

THE IMPLEMENTATION OF A DIRECT DIGITAL SYNTHESIS BASED
FUNCTION GENERATOR USING SYSTEMC AND VHDL

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

UĞUR KAZANCIOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2007

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. İsmet ERKMEN

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Murat AŞKAR

Supervisor

Examining Committee Members

Assist. Prof. Dr. Haluk KÜLAH (METU, EE) __________________

Prof. Dr. Murat AŞKAR (METU, EE) __________________

Assist. Prof. Dr. Behzat ŞAHİN (METU, EE) __________________

Assist. Prof. Dr. Çağatay CANDAN (METU, EE) __________________

İrfan OKŞAR (M.Sc.) (ASELSAN Inc.) __________________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name : Uğur KAZANCIOĞLU

 Signature :

iv

ABSTRACT

THE IMPLEMENTATION OF A DIRECT DIGITAL SYNTHESIS BASED

FUNCTION GENERATOR USING SYSTEMC AND VHDL

KAZANCIOĞLU, Uğur

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Murat AŞKAR

February 2007, 101 pages

In this thesis, a direct digital synthesis (DDS) based function generator design

module is presented, defined and implemented using two digital hardware

modeling/design languages namely SystemC and VHDL. The simulation,

synthesis and applicability performances of these two design languages are

compared by following all digital hardware design stages. The advantages and

open issues of SystemC based hardware design flow are emphasized in order to

be a reference for future studies.

SystemC initially appeared as a modeling language like HDL design languages.

In the last years, SystemC gained popularity also as a hardware design language

and it is expected to become alternative to traditional design languages. Using a

v

single platform for hardware modeling, design and verification reduces the spent

time and cost.

The designed DDS function generator module supports standard I2C and UART

communication protocols and it is in ready to use format for digital applications.

In this thesis, the function generator module VHDL code is implemented into

Xilinx FPGA and verified on the hardware platforms.

Keywords: SystemC, VHDL, SystemC Synthesis, Direct Digital Synthesis,

Function Generator, FPGA

vi

ÖZ

DOĞRUDAN SAYISAL SENTEZ TABANLI FONKSİYON ÜRETECİNİN

SYSTEMC VE VHDL KULLANILARAK GERÇEKLENMESİ

KAZANCIOĞLU, Uğur

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Murat AŞKAR

Şubat 2007, 101 sayfa

Bu tezde SystemC ve VHDL isimli tasarım ve modelleme dilleri kullanılarak

doğrudan sayısal sentez tabanlı fonksiyon üreteci modülü sunulmuş, tanımlanmış

ve uygulanmıştır. Bu iki tasarım dilinin simülasyon, sentez ve uygulanabilirlik

performansları tüm sayısal donanım tasarım evreleri takip edilerek

karşılaştırılmıştır. SystemC tabanlı donanım tasarım akışının avantajları ve açık

konuları ileriki çalışmalar için referans olması amacıyla vurgulanmıştır.

SystemC ilk olarak HDL tasarım dilleri gibi modelleme dili olarak ortaya

çıkmıştır. SystemC son yıllarda donanım tasarım dili olarak da popülerlik

kazanmış ve geleneksel tasarım dillerine alternatif olması beklenmektedir.

vii

Donanım modelleme, tasarım ve doğrulama için tek bir platform kullanılması

harcanan zaman ve maliyeti azaltmaktadır.

Tasarlanan fonksiyon üreteci modülü standart I2C ve UART haberleşme

protokollerini desteklemektedir ve sayısal uygulamalar için kullanıma hazır

formattadır. Bu tezde fonksiyon üreteci modülü VHDL kodu Xilinx FPGA içine

uygulanır ve donanım platformlarında doğrulanır.

Anahtar kelimeler : SystemC, VHDL, SystemC Sentezi, Doğrudan Sayısal

Sentez, Fonksiyon Üreteci, FPGA

viii

ACKNOWLEDGMENTS

I would like to express my deepest sense of gratitude to my supervisor Prof. Dr.

Murat AŞKAR for his guidance and invaluable ideas.

I am deeply grateful to ASELSAN Inc. for providing tools and other facilities

throughout this study.

I would like to forward my appreciation to all my friends and colleagues who

contributed to my thesis with their continuous encouragement.

I would also like to express my profound appreciation to my family for their

continuous support.

ix

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ...vi

ACKNOWLEDGMENTS ..viii

TABLE OF CONTENTS ... ix

LIST OF TABLES ...xii

LIST OF FIGURES ..xiii

LIST OF ABBREVIATIONS ..xvi

CHAPTER

1. INTRODUCTION ...1

2. DESIGN LANGUAGES AND DDS FUNCTION GENERATORS................9

2.1 DESIGN LANGUAGES..9

2.1.1 VHDL..9

2.1.2 SYSTEMC ..10

2.1.3 COMPARISION OF SYSTEMC AND VHDL SYNTAXES11

2.2 DDS FUNCTION GENERATOR..14

2.2.1 DIRECT DIGITAL SYNTHESIZERS ...17

2.2.2 INTER-INTEGRATED CIRCUIT (I2C) BUS22

2.2.3 UART..24

2.3 COMMERCIAL DDS ICS AND IP MODULES25

3. DESIGN OF DDS FUNCTION GENERATOR ...29

3.1 FOLLOWED SYSTEMC AND VHDL RTL DESIGN FLOWS29

x

3.2 SYSTEMC TO HARDWARE FLOW...32

3.3 DDS FUNCTION GENERATOR DESIGN SPECIFICATIONS37

3.4 SOFTWARE AND HARDWARE RESOURCES USED IN DESIGN39

3.5 DDS FUNCTION GENERATOR MODULES ...41

3.5.1 DDS MODULE DESIGN ...42

3.5.2 I2C SLAVE RECEIVER MODULE DESIGN.................................44

3.5.3 UART RECEIVER MODULE DESIGN..46

3.5.4 MAIN CONTROLLER MODULE DESIGN50

3.5.5 FUNCTION GENERATOR MODULE DESIGN............................51

3.6 INTEGRATION OF DESIGN MODULES...53

4. IMPLEMENTATION OF DDS FUNCTION GENERATOR.......................55

4.1 TEST AND VERIFICATION METHODOLOGY....................................55

4.2 DESIGN IMPLEMENTATION USING SYSTEMC59

4.2.1 DDS WAVEFORM GENERATION TEST59

4.2.2 I2C BUS COMMUNICATION TEST..61

4.2.3 UART COMMUNICATION TEST..63

4.2.4 MAIN CONTROLLER OPERATION TEST...................................66

4.2.5 VERIFICATION OF THE WHOLE DESIGN.................................68

4.3 DESIGN IMPLEMENTATION USING VHDL71

4.3.1 VERIFICATION IN SOFTWARE ENVIRONMENTS...................71

4.3.2 VERIFICATION ON HARDWARE ..74

4.4 SYNTHESIS OF UART BAUD GENERATOR SYSTEMC CODE........81

4.5 COMPARISON OF SYSTEMC AND VHDL DESIGN FLOWS83

5. DISCUSSION AND CONCLUSION ...86

REFERENCES...91

APPENDICES

A. STRUCTURE OF CD-ROM DIRECTORY..95

B. REFERENCE DESIGNS ...96

B.1 ANALOG DEVICES AD9833 ..96

B.2 ANALOG DEVICES AD9959 ..97

B.3 XILINX NUMERICALLY CONTROLLED OSCILLATOR V1.0.398

xi

B.4 XILINX DDS COMPILER V1.0 ...99

C. HARDWARE TEST TOOLS ..100

C.1 MEMEC P160 ANALOG MODULE ..100

C.2 MEMEC FX LC DEVELOPMENT BOARD..101

xii

LIST OF TABLES

Table 2-1 Comparison of Some Basic SystemC and VHDL Syntaxes12

Table 2-2 Comparison of SystemC and VHDL Full Adder Codes13

Table 2-3 Commercial DDS and NCO Integrated Circuits27

Table 2-4 Commercial DDS and NCO Intellectual Properties28

Table 3-1 DDS Function Generator Design Specifications Part-1..................37

Table 3-2 DDS Function Generator Design Specifications Part-2..................38

Table 3-3 Used Software for Design and Verification39

Table 3-4 Used Hardware for Verification ..40

Table 3-5 I2C Sub-Address Definitions ..46

Table 3-6 UART Shift Register Data Definitions ..49

Table 3-7 UART Baud Rate Selection Table...50

Table 3-8 Waveform Property Selection Table..52

Table 4-1 Device Utilization Summary for Function Generator VHDL Code 75

Table 4-2 Device Utilization Summary for Translated VHDL Code..............82

Table 4-3 Device Utilization Summary for Hand-written VHDL Code83

Table A-1 Structure of CD-ROM Directory...95

xiii

LIST OF FIGURES

Figure 1-1 Modern System Design Flow ...2

Figure 1-2 Traditional HDL and SystemC Digital Hardware Design Flows ...3

Figure 2-1 Basic DDS Function Generator Block Diagram..........................15

Figure 2-2 Digital Staircase Approximation of A Sinusoid17

Figure 2-3 Basic DDS Data Flow Diagram..18

Figure 2-4 I2C Bus Connection Diagram...23

Figure 2-5 I2C Bus Serial Communication Timing......................................24

Figure 2-6 RS232 Serial Communication Timing..25

Figure 3-1 Followed SystemC and VHDL RTL Design Flows30

Figure 3-2 SystemC and Traditional Hardware Design Flows......................32

Figure 3-3 SystemCrafter SC’s SystemC to Hardware Flow........................34

Figure 3-4 Four Quadrant of Sine Function ...42

Figure 3-5 First Quadrant Samples of Sine Wave ..43

Figure 3-6 Data Flow Diagram of Designed DDS Module...........................43

Figure 3-7 Sine Wave Construction...44

Figure 3-8 I2C Bus Parameter Reception Format ..45

Figure 3-9 UART Receiver Modules’ Data Flow Diagram47

Figure 3-10 RS232 Data and Clock Synchronization.....................................48

Figure 3-11 Configuration Parameter Reception Order..................................48

Figure 3-12 Function Generator Module Internal Processes...........................51

Figure 3-13 Function Generator Block Diagram..54

Figure 4-1 Test Environment for Design Module ..55

Figure 4-2 Verification Flow for SystemC Based Designs...........................56

xiv

Figure 4-3 Verification Flow for HDL Based Designs.................................57

Figure 4-4 ModelSim Verification Flow..58

Figure 4-5 DDS Module Test Environment ...59

Figure 4-6 DDS Operation ..60

Figure 4-7 I2C Slave Receiver Module Test Environment61

Figure 4-8 I2C Bus Data and Clock Synchronization...................................62

Figure 4-9 Configuration Data Reception over I2C Bus...............................62

Figure 4-10 UART Receiver Module Test Environment................................63

Figure 4-11 UART Data and Clock Synchronization.....................................64

Figure 4-12 Configuration Data Reception over UART.................................64

Figure 4-13 UART Baud Generator Module Test Environment65

Figure 4-14 UART Synchronization Clock Signal Generation.......................66

Figure 4-15 Main Controller Module Test Environment66

Figure 4-16 Main Controller Operation (Part-1) ..67

Figure 4-17 Main Controller Operation (Part-2) ..67

Figure 4-18 Function Generator Test Environment..68

Figure 4-19 Wave Generation Using I2C Interface..69

Figure 4-20 Wave Generation Using I2C Interface in Detail..........................69

Figure 4-21 Wave Generation Using UART Interface70

Figure 4-22 Wave Generation Using UART Interface in Detail.....................70

Figure 4-23 Sine Wave Generation Simulation (Using I2C Bus)72

Figure 4-24 Square Wave Generation Simulation (Using I2C Bus)72

Figure 4-25 Triangular Wave Generation Simulation (Using I2C Bus)..........73

Figure 4-26 Ramp Wave Generation Simulation (Using I2C Bus)73

Figure 4-27 Sine Wave Generation Simulation (Using UART)......................74

Figure 4-28 Xilinx’s Code-to-FPGA Design Flow...77

Figure 4-29 Hardware Test Setup..78

Figure 4-30 Function Generator Control Software with UART Interface79

Figure 4-31 Sine Wave Generation on Hardware...80

Figure 4-32 Square Wave Generation on Hardware.......................................80

Figure 4-33 Triangular Wave Generation on Hardware80

xv

Figure 4-34 Ramp Wave Generation on Hardware ..81

Figure 4-35 Synthesis of Translated VHDL Code Using Xilinx XST82

Figure B-1 Analog Devices AD9833 Functional Block Diagram96

Figure B-2 Analog Devices AD9959 Functional Block Diagram97

Figure B-3 Xilinx NCO V1.0.3 Parameterization Window...........................98

Figure B-4 Xilinx DDS Compiler V1.0 Parameterization Window...............99

Figure C-1 Memec P160 Analog Module... 100

Figure C-2 Memec Virtex-4 FX LC Development Kit................................ 101

xvi

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit
ASK Amplitude Shift Keying
A/D Analog to Digital

DAC Digital to Analog Converter

DDS Direct Digital Synthesis / Synthesizer
DSP Digital Signal Processor
D/A Digital to Analog
EDA Electronic Design Automation

FPGA Field Programmable Gate Array
FSK Frequency Shift Keying
HDL Hardware Description Language

HW Hardware

IC Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property
I2C Inter-Integrated Circuit

NCO Numerically Controlled Oscillator
OSCI Open SystemC Initiative
PLD Programmable Logic Device

PLL Phase Locked Loop

PSK Phase Shift Keying
RTL Register Transfer Level
SNR Signal to Noise Ratio
SoC System On Chip

UART Universal Asynchronous Receiver / Transmitter
VCD Value Change Dump
VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integrated Circuit

1

CHAPTER 1

INTRODUCTION

A direct digital synthesis (DDS) based function generator design core is

defined, implemented and verified in this thesis. The function generator design is

also a case study to investigate and compare the traditional HDL and new SystemC

based design flows. Throughout the study, the traditional design flow will be

followed using VHDL as a design language.

The electronic system design becomes more complex as the demand for

complete systems increases. Today’s modern technology enables producing a chip

that holds all of the necessary electronic circuitry for a complete system. This

technology is known as System on Chip (SoC) and the increased complexity of

SoC technology addresses the design and verification at system level [1].

In traditional system design flow, the system is partitioned into hardware

and software at early stages. Then, the hardware and software engineers design

their respective components with the lack of communication. In some cases, the

produced solution may not be the desired one. The integration of the hardware and

software may lead problems due to isolation of the designs. Unavoidable results in

this flow are higher cost and long design time.

In modern system design flow, system should be modeled at various levels

of abstraction. This requirement appeared due to the fact that the complexity

problem can be solved only using higher abstraction levels [2, 3, 4, 5]. The modern

system languages should also constitute a single platform for both hardware and

2

software designers. The hardware and software should be developed in parallel and

this would remove painful hardware and software integration problem. Hence,

modern system design flow (illustrated in Figure 1-1) is proposed as a solution for

shortcoming of the traditional system design flow.

Figure 1-1 Modern System Design Flow

The new EDA (Electronic Design Automation) tools are proposed to

replace the traditional system design flow with modern system flow. Moreover,

various design languages have been appeared in the market and this leads to

tremendous discussion on these languages [1, 6]. Open SystemC Initiative (OSCI)

organization’s SystemC language has been developed as a modern system level

modeling and design language to simplify the system level design problems [7, 8,

9]. IEEE has approved SystemC (IEEE 1666) as electronic design standard based

on the SystemC 2.1 Language Reference Manual. Since SystemC is supported by

all of the major EDA companies, it seems to be dominant among the system level

modeling and design languages.

3

SystemC supports a hierarchical system design environment. In this

environment system designers can model and verify the designs expressed at true

system levels of abstraction. This allows the system designer to make low-level

designs or use higher abstraction levels. SystemC links the system model to

hardware design implementation and verification [10]. The designers notice the

advantage of reduced simulation time. Additionally, it can be used to simulate

software algorithms. A wide range of simulation support enables SystemC to

address all aspects of SoC design.

