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ABSTRACT 

 

 

PAIRWISE MULTIPLE COMPARISONS UNDER SHORT-TAILED 

SYMMETRIC DISTRIBUTION 

 

 

 
Balcı, Sibel 

M.S., Department of Statistics 

Supervisor : Assoc. Prof. Dr. Ayşen (Dener) Akkaya 

Co-Supervisor: Prof. Dr. H. Öztaş Ayhan 

 

May 2007, 100 pages 
 

 

In this thesis, pairwise multiple comparisons and multiple comparisons with a 

control are studied when the observations have short-tailed symmetric 

distributions. 

 

Under non-normality, the testing procedure is given and Huber estimators, 

trimmed mean with winsorized standard deviation, modified maximum 

likelihood estimators and ordinary sample mean and sample variance used in 

this procedure are reviewed. 

 

Finally, robustness properties of the stated estimators are compared with each 

other and it is shown that the test based on the modified maximum likelihood 

estimators has better robustness properties under short-tailed symmetric 

distribution. 

 

Key words: Pairwise multiple comparison, short-tailed symmetric distribution, 

robust estimators, modified maximum likelihood estimation. 
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ÖZ 

 
 

KISA KUYRUKLU SİMETRİK DAĞILIM ALTINDA İKİLİ ÇOKLU 
KARŞILAŞTIRMALAR 

 
 
 

Balcı, Sibel 

Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Doç. Dr. Ayşen Akkaya 

Ortak Tez Yöneticisi: Prof. Dr. H. Öztaş Ayhan 

 

Mayıs 2007, 100 sayfa 

 

 

Bu tezde, gözlemler kısa kuyruklu simetrik dağılıma sahip olduğunda ikili 

çoklu karşılatırmalar ve kontrol grubuyla çoklu karşılaştırmalar çalışılmıştır. 

 

Normal olmayan dağılımlar altında test prosedürü verilmiş ve bu prosedürde 

kullanılan Huber tahmin edicileri, winsorized standart sapma ile budanmış 

ortalama, uyarlanmış en çok olabilirlik tahmin edicileri ve örneklem ortalaması 

ve varyansı sunulmuştur. 

 

Son olarak, kısa kuyruklu simetrik dağılım altında belirtilen tahmin edicilerin 

sağlamlık özellikleri karşılaştırılmış ve uyarlanmış en çok olabilirlik tahmin 

edicisine dayanan testin daha iyi sağlamlık özelliklerine sahip olduğu 

gösterilmiştir. 

 

Anahtar Kelimeler: İkili çoklu karşılaştırmalar, kısa kuyruklu simetrik dağılım, 

sağlam tahmin ediciler, uyarlanmış en çok olabilirlik tahmini. 
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CHAPTER 1 

 
 

INTRODUCTION 
 
 
 

The problem of multiple comparisons is encountered in food and drug industries 

and related administrative and research establishment. The aim of the multiple 

comparisons is to compare the average effects of the treatment means k21 µ,...,µ,µ  

to determine which treatments are preferable. In comparing more than two 

treatment means, an ANOVA F-test shows whether the treatment means are 

significantly different from each other or not, but it does not show which pair of 

means differ. In this case, pairwise multiple comparison procedures are used. 

 

A control treatment is required when the general effectiveness of the treatments 

under study is not known, or when the general effectiveness of the treatments is 

known but is not consistent under all conditions (Neter, Wasserman, Kutner, 1985). 

In this case, multiple comparison with a control procedures are used. 

 

Most of the pairwise multiple comparisons and the multiple comparison with a 

control procedures depend on normality assumption. In practice, however, 

populations have non-normal distributions so frequently. In addition, true 

underlying distribution can be different from the assumed distribution. Therefore, it 

is very important to develop estimators of location and the associated variance 

under non-normality. A number of studies have been carried out for pairwise 

multiple comparisons. Tukey (1953) proposed T-method which is based on the 

studentized range distribution. The T-method is used for equal sample sizes and 

homogeneous variances. Tukey (1953), Kramer (1956), and Duncan (1957) 

modified this method for unequal sample sizes. Tamhane (1979) and Dunnett 
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(1980 b) studied the pairwise multiple comparisons when the treatment variances 

are not equal. A wise choice of the robust estimators was given by Andrews et al. 

(1972). Gross (1976) used a set of estimators of location with associated variance 

estimates and examined the robustness of an estimator both by its experimentwise 

error rates (robustness of validity) and its expected length of confidence interval 

(robustness of efficiency). Dunnett (1982) compared the use of several robust 

estimators in a modified T-method for pairwise multiple comparisons with the 

sample mean and sample variance and with the k-sample rank sum test. The robust 

estimators used in these studies are not efficient for short-tailed symmetric 

distributions (Tiku and Vaughan, 1999). However, Akkaya and Tiku (2006) 

showed that the modified maximum likelihood (MML) estimators are highly 

efficient and robust for short-tailed symmetric distributions.  

 

The main aim of this thesis is to incorporate these estimates in both pairwise 

multiple comparisons and pairwise multiple comparisons with a control group and 

examine the efficiency and robustness of the resulting estimates through a 

comprehensive simulation study. Furthermore, the robustness properties are 

examined for the multiple comparisons with a control group when the model has 

inliers. 

 

The organization of this thesis is as follows: Chapter 1 briefly presents historical 

review of the pairwise multiple comparisons and multiple comparisons with a 

control and gives a theoretical background of the techniques used throughout the 

thesis. In Chapter 2, the robust estimators used for pairwise multiple comparisons 

and multiple comparisons with a control are reviewed. Also, the modified 

maximum likelihood estimators of location and scale parameters are given under 

short-tailed symmetric distributions. Chapter 3 gives the efficiency, power and 

robustness comparisons of the robust estimators for pairwise multiple comparisons 
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and multiple comparisons with a control. Finally, a real life application and 

conclusions are given in Chapter 4. 

 

1.1 Historical Perspective 

 

1.1.1 Multiple Comparisons Under Normality 

 

Consider the one-way fixed effects model 

 

   ijiij eµy +=  ; in ..., 1,j  k;1,...,i ==                                     (1.1.1.1) 

 

where ijy  is the thj  observation of the thi  treatment, iµ  is the mean of the thi  

treatment, ije  are the error terms and in  is the number of observations in the thi  

treatment. Here, it is assumed that ije  are distributed independently as )σ N(0, 2 . 

 

Since 0)E(e ij =  and 2

ij σ)Var(e = , iij µ)E(Y =  and 2

ij σ)Var(Y = . Also the 

observations ijY  are independent and normally distributed since ije  is distributed 

independently as normal. 

 

The maximum likelihood estimators of iµ  and 2σ  are as follows: 

 

   i.i yµ̂ =      and      
kn

)y(y

MSσ̂
T

k

1i

n

1j

2

i.ij

E

2

i

−

−

==

∑∑
= =

                    (1.1.1.2) 

 

where 
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1j
ij
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1
y     and      ∑

=

=
k

1i
iT nn . 

 

To test the equality of k treatment means 

 

   k210 µ...µµ:H ===                                                             (1.1.1.3) 

   :H1 At least one iµ  is different from the others 

 

the analysis of variance procedure is used. This procedure partitions the total sum 

of squares which is the measure of total variability of the ijy  observations. The 

total sum of squares denoted by TSS  is  

 

   ∑∑
= =

−=
k

1i

n

1j

2

..ijT

i

)y(ySS                                                            (1.1.1.4) 

 

where 

 

   ∑∑
= =

=
k

1i

n

1j
ij

T

..

i

y
n

1
y . 

 

Total sum of squares can be decomposed as follows: 

 

   ∑∑∑∑∑
= === =

−+−=−
k

1i

n

1j

2

i.ij

k

1i

2

..i.i

k

1i

n

1j

2

..ij

ii

)y(y)yy(n)y(y              (1.1.1.5) 

 

The first term on the right is the treatment sum of squares denoted by TrSS  and the 

second term is the error sum of squares denoted by ESS . TrSS  is a measure of the 

extent of differences between treatment means and ESS  is the measure of the 
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random variation of the observations around the respective treatment sample 

means. 

 

Under the null hypothesis 0H  given in (1.1.1.3 ), 
2

T

σ

SS
, 

2

Tr

σ

SS
, and 

2

R

σ

SS
 have chi-

square distributions with 1n T − , 1k − , and kn T −  degrees of freedom, 

respectively. In addition, according to Cochran’s theorem, 
2

Tr

σ

SS
, and 

2

E

σ

SS
 are 

independent random variables. Therefore, when the null hypothesis is true, the test 

statistic 

 

     
k)/(nSS

1)/(kSS
F

TE

Tr

−

−
=                                            (1.1.1.6) 

 

has central F distribution with 1k −  and kn T −  degrees of freedom. 

 

The large values of F lead to rejection of the null hypothesis 0H . Thus, decision 

rule is that the null hypothesis is rejected for the level of significance α  if F is 

greater than or equal to the tabulated value k)n 1,k α;F(1 T −−− . 

 

Type I error is the probability of rejecting the null hypothesis 0H  when it is true. 

Thus, Type I error of the test denoted by α  is 

 

  k))n1,kα;F(1P(Fα T −−−≥= .                                           (1.1.1.7) 

 

The power of the test is the probability of rejecting the null hypothesis 0H  when 

the alternative hypothesis 1H  is true. Under alternative hypothesis 1H , the test 
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statistic has non-central F distribution with 1k −  and kn T −  degrees of freedom 

and non-centrality parameter λ  which is given by 

 

  
k

)µ(µn

σ

1
λ

k

1i

2

.ii∑
=

−

=                                             (1.1.1.8)     

 

where 

 

  
T

k

1i
ii

.
n

µn

µ
∑
== . 

 

Hence, the power of the test denoted by β1−  is 

 

  λ))|kn1,kα;F(1P(Fβ-1 T −−−≥= .                                  (1.1.1.9) 

 

i) Pairwise Multiple Comparisons 

 

If the ANOVA F test leads to rejection of the null hypothesis 0H  given in 

(1.1.1.3), the pairwise multiple comparisons method are used to determine which 

pair of treatments differ. 

 

Consider the one-way model given in (1.1.1.1). In testing the pairwise equality of 

the treatment means 

 

  ji0 µµ:H =  j)i k; ..., 2, 1,j i,for  ( ≠=                              (1.1.1.10) 

 

  ji1 µµ:H ≠  
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the difference γ  between two treatment means 

 

  ji µµγ −= ,  ji k; ..., 2, 1,j i, ≠=                                          (1.1.1.11) 

 

is estimated. This difference is called as pairwise comparisons. There are k(k-1)/2 

pairwise differences of treatments.  

 

A point estimator of difference γ  is 

 

  j.i. yyγ̂ −= ,  ji k; ..., 2, 1,j i, ≠=                                         (1.1.1.12) 

 

where  i.y  and j.y  denote the sample means for the thi  and thj  treatment, 

respectively.  

 

γ̂  is an unbiased estimator of γ : 

 

  ji µµ)γ̂E( −= .                                                                      (1.1.1.13) 

 

The variance of γ̂  is given as follows: 

 

  )
n

1

n

1
(σ)γ̂V(

ji

2 += .                                                            (1.1.1.14) 

 

Also, the estimated variance of γ̂ , denoted by )γ̂(s2 , is given by 

 

  )
n

1

n

1
(MS)γ̂(s

ji

E

2 += .                                                        (1.1.1.15) 
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There are six methods developed for the pairwise comparisons: 

 

• The least significant difference (LSD) method 

• Duncan’s multiple range test 

• The Newman-Keuls test 

• Tukey’s test 

• Scheffé method 

• Bonferroni method 

 

The Least Significant Difference (LSD) Method 

 

For the one-way model given in (1.1.1.1), LSD method uses the usual t-statistic 

 

  














−

−
=

ji

E

j.i.

n

1

n

1
MS

yy
t                                                            (1.1.1.16) 

 

 

having t-distribution with kn T −  degrees of freedom. 

 

Here, 

 

  ∑
=

=
in

1j
ij

i

i. y
n

1
y  ,                                                                     (1.1.1.17) 

 

  
kn

)y(y

MS
T

k

1i

n

1j

2

i.ij

E

i

−

−

=

∑∑
= =

                                                       (1.1.1.18) 
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and 

 

       ∑
=

=
k

1i
iT nn .                                                                           (1.1.1.19) 

 

Thus, )α(1−  confidence intervals for the difference γ  are given by 

 

  













+±− −−

ji

Ek)nα/2;(1j.i.
n

1

n

1
MSt)yy(

T
.                              (1.1.1.20) 

 

To test the hypothesis given in (1.1.1.10), the least significant difference (LSD)  

 

  













+= −−

ji

Ek)nα/2;(1
n

1

n

1
MStLSD

T
                                      (1.1.1.21) 

 

is calculated. If the model is balanced, i.e., nn...nn k21 ==== , then 

 

  
n

2MS
tLSD E

k)nα/2;(1 T −−= .                                                  (1.1.1.22) 

 

The null hypothesis 0H  is rejected if LSDyy j.i. >− . 

 

Duncan’s Multiple Range Test 

 

Multiple range test was developed by Duncan (1955). This test arranges the sample 

mean for the treatment in an ascending order and calculates the standard error of 

each sample mean. For the balanced one-way model, the standard error is 

calculated as follows: 
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n

MS
S E

yi.
=  .                                                                     (1.1.1.23) 

 

For unbalanced one-way model, the harmonic mean hn  

 

  

∑
=

=
k

1i i

h

n

1

k
n                                                                            (1.1.1.24) 

 

is used instead of n in (1.1.1.23). 

 

To test the hypothesis given in (1.1.1.10), the least significant ranges  

 

  
i..yαp f)S(p,rR =     for   k ..., 3, 2,p =                                   (1.1.1.25) 

 

are calculated. Here f)(p,rα  is the constant where α  is the significance level and f 

is the degrees of freedom for error. The values of f)(p,rα  are given in Duncan 

(1955). 

 

Then, the observed differences between means are tested, beginning with largest 

versus smallest, which would be compared with the least significant range kR . 

Next, the difference of the largest and the second smallest is computed and 

compared with the least significant range 1-kR . These comparisons are continued 

until all means have been compared with the largest mean. Finally, the difference 

of the second largest mean and the smallest is computed and compared against the 

least significant range 1-kR . This process is continued until the differences of all 

possible k(k-1)/2 pairs of means have been considered (Montgomery, 1976). 
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If difference between two treatment means is greater than the corresponding least 

significant range, the null hypothesis 0H  is rejected. 

 

The Newman-Keuls Test 

 

This test was devised by Newman (1939). Since new interest in Newman’s test was 

generated by Keuls (1952), the procedure is usually called the Newman-Keuls test 

(Montgomery, 1976). 

