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ABSTRACT 

ANALYSIS OF BEARING CAPACITY 
USING DISCRETE ELEMENT METHOD 

 
Ardıç, Ömer 

 
M.S., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. B. Sadık Bakır 
 

December 2006, 89 pages 
 

With the developments in computer technology, the numerical methods are used 

widely in geotechnical engineering. Finite element and finite difference are the most 

common methods used to simulate the behavior of soil and rock. Although the 

reliability of these methods are proven in several fields of application over the years, 

they are not equally satisfactory in every case and require sophisticated constitutive 

relations to model the discontinuous behavior of geomaterials since they assume the 

material is continuum or the location of discontinuum is predictable. The Discrete 

Element Method (DEM) has an intensive advantage to simulate discontinuity. This 

method is relatively new and still under development, yet it is estimated that it will 

replace of the continuum methods largely in geomechanics in the near feature. 

In this thesis, the theory and background of discrete element method are introduced, 

and its applicability in bearing capacity calculation of shallow foundations is 

investigated. The results obtained from discrete element simulation of bearing 

capacity are compared with finite element analysis and analytical methods. It is 

concluded that the DEM is a promising numerical analysis method but still have 

some shortcomings in geomechanical applications. 
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ÖZ 

AYRIK ELEMANLAR YÖNTEMİ İLE TAŞIMA GÜCÜ ANALİZİ 
 

Ardıç, Ömer 
 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 
Tez Yöneticisi: Doç. Dr. B. Sadık Bakır 

 
Aralık 2006, 89 sayfa 

 

Bilgisayar teknolojisindeki gelişmelere bağlı olarak, sayısal yöntemlerin zemin 

mekaniğindeki kullanımı yaygınlaşmaya başlamıştır. Zeminin ve kayaçların 

davranışlarının benzetiminde sonlu elemanlar ve sonlu farklar yöntemleri yaygın 

olarak kullanılmaktadır. Birçok uygulama alanında güvenilirliği kanıtlanmış 

olmasına karşın bu yöntemler malzemeyi sürekli veya süreksizliklerin yerinin 

önceden bilindiği varsayımlarına dayandıkları için zeminlerin süreksizlik 

davranışlarını modellemekte her zaman başarılı olamamakta veya oldukça karmaşık 

yaklaşımlar gerektirmektedir. Ayrık Elemanlar Yöntemi süreksiz malzeme özelliğini 

modellemekte oldukça başarılıdır. Her ne kadar görece yeni ve gelişmekte olan bir 

yöntem olsa da, ileride zemin mekaniği problemlerinde süreklilik temelli 

yöntemlerin büyük ölçüde yerini alacağı düşünülmektedir. 

Bu tezde, ayrık elemanlar yönteminin teorisi ve geçmişi incelememekte ve bu 

yöntemin sığ zeminlerdeki taşıma gücü hesaplarında kullanımı araştırılmaktadır. 

Ayrık elemanlar yöntemi ile yapılan taşıma gücü hesapları, sonlu elemanlar analizi 

ve analitik yöntemlerle karşılaştırılmıştır. Ayrık elemanlar yöntemi, zeminlerin 

sayısal analizlerinde ilerisi için umut veren eden bir yöntem olmasına karşın hala 

bazı sıkıntıları olduğu sonucuna varılmıştır. 

 

Anahtar Kelimeler: Ayrık Elemanlar Yöntemi, Parçacık Mekaniği, Taşıma Gücü 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Discrete Element Method (DEM) 

Numerical analyses are being used increasingly by the engineers parallel to the 

developments in the computer technologies. By means of numerical analysis 

programs, engineering problems can be solved more precisely and the complex, 

sophisticated projects can be handled with greater confidence. Finite Element 

Method (FEM), Finite Difference Method (FDM) and Boundary Element Method 

(BEM) are the examples of numerical analysis methods that are widely applied 

presently. The common property of these methods is that the material is idealized as 

a continuum. Although it is possible to introduce a discontinuity if its location is 

known beforehand, they can not simulate the distinct property of discontinuity as in 

the case of geomaterials. 

The idealization of continuum and the related terms such as stress and strain are 

commonly used in engineering. As far as the continuum assumption is valid 

throughout the analysis and relatively simple constitutive relations are applicable, 

FEM is very effective, proven and widely used at present. Also a variety of 

commercial computer programs that are built on this method are available in the 

market. The continuum based methods, especially FEM, are commonly used in 

geotechnical applications as well, in order to simulate the behavior of soil and rock.  

The finite element method uses constitutive (stress-strain) relations to simulate the 

behavior of continuum materials. The constitutive relations used to model the 

continuum range from the simple linear elastic to elasto-plastic models with 

multiple yield surfaces, non-associated or dilative flow rules and general 

hardening/softening rules. Depending on the circumstances extremely sophisticated 

constitutive relations can be required for geomaterials since their response can be 

rather complex under certain conditions. There exist various constitutive relations 
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proposed for geomechanical applications depending on the soil type and drainage 

circumstances. Additionally, increase in complexity of constitutive relation 

increases the number of parameters, some of which do not have clear physical 

meanings. It is sometimes quite difficult to measure these parameters. 

In order to overcome the shortcomings of the continuum approach, Discrete 

Element Method or as also called Distinct Element Method (DEM) has been 

developed. Discrete element method models the materials with separate particles. 

This method is suitable not only to simulate the behavior of geomaterials but also 

the behavior of any particulate matter like powders or grains. Figure 1.1 shows the 

range of applicability of DEM compared to the other numerical methods. 

 

 

Figure 1.1 Observation scale in the classification of numerical modeling techniques 
of materials (D’Addetta, 2004) 

 

Soil and rock behave in a rather complicated manner due to their distinct properties. 

It is sometimes necessary to model the discontinuum behavior of these materials as 

in the case of soil liquefaction or in simulating the post-failure mechanism of 

slopes. Separation may take place on the slip surface or elsewhere with the sliding 

mass following failure and it can affect the reliability of analyses. Such a model can 

be properly handled by DEM simulations. 
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Mohammadi (2003) draws the attention to the simulation of flow of sand in an 

hourglass. The sand hourglass which is used for centuries to measure the time could 

not be modeled accurately on the computer by even the enhanced numerical 

methods such as FEM until recently. Simulation of this problem, however, is rather 

straightforward with DEM approach and the results are quite accurate although too 

much calculation time may be required for the current computer technology. An 

hourglass simulation with around 500 particles is modeled for illustrative purposes 

(Figure 1.2). The simulation is terminated at 0.7 second due to blocking. 

 

 

 

 

Figure 1.2 Simulation of an hourglass by DEM 
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Author is motivated to work on this subject due to laboratory simulations performed 

by Lambe and Whitman (1979) in order to investigate the failure mechanism of 

shallow foundation and braced cuts by using stack of rods to represent the granular 

soil media. The philosophy of discrete element model can not be summarized better 

than those studies, the relevant failure mechanism of which are given in Figure 1.3 

and Figure 1.4, respectively. 

 

 

 

 

Figure 1.3 Simulation of failure zones under a footing by stack of rods (Lambe and 
Whitman, 1979) 
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Figure 1.4 Simulation of failure of braced excavation by rods (Lambe and Whitman, 
1979) 
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It is acknowledged that the studies on the discontinuum mechanics leading to DEM 

have been started by Cundall (1971). The formulation of DEM for modeling the 

distinct behavior of granular soils was first introduced by Cundall and Strack 

(1979). They claim that the granular materials can be simulated by disks (in 2 

dimensions) or spheres (in 3 dimensions) which move according to Newton’s 

second law of motion and interact by contact constitutive laws.  

DEM is relatively new and still under development. Hence, unlike FEM, it is not 

investigated yet thoroughly in applications. In today’s advanced finite element 

programs, it is possible to define a discontinuity by contact formulations and 

stresses can be transferred between contact surfaces by suitable contact constitutive 

laws. However, the philosophy behind DEM is much simpler than other numerical 

analysis methods and is certainly promising for the geotechnical engineering area. 

According to Cundall (2001) who is presumably the originator of DEM, this 

method will be the alternative for any continuum based method in geomechanics in 

near future. 

1.2 Fields of Application 

Unlike the FEM or FDM, DEM was devised originally for geomechanics. The other 

numerical methods which are based on continuum idealization are developed for the 

elastic or perfectly plastic frictionless materials having nearly linear stress-strain 

relation. The metals such as steel perfectly fit this definition.  

FEM is also applicable to the numerical analysis of geotechnical problems by 

introducing special constitutive relations. There exist plenty commercial FEM 

programs specially produced for geomechanical applications. Correspondingly, 

most of the general purpose FEM packages comprise the geomechanical 

constitutive relations as well. Accordingly, the FEM is the ultimate method in the 

numerical analysis in geomechanics at present. 

Theoretically speaking, it is possible to use DEM alternatively in the geomechanical 

problems where the FEM can be used. Furthermore, modeling of continuum by 

DEM is also possible by particular contact constitutive relations (Section 2.3). For 
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instance, the continuum can be modeled by discrete particles in the problems where 

the continuum and discontinuum are needed to be modeled simultaneously like as in 

the case of soil-structure interaction analysis. However, the best solution may be to 

employ FEM-DEM coupled methods in order to model such problems. 

