
A METHOD FOR ROBUST DESIGN OF PRODUCTS OR PROCESSES WITH 
CATEGORICAL RESPONSE  

 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 

BY 
 
 
 
 
 

SERKAN ERDURAL 
 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

INDUSTRIAL ENGINEERING 
 
 
 
 
 
 
 

DECEMBER  2006 



 ii 

 
Approval of the Graduate School of Natural and Applied Science 
 
 
 

 
            Prof. Dr. Canan Özgen                         

Director 
 

 
I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Master of Science 
 
 

 
           Prof. Dr. Çağlar Güven 

 Head of Department 
 
 
 
This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 
 
 
 
 
              Dr. Özlem İlk                                                   Prof. Dr. Gülser Köksal 
     Co-Supervisor                    Supervisor 
 
     
Examining Committee Members  
 
 
Prof. Dr. Nur Evin Özdemirel    (METU, IE)  

 

Prof. Dr. Gülser Köksal                                    (METU, IE) 

 

Doç.Dr. Murat Caner Testik                   (HACETTEPE, IE) 

 

Dr. Özlem İlk                                                (METU, STAT) 

 

Dr. Özlem Türker             (ÇANKAYA, IE) 

 

 



 iii 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced 
all material and results that are not original to this work. 
 
 
 
        Serkan Erdural 
  

 
 
 

 
 
 
 
 
 
 



 iv 

 
ABSTRACT 

 
 
 
 
 

A METHOD FOR ROBUST DESIGN OF PRODUCTS OR PROCESSES WITH 
CATEGORICAL RESPONSE  

 
 

 
 
 
 

Erdural, Serkan 

M.S., Department of Industrial Engineering                     

Supervisor      : Prof. Dr. Gülser Köksal 

Co-Supervisor:  Dr. Özlem İlk  

 

 

December 2006,  104 pages 
 
 
 
 
 In industrial processes decreasing variation is very important while achieving 

the targets. For manufacturers, finding out optimal settings of product and process 

parameters that are capable of producing desired results under great conditions is 

crucial. In most cases, the quality response is measured on a continuous scale. 

However, in some cases, the desired quality response may be qualitative 

(categorical). There are many effective methods to design robust products/process 

through industrial experimentation when the response variable is continuous. But 

methods proposed so far in the literature for robust design with categorical response 

variables have various limitations. 
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This study offers a simple and effective method for the analysis of categorical 

response data for robust product or process design. This method handles both 

location and dispersion effects to explore robust settings in an effective way. The 

method is illustrated on two cases: A foam molding process design and an iron-

casting process design. 
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KATEGORİK ÇIKTISI OLAN ÜRÜN VEYA SÜREÇLERİN ROBUST 
TASARIMI İÇİN BİR METOT   
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Aralık 2006,  104 sayfa 
 
 
 
 
 
 
 Endüstriyel süreçlerde hedeflenene ulaşırken değişkenliği azaltmak oldukça 

önemlidir. Üreticiler için, istenilen hedefleri mükemmel derecede gerçekleştirecek 

optimum ürün ve süreç parametreleri belirlemek çok kritiktir. Bir çok durumda, 

kalite verileri nicel (sürekli) olarak ölçülür. Ancak bazı durumlarda kalite verileri 

nitel (kategorik) olabilir. Süreç çıktı değişkenlerinin sürekli skalada olduğu 

durumlarda endüstriyel deneylerdeki robust ürün/süreç tasarımı için birçok etkili 



 vii 

metotlar mevcuttur. Fakat literatürde kategorik çıktı değişkenleri ile robust tasarım 

için çeşitli kısıtlamalar vardır.  

 

 Bu çalışma, çıktı değişkeni kategorik olan ürün ya da süreçlerin robust 

parametre tasarımı için basit ve etkili bir  metot sunmaktadır. Bu metot, lokasyon ve 

varyasyon etkilerini tanımlayarak, robust parametre ayarlarının etkili bir yolla 

bulunmasını sağlamaktadır. Metodun uygulanması iki farklı vaka analizinde 

gösterilmiştir: Köpük kalıplama deney tasarımı ve demir döküm süreci tasarımı. 

 

 

Anahtar Kelimeler: Robust Tasarım, Kategorik çıktı, Taguchi Parametre Tasarım 

Yaklaşımı, Cevap Yüzeyi Metodu, Genelleştirmiş Lineer Modeller 
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CHAPTER I 
 
 

INTRODUCTION 

 

 

 Variation in the performance of a product degrades the product’s quality and 

most of the time decreasing variation is very important for achieving targets in 

products and/or processes. Designing products and processes that are insensitive to 

sources of variation provide a serious competitive advantage to producers. This 

approach is called robust design (also known as parameter design or optimization). 

The goal of parameter design studies is to choose the settings of the control factors so 

that the performance of a system (product or process) is insensitive to variation in 

uncontrollable “noise” factors. This is done through a designed experiment where the 

effect of control (design) factors on both location and dispersion are investigated 

(Phadke, 1989). This is a very cost-effective approach introduced by Genichi 

Taguchi (Taguchi, 1986) and extended and successfully applied by many 

practitioners.  

  

 A quality response of products or processes is typically measured 

quantitatively on interval or ratio scale. However, in some cases, the response has to 

be measured qualitatively (categorical) using a nominal or ordinal scale. Quality 

characteristics that require expert judgment or comparison to a standard or go/no-go 

decisions can be an example for qualitative response. Manufacturers generally find it 

easy and cheap to assess quality on an ordinal scale such as “very good”, “good” and 

“bad”, or “pass” and “fail” or sometimes it is impossible to measure in a quantitative 

scale.  

 

 There are many effective methods to obtain robustness by industrial 

experiments when response variable is continuous. But when the response variable is 
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categorical, the approaches developed by analysis of both location and dispersion 

effects are limited and generally conducting the analysis is hard to apply for 

engineers. 

 

 This study offers a relatively simple and effective method for the analysis of 

categorical response data for robust product or process design. The main basis of 

method is to find the robust settings of the design variables when the response 

variable is categorical (binary, ordinal or nominal) by handling both location and 

dispersion effects to explore robust settings in an effective way.  The main 

advantages of the proposed method compared to the existing methods are: (1) the 

method clearly identifies location (mean) effects and dispersion (variance) effects 

and (2) the application of the method is relatively simple and the method can be 

applied by popular software packages. We also apply the proposed method to two 

different problems to illustrate the use of the proposed method and discuss the 

results. 

 

 We begin with a review of parameter design and then we consider the 

response surface method for robust design in Section 2. Also we make a review and 

provide some background information for existing methods available for robust 

analyzing of categorical data in Section 2. In Section 3, we introduce the proposed 

method that for robust design of products or processes with categorical response. In 

Section 4 we discuss the application of the proposed method for nominal data and 

finally, the study concludes in Section 5 with a summary of the study, advantages 

and disadvantages of the proposed method and discussion for the future work.   
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CHAPTER II 

 

 

LITERATURE SURVEY AND BACKGROUND 

 

 

 Many approaches have been proposed to find robust parameter levels when 

the response variables are measured on continuous scale (Robinson et al., 2004, 

Phadke, 1989). To investigate the relationship between the response and the product 

or process parameters (control factors) under the influence of uncontrollable (noise) 

factors, conventional experimental design techniques are used. The collected data 

through experimentation are typically used to estimate the quality characteristic’s (or 

the response variable’s) mean and variance for given parameter levels. Then, a 

search is performed to find the parameter levels that yield the minimum variance and 

bring the mean to the target.  

 

 Taguchi’s approach (Taguchi and Wu, 1980) gives fundamental tools for 

practitioners by suggesting them to choose the levels that maximize the signal-to-

noise ratios (SNR). By utilizing SNR, Taguchi proposed a two step procedure that 

utilizes SNR to minimization of expected quality loss to the customers. But many 

authors criticized Taguchi’s approach because of inefficiency of the method, the 

requirement for large experimental runs and inadequacy of SNR (Nair et al, 1992) 

and suggested some extensions on the method or the use of separate models for the 

system mean and variance for a better understanding of the process. By following 

these suggestions, Response Surface Methodology (RSM) becomes an alternative 

approach to the robust design problem. (Robinson et al., 2004)  
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2.1 Robust (Parameter) Design 

 

 Robust design is an engineering methodology for improving productivity 

during research and development so that high-quality products can be produced 

quickly and at low cost (Phadke, 1989). The idea behind robust design is to improve 

the quality of a product by minimizing the effects of variation without eliminating 

the causes (since they are too difficult or too expensive to control). This method is an 

off-line quality control method that is applied at both the product and process design 

stage to improve product quality by making products insensitive to environmental 

conditions and component variations. Briefly robust design is a design that has 

minimum sensitivity to variations in uncontrollable factors. 

 

 There are two basic designing approaches in a robust design experiment: the 

product array and the combined array. The product array separately fractionates the 

control factors and the noise factors and forms the cross product by running the noise 

array with every control factor combination in the control array.  The combined array 

fractionates all of the factors in a single factorial design.  

 

 There are many parameter design methods but mainly Taguchi’s techniques 

and Response Surface Methodology (RSM) is represented in this study. 

 

 

2.1.1. Taguchi’s Robust Design Method 

 

2.1.1.1. History of Taguchi Method 

 

 Since 1960, Taguchi methods have been used for improving the quality of 

Japanese products with great success. During the 1980’s, many companies finally 

realized that the old methods for quality assurance were not competitive with the 

Japanese methods. The old methods for quality assurance relied heavily upon 

inspecting products as they produced the production line and rejecting those products 
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that did not fall within a certain acceptance range. However, according to Taguchi, a 

product can not be improved by large amount of inspection; quality must be designed 

into a product from the start. Nowadays, Taguchi’s parameter design approaches are 

widely used to improve product quality and design robustness and most of the 

companies are adapting this philosophy to their products and processes. 

 

 

2.1.1.2.Taguchi’s Parameter Design Approach 

 

 During the design stage of the products and processes, off-line quality control 

techniques are applied to reduce the variation by product and process engineers. 

After that, in production stage, process and production engineers apply on-line 

quality control techniques to make adjustments on the average response. Within the 

Taguchi philosophy both quality improvement methods are considered; however, the 

main goal is building quality into the product during the design stage (i.e., off-line). 

 

 To achieve desirable product quality in design stage, a three-stage process is 

suggested by Taguchi (Kackar 1985):  

 

Ø System design 

Ø Parameter design 

Ø Tolerance design.  

 

 System design is the process of applying scientific and engineering 

knowledge to produce a basic functional prototype design, which defines the initial 

settings of the product or process design characteristics.  

 

 Tolerance design, which  is the final part of design stage, is a method for 

determining tolerances that maximizes the product quality and minimizes the sum of 

product manufacturing and lifetime costs. 
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 Parameter design, which is the main part of Taguchi’s approach is an 

investigation conducted to identify settings that minimize the performance variation. 

A product or a process can perform its intended function at many settings of its 

design characteristics. However, variation in the performance characteristics may 

change with different settings. This variation increase both product manufacturing 

and lifetime costs. Therefore, identifying optimal parameter settings that will reduce 

the variation is important and parameter design aims to reduce the cost of variation 

by optimizing the process parameter settings. 

    

 In parameter design the system variables are experimentally analyzed to 

determine how the product or process reacts to uncontrollable “noise” in the system. 

Parameter design is related to finding the appropriate design factor levels to make the 

system less sensitive to variations in uncontrollable noise factors, i.e., to make the 

system robust. In this way the product performs better, reducing the loss to the 

customer. 

 

 In parameter design, there are two types of factors that affect a product’s 

functional characteristic: control factors and noise factors. Control factors are those 

factors which can easily be controlled such as material choice, cycle time, or mold 

temperature in an injection molding process. Noise factors are factors that are 

difficult or impossible or too expensive to control. There are three types of noise 

factors: outer noise, inner noise, and between product noise. Noise factors are 

primarily reasons that cause a product’s performance to deviate from its target value. 

Hence, parameter design seeks to identify settings of the control factors which make 

the product insensitive to variations in the noise factors, i.e., make the product more 

robust. Figure 1 is a block diagram representation of a simple parameter design 

problem. For a given setting of control parameters C, noise N produces a 

characteristic output Y. The output is determined by the transfer function, f(C,N).   

   

 

 



 7 

 

 
 

Figure 1. A block diagram representation of a simple parameter design problem 

(adapted from Leon et al., 1987) 

 

 

 

The performance of the output is measured by determining how it deviates from the 

target. In parameter design this deviation is expressed by total expected loss which is 

calculated with the quality loss function as it can be seen in Figure 1. 

 

 

2.1.1.3. Quality Loss Function 

 

 The quality loss function is a continuous function that is defined in terms of 

the deviation of a design parameter from an ideal or target value.  

 

 Taguchi introduced the loss function first that was expressed in terms of the 

quadratic relationship: 

L = k (y - T)2          [2.1] 
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where y is the performance output, L is the loss occurred from a particular parameter 

y, T is the nominal (target) value of the parameter specification, k is a constant that 

depends on the cost at the specification limits. The constant k can be determined by 

dividing the cost of failure (defect), by the square of the lower or higher tolerance 

values. This function penalizes the deviation of a parameter from the specification 

value that contributes to decreasing the performance of the product, resulting in a 

loss to the customer. The key point here is that a product engineer has a good 

understanding of what the nominal size of the specification is. The usual lower and 

upper limits for the tolerance of a given design parameter are changed to a 

continuous function that presents any parameter value other than the nominal as a 

loss.  

 

 The loss function given in Equation [2.1] is referred to as “nominal is best,” 

but there are also expressions for cases when higher or lower values of parameters 

are better (Phadke, 1989). 

 

If a large number of parts are considered, say N, the average loss per part is equal to 

the summation of the losses given by Equation [2.1] for each part, divided by the 

total N. The average quality loss results from deviation around the average value of y 

from the target and the mean square deviation of y around its own mean. The average 

quality loss can be expressed as: 

 

L = k[σ2 + (µ - T)2]                  [2.2] 

 

where µ is the average value of y for the set of parts, and  σ2 is the variance around 

the average. 

 To minimize loss, the traditional approach is to monitor the process variables 

during production and adjust the process to reduce manufacturing imperfections so 

that response parameters fall within the specified tolerances. This method adds cost 

to the manufacturing process and does not improve the quality of the product. Using 



 9 

Taguchi’s approach the average response has to be adjusted, and the variance must 

be reduced in order to minimize loss. 

