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ABSTRACT

SCALAR MESONS IN RADIATIVE PHI-MESON DECAYS INTO NEUTRAL

K-MESON STATES

Şişman Korkmaz, Canan

M.S., Department of Physics

Supervisor: Prof. Dr. Osman Yılmaz

September 2006, 36 pages.

Radiative decays of the φ meson to the scalar mesons f0(980) and a0(980) are

investigated within the framework of K+K− loop model for both point-like scalar

mesons and for scalar mesons with extended structure. Then, the radiative decay

φ → K0K
0
γ is studied via a two step mechanism in which the scalar mesons

couple the final state to the φ meson through the K+K− loop. The branching

ratio of this decay is calculated and it is shown that this reaction will not provide

a significant background to the measurements of φ → K0K
0

decay for testing CP

violation.

Keywords: Radiative decays, φ meson, Scalar mesons
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ÖZ

PHI-MEZONUN NÖTR K-MEZON DURUMLARINA IŞINSAL

BOZUNMALARINDA SKALER MEZONLAR

Şişman Korkmaz, Canan

Yüksek Lisans , Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Osman Yılmaz

Eylül 2006, 36 sayfa.

φ mezonun f0(980) ve a0(980) skaler mezonlarına ışınsal bozunmaları, noktasal

skaler mezonlar ve bir yapıya sahip skaler mezonlar için K+K− modeli çerçevesi

içinde incelendi. Ayrıca φ → K0K
0
γ ışınsal bozunumu, skaler mezonların K+K−

döngüsü aracılığı ile φ mezonun son durumuna bağlandığı iki aşamalı bir mekaniz-

mayla çalışıldı. Bu ışınsal bozunumun dallanma oranı hesaplandı ve bu reaksiy-

onun CP bozulmasını test etmek için yapılan φ → K0K
0
γ bozunumunun ölçümleri

için önemli bir sorun yaratmayacağı gösterildi.

Anahtar Kelimeler: Işınsal bozunmalar, φ mezonu, skaler mezonlar
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CHAPTER 1

INTRODUCTION

The nature of light scalar mesons with the quantum numbers JPC = 0++ in the

mass region up to 1 GeV has been an unsolved problem of hadronic QCD. Be-

sides the two well established isoscalar resonance f0(980) and isovector resonance

a0(980) [1], these mesons include the controvertial isoscalar σ(600) [2] , and re-

cently discovered isodoublet κ(800) [3] resonances. The question of the nature of

these light scalar mesons is important for the understanding of the mechanism of

the chiral symmetry realization arising from confinement.

In order to explain the properties of this nonet of light scalar mesons several

proposals have been put forward over the years. Although the naive quark model

qq̄ has been very successful in predicting and correlating the masses and the

properties of pseudoscalar mesons, the mass predictions in the scalar sector vary

considerably [4]. The predictions for masses strongly depend on the choice for the

Dirac structure of the confining potentials and in particular the models cannot

explain the reason for the f0 − a0 mass degeneracy. Furthermore, it has been

suggested based on the relativistic models that glueball mixing with the calculated

states may be needed to reproduce the experimental data [5].

A four quark q2q̄2 state interpretation for the structure of light scalar mesons
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was also proposed in the framework of MIT-bag model in which case the scalar

meson states are spatially compact [6]. It was observed that the four quarks in

the confining potential are mainly arranged as two color singlets at a distance

of the order of 1-1.5 fm and thus this way the notion of a mesonic molecule was

introduced. However, in q2q̄2 interpretation the number of expected four-quark

states and the interpretation of these states vary for different calculations [7].

Another possibility was suggested where the light scalar meson states are con-

sidered to be bound states of hadrons and they are referred to be mesonic mole-

cules [8]. In particular, the proposal was put forward for the structure of a0 and

f0 scalar mesons as their being KK̄ molecules in which case they are spatially

extended objects [9]. It should be noted that although the quark content of the

states in q2q̄2 interpretation and in mesonic molecule interpretation are identical,

their dynamical structure are radically different. The essential difference is that

in q2q̄2 case the multiquark system is confined within a scalar meson state with

radius of the order of Λ−1
QCD forming a compact system whereas in mesonic mole-

cule case the two pseudoscalar mesons are spread over a region with radius of the

order of
√

µE , where µ is the reduced mass of the system and E is the interhadron

binding energy, which is significantly greater than Λ−1
QCD thus forming a spatially

extended system. The resulting branching ratio for the scalar meson considered

is therefore different in q2q̄2 and mesonic molecule interpretations. Furthermore,

some analyses suggest the qualitative picture that these scalar meson states have

a compact q2q̄2 structure that spends some part of its lifetime in a mesonic bound
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state system [10].

The production of scalar mesons in radiative decays of vector meson decays

is a valuable source of information on hadron spectroscopy. In particular, the

decay reactions φ(1020) → f0(980)γ and φ(1020) → a0(980)γ have recently been

observed and they are studied with good accuracy [11]. The SND collaboration

reports the branching ratios BR(φ → f0γ) = (3.5 ± 0.3) × 10−4 and BR(φ →

a0γ) = (0.88± 0.17)× 10−4, respectively. The CMD-2 collaboration, on the other

hand, reports BR(φ → f0γ) = (2.90± 0.21)× 10−4. Since this value arises from a

combined fit to φ → π0π0γ and φ → π+π−γ data, we take this value for φ → f0γ

decay and considering the value for φ → a0γ reported by SND collaboration , we

obtain the result BR(φ → f0γ)/BR(φ → a0γ) = 3.3 ± 2.0. Furthermore, the

KLOE collaboration reports the results BR(φ → f0γ) = (4.47± 0.21)× 10−4 and

BR(φ → a0γ) = (0.74±0.07)×10−4. However, it should be noted that their value

for φ → f0γ decay is obtained by including a very specific destructive interference

in the low energy region.

The simplest mechanism for these radiative decays assumes that f0 and a0 are

qq̄ states with 3P0 configuration, and the decays proceed through a quark loop.