 

The procedure used in the test depends on the studentized range statistic. The 

studentized range is defined as 

 

  

n

MS

yy
q

E

minmax −
=                                                                     (1.1.1.26) 

 

where maxy  is the largest sample mean and miny  is the smallest sample mean. 

 

To test the hypothesis given in (1.1.1.10), the critical values 

 

  
i.yαp f)S(p,qK =     for  k ..., 3, 2,p =                                   (1.1.1.27) 

 

are calculated. Here, f)(p,q α represented by the table of studentized range 

distribution is the upper α  percentage point of the studentized range for groups of 

means of size p, α  is the significance level, and f is the degrees of freedom for 

error.  

 

The comparison procedure for extreme pairs of means in groups of size p is the 

same as in Duncan’s multiple range test. 
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Tukey’s Test  

 

This test was proposed by Tukey (1953). It is based on the studentized range 

distribution. 

 

To test the hypothesis 0H , the critical value 

 

  
i.yαα f)S(k,qT =                                                                     (1.1.1.28) 

 

is calculated. Here, f)(k,q α  is the upper α  percentage point of the studentized 

range, α  is the significance level, f is the degrees of freedom for error. In this test, 

a single critical value is calculated for all comparisons. 

 

If the absolute value of difference between two sample mean is greater than the 

critical value αT , the null hypothesis 0H  given in (1.1.1.10) is rejected. 

   

Scheffé Method 

 

When the aim is to test all possible contrasts among the factor treatment means, the 

Scheffé method of multiple comparisons can be used. Since each difference 

between two treatment means is a special case of a contrast, this method, also, can 

be used for pairwise multiple comparisons. 

 

The Scheffé method is exact regardless to the equality of sample sizes. In this 

method, all contrasts 

 

  ∑= iiµcL  where   0ci =∑                                          (1.1.1.29) 
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are estimated.  

 

An unbiased estimator of L is 

 

  ∑= i.i ycL̂                                                                            (1.1.1.30) 

 

where i.y  denotes the sample mean for the thi  treatment. The estimated variance of 

L̂ , denoted by )L̂(s2 , is  

 

  ∑=
i

2

i
E

2

n

c
MS)L̂(s  .                                                             (1.1.1.31) 

 

The confidence interval for L is given by 

 

  )L̂Ss(L̂ m                                                                              (1.1.1.32) 

 

where 

 

  k)n 1,k α;1)F(1(kS T −−−−= . 

 

The null hypothesis 0H  given in (1.1.1.10) is rejected if )L̂Ss(L̂ > . 

 

Bonferroni Method 

 

The Bonferroni method of multiple comparisons is used for the pairwise 

comparisons of contrasts, or linear combinations of the factor level means. 
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The Bonferroni method can be applied for both equal and unequal sample sizes. 

 

Let iL  (i=1, 2, …, g) be the linear combinations of the treatment means. Then the 

Bonferroni confidence limits for g linear combinations are given by 

 

  )L̂Bs(L̂ ii ±                                                                           (1.1.1.33) 

 

where 

 

  r)nα/2g;t(1B t −−= . 

 

Since pairwise comparisons are special cases of linear combinations, these 

confidence limits can be used for testing pairwise differences of the treatment 

means. 

 

The null hypothesis 0H  given in (1.1.1.10) is rejected if )L̂Bs(L̂ ii > . 

 

ii) Multiple Comparisons with a Control 

 

The control group may be a placebo, or a ‘standard’ treatment , or any other 

‘specified’ treatment. The experimental setting for a control group must be 

identical to the setting for the other treatments. 

 

To compare the treatment and control means, the difference δ  between each 

treatment mean and the control mean 

 

  ki µµδ −= ,    1k ..., 2, 1,i −=                                              (1.1.1.34) 
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is estimated. Here, iµ  is the mean of the thi  treatment and kµ  is the mean of the 

control group. 

 

Balanced One –Way Model 

 

Consider the balanced one-way model 

 

  ijiij eµy +=      , n ..., 2, 1,j k; ..., 2, 1,i ==                          (1.1.1.35) 

 

where ijy  is the thj  observation for the thi  treatment, iµ  is the mean of the thi  

treatment, and ije ’s are iid normal with mean 0 and  variance 2σ . Here, 2σ  is not 

known. 

 

The point estimators of iµ  and 2σ  are 

 

  i.i yµ̂ =    and                                                                         (1.1.1.36) 

 

  
1)k(n

)y(y

MSEσ̂

k

1i

n

1j

2

i.ij

2

−

−

==

∑∑
= =

                                              (1.1.1.37) 

 

where 

 

∑
=

=
n

1j
iji. y

n

1
y . 

 



 16 

For the balanced one-way model given in (1.1.1.35), the simultaneous confidence 

intervals for the difference between each treatment mean and mean of the control 

group, ki µµ −  ( 1k ..., 2, 1,i −= ), are given by Dunnett (1964) as follows: 

 

   2/nσ̂v)1,(kdµ̂µ̂ αki −±−                                                 (1.1.1.38) 

 

where d is the tabulated constant for the joint significance level of α , k-1, and 

1)k(nv −= . 

 

The null hypothesis  

 

   1)k ..., 2, 1,(i    µµ:H ki0 −==     against                          (1.1.1.39) 

      µµ:H ki1 ≠  

 

is rejected if 2/nσ̂v)1,(kdµ̂µ̂ αki −>−  at the level of significance α . 

 

Unbalanced One-Way Model 

 

Consider the unbalanced one-way model  

 

  ijiij eµy += , in ..., 2, 1,j k; ..., 2, 1,i ==                              (1.1.1.40) 

 

where ijy  is the thj  observation for the thi  treatment, iµ  is the mean of the thi  

treatment, and ije ’s are iid normal with mean 0 and  variance 2σ . Here, 2σ  is not 

known. 

 

The point estimators of iµ  and 2σ  are 



 17 

  i.i yµ̂ =    and                                                                         (1.1.1.41) 

 

 

  
kn

)y(y

MSEσ̂
T

k

1i

n

1j

2

i.ij

2

i

−

−

==

∑∑
= =

                                              (1.1.1.42) 

 

where 

 

∑
=

=
in

1j
ij

i

i. y
n

1
y      and     ∑

=

=
k

1i
iT nn . 

 

i) Dunnett’s Method 

 

For the unbalanced one-way model given in (1.1.1.40), the simultaneous 

confidence intervals for the difference between treatment and control means, 

ki µµ −  ( 1k ..., 2, 1,i −= ), are given by Dunnett (1964) as follows: 

 

  
ki

αki
n

1

n

1
σ̂v)1,(kdµ̂µ̂ +−±−                                          (1.1.1.43) 

 

where d is the tabulated constant for the joint significance level of α , k-1, and 

knv T −= . 

 

The null hypothesis  

 

  1)k ..., 2, 1,(i    µµ:H ki0 −==     against                          (1.1.1.44) 

 

      µµ:H ki1 ≠  
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is rejected if 
ki

αki
n

1

n

1
σ̂v)1,(kdµ̂µ̂ +−>−  at the level of significance α . 

 

ii) The Miller-Winer Method 

 

For the unbalanced one-way model given in (1.1.1.40), the Miller-Winer method 

uses the harmonic mean of the treatment sample sizes, denoted by n~ , 

 

   

1

1k1

1k

n

1
...

n

1

n~

−

−



















−

++

=                                                          (1.1.1.45) 

 

as the common sample size excluding the control group in the Dunnett’s method. 

Thus, the simultaneous confidence intervals for the differences between treatment 

and control means are as follows: 

 

   
k

αki
n

1

n~
1

σ̂v)1,(kdµ̂µ̂ +−±−                                            (1.1.1.46) 

 

where d is the tabulated constant for the joint significance level of α , k-1, and 

knv T −= . 

 

The null hypothesis  

 

   1)k ..., 2, 1,(i    µµ:H ki0 −==     against                          (1.1.1.47) 

      µµ:H ki1 ≠  
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is rejected if 
k

αki
n

1

n~
1

σ̂v)1,(kdµ̂µ̂ +−>−  at the level of significance α . 

 

1.1.2 Robustness 

 

Most statistical procedures such as classical t-test and F-test are based on normality 

assumption. In practice, however, populations have non-normal distributions 

frequently and assuming normality may lead to wrong statistical inferences. On the 

other hand, the functional form of the underlying distribution can not be 

determined exactly. There are several procedures such as graph-plotting techniques 

and goodness-of-fit tests to provide information about the underlying distribution. 

These procedures can distinguish normal from extremely non-normal symmetric 

distributions and extremely skew distributions, however, they are not very 

successful in distinguishing normal from moderately non-normal distributions. In 

these situations, robust estimation and hypothesis testing procedures are used. 

 

An estimator is called robust if it is fully efficient (or nearly so) for an assumed 

distribution but maintains high efficiency for plausible alternatives. A fully 

efficient estimator is one which is unbiased and its variance is equal to the Cramer-

Rao minimum variance bound. A statistical test has been traditionally called robust 

if both its Type I error and power are not affected much by departures from 

normality (Tiku and Akkaya, 2004). 

 

In this study, it is assumed that observations are independent and have short-tailed 

symmetric distribution. 
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1.2 Theoretical Background   

 

1.2.1 Short-Tailed Symmetric Distribution 

 

The family of short-tailed symmetric distributions (STS) was introduced by Tiku 

and Vaughan (1999). This family is given by 

 

p
2

1

r
2

1
σ

µy

k

1
1

σ

µy

2r

λ
1

σ

1
f(y):)aSTS(r,
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+∝ ,   ∞<<∞− y                                                                                                             

(1.2.1.1) 

 

where r is an constant, 
1ar

r
λ

−
= , ra1 < , 

2

3
pk1 −=  and 

2

3
rp +> . The kurtosis 

2

24 /µµ  is less than 3 for all values of p. For ∞=p , a special form of f(y)  is 

obtained, i.e.,  

22 /2σµ)(y

r
2

1 e
σ

µy

2r

λ
1

σ2π

C
f(y) −−




















 −
+=  ,   ∞<<∞− y                 (1.2.1.2) 

 

where 1C  is constant which makes 

 

 1.f(y)dy =∫
∞

∞−

 

 

Since 

 

)j!/(2(2j)!dtet
2π

1 j/2t2j 2

=∫
∞

∞−

−                                                            (1.2.1.3) 

 



 21 

the value of 1C  can be calculated easily; 

 





















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


= ∑

=

r

0j
j

j

1
(j)!2

(2j)!

2r

λ

j

r
1C .                                                             (1.2.1.4) 

 

All odd moments of Y are zero because of symmetry. Mean and variance of Y are 

given by 

 

 µE(Y) =  and                                                                                     (1.2.1.5) 

 

 ∑
=

+ +

+
















==

r

0j

2

1j

j

1

2

2 σ
1)!(j2

1))!(2(j

2r

λ

j

r
CσµVar(Y) .                                (1.2.1.6) 

 

For 0a1 ≤ , the distributions (1.2.1.1) are unimodal but for 0a1 > , they are 

generally multimodal. For a given r, the kurtosis of the distribution decreases as 1a  

increases. It is known that no distribution can have kurtosis less than 1.0 (Pearson 

and Tiku, 1970). To provide this restriction, 1a  must be less than or equal to
4

3r
. 

 

 

 

 

 

 

 

 

                                                                

 



 22 

 
CHAPTER 2 

 
 

MULTIPLE COMPARISONS UNDER NON-NORMALITY 
 
 
 

In this chapter, the test statistic used in pairwise multiple comparisons and multiple 

comparisons with a control procedures is given for short-tailed symmetric 

distribution. To provide robustness under short-tailed symmetric distribution, 

Huber estimators of location and scale parameters  and trimmed mean with 

winsorized standard deviation are used besides ordinary sample mean and sample 

variance. In addition to these estimators, the modified maximum likelihood 

estimators given by Tiku (1967) are used under short-tailed symmetric distribution. 

 

2.1 Testing Procedure 

 

As mentioned in Chapter 1, Tukey (1953) proposed a method called as T-method 

to make all possible pairwise comparisons. Dunnett (1982) described this method 

as follows: 

 

Consider the one-way fixed effects analysis of variance model 

 

   ijiij eµy +=  ; in ..., 1,j  k;1,...,i ==                                       (2.1.1) 

 

where the errors ije  are iid normal with mean 0 and variance 2

iσ  and iµ  and 2

iσ  are 

unknown parameters. This method assumes equal sample sizes and variances, i.e., 

nn i =  and 22

i σσ = . 
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The joint confidence intervals for the difference of pairwise treatment means, 

ji µµ −  j)i k; ..., 2, 1,j i, ( ≠= , are given by 

 

   /n2sSRyy 2

 vk, α,ji ±−                                                            (2.1.2) 

 

where iy  is the sample mean of the thi  treatment, 2s  is an unbiased estimate of 2σ  

based on v degrees of freedom and  vk, α,SR  is the α -point of studentized range 

distribution with k normal variates. For the equal sample sizes and equal variances, 

the joint confidence coefficient is exactly α1− . 

For the unequal sample sizes, Tukey (1953) proposed the use of 













+

ji

2

n

1

n

1
s  

instead of 
n

2s2

 in (2.1.2). Thus, the joint confidence interval for unequal sample 

sizes are given by 

 

   













+±−

ji

2

 vk, α,ji
n

1

n

1
s)2/(SRyy .                                      (2.1.3) 

 

Dunnett (1980 a) showed that the joint confidence coefficient is greater than or 

equal to α1−  for these confidence intervals. 

 

For the case of unequal variances, Dunnett (1980 b) stated that the pooling of 

individual estimates 2

is  was inappropriate since the confidence interval given in 

(2.1.3) were lack of robustness, i.e., the desired joint confidence coefficient 

couldn’t be achieved. To improve robustness, Dunnett (1980 b) proposed the 

following confidence intervals: 
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j

2

j

i

2

i
k α, ij,ji

n

s

n

s
Ayy +±−                                                          (2.1.4) 

 

where k α, ij,A  is chosen to achieve the desired joint confidence coefficient α1−  as 

closely as possible and 2

is  is an unbiased estimate of 2

iσ  based on iv  degrees of 

freedom. 

 

To achieve robustness under non-normality, Dunnett (1982) used the robust 

estimators of location and scale parameters in the modified T-method which gives 

the following confidence intervals: 

 

   
j

2

j

i

2

i*

k α, ij,ji
n~

σ~

n~
σ~

Aµ~µ~ +±−                                                         (2.1.5) 

 

where iµ
~  is the robust estimate of location for the thi  treatment, iσ

~  is the 

corresponding robust estimate of variance, in~  is the effective sample size,  *

k α, ij,A  

is a constant which is chosen to obtain the desired confidence coefficient α1−  as 

closely as possible. 

