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ABSTRACT 

THE IMPLEMENTATION OF A DIRECT DIGITAL SYNTHESIS BASED 

FUNCTION GENERATOR USING SYSTEMC AND VHDL 

 

 

 

KAZANCIOĞLU, Uğur 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Murat AŞKAR 

 

 

February 2007, 101 pages 

 

In this thesis, a direct digital synthesis (DDS) based function generator design 

module is presented, defined and implemented using two digital hardware 

modeling/design languages namely SystemC and VHDL. The simulation, 

synthesis and applicability performances of these two design languages are 

compared by following all digital hardware design stages. The advantages and 

open issues of SystemC based hardware design flow are emphasized in order to 

be a reference for future studies.  

 

SystemC initially appeared as a modeling language like HDL design languages. 

In the last years, SystemC gained popularity also as a hardware design language 

and it is expected to become alternative to traditional design languages. Using a 
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single platform for hardware modeling, design and verification reduces the spent 

time and cost. 

 

The designed DDS function generator module supports standard I2C and UART 

communication protocols and it is in ready to use format for digital applications. 

In this thesis, the function generator module VHDL code is implemented into 

Xilinx FPGA and verified on the hardware platforms.  

 

 

Keywords: SystemC, VHDL, SystemC Synthesis, Direct Digital Synthesis, 

Function Generator, FPGA 
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ÖZ 

DOĞRUDAN SAYISAL SENTEZ TABANLI FONKSİYON ÜRETECİNİN 

SYSTEMC VE VHDL KULLANILARAK GERÇEKLENMESİ 

 

 

 

KAZANCIOĞLU, Uğur 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Murat AŞKAR 

 

 

Şubat 2007, 101 sayfa 

 

Bu tezde SystemC ve VHDL isimli tasarım ve modelleme dilleri kullanılarak 

doğrudan sayısal sentez tabanlı fonksiyon üreteci modülü sunulmuş, tanımlanmış 

ve uygulanmıştır. Bu iki tasarım dilinin simülasyon, sentez ve uygulanabilirlik 

performansları tüm sayısal donanım tasarım evreleri takip edilerek 

karşılaştırılmıştır. SystemC tabanlı donanım tasarım akışının avantajları ve açık 

konuları ileriki çalışmalar için referans olması amacıyla vurgulanmıştır.  

 

SystemC ilk olarak HDL tasarım dilleri gibi modelleme dili olarak ortaya 

çıkmıştır. SystemC son yıllarda donanım tasarım dili olarak da popülerlik 

kazanmış ve geleneksel tasarım dillerine alternatif olması beklenmektedir. 
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Donanım modelleme, tasarım ve doğrulama için tek bir platform kullanılması 

harcanan zaman ve maliyeti azaltmaktadır. 

 

Tasarlanan fonksiyon üreteci modülü standart I2C ve UART haberleşme 

protokollerini desteklemektedir ve sayısal uygulamalar için kullanıma hazır 

formattadır. Bu tezde fonksiyon üreteci modülü VHDL kodu Xilinx FPGA içine 

uygulanır ve donanım platformlarında doğrulanır.  

 

 

Anahtar kelimeler : SystemC, VHDL, SystemC Sentezi, Doğrudan Sayısal 

Sentez, Fonksiyon Üreteci, FPGA 
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CHAPTER 1 

INTRODUCTION 

A direct digital synthesis (DDS) based function generator design core is 

defined, implemented and verified in this thesis. The function generator design is 

also a case study to investigate and compare the traditional HDL and new SystemC 

based design flows. Throughout the study, the traditional design flow will be 

followed using VHDL as a design language. 

The electronic system design becomes more complex as the demand for 

complete systems increases. Today’s modern technology enables producing a chip 

that holds all of the necessary electronic circuitry for a complete system. This 

technology is known as System on Chip (SoC) and the increased complexity of 

SoC technology addresses the design and verification at system level [1].  

In traditional system design flow, the system is partitioned into hardware 

and software at early stages. Then, the hardware and software engineers design 

their respective components with the lack of communication. In some cases, the 

produced solution may not be the desired one. The integration of the hardware and 

software may lead problems due to isolation of the designs. Unavoidable results in 

this flow are higher cost and long design time. 

In modern system design flow, system should be modeled at various levels 

of abstraction. This requirement appeared due to the fact that the complexity 

problem can be solved only using higher abstraction levels [2, 3, 4, 5]. The modern 

system languages should also constitute a single platform for both hardware and 
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software designers. The hardware and software should be developed in parallel and 

this would remove painful hardware and software integration problem. Hence, 

modern system design flow (illustrated in Figure 1-1) is proposed as a solution for 

shortcoming of the traditional system design flow. 

   

Figure 1-1 Modern System Design Flow 

The new EDA (Electronic Design Automation) tools are proposed to 

replace the traditional system design flow with modern system flow. Moreover, 

various design languages have been appeared in the market and this leads to 

tremendous discussion on these languages [1, 6]. Open SystemC Initiative (OSCI) 

organization’s SystemC language has been developed as a modern system level 

modeling and design language to simplify the system level design problems [7, 8, 

9]. IEEE has approved SystemC (IEEE 1666) as electronic design standard based 

on the SystemC 2.1 Language Reference Manual. Since SystemC is supported by 

all of the major EDA companies, it seems to be dominant among the system level 

modeling and design languages.  
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SystemC supports a hierarchical system design environment. In this 

environment system designers can model and verify the designs expressed at true 

system levels of abstraction. This allows the system designer to make low-level 

designs or use higher abstraction levels. SystemC links the system model to 

hardware design implementation and verification [10]. The designers notice the 

advantage of reduced simulation time. Additionally, it can be used to simulate 

software algorithms. A wide range of simulation support enables SystemC to 

address all aspects of SoC design.  

SystemC initially appeared as a modeling language like HDL design 

languages. The new EDA tools are proposed to directly synthesize the SystemC 

descriptions like HDL synthesis. There are not necessary numbers of well 

developed SystemC tools that support direct synthesis of SystemC descriptions. In 

place of these tools, SystemC descriptions are written in synthesizable format for 

which [11, 12] includes some descriptions and then SystemC to HDL translational 

tools are used [13, 14, 15, 16]. The traditional HDL and SystemC based hardware 

design flows are illustrated in Figure 1-2. 

 

Figure 1-2 Traditional HDL and SystemC Digital Hardware Design Flows 
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The traditional design starts with developing behavioral level descriptions 

using C/C++. Then the models are rewritten manually using design languages such 

as VHDL and Verilog. The synthesis and implementation processes are applied 

after verification of the RTL model. Using the same design platform for behavioral 

and RTL models is an advantage for the designer, and this is satisfied by the 

modern SystemC based design flow. In traditional approach, the designer 

maintains both C and RTL models in different environments. However, 

refinement, debugging and RTL synthesis of a design can be done in a single 

SystemC platform. This reduces the time and effort. The translation of the 

SystemC RTL descriptions to HDL is a disadvantage in terms of the resource 

utilization and timing, but the new well developed tools having a direct SystemC 

description synthesis capability will dismiss this disadvantage. 

In this study, both traditional and SystemC design flow is studied by 

implementing a DDS function generator having various periodical waveform 

generation capability. 

Periodical waveform generation is a key function for all communication 

systems. Periodical waveforms account for many of the RF and microwave signals 

in communications, radar and test systems. Since the communication market is in 

rapid development, various ways in order to generate periodical waveforms were 

discovered. The sine wave is a well known periodical waveform. For long years, 

analog circuits such as Phase Locked Loop (PLL) synthesizers were used to 

generate a sine wave. However the developments in the high-density integrated 

circuit technology revolutionized the periodic waveform generation. In the last 

years, the periodic waveforms below 1GHz in frequency are generated mostly by 

the digital technique known as Direct Digital Synthesis (DDS). The new DDS 

chips with capability of generating higher frequencies increased the popularity of 

DDS technique more and more in the last years.  

The frequency synthesizers use various periodical waveform production 

techniques and these can be grouped as (i) indirect, (ii) direct and (iii) hybrid. The 

indirect synthesizers use phase locked loop techniques to multiply the reference 

input clock. The output signal frequency is the multiplication of the input 
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frequency with some constant. The output frequency increment of the PLL is 

reference clock frequency and this results in not satisfying resolution for many 

applications. On the other hand, these synthesizers are good at output spectrum and 

can generate output frequencies up to 10 GHz. The direct frequency synthesizers 

use digital techniques to generate waveforms. These synthesizers can generate 

lower frequencies but, they allow fine step sizes and more accurate frequency 

values. Hybrid synthesizers combine the advantages of the direct and indirect 

techniques to achieve both higher frequencies and fine step sizes.  

The direct frequency synthesizers use DDS technique which lets 

generating sine waves at very precise frequencies [17, 18]. As the name implies, 

the analog sine wave is completely generated by digital circuits in this technique. 

The digitally quantized samples of the desired waveform are generated at the input 

reference clock frequency. The generated digital samples of the waveform are 

converted to analog signals using the D/A converters and filter circuits. The DDS 

technique has some superior advantages over classical PLL synthesizers. Some of 

these advantages are as follows:  
 

• DDS technique allows for very fast frequency switching at a low cost. 

The frequency switching time can be in nanoseconds level.  

• The waveform frequency is digitally adjustable with microhertz 

frequency resolution.  

• The waveform phase and amplitude can be adjusted digitally.  

• The implementation of DDS is easier than the classical synthesizers.  

• The DDS core can be combined with additional signal processing 

blocks to make clock generators and modulators.  
 

On the other hand, DDS technique has also disadvantages as stated below:  
 

• The maximum output frequency is less than the clock source 

frequency.  

• The digital generation of the sine wave results in distortion. The 

generated waveform is not spectrally pure [19].  
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• Spurious performance of DDS is dominated by the DAC. At higher 

speed DAC IC’s linearity is not good. 
 

The DDS implementation usually uses addressing of the samples 

contained in the sine look-up table. Since the samples are generated only by 

addressing, arbitrary periodical waveform generation is also possible with this 

technique. Only thing to do is to replace the sine look-up table with a look-up table 

that includes arbitrary wave samples. In this study, the DDS technique is applied 

only to generate sine wave samples. 

There are many DDS commercial ICs operating at frequencies from 10 

MHz to 1-2 GHZ in the market [20, 21, 22, 23, 24, 25]. There is a competition 

among the suppliers to present faster and more capable DDS chips. Analog 

Devices is one of these suppliers and it presents innovative and fast DDS chips in 

the last years. For instance, Analog Devices’ AD9858 model [20] is a complete 

DDS with internal 10-bit DAC. It operates at clock rates up to 1 GHz. The 

AD9858 can actually work with clock rates up to 2 GHz; since it also includes a 

divide-by-two circuit on the clock input port. This reference clock frequency 

allows generating output waveform frequencies 400 MHz or more. Using its 32-bit 

frequency tuning words, the synthesizer achieves frequency resolution below 1Hz. 

The frequency tuning and control words of AD9858 are loaded via its 8-bit parallel 

or synchronous serial ports.  

Today’s fast changing electronic world requires that the whole digital 

components on the boards will be collected in one package. Among the several 

integration techniques, one of the most commonly used approaches is the 

utilization of Field Programmable Gate Arrays (FPGAs). This fact led to a 

tremendous acceleration to the Gate Array technology in the last years. Most of the 

digital designers prefer achieving all digitally complex computations with a single 

chip in a simple and effective way. FPGA technology does not only support logic 

based designs, it also supports DSP and processor based applications. As a result, 

major companies design various intellectual properties, abbreviated as IP, for 

FPGAs. There are also many companies preparing DDS IPs [26, 27, 28, 29]. These 
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designs are in ready to use format and can be implemented into a target FPGA 

simply. For instance Xilinx’s DDS Compiler V1.0 [27] is a complete DDS IP with 

adjustable frequency and output resolution. It also supports up to 16 independent 

channels.  

The presented function generator module combines the most recent DDS 

system with controller and standard interface units. The designed DDS function 

generator core allows generating standard waveforms and making FSK/PSK 

modulation. The DDS function generator core is implemented into FPGA and 

verified with hardware based tests. During the design period, the most recent 

digital design environments are used.  

The designed function generator module has two serial peripheral 

interfaces which are Inter Integrated Circuit (I2C) bus [30] and Universal 

Asynchronous Receiver/Transmitter (UART). These interfaces are used to load 

waveform configuration and design control parameters. The type, frequency, phase 

offset and amplitude parameters are sent to the function generator using these 

serial interfaces. If this function generator core is implemented into the packaged 

Application Specific Integrated Circuit (ASIC), then I2C interface usage will be 

helpful for communication with other ASICs. If the design is implemented into 

FPGA and will be tested for different design parameters by means of a computer, 

the UART interface will be very useful since the communication over UART are 

supported nearly by all computers. Additionally, a function generator having 

UART interface can communicate with nearly all microcontrollers and 

microprocessors. 

The design of function generator using both SystemC and VHDL makes 

the comparison of different design flows possible. In this thesis, the power of these 

design languages in digital hardware applications is also observed and they are 

compared according to synthesis, simulation and applicability performances. The 

comparison is made by following all the design stages. The advantages and 

disadvantages of these two different hardware design cycles are emphasized to be 

helpful for future applications. 
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The organization of this thesis is as follows. In Chapter 2, the background 

information about SystemC and VHDL will be given. The syntax of these two 

languages will be compared. The basic information about DDS function generators 

and commercial DDS applications will be presented. In addition, the information 

about DDS methodology and the communication standards used in the design will 

also be given. These are necessary for the explanation of the design and 

interpretation of test results. 

Chapter 3 covers full design description of the function generator module. 

First, the followed SystemC and VHDL based RTL design flows are presented. 

Then the design specifications and used hardware/software resources are given. 

The explanations of the function generator sub-modules are presented and the 

detailed data flow schematic of function generator module is given.  

Chapter 4 covers the verification of the functional sub-modules and the 

whole function generator design. The generated SystemC and VHDL design 

descriptions are tested separately in software environments. Only the simulations 

which are really necessary to understand the functionality are given. The synthesis 

of function generator VHDL descriptions, implementation into FPGA and 

hardware based tests are left to end of this chapter.  

Results of the study are presented in Chapter 5. The applied digital 

hardware design cycles and designed DDS function generator core are discussed 

and further suggestions are given for future studies. 
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CHAPTER 2 

DESIGN LANGUAGES AND DDS FUNCTION GENERATORS 

2.1 DESIGN LANGUAGES 

2.1.1 VHDL 

VHDL is an IEEE hardware description language. This language is 

developed with the goal to develop very high-speed integrated circuits. VHDL is 

one of industry’s widely used standard languages used to describe digital systems. 

Another hardware description language Verilog is also widely used. Both of these 

languages allow describing and simulating complex digital systems. 