However, since the φ meson is mostly an ss̄ state, this mechanism cannot be

responsible for the φ → a0γ decay because in the qq̄ picture a0 has the structure

(uū− dd̄)/
√

2 and the decay is suppressed by OZI rule. On the other hand since

both f0 and a0 are close to KK̄ threshold and they are known to couple strongly

to this channel it was suggested that the φ meson couples to the scalar mesons f0
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and a0 through an intermediate charged kaon loop with the photon radiated by the

intermediate charged kaons [9]. It was shown that this mechanism is supported

by the existing data on radiative decays.

The branching ratios for the radiative decays φ → f0γ and φ → a0γ can be

calculated in the intermediate kaon loop mechanism as [9, 12]

BR(φ → f0γ) = (0.55± 0.14)× 10−4 cos2(θ)g2
f0K+K−F 2

f0
(K) (1.1)

BR(φ → a0γ) = (0.55± 0.14)× 10−4 sin2(θ)g2
a0K+K−F 2

a0
(K)

where the factor F 2
f0

(K) and F 2
a0

(K) are related to the spatial extensions of f0 and

a0 mesons , and for point-like effective field theory calculations F 2(K) = 1 . The

angle θ is the isospin mixing angle in f0 − a0 system, if the isospin is assumed to

be exact, this angle is given as θ = π/4. The factors F 2
f0

(K) and F 2
a0

(K) as well

as the coupling constants gf0K+K− and ga0K+K− depend on the assumed structure

for the scalar f0 and a0 mesons and they reflect the properties of the models for

these structures. Furthermore, not only the absolute branching ratios, but also

the ratio R = BR(φ → f0γ)/BR(φ → a0γ) is of special importance since in the

intermediate kaon loop mechanism for the radiative decays φ → f0γ and φ → a0γ

this ratio takes the form

R =
g2

f0K+K−F 2
f0

(K)

g2
a0K+K−F 2

a0
(K)

cot2(θ) (1.2)

which only involves the quantities related to the structure of scalar mesons because

the factors belonging to φK+K− vertex, phase space and loop integrals common

to both decays cancel in the ratio. If, for example, the scalar mesons f0 and a0
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have common constituents and are eigenstates of isospin, then their affinity to

K+K− should be the same in which case the ratio would be R ∼ 1. On the

other hand, it was suggested [13] that in strong interactions isospin has been

believed to be a nearly exact symmetry, broken only by the different masses of

the u and d quarks and electroweak effects, the dynamics of strongly coupled

KK̄ states would give rise to a violation of isospin. If that is the case, then

the experimental ratio R = 3.3 can be produced by an isospin mixing angle of

θ = 30◦. However, this point of view is criticized using the arguments based on the

overlapping resonances [14]. If the experiments clarify isospin breaking then the

individual branching ratios may be used as a measure of F 2
f0

(K) and F 2
a0

(K). The

form factors F 2(K) << 1 resulting from the experimental values of the branching

ratios would imply that the scalar meson states are spatially extended. If, on the

other hand, the experimental branching ratios indicate that F 2(K) → 1, then the

f0 and a0 states are spatially compact. It should be mentioned that the coupling

constants gf0K+K− and ga0K+K− satisfy the relation gf0K+K− = ga0K+K− both in

qq̄ and in q2q̄2 models. However, in the analysis of radiative decays φ → f0γ

and φ → a0γ, the values obtained for these coupling constants by the analysis of

different physical processes and by different theoretical predictions based on chiral

symmetry and the linear sigma model and QCD sum rules are critically utilized

[15].
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CHAPTER 2

MODELS OF φ(1020) → f0(980)γ and φ(1020) → a0(980)γ

DECAYS

In this chapter, we present the models and the related the theoretical considera-

tions used for the calculations of the branching ratios of the φ → f0γ and φ → a0γ

radiative decays. We first discuss the point coupling model in some detail. We

then summarize the theoretical details of the coupling of an extended scalar me-

son to an intermediate KK̄ loop, and the resulting modifications of the branching

ratios.

2.1 Point Coupling Model

The mechanism of φ → f0γ and φ → a0γ in the intermediate KK̄ loop model

is described by the Feynman diagrams shown in Fig.1.

In Fig. 1 the last diagram assures gauge invariance. The φKK vertex is

described by the effective Lagrangian

L = −igφKKφµ(K−∂µK
+ − ∂µK

−K+) (2.1)

which results from the standard chiral Lagrangians in lowest order of chiral
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Figure 2.1: Feynman diagrams for the decay φ → Sγ where S denotes the scalar
meson f0 or a0

perturbation theory [16]. The decay rate resulting from this Lagrangian is

Γ(φ → K+K−) =
g2

φK+K−

48π
Mφ


1−

(
2MK

Mφ

)2



3/2

. (2.2)

Utilizing the experimental value for the branching ratio

BR(φ → K+K−) = 0.491 ± 0.007 for the decay φ → K+K− [1], we determine

the coupling constant gφKK as gφKK = 4.43 ± 0.05. Upon making the φ and K

interactions described by the Lagrangian given in Eq. 2.1 gauge invariant by the

minimal coupling of the photon field, we obtain

LI = −i(eAµ + gφKKφµ)(K−∂µK
+ − ∂µK

−K+) + 2egφφ
µAµK

+K− . (2.3)

The different Feynman diagrams shown in Fig. 1 result from this Lagrangian.