Practically, due to the disadvantages of DEM discussed in Section 1.3, the fields of 

application are limited as of present. Increased interest in DEM and increase in 

computer processor speeds will lead to increase in the quality and quantity of 

available DEM based computer programs. Mohammadi (2003) listed the current 

research on discontinuum mechanics as follows: 

 Geomechanical applications 

 Granular materials (like powders, grains, etc.) 

 Impact analysis (progressive fracturing) 

 Particulate flow 

 Computer graphics 

Since the large scale problems require excessive calculation times, the example 

simulations performed by DEM are generally small scale. Obviously, the smallest 

scale simulations in geomechanics are the laboratory tests. It is possible to simulate 

triaxial, biaxial, unconfined compression or shear box tests through DEM. 

Some interesting studies reviewed by the author are illustrated in the rest of this 

section. 

The numerical analysis of impact performed by Magnier and Donze (1998) is an 

excellent study showing the efficiency of DEM in progressive fracturing. They 

investigated the failure behavior of unreinforced and reinforced beams during the 

impact of a spherical nose shaped missile (Figure 1.5). 

Shimizu and Cundall (2001) conducted 3-dimensional DEM analysis in order to 

examine the performance of screw conveyors and the results obtained from this 

study was compared with the previous studies and empirical solutions (Figure 1.6). 
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Figure 1.5 Numerical analysis of impact (Magnier and Donze, 1998) 
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Figure 1.6 Numerical analysis of vertical screw conveyor (Shimizu and Cundall, 
2001) 
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Figure 1.7 DEM analysis of unconfined compression and tension test of concrete 
(Hentz et al, 2002) 

 

In order to investigate the fracture and failure mechanism of concrete, Hentz at al 

(2002) performed DEM simulations of unconfined compression and tension tests. 

They examined the constitutive behavior of concrete and elastic-inelastic 

deformations (Figure 1.7). 
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Figure 1.8 Formation of crushable soil assembly from bonded agglomerates (Cheng 
et al, 2003) 

 

DEM simulation of crushable soil illustrated by Cheng et al (2003) is an interesting 

study. In this study, bonded agglomerates representing the single crushable grain 

were formed (Figure 1.8). Then, model was generated by using these agglomerates 

and some tests were performed. 

Denish and Sitharam (2003) studied on the drained and undrained behavior of soil 

under cyclic loading by DEM conducted triaxial test. This is an interesting study as 

it shows the modeling of liquefaction by DEM.  

Jiang et al (2005) presented a paper on the numerical study on deep penetration 

mechanisms in granular materials with the focus on the effect of soil–penetrometer 

interface friction. They investigated the soil displacement path near the 

penetrometer and effect of interface friction on the actual penetration mechanism 

(Figure 1.9). 
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Figure 1.9 Numerical simulation of deep penetration by DEM (Jiang at al., 2005) 

 

 

Maynar and Rodriguez (2005) were presented a numerical study on the DEM 

simulation of earth pressure balance (EPB) tunnel excavation. The purpose of their 

study was to analyze the technical requirements of the shields (thrust and torque) 

needed to excavate the tunnel. They also investigated the tunnel face stability 

problem. In the first phase of study, they made calibration runs by triaxial test 

simulations (Figure 1.10). Then, a tunnel excavation model was created and 

analyzed. (Figure 1.11) 

Perhaps the most challenging and comprehensive DEM study reviewed by the 

author is the one performed by Deluzarche and Cambou (2006). The numerical 

analysis of a concrete faced rockfill dam constructed at 1950 was investigated in 

this study (Figure 1.12). 
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Figure 1.10 Simulation of triaxial test for parameter calibration (Maynar and 
Rodriguez, 2005) 

 

 

    

 

Figure 1.11 Earth pressure balance tunnel simulation by DEM (Maynar and 
Rodriguez, 2005) 
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Figure 1.12 Numerical analysis of concrete faced rockfill dam by DEM (Deluzarche 
and Cambou, 2006) 
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1.3 Advantages and Disadvantages 

Advantages and disadvantages of a particular method can be illustrated by 

comparing its performance to the alternative methods in specific fields of 

application. Clearly, FEM is the most commonly used and comprehensive 

numerical analysis method in the field of geotechnical engineering. Therefore, the 

FEM is the natural reference to evaluate the advantages and disadvantages of the 

DEM. Although this study primarily concentrates on geomechanics, an overall 

comparison may be useful to display the general qualities that are valid usually in 

other disciplines as well. Indeed, there exist certain fields in which a particular 

method has unrivalled advantages and hence shall not be replaced by another one. 

These fields are also discussed in this section. 

Obviously, the theory behind the FEM is solid and verified in numerous fields of 

application. On the other hand, DEM is a relatively new method and still under 

development. The available literature on the theory and applications of the DEM are 

rather limited at present. Since it requires extremely high computation time, the 

validation of this method in geomechanics is restricted to small applications like 

laboratory tests as yet (Cundall, 2001). 

The terms and parameters akin to continuum mechanics are universally used in 

engineering. Since the FEM is used for several decades, there exist standardized 

laboratory and field tests to measure the parameters relevant to the continuum 

mechanics and hence to the FEM such as Young’s modulus, Poisson’s ratio, etc. 

However, granular based laboratory tests are not common. Therefore, a calibration 

stage is normally required in discrete modeling in order to match the micro and 

macro scale parameters. In the simulations of geomaterials, this situation remains as 

a standard difficulty in the DEM, whereas, the measurements of some other 

parameters required by continuum constitutive relations may not always be practical 

(see the paragraph below). 

In the FEM, the material behavior is defined by a relationship between the stress 

and strain which is known as the constitutive equation. For the non-frictional 

materials like metals, this relation is relatively simple and requires few parameters 
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with clear physical meanings. All FEM based programs provide the linear 

constitutive model as standard. Additionally, Huber-von Mises constitutive relation 

is widely used to simulate the plasticity of frictionless materials. However, there 

exist numerous constitutive relations for frictional materials with different 

approximations and assumptions. Their behavior and strength are different in 

tension and compression. The simulation of this phenomenon requires intricate 

constitutive relations. Mohr-Coulomb, Drucker-Prager, Matsuoka-Nakai, Lade-

Duncan, Hoek-Brown, Cam Clay are the most common constitutive relations for 

geomaterials. The number of required parameters increases with increasing 

complexity of the model and sometimes these parameters do not have clear physical 

meanings (Alonso-Marroquin, 2004). Accordingly, it may be difficult to access 

some of these parameters. On the other hand, behavior of the particles is governed 

by contact constitutive relations in DEM. There exist few contact constitutive 

relations and they require fewer parameters with relatively more clear meanings. 

In the case of FEM, the calculation time is directly associated with the number of 

degrees of freedom of the model which depend on the size of the solution mesh. 

The required size of the mesh is generally specific to the problem. Increasing the 

mesh density in the region of interest and stress concentration areas and decreasing 

towards the boundaries is accepted as a good meshing technique. Some of the 

enhanced FEM based programs have adaptive meshing capability in order to adjust 

the mesh density automatically. Generally speaking, the reliability of the results 

depends on the meshing at great degree. Similarly in the DEM, the number of 

particles defines the required duration of the calculation. Ideally, the particle sizes 

are required to be similar or proportional to the actual grain size in the simulation of 

granular materials. However, since it is not either practical or possible to model 

every particle, a particle scaling process is necessary and this may again require 

additional calibrations of the model. For the modeling of continuum in the DEM, 

the scaling of the bonded particles is similar to the FEM. That is to say, increase in 

particle density leads to increase in solution accuracy. 

The computation time is a critical factor in the computer based numerical analyses. 

The effectiveness of the calculation process is actually dependent on the speed of 
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the computer processor. As far as the dimensions of geotechnical problems are 

considered, the current computer technology is quite appropriate for the simulation 

of static problems by FEM. Dynamic simulation of highly plastic materials requires 

computation capacity that are still excessive for average personal computers. 

However, parallel processing techniques in FEM based programs are available to 

utilize the powers of a number of processors simultaneously. Conversely, the DEM 

uses explicit finite difference solution scheme. Therefore, it is fully dynamic. Due 

to the fact that the disturbance should not propagate to the neighboring particles and 

the accelerations should be constant in a single time step, stable time step must be 

very small (see Section 2.4). Additionally, the necessity of excessive number of 

particles substantially increases the computation time. The simulation of practical 

geomechanical problems is not efficient considering the current computer speeds.  

One of the major disadvantages of the DEM is the difficulty of formation of model 

geometry. Either the geometrical forms can be filled by particles or particles have to 

be placed one by one. In the former, the user control on the particle distribution is 

quite limited. There is a full control in the latter case but it can be a challenging task 

even with a specially generated code. In either case, the geometry can differ when 

the forces like gravity are applied to achieve the initial stress conditions before 

starting to analysis. In the FEM based computer programs, however, the definition 

of model geometry is relatively simple. Extremely capable mesh building engines 

are available to form very complex geometries even in three dimensions.  

Presently numerous FEM based computer programs are available in the market. The 

quality and quantity of these softwares are increasing parallel to the developments 

in computer technology. There exist FEM based programs developed for the 

specific applications besides the general purpose programs. Whereas, only few 

DEM based programs are available since this method is relatively new and the 

required computational effort is excessive as of present. 

The FEM is widely used in structural analysis as well. For that purpose, FEM 

software packages contain truss, beam, shell, membrane and similar elements, and 
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plane-stress solution scheme is available. The DEM, however, can only simulate 

solid elements. Two-dimensional simplification can only be plane-strain. 