VHDL is used mainly for development of Application Specific Integrated 

Circuit (ASIC). The synthesis tools transform the written VHDL code to gate-level 

netlist. This netlist defines the layout of the ASICs. VHDL codes are also written 

for FPGAs to describe the internal hardware structures. Since the synthesis of the 

codes gives suboptimal results, VHDL is not used for design of noncomplex 

Programmable Logic Devices (PLDs). 

Digital systems can be represented using different levels of abstraction. 

There are four abstraction levels of a digital circuit. These levels can be ordered as 

behavioral, register transfer level (RTL), gate-level and layout. The functional 

description of the model is defined in the behavioral level. The behavioral 

descriptions can be simulated, but they may not be synthesized. The design is 



 
 

10 

divided into concurrent and sequential elements in RTL. In this level, concurrent 

statements are executed in parallel as soon as data arrives at the input. Sequential 

statements are executed in the sequence that they are specified. RTL description 

uses only the little VHDL language constructs. A strict methodology is followed to 

write the design codes. The generated codes using RTL methodology are in 

synthesizable code format. Third abstraction level is named as gate-level. The 

design is represented as a netlist with logic gates and storage elements in this level. 

The last abstraction level is layout level. The different cells of the target 

technology are placed on the chip and the connections are routed. After the layout 

has been verified, the circuit is ready for the production process. 

The entity is main concept of the digital designs in VHDL. A design 

entity can be divided in to two parts which are entity declaration and architecture 

body. The entity declaration defines the external interfaces of the design entity. It 

defines interaction of the different VHDL modules in a straightforward manner. 

The architecture body represents the internal descriptions of the design entity. The 

architectures can contain signals, processes and instantiations of other entities.  

The statements within architecture operate concurrently. This led to 

define VHDL constructs (processes) to achieve necessary sequential behavior. A 

process consists of a sequence of statements, which are executed sequentially like 

in conventional programming languages, whereas the processes themselves are 

treated concurrently like other statements.  

The signals are used for passing information among VHDL processes or 

entities. A process may read and write signals. It may be sensitive to signals. 

Signal assignments require a delay before the signal assumes its new value.  

2.1.2 SYSTEMC  

The SystemC class library has been developed to support system level 

design. It has been developed by a group of companies, universities and 

individuals forming the Open SystemC Initiative (OSCI). IEEE has approved 
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SystemC (IEEE 1666) as electronic design standard based on the SystemC 2.1 

Language Reference Manual developed by OSCI [35].  

SystemC is an open source C++ library that is emerging as a standard for 

high-level design and system modeling. It addresses the increasing complexity of 

SoC designs at system level. It provides to describe and simulate concurrent 

hardware constructs using ordinary C++ syntax. This leads to co-design and co-

verification of hardware and software in a single environment. 

Modules are the principal building blocks of a SystemC design hierarchy. 

A SystemC model usually consists of several modules which communicate via 

ports. Processes are the principal computation elements which fulfill necessary 

sequential behavior. They run concurrently with other processes. Events allow the 

synchronization between processes. 

Ports of a module are the external interfaces that pass information to and 

from a module. They trigger actions within the module. Signals create the 

connections between the module ports allowing the modules to communicate. 

Channels are the communication elements of SystemC. They are generalized form 

of signals. Complex communication structures can be modeled using channels. 

2.1.3 COMPARISION OF SYSTEMC AND VHDL SYNTAXES  

Since SystemC allows modeling concurrent processes described by 

ordinary C++ syntax, it can be easily learned by the designers who already make 

applications using HDL and C++. SystemC has similarities to VHDL semantically, 

but it has a syntactical overhead compared to VHDL. Some basic language 

syntaxes of the VHDL and SystemC are compared in Table 2-1. Full adder’s 

SystemC and VHDL codes are given as a comparison example in Table 2-2. 

SystemC words in capitals (SC MODULE, SC_CTOR or SC METHOD) are 

macros and hide the real C++ syntax to provide noncomplex syntax for SystemC.  
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Table 2-1 Comparison of Some Basic SystemC and VHDL Syntaxes  

SystemC Syntax VHDL Syntax 

(Logic Values) 

SC_LOGIC_0, SC_LOGIC_1,  

SC_LOGIC_X, SC_LOGIC_Z 

(Logic Values) 

‘0’, ‘1’  

‘X’, ‘Z’ 

(Input & Output Port Declaration) 

sc_in<sc_logic> A, B; 

sc_out<sc_logic> C, D; 

(Input & Output Port Declaration) 

A, B : in std_logic; 

C, D : out std_logic; 

(Variable Declaration) 

sc_logic v_bit; 

sc_lv<3> v_vec; 

(Variable Declaration) 

variable v_bit : std_logic; 

variable v_vec : std_logic_vector(2 downto 0); 

(Signal Declaration) 

sc_signal<sc_logic> s_bit; 

sc_signal<sc_lv<3> > s_vec; 

(Signal Declaration) 

signal s_bit : std_logic; 

signal s_vec : std_logic_vector(2 downto 0); 

C = A & B; 

C = A | B ; 

C = A ^ B; 

C = ~A; 

C <= A and B; 

C <= A or B; 

C <= A xor B; 

C <= not A; 

if (A= =SC_LOGIC_0)  

 C = B; 

else if (A= = SC_LOGIC_1) 

 D = B; 

else 

 C = A; 

 

if (A=’0’) then 

 C <= B; 

elsif (A=’1’) then 

 D <= B; 

else 

 C <= A; 

end if; 

sc_uint<2> tempK = K.read( ); 

switch(tempK){ 

 case 0: C = B; break; 

 case 1: D = B; break; 

 default: C = A;  

} 

 

case K is 

 when “00” => C <= B; 

 when “01” => D <= B; 

 when others => C <= A; 

end case; 

SC_METHOD (process); 

sensitive << clk.pos( ); 

process (clk) 

………. 

if ( clk’event and clk = ‘1’) then 

SC_METHOD (process); 

sensitive << clk.neg( ); 

process(clk) 

………. 

if ( clk’event and clk = ‘0’) then 

SC_METHOD (process); 

sensitive << A << B; 

process (A, B) 
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Table 2-2 Comparison of SystemC and VHDL Full Adder Codes  

SystemC Full Adder Code VHDL Full Adder Code 

 

#include “systemc.h” 

#include “half_adder.h” 

 

SC_MODULE (full_adder) 

{ 

 sc_in<sc_bit> A, B, Cin; 

 sc_out<sc_bit> Sum, Cout; 

 

 sc_signal <sc_bit> sigC1,sigC2,sigS1; 

 

 half_adder H1; 

 half_adder H2; 

 

 SC_CTOR (full_adder):  

 H1 (“H1”), H2 (“H2”) 

 { 

 

  H1.A(A); 

  H1.B(B); 

  H1.C(sigC1); 

  H1.S(sigS1); 

 

  H2.A(sigS1); 

  H2.B(Cin); 

  H2.C(sigC2); 

  H2.S(Sum); 

 

  SC_METHOD (process); 

  sensitive << sigC1 << sigC2; 

 } 

 

 void process( ) 

 { 

  Cout = sigC1 | sigC2; 

 } 

}; 

 

library IEEE; 

use IEEE.std_logic_1164.all; 

 

entity full_adder is 

port( 

 A, B, Cin : in bit; 

 Sum, Cout : out bit); 

end module; 

 

architecture arch of full_adder is 

 

signal sigC1, sigC2, sigS1 : bit; 

 

component half_adder 

port( 

 A, B : in bit; 

 C, S : out bit ); 

end component; 

 

begin 

H1: half_adder port map  

{ 

 A => A; 

 B => B 

 C => sigC1; 

 S => sigS1}; 

H2: half_adder port map  

{ 

 A => sigS1; 

 B => Cin 

 C => sigC2; 

 S => Sum}; 

 

process(sigC1, sigC2) 

begin  

 Cout <= sigC1 or sigC2; 

end process; 

end arch; 
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2.2 DDS FUNCTION GENERATOR 

Periodic waveforms are necessary for nearly all electronic applications. In 

order to produce sine, triangular, ramp and square wave outputs, the programmable 

periodic waveform generator ICs are used. The well-known periodical waveform 

is sine wave that can be generated by different design approaches such as PLL and 

DDS. With advances in digital technology DDS is now replacing PLL in 

professional applications and DDS becomes the main part of the function 

generators (waveform generators) due to the rapid development of the VLSI 

technology in the last years. The function generator design presented in this study 

is based on the DDS technique. In this section, the basic information about DDS 

and DDS function generators will be presented. In order to communicate with 

external world and receive the waveform configuration data, the I2C and UART 

serial communication modules are used as sub-modules of the designed function 

generator. The basic information about these communication standards is also 

given in this section. 

The time-varying digital signals are generated using the DDS technique. 

This technique allows generating sine waves at very precise frequencies. In order 

to construct analog waveform, digital to analog conversion is performed but the 

analog conversion of the digital samples is not an application issue in this study.  

DDS technique makes arbitrary periodical waveform generation possible 

as well as a sine wave generation. If the arbitrary periodical waveform sample 

values are loaded into the internal look-up table module in the DDS, the arbitrary 

periodical waveform with desired frequency and phase can be generated.  

In the market, various DDS based function generator designs are present. 

However the basic design approach is similar to each other. The basic DDS 

function generator block diagram is illustrated in Figure 2-1. The presented block 

diagram combines DDS, communication interface and some internal logic in order 

to make externally configurable periodical waveform generation possible. 
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Figure 2-1 Basic DDS Function Generator Block Diagram 

The interface modules of the function generators receive the waveform 

configuration parameters from outside environment in parallel or serial format 

according to the chosen communication standard. Then they load data into the 

function generator’s waveform configuration registers which hold the waveform 

construction parameters. Various communication standards are utilized by DDS 

chip manufacturers. For instance, most of Analog Devices DDS ICs have Serial 

Peripheral Interface (SPI) which is a communication protocol used primarily for 

synchronous serial communication of host processor and peripherals. The clock 

frequencies of SPI devices can go up to some MHz and more. This is a sufficient 

communication speed for DDS applications. Some of Analog Devices’ DDS ICs 

support only parallel bus interface for reception of configuration data. In the last 

years, more serial bus systems are preferred instead of a parallel bus, because of 

the simpler wiring advantage. Additionally, serial buses are becoming more 

common as improved technology enables them to transfer data at higher speeds. 

Serial transmission is a better option for IC producers also due to its cheap 

implementation advantage (fewer pins enables cheaper ICs). There are popular 

serial bus systems like I2C, CAN or USB which proved their effectiveness. In this 

study, I2C slave receiver and UART receiver modules provide the communication 
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interface of the designed function generator. The background information about 

these standards is given in sections 2.2.2 and 2.2.3. 

The heart of the DDS function generators is DDS module. This module 

receives the frequency and phase offset information from the configuration 

registers and produces the sine samples according to the desired settings. The 

background information about DDS is given in section 2.2.1. 

Waveform selection and amplitude adjustments are done using internal 

logic according to the control and amplitude configuration register values. As 

illustrated in Figure 2-1, the internal logic receives sine samples, look-up table 

addressing signal, amplitude register value and control value, and then generates 

samples of selected waveform and synchronization clock for D/A conversion. The 

internal logic generates triangular, ramp and square wave using the look-up table 

addressing signal. The waveform amplitude is digitally adjusted by multiplication. 

The control register value defines the type of the periodical waveform. It is utilized 

as a multiplexer control signal to output the desired waveform. 

The last part of the function generators is digital to analog conversion and 

filtering. The generated samples and synchronous clock signal are received by 

DAC in order to construct a stepwise waveform. The frequency of the synchronous 

clock determines the analog conversion rate. For function generators, the 

synchronous clock frequency is equal to the received reference clock frequency. 

However, the phase of the reference clock and synchronous clock can differentiate 

180 degree according to the internal logic and DAC conversion timing. The 

principal aim is to make a conversion when data is ready at the inputs of DAC. 

The DAC output spectrum includes aliased images of the output signal. For 

instance, the lowest frequency of these aliased images is located at Fref – Fout 

(reference clock frequency minus output frequency). In order to suppress these 

images, low-pass filters are used.  

There are various waveform generator and digital frequency synthesizer 

applications in the market. Some of them are designed as Intellectual Property (IP) 

and others are designed as integrated chip. The commercial ICs and IPs present in 

the market are given with their specifications in section 2.3. 
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2.2.1 DIRECT DIGITAL SYNTHESIZERS 

The Direct Digital Synthesizer module is the heart of DDS function 

generators. DDS module produces a digital staircase approximation of a sinusoid 

in order to construct the sine wave. Generated samples are converted to analog 

signal and filtered to get pure wave at desired frequency. The staircase 

approximation of sinusoid is illustrated in Figure 2-2. 

 

Figure 2-2 Digital Staircase Approximation of A Sinusoid 

The DDS modules basically constitute of three main blocks. These are 

Numerically Controlled Oscillator (NCO), Sine Look-up Table and Digital to 

Analog Converter (DAC). The NCO comprises the increment register and phase 

accumulator logic. The increment register stores the binary value of frequency 

control register. The phase accumulator adds the phase increment value to its 

accumulator output value. The calculated accumulator output is used to address the 

look-up table which outputs the digital sample values of sine wave at current phase 

value.  

In this study, the analog conversion of digital samples is not the main 

discussion area. The main discussion is done on the generation of digital samples 

according to the desired frequency and phase offset values. The basic DDS data 

flow diagram is illustrated in Figure 2-3. The presented figure does not include 

digital to analog conversion structures. 
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Figure 2-3 Basic DDS Data Flow Diagram 

At each reference clock cycle, the phase accumulator integrates the phase 

increment value (frequency control register value) to the phase accumulator output 

value. The phase increment and accumulator output value are defined by the same 

number of bits. This number and used reference clock frequency determine the 

frequency resolution of DDS.  

The full precision of the phase accumulator can not be used to index the 

look-up table due to the very large memory requirement. As a result, the phase 

accumulator output is quantized by filtering least significant bits. The quantization 

directly depends on the look-up table length. Nearly all DDS ICs offer phase offset 

register. The phase offset register value is added to the quantized phase 

accumulator output in order to make phase tuning possible.  

In order to generate a periodical waveform at a constant frequency, a 

constant phase increment value is added to the phase accumulator at each reference 

clock cycle. A waveform at higher frequency can be generated if the phase 

increment value is larger. This situation can be explained as phase accumulator 

steps the faster through the look-up table. If the phase increment value is smaller, 

then the phase accumulator steps slower. As a result, a waveform at low frequency 

is generated. 
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The frequency of the waveform depends on the reference clock frequency, 

the phase increment register value and length of phase accumulator. The waveform 

frequency is calculated using the formula given below. 