The SKK vertex, where S denotes the scalar meson f0 or a0, is described by

the effective Lagrangian

LSKK = −gSKKK+K−S (2.4)

which also serves to define the coupling constant gSKK .
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The amplitude of the radiative φ decay into the scalar meson has therefore the

following structure imposed by gauge invariance

M(φ → Sγ) = uµεν(pνqµ − gµνp.q)
egφKKgSKK

2π2M2
K

I(a, b) (2.5)

where (u,p) and (ε, q) are the polarization and four momenta of the φ meson and

the photon, respectively, and a =
M2

φ

M2
K

, and b =
M2

S

M2
K

. In the case an unstable scalar

meson is produced, which then decays into a final state such as ππ or KK, M2
s

must be replaced by the square of the invariant mass of the decay products. The

invariant function I(a,b) has been calculated in different contexts [17]. For the

point-like model of scalar mesons, it is given by

I(a, b) =
1

2(a− b)
− 2

(a− b)2

[
f

(
1

b

)
− f

(
1

a

)]
+

a

(a− b)2

[
g

(
1

b

)
− g

(
1

a

)]
(2.6)

f(x) =





−
[
arcsin( 1

2
√

x
)
]2

, x > 1
4

1
4

[
ln( η+

η−
)− iπ

]2
, x < 1

4

g(x) =





(4x− 1)
1
2 arcsin( 1

2
√

x
) , x > 1

4

1
2
(1− 4x)

1
2

[
ln( η+

η−
)− iπ

]
, x < 1

4

η± =
1

2x

[
1± (1− 4x)

1
2

]
. (2.7)

In order to derive this formula, it is noted that the amplitude M(φ → Sγ) can be

written from the Feynman diagrams shown in Fig. 1(a, b, c) by the usual rules

that follows from the Lagrangian given in Eq. 2.3 as

M(φ → Sγ) = egφKKgSKKuµενJµν . (2.8)
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In this expression Jµν is given by

Jµν = J (a)
µν + J (b)

µν + J (c)
µν = 2J (a)

µν + J (c)
µν . (2.9)

The terms are calculated from the corresponding Feynman diagrams in Fig. 1 in

the form

Ja
µν =

∫ d4k

(2π)4

(2k − p)µ(2k − p)ν

(k2 −M2
k + iη)[(k − q)2 −M2

k + iη][(k − p)2 −M2
k + iη]

, (2.10)

J c
µν = −2gµν

∫ d4k

(2π)4

1

(k2 −M2
k + iη)[(q + k − p)2 −M2

k + iη]
. (2.11)

Each of the above integrals are divergent. However, they can be evaluated by

dimensional regularization and the divergent pieces can be isolated. Then, in the

sum, the divergent pieces cancel and the sum given on Eq. 2.8 is finite. In order

to calculate the finite part and demonstrate the cancelation of divergent parts the

expression for Ja
µν can be decomposed as

2Ja
µν = J [pνqµ − (p.q)gµν ] + 2gµνJa , (2.12)

where it follows that J can be calculated in the form

J = − i

2π2M2

{
1

(a− b)

∫ 1

0
dz[1− z − 1− az(1− z)

z(a− b)
ln

1− bz(1− z)

1− az(1− z)
]

− iπ

(a− b)2

∫ 1/η+

1/η−
dz[

1

z
− (1− z)a]

}
= − i

π2m2
I(a, b) . (2.13)

Furthermore, J
′
a can be evaluated to give

J
′
a =

i

16π2
[
2

ε
− γE − ln

m2

4πµ2
]− i

8π2

∫ 1

0
dz(1− z) ln[1− bz(1− z)] , (2.14)

where µ is the auxiliary mass parameter, γE is the Euler constant, and the number

of dimensions D is equal to 4 − ε. Similarly, the term corresponding to contact

9



diagram in Fig. 1(c) can be written as J (c)
µν = −2gµνJ

′
c and J

′
c can be calculated

as

J
′
c =

i

16π2
[
2

ε
− γE − ln

m2

4πµ2
]− i

16π2

∫ 1

0
dz(1− z) ln[1− bz(1− z)] . (2.15)

Therefore, in the sum the divergent and auxiliary mass dependent terms cancel,

and furthermore since
∫ 1
0 dz(1 − 2z) ln[1 − bz(1 − z)] = 0 the final expression for

Jµν results in the amplitude M(φ → Sγ) with the structure given in Eq. 2.5.

In the above calculation, it is assumed that Mφ > 2MK and MS < 2MK . Since

Mφ = 1020 MeV, MK = 493.68 MeV, Ma0 = Mf0 = 980 MeV these conditions are

fulfilled. The decay width of the radiative decay φ → Sγ then can be obtained

from the amplitude M(φ → Sγ) given in Eq. 2.5 as

Γ(φ → Sγ) =
αg2

φK+K−g2
SK+K−

3(2π)4

ω

M2
φ

| (a− b)I(a, b) |2 (2.16)

where α is the fine structure constant and ω = (Mφ2 −M2
S)/2Mφ is the photon

energy. It therefore follows that, in the point coupling model, the crucial ingredient

for the calculations of φ → Sγ decay rates, is the coupling constant gSK+K− .

The coupling constants gf0K+K− and ga0K+K− are important parameters in

hadron electrodynamics. They are essential in analysis of different hadronic re-

actions, in particular for the study of radiative decays of vector mesons such as

φ → ππγ and φ → πηγ. The above analysis of the decay reactions φ → Sγ and the

resulting formula for the decay rate Γ(φ → Sγ) given in Eq. 2.16 can therefore be

used to obtain these coupling constants by utilizing the experimental values of the

branching ratios BR(φ → f0γ) and BR(φ → a0γ). If we use the values BR(φ →

10



f0γ) = (3.5 ± 0.3) × 10−4 and BR(φ → a0γ) = (0.88 ± 0.17) × 10−4 reported by

the SND collaboration [11], we then obtain the values gf0K+K− = (4.59± 17) and

ga0K+K− = (2.30 ± 07) for the coupling constants. However, if the recent results

BR(φ → f0γ) = (4.40 ± 0.21) × 10−4 and BR(φ → a0γ) = (0.76 ± 0.06) × 10−4

reported by the KLOE collaboration [11] is used, the resulting values for the

coupling constants are gf0K+K− = (5.14± 12) and ga0K+K− = (2.13± 0.8).

