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s 
ABSTRACT 

 
 

RADAR RANGE-DOPPLER IMAGING USING JOINT TIME-

FREQUENCY TECHNIQUES 

 

 

Akhanlı, Deniz 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Gülbin Dural 

 

 

April 2007, 89 pages 

 

 

Inverse Synthetic Aperture Radar coherently processes the return signal 

from the target in order to construct the image of the target. The 

conventional methodology used for obtaining the image is the Fourier 

transform which is not capable of suppressing the Doppler change in the 

return signal. As a result, Range-Doppler image is degraded. A proper 

time-frequency transform suppresses the degradation due to time varying 

Doppler shift. 

 

In this thesis, high resolution joint-time frequency transformations that can 

be used in place of the conventional method are evaluated. Wigner-Ville 

Distribution, Adaptive Gabor Representation with Coarse-to-Fine search 

algorithm, and Time-Frequency Distribution Series are examined for the 

target imaging system. 

 

The techniques applied to sample signals compared with each other. The 

computational and memorial complexity of the methods are evaluated and 



 v 

compared to each other and possible improvements are discussed. The 

application of these techniques in the target imaging system is also 

performed and resulting images compared to each other. 

 

Keywords: Inverse Synthetic Aperture Radar, Joint Time-Frequency 

Transform, Wigner-Ville Distribution, Adaptive Gaussian Representation, 

Time-Frequency Distribution Series  
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ÖZ 
 

 
TÜMLEŞİK ZAMAN-SIKLIK DÖNÜŞÜMLERİ KULLANARAK 

RADAR MENZİL-DOPPLER GÖRÜNTÜLEME 
 

 

 

 

 

Akhanlı, Deniz 
Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gülbin DURAL 

 

 

Nisan 2007, 89 sayfa 

 

 

Ters Yapay Ağız Aralıklı Radar, hedefin görüntüsünü oluşturmak için 

hedeften dönen işaretleri eş evreli olarak işler. Hedefin görüntüsü elde 

etmek için kullanılan geleneksel yöntem Fourier dönüşümüdür. Fourier 

dönüşümü dönen işaretlerdeki Doppler değişimini bastırma yetisine sahip 

değildir. Bunun sonucu olarak menzil-Doppler görüntüsü bozulur. Uygun 

bir zaman-sıklık dönüşümü zamanla değişen Doppler değişimi sebebiyle 

oluşan bozulmayı bastırır. 

 

Bu tez çalışmasında, geleneksel metodun yerine kullanılabilecek zaman-

çevrim dönüşümleri değerlendirilmiştir. Hedef görüntüleme sistemleri için 

Wigner-Ville dağılımı, Kabadan İnceye Arama ile Uyarlamalı Gabor 

Gösterimi ve Zaman-Çevrim Dağılım Sıralamaları incelenmiştir. 

 

Teknikler örnek işaretlere uygulanmış ve sonuçlar birbirleri ile 

karşılaştırılmıştır. Tekniklerin işlemsel ve hafızasal karmaşıklığı bulunmuş, 

sonuçlar karşılaştırılmış ve olası geliştirmeler önerilmiştir. Tekniklerin 



 vii 

hedef görüntüleme sistemindeki uygulamaları taklit hedef kullanılarak 

gerçekleştirilmiş ve elde edilen görüntüler birbirleri ile karşılaştırılmıştır.  

 

 

Anahtar Kelimeler: Ters Yapay Ağız Aralıklı Radar, Tümleşik zaman-

çevrim dönüşümleri, Wigner-Ville Dağılımı, Uyarlamalı Gabor Gösterimi, 

Zaman-Çevrim Dağılım Sıralamaları 
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All is the same, 

Time has gone by, 

Someday you come, 

Someday you’ll die 

Somebody has died 

Long time ago 

 
                 C. Pevease 
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CHAPTER 1 

 

 

INTRODUCTION 

 
 
 
 

1.1 Radar Imaging 

 

Radio Detection and Ranging (RADAR) is a system that uses radio waves 

to determine and map the location, direction, and/or speed of both moving 

and fixed objects such as aircraft, ships, motor vehicles, weather 

formations and terrain. It transmits electromagnetic energy to a target and 

receives the reflected signal from the target and clutter [1]. From the 

received signal, target related information such as location and velocity 

can be accurately measured. Therefore, there are many civilian and 

military areas where radar is extensively used [2]. 

 

In general, radar processes the received signal and extracts information 

about the target. The range to the target, i.e., the distance from the radar 

to the target measured along the radar line of sight, is estimated by 

measuring the time-delay between the transmitted signal and the received 

signal. For a moving target, the measurement of the target’s velocity is 

based on the well-known Doppler effect. If the radar-transmitted signal is 

at frequency f, the reflected signal from the moving target is subject to 

Doppler frequency shift from its transmitted frequency, f + fd. This 

frequency shift is induced by relative motion between the radar and the 

target. In the case where a target has a radial velocity v, the Doppler 



 2 

frequency shift is determined by the radial velocity of the target and the 

wavelength of the radar transmitted waveform [3]. 

 

Radar can achieve high resolution in range by employing a high bandwidth 

waveform to separate closely spaced radar scatterers on the target [4]. 

Moreover, by processing the received signal coherently, forming a 

synthetic aperture is possible as far as there exists a relative motion 

between the radar and the target [5]. Using this fact, resolution in the 

dimension perpendicular to the radar’s line of sight can be increased [6].  

 

Synthetic Aperture Radar (SAR) uses this technique in order to achieve 

the high resolution. In the SAR case, radar is moving to form the synthetic 

aperture. When the target is moving and the radar is stationary, Inverse 

Synthetic Aperture Radar (ISAR) uses the Doppler information from the 

different scattering mechanism to generate the high-resolution radar 

image. 

 

Conventional ISAR imaging, which uses Fourier transform as the imaging 

methodology suffers from the image blurring and degradation due to the 

time-varying Doppler shifts of the scatterers if the target is not moving 

smoothly [1]. Several motion compensation methodologies are introduced 

to reduce this blurring and degradation [7], [8].  

 

Another methodology to increase image quality is using joint time-

frequency techniques in place of the conventional transform based 

imaging technique.  The main advantage of the time-frequency transform 

is the instantaneous Doppler frequency shift can be calculated as a 

function of time and frequency. Therefore, image degradation due to 

Doppler shift of the scatterers are divided into different smaller time 

intervals and their effects are limited in the time interval specified by the 
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time resolution of the joint time-frequency transform [1]. In this thesis, two 

high-resolution joint time-frequency transforms are examined and applied 

to the ISAR imagery.   

 

 

1.2 Joint Time-Frequency Transforms 

 

The most important and fundamental variables in signal processing are 

time and frequency. Traditionally, signals have been studied either as a 

function of time or as a function of frequency [9]. Joint time-frequency 

representation, on the other hand, represents the signals in both of the 

domains. The signals with time dependent power spectrum can be 

represented more powerfully. 

 

The simplest form of the joint time frequency transforms is the Short Time 

Fourier Transform (STFT). In STFT, signal is divided into parts in time 

domain with a window function and Fourier transform of each part is taken. 

However, time and frequency resolutions in this representation are 

bounded by well known uncertainty principle. Therefore, obtaining 

satisfactory resolution results for signals in general is not possible [9]. 

 

Inverse of the sampled STFT is called Gabor expansion. Since the 

functions used while analysis and synthesis of STFT is not same, 

computing a dual function for Gabor expansion has to be studied. Using 

inverse Gabor expansion for infinite signals, generating a compact 

representation in joint time-frequency plane is possible with this method 

once the synthesis function is computed [10]. 

 

Wigner-Ville Distribution (WVD) possess high resolution in both time and 

frequency domains. However, if the signal under examination has more 

than one time or frequency components, this representation generates 
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oscillatory interference in between the parts of the signal. This effect is 

called cross-term interference and it has no physical meaning. However, it 

contributes to the useful characteristics of WVD such as instantaneous 

frequency, marginal time and frequency properties [1]. 

 

In order to remove the cross-term interference, several methodologies are 

proposed. Cohen’s class examines the WVD in ambiguity plane and 

applies a kernel function to remove the cross term interference [9]. 

Adaptive Gaussian Representation (AGR) adaptively determines the 

elementary functions to identify the auto-terms [11]. Time Frequency 

Distribution Series (TFDS), uses discrete Gabor transform coefficients to 

identify the auto-terms on WVD plane and removes the cross-terms that 

causes image degradation while leaving the necessary ones in the 

representation [12]. 

 

In this study, STFT, DGT, WVD, AGR, and TFDS are studied and 

explained. Application of the AGR and TFDS to radar imagery is 

conducted and results are presented. Time consumed by these two joint 

time-frequency transforms is also evaluated and compared. 

 

 

1.3 Outline of the Thesis 

 

Chapter 2 introduces ISAR image generation and related concepts. After 

defining range and cross-range resolution, direct radar imaging technique 

is briefly introduced. Conventional method used in the ISAR imaging is 

explored by deriving the Doppler resolution, and the mathematical form of 

radar return signal is derived and its relationship with Fourier transform is 

given. Also step frequency modulated radar and its simulation is basically 

given in chapter 2. 
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In chapter 3, joint time-frequency transforms are explained and evaluated 

using some sample signals. After introducing STFT, DGT is explained in 

detail. DGT is also one of the steps conducting TFDS. WVD and its 

properties are given in this chapter. Following WVD, two methodologies to 

remove the cross term interference is given, namely AGR and TFDS. 

