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ABSTRACT 

 
A VITERBI DECODER USING SYSTEM C FOR AREA EFFICIENT  

VLSI IMPLEMENTATION 

 

 

Sözen, Serkan 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Murat Aşkar 

 

September 2006, 153 pages 

 

 

In this thesis, the VLSI implementation of Viterbi decoder using a design and 

simulation platform called SystemC is studied. For this purpose, the architecture of 

Viterbi decoder is tried to be optimized for VLSI implementations. Consequently, 

two novel area efficient structures for reconfigurable Viterbi decoders have been 

suggested. 

The traditional and SystemC design cycles are compared to show the advantages of 

SystemC, and the C++ platforms supporting SystemC are listed, installation issues 

and examples are discussed.  

The Viterbi decoder is widely used to estimate the message encoded by 

Convolutional encoder. For the implementations in the literature, it can be found 

that special structures called trellis have been formed to decrease the complexity 

and the area. 
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In this thesis, two new area efficient reconfigurable Viterbi decoder approaches are 

suggested depending on the rearrangement of the states of the trellis structures to 

eliminate the switching and memory addressing complexity. 

The first suggested architecture based on reconfigurable Viterbi decoder reduces 

switching and memory addressing complexity. In the architectures, the states are 

reorganized and the trellis structures are realized by the usage of the same 

structures in subsequent instances. As the result, the area is minimized and power 

consumption is reduced. Since the addressing complexity is reduced, the speed is 

expected to increase. 

The second area efficient Viterbi decoder is an improved version of the first one 

and has the ability to configure the parameters of constraint length, code rate, 

transition probabilities, trace-back depth and generator polynomials. 

 

Keywords: Viterbi Algorithm, Reconfigurable Viterbi Decoder, SystemC, 

Convolutional Encoder, Maximum Likelihood Method. 
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ÖZ 

 
SYSTEM C KULLANILARAK BİR VITERBI KOD ÇÖZÜCÜSÜNÜN  

ALANI VERİMLİ TÜMDEVRE OLARAK GERÇEKLENMESİ 

 

 

Sözen, Serkan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat Aşkar 

 

Eylül 2006, 153 sayfa 

 

 

Bu tez çalışmasında, SystemC olarak bilinen tasarım ve simülasyon ortamı 

kullanılarak Viterbi Kod Çözücüsünün tümdevre gerçeklenmesi üzerine 

çalışılmıştır. Bu amaçla, tümdevre gerçeklemesine yönelik Viterbi Kod 

Çözücüsünün mimarisi iyileştirilmeye çalışılmıştır. Sonuç olarak, iki yeni alan 

bakımından verimli biçimlendirilebilir Viterbi kod çözücü yapı önerilmiştir. 

SystemC’nin avantajlarını sergilemek için geleneksel ve SystemC tabanlı tasarım 

aşamaları karşılaştırılmış ve SystemC’yi destekleyen C++ ortamları listelenmiş, 

örneklerle kurulumundan bahsedilmiştir. 

Viterbi kod çözücü sıklıkla Evrişimsel şifrelenmiş mesajların yakınsanmasında 

kullanılmaktadır. Kaynaklardaki gerçeklemelerde özel kafes yapılar 

biçimlendirilerek karmaşıklığın ve alanın azaltılmasına çalışıldığı görülmektedir. 
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Bu tezde, anahtarlama ve hafıza adreslemesindeki karmaşayı yok etmek için kafes 

yapısının statülerinin yeniden düzenlenmesine dayanan iki yeni alan bakımından 

verimli biçimlendirilebilir Viterbi kod çözücü yaklaşımı önerilmektedir. 

Biçimlendirilebilir Viterbi Kod çözücüsü için önerilen ilk mimari, anahtarlama ve 

hafıza adreslemesindeki karmaşayı azaltmaktadır. Önerilen mimaride statüler 

yeniden organize edilmekte ve ardışık zaman aralıklarında aynı yapıların tekrar 

kullanılmasıyla kafes yapıları gerçekleştirilmektedir. Sonuçta, alan küçültülmekte 

ve güç tüketimi azaltılmaktadır. Adresleme karmaşası azaltıldığı için de hızın 

artması beklenmektedir.  

İkinci alanı verimli Viterbi kod çözücü ise birinci yapının geliştirilmiş bir 

versiyonudur ve kod oranı, kısıt uzunluğu, değişim olasılığı, geriye iz sürüm 

derinliği ve üreteç polinomu gibi parametrelerin biçimlendirilmesine olanak 

sağlamaktadır. 

Anahtar Kelimeler: Viterbi Algoritması, Biçimlendirilebilir Viterbi Kod Çözücüsü, 

SystemC, Evrişimsel Kodlayıcı, En Büyük Olabilirlik Yöntemi. 
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CHAPTERS 

CHAPTER 1 

INTRODUCTION 

The communication deals with the transportation of information from one place to 

another. In a typical communication scheme, a group of symbols are generated by a 

source. Then, the source data passes through some encoding and modulation 

processes in the transmitter side to increase the noise immunity of source data and 

the modulated data is transmitted to the channel. But due to noise and interference 

in the channel corruption occurs in the received data. In the receiver side, after 

inverse processing of received data by demodulation and decoding stage, the 

original data is aimed to be reached.  

To decrease the error in the data transmission several methods have been 

considered like Maximum Likelihood Decoding. In Maximum Likelihood 

Decoding technique, some correlation bits are added to the transmitted data so that 

any errors introduced in the communication channel can be corrected at the receiver 

end.  

One of the most popular Maximum Likelihood error correction methods is the 

Viterbi Algorithm [1] [2]. The Viterbi Algorithm is used in many applications 

including speech recognition, digital sequence detection for magnetic storage 

devices and wireless communication. For the wireless communication, the Viterbi 

Algorithm generally decodes the convolutionally coded data to purify the original 

message from received data transferred in a noisy channel. Depending on the 

applications different implementation issues has been studied by several researches, 

including high speed Viterbi decoders [12] [22], reconfigurable constraint length 

Viterbi decoders [14] [15] [18] [21] [23] [25], several trellis structures [5], shared 

ACS units between separate states in the trellis  [4], the block-based decoding 

approach [6], bit-serial approaches [8] [10], path metric computations [8], hardware 
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size reduction [4] [24] [25], radix4 based architectures [3] [19] and low power 

consumption [7] [9] [10]. 

The objective of this thesis is the VLSI implementation of an area efficient 

reconfigurable Viterbi decoder using SystemC tool. For the Viterbi Decoding 

usually two methods are used namely Register-Exchange and the trace-back. The 

Register-Exchange method is suitable for only a small number of states containing 

trellis’, however, the trace-back approach is acceptable for trellis’ with a large 

number of states. In the thesis, the configurable constraint length ranges from 4 to 

7, so the maximum number of states is 64. For this reason, the trace-back method is 

preferred and used in the implementations. 

The design environment SystemC [20] [11] [13] [17] is indeed a C++ class library, 

with added hardware modelling structures, that increases the power of C++ 

language to meet the needs of next generation designs containing analog signal 

computations and embedded software simulations like in System-on-Chip (SoC). 

The selection of SystemC as the development platform requires some preliminary 

studies to configure C++ compiler as SystemC compiler. The platform called 

OpenSystemC regulates to the SystemC specific syntaxes and debug techniques 

[16].  

The Hard and Soft Decision Viterbi decoders have been implemented to divide the 

decoder into sub-blocks. Upon detailed study on the states in the trellis structure, 

two novel area efficient reconfigurable Viterbi decoder architecture are suggested. 

The major improvements in these area efficient structures are the new trellis 

structures which give ability to configure the constraint length by the usage of the 

same structure in subsequent time instances. Depending on the rearrangement of the 

states of the trellis structures, the switching and memory addressing complexity are 

reduced. 

For reducing the switching and hardware complexity, in the first suggested 

reconfigurable Viterbi decoder architecture, vertically rotated complemented state 

rearrangement is used in subsequent iterations. As the result, the area is minimized 

and power consumption is decreased. Since the addressing complexity is reduced 
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the speed is expected to increase. In the suggested architectures, the trellis 

structures are realized by the usage of the same structures in subsequent instances 

to reduce the number of Add-Compare-Select units, Branch Metric units, DPRAMs 

and interconnections between these units. To decrease the number of memory 

locations for state metric storage, the in-place path metric updating technique has 

been used.  

The second area efficient Viterbi decoder is an improved version of the first one 

and has the ability to configure the parameters of constraint length, code rate, 

transition probabilities, trace-back depth and generator polynomials. This improved 

method implemented in SystemC. Also, in the implementation some special efforts 

was carried out to optimize the operation. For the synchronization, the demodulator 

output is connected to the implemented architecture through an input FIFO stage. 

To increase the decoding speed to real time operation, the decoder is designed to 

include a LIFO memory stage between trellis and the traceback. The trellis is not 

implemented directly with the bare state identifiers. The state identifiers are also 

mapped to hidden state identifiers with a complement operation. So the addressing 

of the memories becomes consistent with the iteration counter. Then, the direct 

connection of the iteration counter to the memory address lines without any extra 

circuitry is possible. 

In Chapter 2, the basics and the advantages of the SystemC beyond the other 

Hardware Description Languages are discussed. Then, step by step instructions to 

setup the SystemC design and development platform on Microsoft Visual Studio is 

described on an example.  

The source of the message to be decoded in Viterbi decoder is created by 

convolutional coding. Therefore, the Chapter 3 starts with the explanation of the 

convolutional coding. Then the theoretical explanation with probabilistic analysis 

of the Viterbi algorithm is presented. Finally, in Chapter 3, the practical operational 

considerations of the Viterbi decoder is discussed and decoding of a sample data set 

is given in details.  
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In Chapter 4, to acquire the experience of the SystemC for the hardware modelling 

with the connections between sub-modules implementation of the simplest type of 

Viterbi decoders called hard decision Viterbi decoder is carried out. The modules in 

hard decision Viterbi decoder are modified to obtain implementation of soft 

decision Viterbi decoder.  

Then, theoretical study was carried out about reconfigurable Viterbi decoding and a 

new area efficient approach of the reconfigurable Viterbi decoder is suggested in 

the first part of Chapter 5. In the second part of the Chapter 5, the second area 

efficient approach is explained and the SystemC implementation details are 

described for this further developed architecture. Then the simulation results of this 

decoder are given for several different parameters. 

Finally, in Chapter 6, some concluding remarks and proposed future works are 

declared. At the end of Chapter 6, references are also presented for further reading 

and understanding. 
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CHAPTER 2 

HARDWARE DESCRIPTION LANGUAGES AND SYSTEM C 

2.1 General  

Even a NOR gate implementation takes up more than a day to work on schematic, 

layout and simulation. With the necessity of producing higher density chips the 

engineer groups turned towards the search of new methodologies to implement the 

designs connecting millions of gates with the timing and die area constraints. So, 

some decades ago the decision were made to change the design topology from 

schematic based to Hardware Description Language (HDL) based design. The 

HDLs met the expectations of digital circuit implementations for a long time, but 

with System On Chip (SoC) concept once again the hardware implementation 

suffers from complexity. The new design challenges on System-on-Chip (SoC) 

grows up in the eras of analog signals processing, embedded software usage 

representing over the half of the functionality and reduction in time-to-market. 

On the other hand, the traditional design methodology in project life cycle 

commences with the model creations in a software platform (generally in C or C++ 

language) to verify the algorithms at the system level, then, continues on the 

division of the implementation into sub-blocks of hardware and embedded 

software. After the confirmation of operation, parts to be implemented as hardware 

are  manually converted to HDLs, like VHDL or Verilog, performing the same 

functionality as in the C/C++ model. But the model created in C/C++ was verified 

in a software platform neglecting the timing issues. So, the manual conversion 

approach is a time consuming and error-prone job including the statement 

conversion to the hardware obeying a master clock and also again new test suite is 

needed to be setup in the HDL environment. Thus, apart from HDL, another 

implementation and simulation tool is required to cope with the complexity of SoC 

and the processes in the project life cycle. 
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Because of the commonly acceptance of C++ language at many abstraction levels 

in the industry, this object oriented programming language was selected to be the 

baseline for the building of the new implementation and simulation tool called 

SystemC. SystemC is a C++ class library with added hardware modelling structure 

that increases the power of C++ language to meet the needs of next generation 

hardware design. 

With the SystemC approach, instead of the design conversion from a C level 

description to a HDL in one large effort, the design can be slowly refined in small 

sections to add the necessary hardware and timing structures to produce a good 

design. Within this refinement methodology, the designer can easily modify the 

design for further changes and detect bugs during refinement. Using this approach, 

the designer does not need to be an expert in multiple languages. Because SystemC 

allows modelling from the system level to RTL. The SystemC approach provides 

higher productivity because the designer can model at a higher level. Writing at a 

higher level can result in smaller code, that is easier to write and faster to simulate 

than traditional modelling environments. Also test benches can be reused from the 

system level model to the RTL model saving conversion time. Using the same test 

bench also gives the designer a higher confidence that the system level and the RTL 

level implementations have the same functionality.  