These coupling constants have been calculated by different theoretical ap-

proaches, and they have also been determined experimentally by the analysis

of several hadronic processes. Therefore, the formula given in Eq. 2.16 for the

decay rate Γ(φ → Sγ) which involves these coupling constants can be used to

calculate the branching ratio for the decays φ → Sγ and by comparing the ob-

tained value with the experimental result thus provide a test for the theoretical

and experimental analysis used to obtain these coupling constants. In Table 1

we show the branching ratios for the decays φ → Sγ calculated with different

coupling constants gf0K+K− and ga0K+K− given in the literature. A comparison

of the results obtained can then be performed with the experimental values given

above [2].

Table 2.1: BR(φ → f0γ) for different gf0K+K−

gf0K+K− BR(φ → f0γ) Ref.
6.2 ≤ gf0K+K− ≤ 7.8 6.41× 10−4 ≤ BR ≤ 10.15× 10−4 [15]

4.10 2.80× 10−4 [18]
2.24 0.84× 10−4 [19]
0.51 0.43× 10−5 [20]
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Table 2.2: BR(φ → a0γ) for different ga0K+K−

ga0K+K− BR(φ → a0γ) Ref.
4.4 ≤ ga0K+K− ≤ 5.6 3.13× 10−4 ≤ BR ≤ 5.23× 10−4 [15]

2.80 1.30× 10−4 [18]
-1.53 0.39× 10−4 [21]

It should be noted that both in the qq̄ and q2q̄2 models the coupling constants

gf0K+K− and ga0K+K− satisfy the relation gf0K+K− = ga0K+K− , the point coupling

model gives thus the result R = BR(φ → f0γ)/BR(φ → a0γ) = 1 which con-

tradicts the experimental result R=3.2. This contradiction can be remedied by

introducing large isospin mixing effect into f0−a0 system. One writes the physical

f0 and a0 states as mixtures of isotopic spin I=1 and I=0 states as

|f0 >= cos Ψ|f0(I = 0) > + sin Ψ|a0(I = 1) >

|a0 >= cos Ψ|a0(I = 1) > − sin Ψ|f0(I = 0) > (2.17)

where |a0(I = 1) >= (K+K−−K0K̄0)/
√

2, |f0(I = 0) >= (K+K− + K0K̄0)/
√

2

and introducing the angle θ by θ = π
4
−Ψ, one obtains the relation R = cot2 θ and

using the experimental result R = 3.2 gives the mixing angle θ = 30◦. However,

this argument is criticized as missing the effect of the overlapping resonances, and

thus as such being unrealistic [14].

2.2 Scalar Mesons with Extended Structure

In this section we summarize the calculation of the branching ratio BR(φ →

Sγ) for the radiative decay φ → Sγ when the scalar meson is treated as an ex-

tended object [9]. If it is assumed that K+ and K− pseudoscalar mesons with

12



three-momenta ~k and−~k respectively produce a scalar meson with extended struc-

ture, then the interaction Hamiltonian which is in general a function of momen-

tum, can be written as HI = gSK+K−φ(| ~k |)SK+K−. Then, after the electromag-

netic interaction is introduced through the minimum coupling ~k → ~k − e ~A and

φ(| ~k− e ~A |) is expanded to leading order in e, a new electromagnetic coupling in

addition to those of the point coupling model in the form HI = −egSK+K−φ′(k)k̂· ~A

results. In this expression k̂ = ~k/k. The corresponding Feynman diagrams in case

of an extended scalar meson for the decay φ → Sγ are shown in Fig. 2.1. The

extra contact vertex results from the extended structure of the scalar meson and

plays the role of a form factor introduced in a gauge invariant way. The effect

of this form factor can be taken into account by utilizing time-ordered pertur-

bation theory in the non-relativistic approximation [9]. The specific model for

the KK molecule used is a deuteron like model [22], where the wave function is

parametarized as

φ(k) =
(2µ)3/2

π

µ

(k2 + µ2)2
, (2.18)

where µ =
√

3/2RKK with the radius of the molecule RKK ' 1.2 fm. The

branching ratio BR(φ → Sγ) can then be calculated as a function of RKK [9, 23].

As RKK → 0 and φ(k) → 1 the numerical results of the point-like field theory

for the branching ratio BR(φ → Sγ) are recovered. On the other hand, for the

specific KK molecule wave function given in Eq. 2.18 the predicted branching

ratio for the decay φ → Sγ is about 1/5 of the point-like field theory result.
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Figure 2.2: Feynman diagrams for the decay φ → Sγ for an extended scalar meson

Although these calculations [9, 23] clearly demonstrate the effect of the ex-

tended structure of the scalar mesons on the decay rate of the reactions φ → Sγ,

they are essentially nonrelativistic in character through their use of time ordered

perturbation theory and the wave function describing the structure of the scalar

mesons. A fully relativistic calculation is needed, moreover the difference between

the structures of the scalar mesons f0(980) and a0(980) should somehow be taken

into account.
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CHAPTER 3

THE φ → K0K
0
γ DECAY

The study of the radiative decay process φ → K0K
0
γ is important because it

provides a background to the reaction φ → K0K
0
. This latter process has been

proposed as a way to study CP violation [24]. Since this involves seeking for very

small effects, if the branching ratio of the decay φ → K0K
0
γ is of the order of

10−6 or more precisely BR(φ → K0K
0
γ) ≥ 10−6, then this background decay will

limit the scope of CP violation measurements in the φ → K0K
0

decay. Therefore,

the study of the reaction φ → K0K
0
γ and the calculation of the branching ratio

BR(φ → K0K
0
γ) is crutial for the measurement of CP violation and small CP

violating parameters in φ → K0K
0

decay. There are several calculations of this

branching ratio [17, 25]. In this chapter, we will present the calculation of the

branching ratio BR(φ → K0K
0
γ) within the framework of K+K− loop model by

including the f0 and a0 scalar meson resonances.