 

In chapter 4, applications of joint time-frequency methodologies are 

evaluated. After giving several simple examples of conventional imaging 

methods, joint time frequency imaging methods applied to two target 

models with different motion profiles. Moreover, the analysis for measured 

data set for Boeing 727 (B727) type aircraft is conducted. Finally, 

comparison of methodologies is given in the last part of this chapter. 

 

Chapter 5 concludes the thesis. 
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CHAPTER 2 

 

 

INVERSE SYNTHETIC APERTURE RADAR  

IMAGING SYSTEM 
 

 

 

 

2.1 Introduction 

 

This chapter serves as a brief introduction to Inverse Synthetic Aperture 

Radar (ISAR) imaging.  

 

 

2.2 Basic ISAR Theory 

 

The radar sensors respond to electromagnetic waves which are scattered 

when the propagation of incident waves is disturbed by the presence of an 

object. The physical mechanism can be described as follows: the incident 

fields induce currents in the volume bounded by the object to generate 

scattered fields, subject to constraints imposed by boundary conditions 

[14]. Using this response, radar detects the location of the targets such as 

aircrafts, ships and ground vehicles.  

 

Range and cross-range resolution determines the quality of the radar 

image [15]. Range resolution can be defined as the ability of resolving 

point targets separated in range to the radar [13]. Two adjacent point 
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scatterers can be differentiated from each other if the reflected radar 

pulses from each can be received as two different pulses. Therefore, the 

radar range resolution is inversely proportional with the radar pulse width 

and directly proportional with the bandwidth of the radar pulse [14]. The 

expression for range resolution is given as [13] 

 

β2

c
rr =∆  

 

where β  is the waveform band width and c is the speed of light. 

 

Cross-range is the dimension perpendicular to the axis of the antenna. 

Therefore, cross-range resolution can be defined as the ability of 

identifying two different scatterers on the same range.  Cross-range 

resolution is dependent on the antenna beam width. Figure 2.1 explains 

the concept of range resolution. The scatterers located in the beam at the 

same time can not be identified as different scatterers.  

 

 

 

 
Figure 2.1: Cross-range resolution depends on antenna beam width. 

(2.1) 
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Radar image can be defined as the spatial distribution of reflectivity 

corresponding to the object [14]. In the most direct form, radar imaging 

can be accomplished by using range-gated, short pulse radar with a pencil 

beam antenna. The systematic scanning of the volume by the radar beam 

and the range gate, radar image can be obtained without further 

processing. However, there are several disadvantages of this approach. 

First of all, Antenna beam width is inversely proportional to the antenna 

aperture size. Therefore, in order to obtain high cross-range resolution 

with this method, very large antenna apertures must be used. In addition, 

cross-range resolution decreases as the range increases because beam 

width also increases with range. Finally, several electromagnetic 

interactions are not visible when only a part of the target is illuminated 

[14].  

 

Synthetic aperture processing is used in order to overcome those 

drawbacks of the direct imaging methods. Spatial resolution can be 

increased when results of many observations of the object at different 

frequencies and angles coherently combined [14]. Coherent processing 

maintains the relative phases of successive radar pulses. Thus, the phase 

from pulse to pulse is preserved and a phase correction can be applied to 

the returned signals to make them coherent for successive inter-pulse 

periods [1]. 

 

As long as there is a relative motion between the radar and the target, a 

synthetic aperture can be formed [1]. Synthetic Aperture Radar (SAR) 

uses synthetic processing techniques when the target is stationary and the 

radar is moving. Inverse Synthetic Aperture Radar (ISAR), on the other 

hand, does the same thing when the radar is stationary and the target is 

moving. ISAR uses the Doppler shift information to obtain the cross-range 

resolution. The differential Doppler shifts of adjacent scatterers of the 
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target can be observed; therefore, the distribution of the target’s reflectivity 

can be measured by the Doppler spectra [14]. The distribution of the radar 

reflectivity can be measured by taking the Fourier transform over the 

observation time interval [3].  

 

 

2.3 Conventional Range-Doppler Imaging 

 

The conventional imaging on range-Doppler plane is achieved using 

Fourier transform. In order to use Fourier transform properly, some 

restrictions must be applied. During the imaging time, the scatterers must 

remain in their range cells and their Doppler frequency shifts must be 

constant [14].  

 

Radar range resolution expression is given as Equation (2.1). Regardless 

of waveform, this relationship holds [13]. Cross-range resolution is 

improved using Doppler shifts as explained. Therefore, developing the 

expression for the Doppler resolution is beneficial. Doppler resolution 

refers to the ability of resolving scatterers moving at different radial 

velocity.  

 

Assume that radar transmits a pulse of the form, 

 

)2exp()( 0tfjtsT π=  

 

The return signal from the target which moves with a velocity rv  in the 

radial direction, will be delayed version of the transmitted signal [14]. The 

amount of delay will depend on the range of the target. 

 

(2.2) 
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))
)(2

(2exp()( 0
c

tr
tfjtsR −= π  

 

By taking the time derivative of the phase of the return signal, one may 

calculate the frequency of the signal [14]. 
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Therefore, Doppler shift induced by a single scatterer can be written as, 

 

λ
rr

D

v

c

vf
f

22 0 ==  

 

where λ  is the wavelength. Since rv  is much smaller than speed of light, 

0f  is much larger than Doppler shift induced. 

 

In order to derive the Doppler resolution, assume there are two identical 

scatterers at the same radial range but moving with different velocities, 1rv  

and 2rv . This time let the observation time is NT . Received signal will be 

the sum of two responses from two scatterers. In order to resolve the two 

scatterers, their response in frequency domain should be identifiable one 

by one. Therefore their frequency shifts due to Doppler shifts must be 

separated by an amount of  
NT

1
 as shown in Figure 2.2. Hence, this 

expression can be referred as Doppler resolution. 

 

N

d
T

r
1

=∆  

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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Figure 2.2: Fourier transform of received signal from two scatterers at same range with 

different velocities. 

 

 

 

The geometry of the radar imaging of an object is shown on Figure 2.3. 

 

 

 

 

Figure 2.3: Geometry of radar image of an object 

 

V 

R0 
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Ω 
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Assume at time t=0, a point scatterer on the target is located at (
00 , yx ). 

The range of the point scatterer at this time can be calculated as, 

 

2
1

000

2

0

2

00 ))sin(2( Θ++= RddRr  

 

where 2
1

2

0

2

00 )( yxd +=  and )arctan(
0

0
0 x

y
=Θ . 

 

Assume radar transmitted signal is a sinusoidal waveform with carrier 

frequency cf , that is, 

 

)2exp()( tfjts cT π=  

 

The returned baseband signal is [1], then 

 

)
2

2exp(),()( 0
00

c

r
fjyxts cR πρ=  

 

where ),( 00 yxρ  is the reflectivity of the point scatterer.  

 

If point scatterer has only a translational motion with a velocity of rv , at 

time t, the range becomes, 

 

tvrtr r+= 0)(  

 

If the point scatterer only has a rotational motion with angular rotation rate 

of Ω , the range at time t becomes, 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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2
1

00

2

0

2

0 ))sin(2()( tRddRtr Θ++=  

 

Assuming 
00 dR >> , Equation (2.11) can be rewritten as [1] 

 

)cos()sin()( 000 tytxRtr Ω+Ω+=  

 

Therefore, range of the point scatterer with complex motion becomes, 

 

)cos()sin()( 000 tytxtvRtr r Ω+Ω++=  

 

Hence, return signal from the entire target can be represented by 

integrating the differential point scatterer response over the entire spatial 

domain, [14] 

 

∫ ∫

∫ ∫

∞

∞−

∞

∞−

∞

∞−

∞

∞−
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r

r

)
))cos()sin((2

2exp(),()
)(2
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)
))cos()sin((2
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000
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πρπ
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The objective of radar image processing is to estimate the target’s 

reflectivity density function, ),( yxρ  [1]. If the )
)(2

2exp( 0

c

tvR
fj r+

− π  term is 

removed, ),( yxρ can be obtained by simply taking the inverse Fourier 

transform over the spatial dimensions.  Removal procedure of this phase 

term is called gross motion compensation. 

 

 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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The cross-range resolution in this case can be written as [1], 

 

T
rcr

Ω
=∆

2

λ
 

 

where T is the observation time. 

 

 

2.4 Step Frequency Modulated Radar 

 

There are several radar waveforms suitable for radar imaging, such as 

impulse waveform, Doppler-chirp waveform and stepped frequency 

waveform [15]. The simulations conducted for this study is done using 

stepped frequency waveform. Therefore, detailed explanation of the basic 

parameters of step frequency modulated radar and their relationship with 

radar resolution concept will be beneficial. 

 

Step frequency modulated radar transmitted pulse waveform can be 

represented as, 

 

)())(2cos()( 0 twtfiftsT ∆+= π  

 

Where 
0f  is carrier frequency, f∆ is frequency step size, i is the pulse 

index ranging from zero to number of pulses used, and window 

function )(tw  is defined as, 

 







≤≤−

=

otherwise

T
t

T

tw

,0

22
,1

)(  

 

(2.15) 

(2.16) 

(2.17) 
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The stepped frequency modulated radar transmits N bursts that are 

composed of M pulses over an integration time. Figure 2.4 shows the 

frequency of pulses on each bursts.   