 

m
ref

out
2

FFCR
F

×
=  

where 

Fout = DDS output waveform frequency 

FCR  = phase increment (frequency control register value) 

Fref = reference clock frequency 

m  = phase accumulator word length 

 

If the desired wave frequency is 500 Hz and the supplied reference clock 

frequency is 100 MHz, the phase increment value for 32-bit accumulator is 

calculated as below: 
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The frequency resolution of the direct digital synthesizer is a function of 

the reference clock frequency and number of bits employed in phase accumulator. 

The frequency resolution is calculated using the formula given below: 

 

m
ref

2

F
∆f =  

 

where ∆f is the frequency resolution. 
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In order to have better frequency resolution, the number of bits employed 

in the phase accumulators is increased. In practical applications (see section 2.3 

and Appendix B) the accumulator sizes are higher than 28 bits for fine frequency 

resolution. The Analog Devices’ AD9959 chip [21] can be clocked up to 500 MHz 

and it can produce sine output around 200 MHz. This chip has 32-bit accumulator. 

When this chip is clocked with 500 MHz, the output frequency of this device can 

be adjusted with 0.12 Hz frequency resolution ( ≈ 500 MHz / 232 ). 

There are also two parameters which have an effect on the quality of the 

waveform. These are the look-up table length and look-up table width. If the value 

of these parameters is increased, the output waveform resolution becomes better. 

The sampling frequency determines the highest frequency that can be 

produced digitally. The Nyquist Theorem states that the highest frequency which 

can be generated accurately is less than half of the sampling rate. As a result, the 

highest frequency that can be generated by the DDS module is Fref / 2. The output 

frequency is limited with purity concepts in addition to the reference clock 

frequency. The generated waveform with two samples can not be pure enough, so 

more samples are required to improve quality. 

 

Spectral Purity Concepts: 

 

The output of the DDS includes the spurious signals. The spurious signal 

sources can be ordered as below: 

 

1. The reference clock 

2. Phase truncation  

3. Angle to amplitude conversion  

4. Digital to analog conversion  

 

The reference clock is the principal input for DDS. All the signal 

generation processes are done synchronously with reference clock. The phase 

accumulator increases the phase accumulator value at each reference clock cycle. 
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As a result, the spectral characteristics of the reference clock have a direct effect 

on the output signal quality. The reference clock is also used for digital to analog 

conversion timing. If the reference clock is noisy, undesired magnitude reduction 

can be observed at the DAC output. 

The phase accumulator must have a sufficient field width to span the 

desired frequency resolution. In general, a large number of bits are allocated for 

phase accumulator. Because, more bits for phase accumulator leads to better 

frequency resolution. However, the look-up table size restriction causes the 

quantization of the phase accumulator output. In order to reduce the chip die area 

(to have smaller look-up table), the least significant bits of the phase accumulator 

output are not used. The phase accumulator quantization level directly depends on 

the desired length of the look-up table.  

The phase accumulator output quantization introduces time base jitter in 

the output waveform. The quantization and resultant spurious outputs are 

emphasized in DDS IP product sheets in detail. Xilinx’s DDS Compiler V1.0 

Product Specification sheet [27] indicates the phase accumulator output 

quantization for different look-up table examples clearly. It states that the 

waveform of 12-bit output by using 256 point look-up table results in nearly 48 dB 

spurious output. The waveform of 16-bit output using 256 point look-up table 

results nearly 48 dB spurious output again. These outputs lead to the fact that the 

change in number of output bits has no effect on the spurious output. It shows also 

that the waveform of 16 bit output by using 1024 point look-up table results 60 dB 

spurious output. This experience states that the change in look-up table size has 

direct effect on the spurious output. The look-up table sizes and the resultant 

spurious outputs are ordered below. 

 

• 256 point look-up table   => Approximate Spurious Output = 48 dB 

• 512 point look-up table   => Approximate Spurious Output = 54 dB 

• 1024 point look-up table => Approximate Spurious Output = 60 dB 

• 2048 point look-up table => Approximate Spurious Output = 66 dB 
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Some of the DDS design implements the angle to amplitude conversion 

using algorithmic techniques. This technique reduces the look-up table sizes and 

chip die area further. However, the algorithmic approximation results in higher 

spur levels. 

Another spur source is digital to analog conversion. The quantization 

noise and distortion of DAC leads to spurious signals at the output. These are 

principally caused by not ideal switching characteristics of DAC. Typically DDS 

signal error in the output waveform is dominated by the performance of the DAC. 

The quantization noise is proportional to the DAC resolution. It is formulated as 

defined below.  

 

dB1.766.02NSNR +=  

 

where N is the DAC output resolution. S. Cheng and J. R. Jenses [19] give the 

detailed analysis of the spectral purity for DDS applications.  

2.2.2 INTER-INTEGRATED CIRCUIT (I2C) BUS  

In this study, the interfaces of DDS function generator are selected as 

Inter Integrated Circuit (I2C) Bus [30] and UART. The basic information about 

I2C bus serial communication standard is presented below. 

I2C bus control modules provide an interface between I2C-compatible 

devices connected by way of the two-wire I2C serial bus. External components 

attached to the I2C bus serially transmit and/or receive serial data to/from the 

USART through the 2-wire I2C interface. 

I2C bus application example is shown in Figure 2-4. Each I2C device is 

recognized by a unique address and can operate as either a transmitter or a 

receiver. A device connected to the I2C bus can be considered as the master or the 

slave when performing data transfers. A master initiates a data transfer and 

generates the clock signal SCL. Any device addressed by a master is considered a 
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slave. The I2C bus interface module designed for the DDS function generator 

supports only slave mode of operation. It only receives the messages which are 

sent for its address. 

 

Figure 2-4 I2C Bus Connection Diagram 

I2C data is communicated using the serial data pin (SDA) and the serial 

clock pin (SCL). Both SDA and SCL are bidirectional, and they must be connected 

to a positive supply voltage using a pull-up resistor as shown in Figure 2-4. 

The master module starts the communication by pulling SDA pin to low 

as SCL pin is high. After start of communication, all the slave devices connected 

to the I2C bus start to wait slave address data. Then the first byte which consists of 

a 7-bit slave address and the R/W bit is sent by the master module. If one of the 

slave module addresses is equal to the data sent by master, target slave module 

makes an acknowledgement by pulling SDA pin to low. Other slave modules wait 

up to end of communication. The R/W bit determines the data transfer direction. If 

R/W is equal to 0, then the master transmits data to a slave, else if it is equal to 1, 

the master receives data from a slave. The most significant bit of the data package 

is transmitted first by the transmitters. The acknowledge bit (ACK) is sent from the 

receiver after each byte on the 9th SCL clock.  
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Figure 2-5 I2C Bus Serial Communication Timing 

I2C bus serial communication timing is illustrated in Figure 2-5. The 

master device generates one clock pulse for each data bit for transmission. A 

START and STOP conditions are generated by the master. A START condition is 

a high-to-low transition on the SDA line while SCL is high. A STOP condition is a 

low-to-high transition on the SDA line while SCL is high. The bus is busy when 

START condition exists. The busy situation is removed when STOP condition 

occurs. Data on SDA must be stable during the high period of SCL as shown in 

Figure 2-5. The high and low state of SDA can only change when SCL is low, 

otherwise START or STOP conditions are generated. 

2.2.3 UART 

There are mainly two forms of serial transmission. These are UART 

(Universal Asynchronous Receiver/Transmitter) and USART (Universal 

Synchronous-Asynchronous Receiver/Transmitter). The synchronous serial 

transmission requires that receiver and transmitter modules share clock signal. The 

transmitter sends the data and clock signal so that the receiver knows the time to 

read the data. On the other hand, asynchronous serial transmission does not require 

the clock signal. In this type of transmission, the transmitter and receiver agree on 

timing by adding some useful bits to the data pack. 

The UART controllers are main components for serial communication 

systems. The UART receiver takes the bits serially and packs them in byte format. 
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The UART transmitter takes bytes of data and transmits the bits in a sequential 

format. The word transmission always starts with the “START” bit. This bit 

informs the receiver that a word will be sent to it. Then the receiver tries to 

become synchronous with the transmitter and waits for a word. After the 

synchronization, the data bits of a word are received serially. Commonly, the least 

significant bit of the word is received first. After sending all the data, the 

transmitter can send “PARITY” bit for receiver to check correctness of reception. 

The transmission stops with sending “STOP” bit to the receiver. The timing of the 

RS232 serial communication is illustrated in Figure 2-6. 

 

Figure 2-6 RS232 Serial Communication Timing 

In most computer systems, the UART is connected to circuitry that 

generates signals that comply with the EIA RS232 specification. In this standard, 

the “START” bit is logic low and “STOP” bit is logic high. RS232 compatible 

devices usually transmit the least-significant bit first, immediately after the 

“START” bit. The most significant bit is transmitted last, followed by an optional 

parity bit. 

2.3 COMMERCIAL DDS ICS AND IP MODULES  

There are various commercial DDS ICs and IPs in the market. These 

designs differ from each other according to their capabilities. In Table 2-3, some 

commercial DDS and NCO ICs are listed. The waveform frequencies generated by 

listed commercial DDS and NCO ICs vary between 25 MHz and 1GHz. Most of 
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the chips have 32-bit frequency register which is sufficient to adjust frequency 

with mHz frequency resolution. The ICs’ phase offset registers differ in length 

between 2 and 16 bits. Most of the ICs can not control the amplitude of the 

waveform digitally. In the given list of ICs, only Analog Devices’ AD9959 has the 

amplitude control capability. The output resolution of the ICs varies between 10 

and 16 bits.  

Analog Devices AD9833 is served as programmable function generator 

integrated chip into the market [22]. This programmable function generator is a 

fully integrated DDS chip. It is also a simple waveform generator capable of 

producing sine, triangular and square wave outputs. The waveform amplitude 

adjustment with this chip is not possible. The chip is configured via a 3-wire SPI 

serial interface. Analog Devices AD9959 consists of four DDS core that provides 

independent frequency, phase and amplitude controls [21]. In this chip, amplitude 

adjustment is done by multiplication of look-up table output. FSK, PSK and ASK 

modulation can be performed by applying source data to the input pin. The carrier 

is sine wave for these modulations. 

IPs are used as the ready to use design modules for FPGA applications. 

The commercial DDS and NCO IPs of Xilinx, Altera and Lattice Semiconductor 

are listed in Table 2-4. IP modules allow configuring the length of the frequency 

adjustment register up to 32 bits. The phase offset of the waveform can be adjusted 

also using phase offset registers whose length can be configurable up to 32 bits 

also. IP modules do not allow adjustment of waveform amplitude. 

Xilinx has introduced some DDS IPs into the market. Xilinx Logicore 

Numerically Controlled Oscillator V1.0.3 [26] is designed to generate digital 

samples of the sine wave. This design presents only a phase increment value input 

for frequency adjustment. Xilinx Logicore DDS Compiler V1.0 [27] combines 

various properties. It serves independent channels, phase offset definition and 

various output resolution. All of these properties can be set by the designer before 

adding design into a project. 
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Table 2-3 Commercial DDS and NCO Integrated Circuits 

IC 
Manufacturer 

 and Model 

Waveforms 
and 

Modulation 

Reference 
Clock 

(MHz) 

Frequency 
Resolution 

(bit) 

Phase 
Offset 

(bit) 

Amplitude 
Control 

(bit) 

Output 
Resolution 

(bit) 

Control 
Interface 

Internal 
DAC 

Number of 
Independent 

Channel 

Analog Devices 

AD9959 
Sine 500 32 14 10 10 Serial Yes 4 

Analog Devices 

AD9858 
Sine 1000 32 14 No 10 Parallel Yes 1 

Analog Devices 

AD9833 

Sine 

Triangular 

Square 

25 28 12 No 10 Serial Yes 1 

Qualcomm 

Q2240I-3S1 

Sine 

Arbitrary 
100 32 No No 

12 (sine) 

14 (arb) 
Parallel No 1 

Qualcomm 

Q2368 

Sine 

BFSK, BPSK, 

QPSK, 8-PSK 

135 32 3 No 12 
Serial or 

Parallel 
No 2 

Qualcomm 

Q2334 

Sine 

BFSK 
50 32 3 No 12 Serial No 2 

Harris 

HSP45102 

Sine 

BPSK, 

QPSK, 

40 32 2 No 12 Serial No 2 

Fairchild 

TMC2340A 

Sine 

 
50 32 16 15 16 Parallel No 1 
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Table 2-4 Commercial DDS and NCO Intellectual Properties 

Vendor IP Name Version Supported FPGA Families 
Frequency 
Resolution 

Phase Offset 
Amplitude 

Control 
Output 

Resolution 

Number of 
Independent 

Channel 

Xilinx 

Logicore 
NCO 1.0.3 

Spartan-3, Spartan-3E 

Virtex-II, Virtex-II Pro 

Virtex-4, Virtex-5 

configurable 

3-30 bits 

configurable 

3-10 bits 
NO 

configurable 

4-16 bits 
1 

Xilinx 

Logicore 
DDS 5.0 

Spartan-3, Spartan-3E 

Virtex-II, Virtex-II Pro 

Virtex-4, Virtex-5 

configurable 

3-32 bits 

configurable 

3-32 bits 
NO 

configurable 

4-32 bits 

configurable 

1-16 channels 

Xilinx 

Logicore 

DDS 

Compiler 
1.0 

Spartan-3, Spartan-3E 

Virtex-II, Virtex-II Pro 

Virtex-4, Virtex-5 

configurable 

3-32 bits 

configurable 

3-32 bits 
NO 

configurable 

4-20 bits 

configurable 

1-16 channels 

Altera 

MegaCore 
NCO 

Compiler 
6.1 

Cyclone, Cyclone II 

HardCopy II 

HardCopy Stratix, Stratix, 
Stratix II, Stratix II GX, 
Stratix III, Stratix GX 

configurable 

up to 32 bits 
configurable NO configurable configurable 

Lattice 
ispLever 

Core 
NCO 2.2 

LatticeEC, LatticeECP 

LatticeECP2, LatticeECP2M 

LatticeSC, LatticeXP 

configurable 

up to 32 bits 

configurable 

4-32 bits 

configurable 

4-32 bits 

configurable 

4-32 bits 

configurable 

1-16 channels 
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CHAPTER 3 

DESIGN OF DDS FUNCTION GENERATOR  

3.1 FOLLOWED SYSTEMC AND VHDL RTL DESIGN FLOWS  

In this study, the SystemC and VHDL based hardware design stages are 

followed separately. The main aim is to compare the SystemC and traditional 

HDL based design flows in terms of coding, synthesis and implementation 

performances. The SystemC initially appeared as a modeling language like HDL 

languages. However the new tools are proposed to directly synthesis of SystemC 

descriptions like traditional HDL synthesis. Since there is not sufficient number 

of well developed direct synthesis tools in the market, the SystemC descriptions 

are translated to VHDL code usually and then VHDL synthesis tools are used. In 

this study, only some SystemC descriptions are translated to VHDL due to 

synthesizable code writing restrictions. The advantages and disadvantages of 

SystemC design flow are well observed by making the same digital design using 

both SystemC and VHDL. The studied digital design cycles are illustrated in 

Figure 3-1. The hardware and software tools used at each step of the design are 

also given in the figure. 

