AN ANALYSIS OF DEĞİRMENDERE SHORE LANDSLIDE DURING 17 AUGUST 1999 KOCAELİ EARTHQUAKE

A THESIS SUBMITTED TO
 THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

OĞUZHAN BÜLBÜL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CIVIL ENGINEERING

DECEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan ÖZGEN
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Prof. Dr. Güney ÖZCEBE
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. M. Yener ÖZKAN
Supervisor

Examining Committee Members

Prof. Dr. Erdal ÇOKÇA
(METU,CE) \qquad
Prof. Dr. M. Yener ÖZKAN
(METU,CE) \qquad
Asst. Prof. Dr. Oğuzhan HASANÇEBİ \qquad
Dr. Mehmet ÖZYAZICIOĞLU
(ATATÜRK UNI,CE) \qquad
Dr. Oğuz ÇALIŞAN
(ÇALIŞAN LTD.CO.) \qquad

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name : Oğuzhan BÜLBÜL

Signature :

ABSTRACT
 AN ANALYSIS OF DEĞİRMENDERE SHORE LANDSLIDE DURING 17 AUGUST 1999 KOCAELİ EARTHQUAKE

BÜLBÜL, Oğuzhan
M.S., Department of Civil Engineering
Supervisor : Prof. Dr. M. Yener ÖZKAN

December 2006, 104 pages

In this study, the failure mechanism of the shore landslide which occured at Değirmendere coast region during 17 August 1999 Kocaeli (İzmit) - Turkey earthquake is analyzed. Geotechnical studies of the region are at hand, which reveal soil properties and geological formation of the region as well as the topography of the shore basin after deformations. The failure is analyzed as a landslide and permanent displacements are calculated by Newmark Method under 17 August 1999 İzmit record, scaled to a maximum acceleration of 0.4 g . There are discussions on the main dominating mechanism of failure; landslide, liquefaction, fault rupture and lateral spreading. According to the studies, the failure mechanism is a seismically induced shore landslide also triggered by liquefaction and fault rupture, accompanied by the mechanism of lateral spreading by turbulence. A seismically induced landslide is discussed and modeled in this study. The finite element programs TELSTA and TELDYN are employed for static and dynamic analyses. Slope stability analyses are
performed with the program SLOPE. The permanent displacements are calculated with Newmark Method, with the help of a MATLAB program, without considering the excess pore pressures.

Keywords: Earthquake, Finite Element Method, Dynamic Analysis, Slope Stability, Newmark Method

17 AĞUSTOS 1999 KOCAELİ DEPREMİNDE MEYDANA GELEN DEĞİRMENDERE KIYI HEYELANININ İNCELENMESİ

BÜLBÜL, Oğuzhan
Yüksek Lisans, İnşaat Mühendisliği Bölümü
Tez Yöneticisi : Prof. Dr. M. Yener ÖZKAN

Aralık 2006, 104 sayfa

Bu çalışmada, 17 Ağustos 1999 Kocaeli (İzmit) - Türkiye depreminde Değirmendere sahil bölgesinde gerçekleşen kıyı heyelanının oluşma mekanizması tahlil edilmiştir. Eldeki geoteknik çalışmalar; bölgedeki zemin özellikleri ve jeolojik oluşumlar kadar kıyı çanağının depremden sonraki topografyasını da ortaya çıkarmaktadır. Göçme, bir heyelan olarak değerlendirilmiş ve 17 Ağustos 1999 İzmit istasyonu kaydının maksimum ivmesi 0.4 g 'ye ölçeklendirilerek Newmark Yöntemi ile kalıcı deplasmanlar hesap edilmiştir. Heyelanın oluşumunu kontrol eden ana mekanizma ile ilgili akademik tartışmalar dört konu üzerinde sürmektedir; heyelan, sıvılaşma, fay yırtılması ve yanal yayılma. Eldeki çalışmalara göre göçme mekanizması; türbülanslı yanal yayılmanın eşlik ettiği, sıvılaşma ve fay yırtılmasının tetiklemeye yardım ettiği, deprem kaynaklı bir kıyı heyelanıdır. Bu çalışmada deprem kaynaklı kıyı heyelanı üzerinde çalışılmış ve modelleme yapılmıştır. Statik ve dinamik analizler için, birer sonlu elemanlar programı olan TELSTA ve TELDYN kullanılmıştır. SLOPE programı ile şev stabilite tahlilleri yapılmıştır. Kalıcı deplasmanlar, bir MATLAB programı
yardımı ile, boşluk suyu basıncındaki artış göz önüne alınmadan Newmark Yöntemi kullanılarak hesap edilmiştir.

Anahtar Kelimeler: Deprem, Sonlu Elemanlar Yöntemi, Dinamik Analiz, Şev Stabilitesi, Newmark Yöntemi

To My Family

ACKNOWLEDGMENTS

I would like to thank to my thesis supervisor Prof. Dr. M. Yener ÖZKAN for his support and encouragement from the beginning up to the last minute of preparing this study.

Deniz ÜLGEN deserves thanks for his assistance throughout the study, whose guidance helped me a lot in the main analyses.

Also, I would like to thank to my dear family for their tolerance and support.

Finally, I would like to express my gratitude to Münevver YALÇIN for her friendship, who shared my distress and difficulties during this study.

TABLE OF CONTENTS

PLAGIARISM iii
ABSTRACT iv
ÖZ vi
DEDICATION. viii
ACKNOWLEDGMENTS. ix
TABLE OF CONTENTS x
CHAPTER

1. INTRODUCTION 1
1.1. General 1
1.2. Aim of the Study 2
2. A REVIEW OF STABILITY OF SLOPES DURING EARTHQUAKES 3
2.1. Static Slope Stability Analysis 3
2.1.1. Limit Equilibrium Method 3
2.1.2. Stress-Deformation Analysis 8
2.2. Dynamic Slope Stability Analysis 8
2.2.1. Pseudo-static Analysis 9
2.2.2. Permanent Displacement Analysis 12
2.2.3. Finite Element Method 17
3. A CASE STUDY: DEĞİRMENDERE LANDSLIDE DURING 17 AUGUST 1999 KOCAELİ EARTHQUAKE 19
3.1. Engineering Parameters of Earthquake 19
3.2. Seismicity of Marmara Region and Kocaeli (İzmit)
Province 22
3.3. Damages Caused by Kocaeli Earthquake 26
3.4. Değirmendere Shore Landslide. 30
3.4.1. Location and Soil Conditions 30
3.4.2. Shore Landslide 32
3.4.3. Method of Analysis 34
3.4.4. Results of Analysis 39
4. RESULTS AND CONCLUSION 59
REFERENCES 63
APPENDICES
A. DESCRIPTION OF THE COMPUTER PROGRAM TELDYN 66
B. REPRESENTATIVE TELDYN INPUT FILE 68
C. EARTHQUAKE REGIONS MAP OF TURKEY 88
D. EARTHQUAKES RECORDED IN HISTORY WITHOUT INSTRUMENTS BETWEEN 25E - 33E LONGITUDES AND 39N - 42N LATITUDES (MARMARA REGION) 89
E. EARTHQUAKES INSTRUMENTALLY RECORDED IN HISTORY BETWEEN 27E - 32E LONGITUDES AND 39N - 42N LATITUDES (MARMARA REGION) WITH M ≥ 4 IN YEARS 1881-1998 96

CHAPTER 1

INTRODUCTION

1.1. General

An earthquake struck Marmara region of Turkey on August 17, 1999 at 3.02 am, named Kocaeli (İzmit) earthquake. Beside all the heavy damages that affected several provinces, a shore landslide occurred at Çınarlık shore of Değirmendere. $230 \times 70 \mathrm{~m}$ area, accommodating some recreational facilities and a municipality hotel with residents was lost into the sea. The failure mechanism is of interest in this study, which is dominated by seismically induced landslide and accompanied by liquefaction, lateral spreading and fault rupture. For this purpose the slope is modeled by the finite element method. The finite element programs TELSTA and TELDYN are employed for static and dynamic analyses. Then permanent displacements are calculated by Newmark Method.

In Chapter 2, the theoretical background of slope stability is presented. There are two aspects in this part; the static slope stability analysis and the dynamic slope stability analysis. Each of them is examined in detail. Slope stability under static conditions is summarized with reference to limit equilibrium method and stress-deformation analysis. Dynamic slope stability under dynamic loads is addressed with reference to pseudo-static approach and permanent displacement analysis.

In Chapter 3, various aspects of August 17, 1999 earthquake, which caused Değirmendere landslide is described in several ways. First of all, the engineering parameters of Kocaeli earthquake are given. Secondly, seismicity of Marmara region and Kocaeli province are examined. Then the damages caused by earthquake are described in a large view. Lastly, Değirmendere landslide is examined in terms of location, soil conditions, mechanism of the failure, method of analysis and analysis results.

In Chapter 4, results of the studies and the conclusions are given.

1.2 Aim of the Study

The aim of this study is to analyze the shore landslide failure occurred during 17 August 1999 Kocaeli earthquake on the north nose of the coastline in Değirmendere subdistrict of Kocaeli with Permanent Displacement Method (Newmark Method). For this purpose a dynamic finite element program, TELDYN, is employed to get the average acceleration time history of the sliding mass.

CHAPTER 2

A REVIEW OF STABILITY OF SLOPES DURING EARTHQUAKES

2.1. Static Slope Stability Analysis

In the cases of seismically induced landslides, the governing factor of failure is the dynamic forces acting on the slope. However, static forces also affect the mechanism. Under static conditions, if the landslide-resisting shear forces are not high enough, the required slide-mobilizing dynamic forces will be low, and this leads to the failure of slope. Hence, failure is a result of both static and dynamic forces mobilizing slide of the slope. Also it is a fact that dynamic slope stability analysis has mainly generated from the static analysis methods. These two reasons make it necessary to examine static slope stability analysis at first.

2.1.1. Limit Equilibrium Method

Limit equilibrium method has been a technique used for decades of years on the world for the stability analyses in soil mechanics. This method consists in the analysis of equilibrium of a rigid body, such as the slope, on a potential slip surface of some assumed shape (straight line, arc of a circle, logarithmic spiral). From such equilibrium study, shear stress (τ) is calculated and compared to the available shear resistance (τ_{f}). From this comparison the first indication of stability is derived as the Factor of Safety;

$$
\begin{equation*}
\mathrm{F}=\tau_{\mathrm{f}} / \tau \tag{2.1}
\end{equation*}
$$

This method has two important assumptions; 1) the soil mass on failure surface is rigid 2) the shear strength act along the failure surface at the same amount and same time.

There are various equilibrium methods. Some of them consider the total equilibrium of the rigid body (Culmann Method), while others divide the body into slices for its non homogeneity and consider the equilibrium of each of them (Fellenius, Bishop, Morgenstern and Price, Spencer, Janbu, Sarma Methods). The Ordinary Method of Slices (Fellenius, 1927) and Bishop's Modified Method (Bishop, 1955) use a circular failure surface. If the surface is assumed to be non-circular, than methods of Morgenstern and Price (1965), Spencer (1967), Janbu (1968) can be used.

In the method of slices, the volume affected by slide is subdivided into a convenient number of slices (Figure 2.1). If the number of slices is n, the problem presents the following unknowns:
n values of normal forces acting on the base of slices (N)
n values of shear forces at the base of slices (S)
($\mathrm{n}-1$) normal forces acting on slice interface (E)
($\mathrm{n}-1$) tangential forces acting on slice interface (X)
n values of coordinate that identifies the application point of N
$(\mathrm{n}-1)$ values of coordinate that identifies the application point of X an unknown safety factor F

The number of unknowns is $6 n-2$, while there are a total of $4 n$ equations usable. The problem is statistically indeterminate to order $\mathrm{i}=(6 \mathrm{n}-2)-(4 \mathrm{n})=$ $2 \mathrm{n}-2$.

The degree of indeterminacy is further reduced when it is assumed that N is applied at the mid point of a slice, which is equivalent to assuming that total normal tensions are distributed uniformly. The various methods that are based on equilibrium theory differ in the way in which indeterminacy degrees are eliminated. The most common assumptions typically deal with the slice interface forces X and E .

Figure 2.1 Forces acting on a slice in Method of Slices

To see the effect of the assumptions, the Ordinary Method of Slices (Fellenius, 1927) may be analyzed. This method assumes that the resultant of the side forces (X and E) acting on a slice act parallel to the base of the
slice and they are ignored. Using this assumption, we have $2 \mathrm{n}+1$ equations at hand and that much of unknowns;
n values of normal forces at base (N)
n values of shear forces at base (S)
Safety factor F

So the problem becomes determinate. But the moment equilibrium around the center of the circular slip surface is the only condition of equilibrium satisfied by this method.

Slope-stability problems are usually analyzed using a variety of limit equilibrium methods of slices. When evaluating the stability conditions of soil slopes of simple configuration, circular potential slip surfaces are usually assumed and the Ordinary Method (Fellenius, 1927) and the Simplified Bishop Method (Bishop, 1955) are commonly used, the latter being preferred due to its high precision. However, in many situations, the actual failure surfaces are found to deviate largely from circular shape or the potential slip surfaces are predefined by planes of weakness in rock slopes. In such cases, a number of methods of slices can be used to accommodate the non-circular shape of slip surfaces (Janbu, 1954; Lowe and Karafiath, 1960; Morgenstern and Price, 1965; Spencer, 1967; U.S. Army Corps of Engineers, 1967; and etc.). Among them, the Morgenstern-Price Method (Morgenstern and Price, 1965) is regarded as the most popular one, because it fully satisfies the equilibrium conditions and involves the least numerical difficulties. The basic assumption underlying the Morgenstern-Price method is that the ratio of normal to shear interslice forces across the sliding mass is represented by an interslice force function that is the product of a specified function $\mathrm{f}(\mathrm{x})$ and an unknown scaling factor λ. According to the vertical force equilibrium conditions for individual slices and the moment
equilibrium condition for the whole sliding mass, two equilibrium equations are derived involving the two unknowns; the factor of safety FS and the scaling factor λ. Unfortunately, solving for FS and λ is very complex since the equilibrium equations are highly nonlinear and in rather complicated form. Some sophisticated iterative procedures (Morgenstern and Price, 1967; Fredlund and Krahn, 1977; Chen and Morgenstern, 1983; Zhu, 2001) have been developed for such purposes.

For the limit equilibrium methods, theoretically $\mathrm{FS} \geq 1.0$ should be enough for a stable slope, but due to some uncertainties and the presence of assumptions made, FS values significantly greater than 1.0 are accepted to be safe in practice (Kramer, 1996). The minimum acceptable FS values for slope design are; 1.5 for normal long term loading conditions and 1.3 for temporary slopes or end-of construction conditions in permanent slopes.

One of the constraints of limit equilibrium methods is about strain-softening materials. As a result of the basic assumption of rigid-perfectly plastic material, it gives no idea about progressive failure, which is the case in reality. When a failure occurs in life, shear strength is not mobilized at the same time along the failure surface, which is against the second basic assumption. Instead, the shear resistance is mobilized at an arbitrary point on surface and when the peak strength is exceeded, the other points nearby are mobilized to reach their peak point of resistance while the resistance of the first point falls to the residual value. This is known as progressive failure. To avoid problems, residual values of shear strength should be used for limit equilibrium analyses of strain-softening materials (Kramer, 1996).

Another constraint of the limit equilibrium methods is their insufficiency about deformations. For the computation of deformations, another type of analysis may be used; Stress-Deformation Analysis.

2.1.2. Stress-Deformation Analysis

Finite-element method is the most commonly used type of analysis to compute stresses and deformations. It is important to see the intensity of stresses in a slope body, which gives idea about the potential failure surface. Finite element method not only gives the stresses and deformations in a static slope stability analysis, but also can simulate many features such as loading conditions, different material layers, various boundary conditions etc.

This method is highly affected by the input parameters to simulate the nature of soil. For more developed models, more number of parameters are needed which also increases the range of error. To overcome this problem, iterative techniques are developed and used in most of the finite element methods.

TELSTA is one of the computer programs designed for plane strain static finite-element analyses of soils, and it is used for the stress and deformation analyses of Değirmendere landslide during 1999 earthquake, to present required results for the program TELDYN, which is a dynamic finite element analysis program (TELSTA \& TELDYN user's manuels).

2.2. Dynamic Slope Stability Analysis

A number of analytical techniques are available for dynamic slope stability analysis, based on both limit equilibrium and stress-deformation methods, as discussed in section 2.1. Introduction of the seismic effect makes the problem more complex, but the main problem is to decide how it affects the failure mechanism. Mainly the seismic force increases the slide-mobilizing
stresses and decreases the resisting stresses. However there is another point; the seismic force may also influence the material properties and decrease the shear strength.

2.2.1. Pseudo-static Analysis

Over seventy years passed from the first time seismic safety of earth structures has been analyzed using the method of pseudo-static analysis. This method uses the same principle with limit equilibrium methods, where the only difference is addition of an earthquake by horizontal/vertical accelerations. The slide-mobilizing and resisting forces on the failure surface are calculated with the contribution of static earthquake force. Earthquake has both vertical and horizontal components, but as the effect of vertical component is negligible -this will be discussed below-, seismic force is represented only by a static horizontal force of

$$
\begin{equation*}
\mathrm{F}_{\mathrm{eq}}=\mathrm{k}_{\mathrm{h}} . \mathrm{W} \tag{2.2}
\end{equation*}
$$

where k_{h} is the seismic coefficient and W is the weight of the failure mass, as seen from Figure 2.2.

The factor of safety can be defined as the ratio resists rotation of a critical slip surface about the center of the sliding surface to the moment that is driving the rotation. For a circular sliding surface as seen in Figure 2.2, the factor of safety can be formulated as follows;

Figure 2.2 Forces acting on a sliding circular mass in Pseudo-static Method

$$
\begin{equation*}
F S=\frac{\text { Resisting moments }}{\text { Overturning moments }}=\frac{\text { s.l.R }}{E . W+k_{h} \cdot F \cdot W} \tag{2.3}
\end{equation*}
$$

where s is the shear strength, W is weight, k_{h} is the seismic coefficient, E and F are the moment arms, R is the radius and l is the length of the sliding surface.

If a planar failure surface had been assumed as in Figure 2.3, then a force equilibrium would be considered along the surface and the formula for FS would be;

$$
\begin{equation*}
F S=\frac{\text { Resisting forces }}{\text { Driving forces }}=\frac{c \cdot l_{a b}+\left[\left(W-F_{v}\right) \cdot \cos \beta-F_{h} \cdot \sin \beta\right] \tan \phi}{\left(W-F_{v}\right) \cdot \sin \beta+F_{h} \cdot \cos \beta} \tag{2.4}
\end{equation*}
$$

where c and ϕ are the strength parameters, 1_{ab} is the length of the failure plane.

Figure 2.3 Forces acting on a sliding planar mass in Pseudostatic Method

As recognized from formula 2.4, the vertical component of earthquake F_{v} has the same effect on both resisting and driving forces. But the horizontal component F_{h} absolutely decreases the value of FS . So the vertical pseudostatic force has less influence on result and can be neglected. This leads to formula 2.2, horizontal component representing the whole pseudo-static force.

Pseudo-static analysis method uses a crude technique to add the seismic forces in calculation. Assuming the earthquake effect as a static force acting on the center of the body leads to inaccurate results, which was also stated by Terzaghi (1950). Another important difficulty of the method is selection of an appropriate seismic coefficient $\left(\mathrm{k}_{\mathrm{h}}\right)$. There are several academic contributions to this problem, but at the end this requires engineering judgment, which is difficult to decide.

As a method based on the limit equilibrium method, pseudo-static analysis gives no idea about the deformations, which is another limitation. Because of this and the difficulties in the selection of seismic coefficients and in the
evaluation of safety factor, use of pseudo-static method for seismic slope stability analyses has reduced much today.

2.2.2. Permanent Displacement Analysis

The insufficiency of Pseudo-static Method-disregarding the permanent deformations- is a problem for engineers, because without information about deformations serviceability can not be checked, which is essential to make necessary decisions. Newmark (1965) introduced a method to compute these seismically induced permanent deformations. In this approach, the mass of soil located above the critical failure surface is represented as a rigid block resting on an inclined plane as shown in Figure 2.4. When the block is subjected to acceleration caused by the ground motion which is greater than the yield acceleration, the driving forces may exceed the resisting forces. Thus, the block slides along the inclined plane. The resisting and the driving forces acting on the sliding block are illustrated in Figure 2.5.

Determination of the yield acceleration is the most critical step of the analysis. The yield acceleration a_{y} is the minimum pseudo-static acceleration required to cause the block to move relative to sliding plane. It can be obtained by using the following equation:

$$
\begin{equation*}
\mathrm{a}_{\mathrm{y}}=\mathrm{k}_{\mathrm{h}} . \mathrm{g} \tag{2.5}
\end{equation*}
$$

where k_{h} is the horizontal seismic coefficient calculated in pseudo-static analysis which is explained in Section 2.2.1.

When a block on an inclined plane is subjected to accelerations greater than the yield acceleration, the block will move relative to plane. Thus, the relative acceleration constituting the displacement can be written as follows:

$$
\begin{equation*}
\mathrm{a}_{\mathrm{rel}}(\mathrm{t})=\mathrm{a}(\mathrm{t})-\mathrm{a}_{\mathrm{y}} \tag{2.6}
\end{equation*}
$$

where $a(t)$ is the acceleration of inclined plane.

Thus, by computing an acceleration at which the inertia forces become sufficiently high to cause yielding to begin and integrating the effective acceleration on the sliding mass in excess of this yield acceleration as a function of time (Figure 2.6), the velocities and ultimate displacements of the sliding mass can be evaluated (Seed et al.,1979).

The time history of acceleration of the inclined plane, $a(t)$, can be considered as the average acceleration time history of the sliding mass. In order to determine the average time history of acceleration, $\mathrm{a}_{\mathrm{ave}}$, following steps should be carried out:

Figure 2.4 Sliding block resting on an inclined plane

Figure 2.5 Forces acting on a sliding block
i) Sliding mass is divided into finite elements or finite strips.
ii) The average time history of acceleration is calculated for each element by using the dynamic finite element analysis.
iii) The time history of force on an element is obtained by multiplying the acceleration of each element with its mass:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{e}}(\mathrm{t})=\mathrm{m}_{\mathrm{e}} \cdot \mathrm{a}_{\mathrm{e}}(\mathrm{t}) \tag{2.7}
\end{equation*}
$$

where m_{e} is the mass of an element and $a_{e}(t)$ is the time history of acceleration of an element.
iv) Total force acting on the sliding mass can be calculated by summing the forces acting on elements:

$$
\begin{equation*}
\mathrm{F}(\mathrm{t})=\Sigma \mathrm{F}_{\mathrm{e}}(\mathrm{t})=\Sigma \mathrm{m}_{\mathrm{e}} \cdot \mathrm{a}_{\mathrm{e}}(\mathrm{t}) \tag{2.8}
\end{equation*}
$$

v) In the last step, the average time history acceleration of the sliding mass is determined by dividing total force by total mass of the sliding mass:

$$
\begin{equation*}
a_{a v e}=\frac{F(t)}{m}=\frac{\sum m_{e} \cdot a_{e}(t)}{\sum m_{e}} \tag{2.9}
\end{equation*}
$$

Consequently, as explained before, by integrating twice the average time history of acceleration, permanent displacement of the slope can be calculated.

Makdisi and Seed (1978) developed the Newmark's permanent displacement method by using the sliding block analyses and average accelerations computed by the procedure of Chopra (1966). In this approach, knowing the fundamental period of embankment and the yield acceleration of the slope, simple charts can be used to estimate earthquakeinduced permanent displacements. Furthermore, Lemos and Coelho (1991) and Tika Vassilikos et al. (1993) have both suggested methods that can incorporate a rate dependent friction angle into the Newmark analysis to account for time varying shear strengths due to earthquake loading. Although a number of modified permanent displacement methods have been proposed, today Newmark (1965) type of analysis is widely used by the geotechnical engineers.