 

Under non-normality, ijt
~

max  was given by Dunnett (1982) as a test statistic for 

pairwise multiple comparisons  where 

 

   

j

2

j

i

2

i

jiji

ij

n~

σ~

n~
σ~

)µ(µµ~µ~

t
~

+

−−−
= .                                                           (2.1.6) 
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Under normality, it is assumed that the distribution of ijt
~

 is approximately 

Student’s t with ijv~  degrees of freedom which is given by 

 

   
( )

j

2

j

4

ji

2

i

4

i

2

j

2

ji

2

i

ij
vn~/σ~vn~/σ~

n~/σ~n~/σ~

v~

+

+
= .                                                          (2.1.7) 

 

Here iv  is the effective degrees of freedom associated with 2

is . 

 

To determine the value of *

k α, ij,A , the α -point of the distribution of ijt
~

max  is 

required, however, its distribution is different from the distribution of ijt
~

 since 

ijt
~

max  is the largest order statistic. In this study, therefore, the value of *

k α, ij,A  is 

found through simulation so that the true experimentwise error rate α  is achieved. 

 

If  *

k α, ij,ij At
~

max > , the null hypothesis  

 

   j)i k; ..., 2, 1,j (i,    µµ:H ji0 ≠==     against                          (2.1.8) 

      µµ:H ji1 ≠  

 

is rejected at the level of significance α . 

 

The same procedure was used for the multiple comparisons with a control in our 

study. Thus, the joint confidence intervals for the difference between each 

treatment mean and the control mean are given by 

 

   
k

2

k

i

2

i*

k α, ik,ki
n~
σ~

n~
σ~

Aµ~µ~ +±−      , 1-k1,...,i =                              (2.1.9) 
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where iµ
~  is the robust estimate of location for the thi  treatment, kµ

~  is the robust 

estimate of location for control treatment, iσ
~  and kσ

~  are the corresponding robust 

estimate of variance, in~  is the effective sample size and  *

k α, ij,A  is a constant which 

is chosen to obtain the desired confidence coefficient α1−  as closely as possible. 

 

To compare each treatment mean with a control mean, ikt
~

max  ( 1-k1,...,i = ) is 

used as a test statistic where 

 

   

k

2

k

i

2

i

kiki
ik

n~
σ~

n~
σ~

)µ(µµ~µ~
t
~

+

−−−
= .                                                        (2.1.10) 

 

If  *

k α, ik,ik At
~

max > , the null hypothesis  

 

   1)k ..., 2, 1,(i    µµ:H ki0 −==     against                             (2.1.11) 

      µµ:H ki1 ≠  

 

is rejected at the level of significance α . 

 

2.2 Robust Estimators 

 

2.2.1 Huber Estimators 

 

Consider a random sample from a distribution of type 
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





 −
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µy
f
σ

1
.                                                                            (2.2.1.1) 
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where µ  and σ  are the location and scale parameters, respectively.  

 

Huber (1964) proposed a new method to estimate µ  assuming in particular that f is 

symmetric and long-tailed distribution. 

 

The log-likelihood function is 

 

   ∑
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


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n

1i
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σ
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fln nlnσLln .                                             (2.2.1.2) 

 

If the functional form of f is known, the maximum likelihood estimator of µ  is 

obtained from the equation 
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σ

1

µ
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∂
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                                                           (2.2.1.3) 

 

where 
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i

i
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z

)ψ(z
(z)ww == , equation (2.2.1.3) reduces to 0µ)(yw

n

1i
ii =−∑

=
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The solution of the equation gives µ  as follows: 
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Given σ  and )ψ(z i , equation (2.2.1.2) may be solved by iteration (Low, 1959). It 

may also be solved by applying Newton-Raphson’s procedure to equation (2.2.1.3) 

(Gross, 1976). 

 

In practice, however, σ  and )ψ(z i  are not known. Therefore, Huber (1964) 

proposed a function )ψ(z i  as 

 

      
 cz   if    csgn(z)

cz   if              z
ψ(z)
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


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≤
=                                                (2.2.1.5) 

 

which is a combination of the normal distribution in the middle with the double-

exponential distribution in the tails. Birch and Myers (1982) give 1.345, 1.5, and 

2.0 as the popular choice of c values since these choices correspond roughly to 10, 

5, and 2.5 percent censoring on either side of a normal sample. 

 

The solution of (2.2.1.3) is referred to as  Huber’s M-estimator and denoted by Hµ̂ .  

 

For unknown σ , )(ymedian ymedianmadσ~ ii0 −==  is used by Huber (1964, 

1977) and Gross (1976, 1977) to estimate σ . However, Huber (1981) and Birch 

and Myers (1982) suggest to use  6745.0/σ~0  instead of 0σ
~  to obtain an 

asymptotically unbiased estimator of σ  in the case of normal distribution. 

 

By using the asymptotic variance of the M-estimator Hµ̂   
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 29 

Huber (1977, 1981) calculated the estimator of scale, Hσ̂ , as 
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When the functional form of f is not known, ψ(z)  may be approximated by 

descending functions. The function which decreases as z  increases is called as 

descending function. There are three important descending functions: 

 

1. The wave function (Andrews et al., 1972; Andrews, 1974) 
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2. The bisquare function (Beaton and Tukey, 1974) 
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3. The Hampel piecewise linear function (Hampel, 1974) 
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For different values of a, b, and c, different estimators are obtained.  

 

Gross (1976) showed that the wave, bisquare, and Hampel piecewise linear 

functions were the most efficient descending functions when the adjusting constant 

h was equal to 2.4, 8.2, and 2.2, respectively. The estimators of location and scale 

obtained by using these three functions are called as the wave estimator (W24), 

bisquare estimator (BS82), and Hampel estimator (H22). These estimators are 

given as follows: 

 

Let { }i0 ymedianT =  and { }0i0 TymedianS −=  

 

i) W24 estimator 
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and 
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where 
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Here, summations include only those i such that πz i < . 
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ii) BS82 estimator 
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and 
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where 
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Here, ψ(z)  is the Beaton and Tukey’s (1974) bisquare function given in (2.2.1.9) 

and (z)ψ′ is the derivative of ψ(z) . 

 

iii) H22 estimator 
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where 
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Here, ψ(z)  is the Hampel piecewise linear function given in (2.2.1.10) for 

15.0c and 3.75,b 2.25,a ===  and (z)ψ′ is the derivative of ψ(z) . 

 

For symmetric distributions, W24µ̂ , B82µ̂  and H22µ̂  are unbiased and uncorrelated 

with W24σ̂ , B82σ̂  and H22σ̂ , respectively (Tiku, Tan, Balakrishnan, 1986). 

 

2.2.2 Trimmed Mean With Winsorized Standard Deviation 

 

Consider a random sample n21 y ..., ,y ,y  from a distribution with location 

parameter µ  and scale parameter σ . The trimmed mean with winsorized standard 

deviation is defined by Tukey and McLaughlin (1963) as follows: 
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where [ ] 1αnr +=  ([ .] is the greatest integer function), (i)y  is the thi  order statistic 

and α  is the trimming proportion. 
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Huber (1964) proved that an asymptotically unbiased estimator of the variance of 

an M-estimator is obtained by using the winsorized sample variance and not the 

trimmed sample variance. 

 

2.2.3 Modified Maximum Likelihood Estimators 

 

Consider the one-way fixed effects analysis of variance model, 

 

  ijiij eµy +=  ; in ..., 1,j  k;1,...,i ==  

 

where the ije  are independent and have short-tailed symmetric distribution with 

parameters r and 1a . 

 

The Fisher likelihood function is 
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Thus, the likelihood equations for estimating µ  and σ  are 

 

   ∑∑ ∑∑
= = = =

=+−=
∂

∂ k

1i

n

1j

k

1i

n

1j
ijij

i

i i

0z
σ

1
)g(z

σ

λ

µ

Lln 
     and                      (2.2.3.2) 

 



 34 

   ∑∑ ∑∑
= = = =

=+−−=
∂

∂ k

1i

n

1j

k

1i

n

1j

2

ijijij

i i

0z
σ

1
)g(zz

σ

λ

σ

N

σ

Lln 
 

 

where 

 

   
2

ij

ij

ij

z
2r

λ
1

z
)g(z

+

= . 

 

Likelihood equations given above have no explicit solutions since they include 

non-linear function )g(z ij . They can be solved by iteration, however, it is difficult 

to make any analytical study of the resulting maximum likelihood estimators 

(MLE), especially for small samples. Therefore, method of modified maximum 

likelihood (MML) developed by Tiku (1967) is used to find the explicit solutions. 

 

In this method, the likelihood equations given in (2.2.3.2) are expressed in terms of 

the ordered variates )/σµ(yz ii(j)i(j) −=  )nj1  k,i(1 i≤≤≤≤ . Since summations 

are invariant to ordering, the likelihood equations are written as follows: 
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The linear approximations for the non-linear function )g(z i(j)  is given by 

 

   i(j)ijiji(j) zγα)g(z +≅  ;    inj1  k,i1 ≤≤≤≤ .                         (2.2.3.4) 
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By using first two terms of a Taylor series expansion of )g(z i(j)  around 

)E(zt i(j)i(j) = , the coefficients ijα  and ijγ  are obtained as follows: 
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The exact values of i(j)t  are not available, but their appropriate values can be 

obtained from the equation 
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In our study, an algorithm given by Dr. M. Q. Islam was used to evaluate i(j)t . 

 

Replacing )g(z i(j)  by the linear approximation given in (2.2.3.4), the modified 

likelihood equations are obtained as follows: 
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The solutions of these equations give the following MMLE (Akkaya and Tiku, 

2006), 

 

 ∑
=

=
in

1j
i(j)ij

i

i yβ
m

1
µ̂     and                                                         (2.2.3.9) 

 

1)N(N2

4NCλB)(λB
σ̂

2

−

++−
=                                                    (2.2.3.10) 

 

where 

 

ijij λγ1β −= , ∑
=

=
in

1j
iji βm , ∑∑

= =

−=
k

1i

n

1j
ii(j)ij

i

)µ̂(yαB  and  

 

∑∑
= =

−=
k

1i

n

1j

2

ii(j)ij

i

)µ̂(yβC . 

 

Here, 1λ ≤ , 0β ij >  )nj1  k,i(1 i≤≤≤≤  and 0C > . Consequently, σ̂  is real and 

positive. 

 

For 1λ > , however, some of the coefficients ijβ  in the middle can be negative. In 

this case, σ̂  may not be real and positive. To prevent this, the coefficients ijα , ijγ  

and ijβ  are replaced by *

ijα , *

ijγ  and *

ijβ , respectively. They are given by 
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where 1λ > . 

 

For 1λ ≤  and 1λ > , iµ̂  and σ̂  have the same asymptotic properties since 
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For 1λ = , *
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ijij ββ = . Also 1)ji(ni(j) tt +−−=  because of symmetry. Thus, 
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  1)j-i(nij γγ +=     and    
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Since MML estimators are equivalent  to ML estimators asymptotically, they are 

asymptotically unbiased and efficient (Tiku, 1970; Bhattacharyya, 1985; Tiku and 

Suresh, 1992 and Vaughan, 1992). Also, iµ̂  is unbiased and 0)σ̂ ,µ̂Cov( i =  

because of symmetry. 
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Fisher information matrix is given by 
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By using the inverse of the Fisher information matrix, the asymptotic covariance 

matrix of  µ̂  and σ̂  is obtained as follows: 
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Under some very general regularity conditions, the MMLE are fully efficient for 

large n (Bhattacharyya, 1985; Vaughan and Tiku, 2000). 
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2.2.4 Sample Mean and Sample Variance 

 

Consider a random sample n21 y ..., ,y ,y  from a distribution with location 

parameter µ  and scale parameterσ . Commonly used estimators of µ  and σ  are 

sample mean, y , and sample variance, 2s , respectively: 
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The use of these estimators for pairwise multiple comparisons or multiple 

comparisons with a control is called as MEAN method (Dunnett, 1982). Under 

normality, these estimators have very good robustness properties but not for short-

tailed symmetric distribution. 
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CHAPTER 3 

 
 

POWER COMPARISONS OF ROBUST TEST 
 
 
 

In this chapter, robust estimators besides ordinary sample mean and sample 

variance (MEAN method) used in pairwise multiple comparisons and multiple 

comparisons with a control are compared with each other under short-tailed 

symmetric family of distributions. As the estimators of location with the associated 

variance estimates, Wave estimator with adjusting constant 24h =  (W24), 

trimmed mean with %10 trimming (TM10), the modified maximum likelihood 

(MML) estimator and ordinary sample mean are used in our study. These 

estimators are compared in terms of their efficiency and robustness properties. 

Power of the test statistics computed by using these estimators are also compared. 

 

3.1 Power Comparisons of the Robust Test for Pairwise Differences of 

Treatment Means 

 

3.1.1 Efficiency Comparisons 

 

As mentioned in Chapter 2, the MML estimators are asymptotically fully efficient 

under some very general regularity conditions for large n, i.e., they are 

asymptotically unbiased and their variance is equal to Cramer-Rao minimum 

variance bound. 

 

The minimum variance bounds for mean and variance are given by 
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where D and *D  are given in (2.2.3.18) and (2.2.3.19), respectively. 

 

To examine the efficiency properties of the estimators used in pairwise multiple 

comparisons under short-tailed symmetric distribution, the means and variances of 

the maximum difference j)i k; ..., 2, 1,j (i,  )µ~µ~max( ji ≠=−  are simulated based 

on 100,000/n Monte Carlo runs. 

 

Given in Table 3.1 are the simulated means of the maximum difference 

j)i k; ..., 2, 1,j (i,  )µ~µ~max( ji ≠=− . Since the test statistic used for pairwise 

multiple comparisons is the largest order statistic, its distribution is not known. 

