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Prof. Dr. Şafak ALPAY

Supervisor

Examining Committee Members

Prof. Dr. Zafer NURLU (METU, MATH)
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Abstract

ON ASYMPTOTIC PROPERTIES OF POSITIVE

OPERATORS ON BANACH LATTICES

Binhadjah, Ali

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Şafak Alpay

Co-Supervisor: Prof. Dr. Eduard Yu. Emel’Yanov

May 2006, 56 pages

In this thesis, we study two problems. The first one is the renorming problem in

Banach lattices. We state the problem and give some known results related to it.

Then we pass to construct a positive doubly power bounded operator with a non-

positive inverse on an infinite dimensional AL-space which generalizes the result of

[10].

The second problem is related to the mean ergodicity of positive operators on KB-

spaces. We prove that any positive power bounded operator T in a KB-space E

which satisfies

lim
n→∞

dist
( 1

n

n−1∑
k=0

T kx, [−g, g] + ηBE

)
= 0 (∀x ∈ E, ‖x‖ ≤ 1), (∗)

where BE is the unit ball of E, g ∈ E+, and 0 ≤ η < 1, is mean ergodic and its fixed

space Fix(T ) is finite dimensional. This generalizes the main result of [12]. Moreover,

under the assumption that E is a σ-Dedekind complete Banach lattice, we prove that

if, for any positive power bounded operator T , the condition (∗) implies that T is

mean ergodic then E is a KB-space.

Keywords : Positive isometry, (doubly) power bounded operator, renorming problem,

AL-spaces, mean ergodicity, KB-spaces.
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Öz

BANACH ÖRGÜLERİ ÜZERİNDE POZİTİF

DÖNÜŞÜMLERİN ASÍMPTOTİK ÖZELLİKLERİ ÜZERİNE

Binhadjah, Ali

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Şafak Alpay

Ortak Tez Yöneticisi: Prof. Dr. Eduard Yu. Emel’Yanov

Mayıs 2006, 56 sayfa

Bu tezde iki problem ele alınmaktadır. Bunlardan ilki Banach Örgülerinde normun

yeniden tanımlanmasıdır. Önce problem tanımlanmakta ve bunun ile ilgili bilinen

sonuçlar verilmektedir. Daha sonra sonsuz boyutlu bir AL-uzayında pozitif ve çift

kuvvet sınırlı ve tersi pozitif olmayan bir dönüşüm inşa edilmektedir. Bu sonuç [10]

daki sonucu genelleştirmektedir.

Ele alınan ikinci problem ise KB uzaylarında tanımlı pozitif dönüşümlerin ortalama

ergodikliği ile ilgilidir. Burada bir KB-uzayı E de tanımlı kuvvet sınırlı, pozitif ve

lim
n→∞

dist
( 1

n

n−1∑
k=0

T kx, [−g, g] + ηBE

)
= 0 (∀x ∈ E, ‖x‖ ≤ 1), (∗)

özelliğini sağlayan T dönüşümünün ortalama ergodik olduğu ve sabit uzayının Fix(T )

sonlu boyutlu olduğu kanıtlanmıştır. Eşitsizlikte BE , E’nin kapalı birim yuvarı,

g ∈ E+ ve 0 ≤ η < 1 olarak alınmıştır. Bu sonuç [12] nolu kaynağn ana sonucunu

genelleştirmektedir. Diğer yandan, E uzayının σ- Dedekind tam olması durumunda,

(∗) eşitsizliğini sağlayan pozitif kuvvet sınırlı T dönüşümünün ortalama ergodik ol-

masını gerektirmesi, E’nin KB-uzayı olduğunu gerektirmesi de kanıtlanmıştır.

Anahtar Kelimeler : Pozitif isometri, (çift) kuvvet sınırlı operator, normlama prob-

lemi, AL-uzayları, ortalama Ergodiklik, KB-uzayları.
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Chapter 1

Introduction

The study of the asymptotic behavior of operator semigroups is of a fundamental

importance in many disciplines for example this theory has many applications in

PDE and, in general, in dynamical systems. Asymptotic behavior refers to the orbits

of the initial value under a given semigroup and phenomena such as stability. In this

thesis, two problems are treated in connection with asymptotic behavior of positive

operator semigroups on Banach lattices. we consider the discrete case only, when a

semigroup is generated by a single operator. The general case is more or less similar

at least for one-parameter semigroups. The first problem is called the renorming

problem in Banach lattices. It deals with the way by which one can renorm the Banach

lattice and make every positive doubly power bounded operator on it an isometry.

The second problem is related to the mean ergodicity of positive operators on KB-

spaces, for which the asymptotic behavior of the Cesàro means of a positive operator

on a KB-space is studied. Chapter 1 of this thesis presents the scope of the study

as an introduction.

Chapter 2 deals with the Riesz spaces, Banach lattices, positive operators be-

tween them, mean ergodic operators and mean ergodic theorems. The first section

includes the definitions and basic examples of Riesz spaces and Banach lattices. We

give also some definitions and fundamental properties of special elements, sets, and

subspaces of Riesz spaces. The remainder of this section is devoted to present im-

portant classes of Banach lattices which are the so-called Banach lattices with order

continuous norm and KB-spaces. We give their definitions, some examples and collect

their most important characterizations in Theorems 2.1.21 and 2.1.27 respectively.

This is followed by a section on positive operators on Banach lattices. We start with
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their definition, examples and give some of their important properties. We pass to

introduce the positive operators preserving the lattice operations which are known as

Riesz homomorphisms and give some of their properties needed in this thesis and we

end this section by giving the definition of AL-spaces, their characterization and some

of their important properties. In the third section, we give the definition of mean

ergodic operators and some of their examples and others which are not. The section

ends with a major characterization of mean ergodic operators known as Eberlein’s

theorem.

Chapter 3 focuses on the study of the renorming problem in Banach lattices. The

main goal of this chapter is to construct a positive doubly power bounded operator

with a non-positive inverse on an infinite dimensional AL-space. This generalizes

the result of [10]. The first section of this chapter presents the statement of the

renorming problem in Banach lattices and gives some basic definitions and theorems

related to the problem. The second section begins by the definition of AL-spaces

and gives some of their properties. Next we give some lemmata forming the bases

to state Theorem 3.2.8, the main theorem of this chapter, in which we construct a

positive doubly power bounded operator with a non-positive inverse on an infinite

dimensional L1−space, as a result of this theorem we get corollary 3.2.9 by which we

achieve the main goal of this chapter. The results of Chapter 3 were published in [7].

Chapter 4 is devoted to study the mean ergodicity of positive operators on KB-

spaces which forms the second problem studied in this thesis. In the first section, we

give an introduction about the mean ergodicity of Markov operators and we mention a

related result in [12]. In preparation to state our main theorem, we give two lemmata

talking about the existence of a non-zero positive fixed element (of maximal support)

of a positive power bounded operator. These lemmata put us in a position to state

our main Theorem 4.1.3 which gives a condition of a positive power bounded operator

on KB-space to be mean ergodic. The rest of this section gives a special result of

Theorem 4.1.3 for which we have more than mean ergodicity of a positive power

bounded operator on KB-space, whose fixed space is finite dimensional. The third

and final section of this chapter begins by discussing the relationship between the

mean ergodicity of power bounded operators on a Banach space and the reflexivity

of this space. This motivates us to study such a relationship but this time between

the mean ergodicity of special power bounded operators on a σ−Dedekind complete

2



Banach lattice and the KB-property of this Banach lattice. This idea is stated as

Theorem 4.2.2 in which we obtain a characterization of KB-spaces. The results of

Chapter 4 will be published in [8].
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Chapter 2

Preliminaries

In this chapter, for the convenience of the reader, we present the general background

needed in this thesis. We give concise presentation of the basic structural properties

of Riesz spaces and Banach lattices and pay a special attention to study Banach

lattices with order continuous norm, AL-spaces and KB-spaces. Moreover we discuss

the fundamental properties of (positive) operators acting on Banach lattices. We end

the chapter by a section in which we state Eberlein’s mean ergodic theorem.

2.1 Riesz spaces

A real vector space E is said to be an ordered vector space whenever it is equipped

with an order relation ≥ (i.e., ≥ is reflexive, antisymmetric, and transitive) that is

compatible with the algebraic structure of E in the sense that it satisfies the following

two axioms:

(1) If x ≥ y, then x+ z ≥ y + z holds for all z ∈ E,

(2) If x ≥ y, then αx ≥ αy holds for all α ∈ R+.

An alternative notation for x ≥ y is y ≤ x. An element x in an ordered vector

space E is called positive whenever x ≥ 0 holds. The set of all positive elements of

E is called the positive cone of E and it will be denoted by E+. i.e.,

E+ = {x ∈ E : x ≥ 0}
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Definition 2.1.1. A Riesz space is an ordered vector space E with the additional

property that for each pair of elements x, y ∈ E the supremum of the set {x, y} exists

in E, which is equivalent to that the infimum of the set {x, y} exists for each x, y.

We shall write

x ∨ y := sup{x, y} and x ∧ y := inf{x, y}.

For a vector x in a Riesz space, the positive part x+, the negative part x−, and

the absolute value |x| are defined by

x+ := x ∨ 0, x− := (−x) ∨ 0 and |x| := x ∨ (−x).

The functions (x, y) → x ∨ y, (x, y) → x ∧ y, x→ x+, x→ x−, and x→ |x| are

referred to collectively as the lattice operations of a Riesz space.

Example 2.1.2. Many familiar spaces are Riesz spaces as the following examples

show:

(1) The Euclidean space Rn is a Riesz space under the usual ordering x =

(x1, . . . , xn) ≥ y = (y1, . . . , yn) whenever xi ≥ yi for each i = 1, . . . , n. The infi-

mum and supremum of two vectors x and y are given by

x∨ y = (max{x1, y1}, . . . ,max{xn, yn}) and x∧ y = (min{x1, y1}, . . . ,min{xn, yn}).

(2) If (X,Σ, µ) is a measure space and 0 ≤ p <∞, then the vector space

Lp(µ) =

{
f : X → R, f is µ−measurable and

∫
X

|f |p dµ <∞
}

is a Riesz space under the almost everywhere pointwise ordering. That is, f ≥ g in

Lp(µ) means that f(x) ≥ g(x) for µ−almost every x. The infimum and supremum

of f, g ∈ Lp(µ) are given by

(f ∨ g)(x) = max{f(x), g(x)} and (f ∧ g)(x) = min{f(x), g(x)}.

Under the same definitions of infimum and supremum as above the vector space

L∞(µ) = {f : X → R, f is µ−measurable and ess sup |f | <∞}

is a Riesz space.

5



(3) The vector spaces lp(1 ≤ p < ∞) of all real sequences (x1, x2, . . . ) with∑∞
n=1 |xn|p < ∞ , l∞(Ω) the space of all bounded real valued functions on Ω and

c0 the space of null real sequences are all Riesz spaces under the usual pointwise

ordering.

(4) Both the vector spaces C(X) of all real continuous functions and the vector

space Cb(X) of all bounded continuous functions on the topological space X are

Riesz spaces when the ordering is defined pointwise. That is, f ≤ g holds whenever

f(x) ≤ g(x) for all x ∈ X. The infimum and supremum are defined as

(f ∨ g)(x) = max{f(x), g(x)} and (f ∧ g)(x) = min{f(x), g(x)}.

(5) Let E be the vector space of all real valued functions on the non-empty point

set X with the addition and multiplication pointwise, i.e., (f1+f2)(x) = f1(x)+f2(x)

and (αf)(x) = αf(x) for all x ∈ X. The ordering is also defined pointwise, i.e., f ≤ g

whenever f(x) ≤ g(x) for all x ∈ X. This makes E a Riesz space.

(6) Let the ordering in R2 be defined so that (x1, x2) ≤ (y1, y2) whenever either

x1 < y1 or (x1 = y1 and x2 ≤ y2). This makes R2 a Riesz space. The ordering is

called lexicographical ordering.

(7) Let P = {f : f : [0, 1] → R is a polynomial}. Then P is an ordered vector

space under the pointwise operations and ordering, but not a Riesz space.

The next theorem gives some basic properties of positive part, negative part, and

the absolute value of an element in a Riesz space.

Theorem 2.1.3. [5, Thm.1.3] If x is an element of a Riesz space, then we have

(1) x = x+ − x−; (2) |x| = x+ + x−; and (3) x+ ∧ x− = 0.

Moreover, the decomposition in (1) is unique in the sense that if x = y− z holds with

y ∧ z = 0, then y = x+ and z = x−.

Definition 2.1.4. Two elements x and y in a Riesz space are said to be disjoint,

written by x ⊥ y, if |x| ∧ |y| = 0. For any non-empty subset A of a Riesz space E the

set

Ad = {x ∈ E : x ⊥ y for all y ∈ A}

is called the disjoint complement of A.