Figure 2.6 Twice integration of acceleration time-history to calculate displacements (Seed, H.B., 1979)

2.2.3. Finite Element Method

Finite element method treats a continuum as an assemblage of finite elements which are defined by nodal points and assumes that the response of the continuum is equivalent to the response of the nodal points. Elements are connected with each other at the nodal points and they simulate the material behavior of the zones. It is one of the most powerful methods for evaluating the response of slopes under earthquake loading. It is possible to obtain actual results by this method by considering the nonlinear stress-strain behavior of the construction materials. Comparing with the other methods, advantages of finite element method can be given as follows:
i) Time dependent stress-strain behavior of any element or region of the slope body can be evaluated.
ii) Effects of the slope-loading interaction and foundation characteristics can be simulated.
iii) Irregular geometry and complex boundary conditions can be taken into account.
iv) Nonlinear behavior of the soil can be analyzed and permanent dynamic deformations can be calculated.

In the case of a response analysis, it is necessary to solve the equation of motion which represents the dynamic equilibrium of all the elements. The equation of motion for dynamic finite element method can be given as:

$$
\begin{equation*}
[M]\{\ddot{U}\}+[C]\{\dot{U}\}+[K]\{U\}=-[M]\{\ddot{Y}\} \tag{2.10}
\end{equation*}
$$

where U is the displacement vector and Y is the time history of the base motion, M is the mass matrix, C is the damping matrix and K is the stiffness matrix.

There are several methods used for the solution of the Equation 2.10. These methods can be written as:
i) Direct integration
ii) Modal superposition
iii) Fourier analysis

The most common method used for evaluating the behavior of non-linear systems under cyclic loading is the direct integration method. The other methods; modal superposition and Fourier analysis are only valid for the evaluation of the linear-elastic systems.

The finite element method can be used for the solution of the two dimensional and three dimensional dynamic response problems. In the case of earth structures, usually plane strain and two dimensional analysis of transverse (along the slope body, normal to slope surface) sections are used. There are several computer programs available involving the assumption of plain strain conditions. Among them, an effective one is TELDYN which uses equivalent linear method and provides compliant base.

CHAPTER 3

A CASE STUDY: DEĞíỉMENDERE LANDSLIDE DURING 17 AUGUST 1999 KOCAELİ EARTHQUAKE

3.1. Engineering Parameters of Earthquake

An earthquake occurred in Marmara region of Turkey on August17, 1999 at 3.02 am on local time (00:01:39:80 GMT), named Kocaeli (İzmit) earthquake. Earthquake Research Department (ERD) of the General Directorate of Disaster Affairs reported the earthquake parameters as; epicenter 40.70N latitude 29.91E longitude, depth 15.9 kilometers, magnitude $\mathrm{Mw}=7.4$, $\mathrm{Md}=6.7$ and maximum seismic intensity X (MSK scale). Geographical location of epicenter was about at 12 kilometers southeast of İzmit city center. The earthquake occurred on the western part of North Anatolian Fault Zone (NAFZ) with a 120 km surface rupture extending from southwest of Düzce in the east to near Karamürsel basin in the west. The movement was right-lateral strike slip type.

The earthquake parameters given by General Directorate of Disaster Affairs are emphasized in this study, but various institutes supplied different values, which are tabulated on Table 3.1. The locations of epicenter given by three different institutes are presented on Figure 3.1

Table 3.1 Earthquake parameters supplied by various institutes

Institute	Date	Latitude	Longitude	Depth	Mw	Md
Disaster Affairs of General Management Earthquake Research Department	$17 / 08 / 1999$ $03: 01: 37$ (L.T)	40.70 N	29.91 E	15.9	7.4	6.7
Boğaziçi University Kandilli Observatory	$17 / 08 / 1999$ $03: 01.37 .6$ (L.T)	40.76 N	29.97	18		7.4
USGS	$17 / 08 / 1999$ $00: 01: 39.80$ $(G M T)$	40.702	29.987	17	7.4	

Figure 3.1 Epicenter locations by various institutes (Özmen, 2000.b)

General Directorate of Disaster Affairs recorded accelerations of Kocaeli earthquake at 24 stations. The stations are tabulated at Table 3.2 below. The maximum horizontal peak ground acceleration was recorded at Adapazarı station (42 km from epicenter) as 407 mG , while the horizontal peak ground
acceleration recorded at the nearest station to epicenter (İzmit station, 12 km from epicenter) was 225 mG .

Table 3.2 Stations that recorded data of Kocaeli earthquake (L : north-south
T : east-west, V : vertical max acceleration records)

$\begin{array}{c}\text { Symbol } \\ \text { of } \\ \text { Station }\end{array}$ Th	$\begin{gathered} \hline \text { Name } \\ \text { of } \\ \text { Station } \\ \hline \end{gathered}$	Coordinates		$\begin{gathered} \mathbf{L} \\ (\mathbf{m G}) \end{gathered}$	$\underset{(\mathbf{m G})}{\mathbf{T}}$	$\underset{(\mathbf{m G})}{\mathbf{V}}$
		Latitude (N)	Longitude (E)			
TKT	TOKAT	40.33	36.55	0.8	1.2	0.4
KUT	KÜTAHYA	39.42	30.00	50	59.7	23.2
CYH	CEYHAN (ADANA)	37.02	35.81	2	3	1.5
AYD	AYDIN	37.84	27.84	5.9	5.2	3.3
KOY	KÖYCEĞi̇Z (MUĞLA)	36.97	28.69	1	2	1
DNZ	DENİLİ	37.81	29.11	5.9	11.7	3.7
BRN	$\begin{aligned} & \begin{array}{l} \text { BORNOVA } \\ \text { (IZMIR) } \end{array} \\ & \hline \end{aligned}$	38.46	27.23	9.9	10.8	3.3
TOS	TOSYA (KASTAMONU)	41.01	34.04	11.7	8.9	4.4
CNK	ÇANAKKALE	40.14	26.40	24.6	28.6	7.9
USK	UŞAK	38.67	29.40	8.9	7.2	3.4
BLK	BALIKESİR	39.65	27.86	17.8	18.2	7.6
AFY	AFYON	38.79	30.56	13.5	15	5
MNS	MANISA	38.58	27.45	12.5	6.5	4.5
BRS	BURSA	40.18	29.13	54.3	45.8	25.7
IST	İSTANBUL	41.08	29.09	60.7	42.7	36.2
SKR	SAKARYA	40.74	30.38		407	259
TKR	TEKİRDAĞ	40.98	27.52	32.2	33.5	10.2
SRK	$\begin{array}{\|l} \hline \text { ŞARKÖY } \\ \text { (TEKIRDAĞ) } \end{array}$	40.64	27.13	29.4	33.6	14.5
IZN	İZNİK (BURSA)	40.44	29.75	91.8	123.3	82.3
ERG	$\begin{aligned} & \text { EREĞLİ } \\ & \text { (TEKİRDAĞ) } \end{aligned}$	40.98	27.79	91.4	101.4	57
CEK	$\begin{aligned} & \hline \text { ÇEKMECE } \\ & \text { (İSTANBUL) } \end{aligned}$	40.97	28.70	118	89.6	49.8
IZT	İZMİT	40.79	29.96	171.2	224.9	146.4
GBZ	GEBZE (IZMİT)	40.82	29.44	264.8	141.5	198.5
DZC	DÜZCE	40.85	31.17	373.7	314.8	479.9
GYN	GÖYNÜK (BOLU)	40.38	30.73	117.8	137.7	129.9

3.2. Seismicity of Marmara Region and Kocaeli (İzmit) Province

Turkey is on one of the main earthquake bands in the world, the AlpsHimalayas earthquake band, which extends from Azores to southeast Asia. The Anatolian plate is forced to move north and northwest by the Arabian and African plates, stopped at north by the Eurasian plate and at west by the Aegean plate. This causes accumulation of stress at the border zones of Anatolian plate where most of the earthquakes in Turkey occur. The zones are North Anatolian Fault Zone, East Anatolian Fault, Southeast Anatolian Overlap and Aegean Graben System (Şaroğlu et.al, 1992). North Anatolian Fault is studied by many researchers for its high effect on Turkey earthquakes (Alpar \& Yaltırak, 2002; Gökaşan, E., et.al., 2001, Kuşçu, İ., et.al., 2002).

Anatolian plate has always been a region of destructive earthquakes in history. The active faults and epicenter locations of earthquakes with $\mathrm{Mw} \geq 4$ during 1881-1998 on Anatolian Plate are presented in Figure 3.2. Examining the earthquake regions map, published by Ministry of Public Works and Settlement in 1996 (Appendix C), 66 \% of Turkey's surface area is on the $1^{\text {st }}$ and $2^{\text {nd }}$ degree earthquake regions. North Anatolian Fault Zone is one of the four earthquake-generating systems in Turkey. This fault extends to Marmara region in west, causing earthquakes in this region, like 17 August 1999 Kocaeli earthquake.

Marmara region has a very active seismical history, which can be seen from the records. The historical earthquakes recorded in Marmara region without instruments from the year 427 B.C. up to 1900 A.D. are presented in Appendix D. The earthquakes in Marmara region between 27E - 32E longitudes and $39 \mathrm{~N}-42 \mathrm{~N}$ latitudes recorded with instruments from 1881 up to 1998 and having a magnitude $\mathrm{Mw} \geq 4$ are tabulated in Appendix E. Besides these instrumentally recorded 409 earthquakes are presented in Figure 3.3.

Figure 3.2 Active faults and epicenter locations (MwIV 4 erthquakes during 1881-1998) on Anatolian Plate (Özmen, 2000.a)

Figure 3.3 Earthquakes in Marmara region with MwIV 4 in1881-1998 (Özmen, 2000.a)

Kocaeli (İzmit) province and its vicinity are mostly on the $1^{\text {st }}$ degree earthquake region, according to the earthquake regions map published by Ministry of Public Works and Settlement (1996) and the book prepared by Gencoğlu et.al (1996) (Figure 3.4). Kocaeli has $3631 \mathrm{~km}^{2}$ surface area, where $3255 \mathrm{~km}^{2}(90 \%)$ is on $1^{\text {st }}$ degree earthquake region and $376 \mathrm{~km}^{2}(10 \%)$ is on $2^{\text {nd }}$ degree earthquake region.

Figure 3.4 Earthquake regions, Kocaeli (İzmit) and its vicinity belong to

Değirmendere is a subdistrict of Gölcük district and as it is seen from Figure 3.4, it is also on the $1^{\text {st }}$ degree earthquake region. Examining North Anatolian Fault on Figure 3.3, it is obvious that the north branch of the fault passes very close to Değirmendere, which will be discussed in section 3.4.

3.3. Damages Caused by Kocaeli Earthquake

Kocaeli earthquake is the second largest earthquake in Turkey in point of amount of human loss since 1939 Erzincan earthquake, which had caused loss of 32,962 lives with a magnitude of $\mathrm{Mw}=7.8$. Kocaeli earthquake caused 17,479 death, injury of 43,953 people (Table 3.3); on the point of damages, collapse or heavy damage of 66,441 residences and 10,901 offices, moderate damage of 67,242 residences and 9,927 offices, slightly damage of 80,160 residences and 9,712 offices (Table 3.4). The provinces most affected by earthquake are Kocaeli (12 km from epicenter), Sakarya (39 km from epicenter) and Yalova (59 km from epicenter) in point of heavy damages and collapses. Forty-eight percent of heavy damages occurred in Kocaeli, twentynine percent in Sakarya and fourteen percent in Yalova. The other provinces affected are Bolu, İstanbul, Eskişehir and Bursa in order of descending heavy damage (Özmen, 2000.a; Rathje, E.M., et.al. 2004).

Table 3.3 Distribution of people died and injured according to provinces

PROVINCE	PEOPLE DIED	PEOPLE INJURED
KOCAELİ	9476	19447
SAKARYA	3890	7284
YALOVA	2504	6042
İSTANBUL	981	7204
BOLU	271	1165
BURSA	268	2375
ESKİŞEHİR	86	375
ZONGULDAK	3	26
TEKİRDAĞ	-	35
TOTAL	$\mathbf{1 7 4 7 9}$	$\mathbf{4 3 9 5 3}$

Table 3.4 Damage results of Kocaeli earthquake

CITY	DAMAGE RESULT					
	HEAVY		MODERATE		SLIGHT	
	HOUSE	SHOP	HOUSE	SHOP	HOUSE	SHOP
BOLU	3095	649	4180	1015	3303	482
BURSA	63	5	434	19	940	68
ESKİŞEHİR	80	19	96	8	314	22
İSTANBUL	3073	532	13339	1999	12455	1239
KOCAELİ	31625	4901	29076	3887	31751	4345
SAKARYA	19043	4068	12200	1963	18712	1675
YALOVA	9462	727	7917	1036	12685	1881
TOTAL	$\mathbf{6 6 4 4 1}$	$\mathbf{1 0 9 0 1}$	$\mathbf{6 7 2 4 2}$	$\mathbf{9 9 2 7}$	$\mathbf{8 0 1 6 0}$	$\mathbf{9 7 1 2}$

Kocaeli is the province most affected by the earthquake. Within the total damage caused by Kocaeli earthquake, 48% of the heavy damage, 43% of the moderate damage and 40% of slight damage occurred in Kocaeli. According to 1997 census, population of Kocaeli was $1,177,379$. In districts of Kocaeli, Gölcük is the one with largest damage and most loss of life in percent. 35.7% of the residences in Gölcük (with subdistricts and villages) were heavily damaged, while this percentage is 14.19 in Karamürsel district, 12.75 in Körfez district and 10% in Kocaeli city center. The number of people died in Gölcük (with subdistricts and villages) was 5025, which is 6.84% of the population. This percentage is $1,76 \%$ in Kocaeli city center. The distance of Gölcük to epicenter is only 7.12 km . Değirmendere is a subdistrict of Gölcük and 35% of Gölcük's population were living in Değirmendere according to 1997 census. This subdistrict is on the shore between Karamürsel and Gölcük districts and is only 3 km . from Gölcük. The distance of Değirmendere shore to the fault is 350 m (Ishihara et.al,
2000). 41% of the heavily damaged residences of Gölcük are in Değirmendere.

An isoseismal map of Kocaeli earthquake was prepared by Özmen (2000.b) with the use of MSK (Medvedev-Sponhever-Karnik) Scale (Figure 3.5). There are four centers of damage with an intensity of X; Adapazarı city center, Çiftlikköy, Gölyaka and Gölcük. Among these regions, Gölcük is the one with largest vicinity area of intensity X as expected because of the closeness to epicenter. The total surface area on isoseismal map with intensity scale X is $294 \mathrm{~km}^{2}$. The total number of people living on this area was 419,699 and total number of residences was 98,175 . Totally 33% of these residences were heavily damaged.

As a result of the fact that Marmara region is the most developed and crowded part of Turkey, huge number of life losses and heavy damage occurred. Totally $15,816,476$ people were affected by earthquake, which was about quarter of the Turkey's population in 1999.

Figure 3.5 Isoseismal map of Kocaeli earthquake (Özmen, 2000.a)

3.4. Değirmendere Shore Landslide

3.4.1. Location and Soil Conditions

Değirmendere is a subdistrict of Gölcük district on the south coastline of İzmit bay. It is on the highway connecting Karamürsel and Gölcük districts in east-west direction, closer to Gölcük. The distance between Değirmendere and Gölcük is 3 km (Figure 3.6).

Figure 3.6 Road map around İzmit gulf

The active faults on Anatolian plate were studied by Şaroğlu et.al (1992, MTA). According to these studies it is exposed that the western part of North Anatolian Fault (NAF) is separated into two branches and the north branch dives into Marmara Sea at the beginning of İzmit bay (Figure 3.7). It passes along the south coastline going forward in the west. Between Gölcük and Altınova -where Değirmendere is also located-, the fault is in the sea but very close to the shore. The distance of NAF to Değirmendere shore is about 350 m (Ishihara et.al, 2000).

Figure 3.7 North Anatolian Fault passing close to Değirmendere shore

İzmit Bay is a tectonic subsidence basin, morphologically formed by North Anatolian Fault, separating the Miocene Erosion Surface (MES). This subsidence basin is also called Adapazarı Corridor. MES is the oldest geomorphologic unit in the region, which is seen as ridges at south boundary of Değirmendere today. At Değirmendere coastline, the main geomorphologic formation is the alluvial precipitates which are not indurated. These alluvial deposits formed in the Holocene Period during 8000 years (Arel \&.Kiper, 2000.a).

Several borings very close to the failure edge are opened by Kiper \& Arel (2000.b) at Çınarlık shore. Examining the results of these studies, the soil
profile of Çinarlık shore at shallow depths $(0-8 \mathrm{~m})$ is principally formed by SM, GM, ML soil types. They constitute saturated layers with low density, which is susceptible to liquefaction. The deeper layers are in SW, GM, GW types in general, density increasing with depth. The soil is saturated and ground water level is about 1 m (Kiper \& Arel, 2000.a).

3.4.2. Shore Landslide

A shore landslide occurred on Çınarlık shore of Değirmendere, sliding a huge soil mass into the sea. Çınarlık shore is a peninsular nose intrusion into İzmit Bay at north edge of Değirmendere. On the area slid, there existed a recreational area with facility establishments and a municipality hotel (Çinar Hotel) (Figures 3.8 and 3.9). The dimensions of the area slid into sea are 230 m long in east-west direction and 75 m wide in north-south direction. The volume of the soil slumped is predicted to be 200,000-300,000 m^{3}.

A bathymetry map is prepared by Kiper \& Arel (2000.a) by ultrasonic method. Examining this map, the new basin has a uniform slope, without a sudden fall. There exists swelling on basin and this shows that the soil mass was exposed to lateral spreading by turbulences up to $300-350 \mathrm{~m}$. It is important to remember here that the distance of North Anatolian Fault to the coastline is also 350 m , as emphasized in section 3.4.1. The information at hand leads us to decide that the failure mechanism is composed of several components;

- Effect of the fault, rupturing the toe of slope
- Seismic contribution to the slope instability
- Liquefaction of the alluvial deposits at shallow depths ($0-8 \mathrm{~m}$)
- Lateral spreading of slumped material by turbulences

Besides, tsunami is also studied by researchers (Rothaus, R.M., et.al., 2004; Tinti, S., et.al., 2006) but this is not the subject of this thesis. The question is, which of them controlled the failure. The failure mechanism is predicted by the author of this thesis as a seismically induced shore landslide also triggered by liquefaction and fault rupture, where lateral spreading by turbulence accompanies. The analyses performed have an aim of computing permanent displacements by this seismically induced landslide using Newmark Method.

Figure 3.8 Çınarlık shore before earthquake (Çetin et.al, 2004.a)

Figure 3.9 Çınarlık shore after earthquake (Çetin et.al, 2004.a)

3.4.3. Method of Analysis

The problem in the scope of this thesis can be subdivided into four stages;

1. Analysis of static situation (stresses) in the body
2. Finding the potential slip surface and seismic coefficient that generates landslide
3. Dynamic analysis of the body
4. Calculation of permanent displacements

Different computer programs are employed with actual field data in order to catch the behavior of Değirmendere landslide during Kocaeli earthquake. Finite element programs are the most robust tools to analyze this kind of problem. The geometry of the slope and physical properties of earth material are determined as the first step of analysis. The studies carried out by Arel \&

Kiper (2000.b) and the bathymetric map prepared by the Department of Navigation, Hydrography and Oceanography helped in these determinations, as will be explained in section 3.4.4. The representative cross-section of slope is prepared for the whole slid mass, and it is converted to a finite element mesh. The mesh is composed of 223 elements and 256 nodal points.

To find the static stresses in the slope, the computer program TELSTA is used. It is a computer program designed for plane strain and axisymmetric static finite element analyses of soils and simple structures. The calculation proceeds in increments specified by the user. A successive incremental procedure is used to approximate the non-linear behavior of soil. In the procedure, the load is divided into a number of small increments and the soil behavior is assumed to be linear elastic within each element.

TELSTA uses the theories of strength, stress-strain and bulk modulus parameters for finite element analyses of stresses and movement in soil mass by J.M. Duncan, Peter Byrne, Kai S. Wong and Philip Molary. This describes the hyperbolic parameters and presents parameter values determined from drained and undrained tests on a number of soils. As described by Duncan et.al. (1980), the stress-strain relation is described with aid of equation below;

$$
\begin{equation*}
\sigma_{1}-\sigma_{3}=\frac{\varepsilon}{\frac{1}{E_{i}}+\frac{\varepsilon}{\left(\sigma_{1}-\sigma_{3}\right)_{u l t}}} \tag{3.1}
\end{equation*}
$$

An improvement made by this modeling is the variation of elastic modulus with confining pressure. Duncan introduced this formulation as;

$$
\begin{equation*}
E_{i}=K \cdot P_{a} \cdot\left(\frac{\sigma_{3}}{P_{a}}\right)^{n} \tag{3.2}
\end{equation*}
$$

where K is the modulus number, n is the modulus exponent and P_{a} is the atmospheric pressure. Since Duncan suggested this theory up to failure point, TELSTA also uses a number to estimate the failure point.

$$
\begin{equation*}
\left(\sigma_{1}-\sigma_{3}\right)_{f}=R_{f} \cdot\left(\sigma_{1}-\sigma_{3}\right)_{u l t} \tag{3.3}
\end{equation*}
$$

whereas R_{f} is in the range $0.5-0.9$. Bulk modulus of the soil is calculated according to the equation;

$$
\begin{equation*}
B=K_{b} \cdot P_{a} \cdot\left(\frac{\sigma_{3}}{P_{a}}\right)^{n} \tag{3.4}
\end{equation*}
$$

TELSTA uses quadrilateral elements that can be reduced to triangles. The material constants are calculated according to Duncan \& Chang hyperbolic model and Hardin \& Drnevich hyperbolic model in order to define non-linear behavior of soil. Those parameters are assigned to the input file of TELSTA with the aid of test results obtained from borings which are opened by Arel \& Kiper (2000.b).

TELSTA creates an output file to be used in the input file of the computer program TELDYN. In this output file, the data of nodal points and elements including mean effective stresses of elements are given in a format necessary for TELDYN. The boundary conditions of nodal points are also included. TELDYN is a computer program designed for equivalent linear, plane strain, dynamic finite element analysis of soils. The concept of equivalent linear seismic analysis involves conduct of several iterations in order to obtain shear moduli and damping ratios in each element that are compatible with the average level of shear strain induced by shaking. As introduced by Seed \& Idriss (1969), the concept uses single values of shear modulus and damping
ratio in each element throughout the entire period of shaking. However in TELDYN it is possible for the user to divide input acceleration history into segments.

The concept of equivalent linear dynamic finite element analysis involves conduct of several iterations in order to obtain single values for the shear modulus and damping ratio in each element that are compatible with average level of shear strain induced by shaking. Two steps are actually involved in this equivalencing;

1. Within each cycle of loading the shear stress-strain relationships for soils are non-linear and exhibit hysteretic damping. As the cyclic shear strain amplitude increases, the average modulus decreases hysteretic as indicated by the area enclosed by stress-strain curve increases. The average "equivalent linear" shear modulus can be represented by the secant modulus drawn through the end of the hysteresis loop.
2. The second step in equivalencing process involves choosing an appropriate average shear strain to use in the determination of the modulus and damping values to be used in the analyses. A typical shear strain history is irregular in nature. Conventionally the average shear strain is taken to be equal to 0.65 times the maximum shear strain.

Seed \& Idriss proposed an equation for the assessment of the maximum shear stresses developed during an earthquake;

$$
\begin{equation*}
\tau_{\max }=\gamma \cdot \frac{h}{g} \cdot a_{\max } \cdot r_{d} \tag{3.5}
\end{equation*}
$$

where r_{d} is the stress reduction factor with depth and $a_{\text {max }}$ is the maximum ground acceleration.