The first part of the digital hardware design job is to determine the 

specifications. The design specifications of the presented DDS function generator 

are given in section 3.3. The defined specifications contain necessary information 

about the waveform characteristics, modulation types, communication interfaces 
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and common characteristics. The specification definition is necessary and very 

critical for development of the design plan. The specifications are determined in 

such a way that minimum numbers of change will be done after starting to 

design. All designers know that the change of specification affects the whole 

design period in a negative way. 

 

Figure 3-1 Followed SystemC and VHDL RTL Design Flows  
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After determination of the specifications, the behavioral models of the 

function generator are formed. The goal of the behavioral modeling is to facilitate 

the synthesis of the digital modules. In many digital design applications, it is not 

appropriate to describe whole design structure first. In place of difficult structure 

definition, the designer needs a behavioral description of a design. In this 

description method, the hierarchy of the modules and their functions are defined 

using the higher abstraction levels. The aim is to observe the functionality of the 

design. There is no need to describe the internal structures of the modules. There 

is an increasing awareness of the need for the behavioral models for specifying 

digital devices, since the demand for complex and well developed chips 

increases. This situation leads to present more talent design tools to the market 

and solve the complexity problem using higher abstraction levels. 

In this thesis, the behavioral description of the function generator is done 

using both SystemC and VHDL. In order to simulate the behavioral models, test 

bench files are prepared. If the behavioral models are verified with simulations, 

design cycle passes to RTL block. Direct pass from specification block to RTL 

block is also possible. The RTL design modules of the function generator are 

presented in section 3.5. They have been implemented using both SystemC and 

VHDL. The simulations are done for each design block separately. The design 

test and verification is presented in Chapter 4. 

SystemC based design cycle includes the SystemC to VHDL translation. 

The number of software that can synthesize the SystemC descriptions directly is 

insufficient. The companies which design such software do not share it with 

public. For this reason, the SystemC descriptions should be translated to VHDL 

code. As a translator tool, SystemCrafter’s SystemC synthesis software is used. 

The SystemC to hardware flow is presented in section 3.2. 

In the VHDL based design cycle, the design modules are designed and 

verified using Xilinx ISE and ModelSim. The hardware verification tests are 

applied on the Memec Virtex-4 FX LC development board and Memec P160 

Analog Module (Appendix C.1, C.2). The implementation is done for Xilinx’s 

Virtex4 series V4FX12 FPGA [31] which the development board includes. 
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3.2 SYSTEMC TO HARDWARE FLOW 

In SystemC based design flow, the critical edge is to synthesize the 

generated SystemC descriptions. In the market, various SystemC synthesizers are 

used. Some of the them synthesize the SystemC descriptions written at behavioral 

level and others synthesize only the descriptions written at RTL level. Behavioral 

synthesis allows the designers to create hardware from un-timed high-level 

models quickly. It also enables them to verify the designs in less time. However, 

there are disadvantages of using this type of synthesis. Although the designers 

satisfy with the accurate function descriptions, this synthesis type is not good at 

allocation of hardware resources and timing.  

In this thesis, some of the SystemC RTL descriptions are synthesized. 

The SystemC and traditional hardware design flows are illustrated in Figure 3-2. 

The presented figure shows RTL based synthesis but not behavioral synthesis. 

  

Figure 3-2 SystemC and Traditional Hardware Design Flows 
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The behavioral synthesis does not require additional SystemC model to 

RTL refinement. As illustrated in Figure 3-2, there are two paths to produce 

netlist using SystemC to hardware flow. The first path is direct synthesis of the 

SystemC RTL descriptions. The second path depends on the translation of the 

SystemC descriptions into HDL descriptions. In this path, the translated design 

codes are synthesized to netlist using the HDL based synthesis process.  

The traditional RTL synthesis provides most powerful synthesis. The 

direct SystemC synthesis is also powerful but it has unsolved problems related 

with hardware resource usage and timing. Some tools support this type of 

synthesis but available tools are not in satisfactory quality and number when 

compared to HDL synthesis tools. In the future, more companies will make an 

effort to improve the present SystemC synthesis tools or create well developed 

tools. The SystemC synthesis with translation brings some disadvantages such as 

broken of SystemC design cycle and redundant logic generation by SystemC to 

HDL translator. Using more powerful HDL tools can be an advantage in terms of 

better synthesis performance. However, the designer usually does not become 

aware of better synthesis advantage due to generated redundant logic. 

In order to translate the SystemC implementation, the designers select 

either manual recoding in VHDL or automatic translation. The manual recoding 

increases the probability of errors, either through mistranslation or 

misinterpretation. A high-performance synthesis tool, SystemCrafter SC, 

automates this process, by quickly translating SystemC to RTL VHDL. 

In this study, SystemC descriptions of the UART baud generator are 

automatically translated to VHDL using SystemCrafter SC synthesis tool. The 

SystemCrafter SC presents a code generation and verification platform for digital 

designers. However it is used only to translate SystemC description in this study. 

The hardware models are generated and refined to RTL using Microsoft’s Visual 

C++ 6.0. After translation of the SystemC descriptions, the generated VHDL 

descriptions are synthesized into netlist using Xilinx’s synthesis tool.  

SystemCrafter SC provides to design, debug and simulate the hardware 

and systems using existing C++ development environment. It lets to develop 



 
 

34 

hardware and software design code and simulate it in a common platform. The 

hardware is synthesized to VHDL RTL for implementation using traditional 

design stages. SystemCrafter SC also writes a structural SystemC description of 

the synthesized circuit for verification [12]. 

SystemCrafter’s SystemC to hardware flow is illustrated in Figure 3-3. 

The design flow includes the stages as defined below. After the last stage (VHDL 

synthesis and netlist generation), VHDL code is implemented for target 

technology and place and route simulations are done. 

 

1. Developing SystemC hardware model and simulations  

2. Translation of SystemC descriptions to VHDL RTL code  

3. Gate-Level model simulations  

4. VHDL synthesis  

 

Figure 3-3 SystemCrafter SC’s SystemC to Hardware Flow 
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The initial SystemC design descriptions are developed at first stage. The 

test bench module codes are written to test the generated SystemC descriptions. 

Then the design is simulated by combining the design and test bench modules in 

a single environment. SystemCrafter SC uses a C++ compiler such as Microsoft 

Visual C++ or GNU GCC to simulate the SystemC constructs. If the designer is 

satisfied with the results, the design is verified and flow passes to second stage. 

On the other hand, the unsuccessful simulations require the refinement of the 

design descriptions. The new test bench codes may be rewritten for refined 

design. This refinement process continues up to achieving successful design 

verification. 

At the second stage, the SystemC descriptions are translated to the 

VHDL codes. At this stage, the critical point is having synthesizable SystemC 

descriptions. If the written descriptions are not in synthesizable format, they 

should be refined into synthesizable format. SystemC language is superset of 

C++. It comprises all C++ descriptions for simulation and modeling purposes. No 

synthesis tool can compile all the descriptions written using SystemC. This 

synthesis limitation is not the unique case for SystemC. The VHDL and Verilog 

also appeared as a modeling language. The digital designers who use these 

languages also should pay an attention to write the design descriptions in 

synthesizable format. For instance, the statements such as “wait for 500 ps” can 

not be synthesized using VHDL synthesis tools. The synthesis tool can not know 

desired timing. For this reason, the designer should use a counter and reference 

clock to wait for such a period of time. SystemCrafter places more restrictions 

over SystemC synthesis than the traditional design languages. When designing 

the same module with SystemC and HDL, the designer notices the differences of 

synthesizable subsets and difficulties in writing synthesizable descriptions using 

these languages. 

At the gate-level model simulation stage, SystemC hardware 

descriptions are translated to gate-level SystemC models. The VHDL translation 

stage and gate-level model simulation stages are independent but gate-level 

simulations give an idea about success of generated VHDL codes. In this stage, 
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the automatically generated gate-level models are simulated. If the designer is 

satisfied with the simulations of the generated gate-level SystemC models, the 

gate-level model simulation stage is completed. On the other hand, unsatisfactory 

simulation results require that the synthesizable descriptions should be refined 

again.  

After running the gate-level model simulation, SystemCrafter SC 

generates a set of VHDL files. These files contain the synthesizable VHDL 

codes. The generated files are synthesized using the VHDL synthesis tools such 

as Xilinx Project Navigator. Before synthesis of the code, SystemCrafter’s gate 

library, craft_gatelibrary.vhd, is added to the project of the synthesis tool as 

VHDL package. The product of the synthesis process is the gate-level netlist file. 

At the final stage, generated gate-level netlist file is implemented for 

selected FPGA type. The place and route simulations are run after 

implementation process. If the design is also verified with these simulations, the 

programming file is prepared and FPGA is configured.  
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3.3 DDS FUNCTION GENERATOR DESIGN SPECIFICATIONS 

The function generator module specifications are summarized in Table 

3-1 and Table-3-2. Waveform and common characteristics of the function 

generator is given in Table 3-1. Modulation specifications and interface 

properties are given in Table 3-2. The design specifications are presented by 

assuming 100 MHz reference clock is supplied to the function generator module. 

 

 

Table 3-1 DDS Function Generator Design Specifications Part-1  

WAVEFORM CHARACTERISTICS 

Sine Wave Frequency Range 23 mHz - 40 MHz 

Square Wave Frequency Range 23 mHz - 40 MHz 

Triangular Wave Frequency Range 23 mHz - 10 MHz 

Ramp Wave Frequency Range 23 mHz - 10 MHz 

COMMON CHARACTERISTICS 

Number of Output Channel 1 

Output Resolution 12-bit 

Frequency Control Register (Frequency Register-1) 32-bit 

Frequency Modulation Register (Frequency Register-2) 32-bit 

Frequency Resolution 23 mHz 

Phase Offset Control Register (Phase Register-1) 10-bit 

Phase Modulation Register (Phase Register-2) 10-bit 

Amplitude Adjustment Register 8-bit 

Waveform Selection Register 5-bit 

Look-up Table Holds Quarter sine wave  

Look-up Table Size 256 x 12 bit 

Minimum and Maximum Output Levels 0x000 and 0xFFF  

Approximate Spurious Output 60 dB 

Trigger Delay 4 clock cycles 
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Table 3-2 DDS Function Generator Design Specifications Part-2  

MODULATION 

Carrier Wave Sinusoidal Frequency Shift 
Keying (FSK) 

Source External 

Carrier Wave Sinusoidal Phase Shift 
Keying (PSK) 

Source External 

INTERFACES 

Work Type Receiver only 

Baud Rate Adjustment External 

Supported Baud Rates 1200-38400 bps 

Data Bits 8 

Stop Bits 1 

Parity None 

Flow Control None 

Adjustable Function Generator 
Parameters  

Frequency 
Phase Offset 

Amplitude 

Waveform Selection 

UART 

Soft Reset Control Yes 

Standard Mode Support  Yes  

Fast Mode Support Yes 

High Speed Mode Support No 

Work Type Slave Receiver only 

Supported Addressing 7-bit 

Slave Module Address “1001100” 

Adjustable Function Generator 
Parameters 

Frequency 
Phase Offset 

Amplitude 

Waveform Selection 

I2C 

Soft Reset Control No 
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3.4 SOFTWARE AND HARDWARE RESOURCES USED IN DESIGN 

All of the software tools used throughout the thesis is summarized in 

Table 3-3 below. Microsoft Visual Studio 6.0 is used as the development 

environment to design and verify the function generator core using the SystemC. 

The SystemC library (SystemC 2.0.1 release for this study) is used with 

Microsoft Visual Studio 6.0 to provide such a development environment. 

SystemC Win1.0 Beta and GTKWave Wave Analyzer V1.3.19 provide a wave 

viewer environment to verify the developed SystemC models. SystemCrafter is a 

synthesis tool for SystemC applications. In this study, it is only used to translate 

SystemC descriptions to VHDL. 

 

 

Table 3-3 Used Software for Design and Verification 

Tools / Package Usage 

SystemC 2.0.1 2 SystemC library 

Microsoft Visual Studio 6.0 1 C++ compiler 

SystemC Win1.0 Beta 2 
SystemC design and 
verification environment 

GTKWave Wave Analyzer 1.3.19 2 Wave viewer 

SystemCrafter SC 2.0.0 3 SystemC synthesis tool 

Matlab R2006a 1 
Mathematical computation 
and analysis tool 

Xilinx ISE 7.1 3 
Xilinx integrated synthesis 
and implementation tool 

ModelSim XE III 6.0a 3 Simulation tool 

Microsoft Visual Studio .NET 2003 1 .NET platform 

 

 

(1) Licensed to Aselsan Inc. 

(2) Free version 

(3) Trial version 
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In order to determine the sinusoidal sample values to generate sine wave, 

MATLAB R2006a mathematical computation and analysis tool is used. Xilinx 

Project Navigator ISE 7.1 software is used to write and synthesize VHDL 

description of the function generator. It is also used for implementation and 

programming of FPGA. To verify the generated VHDL design description, 

ModelSim XE III 6.0a is preferred as simulation software. 

Microsoft Visual Studio .NET 2003 is used to make user interface 

software between the computer and the function generator hardware test 

platform. The function generator configuration parameters (frequency, phase 

offset, wave type and amplitude information) are sent to the hardware test 

platform in RS232 format using the control software developed on this platform. 

The function generator VHDL description is tested and verified on the 

hardware test platform. All of the hardware tools used to test the design 

throughout this study is summarized in Table 3-4.  

 

 

Table 3-4 Used Hardware for Verification 

Hardware Usage 

Memec Virtex-4 FX LC Development kit  

Memec P160 Analog Module AD and DA converter module 

Xilinx Platform Cable USB Programmer over JTAG port 

Oscilloscope Signal voltage viewer  

SMB-BNC Cable Connects Memec P160 with oscilloscope 

Test Computer User interface software runs on 

 

 

Memec Virtex-4 FX LC Development Kit [32] and Memec P160 Analog 

Module [33] constitute the function generator module’s hardware test platform. 

Memec’s development kit includes Xilinx Virtex-4 series V4FX12 FPGA. The 

analog module includes two 12 bit 165 Msps D/A converters. The function 

generator design is implemented into the FPGA using the Xilinx’s Platform 
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Cable USB [34] which is a high-speed download cable that configures or 

programs all Xilinx FPGA, CPLD and ISP Configuration PROM. The 

specifications of Memec’s development boards are given in Appendix C. The 

hardware test platform setup is presented in Chapter 4.  