6



Note that A
⋂
Ad = {0}. The disjoint complement Add = (Ad)d of Ad is called

the second disjoint complement of A.

We give now some properties of disjoint elements in Riesz spaces.

Theorem 2.1.5. [19, Thm.14.2, Thm.14.3] For any Riesz space E and x, y, z ∈ E,

we have

(1) If x ⊥ y and |z| ≤ |x|, then z ⊥ y.

(2) If x ⊥ y and a ∈ R, then ax ⊥ y.

(3) If x ⊥ y and z ⊥ y, then (x+ z) ⊥ y.

(4) We have x ⊥ y if and only if x+ ⊥ y and x− ⊥ y.

(5) If D is subset of a Riesz space E such that x0 = supD exists in E, and if x ⊥ y

holds for all x ∈ D, then x0 ⊥ y.

If x and y are two elements in a Riesz space E with x ≤ y, then the order

interval [x, y] is the subset defined by

[x, y] = {z ∈ E : x ≤ z ≤ y}.

A subset A of a Riesz space is said to be order bounded from above whenever there

exists some x satisfying y ≤ x for all y ∈ A. Similarly, a subset A of a Riesz space

is said to be order bounded from below whenever there exists some x satisfying

x ≤ y for all y ∈ A. Finally, a subset A of a Riesz space is said to be order bounded

if it is order bounded both from above and below (or, equivalently, if it is contained

in an order interval).

Definition 2.1.6. A net {xα} in a Riesz space is decreasing, written xα ↓, if α ≥ β

implies xα ≤ xβ. The symbol xα ↑ indicates an increasing net, while xα ↑≤ x (resp.

xα ↓≥ x.) denotes an increasing (resp. decreasing) net that is order bounded from

above (resp. below) by x. The notation xα ↓ x means that xα ↓ and inf{xα} = x.

The meaning of xα ↑ x is similar.

Definition 2.1.7. The Riesz space E is said to be Archimedean if n−1x ↓ 0 holds

for all x ∈ E+.

7



All classical function spaces are examples of Archimedean Riesz spaces. In spite

of this there exist non-Archimedean Riesz space. As an example, let E = R2 with the

lexicographical ordering (see Example 2.1.2(6)). The element (0, 1) in E is a lower

bound of the sequence ((n−1, n−1)). Hence, x = (1, 1) does not satisfy the condition

that inf{n−1x : n = 1, 2, . . . } = 0 . Actually, the sequence of all n−1x does not have

an infimum at all in this case.

Definition 2.1.8. Let E be a Riesz space. Subsets of E are assumed to inherit the

ordering from E.

(1) The linear subspace V of E is called a Riesz subspace of E if for all members

x, y ∈ V , the element x ∨ y is likewise a member of V .

(2) The linear subspace A of E is said to be an ideal in E if it follows from x ∈ A
and |y| ≤ |x| that y ∈ A. Sometimes this is called an order ideal to distinguish

it from an algebraic ideal in a ring.

(3) The ideal B of E is said to be a band whenever {xα} ⊆ B and 0 ≤ xα ↑ x
imply x ∈ B (or, equivalently, if and only if D ⊆ B+ and D ↑ x imply x ∈ B) .

Example 2.1.9. (1) The set E = {f : f : [0, 1] → R, f(x) = ax + b} is a vector

subspace, but not a Riesz subspace of C[0, 1].

(2) For all A, a subset of a Riesz space E, Ad is a band (this is an immediate

consequence of Theorem 2.1.5).

(3) If c denotes the space of all convergent real sequences, then c is a Riesz subspace

of l∞, but fails to be an ideal.

(4) c0 is an ideal in l∞, but not a band.

Let A be a non-empty subset of a Riesz space E. Then the ideal generated

by A is the smallest (with respect to inclusion) ideal that contains A. A moment’s

thought reveals that this ideal is{
x ∈ E : ∃ x1, . . . , xn and λ1, . . . , λn ∈ R+ with |x| ≤

n∑
i=1

λi|xi|

}
.

8



The ideal generated by an element x will be denoted by Ax. By the above

Ax = {y ∈ E : ∃ λ > 0 with |y| ≤ λ |x|} =
∞⋃

n=1

[−nx, nx].

Every ideal of the form Ax is referred to as a principal ideal . Similarly, the band

generated by A is the smallest band that contains A. Such a band always exists

(since it is the intersection of the family of bands that contain A, and E is one of

them). The band generated by an element x will be denoted by Bx and it is given as

following

Bx = {y ∈ E : |y| ∧ n|x| ↑ |y|}.

An element e > 0 in a Riesz space E is said to be a weak order unit (or shortly

weak unit) whenever the band Be generated by e coincides with E, i.e., if x∧ne ↑ x
holds for each x ∈ E+. Clearly every element x ∈ E+ is a weak unit in the band

it generates. As a simple characterization of such elements in Archimedean Riesz

spaces we have, an element e > 0 is a weak unit if and only if x ⊥ e implies x = 0.

Definition 2.1.10. A band B in a Riesz space E is said to be a projection band

if it satisfies E = B ⊕Bd.

In C[0, 1], For each real number a such that 0 < a ≤ 1, the ideal

B(a) = {f ∈ C[0, 1] : f(t) = 0,∀ t ≥ a}

is a band of E but not a projection band.

By the term operator T : E → F between two vector spaces, we mean a ”linear

operator”, i.e., that T (αx + βy) = αT (x) + βT (y) holds for all x, y ∈ E and all

α, β ∈ R. A linear operator P : E → E on a Riesz space E is said to be a projection

whenever P = P 2.

Now let B be a projection band in a Riesz space E. Thus E = B ⊕ Bd holds, and

so every element x ∈ E has a unique decomposition x = x1 + x2, where x1 ∈ B

and x2 ∈ Bd. Then it is easy to see that a projection PB : E → E is defined by

PB(x) := x1. Clearly, PB is a positive projection. Any projection of the form PB is

called a band projection . This type of projections are characterized as follows.

Theorem 2.1.11. [5, Thm.3.10] For an operator T : E → E on a Riesz space the

9



following statements are equivalent:

(1) T is a projection band.

(2) T is a projection satisfying 0 ≤ T ≤ I (where I is the identity operator on E).

A useful comparison property of band projections is described next.

Theorem 2.1.12. [5, Thm.3.12] If A and B are projection bands in a Riesz space,

then the following statements are equivalent:

(1) A ⊆ B; (2) PAPB = PBPA = PA; and (3) PA ≤ PB.

Definition 2.1.13. Let E be a Riesz space. E is called Dedekind complete when-

ever every non-empty subset of E that is bounded above (bounded below) has supre-

mum (infimum). Similarly, E is called σ−Dedekind complete whenever every

countable subset of E that is bounded above (bounded below) has supremum (infi-

mum).

The spaces Cb[0, 1], Lp (1 ≤ p ≤ ∞) and lp (1 ≤ p ≤ ∞) are all examples

of Dedekind complete Riesz spaces whereas C[0, 1] is not. From definition 2.1.13,

it is clear that every Dedekind complete Riesz space is σ−Dedekind complete. The

converse is not true that is, there exists Riesz spaces which are σ−Dedekind complete

but not Dedekind complete, as an example assume that (Ω,Σ, µ) is a measure space

such that Σ 6= P(Ω), the power set of Ω, and Σ contains the points of Ω. For every

1 ≤ p ≤ ∞ let Lp(µ) consist of all µ-measurable functions f : Ω → R such that∫
|f |p dµ < ∞ if p < ∞ or such that ess sup |f | < ∞ if p = ∞. Ordered pointwise,

Lp(µ) is σ−Dedekind complete, but fails to be Dedekind complete.

The following theorem gives some important properties of Dedekind complete and

σ−Dedekind complete Riesz space and it combines [4, Lemma 6.4] , [26, Thm.IV.1.2,

Thm.IV.1.4] and [5, Thm.3.8] .

Theorem 2.1.14. (1) Every σ−Dedekind complete Riesz space is Archimedean.

(2) Every ideal of a Dedekind complete ( σ−Dedekind complete) Riesz space is also

a Dedekind complete (a σ−Dedekind complete) Riesz space.

(3) Every band in a Dedekind complete Riesz space is a projection band.
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Note that the third statement of the above theorem provides many examples of

projections bands.

Definition 2.1.15. Let E be a Riesz space , equipped with a norm. The norm in E is

called a Riesz norm if |x| ≤ |y| in E implies ‖x‖ ≤ ‖y‖. Any Riesz space equipped

with a lattice norm is called a normed Riesz space. If a norm Riesz space is also

norm complete, then it is called a Banach lattice.

Example 2.1.16. Here are some examples of normed Riesz spaces and Banach lat-

tices.

(1) The spaces Rn with their Euclidean norms are all Banach lattices.

(2) If K is a compact space, then the Riesz space C(K) of all continuous real

functions on K under the sup norm

‖f‖∞ = sup{|f(x)| : x ∈ K}

is a Banach lattice.

(3) If X is a topological space, then Cb(X), the Riesz space of all bounded real

continuous functions on X under the lattice norm

‖f‖∞ = sup{|f(x)| : x ∈ X}

is a Banach lattice.

(4) The Riesz space C[0, 1] under the L1 lattice norm

‖f‖ =

∫ 1

0

|f(x)| dx

is a normed Riesz space, but not Banach lattice.

(5) If X is an arbitrary non-empty set, then the Riesz space B(X) of all bounded

real functions on X under the lattice norm

‖f‖∞ = sup{|f(x)| : x ∈ X}

is a Banach lattice.

11



(6) The Riesz spaces Lp(µ), 1 ≤ p < ∞, (and hence lp−spaces) are all Banach

lattices when equipped with their Lp−norms

‖f‖p =

(∫
|f |p dµ

) 1
p

.

Similarly, the L∞−spaces are Banach lattices with their essential sup−norms.

(7) The Riesz space c0 of all real null sequences is a Banach lattice under the

sup−norm

‖(x1, x2, . . . )‖∞ = {sup |xn| : n = 1, 2, . . . }.

Definition 2.1.17. An operator T : E → F between two Riesz spaces is said to be

order bounded whenever it maps order bounded subset of E onto order bounded

subsets of F . The operator T is said to be bounded (or continuous) if there exists

a C > 0 such that ‖Tx‖ ≤ C‖x‖ for all x ∈ E.

The space of all order bounded linear functionals on a Riesz space E, denoted by

Ẽ, is called the order dual of E, i.e.,

Ẽ = {f : E → R : f is an order bounded linear functional}.

Similarly, The space of all continuous linear functionals on a normed Riesz space E,

denoted by E ′, is called the norm dual of E, i.e.,

E ′ = {f : E → R : f is a continuous linear functional}.

By the notation E ′′ we mean the norm dual of E ′ i.e., E ′′ = (E ′)′. We will denote by

L(E,F ) to the space of all bounded operators between normed spaces E and F and

by L(E) to the space L(E,E).

The following theorem shows that any normed Riesz space offers a Banach lattice.

Theorem 2.1.18. [5, Thm.12.1] The norm dual of a normed Riesz space is a Banach

lattice.

Recall that The operator norm of a bounded operator T : E −→ F between

12



normed spaces E and F is defined as

‖T‖ = sup{‖Tx‖ : x ∈ E, ‖x‖ ≤ 1},

The norm of an element x in a normed space E is given as

‖x‖ = sup{|y(x)| : y ∈ E ′, ‖y‖ ≤ 1}

and the dual map (adjoint) of an operator T ∈ L(E,F ) between normed spaces

E and F is defined as a linear operator T ′ : F ′ −→ E ′ such that

T ′y = y ◦ T for all y ∈ F ′.

Next we collect a few elementary properties of dual maps.

Theorem 2.1.19. For a normed spaces, the following statements are valid:

(a) (S ◦ T )′ = T ′ ◦ S ′, for T ∈ L(E,F ) and S ∈ L(F,G).

(b) (IdE)′ = IdE′ and if E = F , then (T ′)n = (T n)′ for all n ∈ Z+
⋃
{0}.

(c) If T ∈ L(E) is invertible, then (T ′)−1 = (T−1)′ and so (T ′)n = (T n)′ for all

n ∈ Z.

(d) ‖T‖ = ‖T ′‖.

Proof. (a) For y ∈ G′ we get (S ◦ T )′y = y ◦ S ◦ T = T ′(y ◦ S) = (T ′ ◦ S ′)y.
(b) For For y ∈ E ′ we get (IdE)′y = y ◦ IdE = y = IdE′y and this proved the

statement (T ′)n = (T n)′ for n = 0. we will use induction now to prove the statement

for n ∈ Z+. For n = 1, the statement is clearly true so assume that it is true for n.

Now by the assumption and (a) we have (T ′)n+1 = (T ′)nT ′ = (T n)′T ′ = (TT n)′ =

(T n+1)′ and the assertion is proved.