 

 

2.1.1.4. Design of Experiments Techniques in Taguchi’s Approach 

 

 Design of experiments techniques, specifically Orthogonal Arrays (OAs), are 

employed in Taguchi’s approach to systematically vary and test the different levels 

of each of the control factors. Commonly used OAs include the L4, L9, L12, L18, 

and L27, several of which are listed in Table 1. A complete listing of OAs can be 

found in textbooks such as Phadke (1989). The columns in the OA indicate the factor 

and its corresponding levels, and each row in the OA constitutes an experimental run 

which is performed at the given factor settings. Selecting the number of factors and 

their levels is the main part in planning robust design experiments. 

 

 

Table 1. Some commonly used ortogonal arrays (adapted from Phadke 1989) 

 

 
 

 

 

 To implement robust design, Taguchi techniques use an “inner array” and 

“outer array” approach. The “inner array” consists of the OA that contains the 

control factor settings; the “outer array” consists of the OA that contains the noise 
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factors and their settings which are under investigation. The combination of the 

“inner array” and “outer array” constitutes the “product array” or “complete 

parameter design layout.” The product array is used to systematically test various 

combinations of the control factor settings over all combinations of noise factors 

after which the mean response and standard deviation may be approximated for each 

run using the following equations. (Shoemaker et al, 1991) 

 

Mean response:  
 

∑
=

=
n
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Standard deviation:  
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2.1.1.5. Signal-to-Noise Ratios (SNR) 

 

 The mean and the variance are combined into a single performance measure 

known as the signal-to-noise ratio (SNR). The preferred parameter settings are then 

determined through analysis of the SNR where the factor levels that maximize the 

appropriate SNR are chosen. Taguchi classifies parameter-design problems into 

different categories depending on the goal of the researcher and a different SNR is 

defined for each category. The categories are the smaller the better, the larger the 

better, or nominal the best for the quality characteristic y (Phadke, 1989). 

 
• Smaller the better (for making the system response as small as possible): 
 
 
     [2.5] 
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• Larger the better (for making the system response as large as possible): 
 
 

 
     [2.6] 
 
 
• Nominal the best (for reducing variability around a target): 
 
 
When variance is linked to mean: 
 
 
 
 
       [2.7] 
 
 
When variance is not linked to mean: 
 
      [2.8] 
 
 

 These SNRs are derived from the quadratic loss functions and are expressed 

in a decibel (dB) scale. Once all of the SNRs have been computed for each run of an 

experiment, graphical approaches, such as main effect plots, and analysis of variance 

(ANOVA) are used to analyze the data. In the graphical approach, the SNR and 

average responses are plotted for each factor against each of its levels. The standard 

ANOVA is used to identify the control factors that affect the SNR. Those factors that 

do not affect the SNR are referred to as ‘adjustment factors’ and are used to adjust 

the average performance on target. 

 

 

2.1.1.6. Taguchi’s 2-step Optimization Procedure 

 

 To accomplish the objective of minimal expected squared-error loss Taguchi 

proposes the following two-step optimization procedure: 

 

∑
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1. Calculate and model the SNRs and find the non-adjustment factor settings which 

maximize the SNR, 

2. Shift mean response to the target by changing the adjustment factor(s). 

 

Using this information, the control factors can also be grouped as follows. 

 

1. Factors that affect both the variation and the average performance of the 

product. 

2. Factors that affect the variation only. 

3. Factors that affect the average only. 

4. Factors that do not affect either the variance or the average. 

 

 Factors in the first and second groups can be utilized to reduce the variations 

in the system, making it more robust. Factors in the third group are then used to 

adjust the average to the target value. Lastly, factors in the fourth group are set to the 

most economical level. Finally, confirmation tests should be run at the “optimal” 

product settings to verify that the predicted performance is actually realized. 

 

 

 

2.1.2. Response Surface Method  

 

 Response surface methodology (RSM) is a collection of mathematical and 

statistical techniques that are useful for modeling and analysis in applications where 

one or more response variables are influenced by a set of quantitative experimental 

variables or factors and the objective is to optimize the response variable(s). 

(Montgomery, 2001)   

  

 The main aim of RSM is modeling a relationship between the quantitative 

factors and the response variable(s). RSM is often employed to find factor settings 

(operating conditions) that produce the "best" response variable(s) and that satisfy 
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process and operating specifications. RSM is also useful for identifying new 

operating conditions that produce desired improvement in product quality over the 

quality achieved by current conditions. 

 

 In this study our problem is to find robust settings by obtaining the desired 

mean response with minimum variance. Since we will deal with two response 

surfaces, in the next sections this RSM problem will be called dual response 

optimization problem.   

 

 

2.1.2.1.Dual Response Optimization 

   

 
 Dual response optimization is a special case of multi-objective RSM 

especially used for modeling two objectives: mean and variance. The dual response 

optimization provides a reasonable basis to achieve the basic goals of Taguchi’s 

robust design philosophy without resorting to combining information about both 

mean and variability into a SNR. (Köksoy and Muluk, 2004). 

 

 The dual response surface (DRS) approach, that became popular in 1990s, 

suggests that the process characteristic and its process variability form a DRS, and 

two separate models are established for the response and its variance. This approach 

allows the use of all regression tools to define the two response surfaces. In practice, 

the two separate models give the analyst a more scientific understanding of the total 

process, and thus allow them to see what levels of the control factors can lead to 

satisfactory values of the response as well as the variance (Vining and Myers, 1990). 

 

 Like other optimization work in RSM, the dual response optimization 

problem also consists of the following three stages. The first stage is to build an 

optimal experiment so that the information among the responses and the control 

factors can be obtained efficiently. The second stage is to build two models based on 
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the data from the experiment, one for the process characteristic and the other for the 

process variance. The last stage is to search for the optimal operating condition 

throughout the region of interest (x∈R) under certain optimization constraints based 

on the process or product. A typical DRS optimization model is represented in [2.9]. 
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where x is a k×1 vector of control or design variables, B and C are k×k matrices 

containing the estimated coefficients of the second-order terms of each response 

model, b and c are k×1 vectors containing the estimated coefficients of the first-order 

terms of each response model, b0 and c0 are intercepts, R defines the experimental 

region of interest (x∈R). 

 

 There are many optimization algorithms employed for the multi response 

problem such as Quasi-Newton Method, General Reduced Gradient (GRG), Genetic 

Algorithms and NIMBUS (Köksoy and Muluk, 2004). Especially GRG algorithm is 

a widely used local optimization algorithm in DRS problems (Del Castillo and 

Montgomery, 1993). One of the advantages of GRG is that it can be applied by the 

widely used software packages such as Microsoft Excel and Minitab. The main 

disadvantage of GRG method is that the results sometimes depend on the initial 

settings and these initial values should be chosen carefully for finding the global 

optimum values. 

 

 For the multi-response model solution with GRG algorithm the usage of 

desirability functions are recommended (Del Castillo and Montgomery, 1993 and 

Tang and Xu, 2002). Usage of desirability functions is very common and most of the 

software packages such as Minitab, JMP and Statistica use these functions for multi-
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response optimization. In the next section the detailed information is given about 

these functions.   

 

 

2.1.2.2.Multiple Response Optimization with Desirability Functions 

 

 The desirability function approach is one of the most widely used methods in 

industry for the optimization of multiple response processes. It is based on the idea 

that the "quality" of a product or process that has multiple quality characteristics, 

with one of them outside of some "desired" limits, is completely unacceptable. The 

method finds operating conditions that provide the "most desirable" response values 

(Derringer and Suich, 1980). 

 The desirability approach is a popular method that assigns a "score" to a set 

of responses and chooses factor settings that maximize that score. For each response 

Yi(x), a desirability function di(Yi) assigns numbers between 0 and 1 to the possible 

values of Yi, with di(Yi) = 0 representing a completely undesirable value of Yi and 

di(Yi) = 1 representing a completely desirable or ideal response value. The individual 

desirabilities are then combined using the geometric mean, which gives the overall 

desirability D:  

D = (d1(Y1)* d2(Y2)* ….* dk(Yk))1/k         [2.10] 

 

with k denoting the number of responses. Notice that if any response Yi is completely 

undesirable (di(Yi) = 0), then the overall desirability is zero.  

 

 Depending on whether a particular response Yi is to be maximized, 

minimized, or assigned a target value, different desirability functions di(Yi) can be 

used. A useful class of desirability functions was proposed by Derringer and Suich 

(1980). Let Li, Ui and Ti be the lower, upper, and target values, respectively, that are 

desired for response Yi, with Li Ti Ui. 
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 In the next sections, different types of desirability functions are provided for 

the particular cases of the response such as nominal the best, smaller the better and 

larger the better.    

 

 

Desirability function for "target is best" 

 

If a response is of the "target is best" kind, then its individual desirability function is  

 

 

 

 

 

 

 

 

 

 

 

 

with the exponents s and t determining how important it is to hit the target value. For 

s = t = 1, the desirability function increases linearly towards Ti; for s < 1, t < 1, the 

function is convex, and for s > 1, t > 1, the function is concave. Figure 2 shows the 

shape of desirability function based on different problem types, s and t values. 

 

 

 
Desirability function for maximizing a response 

 

( )

( )
( ) ( )

( ) ( )

( )

[ ]11.2

ˆ0

ˆˆ

ˆˆ

ˆ0

ˆ
















〉

≤≤








−
−

≤≤








−
−

〈

=

ii

iii

t

ii

ii

iii

s

ii

ii

ii

ii

UxYif

UxYTif
UT

UxY

TxYLif
LT

LxY
LxYif

Yd



 17 

If a response is to be maximized instead, the individual desirability is defined as  
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with Ti in this case interpreted as a large enough value for the response 

 

 

 

Desirability function for minimizing a response 

 

Finally, if we want to minimize a response, we could use  

 

 

 

 

 

 

with Ti denoting a small enough value for the response. 
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Figure 2. The shape of the desirability functions based on different problem types, s 

and t values 

 

 

 

Desirability approach steps 

 

The desirability approach consists of the following steps:  

1. Conduct experiments and fit response models for all k responses;  

2. Define individual desirability functions for each response;  

3. Maximize the overall desirability D with respect to the controllable factors. 

Tang and Xu (2002) defines some approaches to optimize a dual response system by 

using desirability functions in Excel solver and shows practical solutions on some 

examples.  
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2.2. The Usage of Categorical Data in Industrial Processes 

 

 Industrial and other experimental results often appear as categorical data. 

Generally it is easier and cheaper to assess quality on categorical measure instead of 

measuring quantitatively. Moreover, sometimes it is impossible to measure in 

quantitative scale because of practical and technical difficulties. Therefore qualitative 

measurements are sometimes more critical in some processes.    

 

 There are three types of categorical responses generally observed in 

industrial processes: binary, ordinal (ordered) and nominal. Table 2 gives some 

definitions and examples for these types.   

 Standard textbooks on experimental design and analysis do not give special 

attention to these problems. In next sections, some of the methods for modeling 

ordinal categorical data are briefly presented and the main characteristics and pitfalls 

of these models are discussed.    
 

 

 

Table 2. Categorical response variable types 

 

Variable type 
Number of 
categories Characteristics Examples 

Binary 2 two levels success, failure 
yes, no 

Ordinal 3 or more natural ordering of the 
levels 

very bad, bad, good 
high, medium, low 

Nominal 3 or more no natural ordering of 
the levels 

blue, black, red, yellow 
Fiat, Toyota, Opel 
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2.2.1. Techniques Available For The Robust Analysis Of Categorical 

Data 

 

Techniques available for the robust design analysis of categorical data include 

Accumulation Analysis (AA), scoring methods, Generalized Linear models and 

Bayesian Analysis (BA).  

 

 

2.2.1.1.Accumulation Analysis 

 

 Accumulation Analysis (AA) was introduced by Taguchi in 1974 for 

analyzing ordered categorical data from industrial experiments. It is an ANOVA-like 

approach using cumulative frequencies of the response categories and the name 

accumulation analysis comes from accumulating these frequencies to the last 

category. In spite of criticism presented in the next section, AA is still referred to as 

one of attribute data analysis methods in some books (Ross, 1996) and software 

packages (Statistica, 2005).  

 

 Nair (1986) defines the method on an example. Consider a one-factor 

experiment with factor A with I levels and assume that there are an equal 

number, n, of observations at each level. The observations are classified into one 

of K ordered categories, and Yik denotes the observed frequency in category k at 

level i (k = 1, ..., K and i = 1, ..., I).  

 

Lets denote the cumulative frequencies by  

 

∑ =
=

k
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     [2.14] 

 

and their averages across levels by 
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Then the sum of squares (SS) for factor A is given by 

( )[ ]∑∑
−

= = −
−

=
1

1 1

2)(K

k

I

i kk

kik
A CnC

CC
nSS    [2.16] 

 

This is obtained as follows. From the cumulative frequencies in the kth column, 

we get the sum of squares for factor A as  

∑
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 Since these have different expectations under the null hypothesis that 

factor A has no effect, they are standardized before being combined to get the 

single sum of squares in [2.16]. AA suggests using (I-1)(K-1) degrees of freedom 

(df) for SSA. 

 

 Since the cumulative frequency Cik in the (i, k)th cell is made up of Cik 

ones and (n-Cik) zeros, the within sum of  square is   proportional   to          

[Cik(n-Cik)]. By combining these, the sum of squares for error term will be:  
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 The   expectation   of  SSe   is   [n(n-1)I2(K-1)/(In-1)] ≈ I(n-1)(K-1). 

Because of this, Taguchi suggested taking I(n-1)(K-1) as df for SSe and using 

the statistic 

e

A
A MS

MSF =       [2.19] 
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to test for the effect of factor A (MS denotes mean square). The preceding 

definitions extend in a straightforward way to multifactor situations. 

 

 AA's simplicity and similarity to ANOVA is appealing. Unfortunately, it does 

not possess ANOVA's property of independent sums of squares. Noticing that SSe = 

constant - SSA, Nair (1986) and Box and Jones (1986) pointed out the undesirable 

property that SSe depends on the effect of factor A. Consequently, they proposed 

using only the numerator sum of squares SSA from [2.16].  