3.1 Mechanism of φ → K0K
0
γ Decay

The mechanism of the radiative decay process φ → K0K
0
γ in the K+K−

loop model is provided by the reactions φ → K+K−γ → K0K
0
γ where the last

reaction proceeds by a two-step mechanism with K+K− loop coupling to the final

15
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Figure 3.1: Diagrams for the decay φ → K0K
0
γ where S denotes the scalar meson

resonance f0 or a0

K0K
0
state with the scalar resonance f0 or a0. We show the processes contributing

to the φ → K0K
0
γ amplitude diagramatically in Fig. 3.1. We describe φK+K−

vertex in the diagrams shown in Fig. 3.1 by the phenomenological lagrangian

LφK+K− = −igφKKφµ(K+∂µK
− −K−∂µK

+) (3.1)

The decay rate for the φ → K+K− decay resulting from this Lagrangian is given

in Eq. 2.2. We utilize the experimental value for the branching ratio BR(φ →

K+K−) and determine the coupling constant gφKK as gφKK = (4.43± 0.05).

The SK+K− vertex, where S denotes the scalar meson f0 or a0, is described

by the phenomenological lagrangian

LSK+K− = −gSK+K−K+K−S . (3.2)

The decay width of the scalar meson that follows from this Lagrangian is

Γ(SK+K−) =
g2

SK+K−

16πMS

[
1−

(
2MK

MS

)2
]1/2

, (3.3)
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which is usually considered to define the coupling constant gSK+K− . We describe

the SK0K
0

vertex similarly by the effective Lagrangian

L
SK0K

0 = −g
SK0K

0SK0K
0

. (3.4)

If the arguments of isotopic spin invariance are used the coupling constants gSK+K−

and g
SK0K

0 are related by the following relations [9]

gf0K+K− = g
f0K0K

0

ga0K+K− = −g
a0K0K

0 , (3.5)

therefore in our phenomenological approach, the coupling constants gSK+K− and

g
SK0K

0 are connected by the above relations.

In our calculation we use the values for the coupling constants gf0K+K− =

(5.14± 12) and ga0K+K− = (2.13± 0.8) that we determine in Chapter 2 using the

decay rate formula Γ(φ → Sγ) given in Eq. 2.16 in K+K− loop model and the

experimental values of the branching ratios BR(φ → f0γ) = (4.40± 0.21)× 10−4

and BR(φ → a0γ) = (0.76± 0.06)× 10−4

We therefore obtain the amplitude for the radiative decay reaction φ → K0K
0
γ

following from the diagrams shown in Fig. 3.1 as

M(φ → K0K
0
γ) = − e gφKK

i2π2M2
K

[(p · k)(ε · u)− (p · ε)(k · u)] I(a, b)

×M(K+K− → K0K
0
) (3.6)

where (u, p) and (ε, k) are the polarizations and four-momenta of the φ meson and

the photon, respectively. The loop function I(a, b) is defined in Eq. (2.6), however,

17



in this case a = M2
φ/M2

K and b = M2
KK/M2

K with M2
KK being the invariant

mass of the final K0K
0

system given by M2

K0K
0 = (p − k)2. The amplitude

M(K+K− → K0K
0
) contains the scalar f0 and a0 resonances and in the approach

we adopted it is given by

M(K+K− → K0K
0
) = −igSK+K−g

SK0K
0

1

(p− k)2 −M2
S

. (3.7)

Since the scalar resonances f0 and a0 are unstable and they have a finite lifetime,

in the scalar meson propagator we make the replacement (p − k)2 −M2
S → (p −

k)2 − M2
S + iMSΓS and use the experimental values for the widths Γf0 and Γa0

in the f0 and a0 meson propagators, respectively. Then the differential decay

probability for the radiative decay φ → K0K
0
γ for an unpolarized φ meson at

rest is given as

dΓ

dEγdE1

=
1

(2π)3

1

8Mφ

| M |2, (3.8)

where Eγ and E1 are the photon and K0 meson energies respectively. We perform

an average over the spin states of φ meson and a sum over the polarization states

of the photon. The decay width φ → K0K
0
γ is then obtained by integration

Γ =
∫ Eγ,max.

Eγ,min.

dEγ

∫ E1,max.

E1,min.

dE1
dΓ

dEγdE1

(3.9)

where the minimum photon energy is Eγ,min. = 0 and the maximum photon energy

is given as Eγ,max. = (M2
φ − 4M2

K0
)/2Mφ. The maximum and minimum values for

the energy E1 of K0 meson are given by

1

2(2EγMφ −M2
φ)

{
−2E2

γMφ + 3EγM
2
φ −M3

φ

±Eγ

√
(−2EγMφ + M2

φ)(−2EγMφ + M2
φ − 4M2

K0
) } . (3.10)
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The derivations of the formulas and the other relations are presented in Appendix

A, B [26] and in Appendix C.

3.2 Results

If we include the contribution of f0 resonance only in the decay mechanism

of the radiative decay φ → K0K
0
γ, we obtained the result for the branching

ratio BR(φ → K0K
0
γ) = 1.11 × 10−6. On the other hand, if the contribution

of a0 resonance is considered only the branching ratio is BR(φ → K0K
0
γ) =

3.28 × 10−8. Since both f0 and a0 resonances make a contribution to the decay

φ → K0K
0
γ, when considering their contribution to the decay rate we have to note

that the amplitudes involving f0 and a0 resonances interfere destructively due to

isotopic spin invariance as reflected in the relations between the coupling constants

as gf0K+K− = g
f0K0K

0 and ga0K+K− = −g
a0K0K

0 . Thus, if we consider that the

interference between the contributions of f0 and a0 resonances is destructive, we

obtain for the branching ratio the value BR(φ → K0K
0
γ) = 7.6×10−7. Therefore,

this reaction will not provide a significant background to the measurements of

φ → K0K
0

decay for testing CP violation.

