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ABSTRACT

AEROSERVOELASTIC ANALYSIS AND ROBUST CONTROLLER
SYNTHESIS FOR FLUTTER SUPPRESSION OF AIR VEHICLE
CONTROL ACTUATION SYSTEMS

AKMESE, Alper
Ph.D., Department of Mechanical Engineering
Supervisor: Prof. Dr. Biilent E. PLATIN

Co-Supervisor: Dr. Mutlu D. COMERT

June 2006, 411 pages

Flutter is one of the most important phenomena in which aerodynamic
surfaces become unstable in certain flight conditions. Since the 1930’s
many studies were conducted in the areas of flutter prediction in design
stage, research of design methods for flutter prevention, derivation and
confirmation of flutter flight envelopes via tests, and in similar subjects for
aircraft wings. With the use of controllers in 1960’s, studies on the active
flutter suppression began. First the classical controllers were used. Then,
with the improvement of the controller synthesis methods, optimal
controllers and later robust controllers started to be used. However, there
are not many studies in the literature about fully movable control surfaces,
commonly referred to as fins. Fins are used as missile control surfaces,

and they can also be used as a horizontal stabilizer or as a canard in
\Y



aircraft. In the scope of this thesis, controllers satisfying the performance
and flutter suppression requirements of a fin are synthesized and
compared. For this purpose, H2, H., and u controllers are used. A new
flutter suppression method is proposed and used. In order to assess the
performance of this method, results obtained are compared with the
results of another flutter suppression method given in the literature. For the
purpose of implementation of the controllers developed, aeroelastic model
equations are derived by using the typical section wing model with thin
airfoil assumption. The controller synthesis method is tested for aeroelastic
models that are developed for various flow regimes; namely, steady
incompressible subsonic, unsteady incompressible subsonic, unsteady

compressible subsonic, and unsteady compressible supersonic.

Keywords: Aeroservoelasticity, Aeroelasticity, Robust Controller Synthesis,

Flutter Suppression, y-method Flutter Analysis.
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HAVA ARACI KONTROL TAHRiK SiSTEM_LERiNiN
AEROSERVOELASTIK ACIDAN INCELENMESI VE CIRPINTI
BASTIRMA ICIN DAYANIKLI KONTROLCU SENTEZI

AKMESE, Alper
Doktora, Makina Muhendisligi Bolumu
Tez Yoneticisi: Prof. Dr. Biilent E. PLATIN

Ortak Tez Yoneticisi: Dr. Mutlu D. COMERT

Haziran 2006, 411 sayfa

Cirpinti  aerodinamik  yuzeylerde bazi ugus kosullarinda olusan
kararsizliklarin en 6nemlilerinden biridir. Ugak kanatlarindaki c¢irpintinin
tasarim asamasinda 6ngorulmesi, c¢irpintinin onlenmesi igin gerekli
tasarim yoOntemlerinin arastirimasi, c¢irpinti ugus zarfinin testlerle
belirlenmesi ve dogrulanmasi ve benzeri konularda 1930’lardan beri bir
cok calisma yapilmigtir. Kontrolculerin 1960’lardan itibaren kullaniimasiyla
cirpintinin  aktif olarak bastiriimasi ile ilgili ¢alismalara bagslaniimistir.
Baslarda klasik kontrolculer kullanilirken, kontrolcl tasarim ydntemlerinin
ilerlemesi ile birlikte optimal kontrol yontemleri ve daha sonra gurbuz
kontrol yontemlerinin kullaniimasina baglaniimistir. Ancak literatirde

tamami hareketli kontrol kanatlari ile ilgili fazla ¢alisma bulunmamaktadir.
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Tamami hareketli kontrol kanatlari, fize kontrol ylzeylerinde kullanildigi
gibi, ucaklarin yatay duUmenlerinde ya da bagimsiz 06n kontrol
kanatgiklarinda da kullanilabilmektedir. Bu tez kapsaminda hareketli
kontrol kanatlarinin basarim ve ¢irpinti bastirma gereksinimlerini saglayan
kontrolcller tasarlanmis ve karsilastinimistir. Bu amagla Hy, H. ve u
kontrolculeri kullanilmigtir. Cirpintinin bastirilmasi i¢in yeni bir yontem
Onerilerek denenmigtir. Yontemin basarisinin degerlendiriimesi igin bu
yontemle elde edilen sonuglar literatirde bulunan bagka bir ydontem
kullanilarak elde edilen sonucglar ile karsilastinimistir. Gelistirilen
kontrolculerin  uygulamada kullanimi amaciyla, aeroelastik model
denklemleri tipik kanat kesit modeli igin ince kanat kabulu ile turetilmistir.
Kontrolct tasarim yontemi, duragan sikistirlamaz ses alti akig, duragan
olmayan sikistirilamaz ses alti akig, duragan olmayan sikistirilabilir ses alti
akis ve duragan olmayan sikigtirilabilir ses uUstu akis gibi cesitli akig

kosullarinda gelistirilmis aeroelastik modeller igin denenmistir.

Anahtar Kelimeler: Aeroservoelastisite, Aeroelastisite, Glrbiz Kontrolcu

Tasarimi, Cirpinti Bastirma, y-yontemiyle Cirpinti Analizi.

vii



Anneme, SSabama;, Agabepime
ve

SBiricik Kgim Giilsiin

viii



ACKNOWLEDGMENTS

| would like to express my gratitude to Prof. Dr. Bilent Emre
PLATIN, for his patience and supervision through this study. | distinctly
want to express my thankfulness for his patience, constructive criticism,

and intensive efforts in the preparation and editing of this doctoral thesis.

| am also grateful to my co-supervisor Dr. Mutlu Devrim COMERT
for his assistance and understanding. Without his professional
understanding as a coordinator, it would be much harder to complete this
study. | also want to extend my appreciation to my previous co-supervisor
Dr. Omer TANRIKULU.

| would like to express my thanks to my Thesis Supervising
Committee members, Prof. Dr. Tuna BALKAN and Prof. Dr. Yavuz
YAMAN for their contributions to my study.

| specially thank to my respected colleague Mr. Erding N. YILDIZ,
with whom | had many constructive technical discussions about this study.
| would like to thank Mr. Utku UNAL for his studies on the aeroservoelastic
test setup. | also would like to thank my colleagues and my friends for their

friendship and help.

The subject of this thesis was formed in accordance with the
practical research needs of TUBITAK-SAGE. The facilities and support
provided by TUBITAK-SAGE in this respect are kindly appreciated.



| would like to express my appreciation to my brother Ertugrul, for

his continuous moral support and brotherhood.

| specially want to express my gratitude to my mother Goénul and my
father Murat, for their endless support and understanding throughout my

life, which also helped me to complete this doctoral study.

Finally, | want to express my special thanks to my wife Gulsun, who
spent her spring times behind the windows with me, for her support,

understanding, and forbearance throughout this study.



TABLE OF CONTENTS

= S 3 I ¥ X 2 P iv
(@ AR Vi
ACKNOWLEDGMENTS ...ttt iX
TABLE OF CONTENTS ... Xi
LIST OF TABLES ... sessesnnnnnnnnne XV
LIST OF FIGURES .......oeiiiiiii s XX
NOMENCLATURE ......oetiittiiitiiitiiiiieeeeeeeee e asaaanensesnnnnnnnne XXVii
CHAPTERS
L | 1 (@ 1 1 1O I ] 1
1.1.  General Information on AeroservoelastiCity ...........ccccccvvvvereennnnn. 1
1.1.1.  Definition of AeroservoelastiCity .............cccccvmiiiiiiiiiiiiiiennnnns 1
1.1.2.  History of Aeroelasticity and Aeroservoelasticity .................. 5
1.2.  Projectile Control Methods............ccooviiiiiiiiiiiiiii 10
1.3. Rationale and Objectives of the Thesis ........cccoeeeeiriiiiiiiiiieennnn. 12
1.4. Scope of the TheSiS......cccoeviviiiiiiiie e, 16
2. AEROELASTIC MODELING.....ccooiiieieeeeeeeeeeeee 19
2. PrOVIEW ... 19
2.2, Literature SUrvey ... 19
2.3.  Aerodynamic Modeling ..........ccouueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 22
2.4. Finite Element Modeling ........ccoovviiiiiiiiiiiii e 24
2.4.1. Generalized Aerodynamic Force Matrices............c.cceuuunn.... 27
2.4.2. Linear Aeroelastic Model ..........coooeiiiiiiiiiiiii e 31
2.5, Typical SECON ....cccovviiiiiiiiiiiiiiiiiie 33



3.

2.5.1. Incompressible Subsonic FIOW .............ccccoeeiiiiiiiiiiiiiieee.. 36

2.5.2. Unsteady Compressible Subsonic Flow ............cccccvvuennne... 45
2.5.3. Unsteady Compressible Supersonic Flow.......................... 64
2.6. Postscripton Chapter 2...........coiiiiiiiiicc 66
FLUTTER SEARCH METHODS ... 68
3. PreVIEW .. 68
3.2.  Flutter Search Methods ..........oooomiiiiiiiii e 68
3.3, H-MEhOd ... 71
3.3.1.  Parameterization over Flight Conditions................cccc......... 71
3.3.2. Robust Model in the Structured Singular Value Framework 75
3.4. Determination of Flutter Flight Envelope.............ccooeeeiiiiiien. 84
3.4.1.  Incompressible FIOW.............uueiiiiiiiiiiccee e, 85
3.4.2. Flight Envelope Search in Compressible Flow ................... 87
3.5. Postscripton Chapter 3 ..., 88
CONTROLLER SYNTHESIS FOR FLUTTER SUPPRESSION........ 90
R I (oY T P 90
4.2. Aeroservoelastic Model ..o 90

4.3. Flutter Suppression Controller Synthesis by Using Uncertainty on

Dynamic Pressure (g-Method)............cccooiiie 98
4.4. Flutter Suppression Controller Synthesis by Using Uncertainty on
Damping (g-Method) .........cooorriii e 106
4.5. Postscripton Chapter4 ...........cooeeeiiiiiiceee e 111

MODELING ... .o 112
STt I o oY 1= 112
5.2.  Simulink® Model for the Time Domain Analysis...................... 112
5.3. Backlash Modeling .........coooiiiiiiiiiii e, 117

5.3.1.  Time Domain Backlash Model...........cccccccceiiiiiiiiiiiiiiinnnnnn. 118

5.3.2.  Simulink® Model for the Time Domain Analysis with Backlash122

5.3.3.  Frequency Domain Analysis for LCO Detection ............... 124
5.3.4. Frequency Domain Limit Cycle Oscillation Search Method127
5.4. Postscripton Chapter 5. 131



6. CONTROLLER SYNTHESIS AND CASE STUDIES ..........c.ccc....... 132

B.1.  PreVIEW ... 132
6.2. Unsteady Incompressible Subsonic Flow ............ccccccnnnn. 133
6.2.1.  Construction and Analyses of Aeroelastic Model.............. 133
6.2.2. Controller Synthesis by Using g-Method .......................... 147
6.2.3. Controller Synthesis by Using g-Method .......................... 222
6.2.4. Controller Synthesis by Using gg-Method ........................ 235
6.2.5. Controller Synthesis by Using gk-Method......................... 250
6.2.6. Comparison of the Controllers...........cccccoovvviieiiiiiiiieeennnn. 251
6.3. Unsteady Compressible Subsonic Flow ..............cccoovviiiiinnnnnnn. 260
6.3.1.  Controller Synthesis by Using g-Method .......................... 276
6.3.2.  Controller Synthesis by Using g-Method .......................... 286
6.3.3. Comparison of Controllers..........c.ccoouvveeeeiiiiieeiiiiiceeeeee, 292
6.4. Unsteady Compressible Supersonic FIow ............ccccoevvvnnnnnn.n. 295
6.4.1.  Controller Synthesis by Using g-Method .......................... 305
6.4.2. Controller Synthesis by Using g-Method .......................... 318
6.4.3. Comparison of Controllers..........ccccoeuveeeiiiiiiieeiiiicieeeeee, 327
6.5. Postscripton Chapter6............oooviiiiiiiiiiicee e, 330
7. DISCUSSION AND CONCLUSION ....ccccoiiiiiiiiiiieiiee e 333
T4 SUMMANY oo 333
7.2. Discussion and ConcluSiONS ..., 337
7.3. Recommendations for Future Work ..., 344
REFERENGCES ......oooeeeiiieeieee e sssnnsnnnssannnnnnnnnes 346
APPENDICES
A ROBUST CONTROLLER SYNTHESIS ..o 354
B STATE SPACE AEROELASTIC SYSTEM MATRICES FOR u-
METHOD ANALYSIS ...t 359
C DESCRIBING FUNCTION METHOD ......cccciiiiiieeeeeeeecieeeeeeeen 362

Xiii



D RESULTS OF THE ANALYSES OF THE AEROSERVOELASTIC
SYSTEMS WITH VARIOUS CONTROLLERS .........ccoceiiiiiiieees 367

CURRICULUM VITAE ..ot 378

Xiv



LIST OF TABLES

TABLE
1. FIOW regimes ...coooiiiiiiiiiiiee e 23
2. Curve fit results for ¢, at compressible subsonic speeds................. 50
3.  Curve fit results for ¢, at compressible subsonic speeds. ............. 50
4. Curve fit results for ¢, at compressible subsonic speeds............... 51
5. Curve fit results for ¢, at compressible subsonic speeds............. 51
6. Input/output signals of plant............ccccceeeiiiiiiii 106
7. Input/output signals of plant.............oooiiiii 110
8.  CaSe SHUAIES ... 132
9. Properties of the Model 1 ..o 134
10. Initial flow parameters............o.oeeiiiiiiiii i 134
11. Results of flutter airspeed search .............ccccvvviiiiiiiiiiiie 139
12.  Numerical values of uncertainty/performance weightings.............. 149
13.  H. norms of input to outputs of [I\_I} .............................................. 158
14. Singular values of controller ..............coooiviiiiiiii e 161
15.  Infinity norm of weighted close loop systems ...........ccccceein. 164
16. Instability points of Model 1 with H.. controller..............cccccvveennnn... 175
17. Results of flutter airspeed search ...........cccccooeiiiiiiiiiiiiiieee 182
18. Properties of ASE system with H.. controller ...............cccccevnennnnit. 189
19. Step response properties of aeroservoelastic system for various
backlash Values............oooueiiiiii e 197
20. Aerodynamic points for controller synthesis ...........ccccooeeeeeiieinnnnnes 198

XV



21.

22.
23.

24.
25.
26.

27.
28.
29.

30.
31.
32.
33.

34.
35.
36.

37.
38.
39.

40.

41.

42.

43.

Step response properties of aeroservoelastic system with various
(o0] 0] (o)1 1= < PR 200
Effect of aerodynamic disturbance on stability margin................... 201

Step response properties of aeroservoelastic system with quantized

sensor for AP #3, q,,,=1,500 Pa.........ooooii 205
Tuned parameters of Hy controller.............oooeeiiiiiiiiiiiieee, 213
Nominal stability lImMits ..o, 213
Step response properties of aeroservoelastic system with quantized
sensor at two different dynamic pressure conditions..................... 217
Tuned parameters of pcontroller ..., 218
Nominal stability ImMits ..o, 218
Step response properties of aeroservoelastic system with quantized
sensor at two different dynamic pressure conditions..................... 222
Numerical values of uncertainty/performance weightings.............. 223
Tuned parameters of H.. controller.............oceeeiiiiiiiiiiiiiieeeeeee, 225
Nominal stability lImits ..., 226
Step response properties of aeroservoelastic system with quantized
sensor at two different dynamic pressure conditions..................... 226
Tuned parameters of pcontroller ... 231
Nominal stability lImits ..o, 231
Step response properties of aeroservoelastic system with quantized
sensor at two different dynamic pressure conditions..................... 235
Tuned parameters of H.. controller.............oceeeiiiiiiiiiiiiiieeeeeee, 236
Nominal stability lImits ..., 240
Step response properties of aeroservoelastic system with quantized
sensor at two different dynamic pressure conditions..................... 240
Tuned parameters of Hy controller.............ooooeeeiiiiiiiiiiiiieeeeeen, 241
Nominal stability lImits ..o, 241
Step response properties of aeroservoelastic system with quantized
sensor at two different dynamic pressure conditions..................... 245
Tuned parameters of pcontroller ...........coooviiieiiiiiiie 246

XVi



44,
45,

46.
47.
48.
49.

50.

51.

52.

53.
54.
55.
56.
57.
58.
59.

60.
61.
62.
63.

64.
65.

66.
67.

68.

69.

Nominal stability lImits ..., 246

Step response properties of aeroservoelastic system with quantized

sensor at two different dynamic pressure conditions..................... 246
Linear stability reSults ... 252
Linear performance results.............cccoeeeiiiiiiiiiiiiie e 254
Properties of the Model 2 ..........cccoooiiiiiiieee e, 260
The squared 2-norms of the residuals of the curve fits.................. 262
Curve fit results for ¢” ,, at compressible subsonic speeds. ......... 262
Curve fit results for ¢ch at compressible subsonic speeds........... 262
Curve fit results for ¢, at compressible subsonic speeds. ....... 262
Initial flow parameters.............oouveeiiiiiiii i, 273
Flutter match points of the aeroelastic system .............................. 275
Reference plant parameters ..., 276
Numerical values of uncertainty/performance weightings.............. 276
Nominal stability limits calculated by using p-analysis................... 280
Instability match points of the aeroservoelastic system................. 280

Step response properties of aeroservoelastic system at various

aerodynamic conditions with quantized sensor............cccccccnne.. 281
Numerical values of uncertainty/performance weightings.............. 287
Nominal stability limits calculated by using p-analysis................... 289
Instability match points of the aeroservoelastic system................. 289

Step response properties of aeroservoelastic system at various

aerodynamic conditions with quantized sensor............ccccccvvuennn... 289

Properties of the Model 3 ..., 296

The squared 2-norms of the residuals of the curve fits.................. 297
T

Curve fit results for a at compressible supersonic speeds......... 297

Curve fit results for ¢” ,, at compressible supersonic speeds. ...... 298

Curve fit results for ¢ch at compressible supersonic speeds........ 298

Curve fit results for ¢" at compressible supersonic speeds. .... 298

cMq

XVii



70.
71.
72.
73.
74.
75.

76.
77.
78.
79.
80.

81.
82.

83.
84.

85.
86.

87.
88.

89.
90.

91.

Initial flow parameters..............ooiiiiiiiiiie e, 303

Flutter match points of the aeroelastic system .............................. 305
Numerical values of uncertainty/performance weightings.............. 306
Nominal stability limits calculated by using p-analysis................... 309
Instability match points of the aeroservoelastic system................. 309

Step response properties of aeroservoelastic system at various

aerodynamic conditions with quantized sensor............cccccccnnn... 311
LCO analyses results of the aeroservoelastic system ................... 313
Numerical values of uncertainty/performance weightings.............. 319
Nominal stability limits calculated by using p-analysis................... 322
Instability match points of the aeroservoelastic system................. 322

Step response properties of aeroservoelastic system at various
aerodynamic conditions with quantized sensor..............ccccceeeeees 323
LCO analyses results of the aeroservoelastic system ................... 325
Parameters and stability analysis results of various g-method H.
(oo 011 (o] 1= = U 367
Time domain analysis results of various g-method H. controllers . 368
Parameters and stability analysis results of various g-method H;
(oo 011 o1 1= = R 369
Time domain analysis results of various g-method H, controllers.. 370
Parameters and stability analysis results of various g-method u
(o0] 011 o] | 1= = PR 371
Time domain analysis results of various g-method p controllers.... 372
Parameters and stability analysis results of various g-method H.
CONTIOIIEIS .. e 373
Time domain analysis results of various g-method H.. controllers . 374
Parameters and stability analysis results of various g-method H;
(oo 011 (o] 1= = U 375

Time domain analysis results of various g-method H; controllers.. 376

XViii



92. Parameters and stability analysis results of various g-method u
(o0] 0] (o)1 1= < PR 377

93. Time domain analysis results of various g-method u controllers.... 377

Xix



LIST OF FIGURES

FIGURE

1. The aeroelastic triangle of forces...........coooviiiiiiiiiicc e, 2
2. Projectile control types ..o 11
3. Typical SECHON .....ueiii 20
4.  Vertical motion of an airfoil. ... 47
5.  Pitch motion of an airfoil with zero angle of attack........................... 47
6. LFT system for nominal flutter analysis ..., 73
7.  LFT system for robust flutter analysis............cccccccoiiiiiiiiiiiine 79
8.  Block diagram of the aeroservoelastic system ..........cccceevvvrinnnnnnnn.. 91
9. Modified typical section wing for the aeroservoelastic system......... 91
10. LFT model of the aeroservoelastic system...........ccccceviiin. 93
11. Block diagram of the aeroservoelastic system for nominal flutter

12.

13.
14.

15.

16.

17.

18.

ANAIYSIS it 94
General LFT model of aeroservoelastic system for nominal flutter
ANAIYSIS .o 94
LFT model of aeroservoelastic system for nominal flutter analysis.. 95
Block diagram of aeroservoelastic system for robust flutter
ANAIYSIS it 96
LFT model of aeroservoelastic system for robust flutter analysis .... 98
Interconnection structure of aeroservoelastic plant for g-method.... 99
Generalized LFT view of aeroservoelastic plant for controller
SYNINESIS .o 105

Interconnection structure of aeroservoelastic plant for g-method .. 109

XX



19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.

34.
35.
36.
37.
38.
39.
40.

41.

42.

43,
44,

Generalized LFT view of aeroservoelastic plant for controller

SYNTNESIS .o 110
Physical model of backlash between two translational bodies ...... 119
Free body diagram ... 120
Simulink® model of the ASE system with backlash........................ 123
Motor and Transmission block..............ccooiiiiiii . 124
Van der Pol oscillator............ooeueiiii e 125
Equivalent stiffness for backlash describing function..................... 127
Frequency domain LCO search method plot example................... 130

Iteration data of y-method analysis for the aeroelastic system...... 136

Flutter search results of p-method by changing air density ........... 138
Flutter search results of p-method by changing airspeed.............. 141
Modal properties of the aeroelastic system at 500 Pa................... 144
Time domain results of the aeroelastic system at 500 Pa. ............. 146

FFT of the time domain results of q, degree of freedom of the
aeroelastic SYSteM........oovviiiiiiiiiiiiiie 146

LCO amplitudes of the aeroelastic system with respect to dynamic

pressure and for various backlash values ..................c....ooooiinnnn, 147
Bode plot of reference model ... 152
Bode plot of weighting function of motor...................... 152
Bode plot of weighting function of disturbance force ..................... 153
Bode plot of weighting function of disturbance moment ................ 153
Bode plot of weighting function of performance............................. 154
Bode plot of weighting function of sensor.............ccccooeeiiiiiiiiiiinnnn. 154

Bode plot of weighting function of dynamic pressure in plunge
970 1o o IR 155

Bode plot of weighting function of dynamic pressure in pitch

1970 1o o TR 155
Bode plot of weighting function of command................................. 156
Bode plot of the synthesized H.. controller .....................cooovmnnnnnnn. 157
Singular values of the controller ..., 162

XXi



45.
46.
47.
48.

49.
50.
51.

52.

53.

54.

55.
56.
57.

58.
59.
60.
61.

62.
63.
64.
65.
66.
67.
68.

10" order reduced CONIOIEIS . .......eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 162
12" order reduced CONTOIEIS . .......eeeeeeeeeeeeeeeeee e 163

13" order reduced CONTOIEIS . .......eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeea 163

controller (release from 10° initial pitch position)...........ccccevvueennen. 166
Frequency response from command input to pitch motion............ 169
Frequency response from command input to plunge motion......... 169

Frequency response from disturbance to dynamic pressure affected
on aerodynamic moment to pitch motion.............ccccooooviiiiiinnnnnnnn. 170
Frequency response from disturbance to dynamic pressure affected
on aerodynamic moment to plunge motion..................eeeeiiiiiiiennnee. 170
Frequency response from disturbance to dynamic pressure affected
on aerodynamic lift to pitch motion............cccccovieiiii i 171
Frequency response from disturbance to dynamic pressure affected
on aerodynamic lift to plunge motion ................eeeveiiiiiiiiiiiieiiiiieeee. 171
Frequency response from sensor noise input to pitch motion ....... 172
Frequency response from sensor noise input to plunge motion .... 172

Frequency response from command input to pitch motion for various

values of dyNamiC PreSSUre...........uuuuuuuuuiuiiiiiiiiiiiiiiiiieiieieineeneeenenees 174
Flutter search results of y-method...........ccccoooiiiiiii 176
Flutter search results of p-method by changing air density ........... 178
Frequency response of discrete controller..............ccccvvvueeeeene. 180

Time domain simulation results at and above the dynamic pressure

Of INSTADIIITY ... 181
Flutter search results of p-method by changing airspeed.............. 183
Flutter flight envelope ..., 183
Step response of the aeroservoelastic system ............cccccccceeene. 185
Sensor output hiStOrY.........cevvviiiiiiiiiiiiiiiiiieeeeeeee 185
Current consumption history.............eeiiiiiiiiiiice e, 186
Deformation history of torsional spring .........cccccooovveiiiiiiiieeeeeeeenn, 186
Step response of the aeroservoelastic system (with noise)........... 187

XXii



69.
70.
71.
72.
73.
74.
75.

76.

77.

78.
79.
80.

81.
82.
83.
84.
85.
86.

87.

88.

89.

90.

91.
92.

Sensor output history (with N0ISE) ........cvvieiiiii e, 187

Current consumption history (with N0iS€) ............ovviieiiiiiiiiiiiiinnn. 188
Deformation history of torsional spring (with noise)....................... 188
Modal properties of the aeroservoelastic system at 500 Pa .......... 192

Time domain results of the aeroservoelastic system at 500 Pa..... 194
FFT of the time domain results of the aeroservoelastic system..... 195
LCO amplitudes of the aeroservoelastic system with respect to
dynamic pressure for various backlash values............cccccccveeennn... 196

Change of dynamic pressure of instability with g, .......c...ccoee. 199

Frequency response from command input to pitch motion for various

values of dynamicC PreSSUre...........ceeviiieiiiieeiiiice e 202
Flutter flight envelope ...........oueoiiiiiiii e, 203
Step response of the aeroservoelastic system ............cccccccceeene. 203

LCO amplitudes of the aeroservoelastic system with respect to

dynamic pressure for various backlash values............ccccccvueennn... 204
Aeroservoelastic Test Setup......ccooeeeeiiiiiiiiiiii e, 207
LCO of aeroelastic system at 48 m/s airspeed...........ccceeeeeeeeeeenns 209
Flutter of aeroelastic system at 60.5 m/s airspeed ........................ 210
Aeroservoelastic system response at 48 m/s airspeed.................. 211
Aeroservoelastic system response at 70 m/s airspeed.................. 211

Frequency response from command input to pitch motion for various

values of dyNnamiC PreSSUre...........uuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeeaaees 214
Flutter flight envelope ..., 215
Step response of the aeroservoelastic system............cccccovveeennn.n. 215

LCO amplitudes of the aeroservoelastic system with respect to
dynamic pressure for various backlash values............cccccccveennn.. 216

Frequency response from command input to pitch motion for various

values of dynamic presSSsure.........cccceveeeeeiiieeeiiiice e 219
Step response of the aeroservoelastic system ............ccccccccceene. 220
Flutter flight envelope ... 220



93.

94.

95.

96.

97.

98.

99.

100.
101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.
112.

LCO amplitudes of the aeroservoelastic system with respect to
dynamic pressure for various backlash values..............cccccoeeeee... 221

Frequency response from command input to pitch motion for various

values of dyNnamiC PreSSUre...........uuuuuuuuuiiiiiiiiiiiiiiiiiiiiieiiiiieieeeiaeaees 227
Step response of the aeroservoelastic system............ccccoevveeennn.n. 228
Flutter flight envelope ..., 228

LCO amplitudes of the aeroservoelastic system with respect to
dynamic pressure for various backlash values............cccccccveeennn... 229

Frequency response from command input to pitch motion for various

values of dynamic presSSure..........cccceeeeeieiiiieiiiicce e 232
Step response of the aeroservoelastic system ............cccccccceeene. 233
Flutter flight envelope ... 233

LCO amplitudes of the aeroservoelastic system with respect to
dynamic pressure for various backlash values...............cccc.eeee..... 234

Frequency response from command input to pitch motion for various

values of dyNnamiC PreSSUre............uuuuuuuiiiiiiiiiiiiiiiiiiiieieeiiiiniieeiaaaees 237
Step response of the aeroservoelastic system ............ccccovvveeennnnn. 238
Flutter flight envelope ...........oueoiiiiiiii e, 238

LCO amplitudes of the aeroservoelastic system with respect to
dynamic pressure for various backlash values............ccccccveeennn... 239

Frequency response from command input to pitch motion for various

values of dynamic presSSsure..........ccceeveeeeeiiiieeiiiicee e 242
Step response of the aeroservoelastic system .............ccccccceeeenn. 243
Flutter flight envelope ... 243

LCO amplitudes of the aeroservoelastic system with respect to
dynamic pressure for various backlash values...............cccc.eeeee.... 244

Frequency response from command input to pitch motion for various

values of dyNnamiC PreSSUre...........uuuuuuuuiiiiiiiiiiiiiiiiiiiiieeeiieeiieeineaees 247
Step response of the aeroservoelastic system............ccccoevveeennn.n. 248
Flutter flight envelope ..., 248

XXiV



113.

114.
115.
116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.
128.
129.
130.
131.

132.

133.

134.
135.

LCO amplitudes of the aeroservoelastic system with respect to
dynamic pressure for various backlash values..............cccccoeeeee... 249
Interconnection structure of aeroelastic plant for gk-method.......... 251
Flutter flight envelopes of the ASE system with various controllers253
LCO amplitudes of the aeroservoelastic system with respect to

dynamic pressure for different controllers (backlash value = 0.2°) 259

¢TC versus s (half chord) at 0.5, 0.6, and 0.7 Mach numbers........ 263

¢' ., versus s (half chord) at 0.5 Mach number..............c..ccco....... 264
¢' ., versus s (half chord) at 0.6 Mach number...............ccccco........ 265
¢, versus s (half chord) at 0.7 Mach number................cc.o........ 266
¢ch versus s (half chord) at 0.5 Mach number .............ccccoeeee. 267
¢ch versus s (half chord) at 0.6 Mach number ..............cccccooo. 268
¢ch versus s (half chord) at 0.7 Mach number ..............ccc........... 269
¢" g Versus s (half chord) at 0.5 Mach number............................ 270
¢Tch versus s (half chord) at 0.6 Mach number............................ 271
¢" g Versus s (half chord) at 0.7 Mach number............................ 272
Flutter search results of p-method by varying air density .............. 274
Heo CONTIOIIEN ..o 279
14™ order reduced CONLIOIIETS. ..........ccveveeeeeeeeeeeeeeeee e 279
Step response of the ASE system at various match points ........... 281

LCO amplitudes of the aeroservoelastic system for various backlash

10,000 m with a 0.2° backlash value ..............cooovveiiiiiiiiee. 285
Heo CONLIOIIEN ... 288
14™ order reduced CONtIOIIETS. ...........cveviveeeeeeeeeeeeeeeeeeeeeee e 288
Step response of the ASE system at varios match points.............. 290

XXV



136.

137.
138.

139.

140.

141.

142.

143.
144.
145.
146.

147.
148.
149.
150.
151.
152.
153.
154.

155.
156.
157.
158.
159.
160.
161.

LCO amplitudes of the aeroservoelastic system for various backlash

VAIUBS ... e 291
Flutter flight envelope ... 293
LCO amplitudes of the aeroservoelastic with different controllers
(backlash value = 0.2°) .....uuiiiiiieieeeee e 294
¢’ . versus s (half chord) at 1.2, 1.5, and 2.0 Mach numbers........ 299
¢' ., versus s (half chord) 1.2, 1.5, and 2.0 Mach number-............ 300
¢ch versus s (half chord) 1.2, 1.5, and 2.0 Mach number............. 301
¢T0Mq versus s (half chord) 1.2, 1.5, and 2.0 Mach number........... 302
Flutter search results of p-method by varying air density .............. 304
He CONLIOIIEN ... 308
14™ order reduced CONLIOIIETS. ........c.oveveeeeeeeeeeeeeeeeeee e 308

0107 01 £ PSSP 312
LCO amplitudes of the aeroservoelastic system ........................... 314
Frequency response from sensor noise input to pitch motion ....... 316

Frequency response from sensor noise input to plunge motion .... 316

Frequency response from command input to pitch motion............ 317
Frequency response from command input to plunge motion......... 317
Heo CONIONIEN .o 320
13" order reduced CONtIOIIETS. ..........ccvevveeeeeeeeeeeeeeee e 320

070} 1 | € R 324
LCO amplitudes of the aeroservoelastic system ........................... 326
Flutter flight envelope ..., 327
LCO amplitudes of the aeroservoelastic system ........................... 329
General FrameWOrK...........ouviiiviiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeee e 354
ANAlYSIS FrameWOorK .......cccoooiiieieeeeeeeeeee e 356
Synthesis Framework ... 357
Input-output relation for piecewise-linear functions....................... 365

XXVi



Latin Script:

Cir
[C]
[Col

[Cedl
C(k)

{d}r

NOMENCLATURE

Parameter for the position of elastic axis from the mid

chord, positively defined in backwards direction

System matrix of the aeroelastic system

Aerodynamic coefficient matrices (i=1,..,4)

Half chord

Coefficients of Kissner and indicial functions

Backlash value

Plunge damping coefficient of a typical section wing
Torsion damping coefficient of a typical section wing
Equivalent damping coefficient of motor and transmission
calculated at the wing shaft

Aerodynamic lift coefficient

Motor and transmission damping

Aerodynamic moment coefficient

Coefficients of Theodorsen’s function

Coefficients of indicial function (i:1..n, r: ¢, cM, cq, cMq)
Damping matrix of a typical section structural model
Nominal damping matrix of a typical section structural
model

Equivalent damping matrix

Theodorsen’s function

Disturbance input vectors (r: disturbance identifier)

XXVii



D]
[Dal, [Dal]
{e}r

€ss

[E1l, [Ex]
[Ez, [E2]
[Fal, [Fal
F

ext

Kn

ko

k Oa

kT

[K]
[Ke]

[Kol

[Kedl

Scaling matrix for y calculations

Aerodynamic coefficient matrices (r: ¢, cM, cq, cMQq)
Error/performance output vectors (r: error/performance
identifier)

steady state error

Aerodynamic coefficient matrices (r: ¢, cM, cq, cMQq)
Aerodynamic coefficient matrices (r: ¢, cM, cq, cMq)
Aerodynamic coefficient matrices (r: ¢, cM, cq, cMQq)

External force

Lower linear fractional transformation

Upper linear fractional transformation

Mass moment of inertia of a wing about its elastic axis
Mass moment of inertia of motor and transmission
calculated at the wing shaft

Reduced frequency

Plunge spring constant of a typical section wing

Torsion spring constant of a typical section wing
Equivalent spring constant of motor and transmission
calculated at the wing shaft

Equivalent spring constant obtained from serial connection
of plunge spring and equivalent spring constant of motor
and transmission calculated at the wing shaft.

Motor torque constant

Stiffness matrix of a typical section structural model
Transfer matrix of the controller

Nominal stiffness matrix of a typical section structural
model

Equivalent stiffness matrix

Wing span, distance from the root chord to the tip of wing

XXViii



qi
qa
an

{al,

Mass of the wing

Total plunging mass

Mass matrix of a typical section structural model
Mach number

Percentage of overshoot

External moment

Relaxation constant

Transmission ratio

System transfer function matrix of the aeroservoelastic
system

Laplace variable

System transfer function matrix of the aeroservoelastic

system without a controller

System transfer function matrix of the aeroelastic plant

Scaled system transfer function matrix of the aeroelastic

plant

Generalized coordinates

Pitch motion of a typical section wing (angle of attack)
Plunge motion of the elastic axis of a typical section wing
from undeflected position

Angle of the motor shaft kinematically amplified to the
wing shaft

Dynamic pressure
Nominal dynamic pressure
Nominal flutter pressure
Robust flutter pressure

Structural state vector

Aerodynamic state vector

XXiX



Qar . Aerodynamic lift force

Qam :  Aerodynamic moment

Qc :  Control force

{Qa} . Aerodynamic force vector

{Qext} . External force vector

[Q] . Scaling matrix for u calculations

S : Wing area

S. : Static mass moment of a typical section wing about its
elastic axis

t . Time

trso; . rise time from 5% to 95% of command

ts . settling time for 5% error

Tes . Motor continuous stall torque

Tp . Allowable peak torque

U Free stream speed

Vo . Initial speed

Vs :  Final speed

Perturbation vector to dynamic pressure

Perturbation vector to stiffness
Perturbation vector to damping
Perturbation vector to aerodynamic coefficients

W,] . Weighting matrix for uncertainty/performance (r: identifier

of weighting function)

["Wk.,} : Weighting matrix for uncertainty of stiffness

["'WC.,] : Weighting matrix for uncertainty of damping

["'Wc,md_] : Weighting matrix for uncertainty of aerodynamic
coefficients

XXX



nom

rob

Position of the center of mass from elastic axis, defined

positively in backwards direction

Aerodynamic state vector (r: ¢, cM, cq, cMQq)
Vector of additional states due to perturbation to dynamic

pressure

Vector of additional states due to perturbation to stiffness
Vector of additional states due to perturbation to damping

Vector of additional states due to perturbation to

aerodynamic coefficients

Coefficients of Kliisner and indicial functions

Norm bounded perturbation multiplier of dynamic pressure

Deflection due to torsional stiffness

Norm bounded perturbation multiplier matrix excluding o,
Norm bounded perturbation multiplier matrix including &;
Norm bounded perturbation multiplier matrix of stiffness
Norm bounded perturbation multiplier matrix of damping

Norm bounded perturbation multiplier matrix of

aerodynamic coefficients

Aerodynamic indicial function
Nominal flutter margin
Robust flutter margin

Coefficient of restitution

Density of air

XXXi



K, : Magnitude scaling constant of weighting functions (i

identifier of weighting function)

¢ . Damping ratio

Wq :  Damped natural frequency

wn . Natural frequency

v :  Equivalent stiffness

{&} . State vector of aeroelastic/aeroservoelastic system

Miscellaneous notation:

a . First time derivative of a

a Second time derivative of a
[0,...] : N by n null matrix

[10] . n by n identity matrix
[A} . Diagonal matrix

inf :infinity norm

Abbreviations:

AE . Aeroelastic

ASE . Aeroservoelastic

ATD : Aeroservoelastic test setup of TUBITAK-SAGE
CCV : Control configured vehicles

CFD :  Computational fluid dynamics

FAA : Federal aviation agency

LCO . Limit cycle osscillation

LFT . Linear fractional transformation

USA : United States of America

XXXii



CHAPTER 1

INTRODUCTION

1.1. General Information on Aeroservoelasticity

1.1.1. Definition of Aeroservoelasticity

Some people traveling on the window side in an airplane might
have wondered: Is the motion of the wing normal? How much is it
bending? How far could it bend? If the people who asked these questions
are alive, the answer of the first question is yes. The answer of the second

question is in the field of aeroelasticity.

”"Aeroelasticity is the study of the effect of aerodynamic forces on
elastic bodies” [1]. In Figure 1, the aeroelastic triangle of forces introduced
by Collar is given [2]. This figure also describes the classification of
aeroelasticity problems. In Figure 1, A, E, and | represent the
Aerodynamic, Elastic, and Inertial forces, respectively. The phenomena
involving only aerodynamic and elastic forces are named as the static
aeroelastic phenomena and the others that involve all three forces are
named as the dynamic aeroelastic phenomena. The dashed lines given in

the figure define the related fields to given forces other than aeroelasticity.



A Aerodynamic forces Static Aeroelastic Phenomena
E: Elastic forces SSA: Aeroelastic effects on static stability
l: Inertia forces L: Load distribution
C: Control effectiveness
D: Divergence
Related Fields R: Control system reversal
V: Mechanical vibrations
DS: Dynamic stability Dynamic Aeroelastic Phenomena
F: Flutter
B: Buffeting
Z. Dynamic response

DSA: Aeroelastic effects on dynamic stability

Figure 1. The aeroelastic triangle of forces [2]

In the following paragraphs, some short definitions of the

aeroelastic phenomena given in Figure 1 are presented [2]:

Flutter, F. Flutter is a dynamic instability; physically it is an unstable

oscillation of the airframe with the following characteristics:

Flutter is a self excited oscillation; no external excitation is required
to sustain it once the structure is set in motion. The system absorbs
the required energy from the flow by itself.

This instability occurs at a specific airspeed called flutter speed.
Above the flutter speed, the amplitude of oscillations increases until
a structural failure occurs. On the other hand, in a nonlinear system

the oscillations may converge to a limit amplitude at a fixed



frequency. This phenomenon is named as the limit cycle oscillation
instead of flutter and it is a stable condition. However, the limit cycle
oscillation is still an undesired phenomenon, since it decreases the
remaining fatigue life of the structure.
- The flutter speed is a function of:

o Airplane structural parameters such as

» Geometry, mass distribution, stiffness distribution, and

structural damping

o Flight parameters such as

= Airspeed, altitude, Mach number, and angle-of-attack

Buffeting, B. “Buffeting is transient vibrations of aircraft structural
components due to aerodynamic impulses produced by the wake behind

wings, nacelles, fuselage pods, or other components of the airplane.”

Dynamic response, Z. “Transient response of aircraft structural
components produced by rapidly applied loads due to gusts, landing, gun
reactions, abrupt control motions, moving shock waves, or other dynamic

loads.”

Aeroelastic effects on stability, (S/D)SA. “Influence of elastic

deformation of the structure on dynamic and static airplane stability.”

Load distribution, L. “Influence of elastic deformations of the

structure on the distribution of aerodynamic pressure over the structure.”

Divergence, D. “A static instability of a lifting surface of an aircraft
in flight, at a specific speed called the divergence speed, where the
elasticity of the lifting surface plays an essential role in the instability.”

Divergence is also named as zero frequency flutter.



Control effectiveness, C. “Influence of elastic deformation of the
structure on the controllability of an airplane.” For example; in a typical
wing with flap configuration, changing the flap angle with control purposes
causes deformation of the wing which results in a decrease of control.
Rotating the flap down to increase lift deforms the wing nose down, which

results in a decrease in lift.

Control system reversal, R. “A condition occurring in flight, at a
speed called the control reversal speed, at which the intended effects of
displacing a given component of the control system are completely

nullified by elastic deformations of the structure.”

For many years, people were faced with aeroelastic problems and
solved them by passive solutions. These passive solutions are generally
still used as a first step. On the other side, with the improving technology
and mankind’s passion of obtaining the better, the control technology has
been introduced to the field of aeroelasticity. The new field that is emerged
as an intersection of the aeroelasticity and controlled structures technology
is named as the aeroservoelasticity. Its main objective is to modify the
aeroelastic behavior of a system by introducing calculated control forces.

Common research areas of aeroservoelasticity are:

Flutter suppression: Its objective is to increase the flutter-free
operational envelope of the system. From the control point of view, its
objective is to stabilize an unstable aeroelastic system and to increase the

stability region of a system.

Gust alleviation: The objective is to smooth the ride by minimizing
the response due to unsteady dynamic air loads. This objective is

developed to increase the ride comfort and/or structural load alleviation.



The controller’s objective is to keep the aeroelastic system well regulated

and to improve its disturbance rejection properties.

Maneuver enhancement: This objective is applied to improve the
ability of the aircraft to produce sudden changes in lift and moment
required for maneuver. The objective of the controller is to make the

control surface a good servo-command tracking system.

1.1.2. History of Aeroelasticity and Aeroservoelasticity

In this Section, the history of the aeroelasticity and the
aeroservoelasticity is presented based on the studies of Fung [1],
Bisplinghoff et al. [2, 3], Garic [4, 5, 6], and Felt et al. [7] .

The history of aeroelasticity is older than human history. Because,
the aeroelasticity is not confined to manmade structures. Aeroelastic
phenomena are also observed in biomechanics, on the wing of birds, in
plants, etc. Human race must have been faced with aeroelastic problems
as they improved their tools and goods, and they may have solved the
problems empirically. However, the first evidence of manmade aeroelastic
improvement was found in the 16th century, where the aeroelastic
problems of windmills were solved empirically in the Netherlands, by
moving the spars of the blades from the mid-chord to quarter-chord

position.

In civil engineering, aeroelastic problems were encountered in
bridges in the 20th century. On November 7, 1940, Tacoma Narrows
Bridge in the U.S.A. collapsed at a wind speed of 42 mph (68 km/h), which
is well below the static design speed of 100 mph (161 km/h). This bridge
failure is generally believed to be due to stall flutter.



In the aviation field, aeroelastic problems arose with the beginning
of powered flight trials of airplanes. Professor S. P. Langley of the
Smithsonian Institute flew a %2 scale of his aerodromes up to 300 meters.
But the full scale model failed twice, last on December 8, 1903. Second
failure was generally believed to be due to wing torsional divergence. In
1914, Curtis flew the Langley aerodrome with slight modifications, well

before the wing torsional divergence problem was solved theoretically.

Nine days after Langley’s second failure, in December 17, 1903,
Wright brothers made their historical flight. The torsional stiffness of wings
of Wright brothers’ biplane was greater than Langley’s mono-wing
aerodrome. Since the divergence speed is directly related to the torsional
stiffness, the Wright biplane did not suffer divergence problem. Wright
brothers also made beneficial use of aeroelastic effects for roll control of
their biplane by the use of wing warping in place of ailerons. Furthermore,
they were aware of the adverse effect of torsional deformations on the

thrust of propellers.

Through the success of Wright brothers, early aircrafts were almost
exclusively biplanes. The most widespread early aeroelastic problem in
those days was the tail flutter problem. One of the first documented cases
of flutter occurred in the horizontal tail of the twin engined Handley Page
0/400 bomber, at the beginning of World War |. The symptoms were
violent oscillations of the fuselage and tail surfaces. After investigations it
was discovered that the fuselage and tail had two principal low-frequency
modes of vibration. In one mode, the left and right elevators oscillated
about their hinges with a phase difference of 180 degrees. The elevators
were connected to the control stick with separate long control cables which
had low stiffnesses. The second mode was the torsional oscillation of the
fuselage. It was concluded that the vibrations were due to self-excited

oscillations involving coupling between these modes. This problem was



solved by connecting the two elevators by a torque tube. Similar problems

were experienced in DH-9 airplanes.

In World War One (WW1), Germans also experienced aeroelastic
problems. Fokker D-8, a monoplane, had a great performance but suffered
from wing failures in steep dives. Early monoplanes had insufficient
torsional stiffness resulting in wing flutter, divergence, wing-aileron flutter,
and loss of aileron effectiveness. These problems were usually solved by
increasing the torsional stiffness and by mass balancing. However the
problem in Fokker D-8's was slightly different. After many losses of aircraft
and their best pilots, the Luftwaffe conducted static strength tests. Through
these tests of the airplane, it was found that the wings had enough
strength with an ultimate safety factor of 6. Fokker Company stated that
the prototype wing showed no structural deficiencies. The only difference
between the prototype wings and the production wing was the
strengthening of the rear spar. This was ordered by the Luftwaffe, due to
regulations for wire braced wings. Ironically, strengthening the rear spars
moved the elastic axis backwards which resulted in a decrease of the
divergence speed, which eventually caused the loss of Fokker D-8

aircrafts.

After WW1 many flutter phenomena were seen; in 1923 wing-
aileron flutter was seen in von Berkel Seaplane (monoplane), which was
solved by Baumhauer and Koning by mass-balancing the aileron. In 1924-
1925 a wing-aileron flutter was seen in Gloster Grebe and Gloster
Gamecock. The problem was solved by increasing the stiffness and

reducing the unbalanced area near the tip.