(c) Let y ∈ E ′ and x ∈ E then there exists z ∈ E such that Tz = x and so

(T−1)′y(x) = y ◦ T−1(x) = y(z). On the other hand,

(T ′)−1y(x) = (T ′)−1y(Tz) = (T ′)−1(y ◦ T )z = (T ′)−1(T ′y)z = y(z) so,

13



(T ′)−1y = (T−1)′y for all y ∈ E ′. Thus (T ′)−1 = (T−1)′. In (b) the statement

(T ′)n = (T n)′ was proved for n ∈ Z+
⋃
{0} so we only need to prove it for n ∈ Z−.

If n ∈ Z−, then n = −m for some m ∈ Z+ and so by the first assertion of this part

we have

(T ′)n = (T ′)−m = ((T ′)−1)m = ((T−1)′)m = ((T−1)m)′ = (T−m)′ = (T n)′.

Hence (T ′)n = (T n)′ for all n ∈ Z.

(d) From the definitions of the norms of elements and operators we have

‖T ′‖ = sup
‖y‖≤1

{‖T ′y‖ : y ∈ E ′}

= sup
‖y‖≤1

sup
‖x‖≤1

{‖(T ′y)x‖ : y ∈ E ′, x ∈ E}

= sup
‖x‖≤1

sup
‖y‖≤1

{|y(Tx)| : y ∈ E ′, x ∈ E}

= sup
‖x‖≤1

{‖Tx‖ : x ∈ E}

= ‖T‖.

An important connection between the order and topological structures of Riesz

space is provided by the notion of order continuity. In what follows we are mainly

interested in Banach lattices with order continuous norms and we will only give some

of their examples and their most important characterizations. For more details in

Banach lattices with order continuous norms we refer to [5].

Definition 2.1.20. A lattice norm ‖ ·‖ on a Riesz space is said to be order contin-

uous if xα ↓ 0 implies ‖xα‖ ↓ 0. A Banach lattice has order continuous norm

if its norm is order continuous.

Typical examples of Banach lattices with order continuous norms are the Lp(µ)−
spaces (1 ≤ p < ∞) and (in general) reflexive Banach lattices. On the other hand,

the norm on every space of type C(K) fails to be order continuous unless K is finite
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for example, let E = c be the space of all convergent real sequences and

xn = (am,n)∞m=1 such that am,n =

0 if m ≤ n

1 if m > n

We see that inf{xn : n ∈ N} = 0 and ‖xn‖ = 1 for all n ∈ N.

We state now the most important characterizations of Banach lattices with order

continuous norms collected from [5] and [20].

Theorem 2.1.21. The following assertions are equivalent.

(1) The norm on E is order continuous.

(2) If 0 < xn ↑ x holds in E, then (xn)n is a norm Cauchy sequence.

(3) E is Dedekind complete (σ-Dedekind complete) satisfying ‖xn‖ → 0 as n→∞
for any sequence (xn)n ⊂ E+ with xn ↓ 0.

(4) Every monotone order bounded sequence of E is norm convergent.

(5) Every disjoint order bounded sequence of E+ is norm convergent to zero.

(6) E is an ideal in E ′′.

(7) Every order interval of E is weakly compact.

(8) Every Riesz subspace isomorphic to c0 is the range of a positive projection.

(9) Every closed ideal of E is a band.

(10) Every closed ideal of E is the range of a positive projection.

A subset C of a Banach lattice E is said to be almost order bounded if for

each ε > 0 there is xε ∈ E+ such that C ⊆ [−xε, xε] + εBE, where BEis the closed

unit ball of E.

Theorem 2.1.22. [22, Lemma 3.2] A Banach lattice E has order continuous norm

if and only if every almost order bounded set in E is relatively weakly compact.
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An element u > 0 in a normed Riesz space is said to be a quasi-interior point

whenever the ideal Au generated by u is norm dense in E. As an example of such

elements we have, the constant function 1 on [0, 1] is a quasi-interior point in L1[0, 1].

The quasi-interior points are characterized as follows.

Theorem 2.1.23. [5, Thm.15.3] For a positive element u in a normed Riesz space

E the following statements are equivalent:

(1) u is a quasi-interior point.

(2) For each x ∈ E we have limn→∞ ‖x− x ∧ nu‖ = 0.

(3) u is strictly positive on E ′.

As an immediate consequence of this theorem, we have every quasi-interior point

in a normed Riesz space is a weak unit. The other implication is not true, that is ,

there exist a weak unit which is not a quasi-interior point, for example the function

e(t) = t is a weak unit in C[0, 1] but it fails to be a quasi-interior point. However, the

converse implication holds in Banach lattices with order continuous norm, namely we

have

Theorem 2.1.24. [3, P rob.4.2.4] In a Banach lattices with order continuous norm,

a positive element is a quasi-interior point if and only if it is a weak unit.

The existence of weak units in a Banach lattices with order continuous norm

ensures the existence of strictly positive functionals in E ′ as the following theorem

says.

Theorem 2.1.25. [18, Thm.1.b.15] In any Banach lattices with order continuous

norm which has a weak unit e > 0, there exists a functional e′ > 0 in E ′ such that

e′(|x|) = 0 implies x = 0.

We now turn our attention to the important class of KB-spaces which will be the

mean object of Section 4.3.

Definition 2.1.26. A Banach lattice E is said to be a KB-space (Kantrovic̆-Banach

space) whenever every increasing norm bounded sequence of E+ is norm convergent.
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Note that a Banach lattice is a KB-space if and only if 0 ≤ xα ↑ and sup{‖xα‖} <
∞ imply that the net xα is norm convergent, this easily follows from the fact that if

a net 0 < xα ↑ is not Cauchy, then there exist some ε > 0 and a sequence {αn} of

indices with αn ↑ and ‖xαn+1 − xαn‖ > ε for all n. In particular, it follows that every

KB-space has order continuous norm (see Theorem 2.1.21(1 ⇔ 2)). The converse

need not be true, for example the norm on c0 is order continuous, but c0 fails to be

a KB-space as KB-space characterization theorem shows.

Now let {xn} be a sequence in a Banach lattice E satisfying 0 ≤ xn ↑ and

sup{‖xn‖} < ∞. Then 0 ≤ xn ↑ x′′ holds in E ′′ for some x′′ ∈ E ′′. In case E is

reflexive, x′′ belongs to E, and the order continuity of the norm implies that {xn}
is norm convergent. Therefore, reflexive Banach lattices are examples of KB-spaces.

The following theorem gives a characterizations of KB-space.

Theorem 2.1.27. [20, Thm.2.4.12] The following assertions are equivalent.

(1) E is a KB-space.

(2) E is a band in E ′′.

(3) E does not contain any Riesz subspace isomorphic to c0.

As an easy remark on this characterization and the fact that for any Banach

lattice E, E ′′ is Dedekind complete, we get that every KB-space E is a projection

band in E ′′.

2.2 Positive operators

In this section, we discuss some basic properties of positive operators that will be

used in next chapters.

Definition 2.2.1. An operator T : E → F between two Riesz spaces is said to be

positive (in symbols, T ≥ 0 or 0 ≤ T ) whenever it maps positive vectors to positive

vectors. That is, T is positive if x ≥ 0 in E implies T (x) ≥ 0 in F . T is said to be

strictly positive whenever T (x) > 0 for all x > 0.
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The positive operators are characterized by means of their additivity property on

the positive cone [6, Lemma 1.1.64].

Theorem 2.2.2 (Kantorovic̆). Suppose that E and F are two Riesz spaces with

F Archimedean. Assume also that T : E+ → F+ is additive, that is, T (x + y) =

T (x) + T (y) holds for all x, y ∈ E+. Then T has a unique extension to a positive

operator from E to F .

An important property of positive operators between Banach lattices is that they

are necessarily continuous.

Theorem 2.2.3. [5, Thm.12.3] Every positive operator from a Banach lattice to a

normed Riesz space is continuous.

Two norms ‖ · ‖1 and ‖ · ‖2 on a Riesz space are said to be equivalent whenever

there exist constants K,M > 0 satisfying

K‖x‖1 ≤ ‖x‖2 ≤M‖x‖1 for all x ∈ E

As a direct corollary of Theorem 2.2.3 we have

Corollary 2.2.4. [5, Cor.12.4] All lattice norms that make a Riesz space a Banach

lattice are equivalent.

Since order bounder linear functionals on Riesz space can be written as a difference

of two positive linear functionals, the following result should be immediate from the

previous theorem.

Corollary 2.2.5. [5, Cor.12.5] The norm dual of a Banach lattice E coincides with

its order dual, i.e., Ẽ = E ′.

The following theorem of S. S. Schaefer exhibits a remarkable property of positive

projections defined on Banach lattices.

Theorem 2.2.6. [23, Prop. III.11.5] Let P be a positive projection in L(E), where

E is any Banach lattice. The range P (E) is a Riesz space under the order induced

by E and a Banach lattice under a norm equivalent to the norm induced by E. If P

is strictly positive, then P (E) is a Riesz subspace of E.
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Now we introduce a special class of positive operators which preserve the lattice

operations.

Definition 2.2.7. An operator T : E → F between two Riesz spaces is said to be a

Riesz homomorphism whenever T (x ∨ y) = T (x) ∨ T (y) holds for all x, y ∈ E.

The following theorem gives some properties of Riesz homomorphisms.

Theorem 2.2.8. [19, Thm.18.3] For any Riesz homomorphisms T : E → F we have:

(1) T is a positive operator.

(2) T (E) is a Riesz subspace.

(3) The set {x ∈ E : T (x) = 0} is an ideal.

Example 2.2.9. Here are some examples of Riesz homomorphisms.

(1) Every band projection on a Riesz space is a Riesz homomorphism.

(2) Consider two compact Hausdorff spaces K1 and K2, let ϕ : K2 → K1 be

continuous, and let g ∈ C(K2)+. We define

T : C(K1) → C(K2) by Tf = g · f ◦ ϕ.

It easy to show that T is a Riesz homomorphism.

The elementary characterization of operators that are Riesz homomorphisms are

presented next.

Theorem 2.2.10. [5, Thm.7.2] For an operator T : E → F between two Riesz spaces,

the following statements are equivalent

(1) T is a Riesz homomorphism.

(2) T (x+) = (Tx)+ holds for all x ∈ E.

(3) T (x ∧ y) = T (x) ∧ T (y) holds for all x, y ∈ E.

(4) If x ∧ y = 0 holds in E, then T (x) ∧ T (y) = 0 holds in F .
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(5) T (|x|) = |T (x)| holds for all x ∈ E.

A Riesz homomorphism which is in addition one-one is referred to as a Riesz

isomorphism . Two Riesz spaces E and F are called Riesz isomorphic whenever

there exists a Riesz isomorphism from E onto F . An operator T : E → F between

two normed Riesz spaces is said to be an isometry whenever ‖T (x)‖ = ‖x‖ holds

for all x ∈ E.

Among the positive operators that are onto, the Riesz isomorphisms are charac-

terized as follows.

Theorem 2.2.11. [5, Thm.7.3] Assume that an operator T : E → F between two

Riesz spaces is one-to-one and onto. Then T is a Riesz isomorphism if and only if

T and T−1 are both positive operators.

We give now the definition of AL-spaces which play a significant role in analysis.

Definition 2.2.12. A Banach lattice E is said to be an AL-space if ‖x + y‖ =

‖x‖+ ‖y‖ for all x, y ∈ E+ with x ∧ y = 0.

L1(µ)−spaces are examples of these spaces. In what follows, we state Kakutani’s

theorem [2, Thm.3.5] which characterizes the vectors of AL-space as a functions in

some familiar function space.

Theorem 2.2.13 (Kakutani). A Banach lattice is an AL-space if and only if it is

isometrically Riesz isomorphic to an L1(µ)−space.

The following theorem gives a characterization of AL-spaces and shows their

Dedekind completeness property.

Theorem 2.2.14. If E is a Banach lattice, then

(1) E is an AL-space if and only if ‖x+ y‖ = ‖x‖+ ‖y‖ for all x, y ∈ E+.

(2) If E is an AL-space, then E is Dedekind complete.

Proof. (1) If ‖x + y‖ = ‖x‖ + ‖y‖ for all x, y ∈ E+, then E is an AL-space. Now

assume that E is an AL-space. Then by Kakutani’s theorem E is isometrically Riesz
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isomorphic to some L1(µ)−space. Now notice that if 0 ≤ x, y ∈ L1(µ), then

‖x+ y‖1 =

∫
E

(x+ y) dµ =

∫
E

x dµ+

∫
E

y dµ = ‖x‖1 + ‖y‖1.

(2) The proof of this assertion follows from Kakutani’s theorem and the fact that

every L1(µ)-space is Dedekind complete.

