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ABSTRACT 
 
 

CRACKED SEMI-INFINITE CYLINDER AND 

FINITE CYLINDER PROBLEMS 

 
 
 

Kaman, Mete Onur 

 Ph.D., Department of Engineering Sciences 

 Supervisor: Prof. Dr. M. Ruşen Geçit 

  

May 2006, 208 pages 
 
 
This work considers a cracked semi-infinite cylinder and a finite cylinder. Material 

of the cylinder is linearly elastic and isotropic.  One end of the cylinder is bonded 

to a fixed support while the other end is subject to axial tension. Solution for this 

problem can be obtained from the solution for an infinite cylinder having a penny-

shaped rigid inclusion at z = 0 and two penny-shaped cracks at z = ± L. General 

expressions for this problem are obtained by solving Navier equations using 

Fourier and Hankel transforms. When the radius of the inclusion approaches the 

radius of the cylinder, the end at  z = 0   becomes fixed and when the radius of the 

cracks approaches the radius of the cylinder, the ends at z = ± L become cut and 

subject to uniformly distributed tensile load. Formulation of  the problem is 

reduced to a system of three singular integral equations. By using Gauss-Lobatto 

and Gauss-Jacobi integration formulas, these three singular integral equations are 

converted to a system of linear algebraic equations which is solved numerically.   

 

Keywords: Axisymmetric, Finite cylinder, Penny-shaped crack, Rigid inclusion, 

Stress intensity factor. 
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ÖZ 
 
 

ÇATLAK İÇEREN YARI SONSUZ SİLİNDİR VE  

SONLU SİLİNDİR PROBLEMLERİ 

 
 
 

Kaman, Mete Onur 

Doktora, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi: Prof. Dr. M. Ruşen Geçit 

  

Mayıs 2006, 208 sayfa 
 
 
Bu çalışma, çatlak içeren yarı sonsuz silindir ve sonlu uzunlukta silindir 

problemlerini incelemektedir. Silindir malzemesi lineer elastik ve izotroptur. 

Silindirin bir ucu sabit mesnetlenmiş olup diğer ucu eksenel çekme yükü 

etkisindedir. Problemin çözümü, z = 0 düzleminde disk şeklinde bir rijit enklozyon 

ve z = ± L düzlemlerinde disk şeklinde çatlaklar bulunan sonsuz silindir 

probleminin çözümünden elde edilmektedir. Bu problemin genel ifadeleri, Navier 

denklemlerinin Fourier ve Hankel dönüşümleri kullanılarak çözülmesinden elde 

edilmektedir.  Enklozyon yarıçapı silindir yarıçapına ulaştığında silindirin z = 0   

düzlemindeki ucu sabitlenmiş olur. Çatlak yarıçapı silindir yarıçapına ulaştığında 

ise silindir z = ± L düzlemlerinde kopar ve burada oluşan uçlar düzgün yayılı 

çekme yükü etkisinde kalır. Problemin formülasyonu üç tekil integral denkleme 

dönüştürülür. Bu üç tekil integral denklem Gauss-Lobatto ve Gauss-Jacobi 

integrasyon formülleri kullanılarak bir lineer cebrik denklem takımına çevrilir ve 

sayısal olarak çözülür.  

 

Anahtar Kelimeler: Eksenel simetri, Sonlu uzunlukta silindir, Disk şeklinde çatlak,  

Rijit enklozyon, Gerilme şiddeti katsayısı. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 

Many machine elements used in various engineering fields have discontinuities in 

the form of holes, notches, cracks or inclusions which are very important factors 

influencing stress distributions in the structures. Stresses around these 

discontinuities may reach very large values in a small region and this phenomenon 

is called stress concentration.  Furthermore, stresses become infinite at the corners 

of elements or edges of cracks and inclusions. In such cases, stress concentration 

can not be defined as a strength parameter and it is necessary to consider the stress 

distributions from fracture mechanics point of view. Fracture toughness, which is a 

widely accepted fracture parameter, can be easily calculated in terms of the stress 

intensity factors. Mechanical systems can be designed by using the fracture 

mechanics parameters. 

 

Stress intensity factor depends on both the geometric properties and the loading 

conditions of the body. These loading conditions are defined as of three types: 

Mode I loading, where the principal load is applied normal to the crack plane, 

tends to open the crack. Mode II corresponds to in plane shear loading and tends to 

slide one crack face with respect to the other. Mode III refers to out of plane shear 

loading.  

 

Cylinders, like screws, shafts, etc., are the most widely used machine elements 

with axisymmetric geometries which have particular importance in fracture 

mechanics due to possible singularities. For cracked semi-infinite or infinite 

cylinder configurations subjected to external forces, it is possible to derive closed 

form expressions for stresses in the body, assuming isotropic linear elastic material 

behavior. If a polar coordinate system with the origin at the crack tip is defined, it 
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is known that the stress field in any linear elastic cracked body is proportional to 

r/1 . As 0→r ,  the stresses approach infinity. Thus, the stress near the crack tip 

varies with singularity, regardless of the configuration of the cracked body. In 

general, these types of problems are examined by using numerical and analytical 

methods based on partial differential equations. For linear elastic materials, 

individual components of stress, strain and displacement are additive 

(superposition). In many instances of analytical solutions, the principle of 

superposition allows stress intensity solutions for complex configurations to be 

built from simple cases for which the solutions are well established. 

 

In this context, although infinite and semi-infinite cylinder problems with no crack 

have been already studied in literature, cracked infinite cylinder having rigid 

penny-shaped inclusion, cracked semi-infinite and finite cylinder problems have 

not been solved by the method used in this study.  

 

1.1 Literature Review 

 

Collins (1962) considered some axially symmetric stress distributions in an infinite 

elastic solid and in a thick plate containing penny-shaped cracks.  It was shown 

that, by use of a representation for the displacement in an infinite elastic solid 

containing a single crack, representations for the displacements in an infinite solid 

containing two or more cracks and in a thick plate containing a single crack can be 

constructed and used to reduce the problems of determining the stresses in these 

solids to the solutions of Fredholm integral equations of the second kind. Various 

stress distributions investigated include those due to the opening of a crack in an 

infinite solid by a point force acting at an interior point of the solid and the 

opening of cracks in an infinite solid and a thick plate under the action of constant 

pressure over the cracks. 

 

Sneddon and Welch (1963) made an analysis of the distribution of the stress in a 

long circular cylinder of elastic material when it is deformed by the application of 
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pressure to the inner surfaces of a penny-shaped crack situated symmetrically at 

the center of the cylinder. It was assumed that the cylinder surface is free from 

stress. The equations of the classical theory of elasticity were solved in terms of an 

unknown function which was then shown to be the solution of a Fredholm integral 

equation of the second kind previously derived by Collins (1962). The solutions of 

this equation for constant pressure and various crack radii, obtained using 

computer, have been discussed and quantities of physical interest have been 

calculated. Calculations have been repeated for the case of a variable pressure 

following a parabolic law and these results are also reported.   

 

Two axially symmetric mixed boundary value problems in elastic dissimilar 

layered medium have been considered by Arın and Erdoğan (1971). It has been 

assumed that an elastic layer is bonded to two semi-infinite half spaces along its 

plane surfaces, and contains a penny-shaped crack parallel to the interfaces. In the 

first problem the two half spaces have been assumed to have the same elastic 

properties and the crack is located in the mid-plane of the layer. In the second 

problem, they considered the case of three different materials and arbitrary crack 

location in the layer. The numerical examples were given for a constant pressure 

on the crack surface. Stress intensity factors were evaluated and were plotted as 

functions of the layer thickness-to-crack radius ratio or the relative distance of the 

crack from one interface. 

 

Benthem and Minderhoud (1972) solved the problem of the solid cylinder 

compressed axially between rough rigid stamps. Then, Gupta (1974) considered a 

semi-infinite cylinder problem with fixed short end. Normal loads far away from 

the fixed end have been prescribed. An exact formulation of the problem in terms 

of a singular integral equation has been provided by using an integral transform 

technique. Stress along the rigid end and stress intensity factors have been 

computed numerically and presented graphically.  
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Using transform methods, axisymmetric end-problem for a semi-infinite elastic 

circular cylinder has been reduced to a system of singular integral equations by 

Agarwal (1978). The kernels of the integral equations were found to contain 

Cauchy as well as generalized Cauchy-type singularities. The dominant part of the 

equations was separated and analyzed to determine the index of the singularity for 

differing boundary conditions at the end. An approximate method was used to 

obtain a system of simultaneous algebraic equations from the system of singular 

integral equations. As an application, axisymmetric solution for joined dissimilar 

elastic semi-infinite cylinders under uniform tension has been solved.  

 

Erdöl and Erdoğan (1978) studied an elastostatic axisymmetric problem for a long 

thick-walled cylinder containing a ring-shaped internal or edge crack. Using 

transform technique the problem has been formulated in terms of an integral 

equation which has a simple Cauchy kernel for the internal crack and a generalized 

Cauchy kernel for the edge crack as the dominant part.  

 

Nied and Erdoğan (1983) analyzed the elasticity problem for a long hollow 

cylinder containing an axisymmetric circumferential crack subjected to general 

nonaxisymmetric external loads. The problem has been formulated in terms of a 

system of singular integral equations with the Fourier coefficients of the derivative 

of the crack surface displacement as density functions. Stress intensity factors and 

the crack opening displacement have been calculated for a cylinder under uniform 

tension, bending by end couples and self-equilibrating residual stresses.  

 

Isida et al. (1985) made an analysis of an infinite solid containing two parallel 

elliptical cracks located in staggered positions. The analysis has been based on the 

body force method, in which symmetric and axisymmetric type body forces are 

distributed over the crack surfaces and their densities have been determined from 

the boundary conditions.  Numerical calculations have been performed for a wide 

range of parameters, and the effects of the shapes and the relative locations of the 

cracks on the stress intensity factors have been examined. 
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Geçit and Turgut (1988) considered the elastostatic plane problem of a finite strip. 

One end of the strip is perfectly bonded to a rigid support while the other is under 

the action of a uniform tensile load. Solution for the finite strip has been obtained 

by considering an infinite strip containing a transverse rigid inclusion at the middle 

and two symmetrically located transverse cracks. In the limiting case when the 

rigid inclusion and the cracks approach the sides of the infinite strip, the region 

between one crack and the rigid inclusion becomes equivalent to the finite strip. 

Formulation of the problem has been reduced to a system of three singular integral 

equations using Fourier transforms. Numerical results for stresses and stress 

intensity factors have been given in graphical form.  

 

The method used by Collins (1963), Fu and Keer (1969) to solve co-planar penny-

shaped cracks has been generalized to investigate interaction of arbitrarily located 

penny-shaped cracks by Graham and Lan (1994a). Solution of Kassir and Sih 

(1975) for the problem of an isolated crack in an infinite solid has been applied 

together with the superposition principle to reduce the problem to a system of 

Fredholm integral equations of the second kind. These integral equations have then 

been solved iteratively when the cracks are far apart. Some asymptotic solutions 

for the stress intensity factors have been presented and comparisons have been 

made whenever possible. Numerical solutions reveal some interesting phenomena. 

Then, Graham and Lan (1994b) examined the interaction of arbitrarily located 

penny-shaped cracks in a semi-infinite elastic solid, with the aid of the formulation 

of Muki (1961) for general three-dimensional asymmetric problems and the 

superposition principle.  

 

Xiao et al. (1996) investigated the stress intensity factors of two penny-shaped 

cracks with different sizes in a three-dimensional elastic solid under uniaxial 

tension. The two parallel cracks are symmetrically located in the isotropic solid. A 

closed-form analytical elastic solution for the stress intensity factors on the 

boundaries of the cracks has been obtained when the center distance between the 

two cracks is much larger than the crack sizes. A numerical method has been 
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employed to extract the solution for the case of small center distance. It has been 

found that, due to the interaction between the two cracks, Mode I and II stress 

intensity factors exist at the same time even if the applied stress is pure tension. 

Numerical examples have been given for different configurations and it has been 

clearly shown that the stress intensity factors are strongly determined by the 

distance between the centers of the two cracks.  

 

Leung and Su (1998) extended the two-level finite element method (2LFEM) for 

the accurate analysis of axisymmetric cracks, where both the crack geometry and 

applied loads were symmetrical about the axis of rotation. The complete 

eigenfunction expansion series for axisymmetric cracks developed by them have 

been employed as the global interpolation function such that the stress intensity 

factors are primary unknowns. The coupled coefficients in the series have been 

solved iteratively.   

 

Chen (2000) evaluated stress intensity factors in a cylinder with a circumferential 

crack. An indirect method, the computing compliance method, has been developed 

to study the problem. The finite difference method has been used to solve the 

boundary value problem. Numerical examples have been given which demonstrate 

the effect of cylinder length on the stress intensity factor. 

 

Selvadurai (2000) examined the axisymmetric problem pertaining to a penny-

shaped crack which is located at the bonded plane of two similar elastic half space 

regions which exhibit axial variations in the linear elastic shear modulus. The 

equations of elasticity governing this type of non-homogeneity have been solved 

by employing a Hankel transform technique. The resulting mixed boundary value 

problem associated with the penny-shaped crack has been reduced to a Fredholm 

integral equation of the second kind which has been solved in numerical fashion to 

generate the crack opening mode stress intensity factor at the tip.   