In early days, aeroelastic problems were solved by trial and error
methods. In 1926, Reissner published papers about the theory of wing-
load distribution and wing torsional divergence. In 1929, Frazer and



Duncan published their works about wing flutter. Robert Cox and Pugsley
published a theory of loss of lateral control and aileron reversal. Between
1923 and 1929 many works about unsteady aerodynamics were published
by Brimbaum, Glauert, Wagner, Frazer, Duncan, and Kussner. The
mechanism of potential flow flutter was understood by 1935, with the help

of previous studies (1923-1929) and Theodorsen’s studies.

During this period, many flutter phenomena occurred all over the
world on different types of airplanes; air racers, transporters, observer
airplanes, passenger airplanes, bombers, and attack airplanes. Different
types of flutter were observed; wing-aileron, rudder-fuselage, tail, rudder-

fin, elevator- fuselage, and elevator-tab.

With the increase incidences of flutter phenomenon, flight flutter
tests became important. Early tests were to dive the airplane to its
maximum speed and hope the best. In 1935 in Germany, von Schippe
employed resonance testing techniques during the flight. Schipple’s
method was to obtain the frequency response as the speed increases. In
this method, the flutter is expected to occur as the resonant amplitude
tends to increase asymptotically against increasing airspeed. However, the
flutter was a sudden phenomenon and in those days the technology
required the test engineers to be in the plane to check the data.
Successful tests ended in 1938, in the test of a Junker JU90 an
unexpected flutter of the wing encountered. The plane crashed with the

engineers on board.

Manufacturers became reluctant to flight flutter tests, due to their
hazards. However, it would be more dangerous to use an airplane, which
had not been tested. With the improvement of testing methods, test and
communication apparatus, flight flutter tests began to gain acceptance by
late 1940’s.



In the theoretical standpoint, in 1938 Frazer, Duncan, and Collar
published a unique textbook, which gave examples for the use of matrices
for flutter. In 1941, S. J. Loring published a paper that gave systematic

solution for flutter problem with the use of matrices.

Prandtl in 1936 published a paper, in which he used the
acceleration potential, instead of the velocity potential. Using the
acceleration potential he included the compressibility effect. The
compressibility effect had to be formulated because the speed of the
airplanes in those years approached to the speed of sound. However
Prandtl's method was useful for small disturbances, which made it
applicable for subsonic and supersonic speed ranges, but not for transonic
and hypersonic speed ranges. In 1938, Camille Possio applied the

acceleration potential to the two-dimensional non-stationary problem.

Prandtl's equation was useful for drag and span-load calculations
for steady flow about a finite wing. In 1937, Cicalla introduced a method to
generalize Prandtl’s approach for unsteady flows, still using the two-
dimensional exact theory as a limit for the infinite aspect ratio wing. W.P.
Jones in 1940, Kussner in 1943, and Reissner in 1944 made related
works, which had important applications until computational methods
applicable to true lifting surfaces were developed some years later. R.T.
Jones’ contribution was the approximation to Wagner’s function in a form
useful for transfer functions as given in Equation (1.1)

k,(s)=1-be”* —b,e"*... (1.1)

The general lifting surface theory for finite wings was published by

Kussner.



In 1942, Smig and Wasserman gave comprehensive table of
unsteady aerodynamic coefficients based on the theory of Theodorsen. In
the United States, these tables and the suggested computation methods
were used for flutter analysis for several years. This method was named
as the K method. Since then, several flutter search methods were
developed such as P-K method by Hassing in 1971, p-method by Abel in
1979, and p-method by Lind and Brenner in 1998.

In 1960’s, control concepts were introduced into analytical models,
followed by active control aeroelastic wind tunnel models that were used to
verify analytical models. At the last half of this decade, flight tests of B-52
and XB-70 aircraft were successfully conducted, which demonstrated the
concept of using flight control to modify the dynamic characteristics of the
aircraft structure. On August 2, 1973, a CCV B-52 test aircraft was flown

10 knots faster than its flutter speed.

1.2. Projectile Control Methods

Control actuation system (CAS) is an important part in every guided
projectile. It controls the direction and/or magnitude of forces maneuvering
the projectile. This control is accomplished by various means. Some

control types and their schematic illustrations are given in Figure 2.

This study focuses on aerodynamic surface controllers. Although
the aerodynamic surfaces have a general meaning, in this study it is used
for airplane wings and missile control surfaces. Specifically, the current
study applies to those in which the entire control surface is actuated in
order to obtain the desired aerodynamic forces while there is no adjacent
lifting surface. Such control surfaces are commonly referred as fins as
opposed to flaps, ailerons, rudders, etc. Although the requirements of this

study is based on the missile control surfaces, it is applicable to all fins,
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which could be for instance the horizontal stabilizers of an airplane such
as the F-4 Phantom.

THRUST CONTROLLERS:

qop

Reaction Jet Control

%ﬂ Gimbaled Control

=
=

AERODYNAMIC SURFACE CONTROLLERS:
]

~—

N

Thrust Vector Control

ANAAA

Jet Vane Control

N

Wing Control

Canard Control

Tail Control

Wingless Tail Control
|

T~
A Tail-less Wing Control
Figure 2. Projectile control types

ANADA AN
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A CAS can be pneumatic, electromechanical, or hydraulic. Although
there are several secondary influences, the type of CAS actuation is
primarily selected according to its power requirements. From low power to
high power capabilities, CAS types are classified as pneumatic,
electromechanical, and hydraulic. This study is directly applicable to

electromechanically driven control surfaces, since in those cases the
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actuator can be modeled as linear without any gross simplification.
Additional works are required for pneumatic and hydraulic actuators, which

incorporate nonlinearities.

1.3. Rationale and Objectives of the Thesis

Aeroelasticity is an old subject in which the studies were started
before 1930’s. Aeroservoelastic studies were performed since 1960’s.
However, most of these studies were concentrated on aircraft wings.
There exist few studies about the flutter suppression of missile control
surfaces (fins). Aircraft wings are mainly composed of a fixed lifting
surface and a trailing control surface (flap). Flutter suppression of the
aircraft wing can be achieved by controlling the motion of the flap. On the
other hand, fins are fully movable control surfaces without any adjacent
lifting surface. The flutter suppression of the fin can be achieved via
controlling the angular position of the fin shaft. This fact differentiates the

aircraft wings and the fin.

In TUBITAK-SAGE, a leading research and development institute in
the defense industry of Turkey, various studies were performed about
aeroelasticity since the beginning of the 1990s. Among these studies,
Tanrikulu [8, 9], Kuran et al. [10, 11], Durak [12], Yildiz [13], Sever [14]
Pehlivanoglu et al. [15], Akmese et al. [16], and Unal [17] performed
aeroelastic analysis of rocket and missile fins including linear and
nonlinear structural models. In early 1990s, an introductory study was also
conducted by Tanrikulu [18] about aeroservoelasticity without performing a
detailed investigation. The practical research needs at TUBITAK-SAGE
require some in-depth studies to be conducted on the control actuation
systems of missiles. Therefore, the need for aeroservoelastic analysis of
control surfaces and controller synthesis for elastic control surfaces is

eminent.
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In controller synthesis studies for flutter suppression of airplane
wings, first classical controllers were used in a study of Horikawa [19].
Then, optimal controllers similar to LQG/LQR type were used in the
studies of Roger et al. [20], Poyneer et al. [21], Edwards et al. [22],
Mahesh et al. [23], Ohta et al. [24], and Block et al. [25]. Although these
controllers did suppress the flutter, due to their synthesis method the
uncertainties of the system were not considered. In some recent studies,
robust controller methods that consider the uncertainties of the system
were used, as in the studies of Vipperman et al. [26], Waszak [27], Gade
[28], and Kim et al. [29]. However, these studies were applied to aircraft
wings. Although aeroservoelastic analyses of fully movable control
surfaces were performed in some studies by Yehezkely et al. [30], and
Laurenson et al. [31], controller synthesis for control actuation systems of

fully movable elastic control surfaces was rare.

While H. and p are robust controller methods, H; is basically a
LQG/LQR controller using similar definitions with robust controller methods
for the construction of the synthesis problem. Controllers synthesized by
means of these three methods have different advantages over each other.
The Hy controller stands out with current consumption performance and
tracking performance at the design conditions. It takes into account the
plant noise but it does not guarantee the stability of the controlled system.
The H. controller guarantees the stability while taking into account the
uncertainties as well; but as a result of this, it is a conservative controller.
The p controller synthesis method yields a less conservative controller
than the H. method, still guarantees the stability, and takes into account
the uncertainties. However, the degree of conservatism decreases as the

order of the uy controller is increased.
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Simply, aeroelastic or aeroservoelastic instabilities happen with
changes in aerodynamic loads, which change with the flight parameters.
The result can be explained on a root locus plot; changes in aerodynamic
loads moves the poles of the system from the left hand plane to the right
hand plane. Hence, in the robust controller synthesis two different
approaches can be used. The shift in the poles can be modeled as an
uncertainty and a robust controller can be synthesized considering this
uncertainty. This method was applied by Vipperman et al. [26] in 1999 to
an airplane wing model. On the other hand, it is also possible to define
uncertainties for flight parameters and a robust controller can be
synthesized considering these uncertainties. Waszak [27] performed a
similar study. In that study, the uncertainty of the aeroelastic system was
derived by applying a disturbance to the dynamic pressure. At the
controller synthesis step, the aeroelastic system uncertainty was included,
hence the disturbance to dynamic pressure was included indirectly.
However, a controller synthesis procedure that directly includes the
dynamic pressure disturbance at the controller synthesis step was not

come across during the survey of the open literature.

In their studies, Kim et al. [29], Yehezkely et al. [30], Laurenson et
al. [31], Ko et al. [32], Tang et al. [33, 34], Lee et al. [35], Price et al. [36],
Brase et al. [37], and Yildiz [13] performed a flutter analysis of airplane
wings or missile fins with several types of structural nonlinearities. In
addition to the nonlinearities studied in literature, it is known by experience
through the studies performed in TUBITAK-SAGE that the backlash type

nonlinearity usually exists in the missile fins.

In line with the research needs of TUBITAK-SAGE,
aeroservoelastic analysis and controller synthesis for flutter suppression of
missile control surfaces are defined as the research subject of this study

with the following primary objectives.
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Establish a method for the synthesis of various types of controllers
for a CAS, considering some performance specifications and also
taking the flutter suppression into account,

Investigate and apply appropriate approaches for the analysis of the

aeroservoelastic system synthesized.

In reaching the objectives mentioned above, the following studies

are aimed as original contributions to the literature:

Development of a controller synthesis procedure that directly uses
the disturbance to dynamic pressure for flutter suppression,
Synthesis and comparison of H2, H., and u controllers for control
actuation systems with fully movable control surfaces by using the
controller design procedure developed,

Analysis of the effect of a backlash type of nonlinearity on the
performance of the aeroservoelastic system with controllers

mentioned above.

In addition to the contributions listed above, the following studies

are also aimed in this thesis:

Employment of the flutter suppression method used in the controller
synthesis procedure of Vipperman et al. [26] for airplane wings for a
control actuation system with fully movable control surfaces.
Comparison of two different flutter suppression methods.
Aeroelastic and aeroservoelastic analysis with p and y-methods.
Performance analyses of the aeroservoelastic systems.

Analysis of the effect of the backlash type of nonlinearity on the the
aeroelastic.

Investigation of the effect of the backlash type of nonlinearity on the
performance of the aeroservoelastic system with the controller

mentioned above.
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In order to develop the study in the control domain rather than the
aerodynamics or structures domains the following limitations are applied in
this study:

- The structural part of the control actuation surface is modeled as a
typical section model.

- The torsional mode of the typical section model is assumed to be
dominated by the low stiffness of fin shaft and the actuation
mechanism rather then by the torsional stiffness of the fin itself.

- In the calculation of the aerodynamics, the fin geometry is assumed
as a thin airfoil which has no thickness.

- The aerodynamic forces are calculated using potential flow
approach that is basically an irrotational and inviscid linear

aerodynamic theory.

1.4. Scope of the Thesis

Chapter 2 includes the development of an aeroelastic model of a fin
which is used throughout the thesis to reach its objectives. A literature
survey on aeroelastic modeling is given. In two consecutive parts, brief
introductory information about the aerodynamics and the finite dimensional
aeroelastic modeling are given. An aeroelastic modeling via typical section
wing with thin airfoil assumption is given. The derivations of the state
space equations of the aeroelastic model for various flow conditions are

also presented.

In Chapter 3, flutter search methods are presented. A brief
information is given about the widely used flutter search methods. The u
flutter search method on the aeroelastic fin model is applied. Methods for

determining the flutter flight envelope are given.
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In Chapter 4, controller synthesis methods for the flutter
suppression are given. The aeroservoelastic model of the fin is
constructed by using the aeroelastic model defined in Chapter 2. The u
flutter search method is implemented on this model. The proposed
controller synthesis method for flutter suppression is presented. In order to
compare the performance of this method, an alternative method is given.
The implementation of this alternative method is based on the study of
Vipperman J.S. [26] which was originally applied to an airplane wing

model.

In Chapter 5, the analysis tools that are developed for the purpose
of performance and LCO analyses of the aeroservoelastic system are
presented. A Simulink® model constructed for the performance analyses of
the ASE system with linear AE sub-system is given. The selected time and
frequency domain methods are provided for the modeling of the backlash,
which is assumed to exist in the pitch freedom of the fin. A frequency

domain analysis method is given for limit cycle search.

In Chapter 6, implementations of controller synthesis and analysis
methods that are presented in Chapters 2 to 5 are performed on numerical
models. An aeroelastic model for unsteady subsonic incompressible flow,
Model 1, is constructed. The flutter analysis is performed for Model 1 via
different methods given in Chapter 3 and the results are compared. Hy,
H., and u controllers are synthesized for Model 1, with each of the flutter
suppression method given in Chapter 4. The analysis and the comparison
of the derived aeroservoelastic systems are performed by using the
methods given in Chapters 4 and 5. In order to analyze the effect of
compressibility, the implementations are also performed for unsteady
compressible subsonic and unsteady compressible supersonic region. In
the compressible domain only the flutter suppression methods are

compared, hence only one type controller synthesis method, the H.

17



method is used. In the implementation part of H,, controller synthesis, a
method is devised for simplification of the tuning procedure of weightings.
In this Chapter, a method suggested by Lind et al. [38], which is a robust
controller synthesis approach that considers system nonlinearities, is also

implemented.
In Chapter 7, the summary of the study is given by stating the

contributions. Discussions and conclusions regarding the study in general

are presented. Recommendations for future work are given.
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CHAPTER 2

AEROELASTIC MODELING

2.1. Preview

Aeroelasticity deals with the interaction of structural and
aerodynamic forces in airborne elastic bodies or elastic bodies subject to
airflow. Hence, the aeroelastic modeling of such systems is composed of
the aerodynamic and the structural parts. In this chapter, a literature
survey on structural and aerodynamic modeling of aerodynamic control
surfaces is conducted. An introductory survey is performed on
aerodynamic modeling. A general method of using finite element structural
model for constructing the aeroelastic system is presented. Aerodynamic
modeling of the control surfaces under various aerodynamic conditions

with thin airfoil and typical section airfoil assumptions are achieved.

2.2. Literature Survey

The typical section modeling is a method that can be used with
simple aerodynamic models by which closed form solutions or easily
solvable equations can be obtained. The typical section model is a
simplified 2-D modeling method for 3-D elastic aerodynamic surfaces [1,
3], which is applicable to airplane wings and control surfaces. A schematic
of the typical section is given in Figure 3. In their aeroelasticity studies,
Horikawa et al. [19], Edwards et al. [22], Ohta et al. [24], Liebst et al. [39],
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and Leishman et al. [40] was used the typical section model for linear
modeling of aerodynamic surfaces. This method was also used for
structurally nonlinear aeroelastic systems by Block et al. [25], Ko et al.
[32], Tang et al. [33, 34], and Conner et al. [41] in their studies. The typical
section model was also used with some modifications, such that the rigidly
defined chord in standard typical section model was replaced with an
elastic (beam model) chord. This modified model was used by Lee for
analyzing free-play type nonlinearity in pitch motion [35]. The typical
section structural modeling was also used in modern control studies by
Vipperman et al. [26], Lind et al. [38], and Ozbay et al. [42].

Figure 3. Typical Section

An alternative approach to the typical section is the elastic modeling
of airplane wings and missile control surfaces. This approach is more
realistic but complicated than typical section applications. Hence, it was
used when the typical section model was not valid or more realistic
solutions were required. Roger et al. [20], Nissim [43], and Hoadley et al.
[44] used linear elastic models in their studies. The elastic modeling was

also used for models with structural nonlinearities by Yehezkely et al. [30],
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in modern control studies by Mahesh et al. [23], and in robust flutter

analysis by Lind et al. [45].

However, in aeroservoelastic research studies, elastic models were
not widely used. The reason is the introduction of large number of states
due to elastic modeling, which increase the model complexity and
computation time. From the papers surveyed, it is seen that elastic models
were used for linear aeroservoelastic analysis problems but not in
synthesis problems. Moreover, it is seen that, in the robust controller

synthesis studies, only typical section models were used.

On the aerodynamics side, through the literature survey it is seen
that the thin airfoil modeling was used with steady incompressible
aerodynamics by Horikawa et al. [19] and Liebst et al. [39] and with
unsteady incompressible aerodynamics by Edwards et al. [22] in their
introductory studies. In the study of Ohta et al. [24], the differences
between steady, quasisteady, and unsteady aerodynamic models were
reported. On the other hand, Roger et al. [20], Mahesh et al [23], and
Nissim [43] used the doublet lattice method in order to calculate the
aerodynamic forces on the elastic structure model for an unsteady
compressible subsonic flow. In these studies, the unsteady aerodynamic

forces were approximated by various techniques such as Padé method.

In most of the studies using a structural nonlinearity, some 2-D
aerodynamic models were employed. Ko et al. [32] used a thin airfoil
model with incompressible quasisteady aerodynamics. On the other hand,
Conner et al. [41], Block et al. [25], Tang et al. [34], and Kim et al. [29]

used a thin airfoil model with the unsteady incompressible aerodynamics.

In the literature, there are also some studies reported about

aeroelastic analysis of missile control surfaces with structural
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nonlinearities. Laurenson et al. [31] used a rigid airfoil with the steady
subsonic aerodynamics, Yehezkely et al. [30] used an elastic airfoil with

the unsteady supersonic aerodynamics via piston theory.

Ozbay [42] used the thin airfoil assumption with the unsteady
incompressible aerodynamics in his study on the robust controller
synthesis for flutter suppression of an airplane wing. On the other hand,
Lind and Brenner [45, 46, 47] used doublet lattice and other panel
methods, with the unsteady subsonic and supersonic aerodynamics in

their robust control studies.

2.3. Aerodynamic Modeling

In aerodynamic modeling, various theories can be used, as listed

from more realistic to simpler below:

Nonlinear, viscous, compressible
- Navier-Stokes
- Turbulence Models
Nonlinear, inviscid, compressible
- Euler
Irrotational, inviscid, compressible
- Potential Theory: Panel methods
- Slender body theory
Irrotational, inviscid, incompressible

- Piston theory

The aerodynamics can be modeled more accurately with nonlinear
aerodynamic theories. Using computational fluid dynamics (CFD) the
generalized aerodynamic forces can be calculated using nonlinear

aerodynamic theories as in the study of Newsom [48]. The generalized
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aerodynamic forces are calculated in a matrix form, named as the
generalized aerodynamic force matrix. In this matrix, each element defines
the effect of the aerodynamic force from the corresponding aerodynamic
generalized coordinate to the corresponding structural generalized
coordinate. Once the generalized aerodynamic force matrix is obtained, it
can be transformed into to state space and then be used in standard linear

aeroelastic analyses.

Using full and simplified versions of potential theory, the
generalized aerodynamic force matrix of an aerodynamic surface can be
calculated. There are package programs such as MSC/NASTRAN™ Flight
Loads and Dynamics [49] that can calculate the generalized aerodynamic
coefficient matrices of an aerodynamic surface using a thin airfoil

assumption.
In terms of flow regime, aeroelastic and aeroservoelastic problems
can be grouped in five categories according to the Mach number (Table 1)

[50].

Table 1. Flow regimes

Incompressible subsonic flow 0<M<0.3

Compressible subsonic flow 0.3<M<0.8
Transonic flow 0.8<M<1.2
Supersonic flow M>1.2
Hypersonic flow M>5

The potential flow theory and its simplified versions are used in
incompressible subsonic flow, compressible subsonic flow, and supersonic
flow. It is also applicable in some part of transonic flow with some

modifications; however it is not applicable between 0.9 to 1.1 Mach.
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On the other hand, the thin airfoil has a special place in
aeroelasticity research. The thin airfoil, performing lateral oscillations in a
uniform air stream, has a closed form solution in incompressible flow. The
solution was first derived by Theodorsen [51] and it can be also found in
the references [2, 52]. Using these references, the rational approximation
of aerodynamic forces can be found. For compressible flow, the rational
approximations of aerodynamic forces for the thin airfoil were derived for
specific Mach numbers by Mazelsky and Drischler [53, 54]. For supersonic

flow, the piecewise closed form solutions are available [2].

The abovementioned unsteady thin airfoil solutions can be further
simplified by neglecting the memory effect of the airfoil, thereby obtaining
what is called as the steady aerodynamics. On the other hand, there exists
a third method, the quasisteady aerodynamics which includes the memory

effect as static characteristics.

2.4. Finite Element Modeling

A frequently used method for dealing with elastic models is the finite
element method. This Section is prepared by using the study of Dowell et
al. [55]. In the finite element method, the wing is meshed with sufficient
amount of elements, such that the required minimum number of elastic
modes can be represented. For the modeling of the wing, a small number
of lowest modes of the structural system should be kept for the purpose of
performance as well as some additional number of modes in the crossover
frequency range of the system should be kept to ensure the close loop
stability. For the modeling of the control surface, less humber of modes

can be kept since its structure is simpler than a wing structure.

The general form of equation for the finite element structural

modeling is given by Equation (2.1). As an alternative to finite element
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modeling, one can use Ritz or other formulation to derive the discrete

equation.
M){d}+[K]{a} = (@}, +1a},, 21
where
{q} : Vector of generalized coordinates
[M] : Mass matrix of the structure, structural actuator, any store or
attachments, and control surface
[K] : Stiffness matrix of the structure, structural actuator, and any

stores or attachments
{Q}» : Vector of aerodynamic forces

{Q}ex: Vector of external forces

Decoupling the system into normal modes can be achieved by the

following modal transformation

IRt (2.2)

where

[®] : Eigenvector matrix composed of eigenvectors {qﬁ}j, which

include rigid body motions

{&} : Vector of normalized coordinates
Inserting Equation (2.2) into Equation (2.1), and premultiplying by

[@]T the open loop modal equation in vacuum is obtained. This equation

with linear viscous damping, [C], is expressed as
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where modal mass, modal damping, modal stiffness and forces are

{
{4}, (2.4)

Equation (2.3) includes the full structural model, which is in general
too large to use in subsequent modeling steps. Thus the dynamics which
are beyond the bandwidth of interest and which are not physically
important are truncated, and a reduced equation of motion given in
Equation (2.5) is obtained. Note that the system size, ng is greater than

the modal size, nm, Ng = Np,.
ML +[CaE], K1, =[0.]) {Q), +[e,] {al,, @5

where, [M';], [C'» 1, and [K';] are of the order nmxny, and [@] iS NsXNpy, .

While modeling wings, aerodynamic control surfaces are appended

to the model as shape functions in the following form

vl =[o, %]{{f}m} 2.6)

where
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{z//}: Generalized coordinates including the generalized

coordinates of control surface and reduced generalized
coordinates of the structural modes

[@4] : nsxns matrix of vectors corresponding to the ns deflections of
the control surface 6, defined relative to the adjacent lifting
surface. Since the control surface is a separate structure,
[®s may not be orthogonal to the [®,]

) :  Generalized coordinates for control surface deflection

Neglecting the damping and the stiffness effects of the actuator, the
equation of motion for the wing with aerodynamic control surfaces can be
written by using the generalized coordinates given in Equation (2.6) and

the equation of motion of the wing given in Equation (2.5) as

{M;n M;n,s} ¢}, {C;q 0} €, {K;,, o} (e {cp } {o}
! ! o [ N - mT {Q}A+

M., M {5} 0 O {5} 0 O {5} D Qs

where

[Qs : Actuators hinge moment

2.4.1. Generalized Aerodynamic Force Matrices

The aerodynamic forces can be derived by using panel methods
and its simplified form slender body theory. The derived aerodynamic
forces will contain an implicit or explicit irrational dependence on reduced
frequency. To be compatible with most control design approaches, the
aerodynamic forces are fit by explicit rational functions of the states of the

system by the following two-step process:
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a) Identify the structural motions for which the aerodynamic effects will
be calculated. Then calculate the unsteady aerodynamic forces for
these modal motions, control surface motions, or gust inputs. Use
an aerodynamic model for the appropriate Mach number of interest

at distinct values of reduced frequency k, which is defined as

wb
k= i (2.8)
where
® frequency
b : semichord length of the wing
U : airspeed

and over the frequency range of interest.
b) Fit the aerodynamic forces with a rational function approximation in

the frequency domain.

Aerodynamic influences will be calculated for na=n,+ns modes, for

which states are defined as

(& - {{5};} 2.9)

as
ol el salauelid, e
where
q :  Dynamic pressure
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[Qma(p)]: Matrix of modal aerodynamic force coefficients due to &
and 9

p . Laplace variable

The elements (Qma(p)); of influence matrices are calculated by
using a proper method for a number of discrete reduced frequencies p= ik.
For subsonic flow doublet lattice or kernel function methods can be used
to calculate these influence matrices. Note that the aerodynamic forces
calculated at aerodynamic control points should be transformed to the
structural nodes. This transformation can be performed by using a splining
method, [56].

The second step is to fit the exact values of (Qma(ik)); using a
rational function approximation. Four different rational function
approximation methods that are widely used in aeroelastic studies are

given below.

Most common form (Roger’'s Method) [55]:

In this method, the approximated values (Q,,,A(ik)) of (QmA(ik))

i 1

are as

(nR)j/ (Ik)

—~ . _ . TRV,
(Qualik)) = (Ay), +(A,), k) +(A,), (iKY + 2 (A2, #+@), (2.11)
where
(@mA(ik)) = Estimate of exact calculated values
J
i A
nkR : Order of the denominator polynomial used to fit the lag
terms.
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[Aol, [A1], [A2] are the equivalent displacement, velocity, and
acceleration matrices of the aerodynamics, respectively. The partial
fraction sum captures the dependence on the aerodynamic lag, which is
referenced to velocity due to (ik) term in nominator. The following equation
can be obtained by multiplying both sides of the Equation (2.8) with / and

substituting p for iw.

ik:%b (2.12)

In order to transform Equation (2.11) to time domain, first it is
transformed from frequency to Laplace domain, by substituting the
Equation (2.12) into Equation (2.11) as

(7 (P
~ b pb 2 k] U
(QmA(p))-, :(Ao)j/+(A1)jl(p )+(A2)jl( ) + (Ar+2)j/ (2'13)
] v v = (7pb)+ (gr )j/

)

Roger's method has the advantage of defining different number of
aerodynamic lag terms for each modal aerodynamic force coefficient. With
this property, Roger’s method can define the aerodynamic forces with the
best approximation among the four rational function approximation

methods.

Least-Squares-Method [55]:

Least-Squares-Method uses an equation similar to the equation of

the Rogers Method as given in Equation (2.14) for rational function

approximation.

[Quu(P)]=[A]+[A]p+[A]07 + Y [A,.,] P (2.14)
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However, in the Least-Squares-Method, same aerodynamic lag terms,
which are the terms given in summation operator in Equation (2.14), were
assigned for each term of modal aerodynamic force coefficient matrix. This
assignment reduces the order of the equations of motion. On the other

hand, it also reduces the success of the rational function approximation.

Modified Matrix Padé Method [55]:

In the modified matrix Padé method, different number of

aerodynamic lag terms and values can be defined for each column of the

modal aerodynamic force coefficient matrix as

(nR )/

(émA(p))jl = (AO)j/ +(A1)j/ p+(A2)j, p2 + ; (AHQ)]-,ﬁ (2.15)

Karpel's (Minimum State) Method [55]:

Karpel's method is a modified form of the Least-Squares-Method in

which the lag terms are represented as
[Q,u(0)]=[A]+[A]p+[A]0* +[D)(p[]-[R]) '[Elp  (2.16)

This method has an equivalent accuracy with that of the Least
Square Method, possibly with fewer states. The number of aerodynamic

lag states is equal to the dimension of [R].

2.4.2. Linear Aeroelastic Model

The generalized equation of motion of the aeroelastic structure can

be written from Equations (2.5) and (2.10) as
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[M1{E}, +[Callé), +IKaligh, =a| Quip) (), @1, @17)

Equation (2.17) is valid for a particular Mach number with different

[QmA(p)] Hence, for each Mach number of interest, a re-derivation of the
corresponding [@mA(p)] is required. The unsteady aerodynamic forces,

[@mA(p)}, can be derived using one of the suggested methods given in

Section 2.4.1 or any other appropriate aerodynamic method. The unsteady
aerodynamic forces are fit by a rational function approximation given in
Section 2.4.1. Note that the rational function approximations given are in a

common format as
[Qua(P) | =[A]+[A]P+[A]P* +] Qpa(p)] (2.18)
where [@;A(p)} represents the lag terms.

Substituting Equation (2.18) into Equation (2.17), the generalized

equation of motion is obtained as follows
(M ){E}, +[Callé), +[Kaie), =a[ Qup) Jie), +(@),,  (219)

where

Al (2.20)
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For the lag terms of these rational function approximations, a
standard state space system can be derived in order to apply standard

control techniques as

[ Qra(p) | = Eé% Eﬂ =[DoJ+[CaJ(pl]-[A]D'[Ba] (221)

With nq aerodynamic states, define Age R™™ | Bge R™" |
Coe R™™ | Dqe R™ as the state space elements of [@;A(p)] Hence, a

new state space system can be formed for the aeroelastic system by using

generalized states, &, & and aerodynamic states x as

{4, 0 I 0 (&, 0

(&), (= -IM (ki +a[pa ) -[mMi]'[Ch] aIMi) [Ca] [1E), p+eIMaT (@),

{x} [Bo] 0 [Ad] {x} 0
(2.22)

2.5. Typical Section

The typical section is a simplified model of a flexible wing that is
suitable for an aeroelastic analysis. It is developed in early studies of
aeroelasticity and used by aeroelastic pioneers as Theodorsen [51] and
Garric. The typical section is used to model the three-dimensional elastic
lifting surface by a two-dimensional model as shown in Figure 3. This
model has the properties of the lifting surface section at the 70%-75% of
the span from root. However, the typical section model is applicable to
lifting surfaces which has large aspect ratios, small sweeps, and smoothly

varying cross sectional characteristics across span.
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The typical section models can also be used for modeling of the
aerodynamic control surfaces. Control surfaces are connected to the main
body via torsionally less stiff shafts. This assures that the first elastic mode
of the aerodynamic control surface is the torsional mode which is the pitch
mode of the typical section. However, it is required to check if the second
elastic mode of the aerodynamic control surface is the bending mode,
which is the plunge mode of the typical section. In addition, the
aerodynamic control surface must satisfy the requirement of the typical

section given in previous paragraph.

The equation of motion of the unconservative system given in

Figure 3 can be written as

[M}{g}+[Cl{a}+[K]{a} = {Q}, +{Q}.,, (2.:23)

where
[C]= {CO” CO } (2.25)
K] {2 ,? } (2.26)

{q} = {qh} (2.27)
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and

Ch
Ca
Kn

an

Qa

QaL
Qam :

F ext

Mext :

(2.28)

Q},, = { v } (2.29)

(2.30)

Mass of the wing

Mass moment of inertia of a wing about its elastic axis

Static mass moment of a typical section wing about its elastic
axis

Plunge damping coefficient of a typical section wing

Torsion damping coefficient of a typical section wing

Plunge spring constant of a typical section wing

Torsion spring constant of a typical section wing

Plunge motion of the elastic axis of a typical section wing
from undeflected position

Pitch motion of a typical section wing (angle of attack)
Aerodynamic lift force

Aerodynamic moment

External force

External moment

Position of the center of mass from elastic axis, defined

positively in backwards direction

Disregarding the damping matrix [C], it can be seen that Equation

(2.23) is same as the general form of the equation for finite element

structure defined in Equation (2.1).
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In Equation (2.23), the term {Q} represents the aerodynamic force
vector. In this study, the aerodynamic forces are calculated using the thin
airfoil assumption. In this thin airfoil assumption, the modeling of {Q}a
differs according to aerodynamic regimes. In the following sections, the
equations of motions are derived for subsonic incompressible, subsonic

compressible, and supersonic flow regimes.

2.5.1. Incompressible Subsonic Flow

2.5.1.1. Steady Flow

The aerodynamic forces for thin airfoil in steady subsonic

incompressible flow are [2]

9 G.5.0,(d, + 1)
{Q}, ={QAL}= . (2.31)
an ) g.Sbe, (q, +I0)
U
where S is the wing area defined as
S =2bl (2.32)

The parameters ¢, and ¢, in Equation (2.31) are the aerodynamic

coefficients which are defined in this study slightly different than

Theodorsen [51] for simplifications in equations as

1) (2.33)



where a is the parameter used to represent the position of elastic axis from

mid chord in backwards direction.

The aerodynamic forces for thin airfoil in steady subsonic flow can

be written as
{Q}, =[Ala{a} +[A]a{a} (2.34)

where [A;] and [A] are the aerodynamic coefficient matrices are defined in

this study as

0 -Sc
[A]{o S.b.cla} (2.39)
—S.c,a% 0
[A,]= ] (2.36)
Sbc,,— O
U

Note that in steady aerodynamics, the aerodynamic forces are
linear function of generalized coordinates and their derivatives. Actually
examining Equation (2.31), it can be seen that the aerodynamic forces are
linear functions of (qa+%), where % is a virtual angle of attack.
Substituting the aerodynamic forces for thin airfoil in steady
incompressible flow given in Equation (2.34) into Equation (2.23), the
equation of motion becomes a set of homogenous differential equation
that depends on structural parameters, free stream speed, and dynamic

pressure as
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(Mg} +[Cl{a} +[K{a} =[Aaia} +[A]a{d) +{Q),,  (2:37)

In order to apply standard control techniques, Equation (2.37) can

be easily formulated in state space as

{5} - [AAEsys]{‘f} +[BAEsys]{V} (2.38)

where

o4

vi=1Q},, (2.40)

(2.41)

|:BAEsys:| = [[M]1 } (2.42)

2.5.1.2. Unsteady Flow

In order to calculate the unsteady aerodynamic forces, the complete
motion of the airfoil must be known. On the other side, for an harmonic
analysis, which is used for the flutter analysis, the previous motion of
model is well defined. This simplifies the problem and the unsteady forces
for oscillatory thin airfoil can be found by solving potential flow equations
as [2]
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Qu :%pbs[dh +Ugq, —bac']'a]+7erSC(k){qh +Uq, +b[%—3)qa}

Qu = % pr{ba(jh —Ub[%—aj q, — b’ (%+ azjc’ia} (2.43)

+ mpUbSC (k)[% + a)[qh +Uq, + b(% - aj qa}

where
p . Density of air
C(k) : Theodorsen’s function

Arranging Equation (2.43) into matrix form, the aerodynamic force

vector becomes

(@}, =G} +alA) a1+ Do) R[S ]{d) +TSCU R[S g} 2.4

where
bS - ba
== 2.45
Al U? | zba —ﬁbz(%+a2j (2:49)
0 —b

(A]=3 : (2.46)

2 ylo —ﬁbz[——aj

2
2

Rl = 247
{ } 27rb(%+a] ( )
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[S,]=[0 1] (2.48)

S,] {1 b(%—aﬂ (2.49)

g=—pU? (2.50)

and {R'}, {S1}, and {S2} are vectors defined similarly in the study of
Edwards [ 57 ] for ease of matrix formulation, [A1] and [A2] are

aerodynamic coefficient matrices.

The Theodorsen’s function, C(k), is complex by itself. The exact

expression of this function is defined by using Hankel function as [2]

H2 (k)

C(k) = F(k)+iG(k)= H® (k) +iH,® (k)

(2.51)

Usually approximations for Theodorsen’s functions are used for thin

airfoil, such as [2]

0 L LL SR
2 (k)Y +c,ik+c,

= C(k) =%+ C'(k)

(2.52)

where ¢, =0.10805, ¢, =0.006825, ¢, =0.3455,and ¢, =0.01365.
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In unsteady subsonic incompressible flow, the aerodynamic flow is
composed of two parts; namely, circulatory and noncirculatory parts. The

circulatory part of the aerodynamic force given in Equation (2.44) is

(@}, - L oS, ){a} ~ascolR} [ ]{a)
= GSC(k){R’}(%[SZ]{d}+[S1]{q}j
1

~as(3+Ct0|(RY G 1s.d) +[s)a)

= alA](a}+alA e} +aSCU(RY| 1S, )(d) +[S]ia}
(2.53)

where [A3] and [A4] are aerodynamic coefficient matrices defined as

(2.54)

Theodorsen’s function can be transferred to Laplace domain as

follows

1 c,ik+c,
—+
2 (k) +c, ik+c,

1 c,p'+c, , b
1, CopoP 2.55
2 (pY+c,p+c, P=uP (2:55)

C(k) =

= C(p) =

U
:>C(P)=%+ 5 CLp+bijz Y
p +5Cp+5,C, b

where ¢, =0.10805, ¢, =0.006825, ¢, =0.3455,and ¢, =0.01365.
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The second part of the circulatory aerodynamic force in Equation

(2.53) can be further evaluated as follows

asc R ls:la)+[sia} |

_ cp+3c, U a1
:qspz+gc3p+‘;§c4 b{R}(U[S2]{Q(p)p}+[Sw]{Q(P)}J

:><7§{R'}(c p+ic )([SZ]{Q(p)p}+U[Sw]{Q(P)}]
b 1 b 72

2 U u?
p —1—303;)+b—204

(2.56)

Defining

2 2
p +ycp+izc,

o p):([Szl{cxp)p}+U[S1]{o(p>}J 2.57)

and substituting Equation (2.57) into Equation (2.56), the second part of
the circulatory aerodynamic force in Equation (2.53) becomes

_S
= qE{R,}(C1 p+%CZ)Qas(p)
S .
E{R'}(qqas +%02qas)

= a%{R'}[%cz 01]{‘763}

=q

qas
=q|[D,]{d}, (2.58)

where [D4] is the aerodynamic coefficient matrix and {q}, is the

aerodynamic state vector defined as

(R'}[%¢, ¢] (2.59)
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an

{9}, = {C.””S} (2.60)

Consequently, substituting the Equation (2.58) into Equation (2.53)
and substituting the resultant equation into Equation (2.44), the equation

of aerodynamic forces become as

(@), =a[ANd}+a[A]{a} +aA{d} +q[A]{a} +q[Da{a], (2.61)

From Equation (2.57) the equations for the generalized coordinates

of aerodynamics can be derived as follows

p®+Y bCap+ Y

Qas(p):([ .]1QPp} + U[S](Q <p>}}
(p)

= (02 +Leup+c,)Q,0) =[S, ]{QPIR} + U[S J{Q(p)
:das+%03qas+u C4qas:[ ]{Q}-I—U[ 1]{Q}
= Qo5 =~ 5 C3Gas — = Cu0,, +[S, )1} +U[S |{q} (2.62)
Defining
Qa1 = Qs
q an
4., = 0., (2.63)
_ qa1
{al, —{qaz}

and substituting Equation (2.63) into Equation (2.62), the equation of

aerodynamics becomes as

1}, =[Falaj, +[E.la} +[E a) (2.64)
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where [F,], [E1], and [E2] are aerodynamic coefficient matrices defined as

£]-|° 0} (2.65)

Using Equations (2.23), (2.61), and (2.64), the equation of motions
of the thin airfoil for the subsonic incompressible unsteady flow can be

arranged in state space form as follows

{5} - [AAESySJ{g} + I:BAEsys:I{V} (2.66)
where
&
{&=11d} (2.67)
{a},
vi=1q},, (2.68)

[0, [F2s2] [022]
[Aress |=| [M]-[AJG] (AT -[KD [[M]-[A]a]"(([A]+[A])a-[C]) [IM]-[Ala] d[D,]
[E] [E.] [Fa]

(2.69)
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[02x2]
[Baeye | =|[M]” (2.70)
[02x2]

2.5.1.3. Quasisteady Flow

The quasisteady model is a simplified version of the unsteady
aerodynamic model. For the thin airfoil, the generalized aerodynamic
forces for the quasisteady flow are obtained by replacing Theodorsen’s
function, C(k), in Equation (2.44) with 1 (one). It is suggested to use

quasisteady model for divergence analysis by Ohta et al. [24].

2.5.2. Unsteady Compressible Subsonic Flow

In this Section, a procedure for creating aeroelastic model for
unsteady compressible flow is given. The unsteady compressible
aerodynamic forces are defined, [2]. For numerical solutions, the output of
Mazelsky and Drischler’s studies [53, 54] for Mach numbers of 0.5, 0.6,
and 0.7 are selected. A procedure that converts the indicial functions of
Mazelsky and Drischler to Theodorsen’s notation used in this thesis is
given. The state space equations for the aeroelastic part of the system are

constructed.

Edwards et al. [57], Leisman et al. [40], and Nam et al. [52]
presented methods for aerodynamic modeling in state space. These
studies contained methods for unsteady incompressible flow. Furthermore,
the presented methods were originally derived for the general case in
which the aerodynamic force matrix was available as an output of a
program (NASTRAN). In this Section, these methods are tailored to derive
equations for the thin airfoil unsteady compressible flow.
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In order to derive the unsteady aerodynamic loads in compressible
flow, unsteady aerodynamic loads for arbitrary small motions were used,
[2]. This was performed by means of Fourier integral superposition of

theoretical results of simple harmonic oscillations.

In unsteady incompressible flow, the flow patterns can be divided into
circulatory and non circulatory parts. Furthermore, the aerodynamic loads
are functions of displacement, speed, and acceleration of the wing. Hence,
concepts of virtual mass, virtual damping, and virtual stiffness can be used
in incompressible flow. However, this is not applicable for compressible
flow. Because in compressible flow, in addition to the instantaneous values
of ‘states and their derivatives’, the aerodynamic loads depend on the time

histories of the ‘states and their derivatives’.

Furthermore, in incompressible flow the circulation around a chord
wise rigid airfoil can be determined just by the vertical velocity of the fluid
particle at the three-quarter-chord or any other specific point. However, in
compressible flow, this is not sufficient due to the complexity of flow. Two
indicial motions are required to define it. In Figure 4 and Figure 5 the two
distinct motions, the indicial motions, of an airfoil are given. These two
indicial motions generate their own lift and moment forces. The
aerodynamic forces on the airfoil are derived by superposing these
separate lift and moment terms. Hence, four indicial functions are
generated. In compressible flow, these four indicial functions replace the

Wagner function of incompressible flow.
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Flight path

Arbitrary Indicial
Figure 4. Vertical motion of an airfoil [13].

Flight path
{ circular dfter t = 0)

\//\ Angular velocity q_,

\ Wis of pitch
= \‘\_—q—
Arbitrary \\“

Indicial

Flight path

Figure 5. Pitch motion of an airfoil with zero angle of attack [13].

The aerodynamic lift and moment due to the translational motion of
the airfoil are [2]

'(s) = 2m P y2s( G
L, (s)_2772U S[ U +qaj¢c(s) (2.71)
M, (s)= 2E§U28(2b)(i}ﬂ + qajm () (2.72)

In Equations (2.71) and (2.72), the parameter q,, is the constant speed
for which the indicial function of vertical motion is defined. However, as it is
seen from these equations, the angular displacement is also introduced in
the lift and moment of translational motion. Analyzing Figure 4, one can
see that the plunge motion with the airfoil speed is actually generating an

artificial angle of attack, q,,/U . In Equation (2.72), the variable s is the
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distance traveled by the wing after the start of plunging, measured in

semichords, which is defined as [2]

s=— (2.73)

where t is the time.

Similarly, the lift and moment for an indicial angular speed of q,

about the leading-edge axis can be written as [2]

'(s) = 4z 2 y2s | GucP
L, (5)=472U s( 0 j%(s) (2.74)
M, (s)= 4z§u23(2b)(qﬁb j(ﬁch (s) (2.75)

The total lift and moment can be obtained by superposing the lifts
and moments of the two indicial motions. The total lift and moment for an
arbitrarily moving airfoil, for zero initial conditions, can be derived by taking
the convolution integral of Equations (2.74) and (2.75) for impulsive

motions as [2]

L'(s)= zﬂgu% J:%{qa (o)+ il (O-)}zﬁc (s-o)do

p 2 sbdqa(O')
+47[EU SJ.O Uwcq (S—O')dO'
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M, (s)=2z% ° d G+C']h(0') v(s—o)do
()25 0@ 2 0, (2)+ 27 (s ) -
deI( )

Yo,
+4;zzuszbj e (S—0)do

Equations (2.76) and (2.77) are general equations. Thus, they can be

used for any flow regime if proper indicial functions are known.

The Equations (2.71), (2.72), and (2.74) through (2.77) are derived
for the pitch about the leading edge. However, in the study of Bisplinghoff
et al. [2], an aeroelastic model was constructed according to Theodorsen’s
notations. Thus the pitch axis is placed b(a+7) behind the leading edge.
The lift and moment equations, which are compatible with Theodorsen’s

notation, are given as

L(s)= 27zguzsj:%{qa (o)+ 9 (0)}55 (s—o)do

P2 bdq( )
~4n GUS[ = (s=0)do (2.78)

M, (s)= 27I§U28(2b) E%{qa (o)+ G L(ja)}gM (s—o)do
+47z/20U28 2bj bdq( )C .(s-o)do

(2.79)

The closed form solutions for indicial functions are not available in

subsonic flow, but the asymptotic values are available.
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Mazelsky and Drischler [53, 54] numerically calculated the indicial
functions for Mach numbers of 0.5, 0.6, and 0.7, and then curve fitted to

the results in the form of Equation (2.80) which is Laplace transformable.

#(s)=b, +be™"* + b, +be™ (2.80)

The solutions of Mazelsky and Drischler are given in Table 2
through Table 5 [54]. These tables contain the results for each indicial

function for Mach numbers of 0.5, 0.6, and 0.7. The sign of b, term at 0.7
Mach for ¢, in Mazelsky and Drichler's study [54] is changed from

negative (-) to positive (+) in order to match the corresponding plot given in

the same study.

Table 2. Curve fit results for ¢, at compressible subsonic speeds.

@ (S) = by, + b€ + b, €7 + b e7°

M by, by Pre by Pae by Pa
0.5 | 1155 | -0.406 | 0.0754 | -0.249 | 0.372 0.773 1.890
0.6 | 1.250 | -0.452 | 0.0646 | -0.630 | 0.481 0.893 0.958
0.7 | 1400 |-0.5096 | 0.0536 | -0.567 | 0.357 | 0.5866 | 0.902

Table 3. Curve fit results for ¢, at compressible subsonic speeds.

— _ﬁc S _/Hc 'S _ﬂc 'S
¢CM’ (S) - bOcM’ + b1cM’e o+ bZCM'e T+ b3cM'e o

M| by bios Brow Bocar Pacwr by Paowr
0.5 0 0.0557 | 2.555 | -1.000 | 3.308 | 0.6263 6.09
0.6 0 -0.100 | 1.035 | -1.502 | 4.040 1.336 5.022
0.7 0 -0.2425 | 0.974 0.084 0.668 | -0.069 | 0.438
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Table 4. Curve fit results for ¢, at compressible subsonic speeds.