It should be noted that every AL-space E has order continuous norm. Indeed, if

{xn} ⊆ [0, x] is a disjoint sequence, then from the inequality

k∑
n=1

‖xn‖ = ‖
k∑

n=1

xn‖ = ‖ ∨k
n=1 xn‖ ≤ ‖x‖,

it follows that
∑∞

n=1 ‖xn‖ < ∞, and so limn→∞ ‖xn‖ = 0 holds. By Theorem 2.1.21

(1 ⇔ 5), the norm of E is order continuous. Moreover, AL-spaces are also examples

of KB-spaces. For, if {xn} is a sequence in a Banach lattice E satisfying 0 ≤ xn ↑
and sup{‖xn‖} < ∞. Then 0 ≤ xn ↑ x′′ holds in E ′′ for some x′′ ∈ E ′′. In case E

is an AL-space, then so is E ′′, and so E ′′ has order continuous norm, from which it

follows that {xn} is norm convergent.

The following theorem gives a condition under which Archimedean Riesz spaces

become finite dimensional.

Theorem 2.2.15 (Judin). [6, Exer.13, p.46] If every subset of pairwise disjoint ele-

ments in an Archimedean Riesz space E is finite, then E is Riesz isomorphic to some

Rn.

2.3 The mean ergodic theorem

This section is devoted to state Eberlein’s mean ergodic theorem which will play an

important role in Chapter 4. For this purpose, we need some basic definitions and

lemmata which are important not only for stating the mean ergodic theorem but also

for many other discussions throughout this thesis.

Let T be an operator on a Banach space X, we define its n-th Cesàro mean (or
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average) by

AT
n =

1

n

n−1∑
k=0

T k.

It is easy to see that if T is a continuous operator, then so is AT
n for all n ∈ N. If, in

addition, X is a Banach lattice and T is a positive operator, then each AT
n is also a

positive operator.

The next lemma presents some elementary identities for the averaging operators.

Lemma 2.3.1. For a linear operator T on a Banach space X and arbitrary numbers

n, j, k and i we have

(1) AT
nT = TAT

n = n+1
n
AT

n+1 − 1
n
I.

(2) AT
nk = 1

k

(
AT

n + T nAT
n + T 2nAT

n + . . .+ T (k−1)nAT
n

)
.

(3) AT
j+i −AT

j = (j + i)−1(T j + T j+1 + . . .+ T j+i−1)− i(j + i)−1AT
j .

Proof. (1) From the definition of Cesàro means of an operator we have

AT
nT =

1

n

n−1∑
k=0

T kT =
1

n
(I + T + T 2 + · · ·+ T n−1)T

=
1

n
(T + T 2 + T 3 + · · ·+ T n) =

1

n
T (I + T + T 2 + · · ·+ T n−1)

= T

(
1

n
(I + T + T 2 + · · ·+ T n−1)

)
= T

1

n

n−1∑
k=0

T k

= TAT
n .

On the other hand, we have

n+ 1

n
AT

n+1 − TAT
n =

1

n

n∑
k=0

T k − T
1

n

n−1∑
k=0

T k

=
1

n
(I + T + T 2 + · · ·+ T n)− 1

n
(T + T 2 + T 3 + . . .+ T n)

=
1

n
I.
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That is, AT
nT = TAT

n = n+1
n
AT

n+1 − 1
n
I.

(2) AT
nk =

1

nk

nk−1∑
j=0

T j

=
1

k

(
1

n

[
I + T + T 2 + · · ·+ T n−1 + T n + · · ·+ T 2n−1 + · · ·+ T kn−1

])
=

1

k

(
1

n

[
n−1∑
j=0

T j +
n−1∑
j=0

T j+n +
n−1∑
j=0

T j+2n + · · ·+ · · ·+
n−1∑
j=0

T j+(k−1)n

])

=
1

k

(
1

n

[
n−1∑
j=0

T j + T n

n−1∑
j=0

T j + T 2n

n−1∑
j=0

T j + · · ·+ · · ·+ T (k−1)n

n−1∑
j=0

T j

])

=
1

k
(AT

n + T nAT
n + T 2nAT

n + . . .+ T (k−1)nAT
n ).

(3) AT
j+i −AT

j =
1

j + i

j+i−1∑
k=0

T k − 1

j

j−1∑
k=0

T k =
1

j + i

(j−1)+i∑
k=0

T k − 1

j

j−1∑
k=1

T k

=
1

j + i

j−1∑
k=0

T k +
1

j + i

i∑
k=1

T j−1+k − 1

j

j−1∑
k=0

T k

=
j − (j + i)

j(j + i)

j−1∑
k=0

T k +
1

j + i

i∑
k=1

T j−1+k

=
−i

j(j + i)

j−1∑
k=0

T k +
1

j + i

i∑
k=1

T j−1+k

= (j + i)−1(T j + T j+1 + . . .+ T j+i−1)− i(j + i)−1AT
j .

Definition 2.3.2. An operator T on a Banach space X is called power bounded

whenever supn≥0 ‖T n‖ <∞.

Example 2.3.3. (1) All contractions are power bounded operators.

(2) Consider the Volterra operator

(V f)(t) =

∫ t

0

f(s) ds.

on L2(0, 1). Define A = (I + V )−1. Then ‖An‖ = 1 for all n ∈ N, that is A is power
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bounded.

The following lemma provide some elementary properties of power bounded op-

erators.

Lemma 2.3.4. If T is a power bounded operator on a Banach space X.Then

(1) supn≥0

∥∥AT
n

∥∥ <∞.

(2) lim
n→∞

1
n
T n−1x = 0 for all x ∈ X.

Proof. Since T is power bounded, there exists M ∈ R such that supk≥0 ‖T k‖ ≤M

(1) From the Cesàro means definition we have

sup
n≥0

∥∥AT
n

∥∥ = sup
n≥0

∥∥∥∥∥1

n

n−1∑
k=0

T k

∥∥∥∥∥
≤ sup

n≥0

1

n

n−1∑
k=0

‖T k‖

≤ sup
n≥0

1

n

n−1∑
k=0

M = M <∞

(2) For the second assertion we have

‖ 1

n
T n−1‖ =

1

n
‖T n−1‖ ≤ 1

n
sup
k≥0

‖T k‖ ≤ 1

n
M → 0 as n→∞.

So, lim
n→∞

1
n
T n−1x = 0 for all x ∈ X.

Definition 2.3.5. An operator T on a Banach space X is called Cesàro bounded

whenever supn≥0

∥∥AT
n

∥∥ <∞.

Remark 2.3.6. (1) Every power bounded operator is Cesàro bounded (see Lemma

2.3.4(1)). The converse is not true and for counterexamples the reader may consult

[25].

(2) There exist Cesàro bounded operators which may fail to satisfy (2) of Lemma

2.3.4, as a counterexample, one may consider the Assani’s well-known example

T =

(
−1 2

0 −1

)
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Definition 2.3.7. An operator T on a Banach space X is called mean ergodic

whenever the sequence
(
AT

nx
)

n
is norm convergent for all x ∈ X.

If X is a Banach space and T ∈ L(X) is mean ergodic, then we introduce the

operator PT : X → X via

PT (x) = lim
n→∞

AT
nx.

The following theorem shows that PT is a projection and gives some of it’s basic

properties. We call this projection PT as the mean ergodic projection . For any

operator T on a Banach space X, we denote by Fix(T) it’s fixed space. That is,

Fix(T) = {x ∈ X : Tx = x}.

Theorem 2.3.8. [15, Thm.2.1.3] If T ∈ L(X) is mean ergodic, then PT is a contin-

uous projection whose range is Fix(T). Moreover, we have PTT = TPT = PT .

Eberlein’s well-known mean ergodic theorem (cf.[15, Thm.2.1.5]) gives the major

characterizations of mean ergodic operator semigroups and here we restrict ourselves

to it’s special case [15, Thm.2.1.1].

Theorem 2.3.9 (Eberlein). Let T be a Cesàro bounded operator in a Banach space

X. For any x ∈ X satisfying lim
n→∞

1
n
T n−1x = 0 and for any y ∈ X the following

assertions are equivalent:

(i) Ty = y and y ∈ closed convex hull of {x, Tx, T 2x, . . .}.

(ii) y = lim
n→∞

AT
nx.

(iii) y = w − lim
n→∞

AT
nx.

(iv) y is a weak cluster point of the sequence (AT
nx)n∈N.

Theorem 2.3.10. [15, Thm.2.1.2] Every power bounded operator in a reflexive Ba-

nach space is mean ergodic.

Example 2.3.11. (1) Left and right shift operators on Lp-spaces where 1 < p <∞
are mean ergodic (cf. Theorem 2.3.10).

(2) The operator R : c0 → c0, R((an)n) = (a1, a1, a2, . . .) for every (an)n ∈ c0, is

not mean ergodic. For, let u ∈ c0, u = (1, 0, 0, . . .). Then
(
AR

nu
)

n
does not converge

25



in c0. Thus R is not mean ergodic.

(3) The left shift operator L : l∞ → l∞, L((an)n) = (a2, a3, a4, . . .) for every (an)n ∈
l∞, is not mean ergodic. For, let u = (an)n ∈ l∞ be defined as follows

an =



1, if n=1 or if there exists k ∈ N
⋃
{0} such that

1 + 2 + 22 + · · ·+ 23k < n ≤ 1 + 2 + 22 + · · ·+ 23k+1;

0, otherwise (i.e., if there exists k ∈ N
⋃
{0} such that

1 + 2 + 22 + · · ·+ 23k+1 < n ≤ 1 + 2 + 22 + · · ·+ 23k+3).

If we note for every m ∈ N

1

m

m−1∑
i=0

Liu = (b
(m)
1 , b

(m)
2 , · · · ),

then it follows that for every k ∈ N

b(
P3k+1

i=0 2i) ≥ 23k+1∑3k+1
i=0 2i

=
23k+1

23k+2 − 1
≥ 1

2

and

b(
P3k+1

i=0 2i) ≤
∑3k+1

i=0 2i

23k+2 + 23k+3
=

23k+2 − 1

3 · 23k+2
≤ 1

3
.

It follows that L is not mean ergodic.

(4) The operator P : l1 → l1, P ((an)n) = (0, a1, a2, . . .) for every (an)n ∈ l1, is not

mean ergodic. For, the dual map of P is the operator L : l∞ → l∞ defined in Example

(3) above. Let u ∈ l∞ be the sequence defined in Example (3) and let v ∈ l1 be the

sequence v = (1, 0, 0, . . .). It follows that the sequence
(
AP

n v
)

n
does not converge in

l1 since for every n ∈ N, 〈
u,AP

n v
〉

=
〈
AL

nu, v
〉

and since the sequence
(〈
AL

nu, v
〉)

n
does not converge in R. It follows that P is not

mean ergodic.

(5) Denote by ek the element of c0 such that its k-th coordinate is equal to 1, and all

other coordinates are zero. Fix η, 0 < η < 1, and define the operator Sη : c0 → c0 as

Sηek =

{
e1 + η e2 k = 1

ek+1 k > 1
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and let Tη := (I + Sη)/2. The sequence (ATη
n e1)n does not converge to any element

of c0. Hence Tη is not mean ergodic.

Note : Examples (2), (3) and (4) played an important role in [29], in which it

was shown that if a Banach lattice E has a sublattice which is lattice isomorphic

to l∞ , then there exists a (power bounded positive) operator T : E → E which is

not mean ergodic, and if a σ−Dedekind complete Banach lattice E has a sublattice

which is lattice isomorphic to l1 (or c0), then also a (power bounded positive) operator

T : E → E which is not mean ergodic exists.
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Chapter 3

The renorming problem in

banach lattices

3.1 Statement of the problem

Isometries are, in the most general sense, transformations which preserve distance

between elements. Such transformations are basic in the study of geometry which

is concerned with rigid motions and properties preserved by them. In particular,

positive isometries of Banach lattices possess many attractive properties. For in-

stance, due to the well-known result of J. Lamperti [17], positive isometries on Lp-

spaces (1 ≤ p < ∞) have representations as weighted shift operators with positive

weight.

The renorming problem that we are going to discuss in this section states the

following.

If T is a positive operator on a Banach lattice X, when one can renorm the

Banach lattice X to make T invertible isometry?

This question has a trivial answer in the Banach space setting, namely, the necessary

and the sufficient condition for an operator T in a Banach space X to be an invertible

isometry with respect to some equivalent norm is that T be doubly power bounded ,

i.e., sup {‖T n‖ : n ∈ Z} < ∞, in this case an equivalent norm ‖ · ‖T under which T
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and T−1 are isometries can be defined as :

‖x‖T := sup {‖T nx‖ : n ∈ Z} (∀x ∈ X). (1)

However, the situation is different if we consider a positive operator on a Banach

lattice that is, the norm in (1) may not be a Banach lattice norm, since we do not

know if T−1 ≥ 0. If this occurs, then according to Theorem 2.2.11 the operator T is a

lattice automorphism and this will make the norm defined in (1) really an equivalent

lattice norm. For

|x| ≤ |y| =⇒ T n|x| ≤ T n|y| ( since T n is positive )

=⇒ |T nx| ≤ |T ny| ( since T n is a Riesz automorphism )

=⇒ ‖T nx‖ ≤ ‖T ny‖ ( since ‖.‖ is a Riesz norm )

=⇒ ‖x‖T ≤ ‖y‖T ( by the definition of ‖.‖T )

So, in the Banach lattice case the doubly power boundedness is not enough for a

positive operator to be invertible isometry with respect to the norm in (1), that is

the positivity of T−1 is essential here.

