
THE EFFECT OF DESIGN PATTERNS ON OBJECT-ORIENTED METRICS AND
SOFTWARE ERROR-PRONENESS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BARIŞ AYDINÖZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR
THE DEGREE OF MASTER OF SCIENCE

IN
ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master
of Science.

 Prof. Dr. İsmet Erkmen

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Semih Bilgen
 Supervisor

Examining Committee Members

Prof. Dr. Hasan C. GURAN (METU, EE)

Prof. Dr. Semih BİLGEN (METU, EE)

Dr. Altan KOÇYİĞİT (METU, EE)

Dr. Şenan Ece (GÜRAN) SCHMIDT (METU, EE)

Asst. Prof. Dr. Cüneyt F. BAZLAMAÇCI (METU, EE)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

 Name, Last name: Barış AYDINÖZ

Signature :

 iv

ABSTRACT

THE EFFECT OF DESIGN PATTERNS ON OBJECT-ORIENTED METRICS

AND SOFTWARE ERROR-PRONENESS

AYDINÖZ, Barış

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Semih BİLGEN

September 2006, 134 pages

This thesis study investigates the connection between design patterns, OO metrics and

software error-proneness. The literature on OO metrics, design patterns and software

error-proneness is reviewed. Different software projects and synthetic source codes

have been analyzed to verify this connection.

Keywords: Design Patterns, OO Metrics, Software Error-Proneness

 v

ÖZ

TASARIM ÖRÜNTÜLERİNİN NESNE TABANLI METRİKLER VE YAZILIM

HATA EĞİLİMİ ÜZERİNDEKİ ETKİLERİ

AYDINÖZ, Barış

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Semih BİLGEN

Eylül 2006, 134 pages

Bu tez çalışması, tasarım örüntüleri, nesne tabanlı metrikler ve yazılım hata eğilimi

arasındaki ilişkileri incelemektedir. Tasarım örüntüleri, nesne tabanlı metrikler ve

yazılım hata eğilimi ile ilgili literatür incelenmiştir. Farklı yazılım projeleri ve yapay

kaynak kodlar ilgili bağlantının doğrulanması için analiz edilmiştir.

Anahtar Kelimeler: Tasarım Örüntüleri, Nesne Tabanlı Metrikler, Yazılım Hata Eğilimi

 vi

ACKNOWLEDGMENTS

I would like to express my gratitude to following people:

• Prof. Dr. Semih Bilgen, for his guidance, criticism, and advices during the

development of this thesis.

• My father, Fevzi Aydınöz; my mother, Hikmet Öğüt; my sister, Dr. Özgür

Canbay; my brother-in-law, Dr. Alper Canbay, for their great motivations,

encouragements and morale support.

• Executives of Software Engineering Department of MST Division in

ASELSAN Inc., for their contributions on this study.

 vii

TABLE OF CONTENTS

ABSTRACT ...iv

ÖZ ..v

ACKNOWLEDGMENTS ..vi

TABLE OF CONTENTS...vii

LIST OF FIGURES ... xiii

LIST OF TABLES ... xviii

LIST OF CODE LISTINGS...xix

LIST OF ABBREVIATIONS AND ACRONYMS ...xx

1. INTRODUCTION..1

1.1. Software Error-Proneness and Design Patterns ..1

1.2. The Purpose and Scope of the Study...2

1.3. Outline...3

2. LITERATURE REVIEW..4

2.1. Introduction ...4

2.2. Definitions...4

2.3. Object Oriented Metrics ..6

2.3.1. Weighted Methods per Class (WMC)..11

2.3.2. Depth of Inheritance Tree (DIT) ...12

2.3.3. Number of Children (NOC) ...12

2.3.4. Response for a Class (RFC) ...13

2.3.5. Coupling between Objects (CBO) ...14

2.3.6. Number of Methods Added (NMA)...15

2.3.7. Number of Methods overridden (NMO)..15

2.3.8. Specialization Index (SIX)...16

2.4. Crucial Effect of Determining Error Prone Modules on Software Life Cycle....16

2.5. Design Patterns..17

2.5.1. What is a design pattern? ...17

2.6. The Relation between Software Error-Proneness and Design Patterns19

2.6.1. Gang of Four (GOF) Patterns...19

 viii

2.6.2. Creational Design Patterns...20

2.6.3. Structural Design Patterns..20

2.6.3.1. Bridge Pattern..20

2.6.3.2. Composite Pattern ...23

2.6.3.3. Decorator Pattern ..24

2.6.3.4. Façade Pattern ...24

2.6.4. Behavioral Patterns ..26

2.6.4.1. Chain of Responsibility Pattern ..26

2.6.4.2. Command Pattern..27

2.6.4.3. Mediator Pattern..28

2.6.4.4. Memento Pattern ...30

2.6.4.5. Strategy Pattern ...31

2.6.4.6. Template Method Pattern..31

2.6.4.7. Visitor Pattern ...32

2.6.4.8. Iterator Pattern...34

2.6.4.9. Observer Pattern..35

2.6.4.10. State Pattern ..35

2.6.5. Omitted GOF Patterns..36

2.6.6. Overview of Real-Time Design Patterns ...37

3. EXPERIMENTAL WORK ...38

3.1. Introduction ...38

3.2. The General Characteristics of Researched Software ...41

3.3. Metric Evaluation Tool ...41

3.4. Researched Software Projects ...42

3.4.1. Case 1: NetClass ..42

3.4.1.1. Phase One: OO Metrics Measurement of Overall Project43

3.4.1.2 Phase Two: Determining Error Prone Modules44

3.4.1.3. Phase Three: Hatching Design Pattern(s) ...44

3.4.1.4. Phase Four: Applying related pattern(s) ...45

3.4.1.5. Phase Five: Re-measuring software ..46

 ix

3.4.1.6. Phase Six: Comparisons and Interpretations...47

3.4.2. Case 2: Power-Grab ...48

3.4.2.1. Phase One: OO Metrics Measurement of Overall Project48

3.4.2.2. Phase Two: Determining Error Prone Modules49

3.4.2.3 Phase Three: Hatching Design Pattern(s) ..51

3.4.2.4. Phase Four: Applying related pattern(s) ...52

3.4.2.5. Phase Five: Re-measuring software ..53

3.4.2.5.1. State Pattern Implementation ...53

3.4.2.5.2. Façade Pattern Implementation..54

3.4.2.6. Phase Six: Comparisons and Interpretations...55

3.4.2.6.1. State Pattern Implementation ...55

3.4.2.6.2. Façade Pattern Implementation..56

3.4.3. Case 3: Mediator Pattern..57

3.4.3.1. Phase One: OO Metrics Measurement of Overall Project57

3.4.3.2. Phase Two: Determining Error Prone Modules57

3.4.3.3. Phase Three: Hatching Design Pattern(s) ...58

3.4.3.4. Phase Four: Applying related pattern(s) ...59

3.4.3.5. Phase Five: Re-measuring software ..60

3.4.3.6. Phase Six: Comparisons and Interpretations...61

3.4.4. Case 4: Chain of Responsibility Pattern ..62

3.4.4.1. Phase One: OO Metrics Measurement of Overall Project62

3.4.4.2. Phase Two: Determining Error Prone Modules63

3.4.4.3. Phase Three: Hatching Design Pattern(s) ...64

3.4.4.4. Phase Four: Applying related pattern(s) ...65

3.4.4.5. Phase Five: Re-measuring software ..66

3.4.4.6. Phase Six: Comparisons and Interpretations...67

3.4.5. Case 5: Composite Pattern ...68

3.4.5.1. Phase One: OO Metrics Measurement of Overall Project69

3.4.5.2. Phase Two: Determining Error Prone Modules69

3.4.5.3. Phase Three: Hatching Design Pattern(s) ...70

 x

3.4.5.4. Phase Four: Applying related pattern(s) ...71

3.4.5.5. Phase Five: Re-measuring software ..71

3.4.5.6. Phase Six: Comparisons and Interpretations...72

3.4.6. Case 6: Strategy Pattern ...73

3.4.6.1. Phase One: OO Metrics Measurements of Overall Projects74

3.4.6.1.1. Conditional Statements Problem Aspect..74

3.4.6.1.2. Subclassing Alternative Aspect..75

3.4.6.2. Phase Two: Determining Error Prone Modules75

3.4.6.2.1. Conditional Statements Problem Aspect..75

3.4.6.2.2. Subclassing Alternative Aspect..76

3.4.6.3. Phase Three: Hatching Design Pattern(s) ...77

3.4.6.3.1. Conditional Statements Problem Aspect..77

3.4.6.3.2. Subclassing Alternative Aspect..78

3.4.6.4. Phase Four: Applying related pattern(s) ...78

3.4.6.4.1. Conditional Statements Problem Aspect..78

3.4.6.4.2. Subclassing Alternative Aspect..79

3.4.6.5. Phase Five: Re-measuring software ..80

3.4.6.5.1. Conditional Statements Problem Aspect..80

3.4.6.5.2. Subclassing Alternative Aspect..81

3.4.6.6. Phase Six: Comparisons and Interpretations...81

3.4.6.6.1. Conditional Statements Problem Aspect..81

3.4.6.6.2. Subclassing Alternative Aspect..82

3.4.7. Case 7: Template Method Pattern ..84

3.4.7.1. Phase One: OO Metrics Measurement of Overall Project84

3.4.7.2. Phase Two: Determining Error Prone Modules85

3.4.7.3. Phase Three: Hatching Design Pattern(s) ...86

3.4.7.4. Phase Four: Applying related pattern(s) ...86

3.4.7.5. Phase Five: Re-measuring software ..86

3.4.7.6. Phase Six: Comparisons and Interpretations...87

3.4.8. Case 8: Command Pattern..88

 xi

3.4.8.1. Phase One: OO Metrics Measurement of Overall Project88

3.4.8.2. Phase Two: Determining Error Prone Modules89

3.4.8.3. Phase Three: Hatching Design Pattern(s) ...90

3.4.8.4. Phase Four: Applying related pattern(s) ...90

3.4.8.5. Phase Five: Re-measuring software ..91

3.4.8.6. Phase Six: Comparisons and Interpretations...92

3.4.9. Case 9: Visitor Pattern ...94

3.4.9.1. Phase One: OO Metrics Measurement of Overall Project94

3.4.9.1.1. Adding Tools Aspect..94

3.4.9.1.2. Structure Traversing Aspect...95

3.4.9.2. Phase Two: Determining Error Prone Modules96

3.4.9.2.1. Adding Tools Aspect..96

3.4.9.2.2. Structure Traversing Aspect...97

3.4.9.3. Phase Three: Hatching Design Pattern(s) ...98

3.4.9.4. Phase Four: Applying related pattern(s) ...98

3.4.9.4.1. Adding Tools Aspect..98

3.4.9.4.2. Structure Traversing Aspect...99

3.4.9.5. Phase Five: Re-measuring software ..99

3.4.9.5.1. Adding Tools Aspect..99

3.4.9.5.2. Structure Traversing Aspect...100

3.4.9.6. Phase Six: Comparisons and Interpretations.......................................101

3.4.9.6.1. Adding Tools Aspect..101

3.4.9.6.2. Structure Traversing Aspect...102

3.4.10. Case 10: Observer Pattern..103

3.4.10.1. Phase One: OO Metrics Measurement of Overall Project103

3.4.10.2. Phase Two: Determining Error Prone Modules104

3.4.10.3. Phase Three: Hatching Design Pattern(s) ...105

3.4.10.4. Phase Four: Applying related pattern(s) ...106

3.4.10.5. Phase Five: Re-measuring software ..107

3.4.10.6. Phase Six: Comparisons and Interpretations.....................................107

 xii

3.4.11. Case 11: Decorator Pattern...108

3.4.11.1. Phase One: OO Metrics Measurement of Overall Project108

3.4.11.2. Phase Two: Determining Error Prone Modules109

3.4.11.3. Phase Three: Hatching Design Pattern(s) ...110

3.4.11.4. Phase Four: Applying related pattern(s) ...110

3.4.11.5. Phase Five: Re-measuring software ..111

3.4.11.6. Phase Six: Comparisons and Interpretations.....................................112

3.4.12. Case 12: Memento Pattern ...113

3.4.12.1. Phase One: OO Metrics Measurement of Overall Project113

3.4.12.2. Phase Two: Determining Error Prone Modules114

3.4.12.3. Phase Three: Hatching Design Pattern(s) ...115

3.4.12.4. Phase Four: Applying related pattern(s) ...116

3.4.12.5. Phase Five: Re-measuring software ..117

3.4.12.6. Phase Six: Comparisons and Interpretations.....................................118

3.4.13. Case 13: Iterator Pattern...119

3.4.13.1. Phase One: OO Metrics Measurement of Overall Project119

3.4.13.2. Phase Two: Determining Error Prone Modules120

3.4.13.3. Phase Three: Hatching Design Pattern(s) ...121

3.4.13.4. Phase Four: Applying related pattern(s) ...122

3.4.13.5. Phase Five: Re-measuring software ..123

3.4.13.6. Phase Six: Comparisons and Interpretations.....................................123

4. DISCUSSION AND CONCLUSIONS ...125

REFERENCES ...131

 xiii

LIST OF FIGURES

FIGURES

Figure 1 - Bridge Pattern [GOF98] ..21

Figure 2 - Composite Pattern [GOF98]..23

Figure 3 - Decorator Pattern [GOF98] ...24

Figure 4 - Façade Pattern [GOF98]..25

Figure 5 - Chain of Responsibility Pattern [GOF98] ...26

Figure 6 - Command Pattern [GOF98] ..28

Figure 7 - Mediator Pattern [GOF98] ..29

Figure 8 - Memento Pattern [GOF98]..30

Figure 9 - Strategy Pattern [GOF98]..31

Figure 10 - Template Method Pattern [GOF98] ..32

Figure 11 - Visitor Pattern [GOF98]..33

Figure 12 - Iterator Pattern [GOF98] ...34

Figure 13 - Observer Pattern [GOF98] ..35

Figure 14 - State Pattern [GOF98] ...36

Figure 15 - Average, Maximum and Minimum Values of Thesis Metrics for NetClass

Project before Refactorings..43

Figure 16 - Top Three classes for WMC metric in NetClass Project44

Figure 17 - Average, Maximum and Minimum Values of Thesis Metrics for NetClass

Project after Refactorings...46

Figure 18 - WMC Comparisons for NetClass Project ...47

Figure 19 - Average, Maximum and Minimum Values of Thesis Metrics for Power-

Grab Project before Refactorings...49

Figure 20 - Classes that have high WMC values for Power-Grab Project.....................50

Figure 21 - Classes that have high CBO values for Power-Grab Project51

Figure 22 - CTaskAgent Class Relations after State Pattern Applied52

Figure 23 - Average, Maximum and Minimum Values of Thesis Metrics for State

Pattern Case after Refactorings..54

 xiv

Figure 24 - Average, Maximum and Minimum Values of Thesis Metrics for Façade

Pattern Case after Refactorings..55

Figure 25 - Metric Values Comparisons for CTaskAgent Class....................................56

Figure 26 - Metric Values Comparisons for Façade Pattern Implementation56

Figure 27 - Average, Maximum and Minimum Values of Thesis Metrics for Mediator

Pattern Case..58

Figure 28 - Design of Mediator Case before Refactorings ..58

Figure 29 - CBO Values for Classes ..59

Figure 30 - Design of Mediator Case after Refactorings ...60

Figure 31 – Average, Maximum and Minimum Values of Thesis Metrics for Mediator

Pattern Case after Refactoring ...61

Figure 32 - Variations in Average, Maximum and Minimum Values of CBO..............61

Figure 33 - Variation in Sum Value of CBO ...62

Figure 34 - Average, Maximum and Minimum Values of Thesis Metrics for Chain of

Responsibility Pattern Case before Refactorings...63

Figure 35 - Metric Values for Sample Class..64

Figure 36 - Average, Maximum and Minimum Values of Thesis Metrics for Chain of

Responsibility Case after Refactorings ..67

Figure 37 - Metric Values Comparisons for Sample Class..67

Figure 38 – Average, Maximum and Minimum Values for RFC..................................68

Figure 39 - Average, Maximum and Minimum Values of Thesis Metrics for Composite

Pattern Case before Refactorings ...69

Figure 40 - Design of Composite Pattern Case before Refactorings70

Figure 41 - Design of Composite Pattern Case after Refactorings71

Figure 42 - Average, Maximum and Minimum Values of Thesis Metrics for Composite

Pattern Case after Refactorings..72

Figure 43 - Average Value Comparisons of Thesis Metrics for Composite Pattern Case

..72

Figure 44 - Metric Comparisons of Directory class after and before Refactorings73

 xv

Figure 45 - Thesis Metrics for Strategy Pattern Case (Conditional Statements Aspect)

..74

Figure 46 - Average, Maximum and Minimum Values of Thesis Metrics for Strategy

Pattern (Subclassing Alternative Aspect)...75

Figure 47 - Design of Subclassing Alternative Aspect before Refactorings76

Figure 48 - Design of Strategy Pattern for Conditional Statements Aspect after

Refactorings ...78

Figure 49 - Design of Strategy Pattern for Subclassing Alternative Aspect after

Refactorings ...79

Figure 50 - Average, Maximum and Minimum Values of Thesis Metrics for

Conditional Statements Problem Aspect..80

Figure 51 - Average, Maximum and Minimum Values of Thesis Metrics for

Subclassing Alternative Aspect ...81

Figure 52 - Metric Comparisons of Sorter class after and before refactorings..............82

Figure 53 - Comparison of Average Values of Thesis Metrics for Subclassing

Alternative Aspect in Strategy Pattern Case ..83

Figure 54 - Average Metric Value Alterations for Subclassing Alternative Aspect in

Strategy Pattern Case ...83

Figure 55 - Average, Maximum and Minimum Values of Thesis Metrics for Template

Method Pattern ...85

Figure 56 - Design of Template Method Pattern Case before Refactoring....................86

Figure 57 - Average, Maximum and Minimum Values of Thesis Metrics for Template

Method Pattern after Refactorings ...87

Figure 58 - Comparison of Average Values of Thesis Metrics for Template Method

Pattern ..88

Figure 59 - Average, Maximum and Minimum Values of Thesis Metrics for Command

Pattern Case before Refactorings ...89

Figure 60 - Design of Command Pattern Case before Refactorings..............................90

Figure 61 - Design of Command Pattern Case after Refactorings.................................91

 xvi

Figure 62 - Average, Maximum and Minimum Values of Thesis Metrics for Command

Pattern Case after Refactorings..92

Figure 63 - Comparison of Average Values of Thesis Metrics for Command Pattern..93

Figure 64 - Comparison of Metric Values of SystemInvoker Class after and before

Refactorings ...93

Figure 65 - Average, Maximum and Minimum Values of Thesis Metrics for Adding

Tools Aspect Case before Refactorings ...95

Figure 66 - Average, Maximum and Minimum Values of Thesis Metrics for Structure

Traversing Aspect Case before Refactorings...96

Figure 67 - Design of Adding Tools Aspect before Refactorings96

Figure 68 - Design of Structure Traversing Aspect before Refactorings.......................97

