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ABSTRACT 

 
 

UNCERTAINTY ANALYSIS OF COORDINATE MEASURING MACHINE 
(CMM) MEASUREMENTS 

 
 
 

Sözak, Ahmet   
                                                                                                      

M.S., Department of Mechanical Engineering 
 

Supervisor:  Asst. Prof. Dr. İlhan Konukseven  
 

Co-Supervisor:  Asst. Prof. Dr. Melik Dölen 
 

September 2007, 156 pages 
 

In this thesis, the measurement uncertainty of Coordinate Measuring Machine 

(CMM) is analysed and software is designed to simulate this. Analysis begins with 

the inspection of the measurement process and structure of the CMMs. After that, 

error sources are defined with respect to their effects on the measurement and then an 

error model is constructed to compensate these effects. In other words, systematic 

part of geometric, kinematic and thermal errors are compensated with error 

modelling. Kinematic and geometric error model is specific for the structure of 

CMM under inspection. Also, a common orthogonal kinematic model is formed and 

with using the laser error data of the CMM and error maps of the machine volume is 

obtained. Afterwards, the models are compared with each other by taking the 

difference and ratio.  

The definition and compensation of the systematic errors leave the uncertainty 

of measurements for analysing. Measurement uncertainty consists of the 

uncompensated systematic errors and random errors. The other aim of the thesis is to 

quantify these uncertainties with using the different methods and to inspect the 

success of these methods. Uncertainty budgeting, comparison, statistical evaluation 

by designing an experiments and simulation methods are examined and applied to 

the CMM under inspection. In addition, Virtual CMM software is designed to 
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simulate the task specific measurement uncertainty of circle, sphere and plane 

without using the repeated measurements.  

 

Finally, the performance of the software, highly depending on the 

mathematical modelling of machine volume, is tested by using actual measurements. 

               

Keywords: Precision Engineering, Dimensional Measurement Uncertainty, 

Coordinate Measuring Machine, Kinematic and Geometric Error Modelling, 

Simulation. 
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ÖZ 
 
 

KOORDİNAT ÖLÇME CİHAZI İLE YAPILAN ÖLÇÜMLERİN BELİRSİZLİK 
ANALİZİ        

 
 
 

Sözak, Ahmet 
 

Y.Lisans, Makina Mühendisliği Bölümü 
 

Tez Yöneticisi: Y.Doç. Dr. İlhan Konukseven 
 

Ortak Tez Yöneticisi: Y.Doç.Dr. Melik Dölen 
 

Eylül 2007, 156 sayfa 
 

Bu tezde, koordinat ölçme cihazlarında yapılan ölçümlerin belirsizlikleri 

analiz edilmiş ve bu belirsizliklerin benzetimine imkan veren bir simulasyon 

yazılımı tasarlanmıştır. Söz konusu analize cihazın ölçüm işleminin ve 

yapısının incelenmesi ile başlanmıştır Sonrasında ölçümü etkileyecek hata 

kaynakları tespit edilmiş, sistematik hataların bir bölümü modellenmiş ve 

ayrılmıştır. Bu sayede ölçüm belirsizliği  sistematik olan kinematik, geometrik 

ve ısıl  hatalardan ayrılmış olmuştur. Uygulanan kinematik ve geometrik hata 

modeli cihazın yapısına bağlıdır.  Ayrıca cihazın yapısına bağlı olmayan ortak 

bir model oluşturulmuş ve modelde lazer hata verileri kullanılarak makina 

hacminin hata haritası çıkarılmıştır. Sonrasında ise oluşturulan iki model,  

sonuçların farkına ve oranına bakılarak karşılaştırılmıştır.    

Tanımlanan sistematik hataların telafi edilmesi analiz için geriye ölçüm 

belirsizliğini bırakmıştır. Ölçüm belirsizliği telafi edilemeyen sistematik ve 

rasgele hatalardan kaynaklanmaktadır. Bu tezin diğer bir amacıda bahsedilen 

belirsizliğin farklı yöntemler kullanılarak miktarlanması ve bu yöntemlerin 

başarısının incelenmesidir. Bu kapsamda belirsizlik bütçeleme, karşılaştırma, 

deney tasarlanarak istatistik ile değerlendirme ve benzeşim yöntemleri 
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incelenmiş ve mevcut bir cihaza uygulanmıştır. Bununla birlikte, tekrarlanan 

ölçümler gerektirmeden daire, düzlem ve küre ölçümleri gibi işe özel ölçüm 

belirsizliklerini benzeştirmek için sanal koordinat ölçme cihazı yazılımı 

tasarlamıştır. Son olarak performansı cihazın matematiksel modellemesi bağlı 

olarak değişen bu yazılım gerçek ölçümler ile karşılaştırılarak test edilmiştir.  

Anahtar Kelimeler: Doğruluk Mühendisliği, Boyutsal Ölçüm Belirsizliği, 

Koordinat Ölçme Cihazı, Kinematik ve Geometrik Hata Modellemesi, 

Simülasyon  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 viii 

 

 

 
 

 
ACKNOWLEDGEMENTS 

 
 
 

I would like to express my sincere gratitude to my supervisor Asst. Prof. Dr. 

İlhan Konukseven and co-supervisor Asst. Prof. Dr. Melik Dölen for their 

supervisions, guidance and encouragements throughout this study. 

I would like to also express my thanks to my friends and my colleagues for 

their precious support and fellowship. 

Finally, I would like to thank my family for their love, support and patience 

over the years. This thesis is dedicated to them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ix 

 

 

 
TABLE OF CONTENTS 

 
 
 
PLAGIARISM............................................................................................................ iii 

ABSTRACT................................................................................................................. iv 

ÖZ ..................................................................................................................... vi 

ACKNOWLEDGEMENTS ......................................................................................viii 

TABLE OF CONTENTS............................................................................................ ix 

LIST OF FIGURES ..................................................................................................xiii 

LIST OF TABLES .................................................................................................... xvi 

CHAPTERS 

1. INTRODUCTION ................................................................................................... 1 

2. EXPLANATION OF MEASUREMENT UNCERTAINTY AND PROCESS....... 4 

2.1. Measurement Error and Uncertainty............................................................ 4 

2.1.1. Random Error ......................................................................................... 5 

2.1.2. Systematic Error..................................................................................... 5 

2.1.3. Measurement Uncertainty ...................................................................... 5 

2.1.3.1. Combined Standard Uncertainty................................................ 8 

2.1.3.2. Expanded Uncertainty and Confidence Intervals ......................... 9 

2.2. Summary .................................................................................................... 10 

3. MECHANICAL STRUCTURE OF CMM’S ........................................................ 11 

3.1. Measurement Process of Coordinate Measuring Machines ....................... 11 

3.2. Hardware Components of CMMs.............................................................. 13 

3.2.1. Structural Elements .............................................................................. 14 

3.2.2. Bearing Systems................................................................................... 15 

3.2.3. Drive Systems ...................................................................................... 16 

3.2.3.1. Rack and Pinion Drive............................................................. 16 

3.2.3.2. Belt Drive................................................................................. 16 

3.2.3.3. Friction Drive........................................................................... 17 

3.2.4. Displacement Sensors .......................................................................... 18 

3.2.4.1. Photo Transmission Scale........................................................ 19 



 x

3.2.4.2. Photo Reflection Scale.......................................................... 20 

3.2.4.3. Interferential Scale................................................................ 20 

3.2.5. Probe Head............................................................................... 21 

3.3. Structure Types of CMM’s......................................................................... 22 

3.4 CMM used in this study ............................................................................. 25 

3.5 Summary..................................................................................................... 26 

4. KINEMATIC AND GEOMETRIC ERROR MODELLING AND 

COMPENSATION OF A COORDINATE MEASURING MACHINE................... 28 

4.1. Error Description........................................................................................ 28 

4.2. Types of errors ........................................................................................... 29 

4.2.1. Geometric error........................................................................ 29 

4.2.2. Kinematic error ........................................................................ 30 

4.2.3. Stiffness error........................................................................... 30 

4.2.4. Thermal errors.......................................................................... 30 

4.3. Theory of Error Modelling......................................................................... 31 

4.3.1. Homogeneous Transformation Matrix (HTM)........................ 33 

4.4. Model Application on CMM under investigation ...................................... 38 

4.5. Evaluation of Error Model’s Results .......................................................... 42 

4.6. Kinematic Modelling with Laser Interferometer Data ............................... 44 

4.6.1. Linear Error Measurement....................................................... 45 

4.6.2. Angular Error Measurement .................................................... 46 

4.6.3. Straightness Error Measurement.............................................. 47 

4.7. Evaluation of Kinematic Model Used Laser Error Data............................ 54 

4.8. The Difference Between the Results of Constructed Kinematic model 

which uses Joint & Link Deviations and Laser Error Data........................................ 58 

4.9. Summary..................................................................................................... 60 

5. THE UNCERTAINTY SOURCES IN CMM’S.................................................... 61 

5.1. Hardware and Structure Factors................................................................. 61 

5.2. Measurement Strategy Factors................................................................... 63 

5.3. Software Factor .......................................................................................... 64 

5.4. Summary .................................................................................................... 65 

6. BRIEF EXPLANATION OF METHODS TO DETERMINE THE 

MEASUREMENT UNCERTAINTY OF CMM’S ................................................... 66 



 xi 

6.1. Method 1: Uncertainty Budgeting.............................................................. 66 

6.2. Method 2: Comparison method.................................................................. 67 

6.3. Method 3: Statistical Evaluation of Measurement Uncertainty by 

Designing Fractional Factorial Experiment ............................................................... 67 

6.4. Method 4: Hybrid Methods........................................................................ 67 

6.5. Method 5: Simulation................................................................................. 68 

7. UNCERTAINTY BUDGETING IN CMM MEASUREMENT............................ 69 

7.1. Theory of Uncertainty Budgeting .............................................................. 69 

7.2. Application of Uncertainty Budgeting to CMM under Inspection ............ 70 

7.3. Evaluation of Uncertainty Budgeting Method ........................................... 72 

8. EVALUATION OF MEASUREMENT UNCERTAINTY USING 

COMPARISON METHOD ....................................................................................... 73 

8.1. Theory of Comparison Method.................................................................. 73 

8.2. Application of Comparison Method to CMM under Inspection................ 74 

8.3. Evaluation of Comparison Method ............................................................ 76 

9. STATISTICAL EVALUATION OF MEASUREMENT UNCERTAINTY BY 

DESIGNING FRACTIONAL FACTORIAL EXPERIMENT.................................. 78 

9.1. Design of Experiments............................................................................... 78 

9.2. Experiments on Ring Gauge ...................................................................... 81 

9.2.1. Ring Diameter Measurement in Y-Z Plane ............................. 81 

9.2.2. Ring Diameter Measurement in X-Z Plane ............................. 87 

9.2.3. Ring Diameter Measurement in X-Y Plane............................. 90 

9.3. Evaluation of  Design of Experiment......................................................... 94 

9.4. Mapping of Uncertainty in Measurement for CMM under Inspection...... 99 

10. UNCERTAINTY EVALUATION OF CMM MEASUREMENT BY USE OF 

MULTIPLE MEASUREMENT STRATEGIES OF ARTIFACTS: HYBRID 

METHOD................................................................................................................. 103 

10.1. Theory of Hybrid Method ........................................................................ 103 

10.1.1. Calculation of Repeatability Component............................... 106 

10.1.2. Calculation of Geometry Component .................................... 106 

10.1.3. Calculation of Diameter Component ..................................... 106 

10.1.4. Calculation of the uncertainty of the temperature correction.. 107 

10.2. Application of Hybrid Method to CMM under Inspection ...................... 108 



 xii 

10.3. Evaluation of Hybrid Method Results...................................................... 110 

10.4. Summary................................................................................................... 112 

11. SIMULATION METHOD TO ANALYSE THE MEASUREMENT 

UNCERTAINTY ..................................................................................................... 113 

11.1. Principles of  Simulation Software VCTR............................................... 114 

11.2. Procedure of Simulation........................................................................... 116 

11.2.1. Problems and Assumptions of Simulation............................. 117 

11.2.2. Estimating the Uncertainty in the Coordinates of a Measured 

Point ............................................................................................... 119 

11.2.3. Simulation of Measurement with VCTR............................... 120 

11.3. Implementing VCTR................................................................................ 120 

11.3.1. Measurement Uncertainty of Circle....................................... 126 

11.3.2. Measurement Uncertainty of Sphere ..................................... 131 

11.4. Evaluation of Flatness Uncertainty on Plane Measurement..................... 134 

11.5. Comparison of the Experimental and VCTR Results............................... 136 

12. CONCLUSION.................................................................................................. 140 

12.1. Discussion of Results and Conclusions...................................................... 140 

12.2. Future Works............................................................................................ 142 

REFERENCES......................................................................................................... 144 

APPENDICES ......................................................................................................... 147 

A. VOLUMETRIC ERROR MATRICES OF KINEMATIC MODEL ....... 147 

B. VOLUMETRIC ERROR MATRICES OF KINEMATIC MODEL BY 

USING  LASER ERROR DATA ............................................................................ 149 

C. FLATNESS DATA POINT ..................................................................... 151 

D. MATLAB FUNCTION OF KINEMATIC ERROR MODELLING....... 152 

E. SPECIFICATIONS OF RENISHAW TP7M PROBE............................. 153 

F. LINEAR SENSORS OF CMM USED IN THESIS ................................ 153 

G. CALIBRATION CERTIFICATE OF RING GAUGE USED IN THESIS...

 .................................................................................................................. 154 

H. SPECIFICATIONS OF CMM UNDER INSPECTION.......................... 156 

 

 

 



 xiii 

 

 
 

LIST OF FIGURES 
 
 
 
Figure 1: Measurement Error and Measurement Uncertainty...................................... 4 

Figure 2: Type A Uncertainty ...................................................................................... 6 

Figure 3: Type B Uncertainty (Rectangular Distribution) ........................................... 7 

Figure 4:  Combined and Expanded Uncertainty....................................................... 10 

Figure 5: Coordinate Systems .................................................................................... 12 

Figure 6: Process of CMM Measurement  [1] ........................................................... 13 

Figure 7: Aerostatic Bearing ...................................................................................... 15 

Figure 8: Precision Friction Drive Systems [37] ....................................................... 17 

Figure 9: General Structure of Displacement Transducer [38].................................. 18 

Figure 10: Principle of Transmission Scale [38]........................................................ 19 

Figure 11: Principle of Reflection Scale [38] ............................................................ 20 

Figure 12: Principle of Interferential Scale [38] ........................................................ 21 

Figure 13: Renishaw TP7M Probe System................................................................ 22 

Figure 14: Fixed table cantilever coordinate arm measuring machine [16]............... 22 

Figure 15:  Moving Bridge CMM [16] ...................................................................... 23 

Figure 16: Column Type CMM [16].......................................................................... 24 

Figure 17: Moving Ram Horizontal Arm CMM [16] ................................................ 24 

Figure 18: Gantry Type CMM [16] ........................................................................... 25 

Figure 19: X-Axis Carriage (Joint) Motion with Error [19] ...................................... 32 

Figure 20: Solid Link with Error [28] ........................................................................ 36 

Figure 21: Structure of Machine and Model Elements. [28] ..................................... 39 

Figure 22: Volumetric Error Charts of Kinematic Model for Z= -50 mm to Z= -550 

mm. ............................................................................................................................ 41 

Figure 23: Volumetric Error Contour Plot of Kinematic Model for Z= -50 mm to Z= 

-550 mm. .................................................................................................................... 41 

Figure 24: X Axis Error Map..................................................................................... 43 

Figure 25: Y Axis Error Map..................................................................................... 43 

Figure 26: Tripod Mounted Laser Interferometer Measurement [10]. ...................... 45 



 xiv 

Figure 27: A View of Linear Error Measurement with Laser Interferometry [10].... 46 

Figure 28: A View of Angular Measurement with an Interferometer [10]................ 47 

Figure 29: A View of Straightness Measurement with an Interferometer [10]. ........ 48 

Figure 30: Error Contributors along Y Axis [1]......................................................... 50 

Figure 31.(k): Laser Interferometry Error Correction Data ....................................... 54 

Figure 32: Volumetric Error Contour Plots of Kinematic Model with Laser Data ... 55 

Figure 33: Volumetric Error Map of Kinematic Model with Laser Data .................. 55 

Figure 34: X Axis Error Map of Laser Model ........................................................... 57 

Figure 35: Y Axis Error Map of Kinematic Model with Laser Data ......................... 57 

Figure 36: Z Axis Error Map of Kinematic Model with Laser Data ......................... 58 

Figure 37: Differences Between the Models from Z=-50 mm to Z=-550 mm. ......... 59 

Figure 38: Ratio of Model’s Results . ........................................................................ 60 

Figure 39: Two Different Sampling Strategy and Their Results When Measuring a 

Circle [1] .................................................................................................................... 64 

Figure 40: Uncertainty Source Chart [34].................................................................. 65 

Figure 41: A View of Ring Measurement in Y-Z Plane ............................................ 82 

Figure 42: Main Effect Plot of Factors in Y-Z Plane................................................. 84 

Figure 43: Interaction Plot of Ring Measurement Uncertainty in Y-Z Plane ............ 86 

Figure 44: A View of Ring Measurement in X-Z Plane ............................................ 87 

Figure 45: Main Effect Plot of Factors in X-Z plane ................................................. 89 

Figure 46: Interaction Plot of Uncertainty in X-Z Plane............................................ 90 

Figure 47: A View of Ring Measurement in X-Y Plane............................................ 91 

Figure 48: Main Effects Plot of Factors in X-Y Plane............................................... 93 

Figure 49: Interaction Plot of Uncertainty in X-Y Plane ........................................... 94 

Figure 50: Box Plot of Table 15................................................................................. 98 

Figure 51: Box Plot of Table 16................................................................................. 99 

Figure 52: Y Axis Uncertainty Map of CMM under Inspection.............................. 100 

Figure 53: X Axis Uncertainty Map of CMM under Inspection.............................. 101 

Figure 54: Map of Uncertainty in Diameter Measurement for CMM under Inspection

.................................................................................................................................. 101 

Figure 55: Two Measured Coordinate Data with Deviation Ellipse for an Actual 

Point. [17]................................................................................................................. 114 



 xv 

Figure 56: Finding The Diameter of a Circle By Fitting a Theoretical Circle to a Set 

of Measured Points on Its Surface. [17]................................................................... 115 

Figure 57: Probability Distribution Produced By Multiple Measurements of The 

Diameter. The Parameter Da  Is The Actual Diameter. ............................................ 116 

Figure 58: Multiple Measurements on  Diameter of a Circle Simulated by Randomly 

Varying the Measured Point Values throughout Their Uncertainty Range. [17] .... 117 

Figure 59:  Distributions of Repeated Measurements, Simulated Points And 1st 

Measured Point. [17]................................................................................................ 119 

Figure 60: Main Menu GUI of VCTR ..................................................................... 121 

Figure 61: GUI for Calculation of the Point Coordinates. ....................................... 122 

Figure 62: Uncertainty Function of Producer’s Certificate ..................................... 125 

Figure 63: Fitting Results And Plotting ................................................................... 126 

Figure 64: Circle Uncertainty Form......................................................................... 127 

Figure 65: Circularity [30] ....................................................................................... 131 

Figure 66: Graphical User Interface of Measurement Uncertainty of Sphere ......... 132 

Figure 67: Flatness Theory [32]............................................................................... 135 

Figure 68: GUI for Measurement Uncertainty of Plane .......................................... 136 

Figure 69: Inputs and Outputs of Matlab Modelling Function ................................ 152 

Figure 70: Calibration Certificate of Ring Gauge Used in Thesis Studies (Page 1) 154 

Figure 71: Calibration Certificate of Ring Gauge Used in Thesis Studies (Page 2) 155 

Figure 72: The structure of CMM used in this study ............................................... 156 

 

 

 

 

 

 

 

 

 

 

 



 xvi 

 
 
 

LIST OF TABLES 
 

 

 

Table 1: Assumed Link Deviations (See Appendices) .............................................. 40 

Table 2: Temperature Effects on Errors..................................................................... 44 

Table 3: Error Matrices [1] ........................................................................................ 49 

Table 4: Uncertainty Budgeting For CMM Measurements ....................................... 71 

Table 5: Design Factors for Experimentation. ........................................................... 78 

Table 6: Experiment Order Table According To the Fractional Factorial Design .... 79 

Table 7: Experimental Results for Y-Z Plane ............................................................ 82 

Table 8: Analysis of Variance for the Screening Experiment.................................... 83 

Table 9: Experimental Results for X-Z Plane. ........................................................... 87 

Table 10: Output of ANOVA for X-Z Plane ............................................................. 88 

Table 11: Experimental Results for X-Y Plane.......................................................... 91 

Table 12: Output of ANOVA for X-Y Plane. ............................................................ 92 

Table 13: Complete Experimentation Table .............................................................. 95 

Table 14: Average Uncertainty of Different Angles.................................................. 97 

Table 15: Uncertainty Calculation of Four Different Angle Measurements               

(LK G80).................................................................................................................... 97 

Table 16: Uncertainty Calculation of Four Different Angle Measurements at another 

CMM (LK G90) ......................................................................................................... 98 

Table 17: Uncertainty Map Table of CMM Studied................................................ 100 

Table 18: Sample Measurement Table [29] ............................................................. 105 

Table 19: Measurement Configuration Table .......................................................... 108 

Table 20: The Repetition, Geometric and Diameter Error Uncertainties ................ 108 

Table 21: Uncertainty Due to Temperature ............................................................. 109 

Table 22:  Uncertainty of Length Bar Measurements in Detail ............................... 111 

Table 23:  Uncertainty Contributors of Hybrid Method [29]................................... 112 

Table 24: Comparison of Experimental and Simulation Results ............................. 137 

Table 25: Calibration Data of CMM........................................................................ 138 



 xvii 

Table 26: Accuracy Check Table for Plane Fitting Algorithm................................ 138 

Table 27: Advantages and Disadvantages of Methods ............................................ 142 

Table A1: Error Matrix at Z= -50 mm ..................................................................... 147 

Table A2: Error Matrix at Z= -100 mm ................................................................... 147 

Table A3: Error Matrix at Z= -300 mm ................................................................... 148 

Table A4: Error Matrix at Z= -550 mm ................................................................... 148 

Table B1: Error Matrix at Z= -50 mm ..................................................................... 149 

Table B2: Error Matrix at Z= -300 mm ................................................................... 149 

Table B3: Error Matrix at Z= -400 mm ................................................................... 150 

Table B4: Error Matrix at Z= -550 mm ................................................................... 150 

Table C1: Flatness Data Points ................................................................................ 151 

Table E1: Specifications of Renishaw TP7M Probe…………………………….....153 

Table F1: Specifications of Linear Sensors………………………………………..153 

 



 1

 
 

 
CHAPTER 1 

 
 

INTRODUCTION 
 
 
 
 

Coordinate measuring machines, (CMMs) are the most advanced dimensional 

measuring instruments on the market today. Therefore, measurement process of 

CMMs is significant and essential part for production control in modern 

manufacturing because they are used to measure three dimensional sizes, positions 

and forms of the machined parts. The CMMs are indispensable instruments 

especially in the automobile industry for developing new automobiles, evaluation of 

mechanical parts and molds.  Actually, their unlimited versatility allows them to be 

used for an infinite number of measurements. However, the flexibility of CMM’s can 

also make them difficult to implement. The big question is how the measurement 

uncertainty of CMM’s can be estimated.  Measurement uncertainty was a relatively 

obscure term only a few years ago. Now, it becomes very important, with increased 

attention coming from various quality standards.   