 



7 

Lee (2001) made an analysis of the stress distribution in a long circular cylinder of 

elastic material containing a penny-shaped crack when it is deformed by the 

application of a uniform shearing stress. The crack with its center on the axis of 

the cylinder lies on a plane perpendicular to that axis, and the cylinder surface is 

stress-free. By making a suitable representation of the stress function, the problem 

has been reduced to the solution of a pair of Fredholm integral equations of second 

kind. These have been solved numerically, and the percentage increase in the 

stress intensity factor due to the effect of the finite radius of the cylinder has been 

presented in graphical form for various proximity ratios. Then, Lee (2002) made 

an analysis of the stress distribution in a long circular cylinder of isotropic elastic 

material with a circumferential edge crack when it is deformed by the application 

of a uniform shearing stress. Using same procedure given in Lee (2001), the stress 

intensity factor for varying circumferential edge crack size has been tabulated.  

 

Meshii and Watanabe (2001) presented the development of a practical method, by 

using prepared tabulated data, to calculate the Mode I stress intensity factor for an 

inner surface circumferential crack in a finite length cylinder. The crack surfaces 

are subjected to an axisymmetric stress with an arbitrary biquadratic radial 

distribution. The method was derived by applying the authors’ weight function for 

the crack. This work is based on the thin shell theory. Their method is valid over a 

wide range of mean radius to wall thickness ratio and for relatively short cracks. 

The difference between the stress intensity factor obtained by their method for the 

geometry and that from finite element analysis is within 5%. 

 

Selvadurai (2002) examined the axial tensile loading of a rigid circular disc which 

is bonded to the surface of a half-space weakened by a penny-shaped crack. The 

integral equations governing the problem have been solved numerically to 

establish the influence of the extent of cracking on the axial stiffness of the bonded 

disc and on the stress intensity factors at the crack tip.  
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Tsang et al. (2003) investigated the stress intensity factors of multiple penny-

shaped cracks in an elastic solid cylinder under axial tensile loading. The cracks 

are located symmetrically and parallel to one another in the isotropic cylinder. The 

fractal-like finite element method has been employed to study the interaction of 

multiple cracks and to demonstrate the efficiency of the FFEM for multiple crack 

problems.  

  

An eigenfunction expansion method has been presented to obtain three-

dimensional asymptotic stress fields in the vicinity of the front of a penny-shaped 

discontinuity, e.g., crack, anticrack (infinitely rigid lamella), etc., subjected to the 

far-field torsion (Mode III), extension/bending (Mode I) and sliding shear/twisting 

(Mode II) loadings by Chaudhuri (2003). Five different discontinuity-surface 

boundary conditions have been considered: penny-shaped crack, penny-shaped 

anticrack or perfectly bonded thin rigid inclusion, penny-shaped thin transversely 

rigid inclusion, penny-shaped thin rigid inclusion in part perfectly bonded, the 

remainder with frictionless slip and penny-shaped thin rigid inclusion alongside 

penny-shaped crack. The computed stress singularity for a penny-shaped anticrack 

is the same as that of the corresponding crack. The main difference is, however, 

that all the stress components at the circular tip of an anticrack depend on 

Poisson’s ratio under Mode I and II.  

 

Vrbik et al. (2004) examined the problem of symmetric indentation of a penny-

shaped crack by a smoothly embedded rigid circular disc inclusion in a thick layer. 

Expressions for the resultant pressure applied to the inclusion and for the stress 

intensity factor at the boundary of the penny-shaped crack have been obtained. The 

numerical form of the expressions for the resultant stress fields and the tractions 

along the inclusion have been also derived. Numerical results for the resultant 

pressure and stress intensity factor, resultant stress fields and the resultant tractions 

along the inclusion have been obtained and displayed graphically. 
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1.2 A Short Introduction and Method of Solution of the Problem 

 

This study considers the axisymmetric elasticity problem for a semi-infinite 

cylinder with a crack and a finite cylinder of radius A  and length L . One end of 

the semi-infinite and finite cylinders is perfectly bonded to a rigid support at 0=z . 

The other end of the semi-infinite cylinder at ∞=z  and the finite cylinder at Lz =  

is under the action of a tensile axial load of uniform intensity 
0p . The material of 

the cylinder is assumed to be linearly elastic and isotropic and surface of the 

cylinder is free of stresses. Solution for these semi-infinite and finite cylinder 

problems is obtained by considering an infinite cylinder containing two concentric 

penny-shaped cracks of radius a  at Lz ±=  planes and a concentric penny-shaped 

inclusion of radius b at 0=z  plane which is subjected to uniformly distributed 

axial tensile loads of intensity 0p  at infinity.  

 

In the limiting case, when the rigid inclusion approaches the surface of infinite 

cylinder, i.e., when Ab → ,  the cylinder is fixed at 0=z . One half of infinite 

cylinder becomes identical with the semi-infinite cylinder which contains a penny-

shaped crack at Lz =  plane with the short end being bonded to a rigid support at 

0=z . When the crack approaches the surface of the cracked semi-infinite 

cylinder, i.e., when Aa → ,  the region between one crack and the rigid support 

becomes equivalent to a finite cylinder of length L . 

 

Formulation for the infinite cylinder problem is obtained by means of 

superposition of the following two problems: (I) Uniform solution: an infinite 

cylinder subjected to uniform tension at ±∞=z , (II) Perturbation problem; an 

infinite cylinder containing two concentric penny-shaped cracks of radius a  at 

Lz ±=  planes  and a concentric penny-shaped rigid inclusion of radius b  at 0=z  

plane with no load at infinity. General expressions for the perturbation problem 

(II) are obtained by adding the expressions for (II-i) an axisymmetric infinite 

elastic medium having two concentric penny-shaped cracks of radius a  at Lz ±=  
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planes, (II-ii) an axisymmetric infinite elastic medium containing a penny-shaped 

rigid inclusion of radius b  at 0=z plane, (II-iii) an axisymmetric infinite elastic 

medium with no cracks or inclusion. Addition of several solutions is necessary for 

having sufficient number of unknowns in the general expressions so that all of the 

boundary conditions of the problem can be satisfied.  

 

In this study axisymmetric problems are investigated for three main geometries: 

infinite cylinder, semi-infinite cylinder and finite cylinder problems. General 

solutions for these problems are obtained by using Hankel and Fourier transforms 

on Navier equations. Then, the boundary conditions at the surface of the infinite 

cylinder are satisfied. By using the boundary conditions on the cracks and the rigid 

inclusion, formulation of the infinite problem is reduced to a system of three 

singular integral equations. In the limiting case when the rigid inclusion 

approaches the surface of the cylinder (i.e., when Ab → ), cracked semi-infinite 

cylinder problem is obtained. When additionally the cracks approach the surface of 

the cylinder (i.e., when Aa → ), finite cylinder problem is obtained. By using 

Gauss-Lobatto and Gauss-Jacobi integration formulas, these singular integral 

equations are converted to a system of linear algebraic equations which is solved 

numerically. Mode I and Mode II stress intensity factors at the edges of cracks and 

inclusion and, normal and shearing stresses along the rigid support are calculated 

and are given in Table 1 and Figs. 6.1-6.85.   
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CHAPTER II 

 

 

INFINITE CYLINDER PROBLEM  

 

 

 

2.1. General Equations  
   

 

An axisymmetric, linearly elastic, isotropic and infinite cylinder of radius A , 

containing two concentric penny-shaped cracks of radius a  symmetrically located 

at Lz ±=  planes and a concentric penny-shaped rigid inclusion of radius b  with 

negligible thickness at the symmetry plane 0=z  is considered. Both ends of this 

infinite cylinder are subjected to axial tensile loads of uniform intensity 0p  at 

infinity (Fig. 2.1). 

 

 

 

Figure 2.1 Geometry and loading of the infinite cylinder. 
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For the linearly elastic, isotropic and axisymmetric elasticity problems, Navier 

equations can be written as, Geçit (1986),  
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where u  and w  are displacements in r- and z-directions in cylindrical coordinate 

system, νκ 43 −=  and ν  is the Poisson’s ratio. Necessary stress-displacement 

relations can be listed as follows, 
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where σ  and τ  denote normal and shearing stresses, µ  is the shear modulus. 

 

2.2 Formulation of the Problem 

 

 

Solution for the infinite cylinder having a rigid penny-shaped inclusion and two 

penny-shaped cracks and loaded at infinity is obtained by superposition of the 

following two problems: (I) an infinite cylinder subjected to uniformly distributed 

axial tension of intensity 0p  at infinity with no cracks or inclusion, (II) an infinite 
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cylinder with an inclusion and two cracks for which the loading is the negative of 

the stresses at the location of the cracks and  displacements at the location of the 

inclusion  calculated from the solution of problem (I) (Fig. 2.2). 

 

 

 

      (I) Uniform solution     (II) Perturbation problem          Superposition 

 

Figure 2.2 Superposition scheme of the infinite cylinder problem. 

 

 

2.2.1 Perturbation Problem  

 

General expressions of the displacements and stress components for the 

perturbation problem with no loads at infinity can be obtained by adding the 

general expressions of (II-i) an infinite cylinder containing two penny-shaped 

cracks of radius a  symmetrically located at Lz ±=   planes, (II-ii) an infinite 

cylinder having a penny-shaped rigid inclusion of radius b  at the symmetry plane 

p0 
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0=z  and (II-iii) an infinite cylinder without cracks and inclusion under the action 

of arbitrary axisymmetric loading (Fig. 2.3). This is necessary in order for the 

expressions to contain sufficient number of unknowns so that all of the boundary 

conditions can be satisfied.  

 

 

 

            (II-i)                         (II-ii)                       (II-iii)                           (II) 

   Hankel transform    Hankel transform    Fourier transform            Perturbation 

      in r-direction           in r-direction           in z-direction                   problem 

 

Figure 2.3 Addition of several solutions for the perturbation problem. 

 

 

General expressions for the infinite cylinder )0( Ar <≤  problems may adequately 

be obtained from infinite medium )0( ∞<≤ r  solutions with appropriate boundary 

conditions imposed at Ar = . Due to symmetry about 0=z plane, it is sufficient to 

solve the problem in the upper half space 0≥z  only. 
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2.2.1.1 Infinite Medium Having Two Cracks 

 

Two penny-shaped cracks of radius a  are located symmetrically at distances of L  

from 0=z  plane. Considering an infinite medium with Region i-1 

),0( LzLr ≤≤−∞<≤ , Region i-2 ),0( ∞<≤∞<≤ zLr  and Region i-3 

),0( Lzr −≤<∞−∞<≤ ,  using integral transforms, 0H  Hankel transform, 

Sneddon (1972), of Eq. (2.1b) and 1H transform of Eq. (2.1a), in r- direction  (Fig. 

2.4) and 

 

 

Figure 2.4 Formulation of the cracked infinite medium problem.  

 

 

combining the resulting equations, one obtains, 
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where ξ  is the Hankel transform variable, ),( zU ξ is 1H  Hankel transform of 

),( zru  and ),( zW ξ is 0H Hankel transform of ),( zrw  in r-direction, 
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Solution of Eq. (2.3) for the Region i-2 ),0( ∞<≤∞<≤ zLr  (Fig. 2.4) is 
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where 1c , 2c , 3c  and 4c   are arbitrary unknown constants. By back substitution in 

the transformed ordinary differential equations, one may obtain 
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In order to have finite displacements at infinity )( ∞→z , 3c  and 4c  must be zero. 

Therefore,  
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Taking the inverse transforms of Eqs. (2.7), displacement components are found to 

be 
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where 0J  and 1J  are the Bessel functions of the first kind of order zero and one, 

respectively. Substituting Eqs. (2.8) in Eqs. (2.2), one obtains the following 

expressions for the stress components in the Region i-2 ),0( ∞<≤∞<≤ zLr , 
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Applying a similar procedure for the Region i-1 ),0( LzLr ≤≤−∞<≤ , the 

displacement and stress expressions are obtained in the form, 
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General expressions given in Eqs. (2.8) and (2.9) for Region i-2 

),0( ∞<≤∞<≤ zLr  and Eqs. (2.10) and (2.11) for Region i-1 

),0( LzLr ≤≤−∞<≤ must satisfy the following conditions at Lz =   plane, 
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Note here that Eqs. (2.12a,b) are stress type continuity conditions while Eqs. 

(2.12c,d) are displacement type. In order to have the same type of continuity 

conditions, say stress type, Eqs. (2.12c,d) may be replaced by 
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where )(rf  and )(rg are  unknown functions such that 0)( =rf  and 0)( =rg  

when )( ∞<< ra . Now substituting Eqs. (2.8), (2.9), (2.10) and (2.11) in Eqs. 

