THE IMPLEMENTATION OF A DIRECT DIGITAL SYNTHESIS BASED
FUNCTION GENERATOR USING SYSTEMC AND VHDL

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

UGUR KAZANCIOGLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2007

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan OZGEN
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. ismet ERKMEN
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Murat ASKAR
Supervisor

Examining Committee Members

Assist. Prof. Dr. Haluk KULAH (METU, EE)
Prof. Dr. Murat ASKAR (METU, EE)
Assist. Prof. Dr. Behzat SAHIN (METU, EE)
Assist. Prof. Dr. Cagatay CANDAN (METU, EE)

Irfan OKSAR (M.Sc.) (ASELSAN Inc.)

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Ugur KAZANCIOGLU

Signature

il

ABSTRACT

THE IMPLEMENTATION OF A DIRECT DIGITAL SYNTHESIS BASED
FUNCTION GENERATOR USING SYSTEMC AND VHDL

KAZANCIOGLU, Ugur
M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Murat ASKAR

February 2007, 101 pages

In this thesis, a direct digital synthesis (DDS) based function generator design
module is presented, defined and implemented using two digital hardware
modeling/design languages namely SystemC and VHDL. The simulation,
synthesis and applicability performances of these two design languages are
compared by following all digital hardware design stages. The advantages and
open issues of SystemC based hardware design flow are emphasized in order to

be a reference for future studies.
SystemC initially appeared as a modeling language like HDL design languages.

In the last years, SystemC gained popularity also as a hardware design language

and it is expected to become alternative to traditional design languages. Using a

v

single platform for hardware modeling, design and verification reduces the spent

time and cost.

The designed DDS function generator module supports standard [2C and UART
communication protocols and it is in ready to use format for digital applications.
In this thesis, the function generator module VHDL code is implemented into

Xilinx FPGA and verified on the hardware platforms.

Keywords: SystemC, VHDL, SystemC Synthesis, Direct Digital Synthesis,
Function Generator, FPGA

0z

DOGRUDAN SAYISAL SENTEZ TABANLI FONKSiYON URETECININ
SYSTEMC VE VHDL KULLANILARAK GERCEKLENMESI

KAZANCIOGLU, Ugur
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. Murat ASKAR

Subat 2007, 101 sayfa

Bu tezde SystemC ve VHDL isimli tasarim ve modelleme dilleri kullanilarak
dogrudan sayisal sentez tabanli fonksiyon iireteci modiilii sunulmus, tanimlanmis
ve uygulanmistir. Bu iki tasarim dilinin simiilasyon, sentez ve uygulanabilirlik
performanslar1t tim sayisal donamim tasarim evreleri takip edilerek
karsilastirilmigtir. SystemC tabanli donanim tasarim akiginin avantajlari ve acik

konulart ileriki caligsmalar i¢in referans olmasi amaciyla vurgulanmisgtir.
SystemC ilk olarak HDL tasarim dilleri gibi modelleme dili olarak ortaya

cikmistir. SystemC son yillarda donanmim tasarim dili olarak da popiilerlik

kazanmis ve geleneksel tasarim dillerine alternatif olmasi beklenmektedir.

vi

Donanim modelleme, tasarim ve dogrulama ig¢in tek bir platform kullanilmasi

harcanan zaman ve maliyeti azaltmaktadir.

Tasarlanan fonksiyon {iireteci modiilii standart 12C ve UART haberlesme
protokollerini desteklemektedir ve sayisal uygulamalar icin kullanima hazir
formattadir. Bu tezde fonksiyon iireteci modiilii VHDL kodu Xilinx FPGA icine

uygulanir ve donanim platformlarinda dogrulanir.

Anahtar kelimeler : SystemC, VHDL, SystemC Sentezi, Dogrudan Sayisal
Sentez, Fonksiyon Ureteci, FPGA

vii

ACKNOWLEDGMENTS

I would like to express my deepest sense of gratitude to my supervisor Prof. Dr.

Murat ASKAR for his guidance and invaluable ideas.

I am deeply grateful to ASELSAN Inc. for providing tools and other facilities
throughout this study.

I would like to forward my appreciation to all my friends and colleagues who

contributed to my thesis with their continuous encouragement.

I would also like to express my profound appreciation to my family for their

continuous support.

viii

TABLE OF CONTENTS

ABSTRACT iv

(0Y/ vi

ACKNOWLEDGMENTS viii

TABLE OF CONTENTS ix

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xvi
CHAPTER

1. INTRODUCTION 1

2. DESIGN LANGUAGES AND DDS FUNCTION GENERATORS.........ce.... 9

2.1 DESIGN LANGUAGESoooo ottt ettt e e seaaee s 9

211 VHDL ..ottt ettt s e 9

2.1.2 SYSTEMUC ...ttt 10

2.1.3 COMPARISION OF SYSTEMC AND VHDL SYNTAXES 11

2.2 DDS FUNCTION GENERATOR........cooooiiiiiiieeie et 14

2.2.1 DIRECT DIGITAL SYNTHESIZERScccoeiioiieiieeeeeeeeeeeieeene 17

2.2.2 INTER-INTEGRATED CIRCUIT (I2C) BUScooviieeireeeeeeeeene 22

2.2.3 UART .ottt ettt s et e st e e e st ae s 24

2.3 COMMERCIAL DDS ICS AND IP MODULESccooovevviiiieecieeenene 25

3. DESIGN OF DDS FUNCTION GENERATOR 29

3.1 FOLLOWED SYSTEMC AND VHDL RTL DESIGN FLOWS 29

X

3.2 SYSTEMC TO HARDWARE FLOWcccccootriiiiininienininieneeecenene 32

3.3 DDS FUNCTION GENERATOR DESIGN SPECIFICATIONS 37

3.4 SOFTWARE AND HARDWARE RESOURCES USED IN DESIGN39

3.5 DDS FUNCTION GENERATOR MODULESccccceoviiiiniiiiinne 41

3.5.1 DDS MODULE DESIGNcccccoctriiininiiiinineineeneneeie e 42

3.5.2 I2C SLAVE RECEIVER MODULE DESIGN........cccccecevtreeniennenne 44

3.5.3 UART RECEIVER MODULE DESIGN.........ccccccociiviiininiiennne. 46

3.5.4 MAIN CONTROLLER MODULE DESIGN.......c.ccccceeenineeniennenne 50

3.5.5 FUNCTION GENERATOR MODULE DESIGN...........cccceeueunene. 51

3.6 INTEGRATION OF DESIGN MODULES.ccccccvvininiiiniiicene 53

4. IMPLEMENTATION OF DDS FUNCTION GENERATOR............cccc0eveu. 55

4.1 TEST AND VERIFICATION METHODOLOGYccccocevetenenirvrenennenne 55

4.2 DESIGN IMPLEMENTATION USING SYSTEMCccccceiviiiininnnne 59

4.2.1 DDS WAVEFORM GENERATION TESTccccocoiiiiiniiiiinn. 59

4.2.2 12C BUS COMMUNICATION TESTc.coccenieieeneeieeneeeceeenes 61

4.2.3 UART COMMUNICATION TEST.......ccecemirieienieieeneercvenees 63

4.2.4 MAIN CONTROLLER OPERATION TEST......ccccccevvevinierirennnn. 66

4.2.5 VERIFICATION OF THE WHOLE DESIGN........cc.cccccevenieninennnn. 68

4.3 DESIGN IMPLEMENTATION USING VHDLccccoccviiiiiiiiniininnne 71

4.3.1 VERIFICATION IN SOFTWARE ENVIRONMENTS................... 71

4.3.2 VERIFICATION ON HARDWAREccccoiriiiniiiiiniecene. 74

4.4 SYNTHESIS OF UART BAUD GENERATOR SYSTEMC CODE........ 81

4.5 COMPARISON OF SYSTEMC AND VHDL DESIGN FLOWS 83

5. DISCUSSION AND CONCLUSION 86

REFERENCES 91
APPENDICES

A. STRUCTURE OF CD-ROM DIRECTORY 95

B. REFERENCE DESIGNS 96

B.1 ANALOG DEVICES ADO9833coiiiiiiiiiieeeeneee e 96

B.2 ANALOG DEVICES ADO9959ccooiiiiiiiiiiiiiieeeeee e 97

B.3 XILINX NUMERICALLY CONTROLLED OSCILLATOR V1.0.3....... 98

B.4 XILINX DDS COMPILER V1.0coooiiiiiiiiiniiiiniinieeneneeene e 99

C. HARDWARE TEST TOOLS 100
C.1 MEMEC P160 ANALOG MODULEccccoeiniiiiiiiicnereeeeenne 100
C.2 MEMEC FX LC DEVELOPMENT BOARD......c.ccccccviviiiiiniinicniennnen. 101

X1

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 4-1
Table 4-2
Table 4-3
Table A-1

LIST OF TABLES

Comparison of Some Basic SystemC and VHDL Syntaxes........... 12
Comparison of SystemC and VHDL Full Adder Codes................. 13
Commercial DDS and NCO Integrated Circuitsccccceeeuneeee. 27
Commercial DDS and NCO Intellectual Properties 28
DDS Function Generator Design Specifications Part-1.................. 37
DDS Function Generator Design Specifications Part-2.................. 38
Used Software for Design and Verification........c..ccccceevvieeeennneeen. 39
Used Hardware for Verificationccccceevvieeerniiieeinnieccennineen. 40
12C Sub-Address Definitionsccooveeeeiniieeerniiieeenieeeeeeeeen 46
UART Shift Register Data Definitionscccevevveeennieeennnneen. 49
UART Baud Rate Selection Table..........cccceovviieirniieiinniieienneen. 50
Waveform Property Selection Table...........ccoocveeiiiiieiinnicinnnnneen. 52

Device Utilization Summary for Function Generator VHDL Code 75

Device Utilization Summary for Translated VHDL Code.............. 82
Device Utilization Summary for Hand-written VHDL Code 83
Structure of CD-ROM Directoryc.ceeeeiiieereniiieeeeiiee e 95

X1l

Figure 1-1
Figure 1-2
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 4-1
Figure 4-2

LIST OF FIGURES

Modern System Design FIOWccccooviiiiiiiiiiiiii e 2
Traditional HDL and SystemC Digital Hardware Design Flows...3
Basic DDS Function Generator Block Diagram.......................... 15
Digital Staircase Approximation of A Sinusoid...........cccecceeeen. 17
Basic DDS Data Flow Diagram...........cccoecveeiiniiieiiniieeeiniieeene 18
12C Bus Connection Diagram.............ccceeecueeeeriiieeeniieee e 23
12C Bus Serial Communication Timing...........ccccceeevveveeeenieeeene 24
RS232 Serial Communication Timing.........ccceeceeeerniieeennieeeene 25
Followed SystemC and VHDL RTL Design Flows 30
SystemC and Traditional Hardware Design Flows...................... 32
SystemCrafter SC’s SystemC to Hardware Flow........................ 34
Four Quadrant of Sine Functioncevvvvvieeviiiiiiiieneeneeeeenen. 42
First Quadrant Samples of Sine Waveccceeceeeiiniieeiinenen. 43
Data Flow Diagram of Designed DDS Module............cccc.ecee.. 43
Sine Wave COnStruCtioN........c.vueeeriieeeerniieeeiieeeeeeie e eieee e 44
12C Bus Parameter Reception Formatccccovviiiiieenienenn. 45
UART Receiver Modules’ Data Flow Diagram...........ccccc.eeee... 47
RS232 Data and Clock Synchronization.............ccceecueeeeniennn. 48
Configuration Parameter Reception Order...........cccoocveeeeniennn. 48
Function Generator Module Internal Processes.............ccoceeeuee.. 51
Function Generator Block Diagram.............cceeoeeiiiniieiiininnenn. 54
Test Environment for Design Moduleccccceeiiniiiiiinenen. 55
Verification Flow for SystemC Based Designs..........ccccceeueeeen. 56

Xiii

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

Figure 4-9

Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-21
Figure 4-22
Figure 4-23
Figure 4-24
Figure 4-25
Figure 4-26
Figure 4-27
Figure 4-28
Figure 4-29
Figure 4-30
Figure 4-31
Figure 4-32
Figure 4-33

Verification Flow for HDL Based Designs..........ccceecveeeeiieennn. 57

ModelSim Verification FIOW........c.c.ccooviiniiiiniiiniiiiiiciicee, 58
DDS Module Test Environment............ccooceeevveeniieeenieennineennen. 59
DDS OPEeTationccuveeieieieiieeeiiieeeeeiiee e et eeeeieeeeeeeeeeeeenieee e 60
12C Slave Receiver Module Test Environment............cccoceeeee.e. 61
12C Bus Data and Clock Synchronization............ccceecveeeenueeenn. 62
Configuration Data Reception over I2C Bus.........ccccccceeeinieeenn. 62
UART Receiver Module Test Environment..........ccccccceeennieeennn. 63
UART Data and Clock Synchronization.............ccccoecuveeiinnierenn. 64
Configuration Data Reception over UARTcccovcveeiinieien. 64
UART Baud Generator Module Test Environment..................... 65
UART Synchronization Clock Signal Generation....................... 66
Main Controller Module Test Environment.............ccccceeeeueeenneen. 66
Main Controller Operation (Part-1)cccceeeiiiiiniiiiiiiienee 67
Main Controller Operation (Part-2)ccccceeeoiiiieniieeeeiieeene 67
Function Generator Test Environment..........ccccccoecveviiiinnieennen. 68
Wave Generation Using [2C Interface...........cccoeceveeeenieneennen. 69
Wave Generation Using [2C Interface in Detail.......................... 69
Wave Generation Using UART Interfacecccceeeeieierennnen. 70
Wave Generation Using UART Interface in Detail..................... 70
Sine Wave Generation Simulation (Using 12C Bus) 72
Square Wave Generation Simulation (Using I12C Bus) 72
Triangular Wave Generation Simulation (Using 12C Bus).......... 73
Ramp Wave Generation Simulation (Using I12C Bus)................. 73
Sine Wave Generation Simulation (Using UART)...................... 74
Xilinx’s Code-to-FPGA Design Flow.........cccccoviiiiiinieiinnnneen. 77
Hardware Test Setupcccveeeiiiiiieiiiiieeeiieee e 78
Function Generator Control Software with UART Interface........ 79
Sine Wave Generation on Hardware...........c.occcceevniieiininicennnne. 80
Square Wave Generation on Hardware.............cccoocecereeiicenennne. 80
Triangular Wave Generation on Hardwareccccceeeneenn. 80

X1V

Figure 4-34
Figure 4-35
Figure B-1
Figure B-2
Figure B-3
Figure B-4
Figure C-1
Figure C-2

Ramp Wave Generation on Hardwarecccccoeeviiiiiinienenn. 81
Synthesis of Translated VHDL Code Using Xilinx XST 82
Analog Devices AD9833 Functional Block Diagram 96
Analog Devices AD9959 Functional Block Diagram 97
Xilinx NCO V1.0.3 Parameterization Window.........c....ccceeueeeee. 98
Xilinx DDS Compiler V1.0 Parameterization Window............... 99
Memec P160 Analog Module..........cceeeemiiiiiiiniiciiniieeiieeen, 100
Memec Virtex-4 FX LC Development Kit...........ccoovieeennnnee. 101

XV

ASIC
ASK
A/D
DAC
DDS
DSP
D/A
EDA
FPGA
FSK
HDL
HW
IC
IEEE
1P

12C
NCO
0OSCI
PLD
PLL
PSK
RTL
SNR
SoC
UART
VCD
VHDL
VHSIC
VLSI

LIST OF ABBREVIATIONS

Application Specific Integrated Circuit
Amplitude Shift Keying

Analog to Digital

Digital to Analog Converter

Direct Digital Synthesis / Synthesizer
Digital Signal Processor

Digital to Analog

Electronic Design Automation

Field Programmable Gate Array
Frequency Shift Keying

Hardware Description Language
Hardware

Integrated Circuit

Institute of Electrical and Electronics Engineers
Intellectual Property

Inter-Integrated Circuit

Numerically Controlled Oscillator

Open SystemC Initiative

Programmable Logic Device

Phase Locked Loop

Phase Shift Keying

Register Transfer Level

Signal to Noise Ratio

System On Chip

Universal Asynchronous Receiver / Transmitter
Value Change Dump

VHSIC Hardware Description Language
Very High Speed Integrated Circuit
Very Large Scale Integrated Circuit

XVi

CHAPTER 1

INTRODUCTION

A direct digital synthesis (DDS) based function generator design core is
defined, implemented and verified in this thesis. The function generator design is
also a case study to investigate and compare the traditional HDL and new SystemC
based design flows. Throughout the study, the traditional design flow will be
followed using VHDL as a design language.

The electronic system design becomes more complex as the demand for
complete systems increases. Today’s modern technology enables producing a chip
that holds all of the necessary electronic circuitry for a complete system. This
technology is known as System on Chip (SoC) and the increased complexity of
SoC technology addresses the design and verification at system level [1].

In traditional system design flow, the system is partitioned into hardware
and software at early stages. Then, the hardware and software engineers design
their respective components with the lack of communication. In some cases, the
produced solution may not be the desired one. The integration of the hardware and
software may lead problems due to isolation of the designs. Unavoidable results in
this flow are higher cost and long design time.

In modern system design flow, system should be modeled at various levels
of abstraction. This requirement appeared due to the fact that the complexity
problem can be solved only using higher abstraction levels [2, 3, 4, 5]. The modern

system languages should also constitute a single platform for both hardware and

software designers. The hardware and software should be developed in parallel and
this would remove painful hardware and software integration problem. Hence,
modern system design flow (illustrated in Figure 1-1) is proposed as a solution for

shortcoming of the traditional system design flow.

SYSTEM SPECIFICATIONS

\

SYSTEM LEVEL MODELING

HARDWARE-SOFTWARE
PARTIONING
ARCHITECTURAL
EXPLORATION

SOFTWARE HARDWARE

MODEL RORED
SOFTWARE o HARDWARE

DESIGN CO-SIMULATION RESIGH

FLOW CO-VERIFICATION FLOW

_**_I

HW-SW INTEGRATION
REAL PROTOTYPE VERIFICATION

Figure 1-1 Modern System Design Flow

The new EDA (Electronic Design Automation) tools are proposed to
replace the traditional system design flow with modern system flow. Moreover,
various design languages have been appeared in the market and this leads to
tremendous discussion on these languages [1, 6]. Open SystemC Initiative (OSCI)
organization’s SystemC language has been developed as a modern system level
modeling and design language to simplify the system level design problems [7, 8,
9]. IEEE has approved SystemC (IEEE 1666) as electronic design standard based
on the SystemC 2.1 Language Reference Manual. Since SystemC is supported by
all of the major EDA companies, it seems to be dominant among the system level

modeling and design languages.