The actual time history of shear stress at any point in a soil deposit during an earthquake will have an irregular form. However, after experiencing a number of different cases it has been found that with a reasonable degree of accuracy the average equivalent uniform shear stress τ_{av} is about 65% of $\tau_{\max }$;

$$
\begin{equation*}
\tau_{a v}=0.65 \gamma \cdot \frac{h}{g} \cdot a_{\max } \cdot r_{d} \tag{3.6}
\end{equation*}
$$

In TELDYN a slightly different procedure is used in the second step of the equivalencing process. Division of the acceleration histories into segments is a convenient way to subsequently obtain the shear stress and shear strain histories in segments. TELDYN is then set up to iterate within each segment and to obtain strain compatible values of the shear moduli and damping ratios for use in that segment before proceeding to the next segment. However the user must specify initial estimates of shear modulus reduction factor and damping ratio to be used on the first iteration of the first segment.

Ideally, the value of shear modulus at small strains and the curves which define the variation of shear modulus and damping ratio with cyclic shear strain will be determined by appropriate field and laboratory tests for each material type involved. However some guidance on the selection of typical values is provided as default values with average Seed \& Idriss curves for sand. For each material type user has option for specifying the shear modulus $\mathrm{G}_{\text {max }}$ at low strains.

$$
\begin{equation*}
G_{\max }=K_{g} \cdot P_{a} \cdot\left(\frac{\sigma_{m}}{P_{a}}\right)^{n g} \cdot(O C R)^{n o c r} \tag{3.7}
\end{equation*}
$$

where K_{g} is 22 times $\mathrm{K}_{2 \text { max }}$ and ng is 0.5 according to Seed \& Idriss, $\sigma \mathrm{m}$ ' is the initial mean effective stress computed in TELSTA.

Beside shear modulus, TELDYN needs Poisson's ratio for each material type. Equations of motion in TELDYN are solved using the Wilson stable step by step integration method.

Shear modulus reduction and damping ratio curves can be manually specified regarding the soil characteristics. The default curves of TELDYN may also be used. For saturated elements having the pore pressure curves as a default character of the program code, appropriate values of the number of cycles required to cause failure and the average shear stress as a function of confining pressure and initial shear stress ratios are obtained from the curves of DeAlba et.al. (1976). Calculation of average acceleration history is found for a potential sliding mass which is defined before as a potential slip surface having the minimum factor of safety. Having known the acceleration time history, the displacements of the sliding mass are computed using Newmark's family of methods. By integrating the acceleration time history twice, the displacements are computed.

3.4.4. Results of the Analysis

The analysis of failure at Değirmendere coastline is analyzed in four stages;

1. Static analysis of body with the computer program TELSTA
2. Static and pseudo-static slope stability analyses with computer program SLOPE
3. Dynamic analysis of body with the computer program TELDYN
4. Application of Newmark Method with the help of computer program MATLAB

In TELSTA analysis section, as emphasized above, a mesh with 223 elements and 256 nodal points is used which symbolizes a cross section of 487 m long and 120 m high (Figure 3.10).

The profile of the area including the slope subject to this study, prior to the earthquake, has been obtained by means of bathymetric measurements by Department of Navigation, Hydrography and Oceanography (connected to the Command of Turkish Armed Forces). The map has been prepared for Değirmendere subdistrict, including the topography of the slope under the coastline. Also Arel \& Kiper (2000.b) prepared a drawing of the shore before earthquake, using both their own studies and this bathymetric map. Regarding these studies, the shore slope is introduced into the cross section with an inclination of 27^{0}. The ground level is lightly inclined down to the sea at Çınarlk shore and this is also reflected to the cross section.

The mesh is composed of 9 types of cohesionless materials. All of them are not different types of materials but as the depth increases, physical material properties change and for this reason different layers are utilized as different materials. Several borings were opened at Çınarlık shore by Kiper \& Arel (2000.b). The samples has been investigated by triaxial tests, consolidation tests and unconfined compression tests. Also grain size curves and boring logs has been prepared by the researchers, which include SPT results. These studies helped determining material parameters. The 9 types of soil materials which are used in the analyses are shown in the limits of mesh on Figure 3.11.

The static analysis with TELSTA produced a file that gives element and nodal point data. The file includes initial mean effective stress values at each
element at static situation. Also boundary conditions for nodal points are given. This data is integrated into the TELDYN input file.

The program TELDYN is used to find the acceleration time history of the mass slid into sea. The average acceleration history of mass can not be directly found. Instead, the cross section of the slid mass is divided into areas, the acceleration histories of nodal points at corners of the areas are computed with TELDYN, and the average acceleration history of mass is found using ratios of these areas to the whole slid area. For this process, first of all the slip surface of the landslide had to be studied. The computer program SLOPE is employed for this aim.

SLOPE is a computer program to make slope stability analyses and find the slip surface with the least factor of safety. It can make both static and pseudostatic analyses. So the studies with SLOPE progressed in two stages;

1. Static slope stability analysis
2. Pseudo-static slope stability analysis

In the first stage, static slope stability analyses of the body were performed to find the potential slip surface within many alternative slip surfaces. SLOPE does not use a mesh. Instead, layers of soil materials are introduced using x and y coordinates (Figure 3.12). The cross section is simplified in terms of length and the material types outside the potential failure section for the sake of simplicity. Ground water condition information is also entered into SLOPE input file. The sea level is entered as the level of ground water and is taken as 1 m below the shore line before failure (Kiper \& Arel, 2000.a). An important advantage of SLOPE is the common point entrance for the potential slip surfaces to pass. At hand we have such information: the failure edge. The shore line before and after the earthquake are known and for our cross section
the failure edge is at 70 m back of the original shore line (Figure 3.12). The failure edge point on cross section symbolizes the common point of potential slip surfaces for SLOPE. Having known this information, a grid of slip surface circle centers is assigned. At this stage seismic forces are taken as zero. Among the potential slip surfaces, the one with minimum factor of safety is given by SLOPE as;

- Center of circle: 200 , 295
- Radius of circle: 225.36 m
- Factor of safety: 1.926
and this circle is drawn on Figure 3.12. This potential slip surface is logical and consistent with our guess.

In the second stage of SLOPE analyses, seismic coefficient k_{h} is also included for the pseudo-static analysis method, which was explained in section 2.2.1. The slip surface found in first stage is used as the default circle. The other parameters are not changed, but only earthquake acceleration factor is entered in terms of ' g '. There are two components for acceleration: vertical and horizontal. Vertical component is entered zero because in TELDYN analysis only the horizontal component of the earthquake record, which is the greater one, is used. The horizontal component is increased step by step to decrease the factor of safety (FS) to 1 . Several trials are made to reach FS $=1$ and to examine the effect of increasing horizontal seismic coefficient k_{h} on FS (Table 3.5). A graph is drawn to observe the sensitivity of FS to seismic coefficient (Figure 3.13). FS $=1.003$ is reached for the default circle with the horizontal seismic coefficient $\mathrm{k}_{\mathrm{h}}=0.133$.

Figure 3.10 Mesh of cross section used in TELSTA and TELDYN analyses

Figure 3.11 Cross section of the slope indicating the soil types

Center of circle: 200, 295 / Radius: 225.36

Figure 3.12 Cross section used in SLOPE analyses

Table 3.5 Seismic coefficient versus Factor of safety results of pseudo-static analysis with SLOPE

Seismic coefficient $\left(\mathrm{k}_{\mathrm{h}}\right)$	Static Factor of safety (FS)
0.000	1.926
0.010	1.807
0.020	1.702
0.030	1.607
0.040	1.522
0.050	1.444
0.060	1.374
0.070	1.309
0.080	1.250
0.090	1.195
0.100	1.145
0.110	1.098
0.120	1.055
0.130	1.014
0.140	0.977
0.150	0.941
0.133	1.003

These SLOPE analyses mean that, Çinarlık shore slope was stable before Kocaeli earthquake with a static FS of 1.926 , and a seismic force was needed to fail it. The seismic acceleration needed to cause the landslide was 0.133 g . İzmit station record of earthquake has a maximum acceleration of 0.225 g in
east-west direction and 0.171 g in north-south direction, which is the earthquake input motion data used in this study.

Figure 3.13 Sensitivity of FS to seismic coefficient

At this point, the dynamic analyses of the body with TELDYN could be started. The main goal of these analyses was, as emphasized before, getting the acceleration time histories of the necessary nodal points in the failed section. With the information of slip surface, the nodal points in the area of failure are decided.

For the formation of TELDYN input file, first of all the output file from TELSTA analysis is integrated, which gives nodal point and element data.

Earthquake input motion data is needed for the dynamic analyses. The most logical way to get this data is to use the real earthquake records.
İzmit (Meteorology station) record is taken as the earthquake input motion data, which is 13 km to Değirmendere. İzmit station is on rock site (Gülkan \& Kalkan, 2002). This record data was taken from the official web site of General Directorate of Disaster Affairs (www.deprem.gov.tr). Dynamic analyses are performed using both the east-west component and the northsouth component of İzmit station record. The E-W and N-S components of earthquake record generated peak values which are close to each other for most of the records (Table 3.2). Some N-S records have larger peak values than the E-W records, although this was a strike-slip type earthquake in E-W direction. So the two components are comparable with each other in terms of peak acceleration values, but both of them are used in the analyses to examine their effects and difference in results.

There is a critical point about the earthquake data, which is the maximum acceleration desired. The İzmit station record has a maximum acceleration value of 0.225 g in $\mathrm{E}-\mathrm{W}$ direction and 0.171 g in $\mathrm{N}-\mathrm{S}$ direction, which can not reflect the reality for Degirmendere. The distance of a region to the fault highly affects the peak ground acceleration (PGA) that occurs at that region. About this problem, Gülkan \& Kalkan (2002) studied with many earthquake data dominated with 1999 Kocaeli and Düzce earthquakes. They generated curves for estimation of PGA in terms of the closest distance of a region to the fault (Figure 3.14). The maximum horizontal acceleration value in terms of ' g ' is entered as 0.400 to TELDYN input file with the use of these curves. This value is comparable with the Sakarya record obtained on rock, 3.2 km away from the fault, which has a maximum acceleration value of 0.407 g .

The failed area on our cross section has a lower boundary drawn by the slip surface. This failed area is divided into small areas in accordance with the
mesh. The small areas are surrounded with nodal points at corners. Acceleration histories of these nodal points are generated with TELDYN. Firstly the average acceleration histories of the small areas are formed with the use of surrounding nodal points of each. Then weighted average acceleration history of the failed mass is generated using the ratios of small areas to the total failed area on cross section. This single average acceleration history is used to apply Newmark method for the purpose of finding permanent displacements.

As explained in section 2.2.2, Newmark method uses twice integration of the acceleration history, regarding the acceleration values larger than the yield acceleration. The yield acceleration a_{y} is the minimum pseudostatic acceleration required to cause the mass to move;

$$
\begin{equation*}
\mathrm{a}_{\mathrm{y}}=\mathrm{k}_{\mathrm{h}} \cdot \mathrm{~g} \tag{3.8}
\end{equation*}
$$

where k_{h} is the horizontal seismic coefficient, which was calculated in pseudo-static analysis with the computer program SLOPE as 0.133 .

When a mass is subjected to accelerations greater than the yield acceleration, the mass will move relative to its base. Thus, the relative acceleration constituting the displacement can be written as follows, where $a(t)$ is the acceleration of mass:

$$
\begin{equation*}
\mathrm{a}_{\mathrm{rel}}(\mathrm{t})=\mathrm{a}(\mathrm{t})-\mathrm{a}_{\mathrm{y}} \tag{3.9}
\end{equation*}
$$

Thus, by computing an acceleration at which the inertia forces become sufficiently high to cause yielding to begin and integrating the effective acceleration on the sliding mass in excess of this yield acceleration as a function of time, the velocities and permanent displacements of the sliding
mass can be evaluated (Seed, H.B.,1979). For this complex procedure, the computer program MATLAB was used. Acceleration time history and the yield acceleration are entered into the input file. Both are multiplied with the gravitational acceleration $g\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$, so the yield acceleration is:

$$
\begin{equation*}
\mathrm{a}_{\mathrm{y}}=0.133 \times 9.81=1.3 \mathrm{~m} / \mathrm{s}^{2} \tag{3.9}
\end{equation*}
$$

Figure 3.14 Curves of peak acceleration versus distance at rock sites (Gülkan \& Kalkan, 2002)

Firstly, the TELDYN analyses are performed using N-S component of İzmit station record, since the failure occurred in north-south direction. This component has a peak acceleration value of 0.171 g . The average
acceleration time history of the failed mass is generated by the weighted average technique, as explained above. This average acceleration time history is introduced into MATLAB to calculate the permanent displacements by Newmark Method. MATLAB generated three graphs: acceleration, velocity and displacement graphs versus time. The yield acceleration line is drawn on the acceleration graph to supply examination of effective acceleration. These graphs are presented in Figures 15, 16, 17.

The displacement-time graph of sliding mass gives the permanent displacement that occurred for mass. At the end of earthquake, average permanent displacement is calculated as 73 cm for the whole failed mass.

Secondly, the E-W component of İzmit station record is entered into the TELDYN input file as earthquake input motion data. The same procedure is applied again to obtain firstly the average acceleration time history and finally the average permanent displacement of the failed mass. The acceleration, velocity and displacement graphs versus time are generated by METLAB, which are presented in Figures 18, 19, 20.

Figure 3.15 Acceleration-time graph of the sliding mass (with N-S eq. data)

Figure 3.16 Velocity-time graph of the sliding mass (with N-S eq. data)

Figure 3.17 Displacement-time graph of the sliding mass (with N-S eq. data)

Figure 3.18 Acceleration-time graph of the sliding mass (with E-W eq. data)

Figure 3.19 Velocity-time graph of the sliding mass (with E-W eq. data)

Figure 3.20 Displacement-time graph of the sliding mass (with E-W eq. data)

During the process applied and explained above, a tricky point has to be known. While the average acceleration histories of the mesh elements are calculated, it is observed that the average acceleration history filters out the maximum acceleration values obtained at the nodal points. For example, while an element with 3 nodal points have PGA values of $0.425,0.420$ and 0.435 at the nodes, the average acceleration history of the element is found to have a PGA value of 0.273 . For this reason, an alternative way of calculating the average permanent displacement of mass is planned and applied to see the effect of this phenomenon.

In this procedure taking average of nodal points' acceleration histories is not applied. Instead, the displacements are calculated for each nodal point separately. Then the average displacement of small area in interest is calculated by taking the average of permanent displacement values of surrounding nodal points. At the end, weighted average method is applied to find the average permanent displacement of the mass, with the use of ratios of small areas to the total area.

Alternatively, this procedure is applied using the E-W component of İzmit earthquake record.. Using this alternative procedure, the average permanent displacement of the whole failed mass is calculated as 47 cm , whereas average permanent displacement was obtained as 42 cm by utilizing the average acceleration time history of the whole sliding mass. The average displacement is found to increase by 12% with the alternative procedure.

CHAPTER 4

RESULTS AND CONCLUSION

In this study, the shore landslide occurred at Değirmendere coastline during 17 August 1999 Kocaeli earthquake is examined. The morphological structure of this failure is not clear as opposed to those that are generated on land. The reason for this uncertainty is that, the earth material is carried away by turbulence as a result of shock waves under water.

The analysis of shore landslide at Değirmendere is examined in four stages as explained in section 3.4.4. The first stage, the TELSTA analyses generated stresses in the body enclosed by cross section limits. Slope stability analyses are performed with the program SLOPE to reach two answers; to determine the slip surface on which the landslide occurred during Kocaeli earthquake and to assess a seismic coefficient which triggered the landslide. Then dynamic analyses are performed with TELDYN and the average acceleration time history of the failed mass is obtained. Using this acceleration time history, permanent displacements are calculated with Newmark Method using a program prepared by with the help of MATLAB.

Four points of discussion are mentioned in the academic studies concerning the mechanism of failure; seismically induced landslide, liquefaction in the first 10 m depth, fault rupture on the toe of failure basin, lateral spreading by turbulence as a result of wave attacks. Among them, the dominating
mechanism is considered to be a landslide which is seismically induced by earthquake and the analyses in this study are performed to calculate the permanent displacements with Newmark Method.

The fault rupture is about 250 m far from the basin limit of landslide (350 m from the old coastline), which is considered to cause large accelerations.

Lateral spreading by turbulence may be a factor that continues the flow of earth material for a long time after the failure started. Spreading accompanies the failure but it is not probably more effective than the other three reasons to start failure. Examining the bathymetry map (Arel \& Kiper, 2000.a), the new basin has a uniform slope, without a sudden fall. Rising of basin shows that the soil mass was exposed to lateral spreading by turbulences up to $300-350 \mathrm{~m}$, remembering that the distance of North Anatolian Fault to the old coastline is also 350 m as mentioned above (Kiper \& Arel, 2000.a).

Liquefaction might have been the most significant triggering mechanism after seismically induced landslide. There are studies on liquefaction of slope material at Değirmendere shore. Liquefaction analysis is performed by Çetin et.al. (2004.a). According to their conclusion, liquefaction of the soil layer below 8 m depth might have played a major role in the observed instability. "The soil layer at depth range of $8-11 \mathrm{~m}$ has small margin of safety against liquefaction triggering and is believed to have suffered from significant shear strength loss due to pore pressure generation. Remembering the fact that the site investigations were done on actually nonfailed soils, after the earthquake, it is believed that the soils slid into the bay as a result of slope instability are more prone to liquefaction and likely to exhibit less SPT blowcounts if site investigation studies had been performed on these soils before the landslide." (Çetin et.al., 2004.a). Soil at
depths of 4-8 m is composed of relatively loose silt with low plasticity and sand (SM, GM, ML). Kiper \& Arel (2000.a) suggest that there is a liquefaction possibility between depths of 4 m and 8 m . They suggest the dominating mechanism of failure as seismically induced landslide, rather than liquefaction.

The failure is analyzed as a seismically induced shore landslide. The permanent displacements are calculated by Newmark Method. The average permanent displacements of the sliding body calculated by this method using two components (north-south and east-west) of scaled İzmit station record of 1999 Kocaeli earthquake to a PGA of 0.4 g , are tabulated below (Table 4.1). The maximum average permanent displacement of the slope is calculated to be significantly large, i.e., 73 cm .

Table 4.1 Average permanent displacements calculated for the failed mass

Displacements	The N-S component Calculated with of record is used for earthquake input Newmark Method (İzmit Station Record)	The E-W component of record is used for earthquake input motion data
Average permanent displacement	73 cm	42 cm

As a matter of fact, the displacements should be larger than the calculated ones. The reason for this argument is that, the shear strength decrease as a result of excess pore pressure build up is not taken into account in this study. Build up of excess pore pressures during the cyclic loading of earthquake should have resulted in a decrease of shear strength which would
have aggravated the slope movement, finally increasing the permanent displacements. This can be examined in the future studies.

REFERENCES

1. Zhu, D.Y., 2002, "A method for locating critical slip surfaces in slope stability analysis: Reply1", Canadian Geotechnical Journal, Vol. 39, pp. 765-770.
2. Özmen, B., 2000.a, "17 Ağustos 1999 İzmit Körfezi Depreminin Hasar Durumu (Rakamsal Verilerle)", TDV/DR 010-53, Türkiye Deprem Vakfi, 132 sayfa
3. Özmen, B., 2000.b, "Isoseismal Map, Human Casualty and Building Damage Statistics of The Izmit Earthquake of August 17, 1999", Third Japan-Turkey Workshop on Earthquake Engineering, February 21-25, 2000, İstanbul, Turkey
4. Alpar, B., Yaltırak, C., 2002, "Characteristic features of the North Anatolian Fault in the eastern Marmara region and its tectonic evolution", Marine Geology, Vol. 190, pp. 329-350
5. Gökaşan, E., Alpar, B., Gazioğlu, C., Yücel, Z.Y., Tok, B., Doğan, E., Güneysu, C., 2001, "Active tectonics of the İzmit Gulf from high resolution seismic and multi-beam bathymetry data", Marine Geology, Vol. 175, pp. 273-288
6. Kuşçu, İ., Okamura, M., Matsuoka, H. and Awata, Y., 2002, "Active faults in the Gulf of İzmit on the North Anatolian Fault, NW Turkey: a high resolution shallow seismic study" ", Marine Geology, Vol. 190, pp. 421-443
7. Ishihara, K., Erken, A., Hiroyoshi, K., 2000, "Geotechnical aspects of the ground damage induced by the fault", Proceedings of the Third Japan-Turkey Workshop on Earthquake Engineering, İstanbul Technical University, İstanbul, Vol. 1, pp. 1-8
8. Arel, E., Kiper, B., 2000.a, "Değirmendere (Kocaeli), 17 Ağustos 1999 Depremi ile Oluşan Kıyı Heyelanı", III. Ulusal Kıyı Mühendisliği Sempozyumu, 5-7 Ekim, 2000, Çanakkale
9. Arel, E., Kiper, B., 2000.b, "Değirmendere (Kocaeli), Yerleşim Amaçı Temel Sondajları ve Jeolojik - Jeoteknik İnceleme Raporu", 2000
10. Çetin, K.Ö., Işık, N., Unutmaz, B., 2004.a, "Seismically Induced Landslide at Değirmendere Nose, İzmit Bay during Kocaeli (İzmit)Turkey Earthquake", Soil Dynamics and Earthquake Engineering, Vol. 24, pp. 189-197
11. Çetin, K.Ö., Youd, T.L., Seed, R.B., Bray, J.D., Stewart, J.P., Durgunoğlu, H.T., Lettis,W., Yılmaz, M.T., 2004.b, "LiquefactionInduced Lateral Spreading at İzmit Bay during the Kocaeli (İzmit)Turkey Earthquake", Journal of Geotechnical and Geoenvironmental Engineering, ASCE
12. Rathje, E.M., Karataş, İ., Wright, S.G., Bachhuber, J., 2004, "Coastal failures during the 1999 Kocaeli earthquake in Turkey", Soil Dynamics and Earthquake Engineering, Vol. 24, pp. 699-712
13. Rothaus, R.M., Reinhardt, E., Noller, J., 2004, "Regional considerations of coastline change, tsunami damage and recovery along the southern coast of the bay of İmit (the Kocaeli (Turkey earthquake of 17 August 1999)", Natural Hazards, Vol. 31, pp. 233252
14. Tinti, S., Armigliato, A., Manucci, A., Pagnoni, G., Zaniboni, F., Yalçıner, A.C., Altınok, Y., 2006, "The generating mechanisms of the August 17, 1999 İzmit bay (Turkey) tsunami: regional (tectonic) and local (mass instabilities) causes", Marine Geology, Vol. 225, pp. 311-330
15. Gencoğlu, S., Özmen, B., Güler, H., 1996, "Yerleşim Birimleri ve Deprem", Türkiye Deprem Vakfı, 80s.
16. Özmen, B., Nurlu, M., Güler, H., 1997, "Coğrafi Bilgi Sistemi ile Deprem Bölgelerinin İncelenmesi", T.C. Bayındırlık Ve İskan Bakanlığı Afet İşleri Genel Müdürlüğü, 89 s .
17. Özmen, B., 1999, "Türkiye ve Çevresinin Tarihsel Deprem Kataloğunun Bölgesel Düzenlemesi", Deprem Araştırma Bülteni, Sayı 82, sayfa 5-83.
18. Şaroğlu, F., Emre, Ö., Boray, A., 1992, "Türkiye Diri Fay Haritası", Maden Tetkik Arama Genel Müdürlüğü (MTA).
19. Özmen, B., Nurlu, M., Güler, H., Kocaefe, S., Seismic Risk Analysis for the City of Ankara, Second Balkan Geophysical Congress and Exhibition, 5-9 July 1999, The Marmara Hotel Conference Hall, Istanbul, Turkey
20. Kramer, S.L., 1996, "Geotechnical Earthquake Engineering", Prentice-Hall, Inc., USA
21. Gülkan, P., Kalkan, E., 2002, "Attenuation modeling of recent earthquakes in Turkey", Journal of Seismology 6: 397-409
22. Seed, H.B., 1979, "Considerations in the Earthquake-Resistant Design of Earth and Rockfill Dams" Geotechnique, Vol. 29, No.3, pp. 215-263
23. TELSTA User's Manual, TAGAsoft Limited
24. TELDYN User's Manual, TAGAsoft Limited

APPENDIX A

DESCRIPTION OF THE COMPUTER PROGRAM TELDYN

TELDYN is a computer program specifically designed for analysis of the response of soils to vertically propagating motions caused by earthquakes. An equivalent linear procedure is used to account for the nonlinearity of the soil. Furthermore, it is possible for the user to divide the input acceleration history into segments and the shear moduli and the damping ratios are then set to be compatible with the average shear strains within each segment.