Since the DEM can handle complete detachment at any arbitrary location, it is very 

effective in simulation of particulate mechanics and fracture mechanisms. It is not 

possible to model detachment in the FEM unless the location of separation is known 

as anticipated beforehand. Therefore, DEM has certain advantages in areas where 

FEM has limitations. 

Since DEM is fully dynamic, visualization of the results can be very instructive to 

clearly realize the mechanisms. Sitharam (2000) stated that the major advantages of 

DEM may be having chance of observing any particular details during the 

simulation. Thus, it is quite efficient for instructional and demonstrative purposes. 

Under the lights of above comparison between DEM and FEM, advantages and 

disadvantages of DEM are summarized in the following: 

Advantages: 

 Contrary to the continuum approach, does not require sophisticated 

constitutive relations in geomechanical applications, 

 Can realistically simulate the distinct behavior of granular materials, 

 Requires relatively less parameters with clear physical meanings to define 

the material behavior such as contact stiffness and friction coefficient, 

 Effective to investigate the particle based mechanisms, fracture mechanics, 

dynamic, large displacement and/or large strain problems (such as post-

failure mechanisms), soil-structure interaction, etc. 

 Efficient in visual recognition of problems due to its fully dynamic nature. 

Disadvantages: 

 Requires excessive computational time, thus it is not practical to simulate 

large problems currently, 

 Requires calibration studies for determination of material properties, 

 Poses difficulties in forming the geometries, 
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 There exist relatively few computer programs available on DEM in the 

market presently. 

1.4 Available Computer Programs 

Presently, there are several programs in the market which are capable of modeling 

discontinuum. However, there are few DEM programs available as yet. Cundall and 

Hart (1992) proposed that DEM program should have the following features: 

 Allows finite displacements and rotations of discrete bodies, including 

complete detachment, 

 Recognizes new contacts automatically as the calculation proceeds. 

The first DEM programs are the Fortran coded “Ball” and “Trubal” developed by 

Cundall in 1979 and 1980, respectively. The formulations used in these programs 

are given by Cundall and Strack (1979). 

Ball is a two dimensional program and simulates the particles as disks (or 

cylinders). Trubal, on the other hand, is a three dimensional code with spherical 

particles. Trubal was open-source and distributed freely for about 15 years and used 

extensively in research in the development of DEM. Also, it is the basis of today’s 

commercial DEM programs. Both of these programs are commercial presently. 

“Ball” and “Trubal” were further developed by Itasca Consulting Group Inc. and 

Cundall and named as PFC2D (Particle Flow Code in Two Dimensions) and PFC3D 

(Particle Flow Code in Three Dimensions).  

Another program based on the dynamics of spherical particles in three dimensions 

is SDEC (Spherical Discrete Element Code) developed by F. V. Donze. This code 

has been used to treat geomechanical problems in both quasi-static and dynamic 

applications, especially in simulation of laboratory tests. SDEC is not distributed 

anymore but Ph.D. students O. Galizzi and J. Kozicki have included the codes of 

SDEC in their research project named YADE (Yet Another Dynamic Engine).  
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YADE is a free software distributed by GNU/GPL † and is under development with 

beta version being recently available. The developers of YADE aim to make it 

DEM-FEM coupled software but, in its current form it is far from being a 

professional program. Unless specific codes are provided to the program, one can 

only view the example projects. Its graphical platform is quite useful and theoretical 

background is solid. But user interface, pre and post processors need to be 

developed further. 

There are other softwares available in the market. They are not thoroughly reviewed 

by author. Some of them are listed below: 

 MIMES: A program developed in the Massachusetts Institute of Technology 

Department of Civil and Environmental Engineering with the contribution of 

J. R. Williams. 

 PASSAGE/DEM: Commercial program developed by Technalysis Inc. It 

appears to be a professional program but the demo/trial version could not be 

viewed. 

 ELFEN: Commercial DEM-FEM hybrid software developed by Rockfield 

Software Ltd. They do not provide demo/trial version of the software even 

for academic purposes. 

Finally, maybe the best DEM software reviewed by the author is EDEM™ which is 

developed and distributed by DEM Solutions Ltd. It is very user friendly and has an 

excellent user interface. DEM Solutions Ltd. supports academic studies by 

supplying time limited free and discounted academic licenses. DEM Solutions Ltd. 

also supported the present thesis by supplying the fully functional program for a 

period of three months. EDEM™ is used in the entire discrete element simulations 

studied in this thesis and the detailed information on the theory and background of 

the program is given in Section 3.1 

† The GNU system is a complete UNIX like operating system often referred as 
“Linux”. GNU is a recursive acronym for “GNU is Not UNIX”. The computer 
applications distributed with GNU/GPL (General Public License) are open source 
code and can be redistributed freely. It is possible to use a portion or complete 
source code of such softwares to develop new free programs. 
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CHAPTER 2 

 

THEORY OF DISCRETE ELEMENT METHOD 

2.1 Fundamentals of Discrete Element Method 

2.1.1 General 

Formulation of DEM requires a consideration of a number of concepts. These 

concepts can be classified according to the following aspects: 

 Body or particle shape (disk, sphere, ellipsoid, polygonal etc.) 

 Deformability of body or particle (rigid or deformable) 

 Deformability of contact (rigid or deformable) 

 Equation of motion (original time history or transformed, modal equations 

of motion) 

The theory of DEM presented in this thesis is based on the study of Cundall and 

Strack (1979) † and particularly on the disk (in two dimensions) or spherical (in 

three dimensions) shaped rigid (undeformable) particles with deformable contact 

formulation. Particles move according to Newton’s second law of motion in real 

time. The computer program EDEM™ is also based on this theory. The other forms 

of DEM and the influence of different particle shapes are discussed in Section 2.5.  

The theory of discrete element method is in general much simpler than the 

alternative numerical analysis methods. This is because the particles in DEM  

 

† In this study, they named this method as Distinct Element Method. Later, Cundall 
and Hart (1992) claimed that “the term Distinct Element Method had been coined to 
refer the particular discrete element scheme that uses deformable contacts and 
explicit, time-domain solution of the original equations of motion (not the 
transformed, modal equations)” in the paper where they studied the different forms 
of discrete element method. 
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displace and interact according to simple physical laws. This is also why the 

parameters required in this method have clear physical meanings although it may 

sometimes be difficult to assess them properly. The simulation of billiard balls is a 

good example to illustrate the parameters such as the stiffness of contact or 

damping coefficients that can be determined and fine tuned after several model 

studies. Actually, there are computer games and simulations modeling the motion of 

particles that also use simple forms of DEM. 

2.1.2 Calculation Scheme 

In the DEM, particles obey the Newton’s second law of motion. It is a completely 

explicit dynamic time history analysis. Accordingly, if the forces acting on a 

particle are known at a specific time, its velocity, displacement and consequently 

the position can be calculated. This concept forms the basis of DEM approach. 

Forces and moments acting on each particle in a system stem from external forces 

like gravity or contact reactions. It is obvious that a discontinuous medium is 

distinguished from a continuous one by the existence of contacts. The formulation 

which yields contact forces due to the deformation at contacts is referred as “contact 

constitutive relation” that is of critical importance in the discrete element 

formulation. 

The contact detection algorithm is the most challenging part of discrete element 

programs. The computation time is directly dependent on this algorithm. If the 

contact existence is detected by investigating the position of each particle in the 

system, the amount of calculation time necessary to identify the contact points is 

proportional to the square of the number of particles in the system in each step. If 

ten thousand particles are considered for 1×10-5 s time-steps, the simulation with 

duration of 10 s requires 1×1014 contact detection iterations. If polyhedral particles 

are used instead of spherical ones, computational demand grows beyond 

imagination. Fortunately, there are more efficient contact detection algorithms 

which reduce the number of contact detection iterations and the investigations on 
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this subject are still ongoing (e.g. Nezami, Hashash, Zhao and Ghaboussi, 2004 and 

2006) 

The calculation scheme in DEM can be generalized as follows: Displacements can 

be calculated for a time step by the Newton’s second law of motion. Then the 

location of each particle is determined. The existence of contacts is searched by 

contact detection algorithm and relative position of each particle to the neighboring 

particles is determined. Afterwards, forces arising due to contacts are calculated by 

contact constitutive relation. The calculated forces in turn constitute input to 

calculate the motion for the next calculation step. This iterative calculation scheme 

is referred to as “calculation circle” (Figure 2.1). If the time is considered to be the 

third dimension of this calculation scheme, it can be conceived as a spiral rather 

than a circle. 

 

 

Figure 2.1 Calculation circle of Discrete Element Method 
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The theoretical formulations of the elements of this calculation scheme are 

articulated in following sections. 

2.1.3 Velocity Issue 

The nature of DEM is fully dynamic. Therefore, the term velocity is introduced. On 

the other hand, the geomechanical problems, even when truly dynamic, are 

generally idealized as static or quasi-static. Therefore, the effect of velocity (or rate 

of loading) inherent in DEM provides a new alternative concept for solution of 

geotechnical problems.  

