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ABSTRACT

NONLINEAR OPTICAL PROPERTIES OF SEMICONDUCTOR
HETEROSTRUCTURES

Yildirim, Hasan
Ph.D., Department of Physics

Supervisor: Prof. Dr. Mehmet Tomak

August 2006, 112 pages.

The nonlinear optical properties of semiconductor heterostructures, such as GaAs/
Al,Ga;_,As alloys, are studied with analytic and numerical methods on the ba-
sis of quantum mechanics. Particularly, second and third-order nonlinear optical
properties of quantum wells described by the various types of confining potentials
are considered within the density matrix formalism. We consider a Poschl-Teller
type potential which has been rarely considered in this area. It has a tunable
asymmetry parameter, making it a good candidate to investigate the effect of the
asymmetry on the nonlinear optical properties. The calculated nonlinear quanti-
ties include nonlinear absorption coefficient, second-harmonic generation, optical
rectification, third-harmonic generation and the intensity-dependent refractive

index. The effect of the DC electric field on the corresponding nonlinearities are

v



also studied. The results are in good agreement with the results obtained in other
types of quantum wells, such as square and parabolic quantum wells. The effect
of the Coulomb interaction among the electrons on the nonlinear intersubband
absorption are considered within the rotating wave approximation. The result is
applied to a Si-d-doped, square quantum well in which the Coulomb interaction
among the electrons are relatively important, since there has been no work on the
nonlinear absorption spectrum of the Si-6-doped quantum well. The results are
found to be new and interesting, especially when a DC electric field is included

in the calculations.

Keywords: Quantum Wells, Poschl-Teller potential, Intersubband transitions,

Second-harmonic generation, Third-harmonic generation.



07
YARIILETKEN HETEROYAPILARIN LINEER OLMAYAN OPTIK

OZELLIKLERI

Yildirim, Hasan
Doktora, Fizik Boliimii
Tez Yoneticisi: Prof. Dr. Mehmet Tomak

Agustos 2006, 112 sayfa.

Yariiletken malzemelerden imal edilen hetero yapilarin, ézellikle GaAs/Al,Ga;_,
As alagimlarinin, dogrusal olmayan optik ozellikleri kuantum mekanigi temel
alinarak niimerik ve analitik olarak caligildi. Ozellikle Poschl-Teller tipi potan-
siyele sahip kuantum kuyularinin ikinci ve iigiincii dereceden dogrusal olmayan
optik ozellikleri, yogunluk matrisi formalizmi i¢inde kalinarak incelendi. Bu tip
bir potansiyelin optik Ozellikleri literatiirde cok az incelenmistir. Ayrica potan-
siyelin simetrisinden sapma derecesini belirleyen bir parametre setine sahip ol-
masl, bu potansiyeli asimetrinin dogrusal olmayan optik ozellikler tizerine etk-
isini incelemek icin kacinilmaz bir aday yapmaktadir. Hesaplanan optik ozellikler
sunlar1 kapsamaktadir: Dogrusal olmayan sogurma katsayisi, ikinci harmonik

yaratim, optik diizeltme, iigiincii harmonik yaratim ve yogunluga bagl kirilma

vi



indeksi. Ayrica, bahsi gecen Ozelliklerin elektriksel alan altinda degisimleri de
incelenmigtir. Sonuclar, benzeri sistemler olan kare ve parabolik kuantum kuyu-
lar ile karsilagtirilmigtir. Elektronlararasi Coulomb etkilesiminin dogrusal ol-
mayan sogurma katsayisi donen dalga yaklasimi iginde caligilmigtir. Sonuclar
elektronlar aras1 Coulomb etkilegimin 6nemli oldugu Si-¢- ekilmig kuantum kuyu-
larina uygulanmistir ¢iinkii bu yapilarda sadece Coulomb etkilesiminin dogrusal
olmayan sogurma katsayisina etkisi hatta, katsayinin kendisi iizerine bile lit-
eratiirde herhangi bir caligma bulunamamstir. Ozellikle elektrik alan etkisi hesaba

katildiginda sonuclar yeni ve ilgi cekici cikmaktadir.

Anahtar Kelimeler: Kuantum Kuyulari, Péschl-Teller potansiyeli, Bandici gecisler,

Ikinci-harmonik yaratim, Uclincii harmonik yaratim.
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CHAPTER 1

INTRODUCTION

The quantum confinement of carriers in one dimensional potentials formed by
thin semiconductor layers (e.g.~ 100 A) has attracted enormous interest for the
past three decades. A fast development in the field has been achieved due to epi-
taxial crystal growth techniques such as molecular beam epitaxy, which provides
atomic-layer control of layer thickness. These techniques allowed a flexibility in
fabricating structures with various types of confining potentials, a process called
band-gap engineering.

The simplest system under these circumstances is a quantum well, formed
by sandwiching a thin semiconductor layer between other semiconductor layers,
having a larger bandgap. Fig. (1.1) shows such a quantum well. Electrons and
holes are confined in the conduction band and valence band, respectively. The
confinement leads to the quantized energy levels along the growth direction. Op-
tical transitions among the energy levels are possible. Transitions from energy

levels in the valence band to ones in the conduction band are called interband



Figure 1.1: Schematic view of a simple quantum well and the optical transitions
inside it. The solid arrow denotes the intersubband transitions while the dashed-
dotted one shows the interband transitions. EgA and Ef are the respective band-
gap energies of the semiconductors, constituting the heterostructures.

transitions whereas transitions among the energy levels in the same band are
called intersubband transitions. The quantum well depth and thickness allow the
energy levels, optical dipole matrix elements, populations and even the relaxation

times to some extent to be tunable.

Dingle et al. [1] in 1974 observed the first experimental evidence for quantized
states in a semiconductor quantum well. Their quantum well was a thin GaAs
layer sandwiched between two Al,Ga;_,As layers acting as barriers. The exci-
tonic transitions associated with different electron and hole states were observed
in the absorption spectra. The first experimental observation of the intersub-
band transitions in the conduction band of a GaAs/AlGaAs quantum well was

presented by West and Eglash [2] although some earlier theoretical works showed



the possibility of infrared light detection based on the intersubband transitions
in quantum wells [3, 4]. West and Eglash [2] observed transitions around 10 ym
having a narrow linewidth (~ 10 meV) and a large oscillator strength. Although
in other quasi-two dimensional electron systems, such as accumulation and inver-
sion layers, the intersubband transitions were showed earlier, the investigations
attracted less interest in this field [5]. This is because the absorption wavelength
in such structures occurred at far-infrared region (~ 40 um) but the absorption in
the experiment of West and Eglash [2] occurred in the technologically important

region [5].

A great deal of effort has been devoted to the intersubband transitions in quan-
tum wells, including not only GaAs/AlGaAs structures but also InGaAs/AlGaAs,
InGaAs-InAlAs lattice matched to InP, and InAs-AlGaSh structures since 1985
[5]. Many device applications based on the intersubband absorption, like infrared

detectors and emitters, have been suggested or realized [5].

Nonlinear optics has been an important field in physics since the discovery
of second-harmonic generation by Franken et al. [6] in 1961. In their pioneering
work, they discovered second-harmonic generation when they propagated a ruby
laser beam at 6942 A through a quartz crystal and observed ultraviolet radiation
from the crystal at 3471 A. The discovery of second-harmonic generation shortly
after the demonstration of the first working laser [7] was not accidental as only

the laser light is intense enough to demonstrate the nonlinear optical properties



of materials. It is nonlinear because the response of the system to the applied
optical field is a nonlinear function of the strength of the field. For example,
the saturation of the intersubband absorption in a GaAs/AlGaAs quantum well
depends on the square of the strength of the optical field. A more clear example
is that third-harmonic generation depends upon the cubic power of the strength

of the optical field.

A novel feature of the semiconductor quantum wells is that the dipole ma-
trix element associated with the intersubband transitions in such structures have
the same order of magnitude as the width of the quantum well. Since the non-
linear optical properties, like second-harmonic generation, depend on the higher
powers of the dipole matrix elements, one can expect huge nonlinearities in semi-
conductor quantum wells. In fact, this was showed theoretically by Gurnick and
DeTemple [8] in compositional asymmetric GaAs/AlGaAs quantum wells in 1983,
where they obtained nonlinearities larger than those of bulk materials. In 1989,
Fejer et al. [9] observed second-order nonlinearities in a biased GaAs/AlGaAs
quantum well for the first time. Since the semiconductor quantum wells have
controllable transition energies, dipole matrix elements and asymmetry by the
band-gap engineering, their nonlinear optical properties have attracted a great
interest [10, 11] since the works of Gurnick and DeTemple [8] and Fejer et al. [9].
In spite of such a enormous effort in the field, the usage of nonlinear optical prop-

erties of semiconductors in the frequency conversion is limited by difficulties in



efficient coupling of the pump power to the intersubband transitions, the strong
absorption of the external pump power and the lack of a suitable phase-matching

scheme in most I1I-V semiconductors [10, 11, 12].

The asymmetry of the confining potential in quantum wells play an important
role in obtaining high values of nonlinear optical properties. In fact, the second-
order nonlinearities are observed only in noncentrosymmetric structures, that is
structures lacking an inversion symmetry. For example, equal energy spacings,
the optimized dipole matrix elements and increased lifetimes achieved in stepped
or asymmetric double quantum wells lead to huge resonant nonlinearities [10,
11, 13]. Generally, the asymmetric quantum wells used in the maximization of
the optical nonlinearities have included biased square, stepped, double or triple
quantum wells in the literature so far. However, these asymmetric forms are not
flexible, they are rigid in shape. A variable asymmetry property in a quantum
well thus will be very helpful to investigate the effects of the asymmetry on the
nonlinear optical properties. The Pdschl-Teller potential is a good candidate for
that investigation. It can easily be made asymmetric through a correct choice of
its parameter set. Within the allowed range of the parameters, the potential has
analytic solutions so that the nonlinearities can be evaluated analytically. This

is exactly what we do in the first part of this thesis.

The Coulomb interaction among the carries in a quantum well leads to novel

results in optics. Among them, one is the blue-shift of the peak position with



respect to bare intersubband transition energy in the absorption spectra at low
intensities of the optical field, which is called the depolarization shift. Whereas,
at higher intensities of the optical field, close to or higher than the saturation
intensity, the Coulomb interaction not only shifts the peak position but also makes
the absorption spectra asymmetric in an amount determined by the intensity of
the optical field [14]. Our aim in the second part of the thesis is to apply the
results developed by Zatuzny [14] to the calculations of the nonlinear intersubband
absorption in a Si-d-doped quantum wells which is a missing part in the absorption
calculations of such structures in the literature because the electron density here

is high enough to take into account the Coulomb interaction.

The thesis is organized as follows. We review the general properties of semi-
conductor heterostructures and give the basic idea behind the envelope function
description of their electronic structure in Chapter 2. While there are several
ways to describe the electronic band structure, the envelope function description
is simple and versatile and often leads to analytical results. In Chapter 3, we
give a short introduction to the nonlinear optics and present the mathematical
description of the nonlinear susceptibilities with their brief mathematical deriva-
tions. The Poschl-Teller potential with its mathematical properties is discussed
in Chapter 4. Solutions to the Poschl-Teller potential are given explicitly. The

wave functions and the corresponding energy levels of the Poschl-Teller potential



under a static electric field are calculated by the variational methods. We cal-
culate the second-order nonlinearities, such as second-harmonic generation and
the optical rectification of quantum well described by a Pdschl-Teller potential
in Chapter 5. The results are discussed. The third-order nonlinearities, such as
nonlinear absorption coefficient, intensity-dependent refractive index and third-
harmonic generation, are studied and the results are discussed in Chapter 6. We
calculate the nonlinear absorption coefficient in a Si-d-doped quantum well, in-
cluding the effects of the Coulomb interaction, in Chapter 7. Finally, we make a

brief conclusion concerning our results in Chapter 8.



CHAPTER 2

SEMICONDUCTOR QUANTUM WELLS

2.1 Introduction

In this chapter, we discuss the general properties of the semiconductor het-
erostructures and of the growth techniques in brief. We introduce the envelope
function description of the eigenstates of a carrier, such as an electron and a
hole, trapped in a potential well formed by semiconductor heterostructures. As
a specific example, wave functions and the corresponding energy levels of a finite

square quantum well are obtained within the envelope function description.

2.2 General Properties of Heterostructures

A semiconductor heterostructure constitutes more than one type of semicon-
ductor. A well-known example is GaAs/Al,Ga;_,As. A perfect heterostructure
requires that the constituting semiconductors must have the same crystal struc-

ture (or at least symmetry) and two lattice constants must be nearly identical [15].



AB BC

Figure 2.1: Schematic view of a heterostructure formed by two perfectly lattice-
matched semiconductors, A and B whose chemical formulae are CB and AB,
respectively. E.(z) stands for the position-dependent conduction band edge.

A schematic representation of an ideal interface is shown in Fig.(2.1). Note that
there is a potential barrier Vj, created due to the difference between the bandgaps
of the semiconductors AB and CB. A quantum well is created when another layer
of semiconductor AB is grown at the other side of the heterostructure, so that an
electron feels a one-electron potential between the layers A-B.

In Fig.(2.2), the lattice constants and the minimum band gap of several semi-
conductors are shown. The figure explains the popularity of the GaAs/Al,Ga; ,As:
the lattice constant changes by less than 0.15% as a function of x, allowing the
growth of GaAs and AlAs or Al,Ga; ,As on top of one another without signif-
icant stress. Other, almost perfectly matched-alloys, are Gag 47Ing 53As/InP and

A10_481n0.52AS/IHP []_6, ]_7]

Depending on the conduction and valence band edges, two types of quantum



AB BC

Figure 2.2: The various semiconductors plotted as a function of lattice constant
and energy gap. the full lines indicate a direct-gap semiconductor and the broken
lines indicate an indirect-gap semiconductor, while the two curves related to Si
refer to bulk unstrained material and the strained layer epitaxial (SLE) material.

wells are possible. In the type I quantum wells, B is a barrier for both the
conduction and valence band electrons, while in the type II quantum wells, A
and B acts differently for the conduction and valence band electrons, for example,
if A is a well for the conduction electrons, it serves as barrier for the valence
electrons (see Fig.(2.3)). GaAs/Al,Ga,_,As, Gag.47Ing53As/InP and GaSb/AlISb
constitute type I quantum well while InAs/GaSb constitute type II quantum
well[15].