3.5 DDS FUNCTION GENERATOR MODULES 

The modular and hierarchical architecture has been chosen for function 

generator design. Modularity and hierarchy help to simplify and organize a 

design project. Hierarchy allows the building of a design out of modules which 

themselves may be built out of (sub-)modules.  

The modular architecture is the preferred method for digital systems 

since it helps to organize the system into logically distinct modules, such that the 

modules can be changed by enhanced modules. Different implementation 

alternatives can be examined for the modules in a simulation. Only the 

corresponding component instantiation needs to be changed for this in the overall 

model. The modularity helps different modules to work together, and enables 

easier maintenance and module replacement.  

The DDS function generator module designed in this study includes the 

modules presented below. The names of the modules are given in the hierarchical 

order. In this study, both SystemC and VHDL design files are prepared for 

presented modules. 

 

• Function Generator Module  

o DDS Module 

� DDS RAM Module 

o UART Receiver Module 

o UART Baud Generator Module 

o I2C Slave Receiver Module  

o Main Controller Module 
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3.5.1 DDS MODULE DESIGN 

In direct digital synthesis based function generator design the direct 

look-up table method is utilized. This method is a trivial way of obtaining not 

only sinusoidal samples, but also any periodical function. In this approach, 

sampled (or calculated) amplitude values of one full period are stored in the 

memory. The phase output, which is obtained from the phase accumulator, is 

connected to the address inputs of the look-up table and the output samples are 

obtained from the data outputs of the memory. The frequency resolution may be 

increased by adding more address lines to the memory. By increasing the number 

of data output lines, the output resolution may also be increased. But increasing 

the number of address or data lines means the increase of the storage capacity of 

the memory device, which is an undesired situation. 

 

Figure 3-4 Four Quadrant of Sine Function 

The samples of one full period sine wave are shown in Figure 3-4. In 

order to generate a sine wave, there is no need to hold all the samples in a 

memory. Symmetry properties of the sine can be used to reduce memory size. 

The quarter sine wave is enough to represent the full period sine wave as shown 

in Figure 3-5. Thus, the memory requirement is reduced to 1/4. Additionally, the 

maximum amplitude value of the quarter wave is half of the full wave. This 

property also results in one bit reduction for the memory width. As a result, the 
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total memory reduces to 1/8. In this study, the quarter wave samples of a sine 

wave are loaded into the DDS RAM module. However, one bit amplitude 

reduction is not applied. The DDS RAM module holds a look-up table 256-word 

in length and 12-bit in width. 

 

Figure 3-5 First Quadrant Samples of Sine Wave 

The data flow diagram of designed DDS module is shown in Figure 3-6. 

The frequency control register and phase accumulator output are in 32-bit length. 

The designed DDS module can be clocked up to 125 MHz when it is 

implemented using Xilinx Virtex4 FPGA technology and it can produce a sine 

wave around 40 MHz. When this chip is clocked with 100 MHz reference clock, 

the output frequency can be adjusted with 0.023 Hz ( = 100MHz / 232 ) resolution. 

 

Figure 3-6 Data Flow Diagram of Designed DDS Module 
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As shown in Figure 3-6, DDS module contains trigger logic block in 

addition to the basic DDS. This logic block provides a trigger capability to the 

function generator design. When the trigger enable signal is set to logic high, the 

trigger signal is expected to start waveform generation. In order to make ramp, 

triangular or square wave generation possible, DDS module sends the look-up 

table addressing value to the output port. 

 

Figure 3-7 Sine Wave Construction 

The designed DDS uses 1024 points to construct waveforms so the 

approximate spurious output becomes 60 dB as discussed in section 2.2. The 

maximum and minimum output values that can be generated by designed DDS 

module are shown in Figure 3-7. 

3.5.2 I2C SLAVE RECEIVER MODULE DESIGN 

The designed I2C slave receiver module has the following features: 

• Slave receiver operational mode 

• Compliance to the Philips Semiconductor I2C specification v2.1  

• 7-bit device addressing mode 

• Fast mode up to 400 kbps support 

• Byte format transfer 
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The I2C slave receiver module provides an interface between the 

function generator and the I2C bus. The master device connected to the I2C bus 

has exclusive control over it. In order to control the function generator in this 

design, the master device transmits the waveform configuration parameters to the 

designed I2C bus slave receiver module. The parameters include the type, 

frequency, phase offset and amplitude information of periodical waveform. 

To configure the function generator, first, the master device transmits the 

defined specific slave address value. Then it transmits the function generator 

configuration register sub-address value. As last package, the configuration data 

is transmitted to the slave receiver module. After each data package reception, the 

slave module gives acknowledgement. I2C bus configuration parameter reception 

format is shown in Figure 3-8. 

 

Figure 3-8 I2C Bus Parameter Reception Format 

The sub-address data package points the configuration register which 

will hold the received data. The I2C register addresses and the data definitions are 

summarized in Table 3-5. The I2C slave receiver module waits for 14 bytes of 

configuration data. The I2C bus master device does not need to transmit each 

byte with slave address and sub-address. It can transmit all the data after the 

transmitting sub-address byte and this allows loading the configuration 

parameters to the function generator core module more quickly. 
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Table 3-5 I2C Sub-Address Definitions 

I2C Sub-Address Data Definition 

1 Wave Amplitude  

2 Frequency Word-1 (bits 31-24) 

3 Frequency Word-1 (bits 23-16) 

4 Frequency Word-1 (bits 15-8) 

5 Frequency Word-1 (bits 7-0) 

6 Frequency Word-2 (bits 31-24) 

7 Frequency Word-2 (bits 23-16) 

8 Frequency Word-2 (bits 15-8) 

9 Frequency Word-2 (bits 7-0) 

10 “000000” + Phase Offset Word-1 (bits 9-8) 

11 Phase Offset Word-1 (bits 7-0) 

12 “000000” + Phase Offset Word-2 (bits 9-8) 

13 Phase Offset Word-2 (bits 7-0) 

14 “000” + Work Mode (bits 4-0) 

 

 

3.5.3 UART RECEIVER MODULE DESIGN 

The designed UART receiver and baud generator modules have the 

following features: 

• 8-bit data with non-parity and one stop bit 

• Receive shift register 

• Receive buffer register 

• LSB-first data receive 

• Receiver start-edge detection 

• Programmable baud rate between 1200 Hz and 38400 Hz 

• Data ready flag 
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The UART receiver and baud generator modules provide an interface 

between the function generator and an external system via one serial data pin, 

uart_sin. Using this input pin, the serial data in RS232 format is received by 

UART receiver module. When the start bit comes to the receiver module, it 

stimulates the baud generator module. The clock signal synchronized with input 

serial data is generated by the baud generator module. The receiver module 

receives the serial data at each positive edge of this synchronized clock signal and 

puts the bytes into the receive shift register. The connections of the UART 

receiver modules and signal directions are illustrated in Figure 3-9. 

  

Figure 3-9 UART Receiver Modules’ Data Flow Diagram 

In UART mode, UART receiver module receives characters at a bit rate 

asynchronous to the transmitter device. For this reason, the designed receiver 

module has a start-edge detection capability. To receive the data, first, the 

receiver module transmits the trigger signal (reset_uclk) to the baud generator. 

Then, this module generates the synchronous clock signal at a selected baud rate. 

The RS232 data transmission format, shown in Figure 3-10, consists of a 

start bit, eight data bits and one stop bit. It does not include parity bit. The 

synchronized clock makes a low-to-high transition at each center point of the 
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serial data bit. This provides a clear data reception by the receiver module. The 

baud generator accomplishes this by receiving input baud rate signal (sel_baud). 

The baud generator module does not produce clock signal for start and stop bits. 

 

Figure 3-10 RS232 Data and Clock Synchronization 

The UART receiver module is used to receive the waveform 

configuration parameters from an external system. The parameters include the 

type, frequency, phase offset and amplitude information of the waveform. The 

parameter data packages must be transmitted to the receiver module in a fixed 

format. The configuration parameter reception order of the designed receiver 

module is shown in Figure 3-11. Each configuration data package starts with 

configuration header (decimal 90) and ends with function generator’s work mode. 

The configuration data package also includes one amplitude word, two frequency 

control words each of which has 32-bit length (4 bytes) and two phase offset 

words each of which has 10-bit length (represented by 2 bytes). The receiver 

module waits for 14 data bytes after receiving the configuration header byte.  

AMPL FREQ-1 FREQ-2 PHASE-1 PHASE-2 MODE

1 byte 4 bytes 4 bytes 2 bytes 2 bytes 1 byte

First

configuration

data package

HDR

Configuration

header

(decimal 90)

Last

configuration

data package

1 byte  

Figure 3-11 Configuration Parameter Reception Order 
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The waveform configuration parameters are hold in the shift register. 

The shift register data definitions are given in the Table 3-6. When all the 

configuration data is received, the Data Ready Flag bit (bit-113) is set to logic 

high and the main controller module receives the shift register data. 

 

 

Table 3-6 UART Shift Register Data Definitions  

UART Shift Register 
Bit Number 

Data Definition 

113 Data Ready Flag 

112-104 Wave Amplitude  

103-96 Frequency Word-1 (bits 31-24) 

95-88 Frequency Word-1 (bits 23-16) 

87-80 Frequency Word-1 (bits 15-8) 

79-72 Frequency Word-1 (bits 7-0) 

71-64 Frequency Word-2 (bits 31-24) 

63-56 Frequency Word-2 (bits 23-16) 

55-48 Frequency Word-2 (bits 15-8) 

47-40 Frequency Word-2 (bits 7-0) 

39-32 “000000” + Phase Offset Word-1 (bits 9-8) 

31-24 Phase Offset Word-1 (bits 7-0) 

23-16 “000000” + Phase Offset Word-2 (bits 9-8) 

15-8 Phase Offset Word-2 (bits 7-0) 

7-0 “000” + Work Mode (bits 4-0) 

 

 

The UART baud generator module supports six different baud rate 

selections. The UART clock signals are generated from input reference clock 

(100 MHz) and their frequencies can be selected between 1200 Hz and 38400 Hz. 

The user must define the serial communication speed before start transmitting the 

configuration data. In order to do this, the user applies the baud rate selection 

signal to 4-bit length baud rate selection input of the function generator. Then this 
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value is loaded into the baud rate register. The baud rate register value and related 

synchronized clock frequencies are summarized in Table 3-7. 

 

 

Table 3-7 UART Baud Rate Selection Table  

Baud Rate Register Value Generated Clock Frequency 

“0110” 38400 Hz 

“0101” 19200 Hz 

“0100” 9600 Hz 

“0011” 4800 Hz 

“0010” 2400 Hz 

“0001” 1200 Hz 

 

 

3.5.4 MAIN CONTROLLER MODULE DESIGN 

The main controller module is a link between the communication 

modules and DDS module. It controls the I2C interface with transmitting module 

address and receiving the sub-address and data packages. The data packages hold 

the frequency, phase offset, type and amplitude information of a desired 

waveform. In the main controller module, the data packages are distinguished 

according to the sub-addresses received from I2C receiver module and written to 

the target configuration registers. 

The main controller module has also an interface with the UART 

receiver module. The data came to the UART receiver module has been hold in 

113-bit shift register. The main controller module receives the shift register value 

and writes the shift register’s data into configuration registers when data ready 

flag bit is set to ‘1’. In addition, FSK and PSK modulations are also controlled by 

this module. It switches the frequency and phase offset control values sent to the 
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DDS module according to the received modulation source input. The carrier wave 

for FSK and PSK is sine wave. In this module, there are two 32-bit frequency 

registers, two 10-bit phase registers, one 8-bit amplitude register and one 5-bit 

work mode register. 

3.5.5 FUNCTION GENERATOR MODULE DESIGN 

The function generator design module does not include only the sub-

modules, but it also includes the internal processes to generate desired waveform. 

The internal processes in this module are illustrated in Figure 3-12.  

 

Figure 3-12 Function Generator Module Internal Processes 

All of the properties of the function generator can not be implemented in 

the sub-modules. DDS module only generates the sine samples. However, the 

function generator must also build square, triangular and ramp waves. The duties 

of the internal processes can be ordered as below: 

 

• Waveform selection  

• The synchronization clock generation for DAC 

• Square, triangular and ramp wave sample generation 

• Output sample amplitude adjustment 
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Table 3-8 Waveform Property Selection Table 

Work Mode 
Selected 

Waveform 
Selected Frequency 

Register 
Selected Phase 

Register 

“00000” Sine 1 1 

“00001” Sine 1 2 

“00010” Sine 2 1 

“00011” Sine 2 2 

“00100” Square 1 1 

“00101” Square 1 2 

“00110” Square 2 1 

“00111” Square 2 2 

“01000” Triangular 1 1 

“01001” Triangular 1 2 

“01010” Triangular 2 1 

“01011” Triangular 2 2 

“01100” Ramp 1 1 

“01101” Ramp 1 2 

“01110” Ramp 2 1 

“01111” Ramp 2 2 

“00110” Sine (FSK) 1 & 2 1 

“00111” Sine (PSK) 1 1 & 2 

 

 

The designed function generator has a capability of generating many 

standard waveforms with excellent frequency resolution. These waveforms can 

be ordered as sine, square, triangular and ramp waves. The function generator has 

also a capability of making frequency and phase shift keying. The Table 3-8 

defines which frequency and phase register will be used for selected work mode. 

In order to convert digital samples to analog signals, a DAC requires a 

reference clock as timing source in addition to sample data. The function 

generator produces samples at each rising edge of input clock. Since the analog 
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conversion must be implemented when the sample data is ready, internal 

processes send the inverse of the reference clock to DAC.  

The look-up table counter signal is used to generate square, triangular 

and ramp waves by internal processes. The address counter steps through the 

look-up table and completes its one cycle at desired period time. This periodic 

counter is used to build defined waveforms with a little modification. 

The designed function generator can also make digital amplitude 

adjustment. The sample outputs of DDS are multiplied with the loaded amplitude 

constant in the internal processes. 

3.6 INTEGRATION OF DESIGN MODULES 

The function generator design file merges the main controller module 

with the interface units (I2C and UART modules) and DDS modules. The 

modularity architecture of the function generator lets to add new module such as 

a DDS RAM module that holds the samples of the arbitrary waveform. In 

addition, the interface modules can be replaced with desired modules without 

spending more effort. 

The block diagram of the function generator is shown in Figure 3-13. 