 

 

 

 

Figure 2.4: Frequency of pulses over the integration time 

 

 

 

The bandwidth of the stepped frequency modulated radar can be derived 

from the explanation above. Since each frequency of each consecutive 

pulse in a burst is increased by an amount of f∆ , and there are M pulses 

in a burst, bandwidth of the radar becomes fM∆=β . Therefore range 

resolution offered by a stepped frequency modulated radar is, [1] 

 

2r
cr

M f
∆ =

∆  

 

(2.18) 
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In stepped frequency modulated radar, each consecutive pulse is 

transmitted after an interval, which is called Pulse Repetition Interval 

(PRI). Pulse Repetition Frequency (PRF) can be defined as 
PRI

PRF 1= . 

Therefore, image integration time, or observation time, can be calculated 

as the product of PRI, number of pulses, and number of bursts. As 

mentioned before, observation time directly affects the cross-range 

resolution. The formulation for cross-range resolution for step frequency 

modulated radar is 
MNPRI

rcr Ω
=∆

2
λ . Figure 2.5 illustrates the step 

frequency modulated inverse synthetic aperture radar imaging of a moving 

target. 

 

 

 

 

 

Figure 2.5: Stepped-frequency ISAR imaging of a moving target [9] 
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2.5 ISAR Data Simulation 

 

Man-made targets have a large variety of backscattering properties. 

Discontinuities are scatterers whose effective extends are relatively small 

in terms of the wavelength so that they essentially act as fixed point 

scatterers. Smooth extended surfaces are flat or rounded plates on the 

vehicle. If the surface happens to be illuminated at its broadside aspect, it 

will generate a huge return.  Cavity type reflectors like exhaust of an 

engine duct of a fighter aircraft, generates multiple delayed returns which 

spread in range and Doppler [16].  

 

The target modeled with a set of point scatterers or scattering centers, 

described by their reflectivity and locations in the target coordinate system.  

The term reflectivity has been used to refer to the amplitude and phase of 

the echo response at a given viewing angle for a given set of radar 

parameters. This coordinate system embedded on the target, its origin is 

the geometric center of the target. Although it can not represent the many 

real life situations, the point scatterer model is simple and helpful for 

studying algorithms of image formation, auto focusing, motion 

compensation and the effect of target motion on ISAR images. In the 

simulation radar is located at the origin of the Earth centre Earth fixed 

(ECEF) coordinate system. In other words, radar is considered stationary 

all the time as ISAR theory suggests. Figure 2.6 shows an aircraft model 

composed of point scatterers. 
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Figure 2.6: A point scatterer aircraft model 

 

 

 

The procedure of simulation for a stepped frequency ISAR raw data 

generation can be summarized as follows [15]; 

 

Step 1: Select radar parameters (center frequency, frequency step size, 

PRI, number of pulses, number of bursts, etc) 

 

Step 2:  Select a point scatterer model for the target. (Locations of the 

point scatterers and their individual reflectivities) 

 

Step 3: Select target motion parameters (initial position, velocity etc.) 
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Step 4: Transmit the radar signal repeatedly, update the target position, 

and calculate the return signal 

 

Step 5: Arrange the return signals into a matrix of size number of bursts by 

number of pulses 

 

Step 6: Perform the gross motion compensation 

 

After gross motion compensation step, the data can be applied to the 

radar imaging algorithms. 
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CHAPTER 3 

 

 

JOINT TIME-FREQUENCY TRANSFORMATIONS 

FOR RADAR IMAGING 

 

 

 

 

3.1 Introduction 

 

In this chapter, several joint time frequency transforms are introduced and 

discussed. Although it can not meet many necessities such as resolution, 

instantaneous frequency, etc, short time Fourier transform is examined in 

detail because it gives the basic understanding of joint time frequency 

analysis of signals. Inverse of sampled short time Fourier transform or 

discrete Gabor transform is discussed next. Discrete Gabor transform is 

one of the fundamental steps of conducting time frequency distribution 

series analysis of a signal, which is explained in detail in the last section of 

this chapter. After discrete Gabor transform, Wigner-Ville distribution is 

explained. Apart from time frequency distribution series, adaptive 

Gaussian representation is also examined in this chapter as a means of 

suppression of cross-term interference generated by Wigner-Ville 

distribution. 

 

Each time-frequency transform is exemplified with several sample signals. 

Sample signal no. 1 is composed of sum of three sinusoidal functions at 

frequencies 1 kHz, 2 kHz and 7.7 kHz. Sample signal no. 2 is sum of 

sinusoidal functions like sample signal no.1. Two impulses added to this 
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functions at 2 msec and 4 msec. Sample signal 3 is only two impulses with 

hit times of 2 msec. and 3.6 msec. All the three signals have 128 samples 

and sampling interval for these signals is 0.04 msec.  These signals are 

selected due to their extreme time-frequency characteristics. In addition to 

those three signals, sound of bat is also examined with some of the 

transformations explained. This signal has nonlinear frequency changes 

and has a sampling interval of 7 microseconds. The data is obtained from 

http://www-dsp.rice.edu/software/TFA/RGK/BAT/batsig.sig. Time plots of 

the sample signals and the bat signal are given in Figure 3.1 and 3.2, 

respectively. 

 

 

 
                                 (a)                                                                (b) 

 
(c) 

 

Figure 3.1: (a) Sample signal No.1 (b) Sample Signal No. 2 

(c) Sample Signal No. 3 
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Figure 3.2: Bat Signal 

 

 

 

3.2 Short Time Fourier Transform (STFT) 

 

In regular Fourier transform, the signal under examination is compared 

with the complex sinusoidal functions which spread into the entire time 

domain and therefore not concentrated in time domain. As a result of this 

fact, Fourier transform does not explicitly indicates how the signal evolves 

in time although this information is hidden in the phase term. In order to 

overcome this problem, one may decide to use functions which are 

localized in both time and frequency domains simultaneously instead of 

complex sinusoidal functions. The idea can be formulated as follows; [23] 

 

∫∫
−−== ττγτττγτ τ

detsdswtSTFT
jw

wt )()()()(),( **

,         (3.1) 

 

There are several ways to understand the Equation (3.1). The equation 

formulates a regular Fourier transform of the signal )()( *
ts −τγτ . Assuming 

the window function γ  has a short time duration, by moving the window 

function and taking Fourier transforms, one can obtain a rough idea of how 
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the signal’s frequency content changes with time. The Figure 3.3 depicts 

the idea.    

 

 

 

 

 

Figure 3.3: STFT operation. 

 

 

 

Alternatively, one can interpret the equation under examination as follows; 

the signal )(τs  is compared with a set of elementary functions  

{ }*( )expt jwγ τ τ− −  that are concentrated in both time and frequency 

domains. Suppose that the function )(τs  is centered at 0=t  and its 

Fourier transform is centered at 0ω = . If the time duration and frequency 

bandwidth of )(τs  are t∆  and w∆  then ),( wtSTFT  in (3.1) indicates a 

signal's behavior in the vicinity of [ ] [ ]wwtt wwtt ∆+∆−×∆+∆− ,,  [23].  
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Unfortunately, 
t∆  and 

w∆ are bounded to each other by the well-known 

uncertainty principle [23]. That is, 

 

2

1
≥∆∆ wt                                                            (3.2) 

 

The equality holds when )(tγ  is a Gaussian function. A function )(th  that 

satisfies the following differential equation also satisfies the uncertainty 

principle with equality [23], [28]. 

 

)()( tkthth
dt

d
−=  

 

A simple solution to this differential equation is, 

 

2

2)(
t

k

ceth
−

=  

 

The window function must be of a unit norm function in order not to disturb 

the signal under examination. This fact injects another constraint besides 

uncertainty principle, which helps to find out the constant c. This constraint 

can be formulated as follows; 

 

∫
∞

∞−

== 1)(
2
dtthEh  

 

Therefore, optimum window function to evaluate STFT is [28], 

 

2

24)(
t

k

e
k

th
−

=
π

 

 

(3.3) 

(3.5) 

(3.6) 

(3.4) 
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The square of STFT is named STFT spectrogram. It depicts a signal’s 

energy distribution over time-frequency domain. 

 

Synthesis problem for STFT can be analyzed as follows; 

 

Taking the inverse Fourier transform with respect to ),( wtSTFT  in 

Equation (3.1) yields, 

 

( )1 1
( , ) ( ) ( )

2 2

         ( ) ( ) ( ) ( ) ( )

j jSTFT t e d s t e d d

s t d s t

µω µ τ ωω ω τ γ τ τ ω
π π

τ γ τ δ µ τ τ µ γ µ

−= −

= − − = −

∫ ∫∫

∫
 

 

 

Let t=µ  then, 

∫= ωω
πγ

µω
detSTFTts

j),(
)0(2

1
)(  

 

Which implies given ),( ωtSTFT  for all ω  and t  the signal ( )s t  can be 

recovered completely. 

 

For the digital signal processing application, it is necessary to extend the 

STFT framework to  discrete time signal. Each Fourier transform in the 

STFT has to be replaced by the discrete Fourier transform. The resulting 

STFT is discrete in both time and frequency [23]. 

 

[ ] [ ] [ ]∑
−

=

−

−=
1

0

2

,
L

i

L
ni

ekiisnkSTFT
π

γ  

 

The sample signal no. 2, which is shown in Figure 3.1, is analyzed with 

two different window functions for the demonstration of STFT. Both 

(3.8) 

(3.9) 

(3.7) 
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windows are same length Gaussian windows with unit energy. However, 

their variances are different as shown in Figure 3.4. The first window has a 

small variance in time domain and as a result it has a large variance in 

frequency domain. Therefore, STFT computed using this window is 

capable of resolving the time changes better. The result of the STFT 

analysis is shown in Figure 3.5. The impulses can be identified from the 

figure. The second window has large time variance, therefore its time 

resolution is suffering. However, unlike Figure 3.5, Figure 3.6 has good 

frequency resolution and two sinusoidal functions can be identified 

precisely. 