¢cq’ (S) = bOcq’

+b,_e P« yp e ety b3cq,e’ﬁ3°"’s

1cq’

2cq

M | by bieq Pioy bzcq Pocy bscq Pacy
05| 0 -268 | 4.08 | 2362 | 4.90 0 0
06| 0 |[-0.2653| 1.345 0 0 0 0
07| 0 -0.083 | 0.800 | -0.293 | 1.565 | 0.149 | 2.44

Table 5. Curve fit results for ¢, at compressible subsonic speeds.

¢ch’ (S) = bOch’

1cMq’

2cMq’

—PremyS —BacmyS —Bacmy'S
+ by ® "M+ Bypig€ M+ By M

M| boowy | by | Bowe | Poowg | Boomy | Psowg | Paowg
0.5 | -0.0721 | -0.248 | 1.562 0.522 2.348 | -0.2879 | 6.605
0.6 | -0.0781 | -0.077 | 0.551 0.380 2117 | -0.2469 | 4.138
0.7 | -0.0875 | -0.00998| 0.1865 | 0.1079 | 1.141 | -0.0292 | 4.04

However, Mazelsky and Drischler tabulated the coefficients for

airfoils rotating about three-quarter-chord point with moments taken about

quarter-chord point. Using the following relations, the pitch indicial

functions for a rotating point that is ‘x’ distance behind the three-quarter-

chord point, can be calculated. In these equations, prime superscript is

used to denote the indicial functions of Mazelsky and Drischler.

(¢0q)x -

(¢ch )x = ¢0Mq' -

X

Pog —

X

_¢c’
c

E ¢CM'

(2.81)

(2.82)

The following equations can be used to calculate the new indicial

function if the axis that the moment is taken about is changed. Here ‘y’ is
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the distance of the new point from quarter-chord point, positively defined in

backwards direction.
(bs), = By + L0, (2.83)
y c

_ y
(dira), = sty + - o (284)

The indicial functions of Mazelsky and Drischler can be converted
to Theodorsen’s notation, if x and y values set as in Equation (2.85). The
indicial functions in Theodorsen’s notations can be calculated with the help
of Equations (2.86) through (2.89).

a 1 a 1
X:C[E—Z], y:C(E'FZj (285)
5= (2.86)
T a 1
P o _¢0M,+{2+4}¢C, (2.87)
g |2 1
Feo=t| 55 |0 (2:88)

T a i, a1y, |a,pa 1
¢ cMq _¢ch’ +[2+4}¢cq’ [2 4}¢0M’ |:2+4:|[2 4:|¢c' (289)

The aerodynamic forces can be calculated using these indicial
functions. However, with the transformations, the orders of the indicial
functions may increase up to 12. This order increase in the indicial

functions will directly increase the order of the controller. Hence, the
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results are curve fitted to the expression given in Equation (2.80), which
results in a third order indicial model after Laplace transformation. In order
to satisfy the value of ¢(s) as s>, the steady value, b, term is
excluded from the curve fitting operation and it is directly obtained by
adding the constant terms of the equation which will be curve fitted. The

curve fit function is selected as be”° + b,e "** + b,e

The curve fitting is applied to the indicial functions ¢’ ,,, ¢, , and

cq’

¢" e » Whereas the indicial function ¢' is directly used without any curve

fitting since ¢'_ =4, . In order to measure the quality of the curve fit, the
squared 2-norms of the residuals of the curve fits are used. Since
Equations (2.87) through (2.89) contain a system dependent parameter a,
the indicial functions for Theodorsen’s notation change from model to

model. Hence the indicial functions ¢',, ¢',, , ¢, and ¢

cq are

cMq

calculated during the numerical implementation.

Since the full order indicial functions given in Equations (2.86)
through (2.89) are not used in rest of this study, the ¢’ notation is used for

the curve fitted indicial functions. The curve fitted indicial functions are in

the following form

¢, (S)=by, + b8 + b, e + b, &7 (2.90)
¢TCM (S) = bOcM + b1cMe_ﬂ1CMs + b2cMe_ﬂ20Ms + b3cMe_ﬂ3CMS (291 )
@ oo (S) = bygy + big " + by 07" + by @7 (2.92)

T — = PiemgS ~BacmgS ~BsomaS
¢ cMaq (S) - bOch + b1che T+ bZCqu T+ b3che ? (293)
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The equations above can be converted to time based equations
with the help of Equation (2.73). Hence, the equation of motion of the
aeroelastic system can be written with the help of Equations (2.78) and
(2.79) as follows

. . t d q, (o
md, + mx,4, +¢,q, +Kk,q, = —27r§U28J'0%{qa (o)+ hL(/ )}/{ (t-o)do

vy ’OUSItquTg)qﬁ (t-o)do

mXCth + /ada + Caqa + kaqa = 2”§U28(2b)-[;di|:qa (O-) + qh (O—):|¢IM (t - G) dO'

+4r U (2b) j'bdq( it ,(t-0)do

Taking the Laplace transform of Equations (2.94) and (2.95), with

zero initial conditions, one gets

mH(p)p® +mx  A(p)p’ +c,H(p)p +k,H(p) =

P Hp)p | .7 P, p2ab .
—27Z'EU S{A(p)+ U }pCDC(p)+4;zEU SU(A(p)p)pCDCq(p)

(2.96)

mx,H(p)p* +1,A(p)p* +c,A(p)p + k,A(p) =
2ﬂ§U28(2b)[A(p)+%}p®zM(p)+47r’;U S(2b) (A(p)p) p®7,, (P)

(2.97)
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where

@, (p)= e Pe O B (2.98)
p p"‘?ﬂm p+?/32c p"'?ﬁsc
q)ZM (P) — bOcM chM bjcM chM (299)
P P+5Bewm P+oLoem Py Piou
b b b. b.
d)Zq (p) =29 :j"q 5"‘7 3“’ (2.100)
p p+?ﬂ1cq p+3ﬂ20q p+fﬂ30q
(DTM (p) — bOch + b1ch bZCMq bZCMq (2101)
o p p + %181ch p + %IBZCMq p + %ﬂZch
The indicial functions can also be written in the following form
2
@’ (p) =1(co,- il TP 5 ﬂ] (2.102)
p p°+cC,p°+C p+cCs b

Equation (2.103) can be applied to all indicial functions by

substituting the subscript /i with the concerned subscript. The terms in

Equation (2.102) are explicitly given below. Note that the terms are

functions of airfoil speed U, but they are free of dynamic pressure, q .
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Coi = bOi + b1i + b2i + b3i
Ci = _bwﬂw - b2iﬂ2i - b3iﬂ3i
_(%)((bzi + by ) BoiBai + (by + by ) BBy + (by + by, )ﬂ1iﬂ2i)

_(%)2 b1i + b2i + b3i )(ﬁ1iﬂ2iﬂ3i) (2_103)
(/)(ﬂw + Boi + Bi)
o =(Un) (Bubu+ Bl + i)

(Y4) (Busay)

Cy;

0
II

Cei

Substituting the indicial functions given in Equations (2.98) through
(2.101) in the form of Equation (2.102) into Equation (2.96) gives

mH(p)p? + m x,,A(p)p® +c,H(p)p +k,H(p) =

2
2 U p P’ +Cu P +Csp+Cs. b

C1cqp2 + CZcqp + Cch H}
3 2
p +C4cqp +C5cqp+CGCq b (2104)

o, 1
+47r= 5 U?s—= U (A(p) ) > [Com +

Equation (2.104) can be rearranged as follows

mH(p)p* + mx,,A(p)p* +c,H(p)p + k,H(p) =
L Py H(p)p
27z2U S{A(p)+ U }(COC)

U, Hp)p
Ap), + 7

p +C4cp +CScp+Cﬁc

D
—ZzEUZS(%pZ +CpP +Cyt )| =3

+ar U SU(A(p) P)(Coss)

A(p)p‘;

3 2
p + C4qu + CSqu + Cch

b
+477§U28 U ( CrogP” + CaeqP + C3°‘7)

(2.105)
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Two new states are defined for the aerodynamic lift as

Ay HOP

Xc(p): 3 bz b
p +C4cp +CSCIO+CBC

A(p)pz

ch(p) = 3 2
p + C4cqp + Cchp + Cﬁcq

(2.106)

Replacing these new states into Equation (2.105)

mH(p)p® + m x,,A(p)p* +c,H(p)p + k,H(p) =
P2 H(p)p
272U S{A(p)+ 7 }(COC)

_2ﬂ§UZS(C1cp2 + CZcp + C3c ) Xc(p)
P b
+47 5 U*S T (APIP)(Cocq )

p 2 b 2
AU sep K

Substituting equation of dynamic pressure given by Equation (2.50)
into Equation (2.107) and taking the Inverse Laplace transform of the

resulting expression give

mq, + mx.q, +¢,q, +k,q, =
_ ) b .
_27zq8[coC [qa + %) —~ 2UCOCq (q, )}
_27ZC_IS(C1C).(AC + CZchc + C3cXAc)
—_b .. .
+47Z'qSU(C1chAcq + C2chAcq + C3¢:qXAcq)

(2.108)
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Taking the Inverse Laplace transform of Equation (2.106), the time

domain equations of the aerodynamic states are obtained as

X, =—C, %, —Cy X, —Ce, X, +0, L; ‘Zv (2.109)
.. . U
ch = _C4chcq _CSCchq Cch cq +q 3 (21 10)

Defining the states for the aerodynamic lift due to translational
motion as in Equation (2.111), the time domain equation of aerodynamic
state given in Equation (2.109) can be transformed to the state space

equation given in Equation (2.112).

Xpc1 = X
Xac2 = Xpc1 = X
Xpo3 = Xpop = X, (2.111)

. q,,
X
5¢c”tc 60 c q b b

~—

Xpos = X; =—C4, X, —C

4c”*c

XAc1
{X}Ac= XACZ
XAc3 ]
0 1 0 0 O 0 O
(x},=[ 0 0 1 |{x}, +0 0l{gj+| 0 0|{g} (2.112)
—C. —Cs; —Cye 0 u 17/b 0
L b

The state space equation derived above can be written in a

compact manner as
X} =[Fac[{x} . +[Eic [{a} +[E2 {9 (2.113)
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where [Facl, [E1ad], and [E2ac] are aerodynamic coefficient matrices defined

as

0 1 0

[FAC]: 0 0 1
““ec _CSC _C4c
0 O

[E.]=|0 O (2.114)
o Y
L b
0 O

[E,nc]=| O O
1/b 0

The state space equation for the state of the aerodynamic lift due to

pitch motion can be written as

{X}ACQ :I:FACQ:I{X}Acq +|:E20(7]{q} (2115)
Xsq
X jeg =1 % (2.116)
X,
0 1 0
|:FAcq] - O 0 1
_C6cq _CSCq C4cq
[ (2.117)
0 O
|:E2Acq:| = 0 0
o Y
L b




Performing similar operations on moment equation, one gets

mx.,H(p)p* +1,A(p)p* + ¢, Alp)p +k, A(p) =

2
2ﬂ£U23(2b)[A(P)+—H(p e }pl(cmm P M ﬂ]
2 V) p P +CuyP” + CoqyP +Coopy b

C1chp2 + CZchp + CBch g]
,03 + C4chp2 + CsemgP t Coomg b (2.118)

p b 1
+47zEUZS(Zb)U(A(p)P)pE(COch +

mxcgc'j,7 +1g,+c,q,+k,q, =
27qS(2b 9 2 b )
7q ( ) Cocm | 9o +U + Ucow]q (qa)

+2”C_78(2b)(c1chAcM + CoomXpem + C3cMXAcM)

B b .
+47qS(2b )U(C1chXAch *+ CoomgX acmg * CSCMqXXACMq) (2.119)

The state space equation for the aerodynamic moment due to

translational motion becomes

X s = [Faoun 1} pous + [Evonn 119} + [Ezons ]G (2.120)
XcM

X s =1 Xom (2.121)
).(.CM
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0 1 0
[Fan]=| O 0 1
~Ceom  ~Csem  ~Cacm
0 O
[Ew]=|0 0 (2.122)
o Y
L b
0 O
[EZACM]: 0 0
1/b 0

Similarly, the state space equation for aerodynamic moment due to

pitch motion can be written as

{X}Ach _|: Ach:|{ AcMq +|: 20Mq:| (2123)
Xch
XV g =1 Xomig (2.124)
Xch
0 1 0
[FAch} = O O 1
_Csch _CSCMq _C4ch
] (2.125)
0 O
[EZAch]: 0 0
o Y
L b
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Combining the lift and moment equations given by Equations
(2.108) and (2.119), the equation of motion of the aeroelastic system can

be written as

where [A1], [A2l, [Dac), [Dacql, [Dacm]l, and [Dacug] are aerodynamic

coefficient matrices defined as

A]-2 S{o ~Coe } (2.127)
= 27T -
1 0 (2b)COCM
B 1 _COC 2bCOCq
[Az] = 27TSU|:2bCOCM 4bZCoCMq} @1
o255 G 5] o
-4 G o
[DAcM]=27zs(2b)[ N } e
C3CM CZcM C1CM
b 0 0 0
D, . ]=4zS(2b)> 2.132
[ ACMq} ( )U{ 3cMq CZCM‘? C1°Mq} ( )
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Defining the states as in Equation (2.133), and including the
external forces, the state space equation of the aeroelastic model for

unsteady compressible flow can be obtained as

{5} = I:AAEsys:I{f} +|:BAEsys:|{V} (2133)
where
9)
{q}
(£} = e (2.134)
- {X}Acq .
{X}ACM
{X}Ach
{v} = {Q}ext (2.135)
[0,.] (2] [0.] [0.] [0,1s] [0.]
M ([Ala-[K]) [MT'([A]3-[C]) [M]'[Dx]d [M]'[Duold [M]'[Daou]d [M]"[Duois ]G
(A |- [Eiac] (Eznc] [Fac] [05,] [05,] [055]
A [03)(2] |:E2Acq] [03x3] [FACQ} [03)(3] [03)(3]
[E1AcM] [EZACM] [03)(3] [Osxs] [FAcM] [03x3]
[03x2] |:E2A0Mq:| [03)(3] [03)(3] [Osxs] [FAch:I i
(2.136)
_[02x2 ]_
[M]
0,..]
Biees | = [ 2x2 (2.137)
|: ey :I [02x2]
[02x2]
_[02x2 ]_
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2.5.3. Unsteady Compressible Supersonic Flow

The lift and moment equations, Equation (2.76) and Equation (2.77)

given for unsteady compressible subsonic flow are also valid for

supersonic flow. It is only required to derive the indicial functions to extend

the formulation to supersonic flow. In contrast to the subsonic case, the

derivations of indicial functions are much easier in supersonic flow. In

supersonic flow it is also possible to obtain closed form solutions. The

piecewise solutions of the indicial functions for unsteady compressible

supersonic flow are given in Equations (2.138) through (2.141) [2].

NS

2
M’
lcos‘*[M—ﬁ}
M S
— cos | =S +m-SM
M?—1 2M 2
1 | s° ( sjz
TR .
M\ 4M 2
2
IMP—1’
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0<S<m

- M+1

2M 2M
<s<

W g (2.138)
M+ 1 M—1

(2.139)




J’_

2

ﬁcos{
e [
1

4M
aIME—1

[

-2
37M

¢0Mq (S) =

372

(2.140)

OSSSﬂ
M+ 1

where M is the Mach number.

(2.141)

These indicial functions are derived for the pitch of the airfoil about

the leading edge, and the moment is also taken about the leading edge.

Hence, it is required to calculate the indicial functions at the elastic axis.

For this purpose, Equations (2.81) through (2.84) are used with a shift

distance of x =y =b(a+1) to obtain the following equations.
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O ou = bor + F + 1} iy (2.143)

2 2
s _B%} 4 (2.144)
T a 1 a 11
¢ cMg — ¢0Mq’ + |:§+§}(¢cq _¢CM')_[E+§:| ¢c’ (2145)

The equations of indicial functions Equations (2.142) through (2.145)

are the substitutes for Equations (2.86) through (2.89) in subsonic flow.

The rest of the procedures and equations given in Section 2.5.2 are all

valid for supersonic flow.

2.6. Postscript on Chapter 2

In this section the equations of the aeroelastic system are derived in

state variable form for the thin airfoil in the following flow regimes:

Steady incompressible subsonic flow,
Unsteady incompressible subsonic flow,
Unsteady compressible subsonic flow,

Unsteady compressible supersonic flow.

Note that no output equations are derived since the inputs and outputs of

these systems are modified according to the requirements. For the

aeroelastic analysis, these equations are directly used after some proper

input/output modifications. These equations are also used in constructing

the equations of the aeroservoelastic systems.

In the derivation of the aeroelastic matrices for unsteady flows,

Theodorsen’s function and indicial functions are used. In this Chapter,
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step by step derivations of these functions to the state space are given. In
literature, a derivation with a different method was presented by Chang
[52] and Lind [38]. However in the presented method, every indicial
function is restricted to have the same number of lag terms. A proper
method that allows the selection of a different number of lag terms for
each indicial function was provided by Edwards [57]. But the equations
were only valid for incompressible flow and the derivations were not
provided. Hence the derivation details of these equations and their
extension to compressible subsonic flow equations are performed and
presented in this Chapter.
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CHAPTER 3

FLUTTER SEARCH METHODS

3.1. Preview

In this Chapter, the flutter search methods are examined and some
well known flutter search algorithms are surveyed. Among them
application of the so called p-method is briefly presented. The u flutter
search method is described in detail. Application methods of the y-method
on the nominal and robust aeroelastic models are presented. Algorithms
are constructed in order to implement the y-method for flight envelope

analysis.

3.2. Flutter Search Methods

Since flutter is a frightful instability in aviation, several studies were
conducted for the prediction of flutter speed using various methods. The
derivations involved in these methods are out of the scope of this study.
However, some of these methods are used in this study in order to derive
the flutter speed of the aeroelastic and aeroservoelastic systems. Some

common flutter prediction methods are given below:
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K-method, (1942);

This flutter computation procedure uses the structural damping
concept such that an artificial damping is introduced to enforce an

harmonic solution to the following equation,

[MI{g}+[CHa} +(1+ig)[K{a} = {Q}, +{Q},, (3.1)

Damping factor, g, is calculated for every mode at several discrete
speed values in the range of interest.

The flutter occurs at the speed that damping factor, g, crosses zero.
Mode switching often occurs making interpretation of the results
difficult.

KE-method:

Similar to K-method, except the viscous damping is ignored.

(Mg} +(+ig)[K]{a} ={Q), +{Q},, (32)

PK-method, (Hassing, 1971);

Similar to K-method, but all matrices are real.
[MI{G}+[Clia}+[K]{a} =1{Q}, +{Q},, (3.3)

Aerodynamic load matrices are real but non-symmetric yielding
complex roots.

Mode switching often occurs causing difficulties in the analysis.
User is responsible for determining “match point solutions”.

Flight control system may be included in the analysis.
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p-method [Abel, 1979];
- A transformation into state space is applied and the eigenvalues of
state space A-matrix are computed.
- Flight control system may be included.

- Use of standard control analysis tools is possible.

u-method [Lind and Brenner, 1998]

- State space model of the system is derived and written in LFT-form
with the dynamic pressure q as a free parameter to perform -
analysis.

- Model uncertainties fit in LFT model.

- Worst case flutter margin is computed.

- Flight control system may be included.

The py-method search algorithm is the base of the controller synthesis
method for flutter suppression, which is presented in this study. Thus,
among the flutter suppression methods the py-method is selected as the
main search algorithm. A second method is used in order to crosscheck
the results of the y-method. For this purpose p-method is selected. Since
both methods use the state space equations, this selection simplifies the
applied procedures applied. Moreover, the usage of standard control

analysis tools for the p-method analysis also simplifies its application.

In the analysis using the p-method the state space system matrix is
computed for several discrete values of dynamic pressure or airspeed and
the stability of the system is analyzed for each dynamic pressure or
airspeed. Thus the results can be presented on a root locus plot or a plot

of damping ratio and frequency versus dynamic pressure or airspeed.
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3.3. u-method

The p-method is the implementation of robust system analysis in
flutter analysis. A general information about robust system analysis is
given in Appendix A. The application of this method is given in Section
3.3.1. This application involves a nominal flutter analysis which is actually
a robust stability problem. In Section 3.3.2, the robust flutter analysis

concept and its application are given.

3.3.1. Parameterization over Flight Conditions

The p analysis searches for the minimum perturbation on a system
parameter that causes instability. Thus, in order to obtain the stability
margin of a nominal system via y analysis, it is required to select the
particular parameter to perturb. Since the state space equations of the

aeroelastic model are linear functions of dynamic pressure q, the model is
parameterized around the dynamic pressure. Hence, the perturbation of q

can be entered as a fractional transformation. This perturbation is treated
as a system uncertainty, hence the resulting stability margin specifies the

amount of change in dynamic pressure required to cause the flutter.

Considering an additive perturbation, 6, € R, on the nominal

dynamic pressure, q,, the total dynamic pressure qis defined as

q=q,+9. (3.4)

q

Substituting Equation (3.4) into the generalized Equation (2.37) of

steady incompressible flow, and collecting the o, terms, the following

equation is obtained.
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Q|
o

(3.5)

In Equation (3.5), the term {W}a is the perturbation that is defined

as an external operator affecting the nominal system with a feedback

approach. The perturbation equation is
{W}(7 =5, {Z}a (3.6)

where {W}a and {z}(7 are the input and output signals, respectively. The

equation of the output {Z}a is as follows

{7}, =[Alla}+[A]{q} (3.7)

Defining the plant of the state space system as [Pae], such that

{z}. =[P.]iw}, . and disregarding the rest of the external forces, the

nominal aeroelastic state space model becomes

{q} [02x2] [lzxz] i [02x2] {q}
{0} =M (A)G-[KD M (Ala.-[CD M) |\ {a}  (3®)
{Z}a [A] [A,] [0,,.] {W}z,

where the general format of these equations is
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el

(P]- F_"_‘]ﬂi_[_?_q (3.10)

and

The equations for the other flight regimes can be found in Appendix

Equations (3.9) and (3.10) are used for nominal stability analysis in
the p framework. Linear fractional transformation system for nominal
stability analysis in the yu framework with parameterization around
perturbation in dynamic pressure is given in Figure 6. It depicts the
feedback interconnection between the perturbation in dynamic pressure

and the nominal plant model parameterized around that perturbation.

Jo O
1o s

(2] wi,

—
o U
D
[I—
A

Figure 6. LFT system for nominal flutter analysis

Using the robust stability analysis tools and the small gain theorem,
the largest perturbation to dynamic pressure for which the nominal

aeroelastic system is still stable can be found. For a given system in

Figure 6, [P ] is robustly stable with respect to the perturbation set

ae

0

F" ;} which is infinite norm bounded by real scalar «, if and only if
q
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/U([Pae])<%{' Here « is the largest perturbation given to the dynamic

pressure for which the nominal aeroelastic system is still stable. Since &,

is a real scalar, the solution is the maximum spectral radius of the
frequency varying transfer function matrix. However the spectral radius is
a discontinuous function of frequency, thus the true solution of y can not

be guaranteed via search over finite frequency points.

A simpler alternative method is to iteratively search the stability of
the system for different perturbations. One of the simplest approaches
used for the nominal flutter margin search is the bisection method [38],

which is given below.

1. construct the [P ] matrix at dynamic pressure q,,

ae

2. select an initial value for the operator ¢, that is related to [Pae]

as in Figure 6,

3. define scalars ¢, >J,,,,20 to bound &,
4. define scalar ¢ >0 for accuracy,

5. compute 5q=% (0, +0

upper lower )’

6. if F,([P,].5;) has an unstable pole then take &, =&

q upper q

otherwise take ¢,

lower

=5‘7’

7. if 0, per ~Oower > € then go to step 5,
8. the nominal dynamic pressure of flutter is q;,, = q, + 6,6, »
9. the nominal dynamic pressure of flutter margin is 'y, =9,,,, -

This method can be easily applied to the aeroservoelastic problem

by replacing the system transfer function matrix of the aeroelastic plant

[P ] with the system transfer function matrix of the aeroservoelastic

ae
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system. However, for an aeroservoelastic system the lower bound also
gains importance. For the search of the lower bound the method given

here is used with some small tailorings.

3.3.2. Robust Model in the Structured Singular Value Framework

One can introduce additional uncertainties in addition to the
dynamic pressure such as mass, damping, stiffness, etc. in order to model
the variations between the theoretical model and the physical system. In
this Section, two uncertainty models are added to the nominal aeroelastic

model. These uncertainties are added to stiffness and damping.

3.3.2.1. Uncertainty in Stiffness

Parametric multiplicative uncertainties are used for linear
uncertainty of stiffness. For that purpose, the uncertainty is multiplied with
the stiffness in diagonal matrix form and with some weighting functions as
given in Equation (3.11). Weighting functions are used to consider the

uncertainty of each element separately.

(K] =[K]([Lowe) + [ Wi ][ 64 ]) (3.11)

where
k, O
<15 |
[ W, ]:{Mg"’ M? } (3.12)
o, O
I: 5k j|=|: 0 é‘kal
and
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kno : Nominal plunge stiffness of typical section wing

k.« : Nominal pitch stiffness of typical section wing

Win : Weighting for uncertainty of plunge stiffness

Wi, : Weighting for uncertainty of pitch stiffness

okn . Norm bounded perturbation multiplier of plunge stiffness

ok« . Norm bounded perturbation multiplier of pitch stiffness

Inserting Equation (3.11) into the nominal aeroelastic equation of

motion in Equation (3.5), and collecting [5k] terms Equation (3.13) is

obtained

(MG} +[C]a) + ([Ko )+ IR Wi ][0 ]){a} =[A) @) g} + [A]@) (g} + (w),

(it =[m] " ([AJa, - ((K ]+ [KI[ Wae I 0 ))a)+ M ([A]a - [C) g} + [M] " {wh,

() =[M]" ([A]a, - [K]) {a} + [M] " ([A]a, - [CD) g} +[M] " wi, - [M] [ 6 J([K, ) Wi Jiat)
G} =[m]"([Ala, - [K.){a} + [M] " ([A]a, - [CI){a) +[M] ' w), - [M] [ 5, ]iz),
{d}=[m]" ([A)a, ~[K, ) {a} + [M] " ([A]a, ~[C]) g} +[M] " {w), ~[M] " {w},

(3.13)

In Equation (3.13), the term {w} is introduced to relate the

perturbation-to-stiffness to nominal dynamics with a feedback approach

and it is expressed as
wi, =[ 6. {2}, (3.14)

The elements of {z}k are added to the system as additional

outputs. {z}k is obtained by multiplying the position states with the

weighting matrix and the nominal stiffness matrix as
{z}, =[] W ]{a) (3.15)
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Thus, the equation of motion of the robust aeroelastic system with

multiplicative uncertainty on stiffness becomes as

{q} [0, ] [l2xc] E[Ozxz] [0, ] {q}
A1 (A)g (kDM (Ala, (O] [M] (M1 |] 19 | (3 46
| [A] (AT T 0] 0] ||
{Z}k [K, ][Wi] [0,,.] E[Ozxz] [0, ] {W}k

3.3.2.2. Uncertainty in Damping

The uncertainty in damping is modeled by using a parametric

additive uncertainty as follows

[cl=[c,]+] W, ][ 5. ] (3.17)
where
¢, O
% o]
_ Wch 0
W, | —[ X Wcj (3.18)
I: 50 ]: |:5Ch 0 :|
0 o,
and
Cho . Nominal plunge damping of typical section wing
Cs : Nominal pitch damping of typical section wing

Wen : Weighting for uncertainty of plunge damping
We, : Weighting for uncertainty of pitch damping
ocn . Norm bounded perturbation multiplier of plunge damping

dca . Norm bounded perturbation multiplier of pitch damping
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Inserting Equation (3.17) into Equation (3.13), and collecting [5]

terms, Equation (3.19) is obtained

o]
+[M] {wh, - [M] {w},
{d} =M1 ([Ala, - [KDia} +[M] " ([A.]4, -[C]) i}
+H[M] " wi g = [MT (w), - [M] s (W Jat)
{d} =M1 ([Ala, - [K.Dia} +[M] " ([A.]4, -[C]) i}
+[M] wh, - [M] w, [T 6 {2,
{a} =[M]" (A0, - [K,D){a} +[M] " ([A)0, - [CT){a} +[M] " {w}, ~[M] " {w}, ~[M]" {w}

In Equation (3.19), the term {W}C is introduced to relate the perturbation to

damping to nominal dynamics with a feedback approach and it is

expressed as
wi, =[ o, |{z}, (3.20)

The elements of {z} are added to the system as additional

outputs. {z} vector is obtained by multiplying velocity states with a

weighting matrix as
{z}, =] "W, ]{q} (3.21)

Thus the equation of motion of the robust aeroelastic system with additive
uncertainty in damping and multiplicative uncertainty in stiffness becomes

as given below
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@) [ (0] el 100e] [0] [020][ 1)
G M (Al -[KD M (A -[C.D) M) (M) M ]| 19}
12 2 [A] [A,] 100 1050 T0,] |11
{Z}k [Ko][Wk] [02x2] E[OZXZ] [02x2] [02x2] {W}k
{Z}c L [02x2] [Wc] i[ozxz] [02)(2] [02x2]_ {W}

3.3.2.3. Robust Flutter Margin

In the equations given in the previous subsection, uncertainties are
modeled as a constant parametric uncertainty. It is also possible to model
the uncertainties as frequency varying uncertainties. In that case, the [W]
matrices become transfer function matrices. Linear fractional
transformation system for robust stability analysis in the y framework with
parameterization around perturbation in dynamic pressure and structured

uncertainty is given in Figure 7.

e

[P

Figure 7. LFT system for robust flutter analysis

A 4

A A

In Figure 7, 6, is the unit norm bounded uncertainty operator for

dynamic pressure,”éauw <1, [A] is the unit norm bounded aeroelastic model

uncertainty, H[A]ngl ., and [13] is the scaled plant,

ae
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[EG]:[PBG]F.W‘T”] [0]] In the scaled plant, [ “W,. |=W,][l,,,] is the

[o] /] e
weighting function that scales the perturbation of dynamic pressure from 1

Pa (or unit of dynamic pressure) to the desired search value. Thus the

dynamic pressure becomes
q =0, +W,5, (3.23)

For the ease of formulation, the uncertainty matrix in Figure 7 is

defined as

[A]= P o] [ZJ (3.24)

The robustness of [1369] with respect to [A-] can be determined via
small gain theorem, as defined in the last paragraph of Section 3.3.1. The

solution guaranties the stability for any value of uncertainty if H[Ee]

<1.

However this robustness condition is overconservative since it does not
concern the structure of the uncertainty matrix. The structured singular

value, y, is the least conservative measure of robustness.

Given the complex, stable, linear, time invariant transfer function

matrix [1386] defined for rational elements and associated norm bounded

set of uncertainty operators [A], u is defined as

= 1 -
(Pe])- ming, {7 ([8]): det([1]-[ P][a,]) = 0] 329
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here [A,] are diagonal elements or matrices of [7&] and & is the largest

singular value.

Using the definitions above, the robust flutter stability is obtained at

rob

/J([l3 ])=1 for which the robust flutter pressure is g, =9, +W,. Thus

ae

the least conservative robust flutter margin is

r =W, (3.26)

rob q

ae

u([ls ]) can be related to familiar linear algebra quantities, when the set

of A is at two extreme sets

1) if [a]={s[/]:5eC} then p([P,])=p([P.]) . where p is
spectral radius of P.
2) if []eC™ then u([P, ])=5([P.])-

In general it can be shown that,

p([P])<ul[.]) o) 527

However, these bounds are not sufficient to estimate a useful ,u([l-sae])

because the gap between the spectral radius p([P ]) and the largest

singular value 5([/3%]) can be arbitrarily large. But, the bounds can be
refined by considering transformations on [1336] that do not affect

u([l-i,e]) but do affect p([ﬁ%]) and 5([/3%]). This can be accomplished

by defining two subsets of C™":
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[Q]= {[é} e[a]:[@][4] - [/M]} (3.28)

o diag|[ B, [ B, ][, Jorse s, [, ] :] 29

(6 ]ec™[5]=[5] >0.d, erd, >0

o] -tal [afialela] [a6]ela ] a0
7([&]a))=2([a)[a])=7([a)
[B][a]-[a][ 5] (331

wa((Pe @) = ([G]P )= b ([P]) = e [B][RI[E] ) 332

Therefore the bounds can be tightened to

e P Q[P D= (Pu )< At (B[R] O7]) (333

A simple method to iteratively search the [ W | for y([EeJ):wg, with

accuracy ¢, is given below [38].

1. construct the [P,,] matrix at dynamic pressure g,,
2. select an initial value for the operator ¢, that is related to [P..]

as in Figure 7,
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10.
11.

select the dimensions of the unity norm bounded operator [-A']
define weighting W, >1 to scale q feedback,

define scalar ¢ >0 for accuracy,

5 - [ Wy ] [0]
compute [Pae]_[Pae][ 0 [IJ

calculate W,, =""7! )

~ 0 AW ] (0]
compute [Pae]_[P ] 0 IJ

if the value of ,u([ ]) is greater than 1+ ¢ or less than 1-¢

ae

then go to step 7,
the robust dynamic pressure of flutter is q,,, =q, + W,,,

the robust dynamic pressure of flutter marginis ", =W,

However, this method does not guarantee that the dynamic

pressure of flutter is at the upper edge corresponding to high pressure. To

ensure this, the following algorithm can be used [38].

o a bk~ W»

ae

construct the [P,, ] matrix at dynamic pressure q,,

select an initial value for the operator &, that is related to [P, ]

as in Figure 7,

select the dimensions of the unity norm bounded operator [-A']
select an initial value for the nominal dynamic pressure q,,
Compute plant P at nominal dynamic pressure q,,

Compute g, and associate W, from above algorithm,
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7. If the term W, is greater than q,, then compute (q, =1.1 W_,)

and go to step 5, otherwise the calculated the robust dynamic
pressure of flutter and the robust dynamic pressure of flutter
margin from the above algorithm in last iteration are the

guaranteed upper edge results.

Similar to the nomial flutter search case; these methods are
sufficient for an aeroelastic system, and for the search of lower bound in
aeroservoelastic systems the given methods are used with some small

tailorings.

3.4. Determination of Flutter Flight Envelope

The flight envelope is the region in which an airplane or missile can
fly without encountering any problems. Hence, the flutter flight envelope
should be a flutter free region. In the airplane design, a safety margin is
put between the instability limits and the limits of the flight envelope.
According to FAA, this safety margin is defined as 20% of the design
speed for the transportation airplane [ 58 ]. In  military
requirements/standarts of USA, the safety margins were set as 15% of the
equivalent airspeed for military aircrafts [59] and missiles [60]. In MSC
Aeroelasticity course notes [61], which is the course notes of a commercial
aeroelasticy analysis program, this margin was also given as 15% of the
equivalent airspeed. In this study, the flutter flight envelopes are calculated

without using any safety margin.

Examining the aeroelastic equations derived in Section 2.5, it can
be seen that the airspeed terms still exist in equations. Thus the
perturbation to dynamic pressure does not affect all airspeed terms
although it is a function of airspeed. Furthermore, the airspeed appears as

a nonlinear term in these equations. This is the main reason behind
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selecting the dynamic pressure as the perturbation term. However, due to
the unperturbed airspeed terms in the aeroelastic equation, the
perturbation to dynamic pressure actually only affects the air density, it can

be seen from the equation of dynamic pressure defined as [3]

g=—pUZ. (3.34)

Hence the results of the procedures presented in the previous sections
give the flutter margin in terms of air density, which may be termed as the
margin of flutter air density. In incompressible flow, the equations are
independent of Mach number. Hence the calculated air density of
instability corresponds to an altitude. On the contrary, the equations are
Mach number dependent in compressible flow. For this reason, the
calculated air density of instability does not define a physical state unless
the margin of flutter air density; i.e., the difference between the calculated
density and the density at which the system is set up, is equal to zero.
Hence the air density of instability does not directly correspond to an
altitude. However, the margin of flutter air density is still a useful data and

it is used to determine the flutter flight envelope in compressible flow.

3.4.1. Incompressible Flow

In incompressible flow, the Theodorsen function used to model the
aerodynamics is valid for all Mach numbers below 0.3. Consequently, the
aeroelastic model and the p-method flutter search equations are valid for
every Mach number below 0.3. Hence, a corresponding altitude can be
calculated without any iteration. Therefore, a straightforward method to
determine the flutter flight envelope is to calculate the air density of
instability for a number of airspeeds. As a result, the flutter flight envelope

can be given as an altitude versus airspeed plot. In these plots the
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resultant altitudes may be below sea level, but it is recommended to keep

these values to catch the behavior of the system.

In the second search procedure, the airspeed of instability is
calculated for a given dynamic pressure. A simple method to iteratively

search the airspeed of instability, with accuracy ¢, is given below.

1. construct the [P, ] matrix at initial air density p, and initial
airspeed U, ,
2. define a scalar ¢ >0 for accuracy,

define a scalar j for indexing and setj = 1,

4. calculate the dynamic pressure of instability g, using y-method,
o 2q; :
5. calculate the corresponding airspeed, U, = —~ . Note that this
Lo

airspeed is not the actual airspeed of instability due to the
unperturbed airspeed terms in the equations of y-method,
6. calculate the percentage of the change of airspeed,
u.-U.
%0oU, :IU—H (Alternatively the change of airspeed

=
oU; =U, -U,, can be used),

7. setup plant [P,, ] at initial air density p, and airspeed U,

8. increase the index j by one,

9. if %6V, , >¢ go to step 4,

10.  the flutter speed is U =U

flutter j—1

This procedure is actually devised to determine the airspeed of

instability at a specific altitude, but repeating the sequence for different

initial air densities will produce a flutter flight envelope.
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3.4.2. Flight Envelope Search in Compressible Flow

In contrast to incompressible flow, the aerodynamic equations of
compressible flow are valid for a corresponding Mach number. The reason
is the indicial functions that are separately defined for each Mach number.
In the atmosphere model, a physical state can be obtained by setting two
parameters, for fixed temperature. Hence, any two of three quantities,
namely, Mach number, air density, and airspeed define the remaining third

one. This physical state is named as a match point. In y-method, the plant

[P ] is established for a match point. The result of y-method gives an air

density of instability. Since one of the three parameters is altered, a
second parameter should be changed to make this new point a match
point. However, Mach number is fixed due to indicial functions of
compressible flow, and the airspeed is fixed due to undisturbed airspeeds
in u-method equations. Hence the new point is an unphysical point. But
the instability margin of air density is still a valuable data. In addition to
defining the stability of the initial point, it can be used to determine the
actual flutter margin. A simple method to iteratively search the match point

of instability, with accuracy ¢, is given below.

1. construct the [P ] matrix at initial air density p,, initial airspeed

ae

U, and initial Mach number,

2. define a scalar ¢ >0 for accuracy,

3. define a scalar j for indexing and setj =1,

4. calculate the air density of instability p; using p-method,

5. calculate the corresponding airspeed U, of the new match point,

by using the initial Mach number and the calculated air density

of instability p,,
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6. calculate the percentage of the change of airspeed,

U -U,
%SU, =L,
U,
7. setup plant [P,, ] for the new match point,
8. increase the index j by one,

9. if %6U,_, > ¢ go to step 4,

10. the parameters of match point of instability are; airspeed
U, . =U.

Iy air density p,,, = P and initial Mach number.

flut

This method works if the system is stable at the obtained match
point in iteration, otherwise it fails. In order to solve the problem, a check

procedure is introduced after the 5™ step of the method given above as

1. if the system is unstable at the j ™ match point;
a. decrease the index j by one,

b. calculate U, =n*%dU; +U,,, where n is the relaxation

constant.

c. calculate corresponding air density, p;, by using the initial
Mach number and U,,

d. goto step 6.

The results of the analysis can be given as an altitude versus
airspeed plot. The match points for each Mach number construct a line in

this figure. On each line, the match point of flutter can be given.

3.5. Postscript on Chapter 3

In this Chapter, the analysis tools for calculating instability points

are given. Among the methods presented, the y—method is selected as the
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main analysis tool in this thesis, since it has the advantage of modifying
the flight conditions without reconstructing the main system matrix. This
advantage decreases the calculation effort, furthermore the equations
become suitable for time domain analysis. The only drawback of this
method is that the airspeed is kept constant in the analysis. This drawback
is overcome with additional search algorithms. In order to cross-check the

results of the y-method, p-method is selected as an alternative method.
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CHAPTER 4

CONTROLLER SYNTHESIS FOR FLUTTER
SUPPRESSION

4.1. Preview

This chapter deals with controller synthesis methods for flutter
suppression. An aeroservoelastic model of the fin is constructed by using
the aeroelastic model defined in Chapter 2. An implementation of u flutter
search method on the aeroservoelastic model is performed for both
nominal and robust flutter analyses. A novel controller synthesis method
for flutter suppression is proposed. The mathematical model of the
aeroservoelastic system is adapted and the disturbance, uncertainty, and
performance weightings are defined for a robust controller synthesis. The
methodology used for flutter suppression is presented. An existing
alternative flutter suppression approach is applied to the aeroservoelastic

model that is developed for the robust controller synthesis in this Chapter.

4.2. Aeroservoelastic Model

The block diagram of the basic aeroservoelastic system is given in
Figure 8. Note that the input and output signals are not weighted at this
stage for simplicity. The state space equations of the aeroelastic part are
partially defined in Section 2.5. The aeroelastic fin defined in Section 2.5 is

a rigid thin airfoil, which is connected to the ground via torsional and

90



translational springs. While constructing the aeroservoelastic plant, the
torsional spring of the aeroelastic fin is disconnected from the ground and

connected to the output shaft of the transmission as depicted in Figure 9.

{da {€}qn
{d}cm_d> y > Aeroelastic Gn
e o
Controller—> / p2 c p > Plant Model q ?{ b
+ o
_> Motor m o Transmission

torque Actuator dynamics

constant

+¥

i / {d}n
Sensor |« \)1—

Figure 8. Block diagram of the aeroservoelastic system

Figure 9. Modified typical section wing for the aeroservoelastic system

Hence in Figure 8, the shaft angle q,, which is the output of the

transmission block, is fed to the aeroelastic plant model block as an input.
Due to this modification of the aeroelastic plant, the state space equation

of the aeroelastic plant model is also modified. States of the aeroelastic
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plant are not affected from this modification. Thus the system matrices

[A,c] derived in Section 2.5 are directly used in this Chapter. The

modification is conducted to the input of the aeroelastic system. Hence, in

order to interconnect the aeroelastic plant with the rest of the

aeroservoelastic plant, the input matrix [BAE] and input terms {v} are

modified as given in Equations (4.1) and (4.2), respectively.

[022]  [0200]

Becl=| {0l @)

v = {{Q}ext} “2)

According to the interconnection requirements, the output equation is

defined as given in Equations (4.3) through (4.5).

{e} =[Cue]{&} +[Dac iV} (4.3)
[CAE] = [[szz] [02x2]:| (4-4)
[DAE] = [[Ozxz] [Ozxz]] (4.5)

In previous paragraphs, the modification of the aeroelastic plant is
presented on the equations of the steady incompressible subsonic flow.
Similar modifications can be easily introduced to the equations of other

flow regimes. Once the blocks in Figure 8 are defined, the system transfer
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matrix [P] of the aeroservoelastic system without any controller, can be

constructed in state space as

-] o] o

where [P] can be obtained by using sysic command of MATLAB® [62].

The block diagram of aeroservoelastic system in linear fractional

transformation (LFT) form is given in Figure 10.

A\ 4

[K.]

Figure 10. LFT model of the aeroservoelastic system

In Figure 10, the variable {d} is the disturbance input vector, {e} is the
error/performance output vector, {u} is the controller command vector, and

{y} is the observed output vector of the plant.

For a nominal flutter analysis, the inputs and outputs of the
aeroservoelastic system are configured as given in Figure 11. The
equations of the aeroelastic part are obtained as in Equation (4.7) by
modifying Equation (3.8) according to the input and output requirements.

In Figure 12, a general LFT model of the aeroservoelastic system for

flutter analysis is given, where [P] is the system transfer function matrix of

the aeroservoelastic system without any controller.
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Figure 11. Block diagram of the aeroservoelastic system for nominal

flutter analysis
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Figure 12. General LFT model of aeroservoelastic system for nominal

flutter analysis
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If a lower LFT is applied on the plant [P] and the controller [K,]

the transfer function matrix of the aeroservoelastic plant [N] is obtained

N =F ([PLIKD) =| [P+ PR [PRIK) [R]] 48)

Hence, the general LFT model becomes as given in Figure 13. This form
is same as the nominal y-method flutter analysis form given in Figure 6.

Thus, the methods given in Section 3.3 are applicable to this model.

\ 4
1
o™
& O
| I |

{z}ﬁ {W}a
[N]

A

Figure 13. LFT model of aeroservoelastic system for nominal flutter

analysis

The robust flutter analysis searches for the stability limits of a
system with uncertainties. The uncertainty included in this model is the
uncertainty of the sensor. For the robust flutter analysis, the inputs and
outputs of the aeroservoelastic system are configured as given in Figure
14. As it can be seen from the figure, weightings of the sensor are
introduced to the input and output channels of the Aeroservoelastic plant,
which is different than the nominal flutter search model given in Figure 11.
However, the input and output channels of the dynamic pressure
disturbance are not weighted for the compatibility with the flutter analysis
method. The equation of the aeroelastic plant given in Equation (4.7) is
used in the robust flutter analysis, since no uncertainty is introduced to the

aeroelastic plant.
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Figure 14. Block diagram of aeroservoelastic system for robust flutter

analysis

The sensor uncertainty is actually introduced to decrease control

commands at higher frequencies. An output multiplicative uncertainty is

used for the sensor uncertainty. [W,,]and [W,,]are the input and output

weightings respectively. In the robust analysis and u controller synthesis
these two blocks are coupled and analyzed as an output multiplicative
uncertainty. However in H, and H. controller syntheses this coupling

information cannot be used, but these weightings are not omitted.

The block [W,,] is the normalization weighting function of measured

pitch angle, that normalizes the sensor output to one. This function is

taken as a constant, as given in Equation (4.9), where g, is the inverse of

the maximum value of the expected/permitted pitch angle measurement.

Wi =94 (4.9)
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The block [Wsz] is the weighting function for the uncertainty of the

measured pitch angle. This function scales the unit disturbance signal into
the expected value of uncertainty. With this function it is aimed to
decrease the control efforts at high frequencies. At low frequencies the
uncertainty is taken equal to noise level at measurement, gnoise, and a

highpass type function is used as

p+a)32

W, =9k, —>— (4.10)
s2 s2 ™s2 )
p+ KSZa)sZ
where

gsz : gnoise’
oy, : first corner frequency,
Wy, ~ : maximum sensor noise at high frequencies,
W,,, : maximum sensor noise at low frequencies,

. Ws2H
Kgp : scaling factor, x, =|—=*>1

WSZL

In the robust flutter analysis, the system transfer function matrix
[P] of the aeroservoelastic system without any controller includes the
uncertainty weightings. Through the similar steps given in the nominal

flutter paragraphs of this Section, the LFT model of the aeroservoelastic

system for a robust flutter analysis can be obtained as given in Figure 15,
which is similar to Figure 7. Here, the block [I\_I} is the scaled form of [N],
which is the transfer function matrix of the aeroservoelastic plant. The
scaling is performed for the flutter analysis as described in Section 3.3.2.3.