The heterostructures are fabricated mainly by two methods: molecular-beam
epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). A simple
scheme is drawn in Fig.(2.4) to describe MBE . The main idea behind the MBE

is to make the materials grow on a substrate sitting on a heated holder in an
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Figure 2.3: Conduction and valence band edges (a) in a type I quantum well (b)
in a type II quantum wells.

AB BC

Figure 2.4: A schematic diagram of the growth chamber of an MBE machine.
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evaporator that is evacuated to an ultrahigh vacuum, typically of 5 x 107! mbar
or better by ejecting materials in vapor form from furnaces called Knudsen cells
shielded by shutters. Flux of each element is controlled by the temperature of each
furnace. MBE is advantageous in that it allows to grow highly abrupt junctions
between different materials, gives good control of the thickness of layers, and
has reasonable reproducibility. However, some disadvantages are its cost and the
limited scalability of the process for production [16, 17].

MOCVD is simply described in Fig.(2.5). The substrate is placed on a heated
holder in a chamber through which different gases are passed in a carrier of hydro-
gen. The composition of the gases are varied rapidly to control the composition

of the material grown. The basic chemical reaction for growing GaAs is
(CH3)Ga + AsH3 — GaAs | +3CH,. (2.1)

The main advantages of MOCVD are that the process is faster and it has been
successfully scaled up for commercial production. Regrowth, subsequent usage of
the substrate for further growth, is successful. However, contamination by carbon

and some serious safety problems arise with MOCVD [16, 17].

2.3 Envelope Function Description

The optical properties of semiconductor heterostructures can be understood
once the electronic band structure, including the energy levels and the corre-

sponding wave functions, are known. There are several ways to calculate the

12



AB BC

Figure 2.5: A schematic diagram of the growth cell of an MOCVD reactor.

electronic structure, such as envelope function description, tight-binding calcula-
tions and the pseudo-potential formalism [15]. We concentrate on the envelope
function description to describe the electronic structure of a given semiconductor
heterostructure in this section.

Envelope function description of eigenstates in a heterostructure is a simple
one based on the Kane analysis of the dispersion relations of the host materials.
The main goal of the description is to find the boundary conditions fulfilled by
the slowly varying part of the heterostructure wave functions at interfaces. Al-
though this model is simple and versatile and often leads to analytical results,
it is valid only in the vicinity of the high-symmetry points in the host’s Bril-
louin zone (I, X, ). Other approximations, however, like empirical tight-binding
calculations and the pseudo-potential formalism, have capacity to handle any het-
erostructure energy levels, like those close or far from the I' edge. Whereas, most

of the heterostructures’ energy levels associated with the device applications are

13



closely relevant to the high symmetry points in the host Brillouin zone for which
the envelope function description proved to be adequate [15].

Consider a heterostructure formed by two different semiconductors A and B
whose lattice constants are assumed to be identical and which crystallize with the
same crystallographic structure. These conditions quite well satisfied by GaAs-
Ga(Al)As and Gag 47Ing53As-InP Under flat band-conditions, that is in case of
no charge carriers, we assume that the following are held [15]:

i) The wave functions, 1(r), inside each layer of the heterostructure are expanded
in terms of the periodic parts of the Bloch functions of the band edges under

consideration

0

(r) =3 g )y (@) (2:2)
and

U(r) = ;gf)(r)u;ﬁgo (x) (23)
where r in Eq. (2.2) and Eq. (2.3) corresponds to layer A and B , respectively.
In equations above, kg is the point in the Brillouin zone around which the het-
erostructure states are built and the summation over j runs over as many edges
as included in the analysis.

ii) The periodic parts of the Bloch functions are assumed to be the same in each

kind of layer constituting the heterostructure:

uyig (r) = v (1), (2.4)

j’kO

14



leading to the following simplification in the wave function

A,B
0(r) = ¥ g (), (1) (2.5
j
Consequently, our task reduces to find out the slowly varying envelope functions
A,B
g (x).

The envelope function approach has been proved fruitful when applied to the
problems concerning the I'-related states of a variety of III-V heterostructures,
such as GaAs-Ga(Al)As, Gag 47Ing 53As —InP and GaSb-InAs [15]. Therefore, the
following mathematical derivations will be restricted to the I'-related extrema,
ko= 0.

Assuming that the growth axis is z axis, let the plane z = z; be the interface

separating the A and B layers. Then

gV (1, 20) = 0P (x 1, 20), (2.6)

as the u; ¢ are linearly independent and as ¢(r) has to be continuous at z = z,. In
the equation above, r| stands for the two-dimensional position vector. Because
the lattice constants of the constituting layers are identical or almost the same,
the heterostructure is translationally invariant in the layer plane. That symmetry

in the layer plane makes the g; divide into the following parts in each layer,

1 :
9" z0) = e ik ) @), (2.7

>

where S is the sample area and k| = (k,, k) is a two-dimensional wave vector

same in the layers A and B to satisfy the translational invariance. X;"B(z) are

15



the slowly varying functions of z at the scale of the hosts’ unit cell in the equation
above[15].

In conclusion, our wave function ¢(r) is a sum of the products of two different
set of functions:
i) u j,O’S are rapidly varying functions, periodic with the hosts’ periodicity,
ii) g;’s are slowly varying envelope functions.

Let H be the Hamiltonian describing the motion of a charge carrier in the

heterostructure, that is

H = p—2 +VA(P)®A+VB(P)®B (28)

2m0
where O is the step function giving unity if r corresponds to the layer X. H,

acting upon 1 (r), gives the following eigenvalue equation satisfied by X;"B:

=z, —iha)x =€y (2.9)

where y is a N-dimensional column vector and Z° a N x N matrix in which N is

the number of band edges. The elements of matrix = are

- 0 A B A R
‘:2m(z: &) = 6n,0)@z4+€£z(]63+ Qmj - Q—m()@ 5n,m+
hk ih 0
— - — 2|m) —, 2.10
ol fm) = o nfp-m) 5 (2.10)
where e;f‘(;B) are the energies of the n'* band edge at the zone center of the layers

A and B, respectively and

(n|p|m) :/QUZ,OPUm,Odr- (2.11)

16



A detailed mathematical derivation of Eq. (2.10) is given by Bastard [15]. In
Eq. (2.10), a practical definition like V},(2) = 0 if 2z correspond to the layer A and
Via(2) = €8y — €l if z correspond to the layer B can be made [15].

The accuracy of the results of Eq. (2.10) depend on the number N if the
valence bands are needed. However, the bands I'g, I'; and I's, making N=8, will
be good enough to produce highly accurate results. The influence of the other
host’s bands far from the I's, I'; and 'y edges can be treated perturbatively.

0

Keeping terms up to the second-order in p, the matrix =" is replaced with

e 0 1 0
0oy 9 aB= 2.12
2 0o M Oy’ F=ny,z, (2.12)

where M®? is 8 x 8 matrix whose elements are given by

2 1
= — N|Pa|V v pglm), 2.13
o X nlpaly) = ) (2.13)

my
My,

where v denotes the remote I' edges of the host layers and € is an average energy
of the T'g, I'; and T'g set in the heterostructure [15].

Eq. (2.12) is a set of second-order differential equations whose solution provide
us with the slowly varying heterostructure eigenfunctions and energy levels. Note
that microscopic details of the heterostructures are not presented explicitly, in-
stead they appear implicitly through effective parameters: the interband matrix
elements (n|p|m), the effective mass tensor M?? and the band offsets V}, [15].

—nm

The boundary conditions which have to satisfied by the envelope function, Yy,

17



are

XV (z = z) = X (z = 2) (2.14)
and
where A is a 8 x 8 matrix whose elements are, at most, of the first order in %:
h? mo\ 0 2 my
Anm = 5 5nm S rz2z | a_ = z J —a ka ) 2.16
s (o 515 g5+ 0l 1 5 k], @10

with the property, M:? = M:*5,,,. Note that the well-known boundary condi-
tion, that is the continuity of % across the interface, is only a very special case
of Eq. (2.16)[15].

A practical and a simple model to find out the energy levels in a heterostruc-
ture is the Ben Daniel-Duke model [15]. The basic idea behind the model is the
construction of envelope function from host quantum states belonging to a sin-
gle parabolic band. This is good if we can neglect the influence of the valence
bands. This approximation gives the lowest conduction states of GaAs-Ga(Al)As
heterostructures with GaAs layer thickness larger ~ 100 A. For nearly isotropic

conduction band, far from all the host bands, Eq. (2.12) reads

o 1 0 N n*k2
2 0z pu(z) 0z 2u(z)

x(2) = Ex(2) (2.17)

where V, is energy shift of the conduction band edge when moving from the layer

A to B, and p(z) is the effective mass which is m () when the layer A(B) is

18



considered. Under these circumstances, the boundary conditions obeyed by x(z)

is that

1 dy

eE (2.18)

x(z) and

are both continuous across the interfaces A-B. An interesting feature of the ef-
fective mass mismatch across the interfaces is that it contributes to the total
confining barrier by an amount depending on k. It also makes the derivative of

the envelope function discontinuous at the interfaces [15].

To illustrate this point, let’s consider a GaAs/Al,Ga; ,As (for z < 0.4) quan-
tum well having well width of Ly,. The band offset, or the barrier height, is taken
to be Vg while the effective masses in the well and the barriers are my, and mpg.
Then the effective barrier height, V, + h*k3 /2u(2), in Eq. (2.17), becomes sym-
metric with respect to the middle of the well. For such a system, the solution of

Eq. (2.17) with the boundary conditions in Eq. (2.18) yield [18]

exp [k1(z + Lw /2)]cos (kiLw/2) if 2 < —Lw /2

$1(2) = N1 S cos ky 2 if 2 < |Lw /2| (2.19)

{ exp [—Iil (Z — Lw/2)] CcoS (lew/2) if z > Lw/2
with

| (2.20)

N, = [LW/Q + (Vp/K1E1) cos® (ky Ly /2)
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and

f —exp [k2(z + Lw /2)]sin (koLw /2) if 2 < —Ly /2

$2(2) = Na S sin kyz if 2 < |Lw /2| (2.21)

| exp [—ko(z — Lw/2)]sin (koLw /2) if 2> Ly/2
with

}71/2

NQ = [Lw/Q + (VB//{QEQ) SiIl2 (kQLw/Q) (222)

for the ground and first excited states, respectively. In equations above, ko =

\/2mwE)5/h and k9 = \/QmB(VB — Ey15)/h where E; and E, are the ground

and first excited state eigenenergies determined by the roots of the following

equations

cos (1 Ly /2) — g;’:l sin (ks Ly /2) = 0, (2.23)
and

cos (ko Ly /2) + fr”nz“; sin (ks Lyy /2) = 0, (2.24)

resulting from the application of the boundary conditions (Eq. (2.18)) at the
interfaces, z = +Ly /2, respectively.
We have ignored the term, h*k? /2u(2), in the calculations above since this
term is very small in most cases, as in GaAs/AlGaAs heterostructures [15].
Semiconductor heterostructures are doped to form two-dimensional electron
gas in the quantum well, leading to the non-flat band conditions. The doping of

the heterostructure is achieved either by placing impurities directly in the well or
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in the barriers. The latter has an advantage that the positive and negative charges
are spatially separated, considerably lowering the impurity scattering. The ba-
sic application of the doped heterostructures is field-effect transistors, such as
modulation-doped field-effect transistors (MODFET) and high electron mobility
transistors (HEMT). The almost perfect crystalline quality of I1I-V heterostruc-
tures and the ability of the separation of carriers from the impurities create huge
electron mobilities making the field-effect transistors based on the modulation-
doping so popular in recent years [19, 20].

The single-particle Hamiltonian is not adequate when quantum wells are
doped to supply extra electrons. The interaction between the impurities and
the electrons and the interaction among the electrons themselves must be consid-
ered. Let U™P(r) be the electrostatic potential due to the impurities (which in
turn defines the interaction between the electrons and the impurities) and let U¢
be the electrostatic potential due to the interaction of the electrons themselves.

If a single electron is considered, the expression

1
v — |

U = —¢ / dr' p(r') (2.25)

defines the electrostatic potential due to the electric field of the remaining elec-
trons (they are treated as a smooth distribution of negative charge). The charge

density p(r), defining this charge distribution, is given by

pr) = —e > i), (2.26)

21



where all occupied one-electron levels are considered [21].
The N-particle Hamiltonian is obtained by inserting the expressions for U
and U® and the result is known as Hartree equations. They give the best ap-

proximation to the full N-electron wave function,

\IJ(rlsl, reSo, ..., I'NSN) = wl(rlsl)wg(rgsg) Ce wN(rNSN): (227)

where 1); are a set of N orthonormal one-electron wave functions. However,
Eq. (2.27) does not satisfy the Pauli exclusion principle. It should be an an-

tisymmetric wave function. Instead, if we rewrite it as

’ébl(rlsl)?/)l (1'252) .- -1/)1(I'NSN)
77/)2(1'1S1)’17Z)2(I'QSQ) Ce ’QZ}Q(I'NSN)

\Il(rlsl,rQSQ,...,rNsN) = (228)

1
Vel

¢N(P151)¢N(r252) .- -T/JN(I'NSN)

we obtain an antisymmetric wave function, satisfying the Pauli exclusion princi-
ple. Inserting, Eq. (2.28) into the N-particle Hamiltonian with U and U¢, we

get the following
R .

(Hye = 3 [ driir (—— VU ) ) i)

+= Z/drdr

—3 %/drdr T

W)z( IRIICOI

ss]@/) (£)¢hi ()5 (x) b5 (x). (2.29)
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The last term in Eq. (2.29) is additional and different than the U¢. It is called
the exchange term, and the Hamiltonian including this term is called Hartree-
Fock Hamiltonian. The correction to this approximation is referred to as the
correlation term [21].

We calculate the optical properties of d-doped quantum wells in Chapter 7.
In these systems, where very high density of electrons are encountered, like
10" cm™2, the exchange and correlation terms are negligible [22] whereas the
Hartree term makes the major contribution to the confining potential. We have
included the exchange and correlation effects and found the results to be unaf-
fected. Therefore, we ignore exchange and correlation terms in our calculations.

The envelope function scheme described in this chapter will be used to calcu-
late the energy eigenstates of the carries trapped in the potential created by the
heterostructures. Our next task is to apply the idea discussed above to find out
the nonlinear optical properties in a model quantum well which is the subject of

the following chapters.
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CHAPTER 3

NONLINEAR OPTICS

3.1 Introduction

This chapter deals with the quantum-mechanical treatment of the nonlinear
susceptibilities. The nonlinear susceptibilities are derived using the laws of quan-
tum mechanics. This involves a perturbational solution to the density matrix
equation. Second- and third-order susceptibilities are obtained for general n-
level quantum mechanical system. The results are presented in a very compact

form.