The interface modules supply the configuration data of the waveform that will be 

generated. DDS module generates the samples of the sine wave. The duty of the 

main controller module is to become a bridge between the interface and DDS 

modules. It receives the data from external world using the I2C slave module and 

UART receiver modules. It sends the frequency and phase offset values to the 

DDS module. It also has duties related with modulation. The module combination 

is implemented in the function generator design file. All the designed modules 

are defined as sub-modules of the function generator. In order to connect the sub-

modules with each other, the internal signals are also defined in the design file.  
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Figure 3-13 Function Generator Block Diagram 
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CHAPTER 4 

IMPLEMENTATION OF DDS FUNCTION GENERATOR 

4.1 TEST AND VERIFICATION METHODOLOGY 

Before verification of the design on the hardware platforms, the function 

generator is verified in software environments. In order to verify design, the test 

bench-design approach is used. The test bench generates input signals to the 

design module and receives the output signals from it. The received outputs are 

compared with the expected results. The prepared test bench file does not need to 

become in a synthesizable form. The sample design module and its test 

environment are illustrated in Figure 4-1. 

  

Figure 4-1 Test Environment for Design Module 
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The test bench module generates Input-1, Input-2 and Input-3 signals for 

the design module and receives Output-1 and Output-2 signals. The generated 

and received signals are observed in the simulation environment. If the received 

signals are expected signals, the design module is verified and can be used as a 

sub-module of the bigger designs or alone. 

In this thesis, the design of the function generator is made using two 

different design languages named by SystemC and VHDL. The test environments 

for these two languages are different. As a result, the design descriptions written 

using SystemC and VHDL are simulated in different test environments. 

Microsoft Visual C++ 6.0 is used to prepare design and test files in 

SystemC based hardware design. SystemC based design verification flow 

diagram is illustrated in Figure 4-2. In order to test the design module, the test 

bench file and main file are prepared. The main file contains test bench and 

design modules as its sub-modules. The main file is compiled and if there is no 

compilation error, the design project is built. The design environment generates 

an executable file. The user runs this executable file. Executable file generates the 

VCD file that holds the samples of simulated waveforms. GTKWave Wave 

Analyzer V1.3.19 software is used to open VCD file in order to observe 

simulation waveform. 

 

Figure 4-2 Verification Flow for SystemC Based Designs 
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In Xilinx Project Navigator, the verification of the HDL design module 

is done differently. In this program, the test bench module contains the design 

module as its sub-module (component) so there is no need for main file 

additionally. The generated test signals in the test bench module are given to the 

design module’s input ports. The output ports of the design module are connected 

to the test signals. All the defined signals in the test bench file can be observed in 

the simulation environment. In this thesis, ModelSim XE III 6.0a is used as a 

HDL based simulation and debug environment. ModelSim is initialized from a 

single user interface on the Xilinx Project Navigator. This improves the 

productivity and facilitates the verification. The verification flow for HDL based 

designs is illustrated in Figure 4-3. 

 

Figure 4-3 Verification Flow for HDL Based Designs 

ModelSim is a comprehensive HDL simulation environment. It verifies 

the HDL source code by allowing the behavioral and timing model investigation 

of the digital designs. ModelSim is also a debugging environment and has a full 

language support for VHDL, Verilog, SystemVerilog and SystemC. Since the 

trial version of the ModelSim is used in this study, license restrictions do not let 
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to simulate SystemC design codes. ModelSim is a very powerful simulation 

environment, and it is sometimes difficult to use this simulation environment. 

However Xilinx design environments can take care of launching ModelSim to 

simulate projects. When the designer launches ModelSim using Xilinx design 

environments, the wave window appears without any additional work. The wave 

window is the most important window of ModelSim. It contains waveforms for 

all input and output signals of the top-level design module. There are also 

dataflow window which can be used to observe the internal signals of top-level 

module. This window is very helpful during the design period. Because, the 

designer can observe all the internal signals and notice the design errors of sub-

modules. There is no need to simulate all the sub-modules using separate test 

bench files, if applied test to top-level module is enough to verify whole design. 

In this study, this talented dataflow window of the ModelSim is used and the 

designed top-level module is simulated only using only two test bench files.  

ModelSim verification flow is illustrated in Figure 4-4. The VHDL code 

is compiled into a VHDL library before it can be simulated. The simulator can 

not read VHDL source code directly. It only simulates a compiled database. In 

the compilation phase, compiler may point out some possible design or syntax 

errors. After compiling the design successfully, actual mistakes (design mistakes) 

can be observed in simulation environment. 

 

Figure 4-4 ModelSim Verification Flow 



 
 

59 

4.2 DESIGN IMPLEMENTATION USING SYSTEMC 

4.2.1 DDS WAVEFORM GENERATION TEST 

The DDS design module and its connections with the test bench module 

are illustrated in Figure 4-5. The RAM module which contains the sinusoidal 

samples is a sub-module of DDS module. In this section, the RAM module is not 

verified alone. The simulation results of DDS verify the functionality of the 

internal RAM module. 

The DDS module has two output ports. One of them (ram_addr_out) 

transmits the RAM address value which is initially same as the defined phase 

register value. After the DDS starts to operate, the RAM address value is 

incremented by the defined frequency register value. The second output port 

(max_output) is used to send the sinusoidal samples generated by DDS. In order 

to verify DDS module, the frequency and phase values are sent from the test 

bench module. The trigger and trig_enb signals are also supplied to detect the 

trigger performance of the designed module. It is expected that the DDS module 

generates the sinusoidal samples at the rising edge of the trigger signals when 

trig_enb signal is logic high. It is also expected that the frequency and phase 

values are taken into account during the sample generation. 

 

Figure 4-5 DDS Module Test Environment 
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The simulation waveform of the DDS module designed using SystemC 

is given in Figure 4-6. At the start of the simulation, reset condition is employed 

by logic high pulse for reset port. After a time, reset condition is removed. Since 

the trigger is enabled at the start of simulation, the sinusoidal sample generation 

does not start instantaneously. When the trigger signal is sent from the test bench 

module, the DDS launches to send the sinusoidal samples. There is maximum 4 

clock cycles delay between trigger’s rising edge and start of sample generation.  

Since the phase register value is used as an offset value for addressing 

the RAM (look-up table), the initial value of the RAM address is equal to phase 

register value (0x333 in hexadecimal representation). The delay between the 

RAM addressing and sample generation is 2 clock cycles. 

The second reset condition is employed in the presented simulation. At 

this condition, the RAM address output value is 0x000 and sinusoidal sample 

output value is 0x800. This output value represents a minimum analog voltage 

level. After a reset condition is removed, the sample generation starts 

instantaneously. Since the trig_enb is logic low (trigger is not enabled), the 

module does not look for a trigger signal to initialize the waveform generation. 

 

Figure 4-6 DDS Operation 

In the presented simulation waveform, the samples are repeated for more 

than 3 clock cycles. At each clock cycle the addressed sinusoidal wave samples 

are sent from the DDS module. If the value of the frequency register is 

incremented, the number of repeated samples decreases. 
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4.2.2 I2C BUS COMMUNICATION TEST 

I2C slave design module, I2C master test module and their connections 

with the test bench module are illustrated in Figure 4-7. I2C master module is 

used to generate desired I2C bus signals in order to test and verify the I2C slave 

receiver design module. The master module is not the sub-module of the function 

generator. It is controlled by the test bench module to transmit desired test data 

package in I2C bus standard format. 

The slave receiver module receives sda and scl signals from the master 

module and generates the parallel data package. This package is received by the 

test bench module and compared with the test data sent by master module.  

 

Figure 4-7 I2C Slave Receiver Module Test Environment 

The simulation waveform of the master module design using SystemC is 

given in Figure 4-8. At the start of the simulation, the reset condition is employed 

by logic high pulse for reset port. At this condition, the master module generates 

idle signal (port is not used). After removing the reset condition, the master 

module makes its lookload signal logic high which a data package request from 

the test bench. The master module starts to send serial data by making high-to-

low transition of scl when sda is low. In the presented figure, this condition is 
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shown at the time of cursor. After the start condition, the data bits are sent 

serially (most significant bit is sent first) with the synchronization clock pulse.  

 

Figure 4-8 I2C Bus Data and Clock Synchronization  

The simulation waveform of the I2C slave receiver module design using 

SystemC is given in Figure 4-9. The master module sends the address (0x98), 

sub-address (0x01) and data packages (from 0x02 to 0x1F) to the slave receiver 

module serially. If the received address signal is equal to the internal address 

register value, then the slave receiver module accepts the serial data. In this 

simulation, the address is verified first and then the sub-address and data package 

values are received. At the time of cursor, the first data package is sent by master 

module for being written to a register at sub-address 0x01. The sub-address value 

is incremented after each data. The I2C data reception ends with stop condition. 

 

Figure 4-9 Configuration Data Reception over I2C Bus 
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4.2.3 UART COMMUNICATION TEST 

UART Receiver Module Test 

 

In order to test the UART receiver module, there is a need for a UART 

transmitter module. Because the observation of the receiver module performance 

would be possible only if the transmitter module sends the test data and it is 

compared with the data received by the receiver module. The UART receiver 

module and its connections with the test bench are illustrated in Figure 4-10. The 

test bench module contains the UART transmitter module.  

 

Figure 4-10 UART Receiver Module Test Environment 

The data and clock synchronization simulation waveform of the UART 

receiver module is given in Figure 4-11. When the start bit of serial data arrives 

to the receiver module, it makes reset_uclk signal logic low. This is an 

initialization signal for baud generator module to start operation. The baud 

generator module starts to generate the synchronization clock after high-to-low 

transition of reset_uclk signal. The receiver makes reset_uclk signal logic high 

after each stop bits. This start and stop bit detection operation provides a perfect 

serial data reception by making serial data and clock synchronization. At each 
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rising edge of clock, the receiver accepts the serial data value. At the reset 

condition (external hard reset), reset_uclk signal is made logic high by the 

receiver module and the synchronization clock pulses are not generated. 

 

Figure 4-11 UART Data and Clock Synchronization 

The configuration data reception simulation waveform of UART 

receiver module is given in Figure 4-12. The test bench transmits the 

configuration data serially to the receiver module as shown in the figure. The 

transmitted first byte is configuration header (decimal 90). After receiving the 

configuration header, the receiver module waits for the configuration data to load 

registers. The shift register signal (data_all) holds 113 bits data. After the receiver 

accepts 14 bytes of configuration data which contains frequency, phase offset, 

amplitude and waveform selection information, the configuration data reception 

is completed and the most significant bit of shift register signal (data all) is made 

logic high. The most significant bit is a warning for controller module and means 

that the data load has been completed and the new parameters can be used. 

 

Figure 4-12 Configuration Data Reception over UART 
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UART Baud Generator Module Test 

 

The UART baud generator module and its connections with the test 

bench module are illustrated in Figure 4-13. The baud generator module 

generates the synchronization clock for data reception. The module receives three 

signals which are baud rate selection, clock initialization and system clock signal, 

and then transmits synchronization clock signal from its output port. 

  

Figure 4-13 UART Baud Generator Module Test Environment 

The synchronized clock generation of baud generator module is given in 

Figure 4-14. The baud rate selection signal determines the frequency of generated 

synchronization clock signal. The baud rate selection signal (sel_baud) is 04 

initially as shown in the figure. This means that 9600 Hz baud rate is required. 

The module calculates and generates the desired synchronization UART clock 

using the system clock. As shown in the figure again, the sel_baud is made 05. 

This means that 19200 Hz baud rate is required and the module also generates 

this clock. The reset signal is supplied to the baud generator module from the 

receiver module and helps to receive serial data bit at its middle point. When the 

reset condition (reset_uclk is logic high), is present, the internal counters take 

initial values. After removing this condition the clock generation starts again.  
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Figure 4-14 UART Synchronization Clock Signal Generation 

4.2.4 MAIN CONTROLLER OPERATION TEST 

The main controller module is a bridge between the interface modules 

and DDS module. Main controller module and its connections with the test bench 

module are illustrated in Figure 4-15. In this simulation, the test bench acts as if it 

is the UART receiver module and sends the configuration data signal (data_all) to 

the controller. The dotted lines represent unused signals at this simulation. 

 

Figure 4-15 Main Controller Module Test Environment 

In order to verify the controller operations, the UART data sample is 

sent to the controller module by test bench. The mission of the controller module 

is to receive the configuration data from the interface modules and place the 

values of frequency, phase offset, amplitude and waveform selection data to the 

configuration registers. In Figure 4-16, the controller receives the UART data 
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sample value (hex 1-60-4010040D-02431124-0231-0114-04) at the time of 

cursor. The waveform selection mode is 04 (means that square wave, frequency-

reg1 and phase-reg1 are selected). The controller really outputs the frequency-

reg1 (0x4010040D), phase-reg1 (0x231) with correct amplitude (0x60) values. 

 

Figure 4-16 Main Controller Operation (Part-1) 

In Figure 4-17, the controller receives the UART data sample value (hex 

1-78-40100420-86631004-0087-0372-07) at the time of cursor. The waveform 

selection mode is 07 (means that square wave, frequency-reg2 and phase-reg2 are 

selected). The controller really outputs the frequency-reg2 (0x86631004), phase-

reg2 (0x372) with correct amplitude (0x 78) and work mode (0x07) values. 

 

Figure 4-17 Main Controller Operation (Part-2) 
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4.2.5 VERIFICATION OF THE WHOLE DESIGN 

In this section, DDS function generator’s sub-modules are supposed to 

be tested and verified. The applied tests cover only the verification of internal 

processes of function generator and whether the signals between sub-modules are 

truly connected or not. All of the signals and variables that are used in the design 

are not observed. As a result, if there are unexpected output values, the sub-

modules that constitute the function generator must be tested and verified in their 

test environments again. 

The block diagram of the function generator and its test environment are 

illustrated in Figure 4-18. The configuration test signals are generated by the 

UART transmitter module and the I2C master module. These modules simulate 

the external interfaces of the design. Using these simulated interfaces, the 

selected function generator configuration parameters are loaded into the design. 

The generated output waveform sample values are observed and compared with 

the expected results. 

  

Figure 4-18 Function Generator Test Environment 
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The sample generation simulation of the function generator after loading 

the configuration data over I2C interface is shown in Figure 4-19. The 

configuration data is transmitted to the function generator design using I2C bus 

master module. The frequency, phase, amplitude and waveform selection signals 

of function generator are set according to the received sub-address value. The 

sample generation detail simulation is shown in Figure 4-20. The output 

waveform generation starts when trigger signal makes low-to-high transition. The 

RAM address signal’s initial value (obs_ram_addr_out) is equal to the phase 

offset value (obs_phase_reg). The internal look-up table outputs the addressed 

sinusoidal samples (max_output) at each clock cycle.  

 

Figure 4-19 Wave Generation Using I2C Interface 

 

Figure 4-20 Wave Generation Using I2C Interface in Detail 
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The sample generation simulation of the function generator after loading 

the configuration data over UART interface is shown in Figure 4-21. The 

function generator receives the UART data serially and sets its configuration 

signals after data loading is completed. The sinusoidal sample values are 

calculated according to the desired amplitude after trigger signal arrives. As 

shown in Figure 4-22, the output value (0x85D) of the function generator is result 

of the multiplication of max_output (0x864) and amplitude value (0xF0) and 

division it by the maximum amplitude value (0xFF).  