(2.12a,b) and (2.13), one obtains the following expressions for the unknown 

constants, 
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Hence, the displacements and the stresses are expressed in terms of )(ξF  and 

)(ξG  for Region i-1 ),0( LzLr ≤≤−∞<≤  and Region i-2 ),0( ∞<≤∞<≤ zLr  

shown in Fig. 2.4, 

 

[ ]{ )(

0

1 )()221()()221(
)1(2

1
),(

zL

i eGzLFzLzru
+−

∞

− ∫ −−++++−−
+

= ξξξξκξξξκ
κ

             [ ] } ξξξξξκξξξκ ξ
drJeGzLFzL

zL )()()221()()221( 1

)( +−+−+−+−+−+ , 

 

[ ]{ )(

0

1 )()221()()221(
)1(2

1
),(

zL

i eGzLFzLzrw
+−

∞

− ∫ −−−++++
+

−
= ξξξξκξξξκ

κ
                          

             [ ] } ξξξξξκξξξκ ξ
drJeGzLFzL

zL )()()221()()221( 0

)( +−−++−−−++− , 

 

[ ]{ )(

01

)()2()()1(
)1(

2
),(

zL

i
r eGzLFzLzr

+−
∞

−
∫ ++−−++−−

+
= ξξξξξξξ

κ

µ
σ  

             [ ] } ξξξξξξξξξ ξ
drJeGzLFzL

zL )()()2()()1( 0

)( +−−+−++−+  

             [ ]{ )(

0

)()221()()221(
)1(

zL
eGzLFzL

+−
∞

∫ −−++++−
+

+ ξξξξκξξξκ
κ

µ
 

             [ ] } ξ
ξ

ξξξκξξξκ ξ
d

r

rJ
eGzLFzL

zL )(
)()221()()221( 1)( +−+−+−+−+−− , 

 

[ ]{ )(

01

)()()()1(
)1(

2
),( zL

i
z eGzLFzLzr

+−
∞

−
∫ +−++

+
= ξξξξξξ

κ

µ
σ  

              [ ] } ξξξξξξξξ ξ
drJeGzLFzL

zL )()()()()1( 0

)( +−−++−−− , 



21 

[ ]{ )(

01

)()1()()(
)1(

2
),(

zL

i
rz eGzLFzLzr

+−
∞

−
∫ ++−−+

+
= ξξξξξξ

κ

µ
τ  

            [ ] } ξξξξξξξξ ξ
drJeGzLFzL

zL )()()1()()( 1

)( +−−+−++−+ ,         (2.16a-e) 

 

[ ]{ )(

0

2 )()221()()221(
)1(2

1
),(

zL

i eGzLFzLzru
+−

∞

− ∫ −−++++−
+

−
= ξξξξκξξξκ

κ
                      

             [ ] } ξξξξξκξξξκ ξ
drJeGzLFzL

zL )()()221()()221( 1

)( −−++−+−−+ , 

 

[ ]{ )(

0

2 )()221()()221(
)1(2

1
),( zL

i eGzLFzLzrw
+−

∞

− ∫ +++−−+++
+

−
= ξξξξκξξξκ

κ
                

              [ ] } ξξξξξκξξξκ ξ
drJeGzLFzL

zL )()()221()()221( 0

)( −+−+−++−++ , 

 

[ ]{ )(

02

)()2()()1(
)1(

2
),(

zL

i
r eGzLFzLzr

+−
∞

−
∫ −−+++−

+
−= ξξξξξξξ

κ

µ
σ  

             [ ] } ξξξξξξξξξ ξ
drJeGzLFzL

zL )()()2()()1( 0

)( −−+−+−−+  

             [ ]{ )(

0

)()221()()221(
)1(

zL
eGzLFzL

+−
∞

∫ −−++++−
+

+ ξξξξκξξξκ
κ

µ
       

             [ ] } ξ
ξ

ξξξκξξξκ ξ
d

r

rJ
eGzLFzL

zL )(
)()221()()221( 1)( −−++−+−−+ , 

 

[ ]{ )(

02

)()()()1(
)1(

2
),(

zL

i
z eGzLFzLzr

+−
∞

−
∫ +−++

+
= ξξξξξξ

κ

µ
σ  

               [ ] } ξξξξξξξξ ξ
drJeGzLFzL

zL )()()()()1( 0

)( −−−+−+ , 

 

[ ]{ )(

02

)()1()()(
)1(

2
),(

zL

i
rz eGzLFzLzr

+−
∞

−
∫ −−++

+
= ξξξξξξ

κ

µ
τ  

               [ ] } ξξξξξξξξ ξ
drJeGzLFzL

zL )()()1()()( 1

)( −−+−−−+ . (2.17a-e) 

 



22 

2.2.1.2 Infinite Medium Having an Inclusion 

 

Now consider an infinite medium having a penny-shaped rigid inclusion of radius 

b  located at the symmetry plane )0( =z . Considering an infinite medium with 

Region ii-1 )0,0( ∞<≤∞<≤ zr  and Region ii-2 )0,0( ≤<∞−∞<≤ zr , using 

integral transforms, 
0H  Hankel transform of Eq. (2.1b) and 1H  transform of Eq. 

(2.1a) in r-direction (Fig. 2.5), solution of Eq. (2.3) for the Region ii-1 

)0,0( ∞<≤∞<≤ zr  is obtained in the form 
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where 
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10c , 11c  and 12c   are arbitrary unknown constants. Similarly, one may 
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In order to have finite displacements at infinity )( ∞→z , 11c  and 12c   must be 

zero. Taking the inverse transforms of Eqs. (2.18) and (2.19), displacement 

components are found to be 
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Figure 2.5 Infinite medium having an inclusion. 

 

 

Substituting Eqs. (2.20) in Eqs. (2.2), one obtains the following expressions for the 

stress components in the Region ii-1 )0,0( ∞<≤∞<≤ zr  (Fig. 2.5): 
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Expressions for the lower semi infinite space )0,0( ≤<∞−∞<≤ zr  are obtained 

similarly in the form, 

 

∫
∞

− +=
0

116152 )()(),( ξξξξ
drJezcczru

z

ii ,                                                                       

 

∫
∞

− 







−−−=

0

016152 )()(),( ξξξ
ξ

κ ξ
drJeczczrw

z

ii ,                  (2.22a,b)                                  

 

[ ]∫
∞

−

−−+=
0

0161615
2

)()3()(2),( ξξξκξµσ ξ
drJeczcczr

z

ii
r  

      ∫
∞

+−
0

1
1615

)(
)(2 ξ

ξ
ξµ ξ

d
r

rJ
ezcc

z
,                                                         

 

[ ]∫
∞

−

+++−=
0

0161615
2

)()1()(2),( ξξξκξµσ ξ
drJeczcczr

z

ii
z ,                                     

 

[ ]∫
∞

−

−−+=
0

1161615
2

)()1()(2),( ξξξκξµτ ξ
drJeczcczr

z

ii
rz . (2.23a-c) 

 

The expressions in Eqs. (2.20), (2.21) and (2.22), (2.23) are matched on the 0=z  

plane by means of the following continuity conditions, 
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where )(rh  is the jump in the shearing stress rzτ  through the rigid inclusion and it 

is such that 0)( =rh  when ∞<< rb . The unknown constants can be expressed in 

terms of )(ξH as, 
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where 
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Since the infinite medium having an inclusion is symmetric about 0=z  plane, the 

axisymmetric problem is considered in the upper half space Region ii-1 

)0,0( ∞<≤∞<≤ zr  (Fig. 2.5). The displacements and the stresses for this region 

may be written as, 

 

[ ]∫
∞

−
− +−

+
=

0

11 )()()(
)1(2

1
),( ξξξξκ

κµ
ξ

drJeHzzru
z

ii , 

 

[ ]∫
∞

−
−

+
=

0

01 )()(
)1(2

1
),( ξξξξ

κµ
ξ

drJeHzzrw
z

ii , 

 



26 

[ ] ξ
ξ

ξξκ
κ

σ ξ
d

r

rJ
eHzzr

z

ii
r

)(
)()(

)1(

1
),( 1

01

−
∞

−
∫ −

+
=  

                [ ]∫
∞

−−+
+

−
0

0 )()()23(
)1(2

1
ξξξξξκ

κ
ξ

drJeHz
z

, 

 

[ ] ξξξξξκ
κ

σ ξ
drJeHzzr

z

ii
z )()()21(

)1(2

1
),( 0

01

−
∞

−
∫ −+−

+
= , 

 

[ ] ξξξξξκ
κ

τ ξ
drJeHzzr

z

ii
rz )()()21(

)1(2

1
),( 1

01

−
∞

−
∫ −+

+
= . (2.27a-e) 

 

2.2.1.3 Infinite Medium under the Action of Arbitrary Axisymmetric Loading 

 

In this section, the infinite medium problem without crack and inclusion is 

considered. For the solution of this problem, taking the Fourier cosine transform, 

Sneddon (1951),  of the first Navier equation, (2.1a), and the Fourier cosine 

transform of the second Navier equation, (2.1b), in  z- direction and combining the 

resulting equations, one obtains, 
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where cU  is the Fourier cosine transform of ),( zru , 
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rx α= , α  being Fourier transform variable. By taking into consideration that Eq. 

(2.28) is in the form 
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0=∆ cU ,                                                              (2.30)   

 

where ∆  is a 4
th

 order linear ordinary differential operator with variable 

coefficients in x , McLachlan (1934), Eq. (2.30) may be written as 

 

0)()( 4321 =∆∆+∆∆ cc UU ,                                    (2.31)                                                                 

 

where 1∆ , 2∆ , 3∆ and 4∆  are second order linear ordinary differential operators 

with variable coefficients in x : 
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Solution of Eq. (2.31) is  
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),( 020019118117 rrKcrrIcrKcrIcrU c ααααααα +++−= ,            (2.33) 

 

where 100 ,, IKI and 1K  are the modified Bessel functions of the first and second 

kinds of order zero and one, respectively, and 17c , 18c , 19c and 20c  are arbitrary 

constants. Because of symmetry about z-axis, 18c  and  20c  must be zero (Fig. 2.6). 
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Figure 2.6 Infinite axisymmetric medium with no crack or inclusion. 

 

 

By similar consideration,  
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is obtained where ),( αrWs  is the Fourier sine transform of ),( zrw , 

 

∫
∞

=
0

)sin(),(),( dzzzrwrWs αα . (2.35) 

 

Taking the inverse transform of Eqs. (2.33) and (2.34), the displacement 

components are found to be 
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Substituting Eqs. (2.36) in Eqs. (2.2),  one obtains the following expressions for 

the stress components  
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Now the general expressions for the infinite medium containing two penny-shaped 

cracks, a penny-shaped inclusion and subjected to arbitrary axisymmetric loads 

(not at infinity) may be obtained when the individual expressions are added 

together: 
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fourierrinclusionrcracksronperturbatir σσσσ ++= , 
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These expressions may give those for the perturbation problem for an infinite 

cylinder with stress-free surface if they are forced to satisfy the homogeneous 

boundary conditions 
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Eqs. (2.39) with (2.16), (2.17), (2.27), (2.37) and (2.38) give 
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following routine manipulations. Solution of Eqs. (2.40) give 
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in which, by the aid of integral formulas given in Appendix A one may show that, 
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Then, the general expressions for the perturbation problem of an infinite cylinder 

with two cracks, an inclusion and a stress-free lateral surface become                                                               
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)()(2 00
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2 ααα AKAIAd = , 

 

)()( 113 αα AKAId = ,  

 

22

4 21 ακ rd ++= , (2.44a-e) 

 

and integrals of Bessel functions are given in terms of the complete elliptic 

integrals K and E  in Appendix B. 
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2.2.2 Uniform Solution 

 

Consider an infinite cylinder of radius A  subjected to uniformly distributed axial 

tension of intensity 
0p  at infinity. In this special case, one may expect that u  is 

independent of z  and w  is independent of r : 

 

)(),( ruzru = , 

 

)(),( zwzrw = . (2.45a,b) 

 

For this uniform axial loading, Eqs. (2.1) are uncoupled and become 

 

0
1

22

2

=−+
r

u

dr

du

rdr

ud
,        

                                                                      

0
2

2

=
dz

wd
.                                                  (2.46a,b) 

 

These equations must be solved subjected to the following conditions 

 

0)0( =u ,                                                                                                                 

 

0)0( =w ,                                                                                                                 

 

0),( =zArσ ,                                                                                                           

 

0),( =zArzτ , 

 

0),( prz =∞σ             (2.47a-e)  
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for which one can easily obtain the solution in the form               
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,                                                                                              

 

z
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κµ
,               

                                                                                 

0),( =zr
uniform
rσ ,                                                                                                            

 

0),( pzr
uniform
z =σ ,                                                                                                          

 

0),( =zr
uniform
rzτ .                                                                                           (2.48a-e) 

 

2.2.3 Superposition 

 

General expressions for the infinite cylinder which contains two penny-shaped 

cracks at Lz ±= , a penny-shaped inclusion at 0=z  and subjected to axial tension 

of uniform intensity 0p  at ±∞=z  are obtained by the superposition of the 

uniform solution and the general expressions for the perturbation problem:  

 

uniformpercyl uuu += .. , 

 

uniformpercyl www += .. , 

 

uniformrpercylrr σσσ +=
..