Once the aeroservoelastic plant is put in the LFT form given in Figure 15,

the y-method given in Section 3.3.2.3 can be applied to this problem.
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Figure 15. LFT model of aeroservoelastic system for robust flutter analysis

4.3. Flutter Suppression Controller Synthesis by Using
Uncertainty on Dynamic Pressure (q-Method)

Flutter is an aeroelastic instability which occurs when the flow
keeps transferring energy to the structure exposed to the flow. Flutter
analysis methods given in Chapter 3, search for the aerodynamic
parameters at which this instability occurs. The aim of flutter suppression
is to enlarge the flight flutter margin. However, the aeroservoelastic system
that is used in this study is physically a Control Actuation System, thus
there are also performance requirements on the aeroservoelastic system
such as bandwidth, steady state error, and overshoot. Thus, any
synthesized controller should satisfy the performance requirements as well

as yielding a flutter-free system.

In a robust controller synthesis and analysis problem, the
weightings play a central role. All performance requirements, limitations,
disturbances, and uncertainties are described by these weightings. Thus
the result of the analysis or the controller synthesis depends on these

weightings. The placement of the weighting blocks in the corresponding
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block diagram, the types of the weighting functions, and their numerical

values are very important.

In the following paragraphs these weightings are described. It is a

fact that, due to the procedure of the robust controller synthesis, the orders

of controllers synthesized are of the same as the order of the plant [P] for
H, or H.. controllers and greater than the order of the plant [P] for a u

controller. The important point here is that the plant [P] includes the

weightings. Hence, each additional order of weighting increases the order
of the controller, which is not desirable. On the other hand, constant
weightings lead to conservative controllers, or sometimes a satisfactory

controller may not even be obtained. The interconnection structure of the

aeroservoelastic plant except the controller, [P] is given in Figure 16.

Wmodel
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1
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Actuator dynamics
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v
+‘ S < / Wn {d}n
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’ v
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{whs {Z}s

Figure 16. Interconnection structure of aeroservoelastic plant for g-method

99



The block [W

model

] defines the required reference CAS model. The

performance of the main system is compared with the output of this block.

It is defined as a second order system with a natural frequency of o,

ref

and damping ratio of ¢

ref

as

2
> Dpref 5 (41 1)
p + 2 ref a)nref p + o,

nref

w

model —

The block [Wcmd] defines the expected input commands. It is used

to convert the unit disturbance input {d} into the physical value of

cmd
expected commands in radians. This weighting function is defined as a
lowpass type as given in Equation (4.12), in which the command is

expected to be high at low frequencies and low at high frequencies.

p+ a)ch
K
d
Wcmd = gcmd Kcmd = (412)
p + wcmd
where
9emd : magnitude of the expected command at low frequencies,
O,y : first corner frequency,
W, : maximum expected command at high frequencies,
w, . maximum expected command at low frequencies,
; ling factor = \Wenr| 4
K pmd : scaling factor, «,,, =|— <
WcL

The block [W,] is the weighting function of sensor noise. This

n

weighting function converts the unit disturbance input {d} into sensor
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noise. The sensor noise is taken as a constant error as given in Equation

(4.13), with the magnitude of the smallest increment of the measurement,

gnoise )

Wn :gnoise (413)

The block [WFd] is used to minimize the steady state error.

Furthermore, it is also used to define the aerodynamic disturbance forces,
which include the unmodeled aerodynamics. This weighting function
scales the unit disturbance signal {d}F into the actual aerodynamic

disturbance forces that are expected to exist. A lowpass filter type

weighting function is used for aerodynamic disturbance as

,
p+ %,
LS (4.14)

Wey = Grq Keg
P+ @y

where

9., :magnitude of the expected aerodynamic disturbance at low

frequencies,

g, - first corner frequency,
We,, : maximum expected disturbance at high frequencies,

: maximum expected disturbance at low frequencies,

WFdH

Kry - scaling factor, ., = <1

FdL

The block [W,,] is used to define the actuator limits. This block

normalizes the torque output of the motor torque constant block into unit

output {e}ad. Hence, it acts as a penalty function, and it is proportional to
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the inverse of the actuator limits. On the other hand, there exists only a

“motor torque constant” block between the block [W,,, | and the controller

output. Hence, this weighting function also limits the controller output. Due

to the characteristics of the actuators, a highpass type function is used for

the normalization function [W,,]as
Wact = gact Kact p i a)ad (41 5)
p + Kacta)act
where
9. - inverse of motor peak torque T, limit at low frequencies,
w,, :first corner frequency,
w,, T, limit at high frequencies,

w,, T, limit at low frequencies,

WaH
w

: scaling factor, «,, = >1

act

al

The block [W ] is used to penalize the tracking error of the

per
system. This function scales the tracking error of pitch motion to one. In
general, it is required from the aeroservoelastic system to track better in
low frequencies and the system is permitted to be worse at high
frequencies. Due to the inverting characteristic of the normalization blocks,

this block is modeled with a lowpass type function as

(4]
p+ P%
w LT (4.16)

= K
per g per ™ per
P+,

where
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9per . inverse of magnitude of permitted error in low frequencies,

Do, . first corner frequency,
Wy maximum permitted error at high frequency,
w,, maximum permitted error at low frequency,
. scaling fact _ (ot 4
K por . scaling factor, «,,, = <
w,,

The important point in a robust controller synthesis for flutter
supression is how to describe the flutter to the robust controller synthesis
problem. As written in the first paragraph of this Section, the change of
aerodynamics triggers the phenomenon. Hence, introducing the variation
of aerodynamics into the robust controller synthesis problem may be a
solution. For this purpose, the py-method flutter analysis given in Section
3.3 is taken as a model. The dynamic pressure (actually the air density) is
taken as the changing aerodynamic parameter. y-method searches for the
maximum perturbation for which the system is still stable. The synthesis
procedure differs at this stage. In flutter suppression controller synthesis
by using uncertainty on dynamic pressure, the minimum perturbation

requirement that the system is required to be stable is defined in the

problem. This is performed by introducing weightings [Wm] and [WM] on
the disturbance to dynamic pressure channels {z}a and {W}a

respectively. This method is named as g-Method in this study.

The block [W

51} is the normalization function that scales both
channels of the output {Z}a to unity. This function is taken as a constant,

as given in Equation (4.17), where g, is the inverse of the maximum of
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the expected {z}c7 value for each channel. The units of {z}(7 is N/Pa for

plunge channel and N.m/Pa for pitch channel.

Wa1 =g (4.17)

The block [Waz] is the weighting function that defines the required
change of aerodynamics for which the aeroservoelastic system should be
robust. The units of the output of the [Waz] block is Newton for plunge

motion and Newton-meters for pitch motion. The block [Wm] is obtained

by multiplying the inverse of [Wm] with the expected dynamic pressure

change. Due to the physics of the problem, the dynamic pressure change

is effective up to a frequency level. Hence, the weighting function [Waz}

can be modeled with a lowpass type function as

-
+ 92
p A]z
_ /e (4.18)

W,=g.,x,
q2 g2 "™q2
p+0)az

where

9;, :magnitude of the required dynamic pressure change at low

frequencies divided by the g, term,

w., first corner frequency,
w,, —: maximum effect of dynamic pressure at high frequencies,
H
Wy, @ maximum effect of dynamic pressure at low frequencies,
: scaling fact _ | Za |
kg, - scaling factor, «, = <
q2y
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Note that this weighting is similar to [W,,], however their effects are

separated with the selected corner frequencies, in which [Waz

} have

higher gains at higher frequencies.

The LFT model of the aeroservoelastic system for the controller
synthesis is given in Figure 17. The block [P] has three uncertainty
input/outputs, four disturbance inputs, two performance outputs, two signal

outputs to controller, and one signal input from controller. The input/output

signals and their meanings are given in Table 6.
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Figure 17. Generalized LFT view of aeroservoelastic plant for controller

synthesis
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For the controller synthesis, the Robust Control toolbox and p-
Analysis and Synthesis toolbox of MATLAB® is used. The synthesis
procedures are briefly given in Appendix A.

Table 6. Input/output signals of plant

Meaning

Weighted uncertainty input for plunge motion

Weighted uncertainty input for pitch motion

Weighted uncertainty input for measurement

Weighted aerodynamic disturbance force

Weighted aerodynamic disturbance moment

Weighted sensor noise

Weighted input command

Controller command

Normalized uncertainty output for plunge motion

Normalized uncertainty output for pitch motion

Normalized uncertainty output for measurement

Normalized tracking error of pitch motion

Normalized output torque of actuator

Input command sent to controller

Measured value of pitch position

4.4. Flutter Suppression Controller Synthesis by Using
Uncertainty on Damping (g-Method)

In Section 4.3, it is mentioned that the aerodynamic changes trigger
the flutter, hence the flutter suppression mechanism is based on the
source of the flutter. On the other side, if the mechanism of flutter is
analyzed, it can be seen that the damping becomes zero in flutter speed
and becomes negative if the speed is increased. Hence a second method
may be devised by defining this damping change to the robust controller

synthesis problem. This method is used by Vipperman J.S. [26] which was
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originally applied to an airplane wing model. In his study, Vipperman J.S.
introduced an uncertainty to the real part of the eigenvalue corresponding
to the plunge motion of the wing. In this study the uncertainty is defined on
the damping value and the related robust controller synthesis method is

named as g-method.

In order to develope this second method, a damping uncertainty is
defined in the aeroelastic plant. Hence, a procedure similar to the one

defined in Section 3.3.2.2 is used. However, in contrast to the procedure

given, the weighting term [W,] of the damping is taken outside the

aeroelastic plant equation. This modification enables the application of
frequency dependent weighting functions. The terms related to the
uncertainty of the dynamic pressure are taken out from the aeroelastic

plant equation. Thus, the equation of the aeroelastic plant is obtained as

{ } [02)(2] [I2x2] i [02x2] [O2x2] {02x1} {q}
g. . _ . _ | -1 -1 4]0 _{_q_}__
fal|_| " (AJa-[K) ()" (aJa-(cD] "yt )
{q}c [02)(2] [/2)(2] i [02x2] [O2x2] {02x1} {d}F

¢ _{O 1} {O1x2} : {O1x2} {01x2} 0 119,
(4.19)

The additional channels {z{ and {w} are weighted using the

weightings [W,,] and [W,,], respectively.

The block [W,,] is the normalization function that scales both

channels of the output {z}C to unity. This function is taken as a constant,
as given in Equation (4.20), where g_, is the inverse of the maximum of

the expected {z}_value. It can be seen from Equation (4.19) that {z}_is
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equal to the velocity state vector {g}, hence the units of {z} are m/s for

plunge channel and rad/s for pitch channel.

W, =9, (4.20)

The block [Wcz] is the weighting function that defines the required
change of damping for which the aeroservoelastic system should be
robust. Similar to the [W@} block in g-method, the units of the output of
the [W,,] block is Newton for the plunge motion and Newton-meter for the
pitch motion. The block [W,,] is obtained by multiplying the inverse of
[WC1] with the expected damping change. Due to the physics of flutter

problem, the damping change is effective up to a frequency level. Hence

the weighting function [Wcz] can be modeled with a lowpass type function

as
p+ “J%
W,=9g, «x,——~+—°2 4.21
c2 gcz c2 p+a)02 ( )

where

g., : expected damping change at low frequencies divided by g_,

term,

,, : first corner frequency,

w,, ~ : maximum effect of damping at high frequencies,

w,,  : maximum effect of damping at low frequencies,

x, :scalingfactor, x,, = W"ZL <1

c2y
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The interconnection structure of the aeroservoelastic plant except

the controller [P] is given in Figure 18. The LFT model of the
aeroservoelastic system for the controller synthesis is given in Figure 19.
The block [P] has three uncertainty input/outputs, four disturbance inputs,

two performance outputs, two signal outputs to controller and one signal
input from controller. The input/output signals and their meanings are

given in Table 7.
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Figure 18. Interconnection structure of aeroservoelastic plant for g-method
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Figure 19. Generalized LFT view of aeroservoelastic plant for controller

synthesis

Table 7. Input/output signals of plant

Signal | Meaning
{wi, Weighted uncertainty input for damping in plunge motion
{wi, Weighted uncertainty input for damping in pitch motion
{wi, Weighted uncertainty input for measurement
{d},, Weighted aerodynamic disturbance force
19} Weighted aerodynamic disturbance moment
{d}, Weighted sensor noise
{d}_. Weighted input command

Controller command

Normalized uncertainty output for damping in plunge motion

Normalized uncertainty output for damping in pitch motion

Normalized uncertainty output for measurement

Normalized tracking error of pitch motion

Normalized output torque of actuator

Input command sent to controller

Measured value of pitch position
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For the controller synthesis, the Robust Control toolbox and p-Analysis
and Synthesis toolbox of MATLAB® are used. The synthesis procedures

are briefly given in Appendix A.

4.5. Postscript on Chapter 4

In this section the aeroservoelastic plant is derived for the y-method
analysis and the controller synthesis. The disturbance, uncertainty, and
performance weightings that are used in this study for the robust controller
synthesis are introduced. The purpose of these weightings, how they are
modeled, and their placement in the interconnection structure are given.
Two different controller synthesis methods for flutter suppression are
presented. These are the g-method adapted from the study of Vipperman
J.S. [26] and the proposed g-method. Flutter suppression methodologies
of these two methods are given.
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CHAPTER 5

MODELING

5.1. Preview

In this Chapter, the models that are used in the analyses of the
aeroservoelastic system are presented. A time domain model is
constructed in Simulink® with a linear aeroelastic model for the
aeroservoelastic system. However, some uncertainties are introduced to
this model in order to simulate a more realistic system. A second
Simulink® model is constructed considering a backlash type of nonlinearity
between the transmission and the fin in the aeroservoelastic system. A
time domain mathematical modeling of the backlash is also presented.
Alternatively, a frequency domain model for backlash is provided. For this
purpose a quasi-linearization method is used. The backlash is modeled by
using the sinusoidal input describing functions. A solution method is also

provided for this frequency domain model.

5.2. Simulink® Model for the Time Domain Analysis

The Simulink® model of the time domain analysis is given in Figure
20. This model is constructed by using the linear aeroelastic model. In this
Simulink® model, the aeroelastic models that are derived in Chapter 4 are

used. The inputs of the aeroelastic plant are perturbation vector {W}a to

dynamic pressure, perturbation vector to aerodynamic forces {w}F, and
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angle q, of the motor shaft kinematically amplified to the wing shaft, and

the outputs are vector {z}(7 of additional states due to perturbation to

dynamic pressure and structural states {q} of the fin. As it is given in
Equation (3.6) {w}(7 is obtained by multiplying the {Z}a with the
disturbance to dynamic pressure g, . In the Simulink® model, the value of

Q4 1S introduced with the qg_dist block. Especially in the incompressible

flow, the analyses at different dynamic pressures can be easily performed
by varying the value of q_dist block. In the compressible flow, due to the
match point calculation requirement, varying the value of g_dist block will
carry the model out of physical states considering the atmospheric
properties of the world. The analyses can still give the behavior of the
effect of dynamic pressure change; however, analyses should be
performed at the match points for solid results. It is also possible to apply
external aerodynamic disturbance forces with the help of the dL and dM

signal generator blocks.

The deformation of the torsional spring d, is calculated by
subtracting the angular position q, of fin from the angular position gy of
transmission that is the output of “Transmission Ratio 1” block. The
feedback force applied to the motor due to the deflection of the torsional
spring is calculated by multiplying the J,» with the total torsional stiffness

k.0 and the inverse of the transmission ratio.
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In general, the bandwidths of the motor drivers are well over 1,000
Hz. Thus the dynamics of the motor driver is neglected in this Simulink®
model and the controller block output, the current command, is directly fed
to the motor torque constant block. The output of the motor torque
constant block is the generated torque due to magnetic field between the
permanent magnets and the current flowing through the winding of the
motor. A saturation block is inserted to the output of the motor torque
constant block. Thus, the generated torque is limited to a peak torque
value by using this saturation block. Subtracting the feedback torque from
this limited generated torque, the net torque applying on the rotor of the
motor is obtained. The Motor Dynamics block includes the dynamic model
of the rotor and the transmission, except the transmission ratio. This sub-
system is modeled by a second order transfer function, consisting of the
inertia and damping properties of the rotor and the transmission. The
output of this transfer function is the angular position of the rotor. By
dividing the angular position of the rotor to the transmission ratio, by
means of “Transmission Ratio 1” block, the output of the transmission is

calculated.

The existence of noise in the feedback signal forces the controller
to suppress an artificial motion. Generally, this gives rise to small
amplitude oscillations in the system and an increase the root mean square
(rms) value of the current consumed. The analog signals are more
vulnerable to noise than the discrete systems. Thus, a discrete sensor
model is used in the time domain Simulink® model. The linear dynamics of
the sensor is assumed as unity as given in Sensor block. The linear output
of the Sensor block is quantized by using the “Quantizer 2” block.
However, a discrete noise is added to the feedback signal qq, before the
Sensor block. The amplitude of this noise is selected as equal to the value
of the least significant bit of the discrete sensor, which is the smallest

incremental output of the sensor.
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In Chapter 4, the controller synthesis methods are given. The
synthesized controllers of these methods have one output and two inputs.
These two inputs are the command signal and the feedback signal in
terms of the angular position of the rotor. Thus, the feedback signal is
multiplied with the transmission ratio by using “Transmission Ratio 4” block

before it is fed to the controller.

The command signal is the angular position q, of the fin. In Chapter
4, a command input is defined and used in the controller synthesis
methods. Hence, the controllers are synthesized considering the defined
command input limits, and the robustness of the controllers are dependent
to the command input. In order to preserve the robustness of the system,
the command and its maximum variation, which corresponds to the
angular position and angular speed of the fin, is limited. This limitation is
implemented in the Simulink® model by using the Limiter block shown in
Figure 20. In order to implement a simple model and prevent phase lag,
some logic operators are used in the Limiter block instead of a low-pass
type filter. Similar to the feedback signal, the command signal is also

multiplied with the transmission ratio N before it is fed to the controller.

The controller of the model can be selected as continuous or
discrete. For the discrete case, the controller is discretized by using Tustin
method at 2500 Hz. This discretization frequency of the controller is limited
with the hardware in the upper limit and with the dynamics of the system in
the lower limit. The frequency of the controller should be much larger than
the highest frequency of interest or the bandwidth of the controlled system.
A sinusoidal signal at the highest frequency of interest should be figured
by the discretized controller, such that the controller can also be able to
manipulate the system at this frequency. The discretization frequency of

the controller can be computed by multiplying the highest frequency of
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interest with a typical value of 40. Thus, a period of sine wave at the
highest frequency of interest is composed of 40 points, which is sufficient
to identify the signal and manipulate the system. The bandwidths of the
aeroservoelastic systems used in this study varies between 6 to 10 Hz,
however the frequencies of the instabilities are increased up to 50 Hz.
Moreover, a backlash nonlinearity is introduced to the aeroservoelastic
systems, which introduces dynamics with higher frequencies. Thus the
discretization frequency is selected as 2,500 Hz. 2,500 Hz is a possible
working frequency for this model in xPC-Target. xPC-target is a The
MathWorks Inc. product that enables a personal computer compatible
hardware for real time execution of Simulink® models for hardware in the
loop simulations by connecting physical systems. The simulation is solved
with the variable step Rosenbrock stiff solver and the maximum step size
is set to 1/2500 seconds. Although the ode45 solver is sufficient in this
model, the system becomes stiff when the nonlinearities are introduced,
and the ode45 solver cannot solve the problems in most of the cases that
are constructed in this study. By solving the equations of an
aeroservoelastic system constructed in this study, alternative solvers are
compared. It is seen that the Rosenbrock stiff solver method successfully
solves the problems in all cases. Furthermore, it is also seen that the
Rosenbrock stiff solver gives the closest results to the results of the ode45
solver for the Simulink® model presented in this section. Thus, the
Rosenbrock stiff solver is selected as the solver of the time domain
analyses executed in Simulink®. Further details of these solvers can be

found in the study of Shampine et al. [63].

5.3. Backlash Modeling

In missile fins, due to the gaps between the contacting elements of
transmission, backlash usually exists in the pitch degree of freedom of the

fin. In general, backlash decreases the command tracking performance,
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stability envelope and increases the energy consumption of the
aeroservoelastic system. Although the backlash value varies from system
to system, 0.05° to 0.1°backlash values are typical, and it may increase up
to 0.2°. Although the backlash in precise positioning systems is
undesirable; it is expensive to remove it. Hence, instead of removing it, its
effect can be analyzed and considered in the selection of the synthesized
controller. Moreover, the controller can also be synthesized considering
the backlash.

In this study, analyses of aeroservoelastic systems with backlash
are performed both in the time domain and in the frequency domain. An
analytical model of the backlash is presented for the time domain
analyses. Using this backlash model, a Simulink® model is constructed for
the time domain analyses of the aeroservoelastic system. For the
frequency domain analyses, the aeroservoelastic system with backlash is
quasi-linearized by using the sinusoidal input describing function method.
An analyses method for the quasi-linearized aeroservoelastic system is

also presented.

5.3.1. Time Domain Backlash Model

In this Section, a time domain backlash model is introduced. For
this purpose, an inertia controlled backlash model is used. In this backlash
model, both driving forces from the actuator and from the wing are
included. A complete backlash model is obtained by using both restoring
and dissipative behaviors of impact. In Figure 21, a schematic drawing of
this backlash model is given for a translational system. This physical
model for backlash can be easily adapted to rotational systems as well. In
Figure 21, k is the effective contact stiffness, ¢ is the effective damping
that represents inelastic collision, my and m, are the masses of bodies, F;

and F; are the external forces acting on bodies, x1 and x; are the positions
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of bodies, and bv is the backlash value specified as the half of the total
backlash. The contact stiffness and damping are active only when the
bodies are in contact. In the given backlash model, m is analogous to the
driving part of the aeroservoelastic system, which consists of a motor and
transmission mechanism, and my is analogous to the typical section wing.
The stiffness of the torsional spring connecting the transmission output to
the typical section wing can be used as an effective contact stiffness, since
the local stiffness at the contact point is much higher. The effective contact
damping can be calculated from the coefficient of restitution. However,
contact damping is only active when the relative speeds of the bodies are
different during contact. On the other hand, a viscous damping is modeled
in the pitch degree of freedom of the typical section wing, which is more
significant. Thus, the contact damping can be excluded from the model to
reduce the complexity. However, in order to present a complete backlash
model, both contact stiffness and contact damping are used in the

analogous system, Figure 21.
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Figure 21. Physical model of backlash between two translational bodies
In Figure 22, the free body diagrams of the translational backlash model

are given, where F, and F. are the reaction forces due to the contact

stiffness and damping, respectively.
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Figure 22. Free body diagram

Equations of motion of the system are

mx, =F =F ~F (5.1)
m,X, =F,+F, +F,.
Examining the model given in Figure 21, it can be seen that the two bodies
do not contact unless the relative displacement of the two bodies are
greater than the backlash value. Thus, both Fx and F; are zero when the
relative displacement is smaller that the backlash. When contact occurs,
the spring that represents the contact stiffness deforms and produces a
contact force proportional to the penetration distance. Moreover, a
damping force develops proportional to the relative velocity between the

bodies. Therefore, Fx and F; can be calculated as follows

F o { 0, X, = X, | < bv}, (5.2)

k(x, — X, — sign(x, — x,)* bv), |X, = X,| > bv
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0, | X, = x,| < bv

FC B {C(X1 - xz)’ |X1 - X2| > bv} - (5.3)

In vibrational systems, the viscous damping of the system can be

calculated from
c=2{\Nkm . (5.4)

If the damping ratio, {, is unknown, it can be calculated by using the
coefficient of restitution, ¢. In order to demonstrate this calculation, a
spring-mass-damper system is used, where stiffness is the contact
stiffness, damping is the contact damping, and mass is the colliding body.
Equations of an underdamped single degree of freedom spring-mass-

damper system with an initial speed are

X = ﬁe_é/wnt S|n(a)dt), é/ < 11
Wy
y (5.5)
— _ﬁe—&uﬂt sin(a,t)+V,e " cos(w,t).

Wy

In Equation (5.5), x is the distance traveled, V is the initial speed, t is the
time, w, and wy are the natural and damped natural frequencies of the
system respectively. Since damping is related to the speed, only the
response to initial speed is considered. Assume that contact initiates at
t=0, where x=0, with a collision speed V,. Starting with the initial speed,
the system first slows down and the speed becomes zero. Then the
system speeds up in the reverse direction and contact is lost when x
becomes zero again at t=r/wy. The separation speed, V; can be

calculated by substituting the final time into Equation (5.5) as
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V, = _@e_@”%ﬂ sin(w, 7 )+Voe_§m"%’d cos(am, 7 ),
o, Oy @ (5.6)

~Cw, 7,
V, =-V,e %”d.

Note that the separation speed is related to the coefficient of restitution.
Substituting @, = »,/1-¢? into Equation (5.6), and using the definition of

the coefficient of restitution damping ratio can be calculated as

s

e=-L=—g "¢
0 (5.7)
N In(e) .
7% +In(e)

5.3.2. Simulink® Model for the Time Domain Analysis with
Backlash

The second Simulink® model is used for the time domain
simulations of the aeroservoelastic system with backlash. This model is
derived from the first model given in Figure 20. The Simulink® model is
given in Figure 23, and the Motor and Transmission sub-block is given in
Figure 24. For this system a MATLAB® function block named as Backlash
is inserted, which calculates the reaction forces between the transmission
output shaft and the fin shaft according to the backlash model using
Equations (5.2) and (5.3). It can be seen from the figure that the last input
to the aeroelastic model is the calculated reaction force between the fin
and the transmission, rather than the transmission shaft position. Thus the
driving force of the aeroelastic system is a reaction force. The aeroelastic
model is modified according to force input. A further modification of the

aeroelastic system is also conducted, in order to receive the speed of the
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structural states. The speed of the transmission is also calculated by
modifying the Motor Dynamics block. The transfer function of the Motor
Dynamics block is separated in two parts such that the rotor speed is
obtained from the output of the first part. The second part is simply the
integrator that calculates the rotor position. The speed of the transmission
is obtained by multiplying the speed of the rotor by inverse of transmission
ratio. The angular positions and the angular speeds of the fin and

transmission are fed to the Backlash block.

Product_alpha

X

delta_q

Product_h

{wa} X

AE_model

A\ 4

/g1

\4

/G2

oo d_Fd i alpha
oooo

P |R_torque alphad

alphad

Backiash
MATLAB
Function

R_torque theta

Transmission
Limiter Ratio2

oooo
e »

Signal Degrees to
Generator Radians

theta

IAmp_cmd thetad

thetad

Motor&Transmission

Controller

Quantizerl

|_,-" 1

| - +

Quantizer2 Sensor On/off Uniform Randon
Number2

Figure 23. Simulink® model of the ASE system with backlash
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5.3.3. Frequency Domain Analysis for LCO Detection

Modeling of any type of nonlinearity is straightforward in time domain
modeling. Numerical solution of this nonlinear time domain models is also
straightforward. However, many simulations are required in order to
understand the behavior of the system under various conditions. On the
other hand, a frequency response function summarizes the behavior of the
system in the frequency range of interest. Thus, the frequency domain
analysis usually provides more physical insight regarding the problem,
especially for linear systems. Unfortunately, frequency domain analyses
are not directly applicable to nonlinear problems. A common way to
analyze nonlinear systems is to linearize the equation around working
conditions. However, this technique precludes the observation of nonlinear

phenomena such as LCO, chaos, and frequency jump.

LCO is one of the most important nonlinear phenomena, seen in
aeroservoelastic systems. LCO is a self sustained oscillation that is
independent of the initial conditions. Because of nonlinearity, there may
exist stable outer and unstable inner regions for a system, resulting in a
sustained oscillation on the boundary. In contrast to the oscillations of

linear undamped systems, the amplitude/pattern of the limit cycle
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oscillation only depends on the system parameters. Although the initial
conditions do not affect the dynamic characteristics of the LCO, there may
exist more than one LCO or other stable/instable points, and which one of
these will be reached depends on the initial conditions. The initial
conditions of each equilibrium type forms a region in state space. The
borders of these regions are called separatrices. An LCO can be stable,
unstable, or semistable. All trajectories in the vicinity of a stable LCO
converge to its pattern. On the other hand, all trajectories in the vicinity of
an unstable LCO diverge from its pattern. Van der Pol oscillator is a well-
known example for the stable limit cycle, Figure 25. As seen from the
figure, response to initial conditions both in inner and outer region

converges to LCO.

-~ wow

X X

Figure 25. Van der Pol oscillator [13]

Although the LCO is a stable phenomenon in the sense of Lyapunov, it
can be as dangerous as flutter. If LCO’s are not considered during design,
they can degrade the performance of missiles such as decrease in hit
accuracy, decrease in maneuver capability, undesired coupling with
autopilot, and increase in energy consumption. In aircrafts, LCO’s cause

discomfort, decrease in targeting accuracy, and decrease in fatigue life.

The exact pattern of LCO’s can be determined by time domain
simulations. To identify the LCO’s in time domain, the simulations must be

performed with numerous initial conditions. Despite the computational
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cost, this brute search approach does not guarantee that all LCO’s are
identified. The describing function method, which is a quasi-linearization
technique, can be used to analyze LCO phenomenon in frequency domain

[64, 66]. However, the quasi-linearization brings some shortcomings, too;

- the predicted LCO amplitude and frequency are not accurate,
- the predicted LCO may not be actual,

- an actual LCO may not be predicted,

The LCO’s usually involve significant higher harmonics. However,
describing function method assumes that an LCO can be represented by a
single fundamental frequency. This is because amplitude and frequency of
the LCO predicted by the describing functions are approximate and giving
the fundamental behavior. However, as the airspeed approaches to the
critical flutter speed, a single frequency dominates the LCO as in flutter.
Thus, the predictions become more accurate. Well below the critical flutter
speed, there might exist some other LCO’s with many sub and higher
harmonics, and even chaos. In these cases an artificial LCO may be
predicted, which actually does not exist, or even an existing LCO may be
missed. A brief explanation of the describing function method is given in

Appendix C.

The describing function given in Equation (5.8) defines the

equivalent stiffness, v, for sinusoidal input with backlash [66].
0 , A< bv

v(A)= 1—£(arcsin(b—)\/]+% 1—("—)\’) ] kK Aspy P
T
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As described in Appendix C, backlash is a single valued
nonlinearity. This means that its describing function is memoryless and
depends only on the amplitude of the input oscillation. In Figure 26,
equivalent stiffness for the backlash describing function obtained from
Equation (5.8) is given. From the figure it can be seen that, for the
oscillations in the free zone; i.e., below bv, the equivalent stiffness is zero.
As the oscillation amplitude increases, the equivalent stiffness approaches

to its asymptote, which is the linear stiffness value.

/

0 A
i} 1 2 3 4 5 ] T 2 a 10 o
bv

Figure 26. Equivalent stiffness for backlash describing function [13].

5.3.4. Frequency Domain Limit Cycle Oscillation Search Method

As discussed in Section 5.3.3, LCO'’s are self sustained oscillations.
Thus, examining the eigenvalues of the quasi-linearized system, some
conclusions can be drawn. Note that the quasi-linearization of the system
is achieved for an assumed oscillation amplitude and a backlash value,

which corresponds to an equivalent stiffness value.

If the poles of the closed loop system are all in left hand plane

(LHP), implying a stable system at this search point, means the system
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has positive damping and energy dissipates from the system. Thus, the
oscillation amplitude decreases, which results in a decrease in the

equivalent stiffness, Figure 26.

If there exists a pole in the right hand plane (RHP), implying that the
system has negative damping, then the system is unstable at this search
point. Therefore, the oscillation amplitudes will increase, resulting in an

increase in the equivalent stiffness.

If there exists no poles in the RHP, and a pair of poles exists on the
jw axis, implying that the system has zero damping, then the system is
marginally stable. This means that the system sustains the oscillation at
this search point without using any external input. Note that the poles
moves from jw axis if the amplitude of the oscillation is varied, which
shows that the result is not an ordinary linear system oscillation. Thus the
oscillation at this search point is an LCO. However, the LCO can be a
stable or an unstable LCO. This can be recognized by analyzing the

stability of the smaller and larger oscillation amplitudes respectively.

- If the system is stable for the larger oscillation amplitudes and
unstable for the smaller oscillation amplitudes, then the LCO is a
stable LCO. Note that, at this point, the oscillation amplitude of the
larger amplitude oscillations decreases and the smaller amplitude

oscillations increases; thus, both converges to the LCO.

- If the system is unstable for the larger oscillation amplitudes and
stable for the smaller oscillation amplitudes, then the LCO is an
unstable LCO. An unstable LCO is the opposite of stable one,
oscillation amplitude of the larger amplitude oscillations increases
and smaller amplitude oscillations decreases; thus, both diverges
from the LCO.
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In order to search the LCO’s and identify the behavior of the
system, the eigenvalues of the system can be derived by varying the value
of the equivalent stiffness from zero to the linear stiffness value. The
geometrical locations of system poles can be drawn on a root locus plot or
the changes in damping ratio and frequencies of the system by varying the
equivalent stiffness value. Variation of the damping ratio and frequency
values of an example system with the change of equivalent stiffness value
is given in Figure 27. The example system is an aeroelastic system in
incompressible flow, which is similar to the models used in this study. It
has two structural (pitch and plunge) and two aerodynamic states. Note
that the damping ratio crosses the zero line twice for the equivalent
stiffness values of k,. and kg, at which the LCO’s occurs. The oscillation
amplitudes of LCO can be calculated form Equation (5.8). Above the kg
the damping ratios are all positive, thus the system is stable. Below the kg
there is negative damping ratio, thus the system is unstable. Hence, the
LCO for the equivalent stiffness value of ks is a stable LCO. On the
contrary, the LCO for the equivalent stiffness value of k,. an unstable LCO
since the system is unstable for a greater equivalent stiffness value and
stable for a smaller equivalent stiffness value. Below the equivalent
stiffness value of k, the system is stable, hence the amplitude of the

oscillations decrease below the backlash value.
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Figure 27. Frequency domain LCO search method plot example

The following procedure can be used to determine the possible
stable LCO point of the aeroelastic/aeroservoelastic system. However,
note that this search algorithm may fail due to unstable LCO’s. As an
example, for the system given in Figure 27, if the initial stiffness value is
taken less than k,_ then the algorithm converges to the zero stiffness
value, which is probably the stable focus, instead of the stable LCO at the
ks . Thus it is advised to conduct a coarse search for a few stiffness values
and prepare a frequency domain LCO search plot similar to Figure 27 in
order to predict the existence and the stiffness values of the stable and
unstable LCO’s. Initial value of kypper and Kiower can be modified in order to

define the search interval.
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1. construct system matrix of AE/ASE system, [A,.]/[A,s]. at

fixed aerodynamic parameters,

2. define scalars k,,,,, =K,;: K. =0 to bound k_,
3. define scalar ¢ >0 for accuracy,
4. compute k. =% (Kupper T Kiower )»

5. re-construct [A,. | /[A,s |by using k,, instead of k,,
6. if ([Aulky)] / [Aselk,)]) has an unstable pole, then

k =k__, otherwise k

upper eq’ lower

=keq’
k

lower )

7. if(k

upper ™ >¢ goto step 4,

8. the equivalent stiffness at LCO is k., =k,

9. calculate the oscillation frequency from the eigenvalue of
[ALe] /[Asse] constructed at step 5 at last iteration,

10. calculate oscillation amplitude by using Equation (5.8).

5.4. Postscript on Chapter 5

This chapter focuses on the modeling of the aeroservoelastic
system. Both time domain and frequency domain models are conducted in
order to analyze the performance and stability of the aeroservoelastic
systems. In addition, backlash models are introduced in both models in
order to conduct some LCO analyses. An LCO search method is also

presented for the frequency domain analyses.

131



CHAPTER 6

CONTROLLER SYNTHESIS AND CASE STUDIES

6.1. Preview

In this Chapter, the methods given in previous chapters are applied

to the robust flutter suppression of a typical section and the results of

MATLAB® simulations are reported as case studies. These case studies

are presented under three main sections according to their flow regimes.

Under sections for different flow regimes, three subsections are formed

according to the flutter suppression method, and different controllers are

synthesized under these subsections. Table 8 summarizes these case

studies. gg-method given in the table is an improved g-method, which

uses the flutter suppression approach of both the g- and the g-methods.

Table 8. Case Studies

Flutter Controller
Flow Regime Suppression
Method He, Ho H
U v bl g-method Case1 | Case2 | Case3
nsteady ncompressible g-method Case4 | Case5 | Case6
Subsonic Flow
gg-method Case7 | Case8 | Case9
Unsteady Compressible g-method | Case 10
Subsonic Flow g-method | Case 11
Unsteady Compressible g-method | Case 12
Supersonic Flow g-method Case 13
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In Case 1, the synthesis and analysis methods that are presented in
previous chapters of this study are given in full detail. Additionally, the
parameters tuning for the controller synthesis and parameter effects are
presented. However, no optimization procedure is developed in tuning the
controller parameters optimally, which is beyond the scope of this study. In
rest of the case studies, only some additional information specific to each
case are given in detail. The discussions of the studies performed and the
results for the selected controller after tuning operations are presented for
each case. At the end of each section of flow regimes, a subsection is

given, in which the synthesized controllers are compared with each other.

6.2. Unsteady Incompressible Subsonic Flow

6.2.1. Construction and Analyses of Aeroelastic Model

In order to apply the synthesis methods in MATLAB® environment,
the parameters of the Aeroservoelastic Test Setup (Aeroservoelastik Test
Diizenedi - ATD) are used. The ATD is developed in TUBITAK-SAGE in
the scope of a M.Sc. thesis conducted by Utku UNAL in the Mechanical
Engineering Department of METU [17]. However, instead of using the
actual damping values of the ATD, a set of lower damping values are used
in the model of this study. By this approach, lower flutter speeds are
obtained which in turn increase the requirements on the controllers
designed. As a result, better comparison conditions are created for rating
the performances of the controllers. On the other hand, some
modifications are required on the aeroelastic system matrices that are
defined in Section 2.5 due to the physical characteristics of the ATD. In
contrast to the typical section model given in Figure 3, the ATD has an
additional mass on the plunging degree of freedom. Thus the mass matrix

given in Equation (2.24) is modified as
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where m, term is the total plunging mass. This model used in the analysis

is named as Model 1, whose parameters are given in Table 9.

Table 9. Properties of the Model 1

Parameter unit Model 1
Elastic axis location a - -0.6
Half chord b m 0.15
Span / m 0.6
Mass of the wing m kg 9.83
Total plunging mass mp kg 28.7
Mass moment of inertia of the wing I, kg.m? 0.098
Plunge stiffness Kn kKN/m 10
Total torsional stiffness koo | N.m/rad 55.2
Plunge damping Ch N.s/m 53.6
Pitch damping C. |N.ms/rad | 0.093
Position of center of mass from elastic axis | Xxcq m 0.075
Motor torque constant kT N.m/A 2.22
Motor continuous stall torque Tes N.m 3.53
Allowable peak torque Tp N.m 17.65
iransmission caloulated atthe wing shat | '» | kg’ | 0000297
Motor and transmission damping ¢m | N.m.s/rad | 0.000124
Transmission ratio N - 29
Table 10. Initial flow parameters
Altitude h m 800
Mach number M - 0.05
Airspeed Uop m/s 16.86
Air density p kg/m?® 1.134
Dynamic pressure Qo Pa 161.1
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Two independent flow parameters required to define the flow are
selected as the altitude and Mach number. The initial values selected for
the altitude and Mach number, and the calculated values of the rest of the

dependent aerodynamic parameters are given in Table 10.

Using the parameters given in Table 9 and Table 9, the aeroelastic
model is constructed according to the equations given in Section 2.5.1.2.
Various analyses are performed on the constructed model in order to

derive the aeroelastic properties of the Model 1.

The stability analyses of the aeroelastic system are conducted by
using the y and the p-methods. Furthermore, as discussed in Chapter 3,
the analyses are performed both varying the dynamic pressure and the
airspeed. Also it is presented in Chapter 3 that the y-method equations are
compatible with the dynamic pressure variations, but they are not
compatible with airspeed variations. The required additional algorithms for
the p-method analysis by varying the airspeed are also presented in
Section 3.4.

6.2.1.1. Stability analyses by varying dynamic pressure

For the y-method analysis of the aeroelastic system, the algorithm
presented in Section 3.3.1 is used. The initial values of the parameters
that are used in the algorithm are defined as; the lower search limit dower Of
the dynamic pressure of disturbance which is set to 0 Pa, the upper search
limit dypper Of the dynamic pressure of disturbance set to 2,000 Pa, and the
accuracy ¢ set to 0.01 Pa. Thus, the stability search is conducted between
0 Pa and 2,000 Pa above the initial dynamic pressure, and the iteration is
ended when the difference between the upper and lower dynamic
pressure of disturbance drop below 0.01 Pa. The dynamic pressure of

disturbance ¢, the difference dupper - diower between the upper and lower
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dynamic pressure of disturbance, and the pole of the aeroelastic system

which has the maximum real part are recorded at each iteration, (Figure

28). At the 18"™ iteration, the difference between the upper and lower

dynamic pressure of disturbance becomes 0.0076 Pa. At the exit step; the

maximum real value of the poles of the aeroelastic system is calculated as

-5.32 x 10® 1/s, and o, is calculated as 504 Pa. Thus, q,, the nominal

dynamic pressure of flutter and I',, the nominal dynamic pressure of

flutter margin are computed as 665 Pa and 504 Pa, respectively. The

frequency w,, of the flutter is calculated 3.5 Hz by using the pole of the

aeroelastic system that has the maximum real part.
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In order to crosscheck the results, p-method analysis is used. In

order to decrease the computation time of the p-method analysis, instead

of reconstructing the whole aeroelastic matrix, the perturbation equations
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of p-method are used. The result of this modified method is also
crosschecked with the result of the original method, and it is verified that
both solutions of the p-method give the identical results. In the p-method
analysis, the calculations are performed at 1,001 points by varying the
dynamic pressure parameter from -1,000 Pa to 1,000 Pa with 2 Pa
increments. At each point, the damping ratio and the modal frequencies of
the system are calculated from the eigenvalues of the state space
equations. The results are given in Figure 29. In the upper figure, the
variations of damping ratio and modal frequencies with respect to dynamic
pressure are given. In the lower figure, root locus plot of the aeroelastic
system is given. In the figures, the results of the pitch, plunge, and the
aerodynamic modes are presented. It can be seen from the figure that, the
aeroelastic system is stable in vacuum and becomes unstable below -300
Pa, which is physically impossible. On the other hand, as the dynamic
pressure increases, it can be seen from Figure 29 that the frequencies of
the pitch and the plunge modes approach each other, the damping ratio of
one of them increases, and the damping ratio of the other decreases and
becomes zero. This is a typical behavior of a system that is going into
flutter; two modes, a plunge and a pitch, couples with each other and the
damping ratio of one of them becomes zero. It can be seen that, namely
the plunge mode goes into flutter. However, note that the eigenvectors of
the system is also changes with the dynamic pressure. The modes that
can be named as a plunge and a pitch in vacuum, couples with each other
as the dynamic pressure of the system reaches to the dynamic pressure of
flutter. Hence, the motion of the aeroelastic system in flutter is not a pure
plunge motion. It can be seen from the Figure 29 that the damping of the
system becomes zero slightly below dynamic pressure of 666 Pa, which

verifies the dynamic pressure of flutter obtained by y-method.
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Figure 29. Flutter search results of p-method by changing air density
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6.2.1.2. Stability analyses by varying airspeed

Up to this point the dynamic pressure of instability is investigated for
the aeroelastic system via p-method and p-method. The airspeed of
instability can also be calculated by using p-method with the iterative
search algorithm presented in Section 3.4.1. In Table 11, the results of this
method applied on Model 1 are presented. In the 2" and 4™ iterations the
u-method failed, because the analyses are performed at an unstable point.
Hence, an 80% relaxation is applied in the calculations of new airspeeds.
It can be seen from the table that, at the 5 iteration, the error between the
calculated airspeed of instability drops below one percent. Using the

search algorithm, the airspeed of instability is obtained as 31.56 m/s.

Table 11. Results of flutter airspeed search

iteration # 1 2 3 4 5

Input Uo m/s | 16.86 | 34.25 | 30.77 | 31.63 | 31.46
Parameters 9, Pa | 161.2 | 665.2 | 537.0 | 567.2 | 561.1
Output Tt Pa |665.2| - |567.2| - |564.8
Parameters Usut m/s | 34.25 - 31.63 - 31.56
Y%error of Upye | % - - 7.6 - 0.2

For the verification of the result of y-method analysis, the p-method
is used again by changing the airspeed but keeping the air density fixed.
In the p-method analysis by dynamic pressure variations, the p-method
equations are used. However, in the p-method analysis by airspeed
variations the p-method equations are not used since the equations
derived for the p-method are not suitable for any airspeed modification.
Hence, the whole aeroelastic matrix is reconstructed at each step of the p-
method analysis by changing the airspeed. This shortcoming increased

the computation time of the p-method analysis. For the p-method analysis,
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calculations are performed at 100 points, by changing the airspeed from 0
to 42 m/s. Hence, the results are calculated with 0.42 m/s intervals. In
Figure 30, the results of the p-method analysis are presented. In the first
plot, the damping ratio and modal frequency variation of the aeroelastic
system with the change of airspeed are given. As it can be seen from the
figure, the airspeed of instability is found slightly above 31.5 m/s, which is
in agreement with the result of py-method. In the second figure, the
damping ratio and modal frequency variation are plotted against the
dynamic pressure, which is calculated by using the airspeed of the
corresponding step and the fixed air density. Comparing Figure 29 and
Figure 30, it can be seen that the variations of the structural modes,
namely the pitch and the plunge modes, look similar when the airspeed or
the air density is varied. On the other hand, it is seen that the variations of
aerodynamic modes are different as a response to variation in airspeed
and in air density. The airspeed variation causes much more change in the

aerodynamic modes than the air density variation.
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6.2.1.3. Backlash analyses

The effect of backlash is analyzed for the aeroelastic system
constructed. For this purpose, some frequency domain analyses are
performed and possible stable LCO’s are searched for by using the
method presented in Section 5.3.4. Using this search algorithm, a stable
LCO of the aeroelastic system at the dynamic pressure of 500 Pa is
observed for k,q=45.86 N.m/rad. In order to crosscheck the result the brute
force approach given in Section 5.3.4 is applied. The aim of this operation
is to predict the presence of the LCO rather than its numerical accuracy.
The damping ratios and the frequencies of the aeroelastic system are
calculated for a few number of equivalent stiffness values. The results are
given in Figure 31. From the figure, it can be seen that the aeroelastic
system has a stable LCO for ksq=45.46 N.m/rad and an unstable LCO for
keq=3.25 N.m/rad. Hence the brute force approach method also confirms
that a stable LCO may exist for ke;=45.86 N.m/rad. From the eigenvalues
of the aeroelastic system the oscillation frequency is calculated as 3.32
Hz. The oscillation amplitude A is calculated by using Equation (5.8), as
1.5° for the backlash value of 0.2°.

Some time domain analyses are also performed for the aeroelastic system
by using the Simulink® model. The results of these analyses at a dynamic
pressure of 500 Pa are given in Figure 32. The analyses are performed for
aerodynamic moment pulses with three different values of 10 ms durations
applied to the q, degree of freedom as initial conditions. In the first case, a
0.1 N.m amplitude moment is applied and the system converges to the 0°
stable point due to the aerodynamics (Figure 32 (a)). In the second case, a
1 N.m amplitude moment is applied and the aeroelastic system converges
to an LCO from lower amplitude oscillations (Figure 32 (b)). In the third
and last case, a 10 N.m amplitude moment is applied and the system

converges to the same LCO from higher amplitude oscillations (Figure 32
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(c)). Performing a fast Fourier transformation to the time domain results of
the aeroelastic system, the frequency contents of the output is obtained
(Figure 33). It can be seen from this figure that the time domain results
and the frequency domain results are in agreement. From Figure 33, the

odd higher harmonics of the LCO can also be seen.