The uncertainty of measurement made on complex instruments like CMM’s is 

a  difficult task, because there are many uncertainty contributors. Consequently, it is 

not possible to cover all of the details, and cover every single contribution.  Indeed, 

fully understanding the measurement process is required to determine all the 

contributors that will influence the measured results. Therefore, CMMs have been 

widely investigated by researchers and different methods have been created in order 

to analysis the measurement uncertainty. The methods of mathematical modelling 

(simulation), comparison and performance tests are applied to determination of 

measurement uncertainty.  

  The method of mathematical modelling involves the calibration of CMM 

geometric errors to build a theoretical model and predict the uncertainty for any 

measurement done according to the model’s assumptions. A comparison method 

involves the inspection of a calibrated artifact identical to the piece under  
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measurement and the measurement uncertainty statement has a specific application. 

Performance tests designate artifacts and a criterion to determine the measurement 

errors. A two-point length measurement uncertainty may be established as a 

performance parameter [1]. 

Performance tests are largely applied for the inspection of parts and in the 

purchasing selection of a suitable CMM. According to known standards, gauges like 

a ring, a length bar, a step gauge, and a ball plate have been used to determine the 

volumetric errors, inspect hardware and estimate the CMM measurement uncertainty. 

The best known standards are the American ANSI/ASME B89.4.1 [2], the German 

VDI/VDE 2617 [3], the British BS 6808 [4], the Japanese JIS B7440 [5], the 

ISO10360 [6], and the manufacturers association CMMA [7]. 

These performance test methods recommend different test methodologies and 

distinct ways of determining a performance parameter. Some standards indicate the 

maximum range of measured lengths as the performance parameter, and others 

establish the standard deviation of results. The measurement uncertainty may be 

established using information acquired by performance tests and may be carried out 

by A + B/L-type statement, describing uncertainty of a two-point measurement. Other 

methodologies were developed to estimate task-specific uncertainties according to 

the ISO Guide to the Expression of Uncertainty in Measurement [8] and to an 

established inspection plan [9,10,11]. 

Numerous studies about the development of coordinate measuring uncertainty 

have been conducted in the past. These studies mainly concentrated on the accuracy 

improvement by developing hardware, software, and operating strategies. The issues 

of acquisition and computational correction of the equipment specific deviation 

behaviour of a CMM have been examined. In addition, the study of the error 

compensation issue of a CMM has been reported in many papers. 

The purpose of thesis is to analyse the measurement uncertainty of CMMs 

which means determining the uncertainty sources, estimating and quantifying the 

measurement uncertainty of CMM with using the different techniques. In addition, to 

attain this goal, error sources of CMM shall be designated and required 

compensation of these errors must be done by modelling the entire machine volume. 

Therefore, the error modelling of CMM under inspection is another aim of the thesis. 

Analysis of measurement uncertainty by using different methods naturally leads to a 
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review of various national and international standards regarding CMM performance 

evaluation. Afterwards, the advantages and disadvantages of these methods can be 

evaluated absolutely. Finally, a simulation software, known as Virtual CMM, is 

designed for analysing the uncertainty of task specific measurements on CMM. This 

software is an application of simulation method and mimics the real measurements. 

The advantages of Virtual CMM are eliminating the time wasting with repeated 

measurements and providing successful solution including thermal effects for 

different type of CMMs.    
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CHAPTER 2 
 
 
 

EXPLANATION OF MEASUREMENT UNCERTAINTY AND PROCESS 
 
 
 
 

In this chapter, some definitions in “Guidance to Expression of Uncertainty in 

Measurement” (GUM) [8] will be explained. 

 

2.1. Measurement Error and Uncertainty 

 
The difference between measurement error and measurement uncertainty  shall 

be explained clearly to evaluate the measurement results correctly. The term 

measurement error means the difference between the "true value" and the value 

found by a measurement (measurand). According to the GUM, measurement errors 

are distinguished as random and systematic errors [8]. Figure 1 indicates the 

difference between the measurement uncertainty and error, clearly. 

  

Error 

Measured 
Value 

True Value 

Measurement Uncertainty 

 

Figure 1: Measurement Error and Measurement Uncertainty 
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2.1.1. Random Error 

 
Random error in measurement typically arises from unpredictable variations of 

influence quantities. These random effects under apparently equal condition at a 

given position give rise to variations in repeated observations of the measurand. 

Although it is not possible to compensate for the random error of a measurement 

result, it can usually be reduced by increasing the number of observations and only 

be expressed statistically. 

 

2.1.2. Systematic Error  

 
Systematic error, like random error, can not be eliminated but it can be reduced. 

If a systematic error arises from a recognized effect of an influence quantity on a 

measurement result, hereafter termed a systematic effect, the effect can be quantified 

and a correction or correction factor can be applied to compensate for the effect. 

Recognized systematic errors can generally be correlated with position along an axis. 

If the relative accompanying random error is small enough, systematic error can be 

corrected . 

Systematic errors can often be compensated to a certain degree using 

calibration techniques. Random errors cannot be compensated for without real time 

measurement and feedback into correction loop. Thus when evaluating the error 

budget for a machine two distinct sub-budgets based on systematic and random 

errors should be kept.  

 

2.1.3. Measurement Uncertainty 

 
The lack of exact knowledge of the value of the measurand explains the 

uncertainty of the result of a measurement. The result of a measurement after 

correction for recognized systematic effects is still only an estimate of the 

measurand’s value due to the uncertainty arising from random effects and from 

imperfect correction of the result for systematic effects. 

In general, there are many sources of uncertainty in a measurement and details 

can be seen in GUM. Uncertainty components in two categories are based on their 
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methods of evaluation, Type A and B. The uncertainty of a correction for a known 

systematic effect may be obtained in some cases by Type A evaluation while in other 

cases by a Type B evaluation. Type A standard uncertainty is obtained from a 

probability density function derived from an observed frequency distribution. Figure 

2 illustrates a typical type A distribution. 

 

 

 

Figure 2: Type A Uncertainty 
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Type B standard uncertainty is obtained from an assumed probability density 

function  based on degree of belief that an event will occur or calibration certificates. 

Figure 3 indicates  a rectangular distribution of Type B uncertainty.  

 

 

 

 

Figure 3: Type B Uncertainty (Rectangular Distribution) 

 
 
 
 

 

          

For most measurements typically performed by CMMs, the true value, and 

hence the measurement error, is unknown. To overcome this difficulty in the 

special case of a CMM performance evaluation, well-calibrated dimensional 

artifacts are used, e.g. ring gauge, length and ball bars. The uncertainty of the 

calibrated artifact shall be sufficiently small that the calibrated value may be 

considered as the true value. The calibration of artifacts has to be done with 

more precise machines than CMM. Many national and international standards 

impose a constraint on the uncertainty of artifacts used in CMM evaluations, 

permitting the uncertainty of the artifact calibration to be ignored. Hence the 

difference between the CMM measurement and the calibrated value can be 

considered as the measurement error.  

John A. Bosch describes the measurement uncertainty as the collection of (all 

possible) measurement errors [1]. The measurement uncertainty is positioned 
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about the measured value and is usually centered symmetrically (as shown in 

Figure 1).  

The uncertainty of a measurement includes all factors which influence its 

result. The estimation of the magnitude of the uncertainty sources and their affect on 

the measurement result is required for this task.  

This process may utilize many sources of information including analysis of  

• repeated measurements,  

• data provided in calibration reports, 

• uncertainties assigned to reference data taken from handbooks, 

• manufacturer's specifications 

• environmental condition 

• machine structure 

• general knowledge of behavior and property of relevant materials and 

instruments [8]. 

The uncertainty sources mentioned just above are common for all machines. 

The sources special for CMMs will be explained later in detail. 

  

2.1.3.1.Combined Standard Uncertainty 

 
The combined standard uncertainty, denoted by ucc can be thought of as 

representing one standard deviation of the measurement uncertainty resulting from 

combining all known sources of uncertainties in a root sum of squares (RSS) 

manner. GUM method is the quantification of all uncertainty sources by assigning 

them a variance, the square root of which is the standard deviation of that 

uncertainty source. This is denoted by u(xi) where the quantity xi is the i th source 

of uncertainty.  
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 The quantity u(xi, xj) is the covariance of xi and xj .It is a measure of the 

correlation between these two uncertainty sources.  
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The classification of uncertainty into categories A and B is based on the 

method of assessing the uncertainty source and not on whether the source is 

"random" or "systematic." 

 

2.1.3.2. Expanded Uncertainty and Confidence Intervals 

 
According to the GUM [8], expanded uncertainty quantity defines an interval 

about the result of measurement. This interval may be expected to cover a large 

fraction of the distribution of values that could reasonably be attributed to the 

measurand. It is used to describe an interval in which the true value can be expected 

to lie with a specified level of confidence (p). Coverage factor (k) defines the 

interval. It is a numerical factor used as a multiplier of the combined standard 

uncertainty in order to obtain an expanded uncertainty [1].   

The concept of measurement uncertainty is incomplete without an associated 

level of confidence. A given value of measurement uncertainty corresponds to some 

level of confidence in the measurement result. For example, the measurement 

uncertainty associated with a specific measurement having a 90% level of confidence 

implies statistically that a measurement has a nine-out-of-ten chance of differing 

from the true value by no more than the measurement uncertainty. This value of 

measurement uncertainty will be smaller than that assigned if a 99% level of 

confidence is used. A schematic of the relationship between measurement confidence 

and measurement uncertainty is shown in Figure 4 [1]. 
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For example, if uc is assumed to represent a normal (Gaussian) uncertainty 

distribution, then a 99.7% confidence interval corresponds to using an expanded 

uncertainty obtained with kp = 3 in equation (2.8), i.e., three standard deviations. A 

confidence interval can be expressed mathematically as in equation (2.9). “y” is the 

result of a measurement and “U”  is the expanded measurement uncertainty for the 
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particular level of confidence (p) (which might be 90%, or 95%, or 99%, etc.), and 

“Y” is the measurand (the quantity of interest). Most expanded uncertainties are 

reported using a coverage factor of two or three, i.e., k = 2 or 3.  Figure 4 illustrates 

the coverage effect of this factors [1].    

 

 

 

U95% 

uc 

U99% 

Measurement                                            
Value 

 

Figure 4:  Combined and Expanded Uncertainty [1] 

 

 

 

2.2.  Summary 

 
In this chapter, the difference between measurement error and measurement 

uncertainty is explained according to the general terms of GUM. Afterwards, the 

procedure of the evaluation of uncertainty in measurements is mentioned to guide the 

uncertainty analysis of CMM measurements. 
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CHAPTER 3 
 
 

MECHANICAL STRUCTURE OF CMM’S 
 
 
 

Understanding the measurement process and structure of CMM’s is very helpful 

in evaluating the error and uncertainty components. Therefore, this chapter covers 

the fundamentals of CMM’s. In the following sections, the concept of coordinate 

metrology is introduced.  Finally, a general discussion of hardware elements, various 

design configurations and their characteristics are necessary to clarify the error 

sources and to evaluate the uncertainty contributors. 

 
3.1. Measurement Process of Coordinate Measuring Machines 

 
The basic function of coordinate metrology consists of the measurement of the 

actual shape of a workpiece, its comparison with the desired shape, and the 

evaluation of the metrological information, such as size, form, location, and 

orientation. 

CMMs give physical representations of a three dimensional rectilinear Cartesian 

Coordinate System. The actual shape of the workpiece is obtained by probing the 

surface at discrete measuring points. Every measuring point is expressed in terms of 

its measured coordinates. However, it is not possible to evaluate the parameters of 

workpieces (e.g. diameter, distance, and angle) directly from the coordinates of 

measured points. Therefore, an analytical model of the workpiece is used to evaluate 

the parameters. This model consists of ideal geometric elements. Such elements may 

be determined by applying an appropriate geometric element best fit algorithm to the 

measured data set [1].  

The measurement procedure of a CMM can be defined as: 

• Generating the measured data sets by point to point probing of the actual 

workpiece. 

• Calculating the relevant geometric elements in terms of parameters 

specifying size, form, location and orientation. 

• Evaluating the workpiece features in terms of the drawing. 
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Probe head is attached to the three carriages of a CMM forming a Cartesian 

reference coordinate system. The displacement along a coordinate path is determined 

with displacement sensors. Sensors cover the measurement volume of the CMM  and 

obtain the measured point by using a spatial reference point on the probe head. This 

reference point can be the mid-point of the probe tip. 

The measurement steps of a CMM; 

• Calibration of the stylus with respect to the probe head reference point using 

a calibrated ball. 

• Determination of the part position (part-related coordinate system) in the 

measuring machine-related coordinate system.  

 

 

 

 

Figure 5: Coordinate Systems 

 

 

 

• Measurement of the surface points on the part in the measuring machine 

coordinate system. 

• Evaluation of the geometric parameters of the workpiece. 
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• Representation of the measurement results after coordinate transformation 

into the part coordinate system. 

 

 

 

  

 

Figure 6: Process of CMM Measurement  [1] 

 

 

 

3.2. Hardware Components of CMMs 

 
The basic components of a typical CMM are presented, including structural 

elements, supporting bearings, drive systems, feedback elements, probe head and 

control systems. 

This section deals with technical characteristics of the above hardware 

components and their influences on a CMM’s performance. 
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3.2.1. Structural Elements  

 
From the perspective at design , the structural elements are significant part of 

design procedure, because they affect overall performance of the machine.  

Structural elements serve as the backbone of a CMM. The machine base, table 

to support the part to be measured, machine columns, guide ways, and probe shaft 

are essential structure elements. Some of the desired properties of structural elements 

are; 

• Dimensional stability 

• Infinite stiffness 

• Weightlessness 

• High damping capacity 

• Low coefficient of thermal expansion 

• High thermal conductivity 

No material is capable of satisfying all the above listed properties. At the 

design process, knowing the desirable properties and their influence is very 

significant because it really helps in the selection of materials for the structural 

elements. 

Dimensional stability is one of the most important properties of the structural 

elements. Lack of dimensional stability will adversely affect CMM performance 

even with error compensated machines. Aging and stress-relieving techniques are 

used for obtaining dimensional stability. Granite is considered as the most suitable 

material for structural elements of CMMs [1].  

To achieve high performance with sufficient accuracy, the dynamic 

characteristics of the structural elements become very important. The stiffness-to-

weight ratio is the key measure of the dynamic characteristics of the structural 

elements. Analytical tools such as finite element methods are applied for lighter 

weight and better stiffness of structural elements. The damping characteristics of the 

overall measuring system are also a concern for good dynamic performance. It can 

be enhanced with using the servo control system or active vibration cancellation 

technique [16].  
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Furthermore, coefficient of thermal expansion and thermal conductivity influence 

the accuracy of CMMs. It is desirable to have low thermal expansion and high 

thermal conductivity. Aluminium has a larger coefficient of thermal expansion 

compared with granite or steel but it still can be a better choice for CMM structural 

elements because of its extremely high thermal conductivity. An aluminium structure 

can quickly achieve its thermal stability when it is disturbed by a temperature change 

[1].  

 

3.2.2. Bearing Systems 

 
Bearing systems for CMMs are very important because they are part of the 

structure and can affect measurement accuracy. They can also influence the 

characteristics of the drive systems. In general, there are two classes of bearing 

systems in use for CMM applications. These are; 

• Non-Contact Air Bearings 

• Hard contact Bearings             

Among many design criteria for bearing systems, the dynamic stiffness, load 

carrying capability, damping, and frictional effects are given first consideration. 

Aerostatic air bearings utilize a thin film of air under pressure to provide the support 

of a load. The low viscosity of air requires a very close gap of around 5 mm.     

 

 

 

 

Figure 7: Aerostatic Bearing 
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Air bearings have the following characteristics and advantages: 

• Minimal friction and high accuracy over a wide speed range  

• No oil or grease lubrication  

• No contamination 

• No wear  

Precautions must be taken as air pressure variation can cause CMM geometric 

errors to change. Sudden loss of air pressure will cause catastrophic failure and can 

damage the way surfaces and bearings. 

The CMM under inspection uses air bearings to obtain precise motion on all axes 

and therefore, it consists of all advantages and disadvantages mentioned here.   

    

3.2.3. Drive Systems 

 
The demand for high performance CMM requires fast drive systems and stiff 

transmission linkages. CMM drive systems play a significant role in direct computer 

controlled machines. The purpose of a drive system is only to move the probe, not to 

provide positional information. This is provided by the displacement transducers. 

There are many different types of drive systems in use, such as rack and pinion, 

belt, friction, leadscrew, and linear motor. The users of CMMs can benefit from an 

understanding of the need and performance characteristics of different drive systems 

[1].  

 

3.2.3.1.Rack and Pinion Drive  

 
One simple solution for generating linear motion is the use of rack and pinion 

drives. This drive system finds application where long length of travel is desired. 

Form errors and backlash in gear limit the accuracy of CMM’s. However, it is a 

cheap solution for cost effective design [1]. 

 

3.2.3.2.Belt Drive   

 
A belt drive system consists of a belt, multi-stage speed reducer, and a servo 

motor. The belt offers a quiet transmission of power to the moving axes. It prevents  
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high frequency motor oscillations from entering the measure structure. The moving 

axes can be driven at high accelerations and speeds with belt drives. Disadvantages 

are its elasticity, limiting its use for high-precision scanning operations [1]. 

 

3.2.3.3.Friction Drive  

 
Friction drive has been used for certain CMMs. It consists of a driving wheel, a 

flat or round bar, and a supporting back-up roller. The driving wheel can be driven 

directly by a motor or through a speed reducer. A constant preload is applied to the 

driving wheel so that it maintains a smooth contact with the bar. 

The advantages of friction drives include; 

• their simplicity in design,  

• low friction force  

• minimum backlash and deadband  due to elastic deformation   

• high positioning accuracy. 