 

 

 

 
 

Figure 3.4: Gaussian windows used in the computation of STFT 
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Figure 3.5: STFT of sample signal 2 with the 1st window function of Figure 3.4 

 

 

Figure 3.6: STFT of sample signal 2 with the 2nd window function of Figure 3.4 
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3.3 Discrete Gabor Transform (DGT) 

 

In 1946, Dennis Gabor suggested to represent a signal in time-frequency 

plane by means of functions that occupies the smallest possible area on 

the plane [29]. The idea of Gabor can be formulated as follows [23]: 

 

, , ,( ) ( ) ( ) jn t

m n m n m n
m n m n

s t C h t C h t mT e
∞ ∞ ∞ ∞

Ω

=−∞ =−∞ =−∞ =−∞

= = −∑ ∑ ∑ ∑  

 

where T  is time-sampling interval and Ω  is frequency-sampling interval. 

For almost any signal )(th , its time-shifted and frequency modulated 

version can be used as Gabor elementary functions. The existence 

condition of Equation (3.10) for arbitrary signal )(th  is [24], 

 

2T πΩ ≤  

 

2T πΩ = is called critical sampling and 2T πΩ ≤ is called over-sampling. 

 

If the set of Gabor elementary functions { },m nh is complete, there exists a 

dual function ( )tγ  such that the Gabor coefficients can be computed by 

the regular inner product rule [23]. That is, 

 

* *
, ,( ) ( ) ( ) ( ) ( , )jn t

m n m nC s t t dt s t t mT e dt STFT mT nγ γ − Ω= = − = Ω∫ ∫  

 

As it can be seen from Equation (3.12), Gabor coefficients can be 

computed using STFT in which dual function ( )tγ  used as window. Hence, 

discrete Gabor expansion is also named as inverse sampled STFT. 

However there are several difficulties related with the computation and the 

(3.10) 

(3.11) 

(3.12) 
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time-frequency localization of the dual function. Although for continuous 

time STFT analysis and synthesis functions are same, it is not the case for 

sampled STFT representation. Unfortunately, Balian-Low theorem states 

that , ( )m nh t  do not form an orthogonal basis unless ( )h t  is badly localized 

in time or frequency [1]. This means, unlike Fourier transform, dual 

function ( )tγ is not equal to ( )h t . Therefore, ( )tγ  is not necessarily 

localized both in time and frequency as ( )h t . As a consequence, Gabor 

coefficients ,m nC may not reflect the local behavior of the signal [23]. Figure 

3.7 shows a window and its dual function at critical sampling. Although the 

window is concentrated in frequency and in time, its dual is concentrated 

neither in time nor in frequency. 

 

 

 
Figure 3.7: Gaussian type curve is the analysis window. The other is its dual at the critical 

sampling. 
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Several methodologies were developed to implement discrete Gabor 

expansion, such as filter bank methods [20], Zak-transform based 

methodologies [21], [22], pseudo-frame approach [23]  and the approach 

introduced by Bastiaans [24],  [25] which is expanded by Wexler and Raz 

[26] and later by Qian and Chen [24] Following treatment explains the last 

methodology mentioned above. 

 

Substituting Equation (3.12) into right side of the Equation (3.10) yields, 

 

*
, ,( ) ( ') ( ') ( ) 'm n m n

m n

s t s t t h t dtγ
∞ ∞

=−∞ =−∞

= ∑ ∑∫  

 

In order to satisfy the Equation (3.13), the following equality must hold. 

 

*
, ,( ') ( ) ( ')m n m n

m n

t h t t tγ δ
∞ ∞

=−∞ =−∞

= −∑ ∑  

 

Applying Poisson-sum formula, the Equation (3.14) is reduced to single 

integration which is called Wexler-Raz identity [26]. 

 

00 0
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2 2where T  and 

jnT
h t t mT e dt m n

T

γ δ δ
π

π π

ΩΩ
− =

= Ω =
Ω

∫
 

 

 

For periodic discrete time signals, Gabor expansion can be defined by 

sampling the Equations (3.10) and (3.12) [23] 

 

(3.13) 

(3.14) 

(3.15) 
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Applying a similar procedure as done in the continuous case and applying 

discrete Poisson-sum formula one may obtain the discrete version of 

Wexler-Raz identity or the discrete version of Equation (3.15) [23], [26], 

 

1
2 / *

0

[ ] [ ] [ ] [ ]
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M
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where 0 n M≤ < ∆  and  0 < Nm≤ ∆ . The equation can be rewritten in the 

matrix form as following, 

 

*

1 1

1 (1,0,0....0)

p L L p

T

p

H γ µ

µ

× × ×

×

=

=
 

 

where p M N= ∆ ∆  and the matrix entries are generated by 

 

2 /( , ) [ ]

0 ,  0 ,  0

nMi LH m M n i h i mN e

m N n M i L

π−∆ + = +

≤ < ∆ ≤ < ∆ ≤ <

�

 

 

For critical sampling, solution of Equation (3.19) is unique if matrix H is 

nonsingular and as stated before it is not concentrated in both frequency 

and time domains. However, at oversampling the system is 

underdetermined and there exists more than one solution for ( )tγ  [24]. 

One can impose additional constraint for the selection of dual functions 

produced by the underdetermined system as follows [26], [24]. 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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Above constraint dictates a selection of a normalized ( )tγ  which is most 

similar to [ ]h i . Since, [ ]h i  is expected to be localized in time and 

frequency, the function ( )tγ  which is most similar to [ ]h i  is also localized 

and therefore Gabor coefficients reflects the local behavior of the signal. In 

[24], the dual function selected in this manner is called ( )opttγ  and the 

resulting representation of the signal by Gabor coefficients is called 

orthogonal-like Gabor representation. 

 

The detailed treatment to Equation (3.21) can be found at [26] and [24]. If 

matrix H is full row rank, resulting equation is [24], 

 

* 1( )T T

opt H HHγ µ−=  

 

which is the pseudo-inverse of matrix H. 

 

Once optimum dual function is found, it is rather trivial to compute the 

Gabor coefficients using Equation (3.12). Details of this computation can 

be found at [23], [24]. 

 

Figure 3.8 (a) shows an analysis function with length of 128 samples that 

is used in periodic Gabor expansion. Figure 3.8 (b) shows the dual of the 

function generated with intent to analyze a function of same length using 

periodic discrete Gabor expansion. The time sampling step is 16 and dual 

generated with critical sampling. It is clear from the figure that the dual 

function is not concentrated in time and frequency domains. Therefore, 

(3.21) 

(3.22) 
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Gabor coefficients of sample signal no. 2, which are the sampled STFT of 

the signal using the dual function as window, does not represent the 

signals local behavior as shown in Figure 3.8 (c). However, reconstruction 

using the Gabor coefficients is successful with a reconstruction error of 

-162.312 10 . 

 

 

 

 
    (a)                                                                  (b) 

 
(c) 

 

Figure 3.8: Periodic discrete Gabor analysis of sample signal no. 2 of Figure 3.1(b) at 

critical sampling, (a) analysis function, (b) dual function, (c) Gabor coefficients. 
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The same configuration as in the above example evaluated again with 

only change in oversampling ratio. Dual function for the same Gaussian 

analysis function is computed with doubling the number of the frequency 

bins. Figure 3.9 (a) shows the dual function in this case. This time the dual 

function is localized and as a result the sinusoidal terms and impulses can 

be identified at Figure 3.9 (b). 

 

 

 

 
(a) (b) 

 

Figure 3.9: Periodic discrete Gabor analysis of sample signal no. 2 of Figure 3.1(b) at 

double oversampling (a) dual function, (b) Gabor coefficients. 

 

 

 

When the same analysis carried for quadruple oversampling, the dual 

function and analysis function becomes nearly identical. The norm of their 

differences becomes as small as 0.0044. Since the time sampling steps 

kept constant, this refinement affects the frequency resolution. Figure 3.10 

(a) and (b) shows the results for the quadruple oversampling case. 
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(a) (b) 

 

Figure 3.10: Periodic discrete Gabor analysis of sample signal no. 2 of Figure 3.1(b) at 

quadruple oversampling (a) dual function, (b) Gabor coefficients. 

 

 

 

Figure 3.11: Bat signal using periodic discrete Gabor expansion with full resolution 

 

 

 

The expansion explained above is useful when analyzed signal has 

relatively small number of samples. Any finite signal that can be periodized 

is a natural candidate for periodic discrete Gabor expansion. However, 

there are many applications where the signal to be analyzed composed of 
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large number of samples. Since in periodic discrete Gabor expansion, 

analysis and dual functions must be of same size with the signal, it is not 

suitable for those signals. Following is the treatment for infinite length 

signal case. 

 

Let [ ]s i  be a finite signal with length sL  and synthesis window [ ]h i  with 

length L . One can construct following periodic sequences from these 

signals as following [24]. 
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These sequences are periodic with 0 sL L L= + . One can apply the periodic 

discrete Gabor expansion to these sequences. Moreover, discrete Wexler-

Raz identity may be directly applied to the periodized synthesis window. 
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If [ ]iγ� is defined as  
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then the Equation (3.24) can be rewritten as [24] 

(3.23) 

(3.24) 

(3.25) 
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where [ ]h i is defined as 

 

h[i]  0 i<L
[ ] [ (2 )] {
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After this treatment, discrete Wexler-Raz identity is completely 

independent from length of the analyzed signal. Again, one can write the 

Equation (3.26) in matrix form.  
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This time H  is a (2 / )M N L M L∆ − ∆ ×  matrix constructed by, 
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It is worth restating that above analysis is valid only if dual function is 

defined as in Equation (3.25). 