3.2 A Simple Description

It is called nonlinear optics because the response of the material to an applied
optical field depends in a nonlinear way upon the strength of the optical field.
We can explain more concretely that nonlinearity by expanding the polarization

of the material, which is defined as the dipole moment per volume, in powers of

24



the strength of the applied optical field, E(¢):

P(t) = x\VE®) + YPE2(t) + xOE (t) + ..., (3.1)

2) and y® are linear, second-order and third-order susceptibilities,

where Y, y!
respectively. When we write Eq. (3.1) it is assumed that the polarization at time
t depends only on the instantaneous value of the electric field strength. The sus-
ceptibilities are tensors of several ranks. The even powers of susceptibilities are
nonzero only in noncentrosymmetric materials, that is, in materials that do not
show inversion symmetry. The typical values of xY(* and x® for condensed mat-
ter, under the nonresonant condition, are 5 x 1078 and 3 x 107! esu, respectively
[23, 24, 25].

The consequences of Eq. (3.1) can become more concrete through a simple

example. Consider a monochromatic applied field in one dimension, such that
E(t) = E cos wt. (3.2)
The application of Eq. (3.2) to Eq. (3.1) yield the following results:

P(t) = %X(Q)E2 + <X(1)E + %X(B)E3> cos wt + %)((Q)E2 cos 2wt + ix(3)E3 cos 3wt

(3.3)
using relevant trigonometric identities. The first term in Eq. (3.3), independent
of the frequency, creates a static electric field within the material. This pro-

cess is called optical rectification. The second term in the parenthesis is the
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nonlinear contribution of the polarization at the frequency of the applied field.
That term creates a nonlinear contribution to the refractive index. The third
term in Eq. (3.3) implies a generation of radiation at the frequency twice that
of the applied field which is called second-harmonic generation. The last term
Eq. (3.3) describes a radiation having a frequency three times larger than that of

the applied field. This process is called third-harmonic generation [24, 23, 25].

3.3  Quantum-Mechanical Theory of Nonlinear Susceptibilities

Nonlinear optical susceptibilities are characteristic properties of a material.
The electronic and molecular structure of the material determine the nonlinear
optical susceptibilities. Their microscopic expressions can be derived using the
laws of quantum mechanics, allowing us to understand how the susceptibilities
depend upon the dipole moments, atomic energy levels and the other material
parameters. Besides, the expressions will show the internal symmetries of the
susceptibilities and will help us to obtain predictions of their numerical values.

The density matrix formulation of the quantum mechanics is the best way to
calculate nonlinear susceptibilities when the relaxation of excitations are included.

The density matrix operator satisfies the following equation of motion

dp 1
— = —[Hy+ Hip, p) s 3.4
It zh[ 0 + Hint, p] (3.4)
also known as the Liouville equation. Here Hj is the unperturbed Hamiltonian

and H;,; is the interaction Hamiltonian of the material with the applied optical
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field. While Eq. (3.4) describes the time evolution of the density matrix operator,
we should include the random perturbations on our system by the thermal reser-
voir around it. Let H,4,q be the Hamiltonian describing such perturbations. Since
H,.,.q will be responsible for relaxations of the excitations, that is the relaxation

of the perturbed p back to the thermal equilibrium, we may write

ap 1
— = —|H, . .
<at ) relax il [ rend ’0] (3 5)

Let |n) be the eigenstates of the Hamiltonian Hy and let p,, = (n|p|m). pum
relaxes to its equilibrium value p(¢9 at thermal equilibrium. We assume that
pl9 = 0 for n # m. This is physical because thermal excitation, which is

expected to be a random process, can not produce any coherent admixture of the

states, |n) and |m). Then we write Eq. (3.5) as

dp
. = _an nm — (cq) 3.6
(% ) - (36)

where I',,,,, is the decay rate between the states |n) and |m) and we assume that
[, is real which leads to 'y, = T'pn. Adding Eq. (3.6) to Eq. (3.4), we obtain

the final form

OPnm
ot

1
= % [HO + Hmt, p]nm - an(pnm - P%er%)) (37)

for the time evaluation equation of matrix elements of the density matrix.
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3.4 Perturbation Solution of the Density Matrix Equation

A fully analytical solution of Eq. (3.7) is not available for the physical systems
of interest. However, a perturbative solution can be adapted. The expectation
value and the matrix elements of the interaction Hamiltonian H,,; are assumed to
be much smaller than the expectation value of Hy which means a weak interaction.
We assume that the interaction of the material with the applied optical field is

described sufficiently well by the electric dipole approximation as

Hing = —p- E(t)a (38)

where v = —er stands for the electric dipole moment operator.

Eq. (3.7) can be rewritten as follows

Opnm
ot

. 1 .
k

using the base vectors, |n). Our perturbative approach dictates the replacement
of each (Hjnt)i; in Eq. (3.9) by A(Hint)ij- By such a replacement, we aim to
control the strength of the perturbation by A ranging from 0 to 1. Our next task
is to investigate a solution to Eq. (3.9) in the form a power series in A that can

be stated as

Prm = P+ Ak + NS+ (3.10)

Then, the coefficients of each power of A must satisfy the Eq. (3.9) separately,
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leading to the following set of equations

90
Pt = i = Do ({5, — o5 (3.11)

opl),
ot

opt2),
ot

1

1
= —(iWpm + an)pﬁw% + [Hmt, P(O)] ) (3.12)

% nm

1
and so on. The set of equations above are coupled linear differential equations,
once p{9 is known, the higher orders of p() are obtained by integrating the

nm

equations in order. The steady-state solution to Eq. (3.11) is taken to be as
Pram = Ph (3.14)

(note that Eq. (3.11) does not include any interaction term related with the

applied field). Integration of Eq. (3.12) will give us

t ]
A= [ [Fina?), 0] exp{(im + Tom) (¢ = 1)}t (3.15)

n

The next order of p(™ can be easily obtained in the same manner.

Let the applied optical field be represented as

E(t) = Ejexp (—iwgt). (3.16)

Then, using Eq. (3.8), Eq. (3.15) and Eq. (3.16), we obtain the following expres-

sion for the p{l)

nm

Hnm * Egexp (—iwst
o0 (1) = (p0, — pO) T (Ciit) (3.17)

nm ~ N [wpm — ws — 1Lpm)
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It is straightforward to obtain the expression for p(2) by using Eq. (3.17). But

the result is quite lengthy to present.

We can make a power series expansion of the polarization
P = \PY 4 \?P®) ¢ (3.18)

like ppm. As we know from quantum mechanics, expectation value of an observ-
able is given as A = Tr(pA). Since P = N < p > where N is the atomic number
density, we have

PY = N Tr(pM p). (3.19)

Therefore, if we take the trace in Eq. (3.19) and use the relation PV = YE we

obtain the following expression for the linear susceptibility

W(w,) = NS (o0 — p Homn Lonm 3.20
X (ws) %n:(pmm pnn) B [(Unm — Wg — zfnm] ( . )

Similarly, the second-order and third-order nonlinear susceptibilities can be ob-

tained easily. The results are

(2) _ N 0 0
Xz‘jk(ws + Wy, Ws, Wy) = on2 Z (p$712n - P(W))

mnv
y Fann i ey
[wnm —Wsg — Wp — Zrnm] [wym — Wy — Zrum]
Hipan o
[wnm —Wg — Wr — Zrnm] [wum — Ws — Zrym]
Hiwr o
a [wun —Wsg — Wy — Zryn] [wym — Wy — Zrym]
HiuFon
[wun — W — Wy — Zrun] [wum — Ws — Zrum] ’

_|_

(3.21)
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N
ng?ih(wq + ws + Wy, Wg, Ws, wr) — ﬁPI Z
0 i
(P = i) M st
[wlm — Wp — ZIWlm] [wum — W — Ws — Zrum] [wnm — Wy — Ws — Wg — ZIan]
0 i
B (0 = PO il pth 1t il
[wul — Wp — irlll] [wum — Wy — Ws — Zrum] [wnm — Wy —Ws — W — ZIan]
0 i i
B (080 = pi") bt ttistih,
[wlu — Wp — Zrlm] [wnu — W — Ws — Zrnu] [wnm — Wy —Ws — W — ZIan]

0 i i
(k) = PO il 122
[wnl — Wy — Zrnl] (wum — Wy — Wg — Zrum] [wnm — Wy — Wg — wq — ZIan] ’

(3.22)

+

respectively. Here Pz means that everything to the right of it is to be averaged
over all possible permutations of the input frequencies w,, wy and w,, with the

cartesian indices h, 4, j permuted simultaneously.

The expressions for x(® and x©® can be transformed into different forms de-
pending upon the physical system under consideration. For example, when all
input frequencies differ significantly form any resonance frequency of the system,
than the I';; in the denominators of Eq. (3.21) and Eq. (3.22) can be ignored.
However, in this work, we will deal with the resonance cases in which the imagi-
nary contribution in the denominators gains indispensable importance.

We have derived the expressions for the nonlinear susceptibilities, x(2 and y*)
by solving the density matrix equation perturbatively. The resulting nonlinear
susceptibility expressions, Eq. (3.21) and Eq. (3.22), are given in a very compact

form for an n-level quantum mechanical system. Given the explicit expressions
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of the susceptibilities, the nonlinear optical properties in a specific quantum well,
like Poschl-Teller quantum well, can be calculated in a straightforward way. In

fact, this is what we will do in the following chapters.
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CHAPTER 4

POSCHL-TELLER POTENTIAL

4.1 Introduction

In this chapter, we give the mathematical description of the Podschl-Teller
potential. Its wave functions with the corresponding energy levels are discussed
briefly. The potential is investigated under a dc electric field, and the solutions to
the Schrodinger equation are obtained through the perturbational and variation
methods since the corresponding analytic solutions do not exist. The potential
itself and the first three wave functions are displayed for several values of the

potential parameters.

4.2 Poschl-Teller Potential

The Poschl-Teller potential is given by the following citeposchl33.flugge71 nieto78

_ W R(E=1) n—1)

Viz) 2m* | sin? (Bz) = cos? (Bz)

Kk, m>1, (4.1)
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where k,7 are known as the depth parameters and [ as the width parameter.
Clearly, the potential is periodic and each period is separated from the next
by an infinite potential barrier, allowing the related Schrodinger equation to be
analytically solvable. The potential has such a nice feature that it can be easily
made asymmetric by a correct choice of its parameter set: x, n, and (. It is
asymmetric about z = /4 (unless K = 1), and the minimum of the well is
located at z,;, > (<)w /45 as k > (<)n. We show the potential as a function of Sz
for k = 1.2, 2.0 and 3.0 indicated by solid, dashed- and dotted-lines, respectively
at n = 2.0 in Fig. (4.1). As discussed above, there is a clear asymmetry in the
form of the potential at nonequal values of k and 7. Note that potential is wider
for small x and narrower for large k.

The adjustable asymmetry property of the potential and its analytic character
as the solution the corresponding Schrodinger equation will help us in the inves-
tigation of the dependence of the nonlinear optical properties on the potential

well parameters, such as well asymmetry, well depth or width etc.

4.3 Schrodinger equation with Poschl-Teller Potential

The corresponding Schrodinger equation has the following eigen functions and

eigenvalues[27]

60(2) = Oy sin(52) cos"(52) oy (=, 4+, + %; (62)) . (42)
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Figure 4.1: The Poschl-Teller potential profile for n = 2. The solid, the dashed
and the dotted-curves stand for Kk = 1.2, k = 2 and k = 3, respectively.

h?ﬁ?
 om*

(k+n+2n)°n=012,... (4.3)

Here Cy is the normalization constant and o F} (a, b, ¢; f(2)) is the Hypergeometric
function. The potential has the characteristic behavior of an infinite potential,
that is the energy levels are proportional to 42, and in turn to L=2. Wave functions
of the first three states are plotted in Fig. (4.2)(a)-(c). In the figures, solid,
dashed- and dotted-lines stand for x = 1.2, 2.0 and 2.8 at n = 2.0, respectively.
The wave functions shift to the side where the bottom of the well sits. This is
determined, as mentioned above, by the relation between and x and 7. We also
plot the first three energy levels as a function of x at n = 2.0 in Fig. (4.3). As it

is clear in Eq. (4.3), the energy values depend on the square of x and the quantum
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number n. We write the energy difference between two consecutive states as

2h*3?
ABpi, = Tﬁ (k+n+1+2n), (4.4)

indicating that the energy levels are not equally spaced. The higher the quantum
number, the larger the spacing.
The potential is reduced to the following form in the symmetric case (i.e.

when k = 17)

B h?B% k(k —1)
2m* cos?z

V(2) (4.5)
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Figure 4.2: The normalized first three wave functions of a Poschl-Teller quantum
well. The solid, the dashed and the dotted-curves stand for k = 1.2, k = 2 and
k = 3 in panels (a), (b) and (c), respectively.

if we make a change of variables such that: z = 262 — /2 as k — 1. This
form of the potential gives exactly the eigenvalues and wave functions for the
infinite square well potential with barriers at Z = +7/24. Also one can show
that Eq. (4.5) gives exactly the eigenvalues and the wave functions for the sim-
ple harmonic oscillator provided that the zero-point energy 7(n — 1)h*5%/2m* is
subtracted from Eq. (4.5) and then the limits n — oo, § — oo are taken but such

that 8°n = m*w/h.

4.4 Poschl-Teller potential under a DC electric field

The Schrodinger equation corresponding to the Pdschl-Teller potential has no
analytical solutions under a static electric field applied in the z-direction. Having

no analytic forms, the wave functions and eigenvalues can be calculated in several
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Figure 4.3: The first three energy levels of a Poschl-Teller quantum well. The
dashed-dotted-, the dashed and the solid curves stand forn =0, n =1 and n = 2,
respectively.

ways, such as numerical, variational or perturbational. We use variational and

perturbational methods in the calculations [29].

The variational wave functions are easy to compute and practical to follow the
evolution of the physical quantities. The simple form of the trial wave function,
fn(z) exp(—f,2), is proved to give accurate results for n = 1 for an infinite well
[30], where f,(z) is the zero-field nth quantum well bound state and 3, is a vari-
ational parameter. However, it provides significantly different results from the
numerical calculations for the higher energy levels if these trial wave functions are
not orthogonal to each other [30]. We find analytic forms of orthogonalized trial
wave functions by the Gram-Schmidt orthogonalization procedure [30]. This pro-
cedure requires the construction of an orthonormal set {¢g, ¢1,...} from a finite

or an infinite independent set {ug,u1,...} which is not necessarily orthonormal
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[30].