These characteristics are important conditions for designing high dynamic and 

stable drive systems. Some of the undesirable properties are their low drive force 

capability, relatively low stiffness and damping, and minimum transmission gain.  

 

 

 

 

 

 

Figure 8: Precision Friction Drive Systems [37] 
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The CMM under inspection has friction drive systems for the motion of X, Y 

and Z Axis.  

 

3.2.4. Displacement Sensors 

 
When a probe touches the workpiece, its position is actually determined by 

displacement sensors fixed along each of the three linear axes of the CMM. 

Therefore, the displacement transducers become a critical feedback element in the 

measurement process [1].  

In principle, optical linear scales consist of a scale element and an electro-optic 

read head. One of them is fixed to the moving slide of the CMM. Relative motions 

between these two components generate the positioning signal.  

 

 

 

 

 

Figure 9: General Structure of Displacement Transducer [38] 

 
 
 

Among the optical scales, there are three general types; 

1) Photo Transmission Scale 

2) Photo Reflection Scale 

3) Interferential Scale 
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Linear scales with optical scanning incorporate measuring standards made of 

periodic structures are known as graduations. These graduations are applied to a 

carrier substrate of glass or steel. The scale substrate for large measuring lengths is a 

steel tape. The precision graduations are manufactured in different photolithographic 

processes. At the most popular manufacturer who’s name is Dr. J. Heidenhain, 

graduations are fabricated from:  

• extremely hard chrome lines on glass, 

• matte-etched lines on gold-plated steel tape, or 

• three-dimensional structures on glass or steel substrates. 

 

3.2.4.1.Photo Transmission Scale 

 
The scale is typically made of glass and is a precision lined grating with a line 

pitch of 50 to 100 lines per mm. The read head contains a light source, a collimating 

lens for conditioning the light beam, a scanning reticle with the index gratings, and 

photocells [1]. When the read head is moved relative to the scale, the lines of the 

scale coincide alternately with lines or spaces in the index grating. The periodic 

fluctuation of light intensity is converted by photo cells into electrical signals. Figure 

10 indicates the measurement principle of the photo transmission scale.     

 

 

 

 

 

Figure 10: Principle of Transmission Scale [38]  
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3.2.4.2.Photo Reflection Scale 

 
Different from the glass scale (transmission scale), the reflection scale is made 

of steel [1]. The interference pattern for the reflection scale is established with 

alternative reflective lines and diffusely reflective gaps. Figure 11 illustrates the 

measurement principle of the photo reflection scale . 

   

 

 

 

 

Figure 11: Principle of Reflection Scale [38]  

 
 
 

3.2.4.3.Interferential Scale 

 
This type of displacement transducer uses grating scales. The scale is a 

precision lined grating with a line pitch of 100 or more lines per mm [38]. The lines 

are read by a photo electric head that detects the interference fringes created by light 

reflected from the scale and a reference grating on the read head as indicated in 

Figure 12. 

C   Grating period. 

ψ   Phase shift of the light wave when passing through the 

scanning reticle. 

Ω   Phase shift of the light wave due to motion of the scale. 

 



 21 

 

 

Figure 12: Principle of Interferential Scale [38] 

 

 
 

3.2.5. Probe Head 

 
Probe that takes the point on workpiece is one of the important part of CMM . 

When a probe touches the workpiece, contact is made or broken within probe. This 

generates an impulse to the control system for reading the position of all three slide 

data from the displacement transducers. The switching signal is produced by opening 

and closing of a mechanical contact. This electromechanical principle is prone to 

higher measuring uncertainties. These uncertainties are dependent on the preload and 

the measuring direction. To overcome this problem, piezo sensor switching probes 

are used. They generate the trigger signal and are sensitive to tension and 

compression. In addition, the motorized probe head makes the measurement very 

flexible, but this adds uncertainty to the measurement [1].    

CMM under inspection has the probe system indicated at Figure 13, this system 

uses  piezo sensors (strain) and specifications of probe can be seen in Appendices.   
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Figure 13: Renishaw TP7M Probe System 

 
 
 

3.3. Structure Types of CMM’s 

 
Slocum explains the properties of the different types of CMMs in his book 

“Precision Machine Design” [16]. This research can guide about the error sources 

unique to the structure and is summarized in this section .     

The fixed table cantilever coordinate arm measuring machine shown in Figure 

14 has the following characteristics: 

• Table deflects under the part’s weight. 

• Cantilever design can have a low natural frequency and large Abbe errors can 

occur. 

 

 

 

 

 

Figure 14: Fixed table cantilever coordinate arm measuring machine [16] 
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Moving bridge CMM’s, such as shown in Figure 15, could be built larger than 

cantilever machines. Characteristic problems of this type of CMM are; 

• The structure deforms under the weight of the part. 

• Problems with the outer leg “walking” because the bridge cannot be driven 

through the center of gravity without the addition of a costly overhead drive 

system suspended above the Y axis, or a second (slave) actuator on the 

outer leg [16]. 

 

 

 

 

 

Figure 15:  Moving Bridge CMM [16] 

 
 
 

To increase the work volume, the column CMM is evolved as shown in Figure 

16. The vertical axis was isolated from the planer axes to reduce the effect of Abbe 

errors. The open table design is allowed for larger parts to be put on the table. 

Characteristics problem of this type of CMM are defined by A.H. Slocum as below; 

• Table deformations still affect accuracy. 

• The open C section prone to thermal gradients. Thermal gradients cause the 

column to arch back and induce large Abbe errors. 

•  Accuracy is a function of the weight of the part and how it deforms the 

machine. 
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Figure 16: Column Type CMM [16] 

 
 
 

The moving ram horizontal arm CMM shown in Figure 17 can probe deep into 

horizontal recesses in parts [16]. Characteristic problems of this type of CMM are; 

• The part weight is a problem for accuracy. 

• Cantilever design causes to lower natural frequencies and is vulnerable to 

large Abbe errors. 

 

 

 

 

 

Figure 17: Moving Ram Horizontal Arm CMM [16] 
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All designs discussed as part-weight limited because the parts are in close 

physical contact with the measuring frame. The weight of the part causes static 

deflections in the structure, which decreases accuracy. This leads to the evolution of 

the gantry type CMM shown in Figure 18.  Gantry-type CMMs have the following 

characteristics [16]; 

• The weight of the part is not a problem for the accuracy. 

• Requires massive construction to minimize bending deformations in beams 

supporting the axes. 

 

 

 

 

 

Figure 18: Gantry Type CMM [16] 

 
 
 

3.4 CMM used in this study 
 

To understand the CMM inspected, the summation of its measurement process 

is required and mentioned briefly as below.      

First of all, it is a moving bridge type CMM so that it contains all properties of 

this type of structure. It has an S (Slave) Axis scale to obtain high precision. 

Software compensates the outer leg walking with using the reading from S axis scale. 

Actually, the hardware of this CMM is mentioned at the middle part of this chapter. 

After partial explanation of the machine hardware, it becomes better to mention 
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complete process flow of machine. The principle of operation of all drive systems is 

identical and each has a similar mechanical/pneumatic arrangement. 

Each drive system comprises of a precision dc servo-motor, a gearbox 

assembly, a reaction arm, a diaphragm unit, a drive roller, a reaction roller, round 

drive bar and associated brackets, air bearings and fixings. 

The drive roller is in permanent contact with the axis drive bar at all times. 

When the electrical supply to the motor is switched on a solenoid valve in the air 

supply line is energized. And this allows air to flow into the diaphragm unit. This 

unit reacts against the reaction arm and forces the reaction roller against the axis 

drive bar. Under these conditions, the drive bar is effectively clamped between the 

drive and reaction rollers. And then carriage bridge or reference spindle is driven to 

the reset position. When the electrical supply to the motor is switched off, the 

solenoid valve is de-energized. After that, the air supply to the diaphragm unit is cut 

off, the reaction arm retracts the reaction roller and the drive is disengaged. 

The motors are driven by computer generated drive signals. The instantaneous 

position of each axis is monitored by photoelectric reader heads which scan a grating 

imposed on a glass and steel scale. The scanned positional information is relayed to 

the computer to complete the position feedback loop.  

The structure of CMM under inspection can be seen at Figure 72. A LK  Model 

CMM used for analysis of measurement uncertainty.  The properties of CMM;  

 X Axis: 1000 mm 

 Y Axis: 900 mm 

 Z Axis: 600 mm 

Certificate Accuracy: 1.2µm+ L/400  (L = Distance) 

Probe: Renishaw TP7M Enhanced Performance 

 The probe and linear sensors properties of CMM used in this study can be seen 

in appendices.  

 
3.5 Summary 

 
In this chapter, the reason of the explanation of CMM structures and hardware 

is to clarify the sources of error and uncertainty because properties of structure and 

hardware highly effect the measurement characteristics of the machine. Therefore, 

the relevance of structure to the measurement is significant part of uncertainty 
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analysis. On the other hand, measurement process is another factor that effects the 

uncertainty. Finally, the properties of CMM used for the error modelling and 

application of uncertainty analysis methods are mentioned at the last section of the 

chapter.   
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CHAPTER 4 
 
 

KINEMATIC AND GEOMETRIC ERROR MODELLING AND 
COMPENSATION OF A COORDINATE MEASURING MACHINE 

 
 
 

In this chapter, the error sources of CMM measurements will be explained and 

classified with respect to the impact on the measurements. Afterwards, kinematic and 

geometric models of defined errors will be constructed for two types deviation sense 

and evaluation methods.     

 
4.1. Error Description  

 
Inaccuracy of CMM measurement occurs when an error exists in the relative 

position between measured point and the probe. These errors cause a deterioration of 

the machine performance, therefore they have to be detected and eliminated to 

maintain high performance of a machine. 

It shall be reminded that for most CMMs, the machine frame, composed of 

three orthogonal linear axes, generates the geometry of a Cartesian Coordinate 

System. The purpose of this system is to provide pure one-dimensional motion along 

each axis and these axes are to be perpendicular to one another. However, in reality, 

a carriage moving over a linear guideway will not move purely in one dimension, but 

will undergo extraneous motion.   

Errors occurring in a machine such as this CMM can be categorized according 

to their sources and may have systematic and random components.  

For example; 

• Flatness errors of guideways due to manufacturing 

• Defective bearings 

• Incorrect graduation or calibration of the machine displacement sensors 

• Incorrect  adjustment of the machine components (e.g. links) with respect to 

each other  

• Elastic deformation of the components and bearings when the mass is 

displaced during the carriage movements. 
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 These errors prevent the machine from reaching the exact position specified by 

the controller and are the major contributors to the CMM inaccuracy and 

performance deterioration. The researches show that these errors account for almost 

70% of the machine error [18]. There are other sources of errors that also contribute 

to the machine inaccuracy. However, they have a minor role, such as the stiffness 

error, or have a high frequency response, like the dynamics and drives controllers 

errors [23]. The magnitude of these errors is comparatively minor, therefore they will 

not be considered in the study of error definition.  

Errors can be eliminated to a greater extent by using standard methods of 

calibration and error correction. In general, calibration methods of CMMs fall into 

three categories: 

1. Methods based on measuring the 21 source errors requiring the use of 

expensive instruments. (e.g. Laser interferometer) 

2. Methods based on measuring certain artifacts, which are used as references 

for calibration. 

3. Methods based on kinematic references (e.g. the magnetic ball bar). 

 

4.2. Types of errors 

 
Error in a CMM reading, whether it is a random or a systematic error, can 

originate from different sources. Errors can include the thermal error, dynamic 

including controller errors, or software induced. Structure dependent errors can be 

divided into categories based on different criteria, as follows. 

 

4.2.1. Geometric error 

 
Alexander H. Slocum has defined geometric error as errors in form of 

individual machine components [16]. Geometric errors are concerned with the 

accuracy of surfaces which move relative to each other, such as components of linear 

and rotary axes. They affect the machine repeatability and kinematic accuracy. It is 

also the direct measured error produced partially by other sources such as the thermal 

error. 

Many factors affect geometric errors including; 

• Surface Straightness 
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• Surface Roughness 

• Bearing Preload 

Straightness error can be considered the deviation from true-straight line 

motion. In addition, surface roughness is a characterization of the profile of the 

surface and often has an effect on the smoothness of a bearing’s motion. However, 

hydrostatic and aerostatic bearings are insensitive to the effects of surface finish 

when they are considerably less than the bearing clearance [16].  

 

4.2.2. Kinematic error 

 
Kinematic errors can be defined as errors in an axis’s trajectory that are 

caused by misaligned or improperly sized components. These errors appear in the 

inability of the CMM to reach the exact specified position by the controller. Position 

of machine slides, gears, couplers, motors, etc. affect these errors. For example, 

kinematic errors include orthogonality and parallelism of axes with respect to their 

ideal location and each other. The other form of the kinematic error is translational 

errors in the spatial position of axes. Therefore, this type of error is a function of 

motion direction.  Actually, Kinematic and geometric errors are inter-related. 

 

4.2.3. Stiffness error 

 
This error can originate from sources which are the lack of stiffness, weight of 

components in the structure, and configuration of components. External loads 

include gravity loads, and axis acceleration loads cause this dynamic error due to the 

lack of stiffness. 

 

4.2.4. Thermal errors 

 
If the machine has a thermally uncontrolled environment, thermal effects have 

been the largest single source of dimensional errors and non-repeatability. Thermal 

error variation has a complex nonlinear nature which makes it difficult to handle. 

Error causes due to temperature [1]; 

• Uniform temperature variations in the components of the CMM. They cause 

only length variations of the scales. 
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• Non-uniform temperature variations giving rise to temperature gradients with 

in a cross-section of the CMM components. Similar to the bimetal effect, 

they cause deformations (bending) of the guideways and thus change the 

alignment of the machine components with respect to each other. 

“The following heat transfer mechanisms are responsible for the temperature 

distribution within a CMM. 

• Heat transfer due to air currents (blowers and coolers, fans of motor and 

control units and of air conditioning equipment) 

• Exchange of heat radiation with the environment (outer walls, ceiling, floor, 

neighbouring instrument, lighting, and personnel) 

• Heat transmission by the workpiece, its fixture, and foundation , as well as by 

inside heat sources (drives, electronic components, bearings) 

What happens with the heat introduced ultimately depends on the capability of 

the machine components to conduct heat and thus to compensate for the temperature 

gradients. Due to the heat capacity of the individual components, this happens with 

delay. ” (Bosch, 1995) 

 

4.3. Theory of Error Modelling  

 
Modelling a CMM is important to establish a generalized framework. 

Modelling facilitates a systematic approach to the analysis of errors and the 

subsequent assessment of their influence on the overall accuracy of a multi-axis 

machine.  

Historically, accuracy was achieved by mechanically reducing these rigid body 

errors by carefully manufacturing and assembling the CMM structure. Since the 

1980’s, an alternative approach known as error mapping , which provides a 

correction for these errors, has been commercially available. Error mapping can be 

meant as accuracy enhancement or computer accuracy. In this method, each of the 

rigid body errors is measured. After that, with the use of a computer, errors are 

mathematically combined to determine the locating error of the CMM stylus at each 

point in the work zone. N.A. Barakat (2000) stated two compensation techniques in 

which this error is accounted for  
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- by either moving the CMM stylus to the correct position (active compensation), 

which is done in real time during the measurement process,  

- or by mathematically correcting the measurement coordinates (Passive 

Compensation) which can be done after all the measurement points are taken 

[18].    

For rigid body kinematics description, the main assumption is that the moving 

carriage remains rigid during its motion, i.e., it does not bend or otherwise distort. 

The motion of the carriage can be given by specifying its six degrees of freedom 

which include three translational motions (scale and two mutually orthogonal 

straightnesses), and three rotational motions (roll, pitch, and yaw). 

A schematic of six error components of the CMM’s X-axis carriage system is 

given in Figure 19.  

 

 

 

 

 

Figure 19: X-Axis Carriage (Joint) Motion with Error [19] 

 
 
 
A summary of the symbols used is as follows: 

OXYZ  Reference coordinate system 

O1X1Y1Z1  Carriage coordinate system 

X   Desired direction of motion 

εx(x)   Rotational error about X-axis (roll) 
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εy(x)   Rotational error about Y-axis (pitch) 

εz(x)   Rotational error about Z-axis (yaw) 

δx(x)   Translational (scale) error along X axis 

δy(x)   Translational (horizontal straightness) error along Y axis 

δz(x)   Translational (vertical straightness) error along Z axis 

Each of these parameters is a function of the position of the carriage along the 

axis. In addition, there are three out of squareness values of the axis pairs (X-Y, Z-X, 

Z-Y). Since a CMM has three independent axes, there are a total of 21 parameters 

which describe the CMM probe location error in the rigid body model. These errors 

are often referred to as the 21 parametric errors of the CMM. 

       Number of error components 

Linear positioning errors (scale error)   3 

Straightness errors       6 

Angular errors       9 

Orthogonality (squareness) errors of machine axes  3 

Total=21 error components 

 

4.3.1. Homogeneous Transformation Matrix (HTM) 

 
Multi-axis machines are typically composed of a sequence of elements 

(linkages) connected by joints that provide either rotational or translational motion. 

With the assumption of Rigid Body Kinematics, each axis of a machine tool relative 

to each other and to the reference frame can be modelled by using a Homogeneous 

Transformation Matrix (HTM). A Homogeneous Transformation Matrix in 3 

dimensional space is a 4×4 matrix[16].  It can be used to represent one coordinate 

system with respect to another or reference coordinate system. A general 

homogeneous transformation matrix with null perspective transformation is in the 

following form: 
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                                          (3.2)

 

Where n, s, a represent orientation (direction cosines) of a coordinate system 

with respect to another coordinate system. “p” represents the position vector of the 

origin of a coordinate system with respect to another coordinate system. If the 

coordinate frame is embedded in an object, it is possible to describe  its relative 

position and orientation with respect to another object or coordinate system in space 

using HTM [19]. The compound displacement, resulting from kinematically related 

components, is then obtained by matrix multiplication. A homogeneous 

transformation matrix describes the pure translation of an ideal carriage for the X-

axis in the following form: 

 

1 0 0

0 1 0
                                                                                         (3.3)

0 0 1

0 0 0 1

ideal

x a

b
T

c

+ 
 
 =
 
 
 

 

 

where, x denotes variable position of the carriage coordinate system origin with 

respect to the reference coordinate system. a, b, and c represent constant offsets of 

the origin of the carriage coordinate system (O1X1Y1Z1) origin with respect to the 

reference coordinate system (OXYZ) in x, y and z directions, respectively. In reality, 

any single degree of freedom carriage has error motions in six degrees of freedom 

(Figure 19). The total error motion of the carriage is a combination of rotational and 

translational errors. The homogeneous transformation matrix of rotational and 

translational errors is given below with the assumption of small angular errors: 
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where, xε  , yε  and zε  are rotational errors about x, y and z axes respectively. 

δx, δy and δz  represent translational errors along X, Y and Z axes, respectively. The 

resultant HTM describing the error in position of the carriage with respect to its ideal 

position is (neglecting higher order terms): 
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                                                                                                       (3.11)
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Ttotal  could be used as total error (translation and rotation) of each elements of 

CMM. The links and joints of the CMM are modelled as Homogeneous 

Transformation Matrices (HTMs).  Matrices Si and Ji can be used to model link (i) 

and joint (i), respectively.  

The errors in the Si matrix are assumed to be independent from position  and 

treated as constant. These are xiε  , yiε   and ziε   which are the angular errors of the 

ith link and δxi, δyi  and δzi which are the dimensional errors of the ith link. 
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1
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Figure 20: Solid Link with Error [28] 
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On the other hand, errors in the Ji matrix are position dependent. These are xiε  

(x)(roll), yiε  (x)(pitch) and ziε  (x)(yaw) which are the angular errors of the ith joint 

at specified position and δxi(x), δyi (x) and δzi (x), which are the errors in the 

desired displacements along the ith joint. x is the axis of the carriage (Figure 20). 

 

1 ( ) ( ) ( )

( ) 1 ( ) ( )
                                                     (3.14)

( ) ( ) 1 ( )

0 0 0 1
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 (Link+Joint);

                                                                                                              (3.15) 
i i i

T S J= ×

 

The combination of all element HTMs can be used to build a mathematical 

model. For the CMM under inspection, this kinematic model is shown in Figure 21. 

For the error expression form, the final form of the model matrix is compared to the 

final form of the ideal kinematic model of the CMM with no errors included [28]. 