, 

 

uniformzpercylzz σσσ +=
..

, 
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uniformrzpercylrzrz τττ +=
..

. (2.49a-e) 
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CHAPTER III 

 

 

INTEGRAL EQUATIONS 

 

 

 

3.1. Derivation of Integral Equations  

 

The expressions for the stresses and the displacements, Eqs. (2.43) or (2.49),  

contain three unknown functions, )(tf , )(tg  and )(th , which are the crack surface 

displacement derivatives in z- and r-directions and the jump in the shearing stress 

through the rigid inclusion, respectively. Since crack surfaces are free of stress and 

the rigid inclusion is perfectly bonded to the cylinder, the stress and the 

displacement expressions, Eqs. (2.49), must satisfy the following conditions 

 

0),( =Lrzσ ,                     )0( ar <≤                                               

 

0),( =Lrrzτ ,                         )0( ar <≤               (3.1a,b) 

 

on the crack and 

 

0)0,( =ru ,                             )0( br <≤                     (3.1c) 

 

on the rigid inclusion. Eqs. (3.1a,b) are stress type boundary conditions while Eq. 

(3.1c) is displacement type which is satisfied if instead 

 

[ ] 0)0,(
1

=
∂

∂
rru

rr
                   )0( br <≤                                                        (3.2) 

 

is satisfied. Now, Eqs. (3.1a,b) and (3.2) are all stress type conditions. Substituting 
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Eqs. (2.49d,e) in Eqs. (3.1a,b) and Eq. (2.49a) in Eq. (3.2) gives the following 

singular integral equations 
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Noting that )(tf  and )(th  are odd, )(tg  is even, integrals in Eqs. (3.3) may be 

converted to integrals from a−  to a  and from b−  to b  and Eqs. (3.3) may be 

written in the form 
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in which K and E are the complete elliptic integrals of the first and the second 

kinds, respectively. ),( trSi )81( −=i  containing complete elliptic integrals are 

defined in Appendix C. The kernels ),( trNij  )31,( −=ji in Eqs. (3.3) are in the 

form of improper integrals,  

 

∫
∞

=
0

),,(),( αα dtrKtrN ijij ,                        )31,( −=ji    (3.9) 

 

where the integrands ),,( αtrKij )31,( −=ji  are given in Appendix D. The three 

singular integral equations, Eqs. (3.6), must be solved in such a way that the 

single-valuedness conditions for the crack 
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∫
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=
a

a

tdttg 0)( , (3.10a,b) 

 

and the equilibrium equation for the rigid inclusion 

 

∫
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are also satisfied. In Eqs. (3.6), the simple Cauchy kernel, Muskhelishvili (1953), 

)/(1 rt −  becomes unbounded when rt = . In addition to this, there may be 

unbounded parts in the kernels ),( trNij )31,( −=ji . Therefore, the improper 

integrals giving ),( trNij )31,( −=ji  must be examined closely and those terms in 

),,( αtrKij  )31,( −=ji  giving rise to probable singular terms in ),( trNij  

)31,( −=ji  must be separately treated. Unbounded terms may be due to behavior 

of ),,( αtrKij )31,( −=ji  around 0=α  and ∞→α .  

 

Asymptotic analysis around 0=α  gives  
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which do not contribute to unbounded terms when integrated. When 

),,( αtrKij )31,( −=ji  are examined as ∞→α , with the notation  
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it is observed that only ),,( αtrKii )31( −=i  contain such terms which may be 

written in the form  
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Integrating ),,( αtrKii∞
 )31( −=i , the probable singular parts of the kernels 
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Bounded parts of kernels ),( trNii )31( −=i  are then calculated from 
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in which the subscript b denotes the bounded parts and  
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),(),(),( trNtrNtrN
siibiiii += ,                               )31( −=i . (3.19) 

 

Note that ),( trN
sii )31( −=i  are singular if Atr →, . 

 

3.2 Characteristic Equations 

 

 

The unknown functions )(tf , )(tg  and )(th  are expected to have integrable 

singularities at the respective edges of cracks and the inclusion. The singular 

behavior of these unknown functions can be determined by writing  
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where )(*
tf , )(*

tg  and )(*
th  are Hölder-continuous functions, Muskhelishvili 

(1953),  in the respective intervals  ),( aa−  and  ),( bb− .  β  and γ  are unknown 

constants which can be calculated by examining the integral equations, Eqs. 

(3.6a,b) near the ends ar m=  and Eq. (3.6c) near the ends br m= .  

 

Equations (3.6), together with Eqs. (3.20) may be written in the form 
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where all other and bounded terms are collected in )(rBi )31( −=i . The integrals 

on the left-hand-sides of Eqs. (3.21) near ar m=  and br m= may be calculated 

with the help of the complex function technique given in Muskhelishvili (1953): 

 

)(
)()2(

)cot()(

)()2(

)cot()(

)()(

)(1
1

**

22

*

rF
raa

af

raa

af
dt

rtta

tf
a

a

+
−

−
+

−
=

−−∫
−

βββββ

πβπβ

π
, 

 

)(
)()2(

)cot()(

)()2(

)cot()(

)()(

)(1
1

**

22

*

rG
raa

ag

raa

ag
dt

rtta

tg
a

a

+
−

−
+

−
=

−−∫
−

βββββ

πβπβ

π
, 

 

)(
)()2(

)cot()(

)()2(

)cot()(

)()(

)(1
1

**

22

*

rH
rbb

bh

rbb

bh
dt

rttb

th
b

b

+
−

−
+

−
=

−−∫
−

γγγγγ

πγπγ

π
,    (3.22a-c) 

 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
2

*

22

*

rF
rAA

Af
dt

rAttA

tf
A

A

+
−

−=
−−−∫

−
πβπ βββ

, 

 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
3

*

22

*

rF
rAA

Af
dt

rAttA

tf
A

A

+
+

−=
+−−∫

−
πβπ βββ

, 

 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
4

*

22

*

rF
rAA

Af
dt

rAttA

tf
A

A

+
−

−
=

+−−−∫
−

πβπ βββ
, 

 



 49 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
5

*

22

*

rF
rAA

Af
dt

rAttA

tf
A

A

+
+

−
=

−−−−∫
−

πβπ βββ
, 

 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
2

*

22

*

rG
rAA

Ag
dt

rAttA

tg
A

A

+
−

−=
−−−∫

−
πβπ βββ

, 

 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
3

*

22

*

rG
rAA

Ag
dt

rAttA

tg
A

A

+
+

=
+−−∫

−
πβπ βββ

, 

 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
4

*

22

*

rG
rAA

Ag
dt

rAttA

tg
A

A

+
−

−
−=

+−−−∫
−

πβπ βββ
, 

 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
5

*

22

*

rG
rAA

Ag
dt

rAttA

tg
A

A

+
+

−
=

−−−−∫
−

πβπ βββ
, 

 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
2

*

22

*

rH
rAA

Ah
dt

rAttA

th
A

A

+
−

−=
−−−∫

−
πγπ γγγ

, 

 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
3

*

22

*

rH
rAA

Ah
dt

rAttA

th
A

A

+
+

−=
+−−∫

−
πγπ γγγ

, 

 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
4

*

22

*

rH
rAA

Ah
dt

rAttA

th
A

A

+
−

−
=

+−−−∫
−

πγπ γγγ
, 

 

[ ]
)(

)sin()()2(

)(

)2()(

)(1
5

*

22

*

rH
rAA

Ah
dt

rAttA

th
A

A

+
+

−
=

−−−−∫
−

πγπ γγγ
, (3.23a-l) 

 

where )(rFi , )(rGi  and )(rH i  )51( −=i  are all bounded everywhere except at 

the end points a± , b±  and A± .  
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Now substituting Eq. (3.22a) in Eq. (3.21a) or Eq. (3.22b) in Eq. (3.21b), 

multiplying the resulting equation by β)( ra − , and then considering the limiting 

case ar → , for an internal crack )( Aa < , one can obtain the following 

characteristic equation for β : 

 

0)cot( =πβ ,                   )( Aa < . (3.24) 

 

The acceptable numerical value for β  is then 1/2. This is the very well known 

result for an embedded crack tip in a homogeneous medium, Cook and Erdoğan 

(1972), Gupta (1973), Delale and Erdoğan (1982), Nied and Erdoğan (1983), Geçit 

(1987), Turgut and Geçit (1988). 

 

Similarly, substituting Eq. (3.22c) in Eq. (3.21c), multiplying the resulting 

equation by γ)( rb − , and then considering the limiting case br → , for an internal 

rigid inclusion )( Ab < , one can obtain the following characteristic equation for γ : 

 

0)cot( =πγ ,                    )( Ab < . (3.25) 

 

Here, γ  is also equal to 1/2 which is in agreement with previous results, Gupta 

(1974), Artem and Geçit (2002), Yetmez and Geçit (2005). 

 

When the cracks spread out and the cylinder is completely broken along the cracks 

)( Aa = , in addition to Eq. (3.22a), Eq. (3.23a-d) must also be substituted in Eq. 

(3.21a). Then, multiplying the resulting equation by β)( rA − , and considering the 

limiting case Ar → , one can obtain the following characteristic equation for β : 

 

1)2(2)cos( +−= ββπβ ,                  )( Aa =  (3.26) 
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for which the acceptable value for β  is zero. This shows that the stresses at the 

apex of  a o90  wedge with free sides are bounded. This result is in agreement with 

previous observations, Williams (1952), Geçit (1984), Geçit and Turgut (1988).   

 

When the inclusion spreads out and the midplane )0( =z of the cylinder is 

completely fixed )( Ab = , in addition to Eq. (3.22c), Eqs. (3.23i-l) are also 

substituted in Eq. (3.21c). Then, the resulting equation is multiplied by  γ)( rA −  

and the limiting case  Ar →  is considered. This procedure gives the following 

characteristic equation for γ  at the edge of a through rigid inclusion )( Ab = : 

 

22 )1(41)cos(2 −−+= γκπγκ .             )( Ab =              (3.27) 

 

This equation is in agreement with previous results for the stress singularity at the 

apex of a o90  wedge with one side being fixed and the other being free, Williams 

(1952), Gupta (1975), Geçit and Turgut (1988). 
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CHAPTER IV 

 

 

SOLUTION OF INTEGRAL EQUATIONS 

 

 

 

In this chapter, procedures used for the solution of singular integral equations, Eqs. 

(3.6), subject to conditions Eqs. (3.10) and (3.11) are given for infinite cylinder, 

semi-infinite cylinder and finite cylinder problems separately. 

 

First of all, the integral equations will be expressed in terms of non-dimensional 

quantities. Defining non-dimensional variables φ  and ψ  on the crack by 

 

φat = ,            )11,( <<−<<− φata   

 

ψar = ,          )11,( <<−<<− ψara   (4.1a,b) 

 

and η  and ε  on the inclusion by 

 

ηbt = ,           )11,( <<−<<− ηbtb   

 

εbr = ,           )11,( <<−<<− εbrb   (4.2a,b) 

 

system of singular integral equations, Eqs. (3.6), Eqs. (3.10) and Eq. (3.11), takes 

the following form 
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Imposing the singular behavior of the unknown functions along with the lines of 

Eqs. (3.20), 
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in which )(φF , )(φG  and )(ηH  are Hölder-continuous functions in (-1,1), Eqs. 

(4.3) and (4.4) may be rewritten in the form  
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and 
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,),(),( 22 ηεηε bbMbM =  

 

,2/),(),( 2 φψφψ aaNaN ijij =  )2,1,( =ji  

 

,/),(),( 3

2
3 κηψηψ baNbN ii −=  )2,1( =i  

 

,2/),(),( 3

2
3 φεφε abNaN jj =  )2,1( =j  

 

,/),(),( 33

2
33 κηεηε bbNbN −=  

 

,2/),(),( 2 φψφψ aaSaS ii =  )5,4,2,1( =i  

 

,/),(),( 2 κηψηψ baSbS ii −=  )6,3( =i  

 

,2/),(),( 2 φεφε abSaS ii =  )8,7( =i  (4.8a-l) 

 

4.1 Infinite Cylinder Problem 

 

 

4.1.1 Infinite Cylinder Having Two Cracks and an Inclusion 

  

For general solution, it is assumed that there are concentric penny-shaped cracks of 

radius a  at Lz ±=  and a concentric penny-shaped rigid inclusion of radius b  at 

0=z  in the infinite cylinder of radius A . Both ends of this infinite cylinder are 

subjected to axial tensile loads of uniform intensity 0p  at infinity (Fig. 2.1). In this 

case, the powers of singularity β  and γ  are determined from Eqs. (3.24) and 

(3.25): 
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2/1=β ,   

 

2/1=γ .  (4.9a,b) 

 

In this case, the integrals in Eqs. (4.6) and (4.7) may be calculated by the use of the 

Gauss-Lobatto integration formula, Krenk (1978), Artem and Geçit (2002). Then, 

Eqs. (4.6) and (4.7) become 
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∑
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where the  roots iφ , iη  and jψ , jε  are given by 
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iC  are the weighting constants of the Lobatto polynomials  
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Equations (4.10) and (4.11) constitute a system of n3 x n3  linear algebraic 

equations. Note that the unknown functions )(φF , )(ηH  are even, and )(φG  is 

odd. In addition, the roots and weighting constants of the Lobatto polynomials are 

symmetric. Therefore, the )33( −n x n3  system of algebraic equations, Eqs. (4.10), 

may be reduced to the following )2/3( n x )2/3( n  system  
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Note here that Eqs. (4.11a,c) are automatically satisfied since )(φF  and )(ηH are 

even functions. The system of equations, Eqs.(4.14), contains 2/3n  equations for  

2/3n unknowns, )( iF φ , )( iG φ and )( iH η  )2/,...,1( ni = . However, if  n  is chosen 

to be an even integer, it can be shown that Eq. (4.14b ) corresponding to 02/ =nψ  

is satisfied automatically since 

 

0),0( =Lrzτ . (4.16) 
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The missing equation, Eq. (4.14b) for 2/nj = , is complemented by Eq. (4.11b) 

which can be converted to 
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It must be noted here that calculation of the coefficients for 2/nj =  which 

corresponds to 0=r  in Eqs. (4.14a,c) requires special attention. For this purpose, 

the kernels ),( trNij  )31,( −=ji  must be calculated separately for 0=r . Let 
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where ),(0 αtKij∞  and )(
0

tN
sij  )31;3,1( −== ji  are given in Appendix E and F, 

respectively.  