SystemC initially appeared as a modeling language like HDL design

languages. The new EDA tools are proposed to directly synthesize the SystemC

descriptions like HDL synthesis. There are not necessary numbers of well

developed SystemC tools that support direct synthesis of SystemC descriptions. In

place of these tools, SystemC descriptions are written in synthesizable format for

which [11, 12] includes some descriptions and then SystemC to HDL translational

tools are used [13, 14, 15, 16]. The traditional HDL and SystemC based hardware

design flows are illustrated in Figure 1-2.

Figure 1-2 Traditional HDL and SystemC Digital Hardware Design Flows

4

The traditional design starts with developing behavioral level descriptions

using C/C++. Then the models are rewritten manually using design languages such

as VHDL and Verilog. The synthesis and implementation processes are applied

after verification of the RTL model. Using the same design platform for behavioral

and RTL models is an advantage for the designer, and this is satisfied by the

modern SystemC based design flow. In traditional approach, the designer

maintains both C and RTL models in different environments. However,

refinement, debugging and RTL synthesis of a design can be done in a single

SystemC platform. This reduces the time and effort. The translation of the

SystemC RTL descriptions to HDL is a disadvantage in terms of the resource

utilization and timing, but the new well developed tools having a direct SystemC

description synthesis capability will dismiss this disadvantage.

In this study, both traditional and SystemC design flow is studied by

implementing a DDS function generator having various periodical waveform

generation capability.

Periodical waveform generation is a key function for all communication

systems. Periodical waveforms account for many of the RF and microwave signals

in communications, radar and test systems. Since the communication market is in

rapid development, various ways in order to generate periodical waveforms were

discovered. The sine wave is a well known periodical waveform. For long years,

analog circuits such as Phase Locked Loop (PLL) synthesizers were used to

generate a sine wave. However the developments in the high-density integrated

circuit technology revolutionized the periodic waveform generation. In the last

years, the periodic waveforms below 1GHz in frequency are generated mostly by

the digital technique known as Direct Digital Synthesis (DDS). The new DDS

chips with capability of generating higher frequencies increased the popularity of

DDS technique more and more in the last years.

The frequency synthesizers use various periodical waveform production

techniques and these can be grouped as (i) indirect, (ii) direct and (iii) hybrid. The

indirect synthesizers use phase locked loop techniques to multiply the reference

input clock. The output signal frequency is the multiplication of the input

5

frequency with some constant. The output frequency increment of the PLL is

reference clock frequency and this results in not satisfying resolution for many

applications. On the other hand, these synthesizers are good at output spectrum and

can generate output frequencies up to 10 GHz. The direct frequency synthesizers

use digital techniques to generate waveforms. These synthesizers can generate

lower frequencies but, they allow fine step sizes and more accurate frequency

values. Hybrid synthesizers combine the advantages of the direct and indirect

techniques to achieve both higher frequencies and fine step sizes.

The direct frequency synthesizers use DDS technique which lets

generating sine waves at very precise frequencies [17, 18]. As the name implies,

the analog sine wave is completely generated by digital circuits in this technique.

The digitally quantized samples of the desired waveform are generated at the input

reference clock frequency. The generated digital samples of the waveform are

converted to analog signals using the D/A converters and filter circuits. The DDS

technique has some superior advantages over classical PLL synthesizers. Some of

these advantages are as follows:

• DDS technique allows for very fast frequency switching at a low cost.

The frequency switching time can be in nanoseconds level.

• The waveform frequency is digitally adjustable with microhertz

frequency resolution.

• The waveform phase and amplitude can be adjusted digitally.

• The implementation of DDS is easier than the classical synthesizers.

• The DDS core can be combined with additional signal processing

blocks to make clock generators and modulators.

On the other hand, DDS technique has also disadvantages as stated below:

• The maximum output frequency is less than the clock source

frequency.

• The digital generation of the sine wave results in distortion. The

generated waveform is not spectrally pure [19].

6

• Spurious performance of DDS is dominated by the DAC. At higher

speed DAC IC’s linearity is not good.

The DDS implementation usually uses addressing of the samples

contained in the sine look-up table. Since the samples are generated only by

addressing, arbitrary periodical waveform generation is also possible with this

technique. Only thing to do is to replace the sine look-up table with a look-up table

that includes arbitrary wave samples. In this study, the DDS technique is applied

only to generate sine wave samples.

There are many DDS commercial ICs operating at frequencies from 10

MHz to 1-2 GHZ in the market [20, 21, 22, 23, 24, 25]. There is a competition

among the suppliers to present faster and more capable DDS chips. Analog

Devices is one of these suppliers and it presents innovative and fast DDS chips in

the last years. For instance, Analog Devices’ AD9858 model [20] is a complete

DDS with internal 10-bit DAC. It operates at clock rates up to 1 GHz. The

AD9858 can actually work with clock rates up to 2 GHz; since it also includes a

divide-by-two circuit on the clock input port. This reference clock frequency

allows generating output waveform frequencies 400 MHz or more. Using its 32-bit

frequency tuning words, the synthesizer achieves frequency resolution below 1Hz.

The frequency tuning and control words of AD9858 are loaded via its 8-bit parallel

or synchronous serial ports.

Today’s fast changing electronic world requires that the whole digital

components on the boards will be collected in one package. Among the several

integration techniques, one of the most commonly used approaches is the

utilization of Field Programmable Gate Arrays (FPGAs). This fact led to a

tremendous acceleration to the Gate Array technology in the last years. Most of the

digital designers prefer achieving all digitally complex computations with a single

chip in a simple and effective way. FPGA technology does not only support logic

based designs, it also supports DSP and processor based applications. As a result,

major companies design various intellectual properties, abbreviated as IP, for

FPGAs. There are also many companies preparing DDS IPs [26, 27, 28, 29]. These

7

designs are in ready to use format and can be implemented into a target FPGA

simply. For instance Xilinx’s DDS Compiler V1.0 [27] is a complete DDS IP with

adjustable frequency and output resolution. It also supports up to 16 independent

channels.

The presented function generator module combines the most recent DDS

system with controller and standard interface units. The designed DDS function

generator core allows generating standard waveforms and making FSK/PSK

modulation. The DDS function generator core is implemented into FPGA and

verified with hardware based tests. During the design period, the most recent

digital design environments are used.

The designed function generator module has two serial peripheral

interfaces which are Inter Integrated Circuit (I2C) bus [30] and Universal

Asynchronous Receiver/Transmitter (UART). These interfaces are used to load

waveform configuration and design control parameters. The type, frequency, phase

offset and amplitude parameters are sent to the function generator using these

serial interfaces. If this function generator core is implemented into the packaged

Application Specific Integrated Circuit (ASIC), then I2C interface usage will be

helpful for communication with other ASICs. If the design is implemented into

FPGA and will be tested for different design parameters by means of a computer,

the UART interface will be very useful since the communication over UART are

supported nearly by all computers. Additionally, a function generator having

UART interface can communicate with nearly all microcontrollers and

microprocessors.

The design of function generator using both SystemC and VHDL makes

the comparison of different design flows possible. In this thesis, the power of these

design languages in digital hardware applications is also observed and they are

compared according to synthesis, simulation and applicability performances. The

comparison is made by following all the design stages. The advantages and

disadvantages of these two different hardware design cycles are emphasized to be

helpful for future applications.

8

The organization of this thesis is as follows. In Chapter 2, the background

information about SystemC and VHDL will be given. The syntax of these two

languages will be compared. The basic information about DDS function generators

and commercial DDS applications will be presented. In addition, the information

about DDS methodology and the communication standards used in the design will

also be given. These are necessary for the explanation of the design and

interpretation of test results.

Chapter 3 covers full design description of the function generator module.

First, the followed SystemC and VHDL based RTL design flows are presented.

Then the design specifications and used hardware/software resources are given.

The explanations of the function generator sub-modules are presented and the

detailed data flow schematic of function generator module is given.

Chapter 4 covers the verification of the functional sub-modules and the

whole function generator design. The generated SystemC and VHDL design

descriptions are tested separately in software environments. Only the simulations

which are really necessary to understand the functionality are given. The synthesis

of function generator VHDL descriptions, implementation into FPGA and

hardware based tests are left to end of this chapter.

Results of the study are presented in Chapter 5. The applied digital

hardware design cycles and designed DDS function generator core are discussed

and further suggestions are given for future studies.

9

CHAPTER 2

DESIGN LANGUAGES AND DDS FUNCTION GENERATORS

2.1 DESIGN LANGUAGES

2.1.1 VHDL

VHDL is an IEEE hardware description language. This language is

developed with the goal to develop very high-speed integrated circuits. VHDL is

one of industry’s widely used standard languages used to describe digital systems.

Another hardware description language Verilog is also widely used. Both of these

languages allow describing and simulating complex digital systems.

VHDL is used mainly for development of Application Specific Integrated

Circuit (ASIC). The synthesis tools transform the written VHDL code to gate-level

netlist. This netlist defines the layout of the ASICs. VHDL codes are also written

for FPGAs to describe the internal hardware structures. Since the synthesis of the

codes gives suboptimal results, VHDL is not used for design of noncomplex

Programmable Logic Devices (PLDs).

Digital systems can be represented using different levels of abstraction.

There are four abstraction levels of a digital circuit. These levels can be ordered as

behavioral, register transfer level (RTL), gate-level and layout. The functional

description of the model is defined in the behavioral level. The behavioral

descriptions can be simulated, but they may not be synthesized. The design is

10

divided into concurrent and sequential elements in RTL. In this level, concurrent

statements are executed in parallel as soon as data arrives at the input. Sequential

statements are executed in the sequence that they are specified. RTL description

uses only the little VHDL language constructs. A strict methodology is followed to

write the design codes. The generated codes using RTL methodology are in

synthesizable code format. Third abstraction level is named as gate-level. The

design is represented as a netlist with logic gates and storage elements in this level.

The last abstraction level is layout level. The different cells of the target

technology are placed on the chip and the connections are routed. After the layout

has been verified, the circuit is ready for the production process.

The entity is main concept of the digital designs in VHDL. A design

entity can be divided in to two parts which are entity declaration and architecture

body. The entity declaration defines the external interfaces of the design entity. It

defines interaction of the different VHDL modules in a straightforward manner.

The architecture body represents the internal descriptions of the design entity. The

architectures can contain signals, processes and instantiations of other entities.

The statements within architecture operate concurrently. This led to

define VHDL constructs (processes) to achieve necessary sequential behavior. A

process consists of a sequence of statements, which are executed sequentially like

in conventional programming languages, whereas the processes themselves are

treated concurrently like other statements.

The signals are used for passing information among VHDL processes or

entities. A process may read and write signals. It may be sensitive to signals.

Signal assignments require a delay before the signal assumes its new value.

2.1.2 SYSTEMC

The SystemC class library has been developed to support system level

design. It has been developed by a group of companies, universities and

individuals forming the Open SystemC Initiative (OSCI). IEEE has approved

11

SystemC (IEEE 1666) as electronic design standard based on the SystemC 2.1

Language Reference Manual developed by OSCI [35].

SystemC is an open source C++ library that is emerging as a standard for

high-level design and system modeling. It addresses the increasing complexity of

SoC designs at system level. It provides to describe and simulate concurrent

hardware constructs using ordinary C++ syntax. This leads to co-design and co-

verification of hardware and software in a single environment.

Modules are the principal building blocks of a SystemC design hierarchy.

A SystemC model usually consists of several modules which communicate via

ports. Processes are the principal computation elements which fulfill necessary

sequential behavior. They run concurrently with other processes. Events allow the

synchronization between processes.

Ports of a module are the external interfaces that pass information to and

from a module. They trigger actions within the module. Signals create the

connections between the module ports allowing the modules to communicate.

Channels are the communication elements of SystemC. They are generalized form

of signals. Complex communication structures can be modeled using channels.

2.1.3 COMPARISION OF SYSTEMC AND VHDL SYNTAXES

Since SystemC allows modeling concurrent processes described by

ordinary C++ syntax, it can be easily learned by the designers who already make

applications using HDL and C++. SystemC has similarities to VHDL semantically,

but it has a syntactical overhead compared to VHDL. Some basic language

syntaxes of the VHDL and SystemC are compared in Table 2-1. Full adder’s

SystemC and VHDL codes are given as a comparison example in Table 2-2.

SystemC words in capitals (SC MODULE, SC_CTOR or SC METHOD) are

macros and hide the real C++ syntax to provide noncomplex syntax for SystemC.

12

Table 2-1 Comparison of Some Basic SystemC and VHDL Syntaxes

SystemC Syntax VHDL Syntax

(Logic Values)

SC_LOGIC_0, SC_LOGIC_1,

SC_LOGIC_X, SC_LOGIC_Z

(Logic Values)

‘0’, ‘1’

‘X’, ‘Z’

(Input & Output Port Declaration)

sc_in<sc_logic> A, B;

sc_out<sc_logic> C, D;

(Input & Output Port Declaration)

A, B : in std_logic;

C, D : out std_logic;

(Variable Declaration)

sc_logic v_bit;

sc_lv<3> v_vec;

(Variable Declaration)

variable v_bit : std_logic;

variable v_vec : std_logic_vector(2 downto 0);

(Signal Declaration)

sc_signal<sc_logic> s_bit;

sc_signal<sc_lv<3> > s_vec;

(Signal Declaration)

signal s_bit : std_logic;

signal s_vec : std_logic_vector(2 downto 0);

C = A & B;

C = A | B ;

C = A ^ B;

C = ~A;

C <= A and B;

C <= A or B;

C <= A xor B;

C <= not A;

if (A= =SC_LOGIC_0)

 C = B;

else if (A= = SC_LOGIC_1)

 D = B;

else

 C = A;

if (A=’0’) then

 C <= B;

elsif (A=’1’) then

 D <= B;

else

 C <= A;

end if;

sc_uint<2> tempK = K.read();

switch(tempK){

 case 0: C = B; break;

 case 1: D = B; break;

 default: C = A;

}

case K is

 when “00” => C <= B;

 when “01” => D <= B;

 when others => C <= A;

end case;

SC_METHOD (process);

sensitive << clk.pos();

process (clk)

……….

if (clk’event and clk = ‘1’) then

SC_METHOD (process);

sensitive << clk.neg();

process(clk)

……….

if (clk’event and clk = ‘0’) then

SC_METHOD (process);

sensitive << A << B;

process (A, B)

13

Table 2-2 Comparison of SystemC and VHDL Full Adder Codes

SystemC Full Adder Code VHDL Full Adder Code

#include “systemc.h”

#include “half_adder.h”

SC_MODULE (full_adder)

{

 sc_in<sc_bit> A, B, Cin;

 sc_out<sc_bit> Sum, Cout;

 sc_signal <sc_bit> sigC1,sigC2,sigS1;

 half_adder H1;

 half_adder H2;

 SC_CTOR (full_adder):

 H1 (“H1”), H2 (“H2”)

 {

 H1.A(A);

 H1.B(B);

 H1.C(sigC1);

 H1.S(sigS1);

 H2.A(sigS1);

 H2.B(Cin);

 H2.C(sigC2);

 H2.S(Sum);

 SC_METHOD (process);

 sensitive << sigC1 << sigC2;

 }

 void process()

 {

 Cout = sigC1 | sigC2;

 }

};

library IEEE;

use IEEE.std_logic_1164.all;

entity full_adder is

port(

 A, B, Cin : in bit;

 Sum, Cout : out bit);

end module;

architecture arch of full_adder is

signal sigC1, sigC2, sigS1 : bit;

component half_adder

port(

 A, B : in bit;

 C, S : out bit);

end component;

begin

H1: half_adder port map

{

 A => A;

 B => B

 C => sigC1;

 S => sigS1};

H2: half_adder port map

{

 A => sigS1;

 B => Cin

 C => sigC2;

 S => Sum};

process(sigC1, sigC2)

begin

 Cout <= sigC1 or sigC2;

end process;

end arch;

14

2.2 DDS FUNCTION GENERATOR

Periodic waveforms are necessary for nearly all electronic applications. In

order to produce sine, triangular, ramp and square wave outputs, the programmable

periodic waveform generator ICs are used. The well-known periodical waveform

is sine wave that can be generated by different design approaches such as PLL and

DDS. With advances in digital technology DDS is now replacing PLL in

professional applications and DDS becomes the main part of the function

generators (waveform generators) due to the rapid development of the VLSI

technology in the last years. The function generator design presented in this study

is based on the DDS technique. In this section, the basic information about DDS

and DDS function generators will be presented. In order to communicate with

external world and receive the waveform configuration data, the I2C and UART

serial communication modules are used as sub-modules of the designed function

generator. The basic information about these communication standards is also

given in this section.