The relationship between actual and measured position of vectors of the probe of the 

CMM is expressed as: 

                                                                                                       (3.16) 

where E is the final error term matrix and every T can be expressed as;
actual ideal

E T T

T T

= −

= 1 2 3 ...                                                                                               (3.17)nT T T× × × ×

         The ideal kinematic model matrix for the CMM can be obtained from the 

model including the errors by making all the error terms ( xiε  (x,y,z), yiε  (x,y,z), ziε  

(x,y,z), δxi(x,y,z ), δyi (x,y,z) and δzi (x,y,z)) equal to zero. For a reference constant 

temperature, the total error matrices can be calculated by using the equations above. 

The temperature parameter can be also included to the model as below; 

The link model with temperature error: 
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1 ( )
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ent of the link. The link material is stainless steel.
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The joint model with temperature error: 

1 ( ) ( ) ( ) ( ( ))

( ) 1 ( ) ( ) ( ( ))
            (3.19)
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ion coefficient of the scale. The scale material is glass scale 

with DIADUR grating. 
 

4.4. Model Application on CMM under investigation 

 
The model of bridge type coordinate measuring machine under inspection 

consists of three axes (X,Y,Z) so that  it should have minimum 3 joint and 3 axis 

link, in other words i is equal to 3. If the input parameters of  error model are known, 

the error mapping of machine can be constructed. With using this map, the software 

error compensation is applied on the real measurements. The model of machine 

under inspection is generated at Matlab and error parameters (translational and 

angular errors) are assumed as very small deviations. The values of translational and 

angular error of each axis (joints) are obtained from laser error correction files and 

used in kinematic model. 

The joints, links and coordinate reference system of CMM under inspection 

could be seen in Figure 21. Coordinate reference system is chosen different from 

actual Machine Coordinate System to obtain required mathematical model of 

structure.  
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Figure 21: Structure of Machine and Model Elements. [28] 

 
 

 

As considered before CMM under inspection has X, Y, Z, S axis scales. The 

linear transducers of X, Y, Z axis are made of glass and their thermal expansion 

coefficients (TEC) are 10x10-6 micron/ metre/ degree Celsius. This value is close to 

the TEC of steel, therefore for the modelling of whole structure, TEC of steel can be 

used.   

If the values below are used as inputs to Matlab function, the error maps at 

Figure 22 are obtained with 50 mm increment at Z axis. It is a cumbersome 

procedure to obtain the link errors, because some assumptions are required. In thesis 

study, for all links, translational errors are taken as maximum %10 percent of the link 

dimensions, and angular errors of links are taken randomly between ±0.05 arcsec. It 

must be known that for all map figures below, the reference point (X=0, Y= 0) is 

kinematic model coordinate system, not the actual machine coordinate system.   

The assumed link deviations for input of Matlab function are shown in Table 1. 
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Table 1: Assumed Link Deviations (See Appendices) 
 

Temp  εx1  εy1  εz1  a1  b1  c1  TEC1  del_a1  del_b1  del_c1 

20 -0,01 0,01 0,02 100 100 1001,00E-05 8 8 8

                     

  εx2  εy2  εz2  a2  b2  c2  TEC2  del_a2  del_b2  del_c2 

 0,02 0,005 -0,01 100 100 5001,00E-05 1 2 20

                     

  εx3  εy3  εz3  a3  b3  c3  TEC3  del_a3  del_b3  del_c3 

 0,005 -0,05 0,003 100 100 1001,00E-05 9 9 9

 

 

 

Figure 22 and 23 are the surface and contour plots of volumetric errors 

obtained from kinematic model constructed with using the joint and link deviations.  

2 2 2

_                                                                                      (3.20a)

_ ( _ ) ( _ ) ( _ )                       (3.20b)

where 

Actual IdealError X X X

Volumetric Error Error X Error Y Error Z

Er

= −

= + +

_ ,  _  and _  are scalar axis errors.ror X Error Y Error Z

 

 

  



 41 

 

Figure 22: Volumetric Error Charts of Kinematic Model for Z= -50 mm to Z= -
550 mm. 

 
 

Figure 23: Volumetric Error Contour Plot of Kinematic Model for Z= -50 mm 
to Z= -550 mm. 
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4.5. Evaluation of Error Model’s Results 

 
Figure 22 denotes that while moving away from X axis along the far side of the 

Y axis, the volumetric error increases systematically. Although, the machine has S-

Axis transducer (scale) parallel to X-Axis, the main reason of this increase is the yaw 

(walking) error of X axis. In other words, the effect of this error increases with the 

distance between measured point and main driver of X axis (linear scale).  

In addition, the volumetric error along X Axis from front (X= 0 mm) to the 

back (X= 1000mm) increases between Z= -50 mm and Z= -300 mm positions. While 

moving from Z=-300 mm to the bottom of the Z axis, the error from front to the back 

along X-Axis starts decreasing. It means that the volumetric error at the back of 

machine is smaller than at front side at this volume of machine and this results 

denotes that Z position has a significant effect on the error profile. On the other hand, 

volumetric error decreases systematically, when probe comes close to the machine 

granite table ( Z= -550 mm) because of the low effect of pitch motion of X Axis. 

Effects of all angular errors depend on the structure type of machine under 

inspection.  

The axes error maps can be seen in Figure 24 and 25. These figures may help 

to clarify the contribution of axes individually to the volumetric error. Indeed, a 

general evaluation can be done as the effect of angular errors of all carriages is 

amplified by the distance to probe position. Also, the transitional (straightness) and 

linear (positional) errors may have dominant effect depending on the error 

magnitude.  

Error Map of X Axis (Figure 24) represents that position error of X Axis 

increases while moving along the Y Axis and this result proves the yaw (walking)  

effect on the X Axis. Front side of machine, close to the model coordinate system, 

has higher X axis error than back side of the machine according to constructed 

model. Also, Figure 25 indicates Y axis error maps of constructed kinematic model 

with using laser error data.        
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Figure 24: X Axis Error Map 

 

  

Figure 25: Y Axis Error Map 
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The other advantage of the model is simulating temperature change and its 

effect on the error map of machine. The thermal effects have been added to model 

linearly and the temperature distribution is assumed as uniform. If the temperature 

change is known in the environment, its uniform effect can be included in the error 

map of machine. When the input temperature is changed by 1 degree increments, 

deviations of X, Y, Z shown in Table 2 occurs.  

 

 

 

Table 2: Temperature Effects on Errors 
 

First 

Temp. 

Second 

Temp. 

∆X 

(mm) 

∆Y 

(mm) 

∆Z 

(mm) ∆Volumetric(mm) 

20.00 21.00 0.0007 0.0006 0.0003 0.00097 

21.00 22.00 0.0007 0.0007 0.0002 0.00101 

22.00 23.00 0.0007 0.0006 0.0003 0.00097 

23.00 24.00 0.0006 0.0006 0.0002 0.00087 

 

 

 

This compensation method requires high experience, difficult measurements 

and some approximations to define input parameters in order to plot the error model. 

To obtain this mapping, laser and optical technologies have been started to be used 

for defining errors precisely without evaluation links and joint geometric and 

kinematic deviations.  

For example, in constructed model, the laser interferometer data is utilized for 

angular and translational error of joints. If this data can not be obtained, procedure 

becomes very cumbersome.    

 

4.6. Kinematic Modelling with Laser Interferometer Data 

 
As mentioned before, the machine has 3 orthogonal axis to measure the parts 

and, therefore in every condition 18 number error contributors are required to model 
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error mapping. To obtain kinematic error contributors (no need to obtain each link 

and joint errors), a laser interferometer and optical elements (Mirrors and prisms) are 

used. 

For many years, the industry standard method of measuring machine tool or 

CMM performance has utilised a free-standing laser on a tripod, in combination with 

remote (i.e. separate) interferometer and reflector optics. This reflector optics are 

mounted directly to the machine table and probe. Each linear, angular (pitch,roll and 

yaw) or straightness measurements can be made interferometrically with the 

appropriate choice of interferometer optics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Tripod Mounted Laser Interferometer Measurement [10]. 

 
 
 

4.6.1. Linear Error Measurement 

 
This is the most common form of measurement performed on machines. The 

system measures linear positioning accuracy and repeatability by comparing the 

position displayed on a machine’s readout with the true position measured by the 

laser. These values can then be viewed and statistically analysed by the system’s 

software. It is also possible to take this process one step further and automatically 

download the measured data to a compensation table in the machine’s controller. In 

. 
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this way, a machine’s positioning accuracy can be verified and significantly 

improved, quickly and easily. 

 

 

 

 

 

Figure 27: A View of Linear Error Measurement with Laser Interferometry 

[10] 

 

 

 

4.6.2. Angular Error Measurement 

Laser Interferometer System uses angular interferometry to measure angle, 

pitch, roll or yaw. The laser system measures relative changes in the lengths L1 and 

L2, and from this computes the angle. This is shown schematically in Figure 28. 

1 2Arcsine(( ) / )                                                                                (3.21)Angle L L S= −  
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Figure 28: A View of Angular Measurement with an Interferometer [10]. 

 
 
 

4.6.3. Straightness Error Measurement 

 
Laser System uses a straightness interferometer to measure horizontal or 

vertical straightness. The laser system measures relative changes in the lengths L1 

and L2 as shown in Figure 29, and from this computes the straightness error 

according to the equation 3.22. 

1 2Straightness Error = 0.5 ( ) /                                                                 (3.22) L L Sinθ× −
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Figure 29: A View of Straightness Measurement with an Interferometer [10]. 

 

 

 

Linear, Angular and Straightness errors are inserted to the laser error model to 

obtain error map of machine and compensate this error by using the software. As 

mentioned before laser model just evaluates the probe position, does not include the 

links and joint errors. The errors; 

εx(x, y, z)   Rotational errors about X-axis  

εy(x, y, z)   Rotational errors about Y-axis  

εz(x, y, z)   Rotational errors about Z-axis  

δx(x, y, z)   Translational (scale) errors along X axis 

δy(x, y, z)   Translational (horizontal straightness) errors along Y axis 

δz(x, y, z)   Translational (vertical straightness) errors along Z axis 

 

Table 3 describes the mathematical model for any machine having an axis 

configuration of X, Y, Z for its kinematic chain. So, CMMs with different sequences 

Straightness
interferometer

Straightness
reflector

L1 

L2 
  

θ
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for their kinematic chains can be represented by similar modified table.  The last 

three columns show by which factor the quantities of column 2 are to be multiplied 

in order to determine the overall errors in the correct coordinate system XR, YR, ZR. 

xT , yT and zT are the stylus length [1]. 

 

 

 

Table 3: Error Matrices [1] 

 

Correction Factor Axis Error  

Xr Yr Zr 

δx(y) 

δy(y) 

δz(y) 

1 

 

 

1 

 

 

1 

Y 

εx(y) 

εy(y) 

εz(y) 

 

z+zT 

-yT 

-z-zT 

 

x+xT 

yT 

-x-xT 

δx(x) 

δy(x) 

δz(x) 

1  

1 

 

 

1 

X 

εx(x) 

εy(x) 

εz(x) 

 

z+zT 

-yT 

-z-zT 

 

xT 

yT 

-xT 

δx(z) 

δy(z) 

δz(z) 

1  

1 

 

 

1 

Z 

εx(z) 

εy(z) 

εz(z) 

 

zT 

-yT 

-zT 

 

xT 

yT 

-xT 

 ywz 

xwz 

xwy 

 

-z 

-y 

-z  

 

 
  



 50 

 

εz(y) 

εy(y) 

εx(y) 

δy(y) 

δz(y) 
δx(y) 

 

 

Figure 30: Error Contributors along Y Axis [1] 

 

 

 

Total error for each location can be obtained from the equations below.  
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x x z x y z x

ε δ ε ε

δ ε ε δ ε

ε δ ε ε

− − + × + + × − + ×

= + × + × − − + + ×

+ × − + + × + × −                     (3.25)

          

Laser error correction files include the straightness, angular (roll, yaw, pitch), 

linear errors of each axis. So that, the laser error correction files of CMM under 

inspection shown in Figure 30 is utilized to find volumetric error map with using the 

kinematic model shown in Table 3.  
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Figure 31. (a) : Laser Interferometry Error Correction Data 

 
 

 
 
 
 
 
 
 
 
 

 

 

Figure 31. (b) : Laser Interferometry Error Correction Data 
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Figure 31. (c) : Laser Interferometry Error Correction Data 

Y Axis Linear Position Error

-0,002

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

-3
5
0

-3
0
0

-2
5
0

-2
0
0

-1
5
0

-1
0
0

-5
0 0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

Y Axis (mm)

L
in

ea
r 

E
rr

o
r 

(m
m

)



 52 

 

 

 

 

 

 

 

 

 
 

 

 Figure 31. (d) : Laser Interferometry Error Correction Data 
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Figure 31. (e) : Laser Interferometry Error Correction Data 
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Figure 31. (f) : Laser Interferometry Error Correction Data 

X AXIS STRAIGHTNESS ERRO R IN Y

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0 200 400 600 800 1000 1200

X AXIS (mm)

S
T

R
A

IG
H

T
N

E
S

S
 E

R
R

O
R

 
(m

m
)



 53 

Y AXIS STRAIGHTNESS ERRO R IN X

-2

-1,5

-1

-0,5

0

-3
5
0

-3
0
0

-2
5
0

-2
0
0

-1
5
0

-1
0
0

-5
0 0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

Y AXIS (mm)

S
T

R
A

G
H

T
N

E
SS

 E
R

R
O

R
 

(m
m

)

 

 

Figure 31. (g) : Laser Interferometry Error Correction Data 
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Figure 31. (h) : Laser Interferometry Error Correction Data 
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Figure 31. (i): Laser Interferometry Error Correction Data 



 54 

Y AXIS ANGULAR ERROR (YAW)

-0,5

0

0,5

1

1,5

2

-3
50

-3
00

-2
50

-2
00

-1
50

-1
00 -5

0 0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Y AXIS (mm)

Y
A

W
 E

R
R

O
R

 (
ar

cs
ec

)

 

 

Figure 31. (j): Laser Interferometry Error Correction Data 
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Figure 31.(k): Laser Interferometry Error Correction Data 
 

 

 

4.7. Evaluation of Kinematic Model Used Laser Error Data 

 
Numerical results and graphs of kinematic model with using laser 

interferometer error data are represented in Figure 32, 33, respectively.  
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Figure 32: Volumetric Error Contour Plots of Kinematic Model with Laser 
Data 

 

Figure 33: Volumetric Error Map of Kinematic Model with Laser Data 
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The surface plots at Figure 33 indicates the volumetric error map formed by 

using laser error data of machine in different Z positions. All graphs resemble a plane 

but actually the reason of that is the lower change of Z with respect to the change in  

X and Y Axis. If the Z scale of the graph is changed to logarithmic, it can be easily 

seen that the plot will not be a plane.  At the back side, the machine has smaller error 

than at the front side. Volumetric error increases through the end of the Y axis and 

the reason is again “walking” error that occurs while going away from the driver and 

linear scale of x axis. Also, remember that the similar result is obtained from 

constructed kinematic model. As mentioned before, if the machine under inspection 

doesn’t have S axis scale to reduce the leg difference error of the X axis, errors will 

become higher than laser model results. The other conclusion is that volumetric error 

is smaller at Z= -550 mm than error at Z= -50 mm. In other words, volumetric error 

decreases when closing to the granite table. The reason of this is the low effect of X 

Axis pitch error.    

Figure 34, 35 and 36 indicate the surface plots of X, Y and Z axis errors 

obtained from the kinematic model by using laser error data.  
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Figure 34: X Axis Error Map of Laser Model 

 

 
 

Figure 35: Y Axis Error Map of Kinematic Model with Laser Data 
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As seen at Figure 35, position error of Y axis increases through X axis path and 

does not change very much along the Y axis.     

 

 

  

 

Figure 36: Z Axis Error Map of Kinematic Model with Laser Data 
 
 
 
 

4.8. The Difference Between the Results of Constructed Kinematic model 

which uses Joint & Link Deviations and Laser Error Data 

 
The models actually use same principles of kinematical analysis 

(Transformation Matrices). When results of constructed kinematic models by using 

joint & link deviations and laser interferometer error data are compared with respect 

to the each other, the differences could be evaluated to see the effects of assumptions 

for joint and link deviations. The main effect is assumptions about the deflections of 

the links, because for the errors of joints, same laser error measurement results have 

been used.  
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On the other hand, kinematic model according to the link and joint deviations 

depends on the structure of machine, therefore inspection of machine elements is a 

must to construct such a kinematic model.   

At the Matlab, subtracting and dividing the results of kinematic models at the 

same location help to visualize the differences and ratios of models. Figure 37 

implies that the maximum difference between two models is approximately 0,4 mm 

at the same location. On the other hand, Figure 38 implies that maximum ratio of the 

models is approximately 1,25 at the same location. Although, there are many 

approximations for first model, these are rather good observation for analysing the 

CMM under inspections.  

 

 

 

   

 

Figure 37: Differences Between the Models from Z=-50 mm to Z=-550 mm. 
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Figure 38: Ratio of Model’s Results . 

 
 

 

4.9. Summary 

 
This chapter mentions the error sources of a CMM measurement and models 

the kinematic and geometric errors by utilizing common kinematic formulations and 

different error measurement techniques used in markets. Afterwards, the results are 

inspected in order to obtain relevance between structure and measurement errors. 

Finally, the results are compared with respect to the  each other.  

 

 

 

 

 

 

 



 61 

 
 

CHAPTER 5 
 

 
THE UNCERTAINTY SOURCES IN CMM’S 

 
 
 

Modern coordinate measurement systems, typically involving multi-axis 

CMMs, give rise to an extraordinary range of uncertainty sources. Thus, a complete 

assessment of the uncertainty sources and how they influence a specific measurement 

result can be a difficult task. Three general uncertainty categories are described, 

which encompass not only the CMM itself but the entire measurement process. In 

Chapter 4, kinematic and geometric error sources and modelling of CMM have been 

explained in detail. After, inspection and elimination of the error sources for CMMs, 

remaining errors are sources of the measurement uncertainty. Measurement 

uncertainties stem from factors explained below.     

 

5.1. Hardware and Structure Factors 

 
Uncertainty sources produce errors in the measurement point in space. This 

may be due to the uncompensated geometrical errors in the machine structure, errors 

in the probing system and errors in the temperature sensors if exists. These factors, 

many of which may be out of the control of the CMM manufacturer and user, affect 

the measurement uncertainty. They include a number of factors relating to non-ideal 

parts, such as : 

• surface roughness, 

• geometrical form errors, 

• finite stiffness, 

• environmental effects (vibration) 

• thermal errors (both in the uncertainty of the expansion and the distortion of 

the part, both of which might be changing in time), 

• part mounting problems, and variation among operators. 
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As previously described, measurements of CMM geometry errors are needed, 

whether or not a CMM is error corrected. This measurement process also has some 

uncertainty associated with it. For example, some uncertainties arise from the 

uncertainty in the measurements of the rigid body error parameters. Note the 

distinction between measuring a mechanical error, e.g. the pitch of the X axis and 

the uncertainty due to the measurement of this value.  

Thermally induced distortions play a major role in the uncertainty of CMM 

measurements. Although, significant progress has been made in designing CMMs 

to minimize these effects, the user must know that the same distortions are presented 

in the part under inspection. Ideally, the part temperature is both constant and uniform 

during the dimensional measurement. However, in many applications, this is not 

possible because production processes may significantly heat up the part and 

insufficient time prevents to reach thermal equilibrium. Consequently, the part has a 

non uniform, temporarily changing temperature distribution. In particular, the 

surface temperature may not accurately reflect the internal temperature distribution 

due to conduction, convection, and radiation coupling to the environment. In 

addition, stresses and deformations may occur because of a non uniform temperature 

distribution throughout the part. Hence, a thermally insensitive CMM must contend 

with the thermally induced uncertainty in the part [1, 26]. 

Another significant source of structural deformation can arise from part loading 

effects if heavy parts are inspected. The nature of the deformation depends on the 

type of CMM structure, the load, the location of the load, and the details of the part 

mounting, e.g.  the number of loading points in contact with the table and the load at 

each point. Hence loading effects are difficult to predict and as it is mentioned 

before, many different structure types are designed to overcome this problem. 

Since most performance evaluations are conducted by using very light loading, 

these deformations are often an overlooked, unquantified source of measurement 

uncertainty [16]. 

Consequently, an investigation of non-compensated structural distortions which 

introduce errors into the CMM coordinate system is needed to develop an effective 

uncertainty analysis. 
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Machine dynamics create another class of CMM geometry errors. These 

errors may depend on such factors as probing speed, probing direction, probe 

approach distance, acceleration settings, and the amount of extension of the CMM 

axes [23,20]. The size of the stylus ball is often required in order to carry out CMM 

measurements. The effective size of the stylus ball includes any calibration factors 

(especially stylus bending) that are specific to the probe in use. For example, many 

common touch trigger probes require a small displacement of the stylus before the 

probe triggers and records the point coordinates. This displacement, known as the 

probe pretravel, results in an effective stylus ball size which is smaller than its 

physical size. The CMM geometrical structure can accurately measure displacements 

of the stylus. Because of this while calibrating a probe by measuring a reference 

artifact (sphere) of known size, the difference  between  the  size  determined  by  

the  CMM and the known size of the artifact determines the effective stylus ball size.  

