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ABSTRACT 
 
 
 

DEMAND DRIVEN DISASSEMBLY PLANNING 
 

 

Ertem, Tulû 

M.S., Department of Industrial Engineering 

Supervisor : Assist. Prof. Z. Pelin Bayındır  

 
January 2007, 122 pages 

 

 

In this thesis, we deal with the demand driven disassembly planning. The main aim 

of the study is to construct heuristic approaches according to the suggested 

improvements in the literature. These heuristic approaches are further improved by 

recognizing the key points of the disassembly planning problem. All of the solution 

approaches aim minimizing total cost related to relevant costs of disassembly 

operations. Another subject given attention in this thesis is the importance of the 

setup cost on the disassembly planning, which has not been studied yet in the 

literature to the best of our knowledge. Computational studies are carried out to 

assess the performance of the heuristic procedures proposed.  

 
Keywords: Disassembly planning, demand-driven disassembly, heuristic approach. 
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ÖZ 
 
 
 

TALEP BAZLI DEMONTAJ PLANLAMASI 
 

 

Ertem, Tulû 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi : Yrd. Doç. Z. Pelin Bayındır 

 
Ocak 2007, 122 sayfa 

 
 
 
Bu tezde talep bazlı demontaj planlamasıyla ilgilenilmiştir. Çalışmanın ana amacı 

literatürde önerilen ilerlemelere göre sezgisel yaklaşımlar oluşturmaktır. Demontaj 

planlaması problemlerinin kilit noktalarını belirleyerek, bu sezgisel yaklaşımlar daha 

da geliştirilmiştir. Bütün çözüm yaklaşımları demontaj planlamasıyla ilgili 

masraflarla ilişkili olan toplam maliyeti en aza indirmeyi amaçlar. Bu tezde 

ilgilenilen bir diğer konu ise, bildiğimiz kadarıyla literatürde henüz çalışılmamış 

olan kurulum maliyetinin demontaj planlamasındaki önemidir. Önerilen sezgisel 

yaklaşımların performansını değerlendirmek için deneysel çalışmalar yürütülmüştür.  

 
Anahtar Kelimeler: Demontaj planlaması, talep bazlı demontaj, sezgisel yaklaşım. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
 
 

Due to the fundamental changes in economics, huge reduction of natural sources and 

environmental issues, products’ and materials’ recovery are currently growing trends 

in most of the industrialized countries. The recovery of the end-of-life products is 

not only ecologically necessary and driven by legislation but also economically 

challenging by decreasing the utilization of virgin raw material and disposal costs. 

Bras and McIntosh (1999) designate the benefits of product recovery to the 

manufacturers as;  

• an expanded share of the market, 

• the trade-in value encourages customers loyalty and repeat business, 

• information for product failures that can be used to create product 

improvements.  

and they designate the benefits to the society as; 

• cheaper products 

• new job areas as disassembly and remanufacturing are labor intensive. 

 

Environmental implications of product design and manufacturing processes became 

important for the environmental issues. In some European countries (especially in 

German and the Netherlands), legal applications exist to provide safe disposal of a 

product at the end of its life.  The main reason for the legal preventions is the 

increasing shortage of landfill space. The combination of decreasing space and 

regulations make the disposal costs increase significantly in the next few years. In 

addition to this, governments increase the taxes on virgin raw material usage to 

motivate companies to try to re-use.   
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1.1 Recovery in the World 

 

Environmental problems of waste management and disposal of discarded products 

have led many countries to take legislative action to improve reuse, recycling and 

other forms of recovery. Today, the majority of the studies about the recovery 

involve electronic waste. Electronic waste includes computers, entertainment 

electronics, mobile phones and other items that have been discarded by their original 

users. Despite its common classification as a waste, disposed electronics are a 

considerable category of secondary resource due to their significant suitability for 

direct reuse (for example, many fully functional computers and components are 

discarded during upgrades), refurbishing, and material recycling of its constituent 

raw materials. Because of great reuse opportunities they have, electronic waste is 

paid more attention in the world. 

 

In the website of Wikipedia Foundation, http://en.wikipedia.org/wiki/WEEE, it is 

mentioned that some European countries banned the disposal of electronic waste in 

the landfills in the 1990s. This creates an e-waste processing industry in Europe. In 

1991, the first electronic waste recycling system was implemented in Switzerland 

beginning with the collection of refrigerators. Over the years, all other electrical and 

electronic devices were gradually added to the system. Then, early in 2003 the 

European Union (EU) presented the Waste Electronic and Electric Equipment 

(WEEE) Directives for implementation be effective in 2005. The directive imposes 

the responsibility for the disposal of WEEE on the manufacturers of such 

equipment. The objective of the WEEE Directives is to prevent the generation of 

electrical and electronic waste and to support reuse, recycling and other forms of 

recovery in order to reduce the quantity of waste to be eliminated. WEEE Directives 

have to be applied seriously in the member states and if they do not apply, great 

monetary penalties are imposed to them. For instance, WEEE Directives will be 

enforced by UK Law on the January 1st, 2007 and if the firms do not prepare 

themselves for the directives, they are going to pay great massing recycling bills. 

These directives include scope, collection, treatment, recovery and financial 

directives.   
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The directive includes large and small household appliances, IT and 

telecommunications equipment, consumer equipment, lighting equipment, electrical 

and electronic tools, toys, leisure and sports equipment, medical devices, monitoring 

and control instruments, automatic dispensers.  

 
Member States set up several collection systems for WEEE, and according to the 

WEEE-Forum website (http://www.weee-forum.org/legislation_eu.htm#top) they 

have to ensure that; 

• final holders and distributors can return such waste free of charge, 

• distributors of new products ensure that waste of the same type of equipment 

can be returned to them free of charge on a one-to-one basis, 

• producers are allowed to set up and operate individual or collective take-back 

systems, 

• the return of contaminated waste presenting a risk to the health and safety of 

personnel may be refused.  

 
Producers of electrical and electronic equipment must apply the best available 

treatment, recovery and recycling techniques. They have to set up systems for the 

recovery of WEEE collected separately. Producers must state the weight of the 

electrical and electronic waste entering and leaving treatment and recovery or 

recycling facilities. By 31 December 2008, the European Parliament and the Council 

are to set new targets for recovery, recycling and reuse.   

 

Producers must provide for the financing of the collection, treatment, recovery and 

environmentally reliable disposal of WEEE. When a producer places a product into 

market, he must provide a guarantee concerning the financing the management of 

the waste of his product with a recycling insurance or a blocked bank account.  

 

The WEEE Directive obliged the twenty-five European Union member states to 

transpose its provisions into national law by August 2004 but only one member met 

this deadline. Next year, all members except Malta and UK had transposed the 

framework of the directives. As mentioned above, UK will apply these directives 
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from January 2007 on. Apart from the member states, countries which will try to 

involve in the EU organization must meet this directives in the negotiations and this 

WEEE problem is going to be recognized by them (This information is taken from 

the website of Wikipedia Foundation, http://en.wikipedia.org/wiki/Waste_Electrical 

_and_Electronic_Equipment_Directive).  

 

The initiative and the biggest of the United Nations (UN) organizations is StEP 

(Solving the E-waste Problem). StEP is an organization with the members from 

industry, governments, international organizations and universities. According to the 

StEP Organization website (http://www.step-initiative.org/index.php), the objectives 

of this organization are; 

• optimizing the life cycle of electric and electronic equipment by 

improving supply chains, closing material loops and reducing 

contamination,  

• increasing utilization of resources and reuse of equipment, 

• exercising concern about disparities such as the digital divide between the 

industrializing and industrialized countries, 

• increasing public, scientific and business knowledge. 

  

To perform its objectives, the organization has five taskforces; policy, redesign, 

reuse, recycle and knowledge. These five taskforces have different objectives and 

they involve in different projects and activities. This organization has lots of 

participants all over the world. Delft University of Technology (the Netherlands), 

United Nations University (Germany), University of California (Austria), University 

of Melbourne (Australia), Vienna University of Technology (Austria) and MIT 

(USA) are the participant universities. AEA Technology, Apple Germany and Dell 

are some of the companies that involve in the projects. In addition to these 

companies some governmental and environmental research institutes support their 

projects and activities.  

 

Generally electronic companies take recycling and remanufacturing problems 

seriously. As they involve in the StEP Organization, Dell and HP are interested in 
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the e-waste problem. In Hewlett-Packard Development Company’s official website 

(http://h41131.www4.hp.com/uk/en/global_citizenship/globalrecycling.html), it is 

mentioned that HP has a Global Recycling Program and it expands the program to 

reach more customers and to create new ways to people to discard used or unwanted 

products. Some activities that HP is performing under this program are   

 

• In countries that have implemented WEEE Directives, HP addresses its 

recycling responsibilities to European Recycling Platform which runs take 

back and recycling operations for WEEE in Austria, Ireland, Portugal, Spain, 

Germany and Poland.  

 

• In countries such as the UK and Italy where the WEEE Directive has not yet 

been implemented, HP is running pilot product collection events to assess 

and prepare for the quantity and mix of equipment that consumers return. 

 

• In Europe, HP also offers a free recycling service for its commercial and 

enterprise customers to return their IT hardware to designated collection 

points.  

 

• HP will host a serious of product collection events in the United States 

similar to the number of pilot studies in Europe. With the majority in Europe 

and America, HP’s recycling programme operates globally in more than 40 

countries.  

 

Similar to HP, Dell tries to meet the requirements of the WEEE directive and is 

engaged in the development of country-specific implementation schemes to comply 

with the national WEEE laws. They arrange consumer based campaigns with the 

slogan of ‘No computer should go to waste’. They arrange donation and recycling 

options for their customers and assure them to pick up their products at their door. 

(This information is taken from Dell Inc.’s website, http://www.dell.com/content/top 

ics/global.aspx/corp/environment/en/recycling_main?c=us&l=en&s=corp) 

 



 6 

Apart from the electronic sector disassembly operations have a growing number of 

applications as a result of disassembly regulations. Taleb et al. ( 1997) mentions that 

German car manufacturer, BMW, has already opened a dismantling plant in 

Orlando, Florida, a number of plants in Europe and is planning to open fifteen more 

by 1995. Volkswagen also opened a dismantling plant in Europe in 1990 and is 

planning to open more. Their studies still continue as they have to meet the quota of 

the End-of-life Vehicles Directive by the year 2015. In addition to car 

manufacturers, EU legislation forces tire manufacturers to arrange for the 

environmentally friendly disposition of one used tire for every new tire sold.  

 

Another current application of recovery is in dismantling weapons. It is no longer 

environmentally acceptable to discard weapons and ammunitions by blowing them 

up, burning or dumping them in the ocean. Meier (1993) said that the US Defense 

Department is hiring military contractors to dismantle and recycle unwanted 

weapons.  

 

The applications of recovery are numerous and extending to almost every industry 

that deals with discrete parts products. The aerospace, construction, industrial 

equipment and electronics are all good examples. The reason for the extension is not 

only the environmental factors and legislation but also the profit of recovery.  

 

1.2 What is disassembly? 

 

Disassembly is a major activity performed in treatment and recovery facilities and it 

is the most important precedence of product and part recovery. Disassembly is 

defined as a systematic method of separating a product into its constituent parts and 

subassemblies. It is applied to recover pure material fractions, isolate hazardous 

substances, separate reusable parts and subassemblies. According to Lambert and 

Gupta (2002), disassembly is encouraged as a means to decrease the amount and 

cost of disposal and incineration by reclaiming valuable parts and materials and 

separating hazardous materials for processing in a responsible manner. There are 

two types of disassembly named as selective and complete disassembly. In the 
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former one, one or more components are removed from a product in order to recover 

valuable parts of the product and to remove hazardous parts or subassemblies; 

whereas in the latter one, all of the parts or subassemblies are separated from a 

product. Another classification is about the destruction level and has three types. Lee 

et al. (2001) classifies disassembly as; 

• non-destructive, involving no part demolition, 

• partially destructive, with demolition of cheap parts, 

• completely destructive, with uncontrolled destruction of the product 

structure.   

 

Due to its critical role in recovery of products and materials, disassembly has 

recently become an active research area. Even though it sounds reasonable to call 

disassembly as the reverse of the assembly process, it has several differences. 

Lambert (2003) mentions the below differences: 

• Disassembly is usually not performed to its full extent: incomplete 

disassembly is often preferred, which adds the disassembly depth to the 

decision variables. 

• The assembly process is often not completely reversible. 

• The value added in disassembly processes is usually modest compared to 

that obtained in assembly. 

• Uncertainty exists with regard to the quality of the components. 

• Uncertainty exists in the supply of discarded products from both qualitative 

and quantitative points of view. 

• In disassembly, a variety in supplied products might be present. 

 

Due to these features, disassembly is mainly carried out by human labor instead of 

by automated assembly lines or robots. 

 

1.3 Motivation and General Approach Followed 

 

The variety of the products that could be disassembled and remanufactured increases 

and operations begin to involve more complex products. In the field of disassembly, 
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complexity means commonality and multiplicity. Commonality refers to the use of 

the same component in more than one root, an example of which could be a standard 

disk drive used in several computer models. Multiplicity refers to using the same 

component in more than one place in a certain product. A certain board may be used 

in several different assemblies within the same computer. While commonality and 

multiplicity make very good sense from an economic and environmental standpoint, 

they certainly complicate the planning decisions. It is no longer so easy to calculate 

the optimal number of roots; i.e., end of life products, needed to fulfill demand for 

the leaves; i.e., parts and subassemblies, as these leaves can be sourced from 

different cores. A need for powerful solution methods arises as a consequence of this 

complexity. 

 

As the volume of recovery operations increases due to environmental legislation 

proposed and the value in terms of cost reduction understood well by the 

manufacturers, operation planning gains importance. A serious research effort has 

been put on operations management and planning issues for product and part 

recovery, as well as recycling. A recent book edited by Dekker et al. (2002) provides 

an extensive review of these studies.  

 

As it is mentioned in the review and by several other authors working in the area, 

there is still a need for new techniques and procedures for part/product recovery 

planning problems at various levels of decision making.  

 

In this thesis, we consider a part recovery situation: There is a known demand for 

recovered parts that can be obtained from a number of different end-of-life (EOL) 

products by disassembly. The aim is to determine the number of EOL products to be 

disassembled to satisfy parts’ demands which are estimated (and assumed to be 

perfectly known) over a finite planning horizon. We consider two different decision 

levels: The first one seeks the number of EOL products to be disassembled when 

there is an option of procuring brand new parts whereas we consider disassembly lot 

sizing problem in the second problem.  
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Although we did not consider a specific recovery environment in this work, the 

problems that we consider are generic to any firm performing part recovery. As the 

volume of EOL products collected and the parts of them are used in either 

remanufacturing or as replacement parts in after sales service, the firms should make 

such disassembly decisions widely.  

 

In order these proposed methods to be applicable by these companies, it is important 

that they are compatible with existing decision support and information tools, like 

ERP systems with modifications. It is also important that the developed methods 

make sense for the practioners. Therefore, our main aim in this thesis is to develop 

‘easy to apply’ and ‘easy to understand’ heuristics that perform well with respect to 

both solution quality and computational requirements.  

 

For this purpose, heuristics already developed in the literature for demand driven 

disassembly planning over a finite planning horizon are further improved (for the 

first problem) whereas we investigate the performance of the traditional lot sizing 

heuristics (for the second problem).  

 

The outline of the thesis is as follows: In Chapter 2, an overview of the related 

literature on disassembly planning is given. The main focus of Chapter 3 is the 

solution methods for the disassembly planning problems. The first method is integer 

programming (IP). Our IP gives the optimal solution, however at an expense of long 

solution times that grow rapidly with the increasing number of the products and their 

leaves. In Section 3.2, an IP model constructed for the problem which is introduced 

in Section 3.1 is explained. The second method is the heuristic approaches. Heuristic 

approaches are simple and intuitive, but have no guarantee to find the optimal result 

unlike mathematical models. They usually give near optimal results but they are 

simple and quick. In Section 3.3, some of the heuristic approaches studied in the 

literature are explained in detail. In section 3.4, a heuristic is constructed according 

to the suggestions in the literature and explained in detail. Additionally, another 

variant that differs in inventory holding cost estimation is provided. Finally, in 

Section 3.5 the results of the computational study carried out are discussed. In 
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Chapter 4, a lot sizing problem for disassembly is considered. A setup cost is 

incurred every time a batch of root item is disassembled. It consists of engineering 

cost of setting up the disassembly equipments and labors. To the best of our 

knowledge, there is no study concerning disassembly lot sizing in the literature. In 

this work, our main aim to investigate the performance of the traditional lot sizing 

heuristics in disassembly environment. In Section 4.2, a mathematical model is 

provided for the problem. In Section 4.3, after explaining the general approach 

followed in the application of traditional lot sizing heuristics, the algorithms of these 

heuristics are described. In Section 4.4, the results of the computational study are 

discussed.  

 

Finally in Chapter 5, we discuss our conclusion and present further research 

direction.  
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CHAPTER 2 
 
 
 

LITERATURE REVIEW 
 
 
 
 
 

The majority of the studies about disassembly involve disassembly scheduling and 

sequencing problems. According to Xirouchakis et al. (2001), disassembly 

scheduling problem can be defined as the problem of determining the order quantity 

to fulfill the demand of the individual parts or subassemblies where disassembly 

sequencing is the problem of generation of all possible sequences and determination 

of an optimal or near-optimal sequence considering the end-of-life options of 

disassembled parts and subassemblies. In this thesis, we deal with the disassembly 

scheduling problem by constructing a heuristic approach implementing the 

suggestions of Langella (2007) and modifying it with different point of views to 

some decision criteria. In addition to this, we performed a study to investigate the 

efficiency of the traditional lot-sizing heuristics in the disassembly scheduling 

problems. Apart from the heuristic approaches, mathematical models are provided 

for the problems. Both of the solution approaches determine the root item quantities 

in order to satisfy the individual parts’, i.e. leaf items’ demands.   

 

Studies about the disassembly scheduling offer heuristic approaches and 

mathematical models to determine the quantity of root items in order to satisfy the 

demands of the parts and subassemblies with the main objective of cost 

minimization. For the sequencing problems, some graphical methods such as 

AND/OR and Liaison graphs, which show the precedence relations of the 

disassembly, are introduced. But the applications of these graphs are limited to 

simple products. In addition to this, some solution methods are provided in order to 

find an optimum sequence for a profitable end-of-life strategy of a product.  
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In this chapter, the studies on disassembly scheduling and sequencing are reviewed 

in Section 2.1 and Section 2.2, respectively.  

 

2.1 Literature Review on Disassembly Scheduling 

 

To begin with the mathematical models proposed for the scheduling problem, the 

studies of Clegg et al. (1995), Kongar and Gupta (2002), Spengler et al. (2002) and 

Langella (2007) are described.  