We suggest the following nth vector, u,,

n(2) = S0 (82) o8 (62) By (=4 -4 m o+ 53 5in2(82) ) exp [ (543

which is not an orthogonal set, where (3, is the nth variational parameter. The

variational wave function for the ground state is

¢0 = ’U/0<’U/0|’U/0>71/2. (47)

The ground state energy is found by minimization of Ey(f,) with respect to fy.

The corresponding equation is given as
Eo(Bo) = (uo|H.|uo){uoluo) ™" (4.8)

We start with

0 = uy — (u1|po)Po- (4.9)

to find the first excited wave function and its energy. Here (uq|¢po) is the inner

product between the related functions. Minimization of
E\(B1) = (0| H.10){010) " (4.10)

with respect to (3 provides us with the first excited state energy level. The

corresponding wave function can be found as

¢1 = 0(0]6) /. (4.11)
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In Table 4.1, we show the result of the variational calculation for the first two
energy levels and the transition energy from ground state to the first excited state
along with the results obtained from the time-independent perturbation theory
in parenthesis. Note that the results obtained using variational and perturbative
techniques are very close. The transition energy Fjy is almost constant (there
is a slight blue-shift (red-shift) for small (large) ), while the individual energies
change considerably with the increasing electric field. The slight shift in the
transition energy is due to the tiny change in the difference 217 — 2z¢9, which is the
linear term in the expression for the transition energy when the time-independent
perturbation theory is used.

The modified Poschl-Teller potential,

_hzﬁ%(/{ - 1)

2m*

V(z) = cosh™ (B2), (4.12)

has attracted some interest in recent years [32, 31, 33]. V(z) becomes a potential
barrier for 0 < k < 1, a flat band for k = 1 and a potential well for k > 1. Tong
[32] suggested several applications in semiconductor heterojunction devices and
in optical systems . Tong and Kiriushcheva [31] showed that it can be used in
reduction of noise in resonance tunneling devices and other devices. Radovanovic
et al. [33] worked out several intersubband absorption properties of the potential.
An interesting point is that Eq. (4.12) for k > 1 resembles the profile of a diffused
quantum well.

In this work, we have focused on the electronic subband structure of quantum
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Table 4.1: The calculated variational energy eigenvalues for the ground and first
excited states and the corresponding transition energies in meV under the ap-
plied electric field for n = 2 with the results obtained through time-independent

perturbation theory in parenthesis. Energies in each column represent Ey, F,

and Ej, from top to bottom, respectively.

F =0kV/cm

F =25kV/cm

F =50kV/cm

F =100kV /cm

k=1.2

89.70 (89.70)
236.87 (236.87)

147.17 (147.17)

103.19 (103.20)
251.69 (251.69)

148.50 (148.49)

116.38 (116.38)
266.54 (266.55)

150.16 (150.17)

142.12 (142.01)
296.58 (296.64)

154.46 (154.63)

k=2.0

140.16 (140.16)
315.36 (315.36)

175.12 (175.20)

155.84 (155.85)
331.15 (331.16)

175.31 (175.30)

171.30 (171.31)
346.95 (346.96)

175.65 (175.65)

201.82 (201.83)
378.83 (378.86)

177.01 (177.03)

K =2.8

201.83 (201.83)
405.06 (405.06)

203.23 (203.23)

219.05(219.06)
421.72 (421.73)

202.67 (202.67)

236.09 (236.11)
438.37 (438.39)

202.28 (202.28)

269.99 (270.04)
471.94 (471.97)

201.95 (201.93)
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wells described by Poschl-Teller potential. The energy levels and the correspond-
ing wave functions are given analytically as functions of the parameters of the
potential. Whereas, they are calculated through variational and perturbational
ways under an electric field since there is no analytic solution. The knowledge of
electronic subband structure and the corresponding wave functions will help us
to calculate the optical properties of Poschl-Teller quantum wells in the following

chapters.
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CHAPTER 5

SECOND-ORDER NONLINEARITIES

5.1 Introduction

In this chapter we study on the second-order nonlinear optical properties in
a Poschl-Teller quantum well [69]. These include second-harmonic generation
(SHG) and the optical rectification. The calculations are based on the expressions
obtained through the density matrix equation in Chapter III. Only the first two
levels of the quantum well is considered in numerical calculations. The effect
of the DC electric field on the second-order nonlinearities are also investigated.
The numerical results are discussed and compared with the results of the other

quantum well systems, such as square quantum wells.

5.2 Second-Harmonic Generation

Second-order nonlinearities are nonzero only in noncentrosymmetric systems.

That means a semiconductor quantum well having symmetric potential profile
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will provide very small second-order nonlinearities. The asymmetric quantum
wells are obtained by advanced growth techniques or applying external bias field
(see Fig. (5.1)), canceling the selection rules and making nonzero second-order
nonlinearities possible in semiconductor quantum wells. Since the dipole matrix
elements are large in semiconductor quantum wells (typically of the same order as
the size of the well) one can expect considerably large second-order nonlinearities
in such systems. In fact, this was suggested by Gurnick and DeTemple [8] for an
asymmetric Morse potential practically realizable in Al,Ga;_,As quantum well by
varying composition z in the growth direction. The resultant nonlinearities were
10-100 times larger than that in bulk crystals. The first experimental observation
of second-order nonlinearities was made by Fejer et al. [9] in 1989. The experi-
ment was done in a GaAs/AlGaAs quantum well by breaking the symmetry with
a dc electric field of 36 kVem™". They obtained a second-harmonic generation of
28 nm/V, which is 73 times larger than that of bulk GaAs using a 10.6um pump
COy laser. Following the work of Fejer et al. [9], Rosencher et al. [34] reported
second-harmonic generation of 760 nm/V in a stepped asymmetric GaAs/AlGaAs
quantum well. Boucaud et al. [35] measured x? values as much as 720nm/V
in the same structure. Sirtori et al. [36] measured a second-harmonic genera-
tion of 48nm/V in an asymmetrically coupled AlGaAs/GalnAs. Later, Sirtori
et al.[37] demonstrated Stark tuning in the same structures and they obtained a

second-order susceptibility as much as 75nm/V. By doubly-resonant difference
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Figure 5.1: Asymmetric quantum wells. (a) Biased quantum well. (b) Graded
quantum well. (c¢) Stepped quantum well. (d) Double quantum well.

frequency mixing of two mid infrared (10 pm) sources, Sirtori et al. [38] obtained

60m- radiation and a x? = 1000 nm/V.

On theoretical side, Khurgin [39, 40, 41] considered all of the most important
second-order nonlinearities in realistic asymmetric quantum wells and investi-
gated the dependence of this nonlinear coefficient on the well geometries and
compositions. The second-order susceptibility was investigated under the action
of an electric field [42, 43]. The optimization of second-order susceptibility has
been analyzed and it has been shown that the optimization can be achieved by
the methods of band-gap engineering and optimizing the product of three dipole
matrix elements [11, 13, 44, 45, 46, 47]. The second-order nonlinearities due to

exciton and continuum states were also investigated [48].

Although high values of SHG associated with intersubband transitions are
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obtained, there is a severe obstacle in getting high conversion efficiencies. This is
the strong absorption of the pump (w) and the doubled (2w) signals [10, 11]. The
saturation of the second-harmonic generation conversion efficiency was demon-
strated by Boucaud et al. [49]. They obtained a conversion efficiency of 3.4 x 1074
at the pump intensity of 16 MW /cm?. For larger values of the intensity the con-
version efficiency started to decrease. Later, Chen et al. [50] obtained a con-
version efficiency as large as 3 x 1072 at the pump intensity of 2 MW /cm?. The
works on SHG conversion efficiency have reached different conclusions due the
mathematical complexity of the problem when the rotating wave approximation
is used instead of the pertubative approach [11, 44, 51, 52, 53, 54]. Note that the
perturbative approach is not applicable in case of strong pump intensities. De-
Temple et al. [51] showed the full-resonance maximized SHG and they obtained
large conversion efficiencies (> 50%) on-resonance at high intensities attributed
to the ac-Stark effect. But Boucaud and Julien [52] concluded that some detuning
is needed to get high conversion efficiency (they obtained a conversion efficiency
greater than 6% at the pump intensity of 10 MW /cm?) contrary to the conclusion
of DeTemple et al. [51]. Ikonié¢ et al. [44] demonstrated a high conversion effi-
ciency (20%) in a rectangular quantum well under dc-fields at double resonance.
Rosencher [54] concluded that a large conversion efficiency 20% is possible at dou-
ble resonance before the onset of saturation by solving the propagation equation

numerically with perturbative coefficients. Almogy and Yariv [11, 55] showed that
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an optimal conversion efficiency is available on double resonance at weak intensi-
ties while at higher intensities some detuning reduces the saturation. Vurgaftman
et al. [56] found that a conversion efficiency of 2.6% at I = 4.1 MW/cm? and
2.6% at I = 15 MW /cm? using surface-incidence and waveguide-mode analysis

SHG with detuned intersubband transitions in GaAs-AlGaAs quantum wells.

All the works cited above mainly focused on the quantum wells having in-
tersubband transition energies around 100 meV and surface electron densities
< 102 e¢m™2. In such systems, the depolarization and exciton-like effects can be
neglected because they bring relatively small corrections compared to the sub-
band energy spacings. However, the exciton-like effect is important when the
subband energy spacing is smaller than 100 meV at lower densities of electrons.
Also, the depolarization effect should be included when the density of electrons
is quite high. Bewley et al. [57] measured the nonresonant SHG in half semi-
parabolic quantum wells having an intersubband transition energy in far-infrared
region. They concluded that the electron-electron interaction should be fully in-
cluded in calculations of SHG (a typical correction to the transition energy due
to the depolarization and exciton-like effects is &~ 10 meV in such quantum wells).
Heyman et al.[58] designed a double asymmetric quantum well approximated by
the first two energy levels as the transition energy (= 10meV) from ground to
the first excited state was much larger than those resulted from ground to the

other excited states. They observed that the peak position occurred at an energy
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a few meV larger than the bare intersubband energy and the spectrum was mod-
ified compared to the result obtained through one-electron approximation. They
could explain these observations by including the depolarization effect into their
calculations. Later, Zatluzny [59] and Bondarenko and Zatuzny [60] improved the
SHG expression including both depolarization and exciton-like effects.

In this part of the work, we will calculate the second-order nonlinear optical
properties of quantum wells described by the Poschl-Teller confining potential.
Since the potential itself has variable asymmetry parameters, we can work out

the effects of the degree of the asymmetry on the second-order nonlinearities.

5.3 Second-Harmonic Generation in a Pdschl-Teller Quantum Well

As discussed previously, the asymmetry is the key point in the second-order
nonlinearities. The P&schl-Teller quantum well has an advantage of having a vari-
able asymmetry whereas the other types of quantum wells have a definite shape
of asymmetry determined by the growth conditions or a variable asymmetry but
obtained through external-bias. Therefore, the Péschl-Teller potential provides
a possibility for determining the behavior of SHG in a quantum well with an
adjustable asymmetry.

The expression for SHG for a two-level system is given by

2) _ O'5|/L10|2(/L11 — Mog) hw —+ ZTLF() E120 —+ (27%0 + thg)(hw + Zhr(])
2 TR — (hw + D)2 | 2hw + ATy E2, — (2hw + ihT)?

(5.1)
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assuming that the optical field is polarized in the growth direction of the quantum
well, z, and only the ground state is occupied by the electrons, and the off-
diagonal and diagonal elements of I',,,,, are equal to I'g and I'y, respectively. Here
o, represents the electron concentration in the ground state. If the first three

levels are used, we obtain the following expression

<(2) _ Osf1of421 Ho2 (5.2)
2w [E10 — hw + ’Lhrg] [EQO — 2hw + Zhrg] ’ '

This equation gives larger SHG peaks when the double resonance is met, that is

when Ey &~ Ejg &~ hw [13]. The ratio of the resonance values of both expressions

yields
(2)
CQw,peak -~ 1 ‘ HioM21 o2 Eqo (5 3)
Xgu),peak 2 ’U/%O(’U/H - MOO) hr(]
Since Fjq is much larger than AT, Céz{peak > Xéi,),peak, apart from the geometrical

factor |pigpior oo/ 3o (111 — too)|- But, in a quantum well described by the Péschl-
Teller potential equal spacing of energy levels is not possible (see Eq. (4.4)).

We display SHG spectrum of a quantum well described by the Pdschl-Teller
potential as a function of the photon energy in Fig. (5.2) for k = 1.2,1.9 and
2.8 at n = 2, shown by dashed-, solid and dashed-dotted-lines, respectively. We
take Ty = (1ps)™!, Ty = (0.14ps)~" and o, = 3 x 10'® cm™3. There is no applied
electric field. Eq. (5.1) reveals two distinct peaks in the spectrum, occurring at
hw ~ Eip/2 and hw =~ Fjg, respectively. As k increases the peaks decrease at

first, become zero at k = 2.0, for which the potential is symmetric, and increase
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Figure 5.2: Second-harmonic generation as a function of the photon energy in a
Poschl-Teller quantum well. The solid, the dashed and the dotted-curves stand
for k = 1.2, k = 1.9 and k = 3, respectively. Inset displays the peak appearing
at hw ~ F1y/2 as a function of k for n = 1.2,1.9 and 2.8, denoted by dashed-,
solid and dashed-dotted-lines, respectively.

again. The maximum value of SHG attained is approximately 3nm/V which is
one order of magnitude larger than that in bulk GaAs. The peak positions are
always blue-shifted in accordance with Eq (4.4).

The peak at hiw ~ E1g is very weak compared with the other one. This can

be checked easily using Eq. (5.1), such that

1
—Ey/2 + ihTy’

Xoo) (hw = Ei/2) o (5.4)

and

?(hw~ B N 5.5
XQUJ( w 10) X E10+ihro’ ( . )

where we retained only the resonance terms in Eq. (5.1). The absolute value of

the ratio of Eq. (5.4) to Eq. (5.5) gives us 2. This is quite a large value. Therefore,
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we may safely ignore the peak appearing at hw = FEjo. The inset of Fig. (5.2)
shows the peak at hw &~ F(/2 as function of k for n = 1.2,1.9 and 2.8, denoted
by dashed-, solid and dashed-dotted-lines, respectively. As expected, the peak is
zero along the line kK = 7 which makes the Poschl-Teller potential symmetric. But
as they become different, the peak value grows and it reaches its maximum value
when one of the parameters is the greatest while the other one is the smallest.
This can be explained by the maximization of the difference |11 — poo| since the
well becomes very wide while it remains asymmetric in that case. The maximum
value of SHG attained by changing the parameters does not exceed the previous
value, approximately 3nm/V. The result is much smaller than those obtained in
the experiments or in the earlier theoretical studies. This can be explained by
the absence of the double resonance and the smallness of |11 — pgo| (it is between
0—10 A) compared to those obtained in other quantum wells. It is four times

larger in a step quantum well than the one obtained here [61].