Table 3.1: Branching ratio of φ meson to K0K
0
γ for different isospin channels

f0 a0 f0 − a0

Γ(φ → K0K
0
γ) 4.74× 10−6 1.40× 10−7 3.25× 10−6

BR(φ → K0K
0
γ) 1.11× 10−6 3.28× 10−8 7.64× 10−7
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Figure 3.2: The distribution dBR/dMKK for the radiative decay φ → K0K
0
γ

In Fig. 3.3, we plot the distribution dBR/dMKK for the radiative decay φ →

K0K
0
γ in the phenomenological approach that we adopted, where we also indicate

the contributions coming from f0 resonance, a0 resonances, and the contribution

resulting from the destructive interference of these mechanisms. Furthermore, in

Fig. 3.3, we show the photon spectrum dΓ/dEγ for the process φ → K0K
0
γ for

the same amplitudes as in Fig. 3.2.
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Figure 3.3: The photon spectrum dΓ/dEγ for the process φ → K0K
0
γ
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CHAPTER 4

CONCLUSION

In this thesis we studied the effects of the structure of scalar mesons f0(980) and

a0(980) on the decay rate of the radiative decays φ → f0γ and φ → a0γ analized

in the K+K− loop model. The predictions for the branching ratios depend on the

assumed structure of the scalar mesons as reflected in the coupling constants of

the SKK system . Moreover, if the extenden nature of the scalar meson structure

is taken into account to reduction of the branching ratios of the decays φ → Sγ

result as opposed to the point coupling model.

We also studied the radiative φ → K0K̄0γ decay using the two step reaction

mechanism in which the final state couples to the scalar meson which then couples

to the initial φ meson through K+K− loop. The decay φ → K0K̄0γ may present

a background problem for measurements of CP violation in φ → K0K̄0 decays.

We calculated the decay rate for the φ → K0K̄0γ reaction and we noted that

the branching ratio is small enough as not to limit the precision of φ → K0K̄0

experiments.
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APPENDIX A

TWO BODY DECAY RATES

The transition probability for a transition from an initial state | i > to a final

state | f > is defined by |Sfi|2 =|< f |S | i > |2. The corresponding probability

amplitude is

< f |S | i >= Sfi . (A.1)

where the element of the scattering matrix-S is given as

< f |S | i >= δfi + (2π)4δ(4)
(∑

p′f −
∑

pi

)
Tfi , (A.2)

where T is the transition matrix from the initial state to the final state.The

invariant matrix element, for the decay of a particle of mass M and energy E into

any number of particles 1,2,......N, is Afi and the differential decay rate is given by

the multiplication of the transition probability per unit time by number of final

states.Thus the differential decay rate is described as

dΓ = (2π)4δ(4)
(∑

pf −
∑

pi

)
|Afi|2 1

2E

∏

f

(
d3pf

(2π)32Ef

)
. (A.3)

where pi = (E, ~pi) and p
′
f = (E

′
f ,

~p
′
f ) are the four momenta of the initial and final

particles respectively. If we consider the two body decay in which we have two

particles in the final state , then in the rest frame of decaying particle ~p1 = −~p2 ≡
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~p, E1 + E2 = M , thus the differential decay rate is

dΓ =
1

(2π)2
|Afi|2 1

2M

1

4E1E2

δ(3)(~p1 + ~p2)δ(E1 + E2 −M)d3p1d
3p2 . (A.4)

The first delta function is eliminated by integrating over d3p2 and the differential

d3p1 is written as

d3p = p2d|~p|dΩ = |~p|dΩ
E1E2d(E1 + E2)

E1 + E2

, (A.5)

since E2
1 −M2

1 = E2
2 −M2

2 = ~p2. Integration over (E1 + E2)eliminates the second

delta function and the result comes as

dΓ =
1

32π2M2
|Afi|2|~p|dΩ . (A.6)

Therefore, the decay rate is obtained as

Γ =
1

8πM2
|Afi|2|~p| . (A.7)

In the rest frame of decaying particle, |~p| is determined as

|~p| = 1

2M

√
[M2 − (M1 + M2)2][M2 − (M1 −M2)2] . (A.8)

Therefore for the decay M → M1 + M2 where M1 = M2

|~p| = 1

2
M

√
1−

(
2M1

M

)2

, (A.9)

and for the decay M → M1 + γ

|~p| = 1

2
M

[
1−

(
M1

M

)2
]

. (A.10)

The invariant matrix element for the decay φ → K+K− following from the effec-

tive Lagrangian

Leff.
φK+K− = −igφK+K−φµ(K+∂µK

− −K−∂µK
+) , (A.11)
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is determined as A(φ → K+K−) = −igφK+K−(2k − p)µu
µ, where k is the four-

momentum of the plus signed kaon and p(u) is the four-momentum (polarization)

of the decaying φ-meson. Therefore the decay rate Γ for φ → K+K− is

Γ(φ → K+K−) =
g2

φK+K−

48π
Mφ


1−

(
2MK

Mφ

)2



3/2

. (A.12)

For the φ → Sγ decay (where S = f0 or a0), in which each φ and S mesons

couple strongly to KK̄, with the couplings gφK+K− for φK+K− and gSK+K− for

SK+K−, the invariant amplitude is obtained as

A(φ → Sγ) = uµεν(qµpν − gµνq · p)
egφK+K−(gSK+K−MS)

2π2M2
K

I(a, b) , (A.13)

where (u, p) is the polarization and four-momentum of the decaying vector meson

and (ε, q) of the the photon and a = M2
φ/M2

K , b = M2
S/M2

K . Then,

Γ(φ → Sγ) =
α

6(2π)4

M2
φ −M2

S

M3
φ

g2
φK+K−(gSK+K−MS)2|(a− b)I(a, b)|2 . (A.14)