 

Clegg et al. (1995) point out the importance of the disposal cost by providing 

examples from electronics industry. Recycling of products is an important way of 

decreasing disposal costs where remanufacturing is a major source of cost saving by 

partially rebuilding a product to give it a functionality. They claim that disposal cost 

is expected to increase in the next decade due to increasing shortage of landfill space 

and expanding regulation of waste disposal and the efforts have been directed at 

ways of decreasing disposal costs by recycling, remanufacturing or reusing which 

would push companies to build remanufacturing capability. They develop a linear 

programming model for a production system with remanufacturing capability. The 

aim of the model is to examine the effects of different factors such as disposal, 

disassembly and virgin material costs, limitations on disposal, disassembly capacity 

and restrictions on the relative amounts of remanufactured and new products in the 

product mix on the optimal production plan. The model is constructed under the 

assumptions listed below.   

 

• The company recovers products from the field and has the options of  

o disposing them, 

o reusing some components after disassembly, 

o remanufacturing the product, 

o assembling the product from scratch. 

• Both assembly and remanufacturing are carried out in the same manual   

assembly facility. 

• All processing is carried out within a single period and single facility.  
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• Product demands are deterministic.  

• The decision variables are the inventory level and the amount of products or   

components disposed, reused, remanufactured and assembled from scratch. 

 

The objective is to maximize profit that takes the following into the account. 

• The revenues come from the sale of remanufactured and new products, 

• Inventory holding costs are incurred for returned products, partially 

disassembled  products, finished remanufactured and new products, 

• Purchasing cost,  

• Waste disposal costs,  

• Partial and total disassembly cost,  

• Assembly cost for remanufactured and new products. 

The constraints are based on;  

1. inventory balance equations of returned product inventory, disassembled   

product inventory, reused modules inventory, finished remanufactured 

products and finished new products, 

2. capacity constraints for disassembly capacity, waste disposal capacity 

and    assembly capacity. 

 

The authors claim that the model provides insights into the situations favorable to 

the implementations of reuse and remanufacturing programs, and provide companies 

with guidance in determining the areas of the operation and the costs need to be 

addressed to make such programs economically viable. There is no computational 

study provided in the article.  

 

Kongar and Gupta (2002) provide a multi-criteria optimization model of a 

disassembly to order (DTO) system. The model determines the optimum number of 

each product type to be taken back at the end-of-life and disassembled to meet the 

demand with respect to the preemptive goals. The model is constructed for a single 

period case. The authors argue that in an environmentally conscious manufacturing 

environment, it is no longer realistic to use single objective and this model is an 

attempt to achieve a desired level of profit while also satisfying additional goals 
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simultaneously. The preemptive goals to achieve are maximum total profit, 

maximum sales from materials, minimum number of disposed items, minimum 

number of stored items, minimum cost of disposal and preparation including sorting, 

refurbishing and cleaning. The total profit value is the difference between all the 

revenues and all the costs. Revenue sources are sales of demanded materials and 

items where costs are take back cost, transportation cost from collectors to facility 

and from facility to outside recycling plant, disposal site and storage location, 

preparation cost of end-of-life products, destructive and non-destructive disassembly 

cost, recycling cost, storage cost and disposal cost. The constraints are: 

 

• Recycling can be either performed in plant or outsourced to an outside 

contractor. 

• Number of items recycled has to be equal to the corresponding demand of 

items for recycling.  

• The total space occupied by the stored items have to be less than or equal to 

the available space.  

• The number of items retrieved from end-of-life products ordered has to be 

greater than or equal to the number of demanded items.  

• The number of recycled items in plant should be less than or equal to its 

recycling capacity. 

• The total number of disassembled items should be equal to the items that are 

reused, recycled, stored or disposed.  

 

Deviation variables for the decision variables are introduced. Deviation variables are 

either positive or negative. When maximizing the decision variables in the objective 

function, the negative deviation is forced to zero and no restriction is put on the 

positive deviation variable to reach to the aspiration level and exceed it as much as 

possible. The opposite is done when minimizing the variables. Next, goal 

programming is applied. 

 

Similar to Clegg et al. (1995), Spengler et al. (2003) give attention to the problems 

of electronics manufacturing. They predict that the Waste on Electrical and 
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Electronic Equipment (WEEE) increases by 3-5 % per year. They consider a system 

limited to a recovery center. The scrap of several types of products (TV, computers, 

radio, etc.) is generated by purchasing used products. Procurement is done regularly 

and the products purchased are kept in a designated storage. The recovery center 

orders the scrap from this input storage and gets them immediately. First step is the 

disassembly operation which is composed of manual and partially automated 

processes. Second step is bulk recycling designed to recover precious fractions from 

mixed electronic scrap. The scrap disassembled is either used internally in bulk 

recycling or marketed externally. To determine the amount of scrap to be recovered, 

disassembled and used in internal or external operations, they present a mixed-

integer linear programming model for integrated planning of these stages. The basic 

assumptions are below: 

• Single period planning horizon is considered. 

• There is no order lead time between input storage and recovery center. 

• Holding inventory is permitted for every item. 

• There are limits for disassembly labor time, maximum mass of scrap type to 

be obtained from storage, sale capacity of scrap types to external recycling, 

equipment capacity of separation unit and sale capacity for isolated material 

fraction.   

 

The objective function maximizes achievable marginal income by deciding the 

variables of the mass of scrap type to be taken, the number of executions of 

disassembly activity and the mass of scrap type directed to internal recycling and 

consists of 

• acceptance revenues/costs, 

• disassembly output revenues/costs, 

• bulk recycling output revenues/costs, 

• variable disassembly costs and variable process costs. 

 

This model has some specific characteristics, especially the description of material 

flows throughout the bulk recycling units, the consideration of the choice of taken 

products in combination with capacity constraints, and the explicit modeling of 
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interactions between disassembly and bulk recycling. After some numerical results 

are obtained, scenario analysis is made to derive recommendations for future 

planning including design improvement hints and promising strategic positions for a 

recycling enterprise. For that purpose, the system behavior under changing 

conditions is analyzed by the assessment of different scenarios based on the 

sensitivity analysis. Since the acceptance fees and the bulk recycling output 

revenues represent a major share of the objective value, price variations are 

examined. Besides, changes in price coefficients, which have relatively less impact, 

are analyzed. Apart from costs, capacity and labor force effects are studied. The 

scenarios are constructed by doubling or halving the costs or capacity values and 

investigate their effects. The major finding is that disassembly is only advisable if 

hazardous or very precious parts are removed.  

 

The most recent study on the disassembly scheduling is performed by Langella 

(2007). In addition to some heuristic approaches which will be explained both later 

in this section and in Chapter 3, he proposes an IP model for the disassembly 

problem, but analytical properties of the model are not investigated. The model 

includes the assumptions mentioned below;  

 

• They allow multiplicity and commonality. Multiplicity is the existence of 

several leaf items in one root item and commonality is the existence of the 

same leaf item in different root items.  

• Demands of the intermediate and leaf items are deterministic and 

disassembly lead time occurs. 

• There is no supply limit on root items.  

• Cost parameters are procurement cost, disassembly costs and disposal costs. 

• They have access to new components and this option may be chosen to avoid 

disassembly. 

• Holding inventory is permitted for every item. 

• Intermediate and leaf items are allowed to be disposed of at given costs.  

• There are capacities for max inventory and return availability. 
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He constitutes the model formulation as cost minimization and the objective 

function includes  

• item procurement,  

• disassembly, 

• item holding, 

• item disposal costs. 

 

The model has four types of constraint groups: 

1. starting inventory levels,  

2. inventory balance equations for the cores, intermediate and leaf items,  

3. supply restriction of the cores, 

4. maximum inventory level for intermediate and leaf items constraints.  

 

The model gives the optimal solution but it gets slower in complex cases where the 

heuristic offers a faster solution with the risk of infeasibilities. Gupta and Taleb 

(1994) and Taleb et al. (1997) offer a reverse MRP like approaches where Taleb and 

Gupta (1997) and Langella (2007) provides original heuristic approaches for 

determining the disassembly order in order to satisfy the disassembled parts’ 

demands.  

 

Gupta and Taleb (1994) present an algorithm for scheduling the disassembly of 

discrete part products characterized by a well defined product structure. The 

objective in the disassembly case is the reverse of that of MRP but the algorithm is 

not the reverse of the MRP algorithm. The algorithm determines quantity and 

schedule of disassembly of the root item to fulfill the demand for its various parts. 

The basic assumptions are: 

• All the required information is known with certainty.  

• The lead times, when going from one level to the next, are constant, 

irrespective of the lot size.  

• The disassembly processes are assumed to be perfect. Hence no defective 

parts are generated.  

• Capacity is not considered.  
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They find the gross requirements of the sub-roots according to the net requirements 

of the leaf items. They found the gross requirements step by step according to the 

bill-of-materials structure of the products. The main problem arises in the reverse 

MRP is having multiple sources of demand. These demands are not independent and 

are satisfied by one root item and this situation leads to excess inventories for the 

components with relatively low demand compared to their brother items.  

 

Further research for the above problem is done by Taleb et al. (1997) to 

accommodate parts and material commonality to the algorithm. The objective is to 

minimize the total number of root items to disassemble in order to fulfill the demand 

for these parts. The assumptions made in the algorithm are similar to the 

assumptions of Gupta and Taleb (1994). The model above is modified assuming a 

material commonality. For example, parts made of same material are grouped and 

the net requirements revealed by their total weight. In the non-commonality case, the 

modules are independent but under commonality, the demands and inventory levels 

are kept in a certain proportion so they are not independent and have to be processed 

in parallel for every time period.  

 
Taleb and Gupta (1997) address the problem of scheduling the disassembly of 

discrete part products. The problem involves periodic demands of different leaves 

that could be obtained by disassembling some root items. The basic properties of 

their method are as below: 

• They allow multiplicity and commonality.  

• Demand is deterministic and disassembly lead time occurs. 

• There exists limited different root items but there is no supply limit on them.  

• Procurement cost, disassembly costs and disposal costs are included. 

 

They propose two algorithms called ‘core algorithm’ and ‘allocation algorithm’. 

When solving the problem they want to show the proven benefits of commonality 

that are lower inventory costs and lower unit costs due to quantity discounts and the 

alternative use of parts/materials across several end products. Core algorithm aims to 

minimize the disassembly cost where allocation algorithm aims to minimize holding 
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cost by delaying the disassembly as much as possible.   

 

After Taleb and Gupta (1997), Langella (2007) studies the same problem with the 

same assumptions of Taleb and Gupta (1997) and tries to find solutions to some 

possible infeasibilities in the heuristics. Langella (2007) proposes an integral 

algorithm of core and allocation algorithms. The procedure is not different from the 

core algorithm but it solves lead time infeasibility in some cases that core and 

allocation algorithm cannot cope with. It again disassembles the most attractive root 

but this is done myopic, not over the whole planning horizon. Then, he improved the 

algorithm by considering the disposal cost, holding cost and external leaf 

procurement options in the heuristic but does not show the way he follows in these 

algorithms. These costs are added to item procurement and disassembly cost and 

become the part of the parameters for selecting the most attractive root to be 

disassembled. Under some assumptions on lead times and costs, heuristic is found to 

have an error of 4.55% compared to the optimal solution within the data set 

considered. The algorithms of Taleb and Gupta (1997) and Langella (2007) is 

explained widely in Chapter 3 with illustrative examples as well.  

 

2.2 Literature Review on Disassembly Sequencing 

 

Disassembly sequencing is an evolving field of interest. An assembly consists of 

many components which can be decomposed by a multitude of sequences and 

disassembly sequencing involves the search for all possible sequences and the 

selection of the optimum one. According to Lambert (2003), studies for disassembly 

sequencing are performed for 

• optimal repair and maintenance,  

• searching the optimal assembly sequence, 

• design and optimize disassembly lines,  

• optimum product design for disassembly, which is called Design for 

Disassembly (DFD). 

 

De Mello and Sanderson (1990) introduce AND/OR graphs to represent all possible 
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assembly and disassembly sequences of a product. It provides a useful tool for the 

selection of the best assembly, disassembly or repair plan. In an AND/OR graph 

there are nodes representing parts or other possible subassemblies of the product and 

there are edges representing the possible assembly/disassembly operations. In 

addition, three applications are discussed: a top-down search of the AND/OR graph 

which aims selection of the best assembly plan, a bottom-up search for recovery 

from execution errors and opportunistic scheduling. At last, they mention some 

related issues which are under investigation. Automatic construction of the 

AND/OR graph from design descriptions, development of evaluation function for 

selection among alternative plans and computational complexity are the important 

issues they give as further research.   

 

Figure 2.1 is a simple AND/OR graph where Figure 2.1a shows an AND operation 

and Figure 2.1b shows an OR operation.  

 

Figure 2.1 Branches of an AND/OR graph, Penev and De Ron (1996) 

 

As De Mello and Sanderson (1990), Penev and De Ron (1996) deal with the 

graphical solution procedures in the disassembly sequence problems. According to 

Penev and De Ron (1996), the main task of the disassembly strategy is to determine 

the disassembly level and disassembly sequences which provide conditions of the 

generation of profit while the environmental conditions are maintained. They claim 

that the theory of graphs and dynamic programming method will be used for the 

evaluation of a good disassembly plan.  
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Figure 2.2 A disassembly process represented by a graph, Penev and De Ron (1996) 

 

Figure 2.2 shows the possible disassembly operations between initial and final state, 

and shortest path is found by using dynamic programming. Between the stages, 

disassembly level (service, disassembly, dismantling, recycling, disposal) is chosen 

according to 

• the value added to goods and materials, 

• the disassembly costs per operation, 

• the revenues per operation, 

• the penalty if the poisonous materials are not completely removed. 

 

After comparing the disassembly revenues, the maximum one is chosen and that 

operation is applied to the stage. To illustrate the applicability of their approach, 

they explain it by disassembling a bearing unit.  

 

Xirouchakis et al. (2001) investigate the planning and scheduling problems in 

disassembly systems. At first, they give brief descriptions about disassembly, its 

classifications and factors limiting effectiveness. Secondly, they give some literature 

survey results about these two problems and give a high attention to some graphical 

methods named as AND/OR graph and Liaison graph.  

 

As well, they compare the reverse MRP with MRP. In reverse MRP, the 
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assumptions are: 

• Any defective parts disassembled are not considered in the problem. 

• A discrete timescale is used for the disassembly lead time and ordering lead 

time. 

• Common parts occupy the same level in the disassembly product structure 

for a certain part. 

• Capacity constraint is not considered as a part of the disassembly process. 

 

At last, several research directions focusing on the methodology for coping with 

uncertainty, disassembly sequence generation and capacity for disassembly 

scheduling are suggested. One of the studies they give as a reference for the solution 

approaches of uncertainty in disassembly operations is Güngör and Gupta (1998).  

 

Güngör and Gupta (1998) deals with disassembly sequence planning for products 

with defective parts. They discuss the sources of uncertainty in disassembly 

sequence planning and then identified an efficient approach of dealing with the 

uncertainty and developed a methodology to resolve uncertainty interactively during 

disassembly.   

 

Lambert (1997) develops and describes a method for solving general optimal 

sequence generation problems by linear programming. The optimal disassembly 

sequence is the sequence of actions that generates maximum net revenue, subject to 

definite constraints. Based on LP techniques, a new approach to obtain optimal 

disassembly sequences is presented. This approach is applicable broader than the 

other approaches in the literature because the other approaches are restricted to 

determination of the optimal task sequence from a given initial state to a final state. 

But the model Lambert (1997) presents allows incomplete disassembly and final 

state is generated automatically. Clustering problem can be included in the model by 

an extension. Moreover, the model is adaptable to additional constraints like 

environmental or quality constraints. His approach is also useful in design, where 

preliminary insight in specific disassembly processes is desired, prior to subsequent 

phases that involve a more detailed approach.  
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Lambert and Gupta (2002) consider the problem of determining the optimal lot-sizes 

of end-of-life products to disassemble so as to fulfill the demand of various 

components from a mix of different product types that have a number of 

components in common and to disassemble these products optimally. They compare 

two methods named as disassembly graph approach and component-disassembly 

optimization model. In their study, they assume limited supply and all the demand 

are fulfilled. Their model considers disassembly cost, disposal cost and supply cost 

and it is appropriate for selective disassembly. In addition to these two methods, 

they suggest the third one which avoids the disadvantages of redundancy and 

nonlinearity and is applied to a multi-period, demand driven case that includes 

multiplicity and commonality. 

 

Gonzalez and Adenso Diaz (2005) present an approach that determines the best end-

of-life (EOL) strategy among disposal, recycling, reuse and disassembly for a 

product with the goal of enhancing the application of environmental criteria from the 

earliest stages of product design. This approach uses scatter search (SS) 

metaheuristic to determine the disassembly cost at each level of the BOM. It gains 

information from products’ 3D CAD representations, BOM structure, technical and 

economical data. To determine the best EOL strategy, it calculates the profits for 

each EOL strategy and total disassembly time as the sum of the times spent breaking 

each joint and then chooses the most profitable one. The next step is the selecting 

the optimum disassembly sequence. And at last, solution approach modifies the 

solution in order to fulfill environmental criteria that are available resources and 

amount of waste generated. They describe the approach with a real example and 

mention some further research directions. As this approach is easy to use and has the 

possibility of modifying the encountered strategy according to the environmental 

problems, it is appropriate for industry applications.  

 

After proposing a representation scheme that embraces the precedence relation 

representation, such as AND, OR predecessors and successors, for disassembly line 

balancing problem (DLBP), Altekin (2005) defines two problems, PC and PH. PC is 

defined as the assignment of disassembly tasks to an ordered sequence of stations 
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such that the precedence relations are satisfied and the profit per disassembly cycle 

is maximized. PH defines a problem for the entire planning horizon by dividing into 

time zones and finds a different line balance for each zone. For each problem, she 

provides a mathematical programming model and a heuristic solution procedure. For 

the PC, the performance of the heuristic approach is investigated against the optimal 

solutions. For the PH, due to nonlinearities, restricted version of the problem is 

solved, and the quality of the heuristic approach is evaluated according to these 

problems. At last, she gives some further research directions related with the 

proposed solution procedures.   
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CHAPTER 3 
 
 
 

DISASSEMBLY PLANNING WITH REGULAR PROCUREMENT OPTION 
WHEN THE SET-UP COSTS ARE NEGLIGIBLE 

 
 
 
 
 

In this chapter, we present our work to further improve the disassembly planning 

over a finite planning horizon heuristics originally proposed by Taleb and Gupta 

(1997) and improved by Langella (2007).  

 

In Section 3.1 the problem environment is discussed. In Section 3.2, a mathematical 

model for the problem in concern is provided. In Section 3.3 the heuristic 

approaches proposed in the literature are described. In Section 3.4 our improvements 

are presented. In Section 3.5, the computational study together with the results is 

discussed.  

 

3.1 Environment 

 

We consider a disassembly system that faces demand for the recovered parts. The 

source to satisfy the demand is either end-of-life (EOL) products or an outside 

supply, i.e., regular procurement of the parts is also an option. EOL products are 

referred to as root items, and the parts of EOL products that have demands are 

referred to as leaf items.  

