indeed a C++ class library,

with added hardware modelling structures, that increases the power of C++

language to meet the needs of next generation designs containing analog signal

computations and embedded software simulations like in System-on-Chip (SoC).

The selection of SystemC as the development platform requires some preliminary

studies to configure C++ compiler as SystemC compiler. The platform called

OpenSystemC regulates to the SystemC specific syntaxes and debug techniques

[16].

The Hard and Soft Decision Viterbi decoders have been implemented to divide the

decoder into sub-blocks. Upon detailed study on the states in the trellis structure,

two novel area efficient reconfigurable Viterbi decoder architecture are suggested.

The major improvements in these area efficient structures are the new trellis

structures which give ability to configure the constraint length by the usage of the

same structure in subsequent time instances. Depending on the rearrangement of the

states of the trellis structures, the switching and memory addressing complexity are

reduced.

For reducing the switching and hardware complexity, in the first suggested

reconfigurable Viterbi decoder architecture, vertically rotated complemented state

rearrangement is used in subsequent iterations. As the result, the area is minimized

and power consumption is decreased. Since the addressing complexity is reduced

 3

the speed is expected to increase. In the suggested architectures, the trellis

structures are realized by the usage of the same structures in subsequent instances

to reduce the number of Add-Compare-Select units, Branch Metric units, DPRAMs

and interconnections between these units. To decrease the number of memory

locations for state metric storage, the in-place path metric updating technique has

been used.

The second area efficient Viterbi decoder is an improved version of the first one

and has the ability to configure the parameters of constraint length, code rate,

transition probabilities, trace-back depth and generator polynomials. This improved

method implemented in SystemC. Also, in the implementation some special efforts

was carried out to optimize the operation. For the synchronization, the demodulator

output is connected to the implemented architecture through an input FIFO stage.

To increase the decoding speed to real time operation, the decoder is designed to

include a LIFO memory stage between trellis and the traceback. The trellis is not

implemented directly with the bare state identifiers. The state identifiers are also

mapped to hidden state identifiers with a complement operation. So the addressing

of the memories becomes consistent with the iteration counter. Then, the direct

connection of the iteration counter to the memory address lines without any extra

circuitry is possible.

In Chapter 2, the basics and the advantages of the SystemC beyond the other

Hardware Description Languages are discussed. Then, step by step instructions to

setup the SystemC design and development platform on Microsoft Visual Studio is

described on an example.

The source of the message to be decoded in Viterbi decoder is created by

convolutional coding. Therefore, the Chapter 3 starts with the explanation of the

convolutional coding. Then the theoretical explanation with probabilistic analysis

of the Viterbi algorithm is presented. Finally, in Chapter 3, the practical operational

considerations of the Viterbi decoder is discussed and decoding of a sample data set

is given in details.

 4

In Chapter 4, to acquire the experience of the SystemC for the hardware modelling

with the connections between sub-modules implementation of the simplest type of

Viterbi decoders called hard decision Viterbi decoder is carried out. The modules in

hard decision Viterbi decoder are modified to obtain implementation of soft

decision Viterbi decoder.

Then, theoretical study was carried out about reconfigurable Viterbi decoding and a

new area efficient approach of the reconfigurable Viterbi decoder is suggested in

the first part of Chapter 5. In the second part of the Chapter 5, the second area

efficient approach is explained and the SystemC implementation details are

described for this further developed architecture. Then the simulation results of this

decoder are given for several different parameters.

Finally, in Chapter 6, some concluding remarks and proposed future works are

declared. At the end of Chapter 6, references are also presented for further reading

and understanding.

 5

CHAPTER 2

HARDWARE DESCRIPTION LANGUAGES AND SYSTEM C

2.1 General

Even a NOR gate implementation takes up more than a day to work on schematic,

layout and simulation. With the necessity of producing higher density chips the

engineer groups turned towards the search of new methodologies to implement the

designs connecting millions of gates with the timing and die area constraints. So,

some decades ago the decision were made to change the design topology from

schematic based to Hardware Description Language (HDL) based design. The

HDLs met the expectations of digital circuit implementations for a long time, but

with System On Chip (SoC) concept once again the hardware implementation

suffers from complexity. The new design challenges on System-on-Chip (SoC)

grows up in the eras of analog signals processing, embedded software usage

representing over the half of the functionality and reduction in time-to-market.

On the other hand, the traditional design methodology in project life cycle

commences with the model creations in a software platform (generally in C or C++

language) to verify the algorithms at the system level, then, continues on the

division of the implementation into sub-blocks of hardware and embedded

software. After the confirmation of operation, parts to be implemented as hardware

are manually converted to HDLs, like VHDL or Verilog, performing the same

functionality as in the C/C++ model. But the model created in C/C++ was verified

in a software platform neglecting the timing issues. So, the manual conversion

approach is a time consuming and error-prone job including the statement

conversion to the hardware obeying a master clock and also again new test suite is

needed to be setup in the HDL environment. Thus, apart from HDL, another

implementation and simulation tool is required to cope with the complexity of SoC

and the processes in the project life cycle.

 6

Because of the commonly acceptance of C++ language at many abstraction levels

in the industry, this object oriented programming language was selected to be the

baseline for the building of the new implementation and simulation tool called

SystemC. SystemC is a C++ class library with added hardware modelling structure

that increases the power of C++ language to meet the needs of next generation

hardware design.

With the SystemC approach, instead of the design conversion from a C level

description to a HDL in one large effort, the design can be slowly refined in small

sections to add the necessary hardware and timing structures to produce a good

design. Within this refinement methodology, the designer can easily modify the

design for further changes and detect bugs during refinement. Using this approach,

the designer does not need to be an expert in multiple languages. Because SystemC

allows modelling from the system level to RTL. The SystemC approach provides

higher productivity because the designer can model at a higher level. Writing at a

higher level can result in smaller code, that is easier to write and faster to simulate

than traditional modelling environments. Also test benches can be reused from the

system level model to the RTL model saving conversion time. Using the same test

bench also gives the designer a higher confidence that the system level and the RTL

level implementations have the same functionality.

Because of the C++ features, the SystemC is also a naturally object oriented tool

that uses powerful data types based on the class of C++ language. These major data

types of the SystemC version 2.0 can be defined as below.

• Modules: are the hardware entities used to perform operations (process) and

connections of the sub-modules.

• Processes: performs calculations and decisions of the hardware.

• Ports: are the connection points of modules and can be used either uni-

directional or bi-directional.

• Signals: are special data types to direct the information inside and in

between modules.

 7

• Clocks: are the timekeepers for the modules to synchronise the state

machines. In SystemC, the multi clock operations with arbitrary phase shifts

are available.

On the other hand, designer can use standard C data types to model analog signals

and control loops like small functions in their test benches.

Because of the advantages of SystemC, the firms listed below are in function on the

integration of SystemC in several abstraction levels.

Alcatel, Altera, Aptix, Arcadia Design Systems, ARC Cores, ARM, Billions of

Operations Per Second, Chameleon Systems, Inc., Co-Design Automation,

CoWare, CSELT, Cygnus Solutions, Denali, Ericsson, Frequency Technology,

Frontier Design, Fujitsu Microelectronics, IKOS Systems, I-Logix, Infineon

Technologies, Integrated Silicon Systems, Intellectual Property Inc., Internet

CAD, LogicVision, Lucent Technologies, Magma Design Automation, MIPS

Technologies, Monterey Design Systems, Motorola, Inc., Seva Technologies,

Sican Microelectronics Corp., Snaketech, Sony Corporation,

STMicroelectronics, Sun Microsystems, Synchronicity, Synopsys, Tensilica,

Texas Instruments, TransModeling, Ultima, Verplex, and Xilinx.

The SystemC language is free and can be downloaded from the Open SystemC

Initiative web site. Currently, the release of SystemC V2.0.1 is supported on the

following platforms:

• Sun Solaris 2.7 and 2.8 with GNU C++ compiler versions gcc-2.95.2 and

gcc-2.95.3

• Sun Solaris 2.7 and 2.8 with SUN C++ compiler versions SC6.1 and SC6.2

• Linux (Redhat 6.2) with GNU C++ compiler versions gcc-2.95.2 and gcc-

2.95.3

• Linux (Redhat 7.2) with GNU C++ compiler version gcc-2.95.3

• HP-UX 11.00 with HP C++ compiler versions A.03.15 and A.03.33

 8

• Windows NT 4.0 (SP6a) with VC++ 6.0 (SP5)

• Borland C++ Builder V5.0 (SP1)

For further information references [1], [2], [3], [4], [5], [6] can be applied.

2.2 Requirements to Establish SystemC Compiler In This Thesis

The development process of this thesis was performed on the softwares listed in

Table 2-1.

Table 2-1 Requirements

Software Definition For more information

SystemC-2.0.1 SystemC library www.SystemC.org

Microsoft Visual Studio C++ Compiler Microsoft

Winbeta Simulation Software SystemC_win@yahoo.com

Windows XP Operating System Microsoft

2.3 Example Usage of SystemC

In this section to configure Microsoft Visual Studio 6.0 as SystemC compiler and to

implement an example hardware will be described with the main steps. To perform

error free design the designer can perform the instructions listed below.

1. Download SystemC-2.0.1 files from “www.SystemC.org” and unzip the

contents into the folder “D:\SystemC\SystemC-2.0.1\”.

2. Execute Microsoft Visual C++ 6.0. Fig. 2-1 shows the main window of

Visual Studio.

 9

Fig. 2-1 Microsoft Visual C++ 6.0 Main Window

3. To create a new project click on “File->New” button. Then the “New”

window will be opened. On the “Projects” tap of the “New” window, select

“Win32 Console Application”, fill the project name and the location to

where the project will be created.(Fig. 2-2) Then, press “OK” button.

Fig. 2-2 “New” Window

 10

4. A new window called “Win32 Console Application – Step 1 of 1” will

appear. In this new window select “An empty project” option and click on

“Finish” button. At this stage, the new application would be created as

shown in Fig. 2-3.

Fig. 2-3 New Project

5. SystemC library should be embedded into the project. For this reason right

click on the “Resource Files” and select “Add Files to Folder...” button on

pop-up menu. Select “SystemC.lib” file located in “D:\SystemC\SystemC-

2.0.1\msvc60\SystemC\Debug” folder. Then, into the “Header Files”

section import “SystemC.h” file located in the same folder.

6. In the main window click “Project->Settings...” button. On the “C/C++”

Tap select “C++ Language” in the category drop-down list. And, check the

“Enable Run-Time Type Information(RTTI)” check box.(Fig. 2-4)

 11

Fig. 2-4 Project Settings “C++ Language” Category

7. Select “Processor” in the category drop-down list and fill the “Additional

include directories” section with “D:\SystemC\SystemC-2.0.1\src\”.(Fig. 2-5)

Fig. 2-5 Project Settings “Processor” Category

8. Up to this point, the compiler has been configured for SystemC simulations.

From now on, an example project will be compiled. For this reason a source

 12

code for a hardware called “ACS” was written in “ACS.h” file and also two

extra files were written for monitoring the ports (mon.h) and creating the

stimulation pattern (stim.h). These header files should be imported into the

“Header Files” section.

9. Now “main.cpp” file is added into the “Source Files” section in order to

make hardware connections between source, simulation and monitor files.

10. Finally, the project will be compiled by clicking “Build->Rebuild All”

button and will be executed by clicking “Build->Execute” button. This will

create a command prompt to show simulation results determined in monitor

file. (Fig. 2-6)

Fig. 2-6 Command Prompt Simulation Result

11. Depending on the statements in “main.cpp” a SystemC vcd trace file

“*.vcd” can be created. In “Winbeta” program the “*.vcd” file can be

visualized. In main window of Winbeta (Fig. 2-7) click on “File->Open Vcd

Files” button and select the “*.vcd” file in the open dialog box.

 13

Fig. 2-7 Winbeta main window

12. The simulation will be seen as in Fig. 2-8

Fig. 2-8 Vcd file

 14

CHAPTER 3

CONVOLUTIONAL CODER AND VITERBI DECODER

3.1 General

Fig. 3-1 Typical Communication Scheme

The error correction methods have been studied extensively in digital

communication researches to overcome the data transmission error problem. One of

the well known error correction method is Viterbi Algorithm and generally used in

decoding the convolutionally coded data to purify the original message from

received data in a noisy channel. The Viterbi Algorithm is a maximum likelihood

decoding method to estimate the message embedded in noisy data by using the

maximum a-posterior probability.

The Viterbi algorithm is used in many applications including speech recognition,

digital sequence detection for magnetic storage devices and wireless

communication. Depending on the applications different implementation issues has

been studied by several researches, including high speed Viterbi decoders,

 15

reconfigurable constraint length Viterbi decoders, path metric computations,

hardware size reduction and low power consumption.

As indicated, the Viterbi decoder is used mainly to decode the convolutional

encoded data. So in the first part of this chapter, an overview of convolutional

encoding is stated. Then theoretical meaning and basic terminologies of the Viterbi

decoding is described. In the subsequent part of this chapter, basic computations

including trellis, butterfly and branch metrics are provided within the Viterbi

Decoding example.