It is well-known (see for example [22, Lemma 2.4]) that the positivity of T−1

occurs for any doubly power bounded positive operator defined on a finite dimensional

Banach lattice, that is :

Theorem 3.1.1. Every positive doubly power bounded operator on a finite dimen-

sional Banach lattice has a positive inverse.

The proof of this result depends on the very important Jacobs-Deleeuw-Glicksberg

Decomposition Theorem [15, Thm.2.4.4] for which we need some preliminaries.

Definition 3.1.2. Let X be a Banach space. A subset T = {Tt : t ∈ R+} of L(X) is

said to be (one-parameter) semigroup of bounded linear operators on X, usually

written (Tt)t≥0, whenever it satisfies

(1) T0 = Id, the identity operator on X.

(2) Ts+t = Ts ◦ Tt for all t, s ∈ R+.

A semigroup T is said to be abelian whenever TS = ST for all T, S ∈ T .
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Example 3.1.3. (1) Let T be a power bounded operator on a Banach space E, i.e.,

sup{‖T n‖ : n ∈ N} < ∞. Then an abelian semigroup of bounded operators on E

may be defined as (T n)n≥0 and it is called the discrete semigroup.

(2) It follows from elementary operator theory that for every bounded operator

A on a Banach space, the sum

∞∑
n=0

tnAn

n!
:= etA

exists and determines a semigroup (etA)t≥0.

(3) Let X be one of the following function spaces C0(R), the Banach space of

continuous functions on R vanishing at infinity, or Lp(R) for 1 ≤ p < ∞. Define Tt

to be the translation operator

Ttf(x) := f(x+ t)

for x ∈ R and t ∈ R+. Then (Tt)t≥0 is a semigroup of bounded operators on X.

Definition 3.1.4. A semigroup T of bounded operators on a Banach space X is said

to be almost periodic (resp. weakly almost periodic) if for all x ∈ X, the orbit

T x = {Tx : T ∈ T } is relatively compact (resp. relatively weakly compact).

Let T̃ denote the closure of the semigroup T in the weak operator topology and

denote by T̃ x for the weak closure of T x for all x ∈ X. The sets of reversible and

flight vectors of the semigroup T are defined as

Xrev(T ) = {x ∈ X : ∀ T ∈ T̃ , ∃R ∈ T̃ ; RTx = x}

and

Xfl(T ) = {x ∈ X : ∃ S ∈ T̃ ;Sx = 0}

We are now in a position to formulate the Jacobs-Deleeuw-Glicksberg Decomposition

Theorem [15, Thm.2.4.4].

Theorem 3.1.5 (Jacobs-Deleeuw-Glicksberg). Given a weakly almost periodic

semigroup T = (Tτ )τ∈J in a Banach space X, then X can be decomposed into the
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direct sum X = Xfl(T ) ⊕ Xrev(T ) and the restriction of T̃ to Xrev(T ) is a group.

Moreover if T = (T n)n≥0 is a discrete almost periodic semigroup, then

Xfl(T ) = {x ∈ X : lim
t→∞

‖T nx‖ = 0}.

Proof of Theorem 3.1.1:

Let E be a finite dimensional Banach lattice, T be a positive doubly power bounded

operator on E and T = (T n)n∈N, then the semigroup T is almost periodic since

dim(E) <∞ and supn∈N ‖T n‖ <∞. By Jacobs – Deleeuw – Glicksberg’s theorem,

E = Erev(T )⊕ Efl(T ) & Efl(T ) = {x ∈ E : lim
n→∞

‖T nx‖ = 0}.

The last condition together with the doubly power boundedness of T imply that

Efl(T ) = {0}, and hence E = Erev(T ). Then T−1 belongs to the closure (in the

wo-topology) of the set (T n)n∈N of positive operators. Then T−1 is positive as well. �

Another case providing the positivity for the inverse of a positive doubly power

bounded operator was given by Abromovich in [1]. Indeed in the paper [1] a slightly

more general result was proved, but we restrict our attention only on the following

particle case of it.

Theorem 3.1.6 (Abromovich). Any surjective positive isometry on a Banach lat-

tice has a positive inverse.

Proof. Let T be a surjective positive isometry on a Banach lattice E. We only have

to show that T (E+) ⊇ E+. Assume that is not true, then there exists y ∈ E+ such

that y 6∈ T (E+). Let ‖y‖ = 1, now by the surjectivity of T there exists x ∈ E such

that Tx = y. Since T is an isometry, ‖x‖ = 1 also we have x 6∈ E+. Consequently,

x− > 0 and x+ 6= 0 (for, if x+ = 0 then y = Tx = −T (x−) < 0 which contradicts

y ∈ E+). Set y1 = T (x+) and y2 = T (x−), then y1 > 0, y2 > 0 and y = y1 − y2 > 0.

Moreover, we have

‖y1 + y2‖ = ‖T (x+ + x−)‖ = ‖x+ + x−‖ = ‖|x|‖ = ‖x‖ = 1 (2)

Now we will prove by induction that
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‖x+ + kx−‖ = 1 for all k ∈ N (3)

For k = 1, (3) follows from (2). Let (3) be true for k. We prove the statement for

k + 1. Let us consider the element x+ − (k + 1)x−. Then

T (x+ − (k + 1)x−) = y1 − (k + 1)y2 and − (y1 + ky2) ≤ y1 − (k + 1)y2 ≤ y1 + ky2

(for, (k + 1)y2 ≥ ky2 ⇒ −(k + 1)y2 ≤ −ky2 ⇒ y1 − (k + 1)y2 ≤ y1 − ky2 ≤
y1 + ky2 also y1 − (k + 1)y2 + y1 + ky2 = y1 − y2 + y1 = y + y1 ≥ 0). Then

|y1 − (k + 1)y2| ≤ y1 + ky2 (4)

and

‖x+ + (k + 1)x−‖ = ‖x+ − (k + 1)x−‖ = ‖T−1(y1 − (k + 1)y2)‖

= ‖y1 − (k + 1)y2‖

≤ ‖y1 + ky2‖ (By (4))

= ‖T (x+ + kx−)‖

= ‖x+ + kx−‖ = 1

also 1 = ‖x‖ = ‖x+ + x−‖ ≤ ‖x+ + (k + 1)x−‖, so ‖x+ + (k + 1)x−‖ = 1

Now for all k ∈ N, k‖x−‖ = ‖kx−‖ ≤ ‖x+ + kx−‖ = 1 ⇒ ‖x−‖ ≤ 1
k

and as k → ∞
we get ‖x−‖ ≤ 0 ⇒ x− = 0 which is a contradiction. Thus there is no y ∈ E+ such

that y 6∈ T (E+), that is T (E+) ⊇ E+ and the proof is finished.

Because of Theorem 3.1.1 and Theorem 3.1.6 the renorming problem stated above

will be reduced to the case of positive doubly power bounded operators, which are not

surjective isometries, on infinite dimensional Banach lattices. The discussion above

motivates the following substantial question which appeared in [10]:

Is T−1 positive for any positive doubly power bounded operator on a Banach lattice?

i.e can the Abromovich’s theorem be generalized to the case of doubly power bounded
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positive operators?

In [10] a negative answer was given for the preceding question by means of a

counterexample on a special L1- space as following :

Theorem 3.1.7 (Emel’yanov ). Given ω 6∈ R, take Ω = R
⋃
{ω} and let a measure

µ on the Borel algebra β = β(Ω) be defined as the Lebesgue measure on β(R) and

µ(ω) = 1. Then for any ε > 0 there exists a positive operator on L1(Ω, β, µ) with

nonpositive inverse that satisfies supn∈Z
‖T n‖ ≤ 1 + ε.

Proof. Let ε > 0. Consider a measure preserving automorphism S in Ω defined by

S(ω) = ω and S(t) = t − 1, whenever t ∈ R, and define a positive operator T in

L1(Ω, β, µ) by

Tf := f ◦ S + ε ·
[ ∫ 1

0

fdµ
]
· χ{ω},

where χA, as usual, is the indicator function of a subset A. Then it is easy to see

that

T nf = f ◦ Sn + ε ·
[ n∑

i=1

∫ 1

0

f ◦ Si−1dµ
]
· χ{ω}

= f ◦ Sn + ε ·
[ n∑

i=1

∫ n−i+1

n−i

f ◦ Sn−1dµ
]
· χ{ω}

= f ◦ Sn + ε ·
[ ∫ n

0

f ◦ Sn−1dµ
]
· χ{ω}

for all n ∈ Z+ and f ∈ L1(Ω, β, µ). A similar computation shows that

T nf = f ◦ Sn − ε ·
[ ∫ 0

−n

f ◦ Sn−1dµ
]
· χ{ω}

for all n ∈ Z \ Z+ and f ∈ L1(Ω, β, µ), in particular, T−1 is not positive. Moreover,

‖T nf‖ ≤ ‖f ◦ Sn‖+ ε ·
[ ∫ ∞

−∞
|f ◦ Sn−1|dµ

]
· ‖χ{ω}‖ = (1 + ε)‖f‖

for all n ∈ Z and f ∈ L1(Ω, β, µ), which provides the required property sup{‖T n‖ :

n ∈ Z} ≤ 1 + ε.
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3.2 A positive doubly power bounded operator with

a non-positive inverse on an AL-space

The purpose of this section, whose results were published in [7], is to generalize the

result of Theorem 3.1.7. More precisely we show that an operator as the one in

Theorem 3.1.7 can be constructed not only on L1- spaces but also on any infinite

dimensional AL-space. To that end we give some lemmata and a corollary as a

preparation to state our main theorem (Theorem 3.2.8) .

Lemma 3.2.1. [7, Lemma 2.2] Let E be an infinite dimensional AL-space and {Eα}α∈A

be a countable family of pairwise disjoint nonzero bands of E such that Eα is isometri-

cally Riesz isomorphic to Eβ for all α, β ∈A. Then for any ε > 0 there exists a positive

operator T : E −→ E with non-positive inverse that satisfies supn∈Z
‖T n‖ ≤ 1 + ε.

Proof. Take one of {Eα}α∈A and call it Ĕ and reorder the others in a countable way

as {Ei}∞i=−∞ , let Ψi be the isometric isomorphism of Ei on Ei+1 for all i. Since E is

an AL-space, E is Dedekind complete (see Theorem 2.2.14(2)) and so, by Theorem

2.1.14, Ei is a projection band for all i. Let Pi be the band projection whose range

is Ei. Let X be the band generated by {Eα}α∈A, so E = X
⊕

Xd and denote by P

the band projection whose range is Xd. Let ξ ∈ Ĕ, ξ ≥ 0, ξ 6= 0, ‖ξ‖ ≤ 1, now for

all g ∈ E+ and ε > 0, define T : E −→ E as follows :

T (g) = P (g) +
∞∑

k=−∞

ΨkPk(g) + ε · ΦP1(g) · ξ

where Φ is the unique linear extension on E of the additive function ‖.‖ : E+ −→ R+

(see Theorem 2.2.2). It is clear that T is a positive operator.