 

Figure 4-21 Wave Generation Using UART Interface 

 

Figure 4-22 Wave Generation Using UART Interface in Detail 
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4.3 DESIGN IMPLEMENTATION USING VHDL 

4.3.1 VERIFICATION IN SOFTWARE ENVIRONMENTS 

The designed function generator has a capability of generating many 

standard waveforms with excellent frequency resolution. These waveforms can 

be ordered as sine, square, triangular and ramp waves. In addition, FSK and PSK 

modulations can be done using external data source and carrier sine wave. The 

function generator has two standard communication interfaces to receive 

operational data. This section includes verification results of the synthesized 

function generator VHDL descriptions in software environment. 

In order to verify the function generator’s VHDL design codes, two 

different test bench files were prepared. One of them was prepared to observe all 

output waveforms if I2C interface is utilized. It defines the function generator and 

I2C master module which is used to generate standard I2C signals as its sub-

modules. It controls I2C master module to generated configuration data and 

receives the output signals from function generator. The second one was prepared 

to observe waveforms if UART interface is utilized. This test bench module 

supplies standard UART signals to the function generator core. 

The configuration data is loaded into the function generator module 

using I2C interface as shown in Figure 4-23. The I2C master module transmits 

data and clock signals using its serial data port SDA and serial clock port SCL. 

The main controller module analyzes the received data, and then it refreshes its 

frequency, phase offset, amplitude and waveform selection register data. The 

configuration parameter values are refreshed after each data reception. The 

waveform sample generation starts when trigger signal makes low-to-high 

transition. The sine and square wave generation is shown in Figure 4-23 and 

Figure 4-24. As the new configuration values are loaded, the frequency of the 

waveform changes according to new values. The analog literal is selected for 

RAM addressing and output signals to observe the waveforms clearly.  
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Figure 4-23 Sine Wave Generation Simulation (Using I2C Bus) 

 

Figure 4-24 Square Wave Generation Simulation (Using I2C Bus) 

The triangular wave generation is shown in Figure 4-25. In this 

simulation, the trigger is disabled by making trig_enb signal logic low. As a 

result, the function generator does not wait for trigger pulse. The waveform 

sample generation starts immediately after the receiving the configuration data. 

The ramp wave generation is shown in Figure 4-26. The look-up addressing 

signal is directly given to the output port in order to generate a ramp wave. 

The configuration parameters are loaded two times for triangular and 

ramp wave simulation. At the second loading, the phase register value is changed 

in addition to the frequency value. As can be seen in the presented simulation 

waveforms, the output signal makes a glitch due to this phase offset change.  
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Figure 4-25 Triangular Wave Generation Simulation (Using I2C Bus) 

 

Figure 4-26 Ramp Wave Generation Simulation (Using I2C Bus) 

The sine wave generation using UART interface is shown in Figure 4-

27. In this simulation, the trigger is enabled by making trig_enb signal logic high. 

Then the configuration data is transmitted by the test bench module. When the 

transmission is completed, the configuration registers take their new values. The 

waveform generation does not start before trigger pulse is transmitted by test 

bench module. As can be seen in figure, output value and max_output (addressed 

look-up table output) value are different due to the amplitude scaling. 

At the time of cursor, the test bench module transmits the soft reset data 

package (0x98). After reception of this information, the function generator resets 
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its configuration registers and stops the sample generation. The soft reset signal is 

set only using UART interface and it is transmitted to all sub-modules of function 

generator as reset signal. When break reset data package (0x99) received, the 

function generator removes the soft reset condition. However the waveform 

generation does not start due to the loss of old configuration data. The new 

configuration data must be loaded to initialize the waveform generation again. 

 

Figure 4-27 Sine Wave Generation Simulation (Using UART) 

4.3.2 VERIFICATION ON HARDWARE 

The DDS function generator design was verified by testing it after 

implementing into FPGA. The function generator descriptions were written in 

synthesizable format using VHDL. Xilinx’s Virtex-4 V4FX12 was selected as 

target FPGA. The hand-written VHDL descriptions were synthesized using 

Xilinx XST software. The estimated device utilization summary of function 

generator descriptions is given in Table 4-1. These values are supplied by Xilinx 

XST synthesis tool and reported after the synthesis of design descriptions. The 

available resources colon of the presented table represents the target FPGA’s 

hardware resources.  
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Table 4-1 Device Utilization Summary for Function Generator VHDL Code 

Logic Utilization Used Available Utilization 

Number of Slices  513 5472 9% 

Number of Slices Flip Flops 334 10944 3% 

Number of 4 input LUTs 883 10944 8% 

Number of bonded IOBs: 22 320 6% 

 

 

In order to verify the function generator design, the development boards 

should have FPGA and D/A converter. Memec Virtex-4 FX12 LC Development 

Board [32] and Memec P160 Analog Module [33] were selected as hardware 

resources to test the design. The basic properties and pictures of these boards are 

given in Appendix C.1 and Appendix C.2.  

Memec’s development board contains Xilinx’s Virtex4 series V4FX12 

FPGA [31]. The Xilinx Virtex-4 family is revolutionized the fundamentals of 

FPGA economics. It presents three application-domain-optimized platforms. 

These can be ordered as logic, DSP and embedded processing based platforms. 

Virtex-4 FPGAs deliver breakthrough performance at the lowest cost and offer a 

compelling alternative to ASICs.  

Memec’s other board, analog module, was used with the development 

board. The analog and development boards are combined to form analog 

application board. The analog board contains high speed A/D and D/A 

converters. When the analog and development boards are merged, the converters 

and FPGA has been connected with digital I/O channels. The analog module does 

not only receive the digital data for D/A converters, it also receives the 

synchronization clock signals from the development board. These clock signals 

are used by D/A converters and determine the analog conversion rate. The analog 

module has also power connections with the development board. 

Since the VHDL descriptions are generated using Xilinx’s ISE software, 

the usage of Xilinx’s FPGA is an advantage in terms of software support, quick 
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and easy programming. Xilinx ISE software supports full code-to-FPGA 

processes for Xilinx FPGAs. The code-to-FPGA steps can be ordered as below: 

 

1. Syntax check of description 

2. Synthesis of description 

3. Implementation (Translate - Map – Place and Route) 

4. Generation of programming file  

5. Programming the device 

 

In order to generate programming file, the function generator design 

should have been implemented for the selected FPGA. In this study, the 

development board contains Xilinx V4FX12 FPGA and the design is 

implemented for this FPGA technology. Before the implementation, the 

constraint file is written to define hardware I/O connections. If the constraints are 

not defined, the implementation is done according to the synthesis tool’s defaults. 

The implementation constraint file includes the definitions ordered below: 

 

1. Timing constraints 

2. Package pin assignments 

3. Area constraints 

 

Implementation process consists of translating, mapping, placement and 

routing of a logical design into the targeted Xilinx FPGA. At this stage, the 

logical design file, which is output of the synthesis stage, is converted to a native 

circuit description (NCD file). This file contains hierarchical components used to 

develop the design and the Xilinx primitives. The implementation includes the 

processes ordered below: 

 

1. Translate (NGDBuild) 

2. Mapping (MAP) 

3. Placement and Routing (PAR) 
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The Translate process merges all of the input netlists and design 

constraints and outputs a Xilinx native generic database (NGD) file, which 

describes the logical design reduced to Xilinx primitives. The Map process maps 

the logic defined by an NGD file into FPGA elements, such as CLBs and IOBs. 

The output design is a native circuit description (NCD) file that physically 

represents the design mapped to the components in the Xilinx FPGA. The Place 

and Route process takes a mapped NCD file, places and routes the design and 

produces an NCD file that is used as input for bitstream generation. The Generate 

Programming File process produces a bitstream for Xilinx device configuration. 

After the design is completely routed, the device is configured so that it can 

execute the desired function. Xilinx’s code-to-FPGA design flow is illustrated in 

Figure 4-28. Input and output files for each flow step are defined in figure. 

 

Figure 4-28 Xilinx’s Code-to-FPGA Design Flow 
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FPGA is programmed using Xilinx’s Platform Cable USB [34]. The 

hardware test setup used in this study is illustrated in Figure 4-29. The test setup 

includes the Memec’s development board, Memec’s analog module, Xilinx’s 

programmer, oscilloscope and test computer. Memec’s boards are combined to 

form waveform generation hardware and Xilinx’s programmer is connected to 

JTAG port of Memec’s development board. After following setup steps defined 

above, FPGA is programmed using Xilinx ISE environment and the test setup 

becomes ready for function generator design verification.  

 

Figure 4-29 Hardware Test Setup 

In order test the function generator core, the waveform configuration 

parameter should have been sent to the FPGA. The Memec’s development board 

[32] has physical serial port. By setting a communication channel between the 
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development board and the computer using the serial ports, the waveform 

configuration parameters would be sent to the development board. 

The application software was prepared in order to control the serial port 

of the computer. This software allows communication with the function generator 

core over UART. The user interface of the software is shown in Figure 4-30. 

 

Figure 4-30 Function Generator Control Software with UART Interface 

In order to load the configuration parameters using this software, the serial port of 

the development board is connected to the computer’s serial port. The frequency, 

phase offset, amplitude and work mode parameters are selected on the user 

interface of the control software. When “Load Configuration” button is pressed, 

the loading is executed. In order to reset the function generator (soft reset), “Hold 

Reset” button is pressed. When “Break Reset” button is pressed, the reset 

condition is removed. The hardware verification test setup and generated 

waveforms by DDS function generator are shown in Figure 4-31, 32, 33, 34. 
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Figure 4-31 Sine Wave Generation on Hardware 

 

Figure 4-32 Square Wave Generation on Hardware 

 

Figure 4-33 Triangular Wave Generation on Hardware 
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Figure 4-34 Ramp Wave Generation on Hardware 

4.4 SYNTHESIS OF UART BAUD GENERATOR SYSTEMC CODE 

In this section, the synthesis results of the UART baud generator 

SystemC description are presented. The VHDL description of the same module is 

also synthesized to compare the synthesis performances of two synthesis flows.  

An important point is the fact that UART baud generator module 

descriptions were written in synthesizable RTL format using SystemC and 

VHDL. The SystemCrafter’s synthesis tool translated the SystemC descriptions 

to VHDL code. The hand-written VHDL code and translated VHDL code were 

synthesized using Xilinx’s synthesis tool.  

After an automatic translation of the SystemC descriptions to VHDL 

with SystemCrafter SC, generated codes are synthesized using Xilinx Project 

Navigator. First, a new design project is created in Xilinx Project Navigator. 

Then Xilinx’s Spartan-2E XC2S50E is selected as target FPGA and Xilinx XST 

is chosen as a synthesis tool. All of the VHDL design files that describe the 

synthesized circuit are added to the source directory of the project location.  

An additional gate library file namely craft_generator.vhd is supplied as 

a part of the SystemCrafter distribution. It can be obtained from the 

SystemCrafter SC’s install directory. In order to synthesize the automatically 

translated VHDL files, the gate library file is also added to the project as a VHDL 



 
 

82 

package file. This file includes the SystemC library of gate-level descriptions 

prepared by the SystemCrafter SC.  

The synthesis flow using Xilinx XST synthesis tool is illustrated in 

Figure 4-35. The Xilinx XST receives the SystemCrafter’s VHDL package and 

design description file as input and generates the netlist file that describes the 

gate-level structure of the design as output.  

 

Figure 4-35 Synthesis of Translated VHDL Code Using Xilinx XST 

Xilinx XST generates a synthesis report describing hardware utilization 

and timing. The estimated device utilization summary for automatically translated 

UART baud generator VHDL code is given in Table 4-2. The device utilization 

summary for hand-written VHDL code is given in Table 4-3. 

 

 

Table 4-2 Device Utilization Summary for Translated VHDL Code 

Logic Utilization Used Available Utilization 

Number of Slices 26 768 3% 

Number of Slice Flip Flops 23 1536 1% 

Number of 4 input LUTs 41 1536 2% 

Number of bonded IOBs: 7 4 3% 

Number of GCLKs: 1 1 25% 
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Table 4-3 Device Utilization Summary for Hand-written VHDL Code 

Logic Utilization Used Available Utilization 

Number of Slices 12 768 1% 

Number of Slice Flip Flops 17 1536 1% 

Number of 4 input LUTs 22 1536 1% 

Number of bonded IOBs: 7 4 3% 

Number of GCLKs: 1 1 25% 

 

 

As shown in Table 4-2 and Table 4-3, the translated code requires more 

hardware resource than hand-written code. The SystemCrafter SC synthesis tool 

adds redundant logic descriptions when translating the SystemC descriptions to 

VHDL. Xilinx XST synthesis tool removes most of this redundant logic. 

However, the reduction of the logic is not in satisfactory level. In this experiment, 

hand-written code requires nearly the half of the resources required by translated 

code. 

New well developed synthesis tools can use hardware resources more 

effectively. However, it is nearly impossible to reach the same level of hand-

written hardware utilization using current synthesis tools.  

4.5 COMPARISON OF SYSTEMC AND VHDL DESIGN FLOWS 

In this study, the digital design flow of SystemC RTL and VHDL RTL is 

evaluated in terms of code to synthesized gate-level netlist transformation. In 

traditional design flow, the algorithmic concept designers use C/C++ for 

modeling. This is followed by architectural level design using VHDL or Verilog. 

Since there is a gap related with higher abstraction level support of VHDL and 

Verilog, SystemC was born to close this abstraction level gap. However SystemC 

should show its advantages for RTL synthesis to be replaced with the traditional 
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languages. In this section, the comparison is tried to be made for SystemC and 

VHDL function generator designs in terms of synthesis and implementation.  

For VHDL implementation of the function generator, Xilinx’s ISE was 

used. For SystemC implementation, the SystemC library version 2.0.1 was 

employed with Microsoft Visual C++ 6.0 which lets developing and debugging 

of the design code. The simulations of the VHDL and SystemC design codes 

were done in different platforms. It can be observed that there are advantages and 

disadvantages of using SystemC language in digital hardware design flow. The 

comparison of VHDL and SystemC based hardware design flows is made when 

presenting advantages and disadvantages of SystemC design flow. Advantages of 

using SystemC design flow can be stated as below:  

 

• SystemC proves its importance as being a common language in the 

whole design process. It provides that the designer does not need to 

switch design languages using SystemC direct synthesis flow (direct 

design flow from behavioral model to gate-level model).  

• Since it provides various abstraction levels with a single language, 

the test benches can be reused at various modeling levels. 

• SystemC eases the design refinement while passing from higher 

abstraction level to lower abstraction levels. The designer does not 

need to recode all the interfaces and hierarchies designed at higher 

abstraction levels. 