 

There are in total L leaf items demanded. The demand for those may have various 

sources. They can be demanded by independent remanufactures, or can be used as 

replacement parts at after sales service agents, or can be used in internal 

remanufacturing activities. We assume that the total demand for each leaf item is 

forecasted and available over a finite planning horizon, T, and hence they are treated 



 26 

as deterministic demand.  The demand for leaf item l { }1,..., L∈  in period t 

{ }1,...,T∈  is ,l tλ . 

 

There are R root items that include these leaf items in their product structure. Root 

items must be collected, transported to the disassembly plant and then must be 

sorted and prepared for the disassembly operation by the disassembler. We assume 

that there is no supply constraint on root items, hence the disassembler can purchase 

as many root items as (s)he wants incurring a unit purchasing cost, rPC . The 

purchasing lead time for root items is assumed to be negligible, without loss of 

generality.  

 

After the preparation, disassembly, which is the process of systematic removal of the 

desired leaf items, starts. Root item { }1,...,r R∈  contains { }, 0,1,...,r lα ∈  of leaf item 

{ }1,...,l L∈ on its product structure. A leaf item may be present in a number of 

different root items and this situation is referred to as commonality. Whereas the 

situation where a leaf item can only be obtained by disassembling only a particular  

root item is referred to as non-commonality. There may be more than one leaf item 

on the product structure of a particular root item, i.e., , 1r lα > , and this situation is 

referred to as multiplicity. We allow all commonality, non-commonality and 

multiplicity situations in the problem environment.  

 

A simple bill-of-materials (BOM) structure to illustrate these definitions is depicted 

in Figure 3.1. In the figure, A and B are root items and C, D and E are leaf items. A 

extracts 2 Cs and 1 D whereas B extracts 1 C, 3 Ds and 2 Es as leaf items. D is a 

common item of A and B, that is its demand can be satisfied by disassembling either 

A or B. It is seen in Figure 3.1 that each root item satisfies multiplicity as A includes 

2 Cs and B includes 3 Ds and 2 Es.  
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A B

 

Figure 3.1 A sample product structure 

 

We restrict our attention to the complete disassembly case. That is when a root item 

goes through the disassembly process; all of the leaf items that exist on its product 

structure are obtained. For instance, when 1 unit of root A is disassembled, exactly 2 

units of leaf C and 1 unit of D are obtained (See Figure 3.1). The disassembly 

process is non-destructive, i.e., all leaf items are obtained in good state of quality.  It 

is assumed that the yields of the root items are deterministic and as they are given in 

BOM structure.  

 

Disassembly is a labor intensive process so its cost is mainly labor cost. For each 

unit of root r disassembled a unit disassembly cost, rDC  is incurred. We consider 

the case where disassembly cost is time stationary; i.e., the cost does not change 

with time. Unit disassembly cost includes pre-disassembly options’ costs like sorting 

and cleaning.  

 

Lead time for disassembly operation is assumed to be deterministic, and allowed to 

be non-identical for different root items. Disassembly lead time of root r is rLT .  

 

After disassembly, leaf items should be recovered before reuse. Unit recovery cost, 

lRC , is incurred for leaf item l after the disassembly. It is assumed that every leaf 

item needs recovery except the items procured externally to meet the demand. 

Recovery cost is time stationary as well. We assume that lead time for recovery is 

less than a period. But this assumption can be relaxed easily. External procurement 

of leaf items is assumed to be available and its lead time is taken as zero. Externally 
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procured items are brand new, hence they do not need a recovery operation. Unit 

cost of procuring leaf item l is lEPC . 

 

If the leaf items are not sold immediately, they are stored in the inventory for future 

use. As it is assumed that there is no damage and hazard on the leaf items, there is 

no item disposal. The leaf items leftover at the end of the planning horizon are also 

held in the inventory. We assume that inventory holding cost is time stationary and 

it is lIC  for leaf item l. 

 

The disassembly planning problem that we focus is defined as to determine the type 

and number of root items to be disassembled and the number of leaf items procured 

from the outside supplier to satisfy the demand for the leaf items over a finite 

planning horizon.  

   

3.2 Mathematical Model 

 

In this section a mathematical model is provided to obtain the optimal solution to the 

disassembly planning problem.  

 

Notation 

 

Parameters 

T : Length of the planning horizon. 

t  : Index for periods 1,...,t T= .  

R : Number of root items. 

r : Index for root items 1,...,r R= . 

L : Number of leaf items. 

l  : Index for leaf items 1,...,l L= .  

, :r lα  Number of leaf item l that is obtained from root item r. 

,l tλ : Demand of leaf item l at period t. 

lIC : Unit inventory holding cost per period of leaf item l. 
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lEPC : Unit external procurement cost of leaf item l. 

lRC : Unit recovery cost for leaf item l. 

rLT : Disassembly lead time for root item r. 

rDC : Unit disassembly cost of root item r.  

rPC : Unit procurement cost of root item r. 

 

Decision variables 

,r tx : Number of root item r disassembled in period t, defined only if 1rt LT− ≥ . 

,l tz : Number of leaf item l held in inventory at the end of period t.  

,l tp : Number of leaf item l procured externally in period t. 

 

The disassembly planning problem that we consider can be stated as follows. 

 

Min  

R

, , ,
r=1 1 l=1 1 l=1 1

, ,
1 1 1

(( )* )  + ( * )+ ( * )

* *

r

r

T L T L T

r r r t LT l l t l l t

t t t

T L R

l r l r t LT

t l r

DC PC x IC z EPC p

RC xα

−

= = =

−

= = =

+

+

∑∑ ∑∑ ∑∑

∑∑∑
                (3.1)  

 

s.t. 

, , , , ,
1 1 1 1

*     1,...,   1,...,
r

t R t t

r j r k LT l k l k l t

k r k k

x p z for t T l Lα λ−
= = = =

+ − = = =∑∑ ∑ ∑                      (3.2)  

 

, , ,,  ,  0 and integer   r 1,..., ,  1,..., ,  1,...,r t l t l tx p z for R l L t T≥ = = =                       (3.3)  

 

Objective function of the model (3.1) aims to minimize the total costs incurred over 

the planning horizon. The relevant costs are total disassembly costs, inventory 

holding costs and external procurement costs of leaf items. Note that for every root 

item disassembled, unit disassembly and procurement costs are incurred. For all leaf 

items obtained by disassembly, unit recovery cost is incurred.    
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The set of equations given in (3.2) provides inventory balance for all leaf items at 

every period of the planning horizon. Inventory level of a leaf item l at the end of the 

period t is the difference between all inflows and outflows up to that period. Inflows 

are generated by disassembly and procurement and outflows are demand. 

, ,
1 1

*
r

t R

r j r k LT

k r

xα −
= =

∑∑  is the number of leaf items l whose disassembly has been already 

finished, i.e., cumulative number of leaf items disassembled,  in period t. ,
1

t

l k

k

p
=

∑ is 

the number of leaf items l that has already been procured, i.e., cumulative 

procurement quantity, in period t. ,
1

t

l k

k

λ
=

∑  is the cumulative demand in period t 

which constitutes an outflow from the inventory. Equation (3.3) represents non-

negativity and integer constraints. For our problem environment, taking the number 

of root items as the only integer variables and relaxing the integer constraint for 

,  l tp  and ,l tz  does not result in different solutions. 

 

In the environment that we consider all root items procured are disassembled, and all 

obtained leaf items are recovered. In addition unit recovery cost for a disassembled 

leaf is independent from the root from which the leaf is obtained. We do not allow 

any disposal for any items. This simplifies our costing scheme; instead of 

considering root procurement, root disassembly and recovery costs separately, one 

can consider a total disassembly cost, 
rTDC  for { }1,...,r R∈ , to include all : 

*r r r rl l

l

TDC PC DC RCα= + +∑ . According to this we can rewrite the model as 

below.  

 

Min 

R

, , ,
r=1 1 l=1 1 l=1 1

( * )  + ( * )+ ( * )
r

T L T L T

r r t LT l l t l l t

t t t

TDC x IC z EPC p−
= = =

∑∑ ∑∑ ∑∑                              (3.4)  

 

s.t. 

Equation (3.2) 

Equation (3.3) 
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The model has * * *R T L T L T+ +  decision variables. As it is discussed by Taleb 

and Gupta (1997) and Langella (2007), the complexity of the IP formulation 

increases exponentially with the amount of leaf and core items, and the length of the 

planning horizon. This encourages the development of heuristic approaches. 

 

3.3 Heuristic Approaches 

 

In real life, the model described in Section 3.2 should be solved at every period 

whenever a forecast update is made on a rolling horizon basis. As re-use practices 

get more popular, we expect a typical disassembly firm to deal with a large number 

of root and leaf items. In order to provide practical tools for the disassembly plan of 

these firms, several heuristic approaches are proposed in the literature. These 

heuristics should provide solutions that are close to the optimal solutions. Besides, 

they should be easy to be implemented on information systems. It is also important 

that the practioners can understand the idea and mechanics of the heuristics so that 

they can modify when needed.  

 

In this thesis, our main objective is to implement the suggestions of Langella (2007) 

for the combination of heuristics proposed by Taleb and Gupta (1997) according to 

our approaches for including the cost parameters into the integral algorithm which is 

going to be described in Section 3.3.2 in detail.   

 

The first heuristic is by Taleb and Gupta (1997). They suggest a two-step heuristic 

approach for the solution of the problem introduced in Section 3.2. The steps are 

called ‘core’ and ‘allocation’ algorithms. Allocation algorithm is executed after the 

core algorithm. Then, Langella (2007) suggests a single step integral algorithm to 

overcome some shortcomings of Taleb and Gupta (1997)’s approach. In addition to 

this heuristic, he suggested to further improve the heuristic taking inventory holding 

and disposal costs and the external leaf procurement option into account. These 

improvements are mentioned verbally and their application may differ with 

interpretation. One of our aims is to make a performance assessment for different 

interpretations. They are explained while providing the algorithms in the 
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forthcoming sections.   

 

3.3.1 Core and Allocation Algorithm 

 

In two-step approach of Taleb and Gupta (1997), first, the number of cores to be 

disassembled is determined so as to satisfy the total demand over the planning 

horizon. Then, these aggregate numbers of cores are allocated to the periods. The 

algorithm determining the aggregate disassembly quantity for roots is called ‘core 

algorithm’ and the algorithm allocating these aggregate quantities to the periods of 

the planning horizon is called ‘allocation algorithm’. In Section 3.3.1.1 and Section 

3.3.1.2, the details of core and allocation algorithms are discussed, respectively.  

 

3.3.1.1 Core Algorithm 

 

The basic idea of the core algorithm depends on the selection of the source for 

common items based on the ‘attractiveness’ measure proposed. The attractiveness of 

a root is based on its benefit-to-cost ratio, called Contribution Factor. Taleb and 

Gupta (1997) defines the “benefit” as the percentage decrease in unfulfilled 

requirements, that is ,r l

l

α

λ
 where lλ  is the unsatisfied portion of the aggregate 

demand for leaf item l over the entire planning horizon. The “cost” (in the benefit-

to-cost ratio) is defined as the percentage increase in the Total Disassembly Cost of 

the root item. Taleb and Gupta (1997) determine the total number of root items to be 

disassembled over the planning horizon solely based on the priorities coming from 

the contribution factors.  

 
Our implementation of the contribution factors has some differences compared to 

Taleb and Gupta (1997). The basic difference occurs in the definition of the benefit 

term. We define the benefit as the number of leaf item l that root item r includes, 

,r lα , the decrease in the number of unfulfilled leaf requirement if one unit of root 

item r is disassembled. We do this for the reason that Taleb and Gupta (1997)’s 

suggestion adds unnecessary operations that is the update of the parameter lλ  at 
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each step of the algorithm. Besides, it has no guarantee to give better solutions with 

respect to our method. The other difference is the usage of total disassembly cost. 

We divide the benefit ratio to the total disassembly cost of that root item, not to the 

percentage increase in that cost. Note that, we re-define the contribution factor as the 

reciprocal of unit total disassembly cost per leaf item l if it is obtained from root 

item r. As a result our contribution factor is ,
,

r l

r l

rTDC

α
β = .  

 

While determining the aggregate number of each root item to be disassembled, they 

suggest to start with non-common leaf items first. Notice that for a certain leaf item 

l, if , ,
1

R

k l r l

k

β β
=

=∑  for a certain r, it means that leaf item l is a non-common item 

which exists only on root r’s BOM.  With the assumption of total disassembly costs 

of 10 and 11 for root items A and B respectively, contribution factors, ,
,

r l

r l

rTDC

α
β = , 

for the example provided in Figure 3.1 are given in Table 3.1.  

 

 

Table 3.1 Contribution factors of root-leaf pairs and summations of them for each 
leaf items 
 

 Leaf Items  
Root Items 

C D E 

A 2/10 1/10 0 

B 1/11 3/11 2/11 

r,l
1

R

r

β
=

∑ = ( )lβ  0.29 0.37 0.18 

 

 

To satisfy the demand of leaf item E, only option is to disassemble root item B. The 

number of root item B required to be disassembled in order to satisfy the entire 

demand for E is E

B E

λ

α ,

 
 
  

, where x    represents the smallest integer greater than or 
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equal to x.  

 

Notice that roots containing non-common leaves may also contain other leaves as 

well. Therefore, every time that a disassembly quantity is determined, requirements 

for these leaves should be updated. For instance, when disassembly quantity for B is 

set to  E

B E

λ

α ,

 
 
  

, the demand for C and D, which are included in root B’s BOM, 

should be updated accordingly. ,
,

max * ,0E
C C B C

B E

λ
λ λ α

α

   
← −   

    
 and 

,
,

max * ,0E
D D B D

B E

λ
λ λ α

α

   
← −   

    
.  

 

After determining the disassembly plan to get non-common leaf items, Taleb and 

Gupta (1997) suggests to consider the others. To do that, Taleb and Gupta (1997) 

select the most attractive root-leaf pair, i.e, the highest ,r lβ . The disassembly 

quantity of the root having the highest ,r lβ  is determined such that all requirements 

of the associated leaf item l are fully satisfied. Necessary remaining requirement 

updates are made for the leaves contained in the BOM of the root in concern. In 

addition to this, contribution factors for the leaves that have no demand after the 

requirement updates are set to zero in order not to consider for the next root 

selection.   

 

The algorithm continues until all requirements are satisfied for all leaf items. Figure 

3.2 gives a flowchart for the main steps of the core algorithm.  
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Data input

Update demand

Choose the noncommon leaf l with the highest β
l

Yes

Disassemble the root  until demand of that leaf is satisfied

Update disassembly order of the roots

βl=0

Search for maximum βr,l

Disassemble core item r until  demand of leaf l having the

maximum β
r,l
 is satisfied

Update disassembly order

βl=0

END

No

No

λ
l
>0 for any leaf item l?

Is there any noncommon leaf?

Yes

START

 

 

Figure 3.2 Flowchart of the core algorithm 
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In order to illustrate the core algorithm, suppose total demand over the entire 

planning horizon is available and given in Table 3.2 for leaf items in the example 

BOM in Figure 3.1. To represent the solution, let ( , )d A B  be the solution vector 

representing the number of leaf A and leaf B disassembly quantities and initially 

(0,0)d = .  

 
 
Table 3.2 Total demands for the leaf items over the planning horizon 
 

 C D E 

Updated Demand 15 20 10 

 

 

First the algorithm satisfies the demand of the non-common leaf item E 

disassembling 
10

5
2

λ

α
Ε

Β,Ε

   
= =      

 units of root item B. ,B Eβ  is set to zero, since the 

demand for E is fully satisfied, i.e., there is no need to consider E further. Then 

algorithm updates the demands as in Table 3.3 and d is updated as (0,5).   

 

 

Table 3.3 Updated demands of the leaf items after satisfying the demand of the non-
common leaf E  

 
 C D E 

Updated Demand 10 5 0 

 
 
 
As the demand of all non-common leaves is satisfied, algorithm examines the 

common leaf items. It finds the maximum contribution factor as 3/11, the alternative 

of getting D from B. 2 more item B need to be disassembled since 
,

5
2

3
D

B D

λ

α

   
= =     

. 

As there is no demand for leaf D from now on, its contribution factors are set to zero 

and d is updated as (0,7). Again the demands and contribution factors are updated 

and the respective figures are given in Table 3.4 and Table 3.5. The algorithm 
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updates the demand according to the formula , *l l r l rxλ λ α← − , where 
rx  is the 

number of root item disassembled to satisfy the demand of its leaf item which has 

the highest contribution factor. 

 

Table 3.4 Updated demands of the leaf items 
 

 C D E 

Updated Demand 8 0 0 

 

 

Table 3.5 Updated contribution factors of leaf items 
 

 Leaf Items  Root Items 
C D E 

A 2/10 0 0 
B 1/11 0 0 

 

 

To satisfy the remaining requirement of leaf C, the highest contribution factor is 

given by root A. 
8

4
2

C

C

λ

αΑ

   
= =     

 is the number of root A required to satisfy C’s 

demand and d is updated as (4,7). As a result core algorithm finds total disassembly 

quantities as in Table 3.6. 

 

 

Table 3.6 Total disassembly quantities of root items 
 

Root Item Disassembly Quantity 

A 4 
B 7 

 

 

3.3.1.2 Allocation Algorithm 

 

Allocation algorithm is executed after the core algorithm in order to spread the 
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disassembly quantities to periods to satisfy the periodic demands. Hence, it uses the 

output of the core algorithm as an input.  

 

The procedure is similar to the core algorithm. As in the core algorithm, non-

common leaf items are determined first. Then, disassembly quantities for the 

associated root items are determined. After updating the requirements for the current 

period, the allocation algorithm selects and releases a unit of the most “attractive” 

root. Again the attractiveness is the highest contribution factor of the root-leaf pairs. 

After that, the algorithm determines the receipts from disassembly and updates the 

requirements for the leaves. The previous step is repeated for the same time period 

until all the requirements for that time period are fulfilled. At that point, the 

algorithm moves to the next time period after arranging the demands for the next 

periods according to the inventories held previous period and repeats the same 

procedure. Once this procedure is completed over the entire planning horizon, the 

algorithm provides a disassembly schedule for the root items.  

 

To continue to the example above, suppose that the demands over a planning 

horizon of 3 for all leaf items are given in Table 3.7. Core algorithm finds the result 

as 4 root As and 7 root Bs to satisfy the requirements of entire planning horizon. In 

other words, allocation algorithm has the limit of 4 As and 7 Bs to satisfy the 

periodic demands.  

 

 

Table 3.7 Periodic demands of leaf items 
 

 Period   Leaf 
1 2 3 Total 

C 3 10 2 15 
D 9 6 5 20 

E 6 2 2 10 

 

 

According to the demands, allocation algorithm finds the result in Table 3.8. For the 

first period, according to the contribution factors, root B is chosen and 3 of 7 root B 
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is disassembled and the demand of the first period is totally satisfied without any 

inventory left. Now for the second period, allocation algorithm has 4 root As and 4 

root Bs that it can possibly disassemble. As having a contribution factor of 3/11, root 

B is chosen again and 2 of 4 are disassembled. After disassembling 2 root Bs, there 

are only 8 leaf Cs remaining to be satisfied. To satisfy them, root A is chosen as it 

has a greater contribution with respect to root B for the leaf item C, i.e, ,C B Cβ βΑ, > . 