3.2 Convolutional Encoder

A convolutional encoder accepts an input stream of message and generates encoded

output streams to be transmitted. In this process for one input bit the encoder

generates more than one output bits and these redundant symbols in output bit

pattern makes the transmitted data more immune to the noise in the channel. As

will be seen later in Viterbi Decoding section, the redundant bits help to decide and

correct the errors in received pattern.

For the standardization among the engineers in convolutional encoding and Viterbi

decoding concept a terminology was generated as summarized below:

M : Length of the shift register stage in the encoder

Constraint Length (K) = M+1 : This number represents the number of input

bits required to generate a unique output pattern in the encoder. A constraint

length of K=7 means that each output symbol depends on the current input

symbol and the six previous input symbols.

Number of States = 2(K-1) : Defines the maximum number of states that is

possible to be mapped by the combinations of the K number of input bits for

the convolutional encoder.

L :Length of Input Message

 16

R :Convolutional Code Rate

n

m
R ==

output at the symbol ain bitsoutput ofNumber

output at the symbol a create tobitsinput ofNumber

For example, 1/2 code rate means each bit entering the encoder results in 2

bits leaving the encoder.

Generator polynomial: A generator polynomial specifies the encoder

connections. In another words, the generator polynomial can be deduced as

the mathematical description of the convolutional encoder. Each polynomial

forming the generator polynomial should be at most K degree and specifies

the connections between the shift registers and the modulo-2 adders. In the

generator polynomial representation the variable D corresponds to clock

delay

G(i)(D)= G0(i) + G1(i)D + G2(i)D2+…+ GM(i)D(K-1)

Generator polynomial matrix=

23

0)(

0

0

)(

)(

..
.

.

.

.
1

0

..

..

x

i

i

i

GMGM

G

G

GM

GM

For input pattern of 1, 0, 1 the generic convolutional coder creates 2 bits of symbol

at a time.

[] [] 21

23

31 00

11

10

11

1012mod
x

x

x
=

•

 17

As declared in terminology part the constraint length is linearly related to the M in

the coder side. On the other hand, the number of states are the main parameter to

decide the computational complexity of Viterbi decoder and increases

exponentially as constraint length increases. However, the immunity of the encoded

data increases with the increase of the constraint length. So, for an adequate noise

immunity and the cheapest solution, an optimum constraint length should be

selected.

3.2.1 Convolutional Encoder Examples

To clarify the terminology some further examples are required for convolutional

coders. So this section is dedicated to the convolutional coder examples.

In the convolutional coders below, ports labelled with “I” corresponds to input and

other ports labelled with “Q” corresponds to output ports. The convolutional

encoders consist of M stages shift registers and one or more modulo-2 adders,

represented with the shape ⊕ . Also for each encoder, the related generator

polynomials are given at the bottom of the specified figures.

� Convolutional Coder K=2 r=1/2

Fig. 3-2 Convolutional Coder K=2 r=1/2

Q0� G(0)(D)= 1 + D

Q1� G(1)(D)= 1

FF

 18

� Convolutional Coder K=3 r=1/2

Fig. 3-3 Convolutional Coder K=3 r=1/2

Q0� G(0)(D)= 1 + D + D2

Q1� G(1)(D)= 1 + D2

� Convolutional Coder K=5 r=1/2

Fig. 3-4 Convolutional Coder K=5 r=1/2

Q0� G(0)(D)= 1 + D3 + D4

Q1� G(1)(D)= 1 + D + D3 + D4

FF FF

FF FF FF FF

 19

� Convolutional Coder K=3 r=2/3

Fig. 3-5 Convolutional Coder K=3 r=2/3

3.2.2 Operation of the K=3 r=1/2 Convolutional Encoder

In this section the operation of the generic convolutional encoder of K=3 and R=1/2

(Fig. 3-7) will be stated. In the figures “I0” is the input port of encoder from where

the original message stream is applied. “Q0” and “Q1” are the output ports where

encoded message comes out. The two boxes in the middle are serial shift registers

and circles corresponds to modulo-2 adders. In the hardware, the modulo-2 adder is

implemented with the exclusive-or gate whose truth table is the same as the

modulo-2 adder, as illustrated below.

A B C O

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Truth Table of
Modulo-2 Adder

≡

Fig. 3-6 Modulo Adder

FF FF

FF

 20

Fig. 3-7 Generic Convolutional Coder K=3 r=1/2

At the initial point the shift registers in the convolutional encoder are at reset

position which is all-zero content. As illustrated in Fig. 3-7, whenever a data bit

enters from the input port, encoder produces two encoded bits and both of the

encoded bits are correlated with instant and K-1 number of previous input bits,

where K refers to the constraint length of the convolutional encoder. In the

encoding process of K=3 and r=1/2 coder the input symbol enters the shift registers

stage one bit at a time on the left terminals. After the modulo-2 addition of the

selected shift register stages and input data, the two output bits are generated out of

the encoder.

FF FF

 21

Now “01110010” input stream will be applied into the encoder.

Fig. 3-8 Convolutional Encoding Example with 1st bit

At the beginning, the convolutional encoder is in initial state (“00” state). So the

flip flops are loaded with logic “0”. When the first bit of input message is applied

which is logic “0” the output will be “00” (“Q1Q0”) and the next state will be again

“00”.

Fig. 3-9 Convolutional Encoding Example with 2nd bit

FF FF

FF FF

 22

Now the second input bit will go inside the encoder which is logic 1,then

successive output will be “11” and the next state will be “10”.

Fig. 3-10 Convolutional Encoding Example with 3rd bit

Then the third input bit will go inside the encoder which is logic 0. Present state is

“10”. Output will be “11” and the next state will be “01”. At the fourth input

Input=”0” Present State=”01” Output=”11” Next State=”00”

Fig. 3-11 Convolutional Encoding Example with 4th bit

FF FF

FF FF

 23

Input=“1” Present State=“00” Output=“11” Next State=“10”

Input=“1” Present State=“10” Output=“10” Next State=“11”

Input=“1” Present State=“11” Output=“01” Next State=“11”

Input=“0” Present State=“11” Output=“10” Next State=“01”

Output Pattern: 0011101111011001

Fig. 3-12 Convolutional Encoding Example Continued

From the example the conclusions below are extracted:

• State information is directly related to the content of serial registers. Present

content of registers forms present state information and next content of

registers after the current input insertion forms the next state information.

• The output of the encoder is not only dependent to input but also dependent

to the present state of the encoder, so the register values of the encoder.

3.2.3 Representations of Convolutional Encoders

In this section major representations for the state transitions of the convolutional

encoder will be listed.

FF FF FF FF

FF FF FF FF

 24

� State Table

State table is the easiest way to determine the state information and output relation

of the encoder as shown below.

Table 3-1 State Table Representation of Convolutional Encoder

INPUT
BIT

PRESENT
STATE

NEXT
STATE

OUTPUT
CODEWORD

0 00 00 00

1 00 10 11

0 01 00 11

1 01 10 00

0 10 01 10

1 10 11 01

0 11 01 01

1 11 11 10

 25

� State Diagram

Fig. 3-13 State Diagram Representation

State diagram is the graphical way to show state table. In the state diagram bubbles

are the states and the indicators of the states are written inside the bubbles. Arrows

are the state transitions according to input values. The values on the arrows

corresponds to the output of the encoder while the transition takes place with

respect to the input value.

 26

� Code Tree K=3 r=1/2

00

10

01

11

00

10

01

11

00

10

01

11

00

10

00

00

11

00

11

01

10

00

11

01

10

00

11

01

10

Fig. 3-14 Code Tree Representation 1

Fig. 3-15 Code Tree Representation 2

 27

In the code tree representation small boxes are called state boxes (Fig. 3-14). And

arrows represents the state transitions The values on the arrows are encoder output

values. In code tree representations sometimes state boxes are not shown as Fig.

3-15.

3.3 Viterbi Decoder

3.3.1 Viterbi Algorithm

As indicated in the introduction, the Viterbi Algorithm (VA) is a Maximum

Likelihood Decision Algorithm. The Algorithm tries to find the message stream mi

whose likelihood function is larger or equal to the likelihood functions of other

probable messages mj, due to the observed data.

P(mi sent\z)≥ P(mj sent\z) for all j≠i (Eq. 1)

The convention to represent the observed stream is z={z0, z1, ... , zT} where

subscript numbers indicate the sampling time.

P(mi sent\z) is a likelihood function and indicates the probability of message mi

sent given that the observed stream is z.

In the decoding process, VA searches for the best path and so the messages

corresponding to states, that are the building blocks of the path. The best path

passes through the state xik which is the state at sampling instant k in the state

sequence i. The transition in the state sequence i between states xik and x
i
k+1 is

shown as k
iξ . According to the state sequence xi={xi0,x

i
1, ... ,x

i
T} the Maximum

Likelihood Equation can be written as;

() ()zxPzxP ji \\ ≥ For all j≠i (Eq. 2)

The new aim is to maximize the ()zxP \ . As known, the unconditional probability

of P(z) is positive value and is independent of the transmitted function so the state

sequence. Thus, scaling the both sides of the Maximum Likelihood Equation in Eq.

2 has no effect on the result of inequality.

 28

() () () ()zPzxPzPzxP ji \\ ≥ For all j≠i (Eq. 3)

The joint probability ()zxP i , , that is the probability of the simultaneous occurrence

of the state sequence xi and the observation sequence z, is equal to;

() () ()zPzxPzxP ii \, = (Eq. 4)

The Eq. 3 can be rewritten as

() ()zxPzxP ji ,, ≥ For all j≠i (Eq. 5)

The joint probability ()zxP i , is also equals to;

() () ()iii xzPxPzxP \, = (Eq. 6)

In a Markov process the state transition to xk+1 only depends on the previous state

xk.

() ()kik
i

k
iii

k
i xxPxxxxP \,...,,\ 1101 ++ = (Eq. 7)

Both the state xk and the state transition ()kik
i

k xx ,1+=ξ represent the same path in

different ways. Thus,

() () ()∏
−

=

+==
1

0

1 \
K

k

k
i

k
iii xxPPxP ξ (Eq. 8)

Thus the conditional probability in Eq. 6 can be rewritten as

() () ∏
−

=

==
1

0

)\(\\
K

k

k
i

k

ii zPzPxzP ξξ (Eq. 9)

The reimplementation of Eq. 6 using Eq. 7, Eq. 8 and Eq. 9

() () ()∏∏
−

=

+

−

=

+=
1

0

1

1

0

1 ,\\,
K

k

k
i

k
i

k

K

k

k
i

k
ii xxzPxxPzxP (Eq. 10)

With the help of natural logarithm the time consuming and complicated

multiplication calculations can be converted to summation.

 29

()() () ()

−

−=− ∏∏

−

=

+

−

=

+

1

0

1

1

0

1 ,\ln\ln,ln
K

k

k
i

k
i

k

K

k

k
i

k
ii xxzPxxPzxP (Eq. 11)

()() ()() ()()∑∑
−

=

+

−

=

+ −−=−
1

0

1

1

0

1 ,\ln\ln,ln
K

k

k
i

k
i

k

K

k

k
i

k
ii xxzPxxPzxP (Eq. 12)

()() ()() ()()()∑
−

=

++ −−=−
1

0

11 ,\ln\ln,ln
K

k

k
i

k
i

kk
i

k
ii xxzPxxPzxP (Eq. 13)

Each element of summation in the right side of the Eq. 13 is called branch metric

)(ξλ and calculated as;

()() ()()k
i

k
i

kk
i

k
ixx

kk
i xxzPxxPk

i
k
i

,\ln\ln)(11
),(

1
1

+++ −−== +λξλ

(Eq. 14)

)(k
iξλ : The branch metric for the state transition of sequence i from time instant k

to instant k+1 (xik,x
i
k+1).

Then, the equation Eq. 13 is given in another form.

()() ∑
−

=

=−
1

0

)(,ln
K

k

k
ii zxP ξλ (Eq. 14)

Finally VA aims to find the state transition path for which cumulative branch

metric calculation is minimum.

∑∑
−

=

−

=

≤
1

0

1

0

)()(
K

k

k
j

K

k

k
i ξλξλ For all j≠i (Eq. 15)

The variable called Path Metric which is defined as
k
ixΓ .

()∑∑
−

=

−

=

+==Γ
1

0

,
1

0

1)(
k

l

xx
k

l

l
ix l

i
l
i

k
i

λξλ
 (Eq. 16)

Finally, the overall Maximum likelihood decision turns to

 30

k
j

k
i xx Γ≤Γ

 For all j≠i (Eq. 17)

This is the bare structure leading to the Viterbi decoding through code tree

representation which is described in details under the “Decision Through Code Tree

K=5” heading.

From now on, the recursive behaviour of the VA is stated to decrease the

implementation difficulty. The recursive behaviour of the algorithm creates a new

structure called trellis, which is described in details under the “Decision Through

Trellis” heading.