Here the basic steps of input and output of the program are given:
A. Input Data

1) Nodes
2) Elements
3) Boundary Conditions
a) Compliant boundary
b) Viscous boundary
c) Mixed boundary
4) Material Properties
a) Modulus Reduction Curves of Construction Materials
b) Damping Curves of Construction Materials
c) Pore Pressure Generation Curves
d) Specific Values of Material Parameters
e) Saturated Elements
5) Input Motion
a) Data about Horizontal Input Motion
b) Data about Vertical Input Motion
B. Output Options
6) Print Options
7) Restart Options

APPENDIX B

REPRESENTATIVE TELDYN INPUT FILE

```
DEGIRMENDERE 1999 EARTHQUAKE
TELDYN INPUT
C GENERAL INPUT DATA
C No.Els No.Nodes No.nlhb No.nrhb No.ncb No.ess No.acc No.surf Plots?
    223
C Nummat No.usmrc No.usdc No.satel No.uswc No.usppc Damping Patm
    9
C RunOpt AvStrain Maxiter Maxdiff InitG InitD Hertz SFactor Dfactor
    1
C INPUT MOTION DATA
C Npim Code Totseg Nowseg DT Hamax Vamax
10391 1 52 52 0.005 0.400 0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
```

[^0]```
0 . 6 5
0 . 6 5
0.65
0.65
0 . 6 5
0 . 6 5
0.65
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0.65
0 . 6 5
0 . 6 5
0.65
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
0.65
0 . 6 5
0 . 6 5
0.65
0 . 6 5
0 . 6 5
0 . 6 5
0 . 6 5
C MATERIAL PROPERTY DATA
C No. Unitw Mrcno. Dcno. GmaxCode E2Code
```



```
C Kg ng
 750 0.25
C Poisson's ratio
0 . 3 0
2
```

```
 850 0.4
 0.25
 3
 900 0.4
 0.25
 4
 10500.25
 0.30
 5 19 1 1 1 2 4
 9500.4
 0 . 3 3
 6 20 1 1 1 2 4
 900 0.4
 0.28
 7 21 1 1 1 2 4
 950 0.4
 0.33
 8 21 1 1 2 4
 900 0.4
 0.37
 9 22 1 1 1 2 4
 900 0.5
 0.40
C DEGRADATION CURVES
C GRAVEL
 1.0}0.970.73 0.37 0.1 0.08
C DAMPING CURVES
C GRAVEL
 0.0053 0.016 0.0533 0.16 0.256 0.30
C COMPLIANT BASE DATA
C Unitw Pwvel Swvel
10000 10000000 90000000
C NODAL POINT DATA
\begin{tabular}{lllll}
C & No. \(\quad\) X & Y & Code5 Code6 & \\
1 & 0 & 120.000 & 0 & 4 \\
2 & 20.100 & 119.100 & 0 & 0 \\
3 & 43.200 & 118.100 & 0 & 0 \\
4 & 71.300 & 116.800 & 0 & 0 \\
5 & 99.500 & 115.600 & 0 & 0 \\
6 & 125.200 & 114.400 & 0 & 0 \\
7 & 147.300 & 113.500 & 0 & 0 \\
8 & 167.300 & 112.600 & 0 & 0 \\
9 & 186.100 & 111.700 & 0 & 0 \\
10 & 203.500 & 111.000 & 0 & 0 \\
11 & 215.300 & 110.400 & 0 & 0
\end{tabular}
```

| 12 | 229.200 | 109.800 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 13 | 237.200 | 109.500 | 0 | 0 |
| 14 | 0 | 116.000 | 0 | 4 |
| 15 | 20.300 | 115.100 | 0 | 0 |
| 16 | 43.400 | 114.100 | 0 | 0 |
| 17 | 71.500 | 112.800 | 0 | 0 |
| 18 | 99.900 | 111.600 | 0 | 0 |
| 19 | 125.900 | 110.400 | 0 | 0 |
| 20 | 148.300 | 109.400 | 0 | 0 |
| 21 | 168.800 | 108.500 | 0 | 0 |
| 22 | 187.700 | 107.700 | 0 | 0 |
| 23 | 205.700 | 106.900 | 0 | 0 |
| 24 | 218.100 | 106.300 | 0 | 0 |
| 25 | 232.400 | 105.700 | 0 | 0 |
| 26 | 245.700 | 105.100 | 0 | 0 |
| 27 | 0 | 105.900 | 0 | 4 |
| 28 | 20.700 | 105.300 | 0 | 0 |
| 29 | 43.800 | 104.700 | 0 | 0 |
| 30 | 71.900 | 103.900 | 0 | 0 |
| 31 | 100.900 | 103.100 | 0 | 0 |
| 32 | 127.300 | 102.400 | 0 | 0 |
| 33 | 150.300 | 101.800 | 0 | 0 |
| 34 | 171.500 | 101.200 | 0 | 0 |
| 35 | 190.500 | 100.700 | 0 | 0 |
| 36 | 209.200 | 100.200 | 0 | 0 |
| 37 | 222.600 | 99.900 | 0 | 0 |
| 38 | 237.300 | 99.500 | 0 | 0 |
| 39 | 250.800 | 99.100 | 0 | 0 |
| 40 | 257.700 | 98.900 | 0 | 0 |
| 41 | 0 | 97.200 | 0 | 4 |
| 42 | 21.100 | 97.000 | 0 | 0 |
| 43 | 44.100 | 96.800 | 0 | 0 |
| 44 | 72.200 | 96.500 | 0 | 0 |
| 45 | 101.700 | 96.200 | 0 | 0 |
| 46 | 128.500 | 95.900 | 0 | 0 |
| 47 | 151.800 | 95.700 | 0 | 0 |
| 48 | 173.600 | 95.500 | 0 | 0 |
| 49 | 192.700 | 95.300 | 0 | 0 |
| 50 | 211.900 | 95.100 | 0 | 0 |
| 51 | 226.000 | 95.000 | 0 | 0 |
| 52 | 240.900 | 94.900 | 0 | 0 |
| 53 | 254.500 | 94.700 | 0 | 0 |
| 54 | 266.000 | 94.600 | 0 | 0 |
| 55 | 0 | 93.100 | 0 | 4 |
| 56 | 21.300 | 92.900 | 0 | 0 |
|  |  |  |  |  |


| 57 | 44.300 | 92.700 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 58 | 72.400 | 92.400 | 0 | 0 |
| 59 | 102.200 | 92.100 | 0 | 0 |
| 60 | 129.300 | 91.800 | 0 | 0 |
| 61 | 152.900 | 91.600 | 0 | 0 |
| 62 | 175.100 | 91.400 | 0 | 0 |
| 63 | 194.300 | 91.200 | 0 | 0 |
| 64 | 214.100 | 91.000 | 0 | 0 |
| 65 | 228.800 | 90.900 | 0 | 0 |
| 66 | 244.100 | 90.700 | 0 | 0 |
| 67 | 258.100 | 90.600 | 0 | 0 |
| 68 | 274.100 | 90.500 | 0 | 0 |
| 69 | 0 | 88.900 | 0 | 4 |
| 70 | 21.400 | 88.700 | 0 | 0 |
| 71 | 44.500 | 88.500 | 0 | 0 |
| 72 | 72.600 | 88.200 | 0 | 0 |
| 73 | 102.600 | 88.000 | 0 | 0 |
| 74 | 130.000 | 87.700 | 0 | 0 |
| 75 | 153.900 | 87.500 | 0 | 0 |
| 76 | 176.700 | 87.300 | 0 | 0 |
| 77 | 196.000 | 87.100 | 0 | 0 |
| 78 | 216.300 | 86.900 | 0 | 0 |
| 79 | 231.700 | 86.700 | 0 | 0 |
| 80 | 247.300 | 86.600 | 0 | 0 |
| 81 | 261.600 | 86.400 | 0 | 0 |
| 82 | 282.300 | 86.200 | 0 | 0 |
| 83 | 0 | 79.600 | 0 | 4 |
| 84 | 21.800 | 79.600 | 0 | 0 |
| 85 | 44.900 | 79.600 | 0 | 0 |
| 86 | 73.000 | 79.600 | 0 | 0 |
| 87 | 103.600 | 79.600 | 0 | 0 |
| 88 | 131.500 | 79.600 | 0 | 0 |
| 89 | 156.000 | 79.600 | 0 | 0 |
| 90 | 179.500 | 79.600 | 0 | 0 |
| 91 | 199.000 | 79.600 | 0 | 0 |
| 92 | 220.200 | 79.600 | 0 | 0 |
| 93 | 236.700 | 79.600 | 0 | 0 |
| 94 | 252.800 | 79.600 | 0 | 0 |
| 95 | 267.500 | 79.600 | 0 | 0 |
| 96 | 295.300 | 79.600 | 0 | 0 |
| 97 | 0 | 73.500 | 0 | 4 |
| 98 | 22.100 | 73.500 | 0 | 0 |
| 99 | 45.100 | 73.500 | 0 | 0 |
| 100 | 73.200 | 73.500 | 0 | 0 |
| 101 | 104.300 | 73.500 | 0 | 0 |
|  |  |  |  |  |


| 102 | 132.600 | 73.500 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 103 | 157.600 | 73.500 | 0 | 0 |
| 104 | 181.800 | 73.500 | 0 | 0 |
| 105 | 201.400 | 73.500 | 0 | 0 |
| 106 | 223.500 | 73.500 | 0 | 0 |
| 107 | 240.900 | 73.500 | 0 | 0 |
| 108 | 257.600 | 73.500 | 0 | 0 |
| 109 | 272.700 | 73.500 | 0 | 0 |
| 110 | 307.200 | 73.500 | 0 | 0 |
| 111 | 333.500 | 72.800 | 0 | 0 |
| 112 | 361.200 | 72.000 | 0 | 0 |
| 113 | 390.000 | 71.300 | 0 | 0 |
| 114 | 417.700 | 70.600 | 0 | 0 |
| 115 | 452.000 | 69.700 | 0 | 0 |
| 116 | 487.100 | 68.800 | 0 | 4 |
| 117 | 0 | 62.000 | 0 | 4 |
| 118 | 22.600 | 62.000 | 0 | 0 |
| 119 | 45.600 | 62.000 | 0 | 0 |
| 120 | 73.700 | 62.000 | 0 | 0 |
| 121 | 105.600 | 62.000 | 0 | 0 |
| 122 | 134.600 | 62.000 | 0 | 0 |
| 123 | 160.500 | 62.000 | 0 | 0 |
| 124 | 186.000 | 62.000 | 0 | 0 |
| 125 | 206.000 | 62.000 | 0 | 0 |
| 126 | 229.600 | 62.000 | 0 | 0 |
| 127 | 248.900 | 62.000 | 0 | 0 |
| 128 | 266.500 | 62.000 | 0 | 0 |
| 129 | 282.500 | 62.000 | 0 | 0 |
| 130 | 316.100 | 62.000 | 0 | 0 |
| 131 | 341.200 | 62.000 | 0 | 0 |
| 132 | 367.900 | 62.000 | 0 | 0 |
| 133 | 395.500 | 62.000 | 0 | 0 |
| 134 | 42.000 | 62.000 | 0 | 0 |
| 135 | 454.400 | 62.000 | 0 | 0 |
| 136 | 487.100 | 62.000 | 0 | 4 |
| 137 | 0 | 50.000 | 0 | 4 |
| 138 | 23.100 | 50.000 | 0 | 0 |
| 139 | 46.100 | 50.000 | 0 | 0 |
| 140 | 74.200 | 50.000 | 0 | 0 |
| 141 | 107.000 | 50.000 | 0 | 0 |
| 142 | 136.800 | 50.000 | 0 | 0 |
| 143 | 163.600 | 50.000 | 0 | 0 |
| 144 | 190.400 | 50.000 | 0 | 0 |
| 145 | 210.800 | 50.000 | 0 | 0 |
| 146 | 236.000 | 50.000 | 0 | 0 |
|  |  |  |  |  |


| 147 | 257.200 | 50.000 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 148 | 275.800 | 50.000 | 0 | 0 |
| 149 | 292.800 | 50.000 | 0 | 0 |
| 150 | 325.400 | 50.000 | 0 | 0 |
| 151 | 349.800 | 50.000 | 0 | 0 |
| 152 | 375.900 | 50.000 | 0 | 0 |
| 153 | 402.500 | 50.000 | 0 | 0 |
| 154 | 428.000 | 50.000 | 0 | 0 |
| 155 | 458.000 | 50.000 | 0 | 0 |
| 156 | 487.100 | 50.000 | 0 | 4 |
| 157 | 0 | 40.000 | 0 | 4 |
| 158 | 23.600 | 40.000 | 0 | 0 |
| 159 | 46.600 | 40.000 | 0 | 0 |
| 160 | 74.700 | 40.000 | 0 | 0 |
| 161 | 108.100 | 40.000 | 0 | 0 |
| 162 | 138.600 | 40.000 | 0 | 0 |
| 163 | 166.100 | 40.000 | 0 | 0 |
| 164 | 194.100 | 40.000 | 0 | 0 |
| 165 | 214.900 | 40.000 | 0 | 0 |
| 166 | 241.300 | 40.000 | 0 | 0 |
| 167 | 264.100 | 40.000 | 0 | 0 |
| 168 | 283.600 | 40.000 | 0 | 0 |
| 169 | 301.300 | 40.000 | 0 | 0 |
| 170 | 333.200 | 40.000 | 0 | 0 |
| 171 | 356.900 | 40.000 | 0 | 0 |
| 172 | 382.500 | 40.000 | 0 | 0 |
| 173 | 408.400 | 40.000 | 0 | 0 |
| 174 | 433.100 | 40.000 | 0 | 0 |
| 175 | 461.100 | 40.000 | 0 | 0 |
| 176 | 487.100 | 40.000 | 0 | 4 |
| 177 | 0 | 30.000 | 0 | 4 |
| 178 | 24.000 | 30.000 | 0 | 0 |
| 179 | 47.000 | 30.000 | 0 | 0 |
| 180 | 75.100 | 30.000 | 0 | 0 |
| 181 | 109.300 | 30.000 | 0 | 0 |
| 182 | 140.400 | 30.000 | 0 | 0 |
| 183 | 168.700 | 30.000 | 0 | 0 |
| 184 | 197.800 | 30.000 | 0 | 0 |
| 185 | 218.900 | 30.000 | 0 | 0 |
| 186 | 246.600 | 30.000 | 0 | 0 |
| 187 | 271.100 | 30.000 | 0 | 0 |
| 188 | 291.400 | 30.000 | 0 | 0 |
| 189 | 309.800 | 30.000 | 0 | 0 |
| 190 | 341.000 | 30.000 | 0 | 0 |
| 191 | 364.000 | 30.000 | 0 | 0 |
|  |  |  |  |  |
|  |  |  |  |  |


| 192 | 389.100 | 30.000 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 193 | 414.200 | 30.000 | 0 | 0 |
| 194 | 438.100 | 30.000 | 0 | 0 |
| 195 | 464.200 | 30.000 | 0 | 0 |
| 196 | 487.100 | 30.000 | 0 | 4 |
| 197 | 0 | 20.000 | 0 | 4 |
| 198 | 24.400 | 20.000 | 0 | 0 |
| 199 | 47.500 | 20.000 | 0 | 0 |
| 200 | 75.500 | 20.000 | 0 | 0 |
| 201 | 110.400 | 20.000 | 0 | 0 |
| 202 | 142.200 | 20.000 | 0 | 0 |
| 203 | 171.300 | 20.000 | 0 | 0 |
| 204 | 201.500 | 20.000 | 0 | 0 |
| 205 | 222.900 | 20.000 | 0 | 0 |
| 206 | 252.000 | 20.000 | 0 | 0 |
| 207 | 278.000 | 20.000 | 0 | 0 |
| 208 | 299.200 | 20.000 | 0 | 0 |
| 209 | 318.400 | 20.000 | 0 | 0 |
| 210 | 348.800 | 20.000 | 0 | 0 |
| 211 | 371.200 | 20.000 | 0 | 0 |
| 212 | 395.700 | 20.000 | 0 | 0 |
| 213 | 420.100 | 20.000 | 0 | 0 |
| 214 | 443.100 | 20.000 | 0 | 0 |
| 215 | 467.200 | 20.000 | 0 | 0 |
| 216 | 487.100 | 20.000 | 0 | 4 |
| 217 | 0 | 10.000 | 0 | 4 |
| 218 | 24.900 | 10.000 | 0 | 0 |
| 219 | 47.900 | 10.000 | 0 | 0 |
| 220 | 76.000 | 10.000 | 0 | 0 |
| 221 | 111.600 | 10.000 | 0 | 0 |
| 222 | 144.000 | 10.000 | 0 | 0 |
| 223 | 173.800 | 10.000 | 0 | 0 |
| 224 | 205.200 | 10.000 | 0 | 0 |
| 225 | 226.900 | 10.000 | 0 | 0 |
| 226 | 257.300 | 10.000 | 0 | 0 |
| 227 | 285.000 | 10.000 | 0 | 0 |
| 228 | 307.000 | 10.000 | 0 | 0 |
| 229 | 326.900 | 10.000 | 0 | 0 |
| 230 | 356.500 | 10.000 | 0 | 0 |
| 231 | 378.300 | 10.000 | 0 | 0 |
| 232 | 402.400 | 10.000 | 0 | 0 |
| 233 | 426.000 | 10.000 | 0 | 0 |
| 234 | 448.200 | 10.000 | 0 | 0 |
| 235 | 470.300 | 10.000 | 0 | 0 |
| 236 | 487.100 | 10.000 | 0 | 4 |
|  |  |  |  |  |


| 237 | 0 |  | 0 |  | 2 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 238 | 25.300 |  | 0 |  | 2 | 4 |
| 239 | 48.300 |  | 0 |  | 2 | 4 |
| 240 | 76.400 |  | 0 |  | 2 | 4 |
| 241 | 112.700 |  | 0 |  | 2 | 4 |
| 242 | 145.800 |  | 0 |  | 2 | 4 |
| 243 | 176.400 |  | 0 |  | 2 | 4 |
| 244 | 208.900 |  | 0 |  | 2 | 4 |
| 245 | 230.900 |  | 0 |  | 2 | 4 |
| 246 | 262.600 |  | 0 |  | 2 | 4 |
| 247 | 291.900 |  | 0 |  | 2 | 4 |
| 248 | 314.800 |  | 0 |  | 2 | 4 |
| 249 | 335.500 |  | 0 |  | 2 | 4 |
| 250 | 364.300 |  | 0 |  | 2 | 4 |
| 251 | 385.500 |  | 0 |  | 2 | 4 |
| 252 | 409.000 |  | 0 |  | 2 | 4 |
| 253 | 431.900 |  | 0 |  | 2 | 4 |
| 254 | 453.200 |  | 0 |  | 2 | 4 |
| 255 | 473.400 |  | 0 |  | 2 | 4 |
| 256 | 487.100 |  | 0 |  | 2 | 4 |
| C ELEMENT DATA |  |  |  |  |  |  |
| C | o. I J K | L M | MTY | YPE SIG | GMN S | SIGMN |
| 1 | $1 \begin{array}{lll}1 & 14 & 15\end{array}$ | 2 | 1 | -8. | -8. | 1. |
| 2 | $\begin{array}{lll}2 & 15 & 16\end{array}$ | 3 | 1 | 10. | 10. | 1. |
| 3 | $\begin{array}{lll}3 & 16 & 17\end{array}$ | 4 | 1 | -4. | -4. | 1. |
| 4 | 41718 | 5 | 1 | -11. | -11. | 1. |
| 5 | $\begin{array}{llll}5 & 18 & 19\end{array}$ | 6 | 1 | 22. | 22. | 1. |
| 6 | $\begin{array}{llll}6 & 19 & 20\end{array}$ | 7 | 1 | 23. | 23. | 1. |
| 7 | $\begin{array}{llll}7 & 20 & 21\end{array}$ | 8 | 1 | 38. | 38. | 1. |
| 8 | $8 \quad 21 \quad 22$ | 9 | 1 | 16. | 16. | 1. |
| 9 | $9 \quad 22 \quad 23$ | 10 | 1 | 45. | 45. | 1. |
| 10 | $\begin{array}{lll}10 & 23 & 24\end{array}$ | 11 | 1 | 49. | 49. | 1. |
| 11 | $\begin{array}{llll}11 & 24 & 25\end{array}$ | 12 | 1 | 50. | 50. | 1. |
| 12 | $\begin{array}{ll}12 & 25\end{array} 26$ | 13 | 1 | 121. | 21. | 1. |
| 13 | $\begin{array}{ll}14 & 27\end{array}$ | 15 | - 2 | 2113. | 113. | 1. |
| 14 | $\begin{array}{ll}15 & 28\end{array} 29$ | 16 | - 2 | 2120. | 120. | 1. |
| 15 | $\begin{array}{lll}16 & 29 & 30\end{array}$ | 17 | 2 | 2118. | 118. | . 1 |
| 16 | $\begin{array}{lll}17 & 30 & 31\end{array}$ | 18 | - 2 | 2136. | 136. | . 1 . |
| 17 | $\begin{array}{llll}18 & 31 & 32\end{array}$ | 19 | 3 | 3117. | 117. | 1. |
| 18 | $\begin{array}{llll}19 & 32 & 33\end{array}$ | 20 | 3 | 3109. | 109. | 1. |
| 19 | $\begin{array}{lll}20 & 33 & 34\end{array}$ | 21 | 3 | 392. | 92. | 1. |
| 20 | $\begin{array}{llll}21 & 34 & 35\end{array}$ | 22 | 4 | 4114. | 114. | . 1. |
| 21 | $\begin{array}{llll}22 & 35 & 36\end{array}$ | 23 | 4 | 4117. | 117. | . 1. |
| 22 | $\begin{array}{llll}23 & 36 & 37\end{array}$ | 24 | 4 | 4103. | 103. | . 1 . |
| 23 | $\begin{array}{ll}24 & 37\end{array}$ | 25 | - 4 | 4100. | 100. | 1. |


| 24 | 25 | 38 | 39 | 26 | 4 | 84. | 84. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 26 | 39 | 40 | 40 | 4 | 34. | 34. |  |
| 26 | 27 | 41 | 42 | 28 | 8 | 226. | 226. | 1. |
| 27 | 28 | 42 | 43 | 29 | 8 | 234. | 234. | 1. |
| 28 | 29 | 43 | 44 | 30 | 8 | 215. | 215. | 1. |
| 29 | 30 | 44 | 45 | 31 | 8 | 190. | 190. | 1. |
| 30 | 31 | 45 | 46 | 32 | 6 | 170. | 170. | 1. |
| 31 | 32 | 46 | 47 | 33 | 6 | 196. | 196. | 1. |
| 32 | 33 | 47 | 48 | 34 | 6 | 171. | 171. | 1. |
| 33 | 34 | 48 | 49 | 35 | 5 | 166. | 166. | 1. |
| 34 | 35 | 49 | 50 | 36 | 5 | 149. | 149. | 1. |
| 35 | 36 | 50 | 51 | 37 | 5 | 154. | 154. | 1. |
| 36 | 37 | 51 | 52 | 38 | 5 | 133. | 133. | 1. |
| 37 | 38 | 52 | 53 | 39 | 5 | 108. | 108. | 1. |
| 38 | 39 | 53 | 54 | 40 | 4 | 107. | 107. | 1. |
| 39 | 41 | 55 | 56 | 42 | 8 | 351. | 351. | 1. |
| 40 | 42 | 56 | 57 | 43 | 8 | 344. | 344. | 1. |
| 41 | 43 | 57 | 58 | 44 | 8 | 328. | 328. | 1. |
| 42 | 44 | 58 | 59 | 45 | 8 | 304. | 304. | 1. |
| 43 | 45 | 59 | 60 | 46 | 6 | 258. | 258. | 1. |
| 44 | 46 | 60 | 61 | 47 | 6 | 235. | 235. | 1. |
| 45 | 47 | 61 | 62 | 48 | 6 | 205. | 205. | 1. |
| 46 | 48 | 62 | 63 | 49 | 5 | 207. | 207. | 1. |
| 47 | 49 | 63 | 64 | 50 | 5 | 206. | 206. | 1. |
| 48 | 50 | 64 | 65 | 51 | 5 | 193. | 193. | 1. |
| 49 | 51 | 65 | 66 | 52 | 5 | 169. | 169. | 1. |
| 50 | 52 | 66 | 67 | 53 | 5 | 149. | 149. | 1. |
| 51 | 53 | 67 | 68 | 54 | 4 | 127. | 127. | 1. |
| 52 | 55 | 69 | 70 | 56 | 8 | 427. | 427. | 1. |
| 53 | 56 | 70 | 71 | 57 | 8 | 421. | 421. | 1. |
| 54 | 57 | 71 | 72 | 58 | 8 | 408. | 408. | 1. |
| 55 | 58 | 72 | 73 | 59 | 8 | 378. | 378. | 1. |
| 56 | 59 | 73 | 74 | 60 | 8 | 361. | 361. | 1. |
| 57 | 60 | 74 | 75 | 61 | 8 | 329. | 329. | 1. |
| 58 | 61 | 75 | 76 | 62 | 8 | 303. | 303. | 1. |
| 59 | 62 | 76 | 77 | 63 | 7 | 339. | 339. | 1. |
| 60 | 63 | 77 | 78 | 64 | 7 | 315. | 315. | 1. |
| 61 | 64 | 78 | 79 | 65 | 7 | 292. | 292. | 1. |
| 62 | 65 | 79 | 80 | 66 | 7 | 254. | 254. | 1. |
| 63 | 66 | 80 | 81 | 67 | 5 | 173. | 173. | 1. |
| 64 | 67 | 81 | 82 | 68 | 4 | 155. | 155. | 1. |
| 65 | 69 | 83 | 84 | 70 | 9 | 562. | 562. | 1. |
| 66 | 70 | 84 | 85 | 71 | 9 | 556. | 556. | 1. |
| 67 | 71 | 85 | 86 | 72 | 9 | 539. | 539. | 1. |
| 68 | 72 | 86 | 87 | 73 | 9 | 513. | 513. | 1. |


| 69 | 73 | 87 | 88 | 74 | 9 | 490. | 490. | 1. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 70 | 74 | 88 | 89 | 75 | 9 | 460. | 460. | 1. |
| 71 | 75 | 89 | 90 | 76 | 9 | 452. | 452. | 1. |
| 72 | 76 | 90 | 91 | 77 | 7 | 424. | 424. | 1. |
| 73 | 77 | 91 | 92 | 78 | 7 | 410. | 410. | 1. |
| 74 | 78 | 92 | 93 | 79 | 7 | 370. | 370. | 1. |
| 75 | 79 | 93 | 94 | 80 | 7 | 316. | 316. | 1. |
| 76 | 80 | 94 | 95 | 81 | 5 | 226. | 226. | 1. |
| 77 | 81 | 95 | 96 | 82 | 4 | 196. | 196. | 1. |
| 78 | 83 | 97 | 98 | 84 | 9 | 708. | 708. | 1. |
| 79 | 84 | 98 | 99 | 85 | 9 | 701. | 701. | 1. |
| 80 | 85 | 99 | 100 | 86 | 9 | 685. | 685. | 1. |
| 81 | 86 | 100 | 101 | 87 | 9 | 660. | 660. | 1. |
| 82 | 87 | 101 | 102 | 88 | 9 | 635. | 635. | 1. |
| 83 | 88 | 102 | 103 | 89 | 9 | 610. | 610. | 1. |
| 84 | 89 | 103 | 104 | 90 | 9 | 585. | 585. | 1. |
| 85 | 90 | 104 | 105 | 91 | 7 | 547. | 547. | 1. |
| 86 | 91 | 105 | 106 | 92 | 7 | 514. | 514. | 1. |
| 87 | 92 | 106 | 107 | 93 | 7 | 460. | 460. | 1. |
| 88 | 93 | 107 | 108 | 94 | 7 | 396. | 396. | 1. |
| 89 | 94 | 108 | 109 | 95 | 5 | 293. | 293. | 1. |
| 90 | 95 | 109 | 110 | 96 | 4 | 240. | 240. | 1. |
| 91 | 97 | 117 | 118 | 98 | 9 | 879. | 879. | 1. |
| 92 | 98 | 118 | 119 | 99 | 9 | 872. | 872. | 1. |
| 93 | 99 | 119 | 120 | 100 | 9 | 858. | 858. | 1. |
| 94 | 100 | 120 | 121 | 101 | 9 | 836. | 836. | 1. |
| 95 | 101 | 121 | 122 | 102 | 9 | 813. | 813. | 1. |
| 96 | 102 | 122 | 123 | 103 | 9 | 790. | 790. | 1. |
| 97 | 103 | 123 | 124 | 104 | 9 | 756. | 756. | 1. |
| 98 | 104 | 124 | 125 | 105 | 7 | 704. | 704. | 1. |
| 99 | 105 | 125 | 126 | 106 | 7 | 652. | 652. | 1. |
| 100 | 106 | 126 | 127 | 107 | 7 | 589. | 589. | 1. |
| 101 | 107 | 127 | 128 | 108 | 7 | 506. | 506. | 1. |
| 102 | 108 | 128 | 129 | 109 | 5 | 388. | 388. | 1. |
| 103 | 109 | 129 | 130 | 110 | 4 | 302. | 302. | 1. |
| 104 | 110 | 130 | 131 | 111 | 4 | 213. | 213. | 1. |
| 105 | 111 | 131 | 132 | 112 | 4 | 144. | 144. | 1. |
| 106 | 112 | 132 | 133 | 113 | 4 | 125. | 125. | 1. |
| 107 | 113 | 133 | 134 | 114 | 4 | 108. | 108. | 1. |
| 108 | 114 | 134 | 135 | 115 | 4 | 93. | 93. | 1. |
| 109 | 115 | 135 | 136 | 116 | 4 | 84. | 84. | 1. |
| 111 | 117 | 137 | 138 | 118 | 9 | 1106. | 1106. | 1. |
| 112 | 119 | 139 | 139 | 119 | 9 | 1101. | 1101. | 1. |
| 113 | 120 | 140 | 141 | 121 | 9 | 1088. | 1088. | 1069. |
| 7 |  |  |  |  |  |  |  |  |