 

 Furthermore, Nair (1986) noted that in the multifactor setting, the modified 

AA statistic eliminates one way in which the AA statistic for a factor depends on the 

other factors. For example, this can be easily seen in the two-factor main effects 

setting, where the distribution of the original AA statistic for factor A depends on 

factor B since SSe = constant - SSA - SSB. 

 

 Based on the heavy criticism by Nair (1986), Hamada and Wu (1986, 1990) 

and Box and Jones (1986), the main pitfalls of the method are: 

§ The cumulative frequencies do not satisfy the necessary model assumptions  

§ Factor effects become dependent  

§ Sometimes it detects spurious factor effects  

§ It detects a mixture of location and dispersion effects 

 

 In view of these results and the findings of earlier research, it is concluded 

that accumulation analysis is inefficient, as well as unnecessarily complicated 

consequently should not be taught or recommended. 
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 Accumulation Analysis and Scoring methods are applied on Post-Etch 

Window size experiment (Nair, 86), the results of these two method are presented in 

Appendix-1. 

 

 

 

 

2.2.1.2.Scoring Methods 

 

 Another method for analyzing ordered categories is assigning scores on the 

ordered categories and performing ANOVA on these scores. Although this so-called 

scored ANOVA approach is simple, shortcomings of this method are: (1) the scored 

categories are not continuous and the normal distribution assumptions may be 

unreasonable, (2) the results depend completely on the scores assigned (See Nair 

(1986) and Hamada and Wu (1990) for further discussion). 

 Nair (1986) showed that in the single factor setting the AA statistic can 
be expressed as a weighted sum of score statistics. Since the scores are linear, 
quadratic, etc., the first two components have been interpreted as tests for 

location and dispersion effects. Then he proposed using these two components 
and simpler alternatives to test for location and dispersion effects. Nair suggested 
using simpler alternatives SS(l) and SS(d) with data-based scores 1 and d.  

 

 The first set of scores that Nair proposed for determining location effects (l) 

for observations fall into category k can be computed as follows: 

 

 

 

where qj is the overall proportion of observations in kth category and τk is 
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which is proportional to the mid-rank category k. 

 

 Similarly, the second set of scores for determining location effects (l), for 

observations that fall into category k, can be computed as follows: 

 

 

 

where qj is again the overall proportion of observations in kth category and ek is 

 

 

 

 Based on location (l) and dispersion (d) scores, Nair proposed to calculate 

new type of sum of squares for each factor in the model. These sum of squares can 

be calculated by the formulas below:  

 

 

 

 

where SS(l) is the sum of squares that will be used to detect location for every factor 

and SS(d) will be used for dispersion.  
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 The simple alternative of scoring the categories converts the categorical data 

into numerical data so that usual methods like ANOVA can be employed. The 

method of scoring the categories is simple and particularly effective if the scores are 

reasonably chosen. So that if these scores are not reasonable measures for the 

categories, the results can be misleading. This highlights the importance of knowing 

the relative weights of the categories in a practical situation (Hamada and Wu, 1990). 

As Nair (1986) mentioned, the main attraction of this technique is its simplicity, 

which suggests that other approaches could be more accurate. 

 

 Although the above two methods, AA and Scoring Methods, can achieve 

parameter optimization, they can only determine the optimum categorical level 

setting. They cannot determine the optimum continuous setting values of control 

factors. 

 

 

 

2.2.1.3.Generalized Linear Models 

 

 The Generalized Linear Models (GLZ), which is an extension of the General 

Linear Models (GLM), can be used for response variables that follow any probability 

distribution in the exponential family of distributions such as the Normal, Binomial, 

Poisson, Multinomial, and Gamma. Hypothesis tests applied to the GLZ’s don’t 

require normality of the residuals and they also don’t require homogeneity of 

variances like ordinary regression does. Therefore, GLZ’s can be used when 

response variables follow distributions other than the Normal distribution, and when 

variances are not constant. 

In GLZ, the dependent variable values are predicted from a linear 

combination of predictor variables, which are "connected" to the dependent variable 

via various link functions. The variety of this link functions provide GLZs a main 

advantage that the distribution of the dependent or response variable can be non-
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normal, and does not have to be continuous, i.e., it can be binomial, ordinal 

multinomial or multinomial. In fact, the GLM for a single dependent variable can be 

considered a special case of the GLZ, because in GLM dependent variable values are 

expected to be normally distributed and the link function is a simple identity 

function. 

 

To illustrate more clearly, in GLM a response variable Y is linearly associated with 

values on the X variables by 

Y = β0 + β1X1 + β2X2 + ... + βkXk +  ε 

where ε stands for the error that cannot be accounted for by the predictors. Note that, 

ε is assumed to be from normal distribution with zero mean and constant variance. 

On the other hand, the relationship in GLZ is assumed to be 

Y = g (β0 + β1X1 + β2X2 + ... + βkXk) + ε 

where ε is the error term and g(X) is a function whose inverse function of g(X), g-

1(X), is called the link function. Hence, 

g-1 (Ŷ) = β0 + β1X1 + β2X2 + ... + βkXk 

where Ŷ is the expected value of Y. If link function is identity function, the GLZ 

becomes GLM. As mentioned before, the superiority of GLZ comes from this link 

function. The variety of link functions in GLZ modeling allows both linear and non-

linear relationships between response variable and independent variables. Various 

link functions can be chosen (McCullagh and Nelder, 1989), depending on the 

assumed distribution of the response variable values which are presented in Table 3.  
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Table 3. Typical link functions for distributions (adapted from McCullagh and 

Nelder, 1989) 

 
Probability Distribution Link Function (g-1(z)) 
Normal  Identity (g-1(z)= z) 
Binomial, Ordinal Multinomial Logit (g-1(z)=log(z/(1-z))), Probit (g-1(z)= Φ-1(z)), 

Complementary log-log (g-1(z)=log(-log(1-z))) 
where Φ-1 is inverse normal distribution  

Multinomial Generalized logit link                                                              
(g-1(z1|z2, ..., zc)=log(z1/(1-z1-...-zc))) for c+1 categories 

Poisson Log (g-1(z)=log(z)) 
Gamma Reciprocal (g-1(z) = 1/z) 

 

 

When the dependent response variable is categorical and the independent 

variables are discrete or continuous, the link function can transform the probabilistic 

scale (0,1) to the continuous infinity scale (-∞, +∞). That is why GLZ are used for 

categorical response. 

 

Estimation and Testing in GLZ 

The values of the parameters (βj) in the GLZ can be obtained by maximum 

likelihood estimation (MLE) through iterative computational procedures. Mainly, 

iterative methods like the Newton-Raphson and Fisher-Scoring method are used for 

MLE in GLZ (Agresti, 1996).  

Tests for the significance of the effects in the model can be performed via the 

Wald Statistics, the likelihood ratio (LR), or score statistics. Detailed descriptions of 

these are given in logistic regression part. 
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2.2.1.3.1. Logistic Regression 

 

 Logistic regression, which is a special and most commonly used type of GLZ, 

is especially used for analyzing categorical response variables such as binary, ordinal 

and nominal response. It uses a link function (logit, probit or complementary log-log) 

and estimation of the parameters is carried out via MLE as used in GLZ (McCullagh, 

1980).  

  

 The dependent variable in logistic regression is usually binary, that is, the 

dependent variable can take the value of 1 with a probability of success θ, or the 

value of 0 with probability of failure 1-θ. This type of variable is assumed to have a 

Bernoulli distribution, which is a special case of Binomial distribution. Applications 

of logistic regression have also been extended to cases where the dependent variable 

takes more than two cases (ordinal or nominal). In this case dependent variable is 

assumed to have a multinomial distribution. 

     Similar to GLZ, the independent or predictor variables in logistic regression 

can take discrete or continuous form. That is, logistic regression makes no 

assumption about the distribution of the independent variables. They do not have to 

be normally distributed, linearly related or have equal variance within each group.  

  The relationship between the predictor and response variables is not a linear 

function in logistic regression. For binary response it takes the following form:  

 

 

where β0 is the constant of the equation, and βk is the coefficient of the predictor 

variable xk and π is the probability of the event (category 1). 
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An alternative form of the logistic regression equation is: 

 

  

The expression “π / (1- π)” is called odds. Fixing all other factors, to see the effect of 

one unit increase in xk, consider xk
*= xk+1. Odds ratio (θ), which is the ratio of two 

odds under two different conditions, is useful in interpreting the relationship between 

a predictor and response. Let π* be the probability of event when xk
* is observed, 

while π be the probability of event under the condition xk. The odds ratio is then, 
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Hence, βk is the log-odds ratio of success when xk (reference level) is increased by 1 

unit while keeping other factors (xi,  ∀i≠k) constant.  

 The odds ratio can be any nonnegative number. The odds ratio = 1 serves as 

the baseline for comparison. θ =1 indicates there is no association between the 

response and the predictor. If θ > 1, the odds of success are higher for the reference 

level of the factor (or for higher levels of a continuous predictor). If θ < 1, the odds 

of success are less for the reference level of the factor (or for higher levels of a 

continuous predictor). Values farther from 1 represent stronger degrees of 

association. 
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 There are two main uses of logistic regression. The first is the prediction of 

group membership. Since logistic regression calculates the probability of success 

over the probability of failure, the results of the analysis are in the form of odds ratio. 

For example, logistic regression is often used in industrial studies where the result of 

the analysis is the probability of defects after controlling for other associated risks. 

Logistic regression also provides knowledge of the relationships and strengths 

among the variables (e.g., an increase in density also increases the probability of 

seeing a defect ).    

 

Logistic Regression Model Diagnostics 

 

Significance of Coefficients:  

 Wald Test is used to determine the significance of terms in the logistic 

regression models. It is used to test the statistical significance of each coefficient (βj) 

in the model (j= 0, 1, .., J). It test the hypothesis for this purpose below. 

H0: βj = 0 

Ha: βj ≠ 0 

 

Wald test calculates a Z statistic, which is:    

 

 

 The Z2 value is asymptotically chi-square distribution and alpha values are 

calculated from chi-square distribution for determining the significance of factors. 
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Model Adequacy:  

The adequacy of the model is tested by the null hypothesis that all the coefficients 

associated with predictors are equal to zero versus at least one coefficient is not zero. 

This hypothesis test is below: 

 
H0: Coefficients of all variables are zero 

Ha: Coefficients of some variables differ from zero 

 

G statistics is used to test this hypothesis. G statistics, sometimes called 

partial deviance, compare the deviance(D) of the model will the full set of predictors 

to that of a reduced model with one or more of the predictors missing. The partial 

deviance(G) is defined as (Hosmer and Lemeshow, 1989): 

 

 G= D(Reduced Model) – D(Full Model) 

 

The concept of deviance is the logistic regression analog of SSE in ordinary 

least square regression. The principle is that the observed and predicted values of the 

response variable are compared with and without some or all of the predictor 

variables.  

The deviance is defined as: 
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For instance, consider the model with p–1 predictors. Let D≡D(X0,X1,…,Xp-1) 

denote the deviance for the full model. G≡D(X0,X1,…,Xq-1)-D(X0,X1,…,Xp-1) denotes 

the partial deviance for the model that has been reduced by the final p–q–1 variables. 

 
Under the null hypothesis, G ∼χ2

p-q (Hosmer and Lemeshow, 1989). By using 

G value, a p-value is computed from the chi-square distribution with p-q degrees of 

freedom to test the fit of the logistic model. 

 
 

Residual Plots 

  After fitting a GLZ model to the data, to check the adequacy of the respective 

model, residuals are generally computed. Basically, there are two main type of 

residuals; Pearson and Deviance.   

 

Pearson residuals 

 Pearson residuals and its standardized version is one type of residual which 

are elements of the Pearson chi-square. Pearson residuals are defined to be the 

standardized difference between the observed frequency and the predicted frequency. 

They measure the difference between the actual and predicted observation the 

relative deviations between the observed and fitted values and can be used to detect 

fitting problems in factor patterns. The formula is 

 

 

 

where Yi is the actual observed value and iπ̂  is the predicted value for factor-level 

combination i. 
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Deviance residuals 

 Deviance residual is another type of residual. It is a measure of how well the 

observation is predicted by the model. Observations that are poorly fit by the model 

have high deviance residuals. Since logistic regression uses the maximum likelihood 

principle, the goal in logistic regression is to minimize the sum of the deviance 

residuals. Therefore, this residual is parallel to the raw residual in ordinary 

regression, where the goal is to minimize the sum of squared residuals.  

 

 

Plotting deviance residuals against factors and checking these graphs for patterns or 

outliers helps to check the model fit. 

 These two measures, Pearson residual and deviance residual are considered to 

be the basic building blocks for logistic regression diagnostics. They are generally 

inspected to see any outlier or influential point. A good way of looking at them is to 

graph them against predictors (factors) and against case (index) numbers.  

 

Goodness of Fit Tests:  

 Goodness of fit tests measure how well the model fits the data. In these tests 

the hypothesis below is tested: 
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  Typically Pearson Statistics, Deviance Test or Hosmer-Lemeshow statistics 

are employed to test this hypothesis.  

 
Deviance Test 

 
Under the hypothesis that the logistic model is correct, the deviance statistic, 

mentioned in previous sections, is asymptotically distributed as χ2
n-p. A p-value is 

computed from the chi-square distribution with n-p degrees of freedom to test the fit 

of the logistic model. If the Deviance goodness-of-fit test statistic is greater than 

0.05, we fail to reject the null hypothesis implying that the model's estimates fit the 

data at an acceptable level. 

 

 

Chi-Square Test (Pearson) 

 

The sum of the squared Pearson residuals, which are mentioned at previous 

sections, follows (asymptotically) a chi-square distribution, i.e.  ∑
=

−∼
n

i
pnir

1

22 χ . 

Similar to Deviance test a p-value is computed from the chi-square distribution with 

n-p degrees of freedom to test the fit of the logistic model. 

 

 

Hosmer-Lemeshow statistic 

When applying Pearson statistic and the Deviance test, the degree of freedom 

(df) is determined by determining the number of distinct covariate patterns, I, i.e. df = 

I – p, where p is the number of covariates in the model. However, for large I, such as 

I≈n, Hosmer and Lemeshow (1989) argue that this modification is inadequate. Their 

recommendation is to group observations into classes.  
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  The Hosmer-Lemeshow statistic is used for binary logistic regression. It is 

the chi-square goodness-of-fit statistic from a 2 x (the number of groups) table. 