Because of the C++ features, the SystemC is also a naturally object oriented tool 

that uses powerful data types based on the class of C++ language. These major data 

types of the SystemC version 2.0 can be defined as below.  

• Modules: are the hardware entities used to perform operations (process) and 

connections of the sub-modules. 

• Processes: performs calculations and decisions of the hardware. 

• Ports: are the connection points of modules and can be used either uni-

directional or bi-directional. 

• Signals: are special data types to direct the information inside and in 

between modules. 
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• Clocks: are the timekeepers for the modules to synchronise the state 

machines. In SystemC, the multi clock operations with arbitrary phase shifts 

are available. 

On the other hand, designer can use standard C data types to model analog signals 

and control loops like small functions in their test benches. 

Because of the advantages of SystemC, the firms listed below are in function on the 

integration of SystemC in several abstraction levels. 

Alcatel, Altera, Aptix, Arcadia Design Systems, ARC Cores, ARM, Billions of 

Operations Per Second, Chameleon Systems, Inc., Co-Design Automation, 

CoWare, CSELT, Cygnus Solutions, Denali, Ericsson, Frequency Technology, 

Frontier Design, Fujitsu Microelectronics, IKOS Systems, I-Logix, Infineon 

Technologies, Integrated Silicon Systems, Intellectual Property Inc., Internet 

CAD, LogicVision, Lucent Technologies, Magma Design Automation, MIPS 

Technologies, Monterey Design Systems, Motorola, Inc., Seva Technologies, 

Sican Microelectronics Corp., Snaketech, Sony Corporation, 

STMicroelectronics, Sun Microsystems, Synchronicity, Synopsys, Tensilica, 

Texas Instruments, TransModeling, Ultima, Verplex, and Xilinx. 

The SystemC language is free and can be downloaded from the Open SystemC 

Initiative web site. Currently, the release of SystemC V2.0.1 is supported on the 

following platforms: 

• Sun Solaris 2.7 and 2.8 with GNU C++ compiler versions gcc-2.95.2 and 

gcc-2.95.3 

• Sun Solaris 2.7 and 2.8 with SUN C++ compiler versions SC6.1 and SC6.2 

• Linux (Redhat 6.2) with GNU C++ compiler versions gcc-2.95.2 and gcc-

2.95.3 

• Linux (Redhat 7.2) with GNU C++ compiler version gcc-2.95.3 

• HP-UX 11.00 with HP C++ compiler versions A.03.15 and A.03.33 
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• Windows NT 4.0 (SP6a) with VC++ 6.0 (SP5) 

• Borland C++ Builder V5.0 (SP1) 

 

For further information references [1], [2], [3], [4], [5], [6] can be applied. 

2.2 Requirements to Establish SystemC Compiler In This Thesis  

The development process of this thesis was performed on the softwares listed in 

Table 2-1. 

Table 2-1 Requirements 

Software Definition For more information 

SystemC-2.0.1 SystemC library www.SystemC.org 

Microsoft Visual Studio C++ Compiler Microsoft 

Winbeta Simulation Software SystemC_win@yahoo.com 

Windows XP Operating System Microsoft 

 

2.3 Example Usage of SystemC 

In this section to configure Microsoft Visual Studio 6.0 as SystemC compiler and to 

implement an example hardware will be described with the main steps. To perform 

error free design the designer can perform the instructions listed below. 

1. Download SystemC-2.0.1 files from “www.SystemC.org” and unzip the 

contents into the folder “D:\SystemC\SystemC-2.0.1\”. 

2. Execute Microsoft Visual C++ 6.0. Fig. 2-1 shows the main window of 

Visual  Studio. 
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Fig. 2-1 Microsoft Visual C++ 6.0 Main Window 

3. To create a new project click on “File->New” button. Then the “New” 

window will be opened. On the “Projects” tap of the “New” window, select 

“Win32 Console Application”, fill the project name and the location to 

where the project will be created.(Fig. 2-2) Then, press “OK” button. 

 

 

Fig. 2-2 “New” Window  
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4. A new window called “Win32 Console Application – Step 1 of 1” will 

appear. In this new window select “An empty project” option and click on 

“Finish” button. At this stage, the new application would be created as 

shown in Fig. 2-3. 

 

 

Fig. 2-3 New Project  

5. SystemC library should be embedded into the project. For this reason right 

click on the “Resource Files” and select “Add Files to Folder...” button on 

pop-up menu. Select “SystemC.lib” file located in “D:\SystemC\SystemC-

2.0.1\msvc60\SystemC\Debug” folder. Then, into the “Header Files” 

section import “SystemC.h” file located in the same folder.  

6. In the main window click “Project->Settings...” button. On the “C/C++” 

Tap select “C++ Language” in the category drop-down list. And, check the 

“Enable Run-Time Type Information(RTTI)” check box.(Fig. 2-4) 
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Fig. 2-4 Project Settings “C++ Language” Category  

7. Select “Processor” in the category drop-down list and fill the “Additional 

include directories” section with “D:\SystemC\SystemC-2.0.1\src\”.(Fig. 2-5) 

 

 

Fig. 2-5 Project Settings “Processor” Category 

8. Up to this point, the compiler has been configured for SystemC simulations. 

From now on, an example project will be compiled. For this reason a source 
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code for a hardware called “ACS” was written in “ACS.h” file and also two 

extra files were written for monitoring the ports (mon.h) and creating the 

stimulation pattern (stim.h). These header files should be imported into the 

“Header Files” section. 

9. Now “main.cpp” file is added into the “Source Files” section in order to 

make hardware connections between source, simulation and monitor files.  

10. Finally, the project will be compiled by clicking “Build->Rebuild All” 

button and will be executed by clicking “Build->Execute” button. This will 

create a command prompt to show simulation results determined in monitor 

file. (Fig. 2-6) 

 

 

Fig. 2-6 Command Prompt Simulation Result 

11. Depending on the statements in “main.cpp” a SystemC vcd trace file 

“*.vcd” can be created. In “Winbeta” program the “*.vcd” file can be 

visualized. In main window of Winbeta (Fig. 2-7) click on “File->Open Vcd 

Files” button and select the “*.vcd” file in the open dialog box.  
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Fig. 2-7 Winbeta main window 

12. The simulation will be seen as in Fig. 2-8 

 

 

Fig. 2-8 Vcd file
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CHAPTER 3 

CONVOLUTIONAL CODER AND VITERBI DECODER 

3.1 General  

 

 

Fig. 3-1 Typical Communication Scheme 

The error correction methods have been studied extensively in digital 

communication researches to overcome the data transmission error problem. One of 

the well known error correction method is Viterbi Algorithm and generally used in 

decoding the convolutionally coded data to purify the original message from 

received data in a noisy channel. The Viterbi Algorithm is a maximum likelihood 

decoding method to estimate the message embedded in noisy data by using the 

maximum a-posterior probability. 

The Viterbi algorithm is used in many applications including speech recognition, 

digital sequence detection for magnetic storage devices and wireless 

communication. Depending on the applications different implementation issues has 

been studied by several researches, including high speed Viterbi decoders, 
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reconfigurable constraint length Viterbi decoders, path metric computations, 

hardware size reduction and low power consumption. 

As indicated, the Viterbi decoder is used mainly to decode the convolutional 

encoded data. So in the first part of this chapter, an overview of convolutional 

encoding is stated. Then theoretical meaning and basic terminologies of the Viterbi 

decoding is described. In the subsequent part of this chapter, basic computations 

including trellis, butterfly and branch metrics are provided within the Viterbi 

Decoding example.   

3.2 Convolutional Encoder 

A convolutional encoder accepts an input stream of message and generates encoded 

output streams to be transmitted. In this process for one input bit the encoder 

generates more than one output bits and these  redundant symbols in output bit 

pattern makes the transmitted data more immune to the noise in the channel. As 

will be seen later in Viterbi Decoding section, the redundant bits help to decide and 

correct the errors in received pattern.  

For the standardization among the engineers in convolutional encoding and Viterbi 

decoding concept a terminology was generated as summarized below: 

M : Length of the shift register stage in the encoder  

Constraint Length (K) = M+1 : This number represents the number of input 

bits required to generate a unique output pattern in the encoder. A constraint 

length of K=7 means that each output symbol depends on the current input 

symbol and the six previous input symbols.  

Number of States = 2(K-1) : Defines the maximum number of states that is 

possible to be mapped by the combinations of the K number of input bits for 

the convolutional encoder. 

L :Length of Input Message 
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R :Convolutional Code Rate  

        
n

m
R ==

output at the symbol ain  bitsoutput  ofNumber 

output at the symbol a create  tobitsinput  ofNumber 
 

For example, 1/2 code rate means each bit entering the encoder results in 2 

bits leaving the encoder. 

Generator polynomial: A generator polynomial specifies the encoder 

connections. In another words, the generator polynomial can be deduced as 

the mathematical description of the convolutional encoder. Each polynomial 

forming the generator polynomial should be at most K degree and specifies 

the connections between the shift registers and the modulo-2 adders. In the 

generator polynomial representation the variable D corresponds to clock 

delay 

G(i)(D)= G0(i) + G1(i)D + G2(i)D2+…+ GM(i)D(K-1) 

 
 

Generator polynomial matrix=
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For input pattern of 1, 0, 1 the generic convolutional coder creates 2 bits of symbol 

at a time. 
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As declared in terminology part the constraint length is linearly related to the M in 

the coder side. On the other hand, the number of states are the main parameter to 

decide the computational complexity of Viterbi decoder and increases 

exponentially as constraint length increases. However, the immunity of the encoded 

data increases with the increase of the constraint length. So, for an adequate noise 

immunity and the cheapest solution, an optimum constraint length should be 

selected. 

3.2.1 Convolutional Encoder Examples 

To clarify the terminology some further examples are required for convolutional 

coders. So this section is dedicated to the convolutional coder examples. 

In the convolutional coders below, ports labelled with “I” corresponds to input and 

other ports labelled with “Q” corresponds to output ports. The convolutional 

encoders consist of M stages shift registers and one or more modulo-2 adders, 

represented with the shape ⊕ . Also for each encoder, the related generator 

polynomials are given at the bottom of the specified figures. 

� Convolutional Coder K=2 r=1/2 

 

 

Fig. 3-2  Convolutional Coder K=2 r=1/2 

Q0�    G(0)(D)= 1 + D 

Q1�    G(1)(D)= 1 

FF 
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� Convolutional Coder K=3 r=1/2 

 

 

Fig. 3-3 Convolutional Coder K=3 r=1/2 

Q0�    G(0)(D)= 1 + D + D2 

Q1�    G(1)(D)= 1 + D2  

� Convolutional Coder K=5 r=1/2 

 

 

Fig. 3-4 Convolutional Coder K=5 r=1/2 

Q0�    G(0)(D)= 1 + D3 + D4 

Q1�    G(1)(D)= 1 + D + D3 + D4 

FF FF 

FF FF FF FF 



 19 

� Convolutional Coder K=3 r=2/3 

 

 

Fig. 3-5 Convolutional Coder K=3 r=2/3 

3.2.2 Operation of the K=3 r=1/2 Convolutional Encoder  

In this section the operation of the generic convolutional encoder of K=3 and R=1/2 

(Fig. 3-7) will be stated. In the figures “I0” is the input port of encoder from where 

the original message stream is applied. “Q0” and “Q1” are the output ports where 

encoded message comes out. The two boxes in the middle are serial shift registers 

and circles corresponds to modulo-2 adders. In the hardware, the modulo-2 adder is 

implemented with the exclusive-or gate whose truth table is the same as the 

modulo-2 adder, as illustrated below. 

A B C O 

0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Truth Table of 
Modulo-2 Adder  

≡ 
 

Fig. 3-6 Modulo Adder 

FF FF 

FF 
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Fig. 3-7 Generic Convolutional Coder K=3 r=1/2 

At the initial point the shift registers in the convolutional encoder are at reset 

position which is all-zero content. As illustrated in Fig. 3-7, whenever a data bit 

enters from the input port, encoder produces two encoded bits and both of the 

encoded bits are correlated with instant and K-1 number of previous input bits, 

where K refers to the constraint length of the convolutional encoder. In the 

encoding process of K=3 and r=1/2 coder the input symbol enters the shift registers 

stage one bit at a time on the left terminals. After the modulo-2 addition of the 

selected shift register stages and input data, the two output bits are generated out of 

the encoder.  

 

 

 

 

 

 

 

 

 

FF FF 
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Now “01110010” input stream will be applied into the encoder.  

 

 

Fig. 3-8 Convolutional Encoding Example with 1st bit  

At the beginning, the convolutional encoder is in initial state (“00” state). So the 

flip flops are loaded with logic “0”. When the first bit of input message is applied 

which is logic “0” the output will be “00” (“Q1Q0”) and the next state will be again 

“00”. 