Repeating the searches at various dynamic pressure values, the
corresponding LCO amplitudes are obtained and given in Figure 34. At a
dynamic pressure of 300 Pa and below, no LCO is obtained. From the
figure it can be seen that the frequency domain results and the time
domain results are in accordance with each other. Although it is not
presented here, the brute force analysis graphics are derived for the
aeroelastic system at various dynamic pressures. From those graphics it is

seen that, for the aeroelastic system;

- Inlower dynamic pressures the system is always stable at 0°,

- In mid dynamic pressures, there exists both an LCO and a stable
point at 0° (Figure 31),

- In mid-high dynamic pressures there exists only an LCO,

- In high dynamic pressures first the LCO amplitude increases to
unacceptable values, after a value of dynamic pressure the system

becomes unstable.

However, these are the characteristic of the particular aeroelastic
system analyzed, and the given characteristics may not always be the

same for any other system.

From Figure 34 it can be seen that the describing function and time
domain solutions are in good accordance. On the other hand, it can be
seen that for this model an increase in the backlash increases the

amplitude of the LCO, hence decreasing the flight margin of the
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aeroelastic system. For example; for an acceptable oscillation of 0.4°, the
linear flight margin of 665 Pa decreases to 500 Pa for a backlash value of
0.05°, and to 400 Pa for a backlash value of 0.1°. An LCO first occurs
between 300 Pa and 400 Pa; hence the lines between the results for 300

Pa and 400 Pa should not be used for interpolation.
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6.2.2. Controller Synthesis by Using g-Method

In order to start a controller synthesis using g-method, it is required
to decide upon the numerical values of the parameters of the reference
plant as well as upon the uncertainty/performance weightings. It should be
noted that the aeroelastic Model 1 is a fictitious model whose parameters
should be tuned such that the model goes in to flutter in incompressible
subsonic flow. These tunings result in low stiffness and low damping
values in pitch and plunge degrees of freedom of the aeroelastic system.
Thus, it is meaningless to define the performance requirements of an
actual control actuation system as the requirements of the controller of the
Model 1 in this study.
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The reference plant of the aeroservoelastic system is defined with
the bandwidth and the damping ratio. The bandwidth of the reference plant

a

¢ 1S set as 6 Hz, which is below a bandwidth requirement of a typical
CAS requirement but it is a still demanding value. The damping ratio of a
second order system is generally set between 0.4 and 0.8, in order to
obtain a system with a desirable transient response. Moreover, for a better
settling time performance a damping ratio around 0.76 for %2 criterion and
around 0.68 for %5 criterion should be selected. Between the damping
ratio of 0.7 and 1, the oscillations exist for the step response, but the
oscillations are well damped. Furthermore, above the damping ratio of
0.707 no resonant peaks exist [65]. Through these data the damping ratio

of the reference plant ¢, is setas 0.707.

e

The derivation procedures of the uncertainty/performance
weightings that are used in the controller synthesis are presented in
Section 4.2 and 4.3. These uncertainty/performance weightings are listed
in the first column of Table 12. Selections of most of these parameters are

straightforward through the explanations given in Section 4.3.

- The amplitude of the expected input command of the

aeroservoelastic system is defined as 3° up to 2 Hz, and one tenth
of it at higher frequencies. Thus, the parameters of the [Wcmd] block

are set as given in Table 12.

- In Section 4.3, the value of noise level gnoise is defined as the
smallest increment of measurement. For the aeroservoelastic
system, it is assumed that the angular measurement of the fin is
conducted by a 14 bit encoder. Thus, the noise level is calculated
by evaluating 360°/2™ as 0.022°.

- The gain gax of the actuator performance weighting is set as the

inverse of the peak motor torque as discussed in Section 4.3. On
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the other hand, it is assumed that the actuator satisfies the peak
torque up to 100 Hz.

The tracking error of the aeroservoelastic system is set as 0.4° up
to 6 Hz. Thus, the gain of [Wpe,] function is calculated as 2.5 deg'1.

The expected maximum pitch motion of the aeroservoelastic
system is selected as +10°. Hence, the gain gs1 of sensor
uncertainty output weighting is calculated as 0.1 deg'1.

As defined in Section 4.3, the gain gs2 of sensor uncertainty input
weighting is equal to the value of noise level gnoise. It is assumed

that the sensor noise is effective up to 10 Hz.

Table 12. Numerical values of uncertainty/performance weightings

Uncertainty Gain Corner Scale
Name Frequency Parameter
W, ] Foma 3° Do 2 Hz Koma 0.1
W] | Guose | 0.022°
w,,] Irq, 1,400N | @ | 0.03Hz | Xr, | 0.001

9, 25 N.m @rg, | 0.03Hz | Kg, | 0.001
W,.] 9.« 10.057 (N.m)| @, | 100 Hz K,y 100
(Wo,] | 9o | 25deg” | @0 | 6Hz Kper | 0.01
W,.] g, 0.1 deg™
W, 92 0.022° o, | 10Hz K, | 10,000
94,1 9.13N"
[Wer] 9.1 |520.8 (N.m)”
W, 95,2 5475N | @, 10 Hz K;, | 0.001
9s,2 | 0.96N.m | @, | 10Hz Kz2 | 0.001
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The selection of the parameters of the output weighting [Wm] of
the disturbance to dynamic pressure, the input weighting [W,, | of the

disturbance to dynamic pressure, and the uncertainty weighting [WFd] of

the aerodynamic forces requires some pre-calculations. It is required to

calculate the maximum possible value of the vector {z}(7 of additional

states due to perturbation to dynamic pressure. This value is calculated by
solving Equation (4.7), which is the equation of the aeroelastic part of the
aeroservoelastic system having g, as the input parameter. This equation is
solved by applying the expected command defined by the weighting

function of the expected input [W

cmd

] in Table 12 as an input, and varying

the dynamic pressure within the stable limits of the aeroelastic system. It is

seen that the values of elements of {z}(7 decrease as the dynamic

pressure increases. Hence their limit values are taken when the dynamic
pressure is zero and a safety factor of 1.5 is applied as

{z}(7 =1.5

{ 0.073 N/Pa }

(6.2)
0.00128 N.m/Pa

If Equations (4.17) and (4.18) are analyzed, it can be seen that this safety
factor relaxes the [WaJ weighting, but tightens the [W@] weighting.
Since the common aim of these two weightings is to model the changes in

aerodynamics rather than to penalize these changes, this modification is

acceptable. The value of each element of the diagonal weighting matrix

&

61] is calculated by taking the inverse of each element of {Z}a’ as

given in Section 4.3.
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In order to define the weighting matrix [W

12 |, it is needed to set

one more parameter. This parameter is the disturbance to dynamic

pressure, g, - The synthesized controller will be robust to this disturbance

to dynamic pressure. This parameter is one of the mostly used parameters

for controller tuning in this study. However as a start, it is selected as
9,y =500Pa.

3, =500Pa (6.3)

For the selection of the weighting [W,,], again Equation (4.7) is

used. Similar to the calculation of the weighting [WEJ, the maximum force

and moment are calculated in the stable region of the aeroelastic system.
In order to minimize the steady state error, 50 times the obtained
maximum force and moment values are selected as the gain g,,, which is
the gain of the weighting [WFd] in low frequencies; i.e., 0.1 Hz. On the
other hand, in order to model the aerodynamic uncertainties it is decided
that the value of the weighting [W,,] at 10 Hz should be one fifth of the
obtained maximum force and moment values. The corner frequency of the

weighting [W,, ] is calculated from this requirement. These parameters are

further tuned during the controller synthesis. The plots of weightings for
the reference model and for the uncertainty/performance are given in

Figure 35 through Figure 43.
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After the definition of the reference model and the weighting

functions, the interconnection structure of the system shown in Figure 16

is constructed by using MATLAB®. The constructed system has 18 states,

seven outputs, and eight inputs. The eight of 18 states are physical states

of the aeroservoelastic system; four of them are the states of the

aeroelastic system, two of them belong to the aerodynamics, two of them

are the states of motor dynamics. The rest of the states are the additional

fictitious states due to the reference model and uncertainty/performance

weightings.

controller synthesis

6.2.2.1. H.

The controller is synthesized using MATLAB®'s hinfsyn command.

same as the number of states of

The synthesized controller has 18 states

156



The frequency plots of the

10"

10°

the interconnection structure system, [P].

controller are given in Figure 44. The value of the H, norm of the

controlled system is obtained between 0.768 and 0.769.

Full Order Hinf Controller

T
I
I
i
I
I
I
I
L
|
I
I
I
LI

T
|
|
|
|
|
|
|
|
|
|
|
|
S A A A

0
10°

apniube

10°

10"

(s@aibap) aseyd

10

Frequency (Hz)

Figure 44. Bode plot of the synthesized H., controller

For a strictly defined system, an H.. controller is synthesized in one

step. The designer just checks if the norm is less than one or not, which

implies whether the controller is a valid robust controller or not. If the norm

it means that the obtained controller is not robust to

is greater than one

the defined uncertainty/performance weightings. In this case, if the defined

system has some freedom, the reference model and/or the weightings are

modified in order to reduce the norm. However the result of hinfsyn

controller synthesis command gives just one number, the H,, norm of the

closed loop system. This is not sufficient to decide on the system
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parameter to be altered. For this reason a simple method, which is not

encountered during literature survey, is devised.

In this novel method, the controller is synthesized as usual. During
the synthesis, the weighted closed loop system is obtained by using the
hinfsyn command or constructed later by the starp command. As the main
step of the method, the infinity norms of each input to output port of the
weighted closed loop system are calculated. The results are written in a
table as given in Table 13. In this table, the inputs are written in the first
column, and the outputs are written in the first row. The infinity norm of an
input to an output can be found at the intersection of the corresponding

row and column.

Table 13. H.. norms of input to outputs of [l\_l]

{21}5 {Zz}a 1z}, {e}per {6}
Wi, 0.210 0.205 0.028 0.502 0.078
Wl 0.029 0.087 0.018 0.451 0.051
{w}, 0.039 0.190 0.026 0.275 0.312
{de},, 0.116 0.113 0.014 0.284 0.042
{du}r, 0.044 0.046 0.024 0.606 0.049
{d},.., 0.535 0.458 0.297 0.124 0.167

Note that the highest value of the table is not equal to but less than
the H. norm of the system. This is an expected result since the cross
effects of the rest of the inputs and outputs are neglected in this method.
Another drawback is that the effect of the ideal model cannot be calculated
since it has no direct input or output to the system. Nonetheless, the
method gives some useful information about the system. This information

may be used for more than one purpose:
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Table 13 can be used to alter the system in order to decrease the
H. norm of the system below one. Finding the greatest norm from
the table, one can decrease the corresponding input value or
increase the corresponding output value. These tunings can be
performed by changing the parameters of the corresponding

weighting function. It can be seen from the table that the most

critical input-output relation is between {d},, and {€} . which has

per

an infinity norm of 0.606. To decrease the norm of the system, one

can increase the weighting [Wper]. This means decreasing the

performance requirement. Alternatively, the weighting [WFd] can be

decreased. This means to loosen the steady state error requirement
and/or to decrease the robustness requirement for unmodeled
aerodynamics. During this modification, one should check the effect

of the modified input or output on the others. For example; to

decrease the norm from {dM}Fd to {e} one should check both

per

the effect of decreasing {dM}Fd and increasing {e} . The

per

decrease of {d,}.. will decrease all norms in its row, and the

Fd

increase of {e} will decrease all norms in its column. Since the

per

norms in the column of {e}per are greater than the norms in the row

of {dM}Fd, one should prefer to decrease {e}pe, if it is possible.

Table 13 can also be used to alter the system in order to increase
the H. norm of the system to one. This is the inverse of the first
operation. One can select the smallest or the necessary
input/output and modify the input/output constraints. During this
modification, one should check the effect of the modified input or

output to the other parameters as well.
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- Table 13 may also be used for the model reduction. The least

effective inputs and outputs can be selected from the table and

removed from the model. It can be seen that {W}sen to

{z}seninput/output cells have all small numbers in the related row

and column, which may be a good candidate for a model reduction.

In this thesis the method is used only to decrease the H. norm of

the system below one.

Once the controller is synthesized, three different reduction
methods (Balanced, Hankel, and Residual) are used to decrease the order
of the controller. In order to decide on the reduction size, singular values of
the balanced system are analyzed, and their ratios to the next singular
values are calculated (Table 14 and Figure 45). From Table 14, it can be
seen that such ratios of the 10™ and 13™ singular values are greater than
the ratios of their next singular values. Thus, 10" and 13" orders seem to
be good starting points for the order of the reduced controller. The first ten
states are selected as the initial reduced states. However, it is seen that
10™ order reduced controller can not satisfy the robustness requirement
whereas the 13™ order reduced controller does. It is worthwhile to note
that 11™ and 12" order reduced controllers could not satisfy the
robustness, either. The frequency response plots of controllers obtained
with 10, 12, and 13 states are given in Figure 46, Figure 47, and Figure
48, respectively. The infinity norms of the close loop systems for each
controller are given in Table 15. It can be seen from the table that norms of
the thirteen state Balanced and Hankel controllers are good candidates;
however, for the thirteen state Hankel controller some performance
relaxation is required to decrease the norm of the closed loop system
below one. In this section, the reduced (Balanced) controller with thirteen

states is used. Through this study, it is seen by experience that the Hankel
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singular value of the full order controller at the number equal to the proper
reduction order are in general less than 0.01, mostly between 0.01 and
0.001 for the Balanced method. It can be seen from Table 14 that 13"

singular value is less than 0.01, hence it satisfies the generalization.

Table 14. Singular values of controller

Hankel SV ratio Hankel SV ratio
# Singular SV(i) ” Singular SV(i)

Value SV ) Value SV(+1)

(SV) (SV)
1 178 1.05 10 | 0.328 13.12
2 170 8.96 11 | 0.0250 1.53
3 18.9 1.81 12 | 0.0163 4.03
4 10.5 4.26 13 | 0.00405 17.54
5 2.46 1.15 14 | 2.31*10™ 2.82
6 2.13 1.72 15 | 8.19*10° 8.07
7 1.24 1.91 16 | 1.01*10° | 140.77
8 0.650 1.87 17 | 7.21*10% | 991.75
9 0.348 1.06 18 |7.27*10™" -

Note that, the norm of the system with reduced controller is still
about 0.77; hence, if desired, a further improvement can be achieved via

increasing the value of q,, . However, at this stage the analysis are

performed with this controller.
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10°

13" order reduced controllers
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Full order Controller and different reduced forms

Figure 48.
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Table 15. Infinity norm of weighted close loop systems

Controller Infinity norm of closed Frequency
Reduction Method | Order | loop system is between (Hz)
- Full 0.768 0.769 0
Balanced 10" 315.15 315.46 4.76
Hankel 10" 338.46 338.80 Inf
Residual 10" - - -
Balanced 12" 6.518 6.525 4.68
Hankel 121 54.071 54.126 Inf
Residual 12 - - -
Balanced 13" 0.768 0.769 0
Hankel 13" 2.555 2.558 Inf
Residual 13" - - -

6.2.2.1.1.Analysis

Once the reduced controller is synthesized, the aeroservoelastic
system is constructed with a similar procedure as explained in Chapter 4.
In this Section, the analyses that are presented in previous Chapters are
performed for the aeroservoelastic system constructed. Initially a step
response analysis is performed by using the constructed aeroelastic and
aeroservoelastic state space equations. After confirming that the controller
works properly and suppresses the oscillations, the frequency domain
analyses are performed. In order to compute the stability limits, y-method
and p-method analyses are conducted by varying the dynamic pressure.
Time domain analyses are performed in order to verify the dynamic
pressure of instability of the aeroservoelastic system computed by flutter
search methods. Both y-method and p-method are also used to calculate
the airspeed of instability, and flutter free flight envelopes are computed.
Then the step response and backlash analyses are performed for the

aeroservoelastic system.
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6.2.2.1.1.1. The initial time domain analysis

A time domain analysis is performed as a response to a non-zero
initial conditions. The non-zero initail condition is the pitch angle of the fin,
which is set as 10°. The response of the natural and the controlled system
are given in Figure 49. As it can be seen from the figure, the controlled
system has a faster response in the controlled pitch motion than the
natural system, but with some higher deflections. This is due to the fact
that an initial condition release is not modeled in the controller synthesis.
An initial condition release is analogous to a step command, which is well
above the expected command defined in Table 12. In the Simulink® model,
a limiter is added to the command input for this purpose, as defined in
Section 5.2. Furthermore, the aeroelastic equations are derived for zero
initial conditions of the plunge and pitch positions; which is also
disregarded in this analysis. However, this analysis gives a quick opinion
about the system. In the plunge motion, higher deflections occur in the
controlled system, but the motion dies out faster than the natural system.
The plunge response is damped out much later than the pitch response,
because the plunge motion is the uncontrolled degree of freedom; i.e., the

controller does not have a direct mission to suppress the plunge mode.

6.2.2.1.1.2. Frequency domain analyses

The aeroservoelastic system is also analyzed in the frequency
domain. Solutions of these analyses at the nominal dynamic pressure are

given in Figure 50 through Figure 57.
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In Figure 50, the transfer function of the aeroservoelastic system
from command input to pitch motion is given. It can be seen from the
figure that the magnitude satisfies the 6 Hz bandwidth requirement.
However, the 90° phase shift occurs at ~5.87 Hz, which is slightly below
the requirement. At this point, the slight decrease of bandwidth is
accepted. The bandwidth is also crosschecked with the full order controller
but the same problem is observed. Thus, it is concluded that the order
reduction is not the cause of the decrease of bandwidth. In Figure 51, the
effect of the command input of pitch motion on the plunge motion output is
given. This plot is mainly given in order to check if the amplitude of the
plunge motion is in acceptable limits. Note that there exists a dip slightly
above 2 Hz and a peak in 3 Hz. This dip and peak also exist in Figure 53,
the frequency response from ‘disturbance to dynamic pressure affected on
aerodynamic moment’ to plunge motion of the nominal aeroelastic system.
Remembering that the system has aeroelastic poles, too, it is concluded
that these are the anti-resonance and the resonance of the aeroelastic

system.

In Figure 52 through Figure 55 the effect of ‘disturbance to dynamic
pressure’ on the pitch and plunge motions are plotted. From the figures it
can be seen that the disturbance to dynamic pressure causes greater
motions in the aeroelastic system than the aeroservoelastic system.
Motions of the systems are comparable only in the plunge motion, if the
disturbance to dynamic pressure is affected on aerodynamic lift (Figure
55). Hence, it can be concluded that the controlled system performs a
good suppression to the disturbance to dynamic pressure. The effects of
the aerodynamic disturbance on the pitch and plunge motions are not
given, since the plots are identical to their plots given in Figure 52 through
Figure 55. Both inputs are kept in the system in order to define the

‘disturbance to dynamic pressure’ and ‘aerodynamic disturbance forces’
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separately. Note that ‘aerodynamic disturbance force’ uncertainties are

also used to decrease the steady state error in this study.

In Figure 56 and Figure 57, the effects of the sensor noise to the
pitch and plunge inputs are given. It is seen that the noise results in a
small peak in pitch motion between 2 Hz and 2.5 Hz, which is close to the

frequency of motor obtained by using the torsional stiffness of the fin.

In Figure 58, the frequency responses of the aeroservoelastic
system from the command input to the pitch output are given for various
values of dynamic pressure. It can be seen from the plots that the
magnitude increases around 5.5 Hz as the dynamic pressure approaches
to 5,582 Pa, and a 180° phase jump occurs at 5,582 Pa. Thus, it can be
concluded that the damping ratio of the aeroservoelastic system becomes
zero at 5,582 Pa, and the system becomes marginally stable at this point.
From subplot (b) it can be seen that above 4,000 Pa a 30% decrease
occurs at ~1.8 Hz, which is below 6 Hz. From subplot (c), the frequency at
which a 90° phase lag occurs is calculated for the graphics of 1,000 Pa
dynamic pressure via interpolation as ~5.6 Hz. Although the bandwidth
value is degraded, an acceptable bandwidth is obtained at 1,000 Pa. Note
that, at the start of the synthesis a 6 Hz bandwidth and a disturbance to
dynamic pressure of 500 Pa is required. Note that, at the start of the
synthesis a 6 Hz bandwidth and a disturbance to dynamic pressure g, of
500 Pa is required. The upper limit of the dynamic pressure can be

obtained by adding the g, on the nominal dynamic pressure as

q, +9,4 =~ 621Pa (6.4)
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6.2.2.1.1.3. Stability analysis by varying dynamic pressure

Similar to the nominal aeroelastic system, stability analyses are
performed for the nominal aeroservoelastic systems in order to compute
the dynamic pressure of instability of the system. The y-method analyses
are performed for the upper and lower dynamic pressure of instabilities as
defined in Section 3.3.1. Results of iterations of the y-method analyses are
presented in Figure 59. The upper limit search is performed between 0 Pa
and 50,000 Pa above the initial dynamic pressure. The disturbance value
of dynamic pressure that destabilizes the system is computed as 5,423
Pa. Similarly, a lower search is performed below 0 and 10,000 Pa of initial
dynamic pressure, and the disturbance value of the dynamic pressure for

the lower limit is computed as 979 Pa. The frequency of the instability is
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calculated from the corresponding pole of the system at each case. The y-
method analyses results for both the aeroelastic and the aeroservoelastic
systems are given in Table 16. From the results it is seen that the
synthesized H. controller can successfully suppress the flutter of the
nominal aeroservoelastic system for the initial airspeed at sea level. Note
that the dynamic pressure of nominal ASE instability is 5,423 Pa greater

than the q,, the dynamic pressure at which the controller is synthesized,

which is 161 Pa. This difference, which is taken as the stability margin, is
larger than the design requirement of 500 Pa. The difference between the
design value and the result of the nominal analysis is an expected result.
Since, the additional robustness and performance requirements that are

used in the controller synthesis are neglected in nominal stability analysis.

Table 16. Instability points of Model 1 with H.. controller

Dynamic pressure of flutter of the AE system 9,: | Pa| 665
Frequency of flutter of the AE system @ |Hz| 3.5
Lower dynamic pressure of instability of the ASE q Pa| -818
system "Slow
Frequency of lower instability point of the ASE o Hz | 11.8
system "Siow '
Upper dynamic pressure of instability of the ASE g Pa | 5582
system e ’
Frequency of upper instability point of the ASE
y systom y o, |Hz| 55
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Modal Properties of Controlled System
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Root Locus plots of ASE Model 1
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Figure 60. Flutter search results of p-method by changing air density
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In order to crosscheck the results of the y-method analyses, a p-
method analysis is performed similar to the aeroelastic case. The results
of the p-method analysis are given in Figure 29. It can be seen that the
damping value becomes negative slightly above -822 Pa and slightly
below 5,584 Pa. The damping value of the aeroservoelastic system is
positive between these values, thus the system is stable. Comparing the

results of the two methods it can be seen that their results are consist.

In order to cross-check the dynamic pressure of instability results
obtained by using the y-method and the p-method, the time domain model
is used. For the time domain analysis the Simulink® model presented in
Section 5.2 is used with the synthesized H.. controller. In order to simulate
the real environment, the H.. controller is converted to discrete form. In the
conversion, the sampling time is chosen as 1/2500 s, which is a possible
execution interval of code on the xPC-target. The frequency response of

the discrete H.. controller is given in Figure 61.
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Figure 61. Frequency response of discrete controller

The time domain simulations of the aeroservoelastic system are

performed at, slightly over, and well over the dynamic pressure of

instability. The analyses are performed without any uncertainty or

disturbance. In order to see the effect of sensor quantization, two different

sets of analyses are performed. The results are given in Figure 62. In

(c), and (e) the results for a linear sensor are given. It is seen

figure (a)

that the time domain results are in accordance with the previous results.

Introducing the sensor quantization, it is seen that for small disturbances

the instability is not initiated, rather small amplitude oscillations occur at

the dynamic pressures that are slightly over the dynamic pressure of

instability. However, a large amount of disturbance can still cause the

instability.

180



5,582 Pa, Odist =0.1 N.m,

(b)

5,582 Pa, Odist =0.1 N.m

(@ q

quantized feedback

(d) 6255592 Pai 6dist =1O N.m,

quantized feedback

quantized feedback

Figure 62. Time domain simulation results at and above the dynamic

pressure of instability
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6.2.2.1.1.4. Stability analysis by varying airspeed

Similar to the analysis of aeroelastic system, the airspeed of
instability is calculated for the aeroservoelastic Model 1 by using the
iterative procedure given in Section 3.4.1. Results are given in Table 17. It
can be seen from the table that the error between the calculated airspeeds
of instability drops below one percent at the 5" iteration. The airspeed of
instability is obtained as 95 m/s. For the verification of the result, the p-
method is used again. The calculations of the p-method are performed at
100 points, by changing the airspeed from 1 to 100 m/s. Hence the results
are calculated with 1 m/s intervals. The results are given in Figure 63. In
the frequency versus airspeed plot, two modes, those have the
frequencies around 100 Hz and 200 Hz, are not plotted for ease of
analyzing the figure. As it can be seen from the figure, the airspeed of
instability is found slightly below 95 m/s, which is in agreement with the

result of y-method.

Table 17. Results of flutter airspeed search

iteration # 1 2 3 4 5
Input Uo m/s | 16.86 | 99.24 | 82.76 | 95.50 | 92.95
Parameters d, Pa | 161.2 |5,582.3|3,883.8| 5,172.1/ 4,899.1
Output Qe Pa [5582.3] - |51721] - |5,115.9
Parameters Utut m/s | 99.24 - 95.50 - 94.98
Yoerror of Uput| % - - -3.77 - -0.54
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Figure 63. Flutter search results of p-method by changing airspeed
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The flutter free flight envelopes of the aeroelastic and
aeroservoelastic systems are derived by using the method given in
Section 3.4.1. The results are presented in Figure 64. The plot contains
the sea and ground level lines, as well as the 0.3 Mach line, which is the
limit of the incompressible flow. The systems are stable on the left and
upper part of the corresponding stability lines. It can be seen that the
synthesized H.. controller enlarges the stability envelope of the aeroelastic

system.

6.2.2.1.1.5. Time domain step response analyses

The results of the time domain solutions at dynamic pressure of O
Pa and 4,000 Pa to a 1° step command are depicted in Figure 65 through
Figure 68. In these simulations, noise and disturbances are not
introduced. The results are summarized in Table 18. Note that the
minimum sensor increment is 0.022°; hence the steady state oscillations
obtained are reasonable. This can also be concluded from Figure 66. It
can also be seen from the results that the damping of the aeroservoelastic
system decreases as the dynamic pressure increases, and shows an
underdamped behavior. Thus, with the increasing dynamic pressure, both
the overshoot value and settling time of the aeroservoelastic system

increase.

The simulation is repeated by introducing a sensor noise. The
results are given in Figure 69 through Figure 72. From the figures it can be
seen that the sensor noise increases the oscillation amplitude, current

consumption, and torsional spring deformation amplitude as expected.
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Figure 65. Step response of the aeroservoelastic system
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current consumption at step response
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current consumption at step response
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Table 18. Properties of ASE system with H.. controller

q simulation 0 Pa 4,000 Pa
trso; s 0.072 0.070
ts s 0.098 1.3
Mp % 4.5 11.7

€ss deg | -0.01+x0.02 | -0.02+0.02
Oad deg 1.4 2.3
current | A 0.8 0.8

6.2.2.1.1.6. Backlash analyses

The same steps that are performed for the aeroelastic system are
followed for the backlash analysis of the aeroservoelastic system. The
graphics obtained by the brute force approach as presented in Section
5.3.4, for the aeroservoelastic system at the dynamic pressure of 500 Pa
are given in Figure 73. From the graphics it is seen that the
aeroservoelastic system has only a stable LCO at the dynamic pressure of
500 Pa. Using the LCO search algorithm presented in Section 5.3.4, this
stable LCO for the aeroservoelastic system at a dynamic pressure of 500
Pa is obtained for k.;=36.31 N.m/rad. From the eigenvalues of the
aeroservoelastic system the oscillation frequency is calculated as 6.60 Hz.
The oscillation amplitude A is calculated by using Equation (5.8), as 0.73°
for the backlash value of 0.2°.

Time domain analyses for the backlash analyses of the
aeroservoelastic system are conducted by using the Simulink® model
presented in Section 5.3.2. In order to separate the effects of backlash
and the other nonlinearities included in the Simulink® model; the discrete
controller, quantization blocks and disturbances are omitted from the
Simulink® model. The results of the time domain analysis of the

aeroservoelastic system at the dynamic pressure of 500 Pa are given in
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Figure 74. The time domain analyses are performed for two different initial
disturbances; namely, 0.1 N.m and 10 N.m amplitude moments. It is
observed that the aeroservoelastic system converges to a stable LCO,
from both lower and upper amplitude oscillations correspondingly. In
Figure 74, two plots are given for each case, the pitch oscillation of the fin
and the deformation of the torsional spring (d. = Qo-q,). Both have an
importance for the system; the fin oscillation q, affects the performance of
the system; on the other hand, the deformation of the torsional spring
affects the resulting stress and the fatigue life. Performing a fast Fourier
transformation on the time domain response of the aeroservoelastic
system, the frequency content of the output is obtained as given in Figure
75. It can be seen from the figure that the time domain results and the
frequency domain results are not as consistent as in the aeroelastic case.
The LCO is obtained, however the frequency domain method predicts the
amplitude and the frequency of the LCO at some lower values. This is due
to the effect of the higher harmonics, which is neglected in describing
function method. These higher harmonics of the LCO, which are at the odd
multiples of the LCO frequency, can also be seen in Figure 75. Comparing
Figure 33 and Figure 75, it can be seen that the amplitude ratio of the first
and the second peaks of the aeroelastic is 10,000, but for the
aeroservoelastic systems the ratio is 65. Thus, the contribution of the
higher harmonics is negligible in the aeroelastic system. However, in
aeroservoelastic system the higher harmonics have a larger contribution,
which causes a difference in the results of the describing function and time
domain results. In the figure (a), there exists a peak at 2.2 Hz, which is
nearly one third of the LCO frequency. By applying an FFT on the initial
and final portions of the signal, it is seen that the amplitude of this peak
decreases with time. Hence, this peak is not a lower harmonic of the LCO,

but it is a damped oscillation.
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A set of search are performed at various dynamic pressures.
Different than the aeroelastic system, a stable point at 0°, or an unstable
LCO are not found for this particular aeroservoelastic system. In the
aeroelastic system, if the disturbance is not sufficient to deflect the fin
above the unstable LCO which corresponds to a pitch angle slightly above
backlash, the aerodynamics damps and stabilizes the fin to 0°. However in
aeroservoelastic system, although a small disturbance is applied such that
the pitch motion is less than the backlash, the motor moves and the
relative motion between the fin and the transmission shaft exceeds the
backlash value due to the feedback. Hence, any motion of the fin that the

sensor detects causes the motion of the motor, and a subsequent LCO.

The analyses are also performed for various backlash values. The
pitch motion of the fin and the deflection of the torsional spring values that
is calculated via describing function method and time domain solutions are
given in Figure 76. From the figure it can be seen that, the difference
between the results of the two solution methods, which is seen for the
backlash value of 0.2°, is also exist for other backlash values. The
percentage of the error between the predicted LCO amplitude from the
describing function method and time domain solutions are similar for
different backlash values. On the other hand, it can be seen that for this
model, an increase in backlash increases the amplitude of the LCO, hence
decreases the flight margin of the aeroservoelastic system. For example;
just consider the oscillation amplitude of the pitch motion of the fin. For a
0.4° acceptable oscillation, the linear flight margin of 4,000 Pa decreases
to 3,300 Pa for 0.2° backlash value. However the stability is not the only
requirement of the aeroservoelastic system. In order to investigate the
performance of the aeroservoelastic system with backlash, time domain
simulations are performed. The solutions of the time domain simulations
are given in Table 19. These simulations are performed at two different

dynamic pressures and for two different backlash values. The simulations
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reveals that the backlash increases the overshoot and elastic deformation
of torsional spring. Moreover, the LCO occurs after 1° command for the
analysis at 0 Pa. The LCO occur about 1° pitch position. On the other side,
it is seen that, the preload and the damping effect of the aerodynamics
suppresses the oscillations after this 1° pitch position step command at
4,000 Pa.

As it is mentioned in the beginning of the backlash analysis, the
quantization block of the sensor is taken out of the time domain simulation
block. Finally, the time domain analyses are rerun with the sensor
quantization block. It is seen that, the LCO do not occur for very small
perturbations if the feedback does not detect any fin motion. However, the

LCO still occurs with slightly greater amplitudes for large perturbations.

Modal Properties of ASE System
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Figure 73. Modal properties of the aeroservoelastic system at 500 Pa
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Table 19. Step response properties of aeroservoelastic system for various

backlash values

Backlash deg 0 0.05 0.2
trsy S 0.072 0.058 0.050
o Mp % 4.5 7.3 21.0
o -0.01 -0.002 -0.010
2 Ess deg | 4o | +0.048 | +0.208
-% Sat deg | 1.37 1.41 1.50
E cr1: A 0.77 0.75 0.68
B cra A 0 0 0
< crs A 0 0.028 | 0.035
cry A 0 0.31 0.26
trso; S 0.068 0.067 0.065
o Mp % 11.8 13.6 33.0
= -0.022 -0.022 -0.022
- 99 | 40 | 40001 | %0.009
S Ou deg 2.29 2.50 3.20
B cry A 0.68 0.67 62
£ crz A | 0018 | 0.018 | 0.020
o crs A 0 0 0
cry A 0.019 0.019 0.019
icr1 :  maximum current consumed at step motion
crz : mean current consumed at steady part
Cr3 . standard deviation of current consumption at steady part
cry :maximum current consumed at steady part

6.2.2.1.2.Effect of Initial dynamic pressure and dynamic pressure
disturbance to the controller performance

The controller synthesis method given in Section 4.3 defines the

disturbance to dynamic pressure as an uncertainty and uses this

disturbance to define the required margin of stability. The aeroservoelastic

system has both upper and lower margins and the dynamic pressure

uncertainty is used for both margins. Hence, the dynamic pressure g, at
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which the controller is synthesized affects the margins of the
aeroservoelastic system. In order to analyze this, six different aerodynamic
points (AP) are selected as shown in Table 20. In all these aerodynamic

points, the airspeed is kept as the same.

Table 20. Aerodynamic points for controller synthesis

AP # h (m) Mach Q... (Pa)
1 800 0.0500 161.1
2 -5,000 0.0470 274.5
3 -10,000 0.0448 414.7
4 -15,000 0.0428 601.1
5 -20,000 0.0411 8494
6 -30,000 0.0383 1,571.0

For each case, a controller is synthesized by keeping the rest of the
parameters fixed. After the syntheses of these controllers, analyses are
performed for the aeroservoelastic system with each controller. The upper
and lower limit variations of the dynamic pressure of instabilities with the

variation of q_, are given in Figure 77. The aeroservoelastic system is
stable between the upper and the lower limits. From the figure it can be
seen that the upper limit increases with the increase of q_,, . However, the
lower limit also increases with the increase of g, and crosses 0 Pa,

which means that the aeroservoelastic system becomes unstable in

vacuum.

In addition to the stability analysis, the performance analyses are
also performed for the aeroservoelastic system with the synthesized
controllers. The step response properties of these systems at two different
aerodynamic environments (0 Pa and 4,000 Pa) are achieved by time

domain simulations. The results are given in Table 21. From the table it
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can be seen that the performance at 0 Pa decreases, but the performance
at 4,000 Pa increases with the increase of g, . This is in accordance with
the results of the instability analyses. Moreover, some frequency response
analyses are performed, which are similar to the Figure 58, and it is seen
that the system can satisfy the bandwidth requirement at higher dynamic

pressures, when g, is increased.
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Figure 77. Change of dynamic pressure of instability with q_,,,

As a result, it is required to tune the q_,, in order to increase the

performance and the stability margins of the system. The analyses are

performed for 0 Pa and 4,000 Pa, however the tuning of the g, should

be performed according to the working range of the aeroservoelastic
system. For example, for an air to air missile with an operating range

between 2,000-3,000 Pa, the tuning may be performed accordingly.

199



Table 21. Step response properties of aeroservoelastic system with

various controllers

AP # 1 2 3 4 5 6
trso; s | 0.072 | 0.075 | 0.081 | 0.087 | 0.092 -
ts S 0.098 | 044 | 048 | 0.24 | 0.26 -
D(_U Mp % 4.5 6.0 8.5 11.8 17.8 -
o -0.009 |-0.009 [-0.009 |-0.010 [-0.010
5 Oss d89 110,023 [+0.023 |+0.022 |£0.025 [+0.026 | "
S 5, | deg | 1.38 | 1.40 | 142 | 145 | 150 | -
El o A | 08 | 081|081 | 081 |08 | -
> crp A 0 0 0 0 0 -
crs A | 0.099 | 0.090 | 0.090 | 0.096 | 0.083 -
crs A | 027 | 018 | 018 | 030 | 0.27 | -
trso; s | 0.068 | 0.067 | 0.067 | 0.067 | 0.067 | 0.067
- ts S 1.275 | 1107 | 1.103 | 0.76 | 0.76 | 0.41
g Mp % 11.9 10.3 8.4 8.5 8.4 7.8
8_ o de -0.022 |-0.022 {-0.022 |-0.021 |-0.019 [-0.018
2 ss 9 +0.025 |£0.024 |£0.021 (£0.021 |£0.012 |£0.018
-% St deg | 2.34 | 233 | 227 | 228 | 2.29 | 2.23
E Cr1: A 0.71 0.73 | 0.73 | 0.74 | 0.74 | 0.77
B cro A |0.018|0.018 | 0.018 | 0.018 | 0.018 | 0.018
U crs A |0.182|0.169 | 0.158 | 0.156 | 0.130 | 0.139
CI’4* A 042 | 042 | 0.39 | 0.37 | 0.28 | 0.31
:cr1 :maximum current consumed at step motion
crz : mean current consumed at steady part
Cr3 . standard deviation of current consumption at steady part
cry : maximum current consumed at steady part

Q4 1S another parameter for the tuning of the system performance.

In order to analyze this, controllers are synthesized at the aerodynamic

point number 1 and 3 for various values of q . The resultant controllers

are compared for the stability limits of the aeroservoelastic system, and

the results are given in the Table 22. From the table it can be seen that, in
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contrary to q,,,,, an increase in q,, enlarges the flight envelope from both

upper and lower limits.

Table 22. Effect of aerodynamic disturbance on stability margin

Qs Pa | 500 | 1,000 | 1,290 | 1,500
Tins, Pa | -818 | -872 - -
T Dy, Hz | 551 | 13.3 | - ]
c Tins Pa |5582 |7,306| - -
o, Hz | 118 | 590 | - -
Tins, Pa | -603 | -649 | -729 | -815
N O, Hz | 118 | 132 | 139 | 144
< Tins Pa |6,132 7,986 | 8,859 | 9,359
o, Hz | 549 | 5.88 | 6.12 | 6.30

The analyses are continued with the controller synthesized at AP #3

for g, =1,500 Pa. From Figure 78, it can be seen that, by tuning the

controller, the bandwidth of the aeroservoelastic system is also altered and
becomes ~6 Hz at least for a dynamic pressure range between 0-5,582
Pa. The enlarged flutter flight envelop can be seen by comparing Figure
79 and Figure 64. Results of the performance analysis are given in Figure
80 and Table 23. Comparing the results of the Controller synthesized at
AP #1 given in Table 21 and the results of the tuned controller given in
Table 23; it can be seen that a slight performance decrease in 0 Pa and a
considerable performance increase in 4,000 Pa are obtained with the new
controller. The new controller also decreases the amplitudes of the LCO

as given in Figure 81.

201



cmd to Pitch motion

I RN
ST T om
I i W

= g e A
i W

apnuubep

(soaibap) aseyd

Frequency (Hz)

(a) main graphics

cmd to Pitch motion

apniubep

4

4000 Pa

—=-»—== 1000 Pa
°

5000 Pa
5582 Pa

|
I

o

<

(soa1bap) aseyd

Frequency (Hz)

detailed graphics

(b)

Figure 78. Frequency response from command input to pitch motion for

various values of dynamic pressure
202



Flight Envelope

mmmE geglevel
== = m 300 m

I 0.3 Mach limit

(w>) spnyyje Ayjigesu

Airspeed (m/s)

Figure 79. Flutter flight envelope

step response

g. @O0 Pa
-==-=-= g, @ 4000 Pa

command

S [T

|
|
|
|
-—r--—-
|
|
|
|
|
+
|
|
|
|
|
|

R At

L%,

YA

(seaibap) sa|bue b pue puewwo)

02 -
0

1.4 1.6 1.8

1.2

0.8

0.6

0.4

0.2

Time (s)

Figure 80. Step response of the aeroservoelastic system

203



Q * T T T T
fm«, Y I o I
I I I
n ,/ I % N ~ M I
AU S Lol |
\\\\f”\\T\b.L\\\ .W o .W @ Iy
[ N 1) 1) I
| v { L AWLA |
[ \ OO0 F I
I . ) Y I
| Y Y HE |
R R b & t Of--—+—---- q
I I Y r I
I o [ I
I I [} P I
| I [ | | |
I I [ I I I
IR A N e S S
o | v | | |
Y I 1 I I I
[ I Hl I I I
I I I Y I I I
Lo __ e S T
[Iat I I 1 I I I
[ I I I I
ry I m I I I
[ I ! I I I
[ | 1 | | |
T W T S B Y R B,
| 1! | @ | | |
I . I ] I I I
I _.,, I I I I I
I I H I I I
| i | b | | |
I R T 1 O R
I ,Q I 1 I | I
I i I 7 I I I
I ' I .o I I I
I H o I I I
| [ [ A | | |
\\\\r\\\rﬁ\L\&\L\\\L\\\k\\\r\\\
| I v | | | | |
I | |0 I I I I I
I (0] L I I I I I
I I I I I I I I
I I I I I I I I
1 1 1 1 1 1 1 1
+ o o ~ © 1 <% o
o o o o o o o

(sea1b69p) apnydwe uone|IvsQ

1000 1500 2000 2500 3000 3500 4000

500

Dynamic pressure (Pa)

(a) deflection of torsional spring, d.s

—&8— TDS bv=0.05

0.18

(sea1bap) apnydwe uone|1osQ

1000 1500 2000 2500 3000 3500 4000

500

Dynamic pressure (Pa)

(b) q.
Figure 81. LCO amplitudes of the aeroservoelastic system with respect to
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Table 23. Step response properties of aeroservoelastic system with

quantized sensor for AP #3, q,,=1,500 Pa

q simulation 0 Pa 4,000 Pa
®n Hz 6.00 6.03
trso, s 0.076 0.065
ts s 0.145 1.130
Mp % 5.7 6.5

-0.008 -0.024
s | 989) 10022 | +0.019
Out deg 1.29 2.32
cri A | 098 0.80
cry A 0 0.019
crs A | 0.233 0.323
cry A | 050 0.73
cr; :  maximum current consumed at step motion

Cr © mean current consumed at steady part
crz : standard deviation of current consumption at steady part
cry :  maximum current consumed at steady part

6.2.2.1.3.Aeroservoelastic Test Setup

As it is mentioned in Section 6.2, an Aeroservoelastic Test Setup
(ATD) is developed in TUBITAK-SAGE (Figure 82). ATD is tested in the
Ankara Wind Tunnel. From the tests it is seen that, ATD encounters some
LCO at 48 m/s airspeed and flutter occurs at 60.5 m/s airspeed. The
details of the ATD can be found in reference [17]. After these tests a small
demonstration is performed for flutter suppression. For this purpose an H.
controller is synthesized using the proposed controller synthesis method,
g-Method, which uses the perturbation to dynamic pressure for the
purpose of flutter suppression. However, the synthesis is performed with a
limited knowledge about the ATD. The detailed system identification is not
performed before demonstration. Furthermore, during the tests it is

observed that the ATD has more friction and damping than the expected
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values. However, the synthesis is performed according to design

specifications of the ATD.

In order to implement the controller, a MATLAB® xPC-target
computer is used. The xPC-target computer sends the command to the
SERVOSTAR 6020 motor driver: the motor and the fin angles are
collected from encoder channels and the plunge motion is collected from
an analog to digital card. Additionally, four accelerometer measurements

are collected from the fin for further studies.

The setup is started and the airspeed of the wind tunnel is
increased up to 48 m/s. Then some plunge disturbances are applied to the
mechanism in order to initiate an LCO or flutter. After some oscillations are
developed, the disturbances are stopped in order to monitor the effect of
the controller. It is observed that the controller suppresses the oscillations
successfully. This demonstration is repeated at 50, 55, 60, 65, and 70 m/s
airspeeds - which is the practical limit of the wind tunnel — and it is seen
that the controller suppresses the oscillations. From the analysis of the
aeroservoelastic model that is constructed with the limited knowledge, the

airspeed of instability is obtained above 100 m/s.
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(a) 2 d.o.f. structural part (b) upper view

Figure 82. Aeroservoelastic Test Setup
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In Figure 83 and Figure 84, the g, and q, graphics of the aeroelastic
system are given at 48 m/s airspeed in the LCO and at 60.5 m/s airspeed
in the flutter. From Figure 83(a), the initiator disturbances applied in the
pitch degree of freedom can be seen. It is observed that an LCO starts if
the pitch disturbance is greater than the amplitude of 6°. From the
graphics it is observed that up to 5° of disturbance amplitude the pitch
motion could not initiate a motion in plunge degree of freedom. In 5° of
pitch disturbance motion, only a small motion can be started in plunge and
it is damped. It is understood that at 6° of pitch disturbance motion the
system could transferred an enough amount of energy to the plunge
degree of freedom to initiate the LCO. Hence, it is concluded that
introducing a plunge disturbance will easily introduced an LCO or flutter,
and it is confirmed by some demonstrations performed at 48, 50, and 55
m/s airspeed. In Figure 84, the oscillatory divergence, the flutter
phenomena can be seen. Between 137.5-138 seconds the system
reaches the pitch limits. In the Figure 85 and Figure 86 the q, g4 and g
graphics of the aeroservoelastic system are given at 48 m/s and 70 m/s
airspeed correspondingly. From the figures it can be seen that the
controller suppresses the LCO and flutter observed in the aeroelastic

tests.
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Figure 84. Flutter of aeroelastic system at 60.5 m/s airspeed
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Figure 86. Aeroservoelastic system response at 70 m/s airspeed
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6.2.2.2. H; controller synthesis

In this section an H, controller is synthesized. In order to perform
the Hy synthesis the uncertainty, noise, and performances given in Table
12 are defined as the respective noise and performances. Similar to the
H.. controller synthesis, various controllers are synthesized considering the

disturbance to dynamic pressure g, disturbance to aerodynamic force,
and the dynamic pressure q_,,, at which the controller is synthesized. The

results are presented in Appendix D.

From the results it is seen that, as the q,,, value increases the

dynamic pressure of upper and lower instability values also increase as in
the case of H.. controller synthesis (Figure 77). In addition to the decrease
in lower stability margin, the overshoot values also increase with an

increase in q,,,. Hence, considering the q_,, controller synthesized at

AP #3 is selected.

Considering the disturbance to the dynamic pressure q,, and the

corner frequency w,, of the output weighting function [Waz

} of the

dynamic pressure disturbance are disturbed and it is seen that increases
in these terms increase the stability envelope; however they also increase

the current consumption value. Among those trial values, q,,, and «_, are

selected as 1,500 Pa and 10 Hz, respectively.