Thus, to decide whether W24, TM10 and MML estimators are unbiased or not, the 

simulated means of  the max difference obtained by using these estimators are 

compared with the simulated means of the max difference obtained by using 

ordinary sample mean and sample variance which are known as unbiased 

estimators. Table 3.1 shows that most of the simulated means of 

j)i k; ..., 2, 1,j (i,  )µ~µ~max( ji ≠=−  obtained by using the robust estimators are 

very close to simulated means of the one obtained by using the sample mean and 

sample variance and bias is negligible. Thus, the simulated variances of the 

maximum difference  )µ~µ~max( ji −  j)i k; ..., 2, 1,j (i, ≠=  are compared in this 

study. 
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Table 3.1 Means of j)i k; ..., 2, 1,j (i,  )µ~µ~max( ji ≠=− , 2r =  

  :a1  -0.5 0.0 0.5 1.0 1.5 

k=2 n=10 MML 0.4706 0.4858 0.5031 0.5411 0.6714 

  TM10 0.5113 0.5433 0.5905 0.6634 0.7789 

  W24 0.5167 0.5495 0.5991 0.6828 0.8542 

  MEAN 0.4819 0.5070 0.5430 0.5972 0.6821 

 n=20 MML 0.3236 0.3316 0.3430 0.3682 0.4517 

  TM10 0.3582 0.3809 0.4142 0.4651 0.5444 

  W24 0.3528 0.3736 0.4040 0.4532 0.5496 

  MEAN 0.3348 0.3523 0.3773 0.4148 0.4725 

k=4 n=10 MML 0.8499 0.8773 0.9092 0.9800 1.2179 

  TM10 0.9282 0.9864 1.0720 1.2042 1.4134 

  W24 0.9363 0.9961 1.0870 1.2412 1.5568 

  MEAN 0.8724 0.9181 0.9836 1.0823 1.2359 

 n=20 MML 0.6000 0.6153 0.6360 0.6830 0.8420 

  TM10 0.6646 0.7068 0.7688 0.8636 1.0111 

  W24 0.6534 0.6922 0.7495 0.8422 1.0252 

  MEAN 0.6212 0.6537 0.7001 0.7700 0.8780 

 

 

 

Table 3.2 gives the simulated variances of the maximum difference 

j)i k; ..., 2, 1,j (i,  )µ~µ~max( ji ≠=− . The table indicates that the variances obtained 

by using MML estimators are smaller than the variances obtained by using other 

estimators. This implies that MML estimators are more efficient than others under 

short-tailed symmetric distribution for pairwise multiple comparisons. 
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Table 3.2 Variances of j)i k; ..., 2, 1,j (i,  )µ~µ~max( ji ≠=− , 2r =  

  :a1  -0.5 0.0 0.5 1.0 1.5 

k=2 n=10 MML 0.1277 0.1367 0.1477 0.1736 0.2634 

    TM10 0.1519 0.1711 0.2011 0.2523 0.3455 

    W24 0.1571 0.1782 0.2133 0.2815 0.4508 

    MEAN 0.1345 0.1488 0.1705 0.2059 0.2671 

  n=20 MML 0.0599 0.0633 0.0677 0.0785 0.1218 

    TM10 0.0746 0.0843 0.0996 0.1255 0.1715 

    W24 0.0719 0.0808 0.0950 0.1214 0.1892 

    MEAN 0.0643 0.0712 0.0817 0.0990 0.1289 

k=4 n=10 MML 0.1325 0.1435 0.1566 0.1860 0.2740 

    TM10 0.1557 0.1747 0.2043 0.2546 0.3454 

    W24 0.1633 0.1858 0.2239 0.3004 0.4959 

    MEAN 0.1378 0.1522 0.1740 0.2095 0.2708 

  n=20 MML 0.0644 0.0684 0.0735 0.0863 0.1336 

    TM10 0.0788 0.0888 0.1046 0.1313 0.1799 

    W24 0.0770 0.0868 0.1030 0.1347 0.2252 

    MEAN 0.0685 0.0758 0.0868 0.1049 0.1365 

 

 

 

3. 1. 2 Power Comparisons 

 

As explained above and from Table 3.2, we see that the maximum difference 

j)i k; ..., 2, 1,j (i,  )µ~µ~max( ji ≠=−  obtained by using MML estimators have 

smaller variances for various values of n and k. Thus, it is expected that the power 

of the test statistic which uses the MML estimators will be the highest for pairwise 

multiple comparisons under short-tailed symmetric distribution. 
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The simulated power values of the tests obtained by using W24, TM10, MML 

estimators besides sample mean and sample variance are given in Table 3.3 for 

various values of ji µµd −=  j)i k; ..., 2, 1,j (i, ≠= . For 0d = , the power reduces 

to Type I error which is assumed as 0.05 in this study. 

 

 

 

Table 3.3 Power of the test for pairwise multiple comparisons, 0.05α = ,         

                10n = , 4k =  and 2r =  

1a  d  MML                  TM10                   W24                    MEAN 

-0.5  0.0  0.0500                  0.0500                  0.0500                 0.0500 

  0.5  0.1839                  0.1232                  0.1174                 0.1446 

  0.7  0.3244                  0.1977                  0.1849                 0.2458 

  0.9  0.4982                  0.3072                  0.2830                 0.3946 

  1.0  0.5986                  0.3774                  0.3469                 0.4705 

  1.1  0.6940                  0.4468                  0.4176                 0.5523 

 1.2  0.7794                  0.5162                  0.4900                 0.6343 

  1.3  0.8555                  0.5926                  0.5596                 0.7123 

  1.4  0.9147                  0.6633                  0.6319                 0.7876 

 1.5  0.9580                  0.7296                  0.7022                 0.8485 

  1.6  0.9852                  0.7924                  0.7693                 0.9005  

  1.7  0.9945                  0.8453                  0.8312                 0.9378 

  1.9  0.9996                  0.9268                  0.9155                 0.9813 

  2.0  1.0000                  0.9529                  0.9474                 0.9909 

 0.0 0.0  0.0500                  0.0500                  0.0500                 0.0500 

  0.5  0.1692                  0.1133                  0.1068                 0.1336  

  0.7  0.2995                  0.1763                  0.1640                 0.2223 

  0.9  0.4628                  0.2711                  0.2452                 0.3513 

  1.0  0.5548                  0.3278                  0.2962                 0.4261 

  1.1  0.6510                  0.3913                  0.3560                 0.5005 

 1.2  0.7414                  0.4590                  0.4234                 0.5779 

  1.3  0.8189                  0.5230                  0.4900                 0.6535 

  1.4  0.8809                  0.5932                  0.5552                 0.7324 

 1.5  0.9358                  0.6605                  0.6250                 0.8009 

  1.6  0.9731                  0.7230                  0.6893                 0.8554 

 1.7  0.9897                  0.7828                  0.7537                 0.9044 
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Table 3.3 (Continued) 

1a  d  MML                  TM10                   W24                    MEAN 

0.0  1.9  0.9989                  0.8808                  0.8640                 0.9669 

  2.0  0.9999                  0.9176                  0.9021                 0.9806  

  2.1  1.0000                  0.9431                  0.9329                 0.9907 

 0.5 0.0  0.0500                  0.0500                  0.0500                 0.0500 

  0.7  0.2750                  0.1512                  0.1327                 0.1954 

  1.0  0.5101                  0.2688                  0.2306                 0.3674 

  1.1  0.6045                  0.3193                  0.2726                 0.4363 

 1.2  0.6930                  0.3769                  0.3214                 0.5053   

  1.3  0.7761                  0.4394                  0.3747                 0.5788 

  1.4  0.8466                  0.4974                  0.4349                 0.6490 

  1.5  0.9047                  0.5571                  0.4952                 0.7209 

  1.6  0.9483                  0.6233                  0.5568                 0.7862 

  1.7  0.9794                  0.6828                  0.6171                 0.8433 

  1.9  0.9974                  0.7919                  0.7373                 0.9274 

  2.0  0.9995                  0.8416                  0.7913                 0.9565 

  2.2  1.0000                  0.9166                  0.8819                 0.9863 

 1.0 0.0  0.0500                  0.0500                  0.0500                 0.0500 

  0.6  0.1794                  0.0998                  0.0874                 0.1319 

  0.8  0.2955                  0.1440                  0.1177                 0.2009 

  0.9  0.3628                  0.1695                  0.1350                 0.2426 

  1.0  0.4400                  0.2011                  0.1577                 0.2941 

  1.1  0.5223                  0.2368                  0.1828                 0.3521  

 1.2  0.6040                  0.2778                  0.2115                 0.4170 

  1.4  0.7611                  0.3744                  0.2761                 0.5421 

 1.6  0.8898                  0.4787                  0.3594                 0.6737 

  1.8  0.9690                  0.5879                  0.4583                 0.7934 

  2.0  0.9944                  0.6983                  0.5632                 0.8911 

  2.2  0.9998                  0.7950                  0.6669                 0.9519   

  2.4  1.0000                  0.8774                  0.7690                 0.9838 

  2.6  1.0000                  0.9352                  0.8530                 0.9964 

1.5  0.0  0.0500                  0.0500                  0.0500                 0.0501 

  0.7  0.1773                  0.0933                  0.0745                 0.1285 

  0.9  0.2614                  0.1267                  0.0910                 0.1836 

  1.0  0.3160                  0.1465                  0.1013                 0.2198 

  1.2  0.4431                  0.1940                  0.1277                 0.2994 

  1.4  0.5753                  0.2496                  0.1536                 0.4059  

 1.6  0.7001                  0.3251                  0.1860                 0.5214 

 1.8  0.8165                  0.4103                  0.2249                 0.6330 



 46 

Table 3.3 (Continued) 

1a  d  MML                  TM10                   W24                    MEAN 

1.5  2.0  0.9078                  0.4994                  0.2667                 0.7434 

  2.2  0.9657                  0.5954                  0.3153                 0.8404 

  2.4  0.9936                  0.6868                  0.3699                 0.9172 

 2.6  0.9990                  0.7764                  0.4313                 0.9620 

  2.8  0.9999                  0.8523                  0.5027                 0.9880 

  3.0  0.9999                  0.9149                  0.5766                 0.9975   

  3.2  1.0000                  0.9533                  0.6534                 0.9994   

     

 

 

Table 3.3 indicates that all Type I errors are equal to 0.05α = . For various values 

of ji µµd −= , power values of the test for the pairwise multiple comparisons are 

higher and converge to 1.0 faster when MML estimators are used in testing 

procedure. For the large sample sizes, it is expected that the rate of convergence 

will be higher. Figure 3.1 gives the graphs of the power curves for various values 

of parameter 1a . 
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          Figure 3.1 Power graphs of the test for pairwise multiple comparisons, 

                           10n = , 4k =  and 2r =  
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          Figure 3.1 (Continued) 
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          Figure 3.1 (Continued) 

 

 

 

3. 3 Robustness Comparisons 

 

Since our aim is to obtain robust estimators for pairwise multiple comparisons 

under short-tailed symmetric distribution, robustness properties of the estimators 

are also examined: The short-tailed symmetric distribution with parameter r=2 and 

0a1 =  is taken as the assumed distribution and following symmetric short-tailed 

alternatives are considered: 

 

(a) The Tukey lambda-family which is generated as 

 

l
ll )/u)(1(uz −−=     (-1<z<1), u being uniform (0, 1).           (3.3.1) 
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In our study we take l=1.45 in which case the kurtosis 2

24

*

2 /µµβ =  is equal to 1.75 

(Joiner and Rosenblatt, 1971). The mean of the distribution is zero and its variance 

is 

 

  


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ΓΓ−

+
= )2(/)(
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1
1

)21(
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µ 2

22 ll
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.                                         (3.3.2) 

 

(b) The symmetric short-tailed family introduced by Tiku and Vaughan (1999): 
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+= ,   ∞<<∞− z                                  (3.3.3) 

 

where )ar/(rλ 1−= , d<r and 2r ≥  is an integer, φ(z)  is the pdf of standard normal 

distribution. In this study, we take r and 1a  as 2 and 1, respectively. The mean of 

the distribution is zero and the variance is 
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(c) The symmetric short-tailed family with cdf: 

 

  k1k z2F(z) −= ,                 )1(k    0.5z0 ><<                           (3.3.5) 

                     k1k z)(121 −−= − ,    15.0 << z . 

 

In our study, 1.5k =  (Dudewicz and Meulen, 1981) in which case the kurtosis 

2

24

*

2 /µµβ =  is equal to 2.123 . The mean of the distribution is 1/2 and the variance 

is 
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    2)1)(k1/2(kµ 2 ++= .                                      (3.3.6) 

 

(d) The symmetric short-tailed family with cdf: 

 

  k1k z)(0.520.5F(z) −−= − ,     1)(k    0.5z0 ><<                   (3.3.7) 

 

                    k1k 0.5)(z20.5 −+= − ,     1z0.5 <<  

 

where k is taken as 2.0 (Dudewicz and Meulen, 1981) in this study. For this value 

of k, the kurtosis 2

24

*

2 /µµβ =  is equal to 1.330. The mean of the distribution is 1/2  

and the variance is  

 

    2)k/4(kµ 2 += .                                                (3.3.8) 

 

Random samples of size n from the alternative distributions (a)-(d) given above 

were generated by using [100,000/n] Monte Carlo runs and assumed that they were 

taken from the short-tailed symmetric distribution with parameters 2r =  and 

0.0a1 = . By computing the power of the test, we examined the sensitivity of the 

test to the departures from the assumed distributions.  

 

For the alternative distribution (a), Table 3.4 gives the power values of the test for 

various values of ji µµd −=  j)i k; ..., 2, 1,j (i, ≠= . For 0d = , power reduces to 

Type I error which is assumed to be equal to 0.05. The graphs of the power values 

given in Table 3.4 are illustrated in Figure 3.2. The table and the corresponding 

figure show that the test used for pairwise multiple comparisons has the highest 

power values and smallest Type I error when the MML estimators are used in 

testing procedure. Power of the test obtained by using MML estimators converge to 
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1.0 faster. For the large sample sizes, the rate of convergence is higher. Thus, it is 

obvious that MML estimators have better robustness properties. 

 

 

 

           Table 3.4 Power values of the test under the alternative distribution (a), 

                            4k = , 2r =  and 0.0a1 =    

  d  MML                  TM10                  W24                     MEAN 

n=10 0.00  0.0471                  0.0505                 0.0492                  0.0521 

  0.15  0.2223                  0.1024                 0.0802                  0.1374  

  0.20  0.3703                  0.1511                 0.1101                  0.2136  

  0.25  0.5614                  0.2088                 0.1531                  0.3113 

  0.30  0.7437                  0.2820                 0.1961                  0.4322 

  0.35  0.8910                  0.3794                 0.2644                  0.5657 

  0.40  0.9769                  0.4613                 0.3307                  0.6882 

  0.45  0.9984                  0.5702                 0.4173                  0.8061 

  0.50  0.9999                  0.6875                 0.5275                  0.9082 

  0.55  1.0000                  0.7803                 0.6333                  0.9610 

  0.60  1.0000                  0.8666                 0.7400                  0.9896  

  0.70  1.0000                  0.9649                 0.9068                  0.9999  

  0.80  1.0000                  0.9965                 0.9819                  1.0000 

n=20 0.00  0.0474                  0.0554                  0.0476                 0.0482 

  0.12  0.3214                  0.1622                  0.1454                 0.1950  

  0.15  0.4600                  0.2092                  0.1994                 0.2676 

  0.17  0.5846                  0.2670                  0.2510                 0.3456  

  0.20   0.7452                  0.3384                  0.3282                 0.4518  

  0.23  0.8806                  0.4350                  0.4296                 0.5736  

  0.25  0.9348                  0.4954                  0.5056                 0.6486 

  0.30  0.9982                  0.6688                  0.6844                 0.8368  

  0.35  1.0000                  0.8280                  0.8532                 0.9530 

  0.40  1.0000                  0.9314                  0.9554                 0.9952 
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Figure 3.2 Power graphs of the test under the alternative distribution (a) 

                             4k = , 2r =  and 0.0a1 =  
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Table 3.5 gives the power values of the test under the alternative distribution (b) 

for various values of ji µµd −=  j)i k; ..., 2, 1,j (i, ≠= . For 0d = , power reduces 

to Type I error. Figure 3.3 shows the graphs of power values given in this table. It 

is seen that all Type I errors are equal to presumed 0.05α =  and the test given for 

pairwise multiple comparisons has the highest power when the MML estimators 

are used to obtain the test statistic. In addition, the powers computed by using 

MML estimators converge to 1.0 faster. Hence, robustness properties of MML 

estimators are better than  other estimators. 