For the initialization of VA the initial state 0x of the decoder is needed to be known

for time k=0 and path metric of this state is 00 =Γx
.

Then for all states of the decoder the metrics related to the two competing

transitions from states xk-1 and x’k-1 leading to the same next state xk are calculated

by the equations Eq. 18 and Eq. 19.

),(
1

11),(−− +Γ=−
kkk xxx

kk xx λγ
(Eq. 18)

)',(
1

11)',(−− +Γ=−
kkk xxx

kk xx λγ
(Eq. 19)

Then the minimum of these two calculations is stored as the path metric of next

state xk.

())',(),,(min 11 −−=Γ kkkk

x
xxxxk γγ

(Eq. 20)

The graphical representation of the recursive calculation for one next state is shown

in

Fig. 3-16

 31

Fig. 3-16 Graphical Representation of The Recursive Calculation

Finally, after traceback depth length of input stream the VA compares the path

metrics of the final states and selects the path ending with minimum state metric as

the most probable path.

3.3.2 Viterbi Decoding

Viterbi decoder is the implementation of the Viterbi Algorithm, which is a

maximum likelihood method to find the most probable input pattern coming from

transmitter and through channel. In the operation, Viterbi decoder, independent of

the input data, calculates every probable state transition from present time instant to

the next, and relevant expected encoder output related to the state transition. Due to

the distance between the expected encoder outputs and the received pattern, the

Viterbi decoder also computes the branch transition probabilities for every state

transition. Then, from the summation of the present state metric and the branch

metric the next state path metric is calculated for every transition. After a specific

number of observed data the decoder decides the most probable path and starts

traceback from this state.

� Decision Through Code Tree K=5

In code tree decision scheme the boxes are the states and arrows are the state

transitions with probable input values shown in Fig. 3-17. The upper arrows

directing out of each state denotes the transitions as if logic 0 input was applied and

 32

lower arrows denotes as if logic 1 input was applied to the encoder. Also there are

two informations on the transitions arrows which are expected encoder output and

branch metric.

Fig. 3-17 Central part of decision tree

The expected encoder output is the output symbol of the convolutional encoder

when the transitions between the specified states occurs due to the assumed input.

The branch metric is dependent on a function of expected encoder output and

received data input to show the transition probability. For a generic hard decision

Viterbi decoder, branch metric is calculated to find the number of different bits

between observed data and expected encoder output. For this purpose bitwise xor

operation will be carried out between received data and expected encoder output to

find the different bits which are logic 1 in the result of xor operation. Then

summation of the bits in the result gives the total number of different bits.

Also all states have their own scale, called path metric. The path metric is a

measure to indicate the probability of the input pattern leading the decoder to

related state. The calculation of path metric is obtained by the cumulation of branch

metric values of the path containing the state.

 33

Message stream = 0110

Fig. 3-18 Decision Through Code Tree K=5

In Fig. 3-18 an example is given for K=5 Viterbi Decoding. The generator

polynomials of the source encoder are “G(0)(D)= 1 + D3 + D4” and “G(1)(D)= 1 +

D + D3 + D4”. As indicated in Viterbi decoder section the decoding starts from all

zero initial state (“0000” state) with the path metric value of 0. From this state two

branches exist for “0” and “1” input bits assumptions. The expected encoder output

of these transitions are found by

0000

1000

0100

1100

0010

1010

0110

1110

0001

1001

0101

1101

0011

1011

0111

1111

0000

1000

0100

1100

0010

1010

0110

1110

0000

1000

0100

1100

0000

1000

0000
0

0

2

3

3

0

2

3

3

2

0

4

4

5

3
3

5

6

6

4

6

5

5

2

0

3

3

5

3

4

4

00/0

11/2

00/2

11/0

01/1

10/1

00/1

11/1

01/2

10/0

00/1

11/1

01/2

10/0

00/1

11/1

01/0

10/2

00/1

11/1

01/0

10/2

11/1

00/1

10/2

01/0

11/1

00/1

10/2

01/0

00 11 10 01

MIN

OBSERVED DATA

 34

 Input bit pattern of length K = [assumed input bit, encoder state bits]1x5

Generator polynomial matrix=

25
11

11

00

01

11

x

Output symbol matrix=Expected Encoder Output bits

For the transition with “0” input assumption branch goes to “0000” state and

expected encoder output is calculated by

[] []

•=

25

5121

11

11

00

01

11

000002mod00

x

xx

For the transition with “1” input assumption branch goes to “1000” state and

expected encoder output is calculated by

[] []

•=

25

5121

11

11

00

01

11

000012mod11

x

xx

At this stage the decoder decides the branch metrics from the number of different

bits between the observed data and the expected encoder output data. The observed

symbol is “00” in this first stage. For “0” input assumption transition the observed

data is the same as the expected encoder output so the branch metric of the

 35

transition is 0. For “1” input assumption transition, where the expected encoder

output is “11”, both of the two bits are different between observed and the expected

data so the branch metric of the transition is 2.

After these transitions the path metric of the next states are calculated by addition

of present state metric and branch metrics. Thus, the path metric of next states

“0000” and “1000” are 0 and 2, respectively.

The traceback depth of this example is 4, so after the calculations stated in above

statements for the 4 stage the decoder compares the path metrics of the final states

and select the minimum valued state for traceback. Then the most probable

message is decided from the assumed inputs of the path leading to the minimum

valued state.

The code tree method is very useful for description of Viterbi decoder but not

suitable for the IC implementation. Because of the major disadvantage of the code

tree representation, which is the exponential increase in the number of states caused

by the increase in the received data, a new method called trellis has been proposed

to restrict the number of states.

� Decision Through Trellis

As stated in previous part because of the increasing number of states in the code

tree method (Fig. 3-19), the trellis method was proposed (Fig. 3-20) in which the

total number of states is restricted to the 2K-1. In the code tree method both states

labelled with “a” and “e” goes to the state “00” in different places of state “b” and

state “f” with logic 0 inputs meaning that the repetition of the state machine started

from “00” state. The observed data and state identifiers so the branch metrics in

transitions b-c and f-g are the same. Also the branch metric of b-d and f-h are the

same.

 36

),(),(fgbc λλ =

),(),(fhbd λλ =

The path metric of states c and g are calculated by the equations below

),(bcbc λ+Γ=Γ

),(fgfg λ+Γ=Γ

Now if the traceback is started in this state, the better path in between the repetition

states would be found by

() ()fbgcbetterpath ΓΓ=ΓΓ= ,min,min

() ()fbhdbetterpath ΓΓ=ΓΓ= ,min,min

In both cases the winner path is only related to the path metric of the b and f states.

The successor states of the greater path metric state are useless in the computations

because the path metric of the successors is directly related to the path metric of the

predecessor and the greater valued predecessor will always direct the successor at

the greater path metric values. So, the repetitive transitions are merged and the

smaller path metric valued state is selected for computation of the path metrics.

 37

Fig. 3-19 Code Tree for K=3 r=1/2

After, merging all the repetitive states for every transitions the trellis structure of

Fig. 3-20 is obtained.

 38

Fig. 3-20 Central Part of Trellis K=3 r=1/2

For the hard decision Viterbi decoder, all the transitions including the initialization

instant are figured out in Fig. 3-21. In the trellis, as expected, after the K-1 number

of observed data the trellis structure in Fig. 3-20 is reached for all stages.

Fig. 3-21 Trellis K=3 r=1/2

00

11

01

00

11

10

00

11
10

01

11

00

01

10

00

11
10

01

11

00

01

10

00

11
10

01

11

00

01

10

 39

3.3.3 Generic Viterbi Decoding Examples

In this section, cycle by cycle the Viterbi decoding process for hard decision is

illustrated for two observed streams. In the first example the error correcting

capability and in the second stream the malfunctioning of the decoding are

exampled.

� Decoding of All Zero Input Message with 2 Transmission Errors

In this part, the all zero input message encoded and transmitted from the K=3 r=1/2

basic convolutional encoder is decoded. But the observed message contains two bits

transmission errors.

Fig. 3-22 Trellis Cycle 1 with Decoder Input “01”

01 00 01 00 00

00

11
1

1

 40

Fig. 3-23 Trellis Cycle 2 with Decoder Input “00”

The decoding process is same as the code tree method in initial 2 cycles (Fig. 3-22

and Fig. 3-23). In these two cycles, comparison of the better transition for the next

state doesn’t occur. Because only one defined branch exists directing to each next

state. However, the 3rd and the rest cycles are made up of the same trellis structure

containing the comparison phases.

01 00 01 00 00

00

11

01

00

1

2

1 11

2

3

10

1

 41

Fig. 3-24 Trellis Cycle 3 with Decoder Input “01”

For each next state the smaller metric containing path is selected.

Fig. 3-25 Trellis Cycle 3 after Comparison of Minimum Branch

01 00 01 00 00

00

11

01

00

1

2

1 11

2

3

10

1 00

11
2

2

10

01

3

5

11

00
3

3

01

10 4

2

01 00 01 00 00

00

11

01

00

1

2

1 11

2

3

10

1 00

11
2

2

3 01

 42

After the comparison phase, the improbable paths lost the connections to the next

states.

Fig. 3-26 Trellis Cycle 4 with Decoder Input “00”

Fig. 3-27 Trellis Cycle 4 after Comparison of Minimum Branch

01 00 01 00 00

00

11

01

00

1

2

1
11

3

1 00

11
2

2

3 01

2

00

11

4

2

10

01

3

3

11

00 2

4

01

10

4

4

01

01 00 01 00 00

00

11

01

00

1

2

1 11 3

1 00

11
2

2

3
01

2

00 2

10

01

3

3

00

2

01

 43

Fig. 3-28 Trellis Cycle 5 with Decoder Input “00”

Fig. 3-29 Trellis Cycle 5 after Comparison of Minimum Branch

Finally, the state containing the minimum path metric between the final states is

selected to start the traceback and the states leading to this final state is drawn as

the best path (Fig. 3-30).

01 00 01 00 00

00

11

01

00

1

2

1 11 3

1 00

11
2

2

01

2

00 2

10

01

3

3
00

2

00

11

4
10

01

3

3

11

00
3

5

01

10

4

2

4

01 00 01 00 00

00

11

01

00

1

2

1
11

3

1 00

11
2

2

01

2

00 2

10

3

00

2

00

10

01

3

3

00

3

2

 44

Fig. 3-30 Trace Back Path

01 00 01 00 00

00 00 00 00 00

 45

� Decoding of All Zero Input Message with 3 Transmission Errors

Now the same encoded message is aimed to be reached. But this time the received

data contains three transmission errors.

Fig. 3-31 Trellis Cycle 1 with Decoder Input “11”

11 00 01 00 00

00

11
0

2

 46

Fig. 3-32 Trellis Cycle 2 with Decoder Input “00”

Fig. 3-33 Trellis Cycle 3 with Decoder Input “01”

11 00 01 00 00

00

11

01

00 2

1

0
11

1

4

10

2

11 00 01 00 00

00

11

01

00

2

1

0
11

1

4

10

2 00

11

3

3

10

01

4

6

11

00
2

2

01

10 3

1

 47

Fig. 3-34 Trellis Cycle 3 after Comparison of Minimum Branch

For the observed pattern containing 3 transmission error the Viterbi decoder

discarded the path of all zero input transitions. So the probable traceback paths are

shaped as in Fig. 3-35.

11 00 01 00 00

00

11

01

00

2

1

0
11

1

4

10

2

11

00

2

2

01

10 3

1

 48

Fig. 3-35 Probable Trace Back Paths

11 00 01 00 00

11

01

1

0

1

10

11

00
2

2

01

10 3

1

 49

CHAPTER 4

IMPLEMENTATION OF BASIC BUILDING BLOCKS OF
VITERBI DECODER

4.1 General

In this chapter implementation of hard and soft decision Viterbi decoders are

explained to get the decoder divided into sub modules, to gain the advantages of

simulation simplification and debug period reduction. Creating the test platform of

these components in the early stages of the thesis will decrease the overall

development time because the specified modules will be used through out the thesis

with some modifications to meet the design specific expectations.

4.2 Implementation of Hard Decision Viterbi Decoder

In this part, the implementation of the simplest Viterbi decoder called hard decision

Viterbi decoder, to acquire the experience of the SystemC for the hardware

modelling with the connections between ACS, BMU, DPRAM and TraceBack

Unit, is stated. The operation of the implemented modules are explained below.

 50

4.2.1 Dual Port RAM

Fig. 4-1 DPRAM Symbol

Dual Port RAM (DPRAM) units are path metric keepers of the decoder. In each

DPRAM to store the path metric only one register exists and several other registers

exist to store probable transition information. So, the next state metric coming from

W_Data is overwritten on the present state metric of previous cycle. In the next

cycle without any addressing the trellis calculation is performed on the same

registers as previous cycle. Using one register for the path metric storage to get rid

of switching mechanism in trellis calculations is called in-place path metric

updating.

On the contrary of the synchronous write operations controlled by W_En, to

increase the speed of the trellis calculation, the read operations are performed

asynchronously.