In order to see the effect of the disturbance on the aerodynamic
force, two different syntheses are performed. In these syntheses, two

different set of gains are used for the disturbance to aerodynamic force

weighting functions [WFd]. Comparing the aeroservoelastic system with

these two controllers, it is seen that increasing the disturbance value
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increases the bandwidth at 4,000 Pa. However, it also increases the
overshoot at 4,000 Pa, increases the current consumption, and reduces
the stability envelope. Thus, as the scale factors of the disturbance to
aerodynamic force weighting functions, the smaller values are selected
among the two cases. The selected values are 50 at 0 Hz and 0.2 at 10
Hz. The tuned and selected parameters in this synthesis are given in
Table 24.

Table 24. Tuned parameters of H, controller

Parameter Value
e, @O0 Hz 1,400 N
’ @ 10 Hz 25 N.m
(W]
g @O0 Hz 56N
el @10Hz | 0.1N.m
Qi 1,500 Pa
I:W52] dist
a)qz 10 Hz
C_Icont AP #3
Order of the reduced controller 13

For the aeroservoelastic system with the synthesized H, controller;
a stability analysis via py-method, a flutter free flight envelope analysis, a
frequency domain analysis, time domain step response analyses and
backlash analyses are performed. These analyses are applied to all cases
of incompressible flow, and named as standard analyses in
incompressible flow cases. The results of these analyses are given in
Table 25, Table 26, and in Figure 87 through Figure 90.

Table 25. Nominal stability limits

T, Pa | -612

Ops,,, Hz | 12.7
Qs Pa | 8,036
O Hz 5.61

213



cmd to Pitch motion

T

T

N e e

apniiubep

10°

10

10

10"

(oF

T T T
| | |
i i i
I I I
it Bl Bt Bl iy
I I I
I I
4 ]
I %0 I
I o I
I I
I I
[ R AU N
a2 AN - _ ]
[N s | -
RN X400 P —
o o
| |
- J S
_ L
I I I
I I I
B S i B Bty
I I I
I I I
B e e I
I I I
I I I
I I I
I I I
[ Y R
T R
IR
R
[ Y R
| | |
et Bttt Bttt Bt
fFELELELEEL|
O 0 oo o
E-R-B-E-E-E IR
S O 6 & oW
oHdH N ®F bW
] ﬁ
1 1 1
o o o o
[o)] [¢e] N~ O
N

(s@albap) aseyd

10"

Frequency (Hz)

(a) main graphics

cmd to Pitch motion

X:1.578
Y:0.7084

Y:0.7005

apnjiubep

(s@albap) aseyd

Frequency (Hz)

detailed graphics

)

b

(

Figure 87. Frequency response from command input to pitch motion for

various values of dynamic pressure

214



Flight Envelope

|
I
I
I
: |
| I | |
| | - L} | |
I I [ ] I I
D S IO | R S
N | I I [ I I I |
| ll+ | | | - n | | | |
I I I I I I I I
| ,IIII, | | { | | I I
e T . e B e B |
| | [N | - n | | | |
I I I Sso | ] I I I I
| llrll [ ] | | | |
=1 I '] I I I I
r e \7\\\\ﬁ\u—uﬂlrﬁﬂﬁ‘\\\4\\\‘ﬂ\\\\7\\\\
= |1  m oW Ssao ! | |
— < | | n | Seall! |
W Q| | - | | Sremel |
= S| | + | | | TTe—ad
M w = o M‘w\\\?\F“\\J\\\\?\JJJ\:\
nwg8 m I I I I I
2¢8g3, L
[T | | | ™ | | |
[ “ [ | \ﬂ\‘\\i‘\—‘m\\\\ﬂ‘\\\J\\\‘ﬂ\\\\T\\\\
HE — I [ I I I
R T
1 1 1 1 1 1 1 1 1
o [<¢] © < Y] S < S ©
=

(w) spnyye Ayjigessu

Airspeed (m/s)

Figure 88. Flutter flight envelope

step response

T T T
I I I -
| | |
| | | ©
| | | o
-—-r----- T === S © © [
| | | c o S
I I | © 1=
| | I g2 ¥
| | | 1S ® ®
. a0~ [ O = s 7
I I I o T T
| | | 1
| | | 1
>t [— [
i T | 1
| | | 1
| | | -
| | | |
e |
| | | |
| | | |
| | | |
| | | |
T e - = JE
| | | |
| | | |
| | | |
| | | |
-k o= - o -
| | | |
| | | |
| | | |
| | | |
S T [ T
| | | |
| | | |
| | | |
- ! | | |
\lJﬁﬂ\\\\A \\\\\\ [t T
T as | | |
= | |
~anado | | |
\\\\\ D T
b=~ i |
| | | |
P | | I
T S==== -
I I S ——
@ © < N
o o o o

(soa4bap) sajbue b pue puewwo)

1.4 1.6 1.8

1.2

0.8

0.6

0.4

0.2

Time (s)

Figure 89. Step response of the aeroservoelastic system

215



o
P o e | o |
— Q) S T T T T T T
AN 53 I I I I I I
I I I I I I I
I \ I I I I I I I
I \ I I I I I I I
| m | | | | | | |
\\\\\\ [ 3 I T N .
I ™ I I I I I I I
I I I I I I I I I
I < I I I I I I I I
I S I I I I I I I I
I m k) I I I I I I I I
E [ ¥ - - E—— - i
| % (@)] | | 3 | | | | | |
| c | | s—. | | | | | |
” = T I N R A S B
I o __ Q. I I oy I I I I I
Lo - - [P PR wa 72 e o N G
| RIS m | [ A | | | | |
I I I [ I I I I I
I ; m c I I ... I v\ I I I I I
| | [ | A\ | | | | |
I Y o9& m I 1 I 1 I I I I I
\\\\\\ - @ - mm m \\\\f\\\rE\\T\\E\\\L\\\#\\\T\\\T\\L\ E
I (N & S o) I y ! H] I I I I I
| \ ) -— | | \ | nL | | | | |
I p € u— I I .a, 1 I I I I I
I I I I K I I I I I
| Om o | | N [ | | | | |
Lo B Yo __ QX c . A
| 28 ¢ I
..m | Y L | | | | |
[Te] @ o] | [ | | | | |
n < N o = © o I N I I I | |
1S o N o S S= ool L @G-ttt N
o U o U =] (] G4y I I ol | | | I I
Lal 3 o a8 a | oo | | | | |
o a — I I v I I I I I
0 0 0 0 H
I I I I I I I I
W m W m o /a.\ m m I I v I I I I I
L T ) L ' \\r\\L\\\i\\\L\\\k\\\r\\\,\\\\,\\\m
i H Yol H | | | | | | | n
I I . I I I I I
¥ G n”_ I I B I I I I I C
11 i | | | | | | | |
I I I I I I I I
1 o 1 1 1 1 1 1 1 1 1
< o~ ¥ o o« ® © ¥ o —H o © %
— - N N o 1_ b b 1_ =} < Q <
o o o o o o o o o

(se@aibap) apnyidwe uone|1osQ (s00.60p) SPNIAWE UONEIOSO

3000 3500 4000

2500

2000
(b) G.
216

Dynamic pressure (Pa)
Figure 90. LCO amplitudes of the aeroservoelastic system with respect to

1500

1000
dynamic pressure for various backlash values



Table 26. Step response properties of aeroservoelastic system with

quantized sensor at two different dynamic pressure conditions

q simulation 0 Pa 4,000 Pa

wn Hz | 5.63 5.47
trso, s | 0085 | 0.068
ts S - -
Mp % | 6.3 5.9
-0.032 | -0.055
Oss deg| +0.023 | +0.019
Ot deg| 1.33 2.21
cry A | 066 0.58
cro A 0 0.017
crs A | 0111 0.246
cry Al 025 0.45

It can be seen from the Figure 88 that the synthesized H; controller
enhances the flutter free flight envelope out of incompressible region
above sea level. However, as it can be seen from Figure 87, over the
dynamic pressure of 4,000 Pa the bandwidth of the aeroservoelastic
system drops below 2 Hz. The controller suppresses the oscillations the fin
in pitch degree of freedom to a comparable level with the backlash value.
During the time domain analysis of LCO at 2,000 Pa the aeroservoelastic

system encountered two different LCO, Figure 90.

6.2.2.3. y controller synthesis
For the u synthesis, various controllers are synthesized by tuning

the Q. Q.o > and [W,,] values, the results are presented in Appendix D.

It is seen from these results that, similar to previous cases, the increase of

the g, ; enhances the performance of the system at 4,000 Pa, but
decreases the performance at 0 Pa. The increase of q,, increases the

flutter margin in lower and upper limits. However, the increase of g, , also
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increases the y norm, thus it cannot be increased after a certain value.

The increase of the amplitude of [W,,] at 0 Hz and 10 Hz, slightly

decreases the steady state error and increases the flutter margin, however
it also increases the current consumption and the y norm of the system.
The tuned parameters and their final values are presented in Table 27.
The standatd analyses which are conducted to the aeroservoelastic
system with H; controller are conducted for aeroservoelastic system with y
controller. The results of the analyses of the aeroservoelastic system with
the selected controller are given in Table 28, Table 29, and in Figure 95
through Figure 94. Analyzing the results it can be seen that the
synthesized controller enlarged the flutter free flight envelope of the
aeroservoelastic system out of incompressible flow limits. Furthermore, the
controller also satisfies the design value of the bandwidth in an acceptable

tolerance.

Table 27. Tuned parameters of u controller

Parameter Value
e, @O0 Hz 2,800 N
@ 10 Hz 50 N.m
(W]
e @O0 Hz 56 N
" @ 10 Hz 1 N.m
(W, ] Qe 2,500 Pa
Qoont AP #3
Order of the reduced controller 20
u norm of the weighted ASE system 0.979

Table 28. Nominal stability limits

Qins,,, Pa -1,036

Oips,.,, Hz 2.95
Qs Pa 9,754
o, Hz | 7.57
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Table 29. Step response properties of aeroservoelastic system with

quantized sensor at two different dynamic pressure conditions

q simulation 0 Pa 4,000 Pa

wn Hz | 5.84 6.43
trso s | 0072 | 0.056
ts s | 0.371 ]
Mp % | 48 5.6
-0.028 | -0.039
Oss deg| +0.021 | £0.014
Ot deg| 1.23 2.11
cry A 2.65 2.93
cro A 0 0.018
crs A | 0774 | 0.89
cry A 219 2.93

6.2.3. Controller Synthesis by Using g-Method

As explained in Section 4.4, g-method uses the damping as the
uncertainty parameter in order to suppress the flutter. The interconnection
block diagram of the aeroservoelastic plant is given in Figure 18. As it can

be seen from the figure, the additional elements are the output weighting

function [Wm] of damping uncertainty and input weighting function [Wcz]

of damping uncertainty blocks. All parameters of the other blocks are
taken same as in g-Method, which are given in Table 12. The damping
uncertainty is only introduced to the pitch degree of freedom of the typical
section wing. The uncertainty blocks and their parameters that are used to
define the uncertainty of damping are given in Table 30. The J. term is the
damping uncertainty in N.m.s/rad, which is a free parameter for tuning.
The gcs and gq» terms, as the gains of the weighting functions, are
obtained by solving the Equation (4.19). As the value of the qy input of

Equation (4.19), the expected command input defined in Table 12 is used.
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Table 30. Numerical values of uncertainty/performance weightings

Uncertainty Gain Corner Scale
Name Frequency Parameter
W] de | 1.141 s/rad
W,,] 9s» |6:0.876rad/s| @, 6 Hz K, 0.01

Other tuning parameters of g-method are the dynamic pressure

q.,; at which the controller is synthesized and the weighting functions
[W,,] of the disturbance to aerodynamic force. In the [W,,] block, the
gains at 0 Hz and 10 Hz can be tuned. However, as stated in Section 4.3,
the [WFd] function has similar effects to the system as the input weighting

function [Waz} of the disturbance to dynamic pressure of g-method has.

The difference is separated as the function [W,,] affects the lower
frequencies in order to consider the steady state error, and the function

&

62} considers the frequencies of which the instability occurs. Hence an

increase in the gain of the function [W,,] at 10 Hz affects the system as
the function [WW], especially in H, and H. type controller syntheses.

Hence, if the gain of the function [W,,] at 10 Hz is increased, the resulting
system can be considered as a mixture of q and g-methods. Thus for the

g-method, the gain of function [W,,] at 10 Hz is kept fixed and the gain of

the function [W,,] at 0 Hz is altered only.

6.2.3.1. H.. controller synthesis

Similar to the g-method cases, various controllers are synthesized
by altering the tuning parameters. Results of these analyses are presented
in Appendix D. The main tuning parameter in g-method is the J.; term.

Three different controllers are synthesized by selecting the J. term as 1, 2,
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and 3 N.m.s/rad. It is seen that for the 6. =1, the bandwidth of the ASE
system at 4,000 Pa becomes 1.8 Hz, which is unacceptable. On the other

side, it is seen that the increase of the J.term;

increases the infinity norm of the weighted ASE system, which limits
the increase of the Jc at a certain value,

decreases the margin of stability at the lower bound, but the change
is not unacceptable,

deteriorate the mean and the oscillation amplitude of the steady
state error at 4,000 Pa,

increases the overshoot at 0 Pa,

increases the current consumption,

improves the rise time at 0 Pa,

decreases the deformation of the torsional spring.

Considering the upper statements, J. is selected as 2 N.m.s/rad.

The second tuning parameter is the dynamic pressure q,, at

which the controller is synthesized. The previous syntheses performed in

this Section are synthesized for q,,,,=161.1 Pa, which is named as AP #1

in Table 20. In order to see the effect of the q_,,, two more controllers are

synthesized for 6,=2 N.m.s/rad. The new controllers are synthesized for

AP #3 and #5, as defined in Table 20. It is seen that the increase of q_,,,;

decreases the infinity norm of the weighted ASE system,

slightly increases the margin of stability at the lower bound,

slightly decreases the mean value of the steady state error at 4,000
Pa,

slightly increases the bandwidth of the system at 4,000 Pa, from
497 t0 5.12,

decreases the bandwidth of the system at 0 Pa, from 5.83 to 5.43,
slightly increases the rise time at 0 Pa,

increases the overshoot at 0 Pa,
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- increases the deformation of the torsional stiffness at 0 Pa.
Considering statements given above, controller synthesized at AP #1 is

selected.

By increasing the gain of the [WFd] function at 0 Hz, and analyzing

the magnitude of frequency response of the ASE system at 4,000 Pa it is
seen that the decrease in the amplitude of the frequency response at 1.8
Hz increases to 2.92 dB. Furthermore, it is seen that the improvements
obtained are not considerable. The selected values of the tuning
parameters and the properties of the synthesized controller are given in
Table 31.

Table 31. Tuned parameters of H.. controller

Parameter Value
@ 0 Hz 1,400 N
9r4,
[W ] @ 10 Hz 25 N.m
e g @ 0 Hz 56N
e @ 10 Hz 0.1 N.m
Oc 2 N.m.s/rad
[WcZ]
@,y 6 Hz
Qoont AP #1
Order of the reduced controller 13
Infinity norm of the weighted ASE system 0.810

The results of the standard analyses for the ASE system with the
selected controller are given in Table 32, Table 33, and Figure 95 through
Figure 98. From the flutter flight envelopes it can be seen that the
controller suppresses the instability well above the incompressible limits.
From the step response graphics and Table 33, it can be seen that the
system has very small or no overshoot, and has about 3%-5% steady

state error. As it can be seen from the Figure 98, the amplitude of the LCO
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at 4,000 Pa for 0.2° backlash value is about 0.65°. The fin motion for the

same condition is ~0.13° which is less than the backlash value.

Table 32. Nominal stability limits

Tins,,, Pa | -995
Ois,,, Hz | 2.88
Qs Pa -
Wy Hz -

" Thereis no instability up to 100,000 Pa

Table 33. Step response properties of aeroservoelastic system with

quantized sensor at two different dynamic pressure conditions

q simulation 0 Pa 4,000 Pa

Wn Hz 5.83 4.97
trso, S 0.079 0.076
ts S - -
Mp % 1.1 -
-0.033 -0.044
s | 99| 49022 | +0.010
Out deg| 1.21 1.99
Cry A 0.81 0.77
cry A 0 0.019
cr3 A 0.248 0.263
Cry A 0.80 0.58
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6.2.3.2. H; controller synthesis
For the H, synthesis, a set of controllers are synthesized by tuning

the [W,,] function, q,,,,, and gain of [W,,] function at 0 Hz. The results

are presented in Appendix D. It is seen that the obtained ASE systems
have 30% decrease in magnitude around 1-2 Hz at 4,000 Pa dynamic
pressure. This value is well below the design specification of 6 Hz. Hence,
although the synthesized controllers adequately enhanced the stability
limit, due the violation of performance requirements a proper controller can

not be obtained.

6.2.3.3. y controller synthesis

For the selection of y controller, less number of syntheses are
performed and most parameters are kept the same as the selected g-
method H. controller. Results of these analyses are presented in
Appendix D. In these syntheses only the ¢, term, the main tuning
parameter in g-method, is altered. From the analyses, it is seen that the
increase of the o.term;

- slightly enlarges the margin of stability at the lower bound,

- slightly decreases the bandwidth,

- increases the steady state error,

- increases the rise time,

- decreases the overshoot,

- increases the current consumption,
of the aeroservoelastic system. Considering these statements, J. is
selected as 1 N.m.s/rad. The selected values of the tuning parameters and

the properties of the synthesized controller are given in Table 34.
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Table 34. Tuned parameters of u controller

Parameter Value
@ 0 Hz 1,400 N
9ra,
[W ] @ 10 Hz 25 N.m
ra g @ 0 Hz 56N
Pl @ 10 Hz 0.1 N.m
Oc 1 N.m.s/rad
(W]
@, 6 Hz
C_’cont AP #1
Order of the reduced controller 18
u norm of the weighted ASE system 0.428

The results of the standard analyses for the ASE system with the
selected controller are given in Table 35, Table 36, and Figure 99 through
Figure 102. From the flutter flight envelopes it can be seen that the
controller suppresses the instability well above the incompressible limits.
Analyzing the Figure 102 it can be seen that the amplitude of the LCO at
4,000 Pa for 0.2° backlash value is less than 0.50°. The fin motion for the

same condition is less than 0.07° which is less than half of the backlash

value.

Table 35. Nominal stability limits

Uins,,, Pa | -1,004
Ops,,, Hz | 292
Tins Pa -
Dy Hz -

There is no instability up to 100,000 Pa
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Table 36. Step response properties of aeroservoelastic system with

quantized sensor at two different dynamic pressure conditions

q simulation 0 Pa 4,000 Pa

Wn Hz 6.03 5.43
trso; s 0.074 0.067
ts s 0.100 0.748
Mp % 3.0 1.5
-0.029 -0.034
s |99 10015 | +0.013
Out) deg| 1.26 1.97
Cry A 1.32 1.82
cra A 0 0.018
cr3 A 0.421 0.453
Cry A 1.06 1.82

6.2.4. Controller Synthesis by Using gg-Method

In Section 6.2.3, it is discussed that the increase in the gain of the

weighting function [WFd] of aerodynamic disturbance forces at 10 Hz in g-
method affects the synthesis procedure similar to the input weighting
function [WEZ} of disturbance to dynamic pressure in g-method. Hence in
Section 6.2.3, the gain of the [W,,] function at 10 Hz is kept same as its

value at g-method synthesis. In this Section, this parameter is also used

as a tuning parameter. The controllers are synthesized both considering

the uncertainty of damping via input weighting function [Wcz] of damping

uncertainty and the uncertainty of dynamic pressure via [WFd] function.

235



6.2.4.1. H.. controller synthesis
The H. controller is synthesized by altering the [W;,] function

parameters of the selected H.. controller of g-method, and the results are
given in Appendix D. The selected values of the tuning parameters and

the properties of the synthesized controller are given in Table 37.

Table 37. Tuned parameters of H.. controller

Parameter Value
@O0 Hz 2,800 N
9rd,
[W ] @ 10 Hz 50 N.m
F g @ 0 Hz 16.8 N
e @ 10 Hz 0.3N.m
) 2 N.m.s/rad
[We.] )
@y 6 Hz
Qoont AP #1
Order of the reduced controller 13
Infinity norm of the weighted ASE system 0.932

The results of the standard analyses of the aeroservoelastic system
with the synthesized controller are given in Table 38, Table 39, and in
Figure 103 through Figure 106. As it can be seen from these results, the
synthesized controller enlarges the stability limits out of the incompressible

flow limits, and fairly satisfies the bandwidth requirement.
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Table 38. Nominal stability limits

Uins,, Pa | -988
Ops,,, Hz | 2.93
Qs Pa -
Dy Hz -

There is no instability up to 100,000 Pa

Table 39. Step response properties of aeroservoelastic system with

quantized sensor at two different dynamic pressure conditions

q simulation 0 Pa 4,000 Pa
wn Hz 5.70 5.36
trso, s 0.077 0.070
ts S - -
Mp % 1.2 2.6

-0.033 -0.038
s | 989| 40019 | +0.016
Ou deg 1.19 213
cry A 0.87 0.92
cro A 0 0.019
Cr3 A 0.270 0.364
Crq A 0.57 0.92

6.2.4.2. H; controller synthesis

The H; controller is synthesized by improving the synthesized H
controllers of g-method via modifying the parameters of the [WFd] block.
The properties of different H, controllers are presented in Appendix D. The
selected values of the tuning parameters and the properties of the
synthesized controller are given in Table 40. The results of the standard

analyses of the aeroservoelastic system with the selected controller are

given in Table 41, Table 42, and in Figure 107 through Figure 110. From
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the results it is seen that the selected controller stabilizes the
aeroservoelastic system in incompressible region, but it can fairly satisfy

the bandwidth requirement.

Table 40. Tuned parameters of H, controller

Parameter Value
@ 0 Hz 2,800 N
9rd,
[W ] @ 10 Hz 50 N.m
r g @ 0 Hz 28 N
el @ 10 Hz 0.5 N.m
o) 2 N.m.s/rad
[WcZ] -
@,y 6 Hz
Qoont AP #4
Order of the reduced controller 12
H> norm of the weighted ASE system 11.297

Table 41. Nominal stability limits

Qins., Pa -851

Dins,,, Hz 13.0
Tins Pa | 8,467
O Hz 5.42
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Table 42. Step response properties of aeroservoelastic system with

quantized sensor at two different dynamic pressure conditions

q simulation 0 Pa 4,000 Pa

Wn Hz 5.21 5.22
trsy s 0.090 0.071
ts S - -
Mp % 29 3.0
-0.056 -0.072
Ess deg| 40,023 | +0.017
Ot deg| 1.23 2.17
cry A 0.59 0.59
cro A 0 0.018
cr3 A 0.139 0.276
Ccry A 0.30 0.57

6.2.4.3. y controller synthesis
The p controller is synthesized by altering the parameters of the

weighting function [WFd] of the aerodynamic disturbance forces. The

properties of aeroservoelastic system with various pu controllers are
presented in Appendix D. The selected values of the tuning parameters
and the properties of the synthesized controller are given in Table 44. The
results of the analyses are given in Table 44, Table 45, and in Figure 111
through Figure 114. From the results it can be seen that the synthesized
controller enhances the flight envelope out of incompressible flight region.
Furthermore, it satisfies the bandwidth requirement within an acceptable

tolerance.
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Table 43. Tuned parameters of u controller

Parameter Value
@O0 Hz 2,800 N
9Fd,
[W ] @ 10 Hz 50 N.m
e g @ 0 Hz 16.8 N
e @ 10 Hz 0.3N.m
0 1 N.m.s/rad
[WcZ] -
Wy, 6 Hz
Qoont AP #1
Order of the reduced controller 18
Infinity norm of the weighted ASE system 0.527

Table 44. Nominal stability limits

Tins,, Pa | -998
Dis,,, Hz | 2.94
Tins Pa -
Bns Hz o

There is no instability up to 100,000 Pa

Table 45. Step response properties of aeroservoelastic system with

quantized sensor at two different dynamic pressure conditions

q simulation 0 Pa 4,000 Pa
o Hz | 575 5.76
oo s | 0075 | 0.062
ts S 0.100 0.329
Mp % | 28 3.8

20.027 | -0.029
s | 989| 15014 | +0.011
5w | deg| 117 2.01
cry A | 187 221
cro A 0 0.018
ors A | 0525 | 0541
o4 A | 129 175
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6.2.5. Controller Synthesis by Using gk-Method

Lind [38] suggested to model system nonlinearities by using
uncertainties in a robust controller synthesis. In the study of Lind [38] it is
mentioned that, if the possible system differences due to nonlinearity is
enclosed by the nominal system with uncertainties, the synthesized
controller can take these differentiations into account. However, in the
same study it is also mentioned that the dynamics of the nonlinearity
cannot be considered by the synthesized controller. In this Section, the
suggested method is applied for the backlash at the pitch degree of
freedom of the typical section wing. For its implementation, a parametric
uncertainty is added to the torsional spring as shown in Figure 115. From
the definition of the describing function of a backlash, it is known that the
stiffness value varies between zero and the linear stiffness value.
However, a controller can not be obtained from synthesis when a 100%
uncertainty is defined for the torsional spring. Thus, decreasing the
uncertainty level between 5% to 20% percent, various controllers are
synthesized. Analyzing the aeroservoelastic systems with these controllers
it seen that the inclusion of the stiffness uncertainty, and the increase of
the percentage of the stiffness uncertainty, increase the amplitude of the
LCO. Moreover a considerable enhancement is seen neither in bandwidth
nor in the performance of the system. Hence, it is seen that the suggested

solution method do not improve the LCO of this particular ASE system.
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Figure 115. Interconnection structure of aeroelastic plant for gk-method

6.2.6. Comparison of the Controllers

For the subsonic incompressible flow, nine cases are analyzed.
These cases are mainly based on two different flutter suppression
methods, namely the g- and the g-methods. However, three of the nine
implementations are performed by using gg-method, which uses the flutter
suppression approach of both the g- and the g-methods and its synthesis
procedure is based on the g-method. For the three flutter suppression
methods, H., H, and u type controllers are synthesized. During the
synthesis procedures the uncertainties, noise levels, and performance
requirements except the tuning parameters are fixed, in order to be able to
compare the performance of these controllers. The results of the analyses,

that is performed for the aeroservoelastic system with the synthesized
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controllers, are classified under three categories; linear stability, linear

performance, and nonlinear analyses.

For the ease of understanding, the controllers synthesized with a
specific flutter suppression method are named with its method name; i.e.,
g controllers are the controllers synthesized by g-method. Similar naming
is applied for the type of controllers; i.e., Hy type controllers are used as
controllers synthesized by H, method. Hence, H,&q controller is the H

type controller synthesized by g-method.

The results of the linear stability analyses of the aeroservoelastic
system with the synthesized controllers are given in Table 46 and in Figure
116. It can be seen from these results that, all controllers enlarge the
flutter flight envelope beyond the incompressible limits of 0.3 Mach above
sea level. Analyzing the Figure 116 it can be seen that, considering the
controller types; the u controllers enlarge the flight envelope better than
the other controller types and the second best controller type is the H.
controller. Considering the flutter suppression methods, except the Hy&g
controller, the g and the gg-methods enlarge the flight envelope better

than the g-method.

Table 46. Linear stability results

Controller| H.&q | H&q | p&q | H.&g | Ho&g | p&g H.&gq| H.&gq| p&gq
Order * 14 13 20 13 13 18 13 12 18
C_,ins,ow Pa| -815 | -612 |-1,036| -995 |-1,202|-1,004| -998 | -851 | -998
®ps. |Hz| 14.4 | 12.7| 295 | 2.88 | 275 | 292 | 293 | 13.0 | 2.94
9, |Pa|9,359(8,036|9,754| - - - - 8467 -
,

Ins

*

Hz| 6.30 | 5.61| 7.57 | - . - - | 542 | -

X # order of the reduced controller
No instability found up to 100 000 Pa.
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Figure 116. Flutter flight envelopes of the ASE system with various

controllers

In Table 47, the linear performance results of analyses executed for
the aeroservoelastic system with the synthesized controllers are given. For
a second order system, most parameters given in Table 47 are dependent
on each other, and can be derived from one other. For larger order
systems, such as the aeroservoelastic systems constructed in this study
that have orders higher than eighteen, it is worthless to derive those
parameters from one another. However, the relations of the parameters in
second order system can still provide an insight for a higher order system.
Regardless of this, in this study all parameters are gathered and used in
the comparisons of the systems. In the following paragraphs these

comparisons are performed according to the results presented in Table 47.
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Considering the bandwidth requirement it can be seen that;

g controllers perform better than same type of g or gq controllers.

g and gq controllers are not affected much from the change of
dynamic pressure and perform comparable in the dynamic
pressures of 0 Pa and 4,000 Pa. However, a noticeable degradation
occurs in the performance of g controllers with the increase of
dynamic pressure.

Among the controller types, u type controllers perform slightly better
than the H- type controllers. H> type controllers have the worst

performance.

Considering the rise time requirement it can be seen that;
according to the type of the controller, the controllers are sorted
from best to worst as u, H-, and Hz controllers,
according to the flutter suppression method the controllers are

sorted from best to worst as q, gq, and g controllers.

In the step response analysis performed in time domain, settling time

is accepted as the time that the tracking error drops below 5% percent and

remains within this error band. However, as it can be seen from the table,

most of the controllers cannot decrease the error below 5%. y type

controllers successfully decrease the error below 5% in five out of six

cases. Other than u controllers, only the H.&q controller succeeds to force

the error within 5% settling band. Among those, the p&gq controller

provides the best settling time.

As expected, the sort formed for flutter suppression methods in the

rise time results are reversed for the overshoot performance, and they are

sorted from best to worst as g, gq, and q controllers. However, considering
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the type of the controllers, contrary to expectations H.. type controllers
provide the best overshoot performance. H, and u type controllers give

comparable results.

Due to the discretization of the sensor of the time domain model,
some small amplitude oscillations remain on the controlled degree of
freedom of the wing. Hence, steady state error is composed of two merits,
the mean error and the oscillation amplitude. Considering the mean error;

- g controllers have the best performance and the g and gg-methods
have comparable performances,
- Hy type controllers have the worst steady state errors. H. and yu
type controllers have comparable performances.
Considering the oscillation amplitudes;
- gq and g controllers have a better performance than the q
controllers,
- u controllers have the smallest oscillation amplitudes and H
controllers have the worst performance.
u&gq, p&g, and H.&q controllers have the best performances considering

the two merits of the steady state error.

o is the deflection of the torsional spring that transfers the control
torques to the typical section wing. Hence, this deflection is related to the
resultant stress in the spring, and is important for the strength of the
structure. 9 is derived from the step response analysis performed in time
domain, and the maximum deflection of the torsional spring is recorded.
Comparing the results it can be seen that, g controllers have the smallest
and the g-methods have the largest deflections among the flutter
suppression controllers. Considering the controller types, u type
controllers have the best and H. type controllers have the worst

deflections. But, the H,&g controller has the minimum deflections.
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For the comparison of the current consumption performances of the
controllers, four different data are collected from the step response
analysis. These data are; cry is the maximum current drawn, cr; is the
mean of the current drawn after settling of the motion, cr; is the standard
deviation of the current drawn after settling of the motion, crs is the
maximum current drawn after settling of the motion. From the results it is
seen the cr, increases with the dynamic pressure, however its value is not
large enough for a meaningful comparison of the controllers. The rest of
the three data provide sufficient information for the comparison. Although
the ratio of these three data slightly varies for the controllers, it is seen that
they have a strong dependency. Hence, the results of the comparisons
according to all three data are similar. Considering the flutter suppression
methods, the g controllers have the smallest and the q controllers have the
largest amount of current consumption. Considering the controller types,
H, controllers have the least current consumption. H.. controllers have the
second best performance, with an additional current consumption of
approximately 0.3 A for cry. On the other hand, u controllers have the
worst current consumption values with up to 2.5 A additional current
consumption differences for cry, which is five times the current

consumption of H,&g controller.

Since there are no solid performance requirements for the
aeroservoelastic system, it is hard to derive a conclusion for the best
controller. Each method has its own advantages. g controllers stand out
with their performances for bandwidth and rise time. g controllers stand out
with their performances for current consumption, J,s, and overshoot. On
the other hand, gq controllers provide intermediate performances between
g and g controllers for all criteria. Considering the controller types, H, type
controllers stand out with their low current consumption, however they
have the worst performance nearly in all other criteria. uy controllers nearly

have the best performances in all criteria except their incomparable
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current consumption performance. On the other hand, H.. controllers have
comparable performances to uy controllers with an acceptable current

consumption performance.

The results of the backlash analyses are gathered in Figure 117. In
this figure, nonlinear analyses results of the aeroservoelastic system with
0.2° backlash value are presented for various controllers. Considering the
o« deflection of the torsional spring; g controllers have the best
performance and the g controllers have the worst performance. Note that
the results are in accordance with the results of steady state oscillations of
the system without the backlash. Similarly, for the q, pitch motion of the
fin; q controllers have the worst performances and g and gq controllers
have comparable performances. Although there are some irregularities,
considering the controller types, in general the uy controllers have slightly
better performance than the H.. controllers and the H, controllers have the
worst performance. From the figures it can be seen that among the
controllers, u&g controller has the best performance, considering both the

dup @Nd q,.
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6.3. Unsteady Compressible Subsonic Flow

In this Section,

some studies conducted for

the unsteady

compressible subsonic flow are presented. For this purpose, a proper

aeroelastic model is constructed by modifying the spring constants,

damping values, position of center of mass, allowable peak torque, and

transmission ratio values of the ATD. The parameters of the new model,

Model 2, are given in Table 48.

Table 48. Properties of the Model 2

Parameter unit Model 2
Elastic axis location a - -0.6
Half chord b m 0.15
Span / m 0.6
Mass of the wing m kg 9.83
Total plunging mass mp kg 28.7
Mass moment of inertia of the wing l, kg.m? 0.128
Plunge stiffness Kn KN/m 15,000
Total torsional stiffness Koo N.m/rad 1,100
Plunge damping Ch N.s/m 65.6
Pitch damping ¢, |N.ms/rad| 0.476
Position of center of mass from elastic axis Xcg m 0.105
Motor torque constant kT N.m/A 2.22
Motor continuous stall torque Tes N.m 3.53
Allowable peak torque Tp N.m 42.36
iransmission caloulated at the wing shat | ' | kg’ | 0.000297
Motor and transmission damping ¢m | N.m.s/rad | 0.000124
Transmission ratio N - 87
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The indicial functions of the Model 2 are derived by following the

procedure presented in Section 2.5.2. A curve fitting operation is applied

to the indicial functions ¢',,,, ¢',,, and ¢',,,.. The indicial function ¢ is

cq’
directly used since ¢’ =¢., as given in Equation (2.86). The squared 2-

norms of the residuals of the curve fits which defines the quality of curve
fitting are given in Table 49. Derived parameters of the indicial functions

through curve fitting are given in Table 50 through Table 52. The

T

calculated values of the indicial functions ¢' , ¢' ., ¢,

and’ ¢Tch by

Equations (2.86) through (2.89) and their curve fits are presented in Figure
118 through Figure 127. From these figures and Table 49 it can be seen

that, some of the curve fits, such as ¢’ at 0.5 Mach, are not as

successful as the others. However it should be noted that these curve fits
are applied to the indicial functions obtained by Mazeltsky, which are also
curve fits. Further improvement can be achieved by increasing the orders
of the fitted equations, however this will increase the order of the
aeroservoelastic system. Hence, the curve fit results given are used in this
study. The derivation of the indicial functions of the fin of ATD and analysis
of effect of the indicial function error on the performance of the

aeroservoelastic system are left as future studies.
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Table 49. The squared 2-norms of the residuals of the curve fits.

¢ ou # e 4 omg
0.5 Mach 0.2080 0.0478 0.0001
0.6 Mach 0.0024 0.0049 0.0322
0.7 Mach 0.0000 0.0035 0.0056

Table 50. Curve fit results for ¢’ ,, at compressible subsonic speeds.

— 7/30 S 7ﬂc S 7ﬁc S
¢CM (S) - bOcM + b1cMe M+ bZCMe M+ b3CMe e

M| by biow Brom by Paou by Paou
0.5 | -0.0578 | 0.0691 | 0.282 | -0.0575| 1.82 -0.415 1.82
0.6 | -0.0625 | 0.0229 | 0.0626 | -0.478 2.22 0.200 8.440
0.7 | -0.0700 | 0.127 | 0.0675 | -0.103 | 0.0729 | -0.227 | 0.996

Table 51. Curve fit results for ¢ch at compressible subsonic speeds.

By (8) = Dyoq + bigg€ " + by 07 + b, @75

Ocq

1cq

2cq

3cq

M1 bog bieq Pieq bacq Pocq by Pacq
05 | 0.635 | -0.291 | 0.0949 | -0.602 | 5.06 | 0.646 | 7.29
06 | 0.688 | -0.235 | 0.0623 | -0.253 | 0.353 | 0.125 | 0.600
0.7 | 0770 | -0.282 | 0.0538 | -0.332 | 0.363 | 0.109 | 0.612

Table 52. Curve fit results for ¢’

cMq

at compressible subsonic speeds.

_ = BiemgS —=BoomgS = PacmgS
¢ch (S) - bOch + b1che s b e s b3Cqu !

2cMq

M by | by | Bowg | Peawg | Boowg | Promg | Paoug
0.5 | -0.104 | 0.0141 | 0.0910 | -0.136 | 5.25 |-0.0548 | 1.10
06 | -0.113 | -0.343 | 122 | 0662 | 1.67 | -0.404 | 2.31
0.7 | -0.126 | 0.00700| 0.0282 | -0.0722 | 1.05 | 0.0423 | 1.07
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The initial values selected for the altitude and Mach number, and
the calculated values of the rest of the dependent aerodynamic

parameters are given in Table 53.

Table 53. Initial flow parameters

Altitude h m 800
Mach number M - 0.5
Airspeed Uop m/s 168.6
Air density p kg/m? 1.134
Dynamic pressure op Pa 16,113

Using the parameters given in Table 48 and Table 53, the
aeroelastic model is constructed by using the equations given in Section
2.5.2. Similar to the Section 6.2, various analyses are performed in order

to derive the aeroelastic properties of the Model 2.
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Performing the p-method flutter analysis by using the algorithm
presented in Section 3.3.1, it is seen that for the aeroelastic Model 2,

flutter occurs at q,, =20,078 Pa and at «,, =6.0 Hz. The p-method

analysis is also performed and the results are given in Figure 128, which
are used for crosschecking. From the figure it can be seen that the
damping ratio of the aeroelastic system drops below zero at a dynamic
pressure which is slightly below 20,090 Pa, and the frequency of the
corresponding pole is 6.03 Hz. Thus, the solutions of the two methods
verify each other. It can also be seen from the figures that the aeroelastic
system has much more states in compressible flow than incompressible

flow due to additional aerodynamic states.

As discussed in Section 3.4.2, due to the aerodynamic match point
requirement, the result of the y-method in compressible flow is not a
physical state in the world atmosphere. Hence, the procedure described in
Section 3.4.2 is used and the instability match points for the Mach
numbers of 0.5, 0.6, and 0.7 are calculated. The results are presented in
Table 54. It can be seen that, the use of y-method without the match point
iteration gives worse results in compressible flow than in incompressible

flow.

Table 54. Flutter match points of the aeroelastic system

Dynamic Frequency | Altitude | Airspeed
pressure
Mach Tt Opyt hiut Utut
Pa Hz m m/s
0.5 19,065 5.98 -613 171
0.6 13,574 5.64 5,025 192
0.7 9,429 5.23 9,470 211
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6.3.1. Controller Synthesis by Using g-Method

Similar to the incompressible case, the controller synthesis begins
with defining the numerical values of the parameters of the reference plant
and the uncertainty/performance weightings. The reference plant
parameters are given in Table 55. The numerical values of the

uncertainty/performance weightings are given in Table 56.

Table 55. Reference plant parameters

Onref 10 Hz
é,ref 1/ \/5

Table 56. Numerical values of uncertainty/performance weightings

Uncertainty Gain Comer Scale Parameter
Name Frequency
[Wcmd ] gcmd 4° a)cmd 2Hz Kcmd 001

W, ] 9'roico 0.0055°

ngF 32,000 N a)/:dF 0.046 Hz KFdF 0.001

ngM 560 N.m a)FdM 0.046 Hz KFdM 0.001

W, ] 9. 10.0236 (N.m)'| @, | 100 Hz Kot 100

(w,, ] Jper | 0.125deg” | @, | 50Hz Kper 0.01

W] g, 0.1 deg”

[W,,] 9ss 0.0055° o,, 10 Hz K, | 10,000

] 93,1 6.25 N

95,1 400 (N.m)™

} 95,2 1,000 N Wg, 2 50 Hz Kge2 0.001
93,2 15.6 N.m Wg,,2 50 Hz K32 0.001

The values given in Table 56 are obtained after numerous iterations
during H.. controller synthesis. With these given values, the norm of the

weighted ASE system is obtained below one. During the synthesis steps;
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The gain of the command is decreased to 4° even though initially a
greater value is aimed,
Noise level, g, .. term, is decreased, which corresponds to a better
measurement system,
The force and moment values of weighting function [WFd] of the
uncertainty of aerodynamic forces are obtained similar to the

incompressible case. The gain values are tuned by considering the
steady state error in step response.

Parameters of the weighting function [W,,, | of the actuator are kept
the same as in incompressible case. However, the peak torque
value is increased to the maximum possible value that can be
obtained with the servo controller-motor system used in ATD.
Moreover, the transmission ratio is increased.

Performance requirement that is the maximum allowed tracking
error is loosen to 0.8°. But, the frequency is increased to 50 Hz, in

order to suppress the peaks of the ASE system around 35 to 45 Hz.
The output weighting function [Ws1] of the sensor noise kept same
as in the incompressible case. The input weighting function [Wsz] of

the sensor noise is changed due to modified noise level g, -

The output weighting function [W

EJ of disturbance to dynamic
pressure is obtained similar to the incompressible case.

For the derivation of the input weighting function [WW] of

disturbance to dynamic pressure, the disturbance g, to dynamic

pressure is modified as 12,500 Pa. The frequency is increased up
to 50 Hz, in order to cover the peaks of the ASE system around 35
to 45 Hz.
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After the definitions of the reference model and the weighting
functions, the interconnection structure system shown in Figure 16 is
constructed by using MATLAB® sysic command. The constructed system

has 28 states, 7 outputs, and 8 inputs.

Similar to the incompressible case, the controller is synthesized
using MATLAB® hinfsyn command. The synthesized controller has 28

states, same as the number of states of the interconnection structure

system, [P]. Frequency plots of the controller are given in Figure 129. H.,

norm of the ASE with the synthesized controller is obtained as 0.979. The
order reduction of the controller is derived by following the similar
procedure used in incompressible flow case, Section 6.2.2.1. The
controller of the aeroservoelastic system is selected as the 14" order
controller that is reduced by using balanced reduction method (Figure
130). The H,, norm of the aeroservoelastic system with the reduced

controller is computed between 0.985 and 0.986.

After the controller synthesis, the analysis of the aeroservoelastic
system with the synthesized controller is performed. In Table 57, the
instability points of the aeroservoelastic system calculated by using p-
method are given. Performing the match point search as described in
Section 3.4.2, the instability match points of the aeroservoelastic system
are calculated as given in Table 58. It can be seen from these tables that
the result of the direct use of py-method in compressible flow is not

sufficient even in the same Mach number which is 0.5.
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Table 57. Nominal stability limits calculated by using p-analysis

Qins,,, Pa | -10,872

Dpns,,, Hz 34.5
Qins Pa 79,200
@ Hz 11.7

Table 58. Instability match points of the aeroservoelastic system

Dynamic Frequency | Altitude | Airspeed
pressure
Mach C_Iins Dips hins Uins
Pa Hz m m/s
0.5 50,495 12.78 -9,750 188
0.6 38,641 12.79 -3,635 212
0.7 32,161 12.24 655 236

The performance analyses are performed at five different match
points, at three different Mach numbers. The results are given in Figure
131 and in Table 59. In the table, first five rows define the simulation
parameters, in which first two are sufficient to define the rest of the
parameters. The simulations are also performed for 0.6 and 0.7 Mach at
20,000 m altitude, and it is seen that similar results with 0.5 Mach 20,000

m altitude is obtained.

From the step response analyses results, it can be seen that the
controller that is synthesized at 0.5 Mach number and 800 m altitude, can
satisfy stability and performance to some extend, at 0.6 and 0.7 Mach
numbers. At 20,000 m altitude, the bandwidth of the system decreases
down to 7.77 Hz, and the settling time increases up to 0.556 s. In higher
dynamic pressures the rise time decreases below 0.03 s but the overshoot

value increases up to 20%.

280



Table 59. Step response properties of aeroservoelastic system at various

aerodynamic conditions with quantized sensor

o Mach 05 | 05 | 06 | 07 0.7
S g Altude | m 0 |20000] 0 | 5000 | 10,000
- K Pa |17,232| 958 | 25534 | 18,528 | 9,067
58 U mis | 170 | 148 | 204 | 224 | 210
p kg/m® | 1.225 | 0.088 | 1.225 | 0.736 | 0.413
wn Hz | 987 | 7.77 | 10.86 | 1045 | 9.95
trss, s | 0043 | 0.048 | 0.026 | 0.028 | 0.041
" ts s | 0058 | 0556 | 0.077 | 0.234 | 0.268
5| M % | 142 | 149 | 2035 | 1678 | 7.66
o -0.033 | -0.026 |-0.027 |-0.025 | -0.027
5 Oss 489 | 10.004 | 0.005 |£0.005 |+0.003 | £0.005
5 Sut deg | 075 | 020 | 110 | 095 | 0.41
E cry A | 097 | 105 | 101 | 102 | 113
cr, A | 0028 | 0004 | 0.007 | 0.002 | 0.005
crs A | 0272 [ 0296 | 0314 | 0.218 | 0.327
cry A | 0916 | 0709 | 0893 | 0.560 | 0.837

0.4

0.2}

Command
0.5 Mach0Om
----- 0.5 Mach 20000 m
0.6 Mach O m
== === ()7 Mach 5000 m
== === (), 7 Mach 10000 m

0.7

I
0.8

|
0.9

1

Figure 131. Step response of the ASE system at various match points
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In compressible flow, the backlash analyses are performed by
varying the altitude and keeping the Mach number fixed and vice versa.
The results of these analyses are given in Figure 132. From the results it is
seen that, the oscillation amplitudes of the aeroservoelastic system
increases with increasing altitude and decreasing Mach number. Note that
in both cases the dynamic pressure decreases. It can be also seen that,
the oscillation amplitude of J,9, the degree of freedom that the backlash
exist, is increased up to two to three times of the backlash value. But, the
controller suppressed the oscillation of q,, the pitch motion of the typical

section wing, down to a comparable value to the backlash value.

On the other hand, the analyses are performed for the backlash
values of 0.05° and 0.2°. It is seen that the results of these two analyses

can be assumed to be linearly dependent to the backlash value.

Through the backlash analysis at 0.5 Mach and 5,000 m, it is seen
from the time plots of the analyses results that the system is not
converged to a stable value or an LCO event at 40™ second. But the
oscillations still exist. The time domain analyses results are given in Figure
133 (a), (e), and (i). Deriving the FFT of these time signals, Figure 133 (b),
(f), and (j), it is seen that although some dominant peaks exist, the
amplitudes at the rest of the frequencies are a lot larger than the FFT plots
of the LCO derived in this study.