Eq. (5.1) is displayed as function of the photon energy in Fig. (5.3) for the
electric fields of F' = 25, 50 and 100kV /cm, denoted by dashed-, solid and dashed-
dotted-lines, respectively. We take k = n = 2. Initially, SHG is zero due to the
symmetry of the potential (not shown), but it increases quickly because of the
gradual increase in |p1; — pgo| when the field is turned on. We say that the
enhancement of SHG, as large as three times, is possible with the DC electric

field. That is quite similar to the result obtained in a square quantum well under
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Figure 5.3: Second-harmonic generation as a function of the photon energy in a
Poschl-Teller quantum well under the electric field of F' = 25, 50 and 100kV /cm,
denoted by dashed-, solid and dashed-dotted-lines, respectively. In the figure,
k=n=2.

the electric field [42]. The peak position is blue-shifted with the increasing electric

field.

In Fig. (5.4), we plot the peak occurring at hiw =~ F1¢/2 in Eq. (5.1) as a
function of the electric field, for the values of x = 2, 2.3,2.6 and 2.9, denoted
by solid, dashed-, dashed-dotted- and dotted-lines, respectively. In the figure,
n = 2. Since the potential is symmetric when x = 7, the peak is zero at k = 2
and F' = 0kV/cm but it starts to increase as F increases. However, for the values
of k # 2, the peak value becomes zero at specific electric field strengths, such as
at F' 2 35kv/cm for k = 2.3. In other words, quenching of SHG is possible at
fixed k,n by applying the electric field. In a similar fashion, it is shown that the

quenching of SHG with the applied electric field is possible in a compositional
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Figure 5.4: The peak, appearing at hw &~ FE1¢/2 in the expression of SHG, as a
function of the electric field for the values of kK = 2, 2.3,2.6 and 2.9, denoted by
solid, dashed-, dashed-dotted- and dotted-lines, respectively. n = 2 in the figure.

asymmetric coupled quantum well by Huang et al. [62].

As a result, we may say that a large SHG peak is possible in a Poschl-Teller
quantum well when its parameters are kept as small as possible. A large enhance-
ment in the peak value of SHG can be possible by the electric field provided that
the parameters are kept smaller. Whereas the SHG obtained here is comparably
larger than that in a bulk GaAs, it is much smaller than that obtained either
experimentally or theoretically in the similar quantum wells. As discussed in the
text, the main reasons are the absence of the double resonance and the smallness
of the quantity, |11 — 00| An interesting point is that the electric field can make
SHG peak disappear. This dual behavior of the potential is due to its controllable

asymmetry through its parameters.
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5.4  Optical Rectification

The coefficient of the constant term (that is 1y E? in Eq. (3.3))which con-
tributes zero frequency in the SHG expression is the optical rectification (OR)
coefficient. It is the creation of a static electric field in the material due to the
incident optical field. Optical rectification is observable only in noncentrosym-
metric systems. The first observation of the optical rectification was done by
Rosencher et al. [61] in a stepped GaAs/AlGaAs quantum well. They measured
an optical rectification of 5.25 x 107 m/V which is three orders of magnitude
higher than that of bulk GaAs at 10.6 um resulted from the maximization of the
product |u10]*(p11 — poo) in the expression of optical rectification derived for a
two-level system. Later, Rosencher et al. [63] observed a larger value of the OR
coefficient, as large as 1.62 x 1072 m/V at 8 — 12 ym range, observed in asymmet-
ric GaAs/AlGaAs wells coupled by a weak intermediate potential barrier. The
main reason was the long lifetime of the electrons in a metastable level slowly
interacting with the ground state. Unterrainer et al. [64] measured an optical
rectification coefficient of the order of 1072m/V at 11 meV, that is in far-infrared
region, in doped asymmetric GaAs/AlGaAs quantum wells coupled by a thin

potential barrier.

The optimization of the OR coefficient in asymmetric quantum wells by the

methods of band-gap engineering and optimizing the product |u10]*(p11 — foo)
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have attracted great interest [13, 65, 66, 67]. The possibility of the OR coefficient
in a biased parabolic quantum well was also shown [68].

Derivation of the expression for OR coefficient in a two-level system is straight-
forward. It is achieved by setting w; = —w and w, = w in Eq (3.21). After some

mathematical manipulations, it may be written as,

ool (1 — pio0) o [L+ 2] + (@ +T3) [1o — 1]
h? [(w = wi0)? + TF] [(w + wi0)? + T

X&) =4

(5.6)

In deriving the equation above, we assume that the optical field is polarized in the
growth direction of the quantum well, z, and only the ground state is occupied
by the electrons whose concentration is denoted by oy, and the off-diagonal and
diagonal elements of I';,,,, are taken equal to I'y and I'y, respectively.

The maximum value of the OR coefficient is obtained at the resonance condi-

tiOIl, hw ~ EIO;

2
O —
XE)Q) —9 |1110] (;;211 Moo)TlTo (5.7)

assuming that 'y, 'y < wyg. Hence the maximization of the OR coefficient will
require a tradeoff between p19 and 117 — 1o and the enhancement of the lifetime of
electrons, i.e. T, in the excited state[13]. Because any increase in the asymmetry
of the quantum well will increase the difference 11 — pgo but decrease piyg.

Eq. (5.6) is displayed as function of the photon energy in Fig. (5.5) for
k =1.2,1.9 and 2.8 at n = 2, shown by dashed-, solid and dashed-dotted-lines,

respectively. Inset shows the peak value as a function of k for several values of

95



80 B -
2
1 £
' o
) p=
' &,
< 60 ' 'y
< '
€ 1
o )
i '
o '
T 40
s k=12
=2 ! — k=19
‘‘‘‘‘ k=28
20|
\
\
3 N
o C rti ), SOl hid
120 140 160 180 200 220

hv (meV)

Figure 5.5: Optical rectification as a function of the photon energy in a Poschl-
Teller quantum well. The solid, the dashed and the dotted-curves stand for
k=12, k =1.9 and k = 2.8, respectively. Inset displays the peak as a function
of k for n = 1.2,1.9 and 2.8, denoted by dashed-, solid and dashed-dotted-lines,
respectively.

7. As the potential becomes symmetric aroundx = 7, the peak value yields zero
at k = 1. Generally speaking, the larger peaks are obtainable when one of the
parameters is much smaller than the other one. By this, the maximum OR value
is around 1.5 x 107 "m/V, three orders of magnitude larger than that of bulk
GaAs. Smallness of 1117 — ppo compared to that in a stepped well [61] is the main

reason for the absence of the larger values of the OR coefficient here.

Eq. (5.6) is displayed as function of the photon energy in Fig. (5.6) for the
electric fields of F' = 25, 50 and 100kV /cm, denoted by dashed-, solid and dashed-
dotted-lines, respectively. We take x = 2 and n = 2.0 in the figure. Since the
potential becomes symmetric for kK = 1 , the OR coefficient is zero at zero bias.

When the symmetry of the potential is broken down by the electric field, the
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Figure 5.6: Optical rectification as a function of the photon energy in a Poschl-
Teller quantum well under the electric field of F' = 25, 50 and 100kV /cm, denoted
by dashed-, solid and dashed-dotted-lines, respectively. In the figure, kK = 1 = 2.

OR coefficient gradually enhances. It is possible to enhance it as much as three
times. A further increase in the peak value with the increasing electric field is
possible by making one of the parameters as small as possible while keeping the
other one as larger as possible. The peak position is slightly blue-shifted with the

increasing electric field (see Fig. (4.3)).

We plot the peak as a function of electric field in Fig. (5.7) for the values of
k = 2,2.3,2.6 and 2.9, denoted by solid, dashed-, dashed-dotted- and dotted-
lines, respectively. In the figure, n = 2. The response of the peak to the changes
in the electric field is very similar to that of SHG peak. An extinguishing OR
coefficient is possible by varying the electric field provided that both x and 7
are kept fixed. The strength of the electric field for this depends on the values

of the parameters. We say that a larger electric field is required to make the
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Figure 5.7: The peak in the expression of OR as a function of the electric field for
the values of kK = 2, 2.3,2.6 and 2.9, denoted by solid, dashed-, dashed-dotted-
and dotted-lines, respectively. 7 = 2 in the figure.

OR coefficient vanish as both parameters increase. This is physical because the
electric field makes the well larger in contrast to what the increasing parameters
do. The larger peak values are available at smaller k.

In conclusion, a large OR peak is possible in a Poschl-Teller quantum well
when one of its parameters are kept as small as possible. A large enhancement
in OR peak is possible when an electric field is applied. The effect of the field
is more pronounced when one of the parameters is smaller than the other one.
The electric field can make OR peak disappear. This interesting behavior of the

potential is due to its controllable asymmetry through its parameters.
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CHAPTER 6

THIRD-ORDER NONLINEARITIES

6.1 Introduction

In this chapter, we focus on the third-order nonlinear properties of a Poschl-
Teller quantum well, such as nonlinear intersubband absorption [29, 69], third-
harmonic generation and intensity-dependent refractive index [70]. We aim to
understand the changes in the third-order nonlinearities in a quantum well with
an adjustable asymmetry, which is represented by the Pdschl-Teller quantum
well. The nonlinear intersubband absorption is considered within the rotat-
ing wave approximation, in which the resultant absorption expression reduces
to the one obtained when the density matrix equation is solved perturbatively.
Third-harmonic generation and intensity-dependent refractive index are consid-
ered within the perturbational treatment of the density matrix equation given in
Chapter I11. The Coulomb and many-body effects are ignored in the calculations.

We also include the DC electric field in our calculations. Numerical results are
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presented for a wide range of the parameters of the potential.

6.2 Nonlinear Intersubband Absorption

Dingle et al. [1] in 1974 proved experimentally the existence of quantized
states in a semiconductor quantum well. This was achieved by optical bandgap
spectroscopy in a GaAs/AlGaAs structure. The possibility of infrared light de-
tector based on intersubband transitions in quantum wells were shown by Esaki
and Sakaki [3] and Smith et al. [4]. However, the first experimental report on
the intersubband absorption in a GaAs/AlGaAs quantum well was presented by
West and Eglash [2]. In their systems, the absorption peak occurred around
10 pm. This wavelength was in infrared region which is technologically impor-
tant. The other observations of the experiment were the narrow bandwidth of the
absorption and the large value of the dipole matrix element. That large dipole
matrix element suggests a large value of third-order nonlinearities which depend
on the fourth power of the dipole (see Eq. (3.22)). A great deal of effort, both
theoretical and experimental, is devoted to intersubband transitions in quantum
wells following the work of West and Eglash [2]. Most of them were motivated
by the high technological potential of intersubband transitions for novel infrared
detectors, emitters, and nonlinear optical elements (see Liu[5] for an excellent
review of the device applications of intersubband transitions).

The first theoretical attempts on the investigation of the nonlinear absorption
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associated with intersubband transitions in quantum wells were done by Yuen [71]
and Ahn and Chuang [72]. Ahn and Chuang used the density matrix formalism
including the intrasubband relaxation time. They assumed infinite quantum well
having two energy levels. They obtained a decreasing absorption peak with the
increasing intensity of the optical field.

Poschl-Teller potential has adjustable parameters, providing a variable asym-
metry. Therefore, it is fruitful to consider the nonlinear intersubband absorption

spectrum, in which the asymmetry plays an important role.

6.3 Nonlinear Intersubband Absorption in a Péschl-Teller Quantum Well

The absorption coefficient in terms of the susceptibility is

4w

a(w) = X Tmlx(w) (6.1)

The linear and nonlinear absorption coefficients are defined as the contribution
of XV (w) and x® (w) to Eq. (6.1), respectively. That can be obtained through

Eq. (3.20) and Eq. (3.22). The result is

4w osp3,hlg

W(w) = 6.2
o w) n.c (Eyy — hw)? + B2’ (6.2)
A7\ 2 IEATN A
o) = 2 (1) 9510 (6.3)
n,C [(

2
E10 - hCU)Q + T’LZF%}
respectively. Here, [ is the intensity of the incident field and Fq = F; — Ej.

We assume that only the ground state is populated which is given by oy and
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that all elements of I',,,,, are equal to a single value I'y. In deriving the equation
above, we have deliberately ignored the term proportional to |p; — ,u00|2 arising
only in an asymmetric quantum well [73], since it is proportional to (h['g)?/E%,
at resonance (for a typical quantum well [ATy/Eo]° < 1). We write the total

absorption coefficient a(w, I') as
aw, I) = aM(w) + aB®(w, I). (6.4)

Eq. (6.4) is valid only in cases such that I < I; where I is the saturation
intensity and is given by I, = ce'/?A°T'\I'y/87|pu1o|?>. Here T'; and Ty are the
diagonal and off-diagonal elements of the I',,,,,, respectively. When I is comparable
to or larger than I, within the rotating wave approximation (in the rotating wave
approximation, only the terms close to resonance with the one of the optical
frequencies in Eq. (3.9) are kept. For details, see Refs.[11, 23]), the result is

11, 74]

drhwog i, hT'y
ne [(hw — Ex)? + T30+ 1/1,)]

a(w,I) = (6.5)

It is easy to show that Eq. (6.5) reduces to Eq. (6.4) when I'y = I'y = T’y at
1 < I;. But, equating diagonal and off-diagonal relaxation times to a single
constant value is quite wrong since 'y > T'; for quantum wells having F;y, much
larger than LO phonon energy. Typical values are I'T' = 1ps and I';' = 0.2 ps
[13]. When this is neglected, the saturation effect is substantially overestimated

[11] (it gives saturation intensities considerably larger than those obtained in
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experiments [11]: experimentally measured I, are well below 1 MWem ™2 whereas
one calculates I, > 1 MWem™2 using Ty = Ty = 0.14 ps).

The peak value of Eq (6.5) occurring at fiw = FEjg reads

a([ = O)peak

1 |p10]%(x,m)
L+ 7 eP@2)

a()pear = (6.6)

where o] = 0)peqr means Eq (6.5) is evaluated at I = 0 and iw = Eyy. Note
that I is a function of the pio(k,n). In Eq (6.6), I, is the saturation intensity
evaluated at k =n = 2.