 

Then, noting also that 

 

2
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Eqs. (4.14a,c) for 2/nj =  may be replaced by 
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Infinite integrals for kernels, ),( trNij  )31,( −=ji , are calculated numerically by 

using the Laguerre integration formula, Abramowitz and Stegun (1965) .  

 

4.1.2 Infinite Cylinder Having an Inclusion 

 

Consider an infinite circular cylinder of radius A  containing a penny-shaped 

concentric rigid inclusion of radius b  at 0=z . The cylinder is under the action of 

axial tensile loads of uniform intensity p0 at ±∞=z  (Fig. 4.1). If there is no crack 

in the cylinder, the unknown functions )(tf  and )(tg  defined on the cracks must 

be dismissed. Then, the integral equations, Eqs. (4.14a,b), resulting from the 

conditions on the cracks, Eqs. (3.1a,b), will be unnecessary. Remaining integral 

equation, Eq. (4.14c), will reduce to 
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as the )2/(n th equation of the system written separately due to difficulty in 

calculating the kernels at 0=r . 

 

 

 

 

Figure 4.1 Geometry of an infinite cylinder with a penny-shaped inclusion.  

 

 

4.1.3 Infinite Cylinder Having Two Cracks 

 

Now consider an infinite circular cylinder of radius A  containing two penny-

shaped concentric cracks of radius a  symmetrically located at Lz ±=  planes. 

Both ends of this cracked infinite cylinder are subjected to axial tensile loads of 

uniform intensity 0p  (Fig. 4.2). In this case, the unknown function )(th  defined on 

the rigid inclusion must be dismissed.  
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p0 

p0 
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Figure 4.2 Geometry of an infinite cylinder with two penny-shaped cracks.  

 

 

The integral equation, Eq. (4.14c), resulting from the condition on the rigid 

inclusion, Eq. (3.1c), must also be eliminated. In this case, Eqs. (4.14a,b) will 

reduce to 
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with  
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being the complementing equation written separately due to delicate nature of the 

kernels at 0=r . 

 

4.2 Semi-Infinite Cylinder Problem 

 

 

When the rigid inclusion at 0=z  spreads out and its radius b  approaches A , the 

radius of the cylinder, the cylinder is fixed completely at 0=z . In this case, one 

half of the infinite cylinder, for example, the upper half, may be regarded as a 

semi-infinite cylinder with the short end being bonded to a rigid support at 0=z . 

 

4.2.1 Semi-Infinite Cylinder Having a Crack 

 

Consider the cracked semi-infinite cylinder problem shown in Fig. 4.3. The semi-

infinite cylinder containing a concentric penny-shaped crack of radius a  at Lz =  

is fixed at 0=z  and tensioned at ∞=z  by a uniformly distributed axial load of 

intensity 0p . In this case, Eq. (3.20c) must be replaced by  
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th

−
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such that γ  is to be calculated from the characteristic equation, Eq. (3.27).  

 



 65 

 

 

Figure 4.3 Semi-infinite cylinder having a penny-shaped crack. 

 

Similarly, Eqs. (4.2) defining non-dimensional variables η , ε  on the rigid 

inclusion must be replaced by 

 

ηAt = ,                                   )11,( <<−<<− ηAtA  

 

εAr = .                                   )11,( <<−<<− εAtA  (4.26a,b) 

 

The integrals containing )(ηH  in Eq. (4.6) and (4.7) must be calculated by the use 

of the Gauss-Jacobi integration formula, Erdoğan et al. (1973),  Gupta (1974), 

Geçit (1986), Yetmez and Geçit (2005), so that Eqs. (4.14) are replaced by 
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where  
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and 
iC , 

iφ , jψ )2/,...,1,( nji =  are Lobatto weights and integration points, which 

are still given by Eqs. (4.12) and (4.13). However, 
iW , 

iη  and jε )2/,...,1,( nji = , 

are the weights and the roots of the Jacobi polynomials: 
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Note again that calculation of kernels of Eqs. (4.27a,c) for 2/nj =  corresponding 

to 0=r  requires special attention. Therefore, these equations are written 

separately in the form 
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4.2.2 Semi-Infinite Cylinder without Crack  

 

Consider the semi-infinite cylinder problem shown in Fig. 4.4. The short end at 

0=z is fixed and the far end at ∞=z  is tensioned by an axial load of uniform 

intensity 0p . Solution of this problem has been given by Gupta (1974). 
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Figure 4.4 Semi infinite cylinder problem. 

 

 

In this case, the unknown functions )(tf  and )(tg  related to the crack and Eqs. 

(4.27a,b) and (4.30a) must be eliminated. Then, Eqs. (4.27c) and (4.30b) reduce to 
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and  
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4.3 Finite Cylinder Problem 

 

 

When the crack in the semi-infinite cylinder problem given in Section 4.2.1 

approaches the edge of the cylinder )( Aa → , the cylinder is broken at Lz =  

A 

r 

z 

p0 
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completely. The portion between 0=z and Lz =  turns out to be a finite cylinder 

with the end at 0=z  being fixed and the other end at Lz =  being subjected to 

axial tension of uniform intensity 
0p  (Fig. 4.5). 

 

 

 

Figure 4.5 Finite cylinder bonded to a rigid support. 

 

 

In this case, 0=β  as given by Eq. (3.26). This means that the unknown functions 

)(rf  and )(rg  are bounded at Ar ±= . The boundary condition, Eq. (3.1a) must 

be replaced by  

 

0),( pLrz =σ .                    )0( ar <≤           (4.33) 

 

Then, Eqs. (4.27) can be put into the following form 
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where jψ = jε  )12/,...,1( −= nj  and 
iφ =

iη , 
iW )2/,...,1( ni =  are the roots and the 

weighting constants of Jacobi polynomials which are given by Eqs.(4.29). 

In writing Eqs. (4.34), following notation is used: 
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for convenience. γ  is calculated from Eq. (3.27). It can be shown that Eqs. 

(4.34a,b) corresponding to 2/nj =  (or 0=r ) are satisfied automatically. Eq. 
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(4.34c) must be written separately for 2/nj =  due to difficulty in calculating the 

kernels for 0=r  in the form 
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Now the system in Eqs. (4.34) and (4.36) contain 22/3 −n  equations for 2/3n  

unknowns. Remember that )(rf and )(rg  are bounded at Ar ±= . But Eqs. 

(4.35a,b) give infinite values for )(Af  and )(Ag unless )(φF  and )(φG  are zero 

at 1± . In order to make the functions )(rf and )(rg  bounded at the end points 

Ar ±= ,  )(φF  and )(φG  must be zero at 1± :  

 

0)1( =±F , 

 

0)1( =±G . (4.37a,b) 

  

Note that ii ηφ =  )2/,...,1( ni =  will never be equal to 1. Therefore,  )1(F  and 

)1(G  must be expressed in terms of )( iF φ , )( iG φ  )2/,...,1( ni =  first. Following 

the procedure described by Geçit (1986), one may write  
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where 
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Γ  being the Gamma function. Hence, Eqs. (4.38) can be written in the form 
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Now the system of equations, Eqs. (4.34), (4.36), and (4.40), is complete; 2/3n   

equations for 2/3n unknowns, )( iF φ , )( iG φ , )( iH η , )2/,...,1( ni = . 
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CHAPTER V 

 

 

STRESSES AND STRESS INTENSITY FACTORS 

 

 

 

5.1 Normal Stress at the Rigid Support 

 

 

For the semi-infinite and finite cylinder problems, significant stresses may develop 

at the rigid support. The expression for the normal stress )0,(rzσ  may be written 

from Eqs. (2.43d), (2.48d), (2.49d) by the procedure used in deriving the singular 

integral equations, Eqs. (3.6), in the following form 
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for the semi-infinite cylinder where 
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in which  
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Integrands of the kernels 
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their dominant parts as ∞→α , ),,(4 αtrK j∞ , )31( −=j  and the singular terms  

),(4 trN
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, )31( −=j  are given in Appendix G. Equation (5.1) may be expressed 

in terms of non-dimensional quantities and the integrals in Eq. (5.1) may be 

calculated by using Gauss-Jacobi and Gauss-Lobatto integration formulas and  
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may be written. Again, due to difficulty in calculation of the kernels for 2/nj =  

(or 0=r ), the expression for 0=r  is written separately in the form 
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where ),0(41 φN , ),0(42 φN  and ),0(43 ηN  are given in Appendix H. For the finite 

cylinder, all integrals in Eq. (5.1) must be calculated by the Gauss-Jacobi 

integration formula.  

 

5.2 Stress Intensity Factors  

 

 

From the viewpoint of fracture, particularly important are the stress intensity 

factors. Stresses become infinitely large at the edges of the crack and the inclusion. 

In this case, stress state around those edges can be expressed in terms of the power 

of stress singularity and the stress intensity factors. 

 

5.2.1 Stress Intensity Factors at the Edge of the Crack 

 

The normal (Mode I) and the shear (Mode II) components of the stress intensity 

factors, ak1  and ak2 , at the edge of the crack may be defined as 
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From Eqs. (2.43d), (2.48d) and (2.49d) one may write 
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where the bounded part ),( Lrzbσ  is given by 
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the singular part of  normal stress given in Eq.(5.8) can be calculated by the 

method given in Muskhelishvili (1953). Then, Eq.(5.8) can be written in the 

following form: 
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where )(**
rf contains bounded terms.  

 

Substitution of Eq. (5.11) in Eq. (5.7a) gives  
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Comparing Eqs. (4.5a) and (5.10) one can relate )(* φaf  and )(φF : 
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Now substituting (5.13) in (5.12), the stress intensity factor can be obtained in the 

form  
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Using Eq.(4.8a), one can further write 
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and finally 
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for the normalized Mode I stress intensity factor at the edge of the internal crack. 

One can similarly write 
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for the normalized Mode II stress intensity factor at the edge of the internal crack. 
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5.2.2 Stress Intensity Factor at the Edge of the Internal Inclusion 

 

 

Mode II stress intensity factor 
bk2
 at the edge of inclusion for infinite cylinder may 

be defined as 
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Using the boundary condition given in Eq. (2.23d), shearing stress at 0=r  can be 

defined in terms of the unknown function )(rh  in the form 
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with the help of Eq. (3.20c). By a similar procedure as the one used in Section 

5.2.1, Mode II stress intensity factor at the edge of the internal rigid inclusion can 

be calculated as 
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and the  normalized stress intensity factor  
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can be written as 

 

2

)1(
2

H
k b = . (5.22) 

 



 79 

5.2.3 Stress Intensity Factors at the Edge of the Rigid Support  

 

When the penny-shaped rigid inclusion approaches the surface of the cylinder, the 

cylinder becomes fixed at 0=z . The stresses along the edge of the rigid support 

are infinity and can be characterized by the stress intensity factors 
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One may write 
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where subscripts s  and b  denote the singular and the bounded parts of )0,(rzσ . 