282



T % ,ﬁ 240 I J-/\ T T @ %, ﬁ
I I I I
” 1 ” 1 - n 0 | | I L !
S R = e 9 38 « | | | Lo
A T c o 2 X | | | [
[ R ey U @ 14— I B .
| i ro - L I I I | Tr r
I 1 [ o o I I I 1! 1
o O
| 1 [ o < I I I 1 1
| 1 [ 8a o0a qa qa | | | 1 1
| 1 . © | | | 1 1
i e — 1 1 I I R ,\\\\ﬁ,\\\“v\\
| " | “ .ﬁ. & | | | “, i
o rob s I
I BN SR ! ' ! ! (B S AR
| 1 T — T T I
| 1 | “ | | “
| 1 | | |
| “ | “ « I I “
| SRR AR SR N P o
I H o IS 1
| 1 | 1 ~ 1
| 1 | 1 % 1
- \\T\Q\ - -
I 4 I 2 é
I | =
I I
I I <
| =
I I
I I
I I
I I

(a) with respect to altitude at 0.5 Mach

1 b
i 1 b
\ i o Lo
R D
1 1 | 1
N S U S T
™ T * —*,ﬂ % o “
) 1
“““““““““ i s i
| 1 o I R Y I
n. 1 ]
n, ] ]
noon | 1
““““““ B T i = N
1! n 1
1! n I
il & &
m&. O 4JP_ ?00 <
o o
(se@a1Bap) spnyiidwe uone|vso (soa1Bop) spnyidwe uone||osO

0.7

0.62 0.64 0.66 0.68

052 054 056 058 0.6
Mach #
(b) with respect to Mach number at 10,000 m
backlash values
283

0.5
Figure 132. LCO amplitudes of the aeroservoelastic system for various



time (ms)

<
= 8 3 3 g 3
.... S e —~— m « = 4 -I.Flflll‘luull, , A
o Y= ! | J T - o
18 - e — — 1 — 1 — 19 o | 18 b emSEEEEETU oo - 1§
- 7] s ——— - S
le L _ L "eemseae ] 8 = | 1 8
s < 8 > s g
& ° N S s
iR s e e - =1 - 8 mlu r R > 4
k] . kS] e
B Sy R T N -8 £ 18 & 8
I = | a3~ [ sy = b}
= (@) | ) > g o
:d o g8E = s © 8
18 8 i Rt S8y ® 18 2 8
g I £ & g .
123 Wl:::: =——-1-18" r 128 L 8
= &=
E . 2 .= 2
18 Y i [0l i B B -8 >0 e — 8
N e
I e e Sl 8 @ 18 8
! ) [
1S e e i e Rl e -8 (%)) 1% g
T [
= o | L 1 | L 1 S ko) s S
« ~ - o - o w ¥ ® & +H o +H N ® < on < o o - o < o §n
E] E] E] E| E] E E s & © o© © ? @ ¢ ¢ ¢ ~s S S S S E] E] ?
apnjdwe (Bap) uonisod apnyidwe
@ 0 ©
I ; T T I T © g S f : I I T © g
| T T Il | x I L Il x
| 1 3 ES L T
—p— — 0 S T
e e I o -
| T—F— - | 2 i ...nlv s
| " i i T | S N — o
| T n—— - — S [e) Y—
F LT —_— 1 = ) - (@]
== e | — -5 —
———— T | 7 O °g o z 9
L ———= _lgE & - 5 E o
e L T + = S (]
E O s 3 e 2
= = -+ 8 = e
— S a () —
= @ =
o
. — 8 —
" ) < ()
! ~ - o ~
| B & —
| T 1 | @ < o
! = | ?
, B S B S
— | 0 9
v ¥ ® o = o o o o < v =]
S 5 o o° o S 5 9 ° o :

(Bap) uonisod ' (s/Bap) Ayoojan (s/Bap) Ayoojen

(h) Sensitivity analysis results of g,

284

position (deg)

(g) Phase plane plot of g,



position (m)
amplitude

. 0 10 20 30 40 50 60 70 80 920 100
time (ms) x 10" frequency (Hz)

(i) Time plot of gy, (j) FFT plot of gy,

)
4 o
2 8

velbcity— (r‘n</s
o

position (m)

15 | | | | L L L
500 600 700 800 900 1000 1100 1200 1300 1400 1500

position (m) x10° time (ms)

(k) Phase plane plot of g, () Sensitivity analysis results of g,
Figure 133. Analysis results of the aeroservoelastic system at 0.5 Mach
and 10,000 m with a 0.2° backlash value

In order to further investigate the system, phase plane plots are
constructed and presented in Figure 133 (c), (g), and (k). As it can be seen
from the figures, the phase plots are not composed of one closed circle as
in an LCO case. By going one step forward a sensitivity analysis is
performed. For this purpose, the amplitude of the aerodynamic force input,
which is used in the backlash analysis as a pulse input, is increased by 1%.
The analysis is performed and the time results of the two analyses are
plotted on top of each other. The results are presented in Figure 133 (d),
(g), and (I). It is seen from the results that after 0.8 s, the results starts to
separate from each other. With this information, it is concluded that the
aeroservoelastic system with the q controller possibly acts chaotically at 0.5

Mach and 10,000 m altitude. These points are encircled in Figure 132.
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Since a steady state condition is not satisfied, the presented values in

Figure 132 are the maximum values of the corresponding signal.

6.3.2. Controller Synthesis by Using g-Method

In the controller synthesis by using g-method, the numerical values
of the parameters of the reference plant and the uncertainty/performance

weightings are initially taken same as in Table 55 and Table 56. But the

weightings functions [WaJ and [W

62] for the output and input of
disturbance to dynamic pressure that are specific to g-method are not

used in controller synthesis. On the other hand, the output and input

wel N unctions an (0] € damping uncertainty o e g-
ighting functions [W,,] and [W,,] of the damping rtainty of the g

method are included to the controller synthesis. As in the case of

incompressible flow, the damping uncertainty is introduced only to the

pitch degree of freedom. The gain g, of the function [Wm] is the inverse of

the expected speed as explained in Section 4.4. The expected speed is
calculated by using the bandwidth of the reference model, which is 10 Hz.
The amplitude of the oscillation at this frequency is assumed as 1°; hence,

the expected speed is calculated as 1.097 rad/s. Therefore, the value of

the ges term is 0.912 s/rad. The gain gc of the function [W,, ] is calculated

by multiplying the expected speed with the . term. The term ¢, is the
expected or required damping variation that is used to define the flutter to
the controller synthesis algorithm. Hence, the increase of this value
enlarges the required flutter envelope to be suppressed by the controller.
However, there exists trade of between the flutter boundary, system
performance, and the H. norm of the ASE system with the synthesized
controller. Consequently, after numerous iterations the J. term is taken as
6 N.m.s/rad. During the iterations it is seen that the ASE system had

sometimes encounters instability around 35 to 45 Hz. Hence, the corner

frequency @,, of the function [W,,] is taken as 50 Hz in order to cover
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these frequencies. On the other hand, the gain value of the performance
weighting is tightened back to 0.5°, which decreases the steady state
error. The modified an the newly introduced uncertainty/performance

weightings are given in Table 60

Table 60. Numerical values of uncertainty/performance weightings

Uncertainty Gain Corner Scale
Name Frequency Parameter
(Woo ] | 95| 2deg” ®o | 50Hz | K. | 0.01

W] 9. | 0.912s/rad
W,,] 9., | 6.1.097 rad/s | o, 50 Hz K, 0.01

Similar to the previous cases, after the definition of the reference
model and the weighting functions, the interconnection structure system is
constructed by using MATLAB® sysic command. The constructed system
has 27 states, 7 outputs, and 8 inputs. Then, the controller is synthesized
using MATLAB® hinfsyn command. The controller has 27 states, which is
the same as the number of states of the interconnection structure system,
[P]. Frequency plots of the controller are given in Figure 134. H,, norm of
the aeroservoelastic system with the synthesized controller is obtained as
0.967. The reduced controller is obtained by using balanced reduction
method as 14" order, with H,, norm between 0.969 and 0.960, Figure 135.

For the analysis, similar steps are followed as in Section 6.3.1. The

results are given in Table 61 through Table 63 and in Figure 136 and
Figure 137.
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Table 61. Nominal stability limits calculated by using p-analysis

Tins,,, Pa | -13,673
Dps,,, Hz 3.43
Tins Pa | 55,982
o, Hz 9.64

Table 62. Instability match points of the aeroservoelastic system

Erélirl?r'g Frequency | Altitude | Airspeed
Mach C_’ins Oips hins Uins
Pa Hz m m/s
0.5 40,578 9.93 -7,560 184
0.6 30,894 9.92 -1,635 208
0.7 25,112 9.55 2,260 231

Table 63. Step response properties of aeroservoelastic system at various

aerodynamic conditions with quantized sensor

o Mach 05 | o5 | 06 | 07 | 07
S o Altude | m 0 |20000] o | 5000 | 10,000
SE q Pa | 17232 | 958 | 25534 | 18528 | 9,067
58 U mis | 170 | 148 | 204 | 224 | 210
p kg/m® | 1.225 | 0.088 | 1.225 | 0.736 | 0.413
wn Hz | 969 | 549 | 983 | 957 | 922
trss, s | 0.047 | 0.058 | 0.028 | 0.028 | 0.042
. ts s | 0.061 | 0456 | 0223 | 0.199 | 0.192
S| M % | 084 | 176 | 2088 | 2549 | 7.95
o -0.024 | -0.020 |-0.021 | -0.020 | -0.021
5 Oss 89 | 10.003 | £0.003 |+0.003 |+0.004 | £0.004
B bu deg | 073 | 0.18 | 1.10 | 097 | 042
£ cry A 154 | 154 | 154 | 154 | 154
cr, A | 0029 | 0.003 | 0.007 | 0.002 | 0.005
crs A | 0252 | 0303 | 0327 | 0.245 | 0.369
cry A | 0605 | 0769 | 0843 | 0574 | 0.844
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Figure 136. Step response of the ASE system at varios match points

Similar to the g-method, in the g-method it is seen from the step
response analyses results that, the controller that is synthesized at 0.5
Mach number and 800 m altitude can satisfy stability and performance to
some extend at 0.6 and 0.7 Mach numbers. However some performance
degradations occur as the flow conditions varies. At 20,000 m altitude, the
bandwidth of the system decreases down to 5.49 Hz, and the settling time
increases up to 0.456 s. It is seen from the results that, as the flow
conditions vary from the design condition, the overshoot values increase
and the worst condition 30% overshoot occurs at the 0.6 Mach and 0 m.

This is the case at which the highest dynamic pressure occurs.
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The backlash analyses are performed with the same approach to
the g-method in compressible flow. The results of these analyses are
given in Figure 137. From the results it seen that, the oscillation
amplitudes of the aeroservoelastic system increases with the; decreasing
altitude and increasing Mach number. Note that in both cases the dynamic
pressure increases. It can be also seen that, the oscillation amplitude of
oa , the degree of freedom that the backlash exist, is increases up to two
to three times of the backlash value. But, the controller suppressed the
oscillation of q,, the pitch motion of the typical section wing, down to a

comparable value to the backlash value.

Similar to the g-method analyses, a linearly dependency to the

backlash value is seen from the backlash analyses in g-method.

Through the backlash analysis at 0.5 Mach and 20,000 m, it is seen
from the time plots of the analysis results that the system is not converged
to a stable value or to an LCO event at 40" second. Hence, similar to the
g-method additional analyses are performed and a possible chaos is
observed for the aeroservoelastic system with the synthesized g controller
at 0.5 Mach and 20,000 m. These points are encircled in Figure 137. Since
a steady state condition is not satisfied, the presented values in Figure

137 are the maximum values of the corresponding signal.

6.3.3. Comparison of Controllers

For subsonic compressible flow two case studies are analyzed,
regarding two different flutter suppression methods. For both methods,
namely g-method and g-method, H. type controllers are synthesized.
Similar to the incompressible case the results are classified under three

categories; linear stability, linear performance, and nonlinear analyses.
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The linear stability results of the aeroservoelastic system with the two
controllers and the stability limits of the aeroelastic system are given in
Figure 138. As it can be seen from this figure, both controllers enlarge the
flutter flight envelope from aeroelastic stability limits. In 0.5 and 0.6 Mach
numbers the instability limits are enlarged below sea level. However,
among the two controllers the q controller enlarges the envelope better

than the g controller for the Model 2 in compressible flow.
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Figure 138. Flutter flight envelope

The performance results of the controllers are given in Table 59,
Table 63, Figure 131, and Figure 136. Considering the bandwidth
requirement it is seen that the q controller provides a better bandwidth.
Moreover, q controller is affected from the flow variation less than the g
controller. The rise time performance of the q controller is better than or

equal to the g controller in all cases. On the other hand, the settling time
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performances of the two controllers are comparable. In three out of five
cases, the g controller provides smaller settling times than the q controller.
Considering the overshoot, it is seen that the q controller performes better
in four out of five cases. However, considering the steady state error the g
controller performes better in all cases. The two controllers perform
comparably according to deformation of the torsional spring. The q
controller consumes less current than the g-method nearly in all cases. As
a sum up, considering the bandwidth, rise time, overshoot, and current
consumption requirements the q controller performs better than the g
controller. The g controller is better for the steady state error and partially

in settling time requirements.
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Figure 139. LCO amplitudes of the aeroservoelastic with different

controllers (backlash value = 0.2°)

294



Nonlinear analysis results of the aeroservoelastic system with 0.2°
backlash value and two different controllers are presented in Figure 139.
From the figures it can be seen that the controllers are affected differently
from the variation of the flow conditions. The performance of the q
controller enhances as the altitude decreases or the Mach number
increases, which stands for an increase in the dynamic pressure. On the
contrary, the performance of the g controller enhances at the opposite
cases. Considering the deformation of the spring, d.g, that is the degree of
freedom at which the backlash exist; the controllers perform comparably
and the amplitude of the oscillations increases up to two or three times of
the backlash value. However, considering the pitch motion of the typical
section wing, q,, that is one of the performance merits defined in controller
synthesis and also in the analysis, the q controller performes better nearly
in all cases. This is in contrast with the steady state error results obtained
without the backlash, in which the g controller performes better than the q
controller. In fact, steady state error is the only evident advantage of the g

controller that is seen in performance analyses.

As a conclussion, the controller synthesized by using the g-method
performs better in general than the controller synthesized by using the
g-method for the aeroservoelastic Model 2 in the selected compressible

flow cases.

6.4. Unsteady Compressible Supersonic Flow

In this Section, some case studies conducted for the unsteady
compressible supersonic flow is presented. A proper aeroelastic model is
constructed and two H.. type controllers are synthesized by means of q
and g-methods at 1.2 Mach. The conducted aeroservoelastic systems are

assessed according to the stability, performance, and effect of backlash.
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The aeroelastic model, Model 3 is constructed by modifying the

spring constants and damping values of the Model 2. The parameters of

the Model 3 are given in Table 64.

Table 64. Properties of the Model 3

Parameter unit Model 3
Elastic axis location a - -0.6
Half chord b m 0.15
Span / m 0.6
Mass of the wing m kg 9.83
Total plunging mass mp kg 28.7
Mass moment of inertia of the wing l, kg.m? 0.128
Plunge stiffness Kn KN/m 30,000
Total torsional stiffness Kou N.m/rad 7,000
Plunge damping Ch N.s/m 293.4
Pitch damping C, |N.ms/rad| 2.999
Position of center of mass from elastic axis Xcg m 0.105
Motor torque constant kT N.m/A 2.22
Motor continuous stall torque Tes N.m 3.53
Allowable peak torque Tp N.m 42.36
iransmission calculated at tho wing shaft | ' | kg’ | 0000207
Motor and transmission damping ¢m | N.m.s/rad | 0.000124
Transmission ratio N - 87

The indicial functions of the Model 3 are derived by following the

procedure presented in Section 2.5.3. On the contrary to the subsonic

case, a curve fitting operation is applied to all indicial functions. Because,

for the supersonic case, closed form piecewise equations of the indicial

functions are exist. Note that in compressible subsonic flow, the curve fit

equations of the indicial functions derived by Mazetsky are exists, and ¢’

is directly used without applying any modification. The squared 2-norms of
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the residuals of the curve fits which defines the quality of curve fitting are
given in Table 65. The derived parameters of the indicial functions through

curve fitting are given in Table 66 through Table 69. The calculated values
of the indicial functions ¢, ¢',,,, ¢',, and, ¢, by Equations (2.138)
through (2.145) and their curve fits are presented in Figure 140 through
Figure 143. It is seen that the curve fit results of supersonic indicial
functions especially the ¢Tc at 1.2 Mach are worse than the curve fit

results of subsonic flow. The reason is the piecewise characteristics of the
supersonic indicial function equations, which causes discontinuity at the

derivatives of the function.

Table 65. The squared 2-norms of the residuals of the curve fits.

¢ ¢ o # o #" owg
1.2 Mach 1.5737 0.0354 0.0084 0.0037
1.5Mach | 0.0507 0.0341 0.0006 0.0064
2.0Mach | 0.0125 0.0082 0.0004 0.0003

;
Table 66. Curve fit results for e at compressible supersonic speeds.

— _ﬂ S _/8 ¢S _ﬁ S
¢.(S) = by, + b & + b, e + b, e

Oc b1c 1810 b2c ﬂZc b3C 1830

1.2 | 0.9597 | -0.1128 | 0.1929 | -0.3288 | 0.1929 | -0.0523 | 0.1929

1.5 | 0.5694 | 1.0081 | 0.8686 | -0.4914 | 0.691 | -0.6473 | 0.691

20 | 0.3676 | 0.2844 | 0.9788 | 0.1276 | 0.4011 | -0.4549 | 0.6301
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Table 67. Curve fit results for ¢”_,, at compressible supersonic speeds.

B () = Doy + bioyy@ "% + bygyy€72° + by 075
M 1 booy bicu Prom o Poc bscuy Pac
1.2 | -0.2879 | 0.8945 | 0.3460 | 0.2292 | 1.0868 | -0.9982 | 0.5771
1.5 | -0.1708 | 0.4844 | 0.6046 | 0.1534 | 0.6046 | -0.606 | 0.7407
2.0 | -0.1103 | 0.3547 | 0.6026 | -0.0561 | 0.3363 | -0.289 | 0.7792

Table 68. Curve fit results for ¢ch at compressible supersonic speeds.

By (8) = Dyoq + bigg€ " + by 07 + by @75

Ocq

1cq

2cq

M | b bigq Prcq brcq Pac by Pscq

1.2 | 0.2879 | -0.4125 | 0.7371 | -0.0907 | 0.7371 | 0.3754 | 1.0217
1.5 | 0.1708 | -0.3734 | 0.9802 | 0.0775 | 0.5729 | 0.2544 | 1.3523
2.0 | 0.1103 | -0.3643 | 1.214 | 0.0958 | 0.857 | 0.2549 | 1.4688

Table 69. Curve fit results for ¢Tch at compressible supersonic speeds.

¢ch (S) = bOch

+ b e“ﬂqus + b e_ﬂ2chs + b e_ﬂBCMqS

1cMq

2cMq

3cMq

M | Boou browg Bovg | Powg | Powg | Baowg | Paoug

1.2 | -0.1664 | -0.2422 | 0.9287 | 0.0158 | 0.6658 | 0.2994 | 0.6658
1.5 | -0.0987 | -0.2395 | 0.3154 | 0.0008 | 0.2865 | 0.2692 | 0.3411
2.0 | -0.0637 | -0.3025 | 1.5809 | -0.0095 | 0.61 0.3191 | 1.4693

Initial flow parameters are given in Table 70. The aeroelastic model
is constructed by using the parameters given in Table 64, Table 70 and
the equations given in Section 2.5.2. Similar to the Section 6.3, various
analyses are performed in order to derive the aeroelastic properties of
Model 3.
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Table 70. Initial flow parameters

Altitude h m 0
Mach number M - 1.2
Airspeed Uo m/s 408.4
Air density p kg/m?® 1.225
Dynamic pressure 9 Pa 102,130

By performing the flutter analysis by using py-method it is seen that

for the aeroelastic Model 3, flutter occurs at q,,=117,411 Pa and at
oy, =58.4 Hz. The p-method analysis is also performed and the results are

given in Figure 128, which are used for crosschecking. It can be seen from
the figures that the damping ratio of the aeroelastic system drops below 0
slightly above 117,000 Pa, and the frequency of the corresponding pole is

58.37 Hz. Thus, the solutions of the two methods verify each other.
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Instability match points of Model 3 are calculated for various Mach

numbers and presented in Table 71.

Table 71. Flutter match points of the aeroelastic system

Eryegirl?rl(e: Frequency | Altitude | Airspeed

Mach ains Wins hins Uins

Pa Hz m m/s

0.3 140,232 24.9 -35,468 137

0.5 53,730.8 18.6 -10,410 189

0.6 40,152.3 18.0 -3,987.3 213

0.7 30,307.9 17.6 1,139.7 235

1.2 112,679 58.0 -836.54 412
1.5 - - -* -
2.0 - - -* -

* System is stable down to -50,000 m

6.4.1. Controller Synthesis by Using g-Method

Similar to the previous cases, the controller synthesis process
begins with determining the numerical values of the parameters of the
reference plant and the uncertainty/performance weightings. This
controller synthesis is based on the synthesized q controller in Section
6.3.1. The modified uncertainty/performance parameters are given in
Table 72. For the rest of the unchanged uncertainty/performance
weightings, numerical values given in Table 56 and for the parameters of

the reference plant, numerical values given in Table 55 are used.

The values given in Table 72 are obtained after numerous iterations
during H.. controller synthesis. These values are tuned considering the
stability limits obtained by p-method flutter analysis and H. norm of the

aeroservoelastic system. Moreover, a step response analysis is performed
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and a fine tuning is conducted according to the step response analysis

results. During the synthesis steps;

Table 72. Numerical values of uncertainty/performance weightings

Uncertainty Gain Corner Scale
Name Frequency Parameter
W] 9rq, 37,950 N Op,, 0.1 Hz Keq, 0.001

B 9, | 3,450N.m | @, | 01Hz | %r, | 0.001
(W] | 9per 1 deg™ ® | 30Hz Kper | 0.01
93,1 6.67 N
Wal -

95,1 | 73.5(N.m)"
] 952 3,750 N Wy, 2 60 Hz K2 0.001
952 | 340Nm | @, | 60Hz | %5, | 0.001

- The force and moment values of the weighting function [W;,] of

aerodynamic force uncertainty are obtained similar to the
incompressible case. The gain values are tuned by considering the
steady state error in step response.

- The performance requirement, the maximum allowed tracking error,

is relaxed to 1° and the frequency is decreased to 30 Hz.

- The output weighting [Wcﬂ] function of the disturbance to dynamic

pressure is obtained similar to the incompressible case.

- For the derivation of the input weighting function [W@] of the

disturbance to dynamic pressure, the disturbance q,, to dynamic

pressure is modified as 50,000 Pa. The frequency is increased up
to 60 Hz, in order to cover the flutter frequency of the AE system
around 58.4 Hz.

- The controller synthesis altitude is selected as 5,000 m.
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After the definitions of the reference model and the weighting
functions, the interconnection structure system shown in Figure 16 is
constructed by using MATLAB® sysic command. The constructed system

has 28 states, 7 outputs, and 8 inputs.

Similar to the previous cases the controller is synthesized by using
MATLAB® hinfsyn command. The frequency plot of the full order controller
that has 28 states is given in Figure 145. The H., norm of the
aeroservoelastic system with the synthesized controller is obtained as
0.991. The reduced controller is derived by using balanced reduction
method as 14" order, with H,, norm between 0.991 and 0.992, Figure 146.

The analyses of the aeroservoelastic system with the synthesized
controller are performed in three parts; namely stability, performance, and
backlash analyses. The instability points of the aeroservoelastic system
calculated by using y-method are given in Table 73. According to these
results the synthesized controller stabilizes the ASE system below 0 Pa
and above 230,000 Pa which constitutes a good envelope considering the
design point of 54,450 Pa, which is the dynamic pressure at 1.2 Mach and
5,000 m altitude. Note that 230,000 Pa corresponds to more than 1.8
Mach at sea level. By performing flight envelope search algorithms the
instability match points of the aeroservoelastic system are calculated as
given in Table 74. The calculations are performed for seven Mach
numbers, from 0.3 to 2.0 Mach. It is seen that the controller enlarges the

flutter flight envelope below sea level in all these Mach numbers.
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Table 73. Nominal stability limits calculated by using p-analysis

Tins,,, Pa | -33,596
Dins,,, Hz 12.7
Tins Pa | 236,067
o, Hz 79.1

Table 74. Instability match points of the aeroservoelastic system

pl:))r)(/ansirrlg Frequency | Altitude | Airspeed
Mach C_Iins Dips hins Uins
Pa Hz m m/s
0.3 78,598 31.5 -27,145 130
0.5 59,825 29.3 -11,540 191

0.6 50,964 28.6 -6,229.7 218
0.7 45,584 27.8 -2,347.8 244
1.2 204,028 74.3 -6,237.8 436
1.5 414,906 86.8 -8,837.7 559
2.0 702,384 91.9 -8,344.9 742

The performance analyses are performed at nine different match
points, at three supersonic and two subsonic Mach numbers. The results
are given in Table 75 and Figure 147. From the step response analyses
results, it can be seen that the controller that is synthesized at 1.2 Mach
number and 5,000 m altitude can satisfy stability and performance to some
extend, up to 2.0 Mach number and down to 0.3 Mach number. At lower
altitudes of Mach numbers of 1.2, 1.5, and 2.0; it is seen that bandwidth of
the ASE system decreases and its rise time and settling time increase. On
the other hand, at higher altitudes or at lower Mach numbers, the
overshoot of the ASE system increases up to 37%. These characteristics
of the synthesized q controller can be easily seen in Figure 147.
Furthermore, it can be seen that the ASE system has similar attitudes at
20,000 m altitude, at all analyzed Mach numbers; 0.3, 1.2, 1.5, and 2.0
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Mach. There is also a similar attitude between the results of the analysis
performed at 0 m altitude and 1.2, 1.5, and 2.0 Mach numbers. However, it
is seen that the ASE system behaves different at 0 m altitude and 0.7
Mach than the other analyses points at 0 m altitude. Interestingly its
attitude resembles the results of the analyses performed at 20,000 m

altitude.
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Some backlash analyses are performed both in frequency and time
domain. The effect of backlash is analyzed both varying the altitude and
the Mach number. For this purpose first the altitude is fixed at 10,000 m
and the analyses are performed at six different Mach numbers from 0.3 to
2.0 Mach. Then, the Mach number is fixed at 1.2, and the altitude is varied
from 0 to 20,000 m at four discrete steps. The results of these analyses

are presented in Table 76 and Figure 148.

Table 76. LCO analyses results of the aeroservoelastic system

Frequency domain

Altitude | bv solutions Time domain solutions

Mach
Koo Oa0 Oa0 Qe an

m deg | N.m/rad | deg Hz | deg | Hz | deg | Hz | mm | Hz

0.3 | 10,000 | 0.2 | 4,455.8 |0.691| 32.6 | 0.810 | 33.6 |0.980| 33.6 |0.785|33.6

0.5 | 10,000 | 0.2 | 4,361.7 |0.665| 32.3 | 0.758 | 32.9 |0.925| 32.9 |0.690 | 32.9

0.7 | 10,000 | 0.2 | 4,322.8 |0.655| 30.4 | 0.748 | 30.9 |0.890| 30.9 |0.314|30.9

1.2 0 0.2 | 6,496.7 | 3.54 | 870 | 2.31 | 8.53| 1.29 | 8.53 | 10.4 | 8.53

1.2 5,000 | 0.2 | 6,514.6 | 3.67 | 8.76 | 3.20 |8.73 | 3.50 | 8.73 | 16.0 | 8.73

1.2 | 10,000 | 0.2 | 6,377.1 | 2.86 | 8.80 | 2.37 | 8.80| 5.84 | 8.80 | 12.0 |8.80

1.2 | 20,000 | 0.2 | 4,886.0 |0.835| 8.87 [ 0.707 | 33.5|0.875| 33.5 | 0.628 | 33.5

1.5 | 10,000 | 0.2 | 6,419.4 | 3.07 | 8.81 | 2.67 |8.80| 7.26 | 8.80 | 139 |8.80

2 10,000 | 0.2 | 6,477.1 | 3.41 | 8.81 | 3.01 |8.79| 7.10 | 8.79 | 15.7 |8.79

It is seen that the frequency domain analyses predict the frequency
of the LCO similar to the time domain analyses results with less than 3%
error except one case. However, the error in the amplitude of the LCO
prediction is mostly between 10% to 20%, and 53% in one case.
Nonetheless, the frequency domain method gives an idea about the order

of magnitude of the LCO amplitude with a fast computation.
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It can be seen from Table 76 that the obtained LCO’s obtained are
in two groups according to their frequencies. There is an LCO group with
frequencies around 8.7 Hz and another group with frequencies around 33
Hz. It is also seen that the LCO’s at 8.7 Hz have larger oscillation
amplitudes. In all cases a small and a large initial impulse are applied as
discussed in Section 6.2.2.1, but the ASE system converged to the same
LCO from upper and lower oscillation amplitudes of the pitch motion of the

typical section wing, q,.

The variation of the properties of the LCO with respect to altitude
and Mach number can be examined from Figure 148. It is noticeable that
the LCO amplitudes are much smaller in subsonic flow than in supersonic
flow. The frequencies of the LCO in subsonic flow are around 33 Hz, and
those in supersonic flow are around 8.7 Hz. Moreover, LCO amplitudes
increase with increasing Mach numbers. The altitude variation displays a
complicated picture. With the increasing altitude, J,» the deformation of the
torsional spring first increases up to 5,000 m, then decreases. On the
other hand, oscillation amplitude of g, increases up to 10,000 m with the
increasing altitude, and suddenly drops to a level that is comparable with
the LCQO’s at subsonic flow. It is seen that the frequency of LCO changes
from 8.7 Hz to 33 Hz when the altitude is increased from 10,000 m to
20,000 m.

Another interesting point is that, q, is greater than the oscillation
amplitude of the deformation of torsional spring J,9 nearly in all cases.
Furthermore, the oscillation amplitude of q, is much larger than the
backlash value. Hence, the synthesized controller cannot suppress the
amplitude of the LCO, especially the q,, to a comparable level with the

backlash value as in the case studies performed in Section 6.2 and 6.3.
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Examining the Bode plot of the synthesized controller given in
Figure 145, it is seen that the plot of command to output has a dip slightly
below 9 Hz, but this dip is not present in the plot of sensor to output. Note
that the frequency is close to the frequency of LCO with large oscillation
amplitudes. Examining the Bode plots of the previously implemented
controllers that are successful in backlash analyses in Section 6.2 and 6.3,
it is seen that both command to output and sensor to output plots have
dips at the same time around these low frequencies. Furthermore, the
frequency domain analyses of the ASE performed at the nominal dynamic
pressure in synthesis step, similar to the Section 6.2.2.1.1, are examined.
The command and noise to pitch and plunge graphs are given in Figure
149 through Figure 152. From these figures it is seen that, the command
to pitch and plunge plots are normal as expected. However, in noise to
pitch and plunge graphs, a peak is observed at 8.9 Hz. Hence, in
synthesis step, a clue for the large amplitude oscillations is obtained, but
the effect is not seen in step response analyses which uses the
aeroservoelastic plant without any backlash. Examining the ASE system it
is seen that the mode with the 8.9 Hz frequency belongs to the motor

dynamics with the torsional spring.

6.4.2. Controller Synthesis by Using g-Method

In the controller synthesis by using g-method, the numerical values
of the parameters of the reference plant and the uncertainty/performance

weightings are initially taken same as in Table 55 and Table 56. But the

output [Wm} and input [Wazj weighting functions of the disturbance to

dynamic pressure, which are specific to g-method are not used in

controller synthesis. On the other hand, the output [W,,] and input [W,, ]

weighting functions of the damping uncertainty of the g-method are

included to the controller synthesis. As in the other cases of this study, the
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damping uncertainty is introduced only to the pitch degree of freedom. The
gain gos of the function [W,,] is the inverse of the expected speed as
explained in Section 4.4. The expected speed is calculated as 1.097 rad/s
by using the similar approach in the subsonic compressible case.

Therefore, the value of the term g.; is calculated as 0.912 s/rad. With the

similar reasoning of the subsonic compressible case, after numerous

iterations the J. term of the function [W,,] is taken as 10 N.m.s/rad. In
order to cover the aeroelastic flutter frequency, the corner frequency a,,
of the function [W,,] is taken as 60 Hz. On the other hand, the gain value

of the performance weighting is tightened back to 0.3°, which decreased
the steady state error. After numerous iterations the controller is
synthesized at the altitude of 10,000 m. The modified and the newly

introduced uncertainty/performance weightings are given in Table 77.

Table 77. Numerical values of uncertainty/performance weightings

Uncertainty Gain Corner Scale
Name Frequency Parameter

I:Wper] gper 3.33 deg'1 WOper 30 Hz Kper 0.01
W,,] | 9. | 0.912s/rad ] . ] ]
(W] 9e2 | 0.1.097 radls | @, 60 Hz K,, 0.01

319



Full Order Hinf Controller

50

—T e g B i | g e e g
- E b b S = HWHHNHH,HHH,HHH,NHH
-C ZDIZZoZZI3-3 CCZZfE-Z-ZZo3- 4
- R T RIS P, E
- \\T\L\\L\_ﬂw [ —— -
I I I I ;_ < I i | ) |
[-E cozzozzd-a9 § FEEz=H=ziz==2lz= 2= 3o
e e e e e e ” e o, T e e e |
P I, I B B N = e S I B B
IR T\L\\L\\"\ = PRI A M DR,
L N N B o [ I N R R 1

I I I fl hi I I | I I
N ,\\J\\J\\“y — kS I e T A

I I L a|eg @ 9 I I | I I
fce=-zkf=ziz==ziz==2=z=H — FceEz-czkfz iz =z ==zl==Q
- pugn pugin ) R Ry i — 0 m gl bl - ) ) [ |
-C el et el Bl o e} = CCIoC@- D - oo
Ty St I b = = TR S N I R
e B it 7 — [l c ity Sl et e &
[T’ S R R N o ] Lo — o f

| | I’ I = | j ] | |
i /e i ¢ ~ o (g ity nlal Tt Al b Al

’ > = 4 /

! [y 20 O 8 ol [ ! ! -
Sl g e e e | c -l x-S - g
- HH,HHH,HHM&MHH,HHH =3 T .m HWHH,HHH,HHJ.HHH,HHH
i, 'l il b > b B =) : [ i el ot I B
CCNZCCZCDCZEAoCCZo- ] =3 o = CCNZCZD - DCZ ]

+ @ 5 \ /

LNy 1 _ _H n 2 R e
SN s T - S

| = 5 - Q c e | | |
\_—W\ ___--4] 2 al|ld o S Q T Py
XETEEccE| 2 55 = © B e R e
i e Sl 2o o 9] i vt el e b
Tttt 2 e L 3B 3 B s O

Ly | | m 5 — | i 5 - = R | |
“ry o 7 R Al 3 8 ~ ~8 ST e T T T

L I | € 21|o [ I u;,llllmmmmmw,",”, I I
Fe3=54:===2|8 &F S R R R R XA B B
[ s 3 e i 11 e e Py
ot oo oo “ ] Y A 1 C3-_C:i---T--o--]
- R B Y ST [ N R
e e (e --b-4--4 [ i B S
N S R Syl

4 [ i

[ | ! - [ | T 71 7 [ S | |

[ | | | o L | | o [ I | |
[o)e] o o o o o - ™ o~ o o ? - oo o o o o o
N~ 00 o] O < N o O o o o N~ 00 [ee] (o] < N

apnuuBen (sea.Bap) aseyd apnyuuben (sea1Bap) aseyd

10°

order reduced controllers
320

Frequency (Hz)

Figure 154. 13"



Similar to the previous cases, after the definition of the reference
model and the weighting functions, the interconnection structure system is
constructed by using MATLAB® sysic command. The constructed system
has 27 states, 7 outputs, and 8 inputs. The controller is synthesized using
MATLAB® hinfsyn command. The frequency plots of the controller are
given in Figure 134. The H.,, norm of the aeroservoelastic system with the
synthesized controller is obtained as 0.957. The order of the controller is
reduced from 27" to 13" order by using various reduction methods. The
frequency plots of the full order controller and 13" order controllers
reduced by various methods are given in Figure 135. The H., norm of the
aeroservoelastic system with the reduced controller by balanced method is
computed between 0.969 and 0.970. This value is lower than the norms of
the aeroservoelastic system with the controllers reduced by means of
other reduction methods. Hence, the controller reduced by balanced

method is chosen for the rest of the study.

For the analyses, similar steps are followed as in Section 6.4.1. By
performing the p-method flutter analysis, the instability points of the
aeroservoelastic system with the g controller are obtained as presented in
Table 78. According to the p-method flutter analysis, the synthesized
controller enlarges the stability limits of the aeroservoelastic system below
0 Pa and above 230,000 Pa, similar to the g&H.. controller. By performing
the flutter envelope calculation methods, the instability match points of the
ASE system with the g controller are attained as given in Table 79. Similar
to q controller, the g controller guaranteed the stability above sea level in

the analyzed Mach numbers, varying from 0.3 to 2.0 Mach.

The step response analyses are performed at the Mach numbers
from 0.3 to 2.0 and in the altitudes from 0 m to 20,000 m. The results are
presented in Table 80 and Figure 155. It is seen from the step response

analyses that the synthesized g-method controller has an acceptable
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performance in the analyzed aerodynamic conditions. The most adverse
property of this controller is its bandwidth degradation at the lower
altitudes of high Mach numbers. On the other hand, this controller provides
a rise time less than 102 ms, a settling time less than 175 ms, an
overshoot less than 15%, a steady state error less than 0.01° mean and
0.015° oscillation amplitude, and a torsional spring deformation less than
0.015° in all analyzed conditions. Similar to the ASE system with the q&H..
controller, the attitudes of this ASE system can be grouped as 0 m altitude
and 20,000 m altitude excluding the results of the analysis performed at
0.7 Mach. The ASE system performs a slightly overdamped behavior at
Om altitude, and underdamped behavior at 20,000 m altitude as it can be

seen from Figure 155.

Table 78. Nominal stability limits calculated by using p-analysis

Tins,,, Pa -16,267
Ops, . Hz 13.3
Tins Pa | 238,104
o, Hz 82.6

Table 79. Instability match points of the aeroservoelastic system

Dynamic Frequency | Altitude | Airspeed
pressure
Mach C_Iins Oips hins Uins
Pa Hz m m/s
0.3 86,943 25.6 -28,531 131
0.5 57,493 22.8 -11,119 190

0.6 47,505 22.3 -5,558.1 217
0.7 39,766 21.8 -1,150.9 241
1.2 186,504 77.9 -5,381.2 432
1.5 302,728 85.8 -5,742.7 543
2.0 459,468 87.4 -4,258.7 713
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For the ASE system with g controller, the backlash analyses are
performed both in frequency and time domain. The analyses are
performed at the similar points used in Section 6.4.1. The results are
depicted in Table 81 and Figure 156.

Table 81. LCO analyses results of the aeroservoelastic system

Frequency domain

Altitude | bv solutions Time domain solutions

Mach
kaH 0, af 6(19 Qo Qh

m deg [ Nm/rad | deg | Hz | deg Hz | deg | Hz | mm | Hz

0.3 | 10,000 | 0.2 | 3,096.7 |0.441| 13.0 [0.507 | 10.3 | 1.56 | 10.3 |0.372|10.3

0.5 | 10,000 | 0.2 | 2,384.6 |0.366| 13.1 [0.483 | 9.26 | 2.54 | 9.26 | 0.601|9.26

0.7 | 10,000 | 0.2 | 2,111.8 |0.343| 14.4 [0.399 | 12.7 | 1.01 | 12.7 |0.798 | 12.7

1.2 0 0.2 | 6,4779 | 341 | 868 | 3.16 | 8.66 | 1.96 | 8.66 | 15.6 | 8.66

1.2 5,000 | 0.2 | 6,403.6 | 299 | 8.72 | 2.71 | 8.70 | 3.22 | 8.70 | 13.5 |8.70

1.2 | 10,000 | 0.2 | 6,112.9 | 2.01 | 875 | 1.77 | 8.73 | 467 | 8.73 | 8.82 |8.73

1.2 | 20,000 | 0.2 | 3,284.9 |0.465| 8.88 [0.587 | 8.83 | 7.85 | 8.83 | 1.52 | 8.83

1.5 | 10,000 | 0.2 | 6,137.6 | 2.06 | 8.76 | 1.85 | 8.73 | 497 | 8.73 | 9.31 |8.73

20 | 10,000 | 0.2 | 6,2314 | 232 | 876 | 2.09 | 8.78 | 493 | 8.78 | 10.6 |8.78

Similar to the Section 6.4.1, it is seen that the frequency domain
solutions can be used to predicts the LCO in magnitude of order with a fast

computation.

Although it is not evident as in the LCO analyses results of q
controller, a grouping can be conducted according to LCO frequency. In
supersonic region the LCO frequencies are all around 8.7 Hz, but in
subsonic range the LCO frequencies are different than 8.7 Hz although
close to it. It can be seen from Figure 156 (a) that the LCO amplitudes at
subsonic flow are much less than that of supersonic flow. It can be also
seen that the LCO amplitudes increase with increasing Mach numbers in
supersonic region. In Figure 156 (b), the variations of the LCO amplitudes
with respect to altitude are given. It is seen that with the increasing

altitude; J, decreases but the q, increases.
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Similar to the q controller, the g controller is not satisfactory at the
suppression of the amplitude of the LCO down to comparable limits to the
backlash value as in the case studies performed in subsonic compressible
and subsonic incompressible flows. Examining the Bode plot of the
controller and the frequency domain analyses of the ASE system
performed at the nominal dynamic pressure same problems obtained in q

controller are identified.

6.4.3. Comparison of Controllers

Similar to the subsonic compressible flow, two case studies are
conducted for the supersonic compressible flow. In the case studies H.,
type controllers are synthesized by using q and g flutter suppression
methods. The results are classified under three categories; linear stability,

linear performance, and backlash analyses.

0.5 Mach 0.6 Mach 0.7 Mach 1.2 Mach 1.5Mach 2.0 Mach
5 x‘s ™~ 2/

ASE g-method

i —o— ASE g-method

§, 0.3 Mach !
2 5L <—_ _______ B I
2 l
< |
-10---§-----—-—-—-—---- T,
15 { |
100 300
Speed (m/s)

Figure 157. Flutter flight envelope
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The linear stability results of the aeroservoelastic system with the two
controllers and the stability limits of the aeroelastic system are given in
Figure 157. As it can be seen from this figure, both controllers enlarge the
flutter flight envelope below sea level in the analyzed Mach numbers.
However, among the two controllers the q controller enlarges the envelope

better than the g controller for the Model 3.

The performance results of the controllers are given in Table 75 and
Table 80. Comparing the two controllers in terms of the bandwidth
property, it can be seen from these tables that the q controller has better
bandwidth and furthermore its bandwidth is less affected from the flow
variation. Considering the rise time, q controller is slightly better in most of
the cases, except the 0 m altitude in 1.2, 1.5, and 2.0 Mach numbers. In
these specific points, which can be generalized as low altitude high Mach
numbers, the g controller becomes overdamped. At these points the rise
time increases from 50 ms, the maximum rise time value of the q controller
at the other points, to 700 ms. However, although the g controller has
slightly worse rise time in most of the cases, its rise time value varies
between 29 ms to 101 ms. The g controller also has smaller settling time,
overshoot values, and steady state error nearly in all cases. On the other
hand, the g controller has smaller oscillations nearly in all cases and

consumes less current in all cases.
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The detailed discussions on each case study are conducted in the
corresponding sections. Focusing on the comparison of the two
controllers, it can be stated that the LCO amplitudes of the g controller is
less than that of q controller in most of the cases. Moreover, the frequency
of the LCO’s of ASE system with q controller in subsonic flow are around
33 Hz, where at the same flow conditions the ASE system with g controller
has LCO with 9 to 12 Hz frequency. Note that the amplitudes of the LCO’s
of d,9 of the two controllers are comparable in these conditions. Under
these circumstances, it can be also stated that the g controller has an

advantage considering the fatigue life.

6.5. Postscript on Chapter 6

In this Chapter, several case studies are presented covering the
application of methods either developed or referred to up to Chapter 5.
These case studies are grouped in three sections according to the flow
regime as subsonic incompressible, subsonic compressible, and

supersonic.

In the subsonic incompressible flow regime, nine implementations
are compared considering the flutter suppression methods and controller
types. A mathematical aeroelastic model is constructed and nine different
controllers are synthesized for it. The synthesized controllers are
compared considering the stability limits, performances, and effect of
backlash. It is seen that considering the stability analysis and the effect of
backlash, the g and the gq controllers are better than the q controllers, but
the q controllers can still satisfy the stability of the ASE system in the
incompressible flow limits above the sea level. The performances of the
synthesized controllers are comparable, each have advantages for
different performance criteria. Considering the controller types, it is seen

that in general the uy controllers have better stability margins and LCO
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amplitudes than the other controllers. However, u controllers consume
incomparably large amount of current. Whereas, the H. controllers
generally yield the second best solutions considering the stability limits,
performance, and the LCO amplitudes with an acceptable amount of
current consumption. The H; controller only stands out with its low current

consumption.

In compressible subsonic flow, a suitable mathematical aeroelastic
model is created by modifying the aeroelastic model of incompressible
flow. In this flow regime, only H.. type controllers are synthesized by
means of q and g flutter suppression methods. Similar to the
incompressible case, analyses are performed under three groups, namely
the stability limits, performance, and the backlash effect. It is seen that, the

g controller appears to be the best in all cases for this aeroelastic model.

The mathematical aeroelastic model of supersonic flow is
constructed by modifying the aeroelastic model of subsonic compressible
flow. Similar to the subsonic compressible flow, H.. type controllers are
synthesized by means of q and g flutter suppression methods, and
analyses are performed under three groups. It is seen that the q controller
enlarges the stability limit of the ASE system better than the g controller.
However it is seen that the g controller also satisfies the stability at the
searched Mach numbers above sea level. On the other hand, in general
the g controller yields a smaller amplitude LCO and better performance.
Considering the performance criteria, the q controller is better than the g

controller only at current consumption.

Since no solid performance requirements are stated for the
aeroservoelastic models, a unique selection of the controller cannot be
performed. However, it is seen that both controllers have some

advantages and disadvantages. Moreover, it is seen that these
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advantages may vary according to the properties of the aeroelastic model
or flow regime. Nonetheless, it is seen that the proposed g-method is a
successful flutter suppression method and its overall performance is

comparable to the g-method.
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CHAPTER 7

DISCUSSION AND CONCLUSION

7.1. Summary

In this study, different approaches for the controller synthesis and
analysis of aeroelastic control surfaces of missiles are implemented. The
missile control surface is considered as a fin type, fully movable
aerodynamic surface that has no adjacent lifting surfaces, which is usually
the case. The fin is also used on some aircraft as a horizontal stabilizer or
canard, which enlarges the application area of this study. Mathematical
models of the aeroelastic system are derived with the typical section wing
and the thin airfoil theories for the structural and aerodynamic parts of the
problem, respectively. The aeroelastic model is derived for various flow
conditions, which provides a large domain to verify the control synthesis
and analysis approaches. In the derivation of the aeroelastic matrices for
the unsteady flow regions, Theodorsen’s function and indicial functions are
used. In the literature, derivation of Theodorsen’s function for the state
space equation of aeroelastic systems already exists in the works of
Chang [52] and Lind [38]. However, their method was restricted to the
selection of different number of lag terms for different indicial functions. A
proper format for the selection of different number of lag terms was
provided by Edwards [57], but the equations given were only for

incompressible flow and their derivations were not provided either. From

333



the aerodynamic point of view, the following contribution is made in this

study:

- The step by step derivations of state space equations of indicial
functions are accomplished by using Roger’s rational function

approximation method for the aeroelastic fin model.

Various flutter search methods are briefly examined. Among them
the py-method is selected as the main search method. This method has a
robust flutter search capability in addition to the nominal flutter search. The
equations of the aeroelastic fin model are modified for the y-method as
required. In order to crosscheck the results, the p-method is selected as
the secondary method. Some additional algorithms are given in order to
implement the u flutter analysis method to the compressible flow. Thus,
the p-method can be used to assess the instability match points of the

aeroelastic and aeroservoelastic systems.