Before the Viterbi Decoding an initialization phase should be performed to assign

initial path metrics of states. To initialize the path metrics on R_Data port, the port

labelled as R_Addr is waited to be “000”. As figured in Chapter 3, in the initial K-1

cycles there are some states with undefined path metrics. To solve the

implementation problem caused by the undefined states, the DPRAMs are created

in two types. The only difference between these DPRAMs is the path metric values

 51

in the initialization phase. The all zero state representing DPRAM supplies the path

metric equal to 0 and the other DPRAMs supply very large path metrics in which

the most significant bit is “1”. Assigning the undefined states in the initial cycle

with a great path metric value makes these states improbable for traceback.

In the DPRAM symbol there are other ports named W_Addr and W_Path to store

the probable transition information of each cycle. The RAMPathX ports reflect the

probable transition leading to the next states in each cycle. In our implementation

the traceback depth is selected as 8 so totally 8 RAMPath register so the 8 ports

from RAMPath0 to RAMPath7 are implemented.

Fig. 4-2 DPRAM Simulation Result

 52

4.2.2 Add Compare Select Unit (ACS)

Fig. 4-3 ACS Symbol

The ACS units are the building blocks of the trellis structure. The ACS unit adds the branch

metric and the path metric (StateMetric), then, determines the transitions causing the

smaller path metric for the next state. The ACS units retrieve the state metric of previous

cycle from the R_Data port of DPRAMs, after the calculations, the resultant path metric of

the probable path is generated and written on the W_Data port of DPRAMs. The ACS units

also compute and write an information into the DPRAM identifying the probable transition

which will be used in traceback operation. The operation of ACS is summarized on the

block diagram Fig. 4-4.

Fig. 4-4 ACS Block Diagram

-

ΣΣΣΣ

ΣΣΣΣ

PathMetric

Probable Path

 StateMetric1

 StateMetric0

 BranchMetric0

 BranchMetric1

 53

Fig. 4-5 ACS Monitor Based Simulation Result

Fig. 4-6 ACS Winbeta Based Simulation Result

4.2.3 Branch Metric Unit (BMU)

Fig. 4-7 BMU Symbol

Demod_data = Observed Data; PMvalue = Expected Encoder Output;

The BMU receives observed data from the channel (Demod_data) and expected encoder

output (PMvalue) then computes the branch metric from the number of different bits

between the observed data and expected encoder output. The branch metric can be seen

 54

as the distance between the received data and expected encoder output in the state

space.

Fig. 4-8 BMU Monitor Based Simulation Result

Fig. 4-9 BMU Winbeta Based Simulation Result

 55

4.2.4 ACSDPRAM

Fig. 4-10 ACSDPRAM Symbol

ACSDPRAM unit is the trellis structure composed of the BMU, DPRAM and ACS

blocks.(Fig. 4-11 and Fig. 4-13) In the implementation port named as NextInstant

 56

represents the trellis cycle number and is used to identify the address of RAMPath

for probable transition storage. The PresentInstant is also the cycle representer and

used to inform the DPRAMs for initialization at value of “000”. In any time the

BMU units calculate the branchmetrics using observed data incoming from

Demodulated_Data port and the ACS unit performs calculation of probable paths

and the path metrics related to these paths asynchronously. After the W_En

activation the path metrics are updated with the values calculated by ACS units.

The Read_Data ports output the path metrics of the states to decide the probable

path just before the traceback. The ports prefixed with RAMPath shows the

probable transitions of each cycle to estimate the original message in traceback. For

this purpose the least significant bit of the present state identifier of the probable

transition is stored as RAMPath value.

Fig. 4-11 ACSDPRAM Block Diagram

 57

Fig. 4-12 ACSDPRAM Detailed Block Diagram

 58

F
ig
. 4
-1
3
A
C
S
D
P
R
A
M
 S
ch
em
at
ic

 59

Fig. 4-14 ACSDPRAM Monitor Based Simulation Result

4.2.5 MinDetector

For the decision of the state containing minimum path metric, the mindetector

module shown in Fig. 4-15 is implemented. The mindetector module inputs the path

metrics of all states and outputs the identifier of the minimum path metric valued

state.

Fig. 4-15 Mindetector Symbol

 60

4.2.6 Trace-Back Unit (TBU)

Fig. 4-16 TRACE-BACK UNIT Symbol

The traceback unit is a module, which estimates the original message using the

information comings from ACSDPRAM module. After a predetermined length of

observed data block, the TBU inputs the identifier of the minimum path metric

 61

valued state from min detector. Then, TBU establishes an optimal path from the

most probable final node all the way to the all zero state at the beginning of the

trellis by using the transition information in each trellis cycle.

The Traceback Unit performs the reverse process of the convolutional encoding. In

the convolutional coder the next state identifier is the one bit right shifted version of

the present state taking the message bit for the most significant bit of the next state

identifier and the least significant bit of the present state identifier is lost in the next

state, as declared in Chapter 3.

Present State Identifier = Sn ... S2 S1 S0

Input Message Bit = I

Next State Identifier = I Sn ... S3 S2 S1

In the Viterbi decoder the state transitions depending on the convolutional coding

are recreated for all probable states in the trellis to decide the transition

probabilities. In the trellis as well, the least significant bit of the present state are

lost in the transition towards the next state. So, for each trellis cycle the least

significant bit of the present state directing to the next state is stored in the

RAMPath registers of the next state DPRAM at the address which is equal to the

trellis cycle (Fig. 4-17).

 62

Fig. 4-17 Trellis Decision

The RAMPath registers store the survived transition information so they are called

the survivor registers. In the tracing of the best path, the traceback unit uses the

values in the survivor registers as in Fig. 4-18. The Fig. 4-18 is an example

traceback operation for which the best state after the final trellis cycle is calculated

as “01”. The state identifier is stored for the first two bits of the estimated message.

The bit value of the survivor register corresponding the final cycle (cycle 7) in the

DPRAM1 is “0”. So shifting the present state identifier to the left taking the

survivor register as input and erasing the most significant bit, the state of “10” is

obtained for the best state of cycle 6. The recursive operation is continued up to the

cycle 0 while storing the survivor register values for the estimated message.

 63

Fig. 4-18 Trace Back Algorithm

The traceback unit is composed of the MUX2x4 modules shown in Fig. 4-15 whose

truth table is given in Table 4-1.

Fig. 4-19 MUX2x4 Symbol

 64

Table 4-1 Truth Table of Mux2x4

S1 S0 O
0 0 I00
0 1 I01
1 0 I10
1 1 I11

Fig. 4-20 TraceBack Operation Block Diagram

 65

Fig. 4-21 TraceBack Unit Schematic

4.2.7 Hard Decision Viterbi Decoder Module

Fig. 4-22 Viterbi Decoder Symbol

 66

F
ig
. 4
-2
3
V
it
er
b
i S
ch
em
at
ic

 67

Finally, the hard decision Viterbi decoder is obtained with the connections shown

in Fig. 4-23.

Fig. 4-24 Viterbi Decoder Simulation

The simulation result of the connections between ACSDPRAM, mindecoder and

TBU is performed and simulated in Fig. 4-24.

In Chapter 3 the Viterbi Decoding of all zero input message was exampled for two

observed streams to see the performance of the hard decision Viterbi decoder. In

one of these examples the two errors were embedded in observed data and the

estimated message was corrected through decoder as the original message. This

case is simulated on the hardware and the simulation result is given in Fig. 4-25

 68

Fig. 4-25 Decoding of Observed Data with two errors

The three errors embedded in observed data case is also simulated on the hardware

and the simulation result is given in Fig. 4-26

 69

Fig. 4-26 Decoding of Observed Data with three errors

4.3 Implementation of Soft Decision Viterbi Decoder

In the previous part, the implementation of the hard decision Viterbi decoder was

stated. In hard decision decoding, a stream of symbols are passed through a

threshold detector in the receiver to obtain bit values definitely separated into the

two quantized logic levels, one or zero as in Fig. 4-27.

 70

Output

Input(V)

0

Logic 1

Logic 0

+1 +2 +3-1-2-3

Fig. 4-27 Hard Decision Input Example for ±2V Transmitted Symbol

For a hard decision input the closeness of the received value to the transmitted

voltages is not important in branch metric calculations so the receiver responds with

the same branch metric for the 0.1V and 2.1V for the message pulsed with +2V and

-2V signalling levels to signify the logic 1 and logic 0, respectively. In this

situation, the received signal of 2.1V is very probable to be transmitted as logic 1

(+2V) and almost not probable to be transmitted as logic 0 (-2V) because the

channel corruption is 0.1V for +2V transmitted signal and 4.1V for -2V. However,

0.1V is approximately equal probable to be transmitted either +2V or -2V signal

levels. Thus, a mechanism to distinguish the probability of the received signals

according to the value of the corruption voltage altered the transmitted voltage is

required to increase the fidelity of the decoded message. For this reason a concept

called soft decision viterbi decoding was developed in the literature where the input

symbol is not only quantized to 1 and 0, but also quantized by several threshold

levels to improve the reliability of the branch metrics relative to the input message.

In Fig. 4-28 four level quantized scheme is given.

 71

Output

Input(V)

0 +2+1-2 -1

Strong 1

Strongest 1

Weak 1

Weakest 1

Weak 0

Weakest 0

Strong 0

Strongest 0

Fig. 4-28 Soft Decision Input Example

Instead of the two strict probability value in hard decision inputs, in soft decision

the intermediate voltage values are assigned to several probability values for

condense measure concerning probability of a binary bit being 1 or 0. For example

Fig. 4-29 shows the probability of the received voltage to be belonging to the +2V

transmitted signal. In other words, in the Gaussian curve located with mean value

of +2, which corresponds to the probability of the received voltage belonging to

the logic 1 transmitted symbol, the area of each region, separated by -1, 0, +1,

represents the probability for the input voltage falling within the range reasoning of

the logic 1 transmitted.

 72

Fig. 4-29 Soft Decision Probabilities

To summarize the above discussion, the probability table is given in Table 4-2

Table 4-2 Probability of quantized voltages vs. the transmitted logic

Strongest 1
/Weakest 0

Strong 1
/Weak 0

Weak 1
/Strong 0

Weakest 1
/Strongest 0

logic 0 0.025 0.075 0.25 0.65

logic 1 0.65 0.25 0.075 0.025

The probability calculations are normally obtained by multiplications, and the

multiplications causes large hardware size and time consuming operations. So the

probability values are converted to the logarithmic probability values to simplify

the hardware into adder-subtracter circuits operating in one clock cycle. Also, the

probability values are always less than 1 so the logarithmic values are always

smaller than 0. Multiplicating the logarithmic probabilities by -1 makes all

probability values to positive and leads the hardware to only adder circuitries.

From now on;

Logarithmic Probability = –log (Probability)

The logarithmic probabilities of Table 4-2 is given in Table 4-3.

 73

Table 4-3 Logaritmic Probabilities of quantized voltages vs. the transmitted logic

Strongest 1
/Weakest 0

Strong 1
/Weak 0

Weak 1
/Strong 0

Weakest 1
/Strongest 0

logic 0 1.602 1.125 0.602 0.187

logic 1 0.187 0.602 1.125 1.602

For example, the branch metric calculation by using the logarithmic probabilities

are performed as follows. The branch metric of transitions for the subsequent 1.5V

and -0.5V input voltages are calculated by addition of the two probability values

corresponding to each encoder output bit. The 1.5V is in the strongest 1 / weakest 0

region (Fig. 4-28 and Fig. 4-29) whose logarithmic probabilities are 1.602 and

0.187 for expected encoder output bit of logic 0 and logic 1 (Table 4-3),

respectively. In other case, the -0.5V is in the Weak 1/Strong 0 region whose

probabilities are 0.602 and 1.125 for expected encoder output bit of logic 0 and

logic 1, respectively. For the “00” expected encoder output, the first bit is 0 and the

input voltage is in Weakest 0 region so the probability is 1.602 and the second bit

of expected encoder output is 0 and received voltage is -0.5V causing 0.602

probability. From the summation of these two probabilities, the branch metric of the

branch is found as 2.204 (Fig. 4-30) . For the “11” branch all two expected encoder

outputs are ‘1’ so the branch metric is calculated by the summation of probabilities

of 0.187 and 1.125.

Fig. 4-30 Branch Metric Calculation

 74

In hardware implementation the floating-point calculations causes hardware

complexity. So the logarithmic probabilities are scaled by 100 and then rounded to

integers (Table 4-4).

Table 4-4 Scaled Logaritmic Probabilities

Strongest 1
/Weakest 0

Strong 1
/Weak 0

Weak 1
/Strong 0

Weakest 1
/Strongest 0

logic 0 160 113 60 19

logic1 19 60 113 160

For the hardware implementation, the modules implemented in hard decision

Viterbi decoder are modified to obtain K=3 R=1/2 soft decision Viterbi decoder.