```
114 121 141 142 122 9 1045. 1045. 1.
115}122\mp@code{142 143 123 9 1025. 1025. 1.
```



```
117 124 144 145 125 7 893. 893. 1.
118
119 126 146 147 127 7 756. 756. 1.
120 127 147 148 128 7 681. 681. 1.
121 128 148 149 129 5 515. 515. 1.
122 129 149 150 130 5 419. 419. 1.
123 130 150 151 131 5 361. 361. 1.
124 131 151 152 132 5 302. 302. 1.
125 132 152 153 133 5 261. 261. 1.
126 133 153 154 134 5 241. 241. 1.
127 134 154 155 135 5 224. 224. 1.
128 135 155 156 136 5 212. 212. 1.
```




```
131}139159159 160 140 9 1304. 1304. 1.
132 140 160 161 141 9
133}1414161 162 142 9 1263. 1263. 1.
134 142 162 163 143 9 1231. 1231. 1.
135}1443163 164 144 9 1206. 1206. 1.
136}144164 165 145 8 1085. 1085. 1.
137}145165166 146 8 1036. 1036. 1.
138 146 166 167 147 8 937. 937. 1.
139 147 167 168 148 8 814. 814. 1.
140}1488168 169 149 8 746. 746. 1.
141 149 169 170 150 7 614. 614. 1.
142 150}170171 151 7 5 55. 555. 1.
143 151 171 172 152 7 501. 501. 1.
144 152 172 173 153 7 471. 471. 1.
145}15153173174 154 7 446. 446. 1.
146
147 155 175 176 156 7 421. 421. 1.
148 157 177 178 158 9 1516. 1516. 1.
149}158178179 159 9 1511. 1511. 1.
150}159179180 160 9 1501. 1501. 1.
151}160180181 161 9 1484. 1484. 1.
```



```
153 162 182 183 163 9 1429. 1429. 1.
154 163 183 184 164 9
155}164184 185 165 9 1339. 1339. 1.
```