 

With L remaining finite, letting sL → ∞  thereby 0L → ∞ , the periodic 

discrete Gabor expansion defined for periodic sequences [ ],  [ ]s i h i�� and 

(3.26) 

(3.27) 

(3.28) 

(3.29) 
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[ ]iγ�  becomes discrete Gabor transform pair for infinite sequences in 

following form [24]. That is,  
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Equation (3.31) is called discrete Gabor Transform and Equation (3.30) is 

called inverse discrete Gabor transform. 

 

Similar to the periodic case, oversampled DGT has an orthogonal-like 

representation. The dual function that should be used in order to obtain 

this representation is [27], 

 

* 1( )T T

opt H HHγ µ−=  

 

The dual functions of two different types of signals are computed at 

different oversampling rates and the results are presented in Figure 3.12 

and 3.13. At Figure 3.12 (a), the double oversampling rate is used and the 

error (defined as the norm of the difference of the function and dual) 

between the function and its dual is computed as 0.1553. When the 

oversampling rate is 4, the function and the dual are visually identical (see 

Figure 3.12 (b)). The error between these two functions is calculated as 

0.0037. Figure 3.13 shows the results for a chirp-like signal to 

demonstrate the algorithm presented can be applied to signals other than 

Gaussians. Again, for quadruple oversampling, function and its dual are 

nearly identical. The error value for double oversampling is 0.32 while for 

quadruple oversampling it is 0.0103. Once the dual function is determined, 

computation of the Gabor coefficients is exactly the same as in the 

periodic Gabor expansion [24]. Therefore, no examples are given here. 

(3.30) 

(3.31) 

(3.32) 
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(a) (b) 

 

Figure 3.12: Dual functions of Gaussian type signal at (a) double and (b) quadruple 

sampling. 

 

 

 

 

 

 
(a) (b) 

 

Figure 3.13: Dual functions of chirp type signal at (a) double and (b) quadruple sampling 
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3.4 Wigner – Ville Distribution (WVD) 

 

The square of the Fourier transform is called power spectrum. Wiener - 

Khinchin theorem states that power spectrum can also be considered as 

Fourier transform of the auto-correlation function [23]. 

 

2
( ) ( ) ( ) jPS S R e dωτω ω τ τ−= = ∫  

 

where auto-correlation function ( )R τ  is defined by, 

 

*( ) ( ) ( )R s t s t dtτ τ= −∫  

 

This representation does not show how the signal’s frequency content 

evolves in time. Instead of Equation (3.34), one can define a time 

dependent auto-correlation function in order to obtain a power spectrum 

which is time dependent. That is, 

 

( , ) ( , ) jP t R t e dωτω τ τ−= ∫  

 

In Wigner-Ville distribution (WVD), time dependent auto-correlation 

function is defined as [23], [12], 

 

*( , ) ( ) ( )
2 2

R t s t s t
τ τ

τ = + −  

 

Therefore Wigner-Ville distribution is formulated as, 

 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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*( , ) ( ) ( )
2 2

jwWVD t s t s t e dττ τ
ω τ−= + −∫  

 

WVD satisfies time marginal and frequency marginal conditions. 

Moreover, it is a real valued function and it has instantaneous frequency 

property which shows the accuracy of the transform for observing the 

frequency content of a signal. The conditional mean frequency obtained by 

the WVD is equal to the mean frequency value at that time [28]. 

 

Cross-WVD is defined by using cross correlation function of the form of 

the Equation (3.36). 

 

*
, ( , ) ( ) ( )

2 2
jw

s gWVD t s t g t e dττ τ
ω τ−= + −∫  

 

Although WVD possesses many useful characteristics it has a main 

deficiency, cross-term interference. Let the signal to be analyzed 

composed of two signals, i.e. 1 2( ) ( ) ( )s t s t s t= + . Using Equation (3.37),  

 

{ }
1 2 1 2,

( , ) ( , ) ( , ) 2Re ( , )
s s s s s

WVD t WVD t WVD t WVD tω ω ω ω= + +  

 

Unfortunately, WVD of sum of signals is not equal to the sum of their 

respective WVDs. In fact Equation (3.39) suggests that each pair of auto-

terms creates a cross-term. Cross-terms reflect the correlation of the 

corresponding pair of auto-terms. Its location and rate of oscillation are 

determined by the time and frequency centers of auto-terms [23]. Although 

the cross-terms has have limited contribution to properties of WVD, it often 

obscures time dependent spectrum patterns [14]. 

 

(3.37) 

(3.38) 

(3.39) 
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Sample signal no.1, which is composed of three sinusoidal functions, is 

examined and result is shown on Figure 3.14. At the midpoint of auto-

terms oscillatory cross terms can be seen. The oscillation is in the time 

domain and the rate of oscillation depends on the separation of auto terms 

in the frequency domain. 

 

 

 

 
       Figure 3.14: WVD of sample signal no. 1, 

 

 

 

Sample signal no. 3 is also examined with WVD. This signal is composed 

of two impulses. Therefore, it occupies the entire frequency domain. At the 

midpoint of these impulses, cross term that oscillates in frequency can be 

seen at the Figure 3.15. 

 

 

The last example for WVD is shown on Figure 3.16. The signal under 

examination is the bat signal which is evaluated before using discrete 
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Gabor transform at Figure 3.11. The development in the resolution in both 

time and frequency domains is obvious. However, cross term interface 

makes the auto terms completely unidentifiable.  

 

 

 

 
  Figure 3.15: WVD of sample signal no. 3 

 

     
Figure 3.16: WVD of bat signal 
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The methods developed to reduce cross-term interference will be 

discussed next. 

 

 

3.5 Adaptive Gaussian Representation (AGR) 

 

One of the methods for suppressing cross-term interference in WVD is 

adaptive representation of the signal. Adaptive signal expansion is defined 

as [23], 

 

( ) ( )p p
p

s t B h t=∑  

 

Constant pB  shows the similarity between the elementary function 

( )ph t and the signal ( )s t  and can be calculated using regular inner 

product. 

 

( ), ( )p pB s t h t=< >  

 

The procedure of computing adaptive signal expansion is as follows: 

 

Step 1: Set 0p =  and 0( ) ( )s t s t=  Then find an elementary function among 

the set of possibilities that maximizes pB  in the sense of, 

 

2 2
max ( ), ( )

p
p p p

h
B s t h t= < >  

 

(3.40) 

(3.41) 

(3.42) 
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Step 2:  Compute the residual by, 

 

1( ) ( ) ( )p p p ps t s t B h t+ = −  

 

If the energy of the elementary signal is taken as unity, the energy of the 

residual signal is, 

 

2 2 2

1( ) ( )p p ps t s t B+ = −  

 

Step 3: Increase p  by one and repeat Step 1 and Step 2. 

 

These steps summarized in Figure 3.17. 

 

 

 

 
Figure 3.17: Computation procedure of adaptive representation. 

 

 

 

The energy of the residual signal converges to zero as number of 

iterations increases provided that there exists an elementary function that 

is not orthogonal to the residual signal [11]. In other words, signal ( )s t  can 

(3.43) 

(3.44) 
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be represented exactly by using infinite number of elementary functions 

[28]. This suggests that the energy of the signal can also be computed 

using, 

 

22

0

( ) p
p

s t B
∞

=

=∑  

 

The main task of the adaptive signal representation is to find a set of 

elementary functions { ( )ph t }, that most resemble the signal’s time-

frequency structures and at the same time satisfy the Equations (3.40) and 

(3.41) [23]. 

 

Since the elementary function will contain three parameters for time 

center, frequency center and time width, trying to find an analytical 

solution for the best elementary function may not be feasible. Therefore, 

an iterative approach can be used for finding the best representation of the 

signal [11], [28], [29]. 

 

The adaptive spectrogram decomposes the signal into sum of weighted 

elementary functions. One may apply WVD to the decomposed signal to 

better control the cross terms. That is, 

 

( , ) ( ( ))s p p
p

WVD t WVD B h tω = ∑  

 

Rearranging above equation yields, 

 

*( , ) ( , ) ( , )
p p qs p h p q h h

p p q

WVD t B WVD t B B WVD tω ω ω
≠

= +∑ ∑  

 

(3.45) 

(3.46) 

(3.47) 



 47 

The first group represents the auto-terms and the second group 

represents the cross-terms [23]. WVD satisfies the time and frequency 

marginal conditions. So, 

 

2

2 *

1
( ) ( , )

2
1 1

( , ) ( , )
2 2p p q

s

p h p q h h
p p q

s t WVD t dtd

B WVD t dtd B B WVD t dtd

ω ω
π

ω ω ω ω
π π ≠

=

= +

∫∫

∑ ∑∫∫ ∫∫
 

 

If the energy of the elementary functions are selected as unity, 

 

22 *1
( ) ( , )

2 p qp p q h h
p p q

s t B B B WVD t dtdω ω
π ≠

= +∑ ∑∫∫  

 

Using Equation (3.45), one can easily see that in Equation (3.49), the term 

corresponding to the cross-terms contains zero energy, 

 

*1
( , ) 0

2 p qp q h h
p q

B B WVD t dtdω ω
π ≠

=∑∫∫  

 

Therefore, a time dependent spectrum, namely Adaptive Spectrogram 

(AS) safely defined as, 

 

2
( , ) ( , )

pp h
p

AS t B WVD tω ω=∑  

 

Theoretically, the elementary functions used for the adaptive signal 

expansion can be very general. However, to better characterize the signal, 

it is desirable for the elementary functions to be localized in time and 

frequency simultaneously.  Because the Gaussian type signal achieves 

lower bound of the uncertainty principle, it is a natural choice for adaptive 

(3.48) 

(3.49) 

(3.50) 

(3.51) 



 48 

representation [23]. The adaptive representation that uses the Gaussian 

functions as elementary functions is called Adaptive Gaussian 

Representation [28]. So ( )ph t can be formulated as, 

 

2
1
4 ( )

2( , )
p

p
p

t T j tp

ph t e e

αα
ω

π

−
− Ω 

=  
 

 

 

where 
pT  is the time center, 

pΩ is the frequency center and 1
2 pα

 is the 

variance of the Gaussian function [28]. 