4.3.1 BMU

Fig. 4-31 BMU Symbol

The BMU module takes the two input symbol from the analog to digital converter

of the receiver and calculates the 9 bits scaled logarithmic transitions probabilities

for branch metric values of 00, 01, 10 and 11 expected encoder output.

 75

4.3.2 ACS

Fig. 4-32 ACS Symbol

The ACS module inputs the branch metrics and the state metrics of half a butterfly

and outputs better path also the next state metric for this better path as in hard

decision Viterbi decoder. The state metrics are selected as 14 bits for calculation of

maximum traceback depth of 16.

4.3.3 DPRAM and MinDetector

Fig. 4-33 DPRAM Symbol

 76

Fig. 4-34 MINDETECTOR Symbol

The DPRAM and MINDETECTOR modules are same as in the hard decision

Viterbi decoder with only modification of the state metric related signals to 14 bits.

 77

4.3.4 ACSDPRAM

Fig. 4-35 ACSDPRAM Symbol

ACSDPRAM module is used to create the trellis structure as before. However, in

this implementation one branch metric unit creates the branch metrics of all

transitions in the trellis.

 78

F
ig
. 4
-3
6
A
C
S
D
P
R
A
M
 S
ch
em
at
ic

 79

4.3.5 Soft Decision Viterbi Decoder

Fig. 4-37 Viterbi Decoder Symbol

The trace-back unit designed in hard decision Viterbi decoder section is used

without any modification. So, the decoder operates on trace-back length of 8.

 80

F
ig
. 4
-3
8
V
it
er
b
i D
ec
od
er
 S
ch
em
at
ic

 81

CHAPTER 5

RECONFIGURABLE VITERBI DECODER
IMPLEMENTATION

5.1 General

In this chapter, two new area efficient reconfigurable Viterbi decoder approaches

are proposed. The improvement in these architectures are the new trellis structures

which give ability to configure the constraint length by the regular usage of the

same small trellis portion in subsequent time instances. The contribution of the

same structures usage in all iterations decreases the hardware complexity and the

new state organization offered in these approaches provides in place path metric

update with only two state metric switching.

5.2 Reconfigurable Viterbi Decoder with Normal and Complemented State
Identifiers at Subsequent Iterations

In this part, the first area efficient architecture is described in theoretical manner.

The explanation starts with comparison of standard and suggested trellis and

resumes with hardware implementation guide lines.

5.2.1 Trellis Structure

The backbone of the Viterbi decoder is the trellis structure and the major usage of

the trellis structure is the decision of the more probable state transitions by

calculating the branch and state probabilities related to the state transitions and

received symbol.

 82

In Fig. 5-1, a standard trellis example is demonstrated for K=4. For K=4 there are

totally 2(K-1) =8 states and 3 bit is enough to represent them.

Fig. 5-1 Trellis Structure (K=4)

In Fig. 5-1 the left circles, named as previous, and the right circles, named as next,

are the states whose identifiers are determined with the values inside the circles.

The arrows show the state transitions corresponding to the assumed data inputs.

The dashed lines denote transitions as if logic 0 input have been received and

straight lines correspond to the transition for logic 1 input.

The branch and state probabilities have been converted to the branch metrics and

the path (state) metric by taking the negative logarithm of base 2. So the probability

calculations have been converted to addition instead of multiplication. The branch

metrics are determined considering the probability of the next state depending on

the previous state and the observed data. The path metrics are calculated

cumulatively by the addition of the branch metrics from the beginning of the stream

to be decoded.

 83

Fig. 5-2 Trellis Calculation

As an example, to obtain the path metric for next state “001”, in the trellis structure

the two branches directing to the “001” states should be considered. These are

transitions from the “010” state and from the “011” state for logic “0” inputs.

Accordingly, (i) the path metric of previous state “010” metric is added with the

branch metric of “010” to “001” transition and (ii) previous state “011”metric is

added with the branch metric of “011” to “001” transition. After these calculations

minimum of (i) and (ii) is selected and stored in as the path metric of the next state

“001”. Also the least significant bit of the possible previous state is needed to be

stored for the future trace-back operation. The path metric computations and

minimum metric selections are managed by Add-Compare-Select Unit (ACS).

After a trellis cycle, calculation of the path metric for every next state, the next state

metrics are copied over the previous state metrics. These calculations are

recursively carried out up to the depth of trace back. After the receiving of the

trace-back lenght stream input, the path metrics are used as a measure to find the

most probable state to start with the trace-back.

The bare trellis structure given in Fig. 5-1 is a complicated structure to implement

on an IC. For K=4, 8 states are needed and increasing K exponentially increases the

number of states, so the number of memories, ACSs, interconnections. Also, the

given trellis structure is not in a suitable form to be implemented using

reconfigurable blocks. For this reason another kind of representation has been

suggested in the literature to generate similar modules. This method, shown in Fig.

5-3, is a new rearrangement of connections in Fig. 5-1. The interchanged positions

of the next states formed a trellis model which is composed of substructures called

butterfly.

 84

Fig. 5-3 Butterfly Demonstration

Butterfly structures provide regularity in the implementation. For example, for

K=6, Viterbi decoder is composed of 25=32 states. To generate 32 states, the

subtrellis combined with 2 butterflies(B=2, 2x2=4 states) is used eight time for

different present and next states. For K=7, the subtrellis is needed to be used 16

times for the generation of 64 states.

In B=2 subtrellis, the 4 memory units correspond the 4 states in subtrellis. For K=6

Viterbi decoder implementation, each memory unit is implemented with 8 address

space to represent 8 iterations. In a reconfigurable decoder, the maximum constraint

length determines the maximum number of iterations so the total number of address

spaces in memory is 2K-2/B.

The butterfly method increased regularity and solved the reconfiguration problem

of constraint length with repetition. But butterfly grouping in Fig. 5-4 brought very

complicated switching mechanism to link the previous and the next states through

ACS units.

To illustrate this problem the 4 state metric memory units were named with

alphabets A, B, C, D from top to down in previous states. Then, the next states were

named in conjunction with the previous states, introducing the same alphabet to the

 85

same identified states between previous and next states, as demonstrated in Fig.

5-4.

Fig. 5-4 Memory Mapping of Butterfly Structure for B=2

Considering the above iterations, it can be concluded that the next state memory

identification contains naming repetitions in the same iteration meaning that the

trellis tries to write two different addresses of the same memory unit. This result is

an important problem to be solved for an efficient VLSI implementation Viterbi

decoder

In this paper a new butterfly structure is suggested to decrease the next state path

metric multiplexing and addressing complexity between the two consecutive states

and to decrease the complexity of operations.

5.2.2 Complemented Identifier Reconfigurable Foldable Viterbi Decoder

The new implementation is based on a modified foldable structure so called

complemented identifier reconfigurable foldable Viterbi decoder. In this new

approach memory addressing and multiplexing have been simplified considerably.

To construct this model, all iterations are considered subsequently and the first half

 86

numbers of the iterations are taken the same as the original butterfly and the other

iterations are rotated vertically. Independent of the constraint length, number of

iteration and the order of the iterations, with this method building a Viterbi decoder

with only two next state path metric multiplexing has been achieved.

On the other hand controller and traceback unit simplifications are important issues

to obtain area efficient integrated circuit. Thus the new trellis model is constructed

as explained below.

In the model the consecutive two iterations in subsequent time instances are treated

as one group. The iterations are reconstructed and numbered to get the groups given

in Fig. 5-5. Note that iterations 0, 2, 4, 6 correspond to the iterations 0, 1, 2, 3 in the

ordinary butterfly trellis. Also iterations 1, 3, 5, 7 correspond to the iterations 7, 6,

5, 4 in the ordinary butterfly trellis with scrambled states.

Between first and second iterations of any iteration group the below statements can

be concluded.

• All state identifiers in the second iteration of any iteration group are bitwise

complemented values of the state identifiers in first iterations. For example

for K=6 Viterbi decoder state identifiers are represented with five bits. The

present state identified as 5, whose path metric will be stored in memory

unit B, in iteration 2 of IG1 is represented as “00101”, where as in the same

iteration group, at the same location of the next iteration state identified as

26 exists, with binary notation of “11010” which is the complement of the

binary “00101”. Also same approach is valid for next states. For example,

next state 17, binary “10001”, of iteration 0 replace with next state 14,

binary “01110”, in iteration 1 which is the bitwise complement of 17. The

inverted state identifiers decrease size of the state decoder unit in the

implementation. Because designing the state decoder for only first iterations

and complementing the state identifiers for the second iterations in iteration

groups, are enough for implementation of the states identifiers in whole set

of iterations.

 87

• For the storage of the path metrics into the internal registers of the memory

units the identifiers of the states will be used. But the least significant two

bits of the present and the next states are the same for the same position of

the first iterations in the iteration groups. So in memory address localization

for path metrics the least significant bits of identifiers will not be used.

Omitting the least significant two bits, results in a very light weight state

decoding for the present states of the first iterations in iteration groups the

iteration counter without least significant bit will be connected to the read

address of the memory units through xor gates. The other terminals of the

xor gates will be connected to the least significant bit of the iteration

counter. For the first iterations of the iteration groups the xors behave as an

ordinary buffer. For the second iterations of the iteration groups the least

significant bit of the counter will be “1” so the address locators will be

complemented.

• The next state identifiers of the trellis are the one bit left shifted of the

present state identifiers taking the assumed branch input as the most

significant bit.

• The branch structure in the consecutive iterations of an iteration group is

constructed using a complemented scheme. In an iteration group the dashed

branches in first iteration are replaced with the straight lines in the second

iteration and straight lines are replaced with the dashed lines. Meaning that

in iteration 0, state 0 to state 0 transition is obtained with logic 0 input on

the other hand in iteration 1 from state 31 to state 31 transition is achieved

by logic 1 input. Note that state identifier “11111” is bitwise complemented

version of state identifier “00000”.

• Consequently, in the even numbered iteration groups, the next states use the

memory units in A, D, B, C order and in the odd ordered iteration groups

the next states memory units are used in C, B, D, A order (Fig. 5-5). This

regularity results in the usage of the second least significant bit of the

 88

iteration counter directly as the selection control input of the path metric

router.

K=6

Iteration 0

Iteration 1

Iteration
group0
(IG0)

Iteration 2

Iteration 3

Iteration
group1
(IG1)

Iteration 4

Iteration 5

Iteration
group2
(IG2)

Iteration 6

Iteration 7

Iteration
group3
(IG3)

Fig. 5-5 Butterfly Based Projection (Implemented Butterly Group)

Above structure can further be rearranged to get the next states in the same order

with the present states as shown in Fig. 5-6.

 89

Iteration 0

Iteration 1

Iteration
group0
(IG0)

Iteration 2

Iteration 3

Iteration
group1
(IG1)

Iteration 4

Iteration 5

Iteration
group2
(IG2)

Iteration 6

Iteration 7

Iteration
group3
(IG3)

Fig. 5-6 Memory Based Projection (Composition of Butterflies and Path Metric Multiplexing)

• Another consequence is that, for the condition that reveals two iterations

(Table 5-1) only one path metric multiplexing mode exists, so there is no

need to use next state path metric multiplexers for such cases. For I>2, two

path metric multiplexing modes are enough to cover the whole trellis (Fig.

5-5).

 90

Table 5-1 Constraint Length, Number of Butterflies and Iterations Relation

Constraint
Length (K)

Number of Butterflies
(B)

Number of
Iterations (I)

4 2 2

5 4 2

6 8 2

5 2 4

6 4 4

7 8 4

6 2 8

7 4 8

7 2 16

As an example, for K=4, B=2 , two iterations exists as shown in Fig. 5-7.a. As

explained above the second iteration has been vertically rotated, and the

structure given in Fig. 5-7.b is obtained. Fig. 5-7.c shows the binary

representation of the states in Fig. 5-7.b.

a

����

b

c

Fig. 5-7 Trellis Structure (K=4)

 91

Rearranged form of Fig. 5-7.b is presented in Fig 9.

Iteration 0

Iteration 1

Iteration group0

Fig. 5-8 Rearranged Next State Trellis Structure (K=4)

Also for K=5, B=4, two iterations are needed and rotating the second iteration, as

explained before, will result in the same scheme (Fig. 5-9). All two iteration trellis

with rotated second iteration don’t use next state path metric multiplexers. By using

this new method, a Viterbi trellis can be implemented with approximately half

elements, so as chip area.

K=5
Iteration 0

Iteration 1

Fig. 5-9 8 State Trellis Structure (K=5)

 92

Because of its complementing nature, the new method can be used for number of

iterations greater than one. However, in practice the minimum number of iterations

is chosen as 2.

The examples in this paper were given for 2 butterfly subtrellis but the method can

be extended to the 2n number of butterfly subtrellises.

5.2.3 Hardware Structure

In this section hardware implementation of the new complemented identifier

reconfigurable foldable Viterbi decoder is discussed for constraint lengths varying

from 4 to 7.

In hardware implementation a modified RAM structure is suggested to store path

metrics of states. The new modified RAM is called Double Registers Dual Port

RAM (DRDPRAM) as given in (Fig. 5-10).