```
157 166 186 187 167 9 1104. 1104. 1.
```



```
159 168 188 189 169 9 945. 945. 1.
160 169 189 190 170 8 764. 764. 1.
161 170 190 191 171 8 720. 720. 1.
162 171 191 192 172 8 682. 682. 1.
163 172 192 193 173 8 651. 651. 1.
164 173 193 194 174 8 631. 631. 1.
165 174 194 195 175 8 617. 617. 1.
166}175195196 176 8 609. 609. 1.
167 177 197 198 178 9 1714. 1714. 1.
168 178 198 199 179 9 1709. 1709. 1.
169 179 199 200 180 9 1699. 1699. 1.
170 180 200 201 181 9 1681. 1681. 1.
171 181 201 202 182 9 1657. 1657. 1.
172 182 202 203 183 9 1616. 1616. 1.
173 183 203 204 184 9 1565. 1565. 1.
174 184 204 205 185 9 1493. 1493. 1.
175 185 205 206 186 9 1395. 1395. 1.
176 186 206 207 187 9 1265. 1265. 1.
177 187 207 208 188 9 1172. 1172. 1.
178 188 208 209 189 9 1043. 1043. 1.
179 189 209 210 190 9 995. 995. 1.
180 190 210 211 191 9 915. 915. 1.
181 191 211 212 192 9 885. 885. 1.
182 192 212 213 193 9 856. 856. 1.
183 193 213 214 194 9 835. 835. 1.
184 194 214 215 195 9 822. 822. 1.
185 195 215 216 196 9 817. 817. 1.
186 197 217 218 198 9 1914. 1914. 1.
187 198 218 219 199 9 1908. 1908. 1.
188 199 219 220 200 9 1897. 1897. 1.
189 200 220 221 201 9 1878. 1878. 1.
190 201 221 222 202 9 1851. 1851. 1.
191 202 222 223 203 9 1812. 1812. 1.
192 203 223 224 204 9 1752. 1752. 1.
193 204 224 225 205 9 1673. 1673. 1.
194 205 225 226 206 9 1564. 1564. 1.
195 206 226 227 207 9 1433. 1433. 1.
196 207 227 228 208 9 1307. 1307. 1.
197 208 228 229 209 9 1219. 1219. 1.
198 209 229 230 210 9 1137. 1137. 1.
199210230 231 211 9 1091. 1091. 1.
200 211 231 232 212 9 1061. 1061. 1.
201 212 232 233 213 9 1040. 1040. 1.
202 213 233 234 214 9 1022. 1022. 1.
203 214 234 235 215 9 1012. 1012. 1.
```

| 204 | 215 | 235 | 236216 | 9 | 1007. | 1007. | 1. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 217 | 237 | 238218 | 9 | 2118. | 2118. | 1. |  |
|  | 218 | 238 | 239219 | 9 | 2111. | 2111. | 1. |  |
| 207 | 219 | 239 | 240220 | 9 | 2097. | 2097. | 1. |  |
| 208 | 220 | 240 | 241221 | 9 | 2074. | 2074. | 1. |  |
| 209 | 221 | 241 | 242222 | 9 | 2043. | 2043. | 1. |  |
| 210 | 222 | 242 | 243223 | 9 | 2001. | 2001. | 1. |  |
| 211 | 223 | 243 | 244224 | 9 | 1936. | 1936. | 1. |  |
| 212 | 224 | 244 | 245225 | 9 | 1852. | 1852. | 1. |  |
| 213 | 225 | 245 | 246226 | 9 | 1741. | 1741. | 1. |  |
| 214 | 226 | 246 | 247227 | 9 | 1592. | 1592. | 1. |  |
| 215 | 227 | 247 | 248228 | 9 | 1458. | 1458. | 1. |  |
| 216 | 228 | 248 | 249229 | 9 | 1366. | 1366. | 1. |  |
| 217 | 229 | 249 | 250230 | 9 | 1301. | 1301. | 1. |  |
| 218 | 230 | 250 | 251231 | 9 | 1263. | 1263. | 1. |  |
| 219 | 231 | 251 | 252232 | 9 | 1245. | 1245. | 1. |  |
| 220 | 232 | 252 | 253233 | 9 | 1226. | 1226. | 1. |  |
| 221 | 233 | 253 | 254234 | 9 | 1211. | 1211. | 1. |  |
| 222 | 234 | 254 | 255235 | 9 | 1202. | 1202. | 1. |  |
| 223 | 235 | 255 | 256236 | 9 | 1199. | 1199. | 1. |  |
| C SATURATED ELEMENTS |  |  |  |  |  |  |  |  |
| C no |  | wen |  | ppge |  | nofc |  | av.ssr |
| 11 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 12 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 18 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 19 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 20 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 21 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 22 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 23 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 24 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 25 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 26 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 27 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 28 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 29 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 30 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 31 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 32 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 33 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 34 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 35 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 36 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 37 |  | 0 |  | 0 |  | 5 |  | 0.65 |
| 38 |  | 0 |  | 0 |  | 5 |  | 0.65 |


| 39 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 40 | 0 | 0 | 5 | 0.65 |
| 41 | 0 | 0 | 5 | 0.65 |
| 42 | 0 | 0 | 5 | 0.65 |
| 43 | 0 | 0 | 5 | 0.65 |
| 44 | 0 | 0 | 5 | 0.65 |
| 45 | 0 | 0 | 5 | 0.65 |
| 46 | 0 | 0 | 5 | 0.65 |
| 47 | 0 | 0 | 5 | 0.65 |
| 48 | 0 | 0 | 5 | 0.65 |
| 49 | 0 | 0 | 5 | 0.65 |
| 50 | 0 | 0 | 5 | 0.65 |
| 51 | 0 | 0 | 5 | 0.65 |
| 52 | 0 | 0 | 5 | 0.65 |
| 53 | 0 | 0 | 5 | 0.65 |
| 54 | 0 | 0 | 5 | 0.65 |
| 55 | 0 | 0 | 5 | 0.65 |
| 56 | 0 | 0 | 5 | 0.65 |
| 57 | 0 | 0 | 5 | 0.65 |
| 58 | 0 | 0 | 5 | 0.65 |
| 59 | 0 | 0 | 5 | 0.65 |
| 60 | 0 | 0 | 5 | 0.65 |
| 61 | 0 | 0 | 5 | 0.65 |
| 62 | 0 | 0 | 5 | 0.65 |
| 63 | 0 | 0 | 5 | 0.65 |
| 64 | 0 | 0 | 5 | 0.65 |
| 65 | 0 | 0 | 5 | 0.65 |
| 66 | 0 | 0 | 5 | 0.65 |
| 67 | 0 | 0 | 5 | 0.65 |
| 68 | 0 | 0 | 5 | 0.65 |
| 69 | 0 | 0 | 5 | 0.65 |
| 70 | 0 | 0 | 5 | 0.65 |
| 71 | 0 | 0 | 5 | 0.65 |
| 72 | 0 | 0 | 5 | 0.65 |
| 73 | 0 | 0 | 5 | 0.65 |
| 74 | 0 | 0 | 5 | 0.65 |
| 75 | 0 | 0 | 5 | 0.65 |
| 76 | 0 | 0 | 5 | 0.65 |
| 77 | 0 | 0 | 5 | 0.65 |
| 78 | 0 | 0 | 5 | 0.65 |
| 79 | 0 | 0 | 5 | 0.65 |
| 80 | 0 | 0 | 5 | 0.65 |
| 81 | 0 | 0 | 5 | 0.65 |
| 82 | 0 | 0 | 5 | 0.65 |
| 83 | 0 |  | 5 | 0.65 |
|  | 0 | 5 | 0.65 |  |
|  | 0 | 0 |  |  |
|  | 0 | 0 | 5 |  |


| 84 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 85 | 0 | 0 | 5 | 0.65 |
| 86 | 0 | 0 | 5 | 0.65 |
| 87 | 0 | 0 | 5 | 0.65 |
| 88 | 0 | 0 | 5 | 0.65 |
| 89 | 0 | 0 | 5 | 0.65 |
| 90 | 0 | 0 | 5 | 0.65 |
| 91 | 0 | 0 | 5 | 0.65 |
| 92 | 0 | 0 | 5 | 0.65 |
| 93 | 0 | 0 | 5 | 0.65 |
| 94 | 0 | 0 | 5 | 0.65 |
| 95 | 0 | 0 | 5 | 0.65 |
| 96 | 0 | 0 | 5 | 0.65 |
| 97 | 0 | 0 | 5 | 0.65 |
| 98 | 0 | 0 | 5 | 0.65 |
| 99 | 0 | 0 | 5 | 0.65 |
| 100 | 0 | 0 | 5 | 0.65 |
| 101 | 0 | 0 | 5 | 0.65 |
| 102 | 0 | 0 | 5 | 0.65 |
| 103 | 0 | 0 | 5 | 0.65 |
| 104 | 0 | 0 | 5 | 0.65 |
| 105 | 0 | 0 | 5 | 0.65 |
| 106 | 0 | 0 | 5 | 0.65 |
| 107 | 0 | 0 | 5 | 0.65 |
| 108 | 0 | 0 | 5 | 0.65 |
| 109 | 0 | 0 | 5 | 0.65 |
| 110 | 0 | 0 | 5 | 0.65 |
| 111 | 0 | 0 | 5 | 0.65 |
| 112 | 0 | 0 | 5 | 0.65 |
| 113 | 0 | 0 | 5 | 0.65 |
| 114 | 0 | 0 | 5 | 0.65 |
| 115 | 0 | 0 | 5 | 0.65 |
| 116 | 0 | 0 | 5 | 0.65 |
| 117 | 0 | 0 | 5 | 0.65 |
| 118 | 0 | 0 | 5 | 0.65 |
| 119 | 0 | 0 | 5 | 0.65 |
| 120 | 0 | 0 | 5 | 0.65 |
| 121 | 0 | 0 | 5 | 0.65 |
| 122 | 0 | 0 | 5 | 0.65 |
| 123 | 0 | 0 | 5 | 0.65 |
| 124 | 0 | 0 | 5 | 0.65 |
| 125 | 0 | 0 | 5 | 0.65 |
| 126 | 0 | 0 | 5 | 0.65 |
| 127 | 0 | 0 | 5 | 0.65 |
| 128 | 0 | 0 | 5 | 0.65 |
|  |  |  | 5 | 0.65 |
|  | 0 |  |  |  |
| 10 |  |  |  |  |


| 129 | 0 | 0 | 5 | 0.65 |
| :--- | :--- | :--- | :--- | :--- |
| 130 | 0 | 0 | 5 | 0.65 |
| 131 | 0 | 0 | 5 | 0.65 |
| 132 | 0 | 0 | 5 | 0.65 |
| 133 | 0 | 0 | 5 | 0.65 |
| 134 | 0 | 0 | 5 | 0.65 |
| 135 | 0 | 0 | 5 | 0.65 |
| 136 | 0 | 0 | 5 | 0.65 |
| 137 | 0 | 0 | 5 | 0.65 |
| 138 | 0 | 0 | 5 | 0.65 |
| 139 | 0 | 0 | 5 | 0.65 |
| 140 | 0 | 0 | 5 | 0.65 |
| 141 | 0 | 0 | 5 | 0.65 |
| 142 | 0 | 0 | 5 | 0.65 |
| 143 | 0 | 0 | 5 | 0.65 |
| 144 | 0 | 0 | 5 | 0.65 |
| 145 | 0 | 0 | 5 | 0.65 |
| 146 | 0 | 0 | 5 | 0.65 |
| 147 | 0 | 0 | 5 | 0.65 |
| 148 | 0 | 0 | 5 | 0.65 |
| 149 | 0 | 0 | 5 | 0.65 |
| 150 | 0 | 0 | 5 | 0.65 |
| 151 | 0 | 0 | 5 | 0.65 |
| 152 | 0 | 0 | 5 | 0.65 |
| 153 | 0 | 0 | 5 | 0.65 |
| 154 | 0 | 0 | 5 | 0.65 |
| 155 | 0 | 0 | 5 | 0.65 |
| 156 | 0 | 0 | 5 | 0.65 |
| 157 | 0 | 0 | 5 | 0.65 |
| 158 | 0 | 0 | 5 | 0.65 |
| 159 | 0 | 0 | 5 | 0.65 |
| 160 | 0 | 0 | 5 | 0.65 |
| 161 | 0 | 0 | 5 | 0.65 |
| 162 | 0 | 0 | 5 | 0.65 |
| 163 | 0 | 0 | 5 | 0.65 |
| 164 | 0 | 0 | 5 | 0.65 |
| 165 | 0 | 0 | 5 | 0.65 |
| 166 | 0 | 0 | 5 | 0.65 |
| 167 | 0 | 0 | 5 | 0.65 |
| 168 | 0 | 0 | 5 | 0.65 |
| 169 | 0 | 0 | 5 | 0.65 |
| 170 | 0 | 0 | 5 | 0.65 |
| 171 | 0 | 0 | 5 | 0.65 |
| 172 | 0 | 0 | 5 | 0.65 |
| 173 | 0 | 0 | 5 | 0.65 |
|  |  |  |  |  |
|  | 0 | 0 | 5 |  |


| 174 | 0 | 0 | 5 | 0.65 |
| :--- | :--- | :--- | :--- | :--- |
| 175 | 0 | 0 | 5 | 0.65 |
| 176 | 0 | 0 | 5 | 0.65 |
| 177 | 0 | 0 | 5 | 0.65 |
| 178 | 0 | 0 | 5 | 0.65 |
| 179 | 0 | 0 | 5 | 0.65 |
| 180 | 0 | 0 | 5 | 0.65 |
| 181 | 0 | 0 | 5 | 0.65 |
| 182 | 0 | 0 | 5 | 0.65 |
| 183 | 0 | 0 | 5 | 0.65 |
| 184 | 0 | 0 | 5 | 0.65 |
| 185 | 0 | 0 | 5 | 0.65 |
| 186 | 0 | 0 | 5 | 0.65 |
| 187 | 0 | 0 | 5 | 0.65 |
| 188 | 0 | 0 | 5 | 0.65 |
| 189 | 0 | 0 | 5 | 0.65 |
| 190 | 0 | 0 | 5 | 0.65 |
| 191 | 0 | 0 | 5 | 0.65 |
| 192 | 0 | 0 | 5 | 0.65 |
| 193 | 0 | 0 | 5 | 0.65 |
| 194 | 0 | 0 | 5 | 0.65 |
| 195 | 0 | 0 | 5 | 0.65 |
| 196 | 0 | 0 | 5 | 0.65 |
| 197 | 0 | 0 | 5 | 0.65 |
| 198 | 0 | 0 | 5 | 0.65 |
| 199 | 0 | 0 | 5 | 0.65 |
| 200 | 0 | 0 | 5 | 0.65 |
| 201 | 0 | 0 | 5 | 0.65 |
| 202 | 0 | 0 | 5 | 0.65 |
| 203 | 0 | 0 | 5 | 0.65 |
| 204 | 0 | 0 | 5 | 0.65 |
| 205 | 0 | 0 | 5 | 0.65 |
| 206 | 0 | 0 | 5 | 0.65 |
| 207 | 0 | 0 | 5 | 0.65 |
| 208 | 0 | 0 | 5 | 0.65 |
| 209 | 0 | 0 | 5 | 0.65 |
| 210 | 0 | 0 | 5 | 0.65 |
| 211 | 0 | 0 | 5 | 0.65 |
| 212 | 0 | 0 | 5 | 0.65 |
| 213 | 0 | 0 | 5 | 0.65 |
| 214 | 0 | 0 | 5 | 0.65 |
| 215 | 0 | 0 | 5 | 0.65 |
| 216 | 0 | 0 | 5 | 0.65 |
| 217 | 0 | 0 | 5 | 0.65 |
| 218 | 0 | 0 | 5 | 0.65 |
|  |  |  |  |  |
|  | 0 | 0 | 5 |  |


| 219 | 0 | 0 | 5 | 0.65 |
| :--- | :--- | :--- | :--- | :--- |
| 220 | 0 | 0 | 5 | 0.65 |
| 221 | 0 | 0 | 5 | 0.65 |
| 222 | 0 | 0 | 5 | 0.65 |
| 223 | 0 | 0 | 5 | 0.65 |

C OUTPUT OPTIONS

0.00206 0.00000 0.00000-0.00232 0.00000-0.00166-0.00169-0.00169
.
.
(the data continues..)


3 XIGNAddV

Figure B. 1 Earthquake regions map of Turkey, 1996

## APPENDIX D

Table D. 1 Earthquakes recorded in history without instruments between 25E - 33E longitudes and 39N - 42N latitudes
(Marmara Region)

| Date | Time | Lat. <br> (N) | Long. <br> (E) | Affected Region or Epicenter | Intensity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M.Ö. 427 |  | 41.2 | 31.4 | Zonguldak Ereğlisi | V |
| M.Ö. 360 |  | 41.2 | 31.4 | Zonguldak Ereğlisi |  |
| M.Ö. 330 |  | 40.1 | 25.25 | Limni Adasının Kuzeydoğusu | IX |
| M.Ö. 282 |  | 40.5 | 26.7 | Bolayır,Gelibolu | VIII |
| 24.11.29 |  | 40.4 | 29.7 | Iznik,Izmit | IX |
| 33 |  | 40.4 | 29.7 | Iznik,Kocaeli-Bursa Yöresi | VIII |
| 02.01 .69 |  | 40.4 | 29.7 | Iznik,Izmit | VII |
| 93 |  | 40.6 | 27 | Gelibolu Y.Ad.kuzeyi,Trakya | VIII |
| 10.11.117 |  | 40.4 | 27.8 | Erdek, Kapıdağ Y.Adası | VII |
| 120 |  | 40.4 | 29.7 | Iznik,Izmit | VIII |
| 129 |  | 40.4 | 29.4 | Iznik,Zeytinbağ(Mudanya'nın batısı | VIII |
| 138 |  | 40.15 | 26.4 | Çanakkale,Bandırma | VIII |
| 155 |  | 40.3 | 28 | Bandırma ve Yöresi | VIII |
| 03.05.170 |  | 40.1 | 28 | Bandırma,Erdek,Gemlik çuk. | IX |
| 170 |  | 40.8 | 29.9 | Izmit ve yöresi | VIII |
| 212 |  | 41 | 29 | Istanbul | VII |
| 253 |  | 39.1 | 27.15 | Bergama ve yöresi | IX |
| 268 |  | 40.8 | 29.9 | İzmit ve yöresi | VIII |
| 325 |  | 41 | 29 | İstanbul | IX |
| ?.10.350 |  | 40.8 | 30 | Izmit, iznik | VIII |
| 356 |  | 41 | 29 | Istanbul | VII |
| 24.08.358 |  | 40.75 | 29.9 | Kocaeli,iznik,Istanbul | IX |
| ?.11.359 |  | 40.75 | 29.6 | Izmit | VIII |
| 02.12.362 |  | 40.75 | 29.6 | Iznik,Izmit,İstanbul | VIII |
| 01.02.363 |  | 41 | 29 | İstanbul | VIII |
| 11.10.368 |  | 40.4 | 29.7 | Iznik | VII |
| 376 |  | 41 | 29 | Istanbul | VIII |
| 378 |  | 40.4 | 29.7 | Iznik | VI |
| 382 |  | 41 | 29 | İstanbul ve yöresi | VIII |
| 394 |  | 41 | 29 | Istanbul | VIII |
| 396 |  | 41 | 29 | Istanbul | VIII |
| 398 |  | 41 | 29 | Istanbul | VII |
| ?.02.402 |  | 41 | 29 | Istanbul | VIII |

Table D. 1 continued

| 403 |  | 41 | 29 | Istanbul | V |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 05.07.408 |  | 41 | 29 | Istanbul | VII |
| 412 |  | 41 | 29 | Istanbul | VII |
| 07.04.422 |  | 41 | 29 | İstanbul ve yöresi | VI |
| 427 |  | 41 | 29 | İstanbul ve yöresi | IX |
| 430 |  | 41 | 29 | Istanbul ve yöresi | VIII |
| 434 |  | 41 | 29 | Istanbul ve yöresi | VII |
| 438 |  | 41 | 28.9 | İstanbul ve yöresi | VIII |
| 26.10 .440 |  | 41 | 28.9 | İstanbul ve yöresi | VII |
| 26.01.446 |  | 40.7 | 29.3 | Izmit Körf.,Istanbul,izmit | (VIII) |
| 08.12.447 |  | 40.8 | 29.6 | Izmit Körf.,Istanbul,Izmit,İznik | IX |
| 26.01.450 |  | 41 | 29 | İstanbul ve yöresi | VIII |
| 464 |  | 40.4 | 27.85 | Erdek,Bandırma | VII |
| 467 |  | 40.8 | 29.9 | Izmit | VI |
| 470 |  | 41 | 29 | İstanbul | VII |
| 25.09.478 |  | 40.8 | 29 | İstanbul ve geniş yöresi | IX |
| 26.09.488 |  | 41 | 29 | Istanbul | VI |
| 488 |  | 40.8 | 29.6 | Izmit,Karamürsal | VIII |
| 496 |  | 41 | 29 | Istanbul |  |
| 500 |  | 40.8 | 29.9 | Izmit | VIII |
| 517 |  | 41 | 29 | Istanbul | VII |
| 04.10.525 |  | 41 | 29 | Istanbul | VI |
| 526 |  | 41 | 29 | İstanbul | VII |
| 527 |  | 41 | 29 | Istanbul | VII |
| ?.11.533 |  | 41 | 29 | Istanbul | VII |
| 16.08.541 |  | 41 | 29 | Istanbul | VIII |
| 06.09.543 |  | 40.35 | 27.8 | Erdek,Bandırma | IX |
| ?.11.545 |  | 41 | 29 | Istanbul | VI |
| 546 |  | 41 | 29 | Istanbul | VII |
| 547 |  | 41 | 29 | İstanbul | V |
| ?.02.548 |  | 41 | 29 | İstanbul | V |
| 549 |  | 41 | 29 | Istanbul | V |
| 550 |  | 41 | 29 | İstanbul | V |
| 15.08.553 |  | 40.75 | 29.1 | İstanbul,Kocaeli | X |
| 02.04.557 | night | 41 | 29 | Istanbul | VIII |
| 16.10.557 |  | 41 | 29 | Istanbul | VIII |
| 14.12.557 | night | 41 | 29 | Istanbul ve yöresi | VIII |
| 559 |  | 41 | 29 | Istanbul | VI |
| 560 |  | 41 | 29 | Istanbul | VI |
| 26.10.580 |  | 41 | 29 | Istanbul | VI |
| 582 |  | 41 | 29 | İstanbul | VI |
| 10.05.583 |  | 41 | 29 | İstanbul | VII |
| 20.04.601 |  | 41 | 29 | Istanbul | VII |
| 611 |  | 41 | 29 | Istanbul | VII |
| 677 |  | 41 | 29 | Istanbul | VI |

Table D. 1 continued

| 715 |  | 40.4 | 29.7 | İznik, İstanbul | IX |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 732 |  | 41 | 29 | İstanbul ve yöresi | VIII |
| 26.10.740 | 8 | 40.8 | 29 | İstanbul,izmit, iznik | VIII |
| 08.02.789 |  | 41 | 29 | İstanbul | VIII |
| 04.05.796 |  | 41 | 29 | İstanbul | VIII |
| 840 |  | 41 | 29 | Istanbul | VI |
| 23.05.860 |  | 41 | 29 | Istanbul | VII |
| ?.08.861 |  | 41 | 29 | İstanbul | VI |
| 16.05.865 |  | 41 | 29 | Istanbul | IX |
| 09.01.867 |  | 41 | 29 | Istanbul | VIII |
| 10.01.870 |  | 41 | 29 | Istanbul | VIII |
| 915 |  | 41 | 29 | İstanbul | VII |
| 945 |  | 41 | 29 | İstanbul |  |
| 960 |  | 41 | 29 | İstanbul | VIII |
| 02.09.968 |  | 41 | 29 | İstanbul | VIII |
| 23.09.985 |  | 40.4 | 28.9 | İznik,Bandırma,Erdek | VIII |
| 26.10.986 |  | 41 | 29 | İstanbul ve yöresi, Trakya | IX |
| ?.01.1010 |  | 41 | 29 | İstanbul ve yöresi | VIII |
| 09.03.1010 |  | 41 | 29 | Istanbul | VII |
| 13.08.1032 |  | 41 | 29 | Istanbul | VIII |
| 06.03.1033 |  | 41 | 29 | İstanbul | VII |
| ?.05.1035 |  | 41 | 29 | İstanbul ve yöresi | VII |
| 20.12.1037 |  | 41 | 29 | İstanbul ve yöresi | VIII |
| 06.09.1038 |  | 41 | 29 | İstanbul | VI |
| 10.01.1041 |  | 41 | 29 | Istanbul |  |
| 10.06.1041 |  | 41 | 29 | İstanbul ve geniş yöresi | VIII |
| 19.02.1063 |  | 41 | 29 | Istanbul | VI |
| 23.09.1064 |  | 40.4 | 28.9 | İznik,Bandırma,Mürefte,İstanbul | IX |
| 1070 |  | 41 | 29 | Istanbul |  |
| 06.12.1082 |  | 41 | 29 | İstanbul ve yöresi | VIII |
| 1086 |  | 41 | 29 | İstanbul | VII |
| 01.06.1296 |  | 41 | 29 | Istanbul | VIII |
| 1305 |  | 41 | 29 | İstanbul | VII |
| 1323 |  | 41 | 29 | İstanbul | VIII |
| 12.02.1332 |  | 41 | 29 | İstanbul | VII |
| 23.09.1344 |  | 41 | 29 | Istanbul | IX |
| 1346 |  | 41 | 29 | Istanbul | VII |
| ?.03.1354 |  | 40.7 | 27 | Gelibolu,Bolayir,Malkara | IX |
| 06.08.1383 |  | 39.25 | 26.25 | Midilli | VIII |
| 1401 |  | 39.25 | 26.25 | Midilli |  |
| 1417 |  | 40.2 | 29.1 | Bursa | VII |
| 1443 |  | 41 | 29 | Istanbul | VIII |
| 1462 |  | 41 | 29 | Istanbul | IX |
| 06.01.1489 |  | 41 | 29 | Istanbul | VIII |
| 1507 |  | 41.04 | 28.98 | Istanbul | VIII |

Table D. 1 continued

| 1508 |  | 41 | 29 | Istanbul | VI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 14.09.1509 |  | 40.75 | 29 | Istanbul,Edirne | IX |