4 root As are disassembled which means that allocation algorithm uses all of them 

and has no root A for the last period. For the last period, there are 4 leaf Ds and 2 

leaf Es carried in the inventory. After updating the demand data, the requirement for 

the last period becomes as 2 leaf Cs and 1 leaf D. For this period, we have only 2 Bs 

to disassemble. Again root B is chosen and one of them is enough to satisfy the 

demand of leaf B. Then, the only remaining demand is 1 leaf C. If we have enough 

quantity of each root, root A would be chosen to satisfy it. But root A’s capacity is 

fully utilized by the algorithm. Hence, algorithm chooses the other alternative (if 

there were more than 2 roots, then the algorithm would choose the root item having 

the second greatest contribution factor) to satisfy leaf C’s demand. This is the way 

how the capacity constraint affects the solution and it is one of the deficiencies of 

core and allocation algorithms.  

 
 

Table 3.8 Schedule found by the Allocation algorithm 
 

 Period   Root 
1 2 3 Total 

A 0 4 0 4 
B 3 2 2 7 

 
 
 
The complexity of running the Core and the Allocation algorithms sequentially is 

reported to be ( )O L  by Taleb and Gupta (1997). 

 
3.3.2 Integral Algorithm 

 

Integral algorithm is suggested by Langella (2007) to overcome some deficits of 
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core and allocation algorithms. It is the combination of the core and allocation 

algorithm. The logic of the algorithm is same as the core algorithm and it can be 

thought as the core algorithm applied for each period successively.  

 

Core algorithm does not consider the time aspect and determines the total number of 

root items according to the total disassembly costs. Allocation algorithm adds the 

time aspect to the solution of the core algorithm. On the other hand, integral 

algorithm considers time and cost aspects at the same time.  

 

Allocation algorithm disperses the core items that are found by core algorithm so it 

has a supply constraint. Integral algorithm is not limited in this manner. It starts 

from the first period and finds the disassembly quantities of the root items, period by 

period.   

 

When root items have non-identical lead times, allocation algorithm may result in an 

infeasible solution. Sometimes total number of one of the roots may not be enough 

for satisfying total demand of a leaf without disassembling another root. When 

different lead times exist between these roots involving a common leaf item, it 

sometimes becomes impossible to satisfy the demand of that leaf item. This may 

occur for the periods before the maximum lead time. The reason of this case is that 

the allocation algorithm only uses the roots found by core algorithm which considers 

total demands. But integral algorithm finds the number of root item for the demand 

of that period which prevents this kind of infeasibility.  Tables 3.9 and 3.10 illustrate 

this infeasibility.  

 

 

Table 3.9 Periodic demands of leaf items 
 

 Periods   
Leaf Item 

1 2 3 4 Total 

3 0 6 2 1 9 
4 0 6 3 2 11 

5 0 0 3 2 5 
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Table 3.10 Yield, ,r lα , for root-leaf pairs 

 
 Leaf Items  Root Items 

3 4 5 

1 1 2 0 
2 1 1 2 

 

 

For this problem instance, core algorithm finds disassembly quantities 4 and 5 for 

root items 1 and 2, respectively with the assumption of total disassembly costs 11 

and 10 for root items 1 and 2, respectively. But if disassembly lead time is 1 and 2 

periods for root items 1 and 2, respectively, disassembling 4 units of root item 1, is 

not sufficient to satisfy the demand of leaf item 3 in period 2. This infeasibility can 

be solved only by approaching periodically.   

 

Integral algorithm solves this infeasibility in most of the time, but if we assume that 

there exists any demand in the first { }min min r
r

L LT= periods with all other data the 

same, then there is no root item to be disassembled for the first minL  periods’ 

demand since they have lead times. Even the integral algorithm cannot solve this 

problem because Langella (2007) does not include external procurement option 

which is the only way to solve this kind of infeasibility. For instance, there is no 

option to satisfy the demand of the first period in the previous example if exists. 

Therefore, integral algorithm should be used whenever there is no demand for any 

root in the first minL  periods of the planning horizon.  

 

The logic of the Integral algorithm is same as the Core algorithm but it finds 

schedules period by period so time-complexity of the Integral algorithm is ( * )O L T . 

Steps of the Integral algorithm are provided in Appendix A.   

  

3.3.3 Deficiencies of the Algorithms 

 

These algorithms are very simple to execute even for large number of root and leaf 
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items and their logic is very simple as it has few criteria. But they have some 

deficiencies that cause them to deviate from the optimal solution. 

 

• They consider only total disassembly costs of the root items and the total 

demands of the leaf items. As they do not consider the inventory holding 

costs as one of the decision criteria, solutions may lead inventory 

accumulation.  

• They are not appropriate for long horizon problems because when the 

planning horizon gets larger, the possibility of deviation from the optimal 

solution increases. The reason of this deviation is the accumulated 

inventories by periods.  

• None of the algorithms includes the external leaf procurement option. As the 

core algorithm do not consider the periods of the planning horizon 

separately, allocation of the root items to early periods sometimes gives 

infeasible results when lead time exists. Similarly, in some cases it is 

impossible to satisfy a leaf item’s demand because of lead times and as 

mentioned before, even integral algorithm cannot solve this problem because 

the only way to solve this infeasibility is to consider the external 

procurement option in the heuristic.  

• In addition to fixing infeasibility, external procurement option may decrease 

the inventory costs. One of the reasons for high inventory levels yielded by 

these heuristics is the lack of external procurement option.  

 

3.4 Improvements on Integral Algorithm 

 

As mentioned above, the algorithms above only consider the total disassembly costs 

in finding a disassembly schedule. But as the inventory holding cost is not taken into 

consideration and the demand is satisfied only by root disassembly, solution may 

include high inventory levels that lead to high costs. To avoid high inventory 

carrying costs, as Langella (2007) suggested, some additional considerations, such 

as inventory holding, disposal and external procurement, must be included in the 

disassembly planning.  
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Most important of them is the external procurement option which may decrease the 

total cost over the planning horizon by decreasing both disassembly quantities and 

total inventory holding cost depending on the specific cost parameters. Langella 

(2007) compares unit disassembly and external procurement costs at the beginning 

and if external procurement option is cheaper with respect to his criteria, then the 

demand of leaf item(s) may be fully satisfied with only this option. In our 

suggestion, basic aim is to disassemble as much root items as possible, which is also 

the aim of a disassembly plant. And we consider the external procurement option 

according to the excess number of leaves after the disassembly schedule is 

determined. This approach not only disassembles more root items, but also expected 

to decrease the inventory levels.   

 

Langella (2007) suggest to include all relevant costs of inventory holding and 

recovery cost of leaf items into rTDC , so these costs directly affect the contribution 

factors. By this way, he makes them included in the selection criteria for root items. 

He puts inventory costs for each leaf item into rTDC  before checking whether the 

disassembly of a root causes inventories for leaves or not. In other words, he adds an 

inventory cost at the beginning when it is not certain for this cost to occur or not. 

But we did not include this cost into rTDC  and calculate the inventory costs if there 

are excess leaf items after the disassembly which is decided by the total disassembly 

costs only. Then after disassembly quantities are determined, total inventory holding 

cost of the excess items are added to the total disassembly cost. The comparison of 

external procurement and disassembly is made in this level, not in the beginning of 

the determination of root disassembly as Langella (2007) suggests.  

 

We construct our heuristic in two ways for inventory holding cost. Both of them 

calculate the inventory holding cost after the disassembly schedule is determined. 

The first one is myopic, in which the inventory holding cost is calculated for only 

the first period after disassembly: 

, , *l t l t lIHC EX IC= .                                                                                                (3.5)  

In the second variant, the possibility of carrying some of this excess quantity more 



 44 

than one period is considered. That is; 

, , , ,
1 1

* * max 0,
T k

l t l l t l l t l p

k t p t

IHC IC EX IC EX λ
= + = +

  
= + −   

  
∑ ∑ ,                                   (3.6)  

where ,l tIHC  is the inventory holding cost of leaf item l incurred in period t.  

 

Considering the deficiencies of the previous algorithms mentioned in the previous 

sections and Langella (2007)’s suggestions, we construct a new heuristic approach 

called Myopic NC-first heuristic and its variant in terms of inventory holding cost 

calculation which is called Non-Myopic NC-first heuristic. Equation (3.5) is utilized 

in the inventory holding cost calculation of the Myopic NC-first algorithm where 

Equation (3.6) is used in the Non-myopic NC-first algorithm. These two heuristics 

give priority to the non-common leaf items in the order that the requirements are 

satisfied as integral algorithm does. We include this property in labeling the 

heuristics, because we relax this prioritization based on the observations on the 

performance. These are discussed in Section 3.5.  

 

3.4.1 Overall Logic of the Myopic NC-first and Non-myopic NC-first Algorithms 

 

Algorithms select the minimum-cost periodic schedule by considering the external 

procurement option and comparing the corresponding cost with respect to 

disassembly and inventory holding cost. As the Integral algorithm, it finds the 

schedule period by period. Algorithms use the logic of integral algorithm before 

deciding if external procurement should be chosen instead of disassembly. Hence, 

they either use the schedule found by integral algorithm or their own schedule if it 

provides a cost decrease. Steps of the Myopic NC-first and Non-myopic NC-first 

algorithms are provided in Appendix B 

 

Algorithm starts with determining the leaf items whose demands cannot be satisfied 

with the root disassembly because of the lead times. After it determines the quantity 

of the external procurement of leaf items, it turns to the first period. Then it starts to 

search the appropriate roots to be disassembled to satisfy the demands of the current 

period. Afterwards, disassembly quantities of root items are tried to be decreased. 
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When a root item is withdrawn, i.e., its disassembly quantity is decreased, lacks are 

occurred in the leaf items, that is quantity of some leaf items becomes insufficient to 

satisfy its demand. The missing leaf item demands are fulfilled by external 

procurement option if this option results in a cost decrease.  

 

Withdrawal of part starts with the calculation of the excess quantity of leaf items for 

the current period t, ,  for 1,...,l tEX l L= . This part resembles the integral algorithm 

in that non-common leaf items are considered first and the one with the highest 

selection ratio is chosen. Then, the disassembly quantity of the root item which 

involves that leaf item is decreased and the missing leaf items are filled by 

procurement. If the cost of this schedule is cheaper than the integral algorithm’s 

schedule, the withdrawal continues until a larger cost is encountered, i.e., Step 5 is 

repeated until 0∆ > , or disassembly quantity of that root item is set to zero by 

withdrawal. This method is applied to each non-common leaf item. If a decrease in 

the total cost is obtained by external procurement instead of root disassembly, then it 

is applied to the current period and excess leaf item quantities are updated according 

to the new disassembly and item procurement schedule.  

 

Second step of this part is to check the common leaf items. Most of the problems 

involve more than one common leaf item. Likewise, real life problems involve more 

than two root items involving these leave items. Consequently, a criterion must be 

determined to choose a root-leaf pair. This criterion is called the selection ratio, ,r lβ . 

Selection ratios are completely the same as the contribution factors used in integral 

algorithm but this time a root-leaf pair having the minimum ratio is selected due to 

the fact that root item having the minimum ratio for a leaf item has the minimum 

effect for satisfying that leaf items demand. The decision procedure is the same and 

if the external procurement is more profitable with respect to disassembly, it is 

applied instead of the disassembly of that root item. All common leaves are checked 

one by one starting from the lowest selection ratio. The flowchart of the withdrawal 

algorithm of the heuristics is given in Figure 3.3. This algorithm is applied just after 

the integral algorithm finds the disassembly quantities for a period.  
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Time complexity of Myopic NC-first and Non-myopic NC-first algorithms is heavily 

depends on problem data. It is equal to { },
,

* *max , ,max l t

t l

O T L R LT λ
   
      

.  The 

complexity is the same for two variants that are introduced in Section 3.5. 

 

After integral algorithm finds the disassembly
amount, evaluate the total cost of the period

Is there any excess demand?

Check the non-common leaves

Withdraw the core that
involve that leaf item

(Decrease disassembly
level by 1 unit) and

procure missing leaves
externally

Calculate the selection ratios

(β)for the common leaves and
choose the root-leaf pair that has

the lowest ratio

Yes

Increase disassembly level

and do not consider that leaf
again (make β of that leaf 0)

Withdraw the core (Decrease
disassembly level by 1 unit) and

procure missing leaves externally

Yes

Increase disassembly
level and do not

consider that root-leaf
pair again(make β 0)

END

No

Are all non-common
leaves checked?

Yes

Yes

Choose the non-common

leaf with highest
selection ratio (β)

0<∆
No

0<∆

Is that leaf has an
excees quantity?

Yes
Equalize the selection ratio

of that root-leaf pair to 0

No

Are all the

root-leaf pairs
checked?

No

Check the common leaves

Yes

No

START

No

 

 

Figure 3.3 Flowchart of the Myopic NC-first’s and Non-myopic NC-first’s 

withdrawal algorithm 



 47 

3.4.2 An Example 

 

To illustrate the Myopic NC-first algorithm on an example, consider a problem 

instance for which the relevant costs are in Table 3.11. The BOM structure is the 

same as Figure 3.1 and the demand data is taken as in Table 3.7. 

 

 

Table 3.11 Relevant cost used in Myopic NC-first algorithm 
 

Costs 
Items 

Total disassembly Inventory holding External 
Procurement 

A 10 - - 

B 11 - - 

C - 2 8 

D - 2 8 

E - 2 8 

 

 

There is no excess demand in the first period so the schedule is not changed. But for 

the second period integral algorithm finds the disassembly quantities as (4,2) 

resulting in excess quantities 0, 4, 2 for leaf items C, D and E respectively. The cost 

of this schedule is found by the formula , * *r t r l l

r l

S TDC EX IC+∑ ∑  and that is 

4*10 2*11 4*2 2*2 74+ + + = . Because the non-common leaf item E has an excess 

of 2 units, the quantity of root item B is decreased 1 unit. This causes leaf C         

miss 1 unit. If that leaf is externally procured, according to the formula 

, *r t r

r

S TDC +∑ *l l

l

EX IC∑ *l l

l

EP EPC+∑  for  ( , )r l∀ , total cost becomes 

4*10 1*11 1*2 1*8 61+ + + = . As a result external procurement to leaf C is applied 

with a cost decrease of 13. After this, there still exists an excess leaf of D. Root A, 

having the minimum ratio (1/11 < 3/10) is withdrawn and 2 units of leaf C is 

procured. But this time it does not decrease the total cost and it is not applied. Now, 
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there is no any unchecked leaf item and D has an excess quantity of 1 unit in the 

second period. This makes the requirements of the third period equal to 2, 4 and 2 

for leaf items C, D and E, respectively. Then after the next period’s demands are 

updated, integral algorithm is applied and 2 Bs are disassembled which causes 

excess of 2 Ds and 2 Es. As non-common leaf item E has an excess, root item B is 

withdrawn 1 unit resulting in missing leaves of C and D by 1 unit each. Procurement 

option decreases the total cost of this period by 3 (calculations are totally the same 

as the second period’s calculations), so it is applied. At the moment, there are no 

excess leaf items and the algorithm does not try to withdraw the other root B, so it 

finishes with the results shown in Tables 3.12, Table 3.13 and Table 3.14. In 

addition to the algorithms results, optimal planning schedule is provided in these 

tables.   

 

 

Table 3.12 Disassembly schedules found by Myopic NC-first algorithm and the IP 
model. 
 

Myopic NC-first Optimal Root 
Items Period 1 Period 2 Period 3 

Total 
Period 1 Period 2 Period 3 

Total 

A 0 4 0 4 0 5 0 5 

B 3 1 1 5 3 1 1 5 

 

 

Table 3.13 External procurement schedules found by Myopic NC-first algorithm and 
the IP model. 
 

Myopic NC-first Optimal Leaf 
Items Period 1 Period 2 Period 3 

Total 
Period 1 Period 2 Period 3 

Total 

C 0 1 1 2 0 0 0 0 

D 0 0 1 1 0 0 0 0 

E 0 0 0 0 0 0 0 0 
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Table 3.14 Leaf item inventory schedules found by Myopic NC-first algorithm and 
the IP model. 
 

Myopic NC-first Optimal Leaf 
Items Period 1 Period 2 Period 3 

Total 
Period 1 Period 2 Period 3 

Total 

C 0 0 0 0 0 1 0 1 
D 0 1 0 1 0 2 0 2 

E 0 0 0 0 0 0 0 0 

 
 

According to the values in Table 3.12, Table 3.13 and Table 3.14, total cost of the 

planning horizon is calculated as 121 and 111 by the Myopic NC-first algorithm and 

the IP model. For the same instance integral algorithm finds the disassembly and 

inventory holding schedule as in Table 3.15 and Table 3.16 with a total cost of 140. 

Note that Myopic NC-first algorithm improves the cost of the planning horizon 

found by the integral algorithm nearly 13.6%. And its solution has an error deviation 

of 
121 111

*100 9.01%
111

heuristic optimal

optimal

 − − 
= =   
  

 with respect to the optimal 

cost of the planning horizon. 

 
 
Table 3.15 Disassembly schedule found by Integral algorithm 
 

Periods  
Root Items 

1 2 3 Total 

A 0 4 1 5 

B 3 2 1 6 

 

 

Table 3.16 Leaf item inventory schedule found by Integral algorithm 
 

Periods  
Leaf Items 

1 2 3 Total 

C 0 0 1 1 

D 0 4 3 7 

E 0 2 2 4 
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3.5 Computational Study 

 

3.5.1 Experimental Setting 

 
In order to assess the performance of the proposed heuristic, we carried out a 

computational study. We consider a similar experimental setting to the one 

considered by Langella (2007) for our base case. 100 problem instances are 

generated in the same manner as he does. The parameter values for the problem 

instances are set as follows:  

 
1. Number of root and leaf items, R=2, L=3 

2. Planning horizon, T=12 

3. Leaf procurement costs, 
l

EPC  for 1,...,l L= , are drawn from a discrete 

uniform distribution with minimum and maximum values of 1 and 10, 

respectively. 

4. Leaf holding cost for leaf l, lIC , is 10% of the corresponding leaf 

procurement costs, 
l

EPC  

5. Yield of root r for leaf l ,r lα  are drawn from discrete uniform distribution 

between 0 and 3 

6. Per period demand for leaves is generated using the normal distribution. The 

mean demand, ,lλµ , is set as: , ,
1

100*
R

l r l

r

λµ α
=

= ∑ . 

 
The variance of per period demand, 2

,lλσ , is set to , / 3lλµ  for leaf 1,...,l L= . 

Realizations which are less than zero, is set to zero.  