Any uncertainty in the size of the reference artifact (usually a sphere of calibrated 

diameter supplied by the CMM manufacturer) transfers directly to an uncertainty in 

the effective size of the stylus ball. Therefore, this uncertainty is seen directly in the 

part size measurements [1]. 

 

5.2. Measurement Strategy Factors  

 
These factors include the effects of how the CMM user decides to execute the 

measurement. All these factors such as where the part is located and how it is 

orientated, which probes and styli are used in the measurement, the particular 

sampling strategy (number and location, i.e. distribution, of the measurement points), 

and which algorithm is selected to analyze the data affect the measurement 

uncertainty. 

The choice of sampling plan can have a significant effect on the computed 

feature. If an inadequate plan in terms of number or distribution of measurement 

points is used, it will cause to an uncertainty in the values of the computed features. 

This uncertainty source can be a major contributor to the uncertainties in 

measurement. It is necessary to select a suitable measurement plan. This plan should 

(a) have very dense set of points,  

(b) be reliable estimates of the measurement, 
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(c) be economical. 

 

 

 

 

 

Figure 39: Two Different Sampling Strategy and Their Results When 

Measuring a Circle [1] 

 
 
 
 

5.3. Software Factor  

 
Measurement points are analyzed by the CMM software to produce a geometric 

result. In general, many software packages give different results for same 

measurement points. This represents that this difference is not due to the inaccuracies 

of the CMM hardware, but it is due to the mathematical algorithm of software and 

computer system. Manufacturers try to decrease the computer time to reach desired 

result. However, this is a cumbersome aim that minimising the computer time forces 

to simplify the problem. Simplification requires some approximations and they may 

work well for some measurements, but the same approximations may create errors 

for different sampling strategy. In addition, the software may contain coding errors. 

All these software related uncompensated errors are the source of uncertainty.  



 65 

   

Figure 40: Uncertainty Source Chart [34] 

 

 

 

5.4. Summary 

In this chapter, the uncertainty sources in CMM measurements are classified 

into three main factors. These factors are hardware and structure, measurement 

strategy and software which contain many sub factors. Figure 40 indicates the 

uncertainty sources in a CMM measurement.   
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CHAPTER 6 

 
 

BRIEF EXPLANATION OF METHODS TO DETERMINE THE 
MEASUREMENT UNCERTAINTY OF CMM’S 

 
 
 

Precision engineering is a discipline to evaluate and quantify the measurement 

uncertainty. Different methods are developed for the quantification the measurement 

uncertainty and these methods standardize to distribute without violation. On the 

other hand, these methods have properties different from the others and differences 

cause many advantages and disadvantages. In this chapter, different methods to 

determine the measurement uncertainty of CMMs are explained, briefly.       

 
6.1. Method 1: Uncertainty Budgeting 

 
A general method is outlined in the GUM to determine an uncertainty 

statement. This uncertainty statement is associated with a quantity derived from 

measurements and or other information. Briefly, the procedure begins with listing 

each error source, and then quantifying the magnitude for each error source by a 

variance (square of the standard uncertainty) to check if any errors are correlated, if 

necessary. If they are correlated, their covariance is quantified; otherwise this 

covariance is set to zero. Next the sensitivity coefficient for each error source should 

be determined. Various formulas are given in the GUM to provide the standard 

uncertainty of the derived quantity. (Look at the Chapter 2.) 

The various uncertainty sources may be quantified by a number of different 

techniques including: 

• the results from performance verification standards, 

• educated estimates of individual, 

•  historical records, 

•  results of experiments, and 

• other uncertainty statements. 
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Due to the complexity of CMM measurements, it may be necessary to refer to 

suitable literature in order to complete this task.   

 

6.2. Method 2: Comparison method 

 
This method uses a calibrated gauge (artifact) to quantify instrumentation and 

measurement plan uncertainty sources. Additionally, by using repeated 

measurements on parts the method can be used to help in quantifying the uncertainty 

factors. This method has the advantage that traceability is relatively easy to 

demonstrate, but the disadvantage that several master gauges may be needed to cover 

the full range of measurements made and to do these measurements a lot of time is 

required. 

 

6.3. Method 3: Statistical Evaluation of Measurement Uncertainty by 

Designing Fractional Factorial Experiment  

 
This method is carried out using a calibrated gauge (artifact) and utilizes the 

statistical methods by designing an experiment. A performance test experiment is 

planned using the statistical technique to investigate the CMM uncertainty sources. 

An appropriate experiment can be selected among several designs of experiments 

with the purpose of reducing the amount of experimental runs. The use of analysis of 

variance (ANOVA) allows the determination of the most significant variables 

influencing the CMM measurement uncertainty and their quantities.  

 

6.4. Method 4: Hybrid Methods 

 
Many uncertainty budgets will be a combination of the methods previously 

described. In general, this approach is likely to provide the most effective solution to 

estimate measurement uncertainties. This method can include geometric, 

repeatability, thermal effects in the uncertainty analysis by using statistics.     
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6.5. Method 5: Simulation 

 
The method of simulation, like uncertainty budgeting, quantifies each 

uncertainty source with a distribution of values (which can be characterized by a 

variance). However, instead of combining variances as in the case of uncertainty 

budgeting, simulation determines the measurement uncertainty by examining the 

variance of the measurement result. This is done by computing the result of a large 

number of virtual measurement scenarios, where each virtual measurement scenario 

is realized by selecting one possible error for each of the quantities affecting the 

measurement result and computing the measurement and using these values. The 

process is repeated many times, each time differing in the errors selected; the 

variance of the calculated measurement results represent its uncertainty. This 

procedure has the advantage on not requiring vast numbers of real measurements to 

be made so that not wasting time. 
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CHAPTER 7 
 
 

UNCERTAINTY BUDGETING IN CMM MEASUREMENT 
 
 
 

Uncertainty budgeting is common method for all machines to evaluate the 

performance of them. In this chapter, the detail examination and application of 

uncertainty budgeting method will be mentioned.  

 

7.1. Theory of Uncertainty Budgeting  

 
This method requires obtaining the information about the uncertainty 

contributions. This data is obtained from the certificates or measurements of 

contributors, generally. The contributors can be classified as Artifact and CMM 

based.  

The main contributors for budgeting are below; 

 

1) Artifact Calibration Uncertainty (1):  This is a fixed contribution 

extracted from the calibration certificate of artifact. 

2) Artifact Calibration Uncertainty (2):  This is a length dependent 

contribution extracted from the calibration certificate of artifact.  

3) Artifact Geometry:  Flatness and parallelism of measurement faces, which 

is a fixed contribution.  Value to be taken from the calibration certificate of 

artifact. 

4) Artifact Alignment:  This value will need to be determined by the 

laboratory, which is normally a fixed contribution.  Although the 

contribution may be very small, this may interact with the geometry. So, it 

may be negligible. 

5) Artifact thermal expansion coefficient uncertainty:  Generally for steel 

artifacts this could be estimated at 1 micron per metre per degree C away 

from 20 degrees C. This is length dependent and calculated from the 

temperature difference. While calculating the temperature difference value, 
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the thermometer uncorrected error and thermometer resolution values are 

included as taking root sum of square.     

6) CMM Resolution:  CMM resolution is used during verification, which is a 

fixed contribution. This value is extracted from the technical specifications 

of CMM manufacturer. 

7) Artifact Calibration Resolution:  If the laboratory chooses to round the 

calibration results for the artifact, then this needs to be considered as a fixed 

contribution.  This could be calculated as the difference between the 

reported calibrated length of the artifact and the length used for in 

calculations by the laboratory. 

8) Thermometer Resolution:  This value shall be taken from the calibration 

certificate of thermometer that is used to measure temperature, which will 

be a length dependent contribution. 

9) Thermometer Uncorrected Errors:  This value shall be taken from the 

calibration certificate of thermometer, and it is a length dependent 

contribution. 

10) CMM Repeatability:  This is the CMM’s repeatability, which is a fixed 

contribution. This value could be obtained from repeated measurements 

artifacts.  

11) CMM scale Temperature Resolution:  This is a length dependent 

contribution. This depends also the material of scale.  

12) Probe Uncertainty:   Uncertainty causes from probing which is taken from 

the certificate of probe manufacturer.  

  

7.2. Application of Uncertainty Budgeting to CMM under Inspection   

 
Table 4  is an uncertainty budget for a CMM measurement. At this budget, the 

uncertainty of the contributors could be calculated by multiplying  the value column 

with the sensitivity coefficient column and dividing with divisor column. Divisors are 

extracted from the type of probability distribution (Normal or Rectangular) of 

uncertainty sources (Look at Figure 2 and 3). For rectangular distribution, the divisor 

is square root of three. 
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Table 4: Uncertainty Budgeting For CMM Measurements 
 

Value (+/-) 
Probable  

Distribution 
Divisor

S
en

si
ti

vi
ty

 

C
oe

ff
. 

Uncertainty 

at unit 

length 

(microns) 

Uncertainty 

 
 

Source of  

Uncertainty 

Value Units       

Length 

Element 

(per metre) 

Fixed 
Length 

Element 
 

Artifact Calibration 

Uncertainty (Fixed) 
0,1 µm Normal 2,00 1   0,050    

 Artifact Calibration 

Uncertainty  (Len Dep.) 
1 µm Normal 2,00 1 0,500   0,200  

Artifact Geometry 0,5 µm Rectangular 1,73 1   0,289    

Artifact Alignment 0,1 µm Rectangular 1,73 1   0,058    

Artifact thermal expansion 

coefficient Uncertainty 
2,005 Degrees CRectangular 1,73 1 1,158   0,463  

Thermometer Calibration 

Uncertainty 
0,15 Degrees C Normal 2,00 11,6 0,870   0,348  

CMM Resolution 0,1 µm Rectangular 1,73 1   0,058    

Artifact Calibration 

Resolution 
0,1 µm Rectangular 1,73 1   0,058    

Thermometer Resolution 0,1 Degrees CRectangular 2,00 11,6 0,580   0,232  

Thermometer Uncorrected 

Errors 
0,1 Degrees CRectangular 1,73 11,6 0,670   0,268  

Probe Uncertainty 0,44 µm Rectangular 1,73 1   0,254    

CMM scale Temperature 

Resolution 
0,1 Degrees CRectangular 2,00 11,6 0,580   0,232  

CMM Repeatability 0,5 µm Rectangular 1,73 1   0,289    

SUM of Uncertainties             0,766 1,511  

Enter Longest Bar Length 

(metres) 
0,4                

Enter Indicated 

Temperature Of Artifact 
22                

       Fixed 
Length 

Element 
  

Combined Uncertainty At 

K=1 
     0,494 0,745 Microns 

Expanded Uncertainty at 

K=2 
     0,987 1,490 Microns 

  Total Uncertainty= 2,477 Microns     
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The distributions of all contributors are defined in Probable Distribution 

column and calculated with respect to the Type A and Type B methods of GUM. As 

seen in the table, the coefficient of the thermometer based contributors is 11.6, that is 

the thermal expansion coefficient of the steel and effects of these contributors depend 

on length. The scale material is also assumed as steel in this budget.  

Uncertainty of fixed and length dependent contributors are added individually 

by using root sum square to calculate the combined uncertainty. After that, expanded 

uncertainty is acquired by multiplying with k factor 2. And, total uncertainty is 

obtained by adding the length dependent and fixed part of expanded uncertainty. 

Total uncertainty for measurement of 400 mm length at the CMM under inspection is 

approximately 2.5 microns. In reality, this value may not be such a high.     

 

7.3. Evaluation of Uncertainty Budgeting Method 

 
In conclusion, this method can give general idea about uncertainty of CMM 

and also helps to see the uncertainty contributors in a list manner. However, many 

contributors of uncertainty such as sampling method, stylus length and working 

volume effects can not be included and they require specific calculation and 

experimentations.     
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CHAPTER 8 
 
 

EVALUATION OF MEASUREMENT UNCERTAINTY USING 
COMPARISON METHOD 

 
 
 

Comparison method is a direct procedure to obtain the measurement uncertainty 

of a specific feature. This methodology includes the appropriate combinations of 

CMM error sources involved in a specific measurement. In this chapter, the theory 

of comparison method will be explained in detail and then this method will be 

applied on a CMM.   

 
8.1. Theory of Comparison Method 

 
The comparison method is conducted by inspecting a calibrated artifact which 

is essentially identical in all respects to the part feature under consideration. 

Numerous repeated measurements are carried out on the calibrated artifact. These 

measurements are conducted in exactly the same manner as the actual part 

measurement [1]. 

This includes: 

• The same location within the work volume 

• The same probe and stylus configuration 

• The same sampling strategy 

• The same fixturing 

After the repeated measurements, the standard deviation of the resulting 

substitute geometry, e.g., the diameter is calculated. The inspected ring gauge 

diameter has a combined standard uncertainty. This uncertainty is the RSS sum of 

the standard deviation found from the repeated measurements and the combined 

standard uncertainty in the diameter calibration certificate of the known ring 

gauge.  
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There may be additional uncertainties such as the thermal expansion of both the 

calibrated artifact and the part. If the same sensor is used to measure artifact and part 

temperature, then these two sources of uncertainty are highly correlated.  

The effect of the part form error upon the measurement is a significant factor 

while using the comparison method. Most calibrated artifacts have very small form  

deviations from the ideal geometry. Hence, this factor is not assessed by repeated 

measurements of the calibrated artifact. If the actual part has significant form error 

relative to the errors in the CMM, then the actual part measurement will be 

influenced by the use of a finite sampling strategy in the presence of this form error. 

“The effect of form error can be included in either of two ways. A 

distribution for the form error may be assumed yielding a standard deviation which 

is then multiplied by the sensitivity coefficient of the sampling strategy used in the 

measurement” (Bosch, 1995). Totally, the uncertainties below are added in Root 

Sum of Square (RSS) manner and yielded a combined standard uncertainty for the 

part measurement. 

• Standard deviation which is then multiplied by the sensitivity coefficient of 

the sampling strategy is used in the measurement. 

• Standard deviation of the repeated measurements. 

• The combined standard uncertainty in the calibration of the artifact. 

More accurately, the standard deviation of the measurement process can 

include the effect of form error by performing repeated measurements of the actual 

part with a reorientation of the part (or the sampling strategy) between each 

measurement; this forces the form error to be included in the measurement variation 

[1].  

 

8.2. Application of Comparison Method to CMM under Inspection 

 
In  thesis study, this process is applied on a CMM as seen below.  

For comparison, two ring gauges are used, one of them is manufactured by 

Federal and has calibration certificate as artifact. The other one is manufactured by 

Mitutoyo used as measured part and doesn’t have calibration certificate . In this case 

a calibrated 69,6722  mm nominal diameter ring gauge (Federal) is selected as the 

comparison artifact. The calibrated diameter of the Federal’s ring gauge is 
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Dartifact_calibrated= 69,6717 mm, with a combined standard calibration uncertainty   

uc = 0,0012 µm.  

The gauge is measured a total of na  =5  times on CMM under inspection, 

giving a mean measured diameter of Dartifact_mean = 69,6756 mm, with a standard 

deviation of ua = 0,259 µm. Hence, estimated uncertainty for this CMM 

measurement is 0,116 µm, with an uncertainty of ua /√na  µrn. 

The Mitutoyo’s ring gauge as actual part is measured np = 5 times. The 

results are below; 

Mean measured diameter ; Dpart_mean  = 40,0075 mm  

Standart deviation of repeated measurement; up  = 0,497 µm.  

This values include form error but a ring gauge with a small form error is 

measured as a part measurement so nearly the same standard deviation value is 

obtained with artifact. If part that has a high form error is measured, high standard 

deviation will be expected with respect to sampling strategy. The total uncertainty 

is calculated by using the equation (8.10).   

Both the artifact (Federal Ring Gage) and the part (Mitutoyo) were corrected 

for thermal expansion effects using the same temperature sensor which means the 

uncertainty of the two thermal corrections will be highly correlated. Finally, the 

task specific uncertainty of part measurement can be formulated as below. 
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where 

• La and Lp are the sizes of artifact and part, e.g., length or diameters,  

• αa  and αp are the thermal expansion coefficients of artifact and part 

respectively, 

For steel; αa   =    αp       =  11,5  ± 1 µm/m ×°C 

• u(αa) and  u(αp) are uncertainties of thermal expansion coefficients, 

For steel; u(αa)= u(αp)= 2/√3=0,58 µm/m×°C   (Type B Rectangular 

Uncertainty) 

• Ta and Tp are temperature of the artifact and part respectively, 

• To is the standard temperature, i.e., 20 °C. 

• u(T) is the uncertainty of the temperature sensor (thermometer); 

u(T)=0.1  °C 

•  uc_cal is the (combined standard) uncertainty in the diameter of the 

ring gauge.  

Finally, uc    is calculated by using equations above.  

 uc  = 0,309  µm 

 

8.3. Evaluation of Comparison Method 

The disadvantage of the comparison method is the necessity of a similar and 

calibrated artifact to carry out the procedure. The similarity between the artifact and 
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part causes high the relevance in the comparison. Measurement of CMM consists of 

different features, e.g. circle, sphere, cylinder, plane etc, therefore finding a suitable 

artifact for required measurement is difficult process. Another disadvantage is the 

numerous measurements required on the artifact in addition to those on the part. 

Because of these disadvantages, in a production plant, time is a significant 

parameter of efficiency so that comparison is not appropriate for applying all task 

specific uncertainty analysis.    

Nevertheless, the comparison method is a powerful technique to obtain 

measurement uncertainty, if an identical but calibrated part is available.  
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CHAPTER 9 
 
 

STATISTICAL EVALUATION OF MEASUREMENT UNCERTAINTY BY 
DESIGNING FRACTIONAL FACTORIAL EXPERIMENT 

 
 
 
In this chapter, the measurement uncertainty of CMM will be determined by 

using experimentation for different measurement combination of contributors and 

results of experiments will be evaluated statistically. Experiment shall be 

comprehensive for determination all contributors. With the design of efficient 

experimentation, the measurement uncertainty of CMM and effects of contributors 

can be obtained.         

 
9.1. Design of Experiments  

 
This method uses the fractional factorial experimentation approach to 

investigate the relationship between measurement uncertainty and parameters with a 

CMM [35, 36]. Experiments are designed according to the type of inspection 

strategies and uncertainty contributors. These contributors include travel speeds, 

probe angles, probe sizes and length, sampling strategies and feature sizes. The 

number of factors may be increased, but if the unimportant factors in affecting the 

measurement of uncertainty are used, the experiment becomes time consuming, 

expensive and inefficient. 

  

 

Table 5: Design Factors for Experimentation. 
 

FACTORS LOW HIGH 

PROBE SIZE (Diameter, mm) 2 8 

STYLUS LENGTH (mm) 50 100 

MEASUREMENT ANGLE 180 360 

MEASUREMENT POINT 6 24 

SPEED (%) 25 90 
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To investigate the effect of the five contributors on the measurement 

uncertainty, a fractional factorial design 25-1  is employed with minimum 3 replicates 

in the experiment [35]. This resolution V design with a generator I=ABCDE ensures 

that all the five factors and the six two-factor interaction terms will not be alised with 

each of themselves. When the factors shown at table above investigated at three 

probe angle, the experimentation is completed. Fractional factorial design of 

experiment was ordered by using Matlab related tool (Statistical Toolbox).  

 

 

 

Table 6: Experiment Order Table According To the Fractional Factorial Design 
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O
rd

er
 

A  B C D E 

1 2 100 6 25 180 

2 2 100 6 90 360 

3 2 100 24 25 360 

4 2 100 24 90 180 

5 2 50 6 25 360 

6 2 50 6 90 180 

7 2 50 24 25 180 

8 2 50 24 90 360 

9 8 100 6 25 180 

10 8 100 6 90 360 

11 8 100 24 25 360 

12 8 100 24 90 180 

13 8 50 6 25 360 

14 8 50 6 90 180 

15 8 50 24 25 180 

16 8 50 24 90 360 
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Table 6 represents the order of experiment done for each probe angle. There 

are three probe angles which are defined as Y-Z, X-Z, X-Y Planes, so that 48 

experiments shall be done with 3 replications for each one. Finally, the required 

number of ring gage measurements is 144. The ring gauges were in pristine 

condition, as they had never been used in production. When investigating the results 

obtained from the screening experiment, the standard deviation of diameter 

measurements is used for evaluation. As mentioned before, this method utilizes 

statistical tools to calculate the affect of each factor on uncertainty. Regression 

Model and Analysis of Variances (ANOVA) are the procedures to fit and calculate 

the related effect on results. The theory of ANOVA is below; 

 

2
i

      Sum of Square (SS) is defined as the amount of variability in the data due to 

different sources. A and B are the variables that affects the result.