 

In the adaptive representation, the variance of the elementary function is 

adjustable. The time and frequency centers of the elementary function are 

not fixed. Adjusting the variance changes the duration of the elementary 

function, and adjusting the parameters ( , )p pT Ω  change the localization 

center. Changing the variance and the time-frequency center of the 

elementary function makes possible to represent the time and frequency 

behaviors locally.  

 

WVD of Equation (3.52) is [23], 

 

2
2 ( )

( , ) 2exp ( )
p

p

h p p

p

WVD t t T
ω

ω α
α

  − Ω 
= − − +  

    
 

 

Therefore, adaptive spectrogram becomes,  

 

2
2 2 ( )

( , ) 2 exp ( ) p

p p p
p p

AS t B t T
ω

ω α
α

  − Ω 
= − − +  

    
∑  

 

(3.52) 

(3.53) 

(3.54) 
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Determination of the time center, frequency center and the variance 

parameters in an optimum manner is the main problem of adaptive 

Gaussian representation. There are several solutions to this problem. 

Coarse to fine search [11], matching pursuit algorithm [29], hybrid 

matching pursuit algorithm [28] can be listed.  In this study only matching 

pursuit algorithm is examined. The details of the other algorithms and their 

comparison can be found at [28]. 

 

The maximization problem given in Equation (3.42) can be restated for 

Gaussian type elementary functions as following. 

 

αΩ
= < >

2 2

, ,
max ( ), ( )
p p p

p p p
T

B s t h t  

 

Instead of finding an analytical solution, the coarse to fine search 

algorithm tries to find the three variables that satisfies the Equation (3.55) 

in an iterative manner [11]. Expanding the inner product in the Equation 

(2.55) yields, 

 

2

, ,

1
4 ( )

2

( ) ( )

          ( )

p p p

p
p

p

T p p

t T j tp

p

s t h t dt

s t e e dt

α

αα

π

Ω

−
− Ω

Γ =

 
=  
 

∫

∫
 

 

Since the above equation is nothing but the Fourier transform of 

2( )
2( )

p
pt T

ps t e

α−
−

, once the parameters 
pα and 

pT  are selected, the third 

parameter pΩ  can be found as the frequency that contains largest Fourier 

transform coefficient. 

 

The steps used in finding optimal parameters given below, 

(3.55) 

(3.56) 
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Step 1: Select 
pα in a predetermined manner.  

 

Step 2: Change pT  throughout the signal and compute the Fourier 

transform of the product 2( )exp ( )
2

p

p ps t t T
α− 

− 
 

 until finding the largest 

magnitude Fourier transform coefficient.  

 

Step 3: Repeat steps 1 and 2. 

 

Once the elementary function which is most similar to the signal is found, 

coefficient pB  and remainder signal can be found and the procedure of 

computing adaptive spectrogram is iterated until the energy of the 

remainder signal is smaller than a predetermined limit. 

 

In the simulations, selection policy used for determining pα can be 

described as follows. pα is selected so that variance of the elementary 

function is equal to the duration of the residual signal and at each iteration 

step, 
pα value is increased to decrease the variance of the function to the 

half of the previous value. The iterations stopped when the energy of the 

remainder signal becomes smaller than 1% of the original signal [28]. The 

resulting two-sided adaptive spectrograms for sample signals no. 1, no. 2 

and no.3 and for bat signal are given in Figure 3.18. They have no cross-

term interference and good resolution. However, Figure 3.18 (c), which 

shows the AGR of the sample signal no. 3, has an interesting interference 

in between the pulses. While searching for elementary function, a large 

variance Gaussian which covers both impulses is considered as a best fit 

elementary function. Therefore those elementary functions are seen on 

the adaptive representation. If the search procedure starts with a larger 
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pα value, those interferences become weaker. The Figure 3.18 (d) 

simulates another extreme scenario for adaptive Gaussian representation. 

The frequency change in the signal can not be represented properly with 

the frequency modulated Gaussian elementary functions. One way to 

solve this problem is adding another parameter to elementary function to 

control the frequency change rate. However, no practical optimization 

methodology to compute the parameters is presented [23].   

 

 

 

 
  (a)                                                                 (b) 

 
    (c)                                                     (d) 

Figure 3.18: (a), (b), (c), (d) are AGR of sample signals no.1, no.2, no.3 and bat signal 

respectively 
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     (a)                                                                 (b) 

 
    (c)                                                                  (d) 

 

Figure 3.19: Convergence graphics for (a) sample signal no.1 (b) sample signal no. 2 (c) 

sample signal no. 3 and (d) bat signal
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3.6 Time Frequency Distribution Series (TFDS) 

 

If the WVD of a signal can be decomposed into a sum of localized and 

symmetric functions, it may be possible to suppress cross-term 

interference by selecting only the low-order harmonics [1]. This 

decomposition can be achieved using discrete Gabor transformation. The 

elementary functions used in the Gabor expansion are time and frequency 

shifted Gaussian functions [12]. From a theoretical point of view, two 

dimensional form of discrete Gabor transform is very suitable. However, 

there are several drawbacks such as computational expense, difficulty of 

the generation of the two dimensional dual function and requirement of 

knowing the WVD of the signal in advance [23]. Therefore, a natural 

choice would be one dimensional discrete Gabor transformation. The 

signal to be analyzed can be decomposed using 1D-DGT using Equation 

(3.10), 

 

, ,( ) ( )m n m n
m n

s t C h t
∞ ∞

=−∞ =−∞

= ∑ ∑  

 

* *
, ,( ) ( ) ( ) ( ) ( , )jn t

m n m n
C s t t dt s t t mT e dt STFT mT nγ γ − Ω= = − = Ω∫ ∫  

 

As discussed in chapter 2.3, orthogonal-like decomposition ensures that 

Gabor coefficients reflect the signal’s local behavior. Taking the WVD of 

both sides of Equation (3.57) yields,  

 

*
, ', ' , '

, ', '

( , ) ( , )s m n m n h h
m n m n

WVD t C C WVD tω ω=∑∑  

where,  

 

(3.57) 

(3.58) 

(3.59) 
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[ ]{ }

2 2
, '

' 1 '
( , ) 2exp ( ) ( )

2 2

'
                    exp ( ') exp ( ') ( ')

2

h h

m m n n
WVD t t T

n n
j m m T j m m T n n t

ω α ω
α

ω

+ + 
= − − − − Ω 

 

+ 
− Ω − − + − Ω 
 

 

 

Taking a closer look to Equation (3.59) will be beneficial. Equation (3.59) 

says that WVD is composed of localized and symmetric elementary 

functions of the form of Equation (3.60). Those elementary functions has 

two dimensional Gaussian envelope located in the midpoint of the time 

and frequency centers of ( )h t and '( )h t  which is 
'

2

m m
T

+
 in time and 

'

2

n n+
Ω  in frequency. They oscillate in time and frequency in a rate which 

is determined by difference of the time and frequency centers of ( )h t  and 

'( )h t . That is, WVD cross-terms oscillates in a rate of ( ')m m T−  in time 

and ( ')n n− Ω  in frequency Based on this analysis, Time Frequency 

Distribution Series (TFDS) is defined as  

 

0

( , ) ( , )
D

D d
d

TFDS t P tω ω
=

=∑  

 

where ( , )dP t ω  is the set of those , '( , )h hWVD t ω  which have a similar 

contribution to the useful properties and similar influence to the cross-

term. Because the impact to the cross term and as well as the useful 

properties are determined by the harmonic frequencies, ( ')m m T−  and 

( ')n n− Ω , ( , )dP t ω  can be considered as a set of , '( , )h hWVD t ω  in which 

' 'm m n n d− + − = . In other words, including the cross-terms around the 

auto-terms with a Manhattan distance of d  can control the cross-term 

contribution to the useful properties [23]. Therefore, ( , )dP t ω is, 

(3.60) 

(3.61) 
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*
, ', ' , '

' '

( , ) ( , )d m n m n h h
m m n n d

P t C C WVD tω ω
− + − =

= ∑  

 

For d = 0, 0( , )P t ω  is a two dimensional linear time and frequency invariant 

interpolation filter in the form of Equation (3.63). The filter input 
2

,m nC is a 

sampled spectrogram using a Gaussian function. The filter impulse 

response is a two dimensional localized Gaussian function, which is low-

pass and time and frequency invariant. Hence, 0 0( , ) ( , )TFDS t P tω ω=  is 

similar to the STFT spectrogram [12]. As D goes to the infinity, TFDS 

converges to the WVD. 