 

7. Total disassembly cost, rTDC , for root r is obtained from normal 

distribution. The mean disassembly cost, ,TDC rµ for root item 1,...,r R=  is set 

as:  

,
1

, 2

L

r l l

l
TDC r

EPCα

µ ==
∑

                                                                               (3.7)  
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The variance of total disassembly cost, 2
,TDC rσ , is set to , / 3TDC rµ  for root 

1,...,r R= . Realizations which are less than 1 is set to 1.  

8.   Disassembly lead time is set to zero for all roots.  

 
After generating the instances, the instances where there is a leaf which cannot be 

obtained disassembling any of the roots, and for which there are root items 

containing no leaf items are deleted.  

 
This experimental setting is the same as Langella (2007) except the followings: 

 

• Yields are set from discrete uniform between 0 and 2 for all leaf root 

pairs by Langella (2007).  

• Mean demand for leaves is set in the same manner, however the variance 

of the demand is equal to the mean by Langella (2007). 

• Mean of total disassembly cost is set in the same manner, however the 

variance of total disassembly cost is equal to the mean by Langella 

(2007). 

 
 
Due to the changes that we made on the experimental setting by Langella (2007), 

our instances include more commonality (since the probability that the yield is zero 

is less in our case) compared to his settings. In addition, demand shows less 

variability, and the probability that a negative total disassembly cost occurs is less 

compared to his study.  

 

In order to assess the sensitivity of the proposed method to the problem parameters, 

13 more data sets are constructed. While generating these problem sets, the way that 

only one or two parameters generated are changed at a time. The base case explained 

above is labeled as S1, and the other problem sets are labeled from S2 to S14. The 

way that these problem sets are generated is as follows: 

 

• The problem sets S2-S4 are generated to assess the effect of relative value of 

total disassembly cost to the procurement costs.  
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S2: The problem instances have the same parameter values as S1, except, 

while generating the total cost of disassembly parameter, the mean value is 

set to ¼ of total procurement cost of the root, i.e., in Equation (3.7) 2 is 

replaced by 4.  

 

S3: The problem instances have the same parameter values as S1, except, 

while generating the total cost of disassembly parameters, the variance is set 

to 1/5 of the respective mean value. 

 

S4: The problem instances have the same parameter values as S3, except, 

while generating the total cost of disassembly parameter, the mean value is 

set to ¼ of total procurement cost of the root, i.e., in equation (3.7) 2 is 

replaced by 4. 

 

• The problem sets S5-S6 are generated to assess the effect of problem size in 

terms of number of root and leaf items. 

S5: Same as S1, except R=4, L=6 

S6: Same as S4, except R=4, L=6 

 

• The problem sets S7-S14 are generated to assess the trend in demand data. 

While generating these problem sets, on the generated demand data for S1, 

we include both positive and negative trend which is equal to either 10%, or 

20% of the respective mean demand keeping the total demand over 12 

periods as in S1 (or in S5). These data sets are: 

 

S7: Same as S1, except there is a 10% increasing trend in demand data.  

S8: Same as S1, except there is a 10% decreasing trend in demand data. 

S9: Same as S4, except there is a 10% decreasing trend in demand data. 

S10: Same as S4, except there is a 10% increasing trend in demand data. 

S11: Same as S1, except there is a 20% increasing trend in demand data. 

S12: Same as S1, except there is a 20% decreasing trend in demand data. 
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S13: Same as S4, except there is a 20% decreasing trend in demand data. 

S14: Same as S4, except there is a 20% decreasing trend in demand data. 

 
Although we generated the problem instances for 12 periods, considering the 

demand for the first 4 and 6 periods demands, we solve the instances for T=4 and 

T=6, in addition to T=12.  

 
3.5.2 Discussion of the Results 
 

All problem instances are solved by the heuristics explained in Section 3.4 (by both 

myopic and non-myopic approaches) and optimally as well. CPLEX is used for 

getting the optimal solutions.  

 

When we examined percent deviation from optimal objective function value of 

heuristic solutions, we observed surprisingly big errors in some of the results and the 

related data for the most conspicuous one are given in Table 3.17 and Table 3.18. 

Table 3.19 summarizes the performance of the two algorithms and their two variants 

for this problem instance.    

 

 

Table 3.17 Disassembly costs and number of leaves disassembled from roots 
 

,r lα  Roots Disassembly 

cost Leaf 1 Leaf 2 Leaf 3 

1 2 0 
2 

4.87 

11.64 

2 

2 1 1 

 
 
 
 
Table 3.18 Inventory holding and external procurement costs of leaf items 
 

Leaf Items Inventory Holding Cost External Procurement Cost 

1 0.302 3.02 
2 0.918 9.18 

3 0.107 1.07 
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Table 3.19 Optimal and heuristic approaches’ results for the problem 
 

 Total Cost % Deviation From the 
Optimal Cost 

Optimal 11574.72  
Myopic NC-first 30997.41 167.80 

Non-myopic NC-first 30997.41 167.80 
Myopic 11576.50 0.02 

Non-myopic 11574.72 0.00 

 

 

We suspect that the reason behind the high errors of Myopic NC-first and Non-

myopic NC-first is due to giving priority to non-common items in the sequence that 

the solution is generated. Therefore, two versions of heuristics are constructed 

without giving the priority to non-common items. In other words, in the Integral 

algorithm provided in Section 3.3, Step 3 is omitted, and Step 4 is done for 

considering both common and non-common items instead of only common items.  

The versions based on the calculation of inventory holding costs, heuristics are 

named as Myopic and Non-Myopic.   

 

All the problem instances are solved by this new idea with and without myopic 

inventory holding cost considerations. We report the results with the following 

convention of referring to these heuristics. 

 

Myopic NC-first: The algorithm provided in Section 3.4 with myopic inventory 

holding cost consideration and priority of non-common leaf items.  

Myopic: The same with Myopic NC-first in inventory holding cost consideration but 

do not give priority to non-common leaves.  

Non-myopic NC-first: The algorithm provided in Section 3.4 with non-myopic 

inventory holding cost consideration and priority of non-common leaf items. 

Non-myopic: The same with Non-myopic NC-first in inventory holding cost 

consideration but do not give priority to non-common leaves. 

 

Myopic heuristic gives the worst average solutions except for some of the 4 and 6 
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period problems. Non-myopic gives the second worst solutions with respect to 

average behavior. This is expected because these two heuristics improve only some 

types of problems whose solutions have higher errors by beginning with non-

common leaf items first.  

 

For each set of problem instances, we report minimum, maximum and average 

percent deviation from optimal costs for all 4 heuristics in Table 3.21, Table 3.22 

and Table 3.23 for T=4, T=6 and T=12, respectively, together with the best of 4 

heuristic solutions. In addition, distribution of errors for 4 heuristics and for T=4, 

T=6 and T=12 are provided in Appendix C.  

 

Since in almost all cases Myopic-NC First and Non-myopic NC First provide better 

results, for our observations we restrict ourselves to these two heuristics.  
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Avg. 

2.65 

2.68 

2.72 

2.51 

9.28 

14.76 

3.45 

2.36 

2.46 

2.49 

5.12 

2.21 

2.48 

3.85 

Min 

0 

0 

0 

0 

0 

0.01 

0 

0 

0 

0 

0 

0 

0 

0 

Best of 4 

Max 

19.74 

19.74 

38.19 

17.11 

62.93 

84.91 

32.19 

16.05 

16.71 

17.37 

40.44 

18.93 

16.41 

40.18 

Avg. 

7.16 

7.46 

6.46 

6.05 

10.03 

17.73 

7.48 

7.07 

6.28 

5.70 

8.59 

7.07 

6.56 

6.51 

Min 

0 

0 

0 

0 

0 

0.01 

0 

0 

0 

0 

0 

0 

0 

0 

Non-myopic 

Max 

54.15 

92.39 

55.96 

71.67 

62.93 

85.49 

52.63 

58.62 

73.30 

68.49 

59.99 

60..58 

74.29 

59.53 

Avg. 

4.57 

3.41 

4.08 

3.21 

9.69 

16.03 

5.23 

4.43 

4.04 

2.93 

6.64 

4.31 

3.30 

4.18 

Min 

0 

0 

0 

0 

0 

0.01 

0 

0 

0 

0 

0 

0 

0 

0 

Non-myopic NC-first 

Max 

29.99 

19.81 

38.19 

26.17 

62.93 

85.49 

32.19 

35.37 

23.85 

17.37 

40.44 

35.50 

24.97 

40.18 

Avg. 

6.46 

7.52 

6.30 

6.44 

10.13 

17.10 

6.85 

6.17 

6.59 

6.29 

8.06 

6.13 

6.71 

7.17 

Min 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Myopic 

Max 

54.15 

77.87 

55.96 

71.67 

62.93 

84.91 

52.63 

56.48 

73.30 

68.49 

59.99 

57.84 

74.29 

59.53 

Avg. 

4.51 

4.93 

4.07 

4.93 

9.78 

15.52 

5.15 

4.34 

4.14 

4.05 

6.50 

4.21 

4.18 

5.09 

Min 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Myopic NC-first 

Max 

29.99 

41.09 

38.19 

26.18 

62.93 

84.91 

32.19 

35.37 

23.89 

22.38 

40.44 

35.50 

24.97 

40.18 

Table 3.20. Results of the algorithms for 4 period samples 

% 
Errors 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

S10 

S11 

S12 

S13 

S14 



 
57 

 

Avg. 

3.02 

3.86 

2.95 

3.57 

9.98 

16.11 

3.53 

2.72 

3.50 

3.47 

4.10 

2.54 

3.52 

3.94 

Min 

0 

0 

0 

0 

0.10 

0.11 

0 

0 

0 

0 

0 

0 

0 

0 

Best of 4 

Max 

20.35 

17.77 

37.45 

17.19 

65.03 

90.77 

21.29 

21.44 

20.14 

14.45 

24.49 

22.81 

22.12 

16.43 

Avg. 

7.67 

9.47 

6.78 

7.59 

10.83 

19.27 

7.82 

7.56 

7.73 

7.13 

8.26 

7.51 

7.95 

7.56 

Min 

0 

0 

0 

0 

0.10 

0.11 

0 

0 

0 

0 

0 

0 

0 

0 

Non-myopic 

Max 

55.65 

112.0 

58.69 

65.22 

65.27 

90.77 

53.26 

61.12 

69.08 

62.74 

50.89 

64.41 

71.69 

66.89 

Avg. 

4.98 

4.97 

4.27 

4.61 

10.59 

17.75 

5.23 

4.86 

4.73 

4.12 

5.64 

4.74 

4.84 

4.45 

Min 

0 

0 

0 

0 

0.10 

0.66 

0 

0 

0 

0 

0 

0 

0 

0 

Non-myopic NC-first 

Max 

30.06 

27.14 

37.45 

31.12 

65.27 

90.77 

30.69 

35.82 

34.55 

20.14 

29.71 

35.85 

37.98 

16.43 

Avg. 

6.99 

10.87 

6.64 

8.82 

11.02 

18.76 

7.41 

6.74 

9.01 

8.47 

7.91 

6.61 

9.17 

8.19 

Min 

0 

0 

0 

0 

0.10 

0.11 

0 

0 

0 

0 

0 

0 

0 

0 

Myopic 

Max 

55.65 

97.26 

58.69 

65.22 

65.03 

91.49 

53.26 

57.09 

69.08 

62.74 

50.89 

58.07 

71.69 

66.89 

Avg. 

6.41 

8.16 

4.44 

7.51 

10.79 

17.44 

5.34 

4.90 

7.02 

6.24 

5.61 

4.76 

7.23 

5.66 

Min 

0 

0 

0 

0 

0.10 

0.66 

0 

0 

0 

0 

0 

0 

0 

0 

Myopic NC-first 

Max 

30.06 

68.45 

37.45 

38.68 

91.49 

65.03 

30.69 

35.82 

40.84 

34.25 

29.71 

35.85 

41.75 

26.44 

Table 3.21. Results of the algorithms for 6 period samples 

% 
Errors 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

S10 

S11 

S12 

S13 

S14 
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Avg. 

3.56 

6.32 

3.77 

5.90 

11.62 

19.75 

3.42 

3.78 

6.33 

5.31 

3.34 

3.73 

6.76 

4.88 

Min 

0 

0 

0 

0 

0.49 

1.31 

0 

0 

0 

0 

0 

0 

0 

0 

Best of 4 

Max 

26.49 

42.67 

46.61 

25.93 

68.15 

107.0 

28.40 

24.50 

29.20 

19.66 

30.78 

23.88 

31.81 

21.67 

Avg. 

7.86 

12.28 

7.43 

9.87 

12.54 

23.09 

7.57 

8.36 

10.37 

9.19 

7.45 

8.64 

11.02 

8.86 

Min 

0 

0 

0 

0 

0.49 

1.31 

0 

0 

0 

0 

0 

0 

0 

0 

Non-myopic 

Max 

57.38 

143.2 

56.35 

64.56 

69.50 

109.7 

57.47 

57.10 

68.62 

66.63 

57.87 

64.74 

72.88 

69.79 

Avg. 

5.61 

8.46 

5.91 

7.98 

12.17 

21.68 

5.42 

5.92 

9.70 

6.94 

5.32 

5.92 

9.33 

6.22 

Min 

0 

0 

0 

0 

0.49 

2.50 

0 

0 

0 

0 

0.01 

0 

0 

0 

Non-myopic NC-first 

Max 

30.00 

52.48 

46.61 

60.16 

69.50 

109.7 

31.82 

34.07 

70.43 

46.51 

33.10 

36.31 

76.61 

36.82 

Avg. 

8.11 

20.32 

7.70 

15.37 

13.93 

25.53 

7.87 

8.49 

17.89 

13.02 

7.63 

8.71 

20.26 

11.00 

Min 

0 

0 

0 

0 

0.49 

1.31 

0 

0 

0 

0 

0 

0 

0 

0 

Myopic 

Max 

57.38 

167.36 

56.35 

64.56 

68.15 

124.9 

57.47 

57.10 

79.46 

66.63 

57.87 

56.40 

96.68 

69.79 

Avg. 

6.65 

17.62 

6.15 

14.72 

13.60 

24.51 

6.10 

7.26 

17.79 

11.69 

5.69 

7.57 

20.73 

9.12 

Min 

0 

0 

0 

0 

0.49 

1.67 

0 

0 

0 

0 

0 

0 

0 

0 

Myopic NC-first 

Max 

46.50 

163.97 

49.42 

62.48 

68.15 

124.9 

46.37 

49.22 

79.46 

47.65 

35.98 

56.88 

96.68 

36.83 

Table 3.22. Results of the algorithms for 12 period samples 

% 
Errors 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

S10 

S11 

S12 

S13 

S14 
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Langella (2007) mentions that his heuristic approach gives the average error of 

4.55% with respect to the optimal solution. He run the heuristic for only the case 

involving 2 root items, 3 leaf items and 4 periods. Note that for 4 period planning 

horizons, either Myopic NC-first or Non-myopic NC-first algorithm provides better 

results compared to Langella (2007)’s errors. In addition to this when the solutions 

of the Myopic and Non-myopic solution are taken into account, the best solution of 

these four heuristics decreases the percentage error to 2.21 % in one of the sample 

sets. Not only for the 4-period problems, but also for the 12-period problems, the 

best solution of the heuristics results in lower errors. That is the maximum value is 

6.76% in S13 where the minimum average error is 3.34% in S11.   

   

3.5.2.1 Effect of the Planning Horizon 

 

As Myopic NC-first and Non-myopic NC-first algorithms have different approaches 

for inventory holding cost, they result in different error ranges according to the 

number of periods in the planning horizon. Generally for the long horizon problems 

(12 for our problem samples) lower results are expected with Non-myopic NC-first 

heuristic with respect to the Myopic NC-first heuristic. The reason of this is the 

effect of the inventory holding cost is larger for long horizons when leaf item 

inventory is accumulated and increases period by period. In another aspect, the 

effect of the cost may not be detected in short periods, so Non-myopic NC-first may 

not improve the solutions for short periods. This fact, i.e., larger inventory holding 

cost in the period,  leads the Non-myopic NC-first algorithm externally procure leaf 

items and this decreases the inventory levels which is the basic result of the high 

costs. Myopic NC-first algorithm cannot detect inventory accumulation, so 

especially for long horizons it gives larger errors than Non-myopic NC-first 

algorithm gives.  

 

In our computational study, we make observations to support these initial 

expectations. For the problems with 4-period planning horizon, we do not have the 

dominance of non-myopic approach. Whereas for longer horizon problems, non-

myopic approach dominates the myopic one, unless the demand structure and cost 
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parameters provide an opposite trade-off. These are discussed in related subsections.  

 

3.5.2.2 Observations for the Samples with No Trends on Their Demands  

 

• For S2 and S4, which have smaller disassembly costs, Non-myopic NC-first 

algorithm always gives better average results. When calculating inventory 

holding costs myopically, disassembly is seen more profitable compared to 

procurement option because of low disassembly costs and this leads to high 

inventory quantities and costs. However, when the effect of the inventory 

holding cost extended into periods (non-myopic approach), external 

procurement option becomes a profitable option (because it is compared with 

a higher cost term in Non-myopic NC-first algorithm).  So, Non-myopic NC-

first decreases the total planning horizon cost by decreasing the inventory 

levels and increasing the external procurement levels of leaf items.  

 

• For S1 and S3, the reverse logic is more effective for short planning 

horizons. That is when disassembly costs are higher with respect to the 

external procurement costs, inventory carrying becomes more profitable 

option for short horizons. As the planning horizon becomes shorter, Myopic 

NC-first generates better results than Non-myopic NC-first. But the 

difference between their average results is very small S1 and S3 for 4 periods 

planning horizon instances.  

 

• For the long horizon problems, we generally expect Non-myopic NC-first 

algorithm to give better results compared to Myopic NC-first algorithm. The 

reason is Non-myopic NC-first algorithm prevents high amount of 

inventories. But looking myopically, Myopic NC-first algorithm cannot 

prevent this inventory accumulation. But for the short period problems, 

carrying inventory may be the cheaper choice because inventories are carried 

for shorter times. External procurement option is still seems more profitable 

to Non-myopic NC-first algorithm for short horizons. But especially for S1 

and S3, which have higher disassembly costs, Myopic NC-first algorithm 
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gives better solutions by carrying more inventory. Our expectation comes 

true for the first 4 problem samples which have no increasing or decreasing 

demand trend.  

 

3.5.2.3 Observations for the Samples Having Decreasing Trend Demand Data  

 

• In S8 and S12 where we have negative trend in demand data and 

disassembly costs are relatively higher, Myopic NC-first algorithm gives 

more erroneous results as planning horizon gets larger. We also faced with 

this situation in S1. For the decreasing trend, more inventory is carried at 

first periods but the percentage error with respect to the demands is not so 

high because the disassembly amount is large to satisfy the demand. 

However as the planning horizon increases and the demand decreases, 

percentage of the inventories with respect to the disassembly and external 

procurement quantities increase. Hence, for larger periods Myopic NC-first 

algorithm gives bigger errors as it gives for the examples without trends in 

demands.  