Considering Eq. (5.1), singular part of the stress can be expressed in the form 
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The integral containing the simple Cauchy kernel, )/(1 rt − , can be evaluated by 

the aid of Eqs. (3.20c) and (3.22c): 
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in which )(
**

1 rh  contains bounded terms. On the other hand, from Eq. (G.8) one 

can write 
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Eqs. (3.23i) and (5.27) give then 
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where )(
**

2 rh  contains bounded terms. Now substituting Eqs. (5.26) and (5.28)  in 

Eq. (5.25), then substituting the resulting expression for )0,(r
szσ  in Eq. (5.24) or 

Eq. (5.23) one can write the Mode I stress intensity factor in the form 
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The normalized Mode I stress intensity factor Ak1  at the edge of the rigid support  

can be written as 
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Note that in deriving Eq. (5.30), Eqs. (4.5c) and (4.8c) are used. By a similar 

procedure, normalized Mode II stress intensity factor Ak 2  at the edge of the rigid 

support can be obtained in the form 
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where γ  is obtained from Eq.(3.20). 
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CHAPTER VI 

 

 

RESULTS AND CONCLUSIONS 

 

 

 

6.1 Numerical Results 

 

 

The system of linear algebraic equations for the particular problems defined in 

Chapter 4 is solved and the values of unknown functions )( iF φ , )( iG φ and )( iH η  

)2/,...,1( ni =  are calculated at discrete collocation points. Then, stress 

distributions, stress intensity factors at the edges of the crack and the inclusion for 

infinite cylinder and at the edge of rigid support as Ab →  for semi-infinite and 

finite cylinders are calculated numerically.  

 

All cylinder problems in the scope of this thesis are described by the geometrical 

parameters A ; radius of the cylinder, a ; radius of the cracks, b ; radius of the 

rigid inclusion, L ; distance from the inclusion to the cracks. The material of the 

cylinder is described by µ ; modulus of rigidity and ν ; Poisson’s ratio. The 

loading is described by 0p ; uniform intensity of the axial tension. However, for 

the sake of generalization of the numerical results, dimensionless geometrical 

parameters Aa / , Ab / , AL /  normalized by the radius of the cylinder are used. 

Since the normalized stress distributions and normalized stress intensity factors are 

used, particular numerical values are not selected for µ  and 0p  in the analysis. 

Poisson’s ratio ν is used to describe the material. Some of the calculated results 

are shown in Table 6.1 and in Figs. 6.1-6.85.   
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6.1.1 Infinite Cylinder Problem 

 

6.1.1.1 Rigid Inclusion in an Infinite Cylinder 

 

Consider the problem shown in Fig. 4.1. In this case, the system of equations, Eqs. 

(4.21) and (4.22) must be solved for )(ηH . Figures 6.1 and 6.2 show the 

normalized Mode II stress intensity factor bk 2  at the edge of the rigid inclusion 

defined by Eq. (5.22). As can be seen from these figures,  bk 2  is negative and it 

increases with increasing ν , but decreases with increasing Ab /  ratio. Note that 

bk 2  is zero when 0=ν . For this situation, there is no Poisson’s effect. 

Consequently, the constraint due to the rigid inclusion disappears and the shearing 

stresses induced by the inclusion vanish.   

 

6.1.1.2 Two Parallel Cracks in an Infinite Cylinder 

 

Consider the problem shown in Fig. 4.2. In this case, the system given by Eqs. 

(4.23) and (4.24) must be solved for )(φF  and )(φG . Figures 6.3 and 6.4 show the 

normalized Mode I and Mode II stress intensity factors ak1  and ak 2  at the edges of 

two parallel penny-shaped cracks in an infinite solid defined by Eqs. (5.16) and 

(5.17). These figures are produced for the purpose of comparison with the results 

given by Isida et al. (1985). Numerical results are obtained by solving the 

following system 
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which is obtained from Eqs. (4.23) and (4.24). ak1  increases, ak 2  decreases with 

increasing aL /  ratio and remain unchanged after 4/ ≅aL . Results seem to be in 

very good agreement with those given by Isida et al. (1985). Figure 6.5 shows the 

normalized Mode I stress intensity factor ak1  at the edge of a single transverse 

penny-shaped crack in an infinite cylinder together with the results given in 

Benthem and Koiter (1973), Leung and Su (1998), Tsang et al. (2003) for 

comparison. Numerical results for this case are obtained from solution of the 

system in Eqs. (4.23) and (4.24) by selecting ∞→AL / , so that the interaction 

between the two cracks is eliminated. Results seem to agree with the previous 

ones, the best agreement being with Benthem and Koiter (1973). ak1  increases 

with increasing crack radius. 

 

Figures 6.6-6.11 show ak1  at the edges of two parallel penny-shaped cracks in an 

infinite cylinder. ak1  is almost insensitive to ν . In most of the cases,  ak1  

increases with increasing Aa /  and/or AL /  ratios. As ∞→AL / , the infinite 

cylinder problem with two penny-shaped cracks becomes similar to that of an 

infinite cylinder with a central crack at 0=z  plane.  

 

Figures 6.12-6.17 show ak 2  at the edges of two parallel penny-shaped cracks in an 

infinite cylinder. In Figs. 6.12 and 6.13, variation of ak 2  is shown for 3.0=ν . 

From these figures one may conclude that, ak 2  increases with increasing crack 

radius.  ak 2  decreases as the cracks go away from each other.  

 

Figures 6.14 and 6.15 show variations of ak 2  with ν  for Aa 5.0=  and AL =2 , 

respectively. These figures show that ak 2  is almost insensitive to changes in ν  
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except for very large crack radii. As can be seen from Figs. 6.16 and 6.17 also, ak 2  

is sensitive to changes in geometry, i.e., AL /2  and/or Aa /  ratios. 

 

In Table 1, dimensionless ratio of Mode I stress intensity factor ak1  for double 

parallel cracks to ak1  for single crack for various crack distances and crack radii 

are compared with finite element method (FEM) results of Tsang et al. (2003) for 

33.0=ν . It can be observed that there is a very good agreement between the 

results of analytical solution obtained in the present study and the solution 

obtained by Tsang et al. (2003) using finite element method (FEM). 

 

In most fracture analyses, approaches based on energy considerations are used 

with some variations, Geçit (1988). A crack is claimed to propagate if the rate of 

release of the stored energy per unit growth of the crack exceeds the rate of change 

of the surface energy required by the new surfaces. The energy release rate for the 

crack may be calculated in the form, Erdoğan and Sih (1963), Geçit (1988),  
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where U  is the strain energy. Figure 6.18 shows the dimensionless energy release 

rate 
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for one crack when 3.0=ν . Note that w  is larger for larger AL /  ratios, i.e., when 

interaction between the two cracks is less. w  increases significantly with 

increasing Aa /  ratio.  
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If the material of the cylinder is brittle, crack propagation may be expected to take 

place, as suggested by Erdoğan and Sih (1963), in a direction perpendicular to the 

maximum cleavage stress, which is defined by 

 

[ ] ,0)sin()cos(31 12 =−− θθ aa kk          

              

.0)cos()sin(3 12 <− θθ aa kk                                                                           (6.4a,b)   

                                  

Figure 6.19 shows the variation of the probable cleavage angle θ  at the edge of 

the penny-shaped crack at Lz =  plane when 3.0=v . As can be seen in this figure, 

the two cracks propagate away from each other, a tendency that is more 

pronounced when the cracks are closer to each other.   

 

6.1.1.3 Two Parallel Cracks and a Rigid Inclusion in an Infinite Cylinder  

 

Consider the problem shown in Fig. 2.1. In this case, the system given by Eqs. 

(4.14), (4.17), and (4.20) must be solved for )(φF , )(φG  and )(ηH . Variation of 

normalized Mode I stress intensity factor ak1  at the edges of penny-shaped cracks 

is shown in Figs. 6.20-6.26. Figures 6.20 and 6.21 show variation of  ak1  with 

Aa / . In both figures Ab 5.0= . It seems that  ak1  assumes its minimum value 

around Aa 5.0= . This effect is most pronounced for larger values of ν  and 

smaller values of AL / . Relatively high stresses around the edge of the rigid 

inclusion are responsible for this behavior. It is obvious that the interaction 

between the rigid inclusion and the cracks is greater when the cracks are closer to 

the inclusion. The effect of the inclusion is greater for larger ν . Besides the 

interaction,  ak1  increases as the crack radius increases. 

 

Figures 6.22 and 6.23 show variations of ak1  with AL /  when 5.0/ =Aa  and 

3.0=ν . ak1  increases with increasing AL /  ratio until AL 8.0≅ . After AL 2≅ , 
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the effects of ν  and Ab /  disappear and ak1  becomes equal to that in the case of a 

single crack in an infinite cylinder.  

 

Figures 6.24 and 6.25 show variations of ak1  with Ab /  when Aa 5.0= . As can be 

seen in Fig. 6.24, ak1  does not change considerably with Ab /  for a constant crack 

radius and constant Poisson’s ratio, 3.0=ν . Maximum values of ak1  are realized 

at Ab 8.0≅  for ALa 5.0==  (Fig. 6.25). 

 

Figure 6.26 shows variation of ak1  with ν  when ALa 5.0== . For practical 

values of ν , ak1  increases as ν  and/or Ab /  increase(s) for this combination of 

crack radius and crack distance. 

 

Figures 6.27-6.33 show variation of normalized Mode II stress intensity factor ak 2  

at the edges of the cracks. In Figs. 6.27 and 6.28, variation of ak 2  with Aa /  when 

Ab 5.0=  is given. ak 2  is negative and its magnitude increases as the crack radius 

a  and/or crack distance L  increase(s)  for Ab 5.0=  and 3.0=ν . As can be seen 

in Fig. 6.28, ak 2  starts with positive values and increases with increasing crack 

radius for 1.0>ν  when ALb 5.0== . With further increase in crack radius, ak 2  

decreases, becomes negative and increases in negative direction.  It may also be 

noted that, the effect of ν  on ak 2  is negligible for Aa / > ~ 0.6. 

 

Figure 6.29 and 6.30 show the effect of ν  and Ab / , respectively, on the variation 

of ak 2  with AL /  when Aa 5.0= . In Fig. 6.29, Ab 5.0=  and in Fig. 6.30, 3.0=ν . 

In general ak 2  decreases in magnitude and tends to zero as AL /  increases. For 

2/ >AL , interaction becomes negligible and cracks behave similar to a single 

symmetric crack in an infinite cylinder so that ak 2   is expected to be zero.  

 

In Figs. 6.31 and 6.32, variation of ak 2  with Ab /  is shown for a constant crack 

radius Aa 5.0=  for several values of AL /  and ν , respectively. In Fig. 6.31, 
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3.0=ν  and one can say that the magnitude of ak 2  increases for small values of 

AL /  as well as for Ab / > ~ 0.4 in general. In Fig. 6.32, AL 5.0=  and ak 2  is 

always negative. Relatively small variation for smaller values of ν  and 

considerable variation for larger values of ν  are observed. Figure 6.33 shows 

variation of ak 2  with ν  when Aba 5.0==  for several values of AL /  ratio. No 

remarkable variations are observed for fixed geometrical parameters Aa / , Ab /  

and AL / . 

 

Figures 6.34 and 6.35 show the dimensionless strain energy release rate w  and the 

probable cleavage angle θ , respectively, for the crack at Lz =  plane when 3.0=v          

and .5.0 Ab =  As can be seen in Fig. 6.35, cracks try to escape from the high stress 

domain around the edge of the rigid inclusion at 0=z  plane. 

 

The normalized Mode II stress intensity factor bk 2  at the edge of the rigid 

inclusion is shown in Figs. 6.36-6.40. Figure 6.36 shows variation of bk 2  with 

AL /  when Aba 5.0== . Note in this figure that bk 2  is always negative, its 

magnitude is larger for larger ν  values. It decreases first with increasing AL /  

ratio, passes through a minimum around 75.0/ ≅AL  for 1.0=ν , 45.0/ ≅AL  for 

5.0=ν , and then increases with further increase in AL / . Finally, it remains 

constant for   AL / > ~2 as if there is no crack (see Figs. 6.1 and 6.2). In Fig. 6.37, 

variation of  bk 2  with Aa /  is shown when ALb 5.0== . It is observed that bk 2  

changes sign from negative to positive as Aa /  increases. For very small values of 

Aa / , numerical values given in Fig. 6.2 for Ab 5.0=  are recovered. 

 

Figures 6.38 and 6.39 show variation of bk 2  with Ab /  when Aa 5.0= . In Fig. 

6.38, results are shown for 3.0=ν , while AL 5.0=  in Fig. 6.39. As can be seen in 

these figures, bk 2  increases as Ab /  increases until Ab 75.0≅  and then starts 

decreasing with further increase in Ab /  for relatively small values of AL / , 

AL / < ~ 1. For greater values of AL / , bk 2  decreases monotonically as Ab /  
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increases. In Fig. 6.40, variation of  bk 2  with ν  is shown when ALb 5.0==  for 

various Aa /  ratios. bk 2  increases in negative direction as ν  increases and/or 

Aa /  decreases. bk 2  is positive for .8.0/ >Aa  

 

6.1.2 Semi-Infinite Cylinder Problem  

 

When the rigid inclusion spreads out and Ab → , it turns out to be a rigid support 

fixing the infinite cylinder throughout its midplane at 0=z . The portion 

corresponding to 0≥z  becomes a semi-infinite cylinder bonded to a rigid support 

at its short end )0( =z . 