SystemC supports a hierarchical system design environment. In this
environment system designers can model and verify the designs expressed at true
system levels of abstraction. This allows the system designer to make low-level
designs or use higher abstraction levels. SystemC links the system model to
hardware design implementation and verification [10]. The designers notice the
advantage of reduced simulation time. Additionally, it can be used to simulate
software algorithms. A wide range of simulation support enables SystemC to
address all aspects of SoC design.

SystemC initially appeared as a modeling language like HDL design
languages. The new EDA tools are proposed to directly synthesize the SystemC
descriptions like HDL synthesis. There are not necessary numbers of well
developed SystemC tools that support direct synthesis of SystemC descriptions. In
place of these tools, SystemC descriptions are written in synthesizable format for
which [11, 12] includes some descriptions and then SystemC to HDL translational
tools are used [13, 14, 15, 16]. The traditional HDL and SystemC based hardware

design flows are illustrated in Figure 1-2.

SPECIFICATIONS
verification * I + verification
CIC++ SYSTEMC e
BEHAVIORAL LEVEL BEHAVIORAL LEVEL verification in
SystemC
verification
refinement L SXSTENC
RTL MODEL
VHDL/VERILOG Refinement Automatic | , VHDL/VERILOG
(ULl translation translation UG Ll
* synthesize synthesize +
GATE LEVEL GATE LEVEL
* implementation implementation +
TRADITIONAL HDL SYSTEMC
e BASED BASED EEGA
HARDWARE HARDWARE
DESIGN FLOW DESIGN FLOW

Figure 1-2 Traditional HDL and SystemC Digital Hardware Design Flows

The traditional design starts with developing behavioral level descriptions
using C/C++. Then the models are rewritten manually using design languages such
as VHDL and Verilog. The synthesis and implementation processes are applied
after verification of the RTL model. Using the same design platform for behavioral
and RTL models is an advantage for the designer, and this is satisfied by the
modern SystemC based design flow. In traditional approach, the designer
maintains both C and RTL models in different environments. However,
refinement, debugging and RTL synthesis of a design can be done in a single
SystemC platform. This reduces the time and effort. The translation of the
SystemC RTL descriptions to HDL is a disadvantage in terms of the resource
utilization and timing, but the new well developed tools having a direct SystemC
description synthesis capability will dismiss this disadvantage.

In this study, both traditional and SystemC design flow is studied by
implementing a DDS function generator having various periodical waveform
generation capability.

Periodical waveform generation is a key function for all communication
systems. Periodical waveforms account for many of the RF and microwave signals
in communications, radar and test systems. Since the communication market is in
rapid development, various ways in order to generate periodical waveforms were
discovered. The sine wave is a well known periodical waveform. For long years,
analog circuits such as Phase Locked Loop (PLL) synthesizers were used to
generate a sine wave. However the developments in the high-density integrated
circuit technology revolutionized the periodic waveform generation. In the last
years, the periodic waveforms below 1GHz in frequency are generated mostly by
the digital technique known as Direct Digital Synthesis (DDS). The new DDS
chips with capability of generating higher frequencies increased the popularity of
DDS technique more and more in the last years.

The frequency synthesizers use various periodical waveform production
techniques and these can be grouped as (i) indirect, (ii) direct and (iii) hybrid. The
indirect synthesizers use phase locked loop techniques to multiply the reference

input clock. The output signal frequency is the multiplication of the input

frequency with some constant. The output frequency increment of the PLL is
reference clock frequency and this results in not satisfying resolution for many
applications. On the other hand, these synthesizers are good at output spectrum and
can generate output frequencies up to 10 GHz. The direct frequency synthesizers
use digital techniques to generate waveforms. These synthesizers can generate
lower frequencies but, they allow fine step sizes and more accurate frequency
values. Hybrid synthesizers combine the advantages of the direct and indirect
techniques to achieve both higher frequencies and fine step sizes.

The direct frequency synthesizers use DDS technique which lets
generating sine waves at very precise frequencies [17, 18]. As the name implies,
the analog sine wave is completely generated by digital circuits in this technique.
The digitally quantized samples of the desired waveform are generated at the input
reference clock frequency. The generated digital samples of the waveform are
converted to analog signals using the D/A converters and filter circuits. The DDS
technique has some superior advantages over classical PLL synthesizers. Some of

these advantages are as follows:

e DDS technique allows for very fast frequency switching at a low cost.
The frequency switching time can be in nanoseconds level.

e The waveform frequency is digitally adjustable with microhertz
frequency resolution.

¢ The waveform phase and amplitude can be adjusted digitally.

¢ The implementation of DDS is easier than the classical synthesizers.

e The DDS core can be combined with additional signal processing

blocks to make clock generators and modulators.
On the other hand, DDS technique has also disadvantages as stated below:

e The maximum output frequency is less than the clock source
frequency.
e The digital generation of the sine wave results in distortion. The

generated waveform is not spectrally pure [19].

e Spurious performance of DDS is dominated by the DAC. At higher
speed DAC IC’s linearity is not good.

The DDS implementation usually uses addressing of the samples
contained in the sine look-up table. Since the samples are generated only by
addressing, arbitrary periodical waveform generation is also possible with this
technique. Only thing to do is to replace the sine look-up table with a look-up table
that includes arbitrary wave samples. In this study, the DDS technique is applied
only to generate sine wave samples.

There are many DDS commercial ICs operating at frequencies from 10
MHz to 1-2 GHZ in the market [20, 21, 22, 23, 24, 25]. There is a competition
among the suppliers to present faster and more capable DDS chips. Analog
Devices is one of these suppliers and it presents innovative and fast DDS chips in
the last years. For instance, Analog Devices’ AD9858 model [20] is a complete
DDS with internal 10-bit DAC. It operates at clock rates up to 1 GHz. The
ADO9858 can actually work with clock rates up to 2 GHz; since it also includes a
divide-by-two circuit on the clock input port. This reference clock frequency
allows generating output waveform frequencies 400 MHz or more. Using its 32-bit
frequency tuning words, the synthesizer achieves frequency resolution below 1Hz.
The frequency tuning and control words of AD9858 are loaded via its 8-bit parallel
or synchronous serial ports.

Today’s fast changing electronic world requires that the whole digital
components on the boards will be collected in one package. Among the several
integration techniques, one of the most commonly used approaches is the
utilization of Field Programmable Gate Arrays (FPGAs). This fact led to a
tremendous acceleration to the Gate Array technology in the last years. Most of the
digital designers prefer achieving all digitally complex computations with a single
chip in a simple and effective way. FPGA technology does not only support logic
based designs, it also supports DSP and processor based applications. As a result,
major companies design various intellectual properties, abbreviated as IP, for

FPGAs. There are also many companies preparing DDS IPs [26, 27, 28, 29]. These

designs are in ready to use format and can be implemented into a target FPGA
simply. For instance Xilinx’s DDS Compiler V1.0 [27] is a complete DDS IP with
adjustable frequency and output resolution. It also supports up to 16 independent
channels.

The presented function generator module combines the most recent DDS
system with controller and standard interface units. The designed DDS function
generator core allows generating standard waveforms and making FSK/PSK
modulation. The DDS function generator core is implemented into FPGA and
verified with hardware based tests. During the design period, the most recent
digital design environments are used.

The designed function generator module has two serial peripheral
interfaces which are Inter Integrated Circuit (I2C) bus [30] and Universal
Asynchronous Receiver/Transmitter (UART). These interfaces are used to load
waveform configuration and design control parameters. The type, frequency, phase
offset and amplitude parameters are sent to the function generator using these
serial interfaces. If this function generator core is implemented into the packaged
Application Specific Integrated Circuit (ASIC), then I2C interface usage will be
helpful for communication with other ASICs. If the design is implemented into
FPGA and will be tested for different design parameters by means of a computer,
the UART interface will be very useful since the communication over UART are
supported nearly by all computers. Additionally, a function generator having
UART interface can communicate with nearly all microcontrollers and
MiCroprocessors.

The design of function generator using both SystemC and VHDL makes
the comparison of different design flows possible. In this thesis, the power of these
design languages in digital hardware applications is also observed and they are
compared according to synthesis, simulation and applicability performances. The
comparison is made by following all the design stages. The advantages and
disadvantages of these two different hardware design cycles are emphasized to be

helpful for future applications.

The organization of this thesis is as follows. In Chapter 2, the background
information about SystemC and VHDL will be given. The syntax of these two
languages will be compared. The basic information about DDS function generators
and commercial DDS applications will be presented. In addition, the information
about DDS methodology and the communication standards used in the design will
also be given. These are necessary for the explanation of the design and
interpretation of test results.

Chapter 3 covers full design description of the function generator module.
First, the followed SystemC and VHDL based RTL design flows are presented.
Then the design specifications and used hardware/software resources are given.
The explanations of the function generator sub-modules are presented and the
detailed data flow schematic of function generator module is given.

Chapter 4 covers the verification of the functional sub-modules and the
whole function generator design. The generated SystemC and VHDL design
descriptions are tested separately in software environments. Only the simulations
which are really necessary to understand the functionality are given. The synthesis
of function generator VHDL descriptions, implementation into FPGA and
hardware based tests are left to end of this chapter.

Results of the study are presented in Chapter 5. The applied digital
hardware design cycles and designed DDS function generator core are discussed

and further suggestions are given for future studies.

CHAPTER 2

DESIGN LANGUAGES AND DDS FUNCTION GENERATORS

2.1 DESIGN LANGUAGES

2.1.1 VHDL

VHDL is an IEEE hardware description language. This language is
developed with the goal to develop very high-speed integrated circuits. VHDL is
one of industry’s widely used standard languages used to describe digital systems.
Another hardware description language Verilog is also widely used. Both of these
languages allow describing and simulating complex digital systems.

VHDL is used mainly for development of Application Specific Integrated
Circuit (ASIC). The synthesis tools transform the written VHDL code to gate-level
netlist. This netlist defines the layout of the ASICs. VHDL codes are also written
for FPGAs to describe the internal hardware structures. Since the synthesis of the
codes gives suboptimal results, VHDL is not used for design of noncomplex
Programmable Logic Devices (PLDs).

Digital systems can be represented using different levels of abstraction.
There are four abstraction levels of a digital circuit. These levels can be ordered as
behavioral, register transfer level (RTL), gate-level and layout. The functional
description of the model is defined in the behavioral level. The behavioral

descriptions can be simulated, but they may not be synthesized. The design is

divided into concurrent and sequential elements in RTL. In this level, concurrent
statements are executed in parallel as soon as data arrives at the input. Sequential
statements are executed in the sequence that they are specified. RTL description
uses only the little VHDL language constructs. A strict methodology is followed to
write the design codes. The generated codes using RTL methodology are in
synthesizable code format. Third abstraction level is named as gate-level. The
design is represented as a netlist with logic gates and storage elements in this level.
The last abstraction level is layout level. The different cells of the target
technology are placed on the chip and the connections are routed. After the layout
has been verified, the circuit is ready for the production process.

The entity is main concept of the digital designs in VHDL. A design
entity can be divided in to two parts which are entity declaration and architecture
body. The entity declaration defines the external interfaces of the design entity. It
defines interaction of the different VHDL modules in a straightforward manner.
The architecture body represents the internal descriptions of the design entity. The
architectures can contain signals, processes and instantiations of other entities.

The statements within architecture operate concurrently. This led to
define VHDL constructs (processes) to achieve necessary sequential behavior. A
process consists of a sequence of statements, which are executed sequentially like
in conventional programming languages, whereas the processes themselves are
treated concurrently like other statements.

The signals are used for passing information among VHDL processes or
entities. A process may read and write signals. It may be sensitive to signals.

Signal assignments require a delay before the signal assumes its new value.

2.1.2 SYSTEMC

The SystemC class library has been developed to support system level
design. It has been developed by a group of companies, universities and

individuals forming the Open SystemC Initiative (OSCI). IEEE has approved

10

SystemC (IEEE 1666) as electronic design standard based on the SystemC 2.1
Language Reference Manual developed by OSCI [35].

SystemC is an open source C++ library that is emerging as a standard for
high-level design and system modeling. It addresses the increasing complexity of
SoC designs at system level. It provides to describe and simulate concurrent
hardware constructs using ordinary C++ syntax. This leads to co-design and co-
verification of hardware and software in a single environment.

Modules are the principal building blocks of a SystemC design hierarchy.
A SystemC model usually consists of several modules which communicate via
ports. Processes are the principal computation elements which fulfill necessary
sequential behavior. They run concurrently with other processes. Events allow the
synchronization between processes.

Ports of a module are the external interfaces that pass information to and
from a module. They trigger actions within the module. Signals create the
connections between the module ports allowing the modules to communicate.
Channels are the communication elements of SystemC. They are generalized form

of signals. Complex communication structures can be modeled using channels.

2.1.3 COMPARISION OF SYSTEMC AND VHDL SYNTAXES

Since SystemC allows modeling concurrent processes described by
ordinary C++ syntax, it can be easily learned by the designers who already make
applications using HDL and C++. SystemC has similarities to VHDL semantically,
but it has a syntactical overhead compared to VHDL. Some basic language
syntaxes of the VHDL and SystemC are compared in Table 2-1. Full adder’s
SystemC and VHDL codes are given as a comparison example in Table 2-2.
SystemC words in capitals (SC MODULE, SC_CTOR or SC METHOD) are

macros and hide the real C++ syntax to provide noncomplex syntax for SystemC.

11

Table 2-1 Comparison of Some Basic SystemC and VHDL Syntaxes

SystemC Syntax VHDL Syntax
(Logic Values) (Logic Values)
SC_LOGIC_0, SC_LOGIC_1, ‘0,1
SC_LOGIC_X, SC_LOGIC_Z ‘X, 7

(Input & Output Port Declaration)
sc_in<sc_logic> A, B;
sc_out<sc_logic> C, D;

(Input & Output Port Declaration)
A, B :in std_logic;
C, D : out std_logic;

(Variable Declaration)
sc_logic v_bit;
sc_lv<3>v_vec;

(Variable Declaration)
variable v_bit : std_logic;
variable v_vec : std_logic_vector(2 downto 0);

(Signal Declaration)
sc_signal<sc_logic> s_bit;
sc_signal<sc_lv<3>>s_vec;

(Signal Declaration)
signal s_bit : std_logic;
signal s_vec : std_logic_vector(2 downto 0);

C=A&B; C<=A and B;
C=AIB; C<=AorB;
C=A"B; C <= A xor B;
C=~A; C<=not A;
if (A==SC_LOGIC_0) if (A="0’) then
C=B; C<=B;
else if (A== SC_LOGIC_1) elsif (A="1") then
D =B; D <=B;
else else
C=A; C<=A;
end if;
sc_uint<2> tempK = K.read();
switch(tempK){ case K is

case 0: C = B; break;
case 1: D = B; break;
default: C = A;

}

when “00” => C<=B;

when “01” => D <=B;

when others => C <= A;
end case;

SC_METHOD (process);
sensitive << clk.pos();

process (clk)

if (clk’event and clk = ‘1) then

SC_METHOD (process);
sensitive << clk.neg();

process(clk)

if (clk’event and clk = ‘0’) then

SC_METHOD (process);
sensitive << A << B;

process (A, B)

12

Table 2-2 Comparison of SystemC and VHDL Full Adder Codes

SystemC Full Adder Code

VHDL Full Adder Code

#include “systemc.h”
#include “half adder.h”

SC_MODULE (full_adder)

{

sc_in<sc_bit> A, B, Cin;
sc_out<sc_bit> Sum, Cout;

sc_signal <sc_bit> sigC1,sigC2,sigS1;

half adder HI;
half adder H2;

SC_CTOR (full_adder):
Hl (“Hl”), H2 (66H2”)
{

HI1.A(A);
H1.B(B);
H1.C(sigC1);
H1.S(sigS1);

H2.A(sigS1);
H2.B(Cin);
H2.C(sigC2);
H2.S(Sum);

SC_METHOD (process);
sensitive << sigC1 << sigC2;

void process()

{

Cout =sigCl1 IsigC2;

library IEEE;
use IEEE.std_logic_1164.all;

entity full_adder is

port(
A, B, Cin : in bit;
Sum, Cout : out bit);
end module;

architecture arch of full_adder is
signal sigCl1, sigC2, sigS1 : bit;

component half_adder
port(
A, B :inbit;
C, S : out bit);
end component;

begin
H1: half_adder port map
{

A =>A;
B =>B
C =>s5igCl;
S =>sigSl};
H2: half_adder port map
{
A =>sigS1;
B => Cin
C =>5igC2;
S => Sum};

process(sigCl1, sigC2)
begin

Cout
end process;
end arch;

<=s5igC1 or sigC2;

13

2.2 DDS FUNCTION GENERATOR

Periodic waveforms are necessary for nearly all electronic applications. In
order to produce sine, triangular, ramp and square wave outputs, the programmable
periodic waveform generator ICs are used. The well-known periodical waveform
is sine wave that can be generated by different design approaches such as PLL and
DDS. With advances in digital technology DDS is now replacing PLL in
professional applications and DDS becomes the main part of the function
generators (waveform generators) due to the rapid development of the VLSI
technology in the last years. The function generator design presented in this study
is based on the DDS technique. In this section, the basic information about DDS
and DDS function generators will be presented. In order to communicate with
external world and receive the waveform configuration data, the I2C and UART
serial communication modules are used as sub-modules of the designed function
generator. The basic information about these communication standards is also
given in this section.

The time-varying digital signals are generated using the DDS technique.
This technique allows generating sine waves at very precise frequencies. In order
to construct analog waveform, digital to analog conversion is performed but the
analog conversion of the digital samples is not an application issue in this study.

DDS technique makes arbitrary periodical waveform generation possible
as well as a sine wave generation. If the arbitrary periodical waveform sample
values are loaded into the internal look-up table module in the DDS, the arbitrary
periodical waveform with desired frequency and phase can be generated.

In the market, various DDS based function generator designs are present.
However the basic design approach is similar to each other. The basic DDS
function generator block diagram is illustrated in Figure 2-1. The presented block
diagram combines DDS, communication interface and some internal logic in order

to make externally configurable periodical waveform generation possible.