Typically using 10 classes is recommended, but comment that fewer may be required 

for smaller n. Hosmer and Lemeshow suggest using a minimum of six groups. 

To calculate Hosmer-Lemeshow test statistic, the following steps are applied: 

1. Order the fitted values 

2. Group the fitted values in to c classes (c is between 6 and 10) of roughly 

equal size 

3. Calculate the observed number in each group 
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4. Under the hypothesis that the logistic fit is correct,  the expected counts for 

each cell are: 
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Under the hypothesis that the model is correct, the test statistic is 

asymptotically distributed as χ2
c-2. A p-value is computed from the chi-square 

distribution with c-2 degrees of freedom to test the fit of the logistic model. If the 

Hosmer-Lemeshow goodness-of-fit test statistic is greater than 0.05, we fail to reject 

the null hypothesis that there is no difference between observed and model-predicted 

values, implying that the model's estimates fit the data at an acceptable level. 

 

 

Classification Tables for Model Fit: 

   

  A classification table cross-classifies the binary response with a prediction of 

whether y=0 or 1. The prediction is ŷ=1 when iπ̂ >π0 and ŷ=0 when iπ̂ ≤π0, for some 

cutoff point π0, where iπ̂ is the probability of seeing event (1) for factor combination 

i and cutoff point is a value in [0, 1], below which the outcome 0 is predicted and 

above which the outcome 1 is predicted. Determining the cutoff point is sometimes 

difficult. The choice of cutoff is arbitrary and generally π0=0.5 is used if it is equally 

likely in the population of interest that outcomes 0 and 1 will occur and the cost of 

incorrectly predicting 0 and 1 are approximately the same. If occurrence of outcomes 

0 and 1 are not equally likely, a starting cutoff point is determined by estimating 

proportion of number of events in the total number of observations. Different cutoff 

points around this starting point are evaluated and the cutoff for which the proportion 

of incorrect predictions (prediction error rate) is the lowest is the one to be employed 

(Neter et al, 1996).    

 

  Table 4 gives a representation of a classification table. 
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       Table 4. Classification table 

 

  Prediction 
  ŷ=0 ŷ=1 

y=0 Correct Incorrect 
O

bs
er

va
tio

n 

y=1 Incorrect Correct 

 

 

One of the ways that can be used to measure the model fit in classification table is 

calculating the prediction error rate which is formulated in [2.32]. High prediction 

error rate value means bad model fit.   

 

nobservatio Total
classifiedy incorrectl ofNumber  e Error RatPrediction =  [2.32] 

 

 

Ordinal Logistic Regression  

 Ordinal logistic regression is an extension of binary logistic regression to 

model ordinal categorical data. Let’s have an ordinal categorical response with n 

categories. Ordinal logistic proceeds by comparing the effect of covariates on the 

possibility of being in each of n – 1 categories compared with a ``baseline category'', 

k:  
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where αj are the constants of the equation for n-1 categories and βj is the coefficient 

of the predictor variable xj. By setting the kth category as baseline, this is 

conceptually equivalent to fitting n – 1 separate binary logistic models, comparing 

category 1 with category k, category 2 with k, and so on. In practice the many 

software packages usually estimates a simultaneous model which is more statistically 

sophisticated. For each independent variable, we have n – 1 parameter estimates, 

each estimating the effect of a one-unit change in this variable on the log odds of 

being in category j rather than another category.(Agresti, 2002). 

 
Logistic regression is the most widely used technique in GLZ and it has a 

large application area for analyzing categorical data (Agresti, 2002). This method 

generally analyzes location effects, but gives less information about dispersion. In 

proposed method we apply logistic regression for model fitting and offer a different 

method detecting dispersion. 

 

 

 

 

 

2.2.1.4.Bayesian Approach for Categorical Data 

 

Chipman and Hamada (1996) applied Bayesian Analysis for ordered 

categorical data. It is a comprehensive technique to analyze both location and 

dispersion effects. By using Gibbs Sampling algorithm, they sample from the 

posterior distribution of the factor coefficients of the generalized linear models. It has 

many advantages, but the main disadvantages of the approach are that it needs 
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complex computer applications and expert knowledge to determine the priors. It is 

therefore difficult to implement by the practitioners. 
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CHAPTER III 

 
 

THE PROPOSED METHOD 

 

 

3.1. Description 

 

 Let Y be a categorical response variable with J categories. Let also X1, …, 

Xk be the variables that the product or process designer controls to obtain the desired 

category response consistently. 

 The proposed method is aimed to find the robust settings of the design 

variables when the response variable is categorical (binary, ordinal or nominal). The 

main advantages of the proposed method compared to the existing methods are: 

v The method clearly identifies location (mean) effects  and dispersion 

(variance) effects. 

v The application of the method is relatively simple and the method can be 

applied by popular software packages 

 

 The proposed method for analysis of categorical data for robust product or 

process design is given as following steps.   

 

Step 1. Create a suitable experimental design and collect data 

By considering the control factors (X1, …, Xk) and noise factors, that are causing 

variability beyond designers control, create a suitable experimental design by using 

fractional factorial and orthogonal array techniques or others. Conduct the 

experiments and collect the results. 
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Step 2. Fit a categorical regression model and calculate event probabilities for 

each category  

By using categorical regression, fit a model that estimates the event probabilities for 

each category and each factor level combination, P̂ (Yi=j). Event probability is the 

probability that the factor level combination has the desired response category 

estimated by Equation [3.1].  

 

 

        [3.1] 

 

where, 

j=1,…, J 

P̂ (Yi≤ j) = the probability to see jth category or below on the response for factor level 

combination i, i=1,…,I. 

βk= coefficients for the factors, k=1,…,K 

βj=intercept for the jth category 

 

By the way, P̂ (Yi=j) = P̂ (Yi≤ j) - P̂ (Yi≤ j-1). 

 

The regression model should be like in Equation [3.2] below.  

 

         [3.2] 

 

 The reason for selecting categorical regression method (or GLZ) here is, GLZ 

models like Logistic regression can be applied by popular software packages 

(Minitab, Statistica, SPSS, JMP, etc.) and it is one of the most widely used methods 

for analyzing categorical data (Agresti, 2002).   

 

 

  

)ˆ...ˆˆˆ(

)ˆ...ˆˆˆ(

2211

2211

1
ˆ)(ˆ

kkj

kkj

xxx

xxx

i
e

ejYP
ββββ

ββββ

π
++++

++++

+
==≤

kkj xxxjYPlink ββββ ++++=≤ ....)]([ 22110



 42 

Step 3. Calculate expected category for each factor combination  

By using control factor level combinations in step 1 and estimated event probabilities 

for each category in step 2, calculate the expected category and the variation for each 

factor level combination in the experiment by the formula in [3.3]. 
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where, 

 i= 1,2,…,m 

iµ̂ =Estimator of the mean category for factor level combination i  

2ˆiσ  = Estimator of the variance of the categories for factor level combination i 

 j= category number (j=0,1,..,J) 

)(ˆ jYP i = = Estimator of the probability that jth category is observed at ith factor level 

combination. 

 

Step4 . Find the optimal factor settings for desired mean and minimum variance 

 

In order to obtain optimal factor settings that will provide the desired mean and 

minimum variance, two different approaches can be applied: Signal to Noise Ratios 

(SNR) and Response Surface Optimization (RSM). 

 

a) Find the optimal factor setting that maximize the SNR 

 

Calculate Taguchi’s Signal to Noise ratios using [ ]iYÊ  and ][ˆ
iYV  calculated in step 3 

for each factor level combination. The SNR for a smaller the better problem is given 

below.  

 

SNRi = -10 log10 ( 2ˆiµ + 2ˆ iσ )        [3.4] 
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The SNR for a larger-the-better problem is: 
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      [3.5] 

 

 By using ANOVA or GLM, find the values of X1, …, Xk that maximize SNR 

in order to achieve robust parameter design. 

 

 For the nominal-the-best problem, the SNR formula below in equation [3.6] 

is used.  Other than smaller-the-better and larger-the-better case, a two-step 

optimization procedure is applied for nominal-the-best case.  

 

2

2

10 ˆ
ˆ

log10
i

i
iSNR

σ
µ

=     [3.6] 

 

The two-step optimization of nominal-the-best problems: 

1. By ignoring the mean find the factor level combinations that will maximize 

the SNR. 

2. Without changing SNR, adjust the mean on target by using adjustment factors 

which have no effect on SNR.  

 

  

 

b) Find optimal factor settings by using RSM 

 

 Obtain empirical models, f1 and f2, for the mean, iµ̂ , and variance, 2ˆiσ , 

respectively. By using response surface optimization techniques mentioned in 

Section 2.1.2, built and solve an optimization model for the desired mean and 

minimum variance including model constraints (such as factor level boundaries). The 

optimization models for different problem types are given in Table 5. 
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Table 5. Optimization models for different problem types 

 

Problem Type Matematical Model 
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3.2. Illustrative Case Study-1 

 

 In this section, an example data set is used to illustrate the use of the 

proposed method. The proposed method and accumulation analysis methods are 

applied to this data set and the results are compared with the bayesian approach 

solution of Chipman and Hamada (1996). 
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Step 1: A Foam Molding Experiment 

 

 The “Foam Molding Experiment” data, originally analyzed by Chipman and 

Hamada (1996), arise from an experiment to reduce voids in a urethane-foam 

product. The response consists of three levels (good, acceptable, poor), and all the 

design variables are at two levels, {-1,l}. The design is a fractionated eight-run 

control array crossed with a four-run noise array. The factors are shown in Table 6, 

and the data are given in Table 7. At each level of the control and noise factors, 10 

parts are classified into one of the three categories, yielding a total of 8 x 4 x 10 = 

320 observations. 

 

 

 

Table 6. Foam Molding experiment factors and levels 

 

Control Factors   Noise Factors 
A: Shot weight (185/250)  H: Shift (second/third) 
B: Mold temperature (70°F/1 20°F)  I: Shell quality (good/bad) 
C: Foam block (use/do not use)   
D: RTV insert (use/do not use)   
E: Vent shell (vented/unvented)   
F: Spray wax viscosity (2:1/4: 1)   
G: Tool elevation (level/elevated)     
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Table 7. Foam Molding experiment design and frequencies for good (0), OK (I) and 

poor (II) 

 

      H    -1      1      -1      1   
      I    -1      -1      1      1   

A B C D E F G  0 I II  0 I II  0 I II  0 I II 
-1 -1 -1 -1 -1 -1 -1  3 6 1  6 4 0  1 4 5  0 10 0 
-1 -1 -1 1 1 1 1  0 3 7  3 4 3  0 6 4  0 7 3 
-1 1 1 -1 -1 1 1  0 0 10  0 1 9  0 0 10  0 0 10 
-1 1 1 1 1 -1 -1  0 0 10  0 10 0  0 3 7  0 9 1 
1 -1 1 -1 1 -1 1  3 5 2  3 7 0  3 5 2  1 6 3 
1 -1 1 1 -1 1 -1  2 8 0  4 5 1  0 5 5  1 5 4 
1 1 -1 -1 1 1 -1  2 7 1  2 5 3  2 7 1  1 6 3 
1 1 -1 1 -1 -1 1   0 4 6   1 7 2   0 4 6   0 3 7 

 

 

 

 

 Step 2: Analysis of the Problem by Applying the Proposed Method 

 

 The data in Table 7 was modeled by using ordinal logistic regression method 

and Minitab statistical program. The design is highly fractioned (1/16) with 

resolution III, therefore computation of 2-way or higher interactions is not possible. 

Noise factors H, I are also not included directly in the model since they are not 

controllable. They are considered within the replications. Logistic regression results 

are presented in Table 8. The full logistic regression output can be seen in Appendix-

2. 

 

 Logistic regression applies Wald test to factor levels and Z values are 

obtained from the test. The Z2 values have asymptotical Chi-square distribution, so p 

values are calculated from Chi-square table. The analysis results show that factors 

A,B,C,E,F and G were statistically significant at α being 0.013 at maximum.  Table 8 

also shows the estimated regression coefficients for the problem. 
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Table 8. Parameter estimates from logistic regression 

 

Predictor Coefficient SE Coef Z (Wald) P 
Const(1) -2.596110 0.21163 -12.27 0.000 
Const(2) 0.360502 0.14465 2.49 0.013 
A 0.693708 0.13973 4.96 0.000 
B -0.912559 0.14309 -6.38 0.000 
C -0.488463 0.13809 -3.54 0.000 
E 0.523686 0.13832 3.79 0.000 
F -0.513168 0.13881 -3.7 0.000 
G -0.768099 0.14058 -5.46 0.000 

 

 

 

 By choosing logit link and substituting the estimated coefficients in the logit 

function in equation [3.2], logistic regression equations for probability of the 

categories are given as: 

 

Logit[ P̂ (Y=0)] = -2.59611 + 0.693708 A -0.912559 B - 0.488463 C + 0.523686 E - 

0.513168 F - 0.768099 G 

Logit[ P̂  (Y ≤ 1)] = 0.360502 + 0.693708 A -0.912559 B - 0.488463 C + 0.523686 E 

- 0.513168 F - 0.768099 G 

                [3.7] 

 

 

 Here logit link is preferred because the transformation and representation of 

logit link is much easier compared with the other link functions listed in Table 3. The 

event probabilities of each response category for each experiment trial are calculated 

by transforming the equations [3.7] to equation format in [3.1]. For instance for the 

first factor level combination that is A=-1, B=-1, C=-1, E=-1, F=-1 and G=-1, the 

estimated event probabilities for each category are: 
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P̂  (Y1=0) = exp(-2.59611 + 0.693708*(-1) - 0.912559*(-1) - 0.488463*(-1) + 

0.523686*(-1) - 0.513168*(-1) - 0.768099*(-1)) / (1 + exp(-2.59611 + 

0.693708*(-1) - 0.912559*(-1) - 0.488463*(-1) + 0.523686*(-1) - 

0.513168*(-1) - 0.768099*(-1))) 

= 0.244 

 

P̂  (Y1=1) = exp(0.360502 + 0.693708*(-1) - 0.912559*(-1) - 0.488463*(-1) + 

0.523686*(-1) - 0.513168*(-1) - 0.768099*(-1)) / (1 + exp(0.360502 + 

0.693708*(-1) - 0.912559*(-1) - 0.488463*(-1) + 0.523686*(-1) - 

0.513168*(-1) - 0.768099*(-1))) – P̂  (Y1=0) 

= 0.617 

 

P̂  (Y1=2) = 1- P̂  (Y1=0) - P̂  (Y1=1) 

= 0.139 

 

 

 Model Checking 

 Figure 3 is the output of goodness of fit results obtained from Minitab 

software. Log-Likelihood value, which has to be maximized in order to estimate the 

most suitable coefficients, is calculated from the maximum likelihood iterations.  G 

statistic tests the null hypothesis that all the coefficients associated with predictors 

are equal to zero versus at least one coefficient is not zero. This hypotheses test is 

below: 

 
H0: Coefficients of all variables are zero 
Ha: Coefficients of some variables differ from zero 
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P-value calculated from G statistics is very close to zero, indicating the adequacy of 

the model. 