The effect of velocity with an analogy and the difference between the results of 

quasi-static and dynamic simulations is described in ABAQUS documentation very 

clearly. Figure 2.2 shows two cases of an elevator full of passengers. In the slow 

case the door opens and you walk in. To make room, the occupants adjacent to the 

door slowly push their neighbors, who in turn push their neighbors, and so on. This 

disturbance passes through the elevator until the people next to the walls indicate 

that they cannot move. A series of waves pass through the elevator until everyone 

has reached a new final equilibrium position. If you increase your speed slightly, 

you will shove your neighbors more forcefully than before, but in the end everyone 

will end up in the same position as in the slow case. In the fast case you run into the 

elevator at high speed, permitting the occupants no time to rearrange themselves to 

accommodate you. Two people directly in front of the door will be injured, while 

the other occupants will be unaffected. 

Such effects, which exist for dynamic problems, can not be taken into consideration 

through quasi-static analyses. In the discrete element simulation of geomechanical 

problems, the rate of loading, which can affect the failure mechanism, is considered 

intrinsically. D’Addetta (2004) illustrated this effect of velocity to the failure 

mechanism through simulation of a retaining wall problem (Figure 2.3). 
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Figure 2.2 Illustration of the effect of velocity (rate of loading) (ABAQUS 
Documentation, 2004) 

 

 

 

Figure 2.3 Effect of velocity to the failure mechanism of the backfill behind a 
retaining structure (D’Addetta, 2004) 
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2.1.4 Issues of Stress and Strain 

In continuum based methods, the constitutive relation is defined as the relation 

between stress and strain. Nevertheless, the equivalent of this relation is between 

relative displacements and contact forces in the DEM. Therefore, the stress and 

strain are the valid terms for continuum rather than granular assemblies. 

In the DEM, the micromechanical stresses and strains may be obtained through 

“Homogenization” techniques (Alonso-Marroquin, 2004). As Cambou, et al (1995) 

stated, homogenization is a general term of deriving macro-mechanical parameters 

of a material from its micro-mechanical properties. There are several ways of 

averaging techniques of micro-mechanical stress in the granular media but there is 

no accepted way of calculating strain tensor, as yet. There exist some studies on this 

subject (e.g. O’Sullivan, et al, 2003) and it is still under discussion. 

Alonso-Marroquin and Herrmann (2005) studied the derivation of micro-

mechanical stress and strain. Additionally, Itasca (2006) embedded their stress and 

strain calculation in the computer program PFC2D/PFC3D and gave the formulations 

in the manuals (Itasca, 2006). 

2.1.5 Parameter Selection 

In any kinds of numerical analyses, the parameters that define the material behavior 

need to be known or estimated. These parameters are normally obtained by either 

direct measurement of required parameter (like Young’s modulus) or using 

correlation relations (e.g. cohesion from plasticity index) from field or laboratory 

tests in geomechanics. Those tests generally measure the macro-mechanical 

properties of the materials. Therefore, these parameters can be directly used in 

continuum based numerical analysis. 

Conversely, DEM requires micro-mechanical parameters and direct measurement 

tests of them are not common. Therefore, homogenization techniques are required 

to obtain these parameters from conventional tests. Cambou et al (1995) and 

Emeriault et al (1996) studied on homogenization for granular materials and 

introduced some relations between micro and macro elastic parameters. Ng (2006) 
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performed several sensitivity analyses in order to investigate the effects micro-

mechanical parameters to the complete model.  

Currently, a calibration phase may be necessary before starting analyses (Cundall, 

2001). In this phase, a laboratory or field test model can be simulated and micro-

mechanical parameters are iterated until reaching the required macro-mechanical 

properties. Then, the numerical analysis can be performed by these parameters. 

Obviously, calibration studies are tough and time consuming studies, therefore, 

more detailed and sophisticated investigations on this subject are required. 

2.2 Theory of Motion and Position Calculation 

The motion of a rigid body is defined by the motion of the center of mass assuming 

that any forces and moments act on that point. This point has three degrees of 

freedom (two transitional and one rotational) in two dimensions and six degrees of 

freedom (three translational and three rotational) in three dimensions.  

The Newton’s second law of motion is used to define the translational motion of the 

body as given in the equation below: 

( )gsmF −⋅=  (2.1) 

where,  

F : vector sum of the all applied forces, 

m: total mass of the body, 

s : acceleration vector, 

g : body force acceleration vector (like gravity) 

If the local coordinate system is assumed to lie along the principal axes of inertia, 

the equations of rotational motion in three dimensions are given by Euler (Hibbeler, 

1989): 

( ) yzyzxxx IIIM φ⋅φ⋅−+φ⋅=  (2.2a) 

( ) zxzxyyy IIIM φ⋅φ⋅−+φ⋅=  (2.2b) 

( ) xyxyzzz IIIM φ⋅φ⋅−+φ⋅=  (2.2c) 
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where,  

zyx M,M,M : components of the moment, 

zyx I,I,I : principal mass moment of inertias, 

zyx ,, φφφ : components of angular acceleration, 

In case the sphere or the disk with the mass distributed uniformly over the volume, 

the center of mass coincides with the particle center. All principal moments of 

inertia of spherical and disk-shaped particles are essentially equal at their center of 

mass which coincides with the center of geometry. Therefore, above equations 

reduce to the following vector equation for spherical and disk-shaped particles of 

radius R and mass m: 

φ⋅= IM  (2.3) 

where,  
2mR2

1I =  for disk (two dimensional) (2.4a) 

2mR5
2I =  for sphere (three dimensional) (2.4b) 

If the time step (Δt) is small enough so that the accelerations are assumed to be 

constant within that time step, the above differential equations can be solved to find 

the particle motions (Itasca, 2006). For this purpose, the following equations can be 

used if the velocity terms are computed at the mid of the time step (i.e. Δt/2): 

( )2/tt2/ttt ss
t

1s Δ−Δ+ −
Δ

=  (2.5) 

( )2/tt2/ttt t
1

Δ−Δ+ φ−φ
Δ

=φ  (2.6) 

After implementing the equations of motions to the above formulae, the velocities 

for the next time step can be calculates as: 

tg
m
F

ss t
2/t2/t Δ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= Δ−Δ+  (2.7) 
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t
I

M t
2/t2/t Δ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+φ=φ Δ−Δ+  (2.8) 

Finally, the new position of the center of particle is: 

tsss 2/ttttt Δ⋅+= Δ+Δ+  (2.9) 

The rotation of the particle can also be calculated but it does not have any 

significance in case of sphere or disk. 

This solution technique is known as explicit finite difference procedure. In this 

procedure, the major concern is to decide the maximum stable time step in which 

the kinematical terms are assumed to be constant. This issue is discussed in 

Section 2.4 in detail. 

2.3 Contact Constitutive Relations 

In the DEM, the attitude of the particles that is in contact with the other particles or 

boundary elements is defined by the contact constitutive models. Contact 

constitutive model is a relation by which the forces arising due to the contact can be 

calculated from the relative positions of interacting particles. There exist various 

contact constitutive models. However, only the most widely used models for 

spherical and disk-shaped particles are discussed in this section. 

The contact constitutive relations can be divided into three mutually exclusive 

models: 

 Contact – stiffness models 

 Contact – yield models 

 Damping models 

The first two models are the equivalents of elastic and plastic parts of any 

continuum based constitutive relations, respectively. That is to say, contact-stiffness 

models define the linear or nonlinear recoverable portion of contact relation, 
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whereas, contact–yield models characterize the failure of interaction between 

particles (either shear or tension failure). 

Contact stiffness model is a compulsory contact constitution relation while the 

others are optional. However, it is recommended that at least the frictional linear 

contact model (refer to the following sections) which is the simplest and basic 

constitutive relation should be introduced as a contact–yield model to obtain healthy 

results. 

Damping models are important and necessary for dissipating energy and damping 

of the oscillating motions, which are the natural outcome of the dynamic solution 

techniques. 

2.3.1 Contact – Stiffness Models 

Linear Contact Model 

It is the most widely used contact constitutive model. The relation between the 

contact overlap distances and the developing forces are assumed to be linear in this 

model and simulated by linear springs in both normal and tangential directions. 

Accordingly, the model can be formulated in scalar form as: 

nnn KF δ⋅=  (2.10a) 

ttt KF δ⋅=  (2.10b) 

where,  

tn F,F :  magnitude of normal and tangential forces at contact 

tn K,K : normal and tangential contact stiffness 

tn ,δδ :  normal and tangential overlap distances at contact 

The vector form can easily be obtained by multiplying the above scalar forces by 

unit direction vectors of the contact. 
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If the contact stiffness parameters are defined as the particle property instead of 

contact property itself, the equivalent contact stiffness parameters can be obtained 

by the serial spring formulations: 

2,n1,n

2,n1,n
n kk

kk
K

+

⋅
=  (2.11a) 

2,t1,t

2,t1,t
t kk

kk
K

+
⋅

=  (2.11b) 

where,  

i,ti,n k,k : normal and tangential contact stiffness of individual particle. 

This model also introduces an important discrete material parameter (λ); the ratio of 

the tangential stiffness to the normal stiffness, which is referred to as contact 

stiffness ratio. 

n

t

K
K

=λ  (2.12) 

Hertz-Mindlin Contact Model 

This model is based on the spherical contact studies of Hertz in normal force 

calculation and Mindlin and Deresiewicz in tangential force calculation (cited by 

van Baars, 1996). The forces at the contact are proportional to contact area rather 

than the overlap distance, consequently, the relation is non-linear.  