Figure 69 - Design of Visitor Pattern for Adding Tools Aspect after Refactorings98

Figure 70 - Design of Visitor Pattern for Structure Traversing Aspect after Refactorings

..99

Figure 71 - Average, Maximum and Minimum Values of Thesis Metrics for Adding

Tools Aspect Case after Refactorings ..100

Figure 72 - Average, Maximum and Minimum Values of Thesis Metrics for Structure

Traversing Aspect Case after Refactorings..101

Figure 73 - Comparison of Average Values of Thesis Metrics for Adding Tools Aspect

..102

Figure 74 - Comparison of Average Values of Thesis Metrics for Structure Traversing

Aspect...103

Figure 75 - Average, Maximum and Minimum Values of Thesis Metrics for Observer

Pattern Case before Refactorings ...104

Figure 76 - Design of Observer Pattern Case before Refactorings..............................105

Figure 77 - Design of Observer Pattern Case after Refactorings.................................106

Figure 78 - Average, Maximum and Minimum Values of Thesis Metrics for Observer

Pattern Case after Refactorings..107

Figure 79 - Comparison of Average Values of Thesis Metrics for Observer Pattern..108

 xvii

Figure 80 - Average, Maximum and Minimum Values of Thesis Metrics for Decorator

Pattern Case before Refactorings ...109

Figure 81 - Design of Decorator Pattern Case before Refactorings.............................110

Figure 82 - Design of Decorator Pattern Case after Refactorings111

Figure 83 - Average, Maximum and Minimum Values of Thesis Metrics for Decorator

Pattern Case after Refactorings..112

Figure 84 - Comparison of Sum Values of Thesis Metrics for Decorator Pattern.......112

Figure 85 - Comparison of Average Values of Thesis Metrics for Decorator Pattern 113

Figure 86 - Average, Maximum and Minimum Values of Thesis Metrics for Memento

Pattern Case before Refactorings ...114

Figure 87 - Design of Memento Pattern Case before Refactorings115

Figure 88 - Design of Memento Pattern Case after Refactorings116

Figure 89 - Average, Maximum and Minimum Values of Thesis Metrics for Memento

Pattern Case after Refactorings..117

Figure 90 - Comparison of Average Values of Thesis Metrics for Memento Pattern .118

Figure 91 - Comparison of Metric Values for RobotMovementController Class119

Figure 92 - Average, Maximum and Minimum Values of Thesis Metrics for Iterator

Pattern Case before Refactorings ...120

Figure 93 - Design of Iterator Pattern Case before Refactorings.................................120

Figure 94 - Design of Iterator Pattern Case after Refactorings....................................122

Figure 95 - Average, Maximum and Minimum Values of Thesis Metrics for Iterator

Pattern Case after Refactorings..123

 xviii

LIST OF TABLES

TABLES

Table 1 - Metric Values of Sensor Classes ..76

Table 2 - Metric Values of List Class ..121

Table 3 - Comparisons of Metric Values for Client and List Classes..........................124

 xix

LIST OF CODE LISTINGS

LISTINGS

Listing 1 - Code Segment before Refactorings for Chain of Responsibility Case.........65

Listing 2 - Code Segment after Refactorings for Chain of Responsibility Case66

Listing 3 - Code Segment before Refactorings for Strategy Pattern Case.....................77

 xx

LIST OF ABBREVIATIONS AND ACRONYMS

CBO Coupling Between Objects

DIT Depth of Inheritance Tree

GOF Gang of Four

GPL General Public License

IEEE Institute of Electrical and Electronics Engineering

ISO International Organization for Standardization

LCOM Lack of Cohesion in Methods

MFC Microsoft Foundation Classes

MTBF Mean Time between Failures

NMA Number of Methods Added

NMO Number of Methods overridden

NOC Number of Children

OO Object-Oriented

OOAD Object-Oriented Analysis and Design

RFC Response for a Class

SIX Specialization Index

STL Standard Template Library

UML Unified Modeling Language

WMC Weighted Methods per Class

 1

CHAPTER 1

INTRODUCTION

1.1. Software Error-Proneness and Design Patterns

Computer systems sometimes crash and fail to perform requested actions or operations.

There are many reasons for a failure to happen, misunderstood requirements,

architectural or detailed design faults, user or operator mistakes, environmental factors

and much more. The immediate effects of software faults can range from minor

inconveniences (e.g., having to restart a hung personal computer) to catastrophic events

(e.g., software in an aircraft that prevents the pilot from recovering from an input

error).

Moreover, there is no definite solution to remove design faults. Since there are inherent

properties of modern software systems: complexity, conformity, changeability, and

invisibility, these properties are hard to remove and also as stated before there is no

formal solution for these inherent and irreducible properties [FPB87]. This is the point

where software error-proneness arises. This term is related to the probability of failure

for a given class or module in software.

Software metrics have many application areas such as quality management, product

size, and maintenance in the software development life-cycle. Moreover, in

architectural and detailed phases of software development cycle, there are some object

oriented (OO) metrics, which have been proposed to measure software error-proneness

in the literature, can help engineers to determine and eliminate majority of the design

errors. In this thesis, metrics that are related with software error-proneness in the

context of OO design have been researched in detail in Chapter 2.

 2

Design patterns provide reusable solutions for common OO design problems.

Moreover, they identify participating class associations, abstractions, instances, class

roles and key aspects for design structure that simply defines the solution context in

OO designs. Also, design patterns are the elegant solutions of design problems and they

have evolved iteratively. Moreover, [CA77] states, “Each pattern describes a problem

which occurs over and over again in our environment, and then describes the core of

the solution to that problem, in such a way that you can use this solution a million times

over, without ever doing it the same way twice”.

1.2. The Purpose and Scope of the Study

The objective of the study is to investigate the effect of design patterns on software

error-proneness. There are many motivations for this objective. First of all, in the

literature, design patterns are mainly known as reusable solutions for different problem

contexts. But, application of design patterns has different effects on software. One of

them is expected to be the effect on software error-proneness. This study mainly

investigates this effect. Secondly, this study aims to show that the effects of design

patterns on software are measurable and therefore interpretable. Thirdly, design pattern

implementations and refactorings in software are highly recommended. Also, design

patterns have positive effects on design, and increase reusability, analyzability, and so

on. But, design patterns may introduce side effects like increase in error-proneness.

Therefore, this study aims to show that design patterns have different effects on

software, when researched on the basis of different approaches and technical views.

Within the scope of this study, different source codes of sample software projects and

synthetic projects have been refactored with design patterns. Fluctuations on metrics

have been evaluated mainly from the perspective of the software error-proneness. Also,

in this thesis, [GOF98] patterns have been researched and the effects of these patterns

on OO metrics have been measured in different cases with refactorings.

 3

1.3. Outline

This thesis is organized as follows:

In chapter 2, in order to determine software error-proneness related metrics and to

connect metrics and design patterns, literature review has been performed.

Conceptually different design patterns and OO metrics have been researched, in order

to investigate the relations between them and software error-proneness.

In chapter 3, experimental work that has been performed on different cases is

explained. Samples for these cases consist of open source software projects and

synthetic source codes. Also, each case or experiment has six steps in its

implementation to empirically show the effect of design patterns on software error-

proneness related OO metrics. Also, effects of design patterns on software error-

proneness have been interpreted. Moreover, metric collection tool [TTL00], which is

used to measure OO metrics in performed experiments, and phases of experimental

work cases have been discussed and described.

In chapter 4, discussions and comparisons of the effects of different design patterns

have been made, conclusions of the study have been presented, and some future work

alternatives have been suggested.

 4

CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

In this chapter, the concept of software error-proneness, object-oriented metrics, design

patterns, and possible effects of design patterns on OO metrics that are related with

error and fault proneness are defined and researched.

Moreover, after determining error-proneness related metrics, the connections between

these metrics and specific design patterns are established, this phase has crucial

importance, since all the work performed in chapter 3 mainly uses these connections as

a basis. In addition, OO metric and design pattern relation stimulates that refactorings

using design patterns can decrease error-proneness in software.

To sum up, this chapter is the basis of the succeeding chapters. Conclusions of this

chapter have helped us to understand the connections between error-proneness of

software, OO metrics and design patterns.

2.2. Definitions

Institute of Electrical and Electronics Engineering (IEEE) standard glossary of software

engineering terminology [IEEESG90] defines error, fault, and program failure as given

below:

 Error: As an inappropriate action performed by a programmer or designer.

 Fault: The manifestation and the result of an error during the coding of a

program.

 5

 Program failure: Some incorrect program behavior caused by the existence of

faults in the program

These definitions show us that failure or crash are, in fact, a chain reaction, propagate

from executable code to the system boundaries. These definitions also demonstrate that

some software faults are all design faults. Therefore, key point is that design of

software carries great importance and fault tolerance techniques should be added to the

system during requirements or architectural design phases of the used software process

model. Moreover, there is no definite solution to remove design faults. Since, there are

inherent properties of modern software systems: complexity, conformity, changeability,

and invisibility. These properties are hard to remove and also as stated before there is

no formal solution for these inherent and irreducible properties [FPB87].

In addition, from a system perspective, software fault tolerance can be discussed under

the two topics of software engineering; first of these is reliability. Reliability,

informally, is the probability, over a given period of time that the system will correctly

deliver services as expected by the user [IS04]. The motivation for fault tolerance in the

content of reliability is that under failure or crash, system or software should continue

to perform and deliver outputs for requested operations. The second is availability,

which is defined as the probability that a system, at a point of time, will be operational

and able to deliver the requested services [IS04]. The main difference between

availability and reliability is that reliability is defined for a period of time, but

availability has importance for a point of time.

Consequently, software error-proneness has strong a composition relationship between

availability and reliability. They can be used to measure fault tolerance of a system or

software indirectly and from a higher perspective. For example, Mean Time between

Failure (MTBF) is a reliability metric, which shows the time elapsed between two

failures that cause system to fail.

 6

Software fault tolerance refers to the use of techniques to increase the likelihood that

the final design embodiment will produce correct and/or safe outputs. Moreover, main

property for a fault tolerant system is that system can continue operation after some

faults have occurred. Embedded fault tolerance mechanisms ensure that these system

faults do not cause system failure. In practice, fault tolerance is applied in situations

where system failure could cause a catastrophic accident or where a loss of system

operation would cause large economic losses. For example, air traffic control system

should continue operation continuously while planes in the air.

But, these metrics do not reflect the actual error-proneness of the software. That is,

different environments will result in different reliability values [ARJ90]. Moreover, the

key assumption that enables the design and reliability estimation of highly reliable

hardware systems is that the components fail independently [BF91]. This does not

apply to software, where the results of one component are directly or indirectly

dependent on the results of other components, and thus errors in some modules can

result in problems in other modules. When it comes to software reliability estimation,

the only reasonable approach is to treat the software as a black box [PSK90].

To sum up, the aim of this introductory part about software faults is to emphasize the

crucial importance of errors for software and to state that it is almost impossible to

remove all the errors or misinterpretations in software. However, in the source code

level, in architectural and detailed design phases of software development cycle, there

are some OO metrics can help engineers to determine and eliminate majority of the

design errors. In the succeeding part, these metrics are evaluated, and related papers

reviewed from the view of software error-proneness.

2.3. Object Oriented Metrics

The focus on software process improvement has increased the demand for software

measures, and consequently new metrics are developed. Software metrics have many

 7

application areas such as quality management, product size, and maintenance in the

software development life-cycles. But in this section, some OO metrics will be

presented briefly and their relations with software error-proneness will be investigated.

Investigated metrics are all validated in the literature with the application of different

validation methods, which are beyond the scope of this thesis. Therefore, these metrics

are all commonly accepted in the community. Moreover, OO metric and fault-

proneness association is confirmed by applying these validation methods [EBGR01].

OO metrics could be good indictors for determining fault or error prone modules and

eliminate them, consequently help to increase software fault tolerance. [EBGR01]

explains that some software metrics are important for software fault tolerance, also

these metrics show error-prone modules, and consequently help designer to identify

weak chains in the detailed design.

Chidamber and Kemerer, in their paper [CK94], define six new metrics for OO

software, these metrics are:

• Weighted Method per Class (WMC)

• Depth of Inheritance Tree (DIT)

• Number of Children(NOC)

• Response For a Class (RFC)

• Coupling Between Objects (CBO)

• Lack of Cohesion in Methods(LCOM)

Main purpose of [CK94] is to devise a solution for overcoming ineffective non-OO

metrics. These traditional software complexity metrics do not have appropriate

mathematical properties, and they fail to display predictable behavior of software. In

addition, [CK94] strongly emphasizes that software metrics should depend on stronger

 8

degree of theoretical and mathematical precision. Another key point for them is that

OO software design is much more different than traditional function based software

design, so as obvious, OO design approach needs more effective and realistic metrics.

[CK94] and [LK94] metrics are important for software fault tolerance, because these

metrics show complexities for software modules, namely classes, and complexity is a

good indicator for error-prone modules. Modules with high complexities are prone to

error and hard to maintain.

Also, class design is the highest priority in the Object-Oriented Analysis and Design

(OOAD), and since it deals functional requirements of the system, it must occur before

system design and program design. Consequently, if these metrics evaluated correctly,

completely, and also if complexities are removed by using these measures with

application of design patterns and/or some intellectual designer approaches, fault

tolerance is maximized, and number of error-prone modules is minimized. As a result,

length of maintenance, and test phases, also labor effort will be limited to a lower

degree.

In [TKC99], authors validated [CK94] metrics using software faults. [TKC99] states

that traditional testing techniques are not viable for detecting OO faults. To overcome

this problem they propose OO metrics to determine viable testing technique. That is to

say identifying correct metrics can help designer to dig out fault prone parts, which

would be very hard to find if traditional techniques were performed.

The results of [TKC99] suggest that Weighted Methods per Class (WMC) can be a

good indicator for faulty classes and Response for a Class (RFC) is a good indicator for

OO faults. Moreover, in [BBM96], authors conducted an empirical experiment based

on eight medium sized school projects. Their results suggest that five of the six [CK94]

metrics are useful quality indicators for predicting fault and error prone classes.

 9

Another significant relationship between error-proneness and software metrics has been

experimentally shown by [BDPW98]. Again in [BDPW98], authors analyze many OO

metric relations with error-proneness, but in this thesis, main concern is the metrics of

[CK94] and [LK94]. The results of [BDPW98] show that highly import coupled classes

are more error prone. In other words, how much a class uses other classes has

significant effect on the probability for the class to contain a fault. Moreover,

[BPDW98] concludes that method invocation is the main coupling mechanism having

impact on error-proneness.

Moreover, [BPDW98] shows that there is no evidence that classes, which have high

export coupling values, are more likely to be error prone. In other words, how much a

class is being used by other classes has little effect on the probability for the class to

contain a fault. But, Coupling between Objects (CBO) [CK94] count both import and

export coupling. Thus, from the view of fault proneness, when measuring CBO metric

and detecting error-prone modules, weak influence of export coupling should be

considered.

In [BPDW98], class cohesion metrics and fault-proneness analysis shows that there is a

weak relation with cohesion and fault-proneness, which provides only a weak support

for the hypothesis high cohesion of a class has a casual relationship to error-proneness.

This result indicates that Lack of Cohesion in Methods (LCOM) [CK94] is irrelevant

for determining error-prone modules in software; therefore this metric is excluded and

not evaluated from the view of error-proneness.

In [BPDW98], result of association between inheritance metrics and error-proneness

suggests that the deeper the class is located in the hierarchy, the more error-prone it is.

Moreover, the more superclasses a class inherits from, and the more methods a class

inherits, the more error-prone the class is, and classes with a high Number of Children

(NOC) or subclasses are less error-prone. Perhaps, a greater attention (e.g., through

inspections) is given to them as they are developed since many other classes depend on

 10

them. As a result, fewer defects are found during testing. Also, the more use of method

overriding is being made; related metrics are Number of Methods Overridden (NMO)

and Specialization Index (SIX), the more fault-prone it will be. Lastly, the more

methods are added to a class; related metric is Number of Methods Added (NMA), the

more fault-prone it is.

In conclusion, research of [BDPW98] has shown that many coupling and inheritance

metrics are strongly related probability of fault detection in a class. However, cohesion

metrics does not seem to have strong impact on error-proneness. These metrics,

mentioned in [CK94] and [LK94], are deeply researched and highly approved, also

validated by software community, lots of papers that validate aforementioned metrics

issued like [TKC99].

But, there are many of metrics in literature and some of them have many common

attributes, which makes some metrics redundant [BPDW98]. But, validation,

reexamination and determining the redundant metrics are out of scope in this thesis.

Therefore, most commonly approved metrics will be examined from the view of

software fault tolerance and error-proneness. This last statement implicitly emphasizes

the assumption of perfectly validation of [CK94] and [LK94] for this thesis.

In the succeeding part error-proneness related metrics of [CK94] and [LK94] are

explained and discussed. These metrics are:

• Weighted Methods Per Class (WMC) [CK94]

• Depth of Inheritance Tree (DIT) [CK94]

• Number of Children (NOC) [CK94]

• Response For a Class (RFC) [CK94]

• Coupling Between Objects (CBO) [CK94]

• Number of Methods Added (NMA) [LK94]

 11

• Number of Methods Overridden (NMO) [LK94]

• Specialization Index (SIX) [LK94]

2.3.1. Weighted Methods per Class (WMC)

• Definition of [CK94]: Let C be a class, with methods M1, M2... Mk let

c1, c2... ck be the complexity of the methods. Chidamber and Kemerer do not

define “Complexity” deliberately here in order to allow for the most general

application of this metric. They advise that designer should or may

determine the complexity of each method by using traditional approaches.

WMC = c1 + c2 + ... + ck

• Applicability:

1. The number of methods and the complexity of methods involved is a

predictor of how much time and effort is required to develop and

maintain the class.

2. The larger the number of methods in an object, the greater the potential

impact on the subclasses.

3. Objects with large number of methods are likely to be more application

specific, limiting the possible reuse.

Applicability 2 and 3 are concerned with software design and reuse mainly. But,

viewpoint 1 is important for software fault tolerance, as stated above, complexity

shows error-prone modules. And, as WMC for a class rises, complexity of the related

class increases, therefore it becomes hard to maintain and hard to repair also.

Consequently, from the view of software fault tolerance, designer should keep this

 12

metric as low as possible, and try to lessen WMC, by subclassing or separating the

related class into two or more class.

2.3.2. Depth of Inheritance Tree (DIT)

• Definition of [CK94]: The depth of inheritance of the class is the DIT

metric for the class. In cases involving multiple inheritances, the DIT

will be the maximum length from the node to the root of tree.

• Applicability:

1. Deeper trees constitute greater design complexity, since more methods

and classes are involved.

2. The deeper a particular class is in the hierarchy, the greater the potential

reuse of inherited methods.