 

2 2 2
0 0 ,

1
( , ) ( , ) 2 exp ( ) ( )m n

mn

TFDS t P t C t mT nω ω α ω
α

∞

=−∞

 
= = − − − − Ω 

 
∑  

 

Discrete formulation for the TFDS is nothing but a sampling process if the 

signal under examination is band limited [23]. 

 

2
,

[ , ] ( , ) |   
2 2D k

t i t
L t

L L
DTFDS i k TFDS t w for kπ

ω= ∆ =
∆

≡ − ≤ <  

 

TFDS analysis is applied to all of the sample signals and the bat signal. 

Results show that, TFDS of order 3 or 4 gives the best results in terms of 

resolution and the cross-term interference.  

 

Figure 3.20 (a) shows TFDS of order 0 for sample signal no. 1. Figure 

3.20 (b) shows TFDS of order 3 for the same signal. Increasing D results 

in an improvement of the resolution of the representation since cross-

terms with lower oscillation rates contributes the desired characteristics of 

(3.62) 

(3.64) 

(3.63) 
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the WVD. However as the order increases, cross-terms show themselves 

on the plane as interference. As Figure 3.20 (c) indicates, contribution of P 

of order 5 contains heavy oscillatory cross term parts of WVD. Therefore, 

TFDS of order 5 also starts to posses those cross terms as demonstrated 

in Figure 3.20 (d). Although P of order 5 contains cross-terms it is still 

developing the resolution of auto terms unlike P of order 20 which is 

shown at Figure 3.20 (e). P of order 20 only contributes to the cross terms 

of WVD. As the order increases, TFDS approaches to the WVD. Figure 

3.20 (e) demonstrates this fact using sample signal no.1. All of the cross 

terms generated by the auto term pairs are clearly visible at the mid-point 

of the auto-terms. 

 

 

 

 
(a) (b)  

 

Figure 3.20: (a) TFDS of order 0, (b) TFDS of order 3 
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         (c)                                                            (d) 

 

          (e)                                                            (f) 

 

Figure 3.20 (cont’d): (c) P of order 5, (d) TFDS of order 5 

 (e) P of order 20 and (f) TFDS of order 20 for sample signal no. 1 

 

 

 

Sample signal no. 3 contains 2 impulses, unlike sample signal no. 1 which 

contains 3 sinusoidal functions. Figure 3.21 contains TFDS analysis 

results for sample signal no. 3. Results that are similar to the results of 

sample signal no. 1 are obtained.  
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Performance of TFDS is rather poor for sample signal no. 2 which is 

composed of two impulses and two sinusoidal functions. TFDS uses 

Gabor coefficients of the signal in order to determine the auto terms of the 

signal on the WVD plane. Since the Gabor coefficients are obtained using 

sampled STFT, they also inherit some of the drawbacks of STFT. As 

demonstrated in Figure 3.5 and 3.6, STFT can not give good time and 

frequency resolutions at the same time because the resolution of the 

window function in time and frequency domains are bounded by 

uncertainty principle. Figure 3.22 shows TFDS of order 0 and of order 3 for 

sample signal no. 2. Performance of AGR is much better in this case 

because the elementary functions used in AGR have variable variance.  

 

 

 

 
(a) (b)  

 

Figure 3.21: (a) TFDS of order 0, (b) TFDS of order 3 
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(b) (d) 

 

Figure 3.21: (cont’d) (c) P of order 15 and (d) TFDS of order 15 of sample signal no. 3 

 

 

 

 

 

(a) (b) 

 

Figure 3.22: (a) TFDS of order 0 and (b) TFDS of order 3 for sample signal no. 2 
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   (a)                                                                   (b) 

  
(c) 

 

Figure 3.23: (a) TFDS of order 0, (b) TFDS of order 4 and (c) TFDS of order 20 for the 

bat signal 

 

 

 

 

The bat signal successfully represented with TFDS as shown in Figure 

3.23. Better mapping of chirp type signals is possible with TFDS when 

compared with AGR.  
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CHAPTER 4 

 

 

APPLICATION OF JOINT TIME-FREQUENCY 

TRANSFORMS TO RADAR IMAGERY 
 
 
 
 
 

4.1 Introduction 

 
In this chapter, joint time frequency methodologies are applied to the 

stepped frequency radar imaging system. 

 

 

4.2 Radar Imaging Using Joint Time-Frequency 

Transforms 

 

The time frequency properties of the joint time-frequency transform are 

very useful to achieve superior resolution and unbiased estimation of the 

instantaneous frequency spectrum [9]. By replacing the conventional 

Fourier transform with a joint time frequency transform, two dimensional 

range-Doppler Fourier frame becomes three dimensional time-range-

Doppler image cube. The Doppler shift due to the complex motion of the 

target can be treated as time-invariant for the each frame encapsulated in 

the image cube [14]. Therefore, the necessity of a Doppler tracking 

algorithm is meaningless for a radar imaging system that uses joint time-

frequency transforms for target imaging. 
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Figure 4.1 explains the structure of a radar imaging system with joint time-

frequency transform.  

 

 

 

 
Figure 4.1: The structure of a radar imaging system with joint time-frequency  

transform [9] 

 

 

 

When compared with Figure 2.5, only difference is each range bin is 

processed with time-frequency transform. 

 

 

4.3 Results 

 

 

In following sub-chapters simulation results are given. 
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4.3.1 Single Stationary Point Scatterer 

 

The first example used in the simulations is the single stationary point 

scatterer located at x = 1000 m. and y = 0 m. in the image projection 

plane. The radar sensor is located at the origin of the coordinate system. 

This data set is used to verify the step frequency modulated radar 

simulation system. 

 

Range profiles are obtained by taking inverse Fourier transform of each 

burst as indicated in Figure 2.5. As it can be seen from Figure 4.5, for 

single stationary scatterer case, range profiles are composed of impulses 

at the range bin corresponding to the range of the scatterer. In order to 

obtain the image using conventional imaging, discrete Fourier transform of 

each range bin is taken. Since the discrete Fourier transform of the 

constant function is an impulse, we can identify the scatterer. 

 

 
 
 

 
 

Figure 4.2: Range profile of single stationary point scatterer 
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Figure 4.3: Surface plot of the radar image of single stationary point scatterer using 
Fourier transform 

 
 
 
 
 

 
4.3.2 Two Stationary Point Scatterers at Different Ranges 

 

Second data set generated is used for similar purposes as in the single 

point scatterer case. It contains two different stationary scatterers placed 

at different ranges on image projection plane. The first scatterer is located 

at x = 1000 m. and y = 0 m. and the second scatterer is located at x = 

1010 m. and y = 0 m.  

 

Similar to the single scatterer case explained in chapter 4.3.1 in this case 

two constant functions can be seen on range profiles. Therefore, two 

different scatterers can be identified on Figure 4.5 
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Figure 4.4: Range profile of two stationary scatterers at different ranges 
 
 
 
 
 
 

 
 

Figure 4.5: Conventional radar image of two stationary scatterers at different ranges 
 

 
 
, 
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4.3.3 Two Point Scatterers at Different Cross Ranges 

 
 
The third set is again composed of two scatterers as in 4.3.2. However, 

this time only one of the scatterers is stationary. The other scatterer 

rotates around the other one in order to verify if the system can generate 

the Doppler shift and therefore, cross-range resolution. The scatterers are 

separated 5 m. in image projection plane. 

 

In order to obtain two impulses as a result of a discrete Fourier transform 

operation, the waveform must be a sinusoidal function. This is the case for 

Figure 4.6. Phase shift caused by Doppler shift due to the rotation causes 

the change in the response of the rotating scatterer. This change triggers 

the sinusoidal fluctuation in the range profile as shown in Figure 4.6. As 

the rotation rate increases, frequency of the fluctuation of the range profile 

also increases. This causes much more separated image signature for the 

scatterers which can be observed by comparing Figure 4.7 and 4.9. 

However, as rotation rate increases, the rotating scatterer drift out from the 

initial range cell it is located. Moreover, time varying nature of the Doppler 

shift becomes more visible, which causes the degradation shown in Figure 

4.8. As a result, blur is observed at the rotating scatterer signature shown 

in Figure 4.9. 
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Figure 4.6: Range profiles of two scatterers at same range, separated 5m in cross-range, 
rotation rate is 3 deg/sec 

 
 
 
 
 
 

 
 

Figure 4.7: Conventional image of two scatterers at same range, separated 5m in cross-
range, rotation rate is 3 deg/sec 
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Figure 4.8: Range profiles of two scatterers at same range, separated 5m in cross-range, 
rotation rate is 18 deg/sec 

 
 
 

 
 

Figure 4.9: Conventional image of two scatterers at same range, separated 5m in  
cross-range, rotation rate is 18 deg/sec 
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4.3.4 Rotating Mig-25 Simulation 

 

The time-frequency transform imaging techniques are applied to the data 

provided by V.C. Chen at http://airborne.nrl.navy.mil/~vchen/data/. This 

data is composed of 128 point scatterers. The Stepped Frequency Radar 

used for the simulation operates at 9GHz and has a bandwidth of 

512MHz. For each pulse, 64 complex range samples were saved. The file 

contains 512 successive pulses. The Pulse repetition frequency is 15KHz. 

Basic motion compensation processing without polar reformation has been 

applied to the data without pulse compression. The target rotates with 10 

deg/sec. 