 

 

Fig. 3-9 Convolutional Encoding Example with 2nd bit 

FF FF 

FF FF 
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Now the second input bit will go inside the encoder which is logic 1,then 

successive output will be “11” and the next state will be “10”. 

 

 

Fig. 3-10 Convolutional Encoding Example with 3rd bit 

Then the third input bit will go inside the encoder which is logic 0. Present state is 

“10”. Output will be “11” and the next state will be “01”. At the fourth input 

Input=”0”   Present State=”01”   Output=”11”   Next State=”00” 

 

 

Fig. 3-11 Convolutional Encoding Example with 4th bit 

FF FF 

FF FF 
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Input=“1” Present State=“00” Output=“11” Next State=“10” 

 
Input=“1” Present State=“10” Output=“10” Next State=“11” 

 

 
Input=“1” Present State=“11” Output=“01” Next State=“11” 

 

 
Input=“0” Present State=“11” Output=“10” Next State=“01” 

 

Output Pattern: 0011101111011001 

Fig. 3-12 Convolutional Encoding Example Continued 

From the example the conclusions below are extracted: 

• State information is directly related to the content of serial registers. Present 

content of registers forms present state information and next content of 

registers after the current input insertion forms the next state information. 

• The output of the encoder is not only dependent to input but also dependent 

to the present state of the encoder, so the register values of the encoder.  

3.2.3 Representations of Convolutional Encoders 

In this section major representations for the state transitions of the convolutional 

encoder will be listed. 

 

FF FF FF FF 

FF FF FF FF 



 24 

� State Table 

State table is the easiest way to determine the state information and output relation 

of  the encoder as shown below.  

Table 3-1  State Table Representation of Convolutional Encoder 

INPUT 
BIT 

PRESENT 
STATE 

NEXT 
STATE 

OUTPUT 
CODEWORD 

0 00 00 00 

1 00 10 11 

0 01 00 11 

1 01 10 00 

0 10 01 10 

1 10 11 01 

0 11 01 01 

1 11 11 10 
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� State Diagram 

 

 

Fig. 3-13 State Diagram Representation 

State diagram is the graphical way to show state table. In the state diagram bubbles 

are the states and the indicators of the states are written inside the bubbles. Arrows 

are the state transitions according to input values. The values on the arrows 

corresponds to the output of the encoder while the transition takes place with 

respect to the input value. 
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� Code Tree  K=3 r=1/2 
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Fig. 3-14 Code Tree Representation 1 

 

Fig. 3-15 Code Tree Representation 2 
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In the code tree representation small boxes are called state boxes (Fig. 3-14). And 

arrows represents the state transitions The values on the arrows are encoder output 

values. In code tree representations sometimes state boxes are not shown  as Fig. 

3-15. 

3.3 Viterbi Decoder 

3.3.1 Viterbi Algorithm 

As indicated in the introduction, the Viterbi Algorithm (VA) is a Maximum 

Likelihood Decision Algorithm. The Algorithm tries to find the message stream mi 

whose likelihood function is larger or equal to the likelihood functions of other 

probable messages mj, due to the observed data. 

P(mi sent\z)≥ P(mj sent\z)  for all j≠i        (Eq. 1) 
 

The convention to represent the observed stream is z={z0, z1, ... , zT} where 

subscript numbers indicate the sampling time. 

P(mi sent\z) is a likelihood function and indicates the probability of message mi 

sent given that the observed stream is z. 

In the decoding process, VA searches for the best path and so the messages 

corresponding to states, that are the building blocks of the path. The best path 

passes through the state xik which is the state at sampling instant k in the state 

sequence i. The transition in the state sequence i between states xik and x
i
k+1 is 

shown as k
iξ . According to the state sequence xi={xi0,x

i
1, ... ,x

i
T} the Maximum 

Likelihood Equation can be written as; 

( ) ( )zxPzxP ji \\ ≥  For all j≠i         (Eq. 2) 

 
The new aim is to maximize the ( )zxP \ . As known, the unconditional probability 

of P(z) is positive value and is independent of the transmitted function so the state 

sequence. Thus, scaling the both sides of the Maximum Likelihood Equation in Eq. 

2 has no effect on the result of inequality. 
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( ) ( ) ( ) ( )zPzxPzPzxP ji \\ ≥  For all j≠i         (Eq. 3) 

 

The joint probability ( )zxP i , , that is the probability of the simultaneous occurrence 

of the state sequence xi and the observation sequence z, is equal to;  

( ) ( ) ( )zPzxPzxP ii \, =         (Eq. 4) 

 
The Eq. 3 can be rewritten as  

( ) ( )zxPzxP ji ,, ≥  For all j≠i        (Eq. 5) 

 

The joint probability ( )zxP i ,  is also equals to; 

( ) ( ) ( )iii xzPxPzxP \, =         (Eq. 6) 

 
In a Markov process the state transition to xk+1 only depends on the previous state 

xk. 

( ) ( )kik
i

k
iii

k
i xxPxxxxP \,...,,\ 1101 ++ =         (Eq. 7) 

 

Both the state xk and the state transition ( )kik
i

k xx ,1+=ξ  represent the same path in 

different ways. Thus, 

( ) ( ) ( )∏
−

=

+==
1

0

1 \
K

k

k
i

k
iii xxPPxP ξ         (Eq. 8) 

 
Thus the conditional probability in Eq. 6 can be rewritten as 

( ) ( ) ∏
−

=

==
1

0

)\(\\
K

k

k
i

k

ii zPzPxzP ξξ         (Eq. 9) 

The reimplementation of Eq. 6 using Eq. 7, Eq. 8 and Eq. 9 

( ) ( ) ( )∏∏
−

=

+

−

=

+=
1

0

1

1

0

1 ,\\,
K

k

k
i

k
i

k

K

k

k
i

k
ii xxzPxxPzxP         (Eq. 10) 

With the help of natural logarithm the time consuming and complicated 

multiplication calculations can be converted to summation. 
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1
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1 ,\ln\ln,ln
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k
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( )( ) ( )( ) ( )( )( )∑
−

=

++ −−=−
1

0

11 ,\ln\ln,ln
K

k

k
i

k
i

kk
i

k
ii xxzPxxPzxP         (Eq. 13) 

Each element of summation in the right side of the Eq. 13 is called branch metric 

)(ξλ and calculated as; 

( )( ) ( )( )k
i

k
i

kk
i

k
ixx

kk
i xxzPxxPk

i
k
i

,\ln\ln)( 11
),(

1
1

+++ −−== +λξλ
 

(Eq. 14) 

)( k
iξλ : The branch metric for the state transition of sequence i from time instant k 

to instant k+1 (xik,x
i
k+1). 

Then, the equation Eq. 13 is given in another form. 

( )( ) ∑
−

=

=−
1

0

)(,ln
K

k

k
ii zxP ξλ       (Eq. 14) 

Finally VA aims to find the state transition path for which cumulative branch 

metric calculation is minimum. 

∑∑
−

=

−

=

≤
1
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0
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k
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K

k

k
i ξλξλ    For all j≠i     (Eq. 15) 

The variable called Path Metric which is defined as 
k
ixΓ . 

( )∑∑
−

=

−

=

+==Γ
1

0

,
1

0

1)(
k

l

xx
k

l

l
ix l

i
l
i

k
i

λξλ
  (Eq. 16) 

Finally, the overall Maximum likelihood decision turns to 
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k
j

k
i xx Γ≤Γ

   For all j≠i     (Eq. 17) 

 

This is the bare structure leading to the Viterbi decoding through code tree 

representation which is described in details under the “Decision Through Code Tree 

K=5” heading. 

From now on, the recursive behaviour of the VA is stated to decrease the 

implementation difficulty. The recursive behaviour of the algorithm creates a new 

structure called trellis, which is described in details under the “Decision Through 

Trellis” heading. 

For the initialization of VA the initial state 0x  of the decoder is needed to be known 

for time k=0 and path metric of this state is 00 =Γx
. 

Then for all states of the decoder the metrics related to the two competing 

transitions from states xk-1 and x’k-1 leading to the same next state xk are calculated 

by the equations Eq. 18 and Eq. 19. 

),(
1

11),( −− +Γ=−
kkk xxx

kk xx λγ
(Eq. 18) 

)',(
1

11)',( −− +Γ=−
kkk xxx

kk xx λγ
(Eq. 19) 

Then the minimum of these two calculations is stored as the path metric of next 

state xk. 

( ))',(),,(min 11 −−=Γ kkkk

x
xxxxk γγ

(Eq. 20) 

The graphical representation of the recursive calculation for one next state is shown 

in  

Fig. 3-16 



 31 

 

Fig. 3-16 Graphical Representation of The Recursive Calculation 

Finally, after traceback depth length of input stream the VA compares the path 

metrics of the final states and selects the path ending with minimum state metric as 

the most probable path. 

3.3.2 Viterbi Decoding 

Viterbi decoder is the implementation of the Viterbi Algorithm, which is a 

maximum likelihood method to find the most probable input pattern coming from 

transmitter and through channel. In the operation, Viterbi decoder, independent of 

the input data, calculates every probable state transition from present time instant to 

the next, and relevant expected encoder output related to the state transition. Due to 

the distance between the expected encoder outputs and the received pattern, the 

Viterbi decoder also computes the branch transition probabilities for every state 

transition. Then, from the summation of the present state metric and the branch 

metric the next state path metric is calculated for every transition. After a specific 

number of observed data the decoder decides the most probable path and starts 

traceback from this state.  

� Decision Through Code Tree K=5 

In code tree decision scheme the boxes are the states and arrows are the state 

transitions with probable input values shown in Fig. 3-17. The upper arrows 

directing out of each state denotes the transitions as if logic 0 input was applied and 
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lower arrows denotes as if logic 1 input was applied to the encoder. Also there are 

two informations on the transitions arrows which are expected encoder output and 

branch metric.  

 

 

Fig. 3-17 Central part of decision tree 

 

The expected encoder output is the output symbol of the convolutional encoder 

when the transitions between the specified states occurs due to the assumed input. 

The branch metric is dependent on a function of expected encoder output and 

received data input to show the transition probability. For a generic hard decision 

Viterbi decoder, branch metric is calculated to find the number of different bits 

between observed data and expected encoder output. For this purpose bitwise xor 

operation will be carried out between received data and expected encoder output to 

find the different bits which are logic 1 in the result of xor operation. Then 

summation of the bits in the result gives the total number of different bits. 

Also all states have their own scale, called path metric. The path metric is a 

measure to indicate the probability of the input pattern leading the decoder to 

related state. The calculation of path metric is obtained by the cumulation of branch 

metric values of the path containing the state. 
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Message stream = 0110 

 

Fig. 3-18 Decision Through Code Tree K=5 

In Fig. 3-18 an example is given for K=5 Viterbi Decoding. The generator 

polynomials of the source encoder are “G(0)(D)= 1 + D3 + D4” and “G(1)(D)= 1 + 

D + D3 + D4”. As indicated in Viterbi decoder section the decoding starts from all 

zero initial state (“0000” state) with the path metric value of 0. From this state two 

branches exist for “0” and “1” input bits assumptions. The expected encoder output 

of these transitions are found by 
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 Input bit pattern of length K = [assumed input bit, encoder state bits]1x5 
 

Generator polynomial matrix=

25
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Output symbol matrix=Expected Encoder Output bits 

 
For the transition with “0” input assumption branch goes to “0000” state and 

expected encoder output is calculated by 
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For the transition with “1” input assumption branch goes to “1000” state and 

expected encoder output is calculated by 

[ ] [ ]













































•=

25

5121

11

11

00

01

11

000012mod11

x

xx

 
 

At this stage the decoder decides the branch metrics from the number of different 

bits between the observed data and the expected encoder output data. The observed 

symbol is “00” in this first stage. For “0” input assumption transition the observed 

data is the same as the expected encoder output so the branch metric of the 
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transition is 0. For “1” input assumption transition, where the expected encoder 

output is “11”, both of the two bits are different between observed and the expected 

data so the branch metric of the transition is 2. 

After these transitions the path metric of the next states are calculated by addition 

of present state metric and branch metrics. Thus, the path metric of next states 

“0000” and “1000” are 0 and 2, respectively. 

The traceback depth of this example is 4, so after the calculations stated in above 

statements for the 4 stage the decoder compares the path metrics of the final states 

and select the minimum valued state for traceback. Then the most probable 

message is decided from the assumed inputs of the path leading to the minimum 

valued state. 

The code tree method is very useful for description of Viterbi decoder but not 

suitable for the IC implementation. Because of the major disadvantage of the code 

tree representation, which is the exponential increase in the number of states caused 

by the increase in the received data, a new method called trellis has been proposed 

to restrict the number of states. 