 

6.1.2.1 Semi-Infinite Cylinder 

 

Consider the problem shown in Fig. 4.4. In this case, Eqs. (4.31) and (4.32) must 

be solved for )(ηH . Figures 6.41 and 6.42 show the normal stress )0,(rzσ  

distribution at the rigid support for 25.0=ν  and 5.0 , respectively. In Fig. 6.41;  

results given by Benthem and Minderhoud (1972) and Gupta (1974), in Fig. 6.42; 

results given by Gupta (1974) and Agarwal (1978) are also plotted for comparison. 

In Fig. 6.41, perfect agreement with Benthem and Minderhoud (1972) is observed 

for  25.0=ν . Results given by Gupta (1974) differ a little from those of the 

present study and Benthem and Minderhoud (1972) at points close to the edge 

)1/( →Ar . In Fig. 6.42, perfect agreement with Agarwal (1978) is observed for 

5.0=ν . Results given by Gupta (1974) differ considerably from those of the 

present study and Agarwal (1978) as 1/ →Ar .  

 

Figures 6.43 and 6.44 show the shearing stress )0,(rrzτ  distribution at the rigid 

support for 25.0=ν  and 5.0 , respectively. One can make observations similar to 

Figs. 6.41 and 6.42: Perfect agreement with Benthem and Minderhoud (1972) and 

Agarwal (1978), whereas Gupta (1974) differs by some amount from all. Note in 

Figs. 6.41-6.44 that zσ  and rzτ  tend to infinity as Ar → . Therefore, the stress 
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state at the edge of the rigid support is described by the stress intensity factors 

defined in Eqs. (5.23).  

 

Figures 6.45 and 6.46 show the normalized Mode I and Mode II stress intensity 

factors Ak1  and Ak 2 , respectively, at the edge of the rigid support defined by Eqs. 

(5.30) and (5.31). Ak1  decreases with increasing ν . In Fig. 6.46, results taken from 

Gupta (1974) are also shown for comparison. For relatively large values of ν  there 

is ~10% difference. Normalized Mode II stress intensity factor Ak 2  is negative and 

its magnitude increases with increasing ν . 

 

6.1.2.2 Semi-Infinite Cylinder with a Transverse Penny-Shaped Crack 

 

Consider the problem shown in Fig. 4.3. In this case, Eqs. (4.27) and (4.30) must 

be solved for )(φF , )(φG  and )(ηH . Figures 6.47-6.52 show the normal stress 

)0,(rzσ  and the shearing stress )0,(rrzτ  distributions at the rigid support for 

various combinations of ν , AL /  and Aa / . When the crack is close to the rigid 

support, the stress distributions are very complicated and the axial stress )0,(rzσ  

assumes very small values around the center. This variation is also valid for 

relatively large crack radii. As AL /  increases, stress distributions become 

smoother. When ∞→AL / , the effect of the crack disappears and the results for a 

semi-infinite cylinder without crack (Figs. 6.42 and 6.44) are recovered. Figures 

6.49 and 6.52 show the normalized axial and shear stresses, )0,(rzσ  and )0,(rrzτ , 

along the rigid support when Aa 5.0=  and AL = . These stresses tend to ∞+  and 

∞− , respectively as 1/ →Ar . Stress distributions become smoother as 

ν decreases.  

 

Figures 6.53-6.58 show the normalized Mode I and Mode II stress intensity 

factors, Ak1  and Ak 2 , at the edge of the rigid support. As can be realized from 

these figures, both Ak1  and Ak 2  decrease with increasing AL /  except for 
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relatively small values of AL / <~0.25; Ak1  decreases whereas Ak 2  increases with 

increasing ν . Note that, Figs. 6.53 and 6.56 have the same characteristic 

distribution since 3.0=ν  is fixed. From Eqs. (5.30) and (5.31), it can be noticed 

that the ratio  
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has a constant value for a fixed value of ν . Variation of Ak1  and Ak 2  is relatively 

small for small cracks when 3.0=ν . There is extensive variation for large cracks 

if the crack is close to the rigid support (Figs. 6.53 and 6.56).  Figures 6.54 and 

6.57 show variations of Ak1  and Ak 2  with Aa /  when AL = . It seems that the 

crack is sufficiently far from the rigid support and the interaction is little and Ak1 , 

Ak 2  do not vary much with Aa / . When the crack radius a   is close to zero, it may 

be said that there is no crack in semi-infinite cylinder. Values of Ak1  and Ak 2  with 

no crack (Figs. 6.45 and 6.46) are reproduced here for 0=a . 

 

Figures 6.55 and 6.58 show variations of Ak1  and Ak 2  with AL /  when Aa 5.0=  

for several values of ν . Ak1  and Ak 2  first increase with increasing AL / , 

experience maximum values around AL 25.0≅ , then decrease and reach stationary 

values after AL 2≅ . These stationary values are again those values with no crack.  

 

Figures 6.59-6.63 show variation of normalized Mode I stress intensity factor ak1  

at the edge of the crack in a semi-infinite cylinder. In Figs. 6.59 and 6.60, variation 

of ak1  with Aa /  is shown when AL =  and 3.0=ν , respectively. ak1  increases 

significantly for 9.0/ >Aa . Figure 6.61 shows variation of ak1  with AL /  when 

Aa 5.0= . Similar to the behavior in Fig. 6.22, ak1  first increases with increasing 

AL / , experiences a maximum around AL ≅ , then decreases and finally becomes 
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stationary with further increase in AL /  ( AL / > ~ A2 ). In Figs. 6.62 and 6.63, 

variation  of  ak1  with  ν   is  given  when  AL =   and  Aa 5.0= ,  respectively. As  

expected, no significant variation with  ν  is observed. 

 

Figures 6.64-6.67 show variation of normalized Mode II stress intensity factor ak 2  

at the edge of the cracks in a semi-infinite cylinder. In Figs. 6.64 and 6.65, 

variation of  ak 2  with Aa /  is shown when AL =  and 3.0=ν , respectively. As 

can be seen in Fig. 6.65,  ak 2  increases with increasing Aa /  and tends to infinity 

as 1/ →Aa . This effect is more pronounced as the crack gets closer to the rigid 

support. Figure 6.66 shows variation of ak 2  with AL /  when Aa 5.0= . It may be  

noted that ak 2  decreases with increasing AL /  and tends to zero for >AL / ~2. 

 

Figures 6.68 and 6.69 show the dimensionless strain energy release rate w  and the 

probable cleavage angle θ , respectively, for the crack at Lz =  plane when 

3.0=v . As can be seen in Fig. 6.69, crack tends to propagate away from the high 

stress domain around the edge of the rigid support at 0=z  plane.  

 

6.1.3 Finite Cylinder Problem 

 

When the crack in the semi-infinite cylinder problem spreads out and Aa → , the 

cylinder is completely broken at Lz =  and the portion of the cylinder between 

0=z  and Lz =  planes becomes a finite cylinder whose one end at 0=z  is fixed 

and the other end at Lz =  is subject to uniformly distributed axial tension of 

intensity 0p . For this problem, Eqs. (4.34), (4.36) and (4.40) must be solved for 

)(φF , )(φG , )(ηH . 

 

Figures 6.70-6.85 show calculated results of the finite cylinder problem for various 

aspect ratios, AL / , and material properties represented by ν . Figures 6.70-6.75 

show the normalized axial stress 0/)0,( przσ  along the rigid support for various 
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aspect ratios, AL /  and Poisson’s ratio ν . When 0=ν , the effect of the rigid 

support vanishes. Therefore, axial stress 
0/)0,( przσ  distribution becomes uniform 

(Fig. 6.73).  In Figs. 6.70, 6.71 and 6.72, 1.0=ν , 3.0  and 5.0 , respectively. In 

Figs. 6.73, 6.74 and 6.75, AL 25.0= , A5.0  and A , respectively. Figures 6.76-

6.81 show the normalized shearing stress 0/)0,( prrzτ  along the rigid support for 

various aspect ratios, AL / , and ν . Larger shearing stresses develop along the 

rigid support for larger values of  ν  and/or larger values of  AL /  in general.  

)0,(rzσ  and )0,(rrzτ  tend to ∞±  as 1/ →Ar . Therefore, the stress state around 

the rigid support can be represented by the stress intensity factors.  

 

Figures 6.82-6.85 show the normalized Mode I and Mode II stress intensity factors 

Ak1  and Ak 2   around the rigid support. In Figs. 6.82 and 6.83, variations of  Ak1  

with AL /  and ν  are shown. Ak1  increases as AL /  increases and then becomes 

stationary for >L ~1.5A for fixed values of ν . As may be seen in Fig. 6.83,  Ak1  

decreases with increasing ν  for a fixed aspect ratio AL / .  

 

Figures 6.84 and 6.85 show variations of  Ak 2  with AL /  and ν , respectively. 

Having smaller numerical values, Ak 2  exhibits similar variation with AL /  as Ak1  

for fixed values of ν . However, it increases with increasing ν  for a fixed aspect 

ratio AL / . 

 

6.2 Conclusions 

 

This work is on the analysis of a cracked semi-infinite cylinder and a finite 

cylinder with free lateral surface. One end of the cylinder is bonded to a fixed 

support while the other end is subject to axial tension. The material of the cylinder 

is assumed to be linearly elastic and isotropic. 

The solution of the finite cylinder problem of length L  is obtained from the 

solution for a semi-infinite cylinder of radius A  which contains a concentric 
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penny-shaped crack of radius a  located at Lz = . When the crack approaches the 

surface of the cylinder, the problem for the region between the rigid support and 

the crack becomes identical with the finite cylinder problem. Furthermore, the 

solution for this semi-infinite cylinder is obtained by considering the axisymmetric 

infinite cylinder problem. The infinite cylinder of radius A  contains two 

concentric penny-shaped cracks of radius a  at Lz ±=  planes and a concentric 

penny-shaped rigid inclusion of radius b  at 0=z  plane. In the limiting case when 

the rigid penny-shaped inclusion approaches the surface of the infinite cylinder 

when Ab → , the infinite cylinder problem turns out to be the semi-infinite 

cylinder problem having a penny-shaped crack at Lz =  plane. 

The formulation of the infinite cylinder problem is obtained by the superposition 

of solutions for the following two subproblems: (I) Uniform problem; an infinite 

cylinder subjected to arbitrary symmetric loads with no cracks or inclusion, (II) 

Perturbation problem; an infinite cylinder containing two concentric penny-shaped 

cracks of radius a  at Lz ±=  planes  and a concentric penny-shaped rigid 

inclusion of radius b  at 0=z plane with no load at infinity. 

General solution for the perturbation problem is obtained by adding the 

expressions for three sub-problems: (II-i) An axisymmetric infinite elastic medium 

containing two concentric penny-shaped cracks of radius a  at Lz ±= planes, (II-

ii) An axisymmetric infinite elastic medium containing a concentric penny-shaped 

rigid inclusion of radius b  at 0=z plane, (II-iii) An axisymmetric infinite elastic 

medium with no cracks or inclusion. 

General expressions for the displacement and stress components for perturbation 

problem are obtained by solving Navier equations using Fourier and Hankel 

transform techniques. First, the boundary conditions at the surface of the infinite 

cylinder are satisfied. Then, by using the mixed boundary conditions on the cracks 

and the rigid inclusion, formulation of the problem is reduced to a system of three 

singular integral equations in terms of displacement derivatives on the cracks and 

shearing stress jump on the rigid inclusion. By using Gauss-Lobatto and Gauss-
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Jacobi integration formulas, these three singular integral equations are converted to 

a system of linear algebraic equations which is solved numerically.    

The  normalized stress intensity factors  ak1  and  ak 2   at the edge of the internal 

crack, bk1  and bk 2  at the edge of an internal rigid inclusion,  Ak1  and Ak 2  at the 

edge of rigid support, the normalized axial stress 0/)0,( przσ  and shearing stress 

0/)0,( prrzτ  at the rigid support are presented in graphical form in Figs. 6.1-6.85. 

From the formulation and the presented figures, following conclusions may be 

deduced: 

1. Singularity at the edge of an internal crack is 2/1 . 

2. Singularity at the edge of an internal rigid inclusion is also 2/1 . 

3. Stresses at the corner of a o90  wedge with free-free sides are bounded. 

4. Stresses at the corner of a o90  wedge with fixed-free sides are unbounded 

and the singularity power γ  is given by  

 

     22 )1(41)cos(2 −−+= γκπγκ   (3.27) 

 

5. Mode II stress intensity factor bk 2 at the edge of an internal rigid inclusion 

in an infinite cylinder is negative and it increases with increasing ν . 

6. Mode I and Mode II stress intensity factors ak1  and ak 2  at the edges of two 

parallel penny-shaped cracks in an infinite cylinder are insensitive to ν  

(except when Aa → ) but they increase as Aa /  increases and/or AL /  

decreases. 

7. Stress distributions at the rigid support for the semi-infinite cylinder 

problem match very well with the results of Benthem and Minderhoud 

(1972) and Agarwal (1978). Results of Gupta (1974) differ (at the worst by 

~10%) from Benthem and Minderhoud (1972), Agarwal (1978) and the 

present study. 
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8. There is considerable interaction between the crack and the rigid inclusion 

when  ν  is large and the crack is close to the support in the semi-infinite 

cylinder problem. 