 

• For S9 and S13 where we have negative trend in demand data and 

disassembly costs are relatively smaller. In this case, increase in the error 

between 6 and 12 period problems is more than in S8 and S12. Low 

disassembly cost is the reason of this bigger difference because these costs 

orients Myopic NC-first algorithm to disassembly, which lead great inventory 

holding costs for the later periods. Small errors of Non-myopic NC-first 

algorithm compared to Myopic NC-first algorithm for 12 period problems of 

sample sets S9 and S13 proves our idea. 

 

• For S8 and S12, errors of the Non-myopic NC-first algorithm increases as the 

planning horizon gets longer, too. In these sample sets, Myopic NC-first 

gives better solutions for the 4 periods planning horizon. The amount of 

increase in the solutions of Non-myopic NC-first is smaller than the Myopic 

NC-first algorithm’s solutions. Hence we can conclude that, for longer 
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horizon problems, the Non-myopic NC-first algorithm gives better solutions 

than Myopic NC-first algorithm, whereas for the short horizons Myopic NC-

first gives just a little better average percent error.  

 

3.5.2.4 Observations for the Samples Having Increasing Trend Demand Data 

 

• For problem sets with increasing trends, Non-myopic NC-first algorithm 

provides better solutions for the log horizon problems. But for the short 

planning horizons, the difference of the solution of the Myopic NC-first and 

Non-myopic NC-first is negligible. As the demands are very low in first 

periods, inventory accumulation is not so high when compared to the 

decreasing trend demand data sample sets. Hence, the inventory 

accumulation does not affect the solutions seriously in short periods. For the 

longer horizons, inventory accumulation begins to increase after the mid-

periods, so Non-myopic NC-first becomes the better alternative for these 

problems. As the effect of the inventory accumulation is limited by the 

planning horizon, the results of the two algorithms do not differs so much in 

average error values.  

 

• For sample sets S10 and S14, which have lower disassembly costs, errors of 

the Myopic NC-first is high with respect to the sample sets S7 and S11. As 

the disassembly cost decreases, root disassembly seems more profitable 

option for Myopic NC-first but Non-myopic NC-first detects the advantage of 

external procurement option for these sample sets. And as Myopic NC-first 

prefers more disassembly in these samples, its average error values increase 

compared to Non-myopic NC-first. The resemblance of the error deviations 

between S8-S9 and S12-S13 proves our observation.  

 

3.5.2.5 Observations for the Larger Problem Sets in terms of Number of Root-

Leaf Items 

 

• For these samples the average error values of Myopic NC-first and Myopic 
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algorithms are very close to each other. Having four roots in the sample, the 

possibility of including a non-common leaf for a leaf item is very small. 

This causes two algorithms resemble to each other and find the same result 

in most of the problems.  

 

• As the number of root and leaf items is more than the other samples, there 

are more feasible solutions. As a result, algorithm may choose different root 

items than the optimal solution chooses. So for samples S5 and S6, the 

algorithms’ mistake possibility larger than the other samples. Because of 

this reason, it can be easily said that more root and leaf items causes bigger 

errors.    
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CHAPTER 4 
 
 
 

DISASSEMBLY LOT SIZING 
 
 
 
 
 

In Chapter 3, we consider the problem of determining the number of roots to be 

disassembled and brand new leaves to be externally procured in order to satisfy the 

demand for the leaf items. This problem corresponds to buy or make decisions that 

can be considered within the context of master production schedule in the traditional 

production planning hierarchy.  

 

In this chapter, we consider lot sizing decisions for a disassembly firm. Lot sizing 

need arises from the fact that disassembly operations require a set up of the 

disassembly resources, like machinery, or work center that carries out the 

disassembly operations. Therefore, the model that we investigate in this chapter is 

more operational compared to the one in Chapter 3.  

 

In this chapter, we restrict our attention to the environment where there is only 

disassembly option available for satisfying the demand for the leaf items. We 

include the set-up costs of disassembly of different root items, but ignore the set-up 

time. Our main objective is to investigate the performance of traditional lot sizing 

heuristics, namely Wagner-Whitin (WW) algorithm (which provides the optimal for 

the traditional problem), Silver-Meal (SM) and Least Unit Cost (LUC) when they 

run incorporation with the heuristics developed in Chapter 3. Notice that since we 

exclude the regular procurement option of leaf items, the heuristic approaches 

developed in Chapter 3 resemble the heuristic proposed by Langella (2007). 

Because, our improvements are based on the idea of comparing the benefits of 

external procurement option with what integral algorithm by Langella (2007) 

suggests.  
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We restrict our attention to only WW, SM and LUC heuristics, because from 

traditional lot sizing studies we know that they provide better results compared to 

others, like part period balancing (Teunter et al. (2007)). Similarly, we do not 

attempt to develop new heuristics for disassembly lot sizing, since our aim is to 

show the performance of these well known and widely used methods. If the 

performance of the heuristics can be proven to be at a certain acceptable level, with 

minor modifications on the existing Decision Support systems, these tools can be 

used in disassembly planning as well.  

 

The outline of this chapter is as follows: In Section 4.1, the problem environment is 

described. In Section 4.2, a mathematical model for the problem under consideration 

is provided. Next, in Section 4.3, general approach followed in the application of the 

heuristics is explained in detail and modification of some lot sizing heuristic 

approaches that are used in our examples are described. In the last section, the 

computational study and its results are discussed.  

 

4.1 Problem Environment 

 

The main environmental assumptions employed on the following are exactly the 

same as the ones that are employed in the model constructed in Chapter 3. These 

are: 

 

• Demand structure: The demand for recovered leaf items over a finite 

planning horizon are known in advance.  

• The product structure: The number of leaf items that can be obtained from 

each leaf is known. There is no yield loss in disassembly process.  

 

The main environmental differences that we consider in this chapter are as follows:  

 

• No external procurement option: We exclude the regular procurement 

option, since our main aim is to investigate the effect of disassembly setup 

cost. Note that when there is regular procurement option of leaf items and a 
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setup cost for disassembly operations, the comparisons of two options as we 

introduced in Chapter 3 becomes unfair. Under setup cost values for which 

lot sizing is required, i.e., when lot for lot is not reasonable, the disassembly 

option becomes inferior to regular procurement option. On the other hand, 

when there is also a setup cost for regular procurement option in addition to 

the setup cost of regular procurement, the problem gets more complicated; 

the attractiveness of disassembly option depends on many factors. Our main 

objective here is to investigate the performance of traditional well known lot 

sizing heuristics in disassembly environment. Therefore we restrict our 

attention to the case where the disassembly is the only source to satisfy the 

demand, and there is a setup cost associated with that.  

• Setup cost of disassembly: We consider the situation that a setup is made for 

disassembling each type of root item.  Time stationary cost data are assumed. 

A setup cost of rSC , is incurred if root item r is disassembled in a period. 

The setup times are ignored. All other cost items are exactly the same as in 

Chapter 3.  

 

4.2 Mathematical Model 

 

In this section, we present the mathematical model that aims to find disassembly 

plan minimizing the sum of variable and fixed cost disassembly and inventory 

holding costs. 

 

Notation 

 

Parameters 

T : Length of the planning horizon. 

t  : Index for periods 1,...,t T= .  

R : Number of root items. 

r : Index for root items 1,...,r R= . 

L : Number of leaf items. 
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l  : Index for leaf items 1,...,l L= .   

, :r lα  Number of leaf item l that is obtained from root item r 

,l tλ : Demand of leaf item l at period t.  

lIC : Unit inventory holding cost per period of leaf item l. 

rLT : Lead time for root item r.  

rSC : Setup cost for root item r.  

 

Decision variables 

, :r tx Number of root item r disassembled at period t.  

, :l tz  Number of leaf item l held in inventory at period t.  

,

,

:  decision variable for set-up 

1 if root  is going to be disassembled at period 

0 if root  is not going be disassembled at period 

r t

r t

y

r t
y

r t


= 


  

Min 

R R

, , ,
r=1 1 l=1 1 r=1 1

( * )  + ( * ) ( * )  
r

T L T T

r r t LT l l t r r t

t t t

TDC x IC z SC y−
= = =

+∑∑ ∑∑ ∑∑                        (4.1)  

 

s.t. 

, , , ,
1 1 1

*     1,...,   1,...,
r

t R t

r j r k LT l k l t

k r k

x z for t T l Lα λ−
= = =

− = = =∑∑ ∑                                    (4.2)  

, ,   for 1,...,  ,  1,...,r t r tx My r R t T≤ = =                                                           (4.3) 

, ,,  0 and integer for  r 1,..., ,  1,..., ,  1,...,r t l tx z R l L t T≥ = = =                        (4.4)  

,  {0,1} 1,..., ,  1,...,r ty r R t T∈ = =                                                                       (4.5)  

 
 

Objective function of the models aims to minimize the total costs incurred over the 

planning horizon. The relevant costs are setup costs, total disassembly costs and 

inventory holding costs.  

 

Equation (4.2) is exactly the same as the Equation (3.2). Adding Equation (4.3) to IP 
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ensures that if , 0r tx > , i.e., if a root is disassembled in period t,  than , 1r ty = , i.e., 

setup cost for root r is incurred in period t. Equation (4.4) is non-negativity and 

integer constraints and Equation (4.5) restricts the value of ,r ty  to 0 or 1 for 

{ }1,...,r R∈ , { }1,...,t T∈   and { }1,...,l L∈ . M in Equation (4.3) is a big positive 

number and it can be set to the maximum total demand of the leaf items, i.e., 

,
1

max
T

l t

t

λ
=

 
 
 
∑  for { }1,...l L∈ .  

 

This mathematical model has * *R L L T+  integer variables and *R T  binary 

variables. Involving binary variables, this model is harder to solve compared to the 

model in Chapter 3. Therefore heuristic approaches are needed for the solution.  

 

4.3 General Approach Followed in the Application of Traditional Lot Sizing 

Heuristics to Our Problem 

 

The traditional lot sizing heuristics are constructed to determine the lot sizes that 

balance the tradeoff between fixed cost of production and inventory holding cost. As 

indicated by Winston (1993), the basic assumptions are:  

• There is a single item in concern. 

• Demand td  during period t=1,…,T is known at the beginning of the planning 

horizon. 

• Demand should be met on time. 

• The cost of producing x units is c(x) is expressed as 

0 if 0
( )

*  if 0

x
c x

K c x x

=
= 

+ >
 

where K is the setup cost and c is the unit cost of production.  

• At the end of period t, the inventory level is observed, and a holding cost h is 

incurred.  

• The objective is to determine a production level for each period t that 

minimizes the total cost of meeting the demands for periods t=1,…,T. 
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The traditional lot sizing problem can be expressed as follows:  

 

Min  

1

* * *
T

t t t

t

K y c x h I
=

+ +∑  (4.6)  

s.t. 

1     tt t t tI x d I− + − = ∀  (4.7)  

*  t tM y x t≥ ∀                   (4.8) 

{ }0,  0,1t tx y≥ ∈                                                                                               (4.9)  

 

Where the input parameters are; 

:T  Number of production periods, 

:K  Setup cost of production, 

:c  Cost of producing 1 unit item, 

:h  Cost of holding 1 unit item,   

:td  Demand in period t, 

:M  A big positive number  

And the decision variables are; 

:tx  Production quantity in period t, 

:tI  Inventory level at the end of period t. 

 

In the model, objective function minimizes the total cost of the production schedule. 

Equation (4.7) is the inventory balance constraint and equation (4.8) ensures that if a 

production occurs in period t, then a setup cost is incurred in that period by 

assigning ty  to 1.  

 

According to the assumptions mentioned above, some heuristic approaches are 

constructed for the lot sizing problems. Wagner Whitin, Silver Meal and Least Unit 

Cost algorithms are described below. 
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Wagner-Whitin (WW) Algorithm : 

 

It is well known that in the optimal solution, zero inventory property is satisfied, i.e., 

1 * 0t tI d− =  for all 1,...,t T= . The implication of this property is that if a setup cost 

is made in period t, the production quantity is exactly equal to meet the demand for 

the periods , 1,...,t t t j T+ + < . 

 

Wagner and Whitin (1958) suggest a dynamic programming recursion for the 

problem based on this optimality condition. Define tf  as the minimum cost incurred 

during period , 1,...,t t T+ , given that at the beginning of period t, the inventory level 

is zero. Then tf  must satisfy; 

, 1
0,1,2,...,
min ( )t t j t j

j T t
f c f + +

= −
= +  (4.10)  

 

where 1 0Tf + =  and ,t jc  is the total cost incurred during periods , 1,...,t t t j+ + . Thus 

, ( )* *
k t

t j p

p k

c K p k h d
+

=

= + −∑ , which is the sum of the setup cost and inventory 

holding cost incurred during periods , 1,...,t t t j+ + . 

 

The original WW algorithm runs in 2( )O T . Wagelmans et al. (1992) propose an 

alternative algorithm that runs in ( log )O T T .  

 

The Silver-Meal (SM) Heuristic : 

 

Silver et al. (1998) mentions that the Silver-Meal heuristic selects the replenishment 

quantity in order to replicate a property that the basic economic order quantity 

(EOQ) possesses when the demand rate is constant with time, namely, the total 

relevant costs per unit time for the duration of the replenishment quantity are 

minimized. Suppose we are at the beginning of period k and are trying to determine 

how many periods of demand should be satisfied by kth period’s production quantity. 

If the production quantity at period k is going to satisfy the demand for the next t 
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periods, then a cost of , ( )* *
k t

k k t p

p k

C K p k h d
+

+
=

= + −∑  will be incurred at period k. 

 

Let ,

( )* *
k t

p

p k

k k t

K p k h d

AC
t

+

=

+

+ −

=

∑
 be the average per-period cost incurred during 

the next t periods. This criterion has the desirable feature of not including, in the 

present replenishments, a large requirement well in the future, which makes the ‘cost 

per unit time’ measure too high. In most of the situations, an integer t* can be found 

such that , * 1 , *k k t k k tAC AC+ + +≥ . The S-M heuristic recommends that k
th period’s 

production amounts be sufficient to meet the demands for periods k,…,t*. If no t* 

exists period k should satisfy the demand for periods k,…,T. If a t* is found for 

period k, then algorithm goes for the determination of the t*+1
st
 periods production 

amounts.  

 
The Least Unit Cost (LUC) : 

 

The Least Unit Cost (LUC) is identical to the Silver-Meal heuristic except that it 

accumulates requirements until the cost per unit criterion increases instead of cost 

per period. So the criterion for LUC is ,

( )* *
k t

p

p k

k k t k t

p

p k

K p k h d

AC

d

+

=

+ +

=

+ −

=

∑

∑
.  

 

Both SM and LUC run in ( )O T .  

 

4.3.1 Application of Lot Sizing Heuristics to Disassembly Lot Sizing Problem 

 
 
As these methods are for the traditional lot sizing problems, we have to make some 

modifications according to our problem environment. The main differences of our 

case from the traditional problem environment are as follows:  
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• Setup and unit cost of disassembly are defined for root items while the 

demand is estimated for the leaf items.  

• Inventory holding costs are incurred for the leaf items, no root item 

inventory is carried.  

 

Therefore, in order to utilize the traditional lot sizing heuristics in our environment, 

we need to have disassembly requirements, ,r tS , for each root item over the planning 

horizon. Thus in this problem, the disassembly quantities of the integral algorithm 

are treated as the demands, i.e. production quantities, of the traditional lot sizing 

heuristics. To obtain the quantities, we utilize the heuristics provided in Chapter 3. 

Note that since we do not consider the external procurement option here, all 

variations on the heuristic that we propose yield the same result which is exactly the 

same as the result of the original heuristic developed by Langella (2007), the integral 

algorithm. The disassembly plan obtained by the heuristics is treated as the 

requirements for the lot-sizing problem for each root item. We suggest a two-step 

approximate method to find disassembly lot sizes.  

 

• Run Integral algorithm to determine the requirements for each root item r 

over the planning horizon. 

• Run a traditional lot sizing algorithm for each root item r to satisfy the 

requirements.  

 

In order to apply the lot sizing heuristics in our environment, we transform the 

holding cost defined for the leaf items into holding costs for root items as follows: 

, *     for 1,...,r r l l

l

H IC r Rα= =∑  (4.11)  

 

Note that rH , as given in Equation (4.11) assumes that whenever a unit of root item 

r is disassembled, all leaves in the BOM of root r is held in the inventory 

individually.  

 

In the lot sizing heuristics for the disassembly problem, the inputs are the 
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disassembly quantities, ,r tS , of root items and the inventory holding costs, 
rH , of 

the root items in addition to the setup costs of root items. Note that, treating the 

disassembly plan obtained by Integral algorithm as the demand for individual root 

items and setting the holding cost rates as given in Equation (4.11) is just an 

approximate approach. It assumes that whenever a root item r is “required”, all the 

leaf items in the BOM of that root are demanded. In other words, it ignores the 

possibility that only some leaves have demand in a certain period of the planning 

horizon. In order to have an exact inventory holding cost calculation one should 

consider , , ,
1 1

( * )
t R

r t r l l p

p r

S α λ
= =

−∑∑  in period t, while we assume that it is 0. However, in 

our two-step approach, we include holding costs into account in the second phase, 

where we do not know which roots are used to satisfy the demand for which leaves, 

and we consider each root’s lot sizing decisions independent of others.  

 

Therefore, the total cost obtained in the lot-sizing phase of our approach is not exact, 

it should be corrected to include additional leaf item inventory costs.  

 

4.3.2 Solution Procedure 

 

The first step of our approach is running the integral algorithm with the same input 

parameters as in Chapter 3. Integral algorithm finds the root items’ quantities to 

satisfy the demands of the leaves and these quantities are the main inputs of the lot-

sizing heuristics.  

 

The next step is to run the lot-sizing heuristics for each root item separately to find 

their lot sizing quantities, ,r tR . These heuristics find the total lot sizes according to 

the cost parameters of setup cost and root inventory holding costs as given in 

Equation (4.11). Then, they calculate the cost of the schedule as the summation of 

setup costs incurred and inventory holding costs of leaves which occurred by the 

root items only. At last it updates the total cost by adding the disassembly costs and 

the inventory holding costs of individual excess leaves left as a result by the integral 

algorithm.  
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In Figure 4.1, our general approach in the application of traditional lot sizing 

heuristics to our problem is depicted. 

 

 

Data input to integral
algorithm

Integral algorithm
Disassembly requirements are determined.
Leaf inventory quantities are determined.
 Total disassembly cost and total leaf item

inventory holding cost are found.

Data input to lot sizing heuristics.
Disassembly requirements of root items and root

inventory holding costs are the inputs.

Lot sizing heuristics.
For each root item, lot sizing heuristics are run.

Lot sizing quantities are determined.
Total setup costs and root item inventory costs are

calculated for each root item.

Disassembly lot sizing schedule is obtained. Total
cost of the planning horizon is updated.