Claim (1) : For all m ∈ Z+ we have

Tmg = P (g) +
∞∑

k=−∞

Ψk . . .Ψk−(m−1)Pk−(m−1)(g) + ε · Φ

(
m∑

i=1

P2−i(g)

)
· ξ

We prove this statement by induction, clearly it is true for m = 1, assume that it is

true for m = n, to prove it for m = n+ 1.
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T n+1g = T (T ng)

= P (g) + T

(
∞∑

k=−∞

Ψk . . .Ψk−(n−1)Pk−(n−1)(g)

)
+ ε · Φ

(
n∑

i=1

P2−i(g)

)
· ξ

= P (g) +
∞∑

i=−∞

ΨiPi

(
∞∑

k=−∞

Ψk . . .Ψk−(n−1)Pk−(n−1)(g)

)

+ ε · ΦP1

(
∞∑

k=−∞

Ψk . . .Ψk−(n−1)Pk−(n−1)(g)

)
· ξ + ε · Φ

(
n∑

i=1

P2−i(g)

)
· ξ

= P (g) +
∞∑

i=−∞

Ψi . . .Ψi−nPi−n(g) + ε · Φ
(
Ψ0 . . .Ψ−(n−1)P−(n−1)(g)

)
· ξ

+ ε · Φ

(
n∑

i=1

P2−i(g)

)
· ξ

Now from the definition of Φ and the isometric property of Ψ′
is we have

T n+1g = P (g) +
∞∑

i=−∞

Ψi . . .Ψi−nPi−n(g) + ε · ΦP−(n−1)(g) · ξ + ε · Φ

(
n∑

i=1

P2−i(g)

)
· ξ

= P (g) +
∞∑

i=−∞

Ψi . . .Ψi−((n+1)−1)Pi−((n+1)−1)(g) + ε · Φ

(
n+1∑
i=1

P2−i(g)

)
· ξ

so the statement is proved for m = n+ 1. Similarly, for all m ∈ Z+ we have

T−mg = P (g) +
∞∑

k=−∞

Ψ−1
k . . .Ψ−1

k+(m−1)Pk+m(g)− ε · Φ

(
m∑

i=1

Pi+1(g)

)
· ξ

Claim (2) : T is a doubly power bounded operator. For, let g ∈ E+ :

‖Tmg‖ = ‖P (g)‖+

∥∥∥∥∥
∞∑

k=−∞

Ψk . . .Ψk−(m−1)Pk−(m−1)(g)

∥∥∥∥∥+ ε ·

∥∥∥∥∥
m∑

i=1

P2−i(g)

∥∥∥∥∥ · ‖ξ‖
= ‖P (g)‖+

∞∑
k=−∞

∥∥Ψk . . .Ψk−(m−1)Pk−(m−1)(g)
∥∥+ ε ·

∥∥∥∥∥
m∑

i=1

P2−i(g)

∥∥∥∥∥ · ‖ξ‖
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= ‖P (g)‖+
∞∑

k=−∞

∥∥Pk−(m−1)(g)
∥∥+ ε ·

∥∥∥∥∥
m∑

i=1

P2−i(g)

∥∥∥∥∥ · ‖ξ‖
= ‖P (g)‖+

∥∥∥∥∥
∞∑

k=−∞

Pk−(m−1)(g)

∥∥∥∥∥+ ε ·

∥∥∥∥∥
m∑

i=1

P2−i(g)

∥∥∥∥∥ · ‖ξ‖
=

∥∥∥∥∥P (g) +
∞∑

k=−∞

Pk−(m−1)(g)

∥∥∥∥∥+ ε ·

∥∥∥∥∥
m∑

i=1

P2−i(g)

∥∥∥∥∥ · ‖ξ‖
≤ ‖g‖+ ε · ‖g‖ · ‖ξ‖ ≤ ‖g‖(1 + ε).

So, ‖Tm‖ ≤ (1+ ε) for all m ∈ Z+. A similar computation shows that ‖Tm‖ ≤ (1+ ε)

for all m ∈ Z−, that is supn∈Z
‖T n‖ ≤ 1 + ε and hence T is a doubly power bounded

operator as claimed.

Claim (3) : T−1 is a non-positive operator. For, let 0 < h ∈ E2, then

T−1(h) = Ψ−1
1 P2(h)− ε · ΦP2(h) · ξ

the terms on the right hand side of the above equation are disjoint positive elements

and different from zero. By the uniqueness of the decomposition of Riesz space

elements as a difference of two disjoint positive elements (cf. Theorem 2.1.3), we

have

Ψ−1
1 P2(h) = (T−1(h))+ and ε · ΦP2(h) · ξ = (T−1(h))−

that is, T−1(h) � 0, and the proof of the lemma is complete.

Before we pass the next result, we need to define the concept of an atom in Riesz

spaces and give some of its important properties.

Definition 3.2.2. A positive element u in a Riesz space E is called an atom when-

ever x ∧ y = 0 and x, y ∈ [0, u] imply either x = 0 or y = 0

It follows from the definition that 0 is an atom and also if u is an atom then so

is λu for arbitrary λ ∈ R+. The Riesz space which has no atoms is referred to as

atomless and as examples of such spaces we may take C[0, 1] and L1[0, 1].

The following lemma establishes in (3) a simple characterization of atoms in

Archimedean Riesz spaces [2, Lemma 2.30]. In (1) and (2) we give some proper-

ties of atoms collected from [26, p.72-73].
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Lemma 3.2.3. (1) If u is an atom and 0 < x < u, then u = λx for some λ.

(2) If u and v are atoms, then either u ⊥ v or u = λv for some λ.

(3) A positive element u of an Archimedean Riesz space is an atom if and only if

the ideal Au generated by u coincides with the vector subspace generated by u.

Moreover, if u is an atom then < u >, the vector subspace generated by u, is a

projection band.

Now with the help of this lemma and Lemma 3.2.1, one may obtain the following

lemma which will play the crucial role in the proof of Theorem 3.2.8.

Lemma 3.2.4. [7, Lemma 2.4] Let E be an infinite dimensional AL-space and {eα}α∈A

be a countable family of pairwise distinct atoms in E. Then for any ε > 0 there exists

a positive operator T : E −→ E with non-positive inverse that satisfies supn∈Z
‖T n‖ ≤

1 + ε.

Proof. If {eα}α∈A is a countable family of pairwise distinct atoms in the AL-space E

andBα =< eα > for all α ∈ A, then according to Lemma 3.2.3 (2,3) for all α, β ∈ A we

have either eα⊥eβ or eα = λeβ for some λ > 0 and Bα is a projection band.Therefore

{Bα}α∈A is a countable family of pairwise disjoint bands of E. Moreover, these bands

are isometrically Riesz isomorphic. For, let α, β ∈ A, define Gαβ : Bα → Bβ as

Gαβ(λeα) =
λ‖eα‖
‖eβ‖

· eβ.

Clearly that Gαβ is an isometric Riesz isomorphism. Thus the conditions of Lemma

3.2.1 are satisfied and so the required operator exists.

A useful corollary of this lemma may be given as

Corollary 3.2.5. [7, Cor.2.5] Let m be an infinite cardinal number.Then for any

ε > 0, there exists a positive operator T on L1[0, 1]m with non-positive inverse that

satisfies supn∈Z
‖T n‖ ≤ 1 + ε.

Proof. Let Yk = [0, 1]k for all k ∈ N , the subsets of [0, 1] × Ym−1 have the form

[x, y] × A1 × A2 . . . An × Ym−n−1 where Ai ⊆ [0, 1] are measurable sets for all i ∈ N
and 0 ≤ x ≤ y ≤ 1. Now ∀ a, b ∈ N define
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Ψab : L1([a, b]× Ym−1) −→ L1([0, 1]× Ym−1)

χ[x,y]×A1×A2...An×Ym−n−1 7−→ (b− a).χ[x−a
b−a

, y−a
b−a

]×A1×A2...An×Ym−n−1

for all a ≤ x ≤ y ≤ b. Ψab is an isometric Riesz isomorphism. Now the density

of the simple functions in L1-spaces enables us to extend Ψab to the whole space

L1([a, b] × Ym−1) . Let c, d ∈ N then we get that Ψ−1
cd Ψab is an isometric Riesz

isomorphism between L1([a, b] × Ym−1) and L1([c, d] × Ym−1). So L1([a, b] × Ym−1)

∼= L1([c, d]× Ym−1) for all a, b, c, d ∈ N.

Let In = ( 1
1+n

, 1
n
] for all n ∈ N, then the discussion above shows that

L1(In×Ym−1) ∼= L1(In+1×Ym−1) for all n ∈ N. Now {L1(In×Ym−1)}∞n=1is a countable

family of pairwise disjoint nonempty bands in L1[0, 1]m and satisfies the conditions

of Lemma 3.2.1, so the required operator exists.

Our next result deals with the measure spaces and before that we need to introduce

the concept of atom in measures and we assume that the reader is familiar with the

main concepts of measure theory.

Definition 3.2.6. Let (X,Σ, µ) be a measure space. A measurable set A is called an

atom for µ if 0 < µ(A) <∞ and for every measurable subset B of A either µ(B) = 0

or µ(A) = µ(B).The measure µ is called purely atomic, if every measurable set of

positive measure has a subset which is an atom for µ. If µ has no atoms then it is

called purely nonatomic.

If µ is the counting measure on a set X then every point of X is an atom. The

Lebesgue measure on R is purely nonatomic.

Obviously, identifying almost equal sets as usual, different atoms may be consid-

ered as disjoint, and it follows that any set of finite measure (and hence of σ-finite

measure) contains at most countable number of atoms. Hence, any set E of σ-finite

measure is the disjoint union of two sets E1 and E2 such that E1 does not contain

any atom and E2 is a countable union of atoms.

If (X,Σ, µ) is a finite purely nonatomic measure space, then for all 1 ≤ p < ∞,

the space Lp(X,Σ, µ) can be represented as a Banach lattice in terms of countable

direct sums of spaces Lp([0, 1]m), where m is an infinite cardinal number and [0, 1]m
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is m product of [0, 1] with product Lebesgue measure. More precisely we have :

Theorem 3.2.7. [16, Thm.5.14.9] Let (X,Σ, µ) be a finite measure space, 1 ≤ p <

∞, and µ be purely nonatomic. Then there is a countable set {mβ : β < α} of

distinct cardinals (mβ ≥ ℵ0) such that Lp(X,Σ, µ) is isometrically Riesz isomorphic

to
[⊕∑

β<α Lp[0, 1]mβ

]
p
.

We are now ready to state our main theorem in this section which forms the core

of this chapter.

Theorem 3.2.8. [7, Thm.2.1] Let (X,Σ, µ) be a measure space, such that L1(X,Σ, µ)

is of infinite dimension. Then for any ε > 0, there exists a positive operator T :

L1(X,Σ, µ) −→ L1(X,Σ, µ) with non-positive inverse that satisfies supn∈Z
‖T n‖ ≤

1 + ε.

Proof. We discuss the following two cases :

Case (1) : If µ has infinitely many atoms. Then there exists a countable family

of pairwise disjoint nonzero atoms {Ei}∞i=1 for µ. If χi is the characteristic function

on Ei for all i, then {χi}∞i=1 is a countable family of pairwise distinct nonzero atoms

in L1(X,Σ, µ). Now apply Lemma 3.2.4 to get the required operator.

Case (2) : If µ has at most finitely many atoms. Since dimL1(X,Σ, µ) = ∞, we

may suppose that µ is purely nonatomic. Now there are two subcases to consider :

(i) There exists A ∈ Σ such that 0 < µ(A) < ∞. Denote by Σ (again) for the

induced σ−algebras in A and in X \ A, then we have

L1(X,Σ, µ) = L1(A,Σ, µ)⊕ L1(X \ A,Σ, µ).

Now from Theorem 3.2.7 we have

L1(A,Σ, µ) ∼=

[⊕∑
β<α

L1[0, 1]mβ

]
1

where {mβ : β < α} is the countable set of distinct cardinals as in Theorem 3.2.7.

Take one of these cardinals and call it mβ1 . Now from Corollary 3.2.5 we have that

for each ε > 0, there exists a positive operator S◦ : L1[0, 1]mβ1 −→ L1[0, 1]mβ1 with

non-positive inverse and satisfies supn∈Z
‖Sn

◦ ‖ ≤ 1 + ε.
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Now we define an operator S : L1(A,Σ, µ) −→ L1(A,Σ, µ) as :

1. On
⊕∑

βi<α, i6=1 L1[0, 1]mβi we define S as the identity operator.

2. On L1[0, 1]mβ1 we define S as S = S◦.

So, S is a positive operator on L1(A,Σ, µ) with non-positive inverse and satisfies

supn∈Z
‖Sn‖ ≤ 1 + ε. Finally the required operator

T : L1(X,Σ, µ) −→ L1(X,Σ, µ)

can be defined as follows : T = S on L1(A,Σ, µ) and T = I, the identity operator on

L1(X \ A,Σ, µ).

(ii) For each A ∈ Σ, µ(A) = ∞ or µ(A) = 0. In this case we have L1(X,Σ, µ) = {0}
which is of dimension one but in our case dim(L1(X,Σ, µ)) = ∞.

In view of Kakutani’s Theorem 2.2.13, the following corollary is an easy conse-

quence of Theorem 3.2.8.

Corollary 3.2.9. Let E be an infinite dimensional AL-space. Then for any ε > 0,

there exists a positive operator T : E −→ E with non-positive inverse that satisfies

supn∈Z
‖T n‖ ≤ 1 + ε.

If E and F are normed Riesz spaces and T : E −→ F is a positive operator, then

so is T ′. Indeed, let y ∈ (F ′)+, to show that T ′y ≥ 0. Let x ∈ E+, since T is positive,

Tx ≥ 0 and the positivity of y implies that y ◦ Tx ≥ 0 hence T ′y(x) ≥ 0, so T ′y is

positive. On the other hand, If T ∈ L(E) satisfies supn∈Z
‖T n‖ ≤M <∞, then from

Theorem 2.1.19(c) we have (T ′)n = (T n)′ for all n ∈ Z so, ‖(T ′)n‖ = ‖(T n)′‖ for all

n ∈ Z and by Theorem 2.1.19(d) we have ‖(T ′)n‖ = ‖(T n)′‖ = ‖T n‖ for all n ∈ Z.