 

 

 

 
 

 

Figure 3. The Goodness of fit test results for the model 

 

 

 

 

 Also some goodness of fit test results are shown above which represent 

overall model adequacy. The p-value for the Pearson test is 0.763, and the p-value 

for the deviance test is 0.499, indicating that there is insufficient evidence to claim 

that the model does not fit the data adequately. If the p-value is less than your 

selected α-level, the test rejects the null hypothesis that the model fits the data 

adequately.  

 

 

Residual Check  

 

 Figure 4 shows deviance residuals vs. experiment trials (index) graph for 

category 0, which is the first category (good). The aim of checking these graphs is to 

catch a specific pattern or any outliers. From Figure 4 it can be seen that there is no 
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evidence for any pattern or outliers. Figure 5 is another type of residual plot which 

represents the scatter plot of deviance residuals vs. covariates (factors). The aim for 

checking these graphs is again to catch any patterns or outliers that will show the 

model inadequacy. Figure 4 and 5 only show the plot for factor A, the residual plots 

for the remaining factors can be seen in Appendix-3. Residual plots for category 1 

are also presented in Appendix-3. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Deviance Residual plots vs. index for category 0 
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Factor A
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Figure 5. Deviance Residual plots vs. Factor A for category 0 
 
 

 
 
 
 Step 3: Calculation of Expected Categories for Each Factor Combination 

 
 By using equations in [3.3], estimates for the expected category and the 

deviation from this category are obtained for each experiment factor level 

combination. Again for the first combination: 

 

Ê [Y1]= 0* P̂ (Y1=0) + 1* P̂ ( Y1=1) + 2* P̂ ( Y1=2) 

= 0*0.244 + 1*0.617 + 2*0.139  

= 0.8949 

 

V̂ (Y1) = 02* P̂ ( Y1=0) + 12* P̂ ( Y1=1) + 22* P̂ ( Y1=2) – ( Ê [Y1])2 

= 0*0.244 + 1*0.617 + 4*0.139 – (0.8949)2 

= 0.3717 

 

 All these results for estimated event probabilities, expected mean category 

and variance for all factor level combinations are presented in Table 9.    
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Table 9. Estimates of event probabilities of categories, expected categories and 

variance for foam molding experiment data 

 

Trial  Factors   P̂ (Yi=j)      
i  A B C E F G  j=0 j=1 j=2  Ê [Yi] V̂ [Yi] 
1  -1 -1 -1 -1 -1 -1  0.244 0.617 0.139  0.8949 0.3717 
2  -1 -1 -1 1 1 1  0.066 0.511 0.423  1.3568 0.3619 
3  -1 1 1 -1 1 1  0.002 0.027 0.972  1.9703 0.0319 
4  -1 1 1 1 -1 -1  0.053 0.465 0.482  1.4295 0.3507 
5  1 -1 1 1 -1 1  0.23 0.622 0.148  0.9186 0.3716 
6  1 -1 1 -1 1 -1  0.148 0.622 0.23  1.0814 0.3716 
7  1 1 -1 1 1 -1  0.175 0.628 0.196  1.021 0.3714 
8   1 1 -1 -1 -1 1   0.043 0.42 0.537   1.4942 0.3358 

 

  

 
 Step-4a: Parameter Optimization by SNR 

 

 In this problem, achieving the smallest category is desired, therefore it is a 

smaller the better problem. Reducing variance is the second goal, so a parameter 

optimization that will both reduce the mean and the variance is needed. Taguchi’s 

Signal to Noise ratio (SNR) in equation [3.4] is a suitable choice to solve the 

problem. The SNR for the first factor level combination is: 

 

SNR1= -10* log ((0.8949)2+0.3717) = -0.691 

 

Similarly all SNR values are calculated for each factor level combination and they 

are listed in Table 10. 
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Table 10. Estimates of event probabilities of categories, expected categories, 

variance and SNR values for foam molding experiment data 

 

Trial   Factors           
i  A B C E F G  Ê [Yi] V̂ (Yi)  SNRi 
1  -1 -1 -1 -1 -1 -1  0.8949 0.3717  -0.691 
2  -1 -1 -1 1 1 1  1.3568 0.3619  -3.43 
3  -1 1 1 -1 1 1  1.9703 0.0319  -5.926 
4  -1 1 1 1 -1 -1  1.4295 0.3507  -3.791 
5  1 -1 1 1 -1 1  0.9186 0.3716  -0.847 
6  1 -1 1 -1 1 -1  1.0814 0.3716  -1.878 
7  1 1 -1 1 1 -1  1.021 0.3714  -1.504 
8   1 1 -1 -1 -1 1   1.4942 0.3358   -4.096 

 

 

 

 In order to obtain smaller mean and variance, the SNR ratio values should be 

maximized. An ANOVA model is fitted to obtain optimum factor levels that will 

maximize SNR values. This model is fitted by using factor combinations and SNR 

values are in Table 10. ANOVA is applied by choosing α=0.2 and the final results 

are shown in Table 11. The full ANOVA output can be seen in Appendix-4. From 

Table 11, at α=0.2 level, it can be seen that factors A, B and G were found to be 

significant so these factors were examined to achieve maximum SNR. Figure 6 

shows the main effects of these factors. Factor levels for (A, B, G) should be selected 

(+1, -1, -1) respectively to achieve maximum SNR, which are expected to provide 

best combinations for robustness.  
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Table 11. ANOVA table for SNR values 

 

Source DF SeqSS AdjSS AdjMS F P 
A 1 3.799 3.799 3.799 2.68 0.177 
B 1 8.97 8.97 8.97 6.33 0.066 
G 1 5.176 5.176 5.176 3.65 0.129 
Error 4 5.67 5.67 1.418    
Total 7 23.615         
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Figure 6. The effect plot of Factors A, B and G for SNR 
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 Factors C, E and F turn out to be insignificant in maximizing SNR and we are 

free to use any settings for these factors. On the other hand, in the logistic regression 

results factors C, E and F have significant effects on Ê [Y] since they have effects on 

P̂ (Y=j). This situation can be seen in the effect plots in Figure 7. These factors can 

be considered as adjustment factors, therefore (-1, +1, -1) levels of these factors can 

be chosen respectively for estimating the smallest mean value. In this manner, the 

optimum factor levels to achieve minimum mean and variance should be chosen as 

(A,B,C,E,F,G) = (+1, -1, -1, +1, -1, -1). These combinations predict P̂ (Good) = 0.79. 

The deviation on this probability can also be predicted as V̂ (Pr(Good)) = 0.0069. 

The calculation for estimating the variation of probability is given in Appendix-6. 

%95 confidence intervals for P̂ (Good) are (0.585, 0.909). The calculation for 

estimating the confidence bounds for probability is also given in Appendix-7. 
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Figure 7. The effect plot of Factors C, E and F for Ê [Y] 
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 Step-4b: Parameter Optimization by Response Optimization 

 

 The surface functions for mean and variance are obtained by using Equation 

[3.3] and [3.7]. The mean function for this problem is: 

 

Ê [Y]= 0* P̂ (Y=0) + 1* P̂ (Y=1) + 2* P̂ (Y=2) 
= 1* [exp(0.360502 + 0.693708*A - 0.912559*B - 0.488463*C + 0.523686*E - 0.513168*F - 

0.768099*G)) / (1 + exp(0.360502 + 0.693708*A - 0.912559*B - 0.488463*C + 0.523686*E - 

0.513168*F - 0.768099*G)) – exp(-2.59611 + 0.693708*A - 0.912559*B - 0.488463*C + 

0.523686*E - 0.513168*F - 0.768099*G) / (1 + exp(-2.59611 + 0.693708*A - 0.912559*B - 

0.488463*C + 0.523686*E - 0.513168*F - 0.768099*G))] + 2* [1 - exp(0.360502 + 

0.693708*A - 0.912559*B - 0.488463*C + 0.523686*E - 0.513168*F - 0.768099*G)) / (1 + 

exp(0.360502 + 0.693708*A - 0.912559*B - 0.488463*C + 0.523686*E - 0.513168*F - 

0.768099*G))]  

[3.8] 

 

And the variance function is: 

 

V̂ (Y) = 02* P̂ (Y=0) + 12* P̂ (Y=1) + 22* P̂ (Y=2) – ( Ê [Y])2 
= 1* [exp(0.360502 + 0.693708*A - 0.912559*B - 0.488463*C + 0.523686*E - 0.513168*F - 

0.768099*G)) / (1 + exp(0.360502 + 0.693708*A - 0.912559*B - 0.488463*C + 0.523686*E - 

0.513168*F - 0.768099*G)) – exp(-2.59611 + 0.693708*A - 0.912559*B - 0.488463*C + 

0.523686*E - 0.513168*F - 0.768099*G) / (1 + exp(-2.59611 + 0.693708*A - 0.912559*B - 

0.488463*C + 0.523686*E - 0.513168*F - 0.768099*G))] + 4* [1 - exp(0.360502 + 

0.693708*A - 0.912559*B - 0.488463*C + 0.523686*E - 0.513168*F - 0.768099*G)) / (1 + 

exp(0.360502 + 0.693708*A - 0.912559*B - 0.488463*C + 0.523686*E - 0.513168*F - 

0.768099*G))] – Ê [Y]2 

     [3.9] 

 

 By response surface optimization techniques mentioned in section 2.1.2 and 

optimizations models in Table 5, a multi-response optimization model is built for the 
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desired mean and minimum variance including model constraints (factor level 

boundaries) below.   

 

Min E(Y),  Var(Y) 

s.t. 

-1 ≤ xi ≤ 1 

E(Y), Var(Y) ≥ 0 

        [3.10] 

 

 The solution to the multi-response model in [3.10] can be obtained by using 

desirability functions mentioned in section 2.1.2.2.  For mean surface [3.8] and 

variance surface [3.9] the individual desirability functions are formulated by 

substituting the problem inputs for the smaller the better problem in [2.11] below. 

 

 

 

 

 

 

 

 

 

 

 

 

where d1( µ̂ ) is the desirability function for the mean, d2( 2σ̂ ) is the desirability 

function for the variance. In the problem the exponent term, s is equal to 1 so that the 

function will increase or decrease linearly. The upper and lower values, Ui and Li, are 

also determined by considering the problem requirements.     
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The overall desirability is: 

 

D = (d1( µ̂ ) * d2( 2σ̂ ))1/2 

 

 For optimization of the overall desirability MS Excel Solver is used. Excel 

solver uses GRG (General Reduced Gradient) NLP algorithm to get the optimal 

solution. The Solver sheet for the problem can be seen in Figure 8. The optimum 

solution for the problem, which will maximize D, is )(ˆ YE = 0.22 and )(ˆ YV = 0.20. 

This solution estimates the probability of seeing category 0 as P̂ (Good) = 0.78.  

 

 From the optimization results, it can be concluded that all factor levels are 

found to be on bounds. Factors C, E, F and G are qualitative so we can not exceed 

the bounds but for Factor A and B better solution can be obtained by exceeding the 

bounds. This situation is presented in the response surface plot in Figure 9.    

 

 

 
 

Factors Invidual Desirabilities  
A B C E F G d1 d2 
1 -1 -1 1 -1 -1 0,5561482 0,5036331 
        

Mean Variance Category Probabilities    
E(Yi) V(Yi) P(Yi=0) P(Yi=1) P(Yi=2)    

0,227487 0,203583 0,786436 0,199641 0,013923    

        
Overall Desirability       

0,529239674       
 

Figure 8. The Desirability optimization sheet in Excel Solver 
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Figure 9. Desirability response surfaces for Factor A and Factor B when C=-1, E=1, 

F=-1 and G=-1 

 

 
 
 

 Comparison of the Results of Proposed Method and the Existing 

Methods 

 

 Table 12 gives a brief comparison of the results of the proposed method, 

Accumulation Analysis (AA) and Bayesian Approach (BA). AA calculations and 

results for the foam molding data are shown in Appendix-5.  AA provides the worst 

estimate for the mean and no information about the variance compared with the other 

methods. Also it detects spurious effect of factor D. AA provides a mixture of 

location and dispersion information; therefore it is impossible to detect these effects 

separately. The results of Bayesian Approach have already been shown to be realistic 

and discussed by Chipman and Hamada (1996) in detail. Proposed method gives both 

location and dispersion effects and provides good estimates for both the mean and 

the variance compared with the Bayesian approach solution.  
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Table 12. Comparison of the proposed approach to the accumulation analysis and the 

Bayesian approach 
 

Approach Significant Factors & Levels P(Good) V(P(Good)) 

A+, B-, C-, D-, E+, F-, G- Accumulation Analysis (location & dispersion effects) 0.45 - 

A+, B-, C-, E+, F-, G- Bayesian Approach (location & dispersion effects) 0.80 0.0076 

A+, B-, G- (location&dispersion effects) Proposed Approach C-, E+, F- (location effects) 0.79 0.0069 

 

 

 

 

3.3. Illustrative Case Study-2  

 

Step 1: Nitrogen Gas Defect Problem 

 

 In this section we apply the proposed approach to a real life dataset. The 

dataset is taken from an iron-casting company which has performed a Six Sigma 

project for reducing Nitrogen(N) gas defects on the cast iron parts (İşkol et al, 2005). 

The response is binary: N-gas defective (Y=1) or non-defective (Y=0). Seven factors 

affecting the response are measured. These factors are listed in Table 13.  Due to 

confidentiality, the factor names are not displayed explicitly and coded by letters. 