The Hertz-Mindlin model is formulized as follows: 

2/3
n

*
n RE

3
4F δ⋅⋅⋅=  (2.13) 

tn
*

t RG8F δ⋅δ⋅⋅⋅=  (2.14) 

where,  

tn F,F : magnitude of normal and tangential forces at contact 

tn ,δδ : normal and tangential overlap distances at contact 
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*
2

*
1

*
2

*
1*

EE
EEE

+
⋅

=  (2.15) 

*
2

*
1

*
2

*
1*

GG
GGG
+
⋅

=  (2.16) 

21

21

RR
RR

R
+
⋅

=  (2.17) 

ν−
⋅

=
ν−

=
1

G2
1

EE 2
*  (2.18) 

ν−
=

ν−ν+
=

2
G

)2)(1(2
EG*  (2.19) 

R: radius of particle 

E: young modulus of particle 

G: shear modulus of particle 

ν: Poisson’s ratio of particle 

Note that; 

)1(2
EG

ν+⋅
=  (2.20) 

The similarity of this model with the linear contact model can be established as: 

n
*

n

n
n RE

3
4FK δ⋅⋅⋅=

δ
=  

n
*

t

t
t RG8

F
K δ⋅⋅⋅=

δ
=  

Accordingly, the contact stiffness ratio is: 

*

*

n

t

E
G6

K
K

⋅==λ  (2.21) 
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If the elastic parameters of the two interacting spheres are equal, then: 

ν−
ν−

⋅=λ
2
13  (2.22) 

This relation is quite useful since it apparently shows that the contact stiffness ratio 

is only a function of Poisson’s ratio providing that the elastic properties of the 

contacting spheres are identical. This relation can also be used in linear contact 

model as well. It can be observed that: 

5.0if1KK nt =ν=λ→=  and 

nt KK15.0For >→>λ→<ν  

2.3.2 Contact – Yield Model 

Slip Model 

This model defines the friction between the particles and normally the default yield 

relation unless there is bond between particles. If the tangential (shear) force 

exceeds the frictional resistance of the contact, slipping occurs. The limiting 

tangential force is formulated as  

nmax,t FF ⋅μ=  (2.23) 

where,  

max,tF  : limiting tangential force 

nF  : magnitude of normal force at contact 

μ : Coulomb’s friction coefficient 

When the tangential force is limited by the above value, the tangential overlapping 

distances should be back-calculated and updated in the relevant contact-stiffness 

computation. 
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Parallel Bond Model 

In this model, there is a finite-sized glue bond between particles. After the bond is 

activated, the following forces in addition to the forces stemming from the contact-

stiffness model develop: 

tvAKF nnn Δ⋅⋅⋅−=Δ  (2.24) 

tvAKF ttt Δ⋅⋅⋅−=Δ  (2.25) 

tJKM nnn Δ⋅ω⋅⋅−=Δ  (2.26) 

t
2
JKM ttt Δ⋅ω⋅⋅−=Δ  (2.27) 

where,  
2RA ⋅π= : area of the bond 

4R
2
1J ⋅π= : polar moment of inertia of the particle cross section. 

The bond is broken if the tensile or shear stresses exceed the predefined values. The 

permissible bond stresses are formulated as: 

R
J
M2

A
F tn

max ⋅
⋅

+=σ  (2.28) 

R
J

M
A
F nt

max ⋅+=τ  (2.29) 

The derivation and detailed studies on bonded particle model represented above are 

given by Potyondya and Cundall (2004). 

2.3.3 Damping models 

Although the energy in the system can be dissipated by the friction between the 

particles, additional damping force may be required in order to damp the redundant 

oscillations and to reach equilibrium conditions more quickly. The damping models 

provide additional forces in the opposite direction to that of the motion to dissipate 

the velocity. There exist several damping methods. They can be investigated under 

two separate groups: 
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 Viscous damping 

 Non-viscous damping 

Viscous damping force is the function of velocity. It is widely used in dynamic 

structural analyses to dissipate energy. On the other hand, the damping force is a 

proportion of the existing force in non-viscous damping, which acts opposite 

direction to the motion. That is to say, non-viscous damping force damps 

acceleration (consequently the unbalanced force that causes motion) rather than 

velocity. Therefore non-viscous damping is more effective in quasi-static system 

since it will help the system reach equilibrium more quickly. The most common 

non-viscous damping is the due to the friction between the bodies. Some of widely 

used damping models are investigated below: 

Viscous Damping Model 

In viscous damping, normal and shear dashpots are provided in addition to the 

springs that represent the contact stiffness as illustrated in Figure 2.4 

 

  

Figure 2.4 Illustration of viscous damping between particles (Itasca, 2006) 
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Damping forces components are; 

nnn vcD ⋅=  (2.30a) 

ttt vcD ⋅=  (2.30b) 

where,  

tn D,D : normal and tangential damping forces 

tn c,c : normal and tangential damping constants 

tn v,v : normal and tangential relative velocities at the contact 

Damping constants tn c,c  can be given directly or expressed in a fraction of critical 

damping constants as: 

crit
nnn cc β=  (2.31a) 

crit
ttt cc β=  (2.31b) 

Critical damping constants are, 

n
crit
n Km2c ⋅=  (2.32a) 

t
crit
t Km2c ⋅=  (2.32b) 

where, 

21

21

mm
mm

m
+
⋅

=  (2.33) 

Non-viscous Damping Models 

Frictional damping: 

If the slip model (Section 2.3.2) is introduced to the system, the energy at the 

contact will be dissipated due to the existence of friction.  

Local damping: 

Another damping method is the so called local damping (Itasca, 2006). In this 

method, damping force term is added to the equation of motion as: 
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smFF d ⋅=+  (2.34) 

φ⋅=+ IMM d  (2.35) 

where, 

dd M,F : damping force and moment vectors, respectively. 

It is assumed that the damping forces and moments are directly proportional to the 

forces and moments acting on a body but in the opposite direction to the motion. 

The components of the damping forces and moments are expressed as follows. 

xxd,x F)v(signF ××α−=  (2.36a) 

yyd,y F)v(signF ××α−=  (2.36b) 

zzd,z F)v(signF ××α−=  (2.36c) 

xxd,x M)(signM ×ω×α−=  (2.36d) 

yyd,y M)(signM ×ω×α−=  (2.36e) 

zzd,z M)(signM ×ω×α−=  (2.36f) 

where, 

α: non-dimensional damping constant 

zyx v,v,v : components of translational velocity of particle 

zyx ,, ωωω : components of rotational velocity of particle 

The default value of damping constant is proposed as 0.7 in PFC2D/PFC3D. 

Damping from restitution 

When two particles collide, a part of the kinetic energy before the impact is 

dissipated or dispersed. There is a term to represent this energy dissipation so called 

coefficient of restitution (e) which is defined as the ratio of restitution impulse to 

the deformation impulse (Hibbeler, 1989). It is formulated as 

i

r

v
v

e =  (2.37) 
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where, 

e: coefficient of restitution 

ir v,v : rebound and incident impact velocities, respectively. 

The force necessary to maintain this phenomenon is expressed as follows (DEM 

Solutions, 2006): 

2/14/1
d REm

3
10v2F ⋅⋅δ⋅⋅β⋅−=  (2.38) 

where, 

[ ]22 )eln(

)eln(

+π
=β  

v: relative velocity 

δ : overlapping distance 

21

21

EE
EE

E
+
⋅

=  (2.39) 

Randm  are defined in equations 2.33 and 2.17 respectively. 

This type of damping is effective in relatively high speed and completely discrete 

situations but not enough for damping of closely packed assemblies. 

2.4 Stable Time Step 

As discussed earlier, computation time is the major shortcoming of the DEM. 

Therefore, time step which is used in the finite different integration of motion given 

in Section 2.2 should be maximized while maintaining the solution stability. 

Theoretically, the maximum stable time step is related to the minimum Eigen period 

of the total system. However, it is not practical to perform Eigen value analysis in 

DEM simulations. Therefore, some approximations are necessary to determine 

critical time. For a single degree of freedom (SDOF) system critical time step is 

expressed as (cited by Itasca, 2006): 

π
=

Tt critical  (2.40) 
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where, 

k/m2T π= , period of SDOF system 

m: mass 

k: spring stiffness 

Rayleigh time step is an important feature for DEM simulations. This is the time 

taken for a shear wave to propagate through a solid particle. It is therefore a 

theoretical maximum time step for a DEM simulation of a quasi-static particulate 

collection in which the coordination number (total number of contacts per particle) 

for each particle remains above one (DEM Solutions, 2006). It is given by, 

8766016310 ..
G/R

t critical +ν⋅
ρ⋅⋅π

=  (2.41) 

where, 

R: radius of particle, 

ρ : density 

G: shear modulus 

ν: Poisson’s ratio 

Within the stable time, maximum possible overlap distance must also be 

maintained. Therefore, for highly dynamic cases, Hertzian contact time can be 

important. Total contact time from Hertz theory of elastic collision is expressed as: 

5 2
critical m

v64
259432.2t

Δ
γ

⋅⋅=  (2.42) 

where, 
2

G
1

R
1

16
9

⎟
⎠
⎞

⎜
⎝
⎛ ν−

=γ  

m: mass 

Δv: relative velocity at contact 

R: radius 

G: shear modulus 

ν: Poisson’s ratio 
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Obviously, critical time step is the theoretically maximum allowable time step. 

Therefore, the stable time should be a fraction of critical time step. As a general 

approach 10% to 20% of critical time step can be considered as appropriate. 