� Decision Through Trellis  

As stated in previous part because of the increasing number of states in the code 

tree method (Fig. 3-19), the trellis method was proposed ( Fig. 3-20) in which the 

total number of states is restricted to the 2K-1. In the code tree method both states 

labelled with “a” and “e” goes to the state “00” in different places of state “b” and 

state “f” with logic 0 inputs meaning that the repetition of the state machine started 

from “00” state. The observed data and state identifiers so the branch metrics in 

transitions b-c and f-g are the same. Also the branch metric of b-d and f-h are the 

same.  
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),(),( fgbc λλ =
 

),(),( fhbd λλ =
 

The path metric of states c and g are calculated by the equations below 

),( bcbc λ+Γ=Γ
 
),( fgfg λ+Γ=Γ
 

Now if the traceback is started in this state, the better path in between the repetition 

states would be found by 

( ) ( )fbgcbetterpath ΓΓ=ΓΓ= ,min,min
 

( ) ( )fbhdbetterpath ΓΓ=ΓΓ= ,min,min
  

In both cases the winner path is only related to the path metric of the b and f  states.  

The successor states of the greater path metric state are useless in the computations 

because the path metric of the successors is directly related to the path metric of the 

predecessor and the greater valued predecessor will always direct the successor at 

the greater path metric values. So, the repetitive transitions are merged and the 

smaller path metric valued state is selected for computation of the path metrics. 
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Fig. 3-19 Code Tree for K=3 r=1/2 

After, merging all the repetitive states for every transitions the trellis structure of 

Fig. 3-20 is obtained. 
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Fig. 3-20 Central Part of Trellis K=3 r=1/2 

For the hard decision Viterbi decoder, all the transitions including the initialization 

instant are figured out in Fig. 3-21. In the trellis, as expected, after the K-1 number 

of observed data the trellis structure in Fig. 3-20 is reached for all stages. 

 

Fig. 3-21 Trellis K=3 r=1/2 
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3.3.3 Generic Viterbi Decoding Examples 

In this section, cycle by cycle the Viterbi decoding process for hard decision is 

illustrated for two observed streams. In the first example the error correcting 

capability and in the second stream the malfunctioning of the decoding are 

exampled. 

� Decoding of All Zero Input Message with 2 Transmission Errors 

In this part, the all zero input message encoded and transmitted from the K=3 r=1/2 

basic convolutional encoder is decoded. But the observed message contains two bits 

transmission errors.  

 

 

Fig. 3-22 Trellis Cycle 1 with Decoder Input “01” 
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Fig. 3-23 Trellis Cycle 2 with Decoder Input “00” 

 

The decoding process is same as the code tree method in initial 2 cycles (Fig. 3-22 

and Fig. 3-23). In these two cycles, comparison of the better transition for the next 

state doesn’t occur. Because only one defined branch exists directing to each next 

state. However, the 3rd and the rest cycles are made up of the same trellis structure 

containing the comparison phases. 

 

 

01 00 01 00 00 

00 

11 

01 

00 

1 

2 

1 11 

2 

3 

10 

1 



 41 

 

Fig. 3-24 Trellis Cycle 3 with Decoder Input “01” 

For each next state the smaller metric containing path is selected. 

 

 

Fig. 3-25 Trellis Cycle 3 after Comparison of Minimum Branch 
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After the comparison phase, the improbable paths lost the connections to the next 

states. 

 

 

Fig. 3-26 Trellis Cycle 4 with Decoder Input “00” 

 

Fig. 3-27 Trellis Cycle 4 after Comparison of Minimum Branch 
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Fig. 3-28 Trellis Cycle 5 with Decoder Input “00” 

 

Fig. 3-29 Trellis Cycle 5 after Comparison of Minimum Branch 

Finally, the state containing the minimum path metric between the final states is 

selected to start the traceback and the states leading to this final state is drawn as 

the best path (Fig. 3-30).  
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Fig. 3-30 Trace Back Path 
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� Decoding of All Zero Input Message with 3 Transmission Errors 

Now the same encoded message is aimed to be reached. But this time the received 

data contains three transmission errors. 

  

 

Fig. 3-31 Trellis Cycle 1 with Decoder Input “11” 
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Fig. 3-32 Trellis Cycle 2 with Decoder Input “00” 

 

Fig. 3-33 Trellis Cycle 3 with Decoder Input “01” 
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Fig. 3-34 Trellis Cycle 3 after Comparison of Minimum Branch 

For the observed pattern containing 3 transmission error the Viterbi decoder 

discarded the path of all zero input transitions. So the probable traceback paths are 

shaped as in Fig. 3-35. 
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Fig. 3-35 Probable Trace Back Paths 
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CHAPTER 4 

IMPLEMENTATION OF BASIC BUILDING BLOCKS OF 
VITERBI DECODER 

4.1 General 

In this chapter implementation of hard and soft decision Viterbi decoders are 

explained to get the decoder divided into sub modules, to gain the advantages of 

simulation simplification and debug period reduction. Creating the test platform of 

these components in the early stages of the thesis will decrease the overall 

development time because the specified modules will be used through out the thesis 

with some modifications to meet the design specific expectations. 

4.2  Implementation of Hard Decision Viterbi Decoder 

In this part, the implementation of the simplest Viterbi decoder called hard decision 

Viterbi decoder, to acquire the experience of the SystemC for the hardware 

modelling with the connections between ACS, BMU, DPRAM and TraceBack 

Unit, is stated. The operation of the implemented modules are explained below. 
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4.2.1 Dual Port RAM 

 

 

Fig. 4-1 DPRAM Symbol 

Dual Port RAM (DPRAM) units are path metric keepers of the decoder. In each 

DPRAM to store the path metric only one register exists and several other registers 

exist to store probable transition information. So, the next state metric coming from 

W_Data is overwritten on the present state metric of previous cycle. In the next 

cycle without any addressing the trellis calculation is performed on the same 

registers as previous cycle. Using one register for the path metric storage to get rid 

of switching mechanism in trellis calculations is called in-place path metric 

updating. 

On the contrary of the synchronous write operations controlled by W_En, to 

increase the speed of the trellis calculation, the read operations are performed 

asynchronously.  

Before the Viterbi Decoding an initialization phase should be performed to assign 

initial path metrics of states. To initialize the path metrics on R_Data port, the port 

labelled as R_Addr is waited to be “000”. As figured in Chapter 3, in the initial K-1 

cycles there are some states with undefined path metrics. To solve the 

implementation problem caused by the undefined states, the DPRAMs are created 

in two types. The only difference between these DPRAMs is the path metric values 
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in the initialization phase. The all zero state representing DPRAM supplies the path 

metric equal to 0 and the other DPRAMs supply very large path metrics in which 

the most significant bit is “1”. Assigning the undefined states in the initial cycle 

with a great path metric value makes these states improbable for traceback.  

In the DPRAM symbol there are other ports named W_Addr and W_Path to store 

the probable transition information of each cycle. The RAMPathX ports reflect the 

probable transition leading to the next states in each cycle. In our implementation 

the traceback depth is selected as 8 so totally 8 RAMPath register so the 8 ports 

from RAMPath0 to RAMPath7 are implemented. 

 

 

Fig. 4-2 DPRAM Simulation Result 
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4.2.2 Add Compare Select Unit (ACS) 

 

 
Fig. 4-3 ACS Symbol 

The ACS units are the building blocks of the trellis structure. The ACS unit adds the branch 

metric and the path metric (StateMetric), then, determines the transitions causing the 

smaller path metric for the next state. The ACS units retrieve the state metric of previous 

cycle from the R_Data port of DPRAMs, after the calculations, the resultant path metric of 

the probable path is generated and written on the W_Data port of DPRAMs. The ACS units 

also compute and write an information into the DPRAM identifying the probable transition 

which will be used in traceback operation. The operation of ACS is summarized on the 

block diagram Fig. 4-4. 

 

 

Fig. 4-4 ACS Block Diagram 
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Fig. 4-5 ACS Monitor Based Simulation Result 

 

Fig. 4-6 ACS Winbeta Based Simulation Result 

4.2.3 Branch Metric Unit (BMU) 

 

 

Fig. 4-7 BMU Symbol 

Demod_data = Observed Data;   PMvalue = Expected Encoder Output; 
 

The BMU receives observed data from the channel (Demod_data) and expected encoder 

output (PMvalue) then computes the branch metric from the number of different bits 

between the observed data and expected encoder output. The branch metric can be seen 
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as the distance between the received data and expected encoder output in the state 

space. 

 

 

Fig. 4-8 BMU Monitor Based Simulation Result 

 

Fig. 4-9 BMU Winbeta Based Simulation Result 
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4.2.4 ACSDPRAM 

 

 

Fig. 4-10 ACSDPRAM Symbol 

ACSDPRAM unit is the trellis structure composed of the BMU, DPRAM and ACS 

blocks.(Fig. 4-11 and Fig. 4-13) In the implementation port named as NextInstant 
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represents the trellis cycle number and is used to identify the address of RAMPath 

for probable transition storage. The PresentInstant is also the cycle representer and 

used to inform the DPRAMs for initialization at value of “000”. In any time the 

BMU units calculate the branchmetrics using observed data incoming from 

Demodulated_Data port and the ACS unit performs calculation of probable paths 

and the path metrics related to these paths asynchronously. After the W_En 

activation the path metrics are updated with the values calculated by ACS units. 

The Read_Data ports output the path metrics of the states to decide the probable 

path just before the traceback. The ports prefixed with RAMPath shows the 

probable transitions of each cycle to estimate the original message in traceback. For 

this purpose the least significant bit of the present state identifier of the probable 

transition is stored as RAMPath value. 

 

 

Fig. 4-11 ACSDPRAM Block Diagram 
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Fig. 4-12 ACSDPRAM Detailed Block Diagram 
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Fig. 4-14 ACSDPRAM Monitor Based Simulation Result 

4.2.5 MinDetector 

For the decision of the state containing minimum path metric, the mindetector 

module shown in Fig. 4-15 is implemented. The mindetector module inputs the path 

metrics of all states and outputs the identifier of the minimum path metric valued 

state. 

 

Fig. 4-15 Mindetector Symbol 
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4.2.6 Trace-Back Unit (TBU) 

 

 

Fig. 4-16 TRACE-BACK UNIT Symbol 

The traceback unit is a module, which estimates the original message using the 

information comings from ACSDPRAM module. After a predetermined length of 

observed data block, the TBU inputs the identifier of the minimum path metric 
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valued state from min detector. Then, TBU establishes an optimal path from the 

most probable final node all the way to the all zero state at the beginning of the 

trellis by using the transition information in each trellis cycle. 

The Traceback Unit performs the reverse process of the convolutional encoding. In 

the convolutional coder the next state identifier is the one bit right shifted version of 

the present state taking the message bit for the most significant bit of the next state 

identifier and the least significant bit of the present state identifier is lost in the next 

state, as declared in Chapter 3.  

Present State Identifier = Sn ... S2 S1 S0 

Input Message Bit        = I 

Next State Identifier     = I  Sn ... S3 S2 S1  

In the Viterbi decoder the state transitions depending on the convolutional coding 

are recreated for all probable states in the trellis to decide the transition 

probabilities. In the trellis as well, the least significant bit of the present state are 

lost in the transition towards the next state. So, for each trellis cycle the least 

significant bit of the present state directing to the next state is stored in the 

RAMPath registers of the next state DPRAM at the address which is equal to the 

trellis cycle (Fig. 4-17).  
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Fig. 4-17 Trellis  Decision 

The RAMPath registers store the survived transition information so they are called 

the survivor registers. In the tracing of the best path, the traceback unit uses the 

values in the survivor registers as in Fig. 4-18.  The Fig. 4-18 is an example 

traceback operation for which the best state after the final trellis cycle is calculated 

as “01”. The state identifier is stored for the first two bits of the estimated message. 

The bit value of the survivor register corresponding the final cycle (cycle 7) in the 

DPRAM1 is “0”. So shifting the present state identifier to the left taking the 

survivor register as input and erasing the most significant bit, the state of “10” is 

obtained for the best state of cycle 6. The recursive operation is continued up to the 

cycle 0 while storing the survivor register values for the estimated message. 
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Fig. 4-18 Trace Back Algorithm 

The traceback unit is composed of the MUX2x4 modules shown in Fig. 4-15 whose 

truth table is given in Table 4-1.  

 

 

Fig. 4-19 MUX2x4 Symbol 
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Table 4-1  Truth Table of Mux2x4 

S1 S0 O 
0 0 I00 
0 1 I01 
1 0 I10 
1 1 I11 

 
 
 
 

 

Fig. 4-20 TraceBack Operation Block Diagram 
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Fig. 4-21 TraceBack Unit Schematic 

4.2.7 Hard Decision Viterbi Decoder Module 

 

 

Fig. 4-22 Viterbi Decoder Symbol 
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Finally, the hard decision Viterbi decoder is obtained with the connections shown 

in Fig. 4-23. 

 

 

Fig. 4-24 Viterbi Decoder Simulation 

The simulation result of the connections between ACSDPRAM, mindecoder and 

TBU is performed and simulated in Fig. 4-24. 