 

Figure 4.1 General approach followed 
 

 

In order to adjust the traditional lot sizing heuristics to our problem, their cost 

calculations are modified as follows; 

 

For the WW algorithm, the recursion is modified. Define tf  as the minimum cost 

incurred during periods t, t+1,…, T, given that the beginning of the period t, the 

inventory level for the root item in concern is zero. Then, tf  must satisfy  

 j 1
0,1,2,...,
min ( )t t t j

j T t
f c f + +

= −
= + ,   



 75 

where 1 0Tf + =  and  t jc is the total cost incurred during periods t, t+1, …, t+j if 

disassembly during period t is exactly sufficient to meet requirements for periods 

, 1,...,t t t j+ + . Thus,  ,( )* *
j

t j r r r p

p t

c SC p t H S
=

= + −∑  which is the sum of the setup 

cost and inventory holding cost incurred during periods , 1,...,t t t j+ + .     

 

The cost incurred for a period’s disassembly quantity and the average cost per period 

equations are modified for the SM and LUC heuristic as follows. If the requirements 

for the root item in concern during the following t periods are disassembled, then a 

cost of ,( )* *
t

r r r p

p k

SC p k H S
=

+ −∑  will be incurred for root item r at period k. And 

the average cost will be equal to 
,

,

( )* *
t

r r r p

p k

k k t

SC p k H S

AC
t

=

+

+ −

=

∑
  

And for the LUC, the average cost is equal to 
,

,

,

( )* *
t

r r r p

p k

k k t k t

r p

p k

SC p k H S

AC

S

=

+ +

=

+ −

=

∑

∑
.  

 

Time complexities of our solution approaches are polynomial. If SM or LUC is used 

after the Integral algorithm, the time complexity of the overall algorithm is 

( * )O L T . If WW is used after the Integral algorithm, time complexity is equal to 

{ }( )max * ,  logO L T T T  or ( )*max( , )O T T L  depending on the implementation of 

WW algorithm.  

 

To illustrate the algorithm mathematically, consider the example given in Section 

3.4.3 whose contribution factors and leaf item demands are given in Table 3.1 and 

Table 3.7, respectively. Disassembly costs and inventory holding cost of leaf items 

are shown in Table 3.11. For this problem, integral algorithm finds the disassembly 

schedule and the resulting leaf item inventories as in Table 4.1 and Table 4.2 below.  
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Table 4.1 Disassembly schedule found by the integral algorithm 
 

Periods 1 2 3 

A 0 4 1 

B 3 2 1 

 

 

Table 4.2 Inventory quantities of leaf items 
 

Periods 1 2 3 

C 0 0 1 

D 0 4 3 

E 0 2 2 

 

 

According to the quantities in Table 4.1 total disassembly cost is found as 

,
1 1

( * ) 10*5 11*6 116
R T

r r t

r t

TDC S
= =

= + =∑ ∑ . According to the inventory carrying 

schedule of the leaf items in Table 4.2, total inventory holding cost is 

,
1 1

( * ) 2*1+2*7+2*4=24
L T

l l t

l t

IC EX
= =

=∑ ∑ . Hence our input for lot-sizing heuristics is 

the disassembly quantities in Table 4.1, inventory holding costs of root items and 

setup costs which are found and assumed as below. 

,
1

* 2*2 2*1 6
L

A r l l

l

H a IC
=

= = + =∑    

,
1

* 2*2 2*3 2*1 12
L

B r l l

l

H a IC
=

= = + + =∑  

 

Assume  and A BSC SC  be 500. According to these cost parameters heuristic finds 

(each of the lot-sizing heuristics find the same result with these cost parameters) the 

lot sizing quantities, ,r tR , as follows; 
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Table 4.3 Disassembly schedule found with lot-sizing heuristics 
 

Periods 1 2 3 

A 0 5 0 

B 6 0 0 

 

 

As seen in Table 4.3, for each root item, one disassembly operation occurs; hence, 

setup cost is incurred once for each. The total setup cost is 1000. For root A in 2nd 

period, 1 root is disassembled for the 3rd period, so inventory cost of 6 is incurred   

for root A. All the requirements of root B is disassembled in period 1. 2 of           

them are carried for 1 period, where 1 of them is carried for 2 periods.                    

So, the inventory holding cost incurred for this root item is 

,( )* * 1*12*2 2*12*1 48
t

r r p

p k

p k H S
=

− = + =∑ . Note that, inventory quantities in 

Table 4.2 are not taken into consideration in the inventory holding cost calculations 

of the lot-sizing heuristics. At last it updates the total cost as the summation of the 

costs it found and the costs that integral algorithm found.  Total cost of the plan is 

48 6 2*500 116 24 1194+ + + + = . 

 

4.4 Computational Study 

 

A computational study is carried out to investigate the performance of the heuristics 

against the optimal values.  

 

We consider a restricted class of problem sets considered in Chapter 3: S1, S4, S5 

and S6. Notice that in S1 and S5 the disassembly costs are higher compared to S4 

and S6. In the problem instances in sets S1 and S4, there are 3 leaf and 2 root items, 

whereas there are 6 leaf and 4 root items in S5 and S6.  

 

In this study, we only consider T=12 as the planning horizon, since lot sizing 

decisions’ effects are more substantial for long horizon problems.  
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Setup costs of the root items are set in 3 different levels as follows.  

*200  for 1,...,r rSC H r R= =  (4.12)  

*800  for 1,...,r rSC H r R= =  (4.13)  

*3200  for 1,...,r rSC H r R= =  (4.14)  

 

For the sample sets S1 and S4, we consider all 3 levels whereas, we consider the 

sample sets S5 and S6 with only the first 2 levels (the ones given in Equation 4.12 

and Equation 4.13). 

 

For each problem instance, the objective function values obtained under three lot 

sizing heuristics are compared with the optimal objective function values obtained 

by CPLEX. The minimum, maximum and average error values for each of the lot-

sizing heuristics are reported in Table 4.4. In addition, distributions of errors for 

these heuristics are provided in Appendix D.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
79 

Avg. 

1.68 

2.48 

3.49 

2.82 

3.89 

5.18 

14.81 

15.08 

21.33 

19.94 

Max. 

11.71 

15.29 

17.30 

42.25 

34.64 

23.63 

94.83 

110.26 

108.95 

104.13 

Best of 3 

Min. 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Avg. 

2.25 

3.97 

5.75 

3.77 

6.17 

8.24 

15.05 

16.19 

21.69 

21.55 

Max. 

14.23 

20.03 

21.39 

42.25 

34.65 

29.47 

94.83 

111.20 

108.95 

104.13 

Least Unit Cost 

Min. 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Avg. 

1.70 

2.83 

4.71 

2.84 

4.41 

6.74 

14.81 

15.12 

21.34 

20.01 

Max. 

11.71 

16.49 

21.71 

42.25 

35.20 

28.24 

94.83 

110.26 

108.95 

104.26 

Silver Meal 

Min. 

0 

0  

0 

0 

0 

0 

0 

0 

0 

0 

Avg. 

1.68 

2.48 

3.49 

2.82 

3.89 

5.18 

14.81 

15.08 

21.33 

19.94 

Max. 

11.71 

15.29 

17.30 

42.25 

34.64 

23.63 

94.83 

110.26 

108.95 

104.13 

Wagner-Whitin 

Min. 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Table 4.4 Summary of results 

% Errors 

S1(Kr=ICr*200) 

S1(Kr=ICr*800) 

S1(Kr=ICr*3200) 

S4(Kr=ICr*200) 

S4(Kr=ICr*800) 

S4(Kr=ICr*3200) 

S5(Kr=ICr*200) 

S5(Kr=ICr*800) 

S6(Kr=ICr*200) 

S6(Kr=ICr*800) 
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Some of the problem instances could not be solved due to the long running times on 

CPLEX. There are 10 problem instances for S5 under *200r rK IC= , 25 for S5 

under *800r rK IC= , 15 for S6 under *200r rK IC=  and 17 for S6 under 

*800r rK IC=  could not be solved in 30 minutes. In Figure 4.1, maximum, 

minimum and the average error values of the remaining problem instances are 

shown.  

 

For the problem sets with two root items and three leaf items, S1 and S4, the integral 

algorithm provides closer results compared to optimal values. The type and the 

amount of root items disassembled is generally the same, since there is no so much 

option. In these sample sets, WW algorithm finds the optimal solution in 39.33% of 

the problem instances in S1 and S4. The percentages for SM and LUC for these 

sample sets are 22% and 9.84% respectively. For the sample sets S5 and S6, there is 

a sharp decrease to 3% for both WW and SM, and to 1.82% for LUC. 

 

For the same sample set S1 and S4, when the setup cost increases, amount of error 

increases as expected. Note that, the integral algorithm provides the same 

requirements under different setup cost values for a specific problem instance since 

it does not take the setup cost into account. Therefore, the main difference here is the 

handling of setup cost; that is, the error increases as the setup cost increases since 

the weight of the setup cost increases with respect to the total costs of disassembly.  

 

When the setup costs are the same but the disassembly cost of the root items differ, 

the situation is more complicated. With the same setup costs, sample sets having 

lower disassembly costs have larger errors. There are two reasons for these errors. 

First reason is the same: setup cost increases relatively with respect to the 

disassembly cost, so the percent error increases. The other reason is the inventory 

holding cost: integral algorithm provides very close (even exactly the same 

disassembly amounts in most of the problems) results, i.e., requirements for root 

items, with changing disassembly costs. Hence, since the setup costs are equal, lot 

sizing heuristics do not find much different solutions, either. But the importance of 

inventory holding, i.e., the effect of the inventory holding cost compared to 
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disassembly cost, increases when the disassembly costs decrease. As the sensitivity 

of the model to the inventory holding costs increases, it may find different 

disassembly amounts and schedules with respect to the solutions of S1. With this 

consideration, model finds lower total costs for S4 than expected from compared to 

S1. An example is shown in Table 4.5 below;  

 

 

Table 4.5 Disassembly costs and percent errors of problem instances with respect to 
optimal solution. 
 

Disassembly Costs Percent Error  

Root A Root B WW 

Problem instance 1 21.71 5.47 10.68 

Problem instance 2 12.64 7.07 42.25 

 

 

Problem instances are taken from the S1 under Kr=ICr*200 and S4 under 

Kr=ICr*200 respectively. For both problem instances, all the parameters except 

disassembly costs are same. Integral algorithm chooses root B in each problem 

instance and satisfies all the demand by disassembling only root B. For the second 

problem, with the decrease in the disassembly cost of the root A, model chooses 

more root item A to prevent the inventory accumulation and this approach provides a 

crucial decrease in the total inventory holding cost at the same time disassembling 

cheaper root item A, which provides a decrease in the total disassembly cost 

compared to instance 1. As a result, when lot sizing heuristics find higher cost for 

instance 2 according to the increasing disassembly cost of root B, model finds a 

more profitable way to satisfy the demand. Hence, the percent error increases in the 

second problem.  

 

The other sample sets have higher errors. They have four root items and six leaf 

items. These sample sets (S5 and S6) have higher errors in the previous chapter, too. 

As they have four root items, the possibility of selecting the wrong root item 

increases the error made by the integral algorithm. As expected, the reason of high 
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errors is not the effect of the setup cost. Hence, the main difference begins before 

running the lot-sizing heuristics.  

 

To conclude, WW algorithm always results in smaller or equal error values with 

respect to SM and LUC as it finds the optimal solution for the traditional lot sizing 

problems. But in terms of percent errors, there is little difference (between 0.02% 

and 0.07%) between WW and SM although SM does not find the optimal solution 

for as many problem instances as WW.  
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CHAPTER 5 
 
 
 

CONCLUSIONS 
 
 
 
 
 

Nowadays, no product or distribution strategy is designed without considering the 

future of that product. A plan must be made about what to do with the resulting 

waste at the products’ end of life. As environmental regulations come into effect and 

procedures are obliged to collect their end-of-life products and recover the parts and 

materials, disassembly strategy becomes a growing trend. Hence, as the variety of 

the products that can be disassembled and remanufactured increases, a need for 

powerful solution procedures arises.  

 

In this thesis, our main aim is to improve some of the heuristic approaches that were 

studied in the literature and find some new approaches for demand driven 

disassembly problems.  

 

In Chapter 3, the disassembly planning problem is defined as to determine the 

number of root items to be disassembled and number of leaf items to be procured 

externally from an outside source in order to satisfy the total demand of the leaf 

items. The number of root items and the number of leaf items they include are 

deterministic. In the BOM structure of the root items, subassemblies are not taken 

into account and it is assumed that only leaf items are extracted with a complete 

disassembly operation. In addition, we allow multiplicity and commonality.  

 

We improve Integral algorithm proposed by Langella (2007) according to his 

suggestions about adding the inventory holding cost and external procurement 

option to the heuristic. We suggest to first determine the type of root items to be 

disassembled to satisfy leaf demand period by period, then investigate the possible 
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benefits of external procurement. While doing that as it is originally proposed by 

Taleb and Gupta (1997) and Langella (2007), we start with non-common leaf items. 

Two variants based on the calculation of inventory holding costs are considered: 

Myopic NC-first and Non-myopic NC-first. After observing some deficiencies of 

prioritizing non-common leaves, we constructed two new algorithms which treat all 

leaf items as common leaves and called them Myopic and Non-myopic.  

 

We apply these heuristic approaches to different problem environments. The main 

parameters used in generating the problem instances are the number of root items, 

number of leaf items, the length of the planning horizon and the relevant cost 

parameters. Generally we deal with the instances having two root items and three 

leaf items. We try to investigate the effects of the relevant costs in the solutions. 

Then, other sets of problem instances having more root and leaf items are solved. In 

addition to this, decreasing and increasing trends in demand are considered and their 

results are compared with the problems having no trend in their demand data. Apart 

from the heuristic solutions, we solve the same problems optimally according to an 

IP model and compare all of the results. The main findings of this study can be 

summarized as follows: 

 

• With the new ways applied to the heuristic approaches, the algorithms find 

better solutions compared to the solutions found by the heuristic provided by 

Langella (2007).  

• Algorithms aim to find if external procurement is profitable with respect to 

disassembly. If algorithms find external procurement more profitable, then 

disassembly and inventory quantities decrease. Hence, inventory 

accumulation is prevented if it is profitable. As there are myopic and non-

myopic approaches for the inventory holding cost, algorithms find different 

solutions. When these solutions are compared, one can determine the better 

solution whether the inventory carrying is advantageous or not.  

 

• The heuristics which do not give priority to non-common leaf items are very 

important for the lower number root item problems. In some of these 
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problems, it provides enormous decrease in the percent error with respect to 

the heuristics giving priority to the non-common leaves. As the number of 

root item increase, the possibility of having a non-common leaf item 

decreases. When all the leaf items are common leaves, Myopic and Non-

myopic heuristics give exactly the same disassembly quantities compared to 

the other two heuristic approaches, which gives priority to the non-common 

leaf items. As the algorithms of the heuristics do not differ for the 

determination of the root items for satisfying the demands of the common 

leaf items, results are exactly the same. Hence the possibility of improving 

the solution decreases for Myopic and Non-myopic when the number of root 

items increase 

 

• Generally demands of goods fluctuate in a planning horizon. There will be 

both descents and ascents in different seasons, months, etc. With this aspect, 

the effect of the increasing and decreasing trends in the demands on the 

heuristics’ behavior is investigated. The different behaviors of the algorithms 

are observed for the different length planning horizons.  

 

• Mostly, heuristics are solved for the problems with two root items having 

three leaf items in their product structure. In addition to this, problems with 

more root and leaf items are solved to see the applicability of the heuristic to 

these problems. Due to the increase in the number of root items, the 

possibility of choosing wrong root items for the algorithms increases. 

Although, the errors of these sample sets are higher from the sample sets 

having two root items as expected, they are in an acceptable range.   

 

The objective of the Chapter 4 is to investigate the effect of the setup cost on the lot 

sizing decisions of disassembly planning. The demands and the product structures 

are exactly the same as the problems of Chapter 3. But there are two differences that 

there is no external leaf procurement option and setup cost and root inventory costs 

are included. Without the external procurement option, we restrict the solution to the 

root disassembly which becomes the only source to satisfy the demand. Setup cost is 
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incurred when a batch of root item is disassembled in any period.   

 

To investigate the effect of the setup cost on the disassembly plan, we use the 

traditional lot sizing heuristics, namely Wagner-Whitin, Silver Meal and Least Unit 

Cost. But before running these heuristics, the disassembly plan is found by the 

integral algorithm of Langella (2007), which gives the same result with the Myopic 

NC-first algorithm when external procurement option is omitted. The disassembly 

plan of the integral algorithm becomes the requirement of the lot sizing heuristics. 

After the requirements are put into lot sizing heuristics as input, these heuristics find 

a disassembly schedule for the planning horizon. At last we compare these results 

with the optimal solutions found by MIP model using CPLEX. The main outcomes 

of this computational study can be summarized as follows.  

 

• The main reason of the errors is the different solutions of the integral 

algorithm from the optimal solutions. For the small number of root items in 

the problem (in our samples there are two root items), the root items chosen 

to be disassembled is generally the same with the optimal. When this 

situation occurs, lot sizing heuristics may find the optimal disassembly 

schedule.  

 

• As the optimal solution considers the inventory holding cost, it sometimes 

finds different root items to be disassembled. When this happens, the percent 

error is not high for these problem samples and increases if the setup cost 

increases as the ratio of setup cost over disassembly cost increases.  

 

• For more complex problems which involve more root and leaf items, the 

amount of errors gets larger. As the number of root items increase, the 

possibility of choosing wrong root item increases for the integral algorithm. 

Hence, similarly the reason of the errors is the different solution of the 

integral algorithm. But the range of these errors is in an acceptable range 

apart from some exceptional problems.   
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The main contributions of this thesis to the literature can be stated as follows; 

 

• Improves the existing heuristic approaches and adds new heuristics 

considering different insights of inventory holding cost and priority to non-

common leaf items with different approaches. 

• The effect of disassembly setup cost is first studied.  

• We modify the traditional lot-sizing heuristic approaches for the disassembly 

environment with changing the inventory holding cost consideration. 

 

It is possible to extend this work in various ways. The model and the heuristic 

approaches can be improved for the problem considered in the thesis and some new 

heuristics may be constructed for the more realistic problems.  

 

In our problem complete disassembly is assumed. Both for some cases, 

subassemblies are needed and incomplete disassembly may be more profitable 

option in most of the times. Especially when there are options of material recycling 

or reuse apart from remanufacturing for the disassembled parts, subassemblies 

become more important. A new model and a heuristic may be constructed by taking 

the selective disassembly option into account if the profits of the each option are 

known for all components and subassemblies. In this approach, disassembly 

sequences are found according to the precedence relations, which must be known 

exactly for disassembly operations, in addition to the schedules when satisfying the 

demands of the leaf items.   

 

In our study, we assume no restriction on supply and inventory values. But for the 

recovery environment, collecting the utilized goods is very hard and this may lead to 

serious supply shortages. Likewise, inventory capacity may be a problem for the 

disassemblers because in some cases an inventory accumulation is observed in our 

problem instances.  

 

We assume at most 12 period planning horizon for the problems. But for real life 

problems, we have to consider infinite planning horizons as the production never 
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stops in a factory. Similarly, in our case demands always exist and disassembly 

operations never stop. Hence, it is not realistic to assume a finite planning horizon. 