14

.
- —
|->INTERFACE DIGITAL ! ANALOG
1
INPUT H
1
1
AMPLITUDE H
REGISTER '
.
.
wero || COVRCE E
CONFIGURATION| * ' ANALOG
PARAMETERS DIGITAL H WAVEFORM
FREQ SINE WAVEFORM
FREQUENCY SAMPLES ~ WAVEFORM SAMPLES
REGISTER > AND
DDS AMPLITUDE DAC —p FILTER —p
—

REGISTER PHASE LOOK-UP LOGIC SYNC CLK

TABLE
ADDRESS

Figure 2-1 Basic DDS Function Generator Block Diagram

The interface modules of the function generators receive the waveform
configuration parameters from outside environment in parallel or serial format
according to the chosen communication standard. Then they load data into the
function generator’s waveform configuration registers which hold the waveform
construction parameters. Various communication standards are utilized by DDS
chip manufacturers. For instance, most of Analog Devices DDS ICs have Serial
Peripheral Interface (SPI) which is a communication protocol used primarily for
synchronous serial communication of host processor and peripherals. The clock
frequencies of SPI devices can go up to some MHz and more. This is a sufficient
communication speed for DDS applications. Some of Analog Devices’ DDS ICs
support only parallel bus interface for reception of configuration data. In the last
years, more serial bus systems are preferred instead of a parallel bus, because of
the simpler wiring advantage. Additionally, serial buses are becoming more
common as improved technology enables them to transfer data at higher speeds.
Serial transmission is a better option for IC producers also due to its cheap
implementation advantage (fewer pins enables cheaper ICs). There are popular
serial bus systems like I2C, CAN or USB which proved their effectiveness. In this

study, I2C slave receiver and UART receiver modules provide the communication

15

interface of the designed function generator. The background information about
these standards is given in sections 2.2.2 and 2.2.3.

The heart of the DDS function generators is DDS module. This module
receives the frequency and phase offset information from the configuration
registers and produces the sine samples according to the desired settings. The
background information about DDS is given in section 2.2.1.

Waveform selection and amplitude adjustments are done using internal
logic according to the control and amplitude configuration register values. As
illustrated in Figure 2-1, the internal logic receives sine samples, look-up table
addressing signal, amplitude register value and control value, and then generates
samples of selected waveform and synchronization clock for D/A conversion. The
internal logic generates triangular, ramp and square wave using the look-up table
addressing signal. The waveform amplitude is digitally adjusted by multiplication.
The control register value defines the type of the periodical waveform. It is utilized
as a multiplexer control signal to output the desired waveform.

The last part of the function generators is digital to analog conversion and
filtering. The generated samples and synchronous clock signal are received by
DAC in order to construct a stepwise waveform. The frequency of the synchronous
clock determines the analog conversion rate. For function generators, the
synchronous clock frequency is equal to the received reference clock frequency.
However, the phase of the reference clock and synchronous clock can differentiate
180 degree according to the internal logic and DAC conversion timing. The
principal aim is to make a conversion when data is ready at the inputs of DAC.
The DAC output spectrum includes aliased images of the output signal. For
instance, the lowest frequency of these aliased images is located at Fres — Foy
(reference clock frequency minus output frequency). In order to suppress these
images, low-pass filters are used.

There are various waveform generator and digital frequency synthesizer
applications in the market. Some of them are designed as Intellectual Property (IP)
and others are designed as integrated chip. The commercial ICs and IPs present in

the market are given with their specifications in section 2.3.

16

2.2.1 DIRECT DIGITAL SYNTHESIZERS

The Direct Digital Synthesizer module is the heart of DDS function
generators. DDS module produces a digital staircase approximation of a sinusoid
in order to construct the sine wave. Generated samples are converted to analog
signal and filtered to get pure wave at desired frequency. The staircase

approximation of sinusoid is illustrated in Figure 2-2.

Figure 2-2 Digital Staircase Approximation of A Sinusoid

The DDS modules basically constitute of three main blocks. These are
Numerically Controlled Oscillator (NCO), Sine Look-up Table and Digital to
Analog Converter (DAC). The NCO comprises the increment register and phase
accumulator logic. The increment register stores the binary value of frequency
control register. The phase accumulator adds the phase increment value to its
accumulator output value. The calculated accumulator output is used to address the
look-up table which outputs the digital sample values of sine wave at current phase
value.

In this study, the analog conversion of digital samples is not the main
discussion area. The main discussion is done on the generation of digital samples
according to the desired frequency and phase offset values. The basic DDS data
flow diagram is illustrated in Figure 2-3. The presented figure does not include

digital to analog conversion structures.

17

(M bits)

ACCUMULATOR_OUT
I__. Lottt N il

I
||||”||||.'
(L bits)

Accumulator
> output ==ACCUMULATOR_OUTM»:
quantization ')
(M bits) (L bits) Sine (K bits)
FoR——> > ADDRESS_OUT g LOOK-Up OUTPUT i
Frequency Control (Lbits) Table
Register oK ver
| Phase Offset
Register

Figure 2-3 Basic DDS Data Flow Diagram

At each reference clock cycle, the phase accumulator integrates the phase
increment value (frequency control register value) to the phase accumulator output
value. The phase increment and accumulator output value are defined by the same
number of bits. This number and used reference clock frequency determine the
frequency resolution of DDS.

The full precision of the phase accumulator can not be used to index the
look-up table due to the very large memory requirement. As a result, the phase
accumulator output is quantized by filtering least significant bits. The quantization
directly depends on the look-up table length. Nearly all DDS ICs offer phase offset
register. The phase offset register value is added to the quantized phase
accumulator output in order to make phase tuning possible.

In order to generate a periodical waveform at a constant frequency, a
constant phase increment value is added to the phase accumulator at each reference
clock cycle. A waveform at higher frequency can be generated if the phase
increment value is larger. This situation can be explained as phase accumulator
steps the faster through the look-up table. If the phase increment value is smaller,
then the phase accumulator steps slower. As a result, a waveform at low frequency

is generated.

18

The frequency of the waveform depends on the reference clock frequency,
the phase increment register value and length of phase accumulator. The waveform

frequency is calculated using the formula given below.

_ FCR x F

E

out om

where

Fout = DDS output waveform frequency
FCR = phase increment (frequency control register value)
F..t =reference clock frequency

m = phase accumulator word length

If the desired wave frequency is 500 Hz and the supplied reference clock
frequency is 100 MHz, the phase increment value for 32-bit accumulator is

calculated as below:

E,x2"™ 500x2*

FCR =~~~ = -
E 100x10

ref

=21475

The frequency resolution of the direct digital synthesizer is a function of
the reference clock frequency and number of bits employed in phase accumulator.

The frequency resolution is calculated using the formula given below:
Af = ref

2m

where Af is the frequency resolution.

19

In order to have better frequency resolution, the number of bits employed
in the phase accumulators is increased. In practical applications (see section 2.3
and Appendix B) the accumulator sizes are higher than 28 bits for fine frequency
resolution. The Analog Devices” AD9959 chip [21] can be clocked up to S00 MHz
and it can produce sine output around 200 MHz. This chip has 32-bit accumulator.
When this chip is clocked with 500 MHz, the output frequency of this device can
be adjusted with 0.12 Hz frequency resolution (= 500 MHz / 2°%).

There are also two parameters which have an effect on the quality of the
waveform. These are the look-up table length and look-up table width. If the value
of these parameters is increased, the output waveform resolution becomes better.

The sampling frequency determines the highest frequency that can be
produced digitally. The Nyquist Theorem states that the highest frequency which
can be generated accurately is less than half of the sampling rate. As a result, the
highest frequency that can be generated by the DDS module is Ff / 2. The output
frequency is limited with purity concepts in addition to the reference clock
frequency. The generated waveform with two samples can not be pure enough, so

more samples are required to improve quality.

Spectral Purity Concepts:

The output of the DDS includes the spurious signals. The spurious signal

sources can be ordered as below:

The reference clock
Phase truncation

Angle to amplitude conversion

L b=

Digital to analog conversion
The reference clock is the principal input for DDS. All the signal

generation processes are done synchronously with reference clock. The phase

accumulator increases the phase accumulator value at each reference clock cycle.

20

As a result, the spectral characteristics of the reference clock have a direct effect
on the output signal quality. The reference clock is also used for digital to analog
conversion timing. If the reference clock is noisy, undesired magnitude reduction
can be observed at the DAC output.

The phase accumulator must have a sufficient field width to span the
desired frequency resolution. In general, a large number of bits are allocated for
phase accumulator. Because, more bits for phase accumulator leads to better
frequency resolution. However, the look-up table size restriction causes the
quantization of the phase accumulator output. In order to reduce the chip die area
(to have smaller look-up table), the least significant bits of the phase accumulator
output are not used. The phase accumulator quantization level directly depends on
the desired length of the look-up table.

The phase accumulator output quantization introduces time base jitter in
the output waveform. The quantization and resultant spurious outputs are
emphasized in DDS IP product sheets in detail. Xilinx’s DDS Compiler V1.0
Product Specification sheet [27] indicates the phase accumulator output
quantization for different look-up table examples clearly. It states that the
waveform of 12-bit output by using 256 point look-up table results in nearly 48 dB
spurious output. The waveform of 16-bit output using 256 point look-up table
results nearly 48 dB spurious output again. These outputs lead to the fact that the
change in number of output bits has no effect on the spurious output. It shows also
that the waveform of 16 bit output by using 1024 point look-up table results 60 dB
spurious output. This experience states that the change in look-up table size has
direct effect on the spurious output. The look-up table sizes and the resultant

spurious outputs are ordered below.

e 256 point look-up table => Approximate Spurious Output = 48 dB
e 512 point look-up table => Approximate Spurious Output = 54 dB
¢ 1024 point look-up table => Approximate Spurious Output = 60 dB
e 2048 point look-up table => Approximate Spurious Output = 66 dB

21

Some of the DDS design implements the angle to amplitude conversion
using algorithmic techniques. This technique reduces the look-up table sizes and
chip die area further. However, the algorithmic approximation results in higher
spur levels.

Another spur source is digital to analog conversion. The quantization
noise and distortion of DAC leads to spurious signals at the output. These are
principally caused by not ideal switching characteristics of DAC. Typically DDS
signal error in the output waveform is dominated by the performance of the DAC.
The quantization noise is proportional to the DAC resolution. It is formulated as

defined below.

SNR = 6.02N+1.76dB

where N is the DAC output resolution. S. Cheng and J. R. Jenses [19] give the
detailed analysis of the spectral purity for DDS applications.

2.2.2 INTER-INTEGRATED CIRCUIT (I12C) BUS

In this study, the interfaces of DDS function generator are selected as
Inter Integrated Circuit (I2C) Bus [30] and UART. The basic information about
12C bus serial communication standard is presented below.

I2C bus control modules provide an interface between 12C-compatible
devices connected by way of the two-wire 12C serial bus. External components
attached to the I2C bus serially transmit and/or receive serial data to/from the
USART through the 2-wire 12C interface.

12C bus application example is shown in Figure 2-4. Each 12C device is
recognized by a unique address and can operate as either a transmitter or a
receiver. A device connected to the I2C bus can be considered as the master or the
slave when performing data transfers. A master initiates a data transfer and

generates the clock signal SCL. Any device addressed by a master is considered a

22

slave. The I2C bus interface module designed for the DDS function generator
supports only slave mode of operation. It only receives the messages which are

sent for its address.

vce ()
Device A
é SCL spa

SCL gpa

A\

Serial Clock (SCL)

Serial Data (SDA)
SDA SC'— SDA SC'—

Dewce B Dewce D

Figure 2-4 12C Bus Connection Diagram

12C data is communicated using the serial data pin (SDA) and the serial
clock pin (SCL). Both SDA and SCL are bidirectional, and they must be connected
to a positive supply voltage using a pull-up resistor as shown in Figure 2-4.

The master module starts the communication by pulling SDA pin to low
as SCL pin is high. After start of communication, all the slave devices connected
to the I12C bus start to wait slave address data. Then the first byte which consists of
a 7-bit slave address and the R/W bit is sent by the master module. If one of the
slave module addresses is equal to the data sent by master, target slave module
makes an acknowledgement by pulling SDA pin to low. Other slave modules wait
up to end of communication. The R/W bit determines the data transfer direction. If
R/W is equal to 0, then the master transmits data to a slave, else if it is equal to 1,
the master receives data from a slave. The most significant bit of the data package
is transmitted first by the transmitters. The acknowledge bit (ACK) is sent from the

receiver after each byte on the 9th SCL clock.

23

Start 1 2 3 7 8 9 1 2 3 7 8 9 Stop
condition RW ACK ACK condition

Figure 2-5 12C Bus Serial Communication Timing

I2C bus serial communication timing is illustrated in Figure 2-5. The
master device generates one clock pulse for each data bit for transmission. A
START and STOP conditions are generated by the master. A START condition is
a high-to-low transition on the SDA line while SCL is high. A STOP condition is a
low-to-high transition on the SDA line while SCL is high. The bus is busy when
START condition exists. The busy situation is removed when STOP condition
occurs. Data on SDA must be stable during the high period of SCL as shown in
Figure 2-5. The high and low state of SDA can only change when SCL is low,
otherwise START or STOP conditions are generated.

2.2.3 UART

There are mainly two forms of serial transmission. These are UART
(Universal Asynchronous Receiver/Transmitter) and USART (Universal
Synchronous-Asynchronous Receiver/Transmitter). The synchronous serial
transmission requires that receiver and transmitter modules share clock signal. The
transmitter sends the data and clock signal so that the receiver knows the time to
read the data. On the other hand, asynchronous serial transmission does not require
the clock signal. In this type of transmission, the transmitter and receiver agree on
timing by adding some useful bits to the data pack.

The UART controllers are main components for serial communication

systems. The UART receiver takes the bits serially and packs them in byte format.

24

The UART transmitter takes bytes of data and transmits the bits in a sequential
format. The word transmission always starts with the “START” bit. This bit
informs the receiver that a word will be sent to it. Then the receiver tries to
become synchronous with the transmitter and waits for a word. After the
synchronization, the data bits of a word are received serially. Commonly, the least
significant bit of the word is received first. After sending all the data, the
transmitter can send “PARITY” bit for receiver to check correctness of reception.
The transmission stops with sending “STOP” bit to the receiver. The timing of the

RS232 serial communication is illustrated in Figure 2-6.

Serial Data STOP

_/(XXXXXXXX)’

START pg D6 D7 Parity
LSB MSB

Figure 2-6 RS232 Serial Communication Timing

In most computer systems, the UART is connected to circuitry that
generates signals that comply with the EIA RS232 specification. In this standard,
the “START” bit is logic low and “STOP” bit is logic high. RS232 compatible
devices usually transmit the least-significant bit first, immediately after the
“START” bit. The most significant bit is transmitted last, followed by an optional

parity bit.

2.3 COMMERCIAL DDS ICS AND IP MODULES

There are various commercial DDS ICs and IPs in the market. These
designs differ from each other according to their capabilities. In Table 2-3, some
commercial DDS and NCO ICs are listed. The waveform frequencies generated by

listed commercial DDS and NCO ICs vary between 25 MHz and 1GHz. Most of

25

the chips have 32-bit frequency register which is sufficient to adjust frequency
with mHz frequency resolution. The ICs’ phase offset registers differ in length
between 2 and 16 bits. Most of the ICs can not control the amplitude of the
waveform digitally. In the given list of ICs, only Analog Devices’ AD9959 has the
amplitude control capability. The output resolution of the ICs varies between 10
and 16 bits.

Analog Devices AD9833 is served as programmable function generator
integrated chip into the market [22]. This programmable function generator is a
fully integrated DDS chip. It is also a simple waveform generator capable of
producing sine, triangular and square wave outputs. The waveform amplitude
adjustment with this chip is not possible. The chip is configured via a 3-wire SPI
serial interface. Analog Devices AD9959 consists of four DDS core that provides
independent frequency, phase and amplitude controls [21]. In this chip, amplitude
adjustment is done by multiplication of look-up table output. FSK, PSK and ASK
modulation can be performed by applying source data to the input pin. The carrier
is sine wave for these modulations.

IPs are used as the ready to use design modules for FPGA applications.
The commercial DDS and NCO IPs of Xilinx, Altera and Lattice Semiconductor
are listed in Table 2-4. IP modules allow configuring the length of the frequency
adjustment register up to 32 bits. The phase offset of the waveform can be adjusted
also using phase offset registers whose length can be configurable up to 32 bits
also. IP modules do not allow adjustment of waveform amplitude.

Xilinx has introduced some DDS IPs into the market. Xilinx Logicore
Numerically Controlled Oscillator V1.0.3 [26] is designed to generate digital
samples of the sine wave. This design presents only a phase increment value input
for frequency adjustment. Xilinx Logicore DDS Compiler V1.0 [27] combines
various properties. It serves independent channels, phase offset definition and
various output resolution. All of these properties can be set by the designer before

adding design into a project.