 

 

 

           Table 3.5 Power values of the test under the alternative distribution (b),        

                             4k = , 2r =  and 0.0a1 =       

  d  MML                 TM10                   W24                     MEAN 

n=10 0.0  0.0500                 0.0500                  0.0500                  0.0500 

  0.7  0.2528                 0.1217                  0.1023                  0.1634 

  0.9  0.3982                 0.1695                  0.1350                  0.2426 

  1.1  0.5635                 0.2368                  0.1828                  0.3521 

  1.3  0.7420                 0.3215                  0.2424                  0.4804 

  1.5  0.8790                 0.4271                  0.3148                  0.6070 

  1.7  0.9693                 0.5297                  0.4077                  0.7363 

  1.9  0.9955                 0.6436                  0.5111                  0.8477  

  2.1  0.9999                 0.7436                  0.6147                  0.9250 

  2.2  1.0000                 0.7950                  0.6669                  0.9519 

  2.3  1.0000                 0.8384                  0.7180                  0.9712 

  2.5  1.0000                 0.9073                  0.8117                  0.9920 

n=20 0.0  0.0500                 0.0500                  0.0500                  0.0500 

  0.5  0.2952                 0.1598                  0.1462                  0.1984 

  0.6  0.4054                 0.2132                  0.1984                  0.2612 

  0.7  0.5328                 0.2702                  0.2550                  0.3444 

  0.8  0.6650                 0.3408                  0.3206                  0.4356 

  0.9  0.7798                 0.4118                  0.3924                  0.5334 

  1.0  0.8786                 0.5006                  0.4790                  0.6330 

  1.1  0.9446                 0.5844                  0.5698                  0.7316 

  1.2  0.9812                 0.6780                  0.6628                  0.8214 
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           Table 3.5 (Continued) 

  d  MML                 TM10                   W24                     MEAN 

n=20  1.3  0.9960                 0.7596                  0.7534                  0.8886 

  1.4  0.9998                 0.8336                  0.8296                  0.9402 

  1.5  1.0000                 0.8914                  0.8894                  0.9714 

 

 

 

 

     

     Figure 3.3 Power graphs of the test under the alternative distribution (b) 

                                 4k = , 2r =  and 0.0a1 =  
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         Figure 3.3 (Continued) 

 

 

 

Given in Table 3.6 are the power values of the test under the alternative 

distribution (c) for various values of ji µµd −=  j)i k; ..., 2, 1,j (i, ≠= . The power 

graphs are given in Figure 3.3 . The table and figure both show that the MML 

estimators have better robustness properties since the test used for pairwise 

multiple comparisons has higher power values and smaller Type I errors when the 

MML estimators are used in testing procedure. 
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           Table 3.6 Power values of the test under the alternative distribution (c),  

                           4k = , 2r =  and 00.a1 =               

  d  MML                  TM10                   W24                    MEAN 

n=10 0.00  0.0485                  0.0524                  0.0544                 0.0493 

  0.10  0.2540                  0.1411                  0.1326                 0.1638 

  0.15  0.5062                  0.2532                  0.2389                 0.3158 

  0.18  0.6851                  0.3562                  0.3405                 0.4533 

  0.21  0.8257                  0.4574                  0.4390                 0.5827 

  0.24  0.9325                  0.5800                  0.5655                 0.7155 

  0.27  0.9849                  0.6932                  0.6814                 0.8326 

  0.30  0.9983                  0.7917                  0.7831                 0.9193 

  0.33  1.0000                  0.8815                  0.8789                 0.9670 

  0.40  1.0000                  0.9782                  0.9822                 0.9989 

n=20 0.00  0.0516                  0.0428                  0.0554                 0.0526 

  0.07  0.2570                  0.1408                  0.1688                 0.1902  

  0.10  0.4582                  0.2428                  0.2884                 0.3350 

  0.11  0.5598                  0.2956                  0.3558                 0.4138 

  0.13  0.7164                  0.4034                  0.4808                 0.5556 

  0.15  0.8460                  0.5166                  0.5988                 0.6790 

  0.17  0.9448                  0.6500                  0.7402                 0.8196 

  0.19  0.9882                  0.7612                  0.8472                 0.9130 

  0.21  0.9978                  0.8414                  0.9126                 0.9596 

  0.23  0.9998                  0.9184                  0.9646                 0.9890 

  0.25  1.0000                  0.9650                  0.9892                 0.9980 
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      Figure 3.4 Power graphs of the test under the alternative distribution (c) 

                                4k = , 2r =  and 0.0a1 =  
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Given in Table 3.7 are the power values of the test for various values of ji µµd −=  

j)i k; ..., 2, 1,j (i, ≠=  when the distribution given by (d) is taken as the alternative 

distribution in pairwise multiple comparisons. Figure 3.5 shows the graphs of these 

power values. From the following table and Figure 3.5, it is seen that power values 

given for the test are higher and converge to 1.0 faster when the MML estimators 

are used. This implies that MML estimators have better robustness properties than 

the other estimators under the alternative distribution (d). 

 

 

 

          Table 3.7 Power values of the test under the alternative distribution (d),     

                          4k = , 2r =  and 00.a1 =           

  d  MML                  TM10                   W24                    MEAN 

n=10 0.00  0.0491                  0.0487                  0.0519                 0.0473 

  0.20  0.5861                  0.1419                  0.0649                 0.2397 

  0.25  0.8591                  0.1907                  0.0670                 0.3429 

  0.30  0.9897                  0.2774                  0.0890                 0.4916 

  0.35  0.9997                  0.3708                  0.1016                 0.6436 

  0.40  1.0000                  0.4853                  0.1294                 0.7855 

  0.45  1.0000                  0.5964                  0.1625                 0.9040 

  0.50  1.0000                  0.7210                  0.2001                 0.9717 

  0.55  1.0000                  0.8294                  0.2453                 0.9956 

  0.60  1.0000                  0.9146                  0.2812                 0.9998 

  0.70  1.0000                  0.9915                  0.3584                 1.0000  

  0.80  1.0000                  0.9999                  0.4468                 1.0000 

  0.90  1.0000                  1.0000                  0.5401                 1.0000 

  1.00  1.0000                  1.0000                  0.6637                 1.0000 

  1.10  1.0000                  1.0000                  0.8157                 1.0000 

  1.20  1.0000                  1.0000                  0.9390                 1.0000 
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          Table 3.7 (Continued) 

  d  MML                  TM10                   W24                    MEAN 

n=20 0.00  0.0494                 0.0528                  0.0566                  0.0574 

  0.11  0.5262                 0.1430                  0.0752                  0.2142 

  0.15  0.8888                 0.2424                  0.1018                  0.3664 

  0.17  0.9750                 0.2930                  0.1136                  0.4456 

  0.20  0.9990                 0.3988                  0.1466                  0.5866 

  0.22  1.0000                 0.4464                  0.1532                  0.6680 

  0.25  1.0000                 0.5644                  0.1908                  0.8008 

  0.28  1.0000                 0.6950                  0.2296                  0.9078 

  0.30  1.0000                 0.7624                  0.2788                  0.9526 

  0.33  1.0000                 0.8430                  0.3414                  0.9888 

  0.35  1.0000                 0.9080                  0.3844                  0.9978 

  0.40  1.0000                 0.9786                  0.5322                  0.9998 

  0.45  1.0000                 0.9990                  0.7288                  1.0000 

 

 

 

 
 

Figure 3.5 Power graphs of the test under the alternative distribution (d) 

                             4k = , 2r =  and 00.a1 =  
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        Figure 3.5 (Continued) 

 

 

 

3.2 Power Comparisons of Robust Tests for the Pairwise Differences Between 

the Control and Treatment Means 

 

3. 2. 1 Power Comparisons 

 

To examine the power of the test obtained by using W24, TM10 and MML 

estimators besides the sample mean and sample variance, the procedure developed 

for pairwise multiple comparisons is followed for multiple comparisons with a 

control. 

 

100,000/n Monte Carlo runs are used to generate random samples from short-tailed 

symmetric distribution. The power values of the test for multiple comparisons with 
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a control is given in Table 3.8 for various values of  ki µµd −= )1-k ..., 2, 1,(i =  

and graphs of power values are shown in Figure 3.6. For 0d = , power reduces to 

Type I error. Table 3.8 indicates that all Type I errors obtained by using the W24, 

TM10 and MML estimators in addition to sample mean and sample variance are 

equal to presumed 0.05α = . Figure 3.6 shows that the power values given for the 

test are higher and converge to 1.0 faster when the MML estimators are used in 

testing procedures. For the large sample sizes, it is expected that the rate of 

convergence will be higher. 

 

 

 

              Table 3.8 Power of the test for multiple comparisons with a control, 

                  01n = , 4k = , 2r =  and 00.a1 =  

d  MML                 TM10                   W24                    MEAN 

0.0  0.0500                 0.0500                  0.0500                 0.0500 

0.5  0.3230                 0.0815                  0.1109                 0.1645 

0.6  0.4398                 0.1213                  0.1573                 0.2442 

0.7  0.5676                 0.1823                  0.2165                 0.3334 

0.8  0.6911                 0.2486                  0.2930                 0.4409 

0.9  0.7961                 0.3367                  0.3810                 0.5571 

1.0  0.8721                 0.4328                  0.4810                 0.6661 

1.1  0.9268                 0.5396                  0.5833                 0.7585 

1.2  0.9641                 0.6406                  0.6836                 0.8460 

1.3  0.9857                 0.7330                  0.7670                 0.9108 

1.4  0.9942                 0.8154                  0.8478                 0.9509 

1.5  0.9981                 0.8821                  0.9083                 0.9749 

1.6  0.9994                 0.9336                  0.9493                 0.9889 

1.9  1.0000                 0.9910                  0.9938                 0.9997 
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         Figure 3.6 Power graph for multiple comparisons with a control, 

                          01n = , 4k = , 2r =  and 00.a1 =  

 

 

 

3. 2. 2 Robustness against Inlier Model 

 

To examine the robustness properties of W24, TM10 and MML estimators besides 

the sample mean and sample variance for multiple comparisons with a control 

under short-tailed symmetric distribution, an inlier model is used as the alternative 

distribution. 

 

Inliers are erroneous observations which are located closer to the mean opposite to 

outliers. To generate inliers, Akkaya and Tiku (2005) proposed a mechanism which 
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n21 y ..., ,y ,y  from )σ µ,(N 2  by σδ)(y i−+ , 1δ ≤ . Thus, the displaced 

observations get located closer to y  and are erroneous, and located within σy ± . 

 

To preserve the symmetry and make the resulting sample have kurtosis less than 3, 

equal proportion nr  of smallest and largest order statistics are replaced. 

 

Thus, random samples of size n are generated from the inlier model given above. 

For the control group, the random sample from the short-tailed symmetric 

distribution with parameters 2r =  and 0.0a1 = , are generated.  

 

Table 3.9 gives the power values of the test for various values of ki µµd −=  

1)-k ..., 2, 1,(i = . Figure 3.7 illustrates the graphs of power values in Table 3.9. 

  

Similarly, it is clear that the test used for multiple comparisons with a control has 

the highest power values and smallest Type I error when the MML estimators are 

used in testing procedure. Also, powers obtained by using MML estimators 

converge to 1.0 faster. Thus, under inlier model the MML estimators have better 

robustness properties than other estimators   
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 Table 3.9 Power of the test for multiple comparisons with a control 

                 against inliers, 10n = , 4k = , 2r =  and 0.0a1 =  

d  MML                  TM10                  W24                     MEAN 

0.0  0.0475                  0.0506                 0.0529                  0.0487 

0.4  0.3145                  0.0688                 0.1443                  0.1779   

0.5  0.4502                  0.1243                 0.2381                  0.2824 

0.6  0.5960                  0.2086                 0.3657                  0.4239 

0.7  0.7390                  0.3279                 0.5133                  0.5795   

0.8  0.8537                  0.4844                 0.6744                  0.7302 

0.9  0.9181                  0.6261                 0.7973                  0.8403 

1.0  0.9673                  0.7679                 0.8881                  0.9201 

1.1  0.9891                  0.8751                 0.9539                  0.9709 

1.2  0.9972                  0.9382                 0.9823                  0.9899 

1.3  0.9996                  0.9779                 0.9958                  0.9977 

1.5  1.0000                  0.9982                 0.9997                  0.9999 

 

 

 

 

 
 

       Figure 3.7 Power graph for multiple comparisons with a control against  

                                 inliers, 10n = , 4k = , 2r =  and 00.a1 =  
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CHAPTER 4 

 
 

APPLICATIONS AND CONCLUSIONS 
 
 
 

4.1 Applications 

 

Example 4.1: Draper and Smith (1981) gives the number of finger taps per minute 

for the male college students receiving different doses of caffeine (0, 100 and 200 

ml.). This data is reproduced in Hand et al. (1994, p. 40): 

 

0 ml caffeine 

(Treatment I) 

100 ml caffeine 

(Treatment II) 

200 ml caffeine 

(Treatment III) 

242 248 246 

245 246 248 

244 245 250 

248 247 252 

247 248 248 

248 250 250 

242 247 246 

244 246 248 

246 243 245 

242 244 250 

 

Since our aim is to compare treatment means, we must determine the plausible 

distribution. To locate the plausible distribution, the Q-Q plots and kurtosis values 

of the treatments are used. Kurtosis values of treatment I, II, and III are 1.5791, 

2.3874 and 1.9902, respectively. These values are smaller than 3 which implies 

that these treatments may come from short-tailed symmetric distribution with 

parameters 4r =  and 1.5a1 = . The Q-Q plots of treatment I, treatment II and 
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treatment III for short-tailed symmetric distribution  are given in Figure 4.1, 4.2 

and 4.3, respectively. 
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 Figure 4.1  Q-Q Plot of 0 ml Caffeine 
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 Figure 4.2  Q-Q Plot of 100 ml Caffeine 
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R2 = 0.9376
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 Figure 4.3  Q-Q Plot of 200 ml Caffeine 

 

 

 

Figure 4.1, 4.2 and 4.3 show that these data sets have approximately symmetric 

distribution with short tails. 