SS_A=b n (x )                                x× −∑

i

                                                             (9.1)

where

   b = Variable number of  factor B.

   n = Number of replicates.

   x  Mean for each A.

    Grand Meanx

=

=
 

 

2
j

j

SS_B=a n (x )                                                                                              (9.2)

where

   a = Variable number of  factor A.

   n = Number of replicates.

   x  Mean for e

x× −

=

∑

2
ij

ij

ach B.

SS_Total= (x )                                                                                          (9.3)

   x  Each observation.

SS_A*B = SS_Total-(SS_A+SS_B)                           

x−

=

∑∑

                                              (9.4)
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Degrees of Freedom (DF) measures how much independent information is available

to calculate  each SS.

DF_A = a-1 ; DF_B = b-1 ; DF_Total = n-1 ; DF_A*B = (a-1) (b-1)                   (9.5)

Mean Square (

×

MS) takes into account that different sources have different number of 

levels or possible levels.

SS_A SS_B SS_A*B
MS_A= ; MS_B=  ; MS_A*B=                                           (9.6) 

DF_A DF_B DF_A*B
 

P-values are often used in hypothesis tests where you either accept or reject a 

null hypothesis. The p-value represents the probability of making a Type 1 error, or 

rejecting the null hypothesis when it is true. The smaller the p-value, the smaller is 

the probability that you would be making a mistake by rejecting the null hypothesis. 

A cutoff value often used is 0,05, that is, reject the null hypothesis when the p-value 

is less than 0,05. The p-value is calculated as “1 - The cumulative distribution 

function (cdf).” 

Regression model constructs an equation that includes all variables with their 

coefficients. The influence quantities of variables are represented by this fitting 

procedure.  

 

9.2. Experiments on Ring Gauge 

 
Ordered experimentation in Table 6 is applied on three different measurement 

planes at CMM under inspection. These planes are Y-Z, X-Z, X-Y planes of machine 

coordinate system and requires the use different probe angles for ordered 

measurements. CMM uses a Renishaw TP7M probe and its specifications can be 

seen in the appendices. In addition, in this chapters all the undefined units are 

millimetres.    

 
9.2.1. Ring Diameter Measurement in Y-Z Plane 

 

Figure 41 indicates the first application which is the measurement of ring 

gauge in Y-Z plane of machine coordinate system and Table 7 gives the results of the 

repeated measurements for this experiment.  
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Figure 41: A View of Ring Measurement in Y-Z Plane 

 
Table 7: Experimental Results for Y-Z Plane 

 
 
  Factors        
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MEASUREMENT RESULTS 

(ACTUAL, 4 REPLICATION) 

O
rd

er
 

A  B C D E 1 2 3 4

Standard 

Deviation 

Uncertainty 

(mm) 

1 2 100 6 25 180 40,005 40,006 40,004 40,006 0,000957 0,0004787 

2 2 100 6 90 360 40,005 40,005 40,005 40,005 0 0 

3 2 100 24 25 360 40,007 40,007 40,007 40,007 0 0 

4 2 100 24 90 180 40,001 40,008 40,005 40,008 0,003317 0,0016583 

5 2 50 6 25 360 40,007 40,007 40,007 40,007 0 0 

6 2 50 6 90 180 40,005 40,009 40,007 40,009 0,001915 0,0009574 

7 2 50 24 25 180 40,002 40,01 40,007 40,009 0,003559 0,0017795 

8 2 50 24 90 360 40,009 40,009 40,009 40,009 0 0 

9 8 100 6 25 180 40,009 40,007 40,008 40,008 0,000816 0,0004082 

10 8 100 6 90 360 40,008 40,009 40,009 40,009 0,0005 0,00025 

11 8 100 24 25 360 40,009 40,009 40,009 40,009 0 0 

12 8 100 24 90 180 40,011 40,008 40,011 40,008 0,001732 0,000866 

13 8 50 6 25 360 40,007 40,008 40,008 40,008 0,0005 0,00025 

14 8 50 6 90 180 40,006 40,007 40,006 40,007 0,000577 0,0002887 

15 8 50 24 25 180 40,003 40,009 40,007 40,009 0,002828 0,0014142 

16 8 50 24 90 360 40,007 40,008 40,008 40,008 0,0005 0,00025 
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Table 8: Analysis of Variance for the Screening Experiment. 
 

---------------------------------------------------------------------------------------------------------------------------------------------------------- 
General Linear Model: Uncertainty versus Probe Diamet; Stylus Lengt; ...  
 
Factor             Type    Levels  Values 

Probe Diameter     random       2  2; 8 

Stylus Length      random       2  50; 100 

Point Number       random       2  6; 24 

Measurement Speed  random       2  25; 90 

Measurement Angle  random       2  180; 360 

Analysis of Variance for Uncertainty, using Adjusted SS for Tests 

Source                            DF     Seq SS     Adj SS     Adj MS     F 

Probe Diameter                     1  0,0000001  0,0000001  0,0000001    ** 

Stylus Length                      1  0,0000001  0,0000001  0,0000001    ** 

Point Number                       1  0,0000007  0,0000007  0,0000007    ** 

Measurement Speed                  1  0,0000000  0,0000000  0,0000000    ** 

Measurement Angle                  1  0,0000032  0,0000032  0,0000032  2,33 

Probe Diameter*Point Number        1  0,0000000  0,0000000  0,0000000    ** 

Probe Diameter*Measurement Angle   1  0,0000004  0,0000004  0,0000004    ** 

Point Number*Measurement Angle     1  0,0000009  0,0000009  0,0000009    ** 

Probe Diameter*Point Number*       1  0,0000000  0,0000000  0,0000000    ** 

  Measurement Angle 

Probe Diameter*Stylus Length       1  0,0000000  0,0000000  0,0000000    ** 

Stylus Length*Point Number         1  0,0000000  0,0000000  0,0000000    ** 

Error                              4  0,0000002  0,0000002  0,0000000 

Total                             15  0,0000056 

 

S = 0,000216902   R-Sq = 96,66%   R-Sq(adj) = 87,46% 

Term                                         Coef   SE Coef      T      P 

Constant                                 0,000538  0,000054   9,91  0,001 

Probe Diameter 

2                                        0,000072  0,000054   1,32  0,257 

Stylus Length 

 50                                      0,000080  0,000054   1,47  0,215 

Point Number  

 6                                      -0,000208  0,000054  -3,84  0,018 

Measurement Speed 

25                                       0,000004  0,000054   0,07  0,948 

Measurement Angle 

180                                      0,000444  0,000054   8,18  0,001 

Probe Diameter*Point Number 

2             6                         -0,000042  0,000054  -0,77  0,484 

Probe Diameter*Measurement Angle 

2            180                         0,000165  0,000054   3,05  0,038 

Point Number*Measurement Angle 

 6           180                        -0,000240  0,000054  -4,42  0,012 

Probe Diameter*Point Number*Measurement 

Angle 

2             6           180           -0,000011  0,000054  -0,19  0,856 

Probe Diamet*Stylus Lengt 

2             50                        -0,000005  0,000054  -0,09  0,932 

Stylus Length*Point Number 

 50           6                         -0,000035  0,000054  -0,65  0,554 

 

 

 

 

Minitab ANOVA results of experiment are presented in Table 8. This 

experiment has been done on the Y-Z plane of machine by measuring a ring gauge. 

Based on the P values in the last column of regression model, the impacts of the main 

factor can be evaluated according to the commonly used alpha level of 0.05 (Null 

Hypothesis). If the P value of factor is higher than 0.05 and it is concluded that factor 
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does not have significant impact on the uncertainty. In contrast, for P values lower 

than 0.05, that factor has significant impact on the uncertainty.         

When Table 8 is evaluated, the factors can be classified from the most 

significant to the least one. Variable Analysis of the experiment presents that point 

number and measurement angle have significant effect on the uncertainty. After that, 

the probe diameter and stylus length take the second importance level. Finally, the 

probe speed has the least significance impact on the uncertainty. Also, the 

interactions of factors can be evaluated such as, with no surprise, interaction of point 

number and measurement angle has the most significant effect on the results. The 

least important interaction is  the probe diameter and stylus length.  

After the evaluations of factor effects level with respect to each other, it is time 

to define how the internal change of factors effect the uncertainty. Figure 42 

indicates the main effect plot of factors at Y-Z Plane. 
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Figure 42: Main Effect Plot of Factors in Y-Z Plane 

 



 85 

For experiment on X plane, low probe diameter (D=2 mm) causes to increase 

the uncertainty and high probe diameter (D=8 mm) decreases the measurement 

uncertainty. It is because of low probe diameter is vulnerable to surface defects and 

this vulnerability causes to obtain the different point coordinate and low 

repeatability. Stylus length results are very surprising that 50 mm stylus gives high 

uncertainty and opposite results are obtained for long stylus (100 mm). Third factor 

is point number and it has direct effect on results. When the point number is high (24 

point), the uncertainty value is high especially for the partial coverage of circle. As 

seen in the chart, measurement speed is almost same and has low effect on the 

uncertainty. Finally, 180 degree measurements cause very high uncertainty. On the 

other hand, full coverage of ring (360 degree) decreases the measurement 

uncertainty.  

At this evaluation, measurement bias, which is the difference between the mean 

value of the measurements and the calibrated value, is not inspected because another 

experimentation will be done for different angle measurements and the bias error can 

be seen easily.      
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Figure 43: Interaction Plot of Ring Measurement Uncertainty in Y-Z Plane 

 

 

 

Interaction plot guides about the correlated effects of the factors to the 

uncertainty. For example, looking at first column, in general low diameter of probe 

causes higher uncertainty than high diameter one. The only exception is the 

interaction with 360 degree coverage that results in higher uncertainty with using 

high diameter probes. In other words, for 180 degree coverage, small probe diameter 

gives high uncertainty and big diameter causes low uncertainty; for full coverage, 

measurement with small probe diameter is concluded low uncertainty and big 

diameter causes high uncertainty. 

The other important observation is that the point number has inverse effect 

with respect to the measurement angle. Looking at the third column, in general 

measurement with low point number results in low uncertainty and high point 

number causes high uncertainty. The only exception is the interaction with 360 

degree coverage that results high uncertainty with using low point number.  
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9.2.2. Ring Diameter Measurement in X-Z Plane 

 

Figure 44 indicates the measurement of ring gauge on X-Z plane of machine 

coordinate system and Table 9 gives the results of the repeated measurements for this 

experiment. 

 
 
 

 

 

Figure 44: A View of Ring Measurement in X-Z Plane 

 
Table 9: Experimental Results for X-Z Plane. 

 

     

P
ro

b
e 

S
iz

e 

(D
ia

m
et

er
, m

m
) 

S
ty

lu
s 

L
en

gt
h

 

(m
m

) 

M
ea

s.
 P

oi
n

t 

N
u

m
b

er
  

S
p

ee
d

 (
%

) 

M
ea

su
re

m
en

t 

A
n

gl
e 

 

MEASUREMENT RESULTS 

(ACTUAL, 4 REPLICATION) 

O
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er
 

A  B C D E 1 2 3 4

Uncertainty 

(mm) 

1 2 100 6 25 360 40,007 40,008 40,007 40,008 0,0002887 

2 2 100 6 90 180 40,007 40,005 40,006 40,005 0,0004787 

3 2 100 24 25 180 40,006 40,004 40,006 40,005 0,0004787 

4 2 100 24 90 360 40,008 40,008 40,008 40,008 0 

5 2 50 6 25 180 40,006 40,007 40,006 40,007 0,0002887 

6 2 50 6 90 360 40,006 40,006 40,006 40,007 0,00025 

7 2 50 24 25 360 40,008 40,008 40,009 40,008 0,00025 

8 2 50 24 90 180 40,001 40,006 40,002 40,007 0,001472 
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Table 9  (Continued) 

9 8 100 6 25 360 40,003 40,003 40,004 40,004 0,0002887 

10 8 100 6 90 180 40,006 40,006 40,008 40,006 0,0005 

11 8 100 24 25 180 40,007 40,005 40,008 40,005 0,00075 

12 8 100 24 90 360 40,004 40,004 40,004 40,005 0,00025 

13 8 50 6 90 360 40,007 40,008 40,007 40,007 0,00025 

14 8 50 6 25 180 40,005 40,004 40,004 40,005 0,0002887 

15 8 50 24 25 360 40,007 40,008 40,008 40,008 0,00025 

16 8 50 24 90 180 40,003 40,005 40,002 40,006 0,0009129 

 

Table 10: Output of ANOVA for X-Z Plane 
 
---------------------------------------------------------------------------------------------------------------------------------------------------------- 
 General Linear Model: Uncertainty versus Probe Diamet; Stylus Lengt; ...  
 
Factor             Type    Levels  Values 

Probe Diameter     random       2  2; 8 

Stylus Length      random       2  50; 100 

Point Number       random       2  6; 24 

Measurement Speed  random       2  25; 90 

Measurement Angle  random       2  180; 360 

 

Analysis of Variance for Uncertainty, using Adjusted SS for Tests 

Source                            DF     Seq SS     Adj SS     Adj MS   F  P 

Probe Diameter                     1  0,0000000  0,0000000  0,0000000  ** 

Stylus Length                      1  0,0000001  0,0000001  0,0000001  ** 

Point Number                       1  0,0000002  0,0000002  0,0000002  ** 

Measurement Speed                  1  0,0000001  0,0000001  0,0000001  ** 

Measurement Angle                  1  0,0000007  0,0000007  0,0000007  ** 

Probe Diameter*Point Number        1  0,0000000  0,0000000  0,0000000  ** 

Probe Diameter*Measurement Angle   1  0,0000000  0,0000000  0,0000000  ** 

Point Number*Measurement Angle     1  0,0000004  0,0000004  0,0000004  ** 

Probe Diameter*Stylus Length       1  0,0000001  0,0000001  0,0000001  ** 

Stylus Length*Point Number         1  0,0000002  0,0000002  0,0000002  ** 

Error                              4  0,0000001  0,0000001  0,0000000 

Total                             15  0,0000019 

 

S = 0,000182649   R-Sq = 92,81%   R-Sq(adj) = 73,05% 

Term                                         Coef   SE Coef      T      P 

Constant                                 0,000437  0,000046   9,58  0,001 

Probe Diamet 

2                                        0,000001  0,000046   0,02  0,983 

Stylus Length 

 50                                      0,000058  0,000046   1,27  0,273 

Point Number 

 6                                      -0,000108  0,000046  -2,37  0,077 

Measurement Speed 

25                                      -0,000077  0,000046  -1,68  0,168 

Measurement Angle 

180                                      0,000209  0,000046   4,57  0,010 

Probe Diamet*Point Number 

2             6                         -0,000004  0,000046  -0,08  0,939 

Probe Diamet*Measurement Angle 

2            180                         0,000032  0,000046   0,71  0,519 

Point Number*Measurement Angle 

 6           180                        -0,000149  0,000046  -3,26  0,031 

Probe Diamet*Point Number*Measurement Angle 

2             6           180           -0,000035  0,000046  -0,77  0,487 

Probe Diamet*Stylus Length 

2             50                         0,000069  0,000046   1,51  0,206 

Stylus Lengt*Point Number 

 50           6                         -0,000118  0,000046  -2,58  0,061 

 

----------------------------------------------------------------------------------------------------------------------------------------------------------    
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Figure 45: Main Effect Plot of Factors in X-Z plane 

 

 

 

Figure 45 represents the main effect plots of measurements at X-Z Plane which 

are nearly same with the plots of measurements at Y-Z plane in terms of 

measurement angle and point number. The first difference that takes attention is the 

low effect of probe diameter change. Also measurement speed at X-Z plane has more 

significant impact than the measurement at Y-Z plane. The reason of this is the 

pretravel effect of probe. High measurement speed causes high uncertainty. At this 

experiment, change of the probe diameter has no effect on the measurement 

uncertainty. The other surprising effect, same with the first experiment, is that long 

stylus causes lower measurement uncertainty than short stylus.        
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Figure 46: Interaction Plot of Uncertainty in X-Z Plane 

 
 
 
 

Figure 46 indicates the interaction plots of measurements at X-Z plane which 

are almost the same with the plots of measurements at Y-Z Plane. Looking at the 

second column of the matrix, it can be easily seen that the high stylus length prone to 

increase the uncertainty with interaction of low point number. Also, interaction of 

high probe diameter and long stylus gives high uncertainty which is an unexpected 

results. On the other hand, Figure 46 represents that high point number increases the 

uncertainty with interaction of short stylus.    

 

9.2.3. Ring Diameter Measurement in X-Y Plane 

 
Figure 47 indicates the measurement of ring gauge on X-Y plane of machine 

coordinate system and Table 11 gives the results of the repeated measurements for 

this experiment. 
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Figure 47: A View of Ring Measurement in X-Y Plane 

 
Table 11: Experimental Results for X-Y Plane 
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MEASUREMENT RESULTS 

(ACTUAL, 4 REPLICATION) 

O
rd

er
 

A  B C D E 1 2 3 4

Uncertainty 

(mm) 

1 2 100 6 25 360 40,004 40,003 40,004 40,003 0,0002887 

2 2 100 6 90 180 39,996 39,999 39,999 40,000 0,0008660 

3 2 100 24 25 180 40,002 40,003 40,003 40,003 0,0002500 

4 2 100 24 90 360 40,002 40,003 40,003 40,003 0,0002500 

5 2 50 6 25 180 40,005 40,005 40,005 40,004 0,0002500 

6 2 50 6 90 360 40,005 40,004 40,005 40,004 0,0002887 

7 2 50 24 25 360 40,006 40,006 40,006 40,006 0,0000000 

8 2 50 24 90 180 40,005 40,006 40,004 40,005 0,0004082 

9 8 100 6 25 360 40,008 40,007 40,007 40,008 0,0002887 

10 8 100 6 90 180 40,005 40,006 40,005 40,006 0,0002887 

11 8 100 24 25 180 40,005 40,006 40,005 40,005 0,0002500 

12 8 100 24 90 360 40,005 40,005 40,006 40,006 0,0002887 

13 8 50 6 90 360 40,005 40,005 40,005 40,005 0,0000000 

14 8 50 6 25 180 40,006 40,006 40,007 40,006 0,0002500 

15 8 50 24 25 360 40,006 40,006 40,006 40,006 0,0000000 

16 8 50 24 90 180 40,008 40,008 40,008 40,007 0,0002500 
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Table 12: Output of ANOVA for X-Y Plane. 
 
------------------------------------------------------------------------------------------------------------------------------------------------- 
General Linear Model: Uncertainty versus Probe Diamet; Stylus Lengt; ...  
Factor             Type    Levels  Values 

Probe Diameter     random       2  2; 8 

Stylus Length      random       2  50; 100 

Point Number       random       2  6; 24 

Measurement Speed  random       2  25; 90 

Measurement Angle  random       2  180; 360 

Analysis of Variance for Uncertainty, using Adjusted SS for Tests 

Source                            DF     Seq SS     Adj SS     Adj MS   F  P 

Probe Diameter                     1  0,0000001  0,0000001  0,0000001  ** 

Stylus Length                      1  0,0000001  0,0000001  0,0000001  ** 

Point Number                       1  0,0000000  0,0000000  0,0000000  ** 

Measurement Speed                  1  0,0000001  0,0000001  0,0000001  ** 

Measurement Angle                  1  0,0000001  0,0000001  0,0000001  ** 

Probe Diameter*Point Number        1  0,0000000  0,0000000  0,0000000  ** 

Probe Diameter*Measurement Angle   1  0,0000000  0,0000000  0,0000000  ** 

Point Number*Measurement Angle     1  0,0000000  0,0000000  0,0000000  ** 

Probe Diameter*Point Number*       1  0,0000000  0,0000000  0,0000000  ** 

  Measurement Angle 

Probe Diameter*Stylus Length       1  0,0000000  0,0000000  0,0000000  ** 

Stylus Length*Point Number         1  0,0000000  0,0000000  0,0000000  ** 

Error                              4  0,0000001  0,0000001  0,0000000 

Total                             15  0,0000006 

S = 0,000171113   R-Sq = 80,37%   R-Sq(adj) = 26,38% 

Term                                         Coef   SE Coef      T      P 

Constant                                 0,000264  0,000043   6,16  0,004 

Probe Diameter 

2                                        0,000062  0,000043   1,44  0,223 

Stylus Length 

 50                                     -0,000083  0,000043  -1,93  0,125 

Point Number 

 6                                       0,000051  0,000043   1,20  0,295 

Measurement Speed 

25                                      -0,000066  0,000043  -1,55  0,195 

Measurement Angle 

180                                      0,000088  0,000043   2,06  0,109 

Probe Diameter*Point Number 

2             6                          0,000047  0,000043   1,09  0,337 

Probe Diameter*Measurement Angle 

2            180                         0,000030  0,000043   0,71  0,517 

Point Number*Measurement Angle 

 6           180                         0,000011  0,000043   0,25  0,817 

Probe Diameter*Point Number*Measurement Angle 

2             6           180            0,000006  0,000043   0,13  0,900 

Probe Diameter*Stylus Length 

2             50                        -0,000006  0,000043  -0,13  0,900 

Stylus Length*Point Number 

 50           6                         -0,000035  0,000043  -0,82  0,457 

 

 

 

The important result is that the highest bias error is obtained from the 

configuration of experiment number 2 at Table 11. This configuration consists of the 

small probe size, long stylus, low measurement number, high measurement speed 

and low coverage (measurement angle).  
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Figure 48: Main Effects Plot of Factors in X-Y Plane 

 

 

 

Main effects plot of measurements at X-Y Plane shown in Figure 48 represents 

two different results from the plots obtained before. One of them is the point number 

effect on the uncertainty. Measurements with using 24 points are concluded lower 

uncertainty than measurement with using 6 points. Actually, this effect of point 

number on result can be envisioned before the experiment, but after the 

experimentation, it is seen that the probe angle changes the effect of point number 

and expectations.  