Considering this, with the updated demand forecasts, our heuristic approaches can 

be adapted to a rolling horizon basis.  

 

Another outstanding issue in disassembly is the high amount of uncertainty. 

Uncertainty is always crucial in all traditional production environments for both 

demands and manufactured product. But it is higher in recovery applications not 

only in terms of demand but also in terms of supply as the supply of this work is the 

second hand goods. The quality and the quantity of the returned product affect yield 

amounts from root items, making the yields stochastic. As a result, disassembly 

environment is stochastic in terms of demand, supply and yield and this case needs 

more powerful heuristic approaches and mathematical models.  

 

Materials and product recovery evolve basically for the environmental factors. Most 

of the manufacturers involve in this job because of the legal preventions and 

environmental regulations. According to these regulations, they have to recover at 

least a certain amount of their goods. Hence, when maximizing profit or minimizing 

cost, environmental factors can be added to the solution approaches as constraints or 

multi-objective models can be written.   
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APPENDIX A 
 
 
 

STEPS OF THE INTEGRAL ALGORITHM 
 
 
 
 

Step 0. Data input. 

Input the parameters R, L, T, rTDC , rLT , ,r lα , ,l tλ  for 1,..., ,  1,...,r R l L= = ,   

1,...,t T= , 

Step 1. Initialization 

Step 1a. Set t=0 and , 0r tS =  for  ( , )r t∀  

Step 1b. Calculate the contribution factors for each root-leaf pair.  

,
,  for  ( , )r l

r l

r

r l
TDC

α
β = ∀   

Step 1c. Determine the non-common leaves. 

Calculate the total contribution factor for each leaf  

,   for  l r l

r

lβ β= ∀∑  

If for any l, ,l r lβ β=  for some r, then l is a non-common leaf that is only 

obtained from root r. Therefore, the set of all non-common leaves (and 

corresponding roots), NC, can be formed by   

{ },( , )   1,... ,  1,...l r lNC l r l L r Rβ β= = = =  

Step 2. t=t+1 

Step 3. Determine and update the disassembly plan to satisfy the demand for non-

common leaf items for all ( , )  l r NC∈  with rLT t≤  

Step 3a. Determine the disassembly quantities for root items required to 

satisfy the demand for corresponding non-common leaves.  

The number of r to disassemble in order to satisfy the current period 



 93 

requirements of l is ,
,

,

l t

r t

r l

x
λ

α

 
= 

  
. 

Update disassembly quantity accordingly, , , ,r t r t r tS S x← + . 

Step 3b. Update demand for all leaves according to the current disassembly 

plan’s updated quantity, i.e., the current values of , 'sr tx . 

, , , ,- *     for 1,...,l t l t r t r l

r

x l Lλ λ α← =∑  

Step 3c. Update total contribution factors. 

,

,

0      0  

    0    
l t

l

l l t

if

if

λ
β

β λ

≤
= 

>
 

If there exists any l 0β >  for some l which is included in NC then go to Step 3a. 

Else go to Step 4.  

Step 4.  Determine the disassembly plan to satisfy demand for common leaves.  

Step 4a. Update selection ratios under current partial plan  

r,l ,

r,l ,

0     if   

β 0     if   0    for  l

β   if    >0 and 

r

l t

l t r

LT t

LT t

λ

λ

 >


← ≤ ∀


≤

 

Determine the leaf and corresponding root giving the maximum of 

contribution factors.  

{ }

{ }
r,l

r,l

l'=argmax β

r'=argmax β
 

Step 4b. Determine the disassembly quantity of root r’ such that the demand 

for l’ is completely satisfied for period t. 

The amount of r’ to disassemble in order to satisfy the current period 

requirements of l’ is ',
',

', '

l t

r t

r l

x
λ

α

 
= 

  
. 

Update disassembly quantity accordingly, ', ', ',r t r t r tS S x← + . 

Step 4c. Update demand of leaves for period t.  

, , ', ,- *       l t l t r t r l

r

x for lλ λ α← ∀∑  
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Step 4d. If , any 0l tλ∃ >  then go to Step 4. Else go to Step 5.  

Step 5. Determine the excess demand for the current period and update the future 

periods’ demands.   

{ }

, , , ,
1 1 1

, 1 , 1 ,

max 0, *        and ,...,

max 0, -       and ,..., 1

R t k

l k r p r l l p

r p p

l k l k l k

EX S for l k t T

EX for l k t T

α λ

λ λ

= = =

+ +

 
= − ∀ = 

 

← ∀ = −

∑∑ ∑
 

Step 6. If t<T then go to Step 2. Else update disassembly plan according to lead 

times and stop.  

, ,  for 1,...,  and 1,...
rr t r t LTS S r R t T+← = =  
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APPENDIX B 
 
 
 

STEPS OF THE MYOPIC NC-FIRST AND NON-MYOPIC NC-FIRST 
ALGORITHMS 

 
 
 
 
Step 0 determines the leaf items which are going to be procured externally as their 

demands cannot be satisfied by disassembly because of the lead times of root items. 

Step 3 is the application of Integral Algorithm. Between Steps 4-6, withdrawal of 

root items involving non-common leaves are considered and between Steps 7-9, 

withdrawal of all root items are considered according to the excess demands of 

common leaves. Step 10 updates the demands and excess leaf items and at the end of 

planning horizon Step 11 shifts the schedule according to the lead times of root 

items and ends the algorithm.  

 

Step 0. Set t=0 and determine the leaves whose demands can be satisfied only by 

external procurement.  

Step 0a. Set t=t+1.       

For any { }1,...,l L∈ , if rLT t>  for all (r,l) pair with , 0r lβ > , then leaf item l 

cannot be obtained by disassembly. So it is externally procured.  

, ,l t l tEP λ←  for all l satisfying above.  

Repeat this step for the whole planning horizon and then go to Step 1.  

Step 1. t=0 

Step 2. Set t=t+1. 

Step 3. Evaluate total cost of the current period t by considering only disassembly 

option.   

Step 3a. Apply the integral algorithm’s first 4 steps for period t until all the 

requirements are satisfied and calculate ,l tEX  for  l∀ . 
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, , , ,
1

*   for 1,...,
R

l t r t r l l t

r

EX S l Lα λ
=

= − =∑   

Step 3b.Calculate the total relevant costs (disassembly + inventory holding) for 

the current period t.   

If myopic approach is applied, then total cost is, 

, ,* *r r t l l t

r l

TC TDC S IC EX= +∑ ∑  

If non-myopic approach is applied, then total cost is, 

, , , ,
1 1

* * * max 0,
T k

r r t l l t l l t l p

r l k t p t

TC TDC S IC EX IC EX λ
= + = +

   
= + + −        
∑ ∑ ∑ ∑  

Step 4. Selection ratio calculation.  

Step 4a. Initialize selection ratios as 

,
,    ( , )r l

r l

r

for r l
TDC

α
β = ∀  

Step 4b. Determine the non-common leaf and corresponding root pair giving 

the maximum selection ratio after recalculating them as below.  

,

,

,

       

0          

0        0

r l

r l

l t

if l NC

if l NC

if EX

β

β

∈


= ∉
 =

 

If , any 0r lβ∃ >  then go to step 7.  

Step 5.  

Step 5a. Decrease the disassembly quantity of root r which has the maximum 

,r lβ  by 1.  

, , 1r t r tS S← −  

Step 5b. Recalculate excess demands.  

, , , ,* -     for  l t r t r l l t

r

EX S lα λ= ∀∑  

Step 5c. Calculate the cost difference by considering external procurement of 

leaf items having , 0l kEX <  

If myopic approach is used, 
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{ }-
, , , ,( ) * ( ) * - ( )* -l t l l t l l t r l l r

l

EX IC EX EPC EX IC TDCα+∆ = + +∑   

If non-myopic approach is used, 

-
, , , ,

1 1

, , , , ,
1 1

* * max 0, ( ) *

-

- *( ) * max 0,( )

T k

l l t l l t l p l t l

k t p t

r
T kl

l l t r l l l t r l l p

k t p t

IC EX IC EX EX EPC

TDC

IC EX IC EX

λ

α α λ

+

= + = +

= + = +

    
 + − +          

∆=  
    

+ + + −           

∑ ∑
∑

∑ ∑

 

where { }max 0,x x
+ =  and { }max 0,x x

− = −    

Step 6. If 0∆ < then update external procurement quantity of leaves and excess 

quantity of leaves and go to step 5a.  

-
, , ,    for  l t l t l tEP EP EX l← + ∀  

,

,
, ,

0           0

    0
l t

l t

l t l t

if EX
EX

EX if EX

≤
= 

≥
 

Else update disassembly quantity of root r and excess demands. Also set , 0r lβ =  

and go to step 4b.  

, ,

, , ,

1

     
r t r t

l t l t r l

S S

EX EX for lα

← +

← + ∀
 

Step 7. Selection ratio calculation.  

Step 7a. Initialize selection ratios as 

,
,    ( , )r l

r l

r

for r l
TDC

α
β = ∀  

 Step 7b. Recalculate selection ratios.   

,

,

,

       

0          

0        0

r l

r l

l t

if l NC

if l NC

if EX

β

β

∉


= ∈
 =

 

If , any 0r lβ∃ >  then go to step 10.  

Else determine the leaf l and corresponding root pair r having the minimum 

selection ratio from the selection ratios greater than 0.  

Step 8.  

Step 8a. Decrease the disassembly quantity of root r by 1.  
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, , 1r t r tS S← −  

Step 8b. Recalculate excess demands.  

, , , ,* -     for  l t r t r l l t

r

EX S lα λ= ∀∑  

Step 8c. Calculate the cost difference by considering external procurement of 

leaf items having , 0l tEX <  

If myopic approach is used, 

{ }-
, , , ,( ) * ( ) * - ( )* -l t l l t l l t r l l r

l

EX IC EX EPC EX IC TDCα+∆ = + +∑  

If non-myopic approach is used, 

-
, , , ,

1 1

, , , , ,
1 1

* * max 0, ( ) *

-

- *( ) * max 0,( )

T k

l l t l l t l p l t l

k t p t

r
T kl

l l t r l l l t r l l p

k t p t

IC EX IC EX EX EPC

TDC

IC EX IC EX

λ

α α λ

+

= + = +

= + = +

    
 + − +          

∆=  
    

+ + + −           

∑ ∑
∑

∑ ∑

 

Step 9. If 0∆ < then update external procurement quantity of leaves and excess 

quantity of leaves and go to step 8a.  

-
, , ,    for  l t l t l tEP EP EX l← + ∀  

,

,
, ,

0           0

    0
l t

l t

l t l t

if EX
EX

EX if EX

≤
= 

≥
 

Else update disassembly quantity of root r, excess demands and set ,r lβ =0 and go 

to step 7b.  

, ,

, , ,

,

1

     

0

r t r t

l t l t r l

r l

S S

EX EX for lα

β

← +

← + ∀

=

 

Step 10. Determine the excess demand for the current period and update the future 

periods’ demands.  

{ }

, , , ,
1 1 1

, 1 , 1 ,

max 0, *        and ,...,

max 0, -       and ,..., 1

R t k

l k r p r l l p

r p p

l k l k l k

EX S for l k t T

EX for l k t T

α λ

λ λ

= = =

+ +

 
= − ∀ = 

 

← ∀ = −

∑∑ ∑
  

Step 11. If t<T then go to step 2. Else update the disassembly schedule according 
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to lead times and stop.  

, ,  for 1,...,  and 1,...
rr t r t LTS S r R t T+← = =  
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APPENDIX C 
 
 
 

ERROR DISTRIBUTIONS OF HEURISTIC APPROACHES COSTRUCTED 

IN CHAPTER 3 
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Figure A.1 Error distributions of Myopic NC-first algorithm for sample sets S2, S3,      
S5 and S6 for 4 periods planning horizon.  
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Figure A.2 Error distributions of Myopic NC-first algorithm for sample sets S2, S3, 
S5 and S6 for 6 periods planning horizon. 
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Figure A.3 Error distributions of Myopic NC-first algorithm for sample sets S2, S3, 
S5 and S6 for 12 periods planning horizon. 
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Figure A.4 Error distributions of Non-myopic NC-first algorithm for sample sets S2, 
S3, S5 and S6 for 4 periods planning horizon. 
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Figure A.5 Error distributions of Non-myopic NC-first algorithm for sample sets S2, 
S3, S5 and S6 for 6 periods planning horizon. 
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Figure A.6 Error distributions of Non-myopic NC-first algorithm for sample sets S2, 
S3, S5 and S6 for 12 periods planning horizon. 
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Figure A.7 Error distributions of Myopic algorithm for sample sets S2, S3, S5 and 
S6 for 4 periods planning horizon. 
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Figure A.8 Error distributions of Myopic algorithm for sample sets S2, S3, S5 and 
S6 for 6 periods planning horizon. 
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Figure A.9 Error distributions of Myopic algorithm for sample sets S2, S3, S5 and 
S6 for 12 periods planning horizon. 
 
 
 
 
 

S2-S3-S5-S6 (4 Periods)

0

5

10

15

20

25

30

O
pt

im
al

0<
er

r<
1

1<
er

r<
2

2<
er

r<
3

3<
er

r<
5

5<
er

r<
8

8<
er

r<
10

10
<e

rr<
15

15
<e

rr<
20

20
<e

rr<
30

30
<e

rr<
40

er
r>

40

exp2

exp3

exp5

exp6

 
 
Figure A.10 Error distributions of Non-myopic algorithm for sample sets S2, S3, S5 
and S6 for 4 periods planning horizon. 
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Figure A.11 Error distributions of Non-myopic algorithm for sample sets S2, S3, S5 
and S6 for 6periods planning horizon. 
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Figure A.12 Error distributions of Non-myopic algorithm for sample sets S2, S3, S5 
and S6 for 12 periods planning horizon. 
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Figure A.13 Error distributions of Myopic NC-first algorithm for sample sets S1, S7, 
S8, S11 and S12 for 4 periods planning horizon.  
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Figure A.14 Error distributions of Myopic NC-first algorithm for sample sets S1, S7, 
S8, S11 and S12 for 6 periods planning horizon. 
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Figure A.15 Error distributions of Myopic NC-first algorithm for sample sets S1, S7, 
S8, S11 and S12 for 12 periods planning horizon. 
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Figure A.16 Error distributions of Non-myopic NC-first algorithm for sample sets 
S1, S7, S8, S11 and S12 for 4 periods planning horizon. 
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Figure A.17 Error distributions of Non-myopic NC-first algorithm for sample sets 
S1, S7, S8, S11 and S12 for 6 periods planning horizon. 
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Figure A.18 Error distributions of Non-myopic NC-first algorithm for sample sets 
S1, S7, S8, S11 and S12 for 12 periods planning horizon. 
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Figure A.19 Error distributions of Myopic algorithm for sample sets S1, S7, S8, S11 
and S12 for 4 periods planning horizon. 
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Figure A.20 Error distributions of Myopic algorithm for sample sets S1, S7, S8, S11 
and S12 for 6 periods planning horizon. 
 
 



 110 

 

S1-S7-S8-S11-S12 (12 Periods)

0
2
4
6
8

10
12
14
16
18
20

O
pt

im
al

0<
er

r<
1

1<
er

r<
2

2<
er

r<
3

3<
er

r<
5

5<
er

r<
8

8<
er

r<
10

10
<e

rr<
15

15
<e

rr<
20

20
<e

rr<
30

30
<e

rr<
40

er
r>

40

exp1

exp1 i10

exp1 d10

exp1 i20

exp1 d20

 
 
Figure A.21 Error distributions of Myopic algorithm for sample sets S1, S7, S8, S11 
and S12 for 12 periods planning horizon. 
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Figure A.22 Error distributions of Non-myopic algorithm for sample sets S1, S7, S8, 
S11 and S12 for 4 periods planning horizon. 
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Figure A.23 Error distributions of Non-myopic algorithm for sample sets S1, S7, S8, 
S11 and S12 for 6 periods planning horizon. 
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Figure A.24 Error distributions of Non-myopic algorithm for sample sets S1, S7, S8, 
S11 and S12 for 12 periods planning horizon. 
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Figure A.25 Error distributions of Myopic NC-first algorithm for sample sets S4, S9, 
S10, S13 and S14 for 4 periods planning horizon. 
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Figure A.26 Error distributions of Myopic NC-first algorithm for sample sets S4, S9, 
S10, S13 and S14 for 6 periods planning horizon. 
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Figure A.27 Error distributions of Myopic NC-first algorithm for sample sets S4, S9, 
S10, S13 and S14 for 12 periods planning horizon. 
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Figure A.28 Error distributions of Non-myopic NC-first algorithm for sample sets 
S4, S9, S10, S13 and S14 for 4 periods planning horizon. 
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Figure A.29 Error distributions of Non-myopic NC-first algorithm for sample sets 
S4, S9, S10, S13 and S14 for 6 periods planning horizon. 
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Figure A.30 Error distributions of Non-myopic NC-first algorithm for sample sets 
S4, S9, S10, S13 and S14 for 12 periods planning horizon. 
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Figure A.31 Error distributions of Myopic algorithm for sample sets S4, S9, S10, 
S13 and S14 for 4 periods planning horizon. 
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Figure A.32 Error distributions of Myopic algorithm for sample sets S4, S9, S10, 
S13 and S14 for 6 periods planning horizon. 
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Figure A.33 Error distributions of Myopic algorithm for sample sets S4, S9, S10, 
S13 and S14 for 12 periods planning horizon. 
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Figure A.34 Error distributions of Non-myopic algorithm for sample sets S4, S9, 
S10, S13 and S14 for 4 periods planning horizon. 
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Figure A.35 Error distributions of Non-myopic algorithm for sample sets S4, S9, 
S10, S13 and S14 for 6 periods planning horizon. 
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Figure A.36 Error distributions of Non-myopic algorithm for sample sets S4, S9, 
S10, S13 and S14 for 12 periods planning horizon. 
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APPENDIX D 
 
 
 

ERROR DISTRIBUTIONS OF LOT SIZING HEURISTICS 
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Figure B.1 Error distribution of lot sizing heuristics for S1 with 200*r rK IC=  
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Figure B.2 Error distribution of lot sizing heuristics for S1 with 800*r rK IC=  
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Figure B.3 Error distribution of lot sizing heuristics for S1 with 3200*r rK IC=  
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Figure B.4 Error distribution of lot sizing heuristics for S4 with 200*r rK IC=  
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Figure B.5 Error distribution of lot sizing heuristics for S4 with 800*r rK IC=  
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Figure B.6 Error distribution of lot sizing heuristics for S4 with 3200*r rK IC=  
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Figure B.7 Error distribution of lot sizing heuristics for S5 with 200*r rK IC=  
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Figure B.8 Error distribution of lot sizing heuristics for S5 with 800*r rK IC=  
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Figure B.9 Error distribution of lot sizing heuristics for S6 with 200*r rK IC=  
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Figure B.10 Error distribution of lot sizing heuristics for S6 with 800*r rK IC=  

 
 