It is noticeable that, stable time step is directly proportional to the mass (see 

equations 2.40, 2.41, 2.42). However, for static systems, mass is not an important 

parameter (except the body forces). Therefore, for static systems, density and 

consequently the mass of particle can be scaled up in order to increase the time step 

and reduce calculation time. However, in that case the time is not a real time and it 

may be more appropriate to call it calculation step. 

2.5 Other Forms of DEM 

As stated earlier, the focus in this study is on spherical particles. However, the 

shape of granular materials like sand is not spherical in reality. Calvetti, et al (2003) 

showed in their studies that friction angles of packing spheres are lower than the 

experimental values (cited by Alonso-Marroquin, 2004). Obviously, it is due to the 

fact that the rotational resistance of spherical particles is less than that of any 

arbitrarily shaped grains. 

There are several studies on the DEM with different shaped grains. For instance, 

Cundall (1988) and Hart, et al (1988) presented their studies on three dimensional 

DEM with polyhedral blocks. However, the calculation time is the major 

shortcoming for arbitrarily shaped particles, as yet. 

Ng (1992) proposed to use elliptical particles in DEM since the contact detection of 

ellipse is relatively simpler than any arbitrary shaped particles. Besides, the 

rotational resistance of elliptical particles is greater than that of spheres. 

It may be possible to create arbitrary shaped particles by using the cluster of 

spherical particles (Favier et al, 1999). In this approach, spherical particles with 

varying or constant diameters are rigidly connected in order to form any random 

shape. Accordingly, the effort for contact detection remains unchanged while the 

equation of motion can be applied to the multi-element cluster. The example 

particles formed by this approach are shown in Figure 2.5. 
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Figure 2.5 Example of multi-element clusters (Favier, 1999) 

 

Sallam (2004) also studied on the modeling of angular soil particles by combining 

round elements in his PhD thesis. There is a special two-dimensional DEM program 

with concave polygonal shaped particles which is developed in University of 

Stuttgart and some studies are performed by this program (Alonso-Marroquin, 

2004, D’Addetta, 2004, D’Addetta and Ramm, 2005). Linear shaped particles in 

two-dimension (Anandarajah, 1994) and plate shaped particles in three-dimension 

(Yao and Anandarajah, 2003) were proposed as well in order to simulate the clayey 

soil behavior. 

O’Sullivan et al (2002) investigated the influence of particle angularity on the 

behavior of granular materials. As the conclusion of their studies, they stated that: 

 Assemblies of angular particles are more compressible than that of rounded 

particles. 
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 Higher densities can be achieved with increasing particle angularity under 

the same magnitude of confining pressure. 

 The peak shear strength for angular material occurs at a higher axial strain 

than for rounded particles, and there is a less significant reduction in post-

peak strength. 

 Shear strength is directly proportional to the number of angularity in 

particles. 

In addition to particle shape, there are other different approaches to DEM. Van 

Baars (1996) introduced an implicit time integration scheme for essentially static 

systems. Bardet and Proubet (1991) proposed another solution scheme named 

adaptive dynamic relaxation to reduce the calculation time. There are also studies 

on coupled or hybrid DEM-FEM formulations (Munjiza, 2004). Shamy and Zeghal 

(2005) represented a study on coupled DEM-FEM analysis to model pore water in 

discrete assemblies.  
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CHAPTER 3 

 

APPLICATION OF DEM ON BEARING CAPACITY PROBLEMS 

3.1 Introducing the DEM Software EDEM™ 

3.1.1 General 

A general-purpose DEM software, EDEM™ is used in the entire DEM analyses and 

simulations performed within the scope of this study. EDEM™ is commercial DEM 

software for simulation of three-dimensional particle mechanics. It is developed and 

distributed by DEM Solutions Ltd. 

EDEM™ has a very user friendly and easy-to-use graphical user interface (GUI) as 

illustrated in. Figure 3.1. It is the most professional DEM software available in the 

market currently. On the other hand, since it is not particularly designed for 

geotechnical applications, creation and working with closely packed assemblies in 

static or nearly static condition can sometimes be problematic.  

The capabilities and theoretical background of the software are discussed briefly in 

the following sections. 

3.1.2 Element types 

Program consists of two types of elements: 

 Particle elements 

 Geometry elements. 

Particle elements are rigid elements with deformable contact surface. The particles 

can be a single sphere or cluster of several spheres (Favier, 1999). Particles are 

produced and introduced into the model by an efficient engine named “Particle 

Factory™”. It is also possible to create user-defined particle arrangements. 
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Figure 3.1 Illustration of EDEM™ user interface 

 

Geometry elements are for creation of boundary conditions to the particulate media. 

They are not deformable and their motion is controlled by the user by specifying 

prescribed velocity or acceleration. The geometry elements can be either created 

inside the program or imported from any Computer Aided Drawing (CAD) 

programs. EDEM™ uses triangulation technique to define the surface of any 

geometry elements. 

3.1.3 Computation technique 

EDEM™ is completely dynamic in real time domain. The Newton’s second law of 

motion is used to define the activity of the particles as described in Section 2.2. 

Therefore, it exploits explicit finite difference solution technique. 

The program has parallel processing capability for dual-processor computers.  
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It is possible to introduce body force acceleration (like gravity) to the particles. 

Besides, the program accepts any user-defined external forces. However, those 

forces can only be applied to the particles. 

3.1.4 Contact models 

The only internal contact constitutive relation offered by EDEM™ is Hertz – 

Mindlin model (see Section 2.3.1). However, four additional user-defined models 

are provided with the program both in source and binary forms. Those are listed and 

briefly explained below: 

 Linear Spring Contact Model: Its theory is given in 2.3.1. There is no 

damping in this model. However the tangential force is subject to the limit 

imposed by friction. 

 Parallel Bond Contact Model: This model is provided to bond the particles 

by a finite-sized “glue” bond. This bond can resist tangential and normal 

movements up to a maximum normal and tangential shear stresses, at which 

point the bond breaks. Thereafter the particles interact as hard spheres. This 

model is particularly suited to model continuum like concrete and rock 

structures. 

 Cohesion Contact Model: This model modifies Hertz-Mindlin contact by 

adding a normal cohesion force. 

 Moving Plane Contact Model: This model simulates a linear motion of a 

geometry section. The whole section is deemed to move at the same 

velocity. The contact model adds this linear velocity to the velocity of the 

geometry section only within the contact model (so the geometry section 

does not actually move). This model is suitable for simulation of 

transportation of bulk materials such as conveyor belts. 

It is possible to add user-defined contact constitutive relation to the program. For 

this purpose, the provided codes can be modified and compiled as dynamic linked 

library (dll) in Microsoft Windows – shared object (so) in Linux.  
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3.1.5 Post-Processor 

EDEM™ has quite useful post-processor to investigate any computed results. It can 

animate the motion of the particles in timely fashion. It is possible to colorize the 

particles and/or the contacts regarding the any computed value such as velocity, 

contact force, etc. The result of any calculated value can be exported out to interpret 

in any other software. EDEM™ can also prepare charts and graphs for illumination 

of results. 

3.2 Analysis Procedure 

The predictive capacity of the DEM in any fields of application as well as bearing 

capacity problems can be investigated through comparison with the results of other 

numerical analysis techniques or analytical methods. However, application of DEM 

requires calibration studied as explained by Cundall (2001) since the parameters in 

either method should be comparable. 

In order to obtain macro-mechanical parameters, two separate test platforms are 

prepared: 

 Isotropic compression test platform to measure macro elastic parameters of 

the model 

 Direct shear test platform to measure the strength parameters. 

Due to the nature of the DEM, it is not possible to get the same geometry for 

different models that are randomly filled by particles. The arrangement of particles 

(especially for coarse filling) may affect the results of the analysis in spite that the 

micro-mechanical parameters are the same. For this reason, a user defined particle 

factory code is generated to map the particle arrangement and re-produce for 

different runs. Such mapping technique brings another advantage of reducing 

calculation time that is spent for model generation. 

A computer having 2×2.0 GHz dual-processors with 2 GB of RAM is utilized for 

DEM simulations. The calculation times can be expressed in days for the 

simulations carried out in the scope of this study. 
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One of the major advantages of numerical analysis is to have the chance of 

analyzing exactly the same geometry several times and in several studies. In this 

study, the DEM model generated for bearing capacity analysis is also used in 

calibration studies in full scale. 

The procedure for DEM analysis of bearing capacity problem is listed below: 

 First of all the micro-mechanical parameters that is used in the analysis are 

to be defined. While selecting the model parameters, it is considered to 

reduce the calculation time and increase the visual quality (for better 

realization of the mechanisms) with minimum effect on solution reliability. 

Therefore, the material density is 10 times scaled up and the shear modulus 

of particles is selected lower than the real value to reduce the computation 

time. Since the model is relatively small when it is compared with the 

particle size, density scaling is helpful to increase the stresses values and 

exaggerate the displacements for better visualization. However, the solution 

time is not “real time” but it is a representative of calculation cycle. The 

selected micro-mechanical parameters are listed in Table 3.1.  

 The model geometry is to be generated. For this reason, a box that is small 

in one dimension compared to the others to represent the plane strain 

condition is placed and filled with particles. Since EDEM™ does not allow 

the randomly generated particles to interact during filling process, the 

particle arrangement is extremely loose at this stage. Therefore, gravity is 

applied to compact the particles. This compaction process is to be continued 

until the energy within the system is dissipated and steady condition is 

reached. Unfortunately, damping method of EDEM™ is not effective for 

closely packed particles thus it is extremely time consuming to reach 

equilibrium. The physical properties of the geometric DEM model 

illustrated in Figure 3.2 are given in Table 3.2. 