The time-varying digital signals are generated using the DDS technique.

This technique allows generating sine waves at very precise frequencies. In order

to construct analog waveform, digital to analog conversion is performed but the

analog conversion of the digital samples is not an application issue in this study.

DDS technique makes arbitrary periodical waveform generation possible

as well as a sine wave generation. If the arbitrary periodical waveform sample

values are loaded into the internal look-up table module in the DDS, the arbitrary

periodical waveform with desired frequency and phase can be generated.

In the market, various DDS based function generator designs are present.

However the basic design approach is similar to each other. The basic DDS

function generator block diagram is illustrated in Figure 2-1. The presented block

diagram combines DDS, communication interface and some internal logic in order

to make externally configurable periodical waveform generation possible.

15

Figure 2-1 Basic DDS Function Generator Block Diagram

The interface modules of the function generators receive the waveform

configuration parameters from outside environment in parallel or serial format

according to the chosen communication standard. Then they load data into the

function generator’s waveform configuration registers which hold the waveform

construction parameters. Various communication standards are utilized by DDS

chip manufacturers. For instance, most of Analog Devices DDS ICs have Serial

Peripheral Interface (SPI) which is a communication protocol used primarily for

synchronous serial communication of host processor and peripherals. The clock

frequencies of SPI devices can go up to some MHz and more. This is a sufficient

communication speed for DDS applications. Some of Analog Devices’ DDS ICs

support only parallel bus interface for reception of configuration data. In the last

years, more serial bus systems are preferred instead of a parallel bus, because of

the simpler wiring advantage. Additionally, serial buses are becoming more

common as improved technology enables them to transfer data at higher speeds.

Serial transmission is a better option for IC producers also due to its cheap

implementation advantage (fewer pins enables cheaper ICs). There are popular

serial bus systems like I2C, CAN or USB which proved their effectiveness. In this

study, I2C slave receiver and UART receiver modules provide the communication

16

interface of the designed function generator. The background information about

these standards is given in sections 2.2.2 and 2.2.3.

The heart of the DDS function generators is DDS module. This module

receives the frequency and phase offset information from the configuration

registers and produces the sine samples according to the desired settings. The

background information about DDS is given in section 2.2.1.

Waveform selection and amplitude adjustments are done using internal

logic according to the control and amplitude configuration register values. As

illustrated in Figure 2-1, the internal logic receives sine samples, look-up table

addressing signal, amplitude register value and control value, and then generates

samples of selected waveform and synchronization clock for D/A conversion. The

internal logic generates triangular, ramp and square wave using the look-up table

addressing signal. The waveform amplitude is digitally adjusted by multiplication.

The control register value defines the type of the periodical waveform. It is utilized

as a multiplexer control signal to output the desired waveform.

The last part of the function generators is digital to analog conversion and

filtering. The generated samples and synchronous clock signal are received by

DAC in order to construct a stepwise waveform. The frequency of the synchronous

clock determines the analog conversion rate. For function generators, the

synchronous clock frequency is equal to the received reference clock frequency.

However, the phase of the reference clock and synchronous clock can differentiate

180 degree according to the internal logic and DAC conversion timing. The

principal aim is to make a conversion when data is ready at the inputs of DAC.

The DAC output spectrum includes aliased images of the output signal. For

instance, the lowest frequency of these aliased images is located at Fref – Fout

(reference clock frequency minus output frequency). In order to suppress these

images, low-pass filters are used.

There are various waveform generator and digital frequency synthesizer

applications in the market. Some of them are designed as Intellectual Property (IP)

and others are designed as integrated chip. The commercial ICs and IPs present in

the market are given with their specifications in section 2.3.

17

2.2.1 DIRECT DIGITAL SYNTHESIZERS

The Direct Digital Synthesizer module is the heart of DDS function

generators. DDS module produces a digital staircase approximation of a sinusoid

in order to construct the sine wave. Generated samples are converted to analog

signal and filtered to get pure wave at desired frequency. The staircase

approximation of sinusoid is illustrated in Figure 2-2.

Figure 2-2 Digital Staircase Approximation of A Sinusoid

The DDS modules basically constitute of three main blocks. These are

Numerically Controlled Oscillator (NCO), Sine Look-up Table and Digital to

Analog Converter (DAC). The NCO comprises the increment register and phase

accumulator logic. The increment register stores the binary value of frequency

control register. The phase accumulator adds the phase increment value to its

accumulator output value. The calculated accumulator output is used to address the

look-up table which outputs the digital sample values of sine wave at current phase

value.

In this study, the analog conversion of digital samples is not the main

discussion area. The main discussion is done on the generation of digital samples

according to the desired frequency and phase offset values. The basic DDS data

flow diagram is illustrated in Figure 2-3. The presented figure does not include

digital to analog conversion structures.

18

Figure 2-3 Basic DDS Data Flow Diagram

At each reference clock cycle, the phase accumulator integrates the phase

increment value (frequency control register value) to the phase accumulator output

value. The phase increment and accumulator output value are defined by the same

number of bits. This number and used reference clock frequency determine the

frequency resolution of DDS.

The full precision of the phase accumulator can not be used to index the

look-up table due to the very large memory requirement. As a result, the phase

accumulator output is quantized by filtering least significant bits. The quantization

directly depends on the look-up table length. Nearly all DDS ICs offer phase offset

register. The phase offset register value is added to the quantized phase

accumulator output in order to make phase tuning possible.

In order to generate a periodical waveform at a constant frequency, a

constant phase increment value is added to the phase accumulator at each reference

clock cycle. A waveform at higher frequency can be generated if the phase

increment value is larger. This situation can be explained as phase accumulator

steps the faster through the look-up table. If the phase increment value is smaller,

then the phase accumulator steps slower. As a result, a waveform at low frequency

is generated.

19

The frequency of the waveform depends on the reference clock frequency,

the phase increment register value and length of phase accumulator. The waveform

frequency is calculated using the formula given below.

m
ref

out
2

FFCR
F

×
=

where

Fout = DDS output waveform frequency

FCR = phase increment (frequency control register value)

Fref = reference clock frequency

m = phase accumulator word length

If the desired wave frequency is 500 Hz and the supplied reference clock

frequency is 100 MHz, the phase increment value for 32-bit accumulator is

calculated as below:

21475
10100

2500

F

2F
FCR

6

32

ref

m
out

=

×

×
=

×
=

The frequency resolution of the direct digital synthesizer is a function of

the reference clock frequency and number of bits employed in phase accumulator.

The frequency resolution is calculated using the formula given below:

m
ref

2

F
∆f =

where ∆f is the frequency resolution.

20

In order to have better frequency resolution, the number of bits employed

in the phase accumulators is increased. In practical applications (see section 2.3

and Appendix B) the accumulator sizes are higher than 28 bits for fine frequency

resolution. The Analog Devices’ AD9959 chip [21] can be clocked up to 500 MHz

and it can produce sine output around 200 MHz. This chip has 32-bit accumulator.

When this chip is clocked with 500 MHz, the output frequency of this device can

be adjusted with 0.12 Hz frequency resolution (≈ 500 MHz / 232).

There are also two parameters which have an effect on the quality of the

waveform. These are the look-up table length and look-up table width. If the value

of these parameters is increased, the output waveform resolution becomes better.

The sampling frequency determines the highest frequency that can be

produced digitally. The Nyquist Theorem states that the highest frequency which

can be generated accurately is less than half of the sampling rate. As a result, the

highest frequency that can be generated by the DDS module is Fref / 2. The output

frequency is limited with purity concepts in addition to the reference clock

frequency. The generated waveform with two samples can not be pure enough, so

more samples are required to improve quality.

Spectral Purity Concepts:

The output of the DDS includes the spurious signals. The spurious signal

sources can be ordered as below:

1. The reference clock

2. Phase truncation

3. Angle to amplitude conversion

4. Digital to analog conversion

The reference clock is the principal input for DDS. All the signal

generation processes are done synchronously with reference clock. The phase

accumulator increases the phase accumulator value at each reference clock cycle.

21

As a result, the spectral characteristics of the reference clock have a direct effect

on the output signal quality. The reference clock is also used for digital to analog

conversion timing. If the reference clock is noisy, undesired magnitude reduction

can be observed at the DAC output.

The phase accumulator must have a sufficient field width to span the

desired frequency resolution. In general, a large number of bits are allocated for

phase accumulator. Because, more bits for phase accumulator leads to better

frequency resolution. However, the look-up table size restriction causes the

quantization of the phase accumulator output. In order to reduce the chip die area

(to have smaller look-up table), the least significant bits of the phase accumulator

output are not used. The phase accumulator quantization level directly depends on

the desired length of the look-up table.

The phase accumulator output quantization introduces time base jitter in

the output waveform. The quantization and resultant spurious outputs are

emphasized in DDS IP product sheets in detail. Xilinx’s DDS Compiler V1.0

Product Specification sheet [27] indicates the phase accumulator output

quantization for different look-up table examples clearly. It states that the

waveform of 12-bit output by using 256 point look-up table results in nearly 48 dB

spurious output. The waveform of 16-bit output using 256 point look-up table

results nearly 48 dB spurious output again. These outputs lead to the fact that the

change in number of output bits has no effect on the spurious output. It shows also

that the waveform of 16 bit output by using 1024 point look-up table results 60 dB

spurious output. This experience states that the change in look-up table size has

direct effect on the spurious output. The look-up table sizes and the resultant

spurious outputs are ordered below.

• 256 point look-up table => Approximate Spurious Output = 48 dB

• 512 point look-up table => Approximate Spurious Output = 54 dB

• 1024 point look-up table => Approximate Spurious Output = 60 dB

• 2048 point look-up table => Approximate Spurious Output = 66 dB

22

Some of the DDS design implements the angle to amplitude conversion

using algorithmic techniques. This technique reduces the look-up table sizes and

chip die area further. However, the algorithmic approximation results in higher

spur levels.

Another spur source is digital to analog conversion. The quantization

noise and distortion of DAC leads to spurious signals at the output. These are

principally caused by not ideal switching characteristics of DAC. Typically DDS

signal error in the output waveform is dominated by the performance of the DAC.

The quantization noise is proportional to the DAC resolution. It is formulated as

defined below.

dB1.766.02NSNR +=

where N is the DAC output resolution. S. Cheng and J. R. Jenses [19] give the

detailed analysis of the spectral purity for DDS applications.

2.2.2 INTER-INTEGRATED CIRCUIT (I2C) BUS

In this study, the interfaces of DDS function generator are selected as

Inter Integrated Circuit (I2C) Bus [30] and UART. The basic information about

I2C bus serial communication standard is presented below.

I2C bus control modules provide an interface between I2C-compatible

devices connected by way of the two-wire I2C serial bus. External components

attached to the I2C bus serially transmit and/or receive serial data to/from the

USART through the 2-wire I2C interface.

I2C bus application example is shown in Figure 2-4. Each I2C device is

recognized by a unique address and can operate as either a transmitter or a

receiver. A device connected to the I2C bus can be considered as the master or the

slave when performing data transfers. A master initiates a data transfer and

generates the clock signal SCL. Any device addressed by a master is considered a

23

slave. The I2C bus interface module designed for the DDS function generator

supports only slave mode of operation. It only receives the messages which are

sent for its address.

Figure 2-4 I2C Bus Connection Diagram

I2C data is communicated using the serial data pin (SDA) and the serial

clock pin (SCL). Both SDA and SCL are bidirectional, and they must be connected

to a positive supply voltage using a pull-up resistor as shown in Figure 2-4.

The master module starts the communication by pulling SDA pin to low

as SCL pin is high. After start of communication, all the slave devices connected

to the I2C bus start to wait slave address data. Then the first byte which consists of

a 7-bit slave address and the R/W bit is sent by the master module. If one of the

slave module addresses is equal to the data sent by master, target slave module

makes an acknowledgement by pulling SDA pin to low. Other slave modules wait

up to end of communication. The R/W bit determines the data transfer direction. If

R/W is equal to 0, then the master transmits data to a slave, else if it is equal to 1,

the master receives data from a slave. The most significant bit of the data package

is transmitted first by the transmitters. The acknowledge bit (ACK) is sent from the

receiver after each byte on the 9th SCL clock.

24

Figure 2-5 I2C Bus Serial Communication Timing

I2C bus serial communication timing is illustrated in Figure 2-5. The

master device generates one clock pulse for each data bit for transmission. A

START and STOP conditions are generated by the master. A START condition is

a high-to-low transition on the SDA line while SCL is high. A STOP condition is a

low-to-high transition on the SDA line while SCL is high. The bus is busy when

START condition exists. The busy situation is removed when STOP condition

occurs. Data on SDA must be stable during the high period of SCL as shown in

Figure 2-5. The high and low state of SDA can only change when SCL is low,

otherwise START or STOP conditions are generated.

2.2.3 UART

There are mainly two forms of serial transmission. These are UART

(Universal Asynchronous Receiver/Transmitter) and USART (Universal

Synchronous-Asynchronous Receiver/Transmitter). The synchronous serial

transmission requires that receiver and transmitter modules share clock signal. The

transmitter sends the data and clock signal so that the receiver knows the time to

read the data. On the other hand, asynchronous serial transmission does not require

the clock signal. In this type of transmission, the transmitter and receiver agree on

timing by adding some useful bits to the data pack.

The UART controllers are main components for serial communication

systems. The UART receiver takes the bits serially and packs them in byte format.

25

The UART transmitter takes bytes of data and transmits the bits in a sequential

format. The word transmission always starts with the “START” bit. This bit

informs the receiver that a word will be sent to it. Then the receiver tries to

become synchronous with the transmitter and waits for a word. After the

synchronization, the data bits of a word are received serially. Commonly, the least

significant bit of the word is received first. After sending all the data, the

transmitter can send “PARITY” bit for receiver to check correctness of reception.

The transmission stops with sending “STOP” bit to the receiver. The timing of the

RS232 serial communication is illustrated in Figure 2-6.

Figure 2-6 RS232 Serial Communication Timing

In most computer systems, the UART is connected to circuitry that

generates signals that comply with the EIA RS232 specification. In this standard,

the “START” bit is logic low and “STOP” bit is logic high. RS232 compatible

devices usually transmit the least-significant bit first, immediately after the

“START” bit. The most significant bit is transmitted last, followed by an optional

parity bit.

2.3 COMMERCIAL DDS ICS AND IP MODULES

There are various commercial DDS ICs and IPs in the market. These

designs differ from each other according to their capabilities. In Table 2-3, some

commercial DDS and NCO ICs are listed. The waveform frequencies generated by

listed commercial DDS and NCO ICs vary between 25 MHz and 1GHz. Most of

26

the chips have 32-bit frequency register which is sufficient to adjust frequency

with mHz frequency resolution. The ICs’ phase offset registers differ in length

between 2 and 16 bits. Most of the ICs can not control the amplitude of the

waveform digitally. In the given list of ICs, only Analog Devices’ AD9959 has the

amplitude control capability. The output resolution of the ICs varies between 10

and 16 bits.