Fig. 5-10 DRDPRAM block diagram

The path metric of the previous states stored in the O-RAM is used to determine the

path metric of the next state that will be stored in I-RAM. When all the I-RAM data

(i.e., the path metrics of the next states) are calculated, the I-RAM content are

transferred to O-RAM by activating “Update”.

 93

To route the path metrics of the next states to the relevant memory unit, two

different addressing modes have been utilized. For even indexed iteration groups,

addressing shown in Fig. 5-11 is used and for odd indexed iteration groups address

multiplexing shown in Fig. 5-12 is used.

Fig. 5-11 Next State Metric Routing for Even Numbered Iteration Group

Fig. 5-12 Next State Metric Routing for Odd Numbered Iteration Group

The design should cover the maximum number of states which is reachable with the

maximum value of constraint length of 7. For K=7, there are 64 states constituting

16 iterations with B=2 butterfly groups. The 16 iterations results in 16 address

locations in which DRDPRAMs store the state metric values. During an iteration,

the generation of the relevant present state address for read operation, the next state

address for write operation and calculation of the branch metrics should be

accomplished. The state decoder designed for this purpose is given in Fig. 5-13.

 94

K1

K0

PS0

PS3

PS2

PS1

NS0U

NS3U

NS2U

NS1U

NS0D

NS3D

NS2D

NS1D

K1

K0

M1

M0

M2
K0

M1

M0

M2

X1

X0

X2

X3

PS0PS3 PS2 PS1

M2 M1 M0

IC0

D0

D1
O

S

D0

D1
O

S

D0

D1
O

S

D0

D1
O

S

X1

X0

X2

X3

C0

C0

C0

C0

PS3

M2

PS2

PS1
NS0U

NS3U

NS2U

NS1U

D0

D1
O

S

D0

D1
O

S

D0

D1
O

S

D0

D1
O

S

X1

X0

X2

X3

IC0

IC0

IC0

IC0

PS3

M2

PS2

PS1
NS0D

NS3D

NS2D

NS1D

C3 C2 C1 C0

Next Iteration

Reset

ITERATION

COUNTER

C0C1C2C3C4

Inc

Reset

K2

Fig. 5-13 State Decoder

PS3, PS2, PS1 and PS0 are present state identifier bits (used for addressing to read

the state metric from the relevant internal O-RAM register of DRDPRAM) and

NS3U, NS2U, NS1U, NS0U and NS3D, NS2D, NS1D, NS0D are the bits (used for

addressing to write the state metric into the relevant internal I-RAM register of

DRDPRAM) of the two next state identifiers which are dependent on the iteration

counter and constraint length. The detailed diagrams of the trellis corresponding to

the state identifiers are shown in Fig. 5-14 and Fig. 5-15 for the odd and even

iteration groups respectively.

 95

Fig. 5-14 New Trellis Model Hardware Implementation Bits For Odd Iteration Groups

Fig. 5-15 New Trellis Model Hardware Implementation Bits For Even Iteration Groups

The W_Data port is used to store the next state metric into DRDPRAM and R_Data

port is used to get the present state metric.

The Fig. 5-16 illustrates detailed block diagram of the decoder. In the schematic,

the input bits SU0, SU1, SU2, and SU3 to the Survivor Unit block are generated.

This block stores the most probable path information of each nodes guiding to the

next states. With this information, the traceback unit can estimate the original

message.

 96

P
S
3

P
S
0

P
S
1

P
S
2

N
S
3
U

N
S
2
U

N
S
1
U

N
S
0
U

N
S
3
D

N
S
2
D

N
S
1
D

N
S
0
D

Fig. 5-16 Viterbi Decoder Block Diagram

 97

5.3 Implementation of Reconfigurable Viterbi Decoder with Normal And
Complemented State Identifiers At The Same Iteration

Finally, the implementation of second area efficient reconfigurable Viterbi decoder

in SystemC is described. The design of the scope gives ability to online

configuration of parameters

• constraint length

• code rate

• transition probabilities

• traceback depth

• generator polynomial.

5.3.1 Theory

The design covered in this chapter is another rearrangement of states in the trellis

for the implementation of the Viterbi decoder. This new method resembles very

much to the first approach in the previous part but the states in the iterations are

arranged to contain the normal and complemented identifiers in the same iteration

(Fig. 5-17).

 98

2

3

1

5 CB

A B

6

7

3

7 CC

D B

D

C D

A4

5

2

6

A

B D

A0

1

0

4

2

3

1

3 CC

D B

A

B D

A0

1

0

2

ITERATION 0 ITERATION 0

ITERATION 1

K=3 K=4

Fig. 5-17 The 4 States Sub-Trellis Structure

In previous part a term called iteration group was introduced as the composition of

the two iterations for 4 states subtrellis. For the 8 state subtrellis in this new method

two subsequent iterations of an iteration group for 4 states subrellis of previous part

can be thought to be used in one iteration, considering second iterations below the

first iterations. So the states in the below half of the trellis would be the

complemented of the states identifiers of the upper states. For the 8 states sub-trellis

structure two examples is given in Fig. 5-18 for K=4 and K=5.

 99

4

6

5

7

2

6

3

7

H

EE

F

G

D

F

C

0

2

1

3

0

4

1

5

A

GD

C

B

B

H

A 4

6

5

7

2

10

3

11

A

ED

C

B

D

F

C0

2

1

3

0

8

1

9

A

GD

C

B

B

H

A

12

14

13

15

6

14

7

15

H

EE

F

G

D

F

C 8

10

9

11

4

12

5

13

H

GE

F

G

B

H

A

K=4 K=5

ITERATION 0 ITERATION 0 ITERATION 1

Fig. 5-18 The 8 States Sub-Trellis Structure

In the examples and implementation the 4 and 8 states sub-trellises are introduced

for this new approach but increasing the number of states in the sub-trellis with the

power of two is also functional.

The first approach was only operative for the number of iterations equal to or

greater than two. On the other hand this new approach is functional for even one

iteration trellis For example constraint length of 3 is possible in a 4 state trellis.

(K=3 in Fig. 5-17 and K=4 in Fig. 5-18).

In the implementation of the reconfigurable Viterbi decoder the 8 states sub trellis

structure is used so in the subsequent parts of this chapter the descriptions are based

on 8 states sub-trellis structure. To extract the new outcomes for the simplification

of the reconfigurable hardware to be implemented, the binary representation of the

8 states sub-trellis structure is given in Fig. 5-19.

 100

Fig. 5-19 Binary Representation of The New Trellis Structure

In the binary representation, states are identified with 6 bits because the decoder

should operate on the constraint length ranging from 4 to 7. For the constraint

length of 7, K-1=6 bit is required to identify each states.

In the decoding process same labelled state’s metrics are stored in same

DRDPRAMs’ different registers as usual. For example, for K=5, the DRDPRAM A

stores both the path metric of state 0 and state 4 (Fig. 5-19). So there should be a

way to address the memory locations related to the states in DRDPRAM units. The

2 least significant bits of present state identifiers are same for the same DRDPRAM

in any iteration. So in the addressing operation there is no need to use these two

bits. Also another exciting point is that the most meaningful bit* of state identifiers

are always 1 in the lower half of the iterations and always 0 in upper states (*The

most meaningful bit is located on the most significant position of the minimum

number of bits enough to represent all states of a constraint length). This means,

direct usage of the most significant 4 bits to address the memory, there will be some

blind parts of the memory to where no data would be written. To overcome the

memory blind memory problem, there are two methods. These are omitting the

most meaningful bit by forcing it to 0 or second way is the complementing all the

meaningful bits of the lower half states identifiers** (**Meaningful bits are the

minimum number of bits enough to represent all states of a constraint length). The

 101

complementing way will be used in the implementation process. By this method the

present state memory location (Read Address of DRDPRAMs) will be same as the

iteration number for every DRDPRAMs so the iteration counter output can be

directly connected to the read address of the DRDPRAMs. On the next state side

the DRDPRAM addresses composed of 2 addresses the first address is connected to

the A, B, E, F labeled and the second is connected to the C, D, G, H labelled

DRDPRAMs.

Table 5-2 State Table Representation K=5

Iteration
Number

DPRAM
Identifier

DPRAM
Address

Present
State

Identifiers

DPRAM
Read

Addresses

Next State
Identifiers

DPRAM
Write

Addresses
A 0000 000000 0000 000000 0000
B 0000 000001 0000 000001 0000
C 0000 000010 0000 000110 0001
D 0000 000011 0000 000111 0001
E 0000 001111 0000 001111 0000
F 0000 001110 0000 001110 0000
G 0000 001101 0000 001001 0001

Iteration
0

H 0000 001100 0000 001000 0001

A 0001 000100 0001 000100 0001
B 0001 000101 0001 000101 0001
C 0001 000110 0001 000010 0000
D 0001 000111 0001 000011 0000
E 0001 001011 0001 001011 0001
F 0001 001010 0001 001010 0001
G 0001 001001 0001 001101 0000

Iteration
1

H 0001 001000 0001 001100 0000

The next state memory is arranged on A, H, B, G, E, D, F, C order in iteration 0 and

on C, F, D, E, G, B, H, A order in iteration 1. In the hardware the butterfly group is

implemented a fixed hardware and a two position state metric multiplexer (path

metric router) is designed to direct the state metric to the correct DRDPRAM.

 102

Fig. 5-20 State Inversion (K=6)

The Fig. 5-20.a shows the suggested trellis structure and Fig. 5-20.b shows the

memory addressing scheme inside the Viterbi implementation. For K=6 most

significant bit of state identifiers is the 5th bit. In the Fig. 5-20.a the most significant

bit is always 1 for memories E, F, G, H and 0 for others. The state identifiers of the

states stored in E, F, G, H are inverted as shown in Fig. 5-20.b. For register

resolution in the DRDPRAMs the least significant 3rd and 4th bits of the state

identifiers are used. In Fig. 5-20.b the present state identifiers, neglecting the least

significant 2 bits, are the same as iteration counter value so with this approach there

is no need to use any additional circuit to address the present states. Also, the state

identifiers of the next states contain only two separate values in an iteration, but

 103

also, one of these separate value is one bit shifted of the iteration counter and the

other is the inverse of these state identifier bits in the meaningful bits positions. So

the design will be so compact in state decoder perspective also.

5.3.2 Implementation

From a top front of view the design can be divided into sub modules as in Fig. 5-21.

In the implementation, to increase controllability of hardware development and to

avoid errors, the design is divided into submodules also from the early phase of

design the submodules are connected to each other and simulated to create bigger

modules cumulatively up to the Viterbi decoder.

VITERBI

CORE

MAIN

CONTROLLERTRELLISINPUTFIFO

SURVIVOR

MEMORY
BMU SUBTRELLIS

TraceBack

Controller

State

Controller8

BMETRIC

DMETRIC

BMD

ACS

MINPATH

DPRAM1

MINPATH

CONV

DPRAM0

StateMux8

VITERBI

DECODER

COLLECTOR

Fig. 5-21 Hierarchical Diagram of the Viterbi Decoder

 104

5.3.2.1 Viterbi Decoder

From the top view, the Viterbi decoder is composed of COLLECTOR module and

Viterbi Core module as shown in Fig. 5-21. The COLLECTOR module takes the

input symbols, then groups the input symbols according to the code rate and

supplies the input symbols to the Viterbi Core. The Viterbi Core (Fig. 5-22) takes

the demodulated data groups coming from COLLECTOR and makes decisions of

the pattern sent from the transmitter.

Fig. 5-22 Viterbi Core Block Diagram

In the Viterbi Core three different processes runs concurrently to protect data lose

and synchronization problems. These processes are controlled by Input FIFO, Main

Controller and Traceback Unit. The Input FIFO is the first stage of the core and

accumulates input data. Then FIFO transmits the received data to the trellis section

when the trellis section is ready to calculate new data. The second process takes

place in main controller section which controls State Controller, SUBTRELLIS

BMU and SURVIVOR MEMORY modules for the trellis operations. The last

 105

process is controlled in TRACEBACK CONTROLLER to estimate the transmitted

message.

In the subsequent parts of this chapter the functionality of the modules are

explained in details.

5.3.2.2 Collector

Fig. 5-23 COLLECTOR Symbol

The main functionality of collector unit is to give ability to configure the code rate

of Viterbi decoder to select 1/2 or 1/3 basic code rates.

When the reset signal is activated, the COLLECTOR module points to the

DEMODDATA0 internal register for write purpose and the content of all three

DEMODDATA0, DEMODDATA1, and DEMODDATA2 registers are reset to all

zero. This module takes soft decision input from DEMODDATA port on the

positive edge of Clk signal if the valid signal is active. Then writes this value to the

DEMODDATA0 register and points to DEMODDATA1 register, with the next

valid signal the COLLECTOR writes the new content of DEMODDATA port to

DEMODDATA1 register. At this point the Rate (Code Rate) port is checked

whether 1/2 or 1/3. If the rate signal is in 1/2 value (logic 0) the we_out port is

activated to inform the Input FIFO of the Viterbi core to poll the one set of

demodulated data. But if the rate is at 1/3 value (logic 1) the collector waits for the

 106

new valid signal to write the new DEMODDATA pattern to the DEMODDATA3

register and we_out is activated.