26

LT

Table 2-3 Commercial DDS and NCO Integrated Circuits

IC Waveforms | Reference | Frequency | Phase | Amplitude Output Number of
Manufacturer and Clock Resolution Offset Control Resolution Control Internal Independent
)) . . . Interface DAC
and Model Modulation (MHz) (bit) (bit) (bit) (bit) Channel
Analog Devi
na:]§99§‘9nces Sine 500 32 14 10 10 Serial Yes 4
Analog Devi
CAD9ESS Sine 1000 32 14 No 10 Paralle] Yes 1
Analog Devi Sine
S oogas | Triangular 25 28 12 No 10 Serial Yes 1
Square
Qualcomm Sine 12 (sine)
100 32 N N Parallel N 1
Q22401-3S1 Arbitrary © ? 14 (arb) e °
Sine
1 fal
Q‘gzz(;lgm BFSK, BPSK, 135 32 3 No 12 ie;:u;r No 2
QPSK, 8-PSK
Qualcomm Sine .
50 32 3 N 12 Serial N 2
Q2334 BFSK ° - ’
Harris Sine
I BPSK, 40 32 2 No 12 Serial No 2
QPSK,
Fairchild i
aircht Sine 50 32 16 15 16 Parallel No 1

TMC2340A

8¢

Table 2-4 Commercial DDS and NCO Intellectual Properties

Frequenc Amplitude Output Number of
Vendor IP Name | Version | Supported FPGA Families quency | phase Offset P pu Independent
Resolution Control Resolution
Channel
. Spartan-3, Spartan-3E . . .
Xll.mx NCO 103 Virtex-IL, Virtex-II Pro confi gur.able conflgur.able NO conflgur?lble |
Logicore . . 3-30 bits 3-10 bits 4-16 bits
Virtex-4, Virtex-5
Spartan-3, Spartan-3E
Xilinx Pa an .pa an configurable | configurable configurable | configurable
. DDS 5.0 Virtex-II, Virtex-1I Pro . . NO .
Logicore . . 3-32 bits 3-32 bits 4-32 bits 1-16 channels
Virtex-4, Virtex-5
Spartan-3, Spartan-3E
Xilinx DDS L0 Viprztle)??l ViEZXEIIr; Pro configurable | configurable NO configurable | configurable
Logicore | Compiler ’ T 3-32 bits 3-32 bits 4-20 bits 1-16 channels
Virtex-4, Virtex-5
Cyclone, Cyclone II
Altera NCO 6.1 H dCI—IalrdSCOp’y IIS i configurable configurable NO configurable | configurable
Compiler . ardCopy Stratix, Stratix, .
MegaCore P Stratix II, Stratix II GX, up to 32 bits
Stratix III, Stratix GX
i LatticeEC, LatticeECP
.Lattlce .a 1ceEC, La .1ce c configurable | configurable | configurable | configurable | configurable
ispLever NCO 2.2 LatticeECP2, LatticeECP2M
. . up to 32 bits 4-32 bits 4-32 bits 4-32 bits 1-16 channels
Core LatticeSC, LatticeXP

CHAPTER 3

DESIGN OF DDS FUNCTION GENERATOR

3.1 FOLLOWED SYSTEMC AND VHDL RTL DESIGN FLOWS

In this study, the SystemC and VHDL based hardware design stages are
followed separately. The main aim is to compare the SystemC and traditional
HDL based design flows in terms of coding, synthesis and implementation
performances. The SystemC initially appeared as a modeling language like HDL
languages. However the new tools are proposed to directly synthesis of SystemC
descriptions like traditional HDL synthesis. Since there is not sufficient number
of well developed direct synthesis tools in the market, the SystemC descriptions
are translated to VHDL code usually and then VHDL synthesis tools are used. In
this study, only some SystemC descriptions are translated to VHDL due to
synthesizable code writing restrictions. The advantages and disadvantages of
SystemC design flow are well observed by making the same digital design using
both SystemC and VHDL. The studied digital design cycles are illustrated in
Figure 3-1. The hardware and software tools used at each step of the design are
also given in the figure.

The first part of the digital hardware design job is to determine the
specifications. The design specifications of the presented DDS function generator
are given in section 3.3. The defined specifications contain necessary information

about the waveform characteristics, modulation types, communication interfaces

29

and common characteristics. The specification definition is necessary and very
critical for development of the design plan. The specifications are determined in
such a way that minimum numbers of change will be done after starting to
design. All designers know that the change of specification affects the whole

design period in a negative way.

h SPECIFICATIONS ﬁ

MS GTKWAVE MODELSIM
VISUAL SYSTEMC VHDL
STUDIO

¢ > ¢ > XILINX
BEHAVIORAL MODEL BEHAVIORAL MODEL ISE

[72]
4
, (o]
VISUAL SYSTEMC WV B e VHDL XILIN
STUDIO RTL DESIGN ; RTL DESIGN ISE
=
(7]
sysTEM | SYSTEMC TOVHDL = _CTKWAVE MODELSIM
CRAFTER CONVERSION
XILINX
ISE
SYNTHESIZE —
XILINX
ISE v REAL TIME
SIMULATION
IMPLEMENTATION

XILINX

PROGRAMMER '

DOWNLOAD BITSTREAM TO
FPGA

MEMEC
DEVELOPMENT KIT v

HARDWARE VERIFICATION TESTS

Figure 3-1 Followed SystemC and VHDL RTL Design Flows

30

After determination of the specifications, the behavioral models of the
function generator are formed. The goal of the behavioral modeling is to facilitate
the synthesis of the digital modules. In many digital design applications, it is not
appropriate to describe whole design structure first. In place of difficult structure
definition, the designer needs a behavioral description of a design. In this
description method, the hierarchy of the modules and their functions are defined
using the higher abstraction levels. The aim is to observe the functionality of the
design. There is no need to describe the internal structures of the modules. There
is an increasing awareness of the need for the behavioral models for specifying
digital devices, since the demand for complex and well developed chips
increases. This situation leads to present more talent design tools to the market
and solve the complexity problem using higher abstraction levels.

In this thesis, the behavioral description of the function generator is done
using both SystemC and VHDL. In order to simulate the behavioral models, test
bench files are prepared. If the behavioral models are verified with simulations,
design cycle passes to RTL block. Direct pass from specification block to RTL
block is also possible. The RTL design modules of the function generator are
presented in section 3.5. They have been implemented using both SystemC and
VHDL. The simulations are done for each design block separately. The design
test and verification is presented in Chapter 4.

SystemC based design cycle includes the SystemC to VHDL translation.
The number of software that can synthesize the SystemC descriptions directly is
insufficient. The companies which design such software do not share it with
public. For this reason, the SystemC descriptions should be translated to VHDL
code. As a translator tool, SystemCrafter’s SystemC synthesis software is used.
The SystemC to hardware flow is presented in section 3.2.

In the VHDL based design cycle, the design modules are designed and
verified using Xilinx ISE and ModelSim. The hardware verification tests are
applied on the Memec Virtex-4 FX LC development board and Memec P160
Analog Module (Appendix C.1, C.2). The implementation is done for Xilinx’s
Virtex4 series V4AFX12 FPGA [31] which the development board includes.

31

3.2 SYSTEMC TO HARDWARE FLOW

In SystemC based design flow, the critical edge is to synthesize the
generated SystemC descriptions. In the market, various SystemC synthesizers are
used. Some of the them synthesize the SystemC descriptions written at behavioral
level and others synthesize only the descriptions written at RTL level. Behavioral
synthesis allows the designers to create hardware from un-timed high-level
models quickly. It also enables them to verify the designs in less time. However,
there are disadvantages of using this type of synthesis. Although the designers
satisfy with the accurate function descriptions, this synthesis type is not good at
allocation of hardware resources and timing.

In this thesis, some of the SystemC RTL descriptions are synthesized.
The SystemC and traditional hardware design flows are illustrated in Figure 3-2.

The presented figure shows RTL based synthesis but not behavioral synthesis.

4{ SPECIFICATIONS }7

Y A

SystemC HW HDL HW
Model Model
3 v v 3
L TH
o SystemC RTL HDL RTL o
g ©
i v 3
= SystemC-HDL o
e} Translation =
C
+
= HDL RTL 8
%) [
\J + \
SystemC HDL HDL
Synthesis Synthesis Synthesis

L: NETLIST Pi

Figure 3-2 SystemC and Traditional Hardware Design Flows

32

The behavioral synthesis does not require additional SystemC model to
RTL refinement. As illustrated in Figure 3-2, there are two paths to produce
netlist using SystemC to hardware flow. The first path is direct synthesis of the
SystemC RTL descriptions. The second path depends on the translation of the
SystemC descriptions into HDL descriptions. In this path, the translated design
codes are synthesized to netlist using the HDL based synthesis process.

The traditional RTL synthesis provides most powerful synthesis. The
direct SystemC synthesis is also powerful but it has unsolved problems related
with hardware resource usage and timing. Some tools support this type of
synthesis but available tools are not in satisfactory quality and number when
compared to HDL synthesis tools. In the future, more companies will make an
effort to improve the present SystemC synthesis tools or create well developed
tools. The SystemC synthesis with translation brings some disadvantages such as
broken of SystemC design cycle and redundant logic generation by SystemC to
HDL translator. Using more powerful HDL tools can be an advantage in terms of
better synthesis performance. However, the designer usually does not become
aware of better synthesis advantage due to generated redundant logic.

In order to translate the SystemC implementation, the designers select
either manual recoding in VHDL or automatic translation. The manual recoding
increases the probability of errors, either through mistranslation or
misinterpretation. A high-performance synthesis tool, SystemCrafter SC,
automates this process, by quickly translating SystemC to RTL VHDL.

In this study, SystemC descriptions of the UART baud generator are
automatically translated to VHDL using SystemCrafter SC synthesis tool. The
SystemCrafter SC presents a code generation and verification platform for digital
designers. However it is used only to translate SystemC description in this study.
The hardware models are generated and refined to RTL using Microsoft’s Visual
C++ 6.0. After translation of the SystemC descriptions, the generated VHDL
descriptions are synthesized into netlist using Xilinx’s synthesis tool.

SystemCrafter SC provides to design, debug and simulate the hardware

and systems using existing C++ development environment. It lets to develop

33

hardware and software design code and simulate it in a common platform. The
hardware is synthesized to VHDL RTL for implementation using traditional
design stages. SystemCrafter SC also writes a structural SystemC description of
the synthesized circuit for verification [12].

SystemCrafter’s SystemC to hardware flow is illustrated in Figure 3-3.
The design flow includes the stages as defined below. After the last stage (VHDL
synthesis and netlist generation), VHDL code is implemented for target

technology and place and route simulations are done.

1. Developing SystemC hardware model and simulations
2. Translation of SystemC descriptions to VHDL RTL code
3. Gate-Level model simulations
4. VHDL synthesis
Test
Bench
SystemC HW Model ——» —» Simulation
Refine
Description
C++
+ Compiler
SystemCrafter
VHDL RTL LU N —» Simulation
Model
VHDL
Synthesis
Netlist

Figure 3-3 SystemCrafter SC’s SystemC to Hardware Flow

34

The initial SystemC design descriptions are developed at first stage. The
test bench module codes are written to test the generated SystemC descriptions.
Then the design is simulated by combining the design and test bench modules in
a single environment. SystemCrafter SC uses a C++ compiler such as Microsoft
Visual C++ or GNU GCC to simulate the SystemC constructs. If the designer is
satisfied with the results, the design is verified and flow passes to second stage.
On the other hand, the unsuccessful simulations require the refinement of the
design descriptions. The new test bench codes may be rewritten for refined
design. This refinement process continues up to achieving successful design
verification.

At the second stage, the SystemC descriptions are translated to the
VHDL codes. At this stage, the critical point is having synthesizable SystemC
descriptions. If the written descriptions are not in synthesizable format, they
should be refined into synthesizable format. SystemC language is superset of
C++. It comprises all C++ descriptions for simulation and modeling purposes. No
synthesis tool can compile all the descriptions written using SystemC. This
synthesis limitation is not the unique case for SystemC. The VHDL and Verilog
also appeared as a modeling language. The digital designers who use these
languages also should pay an attention to write the design descriptions in
synthesizable format. For instance, the statements such as “wait for 500 ps” can
not be synthesized using VHDL synthesis tools. The synthesis tool can not know
desired timing. For this reason, the designer should use a counter and reference
clock to wait for such a period of time. SystemCrafter places more restrictions
over SystemC synthesis than the traditional design languages. When designing
the same module with SystemC and HDL, the designer notices the differences of
synthesizable subsets and difficulties in writing synthesizable descriptions using
these languages.

At the gate-level model simulation stage, SystemC hardware
descriptions are translated to gate-level SystemC models. The VHDL translation
stage and gate-level model simulation stages are independent but gate-level

simulations give an idea about success of generated VHDL codes. In this stage,

35

the automatically generated gate-level models are simulated. If the designer is
satisfied with the simulations of the generated gate-level SystemC models, the
gate-level model simulation stage is completed. On the other hand, unsatisfactory
simulation results require that the synthesizable descriptions should be refined
again.

After running the gate-level model simulation, SystemCrafter SC
generates a set of VHDL files. These files contain the synthesizable VHDL
codes. The generated files are synthesized using the VHDL synthesis tools such
as Xilinx Project Navigator. Before synthesis of the code, SystemCrafter’s gate
library, craft_gatelibrary.vhd, is added to the project of the synthesis tool as
VHDL package. The product of the synthesis process is the gate-level netlist file.

At the final stage, generated gate-level netlist file is implemented for
selected FPGA type. The place and route simulations are run after
implementation process. If the design is also verified with these simulations, the

programming file is prepared and FPGA is configured.

36

3.3 DDS FUNCTION GENERATOR DESIGN SPECIFICATIONS

The function generator module specifications are summarized in Table
3-1 and Table-3-2. Waveform and common characteristics of the function
generator is given in Table 3-1. Modulation specifications and interface
properties are given in Table 3-2. The design specifications are presented by

assuming 100 MHz reference clock is supplied to the function generator module.

Table 3-1 DDS Function Generator Design Specifications Part-1

WAVEFORM CHARACTERISTICS

Sine Wave Frequency Range

23 mHz - 40 MHz

Square Wave Frequency Range

23 mHz - 40 MHz

Triangular Wave | Frequency Range 23 mHz - 10 MHz
Ramp Wave Frequency Range 23 mHz - 10 MHz
COMMON CHARACTERISTICS

Number of Output Channel 1

Output Resolution 12-bit

Frequency Control Register (Frequency Register-1) 32-bit

Frequency Modulation Register (Frequency Register-2) | 32-bit

Frequency Resolution 23 mHz

Phase Offset Control Register (Phase Register-1) 10-bit

Phase Modulation Register (Phase Register-2) 10-bit

Amplitude Adjustment Register 8-bit

Waveform Selection Register 5-bit

Look-up Table Holds Quarter sine wave
Look-up Table Size 256 x 12 bit
Minimum and Maximum Output Levels 0x000 and OxFFF
Approximate Spurious Output 60 dB

Trigger Delay 4 clock cycles

37

Table 3-2 DDS Function Generator Design Specifications Part-2

MODULATION
Frequency Shift | Carrier Wave Sinusoidal
Keying (FSK) Source External
Phase Shift Carrier Wave Sinusoidal
Keying (PSK) Source External
INTERFACES
UART Work Type Receiver only
Baud Rate Adjustment External
Supported Baud Rates 1200-38400 bps
Data Bits 8
Stop Bits 1
Parity None
Flow Control None
Adjustable Function Generator Frequency
Parameters Phase Offset
Amplitude
Waveform Selection
Soft Reset Control Yes
12C Standard Mode Support Yes
Fast Mode Support Yes
High Speed Mode Support No

Work Type

Slave Receiver only

Supported Addressing 7-bit

Slave Module Address “1001100”

Adjustable Function Generator Frequency

Parameters Phase Offset
Amplitude

Waveform Selection

Soft Reset Control

No

38

3.4 SOFTWARE AND HARDWARE RESOURCES USED IN DESIGN

All of the software tools used throughout the thesis is summarized in
Table 3-3 below. Microsoft Visual Studio 6.0 is used as the development
environment to design and verify the function generator core using the SystemC.
The SystemC library (SystemC 2.0.1 release for this study) is used with
Microsoft Visual Studio 6.0 to provide such a development environment.
SystemC Winl.0 Beta and GTKWave Wave Analyzer V1.3.19 provide a wave
viewer environment to verify the developed SystemC models. SystemCrafter is a
synthesis tool for SystemC applications. In this study, it is only used to translate

SystemC descriptions to VHDL.

Table 3-3 Used Software for Design and Verification

Tools / Package

Usage

SystemC 2.0.1

SystemC library

Microsoft Visual Studio 6.0 !

C++ compiler

SystemC Win1.0 Beta >

SystemC design and
verification environment

GTKWave Wave Analyzer 1.3.19 2

Wave viewer

SystemCerafter SC 2.0.0 °

SystemC synthesis tool

Matlab R2006a '

Mathematical computation
and analysis tool

Xilinx ISE 7.1 3

Xilinx integrated synthesis
and implementation tool

ModelSim XE III 6.0a *

Simulation tool

Microsoft Visual Studio .NET 2003 !

.NET platform

(') Licensed to Aselsan Inc.
(%) Free version

(®) Trial version

In order to determine the sinusoidal sample values to generate sine wave,
MATLAB R2006a mathematical computation and analysis tool is used. Xilinx
Project Navigator ISE 7.1 software is used to write and synthesize VHDL
description of the function generator. It is also used for implementation and
programming of FPGA. To verify the generated VHDL design description,
ModelSim XE III 6.0a is preferred as simulation software.

Microsoft Visual Studio .NET 2003 is used to make user interface
software between the computer and the function generator hardware test
platform. The function generator configuration parameters (frequency, phase
offset, wave type and amplitude information) are sent to the hardware test
platform in RS232 format using the control software developed on this platform.

The function generator VHDL description is tested and verified on the
hardware test platform. All of the hardware tools used to test the design

throughout this study is summarized in Table 3-4.

Table 3-4 Used Hardware for Verification

Hardware Usage
Memec Virtex-4 FX LC Development kit
Memec P160 Analog Module | AD and DA converter module
Xilinx Platform Cable USB Programmer over JTAG port

Oscilloscope Signal voltage viewer
SMB-BNC Cable Connects Memec P160 with oscilloscope
Test Computer User interface software runs on

Memec Virtex-4 FX LC Development Kit [32] and Memec P160 Analog
Module [33] constitute the function generator module’s hardware test platform.
Memec’s development kit includes Xilinx Virtex-4 series VAFX12 FPGA. The
analog module includes two 12 bit 165 Msps D/A converters. The function

generator design is implemented into the FPGA using the Xilinx’s Platform

40

Cable USB [34] which is a high-speed download cable that configures or
programs all Xilinx FPGA, CPLD and ISP Configuration PROM. The
specifications of Memec’s development boards are given in Appendix C. The

hardware test platform setup is presented in Chapter 4.

3.5 DDS FUNCTION GENERATOR MODULES

The modular and hierarchical architecture has been chosen for function
generator design. Modularity and hierarchy help to simplify and organize a
design project. Hierarchy allows the building of a design out of modules which
themselves may be built out of (sub-)modules.

The modular architecture is the preferred method for digital systems
since it helps to organize the system into logically distinct modules, such that the
modules can be changed by enhanced modules. Different implementation
alternatives can be examined for the modules in a simulation. Only the
corresponding component instantiation needs to be changed for this in the overall
model. The modularity helps different modules to work together, and enables
easier maintenance and module replacement.

The DDS function generator module designed in this study includes the
modules presented below. The names of the modules are given in the hierarchical
order. In this study, both SystemC and VHDL design files are prepared for

presented modules.

¢ Function Generator Module
o DDS Module
. DDS RAM Module
o UART Receiver Module
o UART Baud Generator Module
o I2C Slave Receiver Module
o Main Controller Module

41

3.5.1 DDS MODULE DESIGN

In direct digital synthesis based function generator design the direct
look-up table method is utilized. This method is a trivial way of obtaining not
only sinusoidal samples, but also any periodical function. In this approach,
sampled (or calculated) amplitude values of one full period are stored in the
memory. The phase output, which is obtained from the phase accumulator, is
connected to the address inputs of the look-up table and the output samples are
obtained from the data outputs of the memory. The frequency resolution may be
increased by adding more address lines to the memory. By increasing the number
of data output lines, the output resolution may also be increased. But increasing
the number of address or data lines means the increase of the storage capacity of

the memory device, which is an undesired situation.