• SystemC shortens development cycles with its fast simulation and 

debug support. A high-level simulation engine is required to obtain 

fast simulation speed. SystemC achieves this using standard C/C++ 

development environment. VHDL function generator design is 

simulated using ModelSim XE III 6.0a. It turned out to be 

significantly slower than the SystemC simulation environments. 
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Disadvantages of using SystemC design flow can be stated as below :  

 

• In the market, there are lots of high-performance HDL synthesis 

tools and a little number of well developed SystemC tools. Current 

SystemC synthesis tool performances are not satisfactory.  

• There are problems with error definitions reported by SystemC 

library. Some error origins are not found with justifiable expenses.  

• There are various SystemC tools that translate the SystemC 

descriptions to VHDL or Verilog. However each has special 

recommendation in order to write synthesizable SystemC code. This 

damages the think of vendor independent SystemC language. 

• Translation of the SystemC descriptions to VHDL generates 

redundant logic and results in utilization of more hardware resources 

when implementation into hardware. SystemCrafter’s synthesis tool 

was used to translate SystemC descriptions of function generator. It 

showed that the hardware resource utilization for translated VHDL 

code is more than resource utilization for hand-written VHDL code.  

• After translation of SystemC descriptions to VHDL, the designer 

can not make refinements in the generated VHDL code easily. The 

translated code includes redundant logic and has a different writing 

style that can not be traced easily. 

• Synthesizable VHDL description may include more than one 

process each of which may have different signals in the sensitivity 

list. However, SystemCrafter’s synthesis tool requires that all the 

processes in the module must have same source in their sensitivity 

lists. This restricts the effective process utilization and undermines 

the idea of writing same synthesizable code using SystemC language 

easier. During the translation of SystemC descriptions, each process 

defined in the module is written into different design files and this 

makes tracing the whole design code difficult. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

In this thesis, a direct digital synthesis (DDS) based function generator 

design core having I2C and UART communication interfaces is presented, 

defined and implemented using two digital hardware modeling/design languages 

namely SystemC and VHDL. The simulation, synthesis and applicability 

performances of these two design languages are compared by following all 

hardware design stages which starts with specification definition and ends with 

generation of gate-level netlist. The VHDL function generator descriptions are 

also implemented into FPGA and verified with hardware tests. SystemC to 

hardware flow is followed by translating UART baud generator SystemC 

descriptions to VHDL and synthesizing the translated code. The synthesis 

performances of the hand-written and translated VHDL codes are compared in 

terms of approximate hardware resource utilization during implementation into 

hardware. The design of DDS function generator using both SystemC and VHDL 

enables observing SystemC language’s power and potential in the hardware 

design flow. The weak aspects of SystemC design flow are also observed and 

presented in this study.  

The specifications of designed DDS function generator is determined 

upon a detailed research about the present commercial DDS, Numerically 

Controlled Oscillator (NCO) and function generator ICs or Intellectual Properties 

(IPs) in the market. There are limited numbers of function generator ICs that use 
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DDS technique and generate higher frequency outputs. Moreover, most of these 

ICs do not allow the digital adjustment of waveform amplitude. Various DDS and 

NCO IPs are present in the market however; ready to use DDS function generator 

IP has not been found. Moreover, most of DDS and NCO IPs do not allow 

amplitude adjustment also. The designed DDS function generator core combines 

DDS module and popular standard serial communication interfaces namely I2C 

and UART. The integration of I2C receiver module within a DDS function 

generator gives a great flexibility for remote control of the design by simple 

microprocessors supporting I2C. In the market, ICs or IPs which integrate DDS 

and I2C has not been found and this integration is proposed in this study. The 

designed function generator presents amplitude adjustment, external trigger for 

waveform generation and FSK/PSK modulation capabilities also. It is verified 

with adequate number of test bench modules using both SystemC and VHDL 

verification environments. Besides, VHDL design description is implemented 

into FPGA and verified with hardware based tests. Since the designed core has 

UART communication interface, the function generator’s output waveform 

configuration parameters have been loaded to FPGA from a personal computer’s 

UART port. 

The DDS modules seem to become popular for periodical waveform 

generation applications in the last years. Periodical waveforms are generated by 

function generators that use various waveform production techniques. They can 

generate various waveform outputs at a desired frequency, phase and amplitude. 

These waveforms are generated for different applications such as new product 

testing, clock signal generation and carrier wave generation for communication 

systems. The function generator implemented in this study uses DDS technique to 

generate periodical waveforms. As the name implies, the analog sine wave is 

completely generated by digital circuits using this technique. The designed 

function generator combines DDS core module with two serial peripheral 

interfaces (I2C and UART), internal controller module, waveform generation 

logic (for waves except sine wave) and amplitude control logic.  
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A DDS function generator core written using VHDL is implemented into 

Xilinx’s Virtex4 series V4FX12 FPGA. The simulation results presented in 

Chapter 4 show that the function generator design suggested in this study is 

applicable to the FPGAs. The implementation results show that the maximum 

internal logic delay of function generator for this FPGA technology is smaller 

than 8 ns and this allows operation using nearly 125 MHz DDS reference clock. 

Maximum frequency of periodical waveform output is 40 MHz for this reference 

clock rate. It is observed that function generator core proposed in this study can 

be implemented into FPGAs having limited hardware resources and controlled by 

processors having I2C or UART serial interfaces. The presented function 

generator core can generate higher frequency outputs when compared with 

Analog Device’s AD9833 programmable waveform generator IC which achieves 

maximum 12.5 MHz output. Besides, this waveform generator IC does not allow 

digital amplitude adjustment. The presented function generator design is also a 

case study sample to compare SystemC and VHDL hardware design flows. The 

design can be more developed with dedicated effort to prepare and add innovative 

design modules to present structure. 

SystemC appeared to provide a modeling platform for system level 

designs. The ability to model entire system using a single platform is a critical 

capability for system designers. In this platform, the designers can iterate the 

designs faster and more cost effectively. In the last years, SystemC gained 

popularity as a hardware design language which can replace traditional HDL 

based design languages such as VHDL and Verilog. Since using a single platform 

and single language for hardware modeling, design and verification will be very 

effective in time and cost. Its capability in hardware and software co-verification 

and co-design is also an advantage for electronics industry. SystemC is supported 

by various vendors to synthesize the written code directly. However, the present 

synthesis tools are not satisfactory in performance when compared to traditional 

HDL synthesis tools. 

Since both SystemC and VHDL hardware design flows are followed 

during this study, the different design and verification platforms had to be utilized 
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due to lack of design tools supporting both design flows. The design descriptions 

are written using Microsoft Visual Studio 6.0 and Xilinx ISE design development 

environment. The SystemC simulation waveforms are observed using GTKWave 

waveform viewer software after the generation of simulation file. The VHDL 

simulations are realized using ModelSim simulation tool.  

In this study, SystemC to hardware flow is also illustrated by 

synthesizing the UART baud generator module into hardware. There are two 

different approaches for synthesizing SystemC descriptions. These are (i) direct 

synthesis of the SystemC descriptions and (ii) synthesis of VHDL codes after 

SystemC-VHDL translation. The first one is a simple, very effective approach, 

but unfortunately there is not sufficient number of well developed tools in today’s 

electronic market. For this reason, first the SystemC descriptions have been 

translated to the VHDL codes and then VHDL-based synthesis cycle is followed. 

As the translation software, SystemCrafter SC SystemC synthesis tool is used.  

The automatic translation of SystemC descriptions results in introduction 

of redundant logic code and the designer may not trace the generated VHDL 

code. The modifications may not be done on automatically generated VHDL code 

easily. The modifications must be done in the SystemC descriptions, and then the 

descriptions must be translated to VHDL again. During the synthesis, some of 

this redundant logic is removed depending on the capability of the synthesis tool. 

However it is observed that SystemC to VHDL translation is not an effective 

solution from the removing redundancy point. In this study, it is shown that the 

translated VHDL code utilizes hardware resources nearly twice as much as hand-

written VHDL code. However, this hardware utilization can be reduced by more 

powerful translation software or direct synthesis tools.  

When writing descriptions with the synthesizable subset of the SystemC 

language, coding becomes similar to the syntax of VHDL. However there are 

more rules and limitations in order to write synthesizable SystemC code when it 

is compared with VHDL. For instance, SystemCrafter SC synthesis tool does not 

accept processes that include different signals in their sensitivity list. Due to these 

limitations, whole function generator description could not be translated to 
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VHDL. The designs including only sequential processes which are sensitive to a 

single and same clock edge (like microprocessor applications) can be easily 

implemented using SystemC. However, DSP applications generally include both 

combinatorial logic and sequential processes sensitive to many different signals. 

Hence, it is very difficult to write the synthesizable SystemC descriptions for 

such applications. 

Finally, SystemC brings several advantages such as low simulation 

times, effective modeling and hardware/software co-design/co-verification. 

However it has even unsolved problems defined in this study. The SystemC to 

hardware design flow will likely be further investigated in the future. The 

designed DDS function generator core allows generating standard waveforms and 

making FSK/PSK modulation. The core is controlled using I2C and UART 

interfaces and has trigger and amplitude scaling capabilities. The modular 

architecture of the core lets to improve the design sub-modules or replace them 

with new ones. The design architecture is suitable to make arbitrary waveform 

generation possible. On the other hand, in addition to the presented design, the 

sizes of the look-up table and phase accumulator can be enlarged to have better 

resolutions. The look-up table holding the arbitrary waveform samples can be 

added and its words can be refreshed by loading the samples of various 

waveforms using communication interfaces. Besides, high speed Serial Interface 

Peripheral (SPI) modules may be added to load the waveform configuration data 

more quickly.  
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APPENDIX A 

STRUCTURE OF CD-ROM DIRECTORY 

The source codes and executable files of the simulations performed in this study 

are given in the CD attached at the back cover of this thesis. The table gives the 

folder structure of the CD. 

 

 

Table A-1 Structure of CD-ROM Directory  

SystemC_Files/ Includes SystemC design and simulation files 

SRC/ SystemC Source Files 

TB/ SystemC Test Bench Files 

MAIN/ SystemC Main Files 

 

SIM/ SystemC Simulation Results 

VHDL_Files/ Includes VHDL design and simulation files 

SRC/ VHDL Source Files 

TB/ VHDL Test Bench Files 

SIM/ VHDL Simulation Results 

 

HARD/ Hardware Verification 

SC_to_VHDL/ Includes SystemC-to-VHDL translation files 

SC_SRC/ SystemC Source Files  

VHDL_SRC/ Translated VHDL Source Files 
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APPENDIX B 

REFERENCE DESIGNS 

B.1 ANALOG DEVICES AD9833 

The AD9833 is a low power programmable waveform generator capable of 

producing sine, triangular and square wave outputs. The specifications and 

functional block diagram of AD9833 are given below. 

• Digitally programmable frequency and phase 

• 0 MHz to 12.5 MHz output frequency range 

• 28-bit frequency resolution (0.1 Hz for 25 MHz reference clock) 

• 12-bit phase offset resolution 

• 3-Wire Serial I/O Port (SPI) Interface 

 

Figure B-1 Analog Devices AD9833 Functional Block Diagram 
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B.2 ANALOG DEVICES AD9959 

The AD9959 consists of four DDS cores that provide independent frequency, 

phase and amplitude control between channels. The specifications and functional 

block diagram of AD9959 are given below. 

• Four synchronized DDS channels 

• Independent frequency/phase/amplitude control between channels 

• Linear frequency/phase/amplitude sweeping capability 

• Individually programmable DAC full scale currents 

• Four integrated 10-bit D/A converters 

• 32-bit frequency tuning resolution frequency registers 

• 14-bit phase offset resolution 

• 10-bit output amplitude scaling resolution  

• Serial I/O Port (SPI) with enhanced data throughput  

 

Figure B-2 Analog Devices AD9959 Functional Block Diagram 
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B.3 XILINX NUMERICALLY CONTROLLED OSCILLATOR V1.0.3 

Xilinx’s Numerically Controlled Oscillator (NCO) IP module generates a digital 

“staircase” approximation to a sine (or cosine) wave, the frequency of which is 

determined by the input phase increment value. The output can either be used 

directly, for example, by a digital multiplier, or can be passed into a Digital-to-

Analog Converter (DAC) for use in the analog domain. The specifications and 

parameterization window snapshot of the NCO IP are given below. 

 

• Input phase increment resolution from 3-30 bits 

• Output amplitude resolution from 4-16 bits 

• Frequency resolution control via phase accumulator word (3-30 bits) 

• Phase noise control via programmable phase resolution (3-10 bits) 

• Sine/cosine outputs available 

• Excellent for high-speed I/Q modulation/demodulation 

 

Figure B-3 Xilinx NCO V1.0.3 Parameterization Window 
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B.4 XILINX DDS COMPILER V1.0 

Xilinx’s DDS Compiler IP module is the newest DDS IP in the market and it 

presents spurious specifications for DDS applications. The specifications and 

parameterization window snapshot of the DDS Compiler IP are given below. 

 

• Sine, cosine, or quadrature outputs 

• Look-up table can be allocated to distributed or block memory 

• Frequency resolution control via phase accumulator word (3-32 bits) 

• Output amplitude resolution from 4-20 bits 

• Support up to 16 independent channels 

• Optional phase offset capability allows multiple synthesizers with 

precisely controlled phase differences 

 

Figure B-4 Xilinx DDS Compiler V1.0 Parameterization Window 
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APPENDIX C 

HARDWARE TEST TOOLS 

C.1 MEMEC P160 ANALOG MODULE 

The Memec Design P160 Analog Module kit includes the following: 

• Two 12-bit 53-Msps A/D converters 

• AC coupled, single-ended, 1 to 1.5 Vp-p analog input 

• Low pass input filter with fc = 19.4 MHz (for A/D converters) 

• Two 12-bit 165 Msps D/A converters 

• Single-ended, 2 Vp-p analog output, AC coupled output optional 

• Low pass output filter with fc = 28.4 MHz (for D/A converters) 

 

Figure C-1 Memec P160 Analog Module  
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C.2 MEMEC FX LC DEVELOPMENT BOARD 

The Memec Development kit includes the following: 

• Xilinx XC4VFX12-10FF668 FPGA 

• 64MB of DDR SDRAM and 4MB of Flash 

• 10/100/1000 Ethernet PHY 

• On-board 100MHz LVTTL Oscillator and LVTTL Oscillator Socket 

• P160 Connectors and LCD Panel 

• Platform Flash configuration PROM 

• PC4 JTAG Programming/Configuration Port 

• SystemACE™ Module Connector 

• CPU JTAG Port, CPU Debug Port, RS232 Port and USB-RS232 Bridge 

• Four User LEDs , Four User Push Button Switches and DIP Switch 

 

Figure C-2 Memec Virtex-4 FX LC Development Kit 

 