The data was collected from real time production for a six month period consisting of 

12417 observations. The dataset is consisting of real observations, it is not an 

experimental design and this caused wider range of levels for each factor. As it can 

be seen from Table 13, the standardized levels for factors range from -2.4 to +3.9. 

ANOVA like procedures are not suitable for these data since factor levels are not 

categorical but continuous.  
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Table 13. Nitrogen gas defect problem factors and levels  

 

Factor Levels 
A -1.7 – 3 
B -1.4 – 2.74 
C -1.68 – 3.6 
D -1.68 – 3.9 
E -2.4 – 3.13 
F -1.94 – 2.47 
G -1.32 – 2.08 

 

 

 

 

 Step 2: Analysis of Data by Applying Proposed Method 

 

 The data for nitrogen gas defect problem are modeled by binary logistic 

regression using Minitab statistical program. All main factors and two-way 

interactions are included in the model. By backward elimination procedure based on 

checking p values calculated by Z statistics (Wald Test), the fitted model is 

simplified and insignificant factors, which have high p values, are eliminated from 

the model. Logistic regression results of the simplified model are presented in Table 

14. The full logistic regression Output can be seen in Appendix-8. 
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Table 14. The logistic regression results for N-gas defect data 

 

Predictor Coefficient SE Coef Z P 
Constant -4.32801 0.0995319 -43.48 0.000 
A 0.16207 0.16076 1.01 0.313 
B 0.632905 0.143828 4.4 0.000 
E -0.0543835 0.126899 -0.43 0.668 
F -0.503251 0.217173 -2.32 0.020 
G -0.437856 0.231717 -1.89 0.059 
A*F 0.36527 0.104453 3.5 0.000 
E*F -0.338806 0.0925527 -3.66 0.000 

 

 

 

 From logistic regression results, Factor B and F are obviously significant, and 

factor interactions A*F and E*F are significant, too. Factor A and E are insignificant 

but because their interactions have low p values, they can not be eliminated from the 

model. There is an interesting case for factor G; its p value is 0.06 higher than 0.05 

but the experts of the process recommends keeping factor G in the model because its 

effect is proven at previous studies in the process. So Factor G was kept in the model 

by expert opinion.      

 

Similar to case study 1, logistic regression equations for probabilities of the 

categories are formulated below by choosing logit link and substituting the estimated 

coefficients in the logit function in equation [3.2]. Since we have two categories, 

only the regression function for probability of detecting a defect, P(Y=1), is 

formulated. Here logit link is preferred because of the same reason in case study 1. 

 

Logit[ P̂ (Y=1)] = -4.32801 + 0.16207 A + 0.63291 B - 0.05438 E - 0.50325 F - 

0.43786 G + 0.36527 A*F – 0.33881 E*F 

          [3.11] 

 

 The event probabilities of each response category for each experiment trial 

were calculated by transforming the equations [3.11] to equation format in [3.1]. For 
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instance for the factor level combination A=-1, B=1, E=1, F=-1 and G=1 the 

estimated event probabilities for each category are: 

 

P̂ (Y=1) = exp(-4.32801 + 0.16207*(-1) + 0.63291*1 - 0.05438*1 - 0.50325*(-

1) - 0.43786*1 + 0.36527*(-1)*(-1) – 0.33881*1*(-1)) / (1+ exp(-

4.32801 + 0.16207*(-1) + 0.63291*1 - 0.05438*1 - 0.50325*(-1) - 

0.43786*1 + 0.36527*(-1)*(-1) – 0.33881*1*(-1))) 

= 0.041 

 

P̂ (Y=0) = 1 - P̂ (Y=1) = 0.959  

 

 

 
 Step-3: Calculation of expected categories for each factor combination 

 

 By using equations in [3.3], estimates of the expected category and the 

variance from this category of each experiment factor level combination can be 

obtained. Again for the factor level combination used in step 2: 

 

Ê [Y]= 0* P̂ (Y=0) + 1* P̂ (Y=1) 

= 0*0.959 + 1*0.041 

= 0.041 

 

V̂ [Y] = 02* P̂ (Y=0) + 12* P̂ (Y=1) – ( Ê [Y])2 

= 0*0.959 + 1*0.041 – (0.041)2 

= 0.039 
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 Model Checking 

 

The G statistics, which tests the null hypothesis that all the coefficients 

associated with predictors are equal to zero versus at least one coefficient is not zero, 

is obtained from Minitab software and shown in Figure 10. P-value calculated from 

G statistics is very close to zero, which is indicating the adequacy of the model. 

 

 

 

 
 

 

Figure 10. The Goodness of fit test results for the model 2 

 

 

 

 

 From Goodness of fit test results obtained in Minitab software which are also 

presented in Figure 10, it can be seen that the p-value for the Pearson test and the p-

value for the deviance test is low, indicating poor fit. The main reason for that may 

be related with the argument of Hosmer-Lemeshow which is mentioned in Logistic 

regression background section. Hosmer-Lemeshow argued that for large number of 

covariate patterns (I), such as I≈n, the degree of freedom assumption for deviance 

and Pearson tests may be inadequate. In this case their recommendation is to use 

Hosmer-Lemeshow test Hosmer-Lemeshow test results in Figure 10, gives a p value 
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of 0.858 which is high enough to indicate that there is insufficient evidence to claim 

model inadequacy. 

 

 Figure 11 shows Deviance Residual plots vs. experiment trials (index) graph. 

From Figure 11 it can be seen that there is no evidence for a trend or outliers. Figure 

12 is another type of residual plots which represents the scatter plot of deviance 

residuals vs. covariates (factors). Figure 12 only shows the plot for factor A, the 

residual plots for the remaining factors can be seen in Appendix-9.    
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Figure 11. Deviance Residual plots vs. index for case 2 
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Figure 12. Deviance Residual plots vs. Factor A for case 2 
 

 

 

 

 

 Appendix-10 is the classification table for the model. Since occurrence of 

outcomes 0 and 1 are not equally likely in the dataset, a starting cutoff point is 

determined as 0.017 by estimating proportion of number of events in the total 

number of observations (220/12574). Different cutoff points around 0.017 are 

selected and estimated prediction error rates for each cutoff are presented in Table 

15. From Table 15, it can be seen that prediction error rate becomes smaller when 

cutoff becomes larger, but cutoff point is selected as 0.023 for the problem since it 

gives relatively better result compared with the other alternatives and it is close to 

our starting point, 0.017. 
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Table 15. Prediction error rate values for case study 2  

 

Cutoff point Prediction Error Rate 
c=0.014 0.6 
c=0.017 0.43 
c=0.020 0.26 
c=0.023 0.18 

c=0.5 0.017 
 

 

 

By selecting the cutoff point as 0.023, the prediction error rate is 0.18 which is not 

high enough to claim bad fit.     

 

 

 Step-4a: Parameter Optimization by SNR 

 

The factor level values in the dataset range non-uniformly and there are 

excessive number of factor levels observed for each factor. ANOVA like procedures 

are inadequate for analyzing this type of data, therefore SNR solution alternative of 

proposed method couldn’t be applied for the problem. 

 

 

 
 Step 4b: Parameter Optimization by Response Optimization 

 

 The surface functions for the mean and the variance are obtained by using 

equations [3.3] and [3.7].   
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So the mean function is: 

Ê [Y]= 0* P̂ (Y=0) + 1* P̂ (Y=1) 
= 0* [1- exp(-4.32801 + 0.16207 A +0.63291 B - 0.05438 E - 0.50325 F - 0.43786 G + 

0.36527 A*F – 0.33881 E*F) / (1 + exp(-4.32801 + 0.16207 A +0.63291 B - 0.05438 E + 

0.50325 F - 0.43786 G + 0.36527 A*F – 0.33881 E*F))] + 1* [exp(-4.32801 + 0.16207 A -

0.63291 B - 0.05438 E - 0.50325 F - 0.43786 G + 0.36527 A*F – 0.33881 E*F) / (1 + exp(-

4.32801 + 0.16207 A +0.63291 B - 0.05438 E - 0.50325 F - 0.43786 G + 0.36527 A*F – 

0.33881 E*F))] 

[3.12] 

 

 

And the variance function is: 

V̂ (Ŷ) = 02* P̂ (Y=0) + 12* P̂ (Y=1) – ( Ê [Y])2 
= 0* [1- exp(-4.32801 + 0.16207 A +0.63291 B - 0.05438 E - 0.50325 F - 0.43786 G + 

0.36527 A*F – 0.33881 E*F) / (1 + exp(-4.32801 + 0.16207 A +0.63291 B - 0.05438 E - 

0.50325 F - 0.43786 G + 0.36527 A*F – 0.33881 E*F))] + 1* [exp(-4.32801 + 0.16207 A 

+0.63291 B - 0.05438 E - 0.50325 F - 0.43786 G + 0.36527 A*F – 0.33881 E*F) / (1 + exp(-

4.32801 + 0.16207 A +0.63291 B - 0.05438 E - 0.50325 F - 0.43786 G + 0.36527 A*F – 

0.33881 E*F))]– Ê [Y]2 

     [3.13] 

 

 

 

 

 By response surface optimization techniques mentioned in section 2.1.2 and 

optimizations models in Table 5, a multi-response optimization model is built for the 

desired mean and minimum variance including model constraints (factor level 

boundaries) below. Factor level boundaries are determined by the process owners by 

considering economic conditions. 
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Min E(Y),  Var(Y) 

s.t. 

-0.86 ≤ A ≤ 0.25 

-1.19 ≤ B ≤ -0.03 

-1.6 ≤ E ≤ 0.37 

-1.68 ≤ F ≤ -0.97 

1.53 ≤ G ≤ 1.97 

E(Y), Var(Y) ≥ 0 

        [3.14] 

  

 The solution to the multi-response model in [3.14] can be obtained by using 

desirability functions mentioned in section 2.1.2.2.  For mean surface [3.12] and 

variance surface [3.13], similar to case study 1, the individual desirability functions 

are formulated by substituting the problem inputs for the smaller the better problem 

in [2.11] below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

where d1( µ̂ ) is the desirability function for mean, d2( 2σ̂ ) is the desirability function 

for variance. In the problem the exponent term, s is selected as 1 so that the function 
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will increase or decrease linearly. The upper and lower values, Ui and Li, are also 

determined by considering the problem requirements.     

 

The overall desirability is: 

 

D = (d1( µ̂ ) * d2( 2σ̂ ))1/2 

 

 The optimization of the overall desirability is performed in MS Excel Solver 

by GRG algorithm. The Solver sheet for the problem can be seen in Figure 13. The 

optimum solution for the problem, which will maximize D, is )(ˆ YE = 0.002 and 

)(ˆ YV = 0.002. This solution estimates the probability of seeing category 0, P̂ (Good) 

= 0.997. 

  

 

 

 

 
 

 

Figure 13. The Desirability optimization sheet in Excel Solver for case 2 
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 From the optimization results, it can be concluded that all factor levels are 

chosen at the bounds. To obtain minimum mean category and variance, Factors A 

and G should be set at their upper limits and Factors B, E and F should be set at their 

lower limits. Figure 13 shows the results when these settings are used.  

 

 

 Comparison of the Results of Proposed Method and the Real Life Results 

 

 The results obtained by the proposed method are compared with the six sigma 

project results presented in İşkol et al (2005). Table 16 gives the results of this 

comparison.  

 

 

Table 16. Comparison of real life economical results and proposed method 

 

  

Real life 
economical 
factor levels 

Proposed 
Method factor 

levels 
Factor A low high 
Factor B low low 
Factor C low insignificant 
Factor D insignificant insignificant 
Factor E low low 
Factor F low low 
Factor G high high 

 

  

 

 From Table 16, it is seen that the levels for factors A, C and E are different in 

proposed method from real life economical factor levels. The reason for this 

difference can be explained as follows: 
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v In the process there are several factors other than seven factors considered in 

the proposed method. The applications in İşkol et al (2005) are performed 

with these additional factors and also additional data.  

v Factor A is set at lower levels in the process because it is costly to increase it. 

Actually, in the analysis main effect of factor A is not significant but A*F is 

significant. Therefore it can be set in upper economical bound, which is 0.25 

in the process, to reduce the cost. 

v Factor C is insignificant for N-gas defect problem, but higher levels of this 

factor can cause other defects in the process, so it is set at low levels in real 

life. 

 

 Because of the reasons above real life application results differ from the 

proposed method for some factors. Others agree with the proposed method.  

 

 

 

Comparison of the Results of Proposed Method and OLS Regression Results 

 
 

 Ordinary Least Square (OLS) regression can sometimes be used for binary 

response problems in industry. OLS regression can be applied to continuous response 

and can not be applied to binary response directly but people transform binary data to 

continuous by calculating the ratio or percentage of the events. This is generally a 

theoretically wrong application because (1) percent values are not continuous in 

infinity scale, (2) percent values does not satisfy model assumptions. But especially 

in industry some practitioners use OLS regression for binary responses because of its 

simplicity.   

 

 In our problem we tried to compare the results of the proposed method and 

OLS regression. But we found that it is unsuitable to apply OLS regression to the 
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dataset because the response (percentage) is highly non-normal as seen in Figure 14, 

although many different transformation techniques are used.  
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Figure 14. Histogram of percentage response 

 

 

 

 

Discussion of Binary Problem 

 

Binary problem is actually a special case of the proposed method. In the third 

step of the proposed method when we calculate the mean category and variance for 

the binary problem as follows: 

 

 

 



 74 

Ê [Y]= 0* P̂ (Y=0) + 1* P̂ (Y=1) = P̂ (Y=1) 

V̂ [Y] = 02* P̂ (Y=0) + 12* P̂ (Y=1) – ( Ê [Y])2= P̂ (Y=1)- [ P̂ (Y=1)]2 

  

Above it can be seen that for the binary problem the estimator for variance is 

dependent to the estimator. Whatever our aim is to reduce or increase the mean, the 

variance will approach to zero if the mean comes closer to bounds 0 or 1. Therefore 

estimating two different functions for mean and variance by proposed method is not 

necessary for binary case. The solution directly obtained by Logistic Regression will 

be almost the same with the proposed method results.     
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CHAPTER IV 

 
 

DISCUSSION OF NOMINAL DATA CASE 

 

 

 In two illustrations, we apply the proposed method to different type of 

categorical response: ordinal and binary. In the third step of our proposed method, in 

equation [3.3], we assume a natural ordering between categories and give a weight 

for each category, i.e. category numbers. For ordinal and binary response this 

assumption is applicable and the proposed method performs well. But for the 

nominal response types, there is no such a natural ordering and we have to make 

some other assumptions to apply the proposed method. In this section, we proposed 

two alternative treatments for the case of nominal data.  