| 16.11.1510 |  | 41.7 | 26.6 | Edirne ve genis yöresi,Istanbul | VIII |
| 1532 |  | 41 | 29 | Istanbul | VII |
| 12.06.1542 |  | 41 | 29 | Istanbul | VI |
| 10.05.1556 |  | 41 | 29 | Istanbul | VIII |
| 30.04.1557 |  | 41 | 29 | Istanbul | VIII |
| 14.12.1569 |  | 41 | 29 | Istanbul | VI |
| 05.03.1571 |  | 41 | 29 | Istanbul | VII |
| 1592 |  | 41 | 29 | Istanbul | VII |
| 30.07.1633 |  | 41 | 29 | Istanbul | VI |
| ?.05.1641 |  | 41 | 29 | Istanbul | VI |
| 19.08.1642 |  | 41 | 29 | Istanbul | VIII |
| ?.04.1646 |  | 41 | 29 | Istanbul | VII |
| 28.06.1648 | afternoor | 41 | 29 | Istanbul | VIII |
| 06.02.1659 |  | 41 | 29 | Istanbul ve yöresi | IX |
| 03.07.1668 |  | 40.7 | 31.6 | Bolu,Kastamonu | VIII |
| ?.04.1672 |  | 40 | 26 | Bozcaada Kuzeyi-Ege D. | VIII |
| 25.05.1672 |  | 40.7 | 29.9 | Izmit,Istanbul | VIII |
| 1674 |  | 40.2 | 29.1 | Bursa | VII |
| 10.09.1688 |  | 39.15 | 26.5 | Midilli, Sakiz,Santorin | VIII |
| 11.07.1690 | afternoor | 41 | 29 | Istanbul | VII |
| 1698 |  | 41 | 29 | Istanbul | V |
| 1700 |  | 39.4 | 29.9 | Kütahya | VI |
| 05.05.1718 |  | 41 | 29 | Istanbul | VIII |
| 06.03.1719 |  | 41 | 29 | Istanbul | VI |
| 25.05.1719 | noon | 40.7 | 29.5 | Istanbul, Izmit, Karamürsel | IX |
| 22.06.1720 |  | 41 | 29 | Istanbul | VI |
| 1725 |  | 41 | 29 | Istanbul | VI |
| 1729 |  | 41 | 29 | Istanbul | VI |
| 1737 |  | 41 | 29 | Istanbul | VIII |
| 26.05.1752 |  | 41 | 29 | Istanbul,Edirne | VII |
| 18.07.1752 |  | 40.8 | 26.3 | Kesan ve yöresi | VIII |
| 29.07.1752 | 20 | 41.7 | 26.5 | Edirne,Havsa | IX |
| 02.09.1754 | 21.45 | 40.8 | 29.4 | Izmit Körf.,Istanbul,Izmit | IX |
| 20.01.1755 |  | 41 | 29 | Istanbul | VI |
| ?.02.1755 |  | 39.25 | 26.25 | Midilli ve komsu adalar |  |
| 20.01.1757 |  | 41 | 29 | Istanbul | VI |
| 04.12.1757 |  | 41 | 29 | Istanbul | VI |
| 02.11.1762 |  | 40.15 | 26.4 | Çanakkale | VII |
| 03.09.1763 |  | 41 | 29 | Istanbul | VIII |
| 23.04.1766 |  | 40.8 | 28.2 | Çorlu,Büyükçekmece,Edirne | VII |
| 22.05.1766 | 5.3 | 41 | 29 | Istanbul | IX |
| 13.11.1766 |  | 41 | 29 | Istanbul | VII |
| 05.10.1768 |  | 41 | 29 | Istanbul | VII |

Table D. 1 continued

| 20.02.1769 |  | 41 | 29 | Istanbul | VI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 14.08.1770 |  | 41 | 29 | Istanbul | V |
| 30.04.1772 |  | 41 | 29 | Istanbul | V |
| 15.08.1778 |  | 41 | 29 | Istanbul |  |
| 16.04.1779 |  | 41 | 29 | Istanbul |  |
| 01.06.1783 |  | 41 | 29 | Istanbul | VI |
| 26.10.1784 |  | 41 | 25.5 | Gümülcüne-Dedeağaç yör. | VIII |
| 16,06,1794 |  | 41 | 29 | Istanbul | VI |
| 15.08.1803 |  | 41 | 29 | Istanbul | VI |
| 19.05.1811 |  | 41 | 29 | Istanbul | V |
| 05.08.1819 |  | 41 | 29 | Istanbul | VI |
| 08.02.1826 | 20.3 | 39.5 | 28 | Balikesir | VIII |
| 12.05.1826 |  | 39.1 | 26.5 | Midilli,Izmir | VI |
| 23.05.1829 |  | 41 | 29 | Istanbul,Gelibolu | VII |
| 25.09.1834 |  | 41 | 29 | Istanbul | V |
| 30.08.1835 |  | 41 | 29 | Istanbul | VI |
| 25.11.1835 |  | 40.15 | 26.6 | Çanakkale yöresi | VI |
| 06.10.1841 | 2.3 | 41 | 29 | Istanbul | VII |
| 09.02.1845 |  | 39.25 | 26.5 | Midlli Adasi | V |
| 09.10 .1845 |  | 39.3 | 26.3 | Midilli Adasi | VII |
| 12.10.1845 |  | 39.1 | 26.2 | Midilli Adasi | X |
| 01.12.1845 |  | 39.1 | 26.5 | Midilli Ad., Sakiz Ad., Karaburunizmir | VIII |
| 19.09.1846 |  | 40.4 | 26.65 | Gelibolu | VI |
| 04.07.1847 |  | 40.4 | 26.65 | Gelibolu | VI |
| 10.07.1850 | 4.45 | 41 | 29 | Istanbul | VI |
| 21.04.1851 | 21 | 40 | 28.4 | M.Kemalpasa-Bursa | VIII |
| 23.08.1851 | 4.5 | 40 | 28.4 | M.Kemalpasa-Bursa | VII |
| 24.01.1855 | 3 | 41 | 29 | Istanbul | VI |
| 28.02.1855 | 19.4 | 40.2 | 29 | Bursa,Kemalpasa | IX |
| 11.04.1855 | 21.3 | 40.2 | 29.1 | Bursa | X |
| 15.12.1855 |  | 40.2 | 29.1 | Bursa,Istanbul | VI |
| 19.04.1858 |  | 40.2 | 29 | Bursa | VI |
| 27.04.1858 |  | 41 | 29 | Istanbul | VI |
| 21.08.1859 | 2 | 40.25 | 25.9 | Imroz ve genis yöresi-Ege D. | IX |
| 04.06.1860 |  | 40.2 | 29.1 | Bursa yöresi | VII |
| 06.08.1860 |  | 40.5 | 25.5 | Samothraki Ad.-Ege D. | VII |
| 02.12 .1860 | 4 | 39.4 | 29.95 | Kütahya,Manisa,Izmir | VI |
| 07.10.1862 |  | 41 | 29 | Istanbul | VI |
| ?.10.1862 |  | 40 | 30.1 | Sögüt, Bilecik | VII |
| 23.02.1865 |  | 39.3 | 26.2 | Midilli Ad.,Çanakkale | VIII |
| 23.07.1865 | 21.3 | 39.4 | 26.2 | Midilli Ad.,Çanakkale,Gelibolu | IX |
| 14.02.1866 | 3.15 | 40.2 | 29.1 | Bursa yöresi | VI |
| 07.03.1867 | 6 | 39.1 | 26.5 | Midilli ve Genis yöresi | IX |
| 10.03.1867 | 9 | 39.3 | 26.2 | Midilli Adasi-Ege D. | VII |

Table D. 1 continued

| 11.04.1867 |  | 39.3 | 26.5 | Midilli Ad.,Edremit,Ayvalik | VII |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 22.07.1867 | 3 | 39.3 | 26.2 | Midilli Ad., Izmir | VIII |
| 23.04.1868 |  | 39.3 | 26.4 | Midilli Ad. Ve Çanakkale | VI |
| 17.05.1868 |  | 39.3 | 26.4 | Midilli Ad. Ve Çanakkale |  |
| 03.01.1870 |  | 40.5 | 26.5 | Saros Körfezi çevresi | VI |
| 11.07.1870 | 3.3 | 39.25 | 26.5 | Midilli Adasi | VI |
| 14.07.1870 |  | 41.7 | 26.6 | Edirne yöresi | VI |
| 10.08.1870 | 11.1 | 39.9 | 27.3 | Balikesir, Çanakkale | VII |
| 10.12.1870 |  | 41 | 29 | Istanbul | V |
| 24.02.1871 | 1 | 40.2 | 29.1 | Bursa yöresi | VI |
| 11.10.1871 |  | 40.4 | 26.7 | Gelibolu ve yöresi | VII |
| 13.01.1872 | 10.15 | 40.4 | 27.8 | Erdek | VI |
| 17.01.1872 |  | 40.2 | 29 | Bursa | VI |
| 13.12.1872 |  | 40.4 | 26.7 | Gelibolu, Çanakkale | VI |
| 13.01.1873 | 10.3 | 40.4 | 26.7 | Gelibolu,Çanakkale,Tekirdag,Imr oz veSamothraki Adal | VI |
| 26.06.1873 |  | 41 | 29 | Istanbul | VI |
| 09.11.1873 |  | 40.5 | 25.6 | Semadirek Adasi-Ege D. | VII |
| 05.07.1874 |  | 39.2 | 26.3 | Midilli Adasi-Ege D. | VII |
| 18.08.1874 | evening | 40.2 | 26.4 | Çanakkale yöresi,Edremit,Balikesir | VI |
| 18.11.1874 | 5 | 39.1 | 26.9 | Dikili-Izmir, ve Midilli Ad. | VII |
| 05.03.1875 |  | 40.2 | 26.4 | Çanakkale | VII |
| ?.10.1875 | 4 | 40.2 | 26.4 | Çanakkale yöresi | IX |
| 23.12.1875 |  | 40.2 | 26.4 | Çanakkale,Ezine | VI |
| 17.04.1876 | 4 | 40.2 | 29.1 | Bursa yöresi | VI |
| 25.10.1876 |  | 40.2 | 26.4 | Çanakkale yöresi | V |
| 13.10.1877 | 8.35 | 40.6 | 27.6 | Marmara Adalari-Marmara D. | VIII |
| 01.11.1877 |  | 40.6 | 27.6 | Marmara Adalari-Marmara D. | VI |
| ?.03.1878 | 9 | 41 | 29 | Istanbul | V |
| 19.04.1878 |  | 40.7 | 29.3 | Izmit,Istanbul,Bursa,Sapanca | VIII |
| ?.10.1880 |  | 41 | 29 | Istanbul | VI |
| ?.12.1880 |  | 39.2 | 26.5 | Midilli Adasi-Ege D. | V |
| 04.10.1881 |  | 40.4 | 26.7 | Gelibolu ve Edirne | VI |
| 30.12.1881 |  | 40.2 | 29.1 | Bursa yöresi | V |
| 23.01.1884 |  | 39.8 | 26.3 | Ezine-Çanakkale | VI |
| 01.02.1884 |  | 40.2 | 29.1 | Bursa yöresi | VI |
| 13.05.1884 |  | 40.4 | 27.8 | Bandirma ve Erdek-Balikesir | VII |
| ?.08.1886 |  | 41 | 29 | Istanbul | VI |
| 04.09.1886 |  | 39.25 | 26.5 | Midilli Adasi-Ege D. | VII |
| 06.10.1886 |  | 39.55 | 28.9 | Gökçedag-Balikesir,TavsanliKütahya | VIII |
| 14.05.1887 | 5.3 | 40 | 25.5 | Limni ve Mythilini Adalari-Ege D. | VIII |

Table D. 1 continued

| ?.09.1887 |  | 40.2 | 29.1 | Bursa yöresi | VI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25.10.1889 | 23.2 | 39.3 | 26.3 | Midilli adası, izmir sakız adası çanakkale tekirdağ | IX |
| 03.11.1889 |  | 39.3 | 26.3 | Midilli Ad.-Ege D. | VIII |
| 25.04.1890 |  | 39.3 | 26.3 | Midilli Ad.-Ege D. | VI |
| 05.05.1890 |  | 39.3 | 26.3 | Midilli Ad.-Ege D. |  |
| 28.01.1893 | 18 | 40.5 | 25.5 | Samothraki,Imroz,Midilli ve Sakiz Adaları ve Ege D. | IX |
| 24.07.1893 |  | 41.4 | 26.4 | Dimetoka-Yunanistan ve Edirne | VIII |
| 10.07.1894 | 12.3 | 40.8 | 29 | Istanbul, Prens Adalari-Marmara D.,karamürsel Adap | X |
| 03.08.1894 |  | 40.2 | 26.4 | Çanakkale,Biga,Lapseki,Edirne | V |
| 21.01.1895 |  | 40.4 | 29.7 | Iznik | V |
| 14.03.1895 |  | 40.4 | 26.7 | Gelibolu ve Edirne | V |
| 14.11.1895 |  | 39.1 | 27.1 | Bergama-Izmir | VIII |
| 16.04.1896 | 9.45 | 39.3 | 29.2 | Emet ve genis yöresi | VIII |
| 07.02.1897 | 12.2 | 39.75 | 31.1 | Beylikahir-Eskisehir | V |
| 14.03.1897 | 9.3 | 40.4 | 29.1 | Gemlik yöresi-Bursa | V |
| ?.12.1897 |  | 39.6 | 27.9 | Balikesir ve yöresi | VIII |
| 26.12.1897 | 7.05 | 40.1 | 30 | Bilecik,Osmaneli | V |
| 28.02.1898 |  | 39.6 | 27.9 | Balikesir | VIII |
| ?.05.1899 |  | 40.2 | 29.1 | Bursa yöresi | VI |

## APPENDIX E

Table E. 1 Earthquakes instrumentally recorded in history between 27 E 32E longitudes and $39 \mathrm{~N}-42 \mathrm{~N}$ latitudes (Marmara Region) with $\mathrm{M} \geq 4$ in years 1881-1998

| Day | Month | Year | Hour | Minute | Second | Lat.(N) | Long.(E) | $\begin{aligned} & \text { Depth } \\ & \text { (km) } \end{aligned}$ | Magn. <br> (M) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 7 | 1894 | 12 | 30 |  | 40.8 | 29 |  | 7.3 |
|  | 3 | 1901 |  |  |  | 41 | 29 | 0 | 5.7 |
| 12 | 5 | 1901 | 12 | 32 |  | 39.8 | 30.5 | 15 | 5 |
|  | 10 | 1902 |  |  |  | 40.7 | 31.6 | 0 | 4.9 |
| 4 | 4 | 1903 |  |  |  | 39 | 28 | 20 | 5.5 |
| 11 | 1 | 1905 | 17 | 32 | 1 | 39.6 | 27.9 | 15 | 5 |
| 15 | 4 | 1905 | 5 | 36 | 4 | 40.2 | 29 | 6 | 5.6 |
| 30 | 4 | 1905 | 16 | 13 |  | 39.8 | 30.5 | 22 | 5.4 |
| 1 | 5 | 1905 | 19 |  |  | 39.9 | 30.1 | 0 | 4.9 |
| 22 | 10 | 1905 | 3 | 42 | 23 | 41 | 31 | 27 | 5.2 |
| 22 | 1 | 1907 | 2 | 41 |  | 41 | 29 | 12 | 4.5 |
| 21 | 8 | 1907 |  |  |  | 40.7 | 30.1 | 15 | 5.5 |
|  | 7 | 1912 |  |  |  | 40.2 | 29.1 | 15 | 5 |
| 9 | 8 | 1912 | 1 | 29 | 40 | 40.6 | 27.2 | 16 | 7.3 |
| 10 | 8 | 1912 | 9 | 23 | 30 | 40.6 | 27.1 | 15 | 6.3 |
| 10 | 8 | 1912 | 18 | 30 | 30 | 40.6 | 27.1 | 15 | 5.3 |
| 11 | 8 | 1912 | 7 | 20 | 20 | 40.6 | 27.1 | 15 | 4.4 |
| 11 | 8 | 1912 | 8 | 19 | 44 | 40.6 | 27.2 | 0 | 5 |
| 21 | 10 | 1912 | 9 | 31 | 30 | 40.5 | 27 | 15 | 4.5 |
| 21 | 10 | 1912 | 23 | 40 | 30 | 40.5 | 27 | 15 | 4.8 |
| 26 | 4 | 1916 | 15 | 56 | 30 | 39.2 | 27 | 10 | 4.3 |
| 10 | 4 | 1917 | 19 | 40 | 18 | 40.6 | 27.1 | 15 | 5.3 |
| 8 | 8 | 1917 | 3 | 41 | 10 | 39 | 27 | 15 | 4.5 |
| 13 | 6 | 1918 | 18 | 13 | 55 | 39 | 27 | 0 | 4.9 |
| 19 | 6 | 1918 | 21 | 12 | 8 | 39 | 27 | 0 | 4.5 |
| 27 | 5 | 1919 | 10 | 35 | 15 | 39.13 | 31.02 | 10 | 5.3 |
| 13 | 10 | 1919 | 7 | 54 | 10 | 41.5 | 28 | 12 | 4.5 |
| 27 | 11 | 1919 |  |  |  | 39.2 | 27.2 | 30 | 6 |
| 2 | 8 | 1921 | 3 | 17 | 40 | 39 | 27 | 0 | 4.8 |
| 29 | 5 | 1923 | 11 | 34 | 20 | 41 | 30 | 25 | 5.5 |
| 26 | 10 | 1923 | 12 | 13 | 16 | 41.2 | 28.6 | 24 | 5 |
| 22 | 1 | 1924 | 11 | 5 | 44 | 39.51 | 28.4 | 80 | 5.3 |
| 14 | 4 | 1924 |  |  |  | 39 | 27.8 | 15 | 4.7 |

Table E. 1 continued

|  | 9 | 1924 |  |  |  | 40.9 | 29.2 | 15 | 4.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | 12 | 1924 | 17 | 49 | 42 | 39.6 | 27.7 | 15 | 5.4 |
| 29 | 4 | 1925 | 20 | 3 | 40 | 39.6 | 27.7 | 15 | 4.6 |
| 10 | 6 | 1925 | 4 | 45 | 40 | 41 | 29 | 8 | 4.4 |
| 24 | 6 | 1925 | , | 0 | 35 | 40.88 | 30.39 | 10 | 4.6 |
| 14 | 9 | 1925 | 9 | 6 | 45 | 39 | 31 | 0 | 4.9 |
| 20 | 9 | 1925 | 18 | 6 | 52 | 39 | 31 | 0 | 4.9 |
| 5 | 4 | 1926 |  |  |  | 39 | 30 | 0 | 4.3 |
| 16 | 12 | 1926 | 17 | 54 | 5 | 40.13 | 30.72 | 10 | 5.7 |
| 20 | 12 | 1926 | 10 | 31 | 6 | 39 | 31 | 0 | 4.9 |
|  | 12 | 1926 |  |  |  | 40.8 | 30.4 | 0 | 4.5 |
| 4 | 1 | 1927 | 4 | 49 |  | 39.5 | 29.8 | 15 | 4.2 |
| 7 | 1 | 1927 |  |  |  | 40.8 | 30.8 | 0 | 5 |
|  | 1 | 1927 |  |  |  | 40.8 | 30.4 | 0 | 4.9 |
| 7 | 2 | 1927 | 6 | 4 | 36 | 39 | 31 | 15 | 5.2 |
| 24 | 1 | 1928 | 7 | 36 | 12 | 40.99 | 30.86 | 10 | 5.3 |
| 6 | 5 | 1928 | 18 |  |  | 39.8 | 30.5 | 12 | 5 |
| 5 | 4 | 1929 | 8 | 26 | 55 | 41.61 | 31.23 | 10 | 4.8 |
| 5 | 4 | 1929 | 23 | 18 | 15 | 41.5 | 31.5 | 0 | 4.8 |
| 27 | 4 | 1929 | 22 | 18 | 6 | 40.51 | 31.43 | 70 | 4.8 |
| 10 | 10 | 1929 | 23 | 0 | 55 | 41.11 | 27.46 | 0 | 4.5 |
|  |  | 1929 |  |  |  | 39.46 | 31.5 | 0 | 4.5 |
| 15 | 10 | 1932 | 22 | 19 | 54 | 40.9 | 30.6 | 15 | 4.5 |
| 5 | 2 | 1933 | 5 | 30 |  | 41.5 | 31.5 | 0 | 4.4 |
| 15 | 5 | 1933 | 3 | 21 | 6 | 41.26 | 31.09 | 60 | 4.7 |
| 4 | 1 | 1935 | 14 | 41 | 30 | 40.4 | 27.49 | 30 | 6.4 |
| 4 | 1 | 1935 | 15 | 18 | 57 | 40.5 | 27.5 | 5 | 4.6 |
| 4 | 1 | 1935 | 15 | 19 | 24 | 40.5 | 27.5 | 5 | 4.5 |
| 4 | 1 | 1935 | 16 | 20 | 5 | 40.3 | 27.45 | 20 | 6.3 |
| 22 | 10 | 1935 | 7 | 29 | 43 | 40.31 | 27.21 | 10 | 5.2 |
| 22 | 11 | 1935 |  |  |  | 40 | 27.2 | 0 | 4.3 |
|  |  | 1935 |  |  |  | 40.77 | 30.6 | 0 | 4.6 |
| 2 | 7 | 1938 | 12 | 26 | 46 | 40.17 | 27.88 | 10 | 5 |
| 5 | 7 | 1939 | 3 | 40 | 29 | 39.75 | 29.52 | 50 | 5.2 |
| 31 | 7 | 1939 | 13 | 32 | 48 | 39.8 | 29.6 | 10 | 4.8 |
| 2 | 8 | 1939 | 13 | 6 | 17 | 39.75 | 29.48 | 50 | 5.3 |
| 3 | 8 | 1939 | 12 | 32 | 55 | 39.75 | 29.68 | 50 | 5.5 |
| 9 | 8 | 1939 | 23 | 43 | 51 | 39.91 | 29.81 | 60 | 5.1 |
| 15 | 9 | 1939 | 23 | 16 | 31 | 39.76 | 29.56 | 20 | 5.7 |
| 19 | 10 | 1939 | 21 | 32 | 48 | 39.82 | 29.5 | 10 | 5.3 |
| 25 | 12 | 1939 | 6 | 34 |  | 40 | 27 | 15 | 5.2 |
| 13 | 6 | 1940 | 11 | 2 | 0 | 41.34 | 30.17 | 30 | 4.6 |
| 19 | 8 | 1940 | 20 | 43 | 42 | 40.13 | 30.09 | 40 | 4.5 |
| 9 | 2 | 1941 | 9 | 23 | 19 | 40.13 | 28.27 | 0 | 4.6 |
| 16 | 6 | 1942 | 5 | 42 | 34 | 40.8 | 27.8 | 20 | 5.6 |

Table E. 1 continued

| 12 | 8 | 1942 | 20 | 38 | 46 | 39.13 | 27.64 | 50 | 4.8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 12 | 8 | 1942 | 21 | 52 | 46 | 39.1 | 27.7 | 17 | 4.8 |
| 28 | 10 | 1942 | 0 | 31 | 52 | 39.27 | 28.19 | 10 | 5.4 |
| 28 | 10 | 1942 | 2 | 22 | 53 | 39.1 | 27.8 | 50 | 6 |
| 28 | 10 | 1942 | 2 | 41 | 53 | 39.46 | 27.79 | 10 | 5.5 |
| 15 | 11 | 1942 | 17 | 1 | 23 | 39.55 | 28.58 | 10 | 6.1 |
| 8 | 1 | 1943 | 23 | 56 | 43 | 40.92 | 28.1 | 0 | 5 |
| 14 | 4 | 1943 | 8 | 15 | 41 | 39.62 | 29.64 | 40 | 5 |
| 20 | 6 | 1943 | 15 | 32 | 54 | 40.85 | 30.51 | 10 | 6.6 |
| 20 | 6 | 1943 | 16 | 47 | 57 | 40.84 | 30.73 | 10 | 5.5 |
| 6 | 9 | 1943 | 16 | 32 | 47 | 40.21 | 31.35 | 10 | 4.9 |
| 8 | 9 | 1943 | 5 | 35 | 0 | 40.7 | 30.4 | 0 | 4.9 |
| 19 | 9 | 1943 | 21 | 1 | 0 | 40.7 | 31.6 | 0 | 4.3 |
| 6 | 12 | 1943 | 18 | 17 | 0 | 40.7 | 31.6 | 0 | 4.3 |
| 23 | 1 | 1944 | 19 | 50 | 0 | 39.2 | 28.2 | 0 | 4.3 |
| 1 | 2 | 1944 | 6 | 8 | 52 | 40.7 | 31.27 | 10 | 5 |
| 2 | 2 | 1944 | 3 | 33 | 17 | 40.74 | 31.44 | 40 | 5.1 |
| 15 | 2 | 1944 |  |  |  | 40.84 | 31.15 | 0 | 5.8 |
| 20 | 2 | 1944 | 21 | 55 | 0 | 40.7 | 31.6 | 0 | 4.3 |
| 5 | 4 | 1944 | 4 | 40 | 43 | 40.84 | 31.2 | 10 | 5.5 |
| 15 | 4 | 1944 | 4 | 40 |  | 40.5 | 31.2 | 0 | 5.6 |
| 15 | 11 | 1944 | 22 | 55 | 0 | 40.7 | 31.6 | 0 | 4.3 |
| 18 | 11 | 1944 | 13 | 30 | 0 | 40.7 | 31.6 | 0 | 4.3 |
| 8 | 2 | 1945 | 6 | 24 | 0 | 40.7 | 31.6 | 0 | 4.9 |
| 9 | 2 | 1945 | 2 | 28 |  | 40.5 | 31.2 | 0 | 4.9 |
| 24 | 3 | 1945 | 20 | 51 | 0 | 40.7 | 31.6 | 0 | 4.3 |
| 15 | 5 | 1945 | 0 | 57 | 0 | 40.8 | 31.2 | 0 | 4.3 |
| 20 | 11 | 1945 | 6 | 28 | 0 | 39.9 | 31.4 | 0 | 5.5 |
| 15 | 3 | 1947 | 0 | 57 | 0 | 40.7 | 31.6 | 0 | 4.3 |
| 3 | 5 | 1947 | 4 | 14 | 18 | 39 | 30 | 15 | 5.3 |
| 19 | 5 | 1947 | 18 | 25 | 0 | 40.7 | 31.6 | 0 | 4.6 |
| 28 | 5 | 1947 | 4 | 58 | 0 | 40.7 | 31.6 | 0 | 4.3 |
| 5 | 3 | 1948 | 8 | 10 | 0 | 40.7 | 31.6 | 0 | 4.3 |
| 14 | 6 | 1948 | 7 | 55 | 0 | 39.8 | 30.5 | 0 | 4.9 |
| 13 | 11 | 1948 | 4 | 44 | 50 | 40.23 | 29.02 | 60 | 5.6 |
| 24 | 12 | 1948 | 1 | 27 | 0 | 40.5 | 31.2 | 0 | 4.3 |
| 5 | 2 | 1949 | 0 | 28 | 22 | 39.89 | 29.35 | 40 | 5 |
| 8 | 11 | 1949 | 15 | 48 | 0 | 40.7 | 31.6 | 0 | 4.3 |
| 28 | 11 | 1949 | 18 | 47 | 18 | 40.98 | 30.74 | 10 | 4.7 |
| 28 | 11 | 1950 | 17 | 53 | 24 | 39.73 | 28.05 | 40 | 5.1 |
| 12 | 3 | 1951 | 8 | 56 | 32 | 42 | 31.8 | 0 | 4.7 |
| 15 | 9 | 1951 | 22 | 52 | 13 | 40.15 | 28.02 | 40 | 5 |
| 13 | 3 | 1952 | 6 | 30 | 2 | 41.02 | 28.14 | 11 | 4.9 |
| 19 | 3 | 1952 | 1 | 27 | 29 | 39.6 | 28.64 | 40 | 5.4 |
| 22 | 3 | 1952 | 23 | 22 |  | 40.8 | 31.2 | 0 | 4.3 |
|  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |

Table E. 1 continued

| 18 | 3 | 1953 | 19 | 6 | 16 | 39.99 | 27.36 | 10 | 7.2 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 18 | 3 | 1953 | 20 | 20 | 35 | 39.97 | 27.92 | 10 | 4.2 |
| 18 | 3 | 1953 | 20 | 34 | 56 | 40.02 | 27.83 | 10 | 4.6 |
| 18 | 3 | 1953 | 21 | 18 | 10 | 39.96 | 27.59 | 30 | 5.4 |