Figure 3-4 Four Quadrant of Sine Function

The samples of one full period sine wave are shown in Figure 3-4. In
order to generate a sine wave, there is no need to hold all the samples in a
memory. Symmetry properties of the sine can be used to reduce memory size.
The quarter sine wave is enough to represent the full period sine wave as shown
in Figure 3-5. Thus, the memory requirement is reduced to 1/4. Additionally, the
maximum amplitude value of the quarter wave is half of the full wave. This

property also results in one bit reduction for the memory width. As a result, the

42

total memory reduces to 1/8. In this study, the quarter wave samples of a sine
wave are loaded into the DDS RAM module. However, one bit amplitude

reduction is not applied. The DDS RAM module holds a look-up table 256-word
in length and 12-bit in width.

Figure 3-5 First Quadrant Samples of Sine Wave

The data flow diagram of designed DDS module is shown in Figure 3-6.
The frequency control register and phase accumulator output are in 32-bit length.
The designed DDS module can be clocked up to 125 MHz when it is
implemented using Xilinx Virtex4 FPGA technology and it can produce a sine
wave around 40 MHz. When this chip is clocked with 100 MHz reference clock,
the output frequency can be adjusted with 0.023 Hz (= 100MHz / 2%) resolution.

(32 bits)

ACCUMULATOR_OUT
I__, snll]] |||H|||.,|””|“|,.|

Accumulator (10 bits)
> output ~ ==ACCUMULATOR_OUT
quantization
(32 bits) (10 bits) Sine (12 bits)
FCR s ADDRESS_OUT 4= | 0OK- up OUTPUT sl
Frequency Control oK (10 bits) Table
Register | ror
Phase Offset

TRIC_EB— Trigger Register RAM_ADDR_OUT s
——TRIGGER=—J lOgiC

Figure 3-6 Data Flow Diagram of Designed DDS Module

43

As shown in Figure 3-6, DDS module contains trigger logic block in
addition to the basic DDS. This logic block provides a trigger capability to the
function generator design. When the trigger enable signal is set to logic high, the
trigger signal is expected to start waveform generation. In order to make ramp,
triangular or square wave generation possible, DDS module sends the look-up

table addressing value to the output port.

A AVPLITUDE

OXFFF (HEX)

0x800 (HEX) -

/ TIME
0x000 (HEX) -

Figure 3-7 Sine Wave Construction

The designed DDS uses 1024 points to construct waveforms so the
approximate spurious output becomes 60 dB as discussed in section 2.2. The
maximum and minimum output values that can be generated by designed DDS

module are shown in Figure 3-7.

3.5.2 12C SLAVE RECEIVER MODULE DESIGN

The designed I12C slave receiver module has the following features:
e Slave receiver operational mode

¢ Compliance to the Philips Semiconductor 12C specification v2.1
e 7-bit device addressing mode

e Fast mode up to 400 kbps support

e Byte format transfer

44

The I2C slave receiver module provides an interface between the
function generator and the 12C bus. The master device connected to the I2C bus
has exclusive control over it. In order to control the function generator in this
design, the master device transmits the waveform configuration parameters to the
designed I2C bus slave receiver module. The parameters include the type,
frequency, phase offset and amplitude information of periodical waveform.

To configure the function generator, first, the master device transmits the
defined specific slave address value. Then it transmits the function generator
configuration register sub-address value. As last package, the configuration data
is transmitted to the slave receiver module. After each data package reception, the
slave module gives acknowledgement. 12C bus configuration parameter reception

format is shown in Figure 3-8.

SLAVE ADDRESS SUB-ADDRESS DATA AAYL P
bit

1 bit 7 bits 1bit ' 1 bit 8 bits 1 bit 8 bits. 1bit ' 1
: ACKNOWLEDGE (SDA LOW)

D FROM MASTER TO SLAVE
NOT ACKNOWLEDGE (SDA HIGH)

D FROM SLAVE TO MASTER :
RW : READWRITE (‘0" : WRITE)

: START
: STOP

> T »

>

Figure 3-8 12C Bus Parameter Reception Format

The sub-address data package points the configuration register which
will hold the received data. The 12C register addresses and the data definitions are
summarized in Table 3-5. The I12C slave receiver module waits for 14 bytes of
configuration data. The I2C bus master device does not need to transmit each
byte with slave address and sub-address. It can transmit all the data after the
transmitting sub-address byte and this allows loading the configuration

parameters to the function generator core module more quickly.

45

Table 3-5 I2C Sub-Address Definitions

I12C Sub-Address Data Definition
1 Wave Amplitude
2 Frequency Word-1 (bits 31-24)
3 Frequency Word-1 (bits 23-16)
4 Frequency Word-1 (bits 15-8)
5 Frequency Word-1 (bits 7-0)
6 Frequency Word-2 (bits 31-24)
7 Frequency Word-2 (bits 23-16)
8 Frequency Word-2 (bits 15-8)
9 Frequency Word-2 (bits 7-0)
10 “000000” + Phase Offset Word-1 (bits 9-8)
11 Phase Offset Word-1 (bits 7-0)
12 “000000” + Phase Offset Word-2 (bits 9-8)
13 Phase Offset Word-2 (bits 7-0)
14 “000” + Work Mode (bits 4-0)

3.5.3 UART RECEIVER MODULE DESIGN

The designed UART receiver and baud generator modules have the
following features:

e 8-bit data with non-parity and one stop bit

® Receive shift register

® Receive buffer register

e LSB-first data receive

e Receiver start-edge detection

¢ Programmable baud rate between 1200 Hz and 38400 Hz

e Data ready flag

46

The UART receiver and baud generator modules provide an interface
between the function generator and an external system via one serial data pin,
vart_sin. Using this input pin, the serial data in RS232 format is received by
UART receiver module. When the start bit comes to the receiver module, it
stimulates the baud generator module. The clock signal synchronized with input
serial data is generated by the baud generator module. The receiver module
receives the serial data at each positive edge of this synchronized clock signal and
puts the bytes into the receive shift register. The connections of the UART

receiver modules and signal directions are illustrated in Figure 3-9.

vatsn LLTTTTTTT]
—data_all=—p»
i
-dreset_uclk— UART
sel_baud UART RECEIVER
BAUDGEN
—soft_reset
——uart_clk=p»
JUUUuL
clk clkk reset

Figure 3-9 UART Receiver Modules’ Data Flow Diagram

In UART mode, UART receiver module receives characters at a bit rate
asynchronous to the transmitter device. For this reason, the designed receiver
module has a start-edge detection capability. To receive the data, first, the
receiver module transmits the trigger signal (reset_uclk) to the baud generator.
Then, this module generates the synchronous clock signal at a selected baud rate.

The RS232 data transmission format, shown in Figure 3-10, consists of a
start bit, eight data bits and one stop bit. It does not include parity bit. The

synchronized clock makes a low-to-high transition at each center point of the

47

serial data bit. This provides a clear data reception by the receiver module. The
baud generator accomplishes this by receiving input baud rate signal (sel_baud).

The baud generator module does not produce clock signal for start and stop bits.

Serial Data stop o _....
START po pi D2 D3 D4 D5 D6 D7 START po
LSB MSB LsB
| | | | | | | | 1
RX Clock } } } } } } } } }

Figure 3-10 RS232 Data and Clock Synchronization

The UART receiver module is used to receive the waveform
configuration parameters from an external system. The parameters include the
type, frequency, phase offset and amplitude information of the waveform. The
parameter data packages must be transmitted to the receiver module in a fixed
format. The configuration parameter reception order of the designed receiver
module is shown in Figure 3-11. Each configuration data package starts with
configuration header (decimal 90) and ends with function generator’s work mode.
The configuration data package also includes one amplitude word, two frequency
control words each of which has 32-bit length (4 bytes) and two phase offset
words each of which has 10-bit length (represented by 2 bytes). The receiver

module waits for 14 data bytes after receiving the configuration header byte.

Last
configuration
data package

Configuration First
header configuration
(decimal 90) data package

e HDR = AMPL = FREQ-1 = FREQ-2 = PHASE-1 = PHASE-2 = MODE ==

1 byte 1 byte 4 bytes 4 bytes 2 bytes 2 bytes 1 byte

Figure 3-11 Configuration Parameter Reception Order

48

The waveform configuration parameters are hold in the shift register.
The shift register data definitions are given in the Table 3-6. When all the
configuration data is received, the Data Ready Flag bit (bit-113) is set to logic

high and the main controller module receives the shift register data.

Table 3-6 UART Shift Register Data Definitions

UAR];I; tS;lg'ltnl;:;g‘ister Data Definition
113 Data Ready Flag
112-104 Wave Amplitude
103-96 Frequency Word-1 (bits 31-24)
95-88 Frequency Word-1 (bits 23-16)
87-80 Frequency Word-1 (bits 15-8)
79-72 Frequency Word-1 (bits 7-0)
71-64 Frequency Word-2 (bits 31-24)
63-56 Frequency Word-2 (bits 23-16)
55-48 Frequency Word-2 (bits 15-8)
47-40 Frequency Word-2 (bits 7-0)
39-32 “000000” + Phase Offset Word-1 (bits 9-8)
31-24 Phase Offset Word-1 (bits 7-0)
23-16 “000000” + Phase Offset Word-2 (bits 9-8)
15-8 Phase Offset Word-2 (bits 7-0)
7-0 “000” + Work Mode (bits 4-0)

The UART baud generator module supports six different baud rate
selections. The UART clock signals are generated from input reference clock
(100 MHz) and their frequencies can be selected between 1200 Hz and 38400 Hz.
The user must define the serial communication speed before start transmitting the
configuration data. In order to do this, the user applies the baud rate selection

signal to 4-bit length baud rate selection input of the function generator. Then this

49

value is loaded into the baud rate register. The baud rate register value and related

synchronized clock frequencies are summarized in Table 3-7.

Table 3-7 UART Baud Rate Selection Table

Baud Rate Register Value | Generated Clock Frequency
“0110” 38400 Hz
“0101” 19200 Hz
“0100” 9600 Hz
“0011” 4800 Hz
“0010” 2400 Hz
“0001” 1200 Hz

3.5.4 MAIN CONTROLLER MODULE DESIGN

The main controller module is a link between the communication
modules and DDS module. It controls the I12C interface with transmitting module
address and receiving the sub-address and data packages. The data packages hold
the frequency, phase offset, type and amplitude information of a desired
waveform. In the main controller module, the data packages are distinguished
according to the sub-addresses received from I2C receiver module and written to
the target configuration registers.

The main controller module has also an interface with the UART
receiver module. The data came to the UART receiver module has been hold in
113-bit shift register. The main controller module receives the shift register value
and writes the shift register’s data into configuration registers when data ready
flag bit is set to ‘1’. In addition, FSK and PSK modulations are also controlled by

this module. It switches the frequency and phase offset control values sent to the

50

DDS module according to the received modulation source input. The carrier wave

for FSK and PSK is sine wave. In this module, there are two 32-bit frequency

registers, two 10-bit phase registers, one 8-bit amplitude register and one 5-bit

work mode register.

3.5.5 FUNCTION GENERATOR MODULE DESIGN

The function generator design module does not include only the sub-

modules, but it also includes the internal processes to generate desired waveform.

The internal processes in this module are illustrated in Figure 3-12.

clk

ram_addr_out

max_output

Waveform ‘
construction
logic ‘

I

[internal processes

triangular

wave_amplitude

square

sync clk

ramp
Waveform output

selection
mux

sine

work_mode

Figure 3-12 Function Generator Module Internal Processes

All of the properties of the function generator can not be implemented in

the sub-modules. DDS module only generates the sine samples. However, the

function generator must also build square, triangular and ramp waves. The duties

of the internal processes can be ordered as below:

e Waveform selection

¢ The synchronization clock generation for DAC

e Square, triangular and ramp wave sample generation

¢ Qutput sample amplitude adjustment

51

Table 3-8 Waveform Property Selection Table

Work Mode |yt | Register | Register

“00000” Sine 1

“00001” Sine 1 2
“00010” Sine 2 1
“00011” Sine 2 2
“00100” Square 1 1
“00101” Square 1 2
“00110” Square 2 1
“00111” Square 2 2
“01000” Triangular 1 1
“01001” Triangular 1 2
“01010” Triangular 2 1
“01011” Triangular 2 2
“01100” Ramp 1 1
“01101” Ramp 1 2
“01110” Ramp 2 1
“o1111” Ramp 2 2
“00110” Sine (FSK) 1&2 1
“00111” Sine (PSK) 1 1&2

The designed function generator has a capability of generating many
standard waveforms with excellent frequency resolution. These waveforms can
be ordered as sine, square, triangular and ramp waves. The function generator has
also a capability of making frequency and phase shift keying. The Table 3-8
defines which frequency and phase register will be used for selected work mode.

In order to convert digital samples to analog signals, a DAC requires a
reference clock as timing source in addition to sample data. The function

generator produces samples at each rising edge of input clock. Since the analog

52

conversion must be implemented when the sample data is ready, internal
processes send the inverse of the reference clock to DAC.

The look-up table counter signal is used to generate square, triangular
and ramp waves by internal processes. The address counter steps through the
look-up table and completes its one cycle at desired period time. This periodic
counter is used to build defined waveforms with a little modification.

The designed function generator can also make digital amplitude
adjustment. The sample outputs of DDS are multiplied with the loaded amplitude

constant in the internal processes.

3.6 INTEGRATION OF DESIGN MODULES

The function generator design file merges the main controller module
with the interface units (I2C and UART modules) and DDS modules. The
modularity architecture of the function generator lets to add new module such as
a DDS RAM module that holds the samples of the arbitrary waveform. In
addition, the interface modules can be replaced with desired modules without
spending more effort.

The block diagram of the function generator is shown in Figure 3-13.
The interface modules supply the configuration data of the waveform that will be
generated. DDS module generates the samples of the sine wave. The duty of the
main controller module is to become a bridge between the interface and DDS
modules. It receives the data from external world using the I2C slave module and
UART receiver modules. It sends the frequency and phase offset values to the
DDS module. It also has duties related with modulation. The module combination
is implemented in the function generator design file. All the designed modules
are defined as sub-modules of the function generator. In order to connect the sub-

modules with each other, the internal signals are also defined in the design file.

53

123

FUNCTION GENERATOR

work_mode=—m- output
_—
- ddr —wave_amplitude - lnteina!
~ processes sync_clk
_—
sd.a_» -« ibaddr > |—clk—>
12C SLAVE WIite / read =—— * *
scl RECEIVER max_output ram_addr_out
< " -
k >
DDS
fpsk_data MAIN
* CONTROLLER | A
uart_sin ——freq_reg—p» ram_address ram_data
»- —data_allpe-
——phase_reg
-reset_ ick— YJART RAM DDS
sel_baud UART RECEIVER
—_—
BAUDGEN i
1 clk
——uart_clk=p soft_reset |
T reset T reset T reset T T
reset ok I clk I clk | clk ig.onb
ok ‘ trigger
trig_enb
trigger

Figure 3-13 Function Generator Block Diagram

CHAPTER 4

IMPLEMENTATION OF DDS FUNCTION GENERATOR

4.1 TEST AND VERIFICATION METHODOLOGY

Before verification of the design on the hardware platforms, the function
generator is verified in software environments. In order to verify design, the test
bench-design approach is used. The test bench generates input signals to the
design module and receives the output signals from it. The received outputs are
compared with the expected results. The prepared test bench file does not need to
become in a synthesizable form. The sample design module and its test

environment are illustrated in Figure 4-1.

Input-1

Input-2 DESIGN
MODULE Output-2

Output-1

Input-3

TESTBENCH

Figure 4-1 Test Environment for Design Module

55

The test bench module generates Input-1, Input-2 and Input-3 signals for
the design module and receives Output-1 and Output-2 signals. The generated
and received signals are observed in the simulation environment. If the received
signals are expected signals, the design module is verified and can be used as a
sub-module of the bigger designs or alone.

In this thesis, the design of the function generator is made using two
different design languages named by SystemC and VHDL. The test environments
for these two languages are different. As a result, the design descriptions written
using SystemC and VHDL are simulated in different test environments.

Microsoft Visual C++ 6.0 is used to prepare design and test files in
SystemC based hardware design. SystemC based design verification flow
diagram is illustrated in Figure 4-2. In order to test the design module, the test
bench file and main file are prepared. The main file contains test bench and
design modules as its sub-modules. The main file is compiled and if there is no
compilation error, the design project is built. The design environment generates
an executable file. The user runs this executable file. Executable file generates the
VCD file that holds the samples of simulated waveforms. GTKWave Wave
Analyzer V1.3.19 software is used to open VCD file in order to observe

simulation waveform.

develop
K) design
Main.cpp } module.exe
compile & build

run exe

file
design_module.h

/\ * analyze

wave

testbench_module.h SystemC. reset =0 i N
1 SystemC. sdata_in =1 |
SystemC. soft_reset =0 |
_/—\ SystemC trig_uart_clk =0 — I
SysternC.uart_clk =0 |

Figure 4-2 Verification Flow for SystemC Based Designs

56

In Xilinx Project Navigator, the verification of the HDL design module
is done differently. In this program, the test bench module contains the design
module as its sub-module (component) so there is no need for main file
additionally. The generated test signals in the test bench module are given to the
design module’s input ports. The output ports of the design module are connected
to the test signals. All the defined signals in the test bench file can be observed in
the simulation environment. In this thesis, ModelSim XE III 6.0a is used as a
HDL based simulation and debug environment. ModelSim is initialized from a
single user interface on the Xilinx Project Navigator. This improves the
productivity and facilitates the verification. The verification flow for HDL based

designs is illustrated in Figure 4-3.

develop
K) design
testbench.vhd -
simulate
analyze
wave

design_module.vhd

Figure 4-3 Verification Flow for HDL Based Designs

ModelSim is a comprehensive HDL simulation environment. It verifies
the HDL source code by allowing the behavioral and timing model investigation
of the digital designs. ModelSim is also a debugging environment and has a full
language support for VHDL, Verilog, SystemVerilog and SystemC. Since the

trial version of the ModelSim is used in this study, license restrictions do not let

57

to simulate SystemC design codes. ModelSim is a very powerful simulation
environment, and it is sometimes difficult to use this simulation environment.
However Xilinx design environments can take care of launching ModelSim to
simulate projects. When the designer launches ModelSim using Xilinx design
environments, the wave window appears without any additional work. The wave
window is the most important window of ModelSim. It contains waveforms for
all input and output signals of the top-level design module. There are also
dataflow window which can be used to observe the internal signals of top-level
module. This window is very helpful during the design period. Because, the
designer can observe all the internal signals and notice the design errors of sub-
modules. There is no need to simulate all the sub-modules using separate test
bench files, if applied test to top-level module is enough to verify whole design.
In this study, this talented dataflow window of the ModelSim is used and the
designed top-level module is simulated only using only two test bench files.
ModelSim verification flow is illustrated in Figure 4-4. The VHDL code
is compiled into a VHDL library before it can be simulated. The simulator can
not read VHDL source code directly. It only simulates a compiled database. In
the compilation phase, compiler may point out some possible design or syntax
errors. After compiling the design successfully, actual mistakes (design mistakes)

can be observed in simulation environment.

debug design errors

" comple X ___ /7 smuate 4

Write Compile Simulate
VHDL code VHDL code Design

debug syntax A

» HDL file | | HDL Library

Figure 4-4 ModelSim Verification Flow

4.2 DESIGN IMPLEMENTATION USING SYSTEMC

4.2.1 DDS WAVEFORM GENERATION TEST

The DDS design module and its connections with the test bench module
are illustrated in Figure 4-5. The RAM module which contains the sinusoidal
samples is a sub-module of DDS module. In this section, the RAM module is not
verified alone. The simulation results of DDS verify the functionality of the
internal RAM module.