Analog Devices AD9833 is served as programmable function generator

integrated chip into the market [22]. This programmable function generator is a

fully integrated DDS chip. It is also a simple waveform generator capable of

producing sine, triangular and square wave outputs. The waveform amplitude

adjustment with this chip is not possible. The chip is configured via a 3-wire SPI

serial interface. Analog Devices AD9959 consists of four DDS core that provides

independent frequency, phase and amplitude controls [21]. In this chip, amplitude

adjustment is done by multiplication of look-up table output. FSK, PSK and ASK

modulation can be performed by applying source data to the input pin. The carrier

is sine wave for these modulations.

IPs are used as the ready to use design modules for FPGA applications.

The commercial DDS and NCO IPs of Xilinx, Altera and Lattice Semiconductor

are listed in Table 2-4. IP modules allow configuring the length of the frequency

adjustment register up to 32 bits. The phase offset of the waveform can be adjusted

also using phase offset registers whose length can be configurable up to 32 bits

also. IP modules do not allow adjustment of waveform amplitude.

Xilinx has introduced some DDS IPs into the market. Xilinx Logicore

Numerically Controlled Oscillator V1.0.3 [26] is designed to generate digital

samples of the sine wave. This design presents only a phase increment value input

for frequency adjustment. Xilinx Logicore DDS Compiler V1.0 [27] combines

various properties. It serves independent channels, phase offset definition and

various output resolution. All of these properties can be set by the designer before

adding design into a project.

27

Table 2-3 Commercial DDS and NCO Integrated Circuits

IC
Manufacturer

 and Model

Waveforms
and

Modulation

Reference
Clock

(MHz)

Frequency
Resolution

(bit)

Phase
Offset

(bit)

Amplitude
Control

(bit)

Output
Resolution

(bit)

Control
Interface

Internal
DAC

Number of
Independent

Channel

Analog Devices

AD9959
Sine 500 32 14 10 10 Serial Yes 4

Analog Devices

AD9858
Sine 1000 32 14 No 10 Parallel Yes 1

Analog Devices

AD9833

Sine

Triangular

Square

25 28 12 No 10 Serial Yes 1

Qualcomm

Q2240I-3S1

Sine

Arbitrary
100 32 No No

12 (sine)

14 (arb)
Parallel No 1

Qualcomm

Q2368

Sine

BFSK, BPSK,

QPSK, 8-PSK

135 32 3 No 12
Serial or

Parallel
No 2

Qualcomm

Q2334

Sine

BFSK
50 32 3 No 12 Serial No 2

Harris

HSP45102

Sine

BPSK,

QPSK,

40 32 2 No 12 Serial No 2

Fairchild

TMC2340A

Sine

50 32 16 15 16 Parallel No 1

28

Table 2-4 Commercial DDS and NCO Intellectual Properties

Vendor IP Name Version Supported FPGA Families
Frequency
Resolution

Phase Offset
Amplitude

Control
Output

Resolution

Number of
Independent

Channel

Xilinx

Logicore
NCO 1.0.3

Spartan-3, Spartan-3E

Virtex-II, Virtex-II Pro

Virtex-4, Virtex-5

configurable

3-30 bits

configurable

3-10 bits
NO

configurable

4-16 bits
1

Xilinx

Logicore
DDS 5.0

Spartan-3, Spartan-3E

Virtex-II, Virtex-II Pro

Virtex-4, Virtex-5

configurable

3-32 bits

configurable

3-32 bits
NO

configurable

4-32 bits

configurable

1-16 channels

Xilinx

Logicore

DDS

Compiler
1.0

Spartan-3, Spartan-3E

Virtex-II, Virtex-II Pro

Virtex-4, Virtex-5

configurable

3-32 bits

configurable

3-32 bits
NO

configurable

4-20 bits

configurable

1-16 channels

Altera

MegaCore
NCO

Compiler
6.1

Cyclone, Cyclone II

HardCopy II

HardCopy Stratix, Stratix,
Stratix II, Stratix II GX,
Stratix III, Stratix GX

configurable

up to 32 bits
configurable NO configurable configurable

Lattice
ispLever

Core
NCO 2.2

LatticeEC, LatticeECP

LatticeECP2, LatticeECP2M

LatticeSC, LatticeXP

configurable

up to 32 bits

configurable

4-32 bits

configurable

4-32 bits

configurable

4-32 bits

configurable

1-16 channels

29

CHAPTER 3

DESIGN OF DDS FUNCTION GENERATOR

3.1 FOLLOWED SYSTEMC AND VHDL RTL DESIGN FLOWS

In this study, the SystemC and VHDL based hardware design stages are

followed separately. The main aim is to compare the SystemC and traditional

HDL based design flows in terms of coding, synthesis and implementation

performances. The SystemC initially appeared as a modeling language like HDL

languages. However the new tools are proposed to directly synthesis of SystemC

descriptions like traditional HDL synthesis. Since there is not sufficient number

of well developed direct synthesis tools in the market, the SystemC descriptions

are translated to VHDL code usually and then VHDL synthesis tools are used. In

this study, only some SystemC descriptions are translated to VHDL due to

synthesizable code writing restrictions. The advantages and disadvantages of

SystemC design flow are well observed by making the same digital design using

both SystemC and VHDL. The studied digital design cycles are illustrated in

Figure 3-1. The hardware and software tools used at each step of the design are

also given in the figure.

The first part of the digital hardware design job is to determine the

specifications. The design specifications of the presented DDS function generator

are given in section 3.3. The defined specifications contain necessary information

about the waveform characteristics, modulation types, communication interfaces

30

and common characteristics. The specification definition is necessary and very

critical for development of the design plan. The specifications are determined in

such a way that minimum numbers of change will be done after starting to

design. All designers know that the change of specification affects the whole

design period in a negative way.

Figure 3-1 Followed SystemC and VHDL RTL Design Flows

31

After determination of the specifications, the behavioral models of the

function generator are formed. The goal of the behavioral modeling is to facilitate

the synthesis of the digital modules. In many digital design applications, it is not

appropriate to describe whole design structure first. In place of difficult structure

definition, the designer needs a behavioral description of a design. In this

description method, the hierarchy of the modules and their functions are defined

using the higher abstraction levels. The aim is to observe the functionality of the

design. There is no need to describe the internal structures of the modules. There

is an increasing awareness of the need for the behavioral models for specifying

digital devices, since the demand for complex and well developed chips

increases. This situation leads to present more talent design tools to the market

and solve the complexity problem using higher abstraction levels.

In this thesis, the behavioral description of the function generator is done

using both SystemC and VHDL. In order to simulate the behavioral models, test

bench files are prepared. If the behavioral models are verified with simulations,

design cycle passes to RTL block. Direct pass from specification block to RTL

block is also possible. The RTL design modules of the function generator are

presented in section 3.5. They have been implemented using both SystemC and

VHDL. The simulations are done for each design block separately. The design

test and verification is presented in Chapter 4.

SystemC based design cycle includes the SystemC to VHDL translation.

The number of software that can synthesize the SystemC descriptions directly is

insufficient. The companies which design such software do not share it with

public. For this reason, the SystemC descriptions should be translated to VHDL

code. As a translator tool, SystemCrafter’s SystemC synthesis software is used.

The SystemC to hardware flow is presented in section 3.2.

In the VHDL based design cycle, the design modules are designed and

verified using Xilinx ISE and ModelSim. The hardware verification tests are

applied on the Memec Virtex-4 FX LC development board and Memec P160

Analog Module (Appendix C.1, C.2). The implementation is done for Xilinx’s

Virtex4 series V4FX12 FPGA [31] which the development board includes.

32

3.2 SYSTEMC TO HARDWARE FLOW

In SystemC based design flow, the critical edge is to synthesize the

generated SystemC descriptions. In the market, various SystemC synthesizers are

used. Some of the them synthesize the SystemC descriptions written at behavioral

level and others synthesize only the descriptions written at RTL level. Behavioral

synthesis allows the designers to create hardware from un-timed high-level

models quickly. It also enables them to verify the designs in less time. However,

there are disadvantages of using this type of synthesis. Although the designers

satisfy with the accurate function descriptions, this synthesis type is not good at

allocation of hardware resources and timing.

In this thesis, some of the SystemC RTL descriptions are synthesized.

The SystemC and traditional hardware design flows are illustrated in Figure 3-2.

The presented figure shows RTL based synthesis but not behavioral synthesis.

Figure 3-2 SystemC and Traditional Hardware Design Flows

33

The behavioral synthesis does not require additional SystemC model to

RTL refinement. As illustrated in Figure 3-2, there are two paths to produce

netlist using SystemC to hardware flow. The first path is direct synthesis of the

SystemC RTL descriptions. The second path depends on the translation of the

SystemC descriptions into HDL descriptions. In this path, the translated design

codes are synthesized to netlist using the HDL based synthesis process.

The traditional RTL synthesis provides most powerful synthesis. The

direct SystemC synthesis is also powerful but it has unsolved problems related

with hardware resource usage and timing. Some tools support this type of

synthesis but available tools are not in satisfactory quality and number when

compared to HDL synthesis tools. In the future, more companies will make an

effort to improve the present SystemC synthesis tools or create well developed

tools. The SystemC synthesis with translation brings some disadvantages such as

broken of SystemC design cycle and redundant logic generation by SystemC to

HDL translator. Using more powerful HDL tools can be an advantage in terms of

better synthesis performance. However, the designer usually does not become

aware of better synthesis advantage due to generated redundant logic.

In order to translate the SystemC implementation, the designers select

either manual recoding in VHDL or automatic translation. The manual recoding

increases the probability of errors, either through mistranslation or

misinterpretation. A high-performance synthesis tool, SystemCrafter SC,

automates this process, by quickly translating SystemC to RTL VHDL.

In this study, SystemC descriptions of the UART baud generator are

automatically translated to VHDL using SystemCrafter SC synthesis tool. The

SystemCrafter SC presents a code generation and verification platform for digital

designers. However it is used only to translate SystemC description in this study.

The hardware models are generated and refined to RTL using Microsoft’s Visual

C++ 6.0. After translation of the SystemC descriptions, the generated VHDL

descriptions are synthesized into netlist using Xilinx’s synthesis tool.

SystemCrafter SC provides to design, debug and simulate the hardware

and systems using existing C++ development environment. It lets to develop

34

hardware and software design code and simulate it in a common platform. The

hardware is synthesized to VHDL RTL for implementation using traditional

design stages. SystemCrafter SC also writes a structural SystemC description of

the synthesized circuit for verification [12].

SystemCrafter’s SystemC to hardware flow is illustrated in Figure 3-3.

The design flow includes the stages as defined below. After the last stage (VHDL

synthesis and netlist generation), VHDL code is implemented for target

technology and place and route simulations are done.

1. Developing SystemC hardware model and simulations

2. Translation of SystemC descriptions to VHDL RTL code

3. Gate-Level model simulations

4. VHDL synthesis

Figure 3-3 SystemCrafter SC’s SystemC to Hardware Flow

35

The initial SystemC design descriptions are developed at first stage. The

test bench module codes are written to test the generated SystemC descriptions.

Then the design is simulated by combining the design and test bench modules in

a single environment. SystemCrafter SC uses a C++ compiler such as Microsoft

Visual C++ or GNU GCC to simulate the SystemC constructs. If the designer is

satisfied with the results, the design is verified and flow passes to second stage.

On the other hand, the unsuccessful simulations require the refinement of the

design descriptions. The new test bench codes may be rewritten for refined

design. This refinement process continues up to achieving successful design

verification.

At the second stage, the SystemC descriptions are translated to the

VHDL codes. At this stage, the critical point is having synthesizable SystemC

descriptions. If the written descriptions are not in synthesizable format, they

should be refined into synthesizable format. SystemC language is superset of

C++. It comprises all C++ descriptions for simulation and modeling purposes. No

synthesis tool can compile all the descriptions written using SystemC. This

synthesis limitation is not the unique case for SystemC. The VHDL and Verilog

also appeared as a modeling language. The digital designers who use these

languages also should pay an attention to write the design descriptions in

synthesizable format. For instance, the statements such as “wait for 500 ps” can

not be synthesized using VHDL synthesis tools. The synthesis tool can not know

desired timing. For this reason, the designer should use a counter and reference

clock to wait for such a period of time. SystemCrafter places more restrictions

over SystemC synthesis than the traditional design languages. When designing

the same module with SystemC and HDL, the designer notices the differences of

synthesizable subsets and difficulties in writing synthesizable descriptions using

these languages.

At the gate-level model simulation stage, SystemC hardware

descriptions are translated to gate-level SystemC models. The VHDL translation

stage and gate-level model simulation stages are independent but gate-level

simulations give an idea about success of generated VHDL codes. In this stage,

36

the automatically generated gate-level models are simulated. If the designer is

satisfied with the simulations of the generated gate-level SystemC models, the

gate-level model simulation stage is completed. On the other hand, unsatisfactory

simulation results require that the synthesizable descriptions should be refined

again.

After running the gate-level model simulation, SystemCrafter SC

generates a set of VHDL files. These files contain the synthesizable VHDL

codes. The generated files are synthesized using the VHDL synthesis tools such

as Xilinx Project Navigator. Before synthesis of the code, SystemCrafter’s gate

library, craft_gatelibrary.vhd, is added to the project of the synthesis tool as

VHDL package. The product of the synthesis process is the gate-level netlist file.

At the final stage, generated gate-level netlist file is implemented for

selected FPGA type. The place and route simulations are run after

implementation process. If the design is also verified with these simulations, the

programming file is prepared and FPGA is configured.

37

3.3 DDS FUNCTION GENERATOR DESIGN SPECIFICATIONS

The function generator module specifications are summarized in Table

3-1 and Table-3-2. Waveform and common characteristics of the function

generator is given in Table 3-1. Modulation specifications and interface

properties are given in Table 3-2. The design specifications are presented by

assuming 100 MHz reference clock is supplied to the function generator module.

Table 3-1 DDS Function Generator Design Specifications Part-1

WAVEFORM CHARACTERISTICS

Sine Wave Frequency Range 23 mHz - 40 MHz

Square Wave Frequency Range 23 mHz - 40 MHz

Triangular Wave Frequency Range 23 mHz - 10 MHz

Ramp Wave Frequency Range 23 mHz - 10 MHz

COMMON CHARACTERISTICS

Number of Output Channel 1

Output Resolution 12-bit

Frequency Control Register (Frequency Register-1) 32-bit

Frequency Modulation Register (Frequency Register-2) 32-bit

Frequency Resolution 23 mHz

Phase Offset Control Register (Phase Register-1) 10-bit

Phase Modulation Register (Phase Register-2) 10-bit

Amplitude Adjustment Register 8-bit

Waveform Selection Register 5-bit

Look-up Table Holds Quarter sine wave

Look-up Table Size 256 x 12 bit

Minimum and Maximum Output Levels 0x000 and 0xFFF

Approximate Spurious Output 60 dB

Trigger Delay 4 clock cycles

38

Table 3-2 DDS Function Generator Design Specifications Part-2

MODULATION

Carrier Wave Sinusoidal Frequency Shift
Keying (FSK)

Source External

Carrier Wave Sinusoidal Phase Shift
Keying (PSK)

Source External

INTERFACES

Work Type Receiver only

Baud Rate Adjustment External

Supported Baud Rates 1200-38400 bps

Data Bits 8

Stop Bits 1

Parity None

Flow Control None

Adjustable Function Generator
Parameters

Frequency
Phase Offset

Amplitude

Waveform Selection

UART

Soft Reset Control Yes

Standard Mode Support Yes

Fast Mode Support Yes

High Speed Mode Support No

Work Type Slave Receiver only

Supported Addressing 7-bit

Slave Module Address “1001100”

Adjustable Function Generator
Parameters

Frequency
Phase Offset

Amplitude

Waveform Selection

I2C

Soft Reset Control No

39

3.4 SOFTWARE AND HARDWARE RESOURCES USED IN DESIGN

All of the software tools used throughout the thesis is summarized in

Table 3-3 below. Microsoft Visual Studio 6.0 is used as the development

environment to design and verify the function generator core using the SystemC.

The SystemC library (SystemC 2.0.1 release for this study) is used with

Microsoft Visual Studio 6.0 to provide such a development environment.