 

 

4.1. Binary Treatment 

 

 In this treatment, we group the response categories into two groups; preferred 

and not-preferred. The preferred group is coded as 1 and the not-preferred group is 

coded as 0.   

 

 Let Y = {Y1, …,YJ} is a nominal categorical response with J distinct 

categories and Yk is preferred as the response, where 1 ≤ k ≤ J. By applying the 

treatment, Yk is coded as 1 and the remaining n-1 categories other than Yk that are 

not preferred are coded as 0. Then our problem becomes a binary problem with two 

responses, Y= {0, 1}. By this way, we can apply proposed method to this binary data 

like in case study 2. 

 

By Equation [3.3] the mean and variance functions can be obtained: 

Ê (Y) = 0* P̂ (Y=0) + 1* P̂ (Y=1) = P̂ (Y=1) = P̂ (Preferred)  
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V̂ (Y)= Ê (Y2) – [ Ê (Y)]2 = 02* P̂ (Y=0) + 12* P̂ (Y=1) – [ P̂ (Y=1)]2 

          =  P̂ (Y=1)* (1- P̂ (Y=1)) = P̂ (Preferred)* (1- P̂ (Preferred)) 

 

If we desire to find expected number of preferred response, Yk, in n observations and 

its variance: 

 

Ê (# of preferred) = n * Ê (Y) = n * P̂ (Preferred) 

V̂ (# of preferred) = n * V̂ (Y) = n * P̂ (Preferred)* (1- P̂ (Preferred)) 

 

which are expected mean and variance for multi-nominal distribution (Scheaffer, 

1995). 

 

 

4.2. Ordinal Treatment 

 

 Another way to apply the proposed method to nominal data is converting the 

nominal categories to ordered categories by ranking by preference. This treatment is 

explained on an example below. 

 

 Let Y = {Company A, Company B, Company C} be a nominal response with 

3 categories. In the problem, company B is preferred the most, company C is less 

preferred and company A is the least preferred. We can rank the categories by 

preference, such as company B is 1, company C is 2 and company A is 3, and the 

proposed approach can be applied on these ordinal categories.  
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CHAPTER V 

 

 

CONCLUSION AND FURTHER STUDIES 

 
 
 
 In this study we propose a method which can be used to find the robust 

settings of the parameters when the response variable(s) is categorical. In four steps 

the method can be applied and it provides two different alternatives, Signal-to-Noise 

ratio and Response Surface Method, for finding optimum robust settings. The 

method has clear advantages since it identifies both location effects (mean) and 

dispersion (variance) for optimization, the application of the method is simple, 

advanced statistical background and complex assumptions is not required and it can 

be applied by popular software packages. 

 

 We applied the proposed method into two different datasets for 

illustration. In the first illustrative case study, we applied the method on a problem 

which has ordinal categorical response and has been studied by some authors before. 

Our proposed method and Accumulation Analysis methods are applied to this data 

set and the results are compared with the comprehensive Bayesian Approach solution 

of Chipman and Hamada (1996). Accumulation Analysis gives poor results but our 

proposed method gives both location and dispersion effects and provides good 

estimates for both mean and variance compared with the solution with bayesian 

technique. By this study it can be concluded that proposed method is well applicable 

for designed experiments with ordinal categorical response.  

  

 In the second illustrative study we applied our proposed method on a 

binary response problem. The data was provided from daily production observations 

of a real life process. Due to non-uniform and excess number of factor levels 

ANOVA like procedures are inadequate for analyzing this data, therefore SNR ratio 

solution alternative of proposed method couldn’t be applied for this kind of data. 
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Also because of the same reason, we couldn’t apply Accumulation Analysis method 

to this dataset. Here we can conclude that SNR solution alternative of our method is 

not applicable when the data has a non-uniform experimental design. We applied 

RSM to this data set and compared the results with a previous study results in this 

process. The results obtained by our proposed method make sense for the process 

and the optimum results are approved by the process experts that they are useful to 

obtain desired mean and minimum variance.  

 

 In two illustrative cases, the proposed method is applied on single 

response. If there is more than one response in a problem, different multi-objective 

optimization algorithms should be used or more than two desirability functions 

should be considered. This situation can be studied on future works. Also, multiple 

response case with mixtures of continuous and categorical data is even more 

complex and the proposed method may be expanded for these types of problems.    

  

 The proposed method uses logistic regression for model fitting and 

Maximum Likelihood Estimation (MLE) is usually used for parameter estimation in 

logistic regression. With small sample sizes (less than 10), MLE results can be 

heavily biased and the large sample optimality properties do not apply. In our study, 

the datasets in two different cases have large sample sizes and we don’t need to 

check the estimation procedure. But for small samples, there may be some problems 

and bias in estimation of the model. This situation should be discussed in a future 

study. 

 

 The proposed model assumes there is no dependency between multiple 

responses. Most of the practitioners assume this but sometimes this situation can be 

observed in real life processes. This problem can also be studied in the future. 
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APPENDIX A 

 
 

 

Post-Etch Window Size Example 
 
 

FACTORS OUTPUT 
A BD C E F G H I I II III IV V 
1 1 1 1 1 1 1 1 10 0 0 0 0 
1 1 2 2 2 2 2 2 0 3 3 2 2 
1 1 3 3 3 3 3 3 1 0 0 9 0 
1 2 1 1 2 2 3 3 10 0 0 0 0 
1 2 2 2 3 3 1 1 10 0 0 0 0 
1 2 3 3 1 1 2 2 5 3 2 0 0 
1 3 1 2 1 3 2 3 10 0 0 0 0 
1 3 2 3 2 1 3 1 5 0 0 5 0 
1 3 3 1 3 2 1 2 0 1 4 5 0 
2 1 1 3 3 2 2 1 2 5 3 0 0 
2 1 2 1 1 3 3 2 1 1 2 6 0 
2 1 3 2 2 1 1 3 1 0 1 3 5 
2 2 1 2 3 1 3 2 5 0 3 2 0 
2 2 2 3 1 2 1 3 6 3 1 0 0 
2 2 3 1 2 3 2 1 10 0 0 0 0 
2 3 1 3 2 3 1 2 10 0 0 0 0 
2 3 2 1 3 1 2 3 0 0 4 3 3 
2 3 3 2 1 2 3 1 0 0 0 0 10 

 
 
A: Mask Dimension 
BD: viscosity x    Bake Temp 
C: Spin speed 
E: Bake time 
F: Aperture 
G: Exposure Time 
H: Developing Time 
I: Plasma etch time 
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OUTPUT: 
 
I-Window not open 
II-(0, 2.25) 
III- (2.25,2.75) 
IV- (2.75,3.25) 
V- (>3.25) 
 
 
 

1. Accumulation Analysis (Taguchi) Results: 
 
 

ANOVA Table 
Source df S MS F 
A 4 26,65526 6,663816 15,67433 
BD 8 112,3241 14,04051 33,02546 
C 8 125,5418 15,69272 36,91172 
E 8 36,97849 4,622311 10,8724 
F 8 27,90145 3,487682 8,20357 
G 8 42,29724 5,287156 12,43621 
H 8 45,58938 5,698672 13,40416 
I 8 23,81925 2,977406 7,003322 
E2 656 278,8931 0,425142  
TOTAL 716 720   
 
BD, C, G,H and A seems to be most significant factors. 
 
All factors seems to be significant because of small MSE. This is caused by large df 
of error. 
  
 
 
 

2. Results of Scoring Method by Nair (1986) 
 
 

ANOVA Table 
Source df SS(l) SS(d) MS(l) MS(d) 
A 1 7,496716 1,300572 7,496716 1,300572 
BD 2 38,28807 8,491404 19,14404 4,245702 
C 2 43,29349 5,610754 21,64674 2,805377 
E 2 5,043237 17,05333 2,521618 8,526666 
F 2 6,068595 14,05101 3,034297 7,025506 
G 2 14,25637 2,101915 7,128187 1,050957 
H 2 12,2564 7,9501 6,1282 3,97505 
I 2 3,626939 18,59202 1,813469 9,29601 
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BD,C has strong location effects. 
E, F and I has strong dispersion effects. 
 
 
Accumulation analysis gives a mixture of effects but scoring methods separates 
location and dispersion and provides better information for selecting robust settings. 
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APPENDIX B 
 

Minitab Logistic Regression Output for Foam-Molding Experiment 
 
 
Results for: Foam Molding 
  
Ordinal Logistic Regression: Response versus A; B; C; E; F; G  
 
Link Function: Logit 
 
 
Response Information 
 
Variable  Value  Count 
Response  1         38 
          2        156 
          3        126 
          Total    320 
 
Frequency: Freq 
 
* NOTE * 71 cases were used 
* NOTE * 25 cases contained missing values or was a case with zero 
frequency. 
 
Logistic Regression Table 
 
                                                Odds     95% CI 
Predictor       Coef   SE Coef       Z      P  Ratio  Lower  Upper 
Const(1)    -2,59611  0,211630  -12,27  0,000 
Const(2)    0,360502  0,144654    2,49  0,013 
A           0,693708  0,139729    4,96  0,000   2,00   1,52   2,63 
B          -0,912559  0,143088   -6,38  0,000   0,40   0,30   0,53 
C          -0,488463  0,138092   -3,54  0,000   0,61   0,47   0,80 
E           0,523686  0,138324    3,79  0,000   1,69   1,29   2,21 
F          -0,513168  0,138814   -3,70  0,000   0,60   0,46   0,79 
G          -0,768099  0,140581   -5,46  0,000   0,46   0,35   0,61 
 
 
Log-Likelihood = -255,082 
Test that all slopes are zero: G = 110,806, DF = 6, P-Value = 0,000 
 
 
Goodness-of-Fit Tests 
 
Method    Chi-Square  DF      P 
Pearson      4,21124   8  0,838 
Deviance     6,38399   8  0,604 
 
 
Measures of Association: 
(Between the Response Variable and Predicted Probabilities) 
 
Pairs       Number  Percent  Summary Measures 
Concordant   21423     70,5  Somers' D              0,51 
Discordant    5849     19,3  Goodman-Kruskal Gamma  0,57 
Ties          3100     10,2  Kendall's Tau-a        0,31 
Total        30372    100,0 
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APPENDIX C 

 
 Residual Plots for Foam-Molding Experiment 
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APPENDIX D 

 
 GLM model for SNR in case study 1  
 
 
Full Model: 
 
General Linear Model: SNR versus A; B; C; E; F; G  
 
Factor  Type   Levels  Values 
A       fixed       2  -1; 1 
B       fixed       2  -1; 1 
C       fixed       2  -1; 1 
E       fixed       2  -1; 1 
F       fixed       2  -1; 1 
G       fixed       2  -1; 1 
 
 
Analysis of Variance for SNR, using Adjusted SS for Tests 
 
Source  DF  Seq SS  Adj SS  Adj MS     F      P 
A        1   3,799   3,799   3,799  1,70  0,416 
B        1   8,970   8,970   8,970  4,02  0,295 
C        1   0,925   0,925   0,925  0,41  0,636 
E        1   1,139   1,139   1,139  0,51  0,605 
F        1   1,372   1,372   1,372  0,61  0,577 
G        1   5,176   5,176   5,176  2,32  0,370 
Error    1   2,233   2,233   2,233 
Total    7  23,615 
 
 
S = 1,49447   R-Sq = 90,54%   R-Sq(adj) = 33,80% 
 
  
Reduced Model: 
 
 
General Linear Model: SNR versus A; B; G  
 
Factor  Type   Levels  Values 
A       fixed       2  -1; 1 
B       fixed       2  -1; 1 
G       fixed       2  -1; 1 
 
 
Analysis of Variance for SNR, using Adjusted SS for Tests 
 
Source  DF  Seq SS  Adj SS  Adj MS     F      P 
A        1   3,799   3,799   3,799  2,68  0,177 
B        1   8,970   8,970   8,970  6,33  0,066 
G        1   5,176   5,176   5,176  3,65  0,129 
Error    4   5,670   5,670   1,418 
Total    7  23,615 
 
 
S = 1,19061   R-Sq = 75,99%   R-Sq(adj) = 57,98% 
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APPENDIX E 
 
Accumulation Analysis (AA) solution for case study 1  
 
Foam Molding Experiment 
 
Control Factors: A, B, C, D, E, F, G 
Noise Factors: H, I 
Response categories: Good(I), OK(II), Poor(III)  
2III

7-4 1/16 fractional experiment 
4 replicates (considering noise factors- outer array) 
 
 
Accumulation Analysis 
 
 

FACTORS OUTPUT CUMULATIVE FREQ 
A B C D E F G 1 2 3 I II III 
-1 -1 -1 -1 -1 -1 -1 3 6 1 3 9 10 
-1 -1 -1 1 1 1 1 0 3 7 0 3 10 
-1 1 1 -1 -1 1 1 0 0 10 0 0 10 
-1 1 1 1 1 -1 -1 0 0 10 0 0 10 
1 -1 1 -1 1 -1 1 3 5 2 3 8 10 
1 -1 1 1 -1 1 -1 2 8 0 2 10 10 
1 1 -1 -1 1 1 -1 2 7 1 2 9 10 
1 1 -1 1 -1 -1 1 0 4 6 0 4 10 
-1 -1 -1 -1 -1 -1 -1 6 4 0 6 10 10 
-1 -1 -1 1 1 1 1 3 4 3 3 7 10 
-1 1 1 -1 -1 1 1 0 1 9 0 1 10 
-1 1 1 1 1 -1 -1 0 10 0 0 10 10 
1 -1 1 -1 1 -1 1 3 7 0 3 10 10 
1 -1 1 1 -1 1 -1 4 5 1 4 9 10 
1 1 -1 -1 1 1 -1 2 5 3 2 7 10 
1 1 -1 1 -1 -1 1 1 7 2 1 8 10 
-1 -1 -1 -1 -1 -1 -1 1 4 5 1 5 10 
-1 -1 -1 1 1 1 1 0 6 4 0 6 10 
-1 1 1 -1 -1 1 1 0 0 10 0 0 10 
-1 1 1 1 1 -1 -1 0 3 7 0 3 10 
1 -1 1 -1 1 -1 1 3 5 2 3 8 10 
1 -1 1 1 -1 1 -1 0 5 5 0 5 10 
1 1 -1 -1 1 1 -1 2 7 1 2 9 10 
1 1 -1 1 -1 -1 1 0 4 6 0 4 10 
-1 -1 -1 -1 -1 -1 -1 0 10 0 0 10 10 
-1 -1 -1 1 1 1 1 0 7 3 0 7 10 
-1 1 1 -1 -1 1 1 0 0 10 0 0 10 
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-1 1 1 1 1 -1 -1 0 9 1 0 9 10 
1 -1 1 -1 1 -1 1 1 6 3 1 7 10 
1 -1 1 1 -1 1 -1 1 5 4 1 6 10 
1 1 -1 -1 1 1 -1 1 6 3 1 7 10 
1 1 -1 1 -1 -1 1 0 3 7 0 3 10 