Fig. 5-24 COLLECTOR Simulation

 107

5.3.2.3 Input FIFO

Fig. 5-25 Input FIFO Symbol

The first stage in the Viterbi core is the Input FIFO which is used to guarantee the

synchronization between the internal core of the decoder and the COLLECTOR

side containing the receiver.

The Input FIFO is directly located in front of the COLLECTOR and inputs the

three bits wide three demodulated data (DEMODDATA0, DEMODDATA1,

DEMODDATA2) merged at the 9 bits wide port W_Data. The content of the

W_Data port is written in the circular memory registers pointed by internal register

called W_Addr whenever the W_En port is high at the positive edge of the Clk

signal. However, before writing the new data to the internal registers, the user

should be aware of the available capacity of the memory if there is room for the

new data. A port named Full serves for this purpose. The logic 1 state Full port

reflects that the memory is full and the new data will be overridden on the other

data by mistake. On the contrary, the logic 0 Full port states that there is available

registers for new demodulated patterns. At the other side of the input FIFO the

main controller of the core checks the empty signal of the FIFO. The not empty

condition states that there is at least one unprocessed demodulated pattern coming

from the COLLECTOR. At this time, the main controller strobes a read enable

signal to get the data from the internal registers pointed by the internal R_Addr

registers to the R_Data port of the FIFO. The R_Data port of the FIFO is connected

 108

to the BMU to generate the branch metrics for the state transitions in iterative

trellis.

As stated before, the memory registers of the FIFO are located in a circlar manner.

With help of to memory pointers called R_Addr and W_Addr the contents of the

registers are reached. The read address pointer indicates the address of registers to

be read in the next read enable stroption and increases by one after every read

operations. The write address pointer on the other hand indicates the address of the

register to where the new demodulated pattern will be written with write enable

signal and also this register is increased by one after every write operations. The

Reset signal is used to initialize the R_Addr and W_Addr registers to address 0.

The Empty and Full signals are also operates on the simple subtraction operation. In

the FIFO the W_Addr is subtracted from the R_Addr if the result is 1 the FIFO

strobes Full signal else if the result equals to 0 the FIFO strobes Empty signal.

The simulation of the FIFO is given in Fig. 5-26.

 109

Fig. 5-26 Input FIFO Simulation

 110

5.3.2.4 State Controller (State Decoder)

Fig. 5-27 STATE CONTROLLER Symbol

State Controller is a combinational logic circuitry and generates the state identifiers

of the trellis in each iteration (Fig. 5-28).

Fig. 5-28 State Identifiers in Iteration

 111

For this reason, the State Controller takes Constraint length from input port of the

Viterbi decoder and the iteration counter from main controller, then operates on the

truth table as in Table 5-3.

Table 5-3 State Controller Truth Table

 112

Fig. 5-29 State Controller Schematic

 113

Fig. 5-30 State Controller Simulation

5.3.2.5 BMU

Fig. 5-31 BMU Symbol

Branch Metric Unit gets three demodulated data (DEMODDATA[3]), generator

polynomials (Conv_Coder[3]), Quantization Probability Table (BMUTABLE[8])

and Present-Next State Identifiers to create branch metric values of the transitions

in the iterations (BMETRIC[16]).

 114

Fig. 5-32 BMU Block Diagram

The BMU unit is composed of three modules named BMD, DMERIC and

BMETRIC.

The BMD unit calculates the expected encoder outputs related to the transitions in

the iteration by using the generator polynomial and present-next state identifiers of

transitions came from the state controller.

The eight BMUTABLE are the soft decision probability constants inputted from the

configurable inputs of Viterbi decoder (Fig. 5-33).

Fig. 5-33 Soft Decision Probabilities

 115

The DMETRIC supplies six probability metrics using demodulated data and

BMUTABLE. The DMETRICs multiplexes the soft decision probabilities to the

DECODED DATA ports for expected encoder bits of 0 and 1. The soft decision

probabilities are symmetrical for logic 0 and 1 expected encoder outputs. The

demodulated data of 7 is the most probable to be sent by logic 1 and least probable

to be sent by 0. So for the logic 1 expected data the BMUTABLE[7] is sent to

output port on the other hand BMUTABLE[0] is sent for the logic 0 expected

encoder output. Caring this fact, all six probable Soft Decision Probabilities are

calculated by the equations below.

DECODED DATA0=BMUTABLES[DEMODDATA0];
DECODED DATA1=BMUTABLES[complement(DEMODDATA0)];
DECODED DATA2=BMUTABLES[DEMODDATA1];
DECODED DATA3=BMUTABLES[complement(DEMODDATA1)];
DECODED DATA4=BMUTABLES[DEMODDATA2];
DECODED DATA5=BMUTABLES[complement(DEMODDATA2)];

The BMETRIC module is the final stage of BMU module and by the BMD

(expected encoder outputs of the branches) and DECODED DATA for the

SUBTRELLIS processes, BMETRIC calculates the branch metrics.

5.3.2.6 SubTrellis

Fig. 5-34 SUBTRELLIS Symbol

 116

Subtrellis module is a connection module to create the sub-trellis structure.

Fig. 5-35 Sub-Trellis

 117

ACS

ACS

ACS

ACS

ACS

ACS

ACS

ACS

DPRAM

DPRAM

DPRAM

DPRAM

DPRAM

DPRAM

DPRAM

DPRAM

BMETRICS

Fig. 5-36 SUBTRELLIS Block Diagram

5.3.2.7 STATEMUX

Fig. 5-37 STATEMUX Symbol

 118

The method in this chapter offers the complexity reduction in state metrics

multiplexing. With this method only two way multiplexing of the state metrics are

enough for the realization of all trellises. The STATEMUX module is the

component which multiplexes the state metrics by the value of Sel input.

5.3.2.8 ACS

Fig. 5-38 ACS Symbol

The ACS unit is used same as in the soft decision Viterbi decoder. The ACS is

responsible to add the branch metrics with the state metrics for the transitions and

the selection of the better paths between two competing transitions.

Fig. 5-39 ACS Simulation

 119

5.3.2.9 DRDPRAM

Fig. 5-40 DPRAM Symbol

The DPRAMs in soft decision Viterbi decoder are modified for this

implementation. For this purpose, two ports are added to the DPRAM to ease the

decision of the starting state for best path in the traceback. These ports indicates the

address and value of the minimum valued memory register. Apart from this

difference and the number of bits in the memory registers, the DPRAM operates

same as the ones in the first part of this chapter.

Also in this chapter, two kinds of DPRAMs are used to supply the zero metric to

the initial state identified with zero and higher metric for the undefined stated in the

first trellis iterations. The DPRAM doesn’t have intelligence for the decision of the

initial trellis cycle, thus, a port named “initial” triggered by maincontroller is used

for initialization of path metrics.

 120

5.3.2.10 Survivor Memory

Fig. 5-41 SURVIVOR MEMORY Symbol

Survivor Memory is the interface between trellis and traceback controller and

synchronizes the operations of the trellis and traceback unit. The Survivor Memory

stores the surviving branches identifier of the competing branches decided by each

ACS.

The Survivor Memory is designed as a LIFO (Last In First Out) memory. In the

LIFO two pointers R_Addr and W_Addr are designed to point the internal memory

registers. The read and write directions are designed to identify the W_Addr and

R_Addr alteration direction in either increasing or decreasing. The survivor

memory gets the traceback depth length information from Viterbi decoder ports.

To show the operation of the Survivor Memory an example in Fig. 5-42 is

constructed for constraint length of 5 and traceback depth of 3 Viterbi decoder.

 121

Fig. 5-42 SURVIVOR MEMORY Example

Initially the read address is pointed to the iteration 0 of the trellis 3, the W_Addr is

pointed to the address 0 which is equivalent to the iteration 0 of trellis 0. With the

W_En signal the surviving branch information of states in iteration 0 are writen to

the memory and the W_Addr will point to the address 1 (iteration 1 of the trellis 0).

On every W_En the surviving branches are written to the memory and W_Addr

increases by one until the address equals to the iteration 0 of trellis 3. When the

W_Addr is pointed to the iteration 0 trellis 3 which is equal to the R_Addr the

survivor memory outputs the Full signal to inform the main controller not to write

any information to the full survivor memory. Also survivor memory strobes

Start_Traceback signal to activate the traceback controller for trace-back operation.

For the traceback, the traceback controller aims to get the correct transition

identifier among 32 states of trellis. So the T_Addr is used to give offset to the read

address to locate the related iteration containing the correct state. Then the R_En is

applied to read the content of the Survivor Memory then the R_Addr is decreased

by four. At this stage the traceback controller releases Full signal because the

R_Addr is different from the W_Addr.

 122

Then, the main controller resumes writing the new surviving paths with W_En

signal and W_Addr decreases by one whenever the W_Addr not equals to R_Addr.

Fig. 5-43 SURVIVOR MEMORY Simulation

 123

5.3.2.11 Min_Path

Fig. 5-44 MIN_PATH Symbol

The MIN_PATH module selects the DPRAM containing the most probable state

metric (MEMORY, M_Addr) and directs the pre calculated register address of the

state in DPRAM (Address, M_Addr_RAM). Fig. 5-42 illustrates the operation for

DPRAM D, register 1.

Fig. 5-45 MIN_PATH Example

 124

Fig. 5-46 MIN_PATH Simulation

5.3.2.12 Min_Path_Conv

This module gets the identifier of DPRAM containing the minimum state metric

(M_Location) and the iteration number in the DPRAM (M_Iteration) from

MIN_PATH, then, converts these information to state identifier of the most

probable state for the starting state of traceback operation.

 125

Fig. 5-47 SURVIVOR MEMORY Simulation

 126

5.3.2.13 TraceBack Controller

Fig. 5-48 TRACEBACK CONTROLLER Symbol

The traceback unit is the final stage of the decoder. Stating with the

Start_Traceback signal the traceback unit reads the most probable (minimum path

metric state) final state from MIN_PATH_CONV module. From the most probable

state and by using the better transition information of each trellises in Survivor

Memory, traceback unit estimates the transmitted message up to activation of

Stop_Traceback port. The controller reads the probable transition information for

the states of an iteration at a time through R_Data port by strobing R_En signal.

In a trellis for the Constraint Lenght greater than 4, there are more than one

iteration so in each trellis there should be an offset value T_Addr to address the best

state of iteration among other states in the trellis.

 127

5.3.2.14 Main Controller

Fig. 5-49 MAINCONTROLLER Symbol

The Main Controller administers the Input FIFO, Trellis and Survivor Memory.

The Main Controller gets K, Traceback Depth, Reset and Clk from Viterbi decoder

inputs.

In the initial trellis main controller strobes the Initial signal to Reset thePath metrics

of the Trellis. Then, the main controller checks Empty information of the Input

FIFO. If the input FIFO is not empty, maincontroller activates Input_Fifo_R_En

signal to supply the demodulated data from FIFO to the trellis. After that, Iteration

Counter (C) is counted starting from 0 to 2K-4 for each trellis cycle. For every

Iteration Counter value main controller checks the full signal of the Survivor

memory and if the survivor memory is full main controller stand at that state until

the memory is not full. In the sub-trellis unit the operations are performed

asynchronously. With the memory not full signal, main controller strobes the

Iteration_W_En signal to store the path metric values of the states in iteration to the

DPRAM and strobes the W_En signal to write the surviving transition informations

to the Survivor Memory. When the iteration counter reaches the 2K-4 main

 128

controller sends the end_trellis signal to update the output path metric memory of

the DPRAM.

5.3.3 Simulations

The simulation of the decoder started with the simulation of the basic modules as

shown above and continued with the interconnected modules. After the completion

of reconfigurable Viterbi decoder module the SystemC simulations are carried out

for several parameters. For simulation purpose, the test bench shown in figure

below was established.

Fig. 5-50 Test Bench

Explanation of the simulation parameters can be summarized as in Fig. 5-51

 129

Fig. 5-51 Paramerters in the Simulations

In all the simulations results below the bottom line denotes the decoded message

last transmitted message to first transmitted message bit order.