SystemC Win1.0 Beta and GTKWave Wave Analyzer V1.3.19 provide a wave

viewer environment to verify the developed SystemC models. SystemCrafter is a

synthesis tool for SystemC applications. In this study, it is only used to translate

SystemC descriptions to VHDL.

Table 3-3 Used Software for Design and Verification

Tools / Package Usage

SystemC 2.0.1 2 SystemC library

Microsoft Visual Studio 6.0 1 C++ compiler

SystemC Win1.0 Beta 2
SystemC design and
verification environment

GTKWave Wave Analyzer 1.3.19 2 Wave viewer

SystemCrafter SC 2.0.0 3 SystemC synthesis tool

Matlab R2006a 1
Mathematical computation
and analysis tool

Xilinx ISE 7.1 3
Xilinx integrated synthesis
and implementation tool

ModelSim XE III 6.0a 3 Simulation tool

Microsoft Visual Studio .NET 2003 1 .NET platform

(1) Licensed to Aselsan Inc.

(2) Free version

(3) Trial version

40

In order to determine the sinusoidal sample values to generate sine wave,

MATLAB R2006a mathematical computation and analysis tool is used. Xilinx

Project Navigator ISE 7.1 software is used to write and synthesize VHDL

description of the function generator. It is also used for implementation and

programming of FPGA. To verify the generated VHDL design description,

ModelSim XE III 6.0a is preferred as simulation software.

Microsoft Visual Studio .NET 2003 is used to make user interface

software between the computer and the function generator hardware test

platform. The function generator configuration parameters (frequency, phase

offset, wave type and amplitude information) are sent to the hardware test

platform in RS232 format using the control software developed on this platform.

The function generator VHDL description is tested and verified on the

hardware test platform. All of the hardware tools used to test the design

throughout this study is summarized in Table 3-4.

Table 3-4 Used Hardware for Verification

Hardware Usage

Memec Virtex-4 FX LC Development kit

Memec P160 Analog Module AD and DA converter module

Xilinx Platform Cable USB Programmer over JTAG port

Oscilloscope Signal voltage viewer

SMB-BNC Cable Connects Memec P160 with oscilloscope

Test Computer User interface software runs on

Memec Virtex-4 FX LC Development Kit [32] and Memec P160 Analog

Module [33] constitute the function generator module’s hardware test platform.

Memec’s development kit includes Xilinx Virtex-4 series V4FX12 FPGA. The

analog module includes two 12 bit 165 Msps D/A converters. The function

generator design is implemented into the FPGA using the Xilinx’s Platform

41

Cable USB [34] which is a high-speed download cable that configures or

programs all Xilinx FPGA, CPLD and ISP Configuration PROM. The

specifications of Memec’s development boards are given in Appendix C. The

hardware test platform setup is presented in Chapter 4.

3.5 DDS FUNCTION GENERATOR MODULES

The modular and hierarchical architecture has been chosen for function

generator design. Modularity and hierarchy help to simplify and organize a

design project. Hierarchy allows the building of a design out of modules which

themselves may be built out of (sub-)modules.

The modular architecture is the preferred method for digital systems

since it helps to organize the system into logically distinct modules, such that the

modules can be changed by enhanced modules. Different implementation

alternatives can be examined for the modules in a simulation. Only the

corresponding component instantiation needs to be changed for this in the overall

model. The modularity helps different modules to work together, and enables

easier maintenance and module replacement.

The DDS function generator module designed in this study includes the

modules presented below. The names of the modules are given in the hierarchical

order. In this study, both SystemC and VHDL design files are prepared for

presented modules.

• Function Generator Module

o DDS Module

� DDS RAM Module

o UART Receiver Module

o UART Baud Generator Module

o I2C Slave Receiver Module

o Main Controller Module

42

3.5.1 DDS MODULE DESIGN

In direct digital synthesis based function generator design the direct

look-up table method is utilized. This method is a trivial way of obtaining not

only sinusoidal samples, but also any periodical function. In this approach,

sampled (or calculated) amplitude values of one full period are stored in the

memory. The phase output, which is obtained from the phase accumulator, is

connected to the address inputs of the look-up table and the output samples are

obtained from the data outputs of the memory. The frequency resolution may be

increased by adding more address lines to the memory. By increasing the number

of data output lines, the output resolution may also be increased. But increasing

the number of address or data lines means the increase of the storage capacity of

the memory device, which is an undesired situation.

Figure 3-4 Four Quadrant of Sine Function

The samples of one full period sine wave are shown in Figure 3-4. In

order to generate a sine wave, there is no need to hold all the samples in a

memory. Symmetry properties of the sine can be used to reduce memory size.

The quarter sine wave is enough to represent the full period sine wave as shown

in Figure 3-5. Thus, the memory requirement is reduced to 1/4. Additionally, the

maximum amplitude value of the quarter wave is half of the full wave. This

property also results in one bit reduction for the memory width. As a result, the

43

total memory reduces to 1/8. In this study, the quarter wave samples of a sine

wave are loaded into the DDS RAM module. However, one bit amplitude

reduction is not applied. The DDS RAM module holds a look-up table 256-word

in length and 12-bit in width.

Figure 3-5 First Quadrant Samples of Sine Wave

The data flow diagram of designed DDS module is shown in Figure 3-6.

The frequency control register and phase accumulator output are in 32-bit length.

The designed DDS module can be clocked up to 125 MHz when it is

implemented using Xilinx Virtex4 FPGA technology and it can produce a sine

wave around 40 MHz. When this chip is clocked with 100 MHz reference clock,

the output frequency can be adjusted with 0.023 Hz (= 100MHz / 232) resolution.

Figure 3-6 Data Flow Diagram of Designed DDS Module

44

As shown in Figure 3-6, DDS module contains trigger logic block in

addition to the basic DDS. This logic block provides a trigger capability to the

function generator design. When the trigger enable signal is set to logic high, the

trigger signal is expected to start waveform generation. In order to make ramp,

triangular or square wave generation possible, DDS module sends the look-up

table addressing value to the output port.

Figure 3-7 Sine Wave Construction

The designed DDS uses 1024 points to construct waveforms so the

approximate spurious output becomes 60 dB as discussed in section 2.2. The

maximum and minimum output values that can be generated by designed DDS

module are shown in Figure 3-7.

3.5.2 I2C SLAVE RECEIVER MODULE DESIGN

The designed I2C slave receiver module has the following features:

• Slave receiver operational mode

• Compliance to the Philips Semiconductor I2C specification v2.1

• 7-bit device addressing mode

• Fast mode up to 400 kbps support

• Byte format transfer

45

The I2C slave receiver module provides an interface between the

function generator and the I2C bus. The master device connected to the I2C bus

has exclusive control over it. In order to control the function generator in this

design, the master device transmits the waveform configuration parameters to the

designed I2C bus slave receiver module. The parameters include the type,

frequency, phase offset and amplitude information of periodical waveform.

To configure the function generator, first, the master device transmits the

defined specific slave address value. Then it transmits the function generator

configuration register sub-address value. As last package, the configuration data

is transmitted to the slave receiver module. After each data package reception, the

slave module gives acknowledgement. I2C bus configuration parameter reception

format is shown in Figure 3-8.

Figure 3-8 I2C Bus Parameter Reception Format

The sub-address data package points the configuration register which

will hold the received data. The I2C register addresses and the data definitions are

summarized in Table 3-5. The I2C slave receiver module waits for 14 bytes of

configuration data. The I2C bus master device does not need to transmit each

byte with slave address and sub-address. It can transmit all the data after the

transmitting sub-address byte and this allows loading the configuration

parameters to the function generator core module more quickly.

46

Table 3-5 I2C Sub-Address Definitions

I2C Sub-Address Data Definition

1 Wave Amplitude

2 Frequency Word-1 (bits 31-24)

3 Frequency Word-1 (bits 23-16)

4 Frequency Word-1 (bits 15-8)

5 Frequency Word-1 (bits 7-0)

6 Frequency Word-2 (bits 31-24)

7 Frequency Word-2 (bits 23-16)

8 Frequency Word-2 (bits 15-8)

9 Frequency Word-2 (bits 7-0)

10 “000000” + Phase Offset Word-1 (bits 9-8)

11 Phase Offset Word-1 (bits 7-0)

12 “000000” + Phase Offset Word-2 (bits 9-8)

13 Phase Offset Word-2 (bits 7-0)

14 “000” + Work Mode (bits 4-0)

3.5.3 UART RECEIVER MODULE DESIGN

The designed UART receiver and baud generator modules have the

following features:

• 8-bit data with non-parity and one stop bit

• Receive shift register

• Receive buffer register

• LSB-first data receive

• Receiver start-edge detection

• Programmable baud rate between 1200 Hz and 38400 Hz

• Data ready flag

47

The UART receiver and baud generator modules provide an interface

between the function generator and an external system via one serial data pin,

uart_sin. Using this input pin, the serial data in RS232 format is received by

UART receiver module. When the start bit comes to the receiver module, it

stimulates the baud generator module. The clock signal synchronized with input

serial data is generated by the baud generator module. The receiver module

receives the serial data at each positive edge of this synchronized clock signal and

puts the bytes into the receive shift register. The connections of the UART

receiver modules and signal directions are illustrated in Figure 3-9.

Figure 3-9 UART Receiver Modules’ Data Flow Diagram

In UART mode, UART receiver module receives characters at a bit rate

asynchronous to the transmitter device. For this reason, the designed receiver

module has a start-edge detection capability. To receive the data, first, the

receiver module transmits the trigger signal (reset_uclk) to the baud generator.

Then, this module generates the synchronous clock signal at a selected baud rate.

The RS232 data transmission format, shown in Figure 3-10, consists of a

start bit, eight data bits and one stop bit. It does not include parity bit. The

synchronized clock makes a low-to-high transition at each center point of the

48

serial data bit. This provides a clear data reception by the receiver module. The

baud generator accomplishes this by receiving input baud rate signal (sel_baud).

The baud generator module does not produce clock signal for start and stop bits.

Figure 3-10 RS232 Data and Clock Synchronization

The UART receiver module is used to receive the waveform

configuration parameters from an external system. The parameters include the

type, frequency, phase offset and amplitude information of the waveform. The

parameter data packages must be transmitted to the receiver module in a fixed

format. The configuration parameter reception order of the designed receiver

module is shown in Figure 3-11. Each configuration data package starts with

configuration header (decimal 90) and ends with function generator’s work mode.

The configuration data package also includes one amplitude word, two frequency

control words each of which has 32-bit length (4 bytes) and two phase offset

words each of which has 10-bit length (represented by 2 bytes). The receiver

module waits for 14 data bytes after receiving the configuration header byte.

AMPL FREQ-1 FREQ-2 PHASE-1 PHASE-2 MODE

1 byte 4 bytes 4 bytes 2 bytes 2 bytes 1 byte

First

configuration

data package

HDR

Configuration

header

(decimal 90)

Last

configuration

data package

1 byte

Figure 3-11 Configuration Parameter Reception Order

49

The waveform configuration parameters are hold in the shift register.

The shift register data definitions are given in the Table 3-6. When all the

configuration data is received, the Data Ready Flag bit (bit-113) is set to logic

high and the main controller module receives the shift register data.

Table 3-6 UART Shift Register Data Definitions

UART Shift Register
Bit Number

Data Definition

113 Data Ready Flag

112-104 Wave Amplitude

103-96 Frequency Word-1 (bits 31-24)

95-88 Frequency Word-1 (bits 23-16)

87-80 Frequency Word-1 (bits 15-8)

79-72 Frequency Word-1 (bits 7-0)

71-64 Frequency Word-2 (bits 31-24)

63-56 Frequency Word-2 (bits 23-16)

55-48 Frequency Word-2 (bits 15-8)

47-40 Frequency Word-2 (bits 7-0)

39-32 “000000” + Phase Offset Word-1 (bits 9-8)

31-24 Phase Offset Word-1 (bits 7-0)

23-16 “000000” + Phase Offset Word-2 (bits 9-8)

15-8 Phase Offset Word-2 (bits 7-0)

7-0 “000” + Work Mode (bits 4-0)

The UART baud generator module supports six different baud rate

selections. The UART clock signals are generated from input reference clock

(100 MHz) and their frequencies can be selected between 1200 Hz and 38400 Hz.

The user must define the serial communication speed before start transmitting the

configuration data. In order to do this, the user applies the baud rate selection

signal to 4-bit length baud rate selection input of the function generator. Then this

50

value is loaded into the baud rate register. The baud rate register value and related

synchronized clock frequencies are summarized in Table 3-7.

Table 3-7 UART Baud Rate Selection Table

Baud Rate Register Value Generated Clock Frequency

“0110” 38400 Hz

“0101” 19200 Hz

“0100” 9600 Hz

“0011” 4800 Hz

“0010” 2400 Hz

“0001” 1200 Hz

3.5.4 MAIN CONTROLLER MODULE DESIGN

The main controller module is a link between the communication

modules and DDS module. It controls the I2C interface with transmitting module

address and receiving the sub-address and data packages. The data packages hold

the frequency, phase offset, type and amplitude information of a desired

waveform. In the main controller module, the data packages are distinguished

according to the sub-addresses received from I2C receiver module and written to

the target configuration registers.

The main controller module has also an interface with the UART

receiver module. The data came to the UART receiver module has been hold in

113-bit shift register. The main controller module receives the shift register value

and writes the shift register’s data into configuration registers when data ready

flag bit is set to ‘1’. In addition, FSK and PSK modulations are also controlled by

this module. It switches the frequency and phase offset control values sent to the

51

DDS module according to the received modulation source input. The carrier wave

for FSK and PSK is sine wave. In this module, there are two 32-bit frequency

registers, two 10-bit phase registers, one 8-bit amplitude register and one 5-bit

work mode register.

3.5.5 FUNCTION GENERATOR MODULE DESIGN

The function generator design module does not include only the sub-

modules, but it also includes the internal processes to generate desired waveform.

The internal processes in this module are illustrated in Figure 3-12.

Figure 3-12 Function Generator Module Internal Processes

All of the properties of the function generator can not be implemented in

the sub-modules. DDS module only generates the sine samples. However, the

function generator must also build square, triangular and ramp waves. The duties

of the internal processes can be ordered as below:

• Waveform selection

• The synchronization clock generation for DAC

• Square, triangular and ramp wave sample generation

• Output sample amplitude adjustment

52

Table 3-8 Waveform Property Selection Table

Work Mode
Selected

Waveform
Selected Frequency

Register
Selected Phase

Register

“00000” Sine 1 1

“00001” Sine 1 2

“00010” Sine 2 1

“00011” Sine 2 2

“00100” Square 1 1

“00101” Square 1 2

“00110” Square 2 1

“00111” Square 2 2

“01000” Triangular 1 1

“01001” Triangular 1 2

“01010” Triangular 2 1

“01011” Triangular 2 2

“01100” Ramp 1 1

“01101” Ramp 1 2

“01110” Ramp 2 1

“01111” Ramp 2 2

“00110” Sine (FSK) 1 & 2 1

“00111” Sine (PSK) 1 1 & 2

The designed function generator has a capability of generating many

standard waveforms with excellent frequency resolution. These waveforms can

be ordered as sine, square, triangular and ramp waves. The function generator has

also a capability of making frequency and phase shift keying. The Table 3-8

defines which frequency and phase register will be used for selected work mode.

In order to convert digital samples to analog signals, a DAC requires a

reference clock as timing source in addition to sample data. The function

generator produces samples at each rising edge of input clock. Since the analog

53

conversion must be implemented when the sample data is ready, internal

processes send the inverse of the reference clock to DAC.

The look-up table counter signal is used to generate square, triangular

and ramp waves by internal processes. The address counter steps through the

look-up table and completes its one cycle at desired period time. This periodic

counter is used to build defined waveforms with a little modification.

The designed function generator can also make digital amplitude

adjustment. The sample outputs of DDS are multiplied with the loaded amplitude

constant in the internal processes.