 

The estimates and their standard errors are given as follows: 

 

MML TM10 W24 MEAN 

=1µ̂ 244.872 

=)µ̂SE( 1 ± 0.426 

 

=2µ̂ 246.356 

=)µ̂SE( 2 ± 0.394 

 

=3µ̂ 248.279 

=)µ̂SE( 3 ± 0.409 

=1µ̂ 244.750 

=)µ̂SE( 1 ± 1.159 

 

=2µ̂ 246.375 

=)µ̂SE( 2 ± 0.759 

 

=3µ̂ 248.250 

=)µ̂SE( 3 ± 0.848 

=1µ̂ 244.795 

=)µ̂SE( 1 ± 0.749 

 

=2µ̂ 246.402 

=)µ̂SE( 2 ± 0.641 

 

=3µ̂ 248.296 

=)µ̂SE( 3 ± 0.693 

=1µ̂ 244.800 

=)µ̂SE( 1 ± 0.757 

 

=2µ̂ 246.400 

=)µ̂SE( 2 ± 0.653 

 

=3µ̂ 248.300 

=)µ̂SE( 3 ± 0.699 
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To test the null hypothesis 

 

      µµ:H ji0 =  

     µµ:H ji1 ≠  

 

the test statistic is calculated by using the following robust estimators: 

 

 MML TM10 W24 MEAN 

ijt
~

max : 5.800 2.436 3.431 3.395 

 

Since the distribution of the test statistic is not known, we simulated the p-values to 

compare the robust estimators. They are given as follows. 

 

 MML TM10 W24 MEAN 

p-value: 0.0067 0.0372 0.0479 0.0110 

 

The p-values obtained by using the robust estimators are less than 0.05α = . Thus, 

we reject the null hypothesis  .H0  However, the p-value obtained by using MML 

estimators is smaller which implies that MML estimators are more efficient. 

 

Example 4.2 Till (1974) gives sets of salinity values (parts per thousand) for three 

separate water masses. The data reproduced in Hand et al. (1994, p. 201): 
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Treatment I Treatment II Treatment III 

37.54 40.14 39.04 

37.01 40.80 39.21 

36.71 39.76 39.05 

37.03 39.70 38.24 

37.32 40.79 38.53 

37.01 40.44 38.71 

37.03 39.79 38.89 

37.70 39.38 38.66 

37.36  38.51 

36.75  40.08 

37.45   

38.85   

 

 

The Q-Q plots of treatment I, II and III for normal distribution are given in Figure 

4.4, 4.5 and 4.6, respectively. 

 

 

 

36

36.5

37

37.5

38

38.5

39

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Q

Y

 

Figure 4.4  Q-Q Plot of Treatment I 
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 Figure 4.5  Q-Q Plot of Treatment II 
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 Figure 4.6  Q-Q Plot of Treatment III 
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The Q-Q plots of the three data sets show that the observations 38.85 in treatment I 

and 40.08 in treatment II are outliers and thus, these observations are eliminated. 

Kurtosis values of treatment I, II, and III were computes as 1.8860, 1.6262 and 

1.9877, respectively. Q-Q plots and kurtosis values show that these data sets have 

short-tailed symmetric distribution with parameters 4r =  and 2a1 = . 

 

The estimates and their standard errors are as follows: 

 

MML TM10 W24 MEAN 

=1µ̂ 37.189 

=)µ̂SE( 1 ± 0.059 

 

=2µ̂ 40.134 

=)µ̂SE( 2 ± 0.112 

 

=3µ̂ 38.764 

=)µ̂SE( 3 ± 0.064 

=1µ̂ 37.167 

=)µ̂SE( 1 ± 0.116 

 

=2µ̂ 40.107 

=)µ̂SE( 2 ± 0.254 

 

=3µ̂ 38.769 

=)µ̂SE( 3 ± 0.139 

=1µ̂ 37.172 

=)µ̂SE( 1 ± 0.105 

   

=2µ̂ 40.098 

=)µ̂SE( 2 ± 0.193 

 

=3µ̂ 38.763 

=)µ̂SE( 3 ± 0.107 

=1µ̂ 37.174 

=)µ̂SE( 1 ± 0.097 

 

=2µ̂ 40.104 

=)µ̂SE( 2 ± 0.188 

 

=3µ̂ 38.760 

=)µ̂SE( 3 ± 0.104 

 

To test the null hypothesis 

 

      µµ:H ji0 =  

     µµ:H ji1 ≠  

 

the test statistic is calculated by using the following robust estimators: 

 

 MML TM10 W24 MEAN 

ijt
~

max : 23.228 10.288 13.318 13.873 
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Since the distribution of the test statistic is not known, the simulated p-values are 

given as follows: 

 

 MML TM10 W24 MEAN 

p-value: 0.0 0.0 0.0001 0.0 

 

The p-values obtained by using the robust estimators are less than 0.05α = . Thus, 

we reject the null hypothesis  .H0  

 

4.2 Summary and Conclusions 

 

The theoretical background for the pairwise multiple comparisons and multiple 

comparisons with a control are given and the treatment means of the one-way fixed 

effect analysis of variance model are estimated by considering several estimation 

methods. 

 

By using robust estimators of location and scale parameters which are the modified 

maximum likelihood estimators, trimmed mean with winsorized standard 

deviation, wave estimators and sample mean and sample variance, a test statistic is 

obtained for pairwise multiple comparisons and multiple comparisons with a 

control under short-tailed symmetric distribution. 

 

A simulation study is carried out to compare the efficiency of the related estimators 

and  power and robustness properties of the test statistics are examined. 

 

On the basis of this study, the following conclusions can be stated: 
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1) MML estimators are more efficient and the power of the test statistic for 

pairwise multiple comparisons and multiple comparisons with a control are 

higher when the MML estimators are used in the test procedure.  

 

2) The power values obtained by using MML estimators converge to 1.0 

faster. 

 

3) For the large sample sizes, the rate of convergence is higher. 

 

4) MML estimators are asymptotically MVB (minimum variance bound) since   

      
θ

Lln  

∂

∂
 is asymptotically equivalent to 

θ

Lln  *

∂

∂
 where θ  is any parameter. 

 

5)   MML estimators are robust.  

 

      6)   In general, mean method gives the second best estimator among all others.  
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APPENDIX A 

 
 

SIMULATED CRITICAL VALUES 
 
 
 

Table A.1 Simulated critical values to obtain the power of the test for pairwise    

      multiple comparisons, 10n = , 4k = , 2r =  and 0.05α =       

1a  MML TM10 W24 MEAN 

        -0.5 2.5631 2.5432 3.381 2.8855 

0.0 2.6086 2.5534 3.4273 2.8916 

0.5 2.7199 2.5749 3.5654 2.9009 

1.0 3.1586 2.6114 3.8667 2.9154 

1.5 4.8352 2.6305 4.6949 2.9446 

 

 

Table A.2 Simulated critical values to obtain power values of the test under the  

                  alternative distribution (a), 4k = , 2r = , 0.0a1 =  and 0.05α =  

n MML TM10 W24 MEAN 

10 0.6418 2.5998 3.9637 2.9069 

20 0.6084 2.3656 2.9830 2.7151 

 

 

Table A.3 Simulated critical values to obtain power values of the test under the  

                  alternative distribution (b), 4k = , 2r = , 0.0a1 = and 0.05α =  

n MML TM10 W24 MEAN 

10 2.7941 2.6114 3.8667 2.9154 

20 2.6554 2.4069 3.0148 2.7252 
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Table A.4 Simulated critical values to obtain Power values of the test under the  

                  alternative distribution (c), 4k = , 2r = , 0.0a1 =  and 0.05α =  

n MML TM10 W24 MEAN 

10 0.4184 2.5629 3.4210 2.9448 

20 0.4105 2.4687 2.8560 2.7142 

 

 

Table A.4 Simulated critical values to obtain power values of the test under the  

                  alternative distribution (d), 4k = , 2r = , 0.0a1 =  and 0.05α =  

n MML TM10 W24 MEAN 

10 0.4623 2.6743 7.2285 3.0057 

20 0.3875 2.3820 4.3895 2.6860 

 

 

Table A.5 Simulated critical values to obtain the power of the test for multiple    

     comparisons with a control, 10n = , 4k = , 2r = , 0.0a1 = , 0.05α =  

MML TM10 W24 MEAN 

1.7092 1.4384 2.0018 1.7244 

 

 

Table A.6 Simulated critical values to obtain the power of the test for multiple    

                 comparisons with a control against inliers, 10n = , 4k = , 2r = , 

                 0.0a1 =  and 0.05α =  

MML TM10 W24 MEAN 

1.4343 1.2151 1.5860 1.5041 
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APPENDIX B 

 
 

COMPUTER PROGRAM FOR PAIRWISE MULTIPLE 
COMPARISONS 

 

 

 
       USE NUMERICAL_LIBRARIES    

       dimension alf(600),bet(600),e(600) 

       dimension w(600),v(600),w1(600),xa(600),ra(600),ae(600) 

 dimension y1(600),bet1(600),t(600),samp(100,100),y(100,100) 

 dimension sum1(100),yvar(100),sammean(100),varsam(100),yt(100) 

 dimension ybar(100), sigma(100),tt(100,100),ts(10000) 

 dimension z(100,100),yo(100,100) 

 dimension amu_mml(100),amu_wave(100),amu_tukey(100) 

 dimension s_square(100),sigma_square_mml(100) 

 dimension sigma_square_wave(100),sigma_square_tukey(100) 

 dimension tt1(100),tt2(100),tt3(100),tt4(100) 

 dimension ttt1(100),ttt2(100),ttt3(100),ttt4(100) 

 dimension aa(10000),bb(10000),cc(10000),ee(10000) 

 dimension aaa(10000),bbb(10000),ccc(10000),eee(10000) 

 dimension ts1(10000),ts2(10000),ts3(10000),ts4(10000) 

 dimension tts1(10000),tts2(10000),tts3(10000),tts4(10000) 

 dimension T01(100),T0(100),T02(100),t_t(100),ss(100) 

 dimension S0(100),S01(100),S02(100) 

 dimension ff(100),ss1(100),ss2(100),sigma_square_mml1(100) 

 dimension amu_mml1(100),amu_tukey1(100),amu_wave1(100) 

 dimension power(4),icount(4),ybar1(100) 

 integer r,b1 

 real ld 

 

 open(unit=1,file='result1') 

 

3333 read*,nn,k,r,a1,dd 

 

 d_d=1.0-(2.0/(2.0-a1))*((1.0-1.0/(2.0*(2.0-a1)))/(1.0+1.0/ 

          +(2.0-a1)+3.0*1.0/(4.0*((2.0-a1)**2)))) 

  nb=k*(k-1)/2 

      mm=100000/nn 

     ld=r/(r-a1) 
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       s1=0.0 

 sde=0.0 

 do 20 j=0,r 

 s1=s1+binom(r,j)*((ld/(2.*r))**j)*(fac(2*j)/((2**j)*fac(j))) 

       sde=sde+binom(r,j)*((ld/(2.*r))**j)*(fac(2*(j+1))/((2**(j+1))* 

          +fac(j+1)))  

  20   continue 

       c=1./s1 

       sde=sde*c 

sd=sqrt(sde)  

 

     c COMPUTING t(i) VALUES 

n1=int(nn/2.+.5) 

       do 10 i=1,nn 

       if(i.gt.n1) then 

       t(i)=-t(nn-i+1) 

       goto 10 

       endif 

       q=i/(nn+1.) 

       call cdf(r,ld,c,q,t(i)) 

  10   continue 

 

    c GENERATING RANDOM DEVIATES  

if(ld.gt.1.0) go to 900  

 do 11 i=1,nn 

 alf(i)=((ld/r)*t(i)**3)/((1.0+(ld/(2.0*r))*t(i)**2)**2) 

    bet1(i)=(1.0-(ld/(2.0*r))*t(i)**2)/((1.0+(ld/(2.0*r))*t(i)**2)**2) 

       bet(i)=1.0-ld*bet1(i)   

   11  continue 

    go to 790 

  900  do 16 i=1,nn 

 h=1.0+(ld/(2.0*r))*t(i)**2 

       alf(i)=(((ld/r)*t(i)**3)+(1.0-1.0/ld)*t(i))/(h**2) 

    bet1(i)=(1.0/ld-(ld/(2.0*r))*t(i)**2)/(h**2) 

       bet(i)=1.0-ld*bet1(i)   

   16  continue 

 790  sumbet=0.0 

 do 110 i=1,nn 

  110  sumbet=sumbet+bet(i)   

 em=sumbet 

    do 100 l=1,mm 

       

      c    GENERATION OF e(i)  

       do 1088 j=1,k  
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       do 108 i=1,nn 

     9   call random(u) 

 if(u.lt.0.001.or.u.gt.0.999) goto 9 

 call cdf(r,ld,c,u,e(i)) 

    y(i,j)=e(i) 

  108  continue        

1088  continue     

   

       c  COMPUTING ORDERED e(i) 

do 80000 j=1,k 

 do 90000 i=1,nn 

 yt(i)=y(i,j)   

90000 continue 

       call SVRGN(nn,Yt,Y1)  

       do 1 i=1,nn 

        1   yo(i,j)=y1(i) 

80000  continue 

 

        c MML METHOD    

            do 6000 j=1,k 

 amu_mml(j)=0.0 

 do 300 i=1,nn 

   amu_mml(j)=amu_mml(j)+bet(i)*yo(i,j) 

  300  continue 

    amu_mml(j)=amu_mml(j)/em 

6000   continue 

      do 311 j=1,k 

 be=0.0 

 c1=0.0 

 do 310 i=1,nn 

 be=be+alf(i)*yo(i,j) 

       c1 =c1+((yo(i,j)-amu_mml(j))**2)*bet(i) 

  310  continue 

   bn=(nn*1.0)*(nn*1.0-1.0) 

 sigma_square_mml1(j)=(-ld*be+sqrt((ld*be)**2+4.0*(nn*1.0)*c1))**2 

 sigma_square_mml(j)=sigma_square_mml1(j)/((2.0*sqrt(bn))**2) 

  311  continue     

 ii=0 

 do 977 i=1,k 

 do 988 j=1,k 

 if (j.le.i) go to 988 

 ii=ii+1 

 tt1(ii)=abs((amu_mml(i)-amu_mml(j))/sqrt(2.0/((nn*1.0)*d_d))) 

 ttt1(ii)=abs(((amu_mml(i)-amu_mml(j))-dd)/sqrt(2.0/((nn*1.0)* 
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         +d_d))) 