In Chapter 3 the Viterbi Decoding of all zero input message was exampled for two 

observed streams to see the performance of the hard decision Viterbi decoder. In 

one of these examples the two errors were embedded in observed data and the 

estimated message was corrected through decoder as the original message. This 

case is simulated on the hardware and the simulation result is given in Fig. 4-25  
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Fig. 4-25 Decoding of  Observed Data with two errors 

The three errors embedded in observed data case is also simulated on the hardware 

and the simulation result is given in Fig. 4-26 
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Fig. 4-26 Decoding of  Observed Data with three errors 

4.3 Implementation of Soft Decision Viterbi Decoder 

In the previous part, the implementation of the hard decision Viterbi decoder was 

stated. In hard decision decoding, a stream of symbols are passed through a 

threshold detector in the receiver to obtain bit values definitely separated into the 

two quantized logic levels, one or zero as in Fig. 4-27. 



 70 

Output

Input(V)

0

Logic 1

Logic 0

+1 +2 +3-1-2-3

 

Fig. 4-27 Hard Decision Input Example for ±2V Transmitted Symbol 

For a hard decision input the closeness of the received value to the transmitted 

voltages is not important in branch metric calculations so the receiver responds with 

the same branch metric for the 0.1V and 2.1V for the message pulsed with +2V and  

-2V signalling levels to signify the logic 1 and logic 0, respectively. In this 

situation, the received signal of 2.1V is very probable to be transmitted as logic 1 

(+2V) and almost not probable to be transmitted as logic 0 (-2V) because the 

channel corruption is 0.1V for +2V transmitted signal and 4.1V for -2V. However, 

0.1V is approximately equal probable to be transmitted either +2V or -2V signal 

levels. Thus, a mechanism to distinguish the probability of the  received signals 

according to the value of the corruption voltage altered the transmitted voltage is 

required to increase the fidelity of the decoded message. For this reason a concept 

called soft decision viterbi decoding was developed in the literature where the input 

symbol is not only quantized to 1 and 0, but also quantized by several threshold 

levels to improve the reliability of the branch metrics relative to the input message. 

In Fig. 4-28 four level quantized scheme is given. 
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Fig. 4-28 Soft Decision Input Example 

Instead of the two strict probability value in hard decision inputs, in soft decision 

the intermediate voltage values are assigned to several probability values for 

condense measure concerning probability of a binary bit being 1 or 0. For example 

Fig. 4-29 shows the probability of the received voltage to be belonging to the +2V 

transmitted signal. In other words, in the Gaussian curve located with mean value 

of +2, which  corresponds to the probability of the received voltage belonging to 

the logic 1 transmitted symbol, the area of each region, separated by -1, 0, +1, 

represents the probability for the input voltage falling within the range reasoning of 

the logic 1 transmitted. 
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Fig. 4-29 Soft Decision Probabilities 

To summarize the above discussion, the probability table is given in Table 4-2 

Table 4-2  Probability of quantized voltages vs. the transmitted logic 

 
Strongest 1 
/Weakest 0 

Strong 1 
/Weak 0 

Weak 1 
/Strong 0 

Weakest 1 
/Strongest 0 

logic 0 0.025 0.075 0.25 0.65 

logic 1 0.65 0.25 0.075 0.025 

 

The probability calculations are normally obtained by multiplications, and the 

multiplications causes large hardware size and time consuming operations. So the 

probability values are converted to the logarithmic probability values to simplify 

the hardware into adder-subtracter circuits operating in one clock cycle. Also, the 

probability values are always less than 1 so the logarithmic values are always 

smaller than 0. Multiplicating the logarithmic probabilities by -1 makes all 

probability values to positive and leads the hardware to only adder circuitries.  

From now on;  

Logarithmic Probability = –log (Probability) 

 
The logarithmic probabilities of Table 4-2 is given in Table 4-3. 
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Table 4-3  Logaritmic Probabilities of quantized voltages vs. the transmitted logic 

 
Strongest 1 
/Weakest 0 

Strong 1 
/Weak 0 

Weak 1 
/Strong 0 

Weakest 1 
/Strongest 0 

logic 0 1.602 1.125 0.602 0.187 

logic 1 0.187 0.602 1.125 1.602 

For example, the branch metric calculation by using the logarithmic probabilities 

are performed as follows. The branch metric of transitions for the subsequent 1.5V 

and -0.5V input voltages are calculated by addition of the two probability values 

corresponding to each encoder output bit. The 1.5V is in the strongest 1 / weakest 0 

region (Fig. 4-28 and Fig. 4-29) whose logarithmic probabilities are 1.602 and 

0.187 for expected encoder output bit of logic 0 and logic 1 (Table 4-3), 

respectively. In other case, the  -0.5V is in the Weak 1/Strong 0 region whose 

probabilities are 0.602 and 1.125 for expected encoder output bit of logic 0 and 

logic 1, respectively.  For the “00” expected encoder output, the first bit is 0 and the 

input voltage is in Weakest 0 region so the probability is 1.602 and the second bit 

of expected encoder output is 0 and received voltage is -0.5V causing 0.602 

probability. From the summation of these two probabilities, the branch metric of the 

branch is found as 2.204 (Fig. 4-30) . For the “11” branch all two expected encoder 

outputs are ‘1’ so the branch metric is calculated by the summation of probabilities 

of 0.187 and 1.125. 

 

 

Fig. 4-30 Branch Metric Calculation 
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In hardware implementation the floating-point calculations causes hardware 

complexity. So the logarithmic probabilities are scaled by 100 and then rounded to 

integers (Table 4-4). 

Table 4-4  Scaled Logaritmic Probabilities  

 
Strongest 1 
/Weakest 0 

Strong 1 
/Weak 0 

Weak 1 
/Strong 0 

Weakest 1 
/Strongest 0 

logic 0 160 113 60 19 

logic1 19 60 113 160 

 

For the hardware implementation, the modules implemented in hard decision 

Viterbi decoder are modified to obtain K=3 R=1/2 soft decision Viterbi decoder.  

4.3.1 BMU 

 

 

 

Fig. 4-31 BMU Symbol 

The BMU module takes the two input symbol from the analog to digital converter 

of the receiver and calculates the 9 bits scaled logarithmic transitions probabilities 

for branch metric values of 00, 01, 10 and 11 expected encoder output. 
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4.3.2 ACS 

 

 

Fig. 4-32 ACS Symbol 

The ACS module inputs the branch metrics and the state metrics of half a butterfly 

and outputs better path also the next state metric for this better path as in hard 

decision Viterbi decoder. The state metrics are selected as 14 bits for calculation of 

maximum traceback depth of 16.  

4.3.3 DPRAM and MinDetector 

 

 

Fig. 4-33 DPRAM Symbol 
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Fig. 4-34 MINDETECTOR Symbol 

The DPRAM and MINDETECTOR modules are same as in the hard decision 

Viterbi decoder with only modification of the state metric related signals to 14 bits. 
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4.3.4 ACSDPRAM 

 

 

Fig. 4-35 ACSDPRAM Symbol 

ACSDPRAM module is used to create the trellis structure as before. However, in 

this implementation one branch metric unit creates the branch metrics of all 

transitions in the trellis. 
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4.3.5 Soft Decision Viterbi Decoder 

 

 

Fig. 4-37 Viterbi Decoder Symbol 

The trace-back unit designed in hard decision Viterbi decoder section is used 

without any modification. So, the decoder operates on trace-back length of 8. 
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CHAPTER 5 

RECONFIGURABLE VITERBI DECODER 
IMPLEMENTATION 

5.1 General 

In this chapter, two new area efficient reconfigurable Viterbi decoder approaches 

are proposed. The improvement in these architectures are the new trellis structures 

which give ability to configure the constraint length by the regular usage of the 

same small trellis portion in subsequent time instances. The contribution of the 

same structures usage in all iterations decreases the hardware complexity and the 

new state organization offered in these approaches provides in place path metric 

update with only two state metric switching. 

5.2  Reconfigurable Viterbi Decoder with Normal and Complemented State 
Identifiers at Subsequent Iterations 

In this part, the first area efficient architecture is described in theoretical manner. 

The explanation starts with comparison of standard and suggested trellis and 

resumes with hardware implementation guide lines. 

5.2.1 Trellis Structure 

The backbone of the Viterbi decoder is the trellis structure and the major usage of 

the trellis structure is the decision of the more probable state transitions by 

calculating the branch and state probabilities related to the state transitions and 

received symbol. 



 82 

In Fig. 5-1, a standard trellis example is demonstrated for K=4. For K=4 there are 

totally 2(K-1) =8 states and 3 bit is enough to represent them.  

 

Fig. 5-1 Trellis Structure (K=4) 

In Fig. 5-1 the left circles, named as previous, and the right circles, named as next, 

are the states whose identifiers are determined with the values inside the circles. 

The arrows show the state transitions corresponding to the assumed data inputs. 

The dashed lines denote transitions as if logic 0 input have been received and 

straight lines correspond to the transition for logic 1 input. 

The branch and state probabilities have been converted to the branch metrics and 

the path (state) metric by taking the negative logarithm of base 2. So the probability 

calculations have been converted to addition instead of multiplication. The branch 

metrics are determined considering the probability of the next state depending on 

the previous state and the observed data. The path metrics are calculated 

cumulatively by the addition of the branch metrics from the beginning of the stream 

to be decoded.  
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Fig. 5-2 Trellis Calculation 

As an example, to obtain the path metric for next state “001”, in the trellis structure 

the two branches directing to the “001” states should be considered. These are 

transitions from the “010” state and from the “011” state for logic “0” inputs. 

Accordingly, (i) the path metric of previous state “010” metric is added with the 

branch metric of “010” to “001” transition and (ii) previous state “011”metric is 

added with the branch metric of “011” to “001” transition. After these calculations 

minimum of (i) and (ii) is selected and stored in as the path metric of the next state 

“001”. Also the least significant bit of the possible previous state is needed to be 

stored for the future trace-back operation. The path metric computations and 

minimum metric selections are managed by Add-Compare-Select Unit (ACS). 

After a trellis cycle, calculation of the path metric for every next state, the next state 

metrics are copied over the previous state metrics. These calculations are 

recursively carried out up to the depth of trace back. After the receiving of the 

trace-back lenght stream input, the path metrics are used as a measure to find the 

most probable state to start with the trace-back. 

The bare trellis structure given in Fig. 5-1 is a complicated structure to implement 

on an IC. For K=4, 8 states are needed and increasing K exponentially increases the 

number of states, so the number of memories, ACSs, interconnections. Also, the 

given trellis structure is not in a suitable form to be implemented using 

reconfigurable blocks. For this reason another kind of representation has been 

suggested in the literature to generate similar modules. This method, shown in Fig. 

5-3, is a new rearrangement of connections in Fig. 5-1. The interchanged positions 

of the next states formed a trellis model which is composed of substructures called 

butterfly. 
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Fig. 5-3 Butterfly Demonstration 

Butterfly structures provide regularity in the implementation. For example, for 

K=6, Viterbi decoder is composed of 25=32 states. To generate 32 states, the 

subtrellis combined with 2 butterflies(B=2, 2x2=4 states) is used eight time for 

different present and next states. For K=7, the subtrellis is needed to be used 16 

times for the generation of 64 states.  

In B=2 subtrellis, the 4 memory units correspond the 4 states in subtrellis. For K=6 

Viterbi decoder implementation, each memory unit is implemented with 8 address 

space to represent 8 iterations. In a reconfigurable decoder, the maximum constraint 

length determines the maximum number of iterations so the total number of address 

spaces in memory is 2K-2/B. 

The butterfly method increased regularity and solved the reconfiguration problem 

of constraint length with repetition. But butterfly grouping in Fig. 5-4 brought very 

complicated switching mechanism to link the previous and the next states through 

ACS units.  

To illustrate this problem the 4 state metric memory units were named with 

alphabets A, B, C, D from top to down in previous states. Then, the next states were 

named in conjunction with the previous states, introducing the same alphabet to the 
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same identified states between previous and next states, as demonstrated in Fig. 

5-4.  

 

 

Fig. 5-4 Memory Mapping of Butterfly Structure for B=2 

Considering the above iterations, it can be concluded that the next state memory 

identification contains naming repetitions in the same iteration meaning that the 

trellis tries to write two different addresses of the same memory unit. This result is 

an important problem to be solved for an efficient VLSI implementation Viterbi 

decoder 

In this paper a new butterfly structure is suggested to decrease the next state path 

metric multiplexing and addressing complexity between the two consecutive states 

and to decrease the complexity of operations. 

5.2.2 Complemented Identifier Reconfigurable Foldable Viterbi Decoder  

The new implementation is based on a modified foldable structure so called 

complemented identifier reconfigurable foldable Viterbi decoder. In this new 

approach memory addressing and multiplexing have been simplified considerably. 