3.6 INTEGRATION OF DESIGN MODULES

The function generator design file merges the main controller module

with the interface units (I2C and UART modules) and DDS modules. The

modularity architecture of the function generator lets to add new module such as

a DDS RAM module that holds the samples of the arbitrary waveform. In

addition, the interface modules can be replaced with desired modules without

spending more effort.

The block diagram of the function generator is shown in Figure 3-13.

The interface modules supply the configuration data of the waveform that will be

generated. DDS module generates the samples of the sine wave. The duty of the

main controller module is to become a bridge between the interface and DDS

modules. It receives the data from external world using the I2C slave module and

UART receiver modules. It sends the frequency and phase offset values to the

DDS module. It also has duties related with modulation. The module combination

is implemented in the function generator design file. All the designed modules

are defined as sub-modules of the function generator. In order to connect the sub-

modules with each other, the internal signals are also defined in the design file.

54

Figure 3-13 Function Generator Block Diagram

55

CHAPTER 4

IMPLEMENTATION OF DDS FUNCTION GENERATOR

4.1 TEST AND VERIFICATION METHODOLOGY

Before verification of the design on the hardware platforms, the function

generator is verified in software environments. In order to verify design, the test

bench-design approach is used. The test bench generates input signals to the

design module and receives the output signals from it. The received outputs are

compared with the expected results. The prepared test bench file does not need to

become in a synthesizable form. The sample design module and its test

environment are illustrated in Figure 4-1.

Figure 4-1 Test Environment for Design Module

56

The test bench module generates Input-1, Input-2 and Input-3 signals for

the design module and receives Output-1 and Output-2 signals. The generated

and received signals are observed in the simulation environment. If the received

signals are expected signals, the design module is verified and can be used as a

sub-module of the bigger designs or alone.

In this thesis, the design of the function generator is made using two

different design languages named by SystemC and VHDL. The test environments

for these two languages are different. As a result, the design descriptions written

using SystemC and VHDL are simulated in different test environments.

Microsoft Visual C++ 6.0 is used to prepare design and test files in

SystemC based hardware design. SystemC based design verification flow

diagram is illustrated in Figure 4-2. In order to test the design module, the test

bench file and main file are prepared. The main file contains test bench and

design modules as its sub-modules. The main file is compiled and if there is no

compilation error, the design project is built. The design environment generates

an executable file. The user runs this executable file. Executable file generates the

VCD file that holds the samples of simulated waveforms. GTKWave Wave

Analyzer V1.3.19 software is used to open VCD file in order to observe

simulation waveform.

Figure 4-2 Verification Flow for SystemC Based Designs

57

In Xilinx Project Navigator, the verification of the HDL design module

is done differently. In this program, the test bench module contains the design

module as its sub-module (component) so there is no need for main file

additionally. The generated test signals in the test bench module are given to the

design module’s input ports. The output ports of the design module are connected

to the test signals. All the defined signals in the test bench file can be observed in

the simulation environment. In this thesis, ModelSim XE III 6.0a is used as a

HDL based simulation and debug environment. ModelSim is initialized from a

single user interface on the Xilinx Project Navigator. This improves the

productivity and facilitates the verification. The verification flow for HDL based

designs is illustrated in Figure 4-3.

Figure 4-3 Verification Flow for HDL Based Designs

ModelSim is a comprehensive HDL simulation environment. It verifies

the HDL source code by allowing the behavioral and timing model investigation

of the digital designs. ModelSim is also a debugging environment and has a full

language support for VHDL, Verilog, SystemVerilog and SystemC. Since the

trial version of the ModelSim is used in this study, license restrictions do not let

58

to simulate SystemC design codes. ModelSim is a very powerful simulation

environment, and it is sometimes difficult to use this simulation environment.

However Xilinx design environments can take care of launching ModelSim to

simulate projects. When the designer launches ModelSim using Xilinx design

environments, the wave window appears without any additional work. The wave

window is the most important window of ModelSim. It contains waveforms for

all input and output signals of the top-level design module. There are also

dataflow window which can be used to observe the internal signals of top-level

module. This window is very helpful during the design period. Because, the

designer can observe all the internal signals and notice the design errors of sub-

modules. There is no need to simulate all the sub-modules using separate test

bench files, if applied test to top-level module is enough to verify whole design.

In this study, this talented dataflow window of the ModelSim is used and the

designed top-level module is simulated only using only two test bench files.

ModelSim verification flow is illustrated in Figure 4-4. The VHDL code

is compiled into a VHDL library before it can be simulated. The simulator can

not read VHDL source code directly. It only simulates a compiled database. In

the compilation phase, compiler may point out some possible design or syntax

errors. After compiling the design successfully, actual mistakes (design mistakes)

can be observed in simulation environment.

Figure 4-4 ModelSim Verification Flow

59

4.2 DESIGN IMPLEMENTATION USING SYSTEMC

4.2.1 DDS WAVEFORM GENERATION TEST

The DDS design module and its connections with the test bench module

are illustrated in Figure 4-5. The RAM module which contains the sinusoidal

samples is a sub-module of DDS module. In this section, the RAM module is not

verified alone. The simulation results of DDS verify the functionality of the

internal RAM module.

The DDS module has two output ports. One of them (ram_addr_out)

transmits the RAM address value which is initially same as the defined phase

register value. After the DDS starts to operate, the RAM address value is

incremented by the defined frequency register value. The second output port

(max_output) is used to send the sinusoidal samples generated by DDS. In order

to verify DDS module, the frequency and phase values are sent from the test

bench module. The trigger and trig_enb signals are also supplied to detect the

trigger performance of the designed module. It is expected that the DDS module

generates the sinusoidal samples at the rising edge of the trigger signals when

trig_enb signal is logic high. It is also expected that the frequency and phase

values are taken into account during the sample generation.

Figure 4-5 DDS Module Test Environment

60

The simulation waveform of the DDS module designed using SystemC

is given in Figure 4-6. At the start of the simulation, reset condition is employed

by logic high pulse for reset port. After a time, reset condition is removed. Since

the trigger is enabled at the start of simulation, the sinusoidal sample generation

does not start instantaneously. When the trigger signal is sent from the test bench

module, the DDS launches to send the sinusoidal samples. There is maximum 4

clock cycles delay between trigger’s rising edge and start of sample generation.

Since the phase register value is used as an offset value for addressing

the RAM (look-up table), the initial value of the RAM address is equal to phase

register value (0x333 in hexadecimal representation). The delay between the

RAM addressing and sample generation is 2 clock cycles.

The second reset condition is employed in the presented simulation. At

this condition, the RAM address output value is 0x000 and sinusoidal sample

output value is 0x800. This output value represents a minimum analog voltage

level. After a reset condition is removed, the sample generation starts

instantaneously. Since the trig_enb is logic low (trigger is not enabled), the

module does not look for a trigger signal to initialize the waveform generation.

Figure 4-6 DDS Operation

In the presented simulation waveform, the samples are repeated for more

than 3 clock cycles. At each clock cycle the addressed sinusoidal wave samples

are sent from the DDS module. If the value of the frequency register is

incremented, the number of repeated samples decreases.

61

4.2.2 I2C BUS COMMUNICATION TEST

I2C slave design module, I2C master test module and their connections

with the test bench module are illustrated in Figure 4-7. I2C master module is

used to generate desired I2C bus signals in order to test and verify the I2C slave

receiver design module. The master module is not the sub-module of the function

generator. It is controlled by the test bench module to transmit desired test data

package in I2C bus standard format.

The slave receiver module receives sda and scl signals from the master

module and generates the parallel data package. This package is received by the

test bench module and compared with the test data sent by master module.

Figure 4-7 I2C Slave Receiver Module Test Environment

The simulation waveform of the master module design using SystemC is

given in Figure 4-8. At the start of the simulation, the reset condition is employed

by logic high pulse for reset port. At this condition, the master module generates

idle signal (port is not used). After removing the reset condition, the master

module makes its lookload signal logic high which a data package request from

the test bench. The master module starts to send serial data by making high-to-

low transition of scl when sda is low. In the presented figure, this condition is

62

shown at the time of cursor. After the start condition, the data bits are sent

serially (most significant bit is sent first) with the synchronization clock pulse.

Figure 4-8 I2C Bus Data and Clock Synchronization

The simulation waveform of the I2C slave receiver module design using

SystemC is given in Figure 4-9. The master module sends the address (0x98),

sub-address (0x01) and data packages (from 0x02 to 0x1F) to the slave receiver

module serially. If the received address signal is equal to the internal address

register value, then the slave receiver module accepts the serial data. In this

simulation, the address is verified first and then the sub-address and data package

values are received. At the time of cursor, the first data package is sent by master

module for being written to a register at sub-address 0x01. The sub-address value

is incremented after each data. The I2C data reception ends with stop condition.

Figure 4-9 Configuration Data Reception over I2C Bus

63

4.2.3 UART COMMUNICATION TEST

UART Receiver Module Test

In order to test the UART receiver module, there is a need for a UART

transmitter module. Because the observation of the receiver module performance

would be possible only if the transmitter module sends the test data and it is

compared with the data received by the receiver module. The UART receiver

module and its connections with the test bench are illustrated in Figure 4-10. The

test bench module contains the UART transmitter module.

Figure 4-10 UART Receiver Module Test Environment

The data and clock synchronization simulation waveform of the UART

receiver module is given in Figure 4-11. When the start bit of serial data arrives

to the receiver module, it makes reset_uclk signal logic low. This is an

initialization signal for baud generator module to start operation. The baud

generator module starts to generate the synchronization clock after high-to-low

transition of reset_uclk signal. The receiver makes reset_uclk signal logic high

after each stop bits. This start and stop bit detection operation provides a perfect

serial data reception by making serial data and clock synchronization. At each

64

rising edge of clock, the receiver accepts the serial data value. At the reset

condition (external hard reset), reset_uclk signal is made logic high by the

receiver module and the synchronization clock pulses are not generated.

Figure 4-11 UART Data and Clock Synchronization

The configuration data reception simulation waveform of UART

receiver module is given in Figure 4-12. The test bench transmits the

configuration data serially to the receiver module as shown in the figure. The

transmitted first byte is configuration header (decimal 90). After receiving the

configuration header, the receiver module waits for the configuration data to load

registers. The shift register signal (data_all) holds 113 bits data. After the receiver

accepts 14 bytes of configuration data which contains frequency, phase offset,

amplitude and waveform selection information, the configuration data reception

is completed and the most significant bit of shift register signal (data all) is made

logic high. The most significant bit is a warning for controller module and means

that the data load has been completed and the new parameters can be used.

Figure 4-12 Configuration Data Reception over UART

65

UART Baud Generator Module Test

The UART baud generator module and its connections with the test

bench module are illustrated in Figure 4-13. The baud generator module

generates the synchronization clock for data reception. The module receives three

signals which are baud rate selection, clock initialization and system clock signal,

and then transmits synchronization clock signal from its output port.

Figure 4-13 UART Baud Generator Module Test Environment

The synchronized clock generation of baud generator module is given in

Figure 4-14. The baud rate selection signal determines the frequency of generated

synchronization clock signal. The baud rate selection signal (sel_baud) is 04

initially as shown in the figure. This means that 9600 Hz baud rate is required.

The module calculates and generates the desired synchronization UART clock

using the system clock. As shown in the figure again, the sel_baud is made 05.

This means that 19200 Hz baud rate is required and the module also generates

this clock. The reset signal is supplied to the baud generator module from the

receiver module and helps to receive serial data bit at its middle point. When the

reset condition (reset_uclk is logic high), is present, the internal counters take

initial values. After removing this condition the clock generation starts again.

66

Figure 4-14 UART Synchronization Clock Signal Generation

4.2.4 MAIN CONTROLLER OPERATION TEST

The main controller module is a bridge between the interface modules

and DDS module. Main controller module and its connections with the test bench

module are illustrated in Figure 4-15. In this simulation, the test bench acts as if it

is the UART receiver module and sends the configuration data signal (data_all) to

the controller. The dotted lines represent unused signals at this simulation.

Figure 4-15 Main Controller Module Test Environment

In order to verify the controller operations, the UART data sample is

sent to the controller module by test bench. The mission of the controller module

is to receive the configuration data from the interface modules and place the

values of frequency, phase offset, amplitude and waveform selection data to the

configuration registers. In Figure 4-16, the controller receives the UART data

67

sample value (hex 1-60-4010040D-02431124-0231-0114-04) at the time of

cursor. The waveform selection mode is 04 (means that square wave, frequency-

reg1 and phase-reg1 are selected). The controller really outputs the frequency-

reg1 (0x4010040D), phase-reg1 (0x231) with correct amplitude (0x60) values.

Figure 4-16 Main Controller Operation (Part-1)

In Figure 4-17, the controller receives the UART data sample value (hex

1-78-40100420-86631004-0087-0372-07) at the time of cursor. The waveform

selection mode is 07 (means that square wave, frequency-reg2 and phase-reg2 are

selected). The controller really outputs the frequency-reg2 (0x86631004), phase-

reg2 (0x372) with correct amplitude (0x 78) and work mode (0x07) values.

Figure 4-17 Main Controller Operation (Part-2)

68

4.2.5 VERIFICATION OF THE WHOLE DESIGN

In this section, DDS function generator’s sub-modules are supposed to

be tested and verified. The applied tests cover only the verification of internal

processes of function generator and whether the signals between sub-modules are

truly connected or not. All of the signals and variables that are used in the design

are not observed. As a result, if there are unexpected output values, the sub-

modules that constitute the function generator must be tested and verified in their

test environments again.

The block diagram of the function generator and its test environment are

illustrated in Figure 4-18. The configuration test signals are generated by the

UART transmitter module and the I2C master module. These modules simulate

the external interfaces of the design. Using these simulated interfaces, the

selected function generator configuration parameters are loaded into the design.

The generated output waveform sample values are observed and compared with

the expected results.

Figure 4-18 Function Generator Test Environment

69

The sample generation simulation of the function generator after loading

the configuration data over I2C interface is shown in Figure 4-19. The

configuration data is transmitted to the function generator design using I2C bus

master module. The frequency, phase, amplitude and waveform selection signals

of function generator are set according to the received sub-address value. The

sample generation detail simulation is shown in Figure 4-20. The output

waveform generation starts when trigger signal makes low-to-high transition. The

RAM address signal’s initial value (obs_ram_addr_out) is equal to the phase

offset value (obs_phase_reg). The internal look-up table outputs the addressed

sinusoidal samples (max_output) at each clock cycle.

Figure 4-19 Wave Generation Using I2C Interface

Figure 4-20 Wave Generation Using I2C Interface in Detail

70

The sample generation simulation of the function generator after loading

the configuration data over UART interface is shown in Figure 4-21. The

function generator receives the UART data serially and sets its configuration

signals after data loading is completed. The sinusoidal sample values are

calculated according to the desired amplitude after trigger signal arrives. As

shown in Figure 4-22, the output value (0x85D) of the function generator is result

of the multiplication of max_output (0x864) and amplitude value (0xF0) and

division it by the maximum amplitude value (0xFF).

Figure 4-21 Wave Generation Using UART Interface

Figure 4-22 Wave Generation Using UART Interface in Detail

71

4.3 DESIGN IMPLEMENTATION USING VHDL

4.3.1 VERIFICATION IN SOFTWARE ENVIRONMENTS

The designed function generator has a capability of generating many

standard waveforms with excellent frequency resolution. These waveforms can

be ordered as sine, square, triangular and ramp waves. In addition, FSK and PSK

modulations can be done using external data source and carrier sine wave. The

function generator has two standard communication interfaces to receive

operational data. This section includes verification results of the synthesized

function generator VHDL descriptions in software environment.

In order to verify the function generator’s VHDL design codes, two

different test bench files were prepared. One of them was prepared to observe all

output waveforms if I2C interface is utilized. It defines the function generator and

I2C master module which is used to generate standard I2C signals as its sub-

modules. It controls I2C master module to generated configuration data and

receives the output signals from function generator. The second one was prepared

to observe waveforms if UART interface is utilized. This test bench module

supplies standard UART signals to the function generator core.