 The generated model is to be mapped for future geometry generation.  

 Calibration runs is to be performed. The macro-mechanical parameters 

obtained from the calibration runs are the input parameters of both analytical 

and FEM solution of the problem. 



 
48

 Analytical solutions are to be achieved by using the macro-mechanical yield 

parameters. 

 The FEM analysis of the same model with the macro-mechanical parameters 

obtained from calibration runs is to be conducted. For this purpose, the plane 

strain FEM software Phase2 v6 is used. 

 The bearing capacity analysis by DEM is to be accomplished and the results 

are to be compared. 

The selected micro-mechanical parameters and properties of the geometric model 

are given in Table 3.1 and Table 3.2, respectively.  

 

Table 3.1 Micro-mechanical parameters selected for analyses 

Contact Constitutive Model Hertz – Mindlin Non-linear contact 
formulation 

Shear Modulus 1×108 Pa 

Poisson’s ratio 0.4 

Density * 26 000 kg/m³ 

Coefficient of Restitution 1×10-4 

Coefficient of Static Friction 0.5 

Particle Diameter 48 ~72 mm (Average 60 mm) 
* Density is 10 times scaled up.  

 

Table 3.2 Properties of geometric model  

Model Dimensions (X × Y × Z) 1500×120×700 mm 

Total Volume 0.126 m³ 

Total Weight of the Model * 16.95 kN 

Unit Weight of Soil * 134.5 kN/m³ 

Volume of Solids 0.0652 m³ 

Void Ratio 0.52 

Number of Particles 700 
* Density is 10 times scaled up.  
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Figure 3.2 Generated input model 

 

3.3 Calibration Runs 

3.3.1 Isotropic Compression Test Simulation 

The purpose of this simulation is to obtain macro-mechanical elastic parameters 

which are necessary for FEM simulation. As most of the FEM based softwares, 

Phase² requires Young’s modulus (E) and Poisson’s ration (υ) as the elastic 

properties of the material. These parameters can be obtained by making use of 

Hooke’s law: 

( )[ ]zyxx E
1

σ+συ−σ=ε  (3.1a) 

( )[ ]zxyy E
1

σ+συ−σ=ε             (3.1b) 

( )[ ]yxzz E
1

σ+συ−σ=ε  (3.1c) 



 
50

During the isotropic compression test simulation, the X and Y directions are fixed 

while the material is compressed in Z direction. In this case, 

0yx =ε=ε  

If the equations 3.1 are re-arranged, one can find that, 

υ−
υ

=
σ
σ

=
1

K
z

x              
K1

K
+

=υ  (3.2) 

z

z

1
)21)(1(E
ε
σ

υ−
υ−υ+

=  (3.3) 

The DEM simulation steps of the isotropic compression test are as follows: 

 The previously generated model is placed into a box with the original 

dimensions of the model (1500×120×700 mm).  

 The gravity in the system is removed. 

 A plate is placed on top of the box and it is lowered in 5 steps to squeeze the 

particles inside the box. 

 It is assured that the equilibrium is satisfied at the end of each step. 

 Sum of the forces exerted by the particles to each wall is measured. Then the 

pressures are calculated. 

Variation of the forces in X and Y directions during the calculation process are 

illustrated in Figure 3.5. The values extracted from measurements are given in 

Table 3.3. 
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Figure 3.3 Isotropic compression test model 

 

 
 

Figure 3.4 Contact overlap distance at the final stage of isotropic compression test 
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Table 3.3 Results from isotropic compression test 

Boundary Wall 
Forces (kN) Stresses (kPa) Axial 

Strain 
Calculation 

Cycle at 
Equilibrium 

Model 
Dimensions 

(mm) Fx Fz σx σz εz 

25 000 
1500 
120 
680 

3.05 6,83 37.4 37.9 - 

75 000 
1500 
120 
660 

9,80 36.32 123.7 201.8 0.0294 

125 000 
1500 
120 
640 

22.36 87.61 291.1 486.7 0.0588 

175 000 
1500 
120 
620 

37.95 157.12 510.1 872.9 0.0882 

225 000 
1500 
120 
600 

59.40 243.35 825.0 1351.9 0.1176 

275 000 
1500 
120 
580 

82.00 335.15 1178.2 1861.9 0.1471 

 

 

If the first results obtained at the cycle of 25 000 is assumed as the starting point of 

the test, the tangential modulus of elasticity can be obtained from the differences of 

stress and strain as in Table 3.4. The strain versus stress diagram in principal 

directions is illustrated in Figure 3.6. 
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Figure 3.6 Variation of stresses in isotropic compression test 

 

Table 3.4 Calculation of macro-elastic parameters 

Stress Increments 
(kPa) 

Axial Strain 
Increment K υ E (kPa) 

Δσx Δσz Δεz σx / σz Eq. 3.2 Eq. 3.3 
86.3 163.9 0.0294 0.61 0.38 3667 

167.4 284.9 0.0588 0.60 0.38 4422 

219.0 386.2 0.0882 0.58 0.37 5596 

314.9 479.0 0.1176 0.61 0.38 6141 

353.2 510.0 0.1471 0.63 0.39 6345 

 

Since the stress levels are closer to the later measurements and the variation is more 

stabilized, the macro-mechanical elastic properties of the material are selected as; 

E = 6300 kPa 

υ = 0.38 
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3.3.2 Direct Shear Test Simulation 

Yield parameters are the other required macro-mechanical properties of the tested 

material. They are necessary for both FEM analysis and analytical solutions. 

Assuming the material obeys Mohr-Coulomb yield criterion, the direct shear test 

simulation is the most suitable testing method due to its simplicity and reliability 

(Masson and Martinez, 2001). The shear strength of the material in Mohr-Coulomb 

yield criterion is formulated as, 

φ⋅σ+=τ tanc  (3.4) 

where, 

τ : shear strength of material 

σ : normal stress 

c: cohesion 

φ : internal friction angle 

Since there are no bonds between the particles in this model, the cohesion term 

vanishes. Therefore, the internal friction angle is, 

σ
τ

=φ −1tan  (3.5) 

In real direct shear box tests, normally a constant load in normal direction is applied 

and the shear force is measured while the box is shearing. This process is repeated 

by changing the normal force. The slope of the normal force versus shear force 

diagram at failure gives the friction angle. However, it is not possible to apply 

prescribed forces to the geometry elements in EDEM™. For that reason, the 

constant volume direct shear method is employed as advised by Zhang and 

Thornton (2002). In this test, the volume is adjusted before starting the test and both 

shear and normal forces are measured during shearing process. The internal friction 

angle can be predicted by observing shear displacement (or strain) versus ratio of 

shear force to normal force diagram. 
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The steps followed during the DEM simulation of constant volume direct shear test 

is given below: 

 The previously generated model is placed into two boxes located such that 

one is top of the other.  

 Then a plate is placed onto the top box and it is lowered to compress the 

material. Iteration is continued until the steady state is reached (Figure 3.9). 

 Shearing process is started. To ensure better force distribution, both boxes 

are displaced in opposite directions. During the test, the variation of the 

forces in X and Z directions are measured. Due to the existence of friction at 

the walls, the summation of all forces including the shear forces at the walls 

should be used in order to find the forces at the shear plane. 

The variation of normal stress and the shear to normal force ratio on the shear plane 

are shown in Figure 3.7 and Figure 3.8, respectively. 

It is realized that the normal stress in direct shear test tends to increase. This means 

that the material is trying to dilate during shear. 

It is also observed that the variation of the friction is non-linear. The ultimate value 

of friction is around 0.75 that corresponds to internal friction angle (φ) of 

approximately 37°. However, it can be assumed that the yield is reached at T to N 

ratio of 0.65 (φ=33°). 
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(a) Normal force is applied 

 

 
(b) End of the test 

 

 
(c) Contact force illustration at the final stage 

 

Figure 3.9 Direct shear test simulation 
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3.4 Bearing Capacity Calculation Models 

The outline of the bearing capacity problem is shown in Figure 3.10. This problem 

is analyzed by the analytical methods, finite element method and discrete element 

method, respectively and then the results are compared. 

 

 

 

 

 

Figure 3.10 Bearing capacity model dimensions 
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3.4.1 Bearing Capacity From Analytical Methods 

There are several analytical methods to compute the bearing capacity of shallow 

foundations. But the most common methods are Terzaghi, Meyerhof, Hansen and 

Vesic bearing capacity formulations (Bowles, 1996). The general form of all these 

methods is: 

γγ ⋅⋅γ⋅⋅+⋅⋅+⋅⋅= fNB5.0fNqfNcq qqccult  (3.6) 

where, 

qult: ultimate bearing capacity  

c: cohesion of soil 

q: surcharge at foundation depth 

B: minimum width of footing 

γ : unit weight of soil 

Nc, Nq, Nγ : dimensionless bearing capacity factors  

fc, fq, fγ: dimensionless correction factors for shape, inclination, eccentricity, etc. 

In our model, there is no cohesion in the soil and foundation depth is zero. 