To construct this model, all iterations are considered subsequently and the first half 
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numbers of the iterations are taken the same as the original butterfly and the other 

iterations are rotated vertically. Independent of the constraint length, number of 

iteration and the order of the iterations, with this method building a Viterbi decoder 

with only two next state path metric multiplexing has been achieved.  

On the other hand controller and traceback unit simplifications are important issues 

to obtain area efficient integrated circuit. Thus the new trellis model is constructed 

as explained below. 

In the model the consecutive two iterations in subsequent time instances are treated 

as one group. The iterations are reconstructed and numbered to get the groups given 

in Fig. 5-5. Note that iterations 0, 2, 4, 6 correspond to the iterations 0, 1, 2, 3 in the 

ordinary butterfly trellis. Also iterations 1, 3, 5, 7 correspond to the iterations 7, 6, 

5, 4 in the ordinary butterfly trellis with scrambled states. 

Between first and second iterations of any iteration group the below statements can 

be concluded. 

• All state identifiers in the second iteration of any iteration group are bitwise 

complemented values of the state identifiers in first iterations. For example 

for K=6 Viterbi decoder state identifiers are represented with five bits. The 

present state identified as 5, whose path metric will be stored in memory 

unit B, in iteration 2 of IG1 is represented as “00101”, where as in the same 

iteration group, at the same location of the next iteration state identified as 

26 exists, with binary notation of “11010” which is the complement of the 

binary “00101”. Also same approach is valid for next states. For example, 

next state 17, binary “10001”, of iteration 0 replace with next state 14, 

binary “01110”, in iteration 1 which is the bitwise complement of 17. The 

inverted state identifiers decrease size of the state decoder unit in the 

implementation. Because designing the state decoder for only first iterations 

and complementing the state identifiers for the second iterations in iteration 

groups, are enough for implementation of the states identifiers in whole set 

of iterations.   
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• For the storage of the path metrics into the internal registers of the memory 

units the identifiers of the states will be used. But the least significant two 

bits of the present and the next states are the same for the same position of 

the first iterations in the iteration groups. So in memory address localization 

for path metrics the least significant bits of identifiers will not be used. 

Omitting the least significant two bits, results in a very light weight state 

decoding for the present states of the first iterations in iteration groups the 

iteration counter without least significant bit will be connected to the read 

address of the memory units through xor gates. The other terminals of the 

xor gates will be connected to the least significant bit of the iteration 

counter. For the first iterations of the iteration groups the xors behave as an 

ordinary buffer. For the second iterations of the iteration groups the least 

significant bit of the counter will be “1” so the address locators will be 

complemented. 

• The next state identifiers of the trellis are the one bit left shifted of the 

present state identifiers taking the assumed branch input as the most 

significant bit.   

• The branch structure in the consecutive iterations of an iteration group is 

constructed using a complemented scheme. In an iteration group the dashed 

branches in first iteration are replaced with the straight lines in the second 

iteration and straight lines are replaced with the dashed lines. Meaning that 

in iteration 0, state 0 to state 0 transition is obtained with logic 0 input on 

the other hand in iteration 1 from state 31 to state 31 transition is achieved 

by logic 1 input. Note that state identifier “11111” is bitwise complemented 

version of state identifier “00000”. 

• Consequently, in the even numbered iteration groups, the next states use the 

memory units in A, D, B, C order and in the odd ordered iteration groups 

the next states memory units are used in C, B, D, A order (Fig. 5-5).  This 

regularity results in the usage of the second least significant bit of the 
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iteration counter directly as the selection control input of the path metric 

router. 

 

K=6 
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Fig. 5-5 Butterfly Based Projection (Implemented Butterly Group) 

Above structure can further be rearranged to get the next states in the same order 

with the present states as shown in Fig. 5-6. 
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Fig. 5-6 Memory Based Projection (Composition of Butterflies and Path Metric Multiplexing) 

• Another consequence is that, for the condition that reveals two iterations  

(Table 5-1) only one path metric multiplexing mode exists, so there is no 

need to use next state path metric multiplexers for such cases. For I>2, two 

path metric multiplexing modes are enough to cover the whole trellis ( Fig. 

5-5). 
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Table 5-1 Constraint Length, Number of Butterflies and Iterations Relation 

Constraint 
Length (K) 

Number of Butterflies 
(B) 

Number of 
Iterations (I) 

4 2 2 

5 4 2 

6 8 2 

5 2 4 

6 4 4 

7 8 4 

6 2 8 

7 4 8 

7 2 16 

 

 
As an example, for K=4, B=2 , two iterations exists as shown in Fig. 5-7.a. As 

explained above the second iteration has been vertically rotated, and the 

structure given in Fig. 5-7.b is obtained. Fig. 5-7.c shows the binary 

representation of the states in Fig. 5-7.b. 

 

 
a 

���� 

 
b 

 
c 

Fig. 5-7 Trellis Structure (K=4) 
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Rearranged form of Fig. 5-7.b is presented in Fig 9.  

 

Iteration 0 

 

Iteration 1 

 

Iteration group0 

Fig. 5-8 Rearranged Next State Trellis Structure (K=4) 

Also for K=5, B=4, two iterations are needed and rotating the second iteration, as 

explained before, will result in the same scheme (Fig. 5-9). All two iteration trellis 

with rotated second iteration don’t use next state path metric multiplexers. By using 

this new method, a Viterbi trellis can be implemented with approximately half 

elements, so as chip area. 

 

K=5 
Iteration 0 

 

 

Iteration 1 

 

 

Fig. 5-9 8 State Trellis Structure (K=5) 
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Because of its complementing nature, the new method can be used for number of 

iterations greater than one. However, in practice the minimum number of iterations 

is chosen as 2. 

The examples in this paper were given for 2 butterfly subtrellis but the method can 

be extended to the 2n number of butterfly subtrellises. 

5.2.3 Hardware Structure 

In this section hardware implementation of the new complemented identifier 

reconfigurable foldable Viterbi decoder is discussed for constraint lengths varying 

from 4 to 7.  

In hardware implementation a modified RAM structure is suggested to store path 

metrics of states. The new modified RAM is called Double Registers Dual Port 

RAM (DRDPRAM) as given in (Fig. 5-10). 

 

 

Fig. 5-10 DRDPRAM block diagram 

The path metric of the previous states stored in the O-RAM is used to determine the 

path metric of the next state that will be stored in I-RAM. When all the I-RAM data 

(i.e., the path metrics of the next states) are calculated, the I-RAM content are 

transferred to O-RAM by activating “Update”. 
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To route the path metrics of the next states to the relevant memory unit, two 

different addressing modes have been utilized. For even indexed iteration groups, 

addressing shown in Fig. 5-11 is used and for odd indexed iteration groups address 

multiplexing shown in Fig. 5-12 is used.  

 

 

Fig. 5-11 Next State Metric Routing for Even Numbered Iteration Group 

 

Fig. 5-12 Next State Metric Routing for Odd Numbered Iteration Group 

The design should cover the maximum number of states which is reachable with the 

maximum value of constraint length of 7. For K=7, there are 64 states constituting 

16 iterations with B=2 butterfly groups. The 16 iterations results in 16 address 

locations in which DRDPRAMs store the state metric values. During an iteration, 

the generation of the relevant present state address for read operation, the next state 

address for write operation and calculation of the branch metrics should be 

accomplished. The state decoder designed for this purpose is given in Fig. 5-13. 
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Fig. 5-13 State Decoder 

PS3, PS2, PS1 and PS0 are present state identifier bits (used for addressing to read 

the state metric from the relevant internal O-RAM register of DRDPRAM) and 

NS3U, NS2U, NS1U, NS0U and NS3D, NS2D, NS1D, NS0D are the bits (used for 

addressing to write the state metric into the relevant internal I-RAM register of 

DRDPRAM) of the two next state identifiers which are dependent on the iteration 

counter and constraint length. The detailed diagrams of the trellis corresponding to 

the state identifiers are shown in Fig. 5-14 and Fig. 5-15 for the odd and even 

iteration groups respectively.  

 



 95 

 

Fig. 5-14 New Trellis Model Hardware Implementation Bits For Odd Iteration Groups 

 

Fig. 5-15 New Trellis Model Hardware Implementation Bits For Even Iteration Groups 

The W_Data port is used to store the next state metric into DRDPRAM and R_Data 

port is used to get the present state metric. 

The Fig. 5-16 illustrates detailed block diagram of the decoder. In the schematic, 

the input bits SU0, SU1, SU2, and SU3 to the Survivor Unit block are generated. 

This block stores the most probable path information of each nodes guiding to the 

next states. With this information, the traceback unit can estimate the original 

message. 
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Fig. 5-16 Viterbi Decoder Block Diagram 
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5.3 Implementation of Reconfigurable Viterbi Decoder with Normal And 
Complemented State Identifiers At The Same Iteration 

Finally, the implementation of second area efficient reconfigurable Viterbi decoder 

in SystemC is described. The design of the scope gives ability to online 

configuration of parameters 

• constraint length 

• code rate 

• transition probabilities 

• traceback depth 

• generator polynomial. 

 

5.3.1 Theory 

The design covered in this chapter is another rearrangement of states in the trellis 

for  the implementation of the Viterbi decoder. This new method resembles very 

much to the first approach in the previous part but the states in the iterations are 

arranged to contain the normal and complemented identifiers in the same iteration 

(Fig. 5-17). 
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Fig. 5-17 The 4 States Sub-Trellis Structure 

In previous part a term called iteration group was introduced as the composition of 

the two iterations for 4 states subtrellis. For the 8 state subtrellis in this new method 

two subsequent iterations of an iteration group for 4 states subrellis of previous part 

can be thought to be used in one iteration, considering second iterations below the 

first iterations. So the states in the below half of the trellis would be the 

complemented of the states identifiers of the upper states. For the 8 states sub-trellis 

structure two examples is given in Fig. 5-18 for K=4 and K=5.  
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Fig. 5-18 The 8 States Sub-Trellis Structure 

In the examples and implementation the 4 and 8 states sub-trellises are introduced 

for this new approach but increasing the number of states in the sub-trellis with the 

power of two is also functional. 

The first approach was only operative for the number of iterations equal to or 

greater than two. On the other hand this new approach is functional for even one 

iteration trellis For example constraint length of 3 is possible in a 4 state trellis. 

(K=3 in Fig. 5-17 and K=4 in Fig. 5-18). 

In the implementation of the reconfigurable Viterbi decoder the 8 states sub trellis 

structure is used so in the subsequent parts of this chapter the descriptions are based 

on 8 states sub-trellis structure. To extract the new outcomes for the simplification 

of the reconfigurable hardware to be implemented, the binary representation of the 

8 states sub-trellis structure is given in Fig. 5-19. 
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Fig. 5-19 Binary Representation of The New Trellis Structure 

In the binary representation, states are identified with 6 bits because the decoder 

should operate on the constraint length ranging from 4 to 7. For the constraint 

length of 7, K-1=6 bit is required to identify each states.  

In the decoding process same labelled state’s metrics are stored in same 

DRDPRAMs’ different registers as usual. For example, for K=5, the DRDPRAM A 

stores both the  path metric of state 0 and state 4 (Fig. 5-19). So there should be a 

way to address the memory locations related to the states in DRDPRAM units. The 

2 least significant bits of present state identifiers are same for the same DRDPRAM 

in any iteration. So in the addressing operation there is no need to use these two 

bits. Also another exciting point is that the most meaningful bit* of state identifiers 

are always 1 in the lower half of the iterations and always 0 in upper states ( *The 

most meaningful bit is located on the most significant position of the minimum 

number of bits enough to represent all states of a constraint length). This means, 

direct usage of the most significant 4 bits to address the memory, there will be some 

blind parts of the memory to where no data would be written. To overcome the 

memory blind memory problem, there are two methods. These are omitting the 

most meaningful bit by forcing it to 0 or second way is the complementing all the 

meaningful bits of the lower half states identifiers** (**Meaningful bits are the 

minimum number of bits enough to represent all states of a constraint length). The 
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complementing way will be used in the implementation process. By this method the 

present state memory location (Read Address of DRDPRAMs) will be same as the 

iteration number for every DRDPRAMs so the iteration counter output can be 

directly connected to the read address of the DRDPRAMs. On the next state side 

the DRDPRAM addresses composed of 2 addresses the first address is connected to 

the A, B, E, F labeled and the second is connected to the C, D, G, H labelled 

DRDPRAMs. 