Again, for software error-proneness, complexity is an important indicator and should

be limited; but inheritance is an inevitable fact of OOAD. Designers generally use

inheritance and abstract classes in order to increase reuse and portability. But, trade-off

between reusability and complexity should be well investigated. A deliberate strategy

to reduce complexity for class inheritance trees to place as much functionality as close

as possible to the root of the inheritance tree.

2.3.3. Number of Children (NOC)

• Definition of [CK94]: Metric simply defines the number of

immediate subclasses subordinated to a class in the class hierarchy.

• Applicability:

1. Greater the number of subclasses, greater the reuse, since inheritance

is a form of reuse.

 13

2. Greater the number of subclasses, the greater the likelihood of

improper abstraction of the superclass class. If a class has a large

number of subclasses, it may be a case of misuse of subclassing.

3. The number of subclasses gives an idea of the potential influence a

class on the design. If a class has large number of subclasses, it may

require more testing of the methods in that class.

From the perspective of software error-proneness, [EBGR01], [BWIL98], and

[BWDP00] prove that NOC is correlated with software fault tolerance and error-

proneness. Moreover, in [BH01] author shows that application of Bridge pattern has a

reducing effect on average NOC metric value.

2.3.4. Response for a Class (RFC)

• Definition of [CK94]: RFC = NLM + NRM

Where:

NLM = number of local methods in the class

NRM = number of remote methods called by methods in the class

A given remote method is counted only once

• Applicability:

1. If a large number of methods can be invoked in response to a message, the

testing and debugging of the class becomes more complicated since it

requires a greater level of understanding required on the part of the tester.

2. The larger the number of methods that can be invoked from a class, the

greater the complexity of the class.

 14

3. A worst case value for possible responses will assist in appropriate

allocation of testing time.

[CK94] states that RFC metric is directly related with the complexity of the class. This

viewpoint makes this metric valuable for fault-tolerance, and its association with fault

tolerance was proved in the current literature [BWIL98], [BWDP00]. RFC carries great

importance and should be limited in order to increase software fault tolerance, but, this

metric should be well understood and should be limited in the early design phases of

the software. In addition, this metric is related with count of associations, compositions

and aggregations in a class, since in the methods of a class usually these relations are

used and remote calls to these objects are performed. If designer can limit these

relations, and remote method calls, he/she automatically achieve to decrease the value

of RFC for a class.

2.3.5. Coupling between Objects (CBO)

• Definition of [CK94]: CBO for a class is a count of the number of other

classes to which it is coupled.

• Applicability :

1. Excessive coupling between classes is detrimental to modular design and

prevents reuse.

2. In order to improve modularity and promote encapsulation, inter-class

coupling should be kept to a minimum.

3. A measure of coupling is useful to determine how complex the testing of

various parts of a design is likely to be.

[CK94] does not state the CBO is related with complexity of a class, and with fault-

proneness of a class. But, in [EBGR01], authors prove that CBO is strongly associated

 15

with fault-proneness. This is consistent with previous literature that found CBO to be

associated with fault-proneness [BWDP00], [BWIL98]. Also, CBO metric shows the

fan-out of a class, and CBO values above custom/standard defined threshold in a class

can be an indication of a rotten design. Developer should refactor the design and devise

some solutions to limit the value of CBO metric.

2.3.6. Number of Methods Added (NMA)

• Definition of [LK94]: This is the normal expectation for a subclass, if it

will further specialize the superclass’ type of object.

• Applicability :

1. The number of new methods should usually decreases as you move down

through the layers of the hierarchy.

2. Anomalies detected with this metric are usually detected by the number of

methods overridden (NMO) metric.

As stated in [BPDW], more new methods added by subclass, the more fault-prone the

class will be. [LK94] determined some threshold values for this metric, which are 20

for inheritance level 1, four for inheritance level six.

2.3.7. Number of Methods overridden (NMO)

• Definition of [LK94]: This metric defines the number of methods

overridden by a subclass.

• Applicability :

1. A large number of overridden methods indicate a design problem.

2. Abstract classes and used framework classes should be excluded when

counting this metric.

 16

[BPDW98] states that the more use of method overriding is being made, the more fault-

prone it will be.

2.3.8. Specialization Index (SIX)

• Definition of [LK94]: SIX = (NMO * class hierarchy inheritance level) /

total number of methods

• Applicability :

1. Abstract classes and used framework classes should be excluded when

counting this metric.

2. This metric helps designer to verify the location of a class in the hierarchy.

2.4. Crucial Effect of Determining Error Prone Modules on Software Life Cycle

In the OO metrics part, association between error-proneness and metrics was

investigated. The main result of preceding part was inheritance and coupling metrics

are strongly related with error-proneness, also help to indicate or detect error-prone

classes.

In [BDPW98-2], authors experimentally show that when combined, a subset of the

measures enables the construction of a very accurate model to predict in which classes

most of the faults will lie in. Outcome of this paper is very important, for instance

before test phase of software, predicting error-prone classes and devising solutions to

lower their related metric scores may reduce testing significantly.

[BDPW98-2] classifies a class error-prone if its predicted probability after

aforementioned analysis performed to contain a fault higher than a certain threshold.

Interested readers can look at [BDPW98-2] for details.

 17

The results of [BDPW98-2] also show that many coupling and inheritance metrics are

strongly related to the probability of fault detection in a class.

To sum up, in [BDPW98-2] authors show that by using some of the coupling and

inheritance measures, very accurate models can be derived to predict in which classes

most of the faults actually lie.

2.5. Design Patterns

In this section, concept of a design pattern and most of the design patterns, which are

deeply investigated in literature and related with the metrics that are also related with

fault or error proneness, will be explained; also some interpretations about the

applicability of these design patterns on software fault tolerance will be given.

Moreover, design patterns and software metrics serve for the common aims, which are

promotion to adaptable, portable designs and reducing maintenance efforts. But, design

patterns and metrics are completely different actually. For example, a metric high score

for coupling between objects indicates detrimental design, low reusability, whereas

design patterns also imply how to solve the context depended problem.

However, there is one consideration that designer or reader should not underestimate

that is if established design patterns are accepted as building blocks for design, then

their usage should be compatible with metric suite being applied [VP95]. Moreover,

refactorings that have been applied to reform metric scores should not destroy pattern

structures, and applied design patterns should not worsen metric values. In this case

metric, the pattern, or both may prove to be suspect.

2.5.1. What is a design pattern?

 18

Design pattern is a general solution to a problem in a context. Aim is to generalize the

solution, in order to prevent invent the same solutions again and again.

According to [BPD02] there are different types of design patterns from the view of

Design phase, which are:

• Architectural Design Patterns

• Mechanistic Design Patterns

In [BPD02], there are detailed descriptions of Architectural Design Patterns; these

patterns are applied to software development process during architectural and detailed

design phases.

The main difference between [GOF98] and [BPD02] is that [BPD02] explains design

patterns in a more abstract way than [GOF98]; also [BPD02] broadens the scope of a

design pattern from detailed view to architectural view. But, the common reality is that

all the patterns provide a solution to a general problem. In other words, they provide

solution reuse, not the details of the solution. Developers are responsible to apply the

solution to the problem context. But, they should first find the problem and determine

whether a design pattern is applicable or not. If a design pattern is not applicable,

developer should devise a pattern, or at least a reusable solution.

As stated before, design patterns does not provide code, or class reuse, they provide

solution reuse. That is design patterns do not emphasize code reusability, they define a

general solution to a common occurring problem in a context. Underlying objects of a

problem and their relations are determined after deciding which pattern is best to apply.

In general, a pattern has four essential elements [GOF98]:

 19

 The pattern name is a handle we can use to describe a design problem, its

solutions, and consequences in a word or two.

 The problem describes when to apply the pattern.

 The solution describes the elements that make up the design, their relationships,

responsibilities, and collaborations.

 The consequences are the results and trade-offs of applying the pattern.

The details of the investigated design patterns are out of the scope of this research.

Thus, patterns involved will be explained briefly and mainly the applicability on

software error-proneness will be presented, if possible.

2.6. The Relation between Software Error-Proneness and Design Patterns

2.6.1. Gang of Four (GOF) Patterns

[GOF98] separates design patterns into three main groups:

 Creational

 Structural

 Behavioral

Creational patterns mainly solve the problem of the instantiation process. Usage or

application of these creational patterns makes a system/software free of how its objects

are created, composed, and represented. Structural patterns help designers to solve the

problem of composition of classes or objects to make larger objects or collaborations.

Behavioral patterns are concerned with algorithms and the assignment of

responsibilities between objects. Behavioral patterns describe not just patterns of

objects or classes but also the patterns of communication between them.

In the succeeding sections, [GOF98] patterns will be argued under aforementioned

groups.

 20

2.6.2. Creational Design Patterns

These patterns are:

• AbstractFactory

• Builder

• Factory Method

• Prototype

• Singleton

Creational patterns do not affect structural relation of the functional or semantic classes

in software, since these patterns have little or no direct effect on OO metrics. Also,

Creational patterns are simple in logic and structure when compared to other type of

patterns. They abstract the creation of entity or functional classes for their clients,

which makes clients a bit simpler.

Also, application of creational patterns decreases import coupling, if client is

responsible for the creation of many other classes to perform a service, which decreases

CBO metric for client. However, in this thesis, the effect of application of creational

patterns on OO metrics is not empirically evaluated. Creational patterns have actually

no direct relation with software error-prone modules, but they make system more

flexible and portable. Therefore, they may corporate with other design patterns.

2.6.3. Structural Design Patterns

2.6.3.1. Bridge Pattern

The intent of this pattern is to decouple an abstraction from its implementation so that

the two can vary independently. Figure 1 shows UML structure of Bridge pattern.

 21

Figure 1 - Bridge Pattern [GOF98]

This pattern is important from the view of error-proneness and fault-tolerance, since

this pattern provides decoupling interface and implementation, improved extensibility,

and hiding implementation details from clients. By using this pattern, developer can

devise implementation independent actuator, sensor, algorithm, and complex-structured

classes. In other words developer gains the key to flexibility, portability, and fault

tolerance; failed implementations can be changed at run-time easily if this pattern is

used during the detailed design of related module.

The effect of Bridge pattern on DIT was investigated in [BH01], where the author

shows that application of this pattern reduces average DIT in the circumstances covered

by the constraint conditions. But applicability of this patterns are problem context

depended. All the above patterns are discussed in the design patterns section.

But, as stated by [CK94] the DIT is a metric that related with class or module

complexity, and also with fault tolerance intuitively. But, subclassing a complex fault

prone module decreases WMC metric, moreover contributes to the fault tolerance of

the related module. Furthermore, this metric doesn’t help developers to write well

designed systems [AV04]. It only says how deep the inheritance hierarchy is in the

 22

written project. It doesn’t matter if you collect a number of 3 for instance; it just tells

you that the length from this node to the root is 3.

In addition, [BH00] has empirically showed that application of this pattern reduces the

average DIT metric, as explained in preceding parts, association between DIT metric

and fault-proneness is validated in literature. But, as stated before, the effect of DIT

metric on error-proneness is less than other OO metrics associated with error-

proneness.

Moreover, [BH00] has showed that this pattern has a distinct reducing effect on

average NOC. The relation of NOC metric with error-proneness has been stated in the

preceding sections.

But, scalability is a concern, application of Bridge pattern may show a very small part

of the software, and consequently increase in overall tolerance will be negligible. Also,

as stated in the viewpoints large number of subclasses indicates the misuse or overuse

of inheritance, also NOC is an indicator the level of subclassing. Designer can interpret

problem domain into application domain wrongly and can misuse or overuse

inheritance property in object-oriented languages. Design techniques for the

interpretation of the real world into software are beyond the scope of this research, but

if large number of subclassing is inevitable, some design patterns can solve this

problem.

Consequently, Bridge pattern reduces DIT and NOC metric values; this result leads to

an interpretation that is Bridge pattern reduces average number of error-prone classes in

software. But, before the application of this pattern, if the aim is to reduce number of

faulty classes, detection of these classes carries great importance. Another factor that

affects applicability is the fault class or classes should define a specific problem

context, which defines Bridge pattern as a solution.

 23

2.6.3.2. Composite Pattern

The intent of this pattern is to compose objects into tree structures to represent part-

whole hierarchies. Composite lets clients treat individual objects and compositions of

objects uniformly. Figure 2 shows UML structure of Composite pattern.

Figure 2 - Composite Pattern [GOF98]

Moreover, this pattern has several consequences. First of all, primitive objects can be

composed into more complex objects, which in turn can be composed, and so on

recursively. Wherever client code expects a primitive object, it can also take a

composite object. Secondly, Clients can treat composite structures and individual

objects uniformly. Moreover, this pattern makes it easier to add new kinds of

components. But, the disadvantage of making it easy to add new components is that it

makes it harder to restrict the components of a composite. Run-time checks should be

added to the code.

Composite pattern simplifies the client class coupling, which reduces CBO values of

client classes, if client has to manage, store, or perform operations on different “Leaf”

classes. Since, these responsibilities can be transferred to “Composite” class without

exposing “Leaf” classes to the clients.

 24

2.6.3.3.Decorator Pattern

The intent of this pattern is to attach additional responsibilities to an object

dynamically. Decorators provide a flexible alternative to subclassing for extending

functionality. Figure 3 shows UML structure of Decorator pattern.

Figure 3 - Decorator Pattern [GOF98]

In addition, this pattern provides more flexibility than static inheritance, but it can

introduce lots of little objects to the detailed design, also a decorator acts as a

transparent enclosure. But from an object identity point of view, a decorated

component is not identical to the component itself. But, Decorator pattern helps to

designer add additional responsibilities or features to a hierarchic class design in

flexible way.

Decorator pattern helps designer to reduce extensive subclassing [MC96]. Therefore,

this pattern mainly reduces NOC metric in software.

2.6.3.4.Façade Pattern

 25

The intent of this pattern is to provide a unified interface to a set of interfaces in a

subsystem. Façade defines a higher-level interface that makes the subsystem easier to

use. Figure 4 shows UML structure of Façade pattern.

Figure 4 - Façade Pattern [GOF98]

As it can be seen, Façade class or Façade pattern provides only one entry point for a

package or a subsystem [RJB99]. Therefore, all the clients that use one or more classes

in related package or subsystem do not have relations with those classes; they only

know “Façade” class and all the services are requested over that class. In short, it

shields clients from subsystem components, thereby reducing the number of objects

that clients deal with and making the subsystem easier to use. Façade classes can

eliminate complex or circular dependencies.

Façade pattern increases the stability of the package. Stability is related to the amount

of work required to make a change. In software engineering, stability of a package is

measure by instability metric (I) [RCM00]. This metric simply shows stability of a

package. If there are no outgoing dependencies, then I will be zero and the package is

stable. If there are no incoming dependencies then I will be one and the package is

instable. This pattern makes instability metric (I) of a package approach zero.

Moreover, Façade pattern can also decrease CBO metric, since it sets a wall behind the

semantic classes and all operation flow over package façade. That is to say that this

 26

pattern reduces instability metric as stated before. And instability metric is highly

correlated with CBO metric. Therefore, this design approach significantly decrease

export/import coupling from/to the related package or subsystem.

2.6.4. Behavioral Patterns

These patterns characterize complex control flow that's difficult to follow at run-time.

They shift the developers focus away from flow of control to let them concentrate just

on the way objects are interconnected.

2.6.4.1. Chain of Responsibility Pattern

 The intent of this pattern is to avoid coupling the client of a request to its server by

giving more than one object a chance to handle the request. Figure 5 shows UML

structure of Chain of Responsibility pattern.

Figure 5 - Chain of Responsibility Pattern [GOF98]

This pattern as stated above provides reduced coupling between the sender and

receiver. That is both the receiver and the sender have no explicit knowledge of each

other, and an object in the chain doesn't have to know about the chain's structure.

Moreover, this pattern provides added flexibility in assigning responsibilities to objects.

 27

Structure of the chain can be changed at run-time, or combine with subclassing to

specialize handlers. But, there is one important disadvantage clients or senders are not

informed about whether the request is handled or not. Since, low coupling between the

sender and the receivers, and the chain like structure prevents handlers to inform

sender.

As it can easily be seen after some inspection, there is a similarity between the

“Composite” and “Chain of Responsibility”. But, in this pattern, concrete classes reach,

or invoke themselves through common interface. Therefore, each concrete class may

have association with a successor or a handler. But, the problem comes from inherent

weakness of this pattern, which is that sender or client of an operation will never be

guaranteed that the operation is handled completely and correctly.

This pattern, if applied correctly and all the constraints are met, decreases CBO metric,

since client does not have to know all handlers in the design which decreases client’s

CBO metric value.

2.6.4.2. Command Pattern

 The intent of this pattern is to encapsulate a request as an object, thereby letting you

parameterize clients with different requests, queue or log requests, and support

undoable operations. Figure 6 shows UML structure of Command pattern.

 28

Figure 6 - Command Pattern [GOF98]

Command pattern decouples the object that invokes the operation from the one having

the knowledge to perform it. This property makes this pattern crucial for user interface

designs. An application can provide both a menu and a push button interface to a

feature just by making the menu and the push button share an instance of the same

concrete Command subclass. Command pattern is highly flexible from the view of

clients, because, the object that issues request only needs to know how to issue it; it

doesn't need to know how the request will be carried out. This last statement implicitly

declares that application of this pattern may reduce CBO and WMC values of

“Invoker” classes.

2.6.4.3. Mediator Pattern

Intent of this pattern is to define an object that encapsulates how a set of objects

interact. Mediator promotes loose coupling by keeping objects from referring to each

other explicitly, and it lets you vary their interaction independently. Figure 7 shows

UML structure of Mediator pattern.

 29

Figure 7 - Mediator Pattern [GOF98]

Object-oriented design encourages the distribution of behavior among objects. Such

distribution can result in an object structure with many connections between objects; in

the worst case, every object ends up knowing about every other. This property makes

this pattern crucial for OO designs and also for fault tolerance. Since, Mediator reduces

overall complexity in the design, can help designer to vary their relations implicitly at

run-time. Moreover, objects only know the mediator, thereby reducing the number of

interconnections. This property also reduces the subclassing for implementing different

behaviors. In other words, this pattern reduces the overall size of the classes that have

many relations with other classes, the number of classes in the packages, the overall

complexity, and increases reusability. Also, a mediator centralizes the control; mediator

pattern trades complexity of interaction for complexity in the mediator, it can become

more complex than any individual colleague. This can make the mediator itself a

monolith that's hard to maintain. But, knowing where a nightmare may occur is much

better than trying to find or predict where it may occur.

The effect of Mediator pattern on coupling between object was scrutinized in [BH01].

In this paper, author shows that application of Mediator pattern decreases coupling

between objects. This conclusion helps to link the connection between software error-

proneness and mediator pattern. But, one drawback pointed out in [BH01] is that author

devises the scenario and uses the small number of the classes for graphical comparison,

 30

without being concerned with cases that have very large number of classes, or a

framework.