The other difference is the effect of stylus length on the uncertainty. At the Y-Z 

and X-Z plane experimentation, in general long stylus causes less uncertainty than 

short stylus and actually this is not a foresighted result. However, at the X-Y plane 

experimentation, long stylus causes more uncertainty than short stylus which is an 

expected result. The interaction plot of contributors on X-Y plane can be seen in 

Figure 49. 
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Figure 49: Interaction Plot of Uncertainty in X-Y Plane 

 
 
 

9.3. Evaluation of  Design of Experiment 

 
In this experimentation, the effect of each uncertainty contributor can be 

evaluated and the difference between expectations and real effects could be clarified. 

Interaction plot of measurements at X-Y plane implies that this probe angle is the 

most predictable and stable one. This means that for example, long stylus gives high 

uncertainty with all interactions and it is opposite for short stylus. In addition, big 

probe diameter causes low measurement uncertainty. Also, low uncertainty is 

obtained from measuring full coverage of ring surface with interactions of all other 

contributors.      
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To see the whole picture of the measurement process, it is necessary to look at  

Table 13.   

 

 

 

Table 13: Complete Experimentation Table 
 

  Probe Size 

(Diameter, 

mm) 

Stylus 

Lenght 

(mm) 

Probe Angle      

(Y-Z,X-Z,  

X-Y Plane) 

Meas. 

Point 

Number  

Speed 

(%) 

Measurement 

Angle  

  

Standart 

Order 

A B C D E F STANDARD DEV. UNCERTAINTY 

1 2 100 1 6 25 180 0,000957427 0,000478714 

2 2 100 1 6 90 360 0 0 

3 2 100 1 24 25 360 0 0 

4 2 100 1 24 90 180 0,003316625 0,001658312 

5 2 100 2 6 25 360 0,00057735 0,000288675 

6 2 100 2 6 90 180 0,000957427 0,000478714 

7 2 100 2 24 25 180 0,000957427 0,000478714 

8 2 100 2 24 90 360 0 0 

9 2 100 3 6 25 360 0,00057735 0,000288675 

10 2 100 3 6 90 180 0,001732051 0,000866025 

11 2 100 3 24 25 180 0,0005 0,00025 

12 2 100 3 24 90 360 0,0005 0,00025 

13 2 50 1 6 25 360 0 0 

14 2 50 1 6 90 180 0,001914854 0,000957427 

15 2 50 1 24 25 180 0,003559026 0,001779513 

16 2 50 1 24 90 360 0 0 

17 2 50 2 6 25 180 0,00057735 0,000288675 

18 2 50 2 6 90 360 0,0005 0,00025 

19 2 50 2 24 25 360 0,0005 0,00025 

20 2 50 2 24 90 180 0,00294392 0,00147196 

21 2 50 3 6 25 180 0,0005 0,00025 

22 2 50 3 6 90 360 0,00057735 0,000288675 

23 2 50 3 24 25 360 0 0 

24 2 50 3 24 90 180 0,000816497 0,000408248 

25 8 100 1 6 25 180 0,000816497 0,000408248 

26 8 100 1 6 90 360 0,0005 0,00025 

27 8 100 1 24 25 360 0 0 

28 8 100 1 24 90 180 0,001732051 0,000866025 

29 8 100 2 6 25 360 0,00057735 0,000288675 

30 8 100 2 6 90 180 0,001 0,0005 

31 8 100 2 24 25 180 0,0015 0,00075 
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Table 13: (Continued) 

32 8 100 2 24 90 360 0,0005 0,00025 

33 8 100 3 6 25 360 0,00057735 0,000288675 

34 8 100 3 6 90 180 0,00057735 0,000288675 

35 8 100 3 24 25 180 0,0005 0,00025 

36 8 100 3 24 90 360 0,00057735 0,000288675 

37 8 50 1 6 25 360 0,0005 0,00025 

38 8 50 1 6 90 180 0,00057735 0,000288675 

39 8 50 1 24 25 180 0,002828427 0,001414214 

40 8 50 1 24 90 360 0,0005 0,00025 

41 8 50 2 6 90 360 0,0005 0,00025 

42 8 50 2 6 25 180 0,00057735 0,000288675 

43 8 50 2 24 25 360 0,0005 0,00025 

44 8 50 2 24 90 180 0,001825742 0,000912871 

45 8 50 3 6 90 360 0 0 

46 8 50 3 6 25 180 0,0005 0,00025 

47 8 50 3 24 25 360 0 0 

48 8 50 3 24 90 180 0,0005 0,00025 

 

 

 

According to the results of experiments, in conclusion; 

1) The highest uncertainty value is obtained from the measurement taken from 

the semi circle with using low probe diameter and 24 points. (Look at 

Experiment 15) 

2) In general, measurements taken from semi circle result in high uncertainty 

values. In other words, the lowest uncertainties are obtained from the full 

coverage of ring surface. 

3) Rows marked have the highest uncertainties. Looking at these rows, three of 

four measurements are done with the 2 mm probe.  

4) This experimentation shows that the highest uncertainty of diameter 

measurement of CMM under inspection is 0,00178 mm for ring gauge 

measurement.  

5) When looking at the average of uncertainty values at different probe angles, it 

can be seen that the lowest average, nearly half of the other angle’s, is 

obtained at X-Y plane. (Look at the table 14) The main reason of this is 

pretravel effect at probes because at Y-Z and X-Z plane measurements, probe 
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is horizontal and effected by g force and length of stylus. These effects cause 

changes in the pretravel length and increase the uncertainty value.      

 

 

 

Table 14: Average Uncertainty of Different Angles 
 

Probe 

Angle 

Average 

Uncertainty 

Y-Z Plane 0,00054 

X-Z Plane 0,00044 

X-Y Plane 0,00026 

 
 
 

To confirm the results of the experiments, factor of measurement angle is 

evaluated in detail.  Table 15 and Figure 50 indicate the 4 different angle 

measurement of ring gage whose calibration diameter is 40,005 mm, with using 2mm 

diameter probe, 50 mm stylus and 24 points at X-Y plane. The results are useful to 

quantify uncertainty values and evaluate the measurement bias with respect to 

coverage angle. As predicted, low angle causes high uncertainty and also high bias 

error, and therefore to obtain measurement with low uncertainty and bias error, 

minimum 270 degree circular coverage is needed.     

 

 

 

Table 15: Uncertainty Calculation of Four Different Angle Measurements               
(LK G80) 

 

Angle = 90 180 270 360 

1 40,008 40,005 40,004 40,005 

2 40,019 40,004 40,004 40,004 

3 40,004 40,006 40,004 40,004 

4 40,016 40,004 40,004 40,004 

Uncertainty= 0,003473 0,000479 0 0,00025 
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Figure 50: Box Plot of Table 15 
 
 
 
 

Table 16 and Figure 51 represent another confirmation experiment with 

different machine that has lower accuracy. 

 

 

 
Table 16: Uncertainty Calculation of Four Different Angle Measurements at 

another CMM (LK G90) 
 
 

Angle (Degree) = 90 180 270 360 

1 39,9869 40,0076 40,008 40,0085 

2 39,9785 40,0075 40,0083 40,009 

3 39,9918 40,009 40,0075 40,0093 

4 39,98 40,0075 40,0076 40,0087 

Uncertainty(mm) 0,003098 0,000367 0,000185 0,000175 
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Figure 51: Box Plot of Table 16 

 
 

 

9.4. Mapping of Uncertainty in Measurement for CMM under Inspection 

 
Similar to the error mapping of machine, the uncertainty mapping can be 

obtained by using  repeated gauge measurements at different place of machine 

working volume.  Table 17 indicates the results of the ring gauge measurements at 

the different place of machine. Z axis column implies that the maps are formed at the 

same elevation (Z=- 560 mm) where are on the machine granite table. All the 

coordinates are taken in machine coordinate system (MCS).      
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Table 17: Uncertainty Map Table of CMM Studied 
 

X Axis Y Axis Z Axis 
Diameter 

Uncertainty 

X Axis 

Uncertainty 

Y Axis 

Uncertainty 

54 40 -560 0,000131 0,0000871 0,0000812

43 593 -560 0,000115 0,0000632 0,00002

384 619 -560 0,000073 0,000115 0,000132

435 41 -560 0,000086 0,00006 0,0000748

850 21 -560 0,000086 0,000086 0,0000509

872 462 -560 0,00008 0,0000547 0,00016
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Figure 52: Y Axis Uncertainty Map of CMM under Inspection 
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Figure 53: X Axis Uncertainty Map of CMM under Inspection 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54: Map of Uncertainty in Diameter Measurement for CMM under 

Inspection 
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The surface plot of diameter uncertainty implies that back side of machine has 

higher uncertainty than front side. Also, diameter uncertainty decreases along Y axis 

from 0 mm to 650 mm. Uncertainties of X and Y Axis represent different profile at 

different position of machine volume.      

The other important conclusion is that comparing the laser error map and ring 

gauge uncertainty map, there is a relation between the X axis error and uncertainty 

maps. At the right side of the machine, close to the X axis drive system, there are 

high error and uncertainty at X axis. In addition of this, there is another relation 

between the volumetric error and diameter uncertainty maps. Along the Y axis when 

closing to the outer leg, there are high volumetric error and diameter uncertainty.   
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CHAPTER 10 
 
 

UNCERTAINTY EVALUATION OF CMM MEASUREMENT BY USE OF 

MULTIPLE MEASUREMENT STRATEGIES OF ARTIFACTS: HYBRID 

METHOD 
 
 
 

In this chapter, multiple measurement strategies of artifacts (repeatability and 

reproducibility tests) will be explained. This method is a widely used indicator for 

the variability of CMM measurements and known as hybrid of the methods 

explained before. For example, the comparison method can be used to determine 

task-specific measurement uncertainty since it includes all error sources relevant to 

the measurement under consideration, whereas multiple measurement strategies of 

artifacts usually focus on measurement variation that depends on different  

contributors which is resemble the statistical evaluation method. 

 
10.1. Theory of Hybrid Method 

 
From hybrid point of view, if the location and orientation of the part within 

the CMM work zone is not specified, then the multiple measurement strategies 

should vary both the location and orientation over all positions that might be 

practically realized during production measurements.  Sampling strategy is another 

significant factor as mentioned before so that different sampling strategies will be 

evaluated to cover the real measurements. Even simple factors, such as the 

allowable probe and stylus configurations, must be stated since this can have a 

substantial impact on the measurement results. The standard deviation of the 

repeated measurements is described as the type A uncertainty.  

The main principle of this method is to carry out the measurement on the 

artifact several times, varying the measurement conditions such as “distribution of 

measuring points” and “artifact orientation on the CMM”. This requirements implies 

that some experimentation is needed to integrate the contributors and this is similar 

with method at Chapter 9. The main difference between two methods is the aim. 

Statistical evaluation with experimentation is used to see the effects of significant 
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contributors on uncertainty with design of experiment. However, this method is used 

to obtain the total measurement uncertainty value with integrating different 

contributors especially thermal uncertainties.  

ISO/TS 15530-2 defines the procedure of multiple measurement strategies as 

below [29]. 

An analysis of variances is performed on the results, isolating two uncertainty 

contributions and this another similarity with statistical evaluation method at Chapter 

9: 

1) The effect of the repeatability of the CMM for the specific task includes 

the effect of the measurement point distribution in interaction with the form, 

waviness and the roughness of the artifact on the measurement uncertainty.     

2) The effect of the geometry errors of the CMM together with the effect of 

the probe qualification process.  

In those cases where the measurand is a distance, size or position, additionally 

three more uncertainty contributions are determined: 

1) The average error of distance measurement is determined by measuring a 

standard of distance; those measurement results containing distance, size or 

position, are corrected (length-proportionally) for this average error of distance 

measurement. 

The uncertainty contribution of this average distance error correction is 

calculated, taking into account the calibration uncertainty of the standard of distance 

and the repeatability of the measurements on the standard of distance.  

2) The average probe tip diameter errors and the related standard deviations 

for internal and separately for external features are determined, measuring standards 

of internal and external diameters.  

3) The uncertainty of the temperature correction of the CMM and artifact 

is estimated based on the knowledge of the CMM’ s thermal behaviour , artifact and  

temperature situation during the measurements. 

Finally, all uncertainty contributions are combined and expanded to yield the 

task-related measurement uncertainty for a feature. 

The procedure is based on the assumption that for any type of geometrical features 

(distance, angle, etc.), there will be sufficient artifact orientations. The measurements 



 105 

on the calibrated artifact shall be carried out with in normal case at least 4 times. 

(Repetition = 4) 

Measurements are taken on two artifacts; Length bar (or ball bar) and ring 

gauge. Length bar is appropriate for distance measurements and ring gauge is 

appropriate for diameter measurements. Length bars are placed parallel to the linear 

axis of machine. The lines of measurement shall pass approximately through the centre 

of the used measuring volume. In each orientation, the measurement of the bar is 

carried out at least 3 times [7]. Diameter of ring gauge is measured in working volume 

with at least 3 different probe styli.  

The formulas of this procedure are similar with methods before.  

2 2 2 2                                                                    (10.1)rep geo D tempU k u u u u= × + + +

 

 

 

Table 18: Sample Measurement Table [29] 

 

 orientation j=1 orientation j=2 orientation j=3 

cycle i=1 y11 y12 y13 

cycle i=2 y21 y22 y23 
cycle i=3 y31 y32 y33 

cycle i=4 y41 y42 y43 
Standard   
Deviations 

S1 S2 S3 

Average Y1 Y2 Y3 

 
 
 
Sj  : The standard deviation for the measurements of each feature orientation. 

Yj : The average value for the measurements of each feature orientation.         

 j : 1 to n2  →  Number of orientation. (n2 = 3)  

 i : 1 to n1  →  Number of repetition. (n1 = 4) 
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10.1.1. Calculation of Repeatability Component   

 
urep is standard uncertainty contribution originating from; 

• repeatability of the CMM,  

• choice of point distribution,  

• artifact’s form and roughness,  

• handling.  

The standart uncertainty component urep  is obtained as the quadratic average of 

the standart deviations for the individual tests on the artifact [29].     
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10.1.2. Calculation of Geometry Component 

 
ugeo is standart uncertainty contribution to the measurand from the errors of 

geometry of the CMM (for example from the errors of squareness, roll, yaw, pitch, 

straightness). The uncertainty contribution from the CMM geometry errors ugeo is 

calculated as the standard deviation of the averages from each orientation [29]. 
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10.1.3. Calculation of Diameter Component 

 
uD is the standard uncertainty of the error of internal or external diameters. It is 

calculated as RSS (Root Sum Square) of expanded calibration uncertainty for internal 

or external diameter of artifact and standard deviation of the measurements of the 

internal or external diameter [29]. 
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UcalD is the expanded calibration uncertainty for internal or external diameter of 

artifact according to its calibration certificates. 

umeasD  is the standard deviation of the measurement of the internal or external 

diameter. 

n4 = 12 →  Total number of measurements.  
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10.1.4. Calculation of the uncertainty of the temperature correction 

 
As formulated former method, temperature correction uncertainty utemp which is 

not covered by the experiments has to be estimated. There are some differences 

between comparison and multiple measurement (hybrid)  method while calculating 

the temperature effect on uncertainty. At this method,  utemp is the uncertainty with 

which the effective temperature of the scales and the effective temperature of the 

artifact are corrected for during the measurements. This uncertainty is caused by 

uncertainty in the temperature correction due to uncertain temperature measurement 

(or from not applying a correction) and the average temperature offset from the 

temperature at which the average scale factor error was determined (typically 20ºC); 

these are effects which are not covered by the experimental assessment. 

The assessment of the uncertainty utemp requires the knowledge of the 

temperatures of the machine scales, the artifact, during the measurements. Here 

calibrated thermometers must be used. This assessment furthermore requires the 

knowledge of the thermal expansion coefficients of the machine scales, and the 

artifact. These contributions are calculated as described in the following equation and 

they have to be included in the uncertainty of distance, size and position 

measurements [29]. 
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10.2. Application of Hybrid Method to CMM under Inspection 

 
The procedure and formulas mentioned above were used on the CMM under 

inspection that has 1,2 micron + L/ 400 certified accuracy. The configuration table of 

internal diameter measurements of artifact is shown in Table 19. In addition, the 

results of measurements are tabulated in Table 20 that contains the Repetition, 

Geometric and Diameter Error Uncertainties. 

 

 

 

Table 19: Measurement Configuration Table 
 

CONFIGURATION ( Ring Gauge Calibration Diameter =40,005 mm) 

   Probe Angle 

(X,Y,Z Plane) 

Probe Size 

(Diameter, mm) 

Stylus Lenght (mm) Meas. 

Point 

Number  

Measurement Angle 

(Arc Angle) 

1 2 100 24 360 

2 2 100 24 360 

3 2 100 24 360 

 
 

Table 20: The Repetition, Geometric and Diameter Error Uncertainties 
 

4 REPLICATION RESULTS (ACTUAL,mm)    
  

Orientation 

(X,Y,Z 

Plane) i=1 i=2 i=3 i=4 STANDART DEV. (S) STD SQUARE (S2) AVERAGE (Yj) 

j=1 40,0073 40,0077 40,0074 40,0078 0,000238048 5,66667E-08 40,00755 

j=2 40,0083 40,0085 40,0084 40,0088 0,000216025 4,66667E-08 40,0085 

j=3 40,0019 40,0026 40,0029 40,003 0,000496655 2,46667E-07 40,0026 

         

      urep  = 0,0002  

 UcalD    =±0,0015    ugeo= 0,0018  

      uD  = 0,0017  
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Parameters of  temperature uncertainty is explained in Table 21 [29]. 

 

 

 

Table 21: Uncertainty Due to Temperature 

 
  VALUE UNITS 

L Distance, position or size of the feature to be measured 0,040005 Meters 

uTMtrans standard uncertainty of transmitting the effective machine 

scale temperature to the respective thermometers (estimated 

from experience but if you don't have it may not be used)  0 Degree C 

uTWtrans standard uncertainty of transmitting the effective artifact 

temperature temperature to the respective thermometers 

(estimated from experience but if you don't have it may not 

be used)  0 Degree C 

uTMcal standard uncertainty of the thermometer to measure the 

machine scale temperature (this is 0.5 times the expanded 

uncertainty from the calibration certificate) 0,04 Degree C 

uTWcal standard uncertainty of the thermometer to measure the 

artifact temperature         (this is 0.5 times the expanded 

uncertainty from the calibration certificate) 0,04 Degree C 

αM linear thermal expansion coefficient of the machine scales 

(DR.Johannes Heidenhain Linear Scale that's substrate is 

glass with DIADUR grating)  

10 

 

µm/(m × 

degree C) 

αW linear thermal expansion coefficient of the artifact that's 

substrate is stainless steel.   11,5 

µm/(m × 

degree C) 

uαM standard uncertainty of the linear thermal expansion 

coefficient of the machine scales 0,58 

 µm/m × 

degree C 

uαW standard uncertainty of the linear thermal expansion 

coefficient of the artifact 0,58 

 µm/m × 

degree C 

TM average temperature of the machine scales during the 

respective measurements 22 Degree C 

TW Average temperature of the artifact during the 

measurements 22 Degree C 

 utemp= 0,115350448 µm 
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10.3. Evaluation of Hybrid Method Results 

 

From Equation 10.1 , total measurement uncertainty can be calculated. The 

coverage factor k obtained from GUM for a level of confidence of 95% is 

approximately equal to 2. 