Thus supn∈Z ‖(T ′)n‖ = supn∈Z ‖T n‖ ≤M <∞.

Using these remarks, another corollary of Theorem 3.2.8 may be obtained as

following.

Corollary 3.2.10. Let F be an infinite dimensional Banach lattice such that F = E ′

for some infinite dimensional AL-space E. Then for any ε > 0, there exists a positive

operator S : F −→ F with non-positive inverse that satisfies supn∈Z
‖Sn‖ ≤ 1 + ε.
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Proof. By Corollary 3.2.9, for any ε > 0, there exists a positive operator T : E −→ E

with non-positive inverse that satisfies supn∈Z
‖T n‖ ≤ 1 + ε. If we take S = T ′,

then S is positive operator on E ′ and satisfies supn∈Z
‖Sn‖ ≤ 1 + ε. Moreover, its

inverse S−1 = (T ′)−1 is non-positive. To show that we need to find y ∈ E ′
+ such that

S−1y is non-positive. Since T−1 is non-positive, there exists x ∈ E+ such that T−1x

is non-positive. Now according to the fact that (If F is a normed Riesz space and

z ∈ F , then z ≥ 0 if and only if y(z) ≥ 0 for all y ∈ E ′
+) there exists y ∈ E ′

+ such

that y(T−1x) < 0 and so S−1y(x) = y(T−1x) < 0. Hence S−1 is non-positive.
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Chapter 4

Mean ergodicity of positive

operators

4.1 Mean ergodicity of positive power bounded

operators in KB-spaces

The mean goal of this section, whose results are presented in [8], is to study the mean

ergodicity of positive power bounded operators in KB-spaces. We begin the section

by an introduction about the mean ergodicity of Markov operators.

Let (Ω,Σ, µ) be a σ−finite measure space, and L1 = L1(Ω,Σ, µ) be the space of

all real-valued Lebesgue-integrable functions on (Ω,Σ, µ). Let D = D(Ω,Σ, µ) be the

set of all densities on Ω, that is

D =
{
f ∈ L1 : f ≥ 0 and ‖f‖ = 1

}
.

A linear operator T : L1 → L1 is called a Markov operator if T (D) ⊆ D.

Obviously, any Markov operator is positive and has norm one.

It was proved [12] that if T is a Markov operator on an L1-space, then T is mean

ergodic and satisfies dim Fix(T ) <∞ whenever there exist a positive function h ∈ L1

and a real number η such that 0 ≤ η < 1 such that

lim sup
n→∞

∥∥∥(AT
nf − h

)
+

∥∥∥ ≤ η
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for every density f .

In this section, we extend this result to any power bounded positive operator on a

KB-space. More precisely, we prove that any positive power bounded operator T in

a KB-space E which satisfies

lim
n→∞

dist
(
AT

nx,W + ηBE

)
= 0 (∀x ∈ E, ‖x‖ ≤ 1)

where W is a weakly compact subset of E and 0 ≤ η < 1, is mean ergodic.

The principal tool in the proof of the main results of [12] was additivity of the norm

on the positive part of the L1-space. Since this is no longer the case for a general

KB-space, we use different ideas in present work. First we fix some necessary notion

and definitions. Let E be a Banach lattice. We denote by BE = {z ∈ E : ‖z‖ ≤ 1}
the closed unit ball of E. Given an element x ∈ E and a nonempty subset A ⊆ E,

dist(x,A) := inf{‖x− a‖ : a ∈ A}

denotes the distance between x and A.

Lemma 4.1.1. Let E be a KB-space, T be a positive power bounded operator in E,

W be a weakly compact subset of E, and η ∈ R, 0 ≤ η < 1 be such that

lim
n→∞

dist(AT
nx,W + ηBE) = 0

for any x ∈ BE. If T ′ has a nonzero positive fixed element, then so does T .

Proof. Let y′ be the nonzero positive T ′−fixed element. Fix ε > 0 satisfying η+ε < 1,

choose x ∈ BE∩E+ such that 〈y′, x〉 > 1−ε. Let x′′ ∈ E ′′
+ be a σ(E ′′, E ′)-cluster point

of (AT
nx)n. Then T ′′x′′ = x′′. SinceW is weakly compact in E and limn dist(AT

nx,W+

ηBE) = 0, we obtain that x′′ ∈ W + ηBE′′ . Moreover, 〈y′, x′′〉 = 〈y′, x〉 > 1− ε
(
since

x′′ is a σ(E ′′, E ′)-cluster point of (AT
nx)n then, for every δ > 0, there exists nδ such

that 〈y′, x′′〉 − 〈y′,AT
nδ
x〉 < δ. Thus we have 〈y′, x′′〉 − 〈AT ′

nδ
y′, x〉 < δ, and since

T ′y′ = y′, 〈y′, x′′〉 − 〈y′, x〉 < δ. By arbitrariness of δ, 〈y′, x′′〉 = 〈y′, x〉
)
.

Let P be the band projection from E ′′ onto E (such a projection exists because E

is a KB-space). Then (IdE′′−P )x′′ ∈ ηBE′′ (by IdE′′ we denote the identity operator
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on E ′′), and hence

〈y′, Px′′〉 = 〈y′, x′′〉 − 〈y′, (IdE′′ − P )x′′〉 > 1− ε− η > 0.

From

Px′′ + (IdE′′ − P )x′′ = x′′ = T ′′x′′ = x′′ = TPx′′ + T ′′(IdE′′ − P )x′′ ∈ E+ + E ′′
+,

and the fact that Px′′ is the biggest part of x′′ in E+, we get 0 ≤ TPx′′ ≤ Px′′.

Hence, (T nPx′′)n is a decreasing sequence in E+. Since E has order continuous

norm, z := limn T
nPx′′ ∈ E+ exists. Clearly Tz = z, and from

〈y′, z〉 = 〈y′, Px′′〉 > 0

it follows z 6= 0. Hence Fix(T ) ∩ E+ 6= {0}.

If T is a positive operator on a Banach lattice E, then x ∈ E is called a positive

fixed element of maximal support if x ∈ Fix(T )∩E+ and every y ∈ Fix(T )∩E+

is contained in the band generated by x.

Lemma 4.1.2. Let E be a a Banach lattice with order continuous norm, E has a

quasi-interior point of E, and T be a positive operator on E with Fix(T )∩E+ 6= {0}.
Then Fix(T ) ∩ E+ has an element u of maximal support.

Proof. Let e be a quasi-interior point of E. Then by Theorem 2.1.25 there exists a

strictly positive linear functional ψ on E. For x ∈ E, let Px be the band projection

from E onto the band generated by x. Set

α := sup
x∈Fix(T )∩E+

〈ψ, Pxe〉 > 0.

Choose xn ∈ Fix(T ) ∩ E+, n ∈ N, ‖xn‖ ≤ 1 with α = limn〈ψ, Pxne〉. Let u :=∑
n 2−nxn. Then u ∈ Fix(T ) ∩ E+. If Bu (resp. Bxn) is the band generated by u

(resp. xn for all n ∈ N), then Bu ⊇ Bxn and so Pu ≥ Pxn for all n ∈ N (see Theorem

2.1.12 ), and hence 〈ψ, Pue〉 = α. Let now x ∈ Fix(T ) ∩ E+. Clearly Pu+x ≥ Px and

Pu+x ≥ Pu. From

α = 〈ψ, Pue〉 ≤ 〈ψ, Pu+xe〉 ≤ α
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and the strict positivity of ψ we obtain Pue = Pu+xe. Since e is a quasi-interior point

then Pu = Pu+x. From Pu+x ≥ Px it follows that Pu ≥ Px. Thus u ∈ Fix(T ) ∩ E+

has a maximal support.

We are now in a position to state our main theorem.

Theorem 4.1.3. [8, Thm.1] Let E be a KB-space, T be a positive power bounded

operator in E, W be a weakly compact subset of E, and η ∈ R, 0 ≤ η < 1 be such

that

lim
n→∞

dist(AT
nx,W + ηBE) = 0

for any x ∈ BE. Then T is mean ergodic.

Proof. Without lost of generality we may assume that E has a quasi-interior point. In-

deed, for any x ∈ E, x 6= 0, we consider the closed ideal F generated by {T n|x| : n ≥ 0},
instead of E. Then F is a KB-space (cf. Definition 2.1.26) with a quasi-interior point∑

n≥0 2−nT n|x| and T (F ) ⊆ F . Moreover, F is a projection band in E (cf. Theorem

2.1.14). If P : E −→ F denotes the corresponding band projection, then

lim
n→∞

dist(AT
nz, P (W ) + ηBF ) = 0 (∀z ∈ BF ).

Since ‖P‖ = 1, and P (W ) is weakly compact in F , the restriction T |F satisfies the

assumptions of the theorem. Thus, to show that (AT
nx)n converges, it is enough to

show that T |F is mean ergodic. Hence we may assume that E has a quasi-interior

point, say e.

There are two alternative cases:

Case (1): (AT ′
n x

′)n is a σ(E ′, E)-nullsequence for each x′ ∈ E ′. Then (AT
nx)n

converges weakly to 0 for each x ∈ E and hence, by Eberlein’s mean ergodic theorem

(Theorem 2.3.9), (AT
n )n converges strongly to 0. Hence T is mean ergodic.

Case (2): There is x′ ∈ E ′
+ such that (AT ′

n x
′)n is not σ(E ′, E)-convergent to 0.

Let 0 6= y′ ∈ E ′
+ be a σ(E ′, E)-cluster point of (AT ′

n x
′)n. We may assume ‖y′‖ = 1.

Then, for all ε > 0, there exists n with 〈y′, x〉 − 〈AT ′
n x

′, x〉 < ε and 〈T ′y′, x〉 −
〈T ′AT ′

n x
′, x〉 < ε. Combining these estimates, we arrive at 〈y′, x〉− 〈T ′y′, x〉 < 2ε, but

ε and x were chosen arbitrary, so T ′y′ = y′.

By Lemma 4.1.1 , Fix(T ) ∩ E+ 6= {0} and so Lemma 4.1.2 implies that there exists
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u ∈ Fix(T ) ∩ E+ such that u has a maximal support. Denote by Bu the projection

band generated by u. Bu = cl
⋃∞

n=1[−nu, nu] by the order continuity of the norm in

E. Denote Q = IdE − Pu and S = QT . Since TPu = PuTPu then easy calculations

show that QT = QTQ, (and then (QTQ)n = (QT )n = QT n for all n).

We show that the sequence (QAT
n )n is strongly convergent to 0. If not, then

AS
n 6→ 0, and as in Case (2), there exists y′ ∈ Fix(S ′) ∩ E ′

+, y′ 6= 0. From

y′ = T ′Q′y′ = Q′T ′Q′y′ = Q′S ′y′ = Q′y′

we obtain that y′ ∈ Fix(T ′) ∩ E ′
+. By Lemma 4.1.1, there exists y ∈ Fix(T ) ∩ E+

such that 〈y′, y〉 > 0. Then

〈y′, Qy〉 = 〈Q′y′, y〉 = 〈y′, y〉 > 0

Hence (IdE − Pu)y = Qy 6= 0, i.e. y 6∈ Bu. This contradicts the fact that u has a

maximal support. Thus QAT
n → 0 strongly.

Since T is power bounded, M := supn≥0 ‖T n‖ < ∞. We shall use the following

two elementary formulae (cf.,Theorem 2.3.1(2,3))

AT
nk =

1

k
(AT

n + T nAT
n + T 2nAT

n + . . .+ T (k−1)nAT
n ) (1)

and

AT
j+i −AT

j = (j + i)−1(T j + T j+1 + . . .+ T j+i−1)− i(j + i)−1AT
j . (2)

Let x ∈ E and ε > 0. Since lim
n→∞

‖(IdE − Pu)AT
nx‖ = 0, there exists nε such that

dist(AT
nε
x,Bu) ≤ (3M)−1ε. Then there exist cε ∈ R+ and w ∈ [−cεu, cεu] satisfying

‖AT
nε
x− w‖ ≤ (2M)−1ε. Then, for any l ≥ 0,

‖T lAT
nε
x− T lw‖ ≤ ‖T l‖‖AT

nε
x− w‖ ≤M‖AT

nε
x− w‖ ≤ 2−1ε . (3)

T [−u, u] ⊆ [−u, u] implies T lw ∈ [−cεu, cεu] for all l. Combining (1) and (3) we

obtain that

dist(AT
nεkx, [−cεu, cεu]) ≤ 2−1ε (∀k ∈ R) . (4)
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By (2), there exists kε ∈ N satisfying

‖AT
nεk+ix−AT

nεkx‖ ≤ 2−1ε (∀k ≥ kε, i = 1, 2, . . . , nε). (5)

From (4) and (5) it follows that

dist(AT
p x, [−cεu, cεu]) ≤ ε (∀p ≥ nεkε) . (6)

By (6) the sequence (AT
nx)n is almost order bounded and hence it is relatively weakly

compact (cf. Theorem 2.1.22). Therefore (AT
nx)n has a weak cluster point, and then

by Eberlein’s theorem the sequence (AT
nx)n is norm convergent for any x ∈ E. Thus

T is mean ergodic.