2.6.4.4. Memento Pattern

 Intent of this pattern is, without violating encapsulation to capture and to externalize

an object's internal state so that the object can be restored to this state later. Figure 8

shows UML structure of Memento pattern.

Figure 8 - Memento Pattern [GOF98]

Sometimes it's necessary to record the internal state of an object. This is required when

implementing checkpoints and undo mechanisms that let users back out of tentative

operations or recover from errors. This property makes this pattern crucial for fault

tolerance when recovering from a crash. Some error prone classes determined during

design can be applied to the system with Memento pattern. Consequently, recovering

these modules and putting them into their normal operating states will be easier. These

approach increases system fault tolerance to higher level, but never makes it

completely error or fault resistant. One drawback of this pattern is that it violates

encapsulation, because objects usually hide their member variables or internal states, in

order to apply this pattern, an originator, an object that wants to be remembered, should

save its encapsulated variables into another class -memento-, and should have the

ability to reach hidden variables of that memento class. Also, this pattern introduces

 31

new memento classes to the system that increases the size and complexity. Designer

should trade between these advantages and drawbacks, and should not overuse this

pattern.

2.6.4.5. Strategy Pattern

 Intent of this pattern is to define a family of algorithms, encapsulate each one, and

make them interchangeable. Strategy lets the algorithm vary independently from clients

that use it. Figure 9 shows UML structure of Strategy pattern.

Figure 9 - Strategy Pattern [GOF98]

Moreover, this pattern helps designer to eliminate conditional statements in source code

of “Context” type classes [GOF98]. Therefore, it can reduce complexity related metric

values, like WMC value.

2.6.4.6. Template Method Pattern

Intent of this pattern is to define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses redefine certain steps of an

algorithm without changing the algorithm's structure. Figure 10 shows UML structure

of Template Method pattern.

 32

Figure 10 - Template Method Pattern [GOF98]

Template methods are a fundamental technique for code reuse. They are particularly

important in class libraries, because they are the means for factoring out common

behavior in library classes. Therefore, from the view of software error-proneness, usage

of this pattern is ambiguous. But, according to [GOF98], this pattern can limit the

number of primitive methods that a subclass must override to flesh out the algorithm.

This property helps designer to reduce the values of RFC, WMC [CK94] metrics for

the related classes. As explained in section 2.1.2, RFC and WMC are associated with

software fault tolerance or error-proneness [EBGR01].

2.6.4.7. Visitor Pattern

 Intent of this pattern is to represent an operation to be performed on the elements of an

object structure. Visitor lets you define a new operation without changing the classes of

the elements on which it operates. Figure 11 shows UML structure of Visitor pattern.

 33

Figure 11 - Visitor Pattern [GOF98]

Intent of this pattern states that this pattern adds new operations to complex objects

structures without changing their internal structures. The basic effect of this pattern is

the removal of some operations from the class hierarchy and replaces them with new

“Visitor” hierarchy. This last statement tells us implicitly that application of this

pattern changes metrics associated with method count and class complexity, e.g. WMC,

and NMO.

Application of Visitor pattern on OO metrics has been researched in [BH01]. The

results of this paper about application of aforementioned pattern have a significant

reducing effect on WMC. And also, as stated and proven by [TKC99] WMC is related

with software fault proneness, therefore Visitor pattern should be used when ever

possible to decrease software error-proneness relatively by reducing the number of

faulty classes or error prone class associations.

 34

And also, [BH01] has empirically showed that Visitor pattern has a significant reducing

effect on NMO, but for obviously not limited or low number of overridden Visitor

methods. This result helps us to observe the relation of Visitor pattern and error-

proneness in software. If the context is compatible with the solution that this pattern

offers, “Visitors” reduce the number of error-prone modules.

2.6.4.8. Iterator Pattern

 Intent of this pattern is to provide a way to access the elements of an aggregate object

sequentially without exposing its underlying representation. Figure 12 shows UML

structure of Iterator pattern.

Figure 12 - Iterator Pattern [GOF98]

This pattern provides many benefits for multiple aggregate relations. First, provides

access to aggregate’s objects without exposing their internal structure. Secondly,

Iterator pattern supports multiple traversals of aggregate objects and lastly, provides a

uniform interface for traversing different aggregate structures. Moreover, this last

statement implicitly states that this pattern helps designer to support different traversing

 35

algorithms without contaminating the client code, which may decrease or limit WMC

value for these client classes.

2.6.4.9. Observer Pattern

Intent of this pattern is to define a one-to-many dependency between objects so that

when one object changes state, all its dependents are notified and updated

automatically. Figure 13 shows UML structure of Observer pattern.

Figure 13 - Observer Pattern [GOF98]

This pattern helps designers to vary subjects and observers independently, and to

increase reusability. Therefore, from the view of software error-proneness this pattern

may have no direct usage. But, this pattern has investigated deeply in chapter 3 to see

its effects on software error-proneness related metrics.

2.6.4.10. State Pattern

Intent of this pattern is to allow an object to alter its behavior when it’s internal state

changes. Figure 14 shows UML structure of State pattern.

 36

Figure 14 - State Pattern [GOF98]

State pattern separates object’s state form its implementation code. Therefore, this

pattern simplifies object’s source code. That is to say State pattern reduces the WMC

value for classes that have intrinsic behavior in different circumstances. But, on the

other hand, this pattern introduces new state associations and consequently increases

the CBO value. Moreover, application of this pattern breaks encapsulations with

“friend” type inclusions [GOF98].

2.6.5. Omitted GOF Patterns

Some of the structural and behavioral patterns of [GOF98] has been omitted in this

chapter and not further investigated in chapter 3. These patterns are:

 Adapter Pattern

 Flyweight Pattern

 Proxy Pattern

 Interpreter Pattern

Adapter and Proxy patterns have been omitted, since these patterns have relatively

simple structure and are easy to implement. Therefore, they have almost no effect on

OO metrics. Moreover, Flyweight pattern is almost a “creational” pattern, and its

applicability provides only space optimizations [GOF98]. Lastly, the omission reason

 37

for Interpreter pattern is that it has a narrow application area restricted to when the used

language is simple and performance is not a critical concern [GOF98]. Moreover,

Interpreter pattern is very similar to Visitor pattern in its structure [GOF98]. Therefore,

Visitor pattern experiments are considered to be enough to show effects of Interpreter

pattern.

2.6.6. Overview of Real-Time Design Patterns

These patterns are widely known in the literature, but for simplicity and consistency,

[BPD02] has been referenced for these patterns.

Furthermore, showing the effects and comparison results of [BPD02] patterns are

problematical, since these patterns approach a system or software from an architectural

level, and also offer pattern structures for embedded systems, where real-time

performance, code size, effective memory usage, safety, system size are main concerns.

Besides, [BPD02] patterns are conceptually different from [GOF98] patterns that cope

with problems in class level and therefore have direct effect on object-oriented metrics.

While, on the other hand, [BPD02] patterns cope with embedded software development

problems and devise patterns for the generalized solutions for them.

Consequently, the real time design patterns of [BPD02] approach software in a more

abstract way than [GOF98] patterns. This makes patterns, mentioned in [BPD02], hard

to measure and analyze from perspective of the OO metrics that are related with

software error-proneness. Therefore, real-time design patterns are excluded from the

scope of this study.

 38

CHAPTER 3

EXPERIMENTAL WORK

3.1. Introduction

As stated in the previous chapter, there are direct relations with design patterns and OO

oriented metrics. Some of the OO metrics are strongly associated with the probability

of error-proneness of a module in software. In addition, the literature review has shown

that design patterns like “Mediator” (see. Sec. 2.3.4.3.) are related with OO metrics.

This important result is the most influential stimulus factor for this chapter. Since, it

implicitly declares that design patterns can affect error-proneness.

This chapter will attempt to give empirical answers for the following questions:

 What is the effect of design patterns on the class error-proneness?

 Does correct design pattern application solve metric defined problem?

 Does application of design patterns add asset to software?

Based on the results and consequences of previous chapter, in this part, effects,

benefits, and drawbacks of application of design patterns on error-prone modules or

classes will be shown empirically. Also, important interpretations will be made, which

will be a basis for related future researches.

First of all, in this chapter, six phases for measuring the effects of application of chosen

design patterns are implemented. These phases are:

1. Measuring software to obtain OO metrics

2. Determining error prone classes based on OO metrics

3. Hatching correct design pattern for the problem described by metrics

 39

4. Applying related pattern(s)

5. Re-measuring software

6. Comparing and interpreting the results of step 1 and step 5

There are many OO metrics in the literature, but in step 1 and step 5, below metrics

will be collected from software. These metrics were also reviewed and their relations

with error-proneness were also stated in chapter 2.

• Weighted Methods Per Class (WMC) [CK94]

• Depth of Inheritance Tree (DIT) [CK94]

• Number of Children(NOC) [CK94]

• Response For a Class (RFC) [CK94]

• Coupling Between Objects (CBO) [CK94]

• Number of Methods Added (NMA) [LK94]

• Number of Methods overridden (NMO) [LK94]

• Specialization Index (SIX) [LK94]

In step 1, metric values for software classes or modules are obtained. After step 1, in

step 2, error-prone classes will be determined.

Step 3 actually is the most difficult part, since there is no standard procedure for pattern

hatching using metric values. In next step, useful pattern(s) that is/are compatible with

metric defined problem will be applied to software.

In step 4, results of step 3 that are compatible design patterns are implemented, also

required structural and code level alterations are made. But, there is an implicit

declaration that refactoring will also be applied to code in this step. Since source code

fragments need refactoring before and during the application of design patterns. Usage

 40

of refactoring for this part does change the structure and associations of components,

modules, and moreover, eliminates common programming errors and misusages.

Refactoring is another outcome, not a necessity. In view of the fact that, the application

of a design pattern needs refactoring. Therefore, after this step, structure of software

components or modules will be changed. The result of this step will be the input of next

step.

In step 5, altered software has to be re-measured, in order to interpret and compare

metric values that are acquired in this step and in step 1. Collection of these metrics

values for these steps will be made by using a software engineering tool that is

available in market. The details of this tool will be given in succeeding parts.

Step 6 is the one of the most crucial part for this thesis. Because, comparisons and

interpretations of application of design pattern(s) on OO metrics will be stated in this

step. Moreover, according to the results, validation or repudiation of the effect of

implementing design patterns on decreasing class error-proneness will be performed.

The weakness of this empirical approach is that there is not a standard approach or

procedure for the application of a design pattern in software as stated before. In step 4,

solution to the metric defined problem will be made by developers. However,

knowledge levels of developers are variable and different. That means some developers

may apply wrong design patterns, or apply correct pattern but writes code and refactor

poorly, which can make software even more error-prone.

On the other hand, results may show that talented and experienced developers can

decrease the number of error-prone classes by the help of design patterns and OO

metrics. This means much for software development cycle, since less error-prone

classes shortens the test and debug phases, also increase analyzability and reusability

for software. These positive side effects decrease the cost of development also.

 41

3.2. The General Characteristics of Researched Software

The researched software should be written in an OO language, like C++, Ada, or Java.

Since, OO metrics will be collected and also design patterns can only be applied into an

OO project.

Moreover, software should or could be design pattern free. Since, one of the aims of

this thesis study is to show empirically the effects of design patterns on error-prone

class probability. The most effective and persuasive way for this objective is to choose

software that originally lacks design patterns in its architecture.

Also, software or components should be researched after their detailed design phase.

Since, completing immature software is out of the scope for this thesis.

In conclusion, software that will be researched should have to be object-oriented,

design pattern free, and in test phase level.

3.3. Metric Evaluation Tool

In the market, there are many metric evaluation tools, but unfortunately many of these

tools do not provide interface for developing user-defined metrics or define existing

important metrics and also they are incapable to help developer/user to evaluate metrics

that they collect.

Moreover, many of these tools do not recommend preferred or acceptable threshold

levels, and do not warn user about error-prone classes or modules. In addition, they do

not focus on metric evaluation, but they exactly work as reverse engineering tools.

 42

In this study, measurement tool used for projects, written in C++ language, is

Logiscope [TTL00]. This analysis tool has been developed in 2000 by Telelogic.

Logiscope is commercial and has many OO, functional and application metrics in its

metric database. Moreover, Logiscope provides its users to add custom metrics, and

also generates project metric analysis reports. Consequently, Logiscope has been used

for this thesis to evaluate OO software projects.

But, main problem for metric collection and evaluation tools is that they do not have

common metric computation methods. Most of them are not compatible with standards,

except for Logiscope. In Logiscope, software metrics templates used to evaluate the

code are ISO 9126 compliant.

In addition, there is not any measurement tool that computes NMA and SIX metric

values directly. Therefore, in this thesis, these metric values have been computed

externally by using other metric values.

3.4. Researched Software Projects

In the experiments that have been performed in this section, all the average metric

scores will be reported as per class, whereas maximum and minimum values will be

presented for overall project classes.

3.4.1. Case 1: NetClass [NC01]

NetClass is a very simple to use socket and thread wrapper that works under UNIX,

LINUX based systems as well as WIN32 based systems. It is written in C++ and is

focused on simplicity and performance.

NetClass project is an open source project, hosted by sourceforge.net and distributed

under General Public License (GPL).

 43

3.4.1.1. Phase One: OO Metrics Measurement of Overall Project

Below project summary is given:

Project Summary:

• Classes: 6

• Files: 15

• Functions: 39

• Lines: 2161

• Version: 0.3.3

0

10

20

30

40

50

60

70

80

90

Average

Maximum

Minimum

Average 28,83 0,00 7,83 1,00 0,00 0,00 0,00 0,00

Maximum 85,00 0,00 16,00 6,00 0,00 0,00 0,00 0,00

Minimum 6,00 0,00 3,00 0,00 0,00 0,00 0,00 0,00

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 15 - Average, Maximum and Minimum Values of Thesis Metrics for NetClass Project

before Refactorings

 44

Figure 15 shows to metric interpreter or software metric analyzer that WMC value of

this project has high average and maximum values. Also, Figure 15 reveals that WMC

metric values should be decreased in order to make software less error-prone.

3.4.1.2. Phase Two: Determining Error Prone Modules

In the NetClass project, three classes have approximately 83% of sum of WMC value

among six classes. These classes are the rotten parts or error-prone modules of this

project and they should be refactored.

WMC values of this classes and total WMC are given graphically in Figure 16.

0

20

40

60

80

100

120

140

160

180

1 2 3 Total

WMC

WMC

Figure 16 - Top Three classes for WMC metric in NetClass Project

3.4.1.3. Phase Three: Hatching Design Pattern(s)

Evaluations in chapter 2 have showed that “Template Method” and “Visitor” design

patterns may decrease WMC values for classes.

 45

But, NetClass project includes different implementations to support different operating

systems. Also, in Figure 16, the class, labeled as 1, includes two different

implementations in it. This property stimulates the usage of “Bridge” for this class.

Applied design patterns to NetClass project are given below:

• Bridge Pattern: used to separate abstraction and implementation

• Template Method Pattern: To simplify the complex methods. But, this pattern

will be evaluated in detail in succeeding sections.

3.4.1.4. Phase Four: Applying related pattern(s)

After determining which pattern should be best for project, source code has been

modified accordingly. For NetClass project, Bridge pattern introduced three new

classes for the project. One has been added for base abstraction and the others have

been added for two different implementations.

Moreover, Template Method has also been used. The purpose of the Template Method

pattern is to divide complex methods into smaller sub methods and also to control

subclasses extensions. In NetClass project, this pattern has been implemented in the

base class of different implementations, and also to simplify complex methods in the

class, labeled as 1, in Figure 16. But, this pattern has not reduced WMC value for this

class; in contrast, it has increased WMC value. Since, even the simplest method, add 1

to the overall WMC value for a class. In addition, poor implementation of this rotten

class did not allow the separation into simpler logical/procedural division of complex

methods.

To sum up, “class 1” has been refactored, that is some complex methods divided by

Template method. In addition, its two different implementations have been separated

 46

by applying “Bridge” pattern. Also, in the base class of these implementations,

“Template Method” pattern has been used.

3.4.1.5. Phase Five: Re-measuring software

Below refactored project summary is given:

Project Summary:

• Classes: 9

• Files: 20

• Functions: 60

• Lines: 2321

0

5

10

15

20

25

30

35

40

Average

Maximum

Minimum

Average 21,33 0,22 8,22 2,11 0,22 0,00 0,89 0,00

Maximum 39 1 21 6 2 0 4 0

Minimum 2 0 3 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 17 - Average, Maximum and Minimum Values of Thesis Metrics for NetClass Project after

Refactorings

Figure 17 graphically shows average, maximum, and minimum values of metrics for

NetClass project after refactorings.

 47

3.4.1.6. Phase Six: Comparisons and Interpretations

0.00

50.00

100.00

150.00

200.00

WMC

After Refactoring

Before Refactoring

After Refactoring 21.33 192.00

Before Refactoring 28.83 173.00

Average Sum

Figure 18 - WMC Comparisons for NetClass Project

In Figure 18 graphically reveals that WMC and values for overall NetClass project has

reduced approximately %24 for average and %50 for standard deviation after the

implementations of Bridge and Template Method patterns.

Moreover, the main reason for the increase in overall project WMC value is 21 added

methods. These methods have been imperatively added to implement Template Method

and Bridge patterns into the project.

On the other hand, application of these patterns has slightly increased RFC, DIT, NOC

and NMO metric values. Increase in RFC, DIT, NOC values is the side effect of Bridge

pattern, whereas Template Method pattern has caused an increase in NMO metric

value.

According to Figures 17 and 18, applied patterns has improved NetClass project design

and reduced error-proneness with minor side effects, like slight increases in metrics

except for WMC.

 48

3.4.2. Case 2: Power-Grab [PG02]

Power-Grab project is a 32-bit Windows program written in Visual C++ 6.0 for

scanning and downloading binary files from usenet news servers [PG02].

This project is an open source project, hosted by sourceforge.net and distributed under

General Public License (GPL).

3.4.2.1. Phase One: OO Metrics Measurement of Overall Project

Below project summary is given:

Project Summary:

• Classes: 49

• Files: 97

• Functions: 884

• Lines: 26608

• Version: 2.0

Power-Grab project [PG02] uses Microsoft Foundation Classes (MFC), and the

developer creates new classes that inherit from MFC. But, inheritance related metric

values of these classes have been omitted. Since, the framework of MFC is beyond the

scope of this thesis, and also Logiscope does not collect correct inheritance metric

values of these classes. Omitted metrics for these classes are DIT, NMA, NMO and

SIX. But, other metrics that are WMC, RFC, CBO, and NOC have been collected for

all classes correctly. In addition, other classes, which do not inherit from one or more

classes of MFC, have been measured and all the required metrics are collected for these

classes.

 49

Figure 19 reveals that developer of Power-Grab project has not used inheritance except

for MFC classes. This makes DIT, NOC, NMA, NMO, and SIX metric values

meaningless for this case.