The DDS module has two output ports. One of them (ram_addr_out)
transmits the RAM address value which is initially same as the defined phase
register value. After the DDS starts to operate, the RAM address value is
incremented by the defined frequency register value. The second output port
(max_output) is used to send the sinusoidal samples generated by DDS. In order
to verify DDS module, the frequency and phase values are sent from the test
bench module. The trigger and trig_enb signals are also supplied to detect the
trigger performance of the designed module. It is expected that the DDS module
generates the sinusoidal samples at the rising edge of the trigger signals when
trig_enb signal is logic high. It is also expected that the frequency and phase

values are taken into account during the sample generation.

freq_reg DDS
phase_reg max_output
address data

trig_enb

RAM DDS ram_addr_out

trigger "
reset clk
TESTBENCH

Figure 4-5 DDS Module Test Environment

59

The simulation waveform of the DDS module designed using SystemC
is given in Figure 4-6. At the start of the simulation, reset condition is employed
by logic high pulse for reset port. After a time, reset condition is removed. Since
the trigger is enabled at the start of simulation, the sinusoidal sample generation
does not start instantaneously. When the trigger signal is sent from the test bench
module, the DDS launches to send the sinusoidal samples. There is maximum 4
clock cycles delay between trigger’s rising edge and start of sample generation.

Since the phase register value is used as an offset value for addressing
the RAM (look-up table), the initial value of the RAM address is equal to phase
register value (0x333 in hexadecimal representation). The delay between the
RAM addressing and sample generation is 2 clock cycles.

The second reset condition is employed in the presented simulation. At
this condition, the RAM address output value is 0x000 and sinusoidal sample
output value is 0x800. This output value represents a minimum analog voltage
level. After a reset condition is removed, the sample generation starts
instantaneously. Since the trig_enb is logic low (trigger is not enabled), the

module does not look for a trigger signal to initialize the waveform generation.

-+ 440 na &5 NE
Time

%
5

clk =1
reset =0 |—| 1
freq reg[2l:0] =000E000S | | |(imoo: jinozooas
phase_regl[9:0] =333 333
trig_enb =1 [|
trigger =1 | |—_|
max_gutpus[1l:0] =500 fiann Yose ymec Yorn Jovas Yo7 Yo IO T
raw addr out[3:0] =333 [n0n CEERN <ETR CECH £ET JEERE S (TR cEER -E TR <X

Figure 4-6 DDS Operation

In the presented simulation waveform, the samples are repeated for more
than 3 clock cycles. At each clock cycle the addressed sinusoidal wave samples
are sent from the DDS module. If the value of the frequency register is

incremented, the number of repeated samples decreases.

60

4.2.2 I2C BUS COMMUNICATION TEST

12C slave design module, [2C master test module and their connections
with the test bench module are illustrated in Figure 4-7. 12C master module is
used to generate desired I12C bus signals in order to test and verify the 12C slave
receiver design module. The master module is not the sub-module of the function
generator. It is controlled by the test bench module to transmit desired test data
package in I2C bus standard format.

The slave receiver module receives sda and scl signals from the master
module and generates the parallel data package. This package is received by the

test bench module and compared with the test data sent by master module.

master_load address
master_idle sda subaddress
master_data 12C 12C SLAVE write / read
- MASTER RECEIVER
master_ack scl data
clock_4x slave_ack
reset reset
TESTBENCH

Figure 4-7 12C Slave Receiver Module Test Environment

The simulation waveform of the master module design using SystemC is
given in Figure 4-8. At the start of the simulation, the reset condition is employed
by logic high pulse for reset port. At this condition, the master module generates
idle signal (port is not used). After removing the reset condition, the master
module makes its lookload signal logic high which a data package request from
the test bench. The master module starts to send serial data by making high-to-

low transition of scl when sda is low. In the presented figure, this condition is

61

shown at the time of cursor. After the start condition, the data bits are sent

serially (most significant bit is sent first) with the synchronization clock pulse.

au ns 4auu N8 11430 T8

clockdx =1

master_data[7:0] =1001! oo+ flonioo

master lookload=0

master_idle =0

[1
reset =0 _|
T 1|

Time

scl =0
=da =0

Figure 4-8 12C Bus Data and Clock Synchronization

The simulation waveform of the 12C slave receiver module design using
SystemC is given in Figure 4-9. The master module sends the address (0x98),
sub-address (0x01) and data packages (from 0x02 to Ox1F) to the slave receiver
module serially. If the received address signal is equal to the internal address
register value, then the slave receiver module accepts the serial data. In this
simulation, the address is verified first and then the sub-address and data package
values are received. At the time of cursor, the first data package is sent by master
module for being written to a register at sub-address 0x01. The sub-address value

is incremented after each data. The 12C data reception ends with stop condition.

taaun na 1asEuy nm
Time
clockdx =0

master_ack =0

master_datal[7:0] =03 [oer o Jhe Yon he Mps Moe iw e hw dhw Yie e 3op Mo e

master_idle =0

master_ lookload=1 "
reset =0 |—|
sel=1 | TR AR T A LT TR AT
sda=0 [T m rfn mn rn anmmn e rr
I

slawve_ack =1 I I I Il I I Il N ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_
slave_addr[7:0] =38 38
slave_subaddr[7:0] =01 an L
slave datal?:0] =02 oo 2

slave_op_wr_read =0

Figure 4-9 Configuration Data Reception over 12C Bus

62

4.2.3 UART COMMUNICATION TEST

UART Receiver Module Test

In order to test the UART receiver module, there is a need for a UART
transmitter module. Because the observation of the receiver module performance
would be possible only if the transmitter module sends the test data and it is
compared with the data received by the receiver module. The UART receiver
module and its connections with the test bench are illustrated in Figure 4-10. The

test bench module contains the UART transmitter module.

UART uart_sin data_all
X RELCJ:AEIR\-II-E R reset_uclk
uart_clk soft_reset
reset clk
TESTBENCH

Figure 4-10 UART Receiver Module Test Environment

The data and clock synchronization simulation waveform of the UART
receiver module is given in Figure 4-11. When the start bit of serial data arrives
to the receiver module, it makes reset_uclk signal logic low. This is an
initialization signal for baud generator module to start operation. The baud
generator module starts to generate the synchronization clock after high-to-low
transition of reset_uclk signal. The receiver makes reset_uclk signal logic high
after each stop bits. This start and stop bit detection operation provides a perfect

serial data reception by making serial data and clock synchronization. At each

63

rising edge of clock, the receiver accepts the serial data value. At the reset
condition (external hard reset), reset_uclk signal is made logic high by the

receiver module and the synchronization clock pulses are not generated.

usnn T LEsiu na
Time
clk =0

reset =0 |
uart_sin =0
uart clk =1

reset_uclk =0 [1 1 1 [

data all[llZz:0] =00 n0000000000000000000000000000 }{nnuunnunnunnnunnunnuun-o}{nunnnunnunnuunnunnunnnoﬂ

soft reset =0

Figure 4-11 UART Data and Clock Synchronization

The configuration data reception simulation waveform of UART
receiver module is given in Figure 4-12. The test bench transmits the
configuration data serially to the receiver module as shown in the figure. The
transmitted first byte is configuration header (decimal 90). After receiving the
configuration header, the receiver module waits for the configuration data to load
registers. The shift register signal (data_all) holds 113 bits data. After the receiver
accepts 14 bytes of configuration data which contains frequency, phase offset,
amplitude and waveform selection information, the configuration data reception
is completed and the most significant bit of shift register signal (data all) is made
logic high. The most significant bit is a warning for controller module and means

that the data load has been completed and the new parameters can be used.

Time
clk =0

reset =0

uart sin =1
uart eclk =0
reset_uclk =1

data all[112:0] =10F0F

soft reset =0

Figure 4-12 Configuration Data Reception over UART

64

UART Baud Generator Module Test

The UART baud generator module and its connections with the test
bench module are illustrated in Figure 4-13. The baud generator module
generates the synchronization clock for data reception. The module receives three
signals which are baud rate selection, clock initialization and system clock signal,

and then transmits synchronization clock signal from its output port.

sel_baud
UART uart_clk
BAUDGEN -
reset_uclk
clk
TESTBENCH

Figure 4-13 UART Baud Generator Module Test Environment

The synchronized clock generation of baud generator module is given in
Figure 4-14. The baud rate selection signal determines the frequency of generated
synchronization clock signal. The baud rate selection signal (sel_baud) is 04
initially as shown in the figure. This means that 9600 Hz baud rate is required.
The module calculates and generates the desired synchronization UART clock
using the system clock. As shown in the figure again, the sel_baud is made 05.
This means that 19200 Hz baud rate is required and the module also generates
this clock. The reset signal is supplied to the baud generator module from the
receiver module and helps to receive serial data bit at its middle point. When the
reset condition (reset_uclk is logic high), is present, the internal counters take

initial values. After removing this condition the clock generation starts again.

65

o

Sl |

Time

reset_uclk =0 |_| ’_|
sel baud[3:0] =4 [z b e
uart clk =0 |

Figure 4-14 UART Synchronization Clock Signal Generation

4.2.4 MAIN CONTROLLER OPERATION TEST

The main controller module is a bridge between the interface modules
and DDS module. Main controller module and its connections with the test bench
module are illustrated in Figure 4-15. In this simulation, the test bench acts as if it
is the UART receiver module and sends the configuration data signal (data_all) to

the controller. The dotted lines represent unused signals at this simulation.

data_all
fpsk_data freq_reg
address MAIN phase_reg
subaddress
_ CONTROLLER .0 amp
write_read
data work_mode
ack
reset clk
TESTBENCH

Figure 4-15 Main Controller Module Test Environment

In order to verify the controller operations, the UART data sample is
sent to the controller module by test bench. The mission of the controller module
is to receive the configuration data from the interface modules and place the
values of frequency, phase offset, amplitude and waveform selection data to the

configuration registers. In Figure 4-16, the controller receives the UART data

66

sample value (hex 1-60-4010040D-02431124-0231-0114-04) at the time of
cursor. The waveform selection mode is 04 (means that square wave, frequency-
regl and phase-regl are selected). The controller really outputs the frequency-

regl (0x4010040D), phase-regl (0x231) with correct amplitude (0x60) values.

) Lrw ma f
Time
o It R !
reset =0 |_|]
dat,a_all[llz:o] =1604010040D024311240231011404 oooooooooo+ }{lﬁndﬂlﬂﬂﬂﬂ\)ﬂzd 1124023101+ nnnnnnn1]{115a:1nnaznass
freg regl[2l:0] =4010040D faniooson []) TTEITT
phase_reg[2:0] =231 [ooo }ER Yoo a7z
wave_aup[7:0] =60 [oo W&o Yoo JAl]
work mode[4:0] =04 [g iw Yo7
address[7:0] =38 [58
subaddress[7:0] =00 [uo
data[7:0] =00 {10
write_read=0 [
ack =0 |
fpsk_data=0 |

Figure 4-16 Main Controller Operation (Part-1)

In Figure 4-17, the controller receives the UART data sample value (hex
1-78-40100420-86631004-0087-0372-07) at the time of cursor. The waveform
selection mode is 07 (means that square wave, frequency-reg2 and phase-reg2 are
selected). The controller really outputs the frequency-reg2 (0x86631004), phase-
reg2 (0x372) with correct amplitude (Ox 78) and work mode (0x07) values.

T TYETT £l
Time
T UL UYL LU U UL UL UL ULy
reset =0 1 1
data all [llz: D] =178401004 2086631004002 7037207 (ﬂﬂﬂﬂﬂﬂﬂﬂ 0+ }{lﬁﬂﬂﬂ]ﬂnﬂﬂDﬂZﬂ!ll:dﬂZ!lﬂl‘}{ﬂﬂﬂﬂ ﬂf}{l?ﬂﬂﬂ]ﬂ 420B66
fre;_reg[Sl: 0] =86631004 [oonnonon Wan1nnann Wionoonno Yeesafiona
phase reg[9:0] =372 [ooo 231 T a7z
wave amp[7:0] =73 [oo o b bl
work_mode[4:0] =07 (] HE YiE JiE
addres=[7:0] =338 [a8
subaddres=[7:0] =00 [oo
data[7:0] =00 (]
write read=0 |
ack =0 |
fpsk_data=0 |

Figure 4-17 Main Controller Operation (Part-2)

67

4.2.5 VERIFICATION OF THE WHOLE DESIGN

In this section, DDS function generator’s sub-modules are supposed to
be tested and verified. The applied tests cover only the verification of internal
processes of function generator and whether the signals between sub-modules are
truly connected or not. All of the signals and variables that are used in the design
are not observed. As a result, if there are unexpected output values, the sub-
modules that constitute the function generator must be tested and verified in their
test environments again.

The block diagram of the function generator and its test environment are
illustrated in Figure 4-18. The configuration test signals are generated by the
UART transmitter module and the 12C master module. These modules simulate
the external interfaces of the design. Using these simulated interfaces, the
selected function generator configuration parameters are loaded into the design.
The generated output waveform sample values are observed and compared with

the expected results.

FUNCTION GENERATOR — ouput

internal
processes sync_clk

sda ~—address- —wave_amplitude -
12¢
~p———subaddress———p- clk:
MASTER | 12C SLAVE
write / read —

Lo
RECEIVER max_output ram_addr_out
———data———— |

clock_4x reset -

| master_data

3K ————— _>I
DDS =l

fpsk_data M AI N
CONTROLLER | 4 ea g

uart_sin —freq_reg— ram_address ram_data

UART —data_allp-

X wave_amp
—phase_reg-#

~areset_uck— YART RAM DDS

selbaud | UART RECEIVER
BAUDGEN

'l
—uart_clk—- soft_reset

phase_reg
e

work_mode
—_—

max_output
—>

ram_addr_out
clk —

reset_uck
—

uart_uclk
reset reset reset =

clk clk clk
reset clk trig_ena_high data_all
—

CLK clk trig_high
GEN trig_enb.

trigger

TESTBENCH

Figure 4-18 Function Generator Test Environment

68

The sample generation simulation of the function generator after loading
the configuration data over I2C interface is shown in Figure 4-19. The
configuration data is transmitted to the function generator design using 12C bus
master module. The frequency, phase, amplitude and waveform selection signals
of function generator are set according to the received sub-address value. The
sample generation detail simulation is shown in Figure 4-20. The output
waveform generation starts when trigger signal makes low-to-high transition. The
RAM address signal’s initial value (obs_ram_addr_out) is equal to the phase
offset value (obs_phase_reg). The internal look-up table outputs the addressed

sinusoidal samples (max_output) at each clock cycle.

o - i e e
clk =0 |
reset =0 [
sel=1 [TS LR LR L T L L ATRR TR TR TR TR
sda=1 [T 1 1 1 | 1 I
sel_baud([3:0] =0 d
uart_sin=1 [
obs_freq reg[21:0] =000(|| [froonnon Janooazrd
obs_phase_reg[9:0] =008 | | [f]Jom g
obs_wave_aup [7:0] =F0 e ¥
obs_work_mode[4:0] =00 (S HI

trig_enb =1 [

trigger =1 | [Tl
obs_max_sutpur [11:0] =864 | | | [ED < O R S T) XD T
obs_ram addr out[9:0] =00% | || (s e Yana Youn Yoos Yooc Yoow Yaoe i
output [11:0] =25D | || (0 Jefan e e yaen jaen s Jons)

fpsk_data =0

|
syma_clk =1 . ______________ |

Figure 4-19 Wave Generation Using 12C Interface

Time
clk =0
reset =0
scl =1
sda =1
sel baud[3:0] =0 a
uart_sin=1
obs_freq reg[31:0] =00000FFO nonoanon Yannuorea
obs_phase_rag[9:0] =003 L] Juna
obs_wave_aup [7:0] =F0]
obs_work_mode[4:0] =00 17 T
trig_enb=1
trigger =1 1
ohe_max_surpun [11:0] =564 w0 e I GOA, T T T FEn
obs ram addr our [3:0] =002 a0 Y [AT TR TR T (1T iz
output [11:0] =550 w0 Vs J OIS GTRNES T TR (1T Gns
fpsk_data =0

—— —
Figure 4-20 Wave Generation Using I12C Interface in Detail

69

The sample generation simulation of the function generator after loading
the configuration data over UART interface is shown in Figure 4-21. The
function generator receives the UART data serially and sets its configuration
signals after data loading is completed. The sinusoidal sample values are
calculated according to the desired amplitude after trigger signal arrives. As
shown in Figure 4-22, the output value (0x85D) of the function generator is result
of the multiplication of max_output (0x864) and amplitude value (0xFO) and

division it by the maximum amplitude value (OxFF).