The mathematical model of the aeroservoelastic system is derived.
In order to perform flutter analysis via y-method, the required modification
process for the mathematical model of the aeroservoelastic system is
accomplished. Two different controller synthesis procedures are provided.

The following contributions are made regarding aeroservoelasticity:

- The g-method is established for the synthesis of a controller for a
CAS, considering some performance specifications and also taking
flutter suppression into account.

- A flutter suppression method available in the literature (g-method)
for airplane wings is adapted and implemented to fins (missile

control surfaces).
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In order to analyze the effect of backlash on the aeroservoelastic
system, the backlash is modeled in the time domain. A Simulink® model of
the aeroservoelastic system including the backlash model is constructed
for time domain analysis. In the frequency domain, the backlash is
modeled by means of sinusoidal input describing functions. The solution

method used in the search for limit cycle oscillations is given.

Several implementations of the given procedures are performed on
a set of case studies. For this purpose three distinct aeroelastic models
are constructed, each encountering flutter in different flow regimes;
namely, incompressible subsonic, compressible subsonic, and
compressible supersonic. The incompressible subsonic model is
constructed in accordance with the ATD, a wind tunnel test setup
developed for aeroservoelastic studies, with slight modifications. The
analyses of the aeroelastic systems are performed. Three different flutter
suppression methods are used, q, g, and gq, which is a mixture of the q
and g methods. Using each of the three different controller synthesis
procedures of flutter suppression, namely q, g, and gg-methods, three
different types of controllers, Hy, H., and u, are synthesized. The flutter
margins, performances, and LCO’s of the aeroservoelastic systems with
these controllers are analyzed. Comparisons of the results are presented.
In order to analyze the performance of the g and g flutter suppression
methods, the case studies are extended to the compressible subsonic and
compressible supersonic flow regions. In these flow regimes, H. type
controllers are synthesized by means of q and g flutter suppression
methods. Similar to the incompressible subsonic flow regime, stability
limits, performances, and LCQO’s of the ASE systems are analyzed in order
to compare the synthesized controllers. The following contributions are

made in the case studies section:
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Development of a controller synthesis procedure that directly uses
the disturbance to dynamic pressure for flutter suppression,
Synthesis and comparison of Hy, H., and u controllers for control
actuation systems with fully movable control surfaces by using the
developed controller design procedure,

Limit cycle analysis of the g-method and g-method controllers for

the fin with backlash type of nonlinearity.

In addition to the contributions listed above, the following studies

are performed in this thesis:

Implementation of a flutter suppression method used in the
controller synthesis originally presented by Vipperman et al. [26] for
airplane wings, to a control actuation system with fully movable
control surfaces.

Comparison of the two different flutter suppression methods.
Comparison of H; and robust controllers in terms of flutter
suppression performance on the aeroservoelastic system with fin.
Implementation of the method suggested by Lind [38], which is a
robust controller synthesis approach that considers system
nonlinearities, to the fin with backlash type nonlinearity.
Implementation of the aeroelastic and aeroservoelastic analyses by
using p and py-methods.

Performance analyses of the aeroservoelastic systems.

Analyses of the effect of the backlash type of nonlinearity on the
aeroelastic systems.

Analyses of the effect of the backlash type of nonlinearity on the
performance of the aeroservoelastic system with the controller

mentioned above.
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7.2. Discussion and Conclusions

The typical section wing that is used in the structural modeling part
of aeroelastic system is a simple but a valid model. It was used by many
aeroelastic pioneers. But it has restrictions, such that the lifting surfaces
should have a large aspect ratio, small sweep, and smoothly varying
cross sectional characteristics across span. More complicated wings can
be structurally modeled with different methods such as finite element
method (by finite number of normal coordinates), Rayleigh—Ritz method
(finite number of assumed mode shapes), or lumped mass (rigid
segments) method. For the aerodynamics, it is also possible to use
nonlinear aerodynamics obtained through CFD analysis. In practice, CFD
was used in two ways; either a direct time domain flutter search can be
performed or the generalized aerodynamic force matrix can be derived.
Both usages, primarily the first one, are time consuming methods. These
methods can be advantageous when analyzing a finished product.
However, their utilization in synthesis steps of the aeroelastic system will
not be effective. In this study, the lift and moment equations calculated
with potential flow theory are used. This theory was widely used in flutter
analysis, such that the commercial programs such as NASTRAN FLDS,
UAI/ASTROS use simplified potential flow theories for unsteady
aerodynamics in aeroelastic analysis. The main purpose of this study is to
establish a method for the synthesis of a controller for a CAS, considering
some performance specifications and also taking flutter suppression into
account. Hence, using the lift and moment equations obtained by potential
flow theory and the typical section wing model is considered to be

adequate for this study.

Among the flutter search methods, y-method is selected as the
primary flutter search method in this study. This method is one of the
recently developed methods; furthermore it can be extended to robust

flutter search. In this study, both y and p-methods are used for the
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computation of instabilities. It is seen that the results of the both methods
are in agreement. Among these methods, the p-method performs a brute
force approach, but provides larger information. In the p-method, the
frequencies and the damping values of all modes of the system, and their
variations with the dynamic pressure are derived. This information can be
used to trace the effect of controller tuning. However, the accuracy of the
p-method is limited by the minimum interval between the search points.
Hence, increasing the accuracy results in an increased computation time.
The p-method also requires some post-processing work to derive the
solution from the results. It is better to use the p-method, in order to get
an idea about the system rather than specifically obtaining the instability
point. On the other hand, the y-method directly calculates the dynamic
pressure of instability and the frequency and damping value of the
corresponding mode of the system, but does not provide any additional
information about the system. Nevertheless, the p-method is a much
faster and accurate calculation method. Furthermore, the p-method is
appropriate for the instability match point calculations, which is an
indispensable compressible flow analyses. In this study, the y-method is
adapted to the instability match point search by using a bisection search

algorithm.

As already mentioned, flutter is an instability that occurs due to the
interaction of inertial, elastic and aerodynamic forces. Assuming that the
inertial and the elastic properties of the structure are unchanged, the
aerodynamics is left as the only varying parameter. This is the main
assumption in the y flutter search method. In this study, it is aimed to
convert this search algorithm to a controller synthesis method. In the
literature, the direct use of the y-method for synthesis purposes does not
exist. With this method, it is possible to directly set the stability margin that
is required from the aeroservoelastic system. For the purpose of

comparison, an alternative flutter suppression method available in the
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literature is used. The alternative method is adapted from the study of
Vipperman et al. [26], in which an airplane wing was used and a
parametric uncertainty was added to the first mode of the system to
account for the variation of the real part of a complex-conjugate pole pair.
In this study, the method presented by Vipperman is applied to the fin
(missile control surface), and the parametric uncertainty is added to the

damping parameter of the pitch degree of freedom of the fin.

Three different types of controllers are synthesized, namely H,, H.,
and p, in MATLAB® by using the flutter suppression methods. In the
synthesis of H.. controllers it is seen that the selection of upper and lower
values of the y limits, which is the search limit parameters of the
MATLAB®'s hinfsyn command, affects the optimization algorithm used for
the synthesis. The synthesis algorithm can sometimes converges to local
minima. It is specifically advised to vary the limits of y and re-run the

synthesis algorithm if the y norm of the system is slightly above one.
Through the case studies it is seen that:

- The established g-method successfully suppresses the onset of
flutter. Furthermore, a satisfactory performance is obtained from the
aeroservoelastic system by using the g-method controller. It is seen

that the tough part of this method is to determine the values of the

additional states due to perturbation to dynamic pressure {z}(7 and

the values of perturbation to dynamic pressure {W}(7 . These are the

input and output vectors of the aeroservoelastic plant to the
dynamic pressure uncertainty port. After these parameters and the
rest of the uncertainty and performance parameters are set, two
free parameters remain for the tuning of the synthesized controller.

These two parameters are the dynamic pressure q,,,, at which the
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controller is synthesized and the disturbance to dynamic pressure

q,s - It is seen that, these parameters affect the stability and
performance of the system. The increase of g, increases the

upper limit of the flutter flight envelope, however it reduces the
lower limit. Hence, a tuning is required for the selection of q,,,,. The
second tuning parameter is the dynamic pressure of disturbance,
which is used as the primary object for the flutter suppression.
During the case studies it is seen that, increasing g, increases the
stability margin from both upper and lower limits as expected.
However, after a limit value of q,,, the y norm of the controller
exceeds one, thus a proper controller cannot be obtained. In H.
type controller synthesis it is seen that the upper limit of g, is well

below the obtained nominal stability margin of the ASE system,

which is due to the conservative property of the H.. controller.

The g-method is successfully implemented to the fin, and effective
flutter suppression controllers are synthesized. The key point of this

method is the derivation of the values of perturbation to damping

{w}_and the values of additional states due to perturbation to

damping {z}c, which corresponds to the velocity states of the pitch

degree of freedom. After the uncertainty and the performance
parameters of the system are set, the performance of the controller

is tuned by means of the damping uncertainty, which is a parameter

of {w} .

The method suggested by Lind [38] is implemented to a fin in order
to improve the LCO suppression property of the controller. Lind
suggested using the uncertainties in robust controller synthesis in

order to deal with the nonlinearities. This implementation is
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performed on the g-method. Considering the sinusoidal input
describing function for backlash it can be assumed that the effective
stiffness value in a backlash varies from zero to a linear stiffness
value. This corresponds to an additive stiffness uncertainty with a
magnitude equal to the linear stiffness value. However, an
uncertainty equal to 100% of linear stiffness value overwhelms the
system and the y norm of the synthesized controller exceeds one.
This means the resultant controller do not guarantee robust stability
and performance. Hence, in order to decrease the y value below
one, the stiffness uncertainty is decreased. Solutions are obtained
for the uncertainties that are equal to the 5%-20% of the linear
stiffness value. From these analyses it is seen that the inclusion of
the stiffness uncertainty, and the increase of the stiffness
uncertainty percentage, increases the amplitude of the LCO.
Furthermore, a considerable enhancement can be seen neither in
bandwidth nor in the performance of the system. Hence, it is seen
that the suggested method did not improve the LCO suppression
property of the synthesized g controller for this specific ASE

system.

Thirteen distinct case studies are performed considering the flutter
suppression methods, controller types and flow regimes. It is seen
that the established g-method and the other methods, g and gq,
have comparable success, and their relative merits vary according
to aerodynamic systems. All of the flutter suppression methods
successfully enlarge the stability envelope of the ASE system. They
perform comparably in the step response analyses and in terms of
bandwidth in frequency response. Among the q and g-methods; the
g-method is better in subsonic compressible flow, the g-method is
better in supersonic flow, and in incompressible subsonic flow one

or the other performs better depending on the various criteria
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considered. Similar to the step response performance comparison,
the flutter suppression methods’ performances in LCO suppression
are also comparable. In each flow region a distinct aeroelastic
model is used, which is one of the driving effect in their
performance variation at different flow regions. Through this study it
is seen that the established g-method is a successful flutter
suppression method and its overall performance is comparable to

the g-method.

Through the case studies, the successes of the different types of
controllers are also compared. It is seen that the H, controller is the
least current consuming controller. However, its flutter suppression
capability, step response, and LCO suppression performance are
the worst. The u controller is the best controller considering the
flutter suppression, step response, and LCO suppression; but it has
an incomparably large current consumption. Moreover, the order of
the synthesized u controllers are nearly one and a half times that of
the H, controllers. On the other hand, it is observed that the H.
controllers yield comparable results with u controllers considering
the flutter suppression, step response, and LCO suppression in
general. The current consumption of H. controllers is at a
comparable level to H; controllers, but not as good as H;
controllers. Moreover, the order of the H.. controller is only one or

two states greater than the H; controller.

During the nonlinear analysis performed in incompressible subsonic
flow it is seen that; no LCO is obtained in the analyzed aeroelastic
system below a certain dynamic pressure value. With the increase
of dynamic pressure the aeroelastic system becomes a system with
two stability conditions. One solution is the steady solution at zero

degree and the other is an LCO. Further increasing the dynamic
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pressure the steady solution vanishes and then flutter occurs for the
aeroelastic system. In contrast to the aeroelastic system, for the
aeroservoelastic system an LCO is obtained in all of the searched
dynamic pressures, up to the dynamic pressure of flutter. However,
the motion in pitch degree of freedom of the fin is much less in the

aeroservoelastic system than in the aeroelastic system.

The nonlinear analyses are also performed in the frequency domain
by means of quasi-linearization. The backlash is modeled via its
sinusoidal input describing function. It is seen that nearly in all
cases the frequency domain analyses only predict the LCO with
one order of magnitude accuracy. However, the frequency domain
solutions give a fast solution, and the behavior of the LCO, its

amplitude and frequency, with varying conditions can be predicted.

In the case studies in the supersonic region, LCO analyses are
performed in incompressible subsonic, compressible subsonic, and
supersonic regions, for the same model. It is seen that the LCO
amplitudes dramatically increases in the supersonic region for the
model analyzed. The amplitude of the oscillations continues to
increase with increasing Mach number in the supersonic region. It is
also seen in the case studies of subsonic flow regions that there is
nearly a linear relation between the amplitude of the LCO and the
backlash value. Thus, the importance of backlash value increases

in the supersonic region for this ASE model.

During the very last period of the thesis study, an opportunity is

available for an experimental flutter suppression demonstration. An

Aeroservoelastic Test Setup is developed in TUBITAK-SAGE in the scope

of a M.Sc. thesis conducted by Utku UNAL in the Mechanical Engineering
Department of METU [17]. This model is tested in the Ankara Wind
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Tunnel. From the tests it is seen that, ATD encounters first LCO at 48 m/s
airspeed and then flutter at 60.5 m/s airspeed. After these tests, a small
demonstration is performed for flutter suppression. For this purpose an H.
controller is synthesized using the proposed controller synthesis method,
the g-method. However, the synthesis is performed with the limited
knowledge about the ATD. The detailed system identification was not
performed before demonstration. Furthermore, during the aeroelastic tests
it was seen that the ATD has more friction and damping than the originally
expected values. However, the synthesis is performed according to design
specifications of the ATD. In the demonstrations, the synthesized
controller successfully suppressed the system up to 70 m/s, which is the

practical speed limit of the wind tunnel.

In most of the studies in the literature, the synthesized controllers are
analyzed considering the stability limits, performances, or LCO. In this
study, a complete analysis, considering the stability limits, performance
and LCO, is performed for the aeroservoelastic systems with the

synthesized controllers. This brings a special value to this study.

7.3. Recommendations for Future Work

In this study, methods for synthesis of flutter suppression controllers
and their analysis are developed or applied. The ATD which was
constructed in the scope of a master thesis was available during the very
last period of the PhD schedule. But due to the schedule of the ART, only
a demonstrative experiment could be performed. Hence, some systematic
tests of the given flutter suppression algorithms are recommended as the

primary future work.

Secondly, adaptation of the present controller synthesis algorithms

for flutter suppression to a finite element aeroelastic model is
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recommended. This will enlarge the practical implementation domain of

the given algorithms.

In this study, the aerodynamic indicial functions are modeled via
rational function approximations and third order functions are used for the
indicial functions. In finite element aeroelastic models in the literature
similar rational function approximations were also used. The orders of
these functions are restricted in order to minimize the order of the
synthesized controller. Thus, a necessary future work would involve
analyzing the effect of the aerodynamic modeling errors on the
performance of the controller synthesized by using the established flutter

suppression method.

From the controller synthesis point of view, controller syntheses
with H. method with gain scheduling and mixed Hy/H. methods are
recommended. H. method with gain scheduling will divide the domain in
which the dynamic pressure changes. Thus the conservatism of the H.
method will be decreased and better performances can be obtained. On
the other hand the mixed Hy/H.. methods may overcome the conservatism
of the H. method by defining less restrictive noise and performance

constraints via the advantage of the H; controller.
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APPENDIX A

ROBUST CONTROLLER SYNTHESIS

In Figure A 1 the general frame work for robust controller synthesis
and analysis are given. The interconnected systems can be rearranged to

fit this general framework.

A\ 4

[4]

A4
—

X
o
—_

Figure A 1. General Framework

In Figure A 1; {d} is the exogenous input vector containing the
commands and the input noise, {e} is the vector of outputs or errors, {z}
is the weighted perturbation output vector, {W} denotes the perturbation

input vector, {y} is the measured output vector, and {u} is the vector of

controller inputs. The uncertainty may be modeled in two ways, either as
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an external input or as a perturbation to the nominal model. The
performance of the system is measured in terms of the behavior of the

outputs or errors.

The assumptions that characterize the uncertainty, performance,
and nominal models determine the analysis techniques that must be used.
The models are assumed to be finite dimensional linear time invariant
(FDLTI) systems. The uncertain inputs are assumed to be either filtered

white noise, weighted power, or weighted £ | signal. The performance is

measured as weighted output variances, or as power or as weighted

output £ , norms. The perturbations are assumed to be themselves

FDLTI systems that are norm bounded as input-output operators. Various
combinations of these assumptions form the basis for all the standard

linear system analysis tools.

Since the nominal model is an FDLTI system, the interconnection

system has the following form

[Pa(P)] [P2(P)] [Ps(p)]
[P(R)]=|[Pos(P)] [Poa(P)] [Prs(p)] (A1)
[P31(,D)] [P32(p)] [P33(p)]

The closed loop system from the exogenous inputs to the output

can be written by using LFT on the perturbation and controller as

=F,(F([PLIKI).[A]) i)
,(Fu [P.[a]).[K.]){a}

For the analysis methods, the controller can be viewed just as

another system component. Thus the controller can be included into the
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interconnection structure by using LFT as given in Equation (A.3). The

analysis framework is given in Figure A 2.

[N11(p)] [N12(p)]} (A3)

[N(p)]=F ([P(P].[K.(P)]) =[[N21(p)] [Noo(p)]

\ 4

[4]

A

«—t N le—

Figure A 2. Analysis Framework

The analysis can be performed by deriving a norm of the transfer

matrix [N] as given in Equation (A.4). Detailed explanation of u analysis is

given in Section 3.3.2.3.

[[N]] G2 2., or p) (A.4)

According to the problem type [N] and the input and output ports can be
selected as follows:
e nominal performance([A]=0) :[N]=[Ny]. {z} and {w} neglected,

e robust stability : [N]=[N,]. {e} and {d} neglected,

e robust performance : [N]:Hllzllﬂ {leﬂ

2

For the synthesis methods, the general framework can be modified

into the synthesis framework by using LFT, Figure A 3. The transfer matrix
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from {d} to {e} is given in Equation (A.5). The Hy, H., and u controller
synthesis problems are to find the controller that minimizes the
corresponding norm of the transfer matrix from {d} to {e}, as given in

Equation (A.6).

te} td]
6] le
v tu}
K]

Figure A 3. Synthesis Framework

fe} = ([CLIK.D1a} = |[C.]+[GulIKN([-[C]K]) '[enl (e} a5)

r[r)(i?HF, (IGLIK.])|, » (2 2., 0r p) (A.6)
where
G11 G12
[G] ) HG%% {Gﬂﬂ (A 7)

According to the problem type [G] can be selected as follows

e nominal performance only ([A]=0):  [G]= H'ij {’izﬂ

e robust stability only : [G]={[P”] {Pﬁ’]},
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e robust performance : [G]=[P] {

358



APPENDIX B

STATE SPACE AEROELASTIC SYSTEM MATRICES
FOR y-METHOD ANALYSIS

B.1. Unsteady Subsonic Incompressible Flow

In unsteady subsonic incompressible flow, the parameterization
over dynamic pressure can be performed similar to the steady subsonic
incompressible case as given in Section 3.3.1. However, in the unsteady
subsonic aerodynamic equation the acceleration term depends on the

dynamic pressure as given in Equation (2.44). Thus, perturbation of the

dynamic pressure effects the acceleration term and the output {z}(7 of the

state space aeroelastic system equation for the perturbation, depend on
the acceleration states. Since the acceleration states are the outputs of
the aeroelastic system equation, the acceleration states are replaced with
its symbolic solution obtained from Equation (2.66). Thus the state space
equation of the aeroelastic system, which is parameterized over the

dynamic pressure in unsteady subsonic flow becomes as
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where [A4g] is given in Equation (2.69), {£}is given in Equation (2.67) and

[0,,.]
[B]=|([M]-[A]q)" (B.2)

[0,,2]
[C.]=[Al(M]-[A]a) " ([A]Ja -[K])+[A.] (B.3)

B.2. Unsteady Compressible Flow

The parameterization over dynamic pressure for unsteady
compressible flow is still more similar to the steady subsonic

incompressible case, which is given in Section 3.3.1. In compressible flow,

{Z}a depends on the aerodynamic states through not only the matrices

[A4] and [A2], but also the through the aerodynamic coefficient matrices
[Dacl, [Dacql, [Dacml, and [Dacmg] introduced in Section 2.5.2. Thus, the
parameterized state space equation of the aeroelastic system for unsteady

compressible flow, over the dynamic pressure becomes as

where [Axg] is given in Equation (2.136), [Bag] is given in Equation

(2.137), {&} is given in Equation (2.134), and the structural and
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aerodynamic coefficient matrices are given in Equation (2.127) through
(2.132).

Equation (B.6) is both applicable to unsteady subsonic and
supersonic compressible flow, since the state space equation format of

both flow regimes are identical.
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APPENDIX C

DESCRIBING FUNCTION METHOD

Describing function method is used to derive approximate linear
models of nonlinear systems. The method is based on the frequency
response method. Hence it assumes the input to the system is
harmonically oscillating. There are also additional conditions that the

system should satisfy, in order to apply the describing function method:

“ 1. There is only a single nonlinear component
2. The nonlinear component is time-invariant
3. Corresponding to a sinusoidal input x=sin(wt), only the
fundamental component y4(f) in the output y(f) has to be
considered
4. The nonlinearity is odd” [64]

Assume a nonlinear system, y that satisfies the above conditions,

and a sinusoidal input as

x = Asin(ot) = Ae' (C.1)
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For a single valued nonlinearity such as backlash the output of the system
will be harmonically, but usually non-sinusoidal. Hence the output can be

expended by using Fourier series as given in Equation (C.2).

y(t)= a,(Ao)siniot)+ Y b(A)sin(iot)
i=1 i=0 (C2)

where

a = 1]” y(t) sin(iot) d(wt)
7Z' /1

By =~ [ y(t) d(at) (€23)
72' T

b, = 1 [ " y(t) cos(iwt) d(wt)
pug I

Due to the third and the fourth conditions in the previous page,

Equation (C.2) can be simplified as given below.
y(t) ~ a,(A w)sin(ot)+ b,(A w)cos(at) =[a,(A w)+ib (A w)|e™ (C.4)

Similar to frequency response function, the describing function is

the complex fundamental harmonic gain of the nonlinearity. Describing

function denoted by v(A,®) is

o(Ao) [a,(A o) ; ib, (A, )] _ M(j\\, ©) Jitno) (©5)

where

M(Aw)=\a,(Aw) +b(Aw) (C.6)
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1

o
>
£

(A o) = atan( ] (C.7)

From Equation (C.5) it can be seen that the describing function is
function of input coefficients. Hence for a defined input, describing function
will become a linear function. This linearization is named as the quasi-
linearization, since the input still affects the output. Nonlinearities that
depend on single argument are called memoryless. For all memoryless
nonlinearities, describing functions are real and independent of input
frequency w. The derivation of the general case of describing function can

be find in reference [66].

Piecewise linear functions are single valued nonlinearities. Backlash,
saturation, ideal relay, and preload type of nonlinearities are the special
cases of this nonlinearity. It is also called gain-changing nonlinearity. In
Figure C 1 the graphical representation of the piecewise-linear function is
given. In this figure ky and k, correspond to the slopes of the function at

two different region.
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cutput

g

input

Figure C 1. Input-output relation for piecewise-linear functions [13].

The mathematical representation of the piecewise linear function is

k, Asin(at) O0<wt<y

y(t):{(h — k)5 + k,Asin(wt) y<ot<rzl2 (C8)

where
)
= = C.9
y asm(Aj (C.9)

Using equations (C.8) and (C.9), ai given in Equation (C.3) can be

calculated as
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a, = 4 [ & y(t) sin(wt) d(wt)
T 0

% jo% Asin(ot) sin(wt) d(wt) O<awt<y

- ij:/gAsin(a)t) sin(ot) d(wt) (C.10)
d ) V<ot<rl2
s j 4{(;9 —k,)5 + k,Asin(t)} sin(wt) d(wt)
T

k,A O<aot<y

B ~ 2
= 2(k1 kz )A arcsin(éj +£ 1_(£j + sz V<wt<rxl2
y/a A A

Since these nonlinearities are single valued, b,=0. Hence, the

describing function can be derived substituting Equation (C.10) into (C.5)

as
K, A<S

U(A):j: —2(k1_k2)[arcsin(%J+% 1—(£j J+k2 ,A25(C'11)
T

Describing function of the backlash type of nonlinearity can be

obtained by setting k> to zero.
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APPENDIX D

RESULTS OF THE ANALYSES OF THE
AEROSERVOELASTIC SYSTEMS WITH VARIOUS
CONTROLLERS

D.1. g-Method H.. Controllers

Table 82. Parameters and stability analysis results of various g-method H..

controllers
Synthesis parameters Controller properties Stability analysis results

= :E _ [W,,]scale | = g norm robust nominal
g L | Gas | W2 o
©l £ @1Hz@10Hz §°§ Ho He 4 | G | Gt iow @t iow | G e

8 Pa | Hz = Pa Pa Hz Pa Hz
1 3 1|1,500| 10 | 1/5 50 |H-/14| - 10.769.0.768|1,625| -815 144 ]9,359; 6.3
2*1 3 |1,500| 20 | 1/5 50 |H-/14| - 11.0881.083|1,790| -998 15.3 14,455 6.2
3| 3 [1,500| 18 | 1/5 50 |H./14| - :1.039:1.035|1,744 -951  -951.8 |15,201: 6.3
4*1 3 |1,500| 16 | 1/5 50 |H-/14| - 10.9820.979|1,720| -910 15.0 (11,962 6.3
54| 3 [1,500| 14 | 1/5 50 |H-/14| - 10.916/0.914|1,669| -876 149 (10,966 6.3
6| 3 [1,500| 12 | 1/5 50 |H-/14| - 10.8400.839|1,660| -850 14.7 (10,071 6.3
7| 3 |1,500[ 8 | 1/5 50 |H./14| - |0.769/0.7541,508 -693 13.8 |8,244 6.1
8| 3 |2,000] 10 | 1/5 50 |H</14| - 0.954.0.946(1,588( -794 148 (9,530 6.4
9| 2 [1,500| 10 | 1/5 50 |H~/14| - ]0.833|0.826(1,381| -865 143 |8,526| 6.2
10| 4 |1,500| 10 | 1/5 50 |[H-/14| - 10.769:0.766(1,826| -641 14.4 10,078 6.2

* Equivalent Qoont is given in Table 20.

* The stabilizing controller has poles at right hand side plane
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Table 83. Time domain analysis results of various g-method H.. controllers

-5 €ss Current
ﬁ g wn - .§ trso ts Mp Out E 5 B §
z 3 § ° 9 s
Pa Hz deg | deg s s % deg A A A A
] 0 | 6.00 [-0.008 -0.022|0.076 |0.145| 5.68 | 1.29 |0.000 0.98 :0.233 0.50
4,000[ 6.03 |-0.024| 0.019 | 0.065 [1.130| 6.45 | 2.32 |0.019| 0.80 [0.323| 0.73
) 0 | 5.98 |-0.017 0.037 | 0.076 | - 472 | 1.26 (0.000 1.13 {0.333 1.11
4,000{ 5.90 |-0.033| 0.021|0.062 | - 3.83 | 220 |0.016 1.09 [0.440  1.05
0 | 5.98 |-0.016 0.039 | 0.076 | - 487 | 1.27 (0.000 1.11 :0.323 1.09
’ 4,000 5.94 |-0.031; 0.019 |0.062 | - 429 | 2.33 |0.018 1.11 {0.408 0.98
0 | 5.95 |-0.014 0.040 | 0.078| - 514 | 1.27 |0.000; 1.04 |0.318 1.00
‘ 4,000[ 5.95 |-0.036; 0.017 | 0.063 | - 466 | 2.14 |0.018 1.13 10.384; 1.05
0 | 6.00 [-0.023 0.031 |0.078| - 518 | 1.28 |0.000: 0.92 0.279 0.64
° 4,000{ 5.98 |-0.033{ 0.019 | 0.063 | - 513 | 2.14 1.02 0.357; 1.02
0 | 5.90 |-0.014} 0.022 | 0.076 |0.140| 5.12 | 1.28 |0.000 0.97 {0.231 0.44
° 4,000 6.02 |-0.028; 0.016 | 0.065 [1.710| 5.59 | 2.12 [0.018 0.90 0.373: 0.84
0 | 5.90 |-0.008 0.024 | 0.077 {0.160| 6.40 | 1.36 {0.000 0.90 |0.196 0.65
! 4,000[ 5.94 |-0.025 0.022 | 0.063 |1.420| 7.30 | 2.28 |0.016: 0.79 0.338: 0.78
0 | 594 |-0.016] 0.041 | 0.075| - 5.10 | 1.30 |0.000| 1.07 |0.291| 1.07
° 4,000{ 6.06 |-0.034; 0.019|0.063 | - 598 | 2.12 |0.017; 1.04 0.393 0.95
0 | 6.00 [-0.014| 0.023 | 0.075|0.100| 4.48 | 1.32 |0.000 0.93 [0.231| 0.70
° 4,000[ 6.00 |-0.029: 0.019 | 0.063 |2.435| 6.95 | 2.27 |0.018 0.84 0.348: 0.82
0 | 5.78 |-0.005} 0.042 | 0.078 |0.150| 7.58 | 1.33 |0.000; 0.99 0.242 0.71
104,000 5.98 |-0.022; 0.019 | 0.063 [1.190| 5.94 | 2.23 [0.018 0.80 :0.293 0.75
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D.2. g-Method H; Controllers

Table 84. Parameters and stability analysis results of various g-method H,

controllers
Synthesis parameters Controller properties Stability analysis results
o3
* )
OE [W,,]scale | & norm nominal
ol L | Qust | “g2 T o
O o Q -E
£ g°
o] =] = —
o @1Hz @10Hz é Ho  He o 1 | Qinst_tow  @inst_tow | Dinst | Phost
Pa | Hz Pa Hz Pa Hz

11 1 (1,500 10 | 1/5 50 |[H2/13|8.065:1.562:1.310| -827 12.7 7,353 5.6
1,500 10 | 1/5 50 |[H2/13|7.858 1.4551.281| -612 12.7 |8,036, 5.6
2,0001 10 | 1/5 50 |[H2/13]|9.394:1.764:1.506| -635 13.1 |8,681 5.7
1,000 10 | 1/5 50 |[H2/13|6.2511.137|1.037| -594 122 |7,141| 55
1,500 15 | 1/5 50 |[H2/13]|9.636:1.796:1.552| -698 13.2 10,292 5.6
1,500 10 | 1/5 50 |[H2/13|7.7151.398/1.261| -453 12.7 |8,577 5.6
71 3 [1,500] 10| 1 100 |H2/13{10.3331.927 1.656| -571 133 |7,211: 5.9

* Equivalent q,,, is given in Table 20.

ol |~ |lW[IN
AW W|W|W
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Table 85. Time domain analysis results of various g-method H, controllers

c Ess Current
S
% 3 wn = é trso ts Mp Sut g 5 b Z«?
2 s 5 ¢
Pa | Hz | deg | deg s s % deg A A A A
11 0 | 563 |-0.034 00240074 - |238| 129 [0.000] 0.65 |0.121 0.24
4,000 547 |-0.057 0.018[0.067| - |599| 2.22 [0.018 0.57 0.229 0.48
o1 0 | 563 |-0.032 0.023]0.085| - |6:28| 1.33 [0.000 0.66 0.111 0.25
4,000 547 |-0.055 0.019|0.068| - |5.87 | 2.21 [0.017 0.58 0.246 0.45
41 0 | 567 |-0.0310.023 0.084| - |6.15| 1.33 [0.000| 0.66 |0.137 0.40
4,000 547 |-0.058 0.020 | 0.067| - |5.71| 2.22 [0.018 0.58 0.236 0.50
4| 0 | 573 |-0.033/ 0.022]0.086| - |6.14| 1.32 |0.000 0.65 0.087 0.17
40001 540 |-0.051 0.017|0.068| - |5.68| 215 [0.017 0.58 0.197 0.40
5| O | 568 |-0031 0.022(0083| - [576| 1.33 [0.000| 0.66 0.137 0.30
4,000 543 |-0.060 0.018 | 0.066| - |4.44 | 218 [0.019 0.57 0.255 0.54
sl O | 573 |-0030 0.0230.090| - [10.01] 1.35 [0.000| 0.69 0.120 0.27
4,000 547 |-0.054 0.018[0.066| - |5.68 | 2.10 [0.019 0.59 0.237 0.43
21 % | 562 |-0.034 0.0260.083| - |557 | 1.33 [0.000 0.67 0.135 0.30
4,000 573 |-0.047) 0.017 [ 0.065| - |8.12| 2.37 [0.018 0.63 |0.262, 0.59
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D.3. g-Method y Controllers

Table 86. Parameters and stability analysis results of various g-method u

controllers
Synthesis parameters Controller properties Stability analysis results

** :t: _ [W,,]scale | =& norm robust nominal
§) & |Tast |“a2 5o
€l @1Hz @10Hz §°§ Ho | Ho | 4 | G | G iow | P iow | Gt | @y

S | Pa | Hz & Pa| Pa  Hz | Pa  Hz
11 5 [5,000{ 10 | 1/5 50 |u/20 4.168/0.991| -569 | -603 14.3 6,222 6.3
2] 5 |6,000| 10 | 1/5 50 |up/19 4.627 1.115| -637 | -670 144 16,378 6.3
3*| 5 [4,000] 10 | 1/5 50 |p/20 0.885| -500 | -533 141 |5,958 6.4
4| 5 |50000 10| 1 100 | p/21 2.607.1.199| -634 | -673 155 |8,502, 6.7
5] 5 |3,000{ 10 | 1/5 50 |u/19 2477 0.760| -454 | -486 13.8 |6,025 6.3
6| 5 |3,000010 | 1 100 | p/22 0.833| -588 | -629 159 |8,561: 7.0
7] 3 |3,000[{ 10 | 1/5 50 |u/18 0.840| -811 | -842 13.7 |5,0560 6.3
8| 3 |3,000010 | 1 100 | p/20 1.007|-902 [ -939 154 |7,586, 6.7
9] 3 |2,500| 10| 2 100 | p/20 0.979|-1,359 -1,036 | 3.0 (9,754 7.6
10| 3 |2,500| 10 | 2 100 | p/21 0.953|-1,360 -1,036 . 3.0 (9,744 7.6
11| 3 |2,500{ 10 | 2 125 | p/21 1.011}-1,290| -1,032 3.0 (9,648 7.5

* Equivalent Qoont is given in Table 20.

*The stabilizing controller has poles at right hand side plane
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Table 87. Time domain analysis results of various g-method u controllers

€ss Current
c
k5]
* g ©n c § trss, | ts | Mp | Ow :? 5 203
2|5 g 2 O S
°l° | g §1¢ & &
Pa Hz deg | deg s s % deg A A A A
4 1.0 | 533 |0046 0.018(0086| - |7.05| 1.32 [0.000 0.99 0.260 0.67
4,000 611 |-0.057 0.018|0.063| - |6.27 | 2.47 [0.016 0.98 0.331 0.98
, 1.0 | 533 |-0.045 0.018[0.086| - |533| 129 |0.000 0.76 0281 074
4,000 605 |-0.057 0.016 | 0.064| - |4.78 | 2.32 [0.017 0.87 0.364 0.87
5| 0 | 536|007 0.038]0.086| - |803| 1.35 [0.000 0.88 0.270 0.80
4,000 518 |-0.050 0.019|0.062| - |7.20| 2.35 |0.019 0.92 0.333 0.76
4 |0 | 554 |-0.043 0.038[0.083| - |564| 132 |0.000 1.48 0384 148
4,000 613 |-0.047 0.017 | 0.061| - |4.73| 219 [0.016 1.43 0.528 1.22
5| 0 | 54310037 00220087 | - |946| 1.38 [0.000| 0.78 |0.164  0.36
4,000 613 |-0.045 0.018 | 0.062| - |8.11| 2.36 |0.018 0.75 0.302 0.72
s 1.0 | 573 |-0.030 0.025|0079| - |746| 1.39 |0.000 1.55 |0.431] 148
4,000 632 |-0.037 0.019|0.058| - |6.46| 210 [0.019 1.47 0.525 1.42
;1.0 | 573 |-0.036 0.022[0.082| - |4.13| 1.29 [0.000| 0.72 |0.204  0.44
4,000 619 |-0.045 0.021|0.064| - [10.52| 2.46 |0.018 0.93 [0.299 0.68
81 0 | 562 [-0.033 0.021]|0.078| - |[3.73] 1.30 |0.000 1.02 0.273 0.56
4,000 622 |-0.040 0.017|0.060| - |7.35| 2.35 [0.018 1.22 0.527 1.13
o | .0 | 584 |-0.028 0.021]0.072/0.371| 478 | 1.23 [0.000 2.65 0.74 2.19
40000 543 |-0.039 0.014[0.056| - |5.63| 2.11 [0.018| 2.93 0.896 2.93
1010 | 5:84 |-0.028 0.021]0.072[0.371| 4.78 | 1.23 |0.000 265 0774 2.19
4,000 643 |-0.039 0.014 | 0.056| - |5.63| 211 [0.018 2.93 0.896 2.93
1110 | 581 ]-0.030 0.0200.075 |5.512| 3.86 | 1.25 |0.000 251 0754 247
4,000 638 |-0.038| 0.015|0.057| - |5.82| 1.94 [0.019] 2.47 0.822| 2.26
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D.4. g and gg-Method H.. Controllers

Table 88. Parameters and stability analysis results of various g-method H..

controllers
Synthesis parameters Controller properties Stability analysis results
]
* 0]
P [W,,]scale < norm robust nominal
|2 O Oc @;» T o
3| e o)
IS : e° : :
8 @ OHZ @1OHZ § H2 H” IJ ainst qinstflow a)instflow ainst a)ins(
N.m.s/rad Hz Pa Pa Hz Pa | Hz
10 1 2 6 | 1/5 50 |H./13 0.81010.767|2,256| 995 @ 29 | F | F
2| 3 2 6 | 1/5 50 |H./13 0.789/0.752|2,576| 997 @ 29 | F | F
3|5 2 6 | 15 | 50 |H./13 0.7540.723|3,129| -1,007 | 2.9 FoOF
4 1 3 6 | 15 | 50 |H./14 0.954|0.947(2,388| -959 | 2.9 FLF
5| 1 1 6 | 15 | 50 |H./13 0.640.0.625(2,010| -1022 1 2.9 FF
6| 1 2 6 | 15 | 100 |H./13 0.800/0.754|2,304| 970 @ 29 | F | F
701 2 6 | 35 100 |H./13 0.932:0.907[1,310| -988 | 2.9 FOF

* Equivalent q,,, is given in Table 20.
* Thereis no instability in the incompressible region
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Table 89. Time domain analysis results of various g-method H.. controllers

c €ss Current
S
% 3 wn = é trso ts Mp Sut g 5 b Z«?
° 3 § ¢ & &
Pa Hz deg | deg s s % deg A A A A
: 0 | 5.83 |-0.033} 0.022 | 0.079| - 1.07 | 1.21 |0.000 0.81 {0.248| 0.80
4,000[ 4.97 |-0.045; 0.009 | 0.076 | - - 1.99 |0.019 0.77 |0.263 0.58
0 | 5.71 |-0.032| 0.023 | 0.079 | - 2.62 | 1.26 |0.000 0.78 0.256| 0.75
? 4,000[ 5.03 |-0.044: 0.010 | 0.075| - - 2.02 |0.018: 0.72 0.245: 0.55
0 | 5.43 |-0.032| 0.023 | 0.081 - 546 | 1.32 |0.000| 0.85 |0.234| 0.59
’ 4,000{ 5.12 |-0.041; 0.009 | 0.075 | - - 2.00 |0.017; 0.66 :0.256; 0.56
4 0 | 5.70 |-0.033| 0.022 | 0.077 | - 1.24 | 1.17 |0.000 1.01 0.296| 0.99
4,000{ 4.98 |-0.050: 0.014 | 0.076 | - - 1.97 |0.016 0.95 0.404 0.93
0 | 5.81 |-0.033} 0.021 | 0.081 - 0.61 | 1.38 |0.000; 0.96 0.181 0.58
° 4,000[ 1.80 |-0.047; 0.009 | 0.076 | - - 211 |0.018; 0.81 :0.193; 0.40
0 | 5.84 |-0.032 0.022 | 0.079| - 1.10 | 1.22 |0.000 0.79 {0.250; 0.78
° 4,000[ 4.92 |-0.038: 0.016 | 0.077 | - - 1.91 |0.017 0.08 0.295 0.76
0 | 5.70 |-0.033 0.019 | 0.077 | - 1.21| 1.19 |0.000 0.87 {0.270; 0.57
! 4,000{ 5.36 |0.038; 0.016 | 0.070 | - 256 | 2.13 |0.019 0.92 {0.364| 0.92
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D.5. g and gg-Method H; Controllers

Table 90. Parameters and stability analysis results of various g-method H,

controllers
Synthesis parameters Controller properties Stability analysis results
. o3

g E 5 o, [W,,]scale % o norm nominal
3 @OHz@10HA & | Mo Ho 4 [Gosiow st iow] Goss @
N.m.s/rad| Hz Pa Hz Pa  Hz
1] 1 2 6 | 1/5 50 [H./13|7.966 1.3351.312|-1,149 28 | * F
2] 1 1 6 | 1/5 50 |H2/13|5.946 1.028 1.009(-1,204 28 | * F
3| 3 2 6 | 1/5 50 |Hy/13|7.778 1.307 1.283|-1,182 28 | * F
4| 3 2 6 | 2 | 100 [Ho/14[16.840/2.632/2.629| -983 | 2.9 [8,422 58
5| 4 2 6 | 1/5 50 [Ho/13|7.648 1.2881.263|-1202 27 | * F
6| 4 2 6 | 2/5 50 |H2/13|8.506 1.4121.397|-1,060 122 | * F
7] 4 2 6 | 1/5 100 |H2/13|7.491.1.2661.239|-1,103 27 | * F
8| 4 2 6 | 1 100 |Hz/12[11.297/1.823/1.821| -851 | 13.0 (8,467 5.4

* Equivalent Goont is given in Table 20.
* Thereis no instability in the incompressible region
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Table 91. Time domain analysis results of various g-method H, controllers

c €ss Current
S
% 3 wn = é trso ts Mp Sut 5 g b Z«?
° 3 °c & & ¢
Pa Hz deg | deg s s % deg A A A A
: 0 | 524 |0.055 0.025|0.078| - - 1.16 |0.000 0.54 [0.138 0.37
4,000{ 1.25 |-0.080; 0.016 | 0.085 | - - 1.89 |0.017 0.48 |0.176 0.45
0 | 5.24 |-0.055 0.026 | 0.077 | - - 1.16 |0.000 0.54 [0.095 0.26
? 4,000[ 1.05 |-0.074: 0.012 | 0.084 | - 540 | 1.95 |0.017: 0.49 0.117 0.30
0 | 5.38 |-0.055| 0.022 | 0.082 | - 1.24 | 1.20 |0.000| 0.56 |0.107| 0.27
’ 4,000 1.45 |-0.077; 0.015 | 0.081 - - 1.89 [0.017 0.49 |0.148 0.45
4 0 | 5.12 |-0.058| 0.024 | 0.084 | - 0.97 | 1.20 |0.000, 0.66 |0.202| 0.41
4,000[ 5.43 |-0.081: 0.020 | 0.068 | - 438 | 2.34 |0.015 0.76 :0.372: 0.76
0 | 5.47 |-0.055 0.029 [ 0.088 | - 3,51 | 1.22 |0.000, 0.56 {0.115 0.29
° 4,000 1.57 |-0.076; 0.014 | 0.082 | - - 1.90 |0.017 0.49 |0.134 0.43
0 | 5.38 |-0.056; 0.020 | 0.091 - 3.31 | 1.22 |0.000: 0.56 {0.102 0.19
° 4,000 1.70 |-0.078: 0.017 | 0.076 | - - 2.02 |0.016. 0.49 0.175 0.48
0 | 5.47 |-0.053 0.024 | 0.086 | - 3.72 | 1.22 |0.000: 0.56 {0.118 0.33
! 4,000[ 1.56 |-0.069 0.010 | 0.086 | - - 1.93 |0.017 0.49 {0.141 0.40
0 | 5.21 |-0.056: 0.023 [ 0.090 | - 2.94 | 1.23 |0.000 0.59 {0.139; 0.30
’ 4,000 5.22 |-0.072 0.017 | 0.071 - 3.00 | 2.17 |0.018 0.59 |0.276 0.57
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D.6. g and gg-Method py Controllers

Table 92. Parameters and stability analysis results of various g-method u

controllers

Synthesis parameters

Controller properties

Stability analysis results

]
* [0}
Y [W,,|scale | & norm robust nominal
(2] o 50 wcz t E
3| © g
€ g° — —
(&) @ 0HZ@10HZ é H2 He M qinst qinstflow winstflow qinst a)fnst
N.m.s/rad| Hz Pa Pa Hz Pa : Hz
1 2 6 | 1/5 100 |u/18 12.0440.568|3,145|-1,028. 29 | F  F
20 1 1 6 | 35 100 |u/18 30.6920.527|2,486| 998 29 | F F
31 2 6 | 15 50 |u/16 15.529.0.570(3,093[-1,015. 29 | *  F
4] 1 1 6 | 15 | 50 |u/18 0.428(2,663[-1,004| 29 | F | *F
5| 4 1 6 | 35 100 |p/17 37.297.0.474 986 29 | F °F

* Equivalent Qoont is given in Table 20.

F Thereis no instability in the incompressible region

Table 93. Time domain analysis results of various g-method p controllers

c €ss Current
g
2l e | & & |t |ts M| | 8 § %7 %
7 8 °c 4§ & ¢
Pa Hz deg | deg s s % deg A A A A
: 0 | 6.14 |-0.034 0.017 | 0.074| - 1.64 | 1.24 |0.000 2.18 i0.721: 1.83
4,000f 5.43 |-0.040: 0.008 | 0.072 [1.423| - 211 |0.018; 2.18 0.799: 1.64
0 | 5.75 |-0.027} 0.014 | 0.075|0.100| 2.75 | 1.17 |0.000 1.87 {0.525 1.29
? 4,000/ 5.76 [-0.029: 0.011 | 0.062|0.329| 3.83 | 2.01 |0.018: 2.21 0.541 1.75
0 | 5.95 |-0.033 0.016 | 0.076 | - 2.61 | 1.20 |0.000| 2.39 |0.713| 2.39
’ 4,000{ 5.40 |-0.043: 0.008 | 0.069 | - - 2.01 |0.015 227 0.671 1.31
4 0 | 6.03 |-0.029  0.015|0.074 |0.100| 2.95 | 1.26 [0.000| 1.32 |0.421| 1.06
4,000f 5.43 [-0.034 0.013 | 0.067 |0.748| 1.45 | 1.97 |0.018 1.82 0.453 1.82
0 | 5.78 |-0.026 0.015|0.075|0.101| 3.50 | 1.21 |0.000| 1.89 0.501| 1.27
° 4,000[ 5.76 |-0.029: 0.011 | 0.062 [0.349| 3.17 | 2.00 [0.018: 2.19 0542 1.61
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