The configuration data is loaded into the function generator module

using I2C interface as shown in Figure 4-23. The I2C master module transmits

data and clock signals using its serial data port SDA and serial clock port SCL.

The main controller module analyzes the received data, and then it refreshes its

frequency, phase offset, amplitude and waveform selection register data. The

configuration parameter values are refreshed after each data reception. The

waveform sample generation starts when trigger signal makes low-to-high

transition. The sine and square wave generation is shown in Figure 4-23 and

Figure 4-24. As the new configuration values are loaded, the frequency of the

waveform changes according to new values. The analog literal is selected for

RAM addressing and output signals to observe the waveforms clearly.

72

Figure 4-23 Sine Wave Generation Simulation (Using I2C Bus)

Figure 4-24 Square Wave Generation Simulation (Using I2C Bus)

The triangular wave generation is shown in Figure 4-25. In this

simulation, the trigger is disabled by making trig_enb signal logic low. As a

result, the function generator does not wait for trigger pulse. The waveform

sample generation starts immediately after the receiving the configuration data.

The ramp wave generation is shown in Figure 4-26. The look-up addressing

signal is directly given to the output port in order to generate a ramp wave.

The configuration parameters are loaded two times for triangular and

ramp wave simulation. At the second loading, the phase register value is changed

in addition to the frequency value. As can be seen in the presented simulation

waveforms, the output signal makes a glitch due to this phase offset change.

73

Figure 4-25 Triangular Wave Generation Simulation (Using I2C Bus)

Figure 4-26 Ramp Wave Generation Simulation (Using I2C Bus)

The sine wave generation using UART interface is shown in Figure 4-

27. In this simulation, the trigger is enabled by making trig_enb signal logic high.

Then the configuration data is transmitted by the test bench module. When the

transmission is completed, the configuration registers take their new values. The

waveform generation does not start before trigger pulse is transmitted by test

bench module. As can be seen in figure, output value and max_output (addressed

look-up table output) value are different due to the amplitude scaling.

At the time of cursor, the test bench module transmits the soft reset data

package (0x98). After reception of this information, the function generator resets

74

its configuration registers and stops the sample generation. The soft reset signal is

set only using UART interface and it is transmitted to all sub-modules of function

generator as reset signal. When break reset data package (0x99) received, the

function generator removes the soft reset condition. However the waveform

generation does not start due to the loss of old configuration data. The new

configuration data must be loaded to initialize the waveform generation again.

Figure 4-27 Sine Wave Generation Simulation (Using UART)

4.3.2 VERIFICATION ON HARDWARE

The DDS function generator design was verified by testing it after

implementing into FPGA. The function generator descriptions were written in

synthesizable format using VHDL. Xilinx’s Virtex-4 V4FX12 was selected as

target FPGA. The hand-written VHDL descriptions were synthesized using

Xilinx XST software. The estimated device utilization summary of function

generator descriptions is given in Table 4-1. These values are supplied by Xilinx

XST synthesis tool and reported after the synthesis of design descriptions. The

available resources colon of the presented table represents the target FPGA’s

hardware resources.

75

Table 4-1 Device Utilization Summary for Function Generator VHDL Code

Logic Utilization Used Available Utilization

Number of Slices 513 5472 9%

Number of Slices Flip Flops 334 10944 3%

Number of 4 input LUTs 883 10944 8%

Number of bonded IOBs: 22 320 6%

In order to verify the function generator design, the development boards

should have FPGA and D/A converter. Memec Virtex-4 FX12 LC Development

Board [32] and Memec P160 Analog Module [33] were selected as hardware

resources to test the design. The basic properties and pictures of these boards are

given in Appendix C.1 and Appendix C.2.

Memec’s development board contains Xilinx’s Virtex4 series V4FX12

FPGA [31]. The Xilinx Virtex-4 family is revolutionized the fundamentals of

FPGA economics. It presents three application-domain-optimized platforms.

These can be ordered as logic, DSP and embedded processing based platforms.

Virtex-4 FPGAs deliver breakthrough performance at the lowest cost and offer a

compelling alternative to ASICs.

Memec’s other board, analog module, was used with the development

board. The analog and development boards are combined to form analog

application board. The analog board contains high speed A/D and D/A

converters. When the analog and development boards are merged, the converters

and FPGA has been connected with digital I/O channels. The analog module does

not only receive the digital data for D/A converters, it also receives the

synchronization clock signals from the development board. These clock signals

are used by D/A converters and determine the analog conversion rate. The analog

module has also power connections with the development board.

Since the VHDL descriptions are generated using Xilinx’s ISE software,

the usage of Xilinx’s FPGA is an advantage in terms of software support, quick

76

and easy programming. Xilinx ISE software supports full code-to-FPGA

processes for Xilinx FPGAs. The code-to-FPGA steps can be ordered as below:

1. Syntax check of description

2. Synthesis of description

3. Implementation (Translate - Map – Place and Route)

4. Generation of programming file

5. Programming the device

In order to generate programming file, the function generator design

should have been implemented for the selected FPGA. In this study, the

development board contains Xilinx V4FX12 FPGA and the design is

implemented for this FPGA technology. Before the implementation, the

constraint file is written to define hardware I/O connections. If the constraints are

not defined, the implementation is done according to the synthesis tool’s defaults.

The implementation constraint file includes the definitions ordered below:

1. Timing constraints

2. Package pin assignments

3. Area constraints

Implementation process consists of translating, mapping, placement and

routing of a logical design into the targeted Xilinx FPGA. At this stage, the

logical design file, which is output of the synthesis stage, is converted to a native

circuit description (NCD file). This file contains hierarchical components used to

develop the design and the Xilinx primitives. The implementation includes the

processes ordered below:

1. Translate (NGDBuild)

2. Mapping (MAP)

3. Placement and Routing (PAR)

77

The Translate process merges all of the input netlists and design

constraints and outputs a Xilinx native generic database (NGD) file, which

describes the logical design reduced to Xilinx primitives. The Map process maps

the logic defined by an NGD file into FPGA elements, such as CLBs and IOBs.

The output design is a native circuit description (NCD) file that physically

represents the design mapped to the components in the Xilinx FPGA. The Place

and Route process takes a mapped NCD file, places and routes the design and

produces an NCD file that is used as input for bitstream generation. The Generate

Programming File process produces a bitstream for Xilinx device configuration.

After the design is completely routed, the device is configured so that it can

execute the desired function. Xilinx’s code-to-FPGA design flow is illustrated in

Figure 4-28. Input and output files for each flow step are defined in figure.

Figure 4-28 Xilinx’s Code-to-FPGA Design Flow

78

FPGA is programmed using Xilinx’s Platform Cable USB [34]. The

hardware test setup used in this study is illustrated in Figure 4-29. The test setup

includes the Memec’s development board, Memec’s analog module, Xilinx’s

programmer, oscilloscope and test computer. Memec’s boards are combined to

form waveform generation hardware and Xilinx’s programmer is connected to

JTAG port of Memec’s development board. After following setup steps defined

above, FPGA is programmed using Xilinx ISE environment and the test setup

becomes ready for function generator design verification.

Figure 4-29 Hardware Test Setup

In order test the function generator core, the waveform configuration

parameter should have been sent to the FPGA. The Memec’s development board

[32] has physical serial port. By setting a communication channel between the

79

development board and the computer using the serial ports, the waveform

configuration parameters would be sent to the development board.

The application software was prepared in order to control the serial port

of the computer. This software allows communication with the function generator

core over UART. The user interface of the software is shown in Figure 4-30.

Figure 4-30 Function Generator Control Software with UART Interface

In order to load the configuration parameters using this software, the serial port of

the development board is connected to the computer’s serial port. The frequency,

phase offset, amplitude and work mode parameters are selected on the user

interface of the control software. When “Load Configuration” button is pressed,

the loading is executed. In order to reset the function generator (soft reset), “Hold

Reset” button is pressed. When “Break Reset” button is pressed, the reset

condition is removed. The hardware verification test setup and generated

waveforms by DDS function generator are shown in Figure 4-31, 32, 33, 34.

80

Figure 4-31 Sine Wave Generation on Hardware

Figure 4-32 Square Wave Generation on Hardware

Figure 4-33 Triangular Wave Generation on Hardware

81

Figure 4-34 Ramp Wave Generation on Hardware

4.4 SYNTHESIS OF UART BAUD GENERATOR SYSTEMC CODE

In this section, the synthesis results of the UART baud generator

SystemC description are presented. The VHDL description of the same module is

also synthesized to compare the synthesis performances of two synthesis flows.

An important point is the fact that UART baud generator module

descriptions were written in synthesizable RTL format using SystemC and

VHDL. The SystemCrafter’s synthesis tool translated the SystemC descriptions

to VHDL code. The hand-written VHDL code and translated VHDL code were

synthesized using Xilinx’s synthesis tool.

After an automatic translation of the SystemC descriptions to VHDL

with SystemCrafter SC, generated codes are synthesized using Xilinx Project

Navigator. First, a new design project is created in Xilinx Project Navigator.

Then Xilinx’s Spartan-2E XC2S50E is selected as target FPGA and Xilinx XST

is chosen as a synthesis tool. All of the VHDL design files that describe the

synthesized circuit are added to the source directory of the project location.

An additional gate library file namely craft_generator.vhd is supplied as

a part of the SystemCrafter distribution. It can be obtained from the

SystemCrafter SC’s install directory. In order to synthesize the automatically

translated VHDL files, the gate library file is also added to the project as a VHDL

82

package file. This file includes the SystemC library of gate-level descriptions

prepared by the SystemCrafter SC.

The synthesis flow using Xilinx XST synthesis tool is illustrated in

Figure 4-35. The Xilinx XST receives the SystemCrafter’s VHDL package and

design description file as input and generates the netlist file that describes the

gate-level structure of the design as output.

Figure 4-35 Synthesis of Translated VHDL Code Using Xilinx XST

Xilinx XST generates a synthesis report describing hardware utilization

and timing. The estimated device utilization summary for automatically translated

UART baud generator VHDL code is given in Table 4-2. The device utilization

summary for hand-written VHDL code is given in Table 4-3.

Table 4-2 Device Utilization Summary for Translated VHDL Code

Logic Utilization Used Available Utilization

Number of Slices 26 768 3%

Number of Slice Flip Flops 23 1536 1%

Number of 4 input LUTs 41 1536 2%

Number of bonded IOBs: 7 4 3%

Number of GCLKs: 1 1 25%

83

Table 4-3 Device Utilization Summary for Hand-written VHDL Code

Logic Utilization Used Available Utilization

Number of Slices 12 768 1%

Number of Slice Flip Flops 17 1536 1%

Number of 4 input LUTs 22 1536 1%

Number of bonded IOBs: 7 4 3%

Number of GCLKs: 1 1 25%

As shown in Table 4-2 and Table 4-3, the translated code requires more

hardware resource than hand-written code. The SystemCrafter SC synthesis tool

adds redundant logic descriptions when translating the SystemC descriptions to

VHDL. Xilinx XST synthesis tool removes most of this redundant logic.

However, the reduction of the logic is not in satisfactory level. In this experiment,

hand-written code requires nearly the half of the resources required by translated

code.

New well developed synthesis tools can use hardware resources more

effectively. However, it is nearly impossible to reach the same level of hand-

written hardware utilization using current synthesis tools.

4.5 COMPARISON OF SYSTEMC AND VHDL DESIGN FLOWS

In this study, the digital design flow of SystemC RTL and VHDL RTL is

evaluated in terms of code to synthesized gate-level netlist transformation. In

traditional design flow, the algorithmic concept designers use C/C++ for

modeling. This is followed by architectural level design using VHDL or Verilog.

Since there is a gap related with higher abstraction level support of VHDL and

Verilog, SystemC was born to close this abstraction level gap. However SystemC

should show its advantages for RTL synthesis to be replaced with the traditional

84

languages. In this section, the comparison is tried to be made for SystemC and

VHDL function generator designs in terms of synthesis and implementation.

For VHDL implementation of the function generator, Xilinx’s ISE was

used. For SystemC implementation, the SystemC library version 2.0.1 was

employed with Microsoft Visual C++ 6.0 which lets developing and debugging

of the design code. The simulations of the VHDL and SystemC design codes

were done in different platforms. It can be observed that there are advantages and

disadvantages of using SystemC language in digital hardware design flow. The

comparison of VHDL and SystemC based hardware design flows is made when

presenting advantages and disadvantages of SystemC design flow. Advantages of

using SystemC design flow can be stated as below:

• SystemC proves its importance as being a common language in the

whole design process. It provides that the designer does not need to

switch design languages using SystemC direct synthesis flow (direct

design flow from behavioral model to gate-level model).

• Since it provides various abstraction levels with a single language,

the test benches can be reused at various modeling levels.

• SystemC eases the design refinement while passing from higher

abstraction level to lower abstraction levels. The designer does not

need to recode all the interfaces and hierarchies designed at higher

abstraction levels.

• SystemC shortens development cycles with its fast simulation and

debug support. A high-level simulation engine is required to obtain

fast simulation speed. SystemC achieves this using standard C/C++

development environment. VHDL function generator design is

simulated using ModelSim XE III 6.0a. It turned out to be

significantly slower than the SystemC simulation environments.

85

Disadvantages of using SystemC design flow can be stated as below :

• In the market, there are lots of high-performance HDL synthesis

tools and a little number of well developed SystemC tools. Current

SystemC synthesis tool performances are not satisfactory.

• There are problems with error definitions reported by SystemC

library. Some error origins are not found with justifiable expenses.

• There are various SystemC tools that translate the SystemC

descriptions to VHDL or Verilog. However each has special

recommendation in order to write synthesizable SystemC code. This

damages the think of vendor independent SystemC language.

• Translation of the SystemC descriptions to VHDL generates

redundant logic and results in utilization of more hardware resources

when implementation into hardware. SystemCrafter’s synthesis tool

was used to translate SystemC descriptions of function generator. It

showed that the hardware resource utilization for translated VHDL

code is more than resource utilization for hand-written VHDL code.

• After translation of SystemC descriptions to VHDL, the designer

can not make refinements in the generated VHDL code easily. The

translated code includes redundant logic and has a different writing

style that can not be traced easily.

• Synthesizable VHDL description may include more than one

process each of which may have different signals in the sensitivity

list. However, SystemCrafter’s synthesis tool requires that all the

processes in the module must have same source in their sensitivity

lists. This restricts the effective process utilization and undermines

the idea of writing same synthesizable code using SystemC language

easier. During the translation of SystemC descriptions, each process

defined in the module is written into different design files and this

makes tracing the whole design code difficult.

86

CHAPTER 5

DISCUSSION AND CONCLUSION

In this thesis, a direct digital synthesis (DDS) based function generator

design core having I2C and UART communication interfaces is presented,

defined and implemented using two digital hardware modeling/design languages

namely SystemC and VHDL. The simulation, synthesis and applicability

performances of these two design languages are compared by following all

hardware design stages which starts with specification definition and ends with

generation of gate-level netlist. The VHDL function generator descriptions are

also implemented into FPGA and verified with hardware tests. SystemC to

hardware flow is followed by translating UART baud generator SystemC

descriptions to VHDL and synthesizing the translated code. The synthesis

performances of the hand-written and translated VHDL codes are compared in

terms of approximate hardware resource utilization during implementation into

hardware. The design of DDS function generator using both SystemC and VHDL

enables observing SystemC language’s power and potential in the hardware

design flow. The weak aspects of SystemC design flow are also observed and

presented in this study.