Time
clk =0 |

reset =0

sol=0
=da =0
sel_baud[3:0] =6

uart_sin=1
obs_reset_uclk =1
ohs_uart_clk =0

obs_data all[llz:0] =1F00C g

obs_freq_regl(31:01 =0000c| | | (fzonoom Jonnnndza

(unnFonnn307a000nAOOIFID

ohs_phase reg[9:0] =003 {{(IT] Jana
obs_wave_aup[7:0] =FOQ (o Jen
obs_work_medel4:01 =00 = oo

triy_emk =1 [

trigger =1 | 1
obs_max_output [11:01 =864 (s NG CN O N 2N 0
ches_raw sddr ourls:o] =ooz | | (o D) O
cuatput [11:0] =250 (e e e Y e e
fpsk_data =0 |
syne_clk =1 L—

Figure 4-21 Wave Generation Using UART Interface

reset =0

sol =0

=da =0

sel_haud[3:0] =6

wart_sin=1

obs_reset_ucllk =1

Time
clk =0
N I |
S |
ML ATREATIL_RARAIL

obs_uart_clk =0

obs_dsta =11[112:0] =1F0000000F0000307800008003F00 a0 d 307 Fon
obs_freq req[21:0] =000000F0 anouanon Yaouanora
obs_phase_reg[3:0] =003 w00 fn
obs_wave aup[7:0] =F0 i VED
obs_work_mcde[4:0] =00 iF Yo
trig enb=1
trigger =1 11
obs_max_output [11:0] =364 I 1
obs_ran_addr_out [9:0] =003 O D D LN Lo L
output [11:0] =350 I O T T TS T T
fpsk_data=0
e Essmmmmmmeaaaammm

Figure 4-22 Wave Generation Using UART Interface in Detail

4.3 DESIGN IMPLEMENTATION USING VHDL

4.3.1 VERIFICATION IN SOFTWARE ENVIRONMENTS

The designed function generator has a capability of generating many
standard waveforms with excellent frequency resolution. These waveforms can
be ordered as sine, square, triangular and ramp waves. In addition, FSK and PSK
modulations can be done using external data source and carrier sine wave. The
function generator has two standard communication interfaces to receive
operational data. This section includes verification results of the synthesized
function generator VHDL descriptions in software environment.

In order to verify the function generator’s VHDL design codes, two
different test bench files were prepared. One of them was prepared to observe all
output waveforms if I2C interface is utilized. It defines the function generator and
I2C master module which is used to generate standard 12C signals as its sub-
modules. It controls 12C master module to generated configuration data and
receives the output signals from function generator. The second one was prepared
to observe waveforms if UART interface is utilized. This test bench module
supplies standard UART signals to the function generator core.

The configuration data is loaded into the function generator module
using 12C interface as shown in Figure 4-23. The 12C master module transmits
data and clock signals using its serial data port SDA and serial clock port SCL.
The main controller module analyzes the received data, and then it refreshes its
frequency, phase offset, amplitude and waveform selection register data. The
configuration parameter values are refreshed after each data reception. The
waveform sample generation starts when trigger signal makes low-to-high
transition. The sine and square wave generation is shown in Figure 4-23 and
Figure 4-24. As the new configuration values are loaded, the frequency of the
waveform changes according to new values. The analog literal is selected for

RAM addressing and output signals to observe the waveforms clearly.

71

ok a - = = g B = ™ w "

Curzor 1| 220015 ns

Figure 4-24 Square Wave Generation Simulation (Using 12C Bus)

The triangular wave generation is shown in Figure 4-25. In this
simulation, the trigger is disabled by making trig_enb signal logic low. As a
result, the function generator does not wait for trigger pulse. The waveform
sample generation starts immediately after the receiving the configuration data.
The ramp wave generation is shown in Figure 4-26. The look-up addressing
signal is directly given to the output port in order to generate a ramp wave.

The configuration parameters are loaded two times for triangular and
ramp wave simulation. At the second loading, the phase register value is changed
in addition to the frequency value. As can be seen in the presented simulation

waveforms, the output signal makes a glitch due to this phase offset change.

72

Atlick 0 =
<

Curzor 1| 183992 ns

Figure 4-26 Ramp Wave Generation Simulation (Using 12C Bus)

The sine wave generation using UART interface is shown in Figure 4-
27. In this simulation, the trigger is enabled by making trig_enb signal logic high.
Then the configuration data is transmitted by the test bench module. When the
transmission is completed, the configuration registers take their new values. The
waveform generation does not start before trigger pulse is transmitted by test
bench module. As can be seen in figure, output value and max_output (addressed
look-up table output) value are different due to the amplitude scaling.

At the time of cursor, the test bench module transmits the soft reset data

package (0x98). After reception of this information, the function generator resets

73

its configuration registers and stops the sample generation. The soft reset signal is
set only using UART interface and it is transmitted to all sub-modules of function
generator as reset signal. When break reset data package (0x99) received, the
function generator removes the soft reset condition. However the waveform
generation does not start due to the loss of old configuration data. The new

configuration data must be loaded to initialize the waveform generation again.

Cursar 1

Figure 4-27 Sine Wave Generation Simulation (Using UART)

4.3.2 VERIFICATION ON HARDWARE

The DDS function generator design was verified by testing it after
implementing into FPGA. The function generator descriptions were written in
synthesizable format using VHDL. Xilinx’s Virtex-4 V4FX12 was selected as
target FPGA. The hand-written VHDL descriptions were synthesized using
Xilinx XST software. The estimated device utilization summary of function
generator descriptions is given in Table 4-1. These values are supplied by Xilinx
XST synthesis tool and reported after the synthesis of design descriptions. The
available resources colon of the presented table represents the target FPGA’s

hardware resources.

74

Table 4-1 Device Utilization Summary for Function Generator VHDL Code

Logic Utilization Used Available | Utilization
Number of Slices 513 5472 9%
Number of Slices Flip Flops 334 10944 3%
Number of 4 input LUTs 883 10944 8%
Number of bonded IOBs: 22 320 6%

In order to verify the function generator design, the development boards
should have FPGA and D/A converter. Memec Virtex-4 FX12 LC Development
Board [32] and Memec P160 Analog Module [33] were selected as hardware
resources to test the design. The basic properties and pictures of these boards are
given in Appendix C.1 and Appendix C.2.

Memec’s development board contains Xilinx’s Virtex4 series V4FX12
FPGA [31]. The Xilinx Virtex-4 family is revolutionized the fundamentals of
FPGA economics. It presents three application-domain-optimized platforms.
These can be ordered as logic, DSP and embedded processing based platforms.
Virtex-4 FPGAs deliver breakthrough performance at the lowest cost and offer a
compelling alternative to ASICs.

Memec’s other board, analog module, was used with the development
board. The analog and development boards are combined to form analog
application board. The analog board contains high speed A/D and D/A
converters. When the analog and development boards are merged, the converters
and FPGA has been connected with digital I/O channels. The analog module does
not only receive the digital data for D/A converters, it also receives the
synchronization clock signals from the development board. These clock signals
are used by D/A converters and determine the analog conversion rate. The analog
module has also power connections with the development board.

Since the VHDL descriptions are generated using Xilinx’s ISE software,

the usage of Xilinx’s FPGA 1is an advantage in terms of software support, quick

75

and easy programming. Xilinx ISE software supports full code-to-FPGA
processes for Xilinx FPGAs. The code-to-FPGA steps can be ordered as below:

. Syntax check of description
Synthesis of description

1
2
3. Implementation (Translate - Map — Place and Route)
4. Generation of programming file

5

. Programming the device

In order to generate programming file, the function generator design
should have been implemented for the selected FPGA. In this study, the
development board contains Xilinx V4FX12 FPGA and the design is
implemented for this FPGA technology. Before the implementation, the
constraint file is written to define hardware I/O connections. If the constraints are
not defined, the implementation is done according to the synthesis tool’s defaults.

The implementation constraint file includes the definitions ordered below:

1. Timing constraints
2. Package pin assignments

3. Area constraints

Implementation process consists of translating, mapping, placement and
routing of a logical design into the targeted Xilinx FPGA. At this stage, the
logical design file, which is output of the synthesis stage, is converted to a native
circuit description (NCD file). This file contains hierarchical components used to
develop the design and the Xilinx primitives. The implementation includes the

processes ordered below:
1. Translate (NGDBuild)

2. Mapping (MAP)
3. Placement and Routing (PAR)

76

The Translate process merges all of the input netlists and design
constraints and outputs a Xilinx native generic database (NGD) file, which
describes the logical design reduced to Xilinx primitives. The Map process maps
the logic defined by an NGD file into FPGA elements, such as CLBs and 1OBs.
The output design is a native circuit description (NCD) file that physically
represents the design mapped to the components in the Xilinx FPGA. The Place
and Route process takes a mapped NCD file, places and routes the design and
produces an NCD file that is used as input for bitstream generation. The Generate
Programming File process produces a bitstream for Xilinx device configuration.
After the design is completely routed, the device is configured so that it can
execute the desired function. Xilinx’s code-to-FPGA design flow is illustrated in

Figure 4-28. Input and output files for each flow step are defined in figure.

(constraint file)
module.ucf

Implementation
design description

(oo pren Check Syntax Netlist File -

module.vhd > and module.ngc Translate NGD file
Synthesis + —
Mapped
Map NCD file
+ Placed and

Routed

Place and Root NCD file

\
Programming

NI VRY

i Bitstream file
Programming file !
generation \w\l
Configuring
device

Figure 4-28 Xilinx’s Code-to-FPGA Design Flow

77

FPGA is programmed using Xilinx’s Platform Cable USB [34]. The
hardware test setup used in this study is illustrated in Figure 4-29. The test setup
includes the Memec’s development board, Memec’s analog module, Xilinx’s
programmer, oscilloscope and test computer. Memec’s boards are combined to
form waveform generation hardware and Xilinx’s programmer is connected to
JTAG port of Memec’s development board. After following setup steps defined
above, FPGA is programmed using Xilinx ISE environment and the test setup

becomes ready for function generator design verification.

SCOPE PC
————— - - - = -'
I | f——— == — |
I | XILINX
| i | o Programmer] 3
| ilters ! 3
| | 1T T T e T T T T T T T T - "
| L :
I || |
| l II | N
|

| DIGITAL DATA
| DAC || ’gég‘j\(<@ DRRSI\2/?I)52R :
I synear RECEIVER |
I | T
| L :
' MEMEC P160 I MEMEC FXLC |
:_Analog Module | :— Development Board |

_________ - N N T ww=w=

Figure 4-29 Hardware Test Setup

In order test the function generator core, the waveform configuration
parameter should have been sent to the FPGA. The Memec’s development board

[32] has physical serial port. By setting a communication channel between the

78

development board and the computer using the serial ports, the waveform
configuration parameters would be sent to the development board.

The application software was prepared in order to control the serial port
of the computer. This software allows communication with the function generator

core over UART. The user interface of the software is shown in Figure 4-30.

fee AER|

Function Generator Control Sofiware

General |

WAVEFORM SETTINGE
Frequency
Frequency-1 500 = Hz

Frequency2 1500 3: Hz

Phase

Phase-1 0 3: steps/1024 steps
Phaze-2 0 E|: steps/1024 steps
Amplitude

Amplitude 255 El; steps/255 steps

Work Mode

Work Mode 0-Siniisoidal-Freq1-Phasel |

| #| Load Configuration |S§Hnld Fleset | B) Break Feset | F Help | ;‘.Ahnut ‘ 3 Cloze |

Canfiguration has been loaded

Figure 4-30 Function Generator Control Software with UART Interface

In order to load the configuration parameters using this software, the serial port of
the development board is connected to the computer’s serial port. The frequency,
phase offset, amplitude and work mode parameters are selected on the user
interface of the control software. When “Load Configuration” button is pressed,
the loading is executed. In order to reset the function generator (soft reset), “Hold
Reset” button is pressed. When “Break Reset” button is pressed, the reset
condition is removed. The hardware verification test setup and generated

waveforms by DDS function generator are shown in Figure 4-31, 32, 33, 34.

79

Figure 4-33 Triangular Wave Generation on Hardware

80

Figure 4-34 Ramp Wave Generation on Hardware

4.4 SYNTHESIS OF UART BAUD GENERATOR SYSTEMC CODE

In this section, the synthesis results of the UART baud generator
SystemC description are presented. The VHDL description of the same module is
also synthesized to compare the synthesis performances of two synthesis flows.

An important point is the fact that UART baud generator module
descriptions were written in synthesizable RTL format using SystemC and
VHDL. The SystemCrafter’s synthesis tool translated the SystemC descriptions
to VHDL code. The hand-written VHDL code and translated VHDL code were
synthesized using Xilinx’s synthesis tool.

After an automatic translation of the SystemC descriptions to VHDL
with SystemCrafter SC, generated codes are synthesized using Xilinx Project
Navigator. First, a new design project is created in Xilinx Project Navigator.
Then Xilinx’s Spartan-2E XC2S50E is selected as target FPGA and Xilinx XST
is chosen as a synthesis tool. All of the VHDL design files that describe the
synthesized circuit are added to the source directory of the project location.

An additional gate library file namely craft_generator.vhd is supplied as
a part of the SystemCrafter distribution. It can be obtained from the
SystemCrafter SC’s install directory. In order to synthesize the automatically

translated VHDL files, the gate library file is also added to the project as a VHDL

81

package file. This file includes the SystemC library of gate-level descriptions
prepared by the SystemCrafter SC.

The synthesis flow using Xilinx XST synthesis tool is illustrated in
Figure 4-35. The Xilinx XST receives the SystemCrafter’s VHDL package and
design description file as input and generates the netlist file that describes the

gate-level structure of the design as output.

(design description)

— —
rwd\ (synthesis tool) (netlist file)
Xilinx XST » module.ngc
(vhdl package)

craft_gatelibrary.vhd

(synthesis report file)
module.syr

Figure 4-35 Synthesis of Translated VHDL Code Using Xilinx XST

Xilinx XST generates a synthesis report describing hardware utilization
and timing. The estimated device utilization summary for automatically translated
UART baud generator VHDL code is given in Table 4-2. The device utilization

summary for hand-written VHDL code is given in Table 4-3.

Table 4-2 Device Utilization Summary for Translated VHDL Code

Logic Utilization Used Available | Utilization
Number of Slices 26 768 3%
Number of Slice Flip Flops 23 1536 1%
Number of 4 input LUTs 41 1536 2%
Number of bonded IOBs: 7 4 3%
Number of GCLKs: 1 1 25%

82

Table 4-3 Device Utilization Summary for Hand-written VHDL Code

Logic Utilization Used Available | Utilization
Number of Slices 12 768 1%
Number of Slice Flip Flops 17 1536 1%
Number of 4 input LUTs 22 1536 1%
Number of bonded IOBs: 7 4 3%
Number of GCLKs: 1 25%

As shown in Table 4-2 and Table 4-3, the translated code requires more
hardware resource than hand-written code. The SystemCrafter SC synthesis tool
adds redundant logic descriptions when translating the SystemC descriptions to
VHDL. Xilinx XST synthesis tool removes most of this redundant logic.
However, the reduction of the logic is not in satisfactory level. In this experiment,
hand-written code requires nearly the half of the resources required by translated
code.

New well developed synthesis tools can use hardware resources more
effectively. However, it is nearly impossible to reach the same level of hand-

written hardware utilization using current synthesis tools.

4.5 COMPARISON OF SYSTEMC AND VHDL DESIGN FLOWS

In this study, the digital design flow of SystemC RTL and VHDL RTL is
evaluated in terms of code to synthesized gate-level netlist transformation. In
traditional design flow, the algorithmic concept designers use C/C++ for
modeling. This is followed by architectural level design using VHDL or Verilog.
Since there is a gap related with higher abstraction level support of VHDL and
Verilog, SystemC was born to close this abstraction level gap. However SystemC

should show its advantages for RTL synthesis to be replaced with the traditional

83

languages. In this section, the comparison is tried to be made for SystemC and
VHDL function generator designs in terms of synthesis and implementation.

For VHDL implementation of the function generator, Xilinx’s ISE was
used. For SystemC implementation, the SystemC library version 2.0.1 was
employed with Microsoft Visual C++ 6.0 which lets developing and debugging
of the design code. The simulations of the VHDL and SystemC design codes
were done in different platforms. It can be observed that there are advantages and
disadvantages of using SystemC language in digital hardware design flow. The
comparison of VHDL and SystemC based hardware design flows is made when
presenting advantages and disadvantages of SystemC design flow. Advantages of

using SystemC design flow can be stated as below:

e SystemC proves its importance as being a common language in the
whole design process. It provides that the designer does not need to
switch design languages using SystemC direct synthesis flow (direct
design flow from behavioral model to gate-level model).

¢ Since it provides various abstraction levels with a single language,
the test benches can be reused at various modeling levels.

o SystemC eases the design refinement while passing from higher
abstraction level to lower abstraction levels. The designer does not
need to recode all the interfaces and hierarchies designed at higher
abstraction levels.

e SystemC shortens development cycles with its fast simulation and
debug support. A high-level simulation engine is required to obtain
fast simulation speed. SystemC achieves this using standard C/C++
development environment. VHDL function generator design is
simulated using ModelSim XE III 6.0a. It turned out to be

significantly slower than the SystemC simulation environments.

84

Disadvantages of using SystemC design flow can be stated as below :

In the market, there are lots of high-performance HDL synthesis

tools and a little number of well developed SystemC tools. Current

SystemC synthesis tool performances are not satisfactory.

e There are problems with error definitions reported by SystemC

library. Some error origins are not found with justifiable expenses.

o There are various SystemC tools that translate the SystemC

descriptions to VHDL or Verilog. However each has special

recommendation in order to write synthesizable SystemC code. This

damages the think of vendor independent SystemC language.

e Translation of the SystemC descriptions to VHDL generates

redundant logic and results in utilization of more hardware resources

when implementation into hardware. SystemCrafter’s synthesis tool

was used to translate SystemC descriptions of function generator. It

showed that the hardware resource utilization for translated VHDL

code is more than resource utilization for hand-written VHDL code.

e After translation of SystemC descriptions to VHDL, the designer

can not make refinements in the generated VHDL code easily. The

translated code includes redundant logic and has a different writing

style that can not be traced easily.

e Synthesizable VHDL description may include more than one

process each of which may have different signals in the sensitivity

list. However, SystemCrafter’s synthesis tool requires that all the

processes in the module must have same source in their sensitivity

lists. This restricts the effective process utilization and undermines

the idea of writing same synthesizable code using SystemC language

easier. During the translation of SystemC descriptions, each process

defined in the module is written into different design files and this

makes tracing the whole design code difficult.