 

 

 

 

 

 
 

Figure 4.10: Range profile for Mig-25 simulation 
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Figure 4.11: Image of Mig-25 simulation using Fourier Transform 
 
 
 
 
 
 

The blurring effect of rotation is completely removed using AGR. This can 

be easily seen by comparing Figure 4.12 and 4.11. This is also the case 

for TFDS, for which the results are given in Figure 4.13. However, results 

obtained using TFDS has poorer image quality when compared to images 

obtained using AGR. 
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                                  (a)                                                                 (b) 

 
                                 (c)                                                                  (d) 

 
                                  (e)                                                                (f) 
 

 
Figure 4.12: Images of Mıg-25 generated using AGR  
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                                (a)                                                                  (b) 

 
                                 (c)                                                                 (d) 

 
                                  (e)                                                                (f) 
 

 
Figure 4.13: Images of Mıg-25 generated by using TFDS of order 3  
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4.3.5 Target with Translational Motion and Velocity 

Fluctuation 

 

This data set is generated using the point scatterer model shown in Figure 

4.14. Although the scatterers in the model can be represented in two 

dimensions, the simulation for the data set has done in three dimensions. 

The scatterer located at (0, 0) in the Figure is chosen as reference 

scatterer and initially it is located at (70, 1600, 100) in meters and the 

other scatterers of the model placed according to this reference scatterer. 

The radar sensor is located at the origin of the three dimensional 

coordinate system. The target moves with a speed of v=120 m/s at z=100 

m plane with an angle of 130 degrees to y-axis on this plane. A sinusoidal 

velocity fluctuation is added in order to add a small phase error to return 

signal. This will cause an additional degradation in the resulting 

conventional image. Figure 4.15 shows the location of the target in radar 

coordinate system and Figure 4.16 is the plot of the speed profile of the 

target during the observation time. 

 

The radar used in this simulation is assumed operating at 9 GHz and 

frequency step size of 2.35 MHz. 64 pulses are used in each bursts and 

256 bursts are used to generate a total observation time of 0.819 seconds. 
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Figure 4.14: Point scatterer model of an aircraft 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.15: Sketch of the initial position of the target 
 
 
 



 75 

 
 

Figure 4.16: Speed of the target vs. Time 
 
 
 

 

 

 

 
Figure 4.17: Range profile of target with fluctuating translational speed 
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Figure 4.18: Image of target with fluctuating translational speed using Fourier Transform 
 
 
 
 
 
 
 
 
 

 

 
                                  (a)                                                                (b) 

 
Figure 4.19: Images of target with fluctuating translational speed using AGR 
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                                  (c)                                                                (d) 

 
                                  (e)                                                                (f) 

 

Figure 4.19: (Cont’d) Images of target with fluctuating translational speed using AGR 
 
 
 
 
 
The conventional image obtained again suffers from blur as shown in 

Figure 4.18. Both TFDS and AGR images selected from the image cubes 

generated by these time-frequency transforms reduces the blurring as 

shown in Figure 4.19 and 4.20.  
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                                  (a)                                                                (b) 

 
                                  (c)                                                                (d) 

 
(e) (f) 

 

Figure 4.20: Images of target with fluctuating translational speed using TFDS of order 3 
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4.3.6 Measured Data Set 
 

 

In order to verify the algorithms presented here, the measured data set 

given in the web page http://airborne.nrl.navy.mil/~vchen/tftsa.html 

(accessed January 14, 2007) is used. The data is composed of the range 

profiles for a B727 aircraft. The stepped frequency radar used in the 

measurement has a center frequency of 9 GHz. Total number of bursts is 

128 and each burst contains 128 pulses with different frequencies. 

Bandwidth of each burst is 150 MHz. therefore range resolution of the 

image is 1 meter. No information on the effective rotation rate of the target 

and pulse repetition interval of the radar is provided. As a result, cross-

range resolution, sample times are not known. Therefore Doppler axes of 

the images generated are presented as cross-range samples. 

 

Figure 4.21 and Figure 4.22 show the range profiles and the conventional 

image respectively. As it can be seen from Figure 4.22, unlike simulated 

data sets, image is noisy. Although the systematic analysis of the system 

under noise is not evaluated in this thesis, some conclusions may be 

drawn. Reflections from body and tail parts of the aircraft are much more 

visible in this data set when compared with nose or wing parts.    

 

Figure 4.23 shows images obtained by using AGR. The body and the tail 

parts can be identified  from the figures as expected. Since the basis 

functions are adaptively selected in AGR, only the noise around the 

dominant responses is leaked into the images. Again the resolution is 

increased and blurring and degradation of the images are decreased 

visibly.   
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Figure 4.21: Range Profile of measured B727 aircraft  

 

 

 

 

 
Figure 4.22: Image of measured B727 aircraft using Fourier Transform 

 

 

 

 
Cross-range samples 
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       (a)                                                                 (b) 

 

   
       (c)                                                                 (d) 

 
Figure 4.23: Images of measured B727 aircraft using AGR 
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   (a)                                                                  (b) 

 

 
       (c) 

 

Figure 4.24: Images of measured B727 aircraft using TFDS of order 3 
 

 

 

 

Figure 4.24 shows images obtained by using TFDS.  When compared with 

AGR, TFDS  has again poorer image quality as in the simulated data 

case. Moreover TFDS image cube contains images which possess the 

noise similar to the conventional image case as shown in Figure 4.24 (a). 

Again TFDS spent more time than the AGR.   

 

  

Cross-range samples 

Cross-range samples Cross-range samples 
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4.4 Comparison of the Joint Time Frequency Imaging 

Methods 

 
Both TFDS and AGR are successful compared to the conventional 

algorithm when image quality is considered. The effect of time-varying 

Doppler effect and blurring are completely removed from the image. 

However, AGR implementation yields better results than TFDS of order 3 

and 4. As indicated in [9], TFDS gives satisfactory resolution but it is far 

away from the image quality of AGR. 

 

Imaging times for conventional method, AGR and TFDS of order 3 are 

given for rotating Mig-25 and target with translational motion simulations in 

table 4.1. 

 
 

Table 4.1: Imaging times for simulations 
 
 
 Conventional 

Imaging 
AGR TFDS (3) 

Mig-25 0.016 95.073 581.314 
Target with 
Translational 
motion 

0.009 26.891 367.224 

Measured Data 
Set 

0.009 24.475 410.288 

 
 
 
Although their superior performance of image quality, time-frequency 

transform methodologies consume times to generate image cubes that 

can not be compared with the conventional methodology. There are 

several propositions to reduce the time of AGR [28], [29] but they can not 

achieve the speed of Fourier transform.  
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Besides its lower image quality, TFDS consumes huge amount of time 

when compared with AGR. Although the algorithm has some improvement 

opportunities like using look-up tables for elementary functions or using 

the symmetry of elementary functions [9], basically those methodologies 

does not reduce the computational complexity of the algorithm.  

 

This comparison shows that AGR is superior to TFDS. 
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CHAPTER 5 

 

 

CONCLUSIONS 

 

 

 

Inverse Synthetic Aperture Radar (ISAR) is a two-dimensional imaging 

radar. It uses target’s own motions to retrieve range-Doppler information of 

targets. The distribution of the reflectivity mapped on range-Doppler plane 

is referred to as an ISAR image. In this work, conventional imaging 

method and two advanced joint time-frequency imaging methods are 

investigated. In order to extract the Doppler shift from the raw data, the 

fastest and simplest method is conventional Fourier transform 

methodology. However, the efficiency of the methodology drastically drops 

when the target under examination has relatively fast and complex motion 

profile. The time-varying nature of the Doppler shift begins to possess 

more and the scatterers start to drift out from their initial range cells under 

complex motion circumstances. More complex motion compensation 

schemas must be applied to the data in order to obtain better image 

quality using Fourier transform. 

 

Image quality can be improved highly using joint time frequency 

transforms instead of Fourier transform and the need for complex motion 

compensation algorithms totally disappear. Two different joint time-

frequency techniques are implemented for this purpose, namely Adaptive 

Gaussian Representation (AGR) and Time Frequency Distribution Series 

(TFDS). 
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TFDS decomposes the signal into elementary functions using Discrete 

Gabor Transform (DGT). Coefficients of DGT hold the information of the 

auto-terms of the signal in the form of modulated Gaussian signals. 

Therefore, auto-terms and the cross-terms of the WVD can be controlled 

on WVD plane. Therefore, obtaining a high-resolution time-frequency 

transform which is free of cross-term interference becomes possible. 

 

AGR with Coarse-to-Fine search methodology finds the elementary 

functions by adaptively searching the signal for the best fitted elementary 

function. Since the elementary functions that are adaptively computed has 

variable variance, this representation gives the best image quality. 

However, signals with variable frequency content like chirp-type signals, 

can not be represented effectively with this representation. 

 

Application of the radar imagery shows the main drawback of these two 

methods. Although superior image quality, time spent by the AGR and 

TFDS has an order that can not be compared with the conventional 

methodology. Especially TFDS has unacceptable processing time. 

Therefore, possibilities to reduce the computational complexity of these 

two representations must be examined. The methods to reduce the time 

for TFDS is given in [9], however, those recommendations do not reduce 

the computational complexity of the implemented algorithm. Therefore the 

upper bound for the TFDS algorithm is still the same after those 

improvements. To implement AGR more effectively, developed 

methodologies sacrifices from the image quality [29], [28]. 

 

Adaptive joint time-frequency transforms can also be applied to the motion 

compensation algorithms for the conventional imaging methodology. As a 

future work, analysis of image quality and processing time for such a 

configuration for imaging radar would be interesting.  
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