0

50

100

150

200

250

300

350

Average
Maximum
Minimum

Average 46,33 0,00 15,313725 16,960784 0 0 0 0

Maximum 336,00 0,00 82 144 0 0 0 0

Minimum 0,00 0,00 0 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 19 - Average, Maximum and Minimum Values of Thesis Metrics for Power-Grab Project

before Refactorings

3.4.2.2. Phase Two: Determining Error Prone Modules

In Figures 20 and 21, error-prone modules that have relatively high WMC, CBO, and

RFC metric values are given. According to these graphics, there are 14 error-prone

classes for WMC metric, 24 error-prone classes for CBO metric, and 2 error-prone

classes for RFC metric. There are not standard threshold values for OO metrics.

Therefore, these classes have been determined by using default threshold values that

are assigned by Logiscope.

 50

Moreover, a class, labeled as CInt96 in Power-Grab project, has been excluded from

the CBO measurement, since, this class actually has not been designed to be a class, it

is indeed a type like integer, but it has been extended to manage 12 bytes.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14

WMC

Figure 20 - Classes that have high WMC values for Power-Grab Project

 51

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

CBO

Figure 21 - Classes that have high CBO values for Power-Grab Project

3.4.2.3. Phase Three: Hatching Design Pattern(s)

First of all, as a refactoring decision, classes that have WMC and CBO metric values

above non-acceptable default threshold values, mentioned in section 3.4.2.2., will be

refactored first. In other words, classes that are labeled as 9 to 14 in Figure 20, and

labeled as 9 to 24 in Figure 21 have superior priority among other classes.

Applied design patterns to Power-Grab project are given below:

• Façade Pattern:

o The class, labeled as 24 in Power-Grab, is a mediator like class. That is

it handles user events, and performs some application specific

operations. This pattern isolates this class from application specific

classes, which will reduce the CBO value for this error-prone class.

• State Pattern:

 52

o This pattern reduces the complexity of a class that has different state and

behaviors. Therefore, State pattern reduces WMC value, but slightly

increases CBO value. Since, this pattern introduces new associations to

the class, where it is being applied.

• Singleton Pattern:

o Extern or global classes have been transformed into “Singletons”, and

they have been associated with Façade pattern. Thus, these global

classes are abstracted from other semantic classes. But, the effect of this

pattern is minor, and will not be evaluated as stated in chapter 2.

3.4.2.4. Phase Four: Applying related pattern(s)

State pattern has applied to CTaskAgent class in the project. Also, this pattern has

introduced five new classes. Figure 22 displays the associations between these classes.

CT askA gentStopping

CT askA gentState

CT askA gentRunningCT askA gentShutDown CT askA gentIdle

CT askA gent 1

Figure 22 - CTaskAgent Class Relations after State Pattern Applied

Moreover, this pattern breaks encapsulation in CTaskAgent class. Since, CTaskAgent

class has “friend” type inclusions with subclasses of CTaskAgentState. Therefore,

these classes can access private member attributes and methods of CTaskAgent class.

Moreover, State pattern only affects the metric values of CTaskAgent class. Since,

other classes that are inserted to the project to realize this pattern are isolated from

other project classes. That is to say only CTaskAgent class has relations with them.

 53

Other pattern that has been implemented is Façade pattern. This pattern has introduced

only one class, which is named as ApplicationEngine. This façade class isolates user

interface classes from semantic classes and vice versa. But, refactoring with Façade

pattern took so much time to figure out relations and implement them. Lots of code and

class relation modifications have been made.

3.4.2.5. Phase Five: Re-measuring software

3.4.2.5.1. State Pattern Implementation

Below refactored project summary is given:

Project Summary:

• Classes: 54

• Files: 107

• Functions: 929

• Lines: 27179

Since, State pattern does only affect the class where it has been applied. Figure 23

displays metric values of the classes that are inserted to the project for realizing this

pattern.

 54

0,00

10,00

20,00

30,00

40,00

50,00

60,00

Average

Maximum

Minimum

Average 15,17 0,67 22,83 19,83 0,67 2,00 1,83 0,31

Maximum 30,00 1,00 24,00 51,00 4,00 3,00 4,00 0,57

Minimum 7,00 0,00 20,00 9,00 0,00 0,00 0,00 0,00

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 23 - Average, Maximum and Minimum Values of Thesis Metrics for State Pattern Case

after Refactorings

3.4.2.5.2. Façade Pattern Implementation

Below refactored project summary is given:

Project Summary:

• Classes: 50

• Files: 99

• Functions: 965

• Lines: 27782

 55

0

50

100

150

200

250

300

350

Average

Maximum

Minimum

Average 47,1 20,37 17,75 0 0 0 0

Maximum 336 0 87 144 2 0 0 0

Minimum 0 0 0 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 24 - Average, Maximum and Minimum Values of Thesis Metrics for Façade Pattern Case

after Refactorings

Figure 24 displays the new metric values after Façade pattern implementation for

Power-Grab project.

3.4.2.6. Phase Six: Comparisons and Interpretations

3.4.2.6.1. State Pattern Implementation

Figure 25 clearly indicates that State pattern refactoring for CTaskAgent class has

significantly reduced WMC and CBO values. Since, this pattern has separated intrinsic

state behavior from the class. Moreover, this refactoring has simplified CTaskAgent

class and reduced testing, maintainability efforts. Consequently, State pattern reduces

the error-proneness of a class, which has intrinsic state behavior.

 56

0

10

20

30

40

50

60

Before Refactoring

After Refactoring

Before Refactoring 54,00 0,00 19 19 0 0 0 0

After Refactoring 20,00 0,00 20,00 9,00 0,00 0,00 0,00 0,00

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 25 - Metric Values Comparisons for CTaskAgent Class

3.4.2.6.2. Façade Pattern Implementation

0

10

20

30

40

50

Af ter Refactoring

Before Refactoring

Af ter Refactoring 47,1 0 20,37 17,75 0,077 0 0 0

Before Refactoring 46,33 0,00 15,31 16,96 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 26 - Metric Values Comparisons for Façade Pattern Implementation

Façade pattern implementation unfortunately did not affected average metric values

positively, as can be seen in Figure 26. There are many reasons for this result. Most

important of them is that project source code was deteriorated and classes were highly-

coupled with each other. Therefore, Façade pattern refactoring did not produce enough

 57

improvements. Moreover, code complexity, time limitations and bad design of project

source code made ApplicationEngine façade class highly coupled and complex.

3.4.3. Case 3: Mediator Pattern

Source codes investigated under cases 3 through 13 are synthetic. In other words, all

the object relations and project code are synthetically arranged within the scope of this

study to see the effect of relevant patterns on software error-proneness related metrics.

3.4.3.1. Phase One: OO Metrics Measurement of Overall Project

Unrefactored project summary is given below:

Project Summary:

• Classes: 17

• Files: 38

• Functions: 150

• Lines: 3310

3.4.3.2. Phase Two: Determining Error Prone Modules

As previously stated, in this phase, error-prone classes are detected. According to

Figure 27 and 28, average and maximum values of CBO metric have relatively high

values as expected. Moreover, in this case, the primary objective is to observe the

fluctuation on the CBO metric after refactorings has been made.

 58

0

5

10

15

20

25

30

35

Average

Maximum

Minimum

Average 11,353 0,4706 12,059 8,2941 0,4706 1,4375 1,2353 0,1814

Maximum 34 1 26 25 2 12 5 0,5

Minimum 2 0 4 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 27 - Average, Maximum and Minimum Values of Thesis Metrics for Mediator Pattern Case

Alarm

Button

Console

Display

LCD

CriticalAlarm EngineInformationalAlarm
PowerSource

Speaker

SystemMessage

TemperatureSensor VoltageSensor

Sensor SensorState

RunningSensorState

IdleSensorState

*

1

1 1
1

1

1

1

1
1

1

1 <<Friend>>

1

1

1

Figure 28 - Design of Mediator Case before Refactorings

3.4.3.3. Phase Three: Hatching Design Pattern(s)

As stated in 3.4.3.2, in this case, project classes has intense relations among

themselves, which is detected after evaluating CBO metric values and remedy for this

problem, defined by CBO, is to apply mediator pattern.

 59

• Mediator Pattern:

This pattern helps developer to centralize functionality that doesn't belong in any one of

the semantic classes. Also, implementation of this pattern provides semantic classes

communicate over this mediator class. Therefore, this pattern assists developer to

reduce coupling between many classes, where functionality is embedded. But, on the

other hand, mediator class will have a high CBO, since it will know and regulates all

other semantic classes.

Figure 29 shows the CBO values of all project classes before refactoring.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CBO

CBO

Figure 29 - CBO Values for Classes

3.4.3.4. Phase Four: Applying related pattern(s)

Implementation of Mediator pattern has introduced 2 interface classes and a concrete

class that is the “Mediator” to the project, as Figure 30 shows. The classes that send

events or messages to others have been abstracted to reduce the mediator coupling.

Moreover, all one-to-one and one-to-many relations have been transferred to the

 60

mediator, class. Finally, some of the semantic code has also been transferred to the

mediator class.

Button

CriticalAlarm

Display

Engine

EventDispatcher

IdleSensorState

InformationalAlarm

ISystemDirector

RunningSensorState

Sensor

Speaker

SystemEventDirector

TemperatureSensor

VoltageSensor

SensorState

PowerSource

Alarm

SystemMessage

Console
LCD

1
<<Friend>>

1

1

1

1

*

1

*

1

Figure 30 - Design of Mediator Case after Refactorings

3.4.3.5. Phase Five: Re-measuring software

Below refactored project summary is given:

Project Summary:

• Classes: 20

• Files: 44

• Functions: 130

• Lines: 3310

 61

0

10

20

30

40

50

60

70

Average

Maximum

Minimum

Average 8,55 0,85 10,8 5,15 0,65 2,5 1,15 0,288

Maximum 63 2 34 46 4 21 5 1,429

Minimum 2 0 3 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 31 – Average, Maximum and Minimum Values of Thesis Metrics for Mediator Pattern

Case after Refactoring

Figure 31 displays metric values after Mediator pattern refactoring.

3.4.3.6. Phase Six: Comparisons and Interpretations

0

5

10

15

20

25

30

35

40

45

50

Average Maximum Minimum

CBO

After Refactoring

Before Refactoring

Figure 32 - Variations in Average, Maximum and Minimum Values of CBO

 62

0

20
40
60
80

100
120
140
160

Sum

CBO

Af ter Refactoring

Before Refactoring

Figure 33 - Variation in Sum Value of CBO

Figure 32 and 33 clearly indicate that “Mediator” has reduced average CBO value

approximately 38% and reduced sum value of CBO approximately 27%.

To sum up, “Mediator” moderates CBO to lower values as expected. But, as a side

effect, this pattern introduces new mediator class that has generally high CBO value.

This side effect, of course, is undesirable, but this pattern reduces total CBO value and

concentrates it in one or more classes. This concentration helps developer to locate and

solve the problem in some cases.

3.4.4. Case 4: Chain of Responsibility Pattern

3.4.4.1. Phase One: OO Metrics Measurement of Overall Project

Unrefactored project summary is given below:

Project Summary:

• Classes: 8

• Files: 20

• Functions: 39

 63

• Lines: 1190

0

5

10

15

20

25

Average

Maximum

Minimum

Average 6,375 0,625 7,875 3,25 0,625 0 0 0

Maximum 22 1 9 21 5 0 0 0

Minimum 3 0 5 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 34 - Average, Maximum and Minimum Values of Thesis Metrics for Chain of

Responsibility Pattern Case before Refactorings

3.4.4.2. Phase Two: Determining Error Prone Modules

Figure 34 does not clearly indicate the possibility that project code embraces any error-

prone classes; the main reason is that the code and relations are synthetically

constructed. But, in this case main interest is on a specific class. Many of the Chain of

Responsibility pattern refactorings will be made for observing and interpreting metric

fluctuations in this class. In addition, Figure 35 shows metric values for this class.

 64

0

5

10

15

20

25

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 35 - Metric Values for Sample Class

3.4.4.3. Phase Three: Hatching Design Pattern(s)

Aforementioned class, in its implementation, includes a code segment given in Listing

1.

This code segments includes nested if clauses and pointer to class instances, which

rises CBO and WMC values for the sample class, under investigation. Moreover, in the

method given in Listing 1, semantically, there is an implicit chain; hoops of chain are

bind by “for” loop, which is a mistake. Also, in “if” clauses, instances are checked for

their eligibility to change the given argument, which is another mistake. All the

instances should check their eligibility in their implementations.

Chain of Responsibility pattern solves the coding problems, just discussed. That is to

say this pattern adds flexibility to the code and reduces coupling between classes. But,

above code guarantees that given argument will be handled, on the other hand, Chain of

Responsibility pattern does not promises a proper handling.

 65

Listing 1 - Code Segment before Refactorings for Chain of Responsibility Case

3.4.4.4. Phase Four: Applying related pattern(s)

 66

Application of Chain of Responsibility pattern does not introduce new classes to the

project, if the all argument handlers have a common interface or an abstract class, but

requires code and relation (association, aggregation, and est.) changes for classes where

discussed problems occur. For example, after the implementation of Chain of

Responsibility pattern, code segment, given in Listing 1, transformed into the code

given in Listing 2.

Listing 2 - Code Segment after Refactorings for Chain of Responsibility Case

Another problem in the application of this pattern is the construction, modification,

destruction tasks of the chain. The basic solution is to use client class to perform these

tasks. But, if many clients use the same chain, another class should be added to the

project to perform these tasks, and stabilize the internal structure of chain.

3.4.4.5. Phase Five: Re-measuring software

Below refactored project summary is given:

Project Summary:

• Classes: 8

• Files: 20

• Functions: 47

• Lines: 1294

 67

0

2

4

6

8

10

12

14

Average

Maximum

Minimum

Average 7,375 0,625 12,25 3,125 0,625 0 0,625 0,156

Maximum 11 1 14 5 5 0 1 0,25

Minimum 6 0 8 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 36 - Average, Maximum and Minimum Values of Thesis Metrics for Chain of

Responsibility Case after Refactorings

Figure 36 displays new metric values after refactorings for Chain of Responsibility

case.

3.4.4.6. Phase Six: Comparisons and Interpretations

0

5

10

15

20

25

WMC DIT RFC CBO NOC NMA NMO SIX

Af ter Refactoring

Before Refactoring

Figure 37 - Metric Values Comparisons for Sample Class

 68

Figure 37 clearly shows that after the application of Chain of Responsibility pattern,

WMC and CBO values for sample class has 59% and 76% decreased respectively.

Also, there is a slight decrease in RFC value.

This graphic shows that this pattern helps designer to decrease high coupling and class

method complexity, if problem context is similar or same with the problem context

defined by Chain of Responsibility pattern.

0

2

4

6

8

10

12

14

Average Maximum Minimum

RFC

After Refactoring

Before Refactoring

Figure 38 – Average, Maximum and Minimum Values for RFC

On the other hand, Figure 38 shows that this pattern has significantly increased average

RFC value. As stated, in chapter 2, this metric mainly indicates test and debug

complexity for a class. This outcome mainly results from new relations and methods

that are created to realize Chain of Responsibility pattern.

To sum up, this pattern is a good remedy for high WMC and CBO values. But, as a

primary side effect, it increases RFC values in the set off classes, which are effected by

this pattern.

3.4.5. Case 5: Composite Pattern

 69

3.4.5.1. Phase One: OO Metrics Measurement of Overall Project

Unrefactored project summary is given below:

Project Summary:

• Classes: 4

• Files: 12

• Functions: 53

• Lines: 1018

0

10

20

30

40

50

60

70

80

Average

Maximum

Minimum

Average 30,75 0 19,75 20 0 0 0 0

Maximum 72 0 40 50 0 0 0 0

Minimum 17 0 13 10 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 39 - Average, Maximum and Minimum Values of Thesis Metrics for Composite Pattern

Case before Refactorings

3.4.5.2. Phase Two: Determining Error Prone Modules

As Figure 39 clearly shows that, the project classes are complex and highly coupled. As

expected, since design of this project was implemented to understand and to show the

 70

effects of Composite pattern, after refactorings. Figure 40 figure shows classes and the

relations among them.

Directory

*

File*

Executable*

ShortCut*

Figure 40 - Design of Composite Pattern Case before Refactorings

In this case, “Directory” class has one to many relations with the other class and uses

these links in its methods. This structure makes this class complex and highly coupled.

As a result, “Directory” class has a rotten design. Another point was omitted by the

designer that all the classes could have inherited from a common interface. Since, they

represent nodes in the file structure of an operating system.

3.4.5.3. Phase Three: Hatching Design Pattern(s)

Discussed design problems overlap with applicability context of the Composite pattern.

Therefore, this pattern is remedy for high WMC and CBO values in this case.

Composite pattern has below applicability characteristics [GOF98]:

• Clients to be able to ignore the difference between compositions of objects and

individual objects. Clients will treat all objects in the composite structure

uniformly.

• Represent part-whole hierarchies of objects

 71

3.4.5.4. Phase Four: Applying related pattern(s)

Composite pattern application has introduced a new interface class and has eliminated

three one-to-many relations. That design structure alteration reduced CBO values for

Directory class. However, after pattern implementation, these four classes have

inheritance relations. In detail, these relations have increased inheritance related

metrics, like DIT. Figure 41 shows refactored design for case 5.

FileSystemNode
«Interface»

Directory

*

Executable File ShortCut

Figure 41 - Design of Composite Pattern Case after Refactorings

3.4.5.5. Phase Five: Re-measuring software

Below refactored project summary is given:

Project Summary:

• Classes: 5

• Files: 14

• Functions: 44

• Lines: 970

 72

0

5

10

15

20

25

Average

Maximum

Minimum

Average 9,6 0,8 11 4,2 0,8 3,4 3,2 0,34706

Maximum 22 1 19 12 4 11 4 0,5

Minimum 2 0 6 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 42 - Average, Maximum and Minimum Values of Thesis Metrics for Composite Pattern

Case after Refactorings

Figure 42 shows new metric values after refactorings.

3.4.5.6. Phase Six: Comparisons and Interpretations

0

5

10

15

20

25

30

35

After Refactoring

Before Refactoring

After Refactoring 9,6 0,8 11 4,2 0,8 3,4 3,2 0,3471

Before Refactoring 30,75 0 19,75 20 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 43 - Average Value Comparisons of Thesis Metrics for Composite Pattern Case

 73

Primary objective of this synthetic code is to empirically show the effect of CBO

fluctuation after refactorings. Figure 43 clearly shows that application of Composite

pattern has reduced average CBO value approximately 79%. Moreover, Directory

class had higher CBO values than others, and below figure shows CBO and other

metric differences after and before refactorings in Directory class.

0

10

20

30

40

50

60

70

80

After Refactoring

Before Refactoring

After Refactoring 22 1 19 12 0 11 4 0,2353

Before Refactoring 72 0 40 50 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 44 - Metric Comparisons of Directory class after and before Refactorings

As can be seen from Figure 44, main effect of Composite pattern is on Directory class.