Therefore, “c” and “q” terms vanish in the equation 3.6. Additionally, fγ is unity for 

strip footings without inclination and eccentricity. Therefore, the equation 3.6 

simplifies to: 

γ⋅γ⋅⋅= NB5.0q ult  (3.7) 

The complete list of Nγ term for different bearing capacity methods are given in 

Table 3.5 (Bowles, 1996). Since the internal friction angle is estimated as 33° for 

our problem, the bearing capacity factors Nγ are; 

Terzaghi Nγ = 32.0 

Meyerhof Nγ = 26.6 

Hansen Nγ = 24.8 

Vesic  Nγ = 35.6 
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Table 3.5 List of Nγ term for the bearing capacity formulations 

φ Terzaghi Meyerhof Hansen Vesic 
0 0.00 0.00 0.00 0.00 
2 0.20 0.01 0.01 0.15 
4 0.40 0.04 0.05 0.34 
6 0.60 0.11 0.11 0.57 
8 0.90 0.21 0.22 0.86 
10 1.20 0.37 0.39 1.22 
12 1.70 0.60 0.63 1.69 
14 2.30 0.92 0.97 2.29 
16 3.00 1.37 1.43 3.06 
18 3.90 2.00 2.08 4.07 
20 4.90 2.87 2.95 5.39 
22 5.80 4.07 4.13 7.13 
24 7.80 5.72 5.75 9.44 
26 11.70 8.00 7.94 12.54 
28 15.70 11.19 10.94 16.72 
30 19.70 15.67 15.07 22.40 
32 27.90 22.02 20.79 30.21 
34 36.00 31.15 28.77 41.06 
36 52.00 44.43 40.05 56.31 
38 80.00 64.07 56.17 78.02 
40 100.40 93.69 79.54 109.41 
42 180.00 139.32 113.95 155.54 
44 257.00 211.41 165.58 224.63 

 

In our model,  

B = 0.3 m (Figure 3.10) 

γ = 134.5 kN/m³ (Table 3.2) 

Therefore, the ultimate bearing capacities from analytical methods are:  

Terzaghi qult = 646 kPa 

Meyerhof qult = 537 kPa 

Hansen qult = 500 kPa 

Vesic  qult = 718 kPa 
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3.4.2 Numerical Analysis of Bearing Capacity by FEM 

For the numerical analysis of the bearing capacity, plane strain FEM software, 

Phase² is used. The model geometry is exactly the same as the DEM model. The 

geometry and input parameters are given in Figure 3.11 and Table 3.6, respectively. 

The analysis procedure is as follows: 

 Model outline is prepared as shown in Figure 3.11. 

 Elastic and yield parameters obtained from the calibration runs are 

introduced to the model as in Table 3.6. To investigate effect of dilation 

angle to the results, model is analyzed with different dilation angles 0° (non-

dilant flow), 5°, 10° and 33° (associated flow), respectively.  

 In order to see post failure behavior, the prescribed displacement applied to 

the footing. The displacement is increased in 10 stages and the vertical stress 

beneath the footing is recorded. 

The obtained model results are illustrated in Figure 3.12 and Figure 3.13, 

respectively. 

 

 

Table 3.6 Model parameters for FEM analysis of bearing capacity 

Modulus of Elasticity 6 300 kPa 
Poisson’s Ratio 0.38 
Yield Criterion Mohr-Coulomb 

Internal Friction Angle 33° 
Cohesion 0 

Dilation Angle 0°, 5°, 10°, 33° 

 

 

 



 
64

 

Figure 3.11 Phase² model of bearing capacity analysis 

 

 

Figure 3.12 Indication of major principal stress on deformed shape of the FEM 
model at 0.15 m settlement of footing (True scale at ψ=0°) 
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3.4.3 Numerical Analysis of Bearing Capacity by DEM 

The procedure for DEM analysis of the problem is given below: 

 A rigid block representing the footing is placed to the previously generated 

particle model. Model is bounded by rigid walls and gravity is maintained. 

 Footing is started to be pushed down while measuring the vertical 

component of contact forces beneath the footing. Then, the average stress is 

obtained by dividing the total contact forces to the footing area. 

The visual representation of the progress of simulations and the result of analysis 

are given in Figure 3.14 and Figure 3.15, respectively. 

The comparison of the results obtained from all analysis performed in this thesis is 

indicated in Figure 3.16.  

 

 

Figure 3.14 The Progress of bearing capacity failure in time 
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Figure 3.14 (cont’d) 
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Figure 3.14 (cont’d) 
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Figure 3.17 Comparison of deformed shape of FEM and DEM as of 0.15 m 
settlement  
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CHAPTER 4 

 

DISCUSSION OF RESULTS AND CONCLUSIONS 

In this study, following a general presentation of the Discrete Element Method 

(DEM), its performance is investigated in the numerical analysis of bearing capacity 

problems.  For the comparison purposes, the bearing capacity model utilized for 

DEM analyses is also tested by analytical and finite element solutions. 

The material parameters required for DEM analysis is radically different from other 

alternative methods based on continuum assumption. Those parameters are micro-

mechanical parameters that define the behavior of a single particle (spherical in this 

case). Obviously, macro-mechanical properties of the assembly formed by 

randomly placed particles are required for comparisons. Hence, two different sets of 

calibration tests are performed to achieve elastic and plastic properties of the 

assembly. It should be noted that the particle size utilized in discrete element 

models are quite coarse and unrealistically far from the particle size range of real 

soils.  

First, isotropic compression test is conducted to measure elastic properties of the 

formed assembly. It is observed that the similar Poisson’s ratios are measured under 

different loadings, while tangent modulus of elasticity is increasing with increasing 

axial strain. However, modulus of elasticity tends to decrease in higher axial strain 

in real materials. This phenomenon can be attributed to the loose state of the 

assembly, since its unit weight is about 13.5 kN/m³, which is much lower than any 

real soil. Under higher loads, greater tangential modulus of elasticity and lower 

Poisson’s ratio would be expected. Practically, elastic properties do not have much 

significance in calculation of ultimate bearing capacity, if the displacement is not a 

concern. As a result of isotropic compression test, modulus of elasticity (E) of 

6300 kPa and Poisson’s ratio (υ) of 0.38 are obtained for the tested assembly. 
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Then, the only yield parameter, which is the internal friction angle (φ), in this case, 

is acquired by direct shear test simulation. Due to the restrictions of the DEM 

software, constant volume shear box test is carried out. The normal force is 

observed to increase during shear, that is to say, the material tends to dilate. 

Additionally, despite the fact that the particles are spherical and that the inter-

particle friction coefficient is 0.5, T to N ratio of 0.65 corresponding to φ = 33° is 

measured during the test. This means that the interlocking of particles dominates the 

shear behavior of the assembly and this result also supports the dilative property. 

After determining the macro-mechanical properties, the DEM, FEM and analytical 

analyses of bearing capacity problem are performed and the results are compared. 

The bearing capacity failure in DEM analysis occurs at a relatively lower level of 

foundation displacement. This result shows that the modulus of elasticity is actually 

higher than that obtained from the results of isotropic compression test. However, 

the ultimate bearing capacities are in quite acceptable tolerance. It is also realized 

that the associated flow rule causes extreme overestimation of bearing capacity and 

large displacements. 

On the other hand, the ultimate bearing capacities obtained from the numerical 

analyses are, in general, 1.5 to 2 times higher than the analytical results. A possible 

reason for this is that the boundaries in the numerical analyses are too close to the 

focused area. Moreover, it is acknowledged that the analytical bearing capacity 

formulations generally under estimate the ultimate bearing capacity for granular 

soils with high friction angle (Lambe and Whitman, 1976, Bowles, 1996 and 

Zadroga, 1994). Zadroga (1994) investigated this phenomenon through model tests 

and proposed a different calculation approach for the bearing capacity of non-

cohesive soils. It is obvious that the numerical methods and theoretical methods 

have different constitutive assumptions. Theoretical methods assume the soil as 

perfectly rigid and they do not consider the displacements or compressibility of soil 

(Vesic, 1973). Additionally, unlike the other two terms in the analytical bearing 

capacity expression, there is no closed form solution of Nγ and many different 

approximations exist, which reflect the theoretical uncertainty associated with this 

term. Griffith (1982) indicated that Nγ is inversely proportional to the footing width 
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and influence of the footing size increases with increasing angle of friction in finite 

elements. That is why, the model test results differ from the analytical solutions for 

cohesionless soils (Bowles, 1996). 

Consequently, although the DEM is a relatively new method and requires excessive 

calculation time for the current technology, it is really a promising numerical 

analysis technique in geomechanical application, like bearing capacity problems.  

At the end of this study, it would be appropriate to draw a road map and 

recommend further studies regarding DEM in geomechanics: 

 The major shortcoming of this method is the requirement of extreme 

computation time due to contact detection. Therefore, faster, more efficient 

contact detection algorithms should be developed. 

 Greater attention should be paid to the development of parallel processing 

techniques by which the power of multi-processors (and/or computers) can 

be combined. 

 Different time stabilization techniques should be studied. Implicit solution 

methods may be applicable as alternatives for static analyses. 

 The DEM method can be coupled with other numerical analysis techniques 

like FEM. Therefore, the soil-structure interaction problems can be handled 

more precisely. 

 Fluid-DEM coupled analysis should be investigated to model undrained 

condition of the soil and to analyze the liquefaction problems. 

 The studies should be focused on the homogenization methods so that 

continuum based methods can be bridged to discrete methods. 

 The DEM should be validated on several other geotechnical problems as 

well. 
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