5.3.3.1 Configuration of Constraint Length

� Viterbi Decoder K=4

Fig. 5-52 Simulation Paramerters

 130

Fig. 5-53 Monitor Based Simulation Result

Fig. 5-54 Simulation Waveform

� Viterbi Decoder K=5

Fig. 5-55 Simulation Paramerters

 131

Fig. 5-56 Mpnitor Based Simulation Result

Fig. 5-57 Simulation Waveform

� Viterbi Decoder K=6

Fig. 5-58 Simulation Paramerters

 132

Fig. 5-59 Monitor Based Simulation Result

Fig. 5-60 Simulation Waveform

� Viterbi Decoder K=7

Fig. 5-61 Simulation Parameters

 133

Fig. 5-62 Monitor Based Simulation Result

Fig. 5-63 Simulation Waveform

 134

5.3.3.2 Configuration of Traceback Depth

� Traceback Depth=11

Fig. 5-64 Simulation Parameters

Fig. 5-65 Monitor Based Simulation Result

Fig. 5-66 Simulation Waveform

 135

� Traceback Depth=15

Fig. 5-67 Simulation Parameters

Fig. 5-68 Monitor Based Simulation Result

Fig. 5-69 Simulation Waveform

 136

5.3.3.3 Configuration of Code Rate

� Rate=1/2

Fig. 5-70 Simulation Parameters

Fig. 5-71 Monitor Based Simulation Result

Fig. 5-72 Simulation Waveform

 137

In these examples, the patterns above the decoded message show the

convolutionally coded data to be decoded.

� Rate=1/3

Fig. 5-73 Simulation Parameters

Fig. 5-74 Monitor Based Simulation Result

 138

Fig. 5-75 Simulation Waveform

5.3.3.4 K=7 Viterbi Decoder with Different Messages

� Msg=[0 1 0 1 0 1 0]

Fig. 5-76 Simulation Parameters

Fig. 5-77 Monitor Based Simulation Result

 139

Fig. 5-78 Simulation Waveform

� Msg=[1 0 1 0 1 0 1]

Fig. 5-79 Simulation Parameters

Fig. 5-80 Monitor Based Simulation Result

 140

Fig. 5-81 Simulation Waveform

� Msg=[1 1 0 0 1 0 1]

Fig. 5-82 Simulation Parameters

Fig. 5-83 Monitor Based Simulation Result

 141

Fig. 5-84 Simulation Waveform

� Msg=[0 0 0 0 0 0 0]

Fig. 5-85 Simulation Parameters

Fig. 5-86 Monitor Based Simulation Result

 142

Fig. 5-87 Simulation Waveform

� Msg=[1 1 1 1 1 1 1]

Fig. 5-88 Simulation Parameters

Fig. 5-89 Monitor Based Simulation Result

 143

Fig. 5-90 Simulation Waveform

5.3.3.5 Error Correction Examples of Viterbi Decoder

� Msg=[1 1 1 1 1 1 1]

Fig. 5-91 Error Free Operation (Transmitted and Received Messages are Same)

In the error correction examples original message is given at the top. Then the

convolutionally coded data is given in “Transmitted” labelled lines and the

received signal as if transmitted in noisy channel is given in “Received” labelled

 144

lines. Finally, the Viterbi Decoded messages of received signals are supported at

the bottom lines.

Fig. 5-92 Decoding with Inserted Error

Fig. 5-93 Simulation Waveform

 145

� Msg=[1 0 1 0 1 0 1]

Fig. 5-94 Error Free Operation

Fig. 5-95 Decoding with Inserted Error

 146

Fig. 5-96 Simulation Waveform

� Msg=[1 0 1 0 1 0 1]

Fig. 5-97 Error Free Operation

 147

Fig. 5-98 Decoding with Inserted Error

Fig. 5-99 Simulation Waveform

 148

CHAPTER 6

CONCLUSION

In this thesis, VLSI implementation of a popular Maximum Likelihood error

correction method called the Viterbi Algorithm has been studied. In the digital

communication the Viterbi decoders are generally used to decode the messages

correlated by convolutional encoders. The two decision types namely hard decision

and soft decision Viterbi decoders have been implemented using SystemC. To

decrease the switching and memory addressing complexity of the decoder designs,

two novel area efficient reconfigurable Viterbi decoders, depending on the

rearrangement of the states of the trellis structures, have been suggested. Finally,

the implementation and the simulations of the second suggested reconfigurable

Viterbi decoders architecture has been carried out in SystemC, with the

configurable parameters of constraint length, code rate, transition probabilities,

traceback depth and generator polynomials.

In the VLSI design of the area efficient implementation of reconfigurable Viterbi

decoders, SystemC platform has been used. SystemC has some advantages over the

traditional design cycle. In the thesis, both design procedures have been analysed

and the comparisons have been stated. In addition, the SystemC supporting C++

platforms have been listed and configuration of the Microsoft Visual Studio 6.0 as a

SystemC design and simulation platform has been described with an example

implementation.

In the digital communication, the Viterbi decoder operates on the Convolutional

Encoded data. Thus, an error correction capability is provided to Viterbi decoder.

There are two decision types of the Viterbi decoders called soft and hard decision

 149

Viterbi decoders. In the thesis, the operations of each decision types have been

described and the both decision types have been implemented in SystemC.

In reconfigurable Viterbi decoder, increasing the constraint length causes an

increase in the number of states. For the implementation of the concern, the

increase in the number of states cause increase in the number of Add Compare

Select units, Branch Metric units and interconnections between these units, so

increase in the area. However, in this thesis, instead of implementation of a huge

trellis, the implementation of a small portion of the trellis and several usage of this

subtrellis in consecutive time instances, called iteration, has been suggested to

increase the area efficiency.

On the other hand, the suggested structures in the literature have complicated

memory addressing and switching mechanisms. So, in the implementation phase

one to several port multiplexing path metric routers, several preliminary registers

and area consuming look up tables embedded in ROM units have been used. During

the implementation, a new structure has been sought to solve this complexity

problems and it has been found that rearranging the states with complemented and

vertically rotated way, decreases both switching and memory addressing

complexities. Thus, two new reconfigurable Viterbi decoders have been obtained.

The first method uses the normal states in the even and the vertically rotated states

in the odd numbered iterations. For this method, a paper has been submitted to the

IEEE Wireless Communication Magazine. The method was an area efficient

method with a constraint that the method is operative for the number of iterations

equal to or greater than two. However, in the second method normal and vertically

rotated states have been used in the same iterations to get rid of the constraint of the

first method.

Finally, the thesis lasted with implementation and simulation of the further

developed reconfigurable Viterbi decoder architecture suggested in this thesis with

configurable parameters listed below:

• Code Rate (selected as r=1/2 or r=1/3)

 150

• Constraint Length (K) (ranging from 4 to 7)

• Generator Polynomial (determined externally)

• Traceback Depth (configurable)

• Transition Probabilities (adjustable)

In the implementation phase, for the synchronization, speed optimization and area

efficiency, the techniques below have been utilized:

• The state metric location addressing of the lower DPRAMs were re-

complemented. So, DPRAM addressing was simplified to be consistent with

the iteration number leading the direct connection of iteration counter to the

read and write address lines of the DPRAMs for trellis realization.

• An input FIFO was added to the design to simplify the signal timings of the

demodulator side and synchronize the demodulator and the main controller

of the core.

• To decrease the number of memory locations for state metric storage, the in-

place path metric updating technique was used. In this technique the same

state metric containing memories were overwritten for every trellis

calculations.

• To obtain real time operation a special LIFO was generated as survivor

memory. The survivor memory enables both the write operation of main

controller and the read operation of the traceback unit. The number of the

registers were tried to be minimized, so, only one set of memory registers

just required for the maximum traceback depth were used. And both the

main controller and traceback controller were optimized for the read and

write operations from the same memory locations to overwrite the processed

data and without corruption of the unprocessed data.

 151

For the future works, to decrease the transmission bandwidth the convolutionally

encoded message can be passed through another process called puncturation. So the

depuncturer module can be added to the input of Viterbi decoder. The SystemC

implementations can be converted into HDL by automatic conversion tools like

CoCentric System Studio or System Crafter. (In the thesis period, the demo version

of System Crafter was tried but because of the restricted usage of functionality the

implementation couldn’t converted into VHDL.) Also, the suggested trellis

structures in Chapter 5 can be analysed for the implementation of FFT units in

Digital Signal Processors.

 152

REFERENCES

[1] Viterbi, A.J., “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding

Algorithm”, IEEE Trans. Information Theory, vol. IT-13, pp. 260-269, 1967.

[2] Forney, G.D., The Viterbi Algorithm, Proc. IEEE, vol. 61, pp.268-278, March 1973

[3] Black, P. J., Meng, T.H., A 140-Mb/s, 32-state radix-4 Viterbi decoder, IEEE J. Solid-State

Circuits, vol. 27, pp. 1877–1885, Dec. 1992.

[4] Shung, C.B., Ling, H.D., Cypher, R., Siegel, P. H., Thapar, H.K., Area-efficient architectures for

the Viterbi algorithm—Part I: Theory, IEEE Trans. Commun., vol. 41, pp. 636–644, Apr. 1993.

[5] McEliece, R.J., Lin, W., The trellis complexity of convolutional codes, IEEE Trans. Inform.

Theory, vol. 42, pp. 1855–1864, Nov. 1996.

[6] Black, P.J., Meng, T.H., A 1-Gb/s, four state, sliding block Viterbi decoder, IEEE J. Solid-State

Circuits, vol. 32, pp. 797–805, June 1997.

[7] Ju, W.S., Shieh, M.D., Sheu, M.H., A Low-Power VLSI Architecture for the Viterbi Decoder,

40th Midwest Symposium on Circuits and Systems, Sacramento, vol.2, pp. 1201- 1204, Aug. 1997

[8] Page, K., Chau, P.M., Improved Architectures for the Add–Compare–Select Operation in Long

Constraint Length Viterbi Decoding, IEEE J. Solid-State Circuits, Vol. 33, pp. 151–155, no. 1,

January 1998

[9] Kang, I., Willson, A., Low-Power Viterbi Decoder for CDMA Mobile Terminals, IEEE J. of

Solid-State Circ., vol.33, no. 3, pp. 473-482, Mar. 1998.

[10] Suzuki, H., Chang, Y., Parhi, K.K., Low-power bit-serial Viterbi decoder for next generation

wide-band CDMA systems, IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), Phoenix, AZ, vol. 4, pp. 1913 –1916, March 1999,

[11] Kunkel, J., Kranen, K., SystemC demonstrates rapid progress, EE Times, Sept. 2000.

[12] Lee, I., Sonntag, J.L., A new architecture for the fast Viterbi algorithm, IEEE Global

Telecommunications Conference, San Francisco, vol. 3, pp. 1664 –1668, Nov. 2000.

[13] Swan, S., An Introduction to System Level Modeling in SystemC 2.0, Cadence Design Systems,

Inc., draft report, May 2001.

[14] Chadha, K., Cavallaro, J.R., A Reconfigurable Viterbi Algorithm, Conference Record of 35th

Asilomar Conference on Signals, Systems and Computers, vol.1, pp. 66-71, 2001.

 153

[15] Benaissa, M., Zhu, Y., A Novel High-Speed Configurable Viterbi Decoder for Broadband

Access, EURASIP Journal on Applied Signal Processing, pp.1317–1327, 2003

[16] Baird, M., SystemC 2.0.1 Language Reference Manual, Open SystemC Initiative (2003)

[17] Yarom, I., Glasser, G., Davidovitch, I., Mamet, D., Three Different Usages of SystemC in Chip

Design, Intel ICGJ, 2003

[18] Zhu, Y., Benaissa, M., "Reconfigurable Viterbi decoding using a new ACS pipelining

technique," Proceedings of the 2003 IEEE international conference on Application-Specific

Systems, Architectures, and Processors (ASAP2003), The Hague, The Netherlands, pp. 360-368.,

24-26 June 2003

[19] Bruels, N., Sicheneder, E., Loew, M., Schackow, A., Gliese, J., Sauer, C., A 2.8 Gb/s, 32-State,

Radix-4 Viterbi Decoder Add-Compare-Select Unit, Symposium on VLSI Circuits Digest of

Technical Papers, pp.170-173, June 2004

[20] Kesen, L., Implementation of an 8-Bit Microcontroller with System C, MSc. Thesis, Metu,

November 2004

[21] Gang, Y., Arslan, T., Erdogan, A., An Efficient Reformulation Based VLSI Architecture For

Adaptive Viterbi Decoding In Wireless Applications, SIPS 2004, IEEE Workshop on Signal

Processing Systems, pp. 206-210, Oct. 2004

[22] Gang, Y., Arslan, T., Erdogan, A.T., An Efficient Pre-Traceback Approach for Viterbi

Decoding in Wireless Communication, ISCAS 2005, IEEE International Symposium on Circuits and

Systems, Vol. 6, pp. 5441- 5444, May. 2005

[23] Tessier, R., Swaminathan, S., Ramaswamy, R., Goeckel, D., Burleson, W., A Reconfigurable,

Power-Efficient Adaptive Viterbi Decoder, IEEE Transactions On Very Large Scale Integration

(VLSI) Systems, vol. 13, no. 4, pp. 484 – 488, April 2005

[24] Dinhand, A., Xiao, H., A Hardware-Efficient Technique to Implement a Trellis Code

Modulation Decoder, IEEE Transactions On Very Large Scale Integration (VLSI) Systems, vol. 13,

no. 6, pp. 745-750, June 2005

[25] Askar, M., Sozen, S., New Area Efficient Trellis Architecture for Reconfigurable Viterbi

Decoder, IEEE Wireless Communication Conference, 2007 (Submitted for publication)

0.