In intersubband transitions most of the oscillator strength is in the 0 — 1

transition ( it is nearly 0.96 for an infinite well potential). Then, the Thomas-

Reich-Kuhn sum rule yields [13]

2m*

h2

E10|210|2 =1. (67)

That is, the enhancement of the linear absorption originates from the contribution
of the optical transitions between the conduction band and the other bands of
the quantum well [13]. Therefore, (I = 0),eqr Which is proportional to E1q|z10]?
apart from some constants can not be enhanced over the variations in x and 7.
However, the variations in Eq (6.6) with x and 7 can be investigated as a function
of the intensity within its limits, [0, a(f = 0)peqx)-

Fig. (6.1) shows the ratio a(I = Iy)pear/ (I = 0)pear as function of x for n =
1.2,2 and 2.8. In the same figure, the ratio under an electric field of 100 kV /cm is

also displayed with the same lines but marked with triangles. The ratio increases
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Figure 6.1: a(I = I;)pear/(I = 0)peqr as a function of . The dotted-, solid and
dashed-lines stand for n = 1.2, n = 2 and n = 2.8, respectively while the same
lines marked with triangles represent the case in which F' = 100kV /cm.

as k and 7 increase. Since p( is linearly proportional to the well width, it

decreases with the increasing x and 7 which makes the well narrower. Therefore,
() pear /(I = 0)pear, increases (see Eq. (6.6)).

There is no need to plot the transition energy since it can be stated in a simple

analytical form. Using Eq. (4.4), it is easy to obtain
B = 20%B*(k +n+1). (6.8)

Obviously, the equation above states the linear dependence of the transition en-

ergy on the potential parameters.
Since the saturation intensity is proportional to || 2, any increase in the
parameters, leading to decrease in the |u10|?, enhances the saturation intensity.

Therefore, the intersubband absorption in a Poschl-Teller quantum well saturates
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earlier at smaller values of its parameters, x and 7.

6.4 Quantum-Confined Stark Effect

In 1987, Harwitt and Harris [75] observed a blue-shift of the intersubband ab-
sorption corresponding to the quantum-confined Stark effect in a GaAs/AlGaAs
quantum well in an electric field of 36 kVem ™!, The intersubband absorption was
decreased and its linewidth was increased by the application of the electric field.
Actually, this blue-shift was guessed theoretically by Bastard et al. [76] using
the second-order perturbation theory in 1983. They concluded that the energy
level of the first excited state remained almost unperturbed while that of the
ground state was shifted down by an amount AE, = —0.0022(m*¢*F2L*/h?).
The behavior of the energy levels under an electric field but not in perturbative
regime was investigated variationally [30, 76] and by the usual numerical methods
[77, 78].

We have investigated the effect of the electric field on the intersubband absorp-
tion in a Poschl-Teller quantum well variationally. The details of the calculation
are given in Chapter 4. Here, we only display the results on the absorption
lineshape and its peak value.

Table 4.1 shows the resonance energy (hw =~ Ejo in parenthesis) for several
values of k and electric field, F. With the application of the electric field there

occurs a shift in Fyy but the sign of this shift depends strongly on the relative
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values of the parameters with respect to each other. Generally speaking, we see
that when 1 < k there is a blue-shift while in the opposite case there is a red-shift

as shown in the table.

We plot the ratio a(I = Iy)pear/ (L = 0)pear in Fig. (6.1) as a function of x
for several 7 (lines marked with triangles) at F' = 100kV /cm. It is obvious that
the ratio increases fast for small values of the parameters and it approaches to
a constant value for the large values of the parameters. The application of the
electric field does not result in considerable changes. In general, it decreases the

ratio when 77 > k and increases it when 7 < .

6.5 Third-Harmonic Generation

(3)

(wq Fws+wr Wq,Ws ;wWr )

Third-order susceptibility, x , has attracted a growing interest

in recent years. Walrod et al. [79] measured a resonantly enhanced third order

susceptibility of x> = 5.6 x 107¥* m?/V? in GaAs/AlGaAs superlattices at

(w’w’f"‘%w)

around A = 11 um using nearly-degenerate four-wave mixing. Sirtori et al. [80]

measured a triply resonant third-harmonic generation in coupled AllnAs/GalnAs

3)

quantum wells as high as |XE3w,w,w,w

J|=1.0x10"" m?/V? at around \ = 11 ym.

3)

This value was enhanced to | XEBw,w,w,w

)| =4.0x 107" m?/V? at low temperatures

(30K) by Capasso et al. [45]. Heyman et al. [58] observed a third-harmonic
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generation in far infra-red region. Lien et al. [81] calculated third-harmonic gen-
eration for a compositional asymmetric coupled quantum well including energy-
band nonparabolicity. Third-harmonic generation was calculated also for finite
parabolic quantum wells [82]. Zaluzny [83] investigated theoretically the influ-
ence of the depolarization effect on third-harmonic generation in quantum wells.
Whereas many effects in third-harmonic generation have been investigated, effects
of variable asymmetry on third-harmonic generation is not studied. Péschl-Teller
quantum well can be a good candidate for such an investigation. This is what we

do in this part of the work.

When Eq. (3.22) is expanded for a four-level system and only the resonance

terms are kept, one obtains the following expression

4
(3) q 08210%21%32203

X = (EIO — hw — ZTLF()) (E20 — 2hw — ZTLF()) (Egg — 3hw — ZTLFO)’

(6.9)

assuming that all input frequencies are equal to a single value, i.e. w, = w, = w, =
w. This is the expression for third-harmonic generation (THG). In deriving the
equation above, it is assumed that only the ground state is populated (denoted
by o5), and all elements of Ty, are considered to be equal to a single value T'y.
THG expression has its maximum value when the triple resonance condition is

met, that is in the case of equal energy spacings.
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Figure 6.2: Third-harmonic generation as a function of the photon energy in a
Poschl-Teller quantum well. The dashed-, solid and dashed-dotted curves stand
for k = 1.2, k = 2 and k = 2.8, respectively. Inset displays the peak appearing
at hw ~ Fy/2 as a function of k for n = 1.2,2 and 2.8, denoted by dashed-, solid
and dashed-dotted-lines, respectively.

6.6 Third-Harmonic Generation in a Poschl-Teller Quantum Well

We show the results for THG in a quantum well described by the Pdschl-Teller

potential, including the electric field effects.

Eq. (6.9) is displayed as a function of the photon energy for several values of
k in Fig. (6.2). In the figure, n = 2.0. Since for such a potential the energy levels
are not equally spaced, there appears three peaks, different in amplitude, instead
of a huge single one. The maximum value attained is of the order of 107'"m?/V?,
smaller than the other experimental [45, 79, 80] or theoretical findings [81, 82],
although the dipole product zj9291232203 in Eq. (6.9) is comparable to the ones

obtained in the other works [45, 80]. The reason is the absence of the triple
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Figure 6.3: The peak, appearing at hw & Fy/2 in the expression of THG, as a
function of the electric field for the values of Kk =1.2,1.6,2,2.4 and 2.8. n =2 in
the figure.

resonance in Eq. (6.9). The peak positions are blue-shifted with increasing x in
accordance with Eq. (4.3). The inset shows the peak occurring at Eq/2 as a
function of k for the various values of 7. As it is clearly, the maximum THG

value, available at Fy/2, is enhanced as both of the parameters are kept smaller.

The peak at FEyy/2 is shown as a function electric field at = 2 for several
values of k in Fig. (6.3). Generally, the peak value increases as the electric field
increases. However, it decreases with the increasing k up to F' &~ 65kV/cm at
fixed F. Beyond this value of the field, the situation is reversed: the smaller the &
the larger the peak at fixed F. This may be due to the complicated competition
between the electric field and the parameters, x and 7 in determining degree of
the asymmetry of the potential. The Pdschl-Teller quantum well gives rather

small values for THG. The main reason is the nonexistence of the triple resonance
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in the energy levels. As k and 7 decrease THG enhances. The electric field makes

THG increase for all values of the asymmetry parameters.

6.7 Intensity-Dependent Refractive Index

The intensity of the optical field incident on an optical material changes the
refractive index of the corresponding material. The intensity-dependent change
in the refractive index in turn affects the propagation of the optical beam in the
material, leading to the novel nonlinear optical effects. Among them, we can
mention ’self-focusing of light’, ’optical phase conjugation’, ’optical bistability
and optical switching” and 'two-beam coupling’, details of which can be found in

advanced nonlinear optics textbooks [23, 25].

The refractive index of quantum wells have been studied extensively [56, 84,
85, 86, 87, 88, 89, 90, 92, 91, 93, 94]. In the works cited above, changes in
the refractive index associated with the interband and intersubband transitions
in various quantum wells, such as parabolic and semiparabolic [86, 92, 93, 94],
square [85, 88, 89], asymmetric single [87] and double quantum wells [56], have
been investigated. Recently, intensity-dependent refractive index change has been
measured for bulk GaAs [90, 95, 96, 97] and GaAs/AlGaAs quantum wells [91].
Whereas, the works cited above considered the effect of the asymmetry on the

change in the refractive index, they confined their studies to the fixed kind of
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asymmetry obtained through either band-gap engineering or external fields. How-
ever, a potential having adjustable asymmetry was not used. The Poschl-Teller
potential is suitable to investigate the influence of the asymmetry.

The expression for the frequency-dependent refractive index of a dilute system

is approximated as

Re[x(w)]

Re[x]
nr(w) = nr\l 1+ 47TT = nr(l + 271'—2

T T

), (6.10)

where n, is the bulk refractive index. Therefore, the change in the refractive
index is

An,(w) = QWM. (6.11)

Ny
Using the rotating wave approximation, y(w) for a two-level system is given

by[11, 23]

_Amogui Ty (w—wio)Ty +i
N h 1+ (w - W10)2T22 + 492T1T2’

X(w) (6.12)

where Tja) = Tiy(29) is the life-(dephasing) time, Q = |u0||E|/h is the Rabi
frequency. One can obtain the full expression for the intensity-dependent change
in the refractive index by inserting Eq. (6.12) into Eq. (6.11).

Al low intensities of the optical field, the expression given by Eq. (6.12) can
be approximated, leading to the description of the change in the refractive in-
dex by xM(w) and x®(w), expressions of which are given by Eq. (3.20) and
Eq. (3.22), respectively. In this case, the intensity-dependent change is described

by Re[x®(w)]. x®(w) can be achieved by the permutations of the frequency
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Figure 6.4: Re[x(w)] as a function of the photon energy. The dotted-, solid and
dashed-curves stand for k = 1.2, kK = 2 and k = 2.8, respectively.

set (w,w,—w) in Eq. (3.22). The x®(w; —w,w,w) is dominant when the con-
dition for two-photon resonance is met [88] while terms x®)(w;w, —w,w) and
x® (w; w,w, —w) are dominant at one-photon resonance. Then the result is

27T[US|M10|4
n.,c (E10 — hw — Zhr(])

XP(w) =

% < 4 _ |M11 - ,u00|2 1 )
(E10 — hw)2 + (hro)2 |/L10|2 (E10 — hw — Zhrg)(Elg — ZTLF()) ’
(6.13)

for a two level system when only the resonant terms are kept and all the elements
of I',,, are assumed to be equal to a single constant value I'g. In the equation
above, I = n,c|E|?/2r is the intensity of the optical field.

We have plotted Re[y(w)] as a function photon energy for a quantum well

described by the Péschl-Teller potential in Fig.(6.4) at I = I (I, is the saturation

intensity and given by I, = cel/?T'\['y /873, where T'y(5) = 1i/T}(9) is the diagonal
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(off-diagonal) elements of I',,,,,). While 7 is fixed at 2.0, the parameter & is taken
to be 1.2, 2.0 and 2.8, denoted by dotted-, solid and dashed-lines in the figure,
respectively. The amount of the change in the refractive index depends on the
values of x and 7: a large change in the refractive index is possible at smaller

values of the asymmetry parameters. The peaks of Re[y(w)] occur at

hw:hwloj:Fm/I/Is+1, (614)

and they are
1 Awog
20, /I/I, +1

The peak value is thus controlled by the dipole matrix element, p;9. Since the

Re[x (w)]pear = £ (6.15)

larger values of the parameters yield a larger quantum well, which in turn en-
hances ji19, we obtain larger changes in the refractive index. The results shown
here are in accord with those obtained in the other works [56, 84, 85, 86, 87, 88,
89, 90, 92, 91, 93, 94].

The peak value of Re[y(w)] is displayed as a function of x for the several
values of 1 in Fig.(6.5). In general, as the parameters decrease the change in the
refractive index decreases. A simple explanation is the decrease in the p1o value
as the quantum well becomes narrower with the increasing « and 1. We may
say that a possibly large change will occur when the potential parameters are as
small as possible.

In conclusion, intensity-dependent refractive index is a strong function of the
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Re[x(w)]

Figure 6.5: The peak value of Re[x(w)] as a function x. The dotted-, solid and
dashed-curves stand for n = 1.2, n = 2 and n = 2.8, respectively.

shape of the potential. This is mainly due to the evolution of the dipole matrix
element, y19, with the changes in the parameters. A large change in the refractive
index is possible at smaller values of k,n for which the Poschl-Teller potential
becomes wider. Since the wider quantum wells yield larger dipole matrix elements
in magnitude (for an infinite quantum well |z19]? oc L?), we obtain larger changes
in the refractive index. The electric field does not affect the refractive index

considerably unless x and 7 are small enough.
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CHAPTER 7

NONLINEAR INTERSUBBAND ABSORPTION OF §-DOPED

QUANTUM WELLS

7.1 Introduction

Now that we have studied a model potential profile in detail, we can go into
a detailed study of a more realistic problem. For this, we have chosen a Si-o-
doped GaAs quantum well. Recent advances in epitaxial growth techniques, such
as molecular beam epitaxy (MBE) make it possible to fabricate high quality Si
d-doped layers in GaAs quantum well (QW). The electrons supplied by Si atoms
which are located in several atomic layers form a two-dimensional electron gas at
high donor concentrations. Such QW structures have potential for device appli-
cations such as high-power FETs, and infrared devices, e.g. infrared detectors,
modulators, and frequency converters, based on the intersubband transition of

electrons.