85

CHAPTER 5

DISCUSSION AND CONCLUSION

In this thesis, a direct digital synthesis (DDS) based function generator
design core having 12C and UART communication interfaces is presented,
defined and implemented using two digital hardware modeling/design languages
namely SystemC and VHDL. The simulation, synthesis and applicability
performances of these two design languages are compared by following all
hardware design stages which starts with specification definition and ends with
generation of gate-level netlist. The VHDL function generator descriptions are
also implemented into FPGA and verified with hardware tests. SystemC to
hardware flow is followed by translating UART baud generator SystemC
descriptions to VHDL and synthesizing the translated code. The synthesis
performances of the hand-written and translated VHDL codes are compared in
terms of approximate hardware resource utilization during implementation into
hardware. The design of DDS function generator using both SystemC and VHDL
enables observing SystemC language’s power and potential in the hardware
design flow. The weak aspects of SystemC design flow are also observed and
presented in this study.

The specifications of designed DDS function generator is determined
upon a detailed research about the present commercial DDS, Numerically
Controlled Oscillator (NCO) and function generator ICs or Intellectual Properties

(IPs) in the market. There are limited numbers of function generator ICs that use

86

DDS technique and generate higher frequency outputs. Moreover, most of these
ICs do not allow the digital adjustment of waveform amplitude. Various DDS and
NCO IPs are present in the market however; ready to use DDS function generator
IP has not been found. Moreover, most of DDS and NCO IPs do not allow
amplitude adjustment also. The designed DDS function generator core combines
DDS module and popular standard serial communication interfaces namely 12C
and UART. The integration of I2C receiver module within a DDS function
generator gives a great flexibility for remote control of the design by simple
microprocessors supporting 12C. In the market, ICs or IPs which integrate DDS
and 12C has not been found and this integration is proposed in this study. The
designed function generator presents amplitude adjustment, external trigger for
waveform generation and FSK/PSK modulation capabilities also. It is verified
with adequate number of test bench modules using both SystemC and VHDL
verification environments. Besides, VHDL design description is implemented
into FPGA and verified with hardware based tests. Since the designed core has
UART communication interface, the function generator’s output waveform
configuration parameters have been loaded to FPGA from a personal computer’s
UART port.

The DDS modules seem to become popular for periodical waveform
generation applications in the last years. Periodical waveforms are generated by
function generators that use various waveform production techniques. They can
generate various waveform outputs at a desired frequency, phase and amplitude.
These waveforms are generated for different applications such as new product
testing, clock signal generation and carrier wave generation for communication
systems. The function generator implemented in this study uses DDS technique to
generate periodical waveforms. As the name implies, the analog sine wave is
completely generated by digital circuits using this technique. The designed
function generator combines DDS core module with two serial peripheral
interfaces (I2C and UART), internal controller module, waveform generation

logic (for waves except sine wave) and amplitude control logic.

87

A DDS function generator core written using VHDL is implemented into
Xilinx’s Virtex4 series V4FX12 FPGA. The simulation results presented in
Chapter 4 show that the function generator design suggested in this study is
applicable to the FPGAs. The implementation results show that the maximum
internal logic delay of function generator for this FPGA technology is smaller
than 8 ns and this allows operation using nearly 125 MHz DDS reference clock.
Maximum frequency of periodical waveform output is 40 MHz for this reference
clock rate. It is observed that function generator core proposed in this study can
be implemented into FPGAs having limited hardware resources and controlled by
processors having I2C or UART serial interfaces. The presented function
generator core can generate higher frequency outputs when compared with
Analog Device’s AD9833 programmable waveform generator IC which achieves
maximum 12.5 MHz output. Besides, this waveform generator IC does not allow
digital amplitude adjustment. The presented function generator design is also a
case study sample to compare SystemC and VHDL hardware design flows. The
design can be more developed with dedicated effort to prepare and add innovative
design modules to present structure.

SystemC appeared to provide a modeling platform for system level
designs. The ability to model entire system using a single platform is a critical
capability for system designers. In this platform, the designers can iterate the
designs faster and more cost effectively. In the last years, SystemC gained
popularity as a hardware design language which can replace traditional HDL
based design languages such as VHDL and Verilog. Since using a single platform
and single language for hardware modeling, design and verification will be very
effective in time and cost. Its capability in hardware and software co-verification
and co-design is also an advantage for electronics industry. SystemC is supported
by various vendors to synthesize the written code directly. However, the present
synthesis tools are not satisfactory in performance when compared to traditional
HDL synthesis tools.

Since both SystemC and VHDL hardware design flows are followed

during this study, the different design and verification platforms had to be utilized

88

due to lack of design tools supporting both design flows. The design descriptions
are written using Microsoft Visual Studio 6.0 and Xilinx ISE design development
environment. The SystemC simulation waveforms are observed using GTKWave
waveform viewer software after the generation of simulation file. The VHDL
simulations are realized using ModelSim simulation tool.

In this study, SystemC to hardware flow is also illustrated by
synthesizing the UART baud generator module into hardware. There are two
different approaches for synthesizing SystemC descriptions. These are (i) direct
synthesis of the SystemC descriptions and (ii) synthesis of VHDL codes after
SystemC-VHDL translation. The first one is a simple, very effective approach,
but unfortunately there is not sufficient number of well developed tools in today’s
electronic market. For this reason, first the SystemC descriptions have been
translated to the VHDL codes and then VHDL-based synthesis cycle is followed.
As the translation software, SystemCrafter SC SystemC synthesis tool is used.

The automatic translation of SystemC descriptions results in introduction
of redundant logic code and the designer may not trace the generated VHDL
code. The modifications may not be done on automatically generated VHDL code
easily. The modifications must be done in the SystemC descriptions, and then the
descriptions must be translated to VHDL again. During the synthesis, some of
this redundant logic is removed depending on the capability of the synthesis tool.
However it is observed that SystemC to VHDL translation is not an effective
solution from the removing redundancy point. In this study, it is shown that the
translated VHDL code utilizes hardware resources nearly twice as much as hand-
written VHDL code. However, this hardware utilization can be reduced by more
powerful translation software or direct synthesis tools.

When writing descriptions with the synthesizable subset of the SystemC
language, coding becomes similar to the syntax of VHDL. However there are
more rules and limitations in order to write synthesizable SystemC code when it
is compared with VHDL. For instance, SystemCrafter SC synthesis tool does not
accept processes that include different signals in their sensitivity list. Due to these

limitations, whole function generator description could not be translated to

&9

VHDL. The designs including only sequential processes which are sensitive to a
single and same clock edge (like microprocessor applications) can be easily
implemented using SystemC. However, DSP applications generally include both
combinatorial logic and sequential processes sensitive to many different signals.
Hence, it is very difficult to write the synthesizable SystemC descriptions for
such applications.

Finally, SystemC brings several advantages such as low simulation
times, effective modeling and hardware/software co-design/co-verification.
However it has even unsolved problems defined in this study. The SystemC to
hardware design flow will likely be further investigated in the future. The
designed DDS function generator core allows generating standard waveforms and
making FSK/PSK modulation. The core is controlled using 12C and UART
interfaces and has trigger and amplitude scaling capabilities. The modular
architecture of the core lets to improve the design sub-modules or replace them
with new ones. The design architecture is suitable to make arbitrary waveform
generation possible. On the other hand, in addition to the presented design, the
sizes of the look-up table and phase accumulator can be enlarged to have better
resolutions. The look-up table holding the arbitrary waveform samples can be
added and its words can be refreshed by loading the samples of various
waveforms using communication interfaces. Besides, high speed Serial Interface
Peripheral (SPI) modules may be added to load the waveform configuration data

more quickly.

90

[1]

(2]

(3]

[4]

[5]

[6]

REFERENCES

A. Habibi, S. Tahar, “A Survey: System-on-a-Chip Design and
Verification”, Technical Report, Electrical and Computer Engineering

Department, Concordia University, January 2003

F. Bruschi, F. Ferrandi, “Synthesis of complex control structures from
behavioral SystemC models”, Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition (DATE’03), pp. 112-117, 2003

N. Calazans, E. Moreno, F. Hessel, V. Rosa, F. Moraes, E. Carara, "From
VHDL Register Transfer Level to SystemC Transaction Level Modeling:
a Comparative Case Study", Proceedings of the 16th Symposium on
Integrated Circuits and Systems Design (SBCCI’03), pp. 355-360,
September 2003

R. Schutten, “Raising the Level of Abstraction Reduces System-on-Chip
Verification”, Synopsys Inc., March 2004

S. Swan, “SystemC Transaction Level Models And RTL Verification”,
Design Automation Conference, 43rd ACM/IEEE, pp. 90-92, July 2006

G. Martin, "SystemC and the Future of Design Languages: Opportunities
for Users and Research", Proceedings of the 16th Symposium on
Integrated Circuits and Systems Design (SBCCI’03), pp. 61-62,
September 2003

91

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Open SystemC Initiative, “Functional Specification for SystemC Version

2.07, 2002

Open SystemC Initiative, “SystemC Version 2.0 User’s Guide, Update for
SystemC 2.0.17, 2002

Open SystemC Initiative, “SystemC 2.0.1 Language Reference Manual
Revision 1.0, 2003

I. Yarom, G. Glasser, “SystemC Opportunities in Chip Design Flow”,
Proceedings of the 11th IEEE International Conference on Electronics,

Circuits and Systems (ICECS 2004), pp. 507-510, December 2004
Synopsys Inc., “Describing Synthesizable RTL in SystemC”, May 2001
SystemCrafter Inc., SystemCrafter SC User Manual Version 2.0.0

Synopsys Inc., “Synopsys CoCentric SystemC Compiler: RTL User and
Modeling Guideline”, 2001

J. Saul, “Using SystemC and SystemCrafter to Implement Data
Encryption”, Xcell Journal, Issue 58, pp.32-34, 2006

Prosilog Inc., “Prosilog’s SystemC Compiler Datasheet”, 2002

C. Cote, Z. Zilic, “Automated SystemC to VHDL Translation in
Hardware/Software Codesign”, 9th International Conference on

Electronics, Circuits and Systems, pp. 717-720, September 2002

L. Cordesses, “Direct Digital Synthesis: A Tool for Periodic Wave
Generation (Part 1)”, IEEE Signal Processing Magazine, pp. 50-54, July
2004

92

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

L. Cordesses, “Direct Digital Synthesis: A Tool for Periodic Wave
Generation (Part 2)”, IEEE Signal Processing Magazine, pp. 110-112,
September 2004

S. Cheng, J. R. Jensen, R. E. Wallis, G. L. Weaver, “Further
Enhancements to the Analysis of Spectral Purity in the Application of
Practical Direct Digital Synthesis”, IEEE International Ultrasonics,
Ferroelectronics, and Frequency Control Joint 50th Anniversary

Conference, pp. 462-470, 2004

Analog Devices Inc., AD9858 1 GSPS Direct Digital Synthesizer
Datasheet, 2003

Analog Devices Inc., AD9959 4 Channel 500 MHz DDS with 10-bit
DACs Datasheet, 2005

Analog Devices Inc., AD9833 Programmable Waveform Generator

Datasheet, 2003
Qualcomm Inc., Synthesizer Products Data Book, August 1997

Harris Semiconductor, HSP45102 12-Bit Numerically Conrolled
Oscillator Datasheet, 1996

Fairchild Semiconductor, TMC2340 Digital Synthesizer Datasheet,
September 2000

Xilinx Inc., Logicore Numerically Controlled Oscillator V1.0.3
Datasheet, December 1999

Xilinx Inc., Logicore DDS Compiler V1.0 Datasheet, September 2006

Altera MegaCore, NCO Compiler User Guide, December 2006

93

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Lattice ispLever Core, Numerically Controlled Oscillator IP Core User

Guide, December 2006
Philips Semiconductors, 12C Bus Specifications, January 2000
Xilinx Inc., Virtex-4 User Guide, October 2006

Memec Inc., Memec Virtex-4 FX12 LC Development Board User’s
Guide, April 2005

Memec Inc., Memec P160 Analog Module User Guide, July 2003
Xilinx Inc., Platform Cable USB Product Specifications, June 2006

IEEE Computer Society, “IEEE Standard SystemC Language Reference
Manual”, New York, USA, March 2006

94

APPENDIX A

STRUCTURE OF CD-ROM DIRECTORY

The source codes and executable files of the simulations performed in this study
are given in the CD attached at the back cover of this thesis. The table gives the
folder structure of the CD.

Table A-1 Structure of CD-ROM Directory

SystemC_Files/ | Includes SystemC design and simulation files
SRC/ SystemC Source Files
TB/ SystemC Test Bench Files
MAIN/ SystemC Main Files
SIM/ SystemC Simulation Results
VHDL_Files/ Includes VHDL design and simulation files
SRC/ VHDL Source Files
TB/ VHDL Test Bench Files
SIM/ VHDL Simulation Results
HARD/ Hardware Verification
SC_to_VHDL/ Includes SystemC-to-VHDL translation files
SC_SRC/ SystemC Source Files
VHDL_SRC/ Translated VHDL Source Files

95

APPENDIX B

REFERENCE DESIGNS

B.1 ANALOG DEVICES ADY9833

The AD9833 is a low power programmable waveform generator capable of
producing sine, triangular and square wave outputs. The specifications and
functional block diagram of AD9833 are given below.

e Digitally programmable frequency and phase

0 MHz to 12.5 MHz output frequency range

28-bit frequency resolution (0.1 Hz for 25 MHz reference clock)

12-bit phase offset resolution

3-Wire Serial I/0O Port (SPI) Interface

AGND DGHD VDo CAP2 SV

ON-BOARD
MCLK REGULATOR REFERENCE
AVDDS FULL-SCALE
Lo 2.5V CONTROL come

FREGU REG - 12 .
PHASE fen =
MUX ACCUMULATOR [+ = 7 AOM Mux 10-BIT DA
[rrearree | o | g
[w=E]

MU — —
2 [owee] Sl |
L DIVIDE
>
- CONTROL REGISTER — H

SERIAL INTERFACE
AND
CONTROL LOGIC AD9833

FSYNC SCLK SDATA

PHASE! REG

vout

Figure B-1 Analog Devices AD9833 Functional Block Diagram

96

B.2 ANALOG DEVICES AD9959

The AD9959 consists of four DDS cores that provide independent frequency,
phase and amplitude control between channels. The specifications and functional
block diagram of AD9959 are given below.

¢ Four synchronized DDS channels

¢ Independent frequency/phase/amplitude control between channels

¢ Linear frequency/phase/amplitude sweeping capability

¢ Individually programmable DAC full scale currents

¢ Four integrated 10-bit D/A converters

e 32-bit frequency tuning resolution frequency registers

® 14-bit phase offset resolution

¢ 10-bit output amplitude scaling resolution

e Serial I/O Port (SPI) with enhanced data throughput

3
az

4
¥
©

ouT

ot
5
Dac ——
1o Ill o OUT
I 10 DAC 1EF BOAC_RSET
CURREMNT
SYNC_IN

lamc_our TIMING & CONTROL LOGIC <|~— PWR_DNWHN_CTL

O _UPDATE!
SYSTEM
1 — 7| MASTER_RESET
SYHC_CLK CONTROL
REGIZTERS

CHANMEL
REF_CLK B— | EEF ‘CLOCK REGISTERE,

MLILTIFLIER
P £
=

REF_CLK [e——e= dxtu 20x
BUFFER / ITHL
O2CILLATOR

AFTW FTW. az

CLK_MODE_SEL

Figure B-2 Analog Devices AD9959 Functional Block Diagram

97

B.3 XILINX NUMERICALLY CONTROLLED OSCILLATOR V1.0.3

Xilinx’s Numerically Controlled Oscillator (NCO) IP module generates a digital
“staircase” approximation to a sine (or cosine) wave, the frequency of which is
determined by the input phase increment value. The output can either be used
directly, for example, by a digital multiplier, or can be passed into a Digital-to-
Analog Converter (DAC) for use in the analog domain. The specifications and

parameterization window snapshot of the NCO IP are given below.

¢ Input phase increment resolution from 3-30 bits

¢ QOutput amplitude resolution from 4-16 bits

¢ Frequency resolution control via phase accumulator word (3-30 bits)
¢ Phase noise control via programmable phase resolution (3-10 bits)

e Sine/cosine outputs available

¢ Excellent for high-speed I/Q modulation/demodulation

Eﬁnuu |
Component Mame: Incn:u
— Por'Widths
m=phase_inc arrp —
— Inc ¥eidth 4 -]
— . Arripidth 53 'I
=lclr
— Inlernal Bus wWidths
— el
Ace Wit : b "I
Fhase Width : 4 vI

Genarate | Cancel |

Figure B-3 Xilinx NCO V1.0.3 Parameterization Window

98

B.4 XILINX DDS COMPILER V1.0

Xilinx’s DDS Compiler IP module is the newest DDS IP in the market and it
presents spurious specifications for DDS applications. The specifications and

parameterization window snapshot of the DDS Compiler IP are given below.

¢ Sine, cosine, or quadrature outputs

¢ Look-up table can be allocated to distributed or block memory

® Frequency resolution control via phase accumulator word (3-32 bits)

¢ QOutput amplitude resolution from 4-20 bits

e Support up to 16 independent channels

e Optional phase offset capability allows multiple synthesizers with

precisely controlled phase differences

clds_compiler_y1_0

Figure B-4 Xilinx DDS Compiler V1.0 Parameterization Window

99

Cl1

APPENDIX C

HARDWARE TEST TOOLS

MEMEC P160 ANALOG MODULE

The Memec Design P160 Analog Module kit includes the following:

Two 12-bit 53-Msps A/D converters

AC coupled, single-ended, 1 to 1.5 Vp-p analog input

Low pass input filter with fc = 19.4 MHz (for A/D converters)
Two 12-bit 165 Msps D/A converters

Single-ended, 2 Vp-p analog output, AC coupled output optional
Low pass output filter with fc = 28.4 MHz (for D/A converters)

Figure C-1 Memec P160 Analog Module

100

C.2

MEMEC FX LC DEVELOPMENT BOARD

The Memec Development kit includes the following:

Xilinx XC4VFX12-10FF668 FPGA

64MB of DDR SDRAM and 4MB of Flash

10/100/1000 Ethernet PHY

On-board 100MHz LVTTL Oscillator and LVTTL Oscillator Socket
P160 Connectors and LCD Panel

Platform Flash configuration PROM

PC4 JTAG Programming/Configuration Port

SystemACE™ Module Connector

CPU JTAG Port, CPU Debug Port, RS232 Port and USB-RS232 Bridge
Four User LEDs , Four User Push Button Switches and DIP Switch

Figure C-2 Memec Virtex-4 FX LC Development Kit

101