988 continue 

977 continue 

 call SVRGN(nb,tt1,ts1)  

  call SVRGN(nb,ttt1,tts1)  

      aa(l)=ts1(nb) 

 aaa(l)=tts1(nb) 

 

c TM10 METHOD 

rr=int(nn*0.1)+1 

 do 302 j=1,k 

 t_t(j)=0.0 

 do 402 i=(rr+1),(nn-rr) 

 t_t(j)=t_t(j)+yo(i,j) 

402    continue 

       amu_tukey(j)=(t_t(j)+(rr*1.0-0.1*(nn*1.0))*(yo(rr,j)+ 

         +yo(nn-rr+1,j)))/((nn*1.0)*(1.0-2.0*0.1)) 

ss(j)=0 

 do 4002 i=(rr+1),(nn-rr) 

 ss(j)=ss(j)+(yo(i,j)-amu_tukey(j))**2 

4002   continue 

 sigma_square_tukey(j)=(ss(j)+(rr*1.0)*(yo(rr,j)-amu_tukey(j))**2+ 

          +(rr*1.0)*(yo((nn-rr+1),j)-amu_tukey(j))**2)/ 

          +((nn*1.0)*((1.0-2.0*0.10)**2)) 

302     continue 

     ii=0 

 do 9771 i=1,k 

 do 9881 j=1,k 

 if (j.le.i) go to 9881 

 ii=ii+1 

 tt2(ii)=abs((amu_tukey(i)-amu_tukey(j))/ 

         +sqrt(sigma_square_tukey(i)/(nn*1.0-2.0*rr)+sigma_square_tukey(j)/ 

         +(nn*1.0-2.0*rr))) 

 ttt2(ii)=abs(((amu_tukey(i)-amu_tukey(j))-dd)/ 

         +sqrt(sigma_square_tukey(i)/(nn*1.0-2.0*rr)+sigma_square_tukey(j)/ 

         +(nn*1.0-2.0*rr))) 

9881 continue 

9771 continue 

 call SVRGN(nb,tt2,ts2)  

  call SVRGN(nb,ttt2,tts2)  

      bb(l)=ts2(nb) 

 bbb(l)=tts2(nb) 
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    c WAVE METHOD 

 hh=2.4 

 do 222 j=1,k 

 do 111 i=1,nn 

 T01(i)=y(i,j) 

111 continue 

 call SVRGN(nn,T01,T02) 

 aa1=nn/2 

 bb1=aa1+1 

 T0(j)=(T02(aa1)+T02(bb1))/2.0 

222    continue 

 do 2222 j=1,k 

 do 1111 i=1,nn 

 S01(i)=abs(y(i,j)-T0(j)) 

1111 continue 

 call SVRGN(nn,S01,S02) 

 S0(j)=(S02(aa1)+S02(bb1))/2.0 

2222 continue 

 do 229 j=1,k 

do 400 i=1,nn 

z(i,j)=(y(i,j)-T0(j))/(hh*S0(j)) 

400    continue 

229 continue 

 do 301 j=1,k 

 ff(j)=0.0 

 ss1(j)=0.0 

 ss2(j)=0.0 

 pi=22.0/7.0 

 do 401 i=1,nn 

 if (abs(z(i,j)).lt.(pi)) go to 228 

 go to 401 

228 ss1(j)=ss1(j)+sin(z(i,j)) 

 ff(j)=ff(j)+cos(z(i,j)) 

 ss2(j)=ss2(j)+(sin(z(i,j)))**2 

401    continue 

 amu_wave(j)=T0(j)+(hh*S0(j))*atan(ss1(j)/ff(j)) 

 sigma_square_wave(j)=((hh*S0(j))**2)*(nn*1.0)*ss2(j)/((ff(j))**2) 

301 continue 

     ii=0 

 do 9772 i=1,k 

 do 9882 j=1,k 

 if (j.le.i) go to 9882 

 ii=ii+1 

 tt3(ii)=abs((amu_wave(i)-amu_wave(j))/sqrt(sigma_square_wave(i)/ 
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         +(nn*1.0)+sigma_square_wave(j)/(nn*1.0))) 

 ttt3(ii)=abs(((amu_wave(i)-amu_wave(j))-dd)/ 

         +sqrt(sigma_square_wave(i)/(nn*1.0)+sigma_square_wave(j)/(nn*1.0))) 

9882 continue 

9772 continue  

 call SVRGN(nb,tt3,ts3)  

  call SVRGN(nb,ttt3,tts3)   

       cc(l)=ts3(nb) 

 ccc(l)=tts3(nb) 

 

c MEAN METHOD  

       do 1444 j=1,k 

 sum1(j)=0.0 

 yvar(j)=0.0 

 do 144 i=1,nn  

 sum1(j)=sum1(j)+y(i,j) 

       yvar(j)=yvar(j)+y(i,j)**2 

  144  continue 

 1444  continue 

do 8888 j=1,k     

       ybar(j)=sum1(j)/(nn*1.0) 

       varsam(j)=yvar(j)-(nn*1.0)*ybar(j)**2 

 s_square(j)=(varsam(j)/(nn*1.0-1.0))  

 8888  continue    

 ii=0 

 do 9773 i=1,k 

 do 9883 j=1,k 

 if (j.le.i) go to 9883 

 ii=ii+1 

 tt4(ii)=abs((ybar(i)-ybar(j))/sqrt(s_square(i)/ 

           +(nn*1.0)+s_square(j)/(nn*1.0))) 

 ttt4(ii)=abs(((ybar(i)-ybar(j))-dd)/ 

         +sqrt(s_square(i)/(nn*1.0)+s_square(j)/(nn*1.0))) 

9883 continue 

9773 continue 

 call SVRGN(nb,tt4,ts4)  

  call SVRGN(nb,ttt4,tts4)  

      ee(l)=ts4(nb) 

 eee(l)=tts4(nb) 

100 continue 

 

    c COMPUTING CRITICAL VALUES 

 call cv(mm,aa,p1) 

 call cv(mm,bb,p2) 
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 call cv(mm,cc,p3) 

 call cv(mm,ee,p4) 

 

    c COMPUTING POWER VALUES 

 icount(1)=0 

 do 777 j=1,mm 

 if (aaa(j).ge.p1) go to 777 

 icount(1)=icount(1)+1 

777 continue 

 icount(2)=0 

 do 778 j=1,mm 

 if (bbb(j).ge.p1) go to 778 

 icount(2)=icount(2)+1 

778 continue 

 icount(3)=0 

 do 779 j=1,mm 

 if (ccc(j).ge.p1) go to 779 

 icount(3)=icount(3)+1 

779 continue 

 icount(4)=0 

 do 780 j=1,mm 

 if (eee(j).ge.p1) go to 780 

 icount(4)=icount(4)+1 

780 continue 

 power(1)=1.0-(icount(1)*1.0/(mm*1.0)) 

 power(2)=1.0-(icount(2)*1.0/(mm*1.0)) 

 power(3)=1.0-(icount(3)*1.0/(mm*1.0)) 

 power(4)=1.0-(icount(4)*1.0/(mm*1.0)) 

 

 Open(2,File="power.txt")  

       print*,power 

 write(2,*),power 

332  end      

 

    c SUBROUTINE FOR CRITICAL VALUES  

            subroutine cv(mm,qq,q1) 

 dimension acount1(40001),pp1(40001),pp2(40001),pps1(40001) 

 dimension pps2(40001),iperm1(40001),iperm2(40001) 

 dimension SR(40001),qq(10000) 

      SR(1)=1.0 

 do 112 i=2,40001 

SR(i)=SR(i-1)+0.0001 

112 continue 

 do 113 i=1,40001 
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 acount11=0 

 do 114 j=1,mm 

 if (qq(j).lt.SR(i)) go to 114 

 acount11=acount11+1  

114 continue 

 acount1(i)=(acount11*1.0)/(mm*1.0) 

113 continue 

 i1=0 

 i2=0 

 do 115 i=1,40001 

 if (acount1(i).gt.0.05) go to 116 

 i1=i1+1 

 pp1(i1)=acount1(i)  

 iperm1(i1)=i 

 go to 115 

116 i2=i2+1 

 pp2(i2)=acount1(i) 

 iperm2(i2)=i 

115   continue 

 if (i1.eq.0) go to 120 

 if (i2.eq.0) go to 122 

 call SVRGP(i1,pp1,pps1,iperm1) 

 call SVRGP(i2,pp2,pps2,iperm2) 

 ai1=iperm1(i1) 

 ai2=iperm2(1) 

 if ((abs(pps1(i1)-0.05)).le.(abs(pps2(1)-0.05))) go to 119 

 q1=SR(ai2) 

 go to 124 

119 q1=SR(ai1) 

 go to 124  

120 do 121 i=1,i2 

 iperm2(i)=i 

121 continue 

 call SVRGP(i2,pp2,pps2,iperm2) 

 ai2=iperm2(1)  

 q1=SR(ai2) 

 go to 124 

122 do 123 i=1,i1 

 iperm1(i)=i 

123 continue 

 call SVRGP(i1,pp1,pps1,iperm1) 

 ai1=iperm1(i1) 

 q1=SR(ai1) 

124 end 



 89 

    c SUBROUTINE FOR t(i) VALUES OF STS 

       subroutine cdf(r,ldt,ct,ux,xm) 

       integer r 

 real ldt 

 pi=22./7. 

 eps=1.e-6 

 xl=-10; xu=10 

 22    xm=(xl+xu)/2. 

 del=1 

 if(xm.le.0.) del=-1 

 u=xm*xm/2. 

 g=0 

 do 32 j=0,r 

 g=g+BINOM(r,j)*((ldt/r)**j)*(gamma(j+0.5)+del*gami(j+0.5,u)) 

 32   continue 

 f=ct*g/(2.*sqrt(pi)) 

 if(abs(f-ux).lt.eps.or.abs(xl-xu).lt.eps) return 

 if(f.gt.ux) then 

          xu=xm 

         else 

          xl=xm 

   endif 

   goto 22 

   end 
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APPENDIX C 

 
 

COMPUTER PROGRAM FOR  MULTIPLE COMPARISONS 
WITH A CONTROL 

 

 

    
   USE NUMERICAL_LIBRARIES    

      dimension alf(600),bet(600),e(600) 

     dimension w(600),v(600),w1(600),xa(600),ra(600),ae(600) 

 dimension y1(600),bet1(600),t(600),samp(100,100),y(100,100) 

 dimension sum1(100),yvar(100),sammean(100),varsam(100),yt(100) 

 dimension ybar(100), sigma(100),tt(100,100),ts(10000) 

 dimension z(100,100),yo(100,100) 

 dimension amu_mml(100),amu_wave(100),amu_tukey(100) 

 dimension s_square(100),sigma_square_mml(100) 

 dimension sigma_square_wave(100),sigma_square_tukey(100) 

 dimension tt1(100),tt2(100),tt3(100),tt4(100) 

 dimension ttt1(100),ttt2(100),ttt3(100),ttt4(100) 

 dimension aa(10000),bb(10000),cc(10000),ee(10000) 

 dimension aaa(10000),bbb(10000),ccc(10000),eee(10000) 

 dimension ts1(10000),ts2(10000),ts3(10000),ts4(10000) 

 dimension tts1(10000),tts2(10000),tts3(10000),tts4(10000) 

 dimension T01(100),T0(100),T02(100),t_t(100),ss(100) 

 dimension S0(100),S01(100),S02(100) 

 dimension ff(100),ss1(100),ss2(100),sigma_square_mml1(100) 

 dimension amu_mml1(100),amu_tukey1(100),amu_wave1(100) 

 dimension power(4),icount(4),ybar1(100) 

 dimension yc(100),yoc(100),ec(100),S01c(100),S02c(100),zc(100) 

 integer r,b1 

 real ld 

 

 open(unit=1,file='result1') 

             

 3333 read*,nn,k,r,a1,dd 

       

 d_d=1.0-(2.0/(2.0-a1))*((1.0-1.0/(2.0*(2.0-a1)))/(1.0+1.0/ 

          +(2.0-a1)+3.0*1.0/(4.0*((2.0-a1)**2)))) 

 nb=k*(k-1)/2 

      mm=100000/nn    
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ld=r/(r-a1) 

s1=0.0 

 sde=0.0 

 do 20 j=0,r 

 s1=s1+binom(r,j)*((ld/(2.*r))**j)*(fac(2*j)/((2**j)*fac(j))) 

       sde=sde+binom(r,j)*((ld/(2.*r))**j)*(fac(2*(j+1))/((2**(j+1))* 

          +fac(j+1)))  

  20   continue 

       c=1./s1 

       sde=sde*c 

       sd=sqrt(sde)  

       

    c COMPUTING t(i) VALUES  

       n1=int(nn/2.+.5)   

       do 10 i=1,nn 

       if(i.gt.n1) then 

       t(i)=-t(nn-i+1) 

       goto 10 

       endif 

       q=i/(nn+1.) 

       call cdf(r,ld,c,q,t(i)) 

  10   continue 

    

    c GENERATING RANDOM DEVIATES     

       if(ld.gt.1.0) go to 900  

 do 11 i=1,nn 

 alf(i)=((ld/r)*t(i)**3)/((1.0+(ld/(2.0*r))*t(i)**2)**2) 

    bet1(i)=(1.0-(ld/(2.0*r))*t(i)**2)/((1.0+(ld/(2.0*r))*t(i)**2)**2) 

       bet(i)=1.0-ld*bet1(i)   

   11  continue 

       go to 790 

  900  do 16 i=1,nn 

 h=1.0+(ld/(2.0*r))*t(i)**2 

       alf(i)=(((ld/r)*t(i)**3)+(1.0-1.0/ld)*t(i))/(h**2) 

    bet1(i)=(1.0/ld-(ld/(2.0*r))*t(i)**2)/(h**2) 

       bet(i)=1.0-ld*bet1(i)   

   16  continue 

  790  sumbet=0.0 

 do 110 i=1,nn 

  110  sumbet=sumbet+bet(i)   

 em=sumbet 

    

     c GENERATION OF e(i) FOR CONTROL GROUP 

do 107 i=1,nn 
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   8   call random(uu) 

 if(uu.lt.0.001.or.uu.gt.0.999) goto 8 

 call cdf(r,ld,c,uu,ec(i)) 

 yc(i)=ec(i)  

  107  continue        

 call SVRGN(nn,yc,yoc) 

 

c MML METHOD FOR CONTROL GROUP             

 amu_mmlc=0.0 

 do 299 i=1,nn 

   amu_mmlc=amu_mmlc+bet(i)*yoc(i) 