In this part of the work, we investigate the nonlinear absorption spectra of a Si
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0-doped GaAs QW bounded by infinite barriers in the presence of the electric field
[114]. We calculate the wave functions and energy levels of such Si 6-doped GaAs
QW bounded by infinite barriers under an applied electric field by solving the
Schrédinger and Poisson equations self-consistently. We calculate the nonlinear
absorption line shape for various electric field strengths including the depolar-
ization shift by the method introduced by Zaluzny [14]. We investigate how the
nonlinear absorption spectrum depends upon the well width, sheet thickness and
the electric field. We find strongly asymmetric absorption line shapes and red-
shifted peak positions when there is no electric field. But when the electric field
is turned on, this asymmetry and redshift are decreased especially at relatively

high field values, larger well widths, and thinner sheets.

7.2 Electronic Structure of J-Doped Quantum Wells

7.2.1 Theoretical Description

Let N2P and a* = ¢,i*/m*e? be the surface density of the donor atoms and the
effective Bohr radius, respectively. When the heavy doping condition N?Pa* > 1
is met in the plane of the layer, then all the donors are ionized completely. The
total 2D-electron concentration will be equal to N?” in this case. Together with
the electrons, the donor atoms create a nonuniform electrostatic potential ¢(z).
Now the electrons are confined not by Vz(z), the barrier potential, but also by the

electrostatic potential energy, —e¢(z) in the growth direction, z. The resultant
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confining potential has discrete energy levels, F;. The whole energy spectrum of

the quantum well is described by

k.

E = E; )
+ 2m*

(7.1)

where Rk is the in-plane momentum of the electron.

To understand the optical properties of the system, its main parameters should
be calculated. This includes the confining potential ,Vp(2) — e¢(2), the number
of energy levels and their respective energies, F;, and the corresponding wave
functions ¢ (z) etc.

Described in the Hartree approximation, the electrostatic potential energy,
—ep(z) = Vg(z), created by the electrons and donors, satisfies the Poisson’s
equation

d*Vy(z)  4we?

= ——(Np’(2) — n(2)), (7.2)

dz? €r

where ¢, is the local dielectric constant, N3P (z) and n(z) are the three-dimensional

donor and electron densities, respectively. n(z) is given by

n(z) =3 ni [9i(2) [* (7.3)

where n; represents the areal electron concentration in the ¢th subband and it is

determined through

m*kT
n; = =3 ln
7h

1+ exp (%)] (7.4)

7



in which the effective mass is taken as constant. The Fermi energy, Er, is obtained

as the solution of
NEP =>"n,. (7.5)
Coupled with Eq. (7.2), the Schrédinger equation,

K2 d?
B 2m* @

will provide us with the correct wave functions and the corresponding energy levels
provided that both equations are solved self-consistently. However, there is no
analytic solution to these coupled differential equations. In the following sections,
therefore, we will adopt a numerical method to find out the wave functions and

the energy levels.

7.2.2 Numerical Procedure

It is easier to handle numerically the equations when the dimensionless vari-
ables are introduced. We transform the well length, L, doping layer thickness,
d, where we assume that N3P = N2P/d, and the position, z, with their reduced
counterparts [, A, and x by using a* [110]. The reduced energies ¢, and the po-
tentials v are introduced by rescaling E, and V with Ry* (where Ry* = €*/2¢,a*
is the effective Rydberg). The reduced electric fields f, charge densities, v,
and temperatures, 7 are also introduced using the corresponding scaled values

Fy = Ry*Jea* =~ 5.91kVem ™, ng = a* % =~ 10" em~3, and T, = Ry*/k ~ 67.7K.
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In view of this rescaling procedure, Eq. (7.2) becomes

d2’UH
dx?

=87 [1*"(z) — v(2)], (7.7)
where 137 (z) = a*2N?P /A for | z |[< A/2 and 0 otherwise. Eq. (7.3) reads
v(z) =3 vi|&(@) [*. (7.8)

in which &; represents ith corresponding dimensionless wave function. Eq. (7.4)

reduces to

v = %ln [1 + exp <€F T_ €Z>] . (7.9)

Finally the dimensionless Schrédinger equation is

[—d—2 T op(a) + vir(a) + fx] &) = es6ila). (7.10)

dz?
with the boundary conditions of &;(£/2) = 0.
We solve these dimensionless equations by the finite difference method. In
brief, the dimensionless variable [ is discretized with N 4+ 1 mesh points and

Eq. (7.7) and Eq. (7.10) are converted into a set of finite difference equations:

1

5 [on(wi1) = 2vp () + vpr (i20)] = 87 V3P (2:) = (@), (7.11)
—% X5 (@it1) = 2x5(2:) + X5 (@io1)] + v(@a)x5(i) = €;x;5(2i), (7.12)

where x; = th —[/2 and h = /(N + 1) for i = 0,1,..., N 4+ 1, respectively.
The corresponding boundary conditions become vy (r9) = vg(xys1) = 0 and
X;j(zo) = xj(xn41) = 0, respectively[110].

The next section presents the results of the numerical method described above.
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7.2.3 Results and Discussion

The electronic properties of a Si d-doped GaAs QW bounded by infinite barri-
ers have been investigated theoretically by many authors [22, 106, 107, 108, 109,
110, 111, 112]. Also there are many experiments considering the electronic band
structure such as infrared absorption [98], Raman [99, 100, 101], and magneto-
transport measurements [102, 103, 104, 105] in Si d-doped GaAs QW (see Shik
and Mezrin[19] and Harris [20] for an excellent review of the subject). Therefore,
we show the numerical results restricted to some specific values of the parameters.

In this part of the work, the numerical parameters are taken as m* = 0.067my,
6 = 12.7, N3P = 5x 10%em™2, d = 20A, L = 500A. The temperature is
kept constant at T' = 4.2 K. The electric field is restricted to change between
0 — 100kVem ', The higher electric fields may cause I' — X mixing[120] so it is
safe to deal with lower values. We plot the confining potential with respect to
the Fermi level in Fig. 7.1. In the absence of the applied electric field, it is in
the form of characteristic V-shape potential. The calculated confining potential
in the absence of the electric field approaches to zero at the limits of the well
in accordance with [111] but not in line with [110]. In the same figure, we also
show the confining potential in the presence of the electric fields of 50 kVem ™
and 100kVem™'. There is an obvious asymmetry introduced by the field. The
field tends to lower the potential at the negative side of the z, thus we expect the

distortion of the wave functions towards the negative side. This lowering of the
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Figure 7.1: The confining potential from the self-consistent solution of the
Schrédinger the Hartree equations with respect to the Fermi level for the ap-
plied electric fields of F = 0kVem ™' (dotted line), F = 50kVem ™t (solid line),
and F = 100kVem™" (dashed line).

confining potential is very much evident when the field strength is increased to
100 kVem ! as in Fig. 7.1. In fact there exists a secondary well at the negative
side of z. However, there is no critical value of the electric field which cause a
sudden decrease in the negative side of the confining potential, instead we see a
monotonic lowering of the potential at the negative side of the well and a smooth

formation of secondary triangular well as in [111].

The subband occupations are displayed as a function of applied electric field
in Table 7.1. The ground state shows a weak electric field dependency while the
other states, especially second and third excited states, are sensitive to the field.
The interesting point is that the first excited state occupation first decreases and

then increases with the field.
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Figure 7.2: The squared wave functions of the ground (dotted-line), first excited
(dashed-dotted), and the second excited (dashed line) subbands (a) in the absence
of the electric field, (b) for the applied electric field of F = 50kVem™', and (c)

for the applied electric field of F = 100kVem .
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Table 7.1: The calculated subband occupations in the unit of 10'2 cm 2 for various

electric fields.

F (kVem™) n N9 ns Ny
0 3.064471 1.216462 0.578187 0.140869
50 2.996143 1.177147 0.765917 0.060800
100 2.796652 1.352324 0.851005 0.000000

We display the first three wave functions in Fig. 7.2(a)-(c) and their corre-
sponding energy values from the Fermi level in Fig. 7.3. The zero-field wave
functions are completely symmetric around z = 0 as expected. The ground state
is localized in a narrower region than the excited states. When the electric field is
turned on, the wave functions started to shift to the left side of the well as clearly
seen in Fig. 7.2(b) and Fig. 7.2(c). This is obvious for the first and second excited
states while ground state wave function is less distorted. At F' = 100kVem ', we
see that the ground and first excited states are well separated. Fig. 7.3 shows that
the corresponding energy levels except for the second excited subband energy are
insensitive to the electric field especially up to F' = 50 kVem . The ground state
and the first excited state energies move towards each other at higher electric
fields. We did not observe any abrupt drop in energy levels at F' = 50 kVem

as pointed out in Ref.[110].
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Figure 7.3: The energies of the ground (dotted line), the first excited (dashed-
dotted line), and the second excited (dashed line) subbands with respect to the
Fermi level as a function of the applied electric field.

7.3 Nonlinear Intersubband Absorption of §-Doped Quantum Wells

There are a few theoretical works on the absorption properties of Si J-doped
GaAs QWs [108, 112, 113]. These concentrate on only the linear term in ab-
sorption coefficient and ignore the depolarization and exciton shifts except for
Sasagawa et al. [113]. However, in such structures the depolarization and exciton
shifts are not negligible [5] and the intersubband absorption process is modi-
fied by these effects [113]. The depolarization shift essentially comes form a
(time-dependent) Hartree term related to the high-frequency field inducing the
absorption. Each electron feels an effective field that is different from the ex-
ternal field by the mean Hartree field of the electrons polarized by the external

field. Thus, the external filed is screened by the quasi-two-dimensional electron
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gas [5]. The exciton shift is due to the Coulomb interaction between the excited
electron and the quasi-hole left behind in the ground state [5]. Zaluzny has cal-
culated asymmetric and red-shifted nonlinear intersubband absorption line shape
[14] for a rectangular GaAs QW when the depolarization effect is properly in-
cluded. This is experimentally observed for modulation-doped rectangular GaAs

QWs by Sherwin et al. [115] and Craig et al. [116].

The single particle description of the intersubband absorption,

o, T) = Arhwosp?, hl'y
’ ne[(hw = Ey)? + T30+ 1/1,)]

(7.13)

is not adequate for the heavily-doped quantum wells [74]. A correct formulation
must take into account the interaction between the electrons. In fact, the ab-
sorption process is affected by exciton and depolarization shifts in semiconductor
heterostructures[5]. For example, the depolarization shift is found to enhance
the transition energy by about 20% in a wide Si 6-doped QW [113]. Then the
absorption maximum does not occur at the energy difference Fy = E5 — E; but

rather an energy given by[119]

E. =E4(1+a—p). (7.14)

The quantities @ and S (both > 0)are called depolarization and exciton shifts,

respectively. Since both parameters are positive, the depolarization causes a
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blue-shift while the exciton causes a redshift in the transition energy. The depo-

larization shift is calculated through

2
a= w /_L/2 e l/—L/Q dz'ga2(2) 1 ()| (7.15)

€. Eop L/2

The exciton effect is given by

L 2mi—mg) (2 L Ve(n(2)
§= / BB =

(7.16)
However, 3 is negligibly small in heavily-doped GaAs/AlGaAs systems[5]. Thus,
we do not include it in the further calculations.

The effect of the depolarization shift on the linear absorption (I = 0) is just
the replacement of the resonance energy Fy; with Ey [ Eq. (7.14)], resulting in
a blue-shift while keeping the lineshape unchanged. However, it is not such a
straightforward task when I # 0. [14]. When the depolarization shift is properly
included in the calculations, the absorption line becomes strongly asymmetric
and the blue-shift in the transition energy provided by the depolarization shift
is reduced [14]. This interesting phenomena has been experimentally observed
for a 400 A-wide GaAs QW modulation-doped by silicon layers of sheet, density
1.3 x 10"? em~2 which are placed 1250 A from each side of the well by Sherwin et
al. [115]. A possible reason is the significant population of the second subband
through resonant excitation. Since when this occurs the absorption and the ability

of the electrons to dynamically screen the exciting radiation is reduced. That

results in a reduction in the depolarization shift and thus the peak position is
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red-shifted towards to the bare peak position of the absorption line. As a result,
the absorption line becomes asymmetric [115].
A brief mathematical description of the effects described above can be given

as follows: The evolution of the density matrix p(t) is given by

dp 1 ,

where Hj is the unperturbed Hamiltonian, and the H'(t) is the effective per-
turbing Hamiltonian, and R is the relaxation operator. The relaxation operator
is considered to have two distinct elements 7 the intersubband relaxation time
and T, the intrasubband relaxation time. Consider the the following form of the
incident field

E(t) = Ee™™! 4 E*et, (7.18)

Then the H'(t) can be written as[14]

Are? [z 2
7Te/ dz'/ dz"An(2",t). (7.19)

€r

H'(t) = eE(t)z —

Here, the incident field E(t) is considered to modify the density distribution of
electrons and hence the Hartree potential. This is reflected by the change of the
distribution, An(z,t), in Eq. (7.19).

Within the rotating-wave approximation and restriction only to the steady-

state responses, the nondiagonal matrix elements of p(¢) and H'(t) are given by

Hyj (1) = Hj(w)e ™ + Hy(~w)e™, (7.20)
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pij (t) = [N)i]’ ((U)e_iwt + ﬁij(—CU)eiwt. (721)

The absorption in a unit area is given by [14]

1 -
P(w,I)= §Re6zz(w,l)|E|2, (7.22)
where
e?(—iw)(m — ny) W(w, I)His
Tz 71 = - .2
Oz, 1) m* fa E3 — (hw?) — i2hwly (7.23)
is the nonlinear conductivity and
I |HyP2U3(B3 + (hw)®) ]
Ww,I)= |1+ — 7.24
D= (14 g G Gt 72

Here n; is the corresponding subband occupation, fo; is the oscillator strength
given by 2mg(Es> — Ev)/ (|<¢2|2|¢1>|2h2)a Hyy = Hiy(w)/Epa, Ty = 0/Ti, I =
cel/?| E|?/2x is the intensity of the incident optical radiation, Iy = cel/?I'\ Ty /8
e2|{pa|z|p1)|? is the saturation intensity.

The Hi, satisfies [14]

2
ab

Hys |1
A E32, — (hw)? — i2hwly

W(w,I)| =1. (7.25)

For comparable intensities, Eq. (7.25) can be solved only numerically. But when
I < I one can obtain a simple analytical solution [14] to Eq. (7.25). In fact,
when o = 0 but I is still large, Eq. (7.23) together with Eq. (7.24) and Eq. (7.25)

give Eq. (7.13).

88



0 20 60 80 100

40
F (kV/cm)

Figure 7.4: The depolarization shift o as a function of the electric field. The
solid, dotted, and dashed-dotted lines stand for Az = 20A, Az = 60 A, and
Az =100 A, respectively.