Since, it was misinterpreted and designed poorly. WMC, RFC, and CBO values of this

class have decreased approximately 69%, 53%, and 76% respectively. Composite

pattern has a significant impact on complexity related metrics. However, as a side

effect, inheritance related metrics has increased slightly. But, when compared with the

reduction in WMC, RFC, and CBO, increase in other metrics is inconsiderable.

3.4.6. Case 6: Strategy Pattern

 74

Strategy pattern has two aspects for this thesis. Firstly, this pattern eliminates

conditional statements. Secondly, Strategy pattern can be used as an alternative to

subclassing. Therefore, in this case, mentioned aspects have been evaluated separately.

3.4.6.1. Phase One: OO Metrics Measurements of Overall Projects

3.4.6.1.1. Conditional Statements Problem Aspect

Unrefactored project summary is given below:

Project Summary:

• Classes: 1

• Files: 2

• Functions: 14

• Lines: 402

As it can be seen from project summary, this aspect has one class and Figure 45 shows

its thesis metric values.

0

5

10

15

20

25

30

35

40

45

50

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 45 - Thesis Metrics for Strategy Pattern Case (Conditional Statements Aspect)

 75

3.4.6.1.2. Subclassing Alternative Aspect

Unrefactored project summary is given below:

Project Summary:

• Classes: 8

• Files: 20

• Functions: 42

• Lines: 1179

0

5

10

15

20

25

Average
Maximum
Minimum

Average 6 0,875 11,63 2,625 1,25 1,125 1,875 0,536

Maximum 9 2 22 5 3 5 5 1,429

Minimum 2 0 3 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 46 - Average, Maximum and Minimum Values of Thesis Metrics for Strategy Pattern

(Subclassing Alternative Aspect)

Figure 46 displays average, maximum, and minimum values of thesis metrics for
Strategy pattern in subclassing alternative aspects before refactorings.

3.4.6.2. Phase Two: Determining Error Prone Modules

3.4.6.2.1. Conditional Statements Problem Aspect

 76

Synthetic code of this project aspect has only one class, and this class was designed to

understand and observe the effect on Strategy pattern on this class.

3.4.6.2.2. Subclassing Alternative Aspect

Sensor

SysObject

TemperatureSensor DopplerSensor

Observable
«Interface»

VelocitySensor

Serializable
«Interface»

Subject
«Interface»

1

Figure 47 - Design of Subclassing Alternative Aspect before Refactorings

As Figure 47 displays, TemperatureSensor, VelocitySensor, and DopplerSensor

classes suffer from multiple inheritance. The outcome of this design is that these

classes have relatively high RFC, CBO, NMO values. To sum up, these three classes

pop up as error-prone modules.

Below table displays metric values of previously mentioned classes.

Table 1 - Metric Values of Sensor Classes

 DopplerSensor TemperatureSensor VelocitySensor

WMC 9 9 9

DIT 2 2 2

RFC 22 22 22

CBO 5 5 5

NOC 0 0 0

 77

NMA 0 0 0

NMO 5 5 5

SIX 0 0 0

3.4.6.3. Phase Three: Hatching Design Pattern(s)

3.4.6.3.1. Conditional Statements Problem Aspect

In this aspect, project code contains one class and this class includes different methods

and algorithms for sorting. To visualize class behavior, code segment in Listing 3 is

given.

Listing 3 - Code Segment before Refactorings for Strategy Pattern Case

As we know that the Strategy pattern offers an alternative to conditional statements for

selecting desired behavior [GOF98]. Therefore, Strategy pattern can abolish

 78

conditional statements and embedded algorithms from the implementation of error-

prone class.

3.4.6.3.2. Subclassing Alternative Aspect

Inheritance offers another way to support a variety of algorithms or behaviors. You can

subclass a Context class directly to give it different behaviors. Encapsulating the

algorithm in separate Strategy classes lets you vary the algorithm independently of its

context, making it easier to switch, understand, and extend [GOF98]. The importance

of previous sentence is that, in this aspect, Strategy pattern can transform serializing

and observing interfaces into strategies. This design modification or refactoring can

decrease inheritance related metrics, on the other hand, it will surely increase coupling

related metrics for some classes. In the succeeding parts, trade-off among them will be

discussed.

3.4.6.4. Phase Four: Applying related pattern(s)

3.4.6.4.1. Conditional Statements Problem Aspect

Sorter
SortingStrategy

«Interface»1

HeapSorting BubbleSorting MergeSorting ShellSorting QuickSorting

Figure 48 - Design of Strategy Pattern for Conditional Statements Aspect after Refactorings

Application of Strategy pattern, in this aspect, introduced six new classes to the project,

as Figure 48 indicates. All the algorithms have been abstracted by SortingStrategy

class. In addition, sorting algorithms have been transformed into concrete classes. To

 79

realize that pattern, Sorter class is now constructed with its selected strategy, which

introduced flexibility and extensibility to the software. However, a one-to-one shared

aggregation has been added between Sorter and its strategy. That association increases

coupling and complexity.

3.4.6.4.2. Subclassing Alternative Aspect

SysObject

Sensor

DopplerS ensorTem peratureS ensor

Veloci tySensor

ObservingStrategy
«Interfac e»1

Seria l izingStrategy
«Interface»1

Sim pleObserverStrategy

Fi leSeria l izeStrategy

Subject
«Interface»

1

Figure 49 - Design of Strategy Pattern for Subclassing Alternative Aspect after Refactorings

Observable and Serializable interfaces of sensor concrete classes have been

transformed into abstract strategy classes. As a consequence, two new concrete strategy

classes, SimpleObserverStrategy and FileSerializeStrategy, have been added to

software.

In the design, shown in Figure 49, inheritance relations changed into one-to-one

aggregations. This structure modification has solved multiple inheritance problems, and

inheritance behaviors have been transferred to strategies. But, this time client of these

sensor classes should have to know proper strategies. This side effect increases client

side coupling. Another drawback is the communication overhead, which means

 80

separation of context and behavior causes process delay due messaging between

objects.

3.4.6.5. Phase Five: Re-measuring software

3.4.6.5.1. Conditional Statements Problem Aspect

Refactored project summary is given below:

Project Summary:

• Classes: 7

• Files: 16

• Functions: 29

• Lines: 1064

0

2

4

6

8

10

12

Average

Maximum

Minimum

Average 8,5 0,667 5,833 1,5 0,833 1 0,667 0,167

Maximum 12 1 8 5 5 3 1 0,333

Minimum 2 0 3 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 50 - Average, Maximum and Minimum Values of Thesis Metrics for Conditional

Statements Problem Aspect

Figure 50 shows new metric values after refactorings for conditional statements

problem aspect.

 81

3.4.6.5.2. Subclassing Alternative Aspect

Refactored project summary is given below:

Project Summary:

• Classes: 10

• Files: 22

• Functions: 47

• Lines: 1379

0
2
4
6
8

10
12
14
16
18
20

Average
Maximum
Minimum

Average 5,5 0,9 10,5 2,1 0,6 1,1 1 0,36

Maximum 12 2 19 8 3 7 2 1

Minimum 2 0 3 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 51 - Average, Maximum and Minimum Values of Thesis Metrics for Subclassing

Alternative Aspect

Average, maximum and minimum values of thesis metrics after refactorings for

subclassing alternative aspect have been given in Figure 51.

3.4.6.6. Phase Six: Comparisons and Interpretations

3.4.6.6.1. Conditional Statements Problem Aspect

 82

As stated before, in this case, there was only one class, and its metric values have been

given in Figure 45. After applying Strategy pattern, design structure significantly

changed. As a result, all the complexity, concentrated on “Sorter” class, has been

distributed over strategy classes. But sum values of WMC, CBO, RFC and other

inheritance related metrics has increased.

0

5

10

15

20

25

30

35

40

45

50

WMC DIT RFC CBO NOC NMA NMO SIX

Af ter Refactoring

Before Refactoring

Figure 52 - Metric Comparisons of Sorter class after and before refactorings

Moreover, Figure 52 graphically reveals that application of Strategy pattern

significantly diminishes WMC and RFC values. But, as a side effect, this design

alteration increases CBO metric value. Since, implementation of this pattern

imperatively introduces aggregation relation between strategy and context.

3.4.6.6.2. Subclassing Alternative Aspect

 83

0

2

4

6

8

10

12

WMC DIT RFC CBO NOC NMA NMO SIX

After Refactoring
Before Refactoring

Figure 53 - Comparison of Average Values of Thesis Metrics for Subclassing Alternative Aspect in

Strategy Pattern Case

Figure 53 points out that all the metrics have been affected by the application of

Strategy pattern. Percentage of average metric value alterations for each metric are

given in the below figure.

-60

-50

-40

-30

-20

-10

0

10

WMC DIT RFC CBO NOC NMA NMO SIX

Percentage of Alteration

Figure 54 - Average Metric Value Alterations for Subclassing Alternative Aspect in Strategy

Pattern Case

 84

Figure 54 indicates that this pattern has a considerable affect on NOC metric value as

expected. Since, it was embedded to the design to eliminate excessive inheritance

relations. This result empirically shows that this pattern is successful for that purpose.

In addition, NMO that is another inheritance related metric, has reduced significantly.

As stated in chapter 2, a large number of overridden methods indicate a design problem

[LK94]. This pattern is capable of partially eliminating this bad design smell and

reducing the probability of error-prone classes among software. Another important

result is 20% drop in average CBO metric value. This fluctuation shows that

complexity of software has reduced on average.

3.4.7. Case 7: Template Method Pattern

3.4.7.1. Phase One: OO Metrics Measurement of Overall Project

Unrefactored project summary is given below:

Project Summary:

• Classes: 4

• Files: 12

• Functions: 13

• Lines: 651

 85

0

2

4

6

8

10

Average

Maximum

Minimum

Average 7,75 1 5,5 1 1 0 0,75 0,333

Maximum 10 2 9 2 2 0 1 0,667

Minimum 6 0 3 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 55 - Average, Maximum and Minimum Values of Thesis Metrics for Template Method

Pattern

3.4.7.2. Phase Two: Determining Error Prone Modules

Synthetic code of this project has four classes, and these classes were designed to

understand and observe the effect on Template Method pattern on their metric values.

Figure 55 may not display any indicators for error-prone classes, but source code of the

project contains design faults. There are four classes, shown in Figure 56, and they

implement four different variants of bubble sorting algorithm. The problem is that these

classes implement invariant and variant parts of the algorithm in their own

implementation code. This problem is the motivation for the application of Template

Method pattern.

 86

BubbleSorter

FastBubbleSorter BiBubbleSorter

FastBiBubbleSorter

Figure 56 - Design of Template Method Pattern Case before Refactoring

3.4.7.3. Phase Three: Hatching Design Pattern(s)

Template Method pattern is the generalized solution for the problem, described in

3.4.7.2. Moreover, [GOF98] states that one of the applicability of this pattern is that

designer should implement the invariant parts of an algorithm once and leave it up to

subclasses to implement the behavior that can vary. Therefore, Template Method

perfectly suits for refactoring of this project.

3.4.7.4. Phase Four: Applying related pattern(s)

Template Method implementation does not introduce new classes, but brings in new

methods. These methods are the variant and invariant parts of the bubble sorting

algorithm for each class. Details of the variant and invariant parts of the

aforementioned algorithm are out of the scope.

As stated, this pattern does not introduce new classes and also new class relations. This

feature implies that coupling and inheritance related metrics should not alter after

refactorings.

3.4.7.5. Phase Five: Re-measuring software

 87

Refactored project summary is given below:

Project Summary:

• Classes: 4

• Files: 12

• Functions: 22

• Lines: 715

0

2

4

6

8

10

12

14

16

Average
Maximum
Minimum

Average 8,25 1 10,5 2,5 1 0,5 1,5 0,475

Maximum 10 2 15 6 2 2 3 1,2

Minimum 7 0 7 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 57 - Average, Maximum and Minimum Values of Thesis Metrics for Template Method

Pattern after Refactorings

Figure 57 shows new metric values after refactorings for Template Method pattern

case.

3.4.7.6. Phase Six: Comparisons and Interpretations

 88

0

2

4

6

8

10

12

WMC DIT RFC CBO NOC NMA NMO SIX

After Refactoring
Before Refactoring

Figure 58 - Comparison of Average Values of Thesis Metrics for Template Method Pattern

Figure 58 shows that after the Template Method implementation, average values of all

metrics have increased, except DIT and NOC. Since, this pattern does not change

inheritance tree structure. In addition, average RFC and CBO metric values have

increased significantly. The main reason for CBO increase is multiple inheritances in

FastBiBubbleSorter. Since, this class, after refactoring in its methods, used different

super classes for the implementation of some invariant parts. But, boost in RFC is the

direct result of Template Method refactoring. Because, this pattern has divided

algorithm into parts and positioned them to different methods in these classes.

To sum up, this increase in metric values supports the idea that Template Method

pattern does not bring any improvements in project. But, the primary objective for this

case is to separate variant and invariants parts of the algorithm. Consequently, that

objective has been achieved, this design became more flexible. But, designer does not

get any measurable improvement from the perspective of software error-proneness.

3.4.8. Case 8: Command Pattern

3.4.8.1. Phase One: OO Metrics Measurement of Overall Project

 89

Unrefactored project summary is given below:

Project Summary:

• Classes: 4

• Files: 10

• Functions: 29

• Lines: 636

0

5

10

15

20

Average

Maximum

Minimum

Average 7,75 0 7 2,25 0 0 0 0

Maximum 19 0 16 9 0 0 0 0

Minimum 4 0 4 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 59 - Average, Maximum and Minimum Values of Thesis Metrics for Command Pattern

Case before Refactorings

Figure 59 shows metric values before refactorings for Command pattern case.

3.4.8.2. Phase Two: Determining Error Prone Modules

 90

SystemInvoker

Engine1

Fan

1

Turbo 1

Figure 60 - Design of Command Pattern Case before Refactorings

In this case, SystemInvoker class, shown in Figure 60, is tightly coupled with other

functional classes and consequently has higher CBO value than any other class in the

project. In addition, this class invokes operations to other classes that know how to

execute them. These features make this class error-prone and relatively complex.

3.4.8.3. Phase Three: Hatching Design Pattern(s)

Command pattern decouples the object that invokes the operation from the one that

knows how to perform it [GOF98]. Therefore, this pattern is the convenient solution for

the problem that is described in section 3.4.8.2.

3.4.8.4. Phase Four: Applying related pattern(s)

Figure 61 indicates that application of this pattern to the project introduced six concrete

classes and one interface class. All the operations that have been invoked by

SystemInvoker before refactorings have been shifted into command classes.

Therefore, SystemInvoker class has been isolated from the functionality.

 91

Command
«Interf ac e»

EngineStartCmd EngineStopCmd FanOnCmd FanOffCmd TurboIgniteCmd TurboShutDow nCmd

Engine

11

Fan

11

Turbo

1 1

SystemInvoker

* m_id

Figure 61 - Design of Command Pattern Case after Refactorings

On the other hand, this pattern introduced new inheritance hierarchies and new

associations to software. This side effect increases the total CBO and inheritance

related metric values.

Moreover, instead of direct relations to command classes, an “id” has been given to

these classes and SystemInvoker instances should have to be initialized with these

relations in its internal map data structure before the application runs.

3.4.8.5. Phase Five: Re-measuring software

Refactored project summary is given below:

Project Summary:

• Classes: 11

• Files: 26

• Functions: 64

• Lines: 1685

 92

0

2

4

6

8

10

12

14

16

18

Average

Maximum

Minimum

Average 6,364 0,545 7,909 2,909 0,545 0,545 0,545 0,109

Maximum 17 1 16 8 6 1 1 0,2

Minimum 4 0 4 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 62 - Average, Maximum and Minimum Values of Thesis Metrics for Command Pattern

Case after Refactorings

Figure 62 displays new metric values after refactorings for Command pattern case.

3.4.8.6. Phase Six: Comparisons and Interpretations

As can be seen in Figure 63, Command pattern did not bring expected improvement in

software. In contrast, Command pattern refactoring has increased all average metric

values except for WMC. But, primary objective was to reduce CBO and WMC values

for SystemInvoker class. Figure 64 shows the fluctuations in metrics for this class.

 93

0

1

2

3

4

5

6

7

8

WMC DIT RFC CBO NOC NMA NMO SIX

After Refactoring

Before Refactoring

Figure 63 - Comparison of Average Values of Thesis Metrics for Command Pattern

0

2

4

6

8

10

12

14

16

18

20

WMC DIT RFC CBO NOC NMA NMO SIX

Af ter Refactoring

Before Refactoring

Figure 64 - Comparison of Metric Values of SystemInvoker Class after and before Refactorings

Moreover, Figure 64 indicates that this pattern did not bring any significant

improvement in SystemInvoker class, either. The main reason is that after refactorings

this class had an embedded map data structure and its management methods. These

mentioned methods and member variable increased CBO, RFC, and WMC values.

 94

To sum up, Command pattern increased overall complexity and coupling between

classes. But, on the other hand, from the view of software maintainability and

reusability perspective this pattern isolated functionality and invocation, which is a

desired design improvement.

3.4.9. Case 9: Visitor Pattern

Visitor pattern has two aspects for this thesis. One of them is adding tools aspect and

the other is structure traversing aspect. In this case, mentioned aspects have been

evaluated separately.

3.4.9.1. Phase One: OO Metrics Measurement of Overall Project

3.4.9.1.1. Adding Tools Aspect

Unrefactored project summary is given below:

Project Summary:

• Classes: 7

• Files: 14

• Functions: 30

• Lines: 802

 95

0

1

2

3

4

5

6

7

8

9

10

Average
Maximum
Minimum

Average 4,286 1,429 8,857 2 0,857 1,714 2,286 0,762

Maximum 6 2 10 5 2 2 4 1

Minimum 2 0 6 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 65 - Average, Maximum and Minimum Values of Thesis Metrics for Adding Tools Aspect

Case before Refactorings

Figure 65 displays metric values before refactorings for adding tools aspect in Visitor

pattern case.

3.4.9.1.2. Structure Traversing Aspect

Unrefactored project summary is given below:

Project Summary:

• Classes: 6

• Files: 14

• Functions: 56

• Lines: 1133

 96

0

2

4

6

8

10

12

14

Average
Maximum
Minimum

Average 10,5 0,833 11,17 7,5 0,833 3,667 2,5 0,244

Maximum 13 1 13 11 5 5 3 0,375

Minimum 3 0 5 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 66 - Average, Maximum and Minimum Values of Thesis Metrics for Structure Traversing

Aspect Case before Refactorings

Figure 66 displays metric values before refactorings for structure traversing aspect in

Visitor pattern case.

3.4.9.2. Phase Two: Determining Error Prone Modules

3.4.9.2.1. Adding Tools Aspect

Modem
«Interface»

XModem YModem

Unix XModem WinXModem Unix YModem WinY Modem

Figure 67 - Design of Adding Tools Aspect before Refactorings

Figure 67 shows that in the above hierarchy, adding new operations is not an easy task.