 

Table 5-2  State Table Representation K=5 

Iteration 
Number 

DPRAM 
Identifier 

DPRAM 
Address 

Present 
State 

Identifiers 

DPRAM 
Read 

Addresses 

Next State 
Identifiers 

DPRAM 
Write 

Addresses 
A 0000 000000 0000 000000 0000 
B 0000 000001 0000 000001 0000 
C 0000 000010 0000 000110 0001 
D 0000 000011 0000 000111 0001 
E 0000 001111 0000 001111 0000 
F 0000 001110 0000 001110 0000 
G 0000 001101 0000 001001 0001 

Iteration 
0 

H 0000 001100 0000 001000 0001 
       

A 0001 000100 0001 000100 0001 
B 0001 000101 0001 000101 0001 
C 0001 000110 0001 000010 0000 
D 0001 000111 0001 000011 0000 
E 0001 001011 0001 001011 0001 
F 0001 001010 0001 001010 0001 
G 0001 001001 0001 001101 0000 

Iteration 
1 

H 0001 001000 0001 001100 0000 

 

 

The next state memory is arranged on A, H, B, G, E, D, F, C order in iteration 0 and 

on C, F, D, E, G, B, H, A order in iteration 1. In the hardware the butterfly group is 

implemented a fixed hardware and a two position state metric multiplexer (path 

metric router) is designed to direct the state metric to the correct DRDPRAM.  
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Fig. 5-20 State Inversion (K=6) 

The Fig. 5-20.a shows the suggested trellis structure and Fig. 5-20.b shows the 

memory addressing scheme inside the Viterbi implementation. For K=6 most 

significant bit of state identifiers is the 5th bit. In the Fig. 5-20.a the most significant 

bit is always 1 for memories E, F, G, H and 0 for others. The state identifiers of the 

states stored in E, F, G, H are inverted as shown in Fig. 5-20.b. For register 

resolution in the DRDPRAMs the least significant 3rd and 4th bits of the state 

identifiers are used. In  Fig. 5-20.b the present state identifiers, neglecting the least 

significant 2 bits, are the same as iteration counter value so with this approach there 

is no need to use any additional circuit to address the present states. Also, the state 

identifiers of the next states contain only two separate values in an iteration, but 
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also, one of these separate value is one bit shifted of the iteration counter and the 

other is the inverse of these state identifier bits in the meaningful bits positions. So 

the design will be so compact in state decoder perspective also.  

5.3.2  Implementation  

From a top front of view the design can be divided into sub modules as in Fig. 5-21. 

In the implementation, to increase controllability of hardware development and to 

avoid errors, the design is divided into submodules also from the early phase of 

design the submodules are connected to each other and simulated to create bigger 

modules cumulatively up to the Viterbi decoder. 
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Fig. 5-21 Hierarchical Diagram of the Viterbi Decoder 
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5.3.2.1 Viterbi Decoder 

From the top view, the Viterbi decoder is composed of COLLECTOR module and 

Viterbi Core module as shown in Fig. 5-21. The COLLECTOR module takes the 

input symbols, then groups the input symbols according to the code rate and 

supplies the input symbols to the Viterbi Core. The Viterbi Core (Fig. 5-22) takes 

the demodulated data groups coming from COLLECTOR and makes decisions of 

the pattern sent from the transmitter.  

 

 

Fig. 5-22 Viterbi Core Block Diagram  

In the Viterbi Core three different processes runs concurrently to protect data lose 

and synchronization problems. These processes are controlled by Input FIFO, Main 

Controller and Traceback Unit. The Input FIFO is the first stage of the core and 

accumulates input data.  Then FIFO transmits the received data to the trellis section 

when the trellis section is ready to calculate new data. The second process takes 

place in main controller section which controls State Controller, SUBTRELLIS 

BMU and SURVIVOR MEMORY modules for the trellis operations. The last 
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process is controlled in TRACEBACK CONTROLLER to estimate the transmitted 

message. 

In the subsequent parts of this chapter the functionality of the modules are 

explained in details. 

5.3.2.2 Collector 

 

 

Fig. 5-23 COLLECTOR Symbol 

The main functionality of collector unit is to give ability to configure the code rate 

of Viterbi decoder to select 1/2 or 1/3 basic code rates. 

When the reset signal is activated, the COLLECTOR module points to the 

DEMODDATA0 internal register for write purpose and the content of all three 

DEMODDATA0, DEMODDATA1, and DEMODDATA2 registers are reset to all 

zero. This module takes soft decision input from DEMODDATA port on the 

positive edge of Clk signal if the valid signal is active. Then writes this value to the 

DEMODDATA0 register and points to DEMODDATA1 register, with the next 

valid signal the COLLECTOR writes the new content of DEMODDATA port to 

DEMODDATA1 register. At this point the Rate (Code Rate) port is checked 

whether 1/2 or 1/3. If the rate signal is in 1/2 value (logic 0) the we_out port is 

activated to inform the Input FIFO of the Viterbi core to poll the one set of 

demodulated data. But if the rate is at 1/3 value (logic 1) the collector waits for the 
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new valid signal to write the new DEMODDATA pattern to the DEMODDATA3 

register and we_out is activated. 

 

 

Fig. 5-24 COLLECTOR Simulation 
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5.3.2.3 Input FIFO 

 

 

Fig. 5-25 Input FIFO Symbol 

The first stage in the Viterbi core is the Input FIFO which is used to guarantee the 

synchronization between the internal core of the decoder and the COLLECTOR 

side containing the receiver. 

The Input FIFO is directly located in front of the COLLECTOR and inputs the 

three bits wide three demodulated data (DEMODDATA0, DEMODDATA1, 

DEMODDATA2) merged at the 9 bits wide port W_Data.  The content of the 

W_Data port is written in the circular memory registers pointed by internal register 

called W_Addr whenever the W_En port is high at the positive edge of the Clk 

signal. However, before writing the new data to the internal registers, the user 

should be aware of the available capacity of the memory if there is room for the 

new data. A port named Full serves for this purpose. The logic 1 state Full port 

reflects that the memory is full and the new data will be overridden on the other 

data by mistake. On the contrary, the logic 0 Full port states that there is available 

registers for new demodulated patterns. At the other side of the input FIFO the 

main controller of the core checks the empty signal of the FIFO. The not empty 

condition states that there is at least one unprocessed demodulated pattern coming 

from the COLLECTOR. At  this time, the main controller strobes a read enable 

signal to get the data from the internal registers pointed by the internal R_Addr 

registers to the R_Data port of the FIFO. The R_Data port of the FIFO is connected 
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to the BMU to generate the branch metrics for the state transitions in iterative 

trellis. 

As stated before, the memory registers of the FIFO are located in a circlar manner. 

With help of to memory pointers called R_Addr and W_Addr the contents of the 

registers are reached. The read address pointer indicates the address of registers to 

be read in the next read enable stroption and increases by one after every read 

operations. The write address pointer on the other hand indicates the address of the 

register to where the new demodulated pattern will be written with write enable 

signal and also this register is increased by one after every write operations. The 

Reset signal is used to initialize the R_Addr and W_Addr registers to address 0. 

The Empty and Full signals are also operates on the simple subtraction operation. In 

the FIFO the W_Addr is subtracted from the R_Addr if the result is 1 the FIFO 

strobes Full signal else if the result equals to 0 the FIFO strobes Empty signal. 

The simulation of the FIFO is given in Fig. 5-26. 
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Fig. 5-26 Input FIFO Simulation  
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5.3.2.4 State Controller (State Decoder) 

 

 

Fig. 5-27 STATE CONTROLLER Symbol 

State Controller is a combinational logic circuitry and generates the state identifiers 

of the trellis in each iteration (Fig. 5-28).  

 

 

Fig. 5-28 State Identifiers in Iteration 
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For this reason, the State Controller takes Constraint length from input port of the 

Viterbi decoder and the iteration counter from main controller, then operates on the 

truth table as in Table 5-3. 

  

Table 5-3  State Controller Truth Table 
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Fig. 5-29 State Controller Schematic 
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Fig. 5-30 State Controller Simulation 

5.3.2.5 BMU 

 

 

Fig. 5-31 BMU Symbol 

Branch Metric Unit gets three demodulated data (DEMODDATA[3]), generator 

polynomials (Conv_Coder[3]), Quantization Probability Table (BMUTABLE[8]) 

and Present-Next State Identifiers to create branch metric values of the transitions 

in the iterations (BMETRIC[16]).  
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Fig. 5-32 BMU Block Diagram 

The BMU unit is composed of three modules named BMD, DMERIC and 

BMETRIC. 

The BMD unit calculates the expected encoder outputs related to the transitions in 

the iteration by using the generator polynomial and present-next state identifiers of 

transitions came from the state controller. 

The eight BMUTABLE are the soft decision probability constants inputted from the 

configurable inputs of Viterbi decoder (Fig. 5-33).  

 

 

Fig. 5-33 Soft Decision Probabilities 
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The DMETRIC supplies six probability metrics using demodulated data and 

BMUTABLE. The DMETRICs multiplexes the soft decision probabilities to the 

DECODED DATA ports for expected encoder bits of 0 and 1. The soft decision 

probabilities are symmetrical for logic 0 and 1 expected encoder outputs. The 

demodulated data of 7 is the most probable to be sent by logic 1 and least probable 

to be sent by 0. So for the logic 1 expected data the BMUTABLE[7] is sent to 

output port on the other hand BMUTABLE[0] is sent for the logic 0 expected 

encoder output. Caring this fact, all six probable Soft Decision Probabilities are 

calculated by the equations below. 

DECODED DATA0=BMUTABLES[DEMODDATA0]; 
DECODED DATA1=BMUTABLES[complement(DEMODDATA0)]; 
DECODED DATA2=BMUTABLES[DEMODDATA1]; 
DECODED DATA3=BMUTABLES[complement(DEMODDATA1)]; 
DECODED DATA4=BMUTABLES[DEMODDATA2]; 
DECODED DATA5=BMUTABLES[complement(DEMODDATA2)]; 

 
The BMETRIC module is the final stage of BMU module and by the BMD 

(expected encoder outputs of the branches) and DECODED DATA for the 

SUBTRELLIS processes, BMETRIC calculates the branch metrics. 

5.3.2.6 SubTrellis 

 

 

Fig. 5-34 SUBTRELLIS Symbol 
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Subtrellis module is a connection module to create the sub-trellis structure. 

 

 

Fig. 5-35 Sub-Trellis 
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Fig. 5-36 SUBTRELLIS Block Diagram  

5.3.2.7 STATEMUX 

 

 

Fig. 5-37 STATEMUX Symbol 
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The method in this chapter offers the complexity reduction in state metrics 

multiplexing.  With this method only two way multiplexing of the state metrics are 

enough for the realization of all trellises. The STATEMUX module is the 

component which multiplexes the state metrics by the value of Sel input. 

5.3.2.8 ACS 

 

 

Fig. 5-38 ACS Symbol 

 
The ACS unit is used same as in the soft decision Viterbi decoder. The ACS is 

responsible to add the branch metrics with the state metrics for the transitions and 

the selection of the better paths between two competing transitions. 

 

 

Fig. 5-39 ACS Simulation 
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5.3.2.9 DRDPRAM 

 

 

Fig. 5-40 DPRAM Symbol 

The DPRAMs in soft decision Viterbi decoder are modified for this 

implementation. For this purpose, two ports are added to the DPRAM to ease the 

decision of the starting state for best path in the traceback. These ports indicates the 

address and value of the minimum valued memory register. Apart from this 

difference and the number of bits in the memory registers, the DPRAM operates 

same as the ones in the first part of this chapter. 

Also in this chapter, two kinds of DPRAMs are used to supply the zero metric to 

the initial state identified with zero and higher metric for the undefined stated in the 

first trellis iterations. The DPRAM doesn’t have intelligence for the decision of the 

initial trellis cycle, thus, a port named “initial” triggered by maincontroller is used 

for initialization of path metrics. 
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5.3.2.10 Survivor Memory 

 

 

Fig. 5-41 SURVIVOR MEMORY Symbol 

Survivor Memory is the interface between trellis and traceback controller and 

synchronizes the operations of the trellis and traceback unit. The Survivor Memory 

stores the surviving branches identifier of the competing branches decided by each 

ACS. 

The Survivor Memory is designed as a LIFO (Last In First Out) memory. In the 

LIFO two pointers R_Addr and W_Addr are designed to point the internal memory 

registers. The read and write directions are designed to identify the W_Addr and 

R_Addr alteration direction in either increasing or decreasing. The survivor 

memory gets the traceback depth length information from Viterbi decoder ports.  

To show the operation of the Survivor Memory an example in Fig. 5-42 is 

constructed for constraint length of 5 and traceback depth of 3 Viterbi decoder.  
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Fig. 5-42 SURVIVOR MEMORY Example 

Initially the read address is pointed to the iteration 0 of the trellis 3, the W_Addr is 

pointed to the address 0 which is equivalent to the iteration 0 of trellis 0. With the 

W_En signal the surviving branch information of states in iteration 0 are writen to 

the memory and the W_Addr will point to the address 1 (iteration 1 of the trellis 0). 

On every W_En the surviving branches are written to the memory and W_Addr 

increases by one until the address equals to the iteration 0 of trellis 3. When the 

W_Addr is pointed to the iteration 0 trellis 3 which is equal to the R_Addr the 

survivor memory outputs the Full signal to inform the main controller not to write 

any information to the full survivor memory. Also survivor memory strobes 

Start_Traceback signal to activate the traceback controller for trace-back operation. 