7.3.1 Results and Discussion

The numerical input parameters are taken as the same values with those in
the previous section.

We first consider the importance of a for several values of the well width and
sheet thicknesses under an electric field in Fig. 7.4. For a fixed L, it is clear that
the sheet thicknesses has great influence on the depolarization shift for any value
of the electric field: as the Az increases « increases also. When L is changed
there is no noticeable change in « at zero electric field. However, when the field
is turned on, as L is decreased « increases significantly. This can be seen clearly
for L = 300 A. We have calculated also /3, but we have found this shift to be very
small. At most, it is less than 1% of a.

We show the transition energy E,; together with Es; for several values of L

89



and Az in Fig. 7.5. We observe that Ey; is always considerably greater than Ey,
for any value of L. and Az at relatively lower electric field strengths. At fixed well
width, an increase in Az results in a decrease in the transition energy since the
potential barrier diminishes. This effect is clearly seen in the figure: larger Az
values yield smaller Ey; and E,; even though the depolarization shift is larger
for the larger sheet thicknesses. If the well width is decreased the change in the
transition energies at lower field values is not significant. But this is not the
case for the higher field values: when L = 300 A both Fy and E,; decreases
more slowly than those for larger well widths with the electric field. Since the
depolarization shift increases with the increasing electric field at L = 300 A, the
difference between Ey; and Es; is relatively high at F = 100 kV/cm compared to

those at L = 500 A.

We show the oscillator strength in the absence and the presence of the depo-
larization shift for various electric field values and sheet thicknesses in Fig. 7.6,
Fig. 7.7, and Fig. 7.8 for the well widths of L = 500 A, I = 400 A, and L = 300 A,
respectively. The oscillator strength is a dimensionless quantity and it is impor-
tant in all areas of optical spectroscopy since it facilities the comparison of the
transition strengths in different physical systems. The oscillator strength is en-
hanced with the inclusion of the depolarization shift. It improves further with
the increase in the sheet thicknesses at constant well width. The effect of the

decrease in the well width is to increase the oscillator strength. Especially at
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Figure 7.5: The intersubband transition energy with and without the depolariza-
tion shift as a function of the electric field. The solid, dotted, and dashed-dotted
lines stand for Az = 20A, Az = 60A, and Az = 100 A, respectively. The
lines marked with triangles represent the case in which the depolarization shift is
included.

higher field values and sheet thicknesses this change is considerable.

The most important contribution to the oscillator strength comes from a
region ~ 200 A around the doped layer where the wave function is most pro-
nounced. This is quite insensitive to the electric field values < 50kV/cm. How-
ever, contribution of this region decreases significantly for the electric field values
> 50kV /cm. Variations in L and Az do not alter the above conclusion consider-
ably.

The Red,,/oq is plotted as a function of photon energy at I = [ and 'y =
0.075E5; in Fig. 7.9, Fig. 7.10 and Fig. 7.11 for the well widths of L = 500 A,
L =400A and L = 300 A, respectively. Here oy stands for (ny—mns)e? fa1/2m* Al

in which the numerical values belong to the zero-field case. In each figure, the Az
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Figure 7.6: The oscillator strength with and without the depolarization shift as
a function of the electric field for the well width of L = 500 A. The lines marked
with triangles represent the case in which the depolarization shift is included.
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Figure 7.7: The oscillator strength with and without the depolarization shift as
a function of the electric field for the well width of L = 400 A. The lines marked
with triangles represent the case in which the depolarization shift is included.

92



20,

““““
“““““
““““““

0 20 40 60 80 100
F (kV/cm)

Figure 7.8: The oscillator strength with and without the depolarization shift as
a function of the electric field for the well width of L = 300 A. The lines marked
with triangles represent the case in which the depolarization shift is included.

values are 20, 60 and 100 A while the F values are 0, 50 and 100kVem !, which
are denoted by dashed-, dotted- and dashed-dotted lines respectively. The Fig. 7.9
reveals that the absorption line shape becomes strongly asymmetric and its peak
value is reduced when a nonzero intensity (/) is applied. The peak position
is red-shifted (i.e. it approaches to Fy;) with respect to that of the absorption
line shape at I = 0. A simple explanation is that the increase of the electron
population in the first excited state which diminishes the ability of the electrons
to dynamically screen the excitation radiation, leading to poor depolarization
shifts. When the electric field is applied to the quantum well, it reduces the peak
of the line shape regardless of the intensity. The interesting point is that the
electric field decrease the degree of the asymmetry of the absorption line shape.

When Az is increased, it makes the line shape more asymmetric and the effects
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Figure 7.9: The real part of the nonlinear conductivity (normalized) as a function
of the photon energy (normalized) for the applied electric fields of F = 0kV /cm
(dashed line), F = 50kV/cm (dotted line), and F = 100kV/cm (dashed-dotted
line). The symmetric curves represents the case I = 0. The well width is L =
500 A. E, is the bare transition energy at L = 500 A and Az = 20 A.

of electric field become weaker both on the peak value and the asymmetry. Note
that the red-shift induced by the intensity decreases now since a becomes larger

when Az increased (see Fig. 7.4).

The effect of the well width on the nonlinear absorption line shape can be
inferred from L = 400 A and L = 300 A. Without electric field, it is clear that
the asymmetry is more pronounced (especially when Az is increased) while the
red-shift associated with the applied intensity is slightly modified. The reducing
well width decreases the effect of the electric field on the asymmetry and the peak
value in a large amount which is seen clearly at L = 300 A. The reason for this
is that a is almost unchanged with the changing electric field, as clearly seen in

Fig. 7.4 .
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Figure 7.10: The real part of the nonlinear conductivity (normalized) as a function
of the photon energy (normalized) for the applied electric fields of F = 0kV/cm
(dashed line), F = 50kV/cm (dotted line), and F = 100kV/cm (dashed-dotted
line). The symmetric curves represents the case I = 0. The well width is L =
400 A. Ey is the bare transition energy at L = 400 A and Az = 20A.
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Figure 7.11: The real part of the nonlinear conductivity (normalized) as a function
of the photon energy (normalized) for the applied electric fields of F = 0kV/cm
(dashed line), F = 50kV/cm (dotted line), and F = 100kV/cm (dashed-dotted
line). The symmetric curves represents the case I = 0. The well width is L =
300 A. E,; is the bare transition energy at L = 300 A and Az = 20 A.
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The evolution of the line shape with the changing intensity has not been
displayed although we have calculated it. The peak position moves to the lower
energy values and peak value diminishes with the increasing intensity while the
line shape becomes more asymmetric. In fact, the absorption decreases with the
increasing intensity for iw < Ey; while it experiences a maximum at some value
of I [14]. The quoted results calculated in the absence of the electric field are in
agreement with the experimental observations of Sherwin et al. [115] and Craig

et al. [116].

We have calculated the nonlinear intersubband absorption spectra of a Si
0-doped GaAs QW under an electric field for various well widths and sheet thick-
nesses. We include the depolarization and exciton shifts properly. Contribution
of the exciton shift to the intersubband transition energy is proved to be negligible
while that of the depolarization shift is not. The effect of the depolarization shift
on the nonlinear absorption spectra is solely a blueshift of the transition energy at
zero intensity of the incident field. However, when the intensity is increased the
absorption line shape becomes strongly asymmetrical and the transition energy
is redshifted with respect to the case in which the intensity is zero. At relatively
high electric field (F > 50kV /cm), that asymmetry and redshift are significantly
reduced when the L is larger (L > 400A). We show that inclusion of the de-
polarization shift in calculation of the linear and nonlinear absorption spectra

can not be ignored in such structures. This could be important for the nonlinear

96



absorption of nanodevices in the THz range.
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CHAPTER 8

CONCLUSION

In this thesis, we have studied the several nonlinear optical properties associated
with the intersubband transitions within a semiconductor quantum well described
by a Pdschl-Teller type confining potential and the nonlinear intersubband ab-
sorption coefficient of a Si-d-doped GaAs quantum wells. The intersubband tran-
sitions in a semiconductor quantum well occur in the technologically important
range around 10 um and the oscillator strength associated with these intersub-
band transitions are extremely large which in turn brings about considerably large
nonlinearities in the optical responses of the wells. The semiconductor quantum
wells, thus, have potential device applications some of which have been realized,
such as quantum well infrared detectors, cameras, emitters, quantum cascade
lasers etc. Asymmetry plays an important role in the nonlinear optics. Because,
second-order nonlinearities, like second-harmonic generation and the optical rec-

tification, become available with the introduced asymmetry which provides the
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break-down of the selection rules while only the third-order nonlinearities are ob-
served previously. Besides, it is possible to establish equally spaced energy levels
in the quantum well by adjusting its asymmetry as the resonance cases yield huge
values of optical nonlinearities. An asymmetric quantum well is obtained in sev-
eral ways: either by applying an electric field along the growth direction, or by
the band-gap engineering (like step quantum well, or coupling two or more quan-
tum wells with different widths by thin barriers. While these quantum wells have
proved fruitful, they have had fixed, not flexible asymmetry property. Poschl-
Teller potential, however, has an adjustable asymmetry property through a set
of its parameters. Thus, with such a potential, we have a chance to investigate

the effects of the asymmetry on the nonlinear optical properties.

In the first part of the thesis, we have investigated several nonlinear optical
properties associated with the intersubband transitions in a quantum well de-
scribed by the Poschl-Teller potential. The expressions for the nonlinear optical
properties have been obtained through density matrix equation solved by per-
turbation methods. The resultant expressions are applied to the Pdschl-Teller
quantum well and the effects of the asymmetry on the nonlinearities have been
investigated by varying its parameters. Any increase in one or both of the param-
eters, i.e. k and 7, makes the quantum well narrower, while the reverse makes it
larger. Second-harmonic generation for a three-level system has been calculated

for various values of the asymmetry parameters under a static electric field. The
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maximum value of SHG is obtained when one the parameters is largest while the
other one is smallest. Because, as the parameters get close to the each other the
well becomes more symmetric. The electric field applied in the growth direction
enhances the resultant SHG, especially when the parameters are kept small. An
interesting point with the application of an electric field is that the electric field
makes SHG disappear at some value, depending upon the current values of &
and 7. A similar behavior is observed in an asymmetrically coupled quantum
well. The resultant SHG is about one order of magnitude larger than one ob-
tained in bulk GaAs. While this is so, it is much smaller than those obtained in
experiments held in GaAs/AlGaAs quantum wells or in theoretical studies con-
cerning the GaAs/AlGaAs quantum wells. The main reasons behind that are
the nonexistence of the double resonance (i.e. the condition of Fjy = Es;) and
the small electron separation between the ground and the first excited state (i.e.
211 — 2go)- We have calculated also optical rectification in the same quantum well.
The system is regarded as a two-level system. The result is promising: it is about
three order of magnitude larger than the one obtained in bulk GaAs, while it is
small compared to those obtained in similar quantum well systems. A further
enhancement is possible with the application of an electric field in the growth
direction. In all cases, the maximum OR is possible when one the parameters
is largest while the other one is smallest. Similar to the case in the calculations

of SHG, OR disappears at some value of the electric field which depends upon
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values of xk and 7.

Third-order nonlinearities are also investigated in our potential through vary-
ing its variables. The intensity-dependent absorption coefficient, or the nonlinear
absorption coefficient, is considered as a function of the saturation intensity. The
saturation intensity is observed to increase at the larger values of x and 1 (note
that I, ~ py’). Therefore a better absorption property is possible when the
parameters are kept larger. The effect of the electric field is not so much as ex-
pected because p3, does not enhance too much for F' < 300kV/cm. However, a
blue- or red-shift of the absorption peak is possible, depending upon the relative
sizes of k and 1. We have calculated also third-harmonic generation for various
values of the asymmetry parameters under an electric field regarding the first
four energy levels in the quantum well. THG is found to increase as k and 7 in-
crease. The addition of electric field makes THG increase further. However, the
results are not promising: they are well below those obtained in the experimental
and the relevant theoretical works. The main reason for this is the absence of
the triple resonance which is the consequence of the equally spaced-energy lev-
els. Finally, we have investigated the intensity-dependent refractive index in a
Poschl-Teller quantum well as a third-order nonlinearity. The peak value of the
refractive index is a function of the intensity and the 2y, (43, ~ L?) where L
is the width of the well. Hence, it is observed to decrease at narrow quantum

wells provided that the intensity is constant. We have observed this trend in our
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quantum well by varying x and 7 because the larger the parameters the narrower
the well. The electric field does not affect the refractive index considerably. A
reasonable change with the electric field is observable for only smaller values of
the parameters. Our findings are in accord with the results of the experimental
and the other relevant theoretical works. With recent progress in the fabrication
technology, it seems possible to grow semiconductor quantum wells described by
the Poschl-Teller type confining potential. Then the calculations done may help
to stimulate the experimental studies, regarding the optical properties, on such

quantum wells.

In the second part of the thesis, we have concentrated on the nonlinear in-
tersubband absorption of Si-0 doped GaAs quantum well bounded by infinite
barriers. In the literature, there are plenty amount of works on the electronic
structure of this type of quantum wells. However, there are a few works on their
intersubband absorption properties and all are linear properties. Even though,
effects of the Coulomb interaction among electrons in these quantum wells on the
absorption spectra is important, few of the works mentioned above took it into
account. Thus, by calculating the nonlinear intersubband absorption coefficient
of Si-0 doped GaAs quantum wells and including the effect of the Coulomb inter-
action on the absorption coefficient (i.e. depolarization shift), we have completed
a missing but important part. The results are interesting: the blue-shift in the

absorption lineshape due to the depolarization shift is reduced by increasing the
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intensity of the light and also the absorption lineshape becomes strongly asym-
metric degree of which is determined by the strength of the depolarization shift,
controllable through the doping density and thickness of the doped sheet, and
the intensity of the light. The effects of the electric field on the absorption line-
shape are to decrease the peak value and the degree of the asymmetry. In other
words, the electric field restores the symmetry of the absorption line shape at
larger well widths and thinner doping layers, but it decreases the peak value of
the line shape. In conclusion, we show that the intersubband absorption of a Si-§
doped GaAs quantum well at the intensities, close to saturation intensity, shows
a strong nonlinearity and the inclusion of the depolarization shift brings about
many interesting and new results, which can not be ignored in such structures.
These could be important for the nonlinear absorption of nanodevices in the THz
range. The calculations may be extended to the other type of nonlinearities, like
SHG and THG, and the effects of the Coulomb interaction on them in Si-é doped
GaAs quantum wells and the effects of the finite barrier height may be taken into

account.
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