For the decay S → K+K−,using the effective Lagrangian,

Leff.
SK+K− = gSK+K−Ma0K

+K−S , (A.15)

the invariant matrix element is obtained as A(S → K+K−) = igSK+K−MS, there-

fore the decay rate is

Γ(S → K+K−) =
g2

SK+K−

16π
MS

[
1−

(
2MK

MS

)2
]1/2

. (A.16)
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APPENDIX B

THREE BODY DECAY AND THE BOUNDARY OF DALITZ

PLOT

For the decay of a particle S with four into N particles with four-momenta p =

(Es, ~p) and p′f = (E ′
f , ~p′f ) respectively the differential decay rate is determined

as

dΓ = (2π)4δ(4)
(∑

p′f − p
) 1

2Es

∏

f

d3~p′f
(2π)3(2E ′

f )
|Afi|2 . (B.1)

For the three body decay in which there are three particles in the final state

(M(p) → M1(q1) + M2(q2) + γ(k)) the differential decay rate is given by

dΓ = (2π)4δ(4)(p−q1−q2−k)
1

2Ep

d3q1

(2π)3(2E1)

d3q2

(2π)3(2E2)

d3k

(2π)3(2Eγ)
|Afi|2 , (B.2)

where |Afi|2 is the average over spin states of the absolute square of the decay

invariant matrix element. Therefore due to spin average we can write |Afi|2 =

F (E1, E2). The δ(4) function can be written as

δ(4)(p− q1 − q2 − k) = δ(M − E1 − E2 − Eγ)δ
(3)(~q1 + ~q2 + ~k) , (B.3)

in the rest frame of the decaying particle and the momentum delta function can

be eliminated by firstly integrating over the (three-) momentum of the final-state

particle with momentum q2. Using
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d3k

2Eγ

=
|~k|2dkdΩγ

2Eγ

=
1

2
EγdEγdΩγ , (B.4)

and

d3q1

2E1

=
|~q1|2dq1dΩ1

2E1

=
1

2
|~q1|dE1dΩ1 , (B.5)

the equation below is obtained

dΓ

dEγdE1

=
|~q1|Eγ|Afi|2
16M(2π)5

∫
dΩγdΩ1

δ(Eγ + E1 −M +
√

(~k + ~q1)2 + M2
2 )√

(~k + ~q1)2 + M2
2

. (B.6)

If we define the integral I by

I = |~q1|Eγ

∫
dΩγdΩ1

δ(M − Eγ − E1 +
√

(~k + ~q1)2 + M2
2 )√

(~k + ~q1)2 + M2
2

, (B.7)

and perform the angular integrals then we obtain

I = 8π2
∫ 1

−1
d(cos θ)|~q1|Eγ

δ(Eγ + E1 −M +
√

E2
1 + E2

γ −M2
1 + 2Eγ|~q1| cos θ + M2

2 )
√

E2
1 + E2

γ −M2
1 + 2Eγ|~q1| cos θ + M2

2

,

(B.8)

where θ is defined by ~k · ~q1 = |~k||~q1| cos θ.By changing of variable

ξ =
√

E2
1 + E2

γ −M2
1 + 2Eγ|~q1| cos θ + M2

2 , (B.9)

the integral is obtained as

I = 8π2
∫

dξδ(M − Eγ − E1 − ξ) = 8π2 , (B.10)

using the condition M − Eγ − E1 − ξ = 0. Therefore we obtain the double

differential decay rate as

dΓ

dEγdE1

=
1

(2π)3

1

8M
F (E1, E2) . (B.11)
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The limits of integral are defined by the condition

(M − Eγ − E1)
2 = E2

1 + E2
γ −M2

1 + 2Eγ|~q1| cos θ + M2
2 , (B.12)

or

−1 ≤ (M − Eγ − E1)
2 − E2

γ − E2
1 + M2

1 −M2
2

2|~k|.|~q2|
≤ 1 . (B.13)

in another way

−1 ≤ (M − Eγ − E1)
2 − E2

γ − E2
1 + M2

1 −M2
2

2Eγ

√
E2

1 −M2
1

≤ 1 . (B.14)

since E2
k = |~k2| and E2

1 = |~q1
2| + M2

1 . We then solve this equation and find two

roots for E1 as

E1min =
1

2(2EγMφ −M2
φ)

{
−2E2

γMφ + 3EγM
2
φ −M3

φ

+Eγ

√
(−2EγMφ + M2

φ)(−2EγMφ + M2
φ − 4M2

K0
) } .(B.15)

E1max =
1

2(2EγMφ −M2
φ)

{
−2E2

γMφ + 3EγM
2
φ −M3

φ

−Eγ

√
(−2EγMφ + M2

φ)(−2EγMφ + M2
φ − 4M2

K0
) } .(B.16)

30



APPENDIX C

INVARIANT AMPLITUDE OF THE RADIATIVE φ → K0K
0
γ

DECAY

For the radiative decay φ(p) → S(p − k)γ(k) → K0(q1)K
0
(q2)γ(k) the invariant

amplitude M is expressed as

M = Ma +Mb +Mc , (C.1)

where Ma, Mb, and Mc are the invariant amplitudes obtained from the diagrams

(a), (b), and (c) in Fig. 3.1 as

Ma = Mb

= −egφK+K−gSK+K−g
SK0K

0

×
∫ d4q

(2π)4

(2q − p)νu
ν(2q − k)µε

µ

(q2 −M2
K)[(q − k)2 −M2

K ][(p− q)2 −M2
K ]

× 1

[(p− k)2 −M2
S + iΓSMS]

(C.2)

Mc = 2egφK+K−gSK+K−

∫ d4q

(2π)4

uµε
µ

(q − k)2 −M2
K)[(p− q)2 −M2

K ]

× 1

[(p− k)2 −M2
S + iΓSMS]

, (C.3)

where (u,p) and (ε, k) are the polarization and four momenta of the φ meson and

the photon, respectively. Using the gauge uνpν = 0 and εµkµ = 0, we then obtain
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the invariant amplitude

M = 2egφK+K−gSK+K−g
SK0K

0

1

[(p− k)2 −M2
S + iΓSMS]

× uνεµ
∫ d4q

(2π)4

−4qνqµ + gµν

(q2 −M2
K)[(q − k)2 −M2

K ][(p− q)2 −M2
K ]