Remark that, from the proof above, we can see even more, namely that Fix(T ) ⊆
Bu. Indeed, if x ∈ Fix(T ) then

P d
ux = (IdE − Pu)x = (IdE − Pu)AT

nx→ 0.

So P d
ux = 0, and hence x ∈ Bu.

Since order intervals in any KB-space are weakly compact, the theorem is true

if we replace a weakly compact subset W of E by an order interval [−g, g] for any

g ∈ E+. In this case, we have even more, the fixed space Fix(T ) of T is finite

dimensional and this is what the next theorem shows.

Theorem 4.1.4. [8, Thm.2] Let E be a KB-space, T be a positive power bounded

operator on E, g ∈ E+, and η ∈ R, 0 ≤ η < 1, be such that

lim
n→∞

dist(AT
nx, [−g, g] + ηBE) = 0 (7)

for any x ∈ BE. Then T is mean ergodic and Fix(T ) is finite dimensional.

Proof. The mean ergodicity of T follows from the preceding theorem.

Let us denote by C the order ideal generated by the set {x ∈ E+ : ‖AT
nx‖ → 0}

then, for any c ∈ C, ‖AT
nc‖ → 0. By the power boundedness of T , ‖AT

nx‖ → 0 for any

x ∈ C, and hence the norm closure C of C coincides with C. Since any norm closed
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ideal in a Banach lattice with order continuous norm is a band (cf., Theorem 2.1.21

(1 ⇔ 9)), C is a band, and since every band in E is a projection band, E = C ⊕Cd.

Obviously, C is T -invariant. Denote by PC the band projection PC : E → C, and

by PCd the band projection PCd : E → Cd. Let T1 := PCdT then 0 ≤ T1 ≤ T , and

the band Cd is T1-invariant. The operator T1 is power bounded, and

lim
n→∞

dist(AT1
n x, [−g, g] + ηBE) = 0 (∀x ∈ BE).

Thus T1 satisfies all conditions of Theorem 4.1.3 then, by this theorem, T1 is mean

ergodic. Consider the mean ergodic projections PT , PT1 : E → E defined as

PTx = lim
n→∞

AT
nx, PT1x = lim

n→∞
AT1

n x (∀x ∈ E).

By Theorem 2.3.8, Fix(T ) = PT (E) and Fix(T1) = PT1(E). Obviously

PT , PT1 ≥ 0 & Fix(T1) ⊆ Cd.

Now we show that PT1 is strictly positive on Cd. Since C is T -invariant, we obtain by

induction, that PCdT n = PCdT n
1 for all n ≥ 0. Then PCdAT

n = PCdAT1
n for all n ≥ 0,

and hence

PCdPT = PCdPT1 . (8)

Let x ∈ Cd
+, x 6= 0, then, by the construction of C, PTx 6= 0 and PCdPTx 6= 0 since

PTx ∈ Fix(T ). Then, by (8), PCdPT1x 6= 0, and hence PT1x 6= 0, and so PT1 is strictly

positive on Cd. By Theorem 2.2.6, Fix(T1) is a Banach Riesz subspace in Cd and

hence in E.

As it was shown in the proof of Theorem 4.1.3, there is a positive T1-fixed vector

u1 of a maximal support, and (IdE − Pu1)AT1
n → 0 strongly as n→∞. Hence

lim
n→∞

dist(AT1
n x, [−Pu1g, Pu1g] + ηBE) = 0 (∀x ∈ E, ‖x‖ ≤ 1). (9)

Assume that dim Fix(T1) = ∞ then by Judin’s theorem (cf.,Theorem 2.2.15) there

exists a sequence (xi)i ⊆ Fix(T1)+ such that xi ∧Fix(T1) xj = 0 for all i 6= j, and hence

xi ∧ xj = 0 for all i 6= j, since Fix(T1) is a sublattice in E. We may assume that
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‖xi‖ = 1. Set yi = Pu1g ∧ xi for any i. We obtain From (9)

‖yi‖ = ‖Pu1g ∧ xi‖ = ‖xi − (xi − Pu1g)+‖ ≥ 1− η > 0

for all i. On the other hand, (yi)i is an order bounded (by the element Pu1g) disjoint

sequence in E, so the order continuity of the norm in E implies that ‖yi‖ → 0

(cf.,Theorem 2.1.21 (1 ⇔ 5)) which contradicts to the inequality above. Hence

Fix(T1) is finite dimensional.

Now we shall show that Fix(T ) ⊆ PT (Fix(T1)). From this it will follow that

dim Fix(T ) ≤ dim Fix(T1) <∞, what is required.

Indeed, let f ∈ Fix(T ), then

f = PCf + PCdf = Tf = TPCf + TPCdf and

PCdf = PCdTPCf + PCdTPCdf = PCdTPCdf = T1PCdf,

since C is T -invariant. Hence PCdf ∈ Fix(T1). To finish the proof of the theorem it

is enough to show that f = PT (PCdf). It follows directly from

f = AT
nf = AT

n (PCf) +AT
n (PCdf) → PT (PCdf) (n→∞).

Remark that any mean ergodic positive operator T , such that dim Fix(T ) < ∞,

satisfies the condition (7) for some g ∈ E+ and η ∈ R, 0 ≤ η < 1. Moreover, η can

be taken arbitrary small.

Example 2.3.11(5) shows that the condition that E is a KB-space cannot be omit-

ted in Theorem 4.1.3 even for Banach lattices with order continuous norm. Indeed,

‖Tη‖ = 1 and for k ≥ 2, we have

T n
η ek = 2−n

n∑
l=0

(
n

l

)
ek+l.

So ‖T n
η ek‖ = 2−n

(
n

[n/2]

)
, where [q] is the integer part of q. But
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2−n

(
n

[n/2]

)
∼ 1/

√
π[n/2] ,

so T n
η ek converges in norm to 0 for all k ≥ 2. Moreover T n

η e1 ∈ [0, e1] + ηBc0 for all

n ∈ N, and hence

lim
n→∞

dist(ATη
n x, [−e1, e1] + ηBc0) = 0 (∀ x ∈ Bc0).

On the other hand, Tη is not mean ergodic (see Example 2.3.11(5)).

4.2 A characterization of KB-spaces

It is well-known, (cf. Theorem 2.3.10), that every power bounded operator in a

reflexive Banach space is mean ergodic. An old problem in the theory of Banach

spaces is the converse of the above fact, that is : Let E be a Banach space such that

every power bounded operator is mean ergodic. Is E reflexive? This problem was

formulated by Sucheston [24], and it was solved for σ−Dedekind complete Banach

lattices by Zaharopol [29], and for arbitrary Banach lattice by Emely’anov [9] and for

Banach spaces with bases by Fonf, Lin and Wojtaszczyk [14]. The question arises here

is : which other properties of Banach spaces or Banach lattices may be characterized

by the mean ergodicity of power bounded operators belonging to special classes of

operators?

In this direction some Banach lattices properties were characterized in [11]. For

example, KB-property for σ−Dedekind complete Banach lattices was characterized

there as follows :

Theorem 4.2.1. Let E be a σ−Dedekind complete Banach lattice. Then the following

conditions are equivalent.

(a) Every positive contraction on E which satisfies

lim
n→∞

dist(T nx, [−g, g]+ηBE) = 0 (10)

where g ∈ E+, and η ∈ R, 0 ≤ η < 1, is mean ergodic.

(b) E is a KB-space.
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Our idea here is to characterize KB-property for σ−Dedekind complete Banach

lattices by replacing condition (10) by the weaker one (7) and by working on positive

power bounded operators instead of positive contractions.

Theorem 4.2.2. [8, Thm.3] Let E be a σ-Dedekind complete Banach lattice. Then

the following conditions are equivalent:

(a) E is a KB-space.

(b) Any positive power bounded operator T on E, which satisfies

lim
n→∞

dist(AT
nx, [−g, g] + ηBE) = 0 (∀x ∈ BE)

for some g ∈ E+ and 0 ≤ η < 1, is mean ergodic.

(c) Any positive operator T on E, which satisfies

lim
n→∞

dist(T nx, [−g, g] + ηBE) = 0 (∀x ∈ BE)

for some g ∈ E+ and 0 ≤ η < 1, is mean ergodic.

Proof. (a) ⇒ (b): It follows from Theorem 4.1.4.

(b) ⇒ (c): It is obvious.

(c) ⇒ (a): It follows from [11, Thm.2.2]. We repeat the arguments from [11], in a

simple form, for convenience of the reader.

Assume that E is not a KB-space. If the norm on E is not order continuous then

there exists a disjoint order bounded sequence (en)n of E+ which does not converge to

0 in norm (see Theorem 2.1.21 (1 ⇔ 5)). Without lost of generality we may assume

that ‖en‖ = 1 and en ≤ u for some u ∈ E and all n. By [23, Exer.II.18.b] there

exists a disjoint normalized sequence (ψn)n in E ′
+ such that ψn(em) = 0 for m 6= n

and ψn(en) ≥ 1/2. We set ϕn =
ψn

ψn(en)
. Then ‖ϕn‖ ≤ 2 and ϕn(em) = δn,m. The

map U : `∞ → E, given by

Uf = sup{fnen : n ∈ N},

is a well defined topological Riesz isomorphism [20, Lemma 2.3.10(ii)]. Define
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V : E → `∞ by

(V x)n := ϕn(x).

Then ‖V ‖ ≤ 2 and V U = I on `∞. Consider the left shift L on `∞. L is not mean

ergodic (cf. Example 2.3.11(3)) and satisfies

lim
n→∞

dist(Lnx, [−(1)i, (1)i]) = 0 (∀ x ∈ B`∞),

where (1)i is the sequence in `∞ which is identically equal to 1. Then T := ULV is

a positive power bounded operator on E which is not mean ergodic and satisfies

lim
n→∞

dist(T nx, [−U((1)i), U((1)i)]) = 0 (∀ x ∈ BE).

Thus the norm on E is order continuous. By Theorem 2.1.27, there exists a Riesz

subspace F of E and a Riesz isomorphism V0 from F onto c0, and by Theorem 2.1.21

(1 ⇔ 8), F is the range of a positive projection P . Set

S = V −1
0 TηV0P,

where Tη is the operator on c0 constructed as in the end of the previous section, and

η satisfies

0 < η‖V −1
0 ‖‖V0‖‖P‖ < 1.

Then S is positive power bounded operator and

lim
n→∞

dist(Snx, [−V −1
0 e1, V

−1
0 e1] + η‖V −1

0 ‖‖V0‖‖P‖ ·BE) = 0 (∀ x ∈ BE).

The operator Tη is not mean ergodic in c0. Hence the operator S in E is also not

mean ergodic.
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[25] Yuri. Tomilov and J. Zemànek, “A new way of constructing examples in operator

ergodic theory”, Math. Proc. Camb. Phil. Soc. 137 (2004), 209–225.

[26] B.Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces,” Wolters–

Noordhoff, Groningen, Netherlands, 1967 (English translation from the Russian).

[27] A.C. Zaanen, Integration, North–Holland, Amesterdam, 1967.

[28] A.C. Zaanen, Riesz Spaces II, North–Holland, Amesterdam, 1983.

[29] R. Zaharopol, “Mean ergodicity of power-bounded operators in countably order

complete Banach lattices”, Math. Z. 192 (1986), 81–88.

55



Vita

Ali BINHADJAH was born in Tarim, Hadhramout, Yemen, on 2 June, 1970. He

completed his secondary education in Tarim Secondary School. He started his under-

graduate studies at the Department of Mathematics, College of Education-Mukalla,

Aden University, Yemen, in September 1992 and took his Bachelor’s degree in June

1996 graduating in first place. He became a research assistant at the Department of

Mathematics, College of Education-Seiyun, Hadhramout University of Sciences and

Technology, Yemen, in October 1997.

He started his graduate studies at the Department of Mathematics, Al-al-byte Uni-

versity, Jordan, in September 1998 under the Supervision of Prof. Dr. Mohammed

Khier Ahmed and received his M. Sc. degree in July 2001 with a thesis entitled

“The Isomorphism Problem in Group Rings”. In September 2002 he joint the Ph.D

program in the Department of Mathematics at Middle East Technical University,

Ankara, Turkey.

56