| 18 | 3 | 1953 | 22 | 28 | 0 | 40 | 27.4 | 30 | 4.8 |
| 18 | 3 | 1953 | 23 | 28 | 55 | 40 | 27.4 | 0 | 4.5 |
| 19 | 3 | 1953 | 12 | 53 |  | 40 | 27.4 | 0 | 4.8 |
| 19 | 3 | 1953 | 21 | 13 | 58 | 39.88 | 27.35 | 10 | 5 |
| 22 | 3 | 1953 | 13 | 17 |  | 40 | 27.4 | 0 | 4.6 |
| 23 | 3 | 1953 |  |  |  | 40 | 27.3 | 0 | 5.5 |
| 24 | 3 | 1953 | 20 | 20 |  | 40 | 27.4 | 0 | 4.9 |
| 26 | 3 | 1953 | 15 | 10 | 30 | 39.94 | 27.48 | 10 | 4.7 |
| 31 | 3 | 1993 | 18 | 24 |  | 40 | 27.4 | 0 | 4.5 |
| 1 | 4 | 1953 | 1 | 47 | 39 | 39.97 | 27.45 | 20 | 4.9 |
| 3 | 6 | 1953 | 16 | 5 | 31 | 40.28 | 28.53 | 20 | 5.3 |
| 9 | 6 | 1953 | 16 | 28 | 25 | 39.34 | 28.21 | 20 | 4.6 |
| 22 | 7 | 1953 | 15 | 9 | 38 | 39.24 | 28.43 | 10 | 5.2 |
| 23 | 3 | 1954 | 12 | 58 | 46 | 40.5 | 27.5 | 0 | 5 |
| 24 | 10 | 1954 | 23 | 37 | 19 | 40.46 | 27.5 | 10 | 4.8 |
| 26 | 10 | 1954 | 10 | 34 | 29 | 40.56 | 27.52 | 10 | 4.6 |
| 6 | 1 | 1956 | 14 | 52 | 59 | 41 | 30.2 | 10 | 4.9 |
| 20 | 2 | 1956 | 20 | 31 | 44 | 39.89 | 30.49 | 40 | 6.4 |
| 23 | 2 | 1956 | 6 | 4 | 37 | 39.76 | 30.17 | 60 | 5.2 |
| 25 | 2 | 1956 | 6 | 20 | 0 | 39.8 | 30.8 | 0 | 4.3 |
| 24 | 5 | 1956 | 9 | 20 | 0 | 39.8 | 30.5 | 0 | 4.3 |
| 14 | 7 | 1956 | 19 | 1 | 7 | 40.32 | 30.9 | 40 | 4.6 |
| 18 | 7 | 1956 | 9 | 46 | 53 | 39.96 | 27.3 | 60 | 4.5 |
| 28 | 8 | 1956 | 1 | 29 | 51 | 41.08 | 29.93 | 80 | 4.6 |
| 28 | 3 | 1957 | 22 | 26 | 0 | 39.3 | 27.7 | 17 | 5.1 |
| 26 | 5 | 1957 | 6 | 33 | 35 | 40.67 | 31 | 10 | 7.1 |
| 26 | 5 | 1957 | 8 | 54 | 51 | 40.6 | 30.74 | 40 | 5.4 |
| 26 | 5 | 1957 | 9 | 14 | 0 | 41.34 | 30.7 | 100 | 5.1 |
| 26 | 5 | 1957 | 9 | 16 | 41 | 41.42 | 31.09 | 10 | 4.9 |
| 26 | 5 | 1957 | 9 | 36 | 39 | 40.76 | 30.81 | 10 | 5.9 |
| 27 | 5 | 1957 | 6 | 20 | 37 | 41.14 | 31.19 | 80 | 4.2 |
| 27 | 5 | 1957 | 7 | 5 | 15 | 40.84 | 31.17 | 80 | 4.7 |
| 27 | 5 | 1957 | 8 | 24 | 25 | 41.13 | 30.65 | 70 | 4.6 |
| 27 | 5 | 1957 | 11 | 1 | 35 | 40.73 | 30.95 | 50 | 5.8 |
| 28 | 5 | 1957 | 0 | 9 | 54 | 40.58 | 30.53 | 50 | 4.8 |
| 28 | 5 | 1957 | 5 | 33 | 49 | 40.57 | 31.02 | 40 | 4.7 |
| 29 | 5 | 1957 | 8 | 47 | 53 | 40.72 | 31.04 | 20 | 4.7 |
| 29 | 5 | 1957 | 10 | 17 | 48 | 40.83 | 30.77 | 20 | 4.9 |
| 30 | 5 | 1957 | 13 | 7 | 56 | 40.62 | 31.78 | 10 | 4.2 |
| 30 | 5 | 1957 | 14 | 29 | 51 | 40.65 | 31.24 | 10 | 4.2 |
| 1 | 6 | 1957 | 5 | 27 | 0 | 40.75 | 30.86 | 50 | 5 |

Table E. 1 continued

| 2 | 6 | 1957 | 1 | 12 | 1 | 40.71 | 30.78 | 10 | 4.8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 17 | 6 | 1957 | 0 | 14 | 0 | 40.7 | 31.2 | 0 | 5.1 |
| 11 | 8 | 1957 | 15 | 34 | 36 | 39.2 | 29.2 | 0 | 4.2 |
| 11 | 10 | 1957 | 7 | 33 | 5 | 39.32 | 28.19 | 10 | 4.9 |
| 24 | 10 | 1957 | 2 | 33 | 15 | 40.06 | 29.75 | 10 | 4.7 |
| 26 | 12 | 1957 | 15 | 1 | 45 | 40.83 | 29.72 | 10 | 5.2 |
| 22 | 7 | 1958 | 1 | 55 | 0 | 39.8 | 30.5 | 0 | 4.3 |
| 23 | 11 | 1958 | 13 | 7 | 38 | 40.49 | 30.69 | 10 | 4.4 |
| 2 | 4 | 1959 | 4 | 34 | 29 | 40.5 | 29.41 | 20 | 4.6 |
| 26 | 7 | 1959 | 17 | 7 | 6 | 40.91 | 27.54 | 10 | 5.4 |
| 28 | 3 | 1961 | 0 | 44 | 12 | 39.82 | 30.19 | 10 | 5 |
| 24 | 8 | 1961 | 13 | 29 | 33 | 39.41 | 27.99 | 10 | 4.3 |
| 19 | 4 | 1962 | 8 | 22 | 18 | 40.75 | 28.84 | 10 | 4.3 |
| 14 | 9 | 1962 | 0 | 33 | 26 | 39.57 | 28.17 | 40 | 4.5 |
| 28 | 4 | 1963 | 0 | 41 | 52 | 39.32 | 27.82 | 30 | 4.7 |
| 14 | 6 | 1963 | 6 | 54 | 0 | 40.4 | 29.2 | 0 | 4.3 |
| 18 | 9 | 1963 | 16 | 58 | 15 | 40.77 | 29.12 | 40 | 6.3 |
| 24 | 9 | 1963 | 2 | 10 | 44 | 40.84 | 28.9 | 10 | 4.8 |
| 6 | 10 | 1964 | 14 | 29 | 58 | 40.24 | 28.16 | 23 | 5.1 |
| 6 | 10 | 1964 | 14 | 31 | 23 | 40.3 | 28.23 | 34 | 7 |
| 20 | 10 | 1964 | 8 | 47 | 56 | 40 | 28.6 | 0 | 4.8 |
| 15 | 12 | 1964 | 21 | 3 | 16 | 40.02 | 28.79 | 26 | 4.6 |
| 2 | 9 | 1965 | 5 | 29 | 27 | 39.7 | 27.1 | 0 | 4.4 |
| 25 | 3 | 1966 | 23 | 17 | 36 | 39 | 29.3 | 43 | 4.7 |
| 5 | 6 | 1966 | 9 | 14 | 6 | 39.07 | 29.34 | 36 | 4.4 |
| 28 | 6 | 1966 | 17 | 1 | 4 | 39 | 27 | 49 | 4.5 |
| 21 | 8 | 1966 | 1 | 30 | 44 | 40.33 | 27.4 | 12 | 5.5 |
| 29 | 1 | 1967 | 19 | 47 | 52 | 38.99 | 27.6 | 0 | 4.5 |
| 7 | 4 | 1967 | 17 | 40 | 7 | 40 | 31 | 0 | 4.3 |
| 13 | 6 | 1967 | 12 | 54 | 7 | 39.03 | 31.14 | 2 | 4.6 |
| 22 | 7 | 1967 | 16 | 56 | 58 | 40.67 | 30.69 | 33 | 6.8 |
| 22 | 7 | 1967 | 17 | 14 | 10 | 40.7 | 30.8 | 6 | 4.6 |
| 22 | 7 | 1967 | 17 | 18 | 54 | 40.7 | 30.8 | 0 | 4.2 |
| 22 | 7 | 1967 | 17 | 30 | 7 | 40.73 | 30.53 | 0 | 4.8 |
| 22 | 7 | 1967 | 17 | 48 | 7 | 40.66 | 30.62 | 26 | 5.1 |
| 22 | 7 | 1967 | 18 | 7 | 21 | 41 | 30 | 0 | 4.7 |
| 22 | 7 | 1967 | 18 | 8 | 54 | 40.7 | 30.8 | 0 | 4.2 |
| 22 | 7 | 1967 | 18 | 9 | 55 | 40.72 | 30.51 | 35 | 5 |
| 22 | 7 | 1967 | 18 | 13 | 36 | 40.7 | 30.8 | 0 | 4.5 |
| 22 | 7 | 1967 | 18 | 14 | 0 | 40.7 | 30.8 | 0 | 4.2 |
| 22 | 7 | 1967 | 19 | 47 | 31 | 41.07 | 30.59 | 59 | 4.6 |
| 22 | 7 | 1967 | 20 | 35 | 40 | 40.79 | 30.42 | 4 | 4.7 |
| 22 | 7 | 1967 | 21 | 21 | 41 | 41 | 30.45 | 49 | 4.6 |
| 22 | 7 | 1967 | 23 | 42 | 0 | 40.64 | 30.53 | 30 | 4.7 |
| 23 | 7 | 1967 | 4 | 3 | 40 | 40.61 | 30.35 | 21 | 4.5 |
|  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |

Table E. 1 continued

| 26 | 7 | 1967 | 9 | 16 | 6 | 40.61 | 30.67 | 21 | 4.4 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 30 | 7 | 1967 | 1 | 19 | 31 | 40.71 | 30.58 | 23 | 4.6 |
| 30 | 7 | 1967 | 1 | 31 | 2 | 40.72 | 30.52 | 18 | 5.6 |
| 30 | 7 | 1967 | 18 | 58 | 46 | 40.75 | 30.46 | 27 | 4.5 |
| 31 | 7 | 1967 | 7 | 12 | 5 | 40.6 | 27.62 | 4 | 4.4 |
| 1 | 8 | 1967 | 0 | 13 | 34 | 40.72 | 30.5 | 26 | 4.6 |
| 14 | 8 | 1967 | 20 | 9 | 25 | 40.74 | 30.37 | 25 | 4.9 |
| 18 | 3 | 1968 | 5 | 40 | 1 | 40.83 | 30.53 | 39 | 4.5 |
| 28 | 3 | 1968 | 17 | 12 | 20 | 40.5 | 31.34 | 6 | 4.5 |
| 6 | 5 | 1968 | 9 | 38 | 47 | 40.33 | 28.63 | 4 | 4.2 |
| 12 | 2 | 1969 | 8 | 43 | 5 | 40.7 | 30.29 | 30 | 4.4 |
| 3 | 3 | 1969 | 0 | 59 | 11 | 40.08 | 27.5 | 6 | 5.7 |
| 5 | 3 | 1969 | 14 | 41 | 16 | 40.06 | 27.56 | 33 | 4.7 |
| 22 | 3 | 1969 | 18 | 0 | 55 | 39.1 | 28.67 | 28 | 4.7 |
| 23 | 3 | 1969 | 21 | 8 | 42 | 39.14 | 28.48 | 9 | 5.9 |
| 24 | 3 | 1969 | 1 | 59 | 34 | 39.11 | 28.51 | 30 | 5 |
| 24 | 3 | 1969 | 2 | 58 | 49 | 39.15 | 28.6 | 4 | 4.5 |
| 24 | 3 | 1969 | 8 | 13 | 5 | 39.02 | 28.41 | 43 | 4.7 |
| 24 | 3 | 1996 | 11 | 34 | 34 | 39.17 | 28.7 | 37 | 4.6 |
| 24 | 3 | 1969 | 12 | 13 | 17 | 39.08 | 28.65 | 20 | 4.5 |
| 25 | 3 | 1969 | 13 | 21 | 12 | 39.06 | 28.41 | 28 | 4.9 |
| 25 | 3 | 1969 | 13 | 21 | 34 | 39.25 | 28.44 | 37 | 6 |
| 25 | 3 | 1969 | 13 | 37 | 53 | 39 | 28 | 0 | 4.2 |
| 25 | 3 | 1969 | 14 | 18 | 52 | 39.17 | 28.49 | 34 | 4.8 |
| 25 | 3 | 1969 | 14 | 40 | 27 | 39.02 | 28.9 | 25 | 4.4 |
| 25 | 3 | 1969 | 16 | 13 | 30 | 39.08 | 28.44 | 42 | 4.7 |
| 26 | 3 | 1969 | 3 | 31 | 27 | 39.03 | 28.27 | 37 | 4.6 |
| 26 | 3 | 1969 | 9 | 0 | 11 | 39.3 | 28.1 | 52 | 4.4 |
| 27 | 3 | 1969 | 18 | 7 | 3 | 39.12 | 28.2 | 51 | 4.5 |
| 28 | 3 | 1969 | 10 | 2 | 17 | 39.13 | 28.45 | 37 | 4.9 |
| 17 | 4 | 1969 | 12 | 23 | 28 | 39.11 | 28.62 | 0 | 4.2 |
| 30 | 4 | 1999 | 20 | 20 | 32 | 39.12 | 28.52 | 8 | 5.2 |
| 1 | 5 | 1969 | 1 | 14 | 46 | 39.1 | 28 | 0 | 4.3 |
| 3 | 5 | 1969 | 16 | 7 | 59 | 39 | 28.6 | 25 | 4.2 |
| 6 | 5 | 1969 | 6 | 36 | 6 | 39.3 | 28.1 | 0 | 4.2 |
| 13 | 5 | 1969 | 17 | 48 | 2 | 39.03 | 28.57 | 35 | 4.6 |
| 14 | 5 | 1969 | 23 | 57 | 36 | 39.15 | 28.49 | 36 | 4.6 |
| 27 | 6 | 1969 | 10 | 40 | 25 | 39.3 | 28.7 | 0 | 4.2 |
| 14 | 8 | 1969 | 21 | 51 | 5 | 39.52 | 27.87 | 21 | 4.7 |
| 19 | 8 | 1969 | 21 | 55 | 57 | 39.7 | 27.8 | 0 | 4.4 |
| 7 | 10 | 1969 | 5 | 9 | 12 | 39.2 | 28.4 | 13 | 5.1 |
| 7 | 10 | 1969 | 18 | 49 | 3 | 39.16 | 28.54 | 49 | 4.5 |
| 13 | 10 | 1969 | 3 | 24 | 26 | 39.17 | 28.38 | 9 | 4.3 |
| 24 | 12 | 1969 | 8 | 41 | 32 | 40.5 | 28.4 | 0 | 4.5 |
| 23 | 3 | 1970 | 7 | 56 | 8 | 39.2 | 28.2 | 26 | 4.2 |
|  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |

Table E. 1 continued

| 28 | 3 | 1970 | 21 | 2 | 24 | 39.21 | 29.51 | 18 | 7.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | 3 | 1970 | 21 | 12 | 10 | 39.5 | 30.3 | 0 | 4.2 |
| 28 | 3 | 1970 | 21 | 13 | 24 | 39.3 | 30.7 | 0 | 4.6 |
| 28 | 3 | 1970 | 21 | 19 | 20 | 39.5 | 30.5 | 0 | 4.3 |
| 28 | 3 | 1970 | 31 | 41 | 20 | 39.13 | 29.53 | 42 | 4.5 |
| 28 | 3 | 1970 | 21 | 59 | 11 | 39.28 | 29.46 | 17 | 4.8 |
| 28 | 3 | 1970 | 23 | 12 | 43 | 39.15 | 29.56 | 31 | 5.2 |
| 28 | 3 | 1970 | 23 | 44 | 0 | 39.07 | 29.76 | 32 | 5.2 |
| 29 | 3 | 1970 | 2 | 5 | 28 | 39.29 | 29.18 | 38 | 4.6 |
| 29 | 3 | 1970 | 2 | 31 | 11 | 39.01 | 30.4 | 33 | 4.6 |
| 29 | 3 | 1970 | 2 | 54 | 52 | 39.12 | 29.53 | 22 | 4.6 |
| 29 | 3 | 1970 | 6 | 56 | 24 | 39.06 | 29.74 | 29 | 5.4 |
| 29 | 3 | 1970 | 7 | 40 | 42 | 39.6 | 31 | 0 | 4.2 |
| 29 | 3 | 1970 | 19 | 11 | 43 | 39.14 | 29.42 | 22 | 4.7 |
| 29 | 3 | 1970 | 22 | 12 | 43 | 39.2 | 29.2 | 0 | 4.6 |
| 30 | 3 | 1970 | 6 | 46 | 25 | 39.09 | 29.03 | 23 | 4.5 |
| 30 | 3 | 1970 | 6 | 49 | 5 | 39.43 | 29.4 | 33 | 4.8 |
| 30 | 3 | 1970 | 7 | 59 | 22 | 39.34 | 29.26 | 16 | 5.3 |
| 30 | 3 | 1970 | 8 | 35 | 18 | 39.29 | 29.24 | 36 | 4.7 |
| 30 | 3 | 1970 | 16 | 32 | 37 | 39.09 | 29.59 | 30 | 5.2 |
| 30 | 3 | 1970 | 20 | 38 | 5 | 39.05 | 29.62 | 28 | 4.6 |
| 30 | 3 | 1970 | 20 | 59 | 31 | 39.3 | 29.29 | 33 | 4.6 |
| 31 | 3 | 1970 | 0 | 51 | 36 | 39.33 | 29.41 | 18 | 4.6 |
| 31 | 3 | 1970 | 1 | 7 | 55 | 39.41 | 29.32 | 25 | 4.4 |
| 31 | 3 | 1970 | 3 | 38 | 15 | 39.1 | 30 | 0 | 4.5 |
| 31 | 3 | 1970 | 3 | 46 | 51 | 39.03 | 29.79 | 35 | 4.8 |
| 31 | 3 | 1970 | 4 | 10 | 5 | 39.01 | 29.2 | 9 | 4.6 |
| 31 | 3 | 1970 | 4 | 47 | 17 | 39 | 30.1 | 15 | 4.3 |
| 31 | 3 | 1970 | 5 | 21 | 14 | 39.6 | 31.1 | 0 | 4.2 |
| 1 | 4 | 1970 | 15 | 56 | 5 | 39.32 | 29.27 | 35 | 4.8 |
| 1 | 4 | 1970 | 17 | 55 | 14 | 39.01 | 29.69 | 41 | 4.3 |
| 2 | 4 | 1970 | 0 | 28 | 32 | 39.11 | 29.57 | 28 | 4.3 |
| 2 | 4 | 1970 | 20 | 35 | 9 | 39.05 | 29.72 | 35 | 4.6 |
| 4 | 4 | 1970 | 3 | 52 | 26 | 39.7 | 30 | 0 | 4.5 |
| 5 | 4 | 1970 | 19 | 48 | 48 | 39.2 | 31.7 | 0 | 4.4 |
| 7 | 4 | 1970 | 4 | 12 | 34 | 39.32 | 29.09 | 33 | 4.5 |
| 7 | 4 | 1970 | 10 | 55 | 2 | 39 | 27.8 | 48 | 4.2 |
| 7 | 4 | 1970 | 17 | 5 | 12 | 39.34 | 29.32 | 33 | 5.2 |
| 7 | 4 | 1970 | 22 | 58 | 55 | 39.01 | 30.11 | 21 | 4.3 |
| 9 | 4 | 1970 | 10 | 12 | 30 | 39.11 | 29.41 | 34 | 4.7 |
| 10 | 4 | 1970 | 1 | 14 | 40 | 39.13 | 29.31 | 22 | 4.2 |
| 11 | 4 | 1970 | 8 | 36 | 38 | 39.1 | 28.8 | 49 | 4.4 |
| 11 | 4 | 1970 | 17 | 24 | 25 | 39.09 | 29.76 | 22 | 4.6 |
| 13 | 4 | 1970 | 5 | 16 | 0 | 39.32 | 29.03 | 15 | 4.5 |
| 15 | 4 | 1970 | 16 | 29 | 58 | 39.34 | 29.3 | 28 | 4.8 |

Table E. 1 continued

| 30 | 4 | 1970 | 23 | 59 | 9 | 39.09 | 29.59 | 29 | 4.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 5 | 1970 | 9 | 58 | 47 | 39.36 | 29.32 | 0 | 4.3 |
| 1 | 6 | 1970 | 6 | 43 | 13 | 39 | 29.7 | 54 | 4.2 |
| 10 | 6 | 1970 | 5 | 17 | 16 | 39.15 | 29.46 | 43 | 4.5 |
| 14 | 6 | 1970 | 0 | 58 | 26 | 39.25 | 29.17 | 23 | 4.2 |
| 7 | 8 | 1970 | 4 | 53 | 24 | 39.08 | 30.01 | 41 | 4.5 |
| 6 | 9 | 1970 | 17 | 39 | 10 | 40.2 | 28.5 | 0 | 4.2 |
| 14 | 9 | 1970 | 7 | 10 | 13 | 39.24 | 29.32 | 37 | 4.6 |
| 15 | 9 | 1970 | 6 | 28 | 48 | 39.7 | 28.54 | 10 | 4.2 |
| 15 | 11 | 1970 | 3 | 14 | 56 | 39.32 | 29.28 | 0 | 4.2 |
| 13 | 12 | 1970 | 20 | 18 | 46 | 39.1 | 29.6 | 0 | 4.2 |
| 17 | 12 | 1970 | 2 | 17 | 5 | 39.27 | 29.4 | 26 | 4.5 |
| 20 | 12 | 1970 | 11 | 1 | 47 | 39.36 | 29.24 | 26 | 5.5 |
| 21 | 12 | 1970 | 0 | 22 | 25 | 39.09 | 29.41 | 27 | 4.2 |
| 8 | 2 | 1971 | 8 | 19 | 53 | 39.2 | 29.4 | 0 | 5.3 |
| 15 | 2 | 1971 | 8 | 19 | 57 | 39.19 | 29.36 | 32 | 4.9 |
| 23 | 2 | 1971 | 19 | 41 | 23 | 39.62 | 27.32 | 10 | 5.1 |
| 13 | 4 | 1971 | 12 | 59 | 39 | 39.03 | 29.8 | 41 | 5.2 |
| 30 | 4 | 1971 | 16 | 44 | 4 | 39.19 | 28.52 | 5 | 4.3 |
| 1 | 5 | 1971 | 13 | 45 | 27 | 40.95 | 27.99 | 13 | 4.6 |
| 6 | 5 | 1971 | 4 | 24 | 36 | 39.04 | 29.75 | 34 | 4.7 |
| 25 | 5 | 1971 | 5 | 43 | 26 | 39.05 | 29.71 | 16 | 5.9 |
| 25 | 5 | 1971 | 5 | 53 | 28 | 39.05 | 29.69 | 13 | 4.8 |
| 10 | 6 | 1971 | 9 | 31 | 54 | 39.02 | 29.63 | 33 | 5.1 |
| 6 | 11 | 1971 | 19 | 43 | 48 | 39.02 | 29.78 | 16 | 5.1 |
| 18 | 12 | 1971 | 0 | 43 | 8 | 39.5 | 29.1 | 0 | 4.3 |
| 6 | 3 | 1972 | 2 | 50 | 15 | 39.09 | 31.48 | 28 | 4.2 |
| 14 | 3 | 1972 | 14 | 5 | 47 | 39.32 | 29.47 | 38 | 5.2 |
| 18 | 6 | 1972 | 22 | 32 | 50 | 39.02 | 29.88 | 34 | 4.4 |
| 23 | 6 | 1972 | 4 | 25 | 30 | 39.19 | 28.9 | 42 | 4.3 |
| 23 | 6 | 1972 | 17 | 16 | 3 | 39.16 | 29.17 | 20 | 4.2 |
| 3 | 9 | 1972 | 8 | 38 | 46 | 39.16 | 27.98 | 30 | 4.6 |
| 23 | 9 | 1972 | 3 | 32 | 49 | 39.78 | 28.57 | 0 | 4.3 |
| 4 | 10 | 1972 | 6 | 14 | 26 | 39.14 | 29.44 | 34 | 4.6 |
| 10 | 11 | 1972 | 7 | 40 | 41 | 40.41 | 28.73 | 0 | 4.3 |
| 8 | 2 | 1973 | 14 | 33 | 14 | 39.25 | 28.7 | 38 | 4.2 |
| 8 | 4 | 1973 | 9 | 52 | 47 | 39.17 | 28.39 | 7 | 4.2 |
| 11 | 6 | 1973 | 0 | 29 | 33 | 40.31 | 29.3 | 26 | 4.2 |
| 27 | 6 | 1973 | 11 | 50 | 23 | 40.72 | 27.49 | 5 | 4.2 |
| 22 | 11 | 1973 | 14 | 54 | 53 | 40.36 | 29.88 | 8 | 4.2 |
| 21 | 1 | 1975 | 17 | 50 | 25 | 39.07 | 30.67 | 23 | 4.5 |
| 8 | 5 | 1976 | 23 | 25 | 8 | 39.33 | 29.1 | 33 | 4.9 |
| 21 | 5 | 1976 | 9 | 37 | 2 | 39.28 | 29.16 | 24 | 4.5 |
| 25 | 5 | 1976 | 18 | 43 | 28 | 39.31 | 29.09 | 14 | 4.6 |
| 28 | 5 | 1976 | 23 | 2 | 20 | 39.26 | 29.17 | 8 | 4.5 |

Table E. 1 continued

| 9 | 6 | 1976 | 10 | 2 | 33 | 39.24 | 29.15 | 12 | 4.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 6 | 1976 | 6 | 52 | 37 | 39.34 | 29.27 | 23 | 4.7 |
| 22 | 8 | 1976 | 13 | 28 | 51 | 39.35 | 29.03 | 23 | 4.9 |
| 23 | 3 | 1977 | 11 | 55 | 54 | 39.63 | 28.65 | 23 | 4.6 |
| 15 | 6 | 1978 | 0 | 26 | 45 | 40.79 | 27.68 | 28 | 4.6 |
| 28 | 6 | 1979 | 21 | 22 | 9 | 40.78 | 31.85 | 0 | 4.7 |
| 18 | 7 | 1979 | 13 | 12 | 2 | 39.66 | 28.65 | 7 | 4.9 |
| 4 | 5 | 1980 | 9 | 22 | 13 | 39.22 | 28.97 | 22 | 4.5 |
| 12 | 3 | 1981 | 4 | 6 | 0 | 40.8 | 28.09 | 12 | 4.5 |
| 26 | 12 | 1981 | 17 | 53 | 35 | 40.15 | 28.74 | 0 | 4.9 |
| 28 | 12 | 1981 | 14 | 53 | 35 | 39.39 | 29.06 | 10 | 4.5 |
| 9 | 6 | 1982 | 4 | 13 | 36 | 40.14 | 28.89 | 10 | 4.4 |
| 9 | 9 | 1982 | 5 | 47 | 10 | 40.98 | 27.87 | 10 | 4.4 |
| 26 | 12 | 1982 | 17 | 48 | 1 | 39.32 | 28.26 | 5 | 4.9 |
| 27 | 12 | 1982 | 11 | 2 | 44 | 39.34 | 28.27 | 10 | 4.8 |
| 1 | 2 | 1983 | 13 | 54 | 11 | 40.2 | 28.94 | 3 | 4.8 |
| 15 | 2 | 1983 | 2 | 21 | 45 | 39.07 | 28.71 | 7 | 4.6 |
| 5 | 7 | 1983 | 12 | 1 | 27 | 40.33 | 27.21 | 7 | 5.8 |
| 21 | 10 | 1983 | 20 | 34 | 49 | 40.14 | 29.35 | 12 | 4.9 |
| 27 | 10 | 1983 | 8 | 40 | 10 | 40.16 | 29.3 | 18 | 4.3 |
| 15 | 11 | 1983 | 10 | 59 | 11 | 40.12 | 29.28 | 7 | 4.4 |
| 29 | 3 | 1984 | 0 | 6 | 1 | 39.64 | 27.87 | 12 | 4.6 |
| 25 | 4 | 1987 | 22 | 11 | 0 | 39.3 | 27.92 | 3 | 4.2 |
| 1 | 1 | 1988 | 12 | 21 | 51.5 | 40.12 | 29.24 | 10 | 4.5 |
| 24 | 4 | 1988 | 20 | 49 | 33.6 | 40.86 | 28.23 | 16 | 5.3 |
| 4 | 1 | 1989 | 14 | 55 | 1 | 39.78 | 30.7 | 5 | 4.2 |
| 15 | 2 | 1989 | 4 | 1 | 16.9 | 39.05 | 29.71 | 23 | 4.3 |
| 17 | 12 | 1989 | 21 | 22 | 33.1 | 39.3 | 28.27 | 10 | 4.1 |
| 24 | 5 | 1990 | 5 | 49 | 6.4 | 39.98 | 27.48 | 28 | 4 |
| 12 | 2 | 1991 | 9 | 54 | 58.3 | 40.82 | 28.88 | 10 | 4.6 |
| 3 | 3 | 1991 | 8 | 39 | 26.4 | 40.62 | 29.02 | 21 | 4.5 |
| 8 | 3 | 1991 | 9 | 23 | 13.1 | 40.83 | 27.89 | 11 | 4.5 |
| 26 | 6 | 1991 | 11 | 0 | 36.9 | 39.6 | 27.82 | 11 | 4 |
| 18 | 3 | 1993 | 7 | 51 | 38.1 | 40.43 | 27.99 | 10 | 4.2 |
| 31 | 3 | 1993 | 18 | 20 | 44.1 | 39.15 | 28.02 | 13 | 4.2 |
| 2 | 9 | 1993 | 21 | 3 | 41.5 | 40.19 | 27.26 | 14 | 4.1 |
| 6 | 12 | 1993 | 16 | 25 | 34.6 | 39.21 | 29.95 | 10 | 4 |
| 12 | 12 | 1993 | 17 | 21 | 26.2 | 41.51 | 28.82 | 28 | 5 |
| 8 | 2 | 1995 | 21 | 24 | 53.5 | 40.82 | 27.77 | 23 | 4.5 |
| 13 | 4 | 1995 | 4 | 8 | 1.6 | 40.86 | 27.67 | 24 | 4.8 |
| 18 | 10 | 1997 | 9 | 18 | 53.3 | 39.81 | 28.69 | 17 | 4 |
| 21 | 10 | 1997 | 10 | 49 | 33.5 | 40.7 | 30.42 | 11 | 4.1 |
| 5 | 3 | 1998 | 1 | 45 | 8.9 | 39.55 | 27.25 | 7 | 4.4 |
| 5 | 3 | 1998 | 1 | 55 | 26.7 | 39.53 | 27.25 | 5 | 4.3 |


[^0]:    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    0.955
    0.65
    0.65
    0.65
    0.65
    0.65
    0.65
    0.65
    0.65
    0.65
    0.65
    0.65
    0.65
    0.65
    0.65
    0.65