For the traceback, the traceback controller aims to get the correct transition 

identifier among 32 states of trellis. So the T_Addr is used to give offset to the read 

address to locate the related iteration containing the correct state. Then the R_En is 

applied to read the content of the Survivor Memory then the R_Addr is decreased 

by four. At this stage the traceback controller releases Full signal because the 

R_Addr is different from the W_Addr. 
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Then, the main controller resumes writing the new surviving paths with W_En 

signal and W_Addr decreases by one whenever the W_Addr not equals to R_Addr. 

 

 

Fig. 5-43 SURVIVOR MEMORY Simulation 
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5.3.2.11 Min_Path 

 

 

Fig. 5-44 MIN_PATH Symbol 

The MIN_PATH module selects the DPRAM containing the most probable state 

metric (MEMORY, M_Addr) and directs the pre calculated register address of the 

state in DPRAM (Address, M_Addr_RAM). Fig. 5-42 illustrates the operation for 

DPRAM D, register 1. 

 

 

Fig. 5-45 MIN_PATH Example 
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Fig. 5-46 MIN_PATH Simulation 

5.3.2.12 Min_Path_Conv 

This module gets the identifier of DPRAM containing the minimum state metric 

(M_Location) and the iteration number in the DPRAM (M_Iteration) from 

MIN_PATH, then, converts these information to state identifier of the most 

probable state for the starting state of traceback operation. 
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Fig. 5-47 SURVIVOR MEMORY Simulation 
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5.3.2.13 TraceBack Controller 

 

 

Fig. 5-48 TRACEBACK CONTROLLER Symbol 

The traceback unit is the final stage of the decoder. Stating with the 

Start_Traceback signal the traceback unit reads the most probable (minimum path 

metric state) final state from MIN_PATH_CONV module. From the most probable 

state and by using the better transition information of each trellises in Survivor 

Memory, traceback unit estimates the transmitted message up to activation of 

Stop_Traceback port. The controller reads the probable transition information for 

the states of an iteration at a time through R_Data port by strobing R_En signal.  

In a trellis for the Constraint Lenght greater than 4, there are more than one 

iteration so in each trellis there should be an offset value T_Addr to address the best 

state of iteration among other states in the trellis. 
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5.3.2.14 Main Controller 

 

 

Fig. 5-49 MAINCONTROLLER Symbol 

The Main Controller administers the Input FIFO, Trellis and Survivor Memory. 

The Main Controller gets K, Traceback Depth, Reset and Clk from Viterbi decoder 

inputs.  

In the initial trellis main controller strobes the Initial signal to Reset thePath metrics 

of the Trellis. Then, the main controller checks Empty information of the Input 

FIFO. If the input FIFO is not empty, maincontroller activates Input_Fifo_R_En 

signal to supply the demodulated data from FIFO to the trellis. After that, Iteration 

Counter (C) is counted starting from 0 to 2K-4 for each trellis cycle. For every 

Iteration Counter value main controller checks the full signal of the Survivor 

memory and if the survivor memory is full main controller stand at that state until 

the memory is not full. In the sub-trellis unit the operations are performed 

asynchronously. With the memory not full signal, main controller strobes the 

Iteration_W_En signal to store the path metric values of the states in iteration to the 

DPRAM and strobes the W_En signal to write the surviving transition informations 

to the Survivor Memory. When the iteration counter reaches the 2K-4 main 



 128 

controller sends the end_trellis signal to update the output path metric memory of 

the DPRAM. 

5.3.3 Simulations 

The simulation of the decoder started with the simulation of the basic modules as 

shown above and continued with the interconnected modules. After the completion 

of reconfigurable Viterbi decoder module the SystemC simulations are carried out 

for several parameters. For simulation purpose, the test bench shown in figure 

below was established. 

 

 

Fig. 5-50 Test Bench 

Explanation of the simulation parameters can be summarized as in Fig. 5-51 
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Fig. 5-51 Paramerters in the Simulations 

In all the simulations results below the bottom line denotes the decoded message 

last transmitted message to first transmitted message bit order. 

5.3.3.1 Configuration of Constraint Length 

� Viterbi Decoder K=4 
 

  

Fig. 5-52 Simulation Paramerters 
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Fig. 5-53 Monitor Based Simulation Result 

  

Fig. 5-54 Simulation Waveform 

� Viterbi Decoder K=5 

 

 

Fig. 5-55 Simulation Paramerters 
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Fig. 5-56 Mpnitor Based Simulation Result 

  

Fig. 5-57 Simulation Waveform 

� Viterbi Decoder K=6 

 
 

 

Fig. 5-58 Simulation Paramerters 
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Fig. 5-59 Monitor Based Simulation Result 

  

Fig. 5-60 Simulation Waveform 

� Viterbi Decoder K=7 

 

 

Fig. 5-61 Simulation Parameters 
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Fig. 5-62 Monitor Based Simulation Result 

  

Fig. 5-63 Simulation Waveform 
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5.3.3.2 Configuration of Traceback Depth 

� Traceback Depth=11 

 

 

Fig. 5-64 Simulation Parameters 

 

Fig. 5-65 Monitor Based Simulation Result 

  

Fig. 5-66 Simulation Waveform 
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� Traceback Depth=15 

 

 

Fig. 5-67 Simulation Parameters 

 

Fig. 5-68 Monitor Based Simulation Result 

  

Fig. 5-69 Simulation Waveform 
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5.3.3.3 Configuration of Code Rate 

� Rate=1/2 

 

 

Fig. 5-70 Simulation Parameters 

 

Fig. 5-71 Monitor Based Simulation Result 

  

Fig. 5-72 Simulation Waveform 
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In these examples, the patterns above the decoded message show the 

convolutionally coded data to be decoded.  

� Rate=1/3 

 

 

Fig. 5-73 Simulation Parameters 

 

Fig. 5-74 Monitor Based Simulation Result 
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Fig. 5-75 Simulation Waveform 

5.3.3.4 K=7 Viterbi Decoder with Different Messages 

� Msg=[0 1 0 1 0 1 0] 

 

 

Fig. 5-76 Simulation Parameters 

 

 

Fig. 5-77 Monitor Based Simulation Result 
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Fig. 5-78 Simulation Waveform 

� Msg=[1 0 1 0 1 0 1] 
 

 

Fig. 5-79 Simulation Parameters 

 

 

Fig. 5-80 Monitor Based Simulation Result 
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Fig. 5-81 Simulation Waveform 

� Msg=[1 1 0 0 1 0 1] 

 

 

Fig. 5-82 Simulation Parameters 

 

Fig. 5-83 Monitor Based Simulation Result 
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Fig. 5-84 Simulation Waveform 

� Msg=[0 0 0 0 0 0 0] 

 

 

Fig. 5-85 Simulation Parameters 

 

 

Fig. 5-86 Monitor Based Simulation Result 



 142 

  

Fig. 5-87 Simulation Waveform 

� Msg=[1 1 1 1 1 1 1] 

 

 

Fig. 5-88 Simulation Parameters 

 

Fig. 5-89 Monitor Based Simulation Result 
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Fig. 5-90 Simulation Waveform 

5.3.3.5 Error Correction Examples of Viterbi Decoder 

� Msg=[1 1 1 1 1 1 1] 

 
 

 

Fig. 5-91 Error Free Operation (Transmitted and Received Messages are Same) 

In the error correction examples original message is given at the top. Then the 

convolutionally coded data is given in “Transmitted” labelled lines  and the 

received signal as if transmitted in noisy channel is given in “Received” labelled 
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lines. Finally, the Viterbi Decoded messages of received signals are supported at 

the bottom lines. 

 

Fig. 5-92 Decoding with Inserted Error 

  

Fig. 5-93 Simulation Waveform 
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� Msg=[1 0 1 0 1 0 1] 

 
 

 

Fig. 5-94 Error Free Operation 

 

 

Fig. 5-95 Decoding with Inserted Error 
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Fig. 5-96 Simulation Waveform 

� Msg=[1 0 1 0 1 0 1] 
 

 

Fig. 5-97 Error Free Operation 
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Fig. 5-98 Decoding with Inserted Error 

  

Fig. 5-99 Simulation Waveform 
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CHAPTER 6 

CONCLUSION 

In this thesis, VLSI implementation of a popular Maximum Likelihood error 

correction method called the Viterbi Algorithm has been studied.  In the digital 

communication the Viterbi decoders are generally used to decode the messages 

correlated by convolutional encoders. The two decision types namely hard decision 

and soft decision Viterbi decoders have been implemented using SystemC. To 

decrease the switching and memory addressing complexity of the decoder designs, 

two novel area efficient reconfigurable Viterbi decoders, depending on the 

rearrangement of the states of the trellis structures, have been suggested. Finally, 

the implementation and the simulations of the second suggested reconfigurable 

Viterbi decoders architecture has been carried out in SystemC, with the 

configurable parameters of constraint length, code rate, transition probabilities, 

traceback depth and generator polynomials.  

In the VLSI design of the area efficient implementation of reconfigurable Viterbi 

decoders, SystemC platform has been used. SystemC has some advantages over the 

traditional design cycle. In the thesis, both design procedures have been analysed 

and the comparisons have been stated. In addition, the SystemC supporting C++ 

platforms have been listed and configuration of the Microsoft Visual Studio 6.0 as a 

SystemC design and simulation platform has been described with an example 

implementation.  

In the digital communication, the Viterbi decoder operates on the Convolutional 

Encoded data. Thus, an error correction capability is provided to Viterbi decoder. 

There are two decision types of the Viterbi decoders called soft and hard decision 
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Viterbi decoders. In the thesis, the operations of each decision types have been 

described and the both decision types have been implemented in SystemC.  

In reconfigurable Viterbi decoder, increasing the constraint length causes an 

increase in the number of states. For the implementation of the concern, the 

increase in the number of states cause increase in the number of Add Compare 

Select units, Branch Metric units and interconnections between these units, so 

increase in the area. However, in this thesis, instead of implementation of a huge 

trellis, the implementation of a small portion of the trellis and several usage of this 

subtrellis in consecutive time instances, called iteration, has been suggested to 

increase the area efficiency.  

On the other hand, the suggested structures in the literature have complicated 

memory addressing and switching mechanisms. So, in the implementation phase 

one to several port multiplexing path metric routers, several preliminary registers 

and area consuming look up tables embedded in ROM units have been used. During 

the implementation, a new structure has been sought to solve this complexity 

problems and it has been found that rearranging the states with complemented and 

vertically rotated way, decreases both switching and memory addressing 

complexities. Thus, two new reconfigurable Viterbi decoders have been obtained. 

The first method uses the normal states in the even and the vertically rotated states 

in the odd numbered iterations. For this method, a paper has been submitted to the 

IEEE Wireless Communication Magazine. The method was an area efficient 

method with a constraint that the method is operative for the number of iterations 

equal to or greater than two. However, in the second method normal and vertically 

rotated states have been used in the same iterations to get rid of the constraint of the 

first method.  

Finally, the thesis lasted with implementation and simulation of the further 

developed reconfigurable Viterbi decoder architecture suggested in this thesis with 

configurable parameters listed below: 

• Code Rate (selected as r=1/2 or r=1/3)  
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• Constraint Length (K) (ranging from 4 to 7) 

• Generator Polynomial (determined externally) 

• Traceback Depth (configurable) 

• Transition Probabilities (adjustable) 

In the implementation phase, for the synchronization, speed optimization and area 

efficiency, the techniques below have been utilized: 

• The state metric location addressing of the lower DPRAMs were re-

complemented. So, DPRAM addressing was simplified to be consistent with 

the iteration number leading the direct connection of iteration counter to the 

read and write address lines of the DPRAMs for trellis realization. 

• An input FIFO was added to the design to simplify the signal timings of the 

demodulator side and synchronize the demodulator and the main controller 

of the core.  

• To decrease the number of memory locations for state metric storage, the in-

place path metric updating technique was used. In this technique the same 

state metric containing memories were overwritten for every trellis 

calculations. 

• To obtain real time operation a special LIFO was generated as survivor 

memory. The survivor memory enables both the write operation of main 

controller and the read operation of the traceback unit. The number of the 

registers were tried to be minimized, so, only one set of memory registers 

just required for the maximum traceback depth were used. And both the 

main controller and traceback controller were optimized for the read and 

write operations from the same memory locations to overwrite the processed 

data and without corruption of the unprocessed data. 

 



 151 

For the future works, to decrease the transmission bandwidth the convolutionally 

encoded message can be passed through another process called puncturation. So the 

depuncturer module can be added to the input of Viterbi decoder. The SystemC 

implementations can be converted into HDL by automatic conversion tools like 

CoCentric System Studio or System Crafter. (In the thesis period, the demo version 

of System Crafter was tried but because of the restricted usage of functionality the 

implementation couldn’t converted into VHDL.) Also, the suggested trellis 

structures in Chapter 5 can be analysed for the implementation of FFT units in 

Digital Signal Processors. 
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