The specifications of designed DDS function generator is determined

upon a detailed research about the present commercial DDS, Numerically

Controlled Oscillator (NCO) and function generator ICs or Intellectual Properties

(IPs) in the market. There are limited numbers of function generator ICs that use

87

DDS technique and generate higher frequency outputs. Moreover, most of these

ICs do not allow the digital adjustment of waveform amplitude. Various DDS and

NCO IPs are present in the market however; ready to use DDS function generator

IP has not been found. Moreover, most of DDS and NCO IPs do not allow

amplitude adjustment also. The designed DDS function generator core combines

DDS module and popular standard serial communication interfaces namely I2C

and UART. The integration of I2C receiver module within a DDS function

generator gives a great flexibility for remote control of the design by simple

microprocessors supporting I2C. In the market, ICs or IPs which integrate DDS

and I2C has not been found and this integration is proposed in this study. The

designed function generator presents amplitude adjustment, external trigger for

waveform generation and FSK/PSK modulation capabilities also. It is verified

with adequate number of test bench modules using both SystemC and VHDL

verification environments. Besides, VHDL design description is implemented

into FPGA and verified with hardware based tests. Since the designed core has

UART communication interface, the function generator’s output waveform

configuration parameters have been loaded to FPGA from a personal computer’s

UART port.

The DDS modules seem to become popular for periodical waveform

generation applications in the last years. Periodical waveforms are generated by

function generators that use various waveform production techniques. They can

generate various waveform outputs at a desired frequency, phase and amplitude.

These waveforms are generated for different applications such as new product

testing, clock signal generation and carrier wave generation for communication

systems. The function generator implemented in this study uses DDS technique to

generate periodical waveforms. As the name implies, the analog sine wave is

completely generated by digital circuits using this technique. The designed

function generator combines DDS core module with two serial peripheral

interfaces (I2C and UART), internal controller module, waveform generation

logic (for waves except sine wave) and amplitude control logic.

88

A DDS function generator core written using VHDL is implemented into

Xilinx’s Virtex4 series V4FX12 FPGA. The simulation results presented in

Chapter 4 show that the function generator design suggested in this study is

applicable to the FPGAs. The implementation results show that the maximum

internal logic delay of function generator for this FPGA technology is smaller

than 8 ns and this allows operation using nearly 125 MHz DDS reference clock.

Maximum frequency of periodical waveform output is 40 MHz for this reference

clock rate. It is observed that function generator core proposed in this study can

be implemented into FPGAs having limited hardware resources and controlled by

processors having I2C or UART serial interfaces. The presented function

generator core can generate higher frequency outputs when compared with

Analog Device’s AD9833 programmable waveform generator IC which achieves

maximum 12.5 MHz output. Besides, this waveform generator IC does not allow

digital amplitude adjustment. The presented function generator design is also a

case study sample to compare SystemC and VHDL hardware design flows. The

design can be more developed with dedicated effort to prepare and add innovative

design modules to present structure.

SystemC appeared to provide a modeling platform for system level

designs. The ability to model entire system using a single platform is a critical

capability for system designers. In this platform, the designers can iterate the

designs faster and more cost effectively. In the last years, SystemC gained

popularity as a hardware design language which can replace traditional HDL

based design languages such as VHDL and Verilog. Since using a single platform

and single language for hardware modeling, design and verification will be very

effective in time and cost. Its capability in hardware and software co-verification

and co-design is also an advantage for electronics industry. SystemC is supported

by various vendors to synthesize the written code directly. However, the present

synthesis tools are not satisfactory in performance when compared to traditional

HDL synthesis tools.

Since both SystemC and VHDL hardware design flows are followed

during this study, the different design and verification platforms had to be utilized

89

due to lack of design tools supporting both design flows. The design descriptions

are written using Microsoft Visual Studio 6.0 and Xilinx ISE design development

environment. The SystemC simulation waveforms are observed using GTKWave

waveform viewer software after the generation of simulation file. The VHDL

simulations are realized using ModelSim simulation tool.

In this study, SystemC to hardware flow is also illustrated by

synthesizing the UART baud generator module into hardware. There are two

different approaches for synthesizing SystemC descriptions. These are (i) direct

synthesis of the SystemC descriptions and (ii) synthesis of VHDL codes after

SystemC-VHDL translation. The first one is a simple, very effective approach,

but unfortunately there is not sufficient number of well developed tools in today’s

electronic market. For this reason, first the SystemC descriptions have been

translated to the VHDL codes and then VHDL-based synthesis cycle is followed.

As the translation software, SystemCrafter SC SystemC synthesis tool is used.

The automatic translation of SystemC descriptions results in introduction

of redundant logic code and the designer may not trace the generated VHDL

code. The modifications may not be done on automatically generated VHDL code

easily. The modifications must be done in the SystemC descriptions, and then the

descriptions must be translated to VHDL again. During the synthesis, some of

this redundant logic is removed depending on the capability of the synthesis tool.

However it is observed that SystemC to VHDL translation is not an effective

solution from the removing redundancy point. In this study, it is shown that the

translated VHDL code utilizes hardware resources nearly twice as much as hand-

written VHDL code. However, this hardware utilization can be reduced by more

powerful translation software or direct synthesis tools.

When writing descriptions with the synthesizable subset of the SystemC

language, coding becomes similar to the syntax of VHDL. However there are

more rules and limitations in order to write synthesizable SystemC code when it

is compared with VHDL. For instance, SystemCrafter SC synthesis tool does not

accept processes that include different signals in their sensitivity list. Due to these

limitations, whole function generator description could not be translated to

90

VHDL. The designs including only sequential processes which are sensitive to a

single and same clock edge (like microprocessor applications) can be easily

implemented using SystemC. However, DSP applications generally include both

combinatorial logic and sequential processes sensitive to many different signals.

Hence, it is very difficult to write the synthesizable SystemC descriptions for

such applications.

Finally, SystemC brings several advantages such as low simulation

times, effective modeling and hardware/software co-design/co-verification.

However it has even unsolved problems defined in this study. The SystemC to

hardware design flow will likely be further investigated in the future. The

designed DDS function generator core allows generating standard waveforms and

making FSK/PSK modulation. The core is controlled using I2C and UART

interfaces and has trigger and amplitude scaling capabilities. The modular

architecture of the core lets to improve the design sub-modules or replace them

with new ones. The design architecture is suitable to make arbitrary waveform

generation possible. On the other hand, in addition to the presented design, the

sizes of the look-up table and phase accumulator can be enlarged to have better

resolutions. The look-up table holding the arbitrary waveform samples can be

added and its words can be refreshed by loading the samples of various

waveforms using communication interfaces. Besides, high speed Serial Interface

Peripheral (SPI) modules may be added to load the waveform configuration data

more quickly.

91

REFERENCES

[1] A. Habibi, S. Tahar, “A Survey: System-on-a-Chip Design and

Verification”, Technical Report, Electrical and Computer Engineering

Department, Concordia University, January 2003

[2] F. Bruschi, F. Ferrandi, “Synthesis of complex control structures from

behavioral SystemC models”, Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition (DATE’03), pp. 112-117, 2003

[3] N. Calazans, E. Moreno, F. Hessel, V. Rosa, F. Moraes, E. Carara, "From

VHDL Register Transfer Level to SystemC Transaction Level Modeling:

a Comparative Case Study", Proceedings of the 16th Symposium on

Integrated Circuits and Systems Design (SBCCI’03), pp. 355-360,

September 2003

[4] R. Schutten, “Raising the Level of Abstraction Reduces System-on-Chip

Verification”, Synopsys Inc., March 2004

[5] S. Swan, “SystemC Transaction Level Models And RTL Verification”,

Design Automation Conference, 43rd ACM/IEEE, pp. 90-92, July 2006

[6] G. Martin, "SystemC and the Future of Design Languages: Opportunities

for Users and Research", Proceedings of the 16th Symposium on

Integrated Circuits and Systems Design (SBCCI’03), pp. 61-62,

September 2003

92

[7] Open SystemC Initiative, “Functional Specification for SystemC Version

2.0”, 2002

[8] Open SystemC Initiative, “SystemC Version 2.0 User’s Guide, Update for

SystemC 2.0.1”, 2002

[9] Open SystemC Initiative, “SystemC 2.0.1 Language Reference Manual

Revision 1.0”, 2003

[10] I. Yarom, G. Glasser, “SystemC Opportunities in Chip Design Flow”,

Proceedings of the 11th IEEE International Conference on Electronics,

Circuits and Systems (ICECS 2004), pp. 507-510, December 2004

[11] Synopsys Inc., “Describing Synthesizable RTL in SystemC”, May 2001

[12] SystemCrafter Inc., SystemCrafter SC User Manual Version 2.0.0

[13] Synopsys Inc., “Synopsys CoCentric SystemC Compiler: RTL User and

Modeling Guideline”, 2001

[14] J. Saul, “Using SystemC and SystemCrafter to Implement Data

Encryption”, Xcell Journal, Issue 58, pp.32-34, 2006

[15] Prosilog Inc., “Prosilog’s SystemC Compiler Datasheet”, 2002

[16] C. Cote, Z. Zilic, “Automated SystemC to VHDL Translation in

Hardware/Software Codesign”, 9th International Conference on

Electronics, Circuits and Systems, pp. 717-720, September 2002

[17] L. Cordesses, “Direct Digital Synthesis: A Tool for Periodic Wave

Generation (Part 1)”, IEEE Signal Processing Magazine, pp. 50-54, July

2004

93

[18] L. Cordesses, “Direct Digital Synthesis: A Tool for Periodic Wave

Generation (Part 2)”, IEEE Signal Processing Magazine, pp. 110-112,

September 2004

[19] S. Cheng, J. R. Jensen, R. E. Wallis, G. L. Weaver, “Further

Enhancements to the Analysis of Spectral Purity in the Application of

Practical Direct Digital Synthesis”, IEEE International Ultrasonics,

Ferroelectronics, and Frequency Control Joint 50th Anniversary

Conference, pp. 462-470, 2004

[20] Analog Devices Inc., AD9858 1 GSPS Direct Digital Synthesizer

Datasheet, 2003

[21] Analog Devices Inc., AD9959 4 Channel 500 MHz DDS with 10-bit

DACs Datasheet, 2005

[22] Analog Devices Inc., AD9833 Programmable Waveform Generator

Datasheet, 2003

[23] Qualcomm Inc., Synthesizer Products Data Book, August 1997

[24] Harris Semiconductor, HSP45102 12-Bit Numerically Conrolled

Oscillator Datasheet, 1996

[25] Fairchild Semiconductor, TMC2340 Digital Synthesizer Datasheet,

September 2000

[26] Xilinx Inc., Logicore Numerically Controlled Oscillator V1.0.3

Datasheet, December 1999

[27] Xilinx Inc., Logicore DDS Compiler V1.0 Datasheet, September 2006

[28] Altera MegaCore, NCO Compiler User Guide, December 2006

94

[29] Lattice ispLever Core, Numerically Controlled Oscillator IP Core User

Guide, December 2006

[30] Philips Semiconductors, I2C Bus Specifications, January 2000

[31] Xilinx Inc., Virtex-4 User Guide, October 2006

[32] Memec Inc., Memec Virtex-4 FX12 LC Development Board User’s

Guide, April 2005

[33] Memec Inc., Memec P160 Analog Module User Guide, July 2003

[34] Xilinx Inc., Platform Cable USB Product Specifications, June 2006

[35] IEEE Computer Society, “IEEE Standard SystemC Language Reference

Manual”, New York, USA, March 2006

95

APPENDIX A

STRUCTURE OF CD-ROM DIRECTORY

The source codes and executable files of the simulations performed in this study

are given in the CD attached at the back cover of this thesis. The table gives the

folder structure of the CD.

Table A-1 Structure of CD-ROM Directory

SystemC_Files/ Includes SystemC design and simulation files

SRC/ SystemC Source Files

TB/ SystemC Test Bench Files

MAIN/ SystemC Main Files

SIM/ SystemC Simulation Results

VHDL_Files/ Includes VHDL design and simulation files

SRC/ VHDL Source Files

TB/ VHDL Test Bench Files

SIM/ VHDL Simulation Results

HARD/ Hardware Verification

SC_to_VHDL/ Includes SystemC-to-VHDL translation files

SC_SRC/ SystemC Source Files

VHDL_SRC/ Translated VHDL Source Files

96

APPENDIX B

REFERENCE DESIGNS

B.1 ANALOG DEVICES AD9833

The AD9833 is a low power programmable waveform generator capable of

producing sine, triangular and square wave outputs. The specifications and

functional block diagram of AD9833 are given below.

• Digitally programmable frequency and phase

• 0 MHz to 12.5 MHz output frequency range

• 28-bit frequency resolution (0.1 Hz for 25 MHz reference clock)

• 12-bit phase offset resolution

• 3-Wire Serial I/O Port (SPI) Interface

Figure B-1 Analog Devices AD9833 Functional Block Diagram

97

B.2 ANALOG DEVICES AD9959

The AD9959 consists of four DDS cores that provide independent frequency,

phase and amplitude control between channels. The specifications and functional

block diagram of AD9959 are given below.

• Four synchronized DDS channels

• Independent frequency/phase/amplitude control between channels

• Linear frequency/phase/amplitude sweeping capability

• Individually programmable DAC full scale currents

• Four integrated 10-bit D/A converters

• 32-bit frequency tuning resolution frequency registers

• 14-bit phase offset resolution

• 10-bit output amplitude scaling resolution

• Serial I/O Port (SPI) with enhanced data throughput

Figure B-2 Analog Devices AD9959 Functional Block Diagram

98

B.3 XILINX NUMERICALLY CONTROLLED OSCILLATOR V1.0.3

Xilinx’s Numerically Controlled Oscillator (NCO) IP module generates a digital

“staircase” approximation to a sine (or cosine) wave, the frequency of which is

determined by the input phase increment value. The output can either be used

directly, for example, by a digital multiplier, or can be passed into a Digital-to-

Analog Converter (DAC) for use in the analog domain. The specifications and

parameterization window snapshot of the NCO IP are given below.

• Input phase increment resolution from 3-30 bits

• Output amplitude resolution from 4-16 bits

• Frequency resolution control via phase accumulator word (3-30 bits)

• Phase noise control via programmable phase resolution (3-10 bits)

• Sine/cosine outputs available

• Excellent for high-speed I/Q modulation/demodulation

Figure B-3 Xilinx NCO V1.0.3 Parameterization Window

99

B.4 XILINX DDS COMPILER V1.0

Xilinx’s DDS Compiler IP module is the newest DDS IP in the market and it

presents spurious specifications for DDS applications. The specifications and

parameterization window snapshot of the DDS Compiler IP are given below.

• Sine, cosine, or quadrature outputs

• Look-up table can be allocated to distributed or block memory

• Frequency resolution control via phase accumulator word (3-32 bits)

• Output amplitude resolution from 4-20 bits

• Support up to 16 independent channels

• Optional phase offset capability allows multiple synthesizers with

precisely controlled phase differences

Figure B-4 Xilinx DDS Compiler V1.0 Parameterization Window

100

APPENDIX C

HARDWARE TEST TOOLS

C.1 MEMEC P160 ANALOG MODULE

The Memec Design P160 Analog Module kit includes the following:

• Two 12-bit 53-Msps A/D converters

• AC coupled, single-ended, 1 to 1.5 Vp-p analog input

• Low pass input filter with fc = 19.4 MHz (for A/D converters)

• Two 12-bit 165 Msps D/A converters

• Single-ended, 2 Vp-p analog output, AC coupled output optional

• Low pass output filter with fc = 28.4 MHz (for D/A converters)

Figure C-1 Memec P160 Analog Module

101

C.2 MEMEC FX LC DEVELOPMENT BOARD

The Memec Development kit includes the following:

• Xilinx XC4VFX12-10FF668 FPGA

• 64MB of DDR SDRAM and 4MB of Flash

• 10/100/1000 Ethernet PHY

• On-board 100MHz LVTTL Oscillator and LVTTL Oscillator Socket

• P160 Connectors and LCD Panel

• Platform Flash configuration PROM

• PC4 JTAG Programming/Configuration Port

• SystemACE™ Module Connector

• CPU JTAG Port, CPU Debug Port, RS232 Port and USB-RS232 Bridge

• Four User LEDs , Four User Push Button Switches and DIP Switch

Figure C-2 Memec Virtex-4 FX LC Development Kit