9. Mode  II  stress  intensity  factor  Ak 2   is  considerably  small  compared  to  

 Mode I stress intensity factor Ak1  around the rigid support in semi-infinite 

 and finite cylinder problems. 

 

6.3 Suggestions for Further Studies 

 

Cylindrical geometry is used frequently in many machine elements such as shafts, 

bolts, screws and rivets. Results and techniques used in this work can be applied in 

many engineering problems by considering various applications: 

1. Two penny-shaped cracks may be replaced by edge cracks so that the 

problem of external notch in a semi-infinite cylinder is obtained.  

2. Axial tension load may be replaced by torsion.  

3. Thermal loads can be added to semi-infinite and finite cylinder problems.  

4. By using four penny-shaped cracks, problem can be turned out to be finite 

cylinder problem containing transverse crack.  

5. The material of the cylinder may be assumed to be composite.  

The author is willing to study these problems in near future. 
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Table 6.1 Dimensionless SIF ratios 
crack single1

cracks double1

a 

a 

k

k
 when a cylinder is subjected to axial uniform loading forν =0.33. 

 

A

a
 

0.3 0.6 0.9 
a

L
 

 Tsang (2003) 

FEM 
Present study 

Tsang (2003) 

FEM  
Present study 

Tsang (2003) 

FEM 
Present study 

0.1 0.800 0.795 0.760 0.758 0.800 0.794 

0.2 0.870 0.872 0.820 0.816 0.890 0.888 

0.3 0.930 0.926 0.870 0.864 0.940 0.939 

0.4 0.960 0.958 0.910 0.907 0.970 0.966 

0.5 0.980 0.977 0.940 0.942 0.980 0.982 

0.6 0.990 0.988 0.970 0.968 0.990 0.991 

0.7 0.990 0.994 0.980 0.984 1.000 0.996 

0.8 1.000 0.997 0.990 0.993 1.000 0.999 

0.9 1.000 0.999 1.000 0.998 1.000 1.000 
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Figure 6.1 Normalized Mode II stress intensity factor bk 2  at the inclusion edge. 
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Figure 6.2 Normalized Mode II stress intensity factor bk 2  at the inclusion edge.  
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Figure 6.3 Normalized Mode I stress intensity factor ak 1  at the edge of two parallel penny-shaped cracks in an infinite solid.  
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Figure 6.4 Normalized Mode II stress intensity factor ak 2  at the edge of two parallel penny-shaped cracks in an infinite solid. 
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Figure 6.5 Normalized Mode I stress intensity factor ak 1  at the edge of a single crack when 3.0=v . 
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Figure 6.6 Normalized Mode I stress intensity factor ak 1  at the crack edge when 3.0=v . 
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Figure 6.7 Normalized Mode I stress intensity factor ak 1  at the crack edge when 3.0=v . 
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Figure 6.8 Normalized Mode I stress intensity factor ak 1  at the crack edge when Aa 5.0= . 
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Figure 6.9 Normalized Mode I stress intensity factor ak 1  at the crack edge when Aa 5.0= .  
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Figure 6.10 Normalized Mode I stress intensity factor ak 1  at the crack edge when AL =2 . 
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Figure 6.11 Normalized Mode I stress intensity factor ak 1  at the crack edge when AL =2 .  
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Figure 6.12 Normalized Mode II stress intensity factor ak 2  at the crack edge when 3.0=v . 
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Figure 6.13 Normalized Mode II stress intensity factor ak 2  at the crack edge when 3.0=v .  
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Figure 6.14 Normalized Mode II stress intensity factor ak 2  at the crack edge when Aa 5.0= . 
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Figure 6.15 Normalized Mode II stress intensity factor ak 2  at the crack edge when AL =2 .  
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Figure 6.16 Normalized Mode II stress intensity factor ak 2  at the crack edge when Aa 5.0= , 5.00 ≤≤ν . 
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Figure 6.17 Normalized Mode II stress intensity factor ak 2  at the crack edge when AL =2 .  
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Figure 6.18 Normalized energy release rate w  when 3.0=ν . 
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Figure 6.19 Probable crack propagation angle θ  when 3.0=ν . 
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Figure 6.20 Normalized Mode I stress intensity factor ak 1  when Ab 5.0= , 3.0=ν .  
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Figure 6.21 Normalized Mode I stress intensity factor ak 1  when ALb 5.0== .  
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Figure 6.22 Normalized Mode I stress intensity factor ak 1  when Aba 5.0== .  
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Figure 6.23 Normalized Mode I stress intensity factor ak 1  when Aa 5.0= , 3.0=ν .  
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Figure 6.24 Normalized Mode I stress intensity factor ak 1  when Aa 5.0= , 3.0=ν .  
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Figure 6.25 Normalized Mode I stress intensity factor ak 1  when ALa 5.0== . 
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Figure 6.26 Normalized Mode I stress intensity factor ak 1  when ALa 5.0== .  
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Figure 6.27 Normalized Mode II stress intensity factor ak 2  when Ab 5.0= , 3.0=ν .  
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Figure 6.28 Normalized Mode II stress intensity factor ak 2  when ALb 5.0== .  
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Figure 6.29 Normalized Mode II stress intensity factor ak 2  when Aba 5.0== .  
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Figure 6.30 Normalized Mode II stress intensity factor ak 2  when Aa 5.0= , 3.0=ν .  
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Figure 6.31 Normalized Mode II stress intensity factor ak 2  when Aa 5.0= , 3.0=ν .  

ak 2−

A

b

A 

r z 

b 

a

p0 

p0 

L 

L 



 

1
2

9

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ν=0.5

0.3

0.1

 

Figure 6.32 Normalized Mode II stress intensity factor ak 2  when ALa 5.0== .  
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Figure 6.33 Normalized Mode II stress intensity factor ak 2  when Aba 5.0== .  
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Figure 6.34 Normalized energy release rate w  when Ab 5.0= , 3.0=ν . 
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Figure 6.35 Probable crack propagation angle θ  when Ab 5.0= , 3.0=ν . 

A 

r z 

b 

a

p0 

p0 

L 

L 

)(oθ

A

a



 

1
3

3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0 0.5 1.0 1.5 2.0 2.5

ν=0.5

0.4

0.3

0.2

0.1

 

Figure 6.36 Normalized Mode II stress intensity factor bk 2  when Aba 5.0== . 
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Figure 6.37 Normalized Mode II stress intensity factor bk 2  when ALb 5.0== .  
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Figure 6.38 Normalized Mode II stress intensity factor bk 2   when Aa 5.0= , 3.0=ν .  
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Figure 6.39 Normalized Mode II stress intensity factor bk 2  when ALa 5.0== . 

A

b

bk 2−

A 

r z 

b 

a

p0 

p0 

L 

L 



 

1
3

7

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

  /A≤0.2

0.5

0.6

0.7

0.8

0.9

 

Figure 6.40 Normalized Mode II stress intensity factor bk 2  when ALb 5.0== .  
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Figure 6.41 Normal stress )0,(rzσ  along the rigid support when 25.0=ν .  
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Figure 6.42 Normal stress )0,(rzσ  along the rigid support when 5.0=ν .  
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Figure 6.43 Shearing stress )0,(rrzτ  along the rigid support when 25.0=ν .  
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Figure 6.44 Shearing stress )0,(rrzτ  along the rigid support when 5.0=ν .  
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Figure 6.45 Normalized Mode I stress intensity factor Ak1  at the edge of rigid support.  
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Figure 6.46 Normalized Mode II stress intensity factor Ak 2  at the edge of rigid support.  
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Figure 6.47 Normal stress )0,(rzσ  along the rigid support when Aa 5.0= , 3.0=ν .  
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Figure 6.48 Normal stress )0,(rzσ  along the rigid support when AL = , 3.0=ν .  
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Figure 6.49 Normal stress )0,(rzσ  along the rigid support when Aa 5.0= , AL = .  
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Figure 6.50 Shearing stress )0,(rrzτ  along the rigid support when Aa 5.0= , 3.0=ν .  
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Figure 6.51 Shearing stress )0,(rrzτ  along the rigid support when AL = , 3.0=ν .  
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Figure 6.52 Shearing stress )0,(rrzτ  along the rigid support when Aa 5.0= , AL = .  
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Figure 6.53 Normalized Mode I stress intensity factor Ak 1  at the edge of rigid support when 3.0=ν .  
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Figure 6.54 Normalized Mode I stress intensity factor Ak1  at the edge of rigid support when AL = .  
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Figure 6.55 Normalized Mode I stress intensity factor Ak 1  at the edge of rigid support when Aa 5.0= .  
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Figure 6.56 Normalized Mode II stress intensity factor Ak 2  at the edge of rigid support when 3.0=ν .  
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Figure 6.57 Normalized Mode II stress intensity factor Ak 2  at the edge of rigid support when AL = . 
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Figure 6.58 Normalized Mode II stress intensity factor Ak 2  at the edge of rigid support when Aa 5.0= .  
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Figure 6.59 Normalized Mode I stress intensity factor  ak 1  when AL = .  
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Figure 6.60 Normalized Mode I stress intensity factor  ak 1  when 3.0=ν . 
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Figure 6.61 Normalized Mode I stress intensity factor ak 1  when Aa 5.0= .  

ak 1

A

L

A 

r 
z 

a

p0 

L 



 

1
5

9

0.60

0.65

0.70

0.75

0.80

0.85

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.7

0.6

0.5

0.4

  /A≤0.2

 

Figure 6.62 Normalized Mode I stress intensity factor  ak 1  when AL = .  
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Figure 6.63 Normalized Mode I stress intensity factor  ak 1  when Aa 5.0= .  
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Figure 6.64 Normalized Mode II stress intensity factor ak 2  when AL = .  
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Figure 6.65 Normalized Mode II stress intensity factor ak 2  when 3.0=ν . 
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Figure 6.66 Normalized Mode II stress intensity factor ak 2  when Aa 5.0= . 
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Figure 6.67 Normalized Mode II stress intensity factor ak 2  when Aa 5.0= . 
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Figure 6.68 Normalized energy release rate w  when 3.0=ν . 
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Figure 6.69 Probable crack propagation angle θ  when 3.0=ν . 
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Figure 6.70 Normal stress )0,(rzσ  along the rigid support when 1.0=ν .  
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Figure 6.71 Normal stress )0,(rzσ  along the rigid support when 3.0=ν .  
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Figure 6.72 Normal stress )0,(rzσ  along the rigid support when 5.0=ν .  
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Figure 6.73 Normal stress )0,(rzσ  along the rigid support when AL 25.0= .  
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Figure 6.74 Normal stress )0,(rzσ  along the rigid support when AL 5.0= .  
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Figure 6.75 Normal stress )0,(rzσ  along the rigid support when AL = .  
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Figure 6.76 Shearing stress )0,(rrzτ  along the rigid support when 1.0=ν .  
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Figure 6.77 Shearing stress )0,(rrzτ  along the rigid support when 3.0=ν .  
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Figure 6.78 Shearing stress )0,(rrzτ  along the rigid support when 5.0=ν .  
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Figure 6.79 Shearing stress )0,(rrzτ  along the rigid support when AL 25.0= .  
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Figure 6.80 Shearing stress )0,(rrzτ  along the rigid support when AL 5.0= .  
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Figure 6.81 Shearing stress )0,(rrzτ  along the rigid support when AL = .  
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Figure 6.82 Normalized Mode I stress intensity factor Ak1  at the edge of rigid support. 
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Figure 6.83 Normalized Mode I stress intensity factor Ak1  at the edge of rigid support. 
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Figure 6.84 Normalized Mode II stress intensity factor Ak 2  at the edge of rigid support. 
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Figure 6.85 Normalized Mode II stress intensity factor Ak 2  at the edge of rigid support. 
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APPENDIX A 

 

 

Integral  formulas used in deriving the expressions in Eqs. (2.42a,b) are, 

Gradshteyn and Ryzhik (1994): 
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APPENDIX B 

 

 

Integrals of products of Bessel functions of the first kind, exponential functions 

and power functions used in deriving the expressions in Eqs. (2.43), Gradshteyn 

and Ryzhik (1994): 
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where K  and E are the complete elliptic integrals of the first and the second kinds 
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APPENDIX C 

 

 

The expressions for ),( trSi )81( −=i  appearing in Eqs.(3.3) are as follows  
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APPENDIX D 

 

 

The expressions for the integrands ),,( αtrKij )31,( −=ji  appearing in Eq. (3.9) 

are as follows 
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APPENDIX E 

 

 

The expressions for ),,0(lim),(0 αα
α

tKtK ijij
→∞

∞ = , )31;3,1( −== ji  appearing in Eq. 

(4.18) are defined as follows: 
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APPENDIX F 

 

 

The expressions for )(
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sij )31;3,1( −== ji  appearing in Eq. (4.18) are in the 

form 
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APPENDIX G 

 

 

The expressions for ),,(4 αtrK j )31( −=j  appearing in Eq.(5.4) are as follows 
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The expressions for ),,(lim),,( 44 αα
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APPENDIX H 

 

 

The expressions for the kernels in Eq. (5.6) are in the form 
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