= egφK+K−gSK+K−g
SK0K

0

(p− k)2 −M2
S − iΓSMS

[(p− k)2 −M2
S + (ΓSMS)2]

×
{
− 1

2π2M2
K

I(a, b)[(ε · u)(k · p)− (ε · p)(k · u)]

}
(C.4)

where a =
M2

φ

M2
K

, b = (p−k)2

M2
K

=
M2

φ−2MφEγ

M2
K

and

2uνεµ
∫ d4q

(2π)4

−4qνqµ + gµν

(q2 −M2
K)[(q − k)2 −M2

K ][(p− q)2 −M2
K ]

=

− 1

2π2M2
K

I(a, b)[(ε · u)(k · p)− (ε · p)(k · u)] . (C.5)

The invariant function I(a,b) has been calculated in different contexts. For the

point-like model of scalar mesons, it is given by

I(a, b) =
1

2(a− b)
− 2

(a− b)2

[
f

(
1

b

)
− f

(
1

a

)]
+

a

(a− b)2

[
g

(
1

b

)
− g

(
1

a

)]
(C.6)

f(x) =





−
[
arcsin( 1

2
√

x
)
]2

, x > 1
4

1
4

[
ln( η+

η−
)− iπ

]2
, x < 1

4

g(x) =





(4x− 1)
1
2 arcsin( 1

2
√

x
) , x > 1

4

1
2
(1− 4x)

1
2

[
ln( η+

η−
)− iπ

]
, x < 1

4

η± =
1

2x

[
1± (1− 4x)

1
2

]
.

(C.7)
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We note that1/a = 0.23 < 1/4 for the values Mφ = 1020MeV and MK =

494MeV . However, 1/b > 1/4 for MKK ≤ 985MeV 2 and 1/b < 1/4 for MKK ≤

985MeV 2, where MKK = M2
φ − 2MφEγ. The functions f and g are for 1/a < 1/4

f
(

1

a

)
=

1

4

[
ln

(
η+

η−

)]2

− π2

4
− i

π

2
ln

(
η+

η−

)

g
(

1

a

)
=

1

2

√
1− 4/a ln

(
η+

η−

)
− i

[
π

2

√
1− 4/a

]
, (C.8)

for 1/b > 1/4

f
(

1

b

)
= −


arc sin

1

2
√

1/b




2

g
(

1

b

)
=

√
4/b− 1


arc sin

1

2
√

1/b


 , (C.9)

and for 1/b < 1/4

f
(

1

a

)
=

1

4

[
ln

(
η+

η−

)]2

− π2

4
− i

π

2
ln

(
η+

η−

)

g
(

1

a

)
=

1

2

√
1− 4/b ln

(
η+

η−

)
− i

[
π

2

√
1− 4/b

]
. (C.10)

The complex invariant amplitude is parameterized with

M = M′′ + iM′ (C.11)

where M′′ and M′ are

M′ = − 1

2π2M2
K

egφK+K−gSK+K−g
SK0K

0 [(ε · u)(k · p)− (ε · p)(k · u)]

×
{
[(p− k)2 −M2

S]ImI(a, b)− (ΓSMS)ReI(a, b)
}

∆0
S(p− k)

M′′ = − 1

2π2M2
K

egφK+K−gSK+K−g
SK0K

0 [(ε · u)(k · p)− (ε · p)(k · u)]

×
{
[(p− k)2 −M2

S]ReI(a, b) + (ΓSMS)ImI(a, b)
}

∆0
S(p− k)

(C.12)
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and

∆0
S(q) =

1

(q2 −M2
S)2 + (ΓSMS)2

. (C.13)

The absolute value of the square of the invariant amplitude is obtained as

| M |2= (M′′)2 + (M′)2. The squares of the real and imaginary parts become

(M′)2 =

{
− 1

2π2M2
K

egφK+K−gSK+K−g
SK0K

0

}2
2

3
(k · p)2

×
{{

[(p− k)2 −M2
S]ImI(a, b)− (ΓSMS)ReI(a, b)

}
∆0

S(p− k)
}2

(M′′)2 =

{
− 1

2π2M2
K

egφK+K−gSK+K−g
SK0K

0

}2
2

3
(k · p)2

×
{{

[(p− k)2 −M2
S]ReI(a, b) + (ΓSMS)ImI(a, b)

}
∆0

S(p− k)
}2

.

(C.14)

Using εαεα′ = −gαα′ and uαuα′ = −1
3
gαα′ we then obtain

[(ε.u)(k.p)− (ε.p)(k.u)]2 = [εαuαk.p− εαpαkβuβ][εα′uα′k.p− εα′pα′kβ′uβ′

= εαεα′uαuα′ (k.p)2 − εαεα′uαuβ′k.ppα′qβ′

−εαεα′uβuα′k.ppαkβ + εαεα′uβuβ′pαkβpα′kβ′

=
1

3
[4(k.p)2 − (k.p)2 − (k.p)2 + p2k2]

=
2

3
(k.p)2 . (C.15)

In the rest frame of φ meson p · k = MφEγ and (p− k)2 = (q1 + q2)
2 = M2

KK .

If we consider the contribution of f0 resonance only or a0 resonance only, the

above form of the scalar meson contribution is used. Both f0 and a0 resonances

make a contribution to the decay φ → K0K
0
γ and they interfere destructively due
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to isotopic spin invariance. In this case, the complex amplitudes are parameterized

with

M =
[
M′′

f0
+M′′

a0

]
+ i

[
M′

f0
+M′

a0

]
. (C.16)

The absolute square of the invariant amplitude is now obtained as | M |2=
[
M′′

f0
+M′′

a0

]2
+

[
M′

f0
+M′

a0

]2
. The interference between f0 and a0 is destruc-

tive if the relations between the coupling constants are used as gf0K+K− = g
f0K0K

0

and ga0K+K− = −g
a0K0K

0 .
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