 
 

ANOVA Table 
Source df S MS F p 
A 2 19,43348 9,716739 11,62386 0,000 
B 2 42,15402 21,07701 25,21383 0,000 
C 2 6,813905 3,406953 4,07564 0,017 
D 2 8,115925 4,057962 4,854425 0,008 
E 2 8,969063 4,484532 5,364717 0,005 
F 2 6,813905 3,406953 4,07564 0,017 
G 2 26,07897 13,03949 15,59877 0,000 
ERROR 624 521,6207 0,835931   
TOTAL 638 640    
 
All factors are significant. 
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Using Omega transform for probability p below:  
 

p
pp
−

=
1

log10)( 10ω  

 
 
Predicted omega value for category 0: 
ωA+B-C-D-E+F-G-(0) = ωµ(0) + [ωA+(0) - ωµ(0)] + [ωB-(0) - ωµ(0)] + [ωC-(0) - ωµ(0)] + [ωD-(0) - 
ωµ(0)] + [ωE+(0) - ωµ(0)] + [ωF-(0) - ωµ(0)] + [ωG-(0) - ωµ(0)] 
 
= -8,70 + [-7,32 + 8,70] + [-6,37 + 8,70] + [-8,21 + 8,70] + [-6,92 + 8,70] + [-8,51 + 8,70] + [-
8,21 + 8,70] + [-7,53 + 8,70] 
= -0,848 dB 
  
 

Then by inverse omega transform, the predicted probability for category 0 (good) is 

0.45. Predicted category for the cumulative category (I) is predicted to be 0.96 in the 

same manner. Prediction is obviously 1.0 for category (II). 
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APPENDIX F 
 
Variance Estimation for desired Probability in case study 1  
 
 
In our problem we have the following model: 
 
logit(πi ) = βi0 + β1 Xi1+ β2 Xi2 + β3 Xi3+ β5 Xi5+ β6 Xi6+ β7 Xi7 
 
By Delta Method, the variance formula for πi can be shown to be: 
 
Var(π) = G cov(π) G T  
 
where  
G = [ ∂ π / ∂ β0 , ∂ π / ∂ β1, ∂ π / ∂ β2, ∂ π / ∂ β3, ∂ π / ∂ β5, ∂ π / ∂ β6, ∂ π / ∂ β7 ]    
  = [π (1- π), π (1- π) X1, π (1- π) X2, π (1- π) X3, π (1- π) X5, π (1- π) X6, π (1- π) X7]  
  = π (1- π) [1,  X1, X2, X3, X5, X6, X7 ] 
 
cov(π) is the variance-covariance matrix of the parameters (βj), j=0, 1, 2, 3, 5, 6, 7  
 
 
In our estimated model: 
 
For the factor level combination  
[1, X1, X2, X3, X5, X6, X7 ] = [1, 1, 1, -1, -1, 1, -1, -1],  π̂  = 0,786435448976803 
 
Then substituting π̂  and X to the equation for G, 
 
Ĝ = (0.167954734, 0.167954734, -0.167954734, -0.167954734, 0.167954734, -
0.167954734, -0.167954734) 
 
 
Variance-covariance matrix is calculated by Minitab Software:  
 





























=

0,0197630,0069580,00693-0,0071710,0078150,00734-0,011662
0,0069580,0192690,00688-0,0068940,0075610,00694-0,010243
0,00693-0,00688-0,0191340,0068-0,00707-0,007120,00942-

0,0071710,0068940,0068-0,0190690,0069660,00682-0,009388
0,0078150,0075610,00707-0,0069660,0204740,00762-0,013185
0,00734-0,00694-0,007120,00682-0,00762-0,0195240,0111-

0,0116620,0102430,00942-0,0093880,0131850,0111-0,044787

)ˆov(ĉ π

 
 



 95 

 
Finally, we can find arV̂ ( π̂ ) by substituting Ĝ and )ˆov(ĉ π  to the equation for 

arV̂ ( π̂ ): 
 

arV̂ ( π̂ )= 0.006934 
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APPENDIX G 

 Confidence Interval (CI) Estimation for P̂ (Y=j) 

 

Since P̂ (Y=j) values are not normally distributed, we make a transformation for P̂ . 

 

 

Let q=ln(p / (1 – p)), 

 

The transformed CI = (L*,U*) will be: 

L*= )ˆ(ˆˆ 2/ qarVZq α−  

 

U*= )ˆ(ˆˆ 2/ qarVZq α+  

 

Where, 

)(
)1(

1)()( 22

2

pVar
pp

pVar
p
qqVar

−
=








∂
∂

=  by Delta Method. 

 

Since in our problem, P̂ = 0.79 and )ˆ(ˆ parV = 0.0069,  

q̂ = ln(0.79 / (1 – 0.79)) = 1.325 

)ˆ(ˆ qarV  = 1/(0.792(1-0.792))*0.0069 = 0.029 

 

By choosing α=0.05 

 

L*= 029.096.1325.1 − =0.343 

U*= 029.096.1325.1 + =2.306 

 

 

By backward transformation % 95 CI for P̂  is: 
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APPENDIX H 
 
 Minitab Logistic Regression Output for Case Study 2 
 
 
Binary Logistic Regression: N-defect; Total_casted versus A; B; E; F; G  
 
Link Function: Logit 
 
 
Response Information 
 
Variable      Value    Count 
N-defect      Success    219 
              Failure  12198 
Total_casted  Total    12417 
 
* NOTE * 135 cases were used 
* NOTE * 3 cases contained missing values 
 
Logistic Regression Table 
 
                                                  Odds     95% CI 
Predictor        Coef    SE_Coef       Z      P  Ratio  Lower  Upper 
Constant     -4,32801  0,0995319  -43,48  0,000 
A            0,162070   0,160760    1,01  0,313   1,18   0,86   1,61 
B            0,632905   0,143828    4,40  0,000   1,88   1,42   2,50 
E          -0,0543835   0,126899   -0,43  0,668   0,95   0,74   1,21 
F           -0,503251   0,217173   -2,32  0,020   0,60   0,39   0,93 
G           -0,437856   0,231717   -1,89  0,059   0,65   0,41   1,02 
A*F          0,365270   0,104453    3,50  0,000   1,44   1,17   1,77 
E*F         -0,338806  0,0925527   -3,66  0,000   0,71   0,59   0,85 
 
 
Log-Likelihood = -1041,585 
Test that all slopes are zero: G = 119,480, DF = 7, P-Value = 0,000 
 
 
Goodness-of-Fit Tests 
 
Method           Chi-Square   DF      P 
Pearson             152,946  125  0,045 
Deviance            162,017  125  0,014 
Hosmer-Lemeshow       3,986    8  0,858 
 
 
Table of Observed and Expected Frequencies: 
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic) 
 
Value        Success             Failure 
Group  Observed  Expected  Observed  Expected  Total 
    1         6       6,8      1311    1310,2   1317 
    2        11       9,2      1260    1261,8   1271 
    3        12      13,2      1238    1236,8   1250 
    4        19      17,1      1236    1237,9   1255 
    5        26      20,3      1283    1288,7   1309 
    6        25      25,3      1463    1462,7   1488 
    7        18      23,8      1241    1235,2   1259 
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    8        27      29,1      1306    1303,9   1333 
    9        37      36,6      1216    1216,4   1253 
   10        38      37,7       644     644,3    682 
 
 
Measures of Association: 
(Between the Response Variable and Predicted Probabilities) 
 
Pairs        Number  Percent  Summary Measures 
Concordant  1657005     62,0  Somers' D              0,32 
Discordant   802307     30,0  Goodman-Kruskal Gamma  0,35 
Ties         212050      7,9  Kendall's Tau-a        0,01 
Total       2671362    100,0 
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APPENDIX I 

 
 Residual Plots for N-Gas Defect Problem 
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Deviance Residuals vs. Factors A,B,C,D plot 
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Deviance Residuals vs. Factors E,F,G  plot 
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APPENDIX  J 

 
Classification Table for N-Gas Defect Problem For c=0.02 
 
 
 

Observation 
No 

Total No of 
Observations 

Observation 
N-defect 

Prediction 
P^(Y=1) Correct Incorrect 

1 113 1 0,019 112 1 
2 110 2 0,020 108 2 
3 103 0 0,019 103 0 
4 110 0 0,018 110 0 
5 117 3 0,017 114 3 
6 115 4 0,013 111 4 
7 30 0 0,016 30 0 
8 80 2 0,016 78 2 
9 115 3 0,014 112 3 

10 110 4 0,022 4 106 
11 115 4 0,025 4 111 
12 110 5 0,025 5 105 
13 28 0 0,019 28 0 
14 79 1 0,025 1 78 
15 110 1 0,020 1 109 
16 110 0 0,017 110 0 
17 105 0 0,017 105 0 
18 112 0 0,016 112 0 
19 111 3 0,016 108 3 
20 110 2 0,022 2 108 
21 110 1 0,019 109 1 
22 110 2 0,019 108 2 
23 108 5 0,016 103 5 
24 110 3 0,017 107 3 
25 109 1 0,015 108 1 
26 160 0 0,014 160 0 
27 100 5 0,016 95 5 
28 115 2 0,018 113 2 
29 108 4 0,023 4 104 
30 108 1 0,018 107 1 
31 109 2 0,020 2 107 
32 105 1 0,043 1 104 
33 165 7 0,032 7 158 
34 170 3 0,036 3 167 
35 170 2 0,030 2 168 
36 104 1 0,021 1 103 
37 110 2 0,019 108 2 
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38 110 0 0,014 110 0 
39 110 1 0,014 109 1 
40 110 1 0,015 109 1 
41 110 1 0,016 109 1 
42 110 2 0,024 2 108 
43 100 1 0,014 99 1 
44 180 4 0,018 176 4 
45 104 2 0,017 102 2 
46 104 1 0,026 1 103 
47 96 1 0,018 95 1 
48 100 0 0,017 100 0 
49 109 4 0,016 105 4 
50 110 0 0,015 110 0 
51 106 4 0,019 102 4 
52 69 3 0,016 66 3 
53 110 1 0,020 109 1 
54 110 1 0,018 109 1 
55 130 0 0,012 130 0 
56 90 3 0,013 87 3 
57 110 0 0,015 110 0 
58 110 2 0,016 108 2 
59 69 2 0,020 67 2 
60 110 5 0,017 105 5 
61 145 2 0,017 143 2 
62 130 8 0,040 8 122 
63 168 6 0,033 6 162 
64 116 1 0,023 1 115 
65 97 1 0,025 1 96 
66 104 5 0,040 5 99 
67 110 7 0,033 7 103 
68 110 3 0,021 3 107 
69 119 4 0,026 4 115 
70 96 3 0,033 3 93 
71 109 7 0,041 7 102 
72 8 1 0,018 7 1 
73 8 0 0,022 0 8 
74 8 0 0,006 8 0 
75 8 1 0,054 1 7 
76 8 1 0,115 1 7 
77 8 0 0,025 0 8 
78 8 0 0,028 0 8 
79 8 0 0,027 0 8 
80 8 1 0,230 1 7 
81 8 7 0,840 7 1 
82 7 1 0,029 1 6 
83 8 2 0,163 2 6 



 103 

84 8 0 0,000 8 0 
85 8 1 0,077 1 7 
86 8 0 0,074 0 8 
87 8 1 0,108 1 7 
88 8 0 0,004 8 0 
89 7 0 0,031 0 7 
90 8 0 0,007 8 0 
91 110 0 0,015 110 0 
92 112 2 0,015 110 2 
93 110 3 0,013 107 3 
94 109 3 0,012 106 3 
95 110 2 0,020 2 108 
96 110 1 0,014 109 1 
97 110 1 0,016 109 1 
98 110 2 0,012 108 2 
99 110 0 0,020 0 110 
100 110 3 0,010 107 3 
101 104 0 0,009 104 0 
102 105 2 0,008 103 2 
103 110 2 0,011 108 2 
104 147 2 0,012 145 2 
105 70 2 0,007 68 2 
106 98 0 0,009 98 0 
107 105 1 0,012 104 1 
108 112 1 0,006 111 1 
109 105 1 0,009 104 1 
110 105 3 0,008 102 3 
111 110 2 0,009 108 2 
112 109 1 0,006 108 1 
113 16 0 0,005 16 0 
114 110 2 0,003 108 2 
115 94 0 0,005 94 0 
116 16 0 0,013 16 0 
117 108 1 0,003 107 1 
118 96 1 0,005 95 1 
119 8 0 0,009 8 0 
120 70 2 0,007 68 2 
121 102 0 0,006 102 0 
122 8 0 0,006 8 0 
123 105 0 0,006 105 0 
124 110 1 0,010 109 1 
125 110 0 0,007 110 0 
126 110 0 0,006 110 0 
127 113 0 0,009 113 0 
128 94 0 0,006 94 0 
129 104 0 0,007 104 0 



 104 

130 16 0 0,005 16 0 
131 100 0 0,007 100 0 
132 110 0 0,007 110 0 
133 104 0 0,007 104 0 
134 104 0 0,005 104 0 
135 104 0 0,006 104 0 
136 125 0 0,006 125 0 
137 49 0 0,008 49 0 
138 122 0 0,007 122 0 

   TOTAL 9290 3284 
 
 
 