Defining a new operation in Modem interface penetrates over other classes, and also

 97

pollutes interface. For example, in this case, there are related and unrelated operations

in the modem interface. These unrelated operations should be separated from the

interface. But, in this case, these operations are implemented in leaf classes. The result

of this solution is the increase in DIT and complexity of the inheritance structure.

Moreover, another outcome is the excessive subclassing.

Therefore, modifications on Modem interface are hard to perform. Moreover, if new

requirements arrive, modifications will cause waste of the time and increased

complexity in the inheritance tree structure. To be brief, this design needs refactoring to

remove unrelated methods pollution and to make it more flexible.

3.4.9.2.2. Structure Traversing Aspect

Expression
«Interface»

ConstantSum

1

1

Multiply

1

1

Divide

11

Minus

11

Figure 68 - Design of Structure Traversing Aspect before Refactorings

For the above case, same problems are valid, which are adding new tools and interface

pollution. Moreover, in Figure 68, concrete classes actually are nodes in the expression,

but they are also responsible for the computational algorithms. This is the problem for

the above design. Therefore, leaf classes should be refactored, and algorithms should

be separated from them. An Iterator approach can not solve described problem, since

Iterators do not have the ability of mounting up the evaluation results after each

expression performed in this case.

 98

3.4.9.3. Phase Three: Hatching Design Pattern(s)

According to [GOF98], Visitor pattern has below consequences:

• Visitors can accumulate state as they visit each element in the object structure.

Without a visitor, this state would be passed as extra arguments to the

operations that perform the traversal, or they might appear as global variables.

• A visitor gathers related operations and separates unrelated ones.

These consequences are the solution context for the problems described in 3.4.9.2.1 and

3.4.9.2.2. Therefore, Visitor pattern has been applied to these aspects for refactoring

purposes.

3.4.9.4. Phase Four: Applying related pattern(s)

3.4.9.4.1. Adding Tools Aspect

M odem
«Interface»

XM odem YM odem

M odem Visi tor
«Interface»

UnixConfiguratorV isi tor
WinConfiguratorV isi tor

UnixDiagnoseVisi tor WinDiagnoseVisi tor

Figure 69 - Design of Visitor Pattern for Adding Tools Aspect after Refactorings

As can be seen from Figure 69, application of Visitor pattern for this aspect eliminated

four leaf classes whose superclass classes were XModem and YModem. But, this

modification introduced four concrete classes and one interface class to the project.

These four classes are implementation of interface polluting methods of Modem

interface for different operating systems.

 99

3.4.9.4.2. Structure Traversing Aspect

Ex pressionV isitor
«Interface»

Ev aluateVisitor PrintV is itor SerializeVisitor
Cons tant

Div ide

Minus

Multiply

Sum

Ex pression
«Interface»11

1

1 1 11

1

Figure 70 - Design of Visitor Pattern for Structure Traversing Aspect after Refactorings

Figure 70 shows that application of this pattern for this aspect did not alter the

inheritance structure but introduced three concrete classes and one interface class to

software, and also eliminated interface pollution for Expression class. But, also this

refactoring managed to separate algorithms and traversing concepts.

3.4.9.5. Phase Five: Re-measuring software

3.4.9.5.1. Adding Tools Aspect

Refactored project summary is given below:

Project Summary:

• Classes: 8

• Files: 16

• Functions: 38

 100

• Lines: 1023

0

1

2

3

4

5

6

7

8

Average

Maximum

Minimum

Average 4,75 0,75 6,875 3,25 0,75 2,5 1,75 0,317

Maximum 6 1 8 5 4 4 3 0,6

Minimum 2 0 4 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 71 - Average, Maximum and Minimum Values of Thesis Metrics for Adding Tools Aspect

Case after Refactorings

Figure 71 displays new metric values of metrics after refactorings for adding tools

aspect in Visitor pattern.

3.4.9.5.2. Structure Traversing Aspect

Refactored project summary is given below:

Project Summary:

• Classes: 10

• Files: 22

• Functions: 76

• Lines: 1771

 101

0

2

4

6

8

10

12

14

16

Average
Maximum
Minimum

Average 8,3 0,8 9,7 9,3 0,8 5,1 2 0,218

Maximum 11 1 13 16 5 8 5 0,556

Minimum 2 0 3 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 72 - Average, Maximum and Minimum Values of Thesis Metrics for Structure Traversing

Aspect Case after Refactorings

Figure 72 displays new metric values of metrics after refactorings for structure

traversing aspect in Visitor pattern.

3.4.9.6. Phase Six: Comparisons and Interpretations

3.4.9.6.1. Adding Tools Aspect

 102

0

1

2

3

4

5

6

7

8

9

WMC DIT RFC CBO NOC NMA NMO SIX

After Refactoring

Before Refactoring

Figure 73 - Comparison of Average Values of Thesis Metrics for Adding Tools Aspect

Implementation of Visitor pattern has significantly reduced average DIT and SIX

metric values, as can be seen in Figure 73. This result indicates the fact that Visitor

pattern is a remedy for excessive subclassing and adding tools to a solid interface

problem. Moreover, the main objective was to achieve to add new behaviors to an

existing structure without polluting interface and hierarchy tree. Also, decrease in SIX

metric shows that more classes in the design are in better positions in inheritance tree

structure.

On the other hand, Visitor pattern causes design to be more complex, as CBO and

WMC metric scores indicates. This is the trade-off that designer should decide. But,

this pattern for this case eliminated poor design and prevented future design corruption.

3.4.9.6.2. Structure Traversing Aspect

 103

0

2

4

6

8

10

12

WMC DIT RFC CBO NOC NMA NMO SIX

After Refactoring
Before Refactoring

Figure 74 - Comparison of Average Values of Thesis Metrics for Structure Traversing Aspect

Figure 74 graphically reveals that effect of this pattern has distributed over complexity

and inheritance related metrics. It has reduced class complexity but increased class

coupling. In addition, Visitor pattern has minor effects for average DIT and NOC. But,

effect of this pattern on other inheritance related metric is more influential. Because,

traversing and computational algorithms are separated, and new classes had to override

less methods. But, as a side effect more methods were added to provide same

functionality.

To sum up, for this case, this pattern completed desired objectives and provided

flexibility to the design. Moreover, Visitor pattern positively affected software error-

proneness.

3.4.10. Case 10: Observer Pattern

3.4.10.1. Phase One: OO Metrics Measurement of Overall Project

Unrefactored project summary is given below:

 104

Project Summary:

• Classes: 7

• Files: 18

• Functions: 60

• Lines: 1360

0

2

4

6

8

10

12

14

16

18

20

WMC DIT RFC CBO NOC NMA NMO SIX

Average

Maximum

Minimum

Figure 75 - Average, Maximum and Minimum Values of Thesis Metrics for Observer Pattern Case

before Refactorings

Figure 75 displays metric values before refactorings for Observer pattern case.

3.4.10.2. Phase Two: Determining Error Prone Modules

 105

Scheduler DisplayM anager

Tem peratureS ensor

1

1

Veloci tySensor

1

1

Barom etricSensor

1

1

Alarm M anager

1 11

Counter

1

Figure 76 - Design of Observer Pattern Case before Refactorings

In this case, classes are highly coupled with each other, as can be seen in Figure 76.

Moreover, objects notify each other directly. In other words, when an event or behavior

change occurs in an object, this object calls related methods of its associated classes.

This design makes classes highly coupled, resisted to modifications and error-prone.

Moreover, direction of the coupling is more critical. Since, less modification-prone

classes are associated with more modification-prone ones. This direction problem

limits reuse and changeability.

3.4.10.3. Phase Three: Hatching Design Pattern(s)

Design problem described in 3.4.10.2 mainly results from object notification

requirements. Every event dispatcher object specifically knows the other associated

class to notify them. But, they know too much. Designer should implement an

abstraction to solve high coupling problem. The solution seems to be Observer pattern.

Because, this pattern has the applicability that is given below:

 106

• When an object should be able to notify other objects without making

assumptions about who these objects are. In other words, you don't want

these objects tightly coupled [GOF98].

3.4.10.4. Phase Four: Applying related pattern(s)

Subject Observer
«Interfac e»

*

Barom etricSensor

Tem peratureS ensor

Veloci tySensor

Alarm M anager

1

1

1

DisplayM anager

1

1

1

Counter

Scheduler

1

SchedulerObserver

1

1

1

1

Figure 77 - Design of Observer Pattern Case after Refactorings

Figure 77 shows that refactoring with Observer pattern has introduced two interfaces,

which are Observer and Subject classes. These interfaces hide the details of

notification, and change the direction of association. Moreover, between Subject and

Observer interfaces, there is one-to-many relation to assure that one event dispatcher

object or subject can notify many others that have to inherit from Observer class.

In addition, to prevent multiple inheritances for sensor classes, SchedulerObserver

class has been added to design. This class notifies others that have been notified by

Scheduler before.

 107

3.4.10.5. Phase Five: Re-measuring software

Refactored project summary is given below:

Project Summary:

• Classes: 10

• Files: 24

• Functions: 79

• Lines: 1846

0

5

10

15

20

25

Average

Maximum

Minimum

Average 10,3 0,8 12,3 5,5 0,8 5,5 0,4 0,03

Maximum 22 1 15 15 4 11 1 0,11

Minimum 2 0 3 0 0 0 0 0

WM
C

DIT RFC CBO NOC NM
A

NM
O

SIX

Figure 78 - Average, Maximum and Minimum Values of Thesis Metrics for Observer Pattern Case

after Refactorings

Figure 78 displays new metric values after refactorings for Observer pattern case.

3.4.10.6. Phase Six: Comparisons and Interpretations

 108

Figure 79 clearly shows that Observer pattern has increased all the error-proneness

metrics of the project. This result empirically indicates that this pattern eliminates

association direction problem, but increases complexity and error-proneness probability

of the classes. However, if Mediator pattern had been implemented together with

Observer pattern for this case, increase in complexity and error-proneness would have

been lower as showed in Case 3.

0

2

4

6

8

10

12

14

WMC DIT RFC CBO NOC NMA NMO SIX

After Refactoring

Before Refactoring

Figure 79 - Comparison of Average Values of Thesis Metrics for Observer Pattern

To sum up, Observer pattern is not a remedy for high coupling, alone. If designer want

to decrease high coupling and change the direction of association between classes

where notifications are present, he/she should use Mediator with Observer pattern.

3.4.11. Case 11: Decorator Pattern

3.4.11.1. Phase One: OO Metrics Measurement of Overall Project

Unrefactored project summary is given below:

 109

Project Summary:

• Classes: 9

• Files: 20

• Functions: 38

• Lines: 1090

0

2

4

6

8

10

12

14

Average

Maximum

Minimum

Average 4,333 1,111 8,889 2,889 1,111 0,667 1,778 0,593

Maximum 8 2 13 6 2 1 4 1

Minimum 2 0 3 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 80 - Average, Maximum and Minimum Values of Thesis Metrics for Decorator Pattern

Case before Refactorings

Figure 80 displays metric values before refactorings for Decorator pattern case.

3.4.11.2. Phase Two: Determining Error Prone Modules

 110

Stream
«In terf ace»

Fi leStream MemoryStream
Compres sor

«In terf ace»
Encryptor
«In terf ace»

Fi leStreamEncryptor MemoryStreamCom pressorFi leStreamCom pres sor MemoryStreamEncryptor

Figure 81 - Design of Decorator Pattern Case before Refactorings

For this case, error-prone modules are the leaf classes of the design, shown in Figure

81. These four classes have multiple interfaces that cause relatively high CBO, RFC

and DIT metric values for these leaf classes.

3.4.11.3. Phase Three: Hatching Design Pattern(s)

The problem for this design is excessive subclassing and multiple inheritances.

Moreover, adding every combination for compression and encryption is unfeasible and

causes bursts in error-proneness related metrics. However, there is a solution for this

excessive subclassing problem. Solution is Decorator pattern. Since, in [GOF98],

Decorator pattern has below applicability:

• When extension by subclassing is impractical. Sometimes a large number of

independent extensions are possible and would produce an explosion of

subclasses to support every combination.

3.4.11.4. Phase Four: Applying related pattern(s)

 111

Stream
«In terf ace»

Fi leStream MemoryStream StreamDecorator

1

EncryptorStream Compres sorStream

Figure 82 - Design of Decorator Pattern Case after Refactorings

Figure 82 reveals that refactoring with Decorator pattern has eliminated four leaf

classes plus Compressor and Encryptor interfaces. However, this pattern has

introduced StreamDecorator, EncryptorStream, and CompressorStream classes.

These three classes confirmed Decorator pattern. Also, they provided designer to

implement all possible compression and encryption combinations over stream classes,

elegantly.

Moreover, refactoring with Decorator pattern has eradicated excessive subclassing and

multiple inheritances problems. Moreover, this pattern has brought software flexibility

and reusability. However, StreamDecorator inherits from Stream interface, but it is

much different from the other stream classes; therefore designer shouldn't rely on

object identity when he/she uses decorators [GOF98].

3.4.11.5. Phase Five: Re-measuring software

Refactored project summary is given below:

Project Summary:

• Classes: 6

• Files: 14

 112

• Functions: 35

• Lines: 858

0

2

4

6

8

10

12

14

Average

Maximum

Minimum

Average 6,167 1,167 10,17 3 0,833 1,667 3,167 0,704

Maximum 10 2 14 6 3 4 5 1

Minimum 4 0 6 1 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 83 - Average, Maximum and Minimum Values of Thesis Metrics for Decorator Pattern

Case after Refactorings

Figure 83 shows metric values after refactorings for Decorator pattern case.

3.4.11.6. Phase Six: Comparisons and Interpretations

0

10

20

30

40

50

60

70

80

WMC DIT RFC CBO NOC NMA NMO SIX

After Refactoring
Before Refactoring

Figure 84 - Comparison of Sum Values of Thesis Metrics for Decorator Pattern

 113

Figure 84 graphically exposes that refactoring with Decorator pattern has significantly

reduced sum values of DIT, RFC, CBO, and NOC. This reduction was the primary

objective. However, increases in sum values of NMA, and NMO are undesired and

caused as a side effect by reduction in DIT and RFC. Also, this pattern has reduced

total number of classes in the project. Since, Decorator pattern eliminated unnecessary

leaf classes. But, this reduction caused boost in average class metrics except for NOC

as Figure 85 indicates.

0

2

4

6

8

10

12

WMC DIT RFC CBO NOC NMA NMO SIX

After Refactoring
Before Refactoring

Figure 85 - Comparison of Average Values of Thesis Metrics for Decorator Pattern

In conclusion, Decorator pattern has procured necessary improvement for the project. It

prevented excessive subclassing in the design. Moreover, increases in average values of

NMO, NMA and SIX were inevitable. Since, after refactorings number of classes has

decreased and new design had to provide same functionality. In brief, the main result of

this case is that Decorator pattern has brought improvement in design and also

positively effected software error-proneness.

3.4.12. Case 12: Memento Pattern

3.4.12.1. Phase One: OO Metrics Measurement of Overall Project

 114

Unrefactored project summary is given below:

Project Summary:

• Classes: 9

• Files: 20

• Functions: 56

• Lines: 1383

0

2

4

6

8

10

12

14

16

Average

Maximum

Minimum

Average 6,667 0,556 8,556 8,111 0,556 1,333 1,444 0,242

Maximum 14 1 12 16 3 4 3 0,5

Minimum 3 0 3 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 86 - Average, Maximum and Minimum Values of Thesis Metrics for Memento Pattern Case

before Refactorings

Figure 86 shows metric values before refactorings for Memento pattern case.

3.4.12.2. Phase Two: Determining Error Prone Modules

The problem for this design originates from RobotMovementController class. This

class saves its state when a command executes. State management requirement makes

 115

RobotMovementController class complex and error-prone. In other words, this class

has relatively high WMC, CBO and RFC values when compared with others.

RobotMovem entControl ler
«Singleton» RobotState1

ActiveRobotState IdleR obotState

Des tination

ICom m and
«Interf ac e»

1

ActivateCm d Sus pendCm d MoveC om m and 1

Figure 87 - Design of Memento Pattern Case before Refactorings

As Figure 87 shows, State pattern was also used for reducing complexity of

RobotMovementController class. But, requirement for saving internal state caused

management problems for this class. Therefore, weak chain of this design is

RobotMovemmentController class.

3.4.12.3. Phase Three: Hatching Design Pattern(s)

The described problem, in part 3.4.12.2, motivates the refactoring with Memento

pattern. Since, this pattern has below applicability [GOF98]:

• Snapshot of (some portion of) an object's state must be saved so that it can

be restored to that state later.

Memento pattern will simplify RobotMovementController class. Since, this class will

not be responsible of saving and managing its current state information. All these

responsibilities will be transferred and distributed to command classes.

 116

3.4.12.4. Phase Four: Applying related pattern(s)

RobotMovementController
«Singleton»

ControllerMemento RobotState
1

1

ICommand
«Interface»

1

1

ActivateCmd

ActiveRobotState

Destination

IdleRobotState

MoveCommand

1

SuspendCmd

Figure 88 - Design of Memento Pattern Case after Refactorings

Refactoring with Memento pattern has introduced a new class, called

ControllerMemento, also two associations. One association is between ICommand

and ControllerMemento. The other one is between ControllerMemento and

RobotState classes. These modifications were inevitable for the refactoring with this

pattern.

Moreover, command classes do not know memento interface, which is only exposed to

RobotMovementController class. In other words, there is a friend type inclusion

between ControllerMemento and RobotMovementController classes. The reason for

this inclusion is to preserve encapsulation for the state information.

As can be seen from Figure 88, command classes keep a reference of the memento of

RobotMovementController in this refactored design. But, command classes do not

know how to create and restore this memento information.

 117

Moreover, RobotMovementController knows how to perform the transformation

from memento into state information, which keeps state information hidden from

command classes.

3.4.12.5. Phase Five: Re-measuring software

Refactored project summary is given below:

Project Summary:

• Classes: 10

• Files: 22

• Functions: 62

• Lines: 1546

0

2

4

6

8

10

12

14

16

Average

Maximum

Minimum

Average 6,6 0,5 8,9 7,6 0,5 0,7 1,3 0,218

Maximum 11 1 14 16 3 3 3 0,5

Minimum 3 0 3 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 89 - Average, Maximum and Minimum Values of Thesis Metrics for Memento Pattern Case

after Refactorings

Figure 89 shows metric values after refactorings for Memento pattern case.

 118

3.4.12.6. Phase Six: Comparisons and Interpretations

0

1

2

3

4

5

6

7

8

9

After Refactoring

Before Refactoring

After Refactoring 6,6 0,5 8,9 7,6 0,5 0,7 1,3 0,218

Before Refactoring 6,667 0,556 8,556 8,111 0,556 1,333 1,444 0,242

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 90 - Comparison of Average Values of Thesis Metrics for Memento Pattern

Figure 90 graphically reveals that Memento pattern did not affect average values of

metrics significantly except for NMA and SIX. But, decreases in NMA and SIX mainly

results from ControllerMemento class. Because, this class has zero SIX and NMA

value, which decreases averages for these metrics.