  299  continue 

    amu_mmlc=amu_mmlc/em 

 b_c=0.0 

 c_c=0.0 

 do 309 i=1,nn 

 b_c=b_c+alf(i)*yoc(i) 

       c_c =c_c+((yoc(i)-amu_mmlc)**2)*bet(i) 

  309  continue 

   bn=(nn*1.0)*(nn*1.0-1.0) 

 sigma_squarec1=(-ld*b_c+sqrt((ld*b_c)**2+4.0*(nn*1.0)*c_c))**2 

 sigma_squarec=sigma_squarec1/((2.0*sqrt(bn))**2) 

 

c TUKEY METHOD FOR CONTROL GROUP 

rr=int(nn*0.1)+1 

 t_tc=0.0 

 do 501 i=(rr+1),(nn-rr) 

 t_tc=t_tc+yoc(i) 

501    continue 

       amu_tukeyc=(t_tc+(rr*1.0-0.1*(nn*1.0))*(yoc(rr)+ 

          +yoc(nn-rr+1)))/((nn*1.0)*(1.0-2.0*0.1)) 

       ssc=0 

 do 4001 i=(rr+1),(nn-rr) 

 ssc=ssc+(yoc(i)-amu_tukeyc)**2 

4001   continue 

 sigma_square_tukeyc=(ssc+(rr*1.0)*(yoc(rr)-amu_tukeyc)**2+ 

          +(rr*1.0)*(yoc(nn-rr+1)-amu_tukeyc)**2)/ 

          +((nn*1.0)*((1.0-2.0*0.10)**2)) 

 

c WAVE METHOD FOR CONTROL GROUP 

 hh=2.4 

 aa1=nn/2 

 bb1=aa1+1 

 T0c=(yoc(aa1)+yoc(bb1))/2.0 
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 do 1110 i=1,nn 

 S01c(i)=abs(yc(i)-T0c) 

1110 continue 

 call SVRGN(nn,S01c,S02c) 

 S0c=(S02c(aa1)+S02c(bb1))/2.0 

 do 399 i=1,nn 

 zc(i)=(yc(i)-T0c)/(hh*S0c) 

399    continue 

 ffc=0.0 

 ss1c=0.0 

 ss2c=0.0 

 pi=22.0/7.0 

 do 500 i=1,nn 

 if (abs(zc(i)).lt.(pi)) go to 227 

 go to 500 

227 ss1c=ss1c+sin(zc(i)) 

 ffc=ffc+cos(zc(i)) 

 ss2c=ss2c+(sin(zc(i)))**2 

500    continue 

 amu_wavec=T0c+(hh*S0c)*atan(ss1c/ffc) 

 sigma_square_wavec=((hh*S0c)**2)*(nn*1.0)*ss2c/((ffc)**2) 

  

c MEAN METHOD FOR CONTROL GROUP                      

 sum1c=0.0 

 yvarc=0.0 

 do 143 i=1,nn   

 sum1c=sum1c+yc(i) 

       yvarc=yvarc+yc(i)**2 

  143  continue 

       ybarc=sum1c/(nn*1.0) 

       varsamc=yvarc-(nn*1.0)*ybarc**2      

 s_squarec=(varsamc/(nn*1.0-1.0))  

 do 100 l=1,mm 

       

c GENERATION OF e(i) 

do 1088 j=1,k  

       do 108 i=1,nn 

   9   call random(u) 

 if(u.lt.0.001.or.u.gt.0.999) goto 9 

 call cdf(r,ld,c,u,e(i)) 

 y(i,j)=e(i) 

  108  continue        

 1088  continue 

 nrr=int(0.5+0.1*nn) 
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 do 1078 j=1,k 

 do 10788 i=1,nn 

 if (i.gt.nrr) go to 10788 

 y(i,j)=y(i,j)*4.0 

10788 continue 

1078 continue 

            do 80000 j=1,k 

 do 90000 i=1,nn 

 yt(i)=y(i,j)   

90000  continue 

 

       c  COMPUTING ORDERED e(i) 

     call SVRGN(nn,Yt,Y1)        

       do 1 i=1,nn 

   1   yo(i,j)=y1(i) 

80000 continue 

 

c  MML METHOD    

      do 6000 j=1,k 

 amu_mml(j)=0.0 

 do 300 i=1,nn 

   amu_mml(j)=amu_mml(j)+bet(i)*yo(i,j) 

  300  continue 

    amu_mml(j)=amu_mml(j)/em 

6000   continue 

      do 311 j=1,k 

 be=0.0 

 c1=0.0 

 do 310 i=1,nn 

 be=be+alf(i)*yo(i,j) 

       c1 =c1+((yo(i,j)-amu_mml(j))**2)*bet(i) 

  310  continue 

   bn=(nn*1.0)*(nn*1.0-1.0) 

 sigma_square_mml1(j)=(-ld*be+sqrt((ld*be)**2+4.0*(nn*1.0)*c1))**2 

 sigma_square_mml(j)=sigma_square_mml1(j)/((2.0*sqrt(bn))**2) 

  311  continue     

 do 977 i=1,k 

tt1(i)=abs((amu_mml(i)-amu_mmlc)/sqrt(2.0/((nn*1.0)*d_d))) 

ttt1(i)=abs(((amu_mml(i)-amu_mmlc)-dd)/sqrt(2.0/((nn*1.0)* 

          +d_d))) 

977 continue 

 call SVRGN(k,tt1,ts1)  

  call SVRGN(k,ttt1,tts1)  

       aa(l)=ts1(k) 
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 aaa(l)=tts1(k) 

 

c TUKEY METHOD 

       rr=int(nn*0.1)+1 

 do 302 j=1,k 

 t_t(j)=0.0 

 do 402 i=(rr+1),(nn-rr) 

 t_t(j)=t_t(j)+yo(i,j) 

402   continue 

       amu_tukey(j)=(t_t(j)+(rr*1.0-0.1*(nn*1.0))*(yo(rr,j)+ 

         +yo(nn-rr+1,j)))/((nn*1.0)*(1.0-2.0*0.1)) 

       ss(j)=0 

 do 4002 i=(rr+1),(nn-rr) 

 ss(j)=ss(j)+(yo(i,j)-amu_tukey(j))**2 

4002   continue  

 sigma_square_tukey(j)=(ss(j)+(rr*1.0)*(yo(rr,j)-amu_tukey(j))**2+ 

          +(rr*1.0)*(yo((nn-rr+1),j)-amu_tukey(j))**2)/ 

          +((nn*1.0)*((1.0-2.0*0.10)**2)) 

302    continue  

 do 9771 i=1,k 

 tt2(i)=abs((amu_tukey(i)-amu_tukeyc)/ 

          +sqrt(sigma_square_tukey(i)/(nn*1.0-2.0*rr)+sigma_square_tukeyc/ 

          +(nn*1.0-2.0*rr))) 

 ttt2(i)=abs(((amu_tukey(i)-amu_tukeyc)-dd)/ 

          +sqrt(sigma_square_tukey(i)/(nn*1.0-2.0*rr)+sigma_square_tukeyc/ 

          +(nn*1.0-2.0*rr))) 

9771 continue     

 call SVRGN(k,tt2,ts2)  

  call SVRGN(k,ttt2,tts2)             

       bb(l)=ts2(k) 

 bbb(l)=tts2(k) 

 

c WAVE METHOD 

 hh=2.4 

 do 222 j=1,k 

 do 111 i=1,nn  

 T01(i)=y(i,j) 

111 continue 

 call SVRGN(nn,T01,T02) 

 aa1=nn/2 

 bb1=aa1+1 

 T0(j)=(T02(aa1)+T02(bb1))/2.0 

222    continue 

 do 2222 j=1,k 



 96 

 do 1111 i=1,nn 

 S01(i)=abs(y(i,j)-T0(j)) 

1111 continue 

 call SVRGN(nn,S01,S02) 

 S0(j)=(S02(aa1)+S02(bb1))/2.0 

2222 continue 

 do 229 j=1,k 

 do 400 i=1,nn 

 z(i,j)=(y(i,j)-T0(j))/(hh*S0(j)) 

400    continue 

229 continue 

 do 301 j=1,k 

 ff(j)=0.0 

 ss1(j)=0.0 

 ss2(j)=0.0 

 pi=22.0/7.0 

 do 401 i=1,nn 

 if (abs(z(i,j)).lt.(pi)) go to 228 

 go to 401 

228 ss1(j)=ss1(j)+sin(z(i,j)) 

 ff(j)=ff(j)+cos(z(i,j)) 

 ss2(j)=ss2(j)+(sin(z(i,j)))**2  

401    continue 

 amu_wave(j)=T0(j)+(hh*S0(j))*atan(ss1(j)/ff(j)) 

 sigma_square_wave(j)=((hh*S0(j))**2)*(nn*1.0)*ss2(j)/((ff(j))**2) 

301 continue 

     do 9772 i=1,k 

 tt3(i)=abs((amu_wave(i)-amu_wavec)/sqrt(sigma_square_wave(i)/ 

         +(nn*1.0)+sigma_square_wavec/(nn*1.0))) 

 ttt3(i)=abs(((amu_wave(i)-amu_wavec)-dd)/ 

         +sqrt(sigma_square_wave(i)/(nn*1.0)+sigma_square_wavec/(nn*1.0))) 

9772 continue     

 call SVRGN(k,tt3,ts3)  

  call SVRGN(k,ttt3,tts3)    

       cc(l)=ts3(k) 

 ccc(l)=tts3(k) 

 

c MEAN METHOD                    

 do 1444 j=1,k 

 sum1(j)=0.0 

 yvar(j)=0.0 

 do 144 i=1,nn  

 sum1(j)=sum1(j)+y(i,j) 

       yvar(j)=yvar(j)+y(i,j)**2 
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  144  continue 

 1444  continue 

       do 8888 j=1,k     

       ybar(j)=sum1(j)/(nn*1.0) 

       varsam(j)=yvar(j)-(nn*1.0)*ybar(j)**2       

 s_square(j)=(varsam(j)/(nn*1.0-1.0))      

 8888 continue    

 do 9773 i=1,k 

 tt4(i)=abs((ybar(i)-ybarc)/sqrt(s_square(i)/ 

         +(nn*1.0)+s_squarec/(nn*1.0))) 

 ttt4(i)=abs(((ybar(i)-ybarc)-dd)/ 

         +sqrt(s_square(i)/(nn*1.0)+s_squarec/(nn*1.0))) 

9773 continue 

 call SVRGN(k,tt4,ts4)  

  call SVRGN(k,ttt4,tts4)  

       ee(l)=ts4(k) 

 eee(l)=tts4(k) 

100 continue 

 

    c COMPUTING CRITICAL VALUES 

 call cv(mm,aa,p1) 

 call cv(mm,bb,p2) 

 call cv(mm,cc,p3) 

 call cv(mm,ee,p4) 

 

    c COMPUTING POWER VALUES 

 icount(1)=0 

 do 777 j=1,mm 

 if (aaa(j).ge.1.709218) go to 777 

 icount(1)=icount(1)+1 

777 continue 

 icount(2)=0 

 do 778 j=1,mm 

 if (bbb(j).ge.1.438373) go to 778 

 icount(2)=icount(2)+1 

778 continue 

 icount(3)=0 

 do 779 j=1,mm 

 if (ccc(j).ge.2.001764) go to 779 

 icount(3)=icount(3)+1 

779 continue 

 icount(4)=0 

 do 780 j=1,mm 

 if (eee(j).ge.1.724420) go to 780 
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 icount(4)=icount(4)+1 

780 continue 

 power(1)=1.0-(icount(1)*1.0/(mm*1.0)) 

 power(2)=1.0-(icount(2)*1.0/(mm*1.0)) 

 power(3)=1.0-(icount(3)*1.0/(mm*1.0)) 

 power(4)=1.0-(icount(4)*1.0/(mm*1.0)) 

 Open(2,File="power.txt")  

       print*,power 

 write(2,*),power       

332 end 

 

      c SUBROUTINE FOR CRITICAL VALUES  

            subroutine cv(mm,qq,q1) 

 dimension acount1(40001),pp1(40001),pp2(40001),pps1(40001) 

 dimension pps2(40001),iperm1(40001),iperm2(40001) 

 dimension SR(40001),qq(10000) 

      SR(1)=1.0 

 do 112 i=2,40001 

SR(i)=SR(i-1)+0.0001 

112 continue 

 do 113 i=1,40001 

 acount11=0 

 do 114 j=1,mm 

 if (qq(j).lt.SR(i)) go to 114 

 acount11=acount11+1  

114 continue 

 acount1(i)=(acount11*1.0)/(mm*1.0) 

113 continue 

 i1=0 

 i2=0 

 do 115 i=1,40001 

 if (acount1(i).gt.0.05) go to 116 

 i1=i1+1 

 pp1(i1)=acount1(i)  

 iperm1(i1)=i 

 go to 115 

116 i2=i2+1 

 pp2(i2)=acount1(i) 

 iperm2(i2)=i 

115   continue 

 if (i1.eq.0) go to 120 

 if (i2.eq.0) go to 122 

 call SVRGP(i1,pp1,pps1,iperm1) 

 call SVRGP(i2,pp2,pps2,iperm2) 
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 ai1=iperm1(i1) 

 ai2=iperm2(1) 

 if ((abs(pps1(i1)-0.05)).le.(abs(pps2(1)-0.05))) go to 119 

 q1=SR(ai2) 

 go to 124 

119 q1=SR(ai1) 

 go to 124  

120 do 121 i=1,i2 

 iperm2(i)=i 

121 continue 

 call SVRGP(i2,pp2,pps2,iperm2) 

 ai2=iperm2(1)  

 q1=SR(ai2) 

 go to 124 

122 do 123 i=1,i1 

 iperm1(i)=i 

123 continue 

 call SVRGP(i1,pp1,pps1,iperm1) 

 ai1=iperm1(i1) 

 q1=SR(ai1) 

124 end 

 

    c SUBROUTINE FOR t(i) VALUES OF STS 

       subroutine cdf(r,ldt,ct,ux,xm) 

       integer r 

 real ldt 

 pi=22./7. 

 eps=1.e-6 

 xl=-10; xu=10 

 22    xm=(xl+xu)/2. 

 del=1 

 if(xm.le.0.) del=-1 

 u=xm*xm/2. 

 g=0 

 do 32 j=0,r 

 g=g+BINOM(r,j)*((ldt/r)**j)*(gamma(j+0.5)+del*gami(j+0.5,u)) 

 32   continue 

 f=ct*g/(2.*sqrt(pi)) 

 if(abs(f-ux).lt.eps.or.abs(xl-xu).lt.eps) return 

 if(f.gt.ux) then 

          xu=xm 

         else 

          xl=xm 

   endif 
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   goto 22 

   end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 