However, main concern was to observe the effects on RobotMovementController

class. Figure 91 clearly shows that Memento pattern, without significantly effecting

overall average of complexity related metrics, has improved and simplified

RobotMovementController class. In conclusion, this design pattern helps designer to

reduce complexity and error-proneness of a class when its state has to be saved and

restored later.

 119

0

2

4

6

8

10

12

14

Af ter Refactoring

Before Refactoring

Af ter Refactoring 11 0 10 11 0 0 0 0

Before Refactoring 14 0 11 14 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 91 - Comparison of Metric Values for RobotMovementController Class

3.4.13. Case 13: Iterator Pattern

3.4.13.1. Phase One: OO Metrics Measurement of Overall Project

Unrefactored project summary is given below:

Project Summary:

• Classes: 5

• Files: 14

• Functions: 38

• Lines: 965

 120

0

5

10

15

20

25

30

35

40

Average

Maximum

Minimum

Average 12,8 0,6 7,8 1 0,2 0 0 0

Maximum 39 2 22 3 1 0 0 0

Minimum 2 0 2 0 0 0 0 0

WM
C DIT RFC CBO NOC NMA NMO SIX

Figure 92 - Average, Maximum and Minimum Values of Thesis Metrics for Iterator Pattern Case

before Refactorings

Figure 92 shows metric values before refactorings for Iterator pattern case.

3.4.13.2. Phase Two: Determining Error Prone Modules

List

item

ListNode

item

Client

ListOverflow Exception

ListException

Figure 93 - Design of Iterator Pattern Case before Refactorings

In this design, as can be seen from Figure 93, template List class is the weak chain.

Since, it has relatively higher WMC and RFC values. The reason of these high values is

that this class is responsible for serving access and modification methods to the list

nodes, also traversing over them. Moreover, these methods expose the internal structure

 121

and break encapsulation. In brief, this class has more responsibilities than it should

have. Metric values of List class are given in Table 2.

Table 2 - Metric Values of List Class

 List

WMC 39

DIT 0

RFC 22

CBO 3

NOC 0

NMA 0

NMO 0

SIX 0

In addition, supporting different traverse algorithms will complicate either Client or

List classes. In this case, Client class supports two different traversing algorithms,

which makes this class relatively more error-prone when compared with other classes

in the project.

3.4.13.3. Phase Three: Hatching Design Pattern(s)

[GOF98] suggests Iterator pattern solution for the problem defined in 3.4.13.2.

Because, Iterator pattern has below applicabilities:

• To access an aggregate object's contents without exposing its internal

representation [GOF98]. That solves the extensive responsibility and breaking

encapsulation problems for List class.

• To support multiple traversals of aggregate objects [GOF98]. This applicability

is the solution for high WMC value problem in Client class.

 122

The solution context that is offered by Iterator pattern is suitable to handle the problems

described in preceding sections. Therefore, this pattern is used for refactoring purposes

in this case.

Moreover, Standard Template Library (STL) uses a different implementation or a

variance of Iterator pattern to solve these problems described above. Therefore, this

pattern carries vital importance in design, if designer implements custom container

classes and flexibility and reusability have superior priorities.

3.4.13.4. Phase Four: Applying related pattern(s)

AbstractLis t
«I nterf ace»

item

Iterator
«I nterf ace»

item

List

item

ReverseListIterator

item

ForwardLis tIterator

item

ListNode

item
IteratorOutOfBoundsException

ListException

ListOverflowException

Client

Figure 94 - Design of Iterator Pattern Case after Refactorings

Figure 94 shows that refactoring with Iterator pattern has introduced five new classes.

Two of them, called AbstractList and Iterator, are the abstract classes to isolate

concrete list and iterator classes. Other two are concrete Iterator classes, which are

ReverseListIterator and ForwardListIterator. These iterator classes support

different traversing algorithms and simplifies list interface. The last one is an

exception class, named as IteratorOutOfBoundsException. This class is used to

throw exception when an illegal iteration performed.

 123

3.4.13.5. Phase Five: Re-measuring software

Refactored project summary is given below:

Project Summary:

• Classes: 10

• Files: 24

• Functions: 60

• Lines: 1632

0

10

20

30

40

Average

Maximum

Minimum

Average 9,5 0,7 9,2 1,2 0,1 1,2 2,1 0,112

Maximum 39 2 22 4 1 6 13 0,591

Minimum 0 0 2 0 0 0 0 0

WMC DIT RFC CBO NOC NMA NMO SIX

Figure 95 - Average, Maximum and Minimum Values of Thesis Metrics for Iterator Pattern Case

after Refactorings

Figure 95 shows metric values after refactorings for Iterator pattern case.

3.4.13.6. Phase Six: Comparisons and Interpretations

Table 3 shows that Iterator pattern significantly reduces the complexity of client

classes, if these classes support different traversing algorithms. In addition, this pattern

simplifies the interface of List class, without creating substantial effects on WMC,

 124

RFC, and CBO values. But, inheritance related metrics of this class has increased,

because of AbstractList class.

Table 3 - Comparisons of Metric Values for Client and List Classes

After Refactoring Before Refactoring

Client List Client List

WMC 7 39 14 39

DIT 0 1 0 0

RFC 4 22 4 22

CBO 0 4 0 3

NOC 0 0 0 0

NMA 0 6 0 0

NMO 0 13 0 0

SIX 0 0,6 0 0

In conclusion, Iterator pattern refactorings has elegantly solved the breaking

encapsulation and high WMC value problems. Moreover, different traversing

algorithms and container classes can be easily adapted to this refactored design and

work together. This improvement increases reusability, flexibility, also limit

complexity for classes that sustain different traversing strategies.

 125

CHAPTER 4

DISCUSSION AND CONCLUSIONS

In this thesis study, software error-proneness related OO metrics have been determined

and reviewed. Moreover, design patterns that affect these metrics have been found out,

and their effect on metrics have been shown empirically on individual experiments.

13 different cases have been refactored with design patterns, and fluctuations on

metrics have been evaluated mainly from the perspective of the software error-

proneness. Also, in this thesis, [GOF98] patterns have been researched and the effects

of these patterns on OO metrics have been measured with refactorings.

As stated in chapter 2, software error-proneness related OO metrics have a significant

impact on software development cycle. Since, by using coupling and inheritance

metrics, very accurate models can be derived to guess error-prone classes in software

[BDPW98-2]. These models will obviously help developers to reduce software testing

phase of the development cycle.

Design patterns, as stated before, are elegant and reusable solutions to common

occurring design problems. But, this study showed that design patterns may have many

effects on software quality.

In chapter 3, Power-Grab [PG02] project has shown that refactorings, which intend to

reduce high coupling between classes, with design patterns are meaningful, if design

pattern free source code is not deteriorated and stable in its design. This result seems to

be a limitation for design pattern refactorings. Therefore, designer(s) should investigate

and interpret source code before applying any design pattern, which proposes a remedy

for high class coupling. Moreover, they may perform additional pre-refactorings with

different methods, like eliminating repeated code segments. Consequently, Façade

 126

pattern case has showed that refactoring with design patterns to solve high coupling

problem does not work flawless under time limitations and deteriorated design.

Power-Grab Project [PG02] has been refactored with two design patterns. One of them

is Façade pattern and the other is State pattern. These patterns have been implemented

separately. Also, the effects of these patterns have been evaluated under different

subsections. Façade pattern did not bring any improvement in Power-Grab Project. It

affected error-proneness related OO metrics negatively. The reason for this result

mainly originated from deteriorated OO design and class structures. However, State

pattern has positively affected the design and reduced complexity in contrast of Façade

pattern. Because, State pattern is not a remedy for high class coupling problem.

Moreover, State pattern only influences the class that has under refactoring with this

pattern.

In NetClass project [NC01], Bridge pattern has been applied. In this case, this

refactoring has reduced average WMC value, which means simplification for the

overall project. But, on the other hand, this pattern has slightly increased RFC, DIT,

NOC metric values as a side effect.

In case 3, the effect of Mediator pattern on OO metrics has been investigated. Mediator

pattern mainly affected CBO metric. This pattern has reduced average and sum values

of CBO metric for the overall project. In other words, that result simply indicates that

refactoring with Mediator pattern reduces the probability of error-proneness among

project classes. But, as a side effect this pattern introduces new mediator class that has

generally high CBO value.

In case 4, the application of Chain of Responsibility pattern has reduced WMC and

CBO values. In other words, this pattern decreases high coupling and class method

complexity. But, as a primary side effect, it increases RFC values of the classes, which

are effected by this pattern.

 127

In case 5, the application of Composite pattern has significantly reduced average CBO

value. Also, refactoring with this pattern has reduced WMC and RFC values for

respected classes. However, as a side effect, inheritance related metrics has increased

slightly after the implementation of this pattern.

In case 6, the effects of two different aspects of Strategy pattern has been evaluated on

synthetic code. These aspects are related with complexity and excessive subclassing. In

both aspects, refactoring with Strategy pattern has brought improvements in software,

also reduced complexity and inheritance related OO metrics, which are also correlated

with software error-proneness.

In case 7, Template Method pattern implementation has increased all software error-

proneness related metrics except for DIT and NOC. But, design became more flexible

after refactorings with this pattern. However, project has been negatively influenced

from the perspective of software error-proneness.

In case 8, Command pattern refactoring has increased all average metric values except

for WMC. In addition, this pattern did not bring any significant improvement in

classes, where this pattern has focused on. Command pattern increased overall

complexity and coupling between classes. But, on the other hand, from the view of

software maintainability and reusability perspective this pattern isolated functionality

and invocation.

In case 9, the effects of two different aspects of Visitor pattern has been evaluated on

synthetic code. These aspects are related with complexity and excessive subclassing. In

the excessive subclassing related aspect, this pattern has reduced DIT and SIX metric

values, but design became more complex in its structure. In other words, Visitor has

increased WMC and CBO values for this aspect.

 128

In complexity related aspect, Visitor has reduced class complexity, but increased class

coupling. However, this pattern provided flexibility to the design and positively

affected majority of the error-proneness related metrics.

In case 10, Observer has increased all the error-proneness metrics of the project. This

result indicates that this pattern increases complexity and error-proneness probability of

the classes. However, if Mediator had been implemented together with Observer for

this case, increase in complexity and error-proneness would have been lower as showed

in Case 3.

In case 11, Decorator pattern has been applied during refactorings and this design

improvement has significantly reduced sum values of DIT, RFC, CBO, and NOC

metric values.

Decorator pattern has reduced the total number of classes in the project. Therefore,

there has been a boost in average class metrics. But, Decorator pattern has prevented

excessive subclassing and positively effected software error-proneness.

In case 12, Memento has not altered average values of OO metrics significantly for the

overall project classes. But, this pattern has improved OO design and simplified the

class whose state had to be saved and restored later.

In case 13, synthetic code has been refactored with Iterator pattern. Refactorings has

elegantly solved the breaking encapsulation and high WMC value problems in the

design. Moreover, Iterator pattern has brought reusability, flexibility in software and

limited complexity for classes that perform different traversing strategies.

In general, chapter 3 has empirically showed that some design patterns like, Mediator,

State, and Chain of Responsibility have improved software quality and reduced error-

proneness much more than others in the experiments performed. Also, some design

 129

patterns like, Template Method, and Observer pattern have affected software error-

proneness negatively. On the other hand, these patterns have increased reusability and

analyzability of software. In brief, every design pattern affected software error-

proneness related OO metrics in different levels. But, in common, they have enhanced

software quality in these experiments.

A point that has to be made after having completed this study is that metric collection

tools, which are available in the market lack standards. Most of them were designed as

reverse engineering tools, and they do not focus on metrics. Moreover, calculation of

metric values may differ for each of them.

Also, in the market, there is not any tool that interprets the source code and offers

design patterns for software improvements. But, software developers use design

patterns intensively in their projects, however, there is not any criteria, whether they

apply the correct pattern(s) or not. It has been noticed that the market has to supply

tools to overcome these design problems. Moreover, these tools will bring great assets

in software development process.

In this study, every metric measurement, comparisons and interpretations have been

presented over one design pattern only. As a recommendation for future work, the

effect of a pattern language implementation on software may be measured and

interpreted. Also, as stated before, there is no way to determine, whether software is

ready for design pattern refactorings or not. A tool can be designed and implement to

solve predefined problem.

Moreover, as stated in chapter 3, there is not a standard way to determine and hatch

design patterns in software. Actually, designers will need similar tools in near future.

Therefore, a software tool can be designed and implemented to dig and find out design

patterns in software.

 130

In addition, similar studies should be performed to observe and show the effects of

design patterns on different aspects of software, like maintainability, analyzability, and

so on.

Furthermore, design patterns that are mentioned in [BPD02] have been excluded from

the scope of this study. But, the effects of real time design patterns on software error-

proneness in particular, and software quality in general, is also an area that deserves in-

depth study.

In chapter 2, possible effects of design patterns on software testing phase has been

mentioned. As another future work recommendation, these effects can be measured.

For example, a simple project can be refactored or developed with design patterns by a

group of developers and same project can be developed without design patterns by

another group of developers. After this phase, testing efforts will be measured for these

projects. Consequently, comparisons will empirically reveal the effect of design

patterns on software test phase.

As another point that has to be emphasized before having completed this section is that

this study does not claim any generalization of the observations on the experiments.

Obviously, other experiment structures and alternative refactorings are always possible,

with possibly different effects. The aim has simply been to illustrate possible effects of

design patterns on software error-proneness.

In conclusion, in this thesis study, the relations between software error-proneness

associated metrics and design patterns have been investigated. Also, this study

emphasizes the importance of design patterns, the lack of standard metric analysis

tools, and the lack of standard ways for hatching design patterns.

 131

REFERENCES

[ARJ90]: Russell J. Abbott, “Resourceful Systems for Fault Tolerance, Reliability, and

Safety”, ACM Computing Surveys, Vol. 22, No. 1, March 1990, pp. 35 – 68.

[AV04]: Magnus Andersson, Patrik Vestergren, “Object-Oriented Design Quality

Metrics”, Uppsala Master’s Theses in Computer Science, 2004, ISSN 1100 – 1836.

[BBM96]: V. R. Basili, L. C. Briand, W. L. Melo, “A Validation of Object-Oriented

Design Metrics as Quality Indicators”, IEEE Transactions on Software Engineering,

Vol. 20, No. 10, October 1996, pp. 751 – 761.

[BDPW98]: Lionel C. Briand, John Daly, Victor Porter, Jürgen Wüst, “A

Comprehensive Empirical Validation of Design Measures for Object-Oriented

Systems”, Fifth Int’l Symposium on Software Metrics, 1998, pp. 246.

[BDPW98-2]: Lionel C. Briand, John Daly, Victor Porter, Jürgen Wüst, “Predicting

Fault-Prone Classes with Design Measures in Object-Oriented Systems”, Proc. Ninth

Int’l Symposium on Software Reliability Engineering, 1998, pp. 334.

[BF91]: Ricky W. Butler, George B. Finelli, “The Infeasibility of Quantifying the

Reliability of Life-Critical Real-Time Software”, IEEE Transactions on Software

Engineering, Vol. 19, No. 1, January 1991, pp. 3 – 12.

[BH01]: Brian Huston, “The Effects of Design Pattern Application on Metric Scores”,

the Journal of Systems and Software 58, 2001, pp. 261 – 269.

[BPD02]: Bruce Powell Douglas, “Real-Time Design Patterns: Robust Scalable

Architecture for Real-Time Systems”, Addison Wesley, 2002.

 132

[BWIL98]: L. Briand, J. Wuest, S. Ikonomovski, H. Lounis, “A Comprehensive

Investigation of Quality Factors in Object-Oriented Designs: An Industrial Case

Study”, Technical Report ISERN-98-29, Int'l Software Eng. Research Network, 1998.

[BWDP00]: L. Briand, J. Wuest, J. Daly, V. Porter, “Exploring the Relationships

Between Design Measures and Software Quality in Object-Oriented Systems”, J.

Systems and Software, Vol. 51, 2000.

[CA77]: Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson,

Ingrid Fiksdahl-King, Shlomo Angel, “A Pattern Language”, Oxford University Press,

New York, 1977.

[CK94]: S. Chidamber, C. Kemerer, “A Metrics Suite for Object-Oriented Design”,

IEEE Trans. Software Eng., Vol. 20, No. 6, June 1994.

[EBGR01]: Khaled El Emam, Saida Benlarbi, Nishith Goel, Shesh N. Rai, “The

Confounding Effect of Class Size on the Validity of Object-Oriented Metrics”, IEEE

Trans. Software Eng., Vol. 27, No. 7, July 2001.

[FPB87]: Frederick P. Brooks, “No Silver Bullet: Essence and Accidents of Software

Engineering”, Computer, Vol. 20, No. 4, April 1987, pp. 10 – 19.

[GOF98]: Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Elements of

Reusable Object-Oriented Software”, Addison-Wesley, 1998.

[IEEESG90]: ANSI/IEEE, “IEEE standard glossary of software engineering

terminology”, IEEE Std. 729 - 1983, 1983.

[IS04]: I. Sommerville, “Software Engineering”, Addison-Wesley, 2004.

 133

[LK94]: M. Lorenz, J. Kidd, “Object-Oriented Software Metrics”, Prentice-Hall, 1994.

[MC96]: Mel Ó Cinnéide, “Towards Automating the Introduction of the Decorator

Pattern to Avoid Subclass Explosion”, Technical Report TR-97-7, University College

Dublin, 1996.

[NC01]: “NetClass Project”, detailed information available at:

http://sourceforge.net/projects/netclass, February 2006

[PG02]: “Power Grab Project”, detailed information available at:

http://sourceforge.net/projects/power-grab, March 2006

[PSK90]: David L. Parnas, A. John van Schouwen, Shu Po Kwan, “Evaluation of

Safety-Critical Software”, Communications of the ACM, Vol. 33, No. 6, June 1990, pp.

636 – 648.

[RCM00]: Robert C. Martin, “Design Principles and Design Patterns”, 2000, available

at: http://www.objectmentor.com, April 2005

[RJB99]: James Rumbaugh, Ivar Jacobson, Grady Booch, “The Unified Modeling

Language Reference Manual”, Addison-Wesley, 1999.

[TKC99]: Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen, “An Empirical Study on

Object Oriented Metrics”, Proc. Sixth Int'l Software Metrics Symposium, 1999, pp. 242

– 249.

[TTL00]: “Tau Telelogic Logiscope”, detailed information available at:

http://www.telelogic.com/corp/products/logiscope/index.cfm, December 2005

 134

[VP95]: Frans Ververs, Cornelis Pronk, “On the Interaction between Metrics and

Patterns”, OOIS, 1995, pp. 303 – 314.