2 2 2 2Total Uncertainty= 2 0,0002 0,0018 0,0017 0,00011

Total Uncertainty=2 0,00248=0,00497 mm

× + + +

×  

The results of length bar measurements can be seen in Table 22 in detail. 

Finally, Table 23 summarizes the uncertainty components that can be evaluated by 

hybrid method with required number of measurement.  
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Table 22:  Uncertainty of Length Bar Measurements in Detail 
 
Orientation (X,Y,Z 

Plane)                  

Length Bar= 300 mm i=1 i=2 i=3 i=4 

STANDARD 

DEVIATION 

(S) S2 AVERAGE (Y)   

j=1 300,0013 300,0013 300,0007 300,0011 0,00028284 8E-08 300,0011urep1  = 0,0001

j=2 299,9996 299,9996 299,9996 299,9997 5E-05 2,5E-09 299,999625  

j=3 300,0004 300,0004 300,0004 300,0003 5E-05 2,5E-09 300,000375ugeo1= 0,0004

         STD OF AVERAGE= 0,000737535  

Length Bar= 400 mm          

j=1 400,0007 400,0012 400,0011 400,0009 0,00022174 4,91667E-08 400,000975urep2  = 0,0001

j=2 400,0001 400,0001 400,0001 400,0001 0 0 400,0001  

j=3 400,0005 400,0005 400,0005 400,0006 5E-05 2,5E-09 400,000525ugeo2= 0,0003

 STD OF AVERAGE= 0,00043756  

Length Bar= 500 mm         

j=1 500,0023 500,0024 500,0017 500,0019 0,0003304 1,09167E-07 500,002075urep2  = 0,0002

j=2 500,0021 500,0021 500,0021 500,0021 0 0 500,0021  

j=3 500,0036 500,0036 500,0026 500,0027 0,00055 3,025E-07 500,003125ugeo2= 0,0003

 STD OF AVERAGE= 0,000599131  

Urep = 0,000123

Ugeo= 0,000349

Utemp= 0,00115

 Utotal= 0,002416
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Table 23:  Uncertainty Contributors of Hybrid Method [29] 
 

Taken into account by Hybrid Method  

urep ugeo uD utemp 

Uncertainty component 
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Point-to-point repeatability √    

Resolution √    

Dirt on surface and roughness √    

Geometry errors of the CMM  √   

Relative probe tip location  √   

Probe tip directional characteristic  √   

Probe tip diameter uncertainty  √ √  

Under-sampling of surfaces √    

Artifact alignment √ √   

Average distance error     

Temperature variation, drift √ √   

Temperature gradient variation √ √   

Clamping, handling  √   

Temp. correction of CMM  √  √ 

Temp. correction of artifact  √  √ 

Dynamic errors when probing √    
 
 

 
10.4. Summary  

This method includes effects of temperature, probing and geometric errors 

which are the combination of budgeting, comparison and experimentation. This 

combination can provide many advantages to the method. However, repeated 

measurements of artifacts are requirements for the evaluation of uncertainty in CMM 

measurements.      

       

 

 

 



 113 

  
 

     CHAPTER 11 
 
 

SIMULATION METHOD TO ANALYSE THE MEASUREMENT 

UNCERTAINTY 
 
 
 

As mentioned before, a CMM does not directly measure geometric features 

such as distances, angles or diameters. Instead it measures the coordinates of a set of 

points on the surface of an artifact and then fits them to evaluate the desired 

geometric feature. Therefore, a CMM measurement requires some processing of the 

combination of measured values to produce an estimate of feature. Clearly, the 

outputs from a CMM will depend on the algorithm and the properties of points 

chosen to sample the surface of artifact. 

Estimating the uncertainty for a CMM measurement is a difficult task because 

there are many specific situations in which uncertainty sources arise. For comparison 

method, corrections and uncertainty for a test parts are obtained from the 

measurement of a master gauge. Due to the this reason, these methods have many 

weaknesses such as requiring a calibrated master gauge suitable to measured part, 

repeated measurements and so on. 

Simulation method is a new alternative that calculates uncertainties for any 

CMM measurements that does not depend on task. The main idea is modelling the 

entire measurement process theoretically to produce a computer simulation of the 

real CMM. For the same input data, this simulator will mimic the real CMM and 

deliver the similar outputs with uncertainties according to the process model. This 

method allows putting the thermal effect as uncertainty contributor. The technique is 

independent of the type of measurement, therefore it works for even the most 

complicated tasks.  

The accuracy of the simulation depends on the accuracy of modelling of the 

measurement process. Some assumptions may be required for applicable simulation. 

However, high simplification means less accurate simulation so that optimization is a 

necessity. 
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Monte Carlo Simulation is used to simulate point cloud at the process model 

and allows the random number generation according to defined coordinate 

deviations.  In this chapter, the theory and capabilities of designed software as thesis 

work will be explained and this software is titled as Virtual CMM Türkiye (VCTR).  

 

11.1. Principles of  Simulation Software VCTR  

 
After the geometric, kinematic and thermal error modelling, compensation and 

uncertainty analysis with different methods of CMM (Moving Bridge) under 

inspection, the other section of thesis work is related to preparing software that 

simulates the CMM measurement and calculates the uncertainty for some tasks such 

as sphere, circle and plane measurements. Actually, this is a virtualization of real 

measurement process.  

After the error compensation with laser error data, there are also 

uncompensated systematic and random errors which cause the measurement 

uncertainties. A CMM measurement occurs when a probing event triggers the CMM 

to take reading of its three orthogonal scales. All uncompensated errors lead to each 

measured coordinate departing from the true coordinate of the actual point. 

Therefore, the measurement of each coordinate is characterized by a region of 

uncertainty that has a particular likelihood centred on the measured point. When the 

deviations at each axis are expanded to three dimensions, an ellipsoid is produced 

centred on the measured point. This is shown graphically for the two dimensional 

case in Figure 55.    

 

 

 

 

 

Figure 55: Two Measured Coordinate Data with Deviation Ellipse for an Actual 

Point. [17] 
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The figure also implies that if a second measurement of the same point is made 

with the CMM, a different estimation of the actual point’s coordinates is obtained. 

Thus, repeating measurements provides additional information and combination of 

them gives better estimation of the actual point’s coordinates. Also, every repetition 

results with different feature properties because of the uncertainty in the coordinates 

of the measured coordinates [17].  

Most of the methods mentioned before utilize the repetition of information 

about the task specific measurement but there may not be such a chance for taking 

repeated measurement every time. Because of this, the best approach is obtaining 

approximate uncertainty ranges of each point at machine coordinate system, and then 

producing the geometric feature by fitting a number of simulated points.  

For example, consider the simple two dimensional circles with its properties 

(diameter, centre position); if the measurement of the points is simulated, a different 

diameter and centre position will be obtained because of the uncertainty in the 

coordinates of the measured points. 

 

 

 

 

 

Figure 56: Finding The Diameter of a Circle By Fitting a Theoretical Circle to a 

Set of Measured Points on Its Surface. [17] 
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A distribution of diameter values would be produced. This distribution gives 

the probability and is characterized by a mean value and distribution width or 

variance. 

 

 

 

 

 

Figure 57: Probability Distribution Produced By Multiple Measurements of The 

Diameter. The Parameter Da  Is The Actual Diameter. 

 
 
 

If this assumes that all systematic errors and their effects have been corrected, 

it can be said that the mean value of the probability distribution gives an estimation 

of the diameter and the width of the distribution provides a prediction of the 

uncertainty.  

 

11.2. Procedure of Simulation   

 
The main problem with performing multiple repetitions is the time, so it is not 

a feasible procedure. Simulation of repeated measurements is the solution and this 

principle requires to be modelled on computer. The most significant point of this 

approach is accuracy of the simulation of the multiple repeated measurements. The 

artifact is measured once and the measured points and their uncertainties at machine 

volume are used as the input parameters to the model. Each simulated measurement 

run generates new coordinates randomly for each of the points by randomly (Monte 

Carlo Simulation Method) selecting values from the probability distributions 
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defined by the measured points and their uncertainties. These new point coordinates 

are then used to evaluate a simulated value for the geometric feature of interest.   

 

 

 

 

 

Figure 58: Multiple Measurements on  Diameter of a Circle Simulated by 

Randomly Varying the Measured Point Values throughout Their Uncertainty 

Range. [17] 

 

 

 

The simulation is repeated until the required number of iterations has been 

performed to sufficiently map out the probability distribution for the geometric 

feature. The width of this distribution gives an estimation of the uncertainty in the 

parameter. 

 

11.2.1. Problems and Assumptions of Simulation  

 
There is one important difference between the results generated by repeating 

the actual measurements and those by simulating them. When real repeated 

measurements are made, the mean value for a geometric feature is obtained from the  
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resulting distribution, whereas when the measurements are simulated, the mean value 

is fixed to be equal to the given by the initial measurement. This assumption to 

simulate the measurement requires an input for each measured point constructing the 

geometric feature. This input is simulated distribution of the point coordinate [17]. 

(Look at the difference between the figure 56 and 58)   

For both figures, attention should be paid to a significant point that ellipsoid 

regions around  the measured points and the initial measured points (Figure 58) seem 

%95 likelihood to find the true coordinates of the points. However, this is not true for 

the repeated measurement shown in Figure 56. Here the ellipsoid around each 

measured point has %95 chance of encompassing the true coordinate values but does 

not necessarily have a %95 chance of containing a repeat measurement of the point. 

Similar case is viable with the simulation method. It can give information about 

the shape and width of the probability distribution of feature, but it cannot imply 

anything about the distribution’s mean value. Information about the mean value can 

only be obtained from further actual measurements. Jaatinen stated that assuming 

that the mean of the simulated point distribution is equal to the initially measured 

value is the problem, and it leads to an underestimate of the uncertainty. The initial 

measurement is just one of the distribution of possible outcomes and could be poor 

estimation of the actual value. If the worst case scenario is evaluated, the solution to 

overcome this underestimation could be found. In a worse case, the measured point 

could deviate from the actual point by its uncertainty. Then, this would mean that the 

half of the simulated points would also be bad estimates of the actual points as they 

depart by more than uncertainty. Constructed simulation software avoids this 

problem by expanding the uncertainties of initial measured points’ axis coordinate by 

a coverage factor of 3. This ensures that there is at least a 95% chance of any 

repetition of  measured point within the distribution while using to generate the 

simulated points [17]. (Look at Figure 59) 
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Figure 59:  Distributions of Repeated Measurements, Simulated Points And 1st 

Measured Point. [17] 
 
 
 

If the measurement is repeated many times, distribution A is obtained. B is the 

distribution centred on the first measurement value. C is the distribution of B 

expanded so that at least 95% of all distribution A lies within it. 

 

11.2.2. Estimating the Uncertainty in the Coordinates of a Measured Point 

 
The most significant parameter of a simulation method is the uncertainties of 

measured point’s coordinates. These uncertainties result from the uncompensated 

systematic and random errors explained in detail before. These errors resulting in 

uncertainties are not constant and depend on the location within the working volume. 

Because of this, for high accuracy requirements, full characterization of all errors 

must be done at position to position within working volume. However, if ultra high 

levels of accuracies are not required then a significant time saving can be gained with 

some simplification. At this point, the solution of this problem to gain common use 

of VCTR is utilizing calibration data of machine. To calibrate and check the 

machines according to international standards every year is a must, therefore if a 

detail calibration is done, this supplies enough information for characterization of 

CMM.  Another way is to assume a simple relationship for the coordinate uncertainty 
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and use certificate accuracy equation of producer. One common form of such a 

relationship is, 

/                                                                                                          (11.1)U A L B= +  

Where L is the distance from machine coordinate systems, A and B are 

constants.  

 

11.2.3. Simulation of Measurement with VCTR 

 
The measured point and their uncertainties are the input parameters to the 

simulation model that mimics the behaviour of the CMM. The model shall process 

the measured coordinates in exactly the same way as what the CMM does for 

producing reliable uncertainty. Therefore, the model must use similar fitting 

algorithm used by the CMM, even if superior one exists. Most CMM’s use the Least 

Squares Fit as the fitting algorithm. This method minimizes the sum of square of the 

points’ deviation from a best fitted theoretical surface.  

Verification of the model is relatively straightforward. The outputs from the 

model should be exactly the same as which are obtained from the CMM, in case both 

use the same measured points as inputs. After explaining the principles of simulation, 

VCTR could be considered in detail. 

 

11.3. Implementing VCTR 

 
First of all, VCTR is designed in Visual Basic 6 powerful compiler for 

different applications. Communication skills of Visual Basic 6 with the Excel™ 

control supplies flexibility for mathematical requirements such as matrix 

multiplication, inverse matrix, standard deviation…etc. Therefore, this compiler has 

been chosen for this application. VCTR has a main menu graphical user interface 

(GUI) to guide the user about simulation procedure. Closing the main menu window 

or pushing the “EXIT” button end the software.    
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Figure 60: Main Menu GUI of VCTR 

 

 

 

Simulation procedure can be understood easily by looking at steps of the main 

menu. First of all, user should calculate the uncertainties of the CMM coordinates at 

step 1. Afterwards, measurement uncertainty of features can be evaluated at “Step 2” 

frame that consists of three different features. Most common features of metrological 

applications are used in VCTR. 

 When clicking the “Calculate” Button, a new GUI appears to help the user for 

modelling the coordinate uncertainty of the CMM volume. GUI of Coordinate 

Uncertainty initializes with a warning message box for the user as “Please put the 

calibration data to grid and select the type of calibration data; X,Y,Z respectively or 

Volumetric. Calibration data should consist of the length and standard deviation of 

repeated measurements. X,Y,Z axis and volumetric data can not be used at the same 

time”. When user reads this message box, the requirements and rules of calculation 

could be clear.       
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Figure 61: GUI for Calculation of the Point Coordinates. 

 

 

 

The upper zone of Figure 61 is the input part for the required information to 

calculate the uncertainty of the point within the machine volume. User should select 

the linear scale material of the machine and measured part material for estimating the 

thermal effect on the CMM.  There are two types of material for the linear scale as 

Steel and Glass. For material of part, the choices are steel, aluminium and glass. The 

reason to select the material type is their different Thermal Expansion Coefficient 
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which affects the measurement uncertainty. The other information required for 

thermal effect is temperature of environment and measurement uncertainty of the 

thermometer used for measuring the environment. These four inputs are used to add 

uncertainty results from thermal deviation according to the equation seen below.     

 

2 2 2 2
_

2 2
_ _ _

( )
                    (11.2)

( ( 20)) ( ( 20))

where    

     L= Distance from Machine Coordinate System(MCS)

Termometer linear scale Termometer part

tempW

linear scale Machine part Part

u u
u L

u T u Tα α

α α× + ×
= ×

+ × − + × −

          

After entering the contribution of thermal deviation on uncertainty of points, 

calibration data or detail evaluation of machine should be put in the calibration data 

grid. This data consists of the distance from machine coordinate system (MCS) and 

standard deviation of repeated measurement at this location. To derive the 

uncertainty value from the standard deviation, the number of measurement repetition 

shall be entered. When the mouse stays on the calibration data grid, an explanation 

text as “Enter the repeated measurements of artifacts (Length or Ball Bar) on the 

axis of the machine with conforming to the rules of calibration standards (CMMA, 

VDI).  The minimum number of measurement should be four.” appears to guide the 

user about process. The reasons for the minimum number of the measurement are 

modelling the machine more accurately and satisfying the requirements for 

polynomial fitting. There are two options in modelling working volume of machine 

and they can be seen inside “Axis of Calibration Data” frame at the GUI. One of 

them is using axis X, Y, Z separately for data input and the other one is using 

volumetric data as input. The software doesn’t allow using both of them. After 

entering the all required data, the “Calculate” button does the fourth order 

polynomial fitting of data by using the Excel worksheet object. The fitting method is 

least square of the equation which is shown below.          
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2 3 4U= 1 2 3 4 5                                                          (11.3)

where U is uncertainty of coordinate. 

A A A A Aα α α α+ × + × + × + ×

2 3 4 2

1

2 3 4

( ( 1 2 3 4 5 ))                                   (11.4)              

Least Square Equation Partial Derivative of F equal to zero;
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If the term in equation defined as below;
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    is the distance between the machine coordinate system and point on the X, Y, Z axis  

   or Volumetric and this depends on the choice of the options.

α
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This interface gives the constants of fitted polynomial as result. Also, “Plot” 

button plots the polynomial for all axes within axis range of input data. This is 

required to see uncertainty behaviour of the axis and a sample can be seen in Figure 

61. The last part shown in Figure 62 is the alternative method for calculating the 

point uncertainty of machine and uses the specification of machine producers. The 

disadvantage of using this equation is that it is not precise and it contains more 

approximation than detail investigation. The user of software shall click the “Use 

Certificate Constants” box to use certificate equation of machine producer and then 

the message box appears to warn the user for putting the A and B constants. For all 

dimensions, the units are millimetre.  

 

 

 

 

 

Figure 62: Uncertainty Function of Producer’s Certificate 
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Figure 63: Fitting Results And Plotting 

 
 
 

Uncertainties of each points supply the range of the deviation used to simulate 

the point deviation. This is achieved by utilizing the randomize function (according 

to the standard deviation) of Microsoft Excel that uses measured coordinate and its 

uncertainty at this location for each point.   

 After evaluation of point uncertainty, the “main menu” button may be clicked 

or this form may be minimized. The second step is the calculation of the properties 

of geometric features (circle, plane, sphere). 

 

11.3.1. Measurement Uncertainty of Circle 

 
When clicking the “Circle” button from the form of “Main Menu”, the “Circle 

Uncertainty” form indicated in Figure 64 appears. 
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Figure 64: Circle Uncertainty Form. 
 
 
 

When looking at the “Circle Uncertainty” form, three parts could be seen on 

the form. One of them is the data input part which is used to enter the coordinate of 

each point, nominal center and projection plane of the circle and also Monte Carlo 

Iteration Number. The reason is to utilize the nominal center of feature is obtaining 

the correct actual center of circle. After completing the input data for evaluation, 

“Calculate” button is clicked and then all the results appear in the “RESULTS” 

frame. Results consist of uncertainty, standard deviation, mean of the Radius, Center 

Coordinates and Circularity values. Calculation is done by Excel at background that 

user cannot see. Linear Least Square Method (LLSM) is utilized to calculate the 

feature properties of circle. The method of least squares is used to solve a set of 

linear equations having more equations than unknown variables. Since there are 

more equations than variables, the solution will not be exactly correct for each 

equation; rather, the process minimizes the sum of squares of the residual errors. The 

method is very powerful and can be applied to numerous applications. 
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For sets of linear equations, the least-squares process will produce a direct 

solution for the unknowns. The linear case is mathematically the same as the general 

case where an adjustment is performed by using zero as the initial guess of all 

parameters. Only a single iteration is required for convergence. 

The equations must be of the form, 

1 2 3 1 1 2 2 3 3( , , ,...) ...                                                  (11.12)i iF x x x a x a x a x k= × + × + × + =

The Jacobian matrix, J, is therefore 

11 12 13

21 22 23

31 32 33

...

...
                                                                                       (11.13)
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... ... ... ...

a a a

a a a
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a a a

 
 
 =
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 
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where a ij is the th i coefficient of the th j equation. 

Since the initial guesses are all zero, the vector of residuals, K , is 

[ ]
T

1 2 3 = ...                                                                                          (11.14)  K k k k

If the weighting matrix is diagonal, then ∆X  can be solved by row reduction of the 

matrix 

  

 

                       (11.15) 

The final solution will be the adjustment values. That is 

X=∆X or 
i ix x= ∆  

A circle can be defined by the equation below: 

2 2
0 0( ) ( )                                                                                       (11.16)x x y y r− + − =

where 0 0( , )x y is the centre of the circle and r is the radius of the circle. 

Ideally, it is desirable to minimize the square of the distance between the points 

defining the circle and the circle.  

 That is, minimize 

2 2 2
0 0[( ( ) ( ) ) ]                                                                          (11.17)

i

x x y y r− + − −∑
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This is equivalent to performing the least-squares process using the equations 

2 2
0 0 0 0( , , ) ( ) ( ) 0                                                       (11.18)i i i iF x y r x x y y r= − + − − =

 

The equation of a circle is not linear in the unknown values 0 0,  ,  and r.x y  The 

equation of a circle can be written in the linear form; 

2 2

2 2 2
0 0

( ) 1                                                                              (11.19)

where

1
                                                                              

A x y B x C y

A
r x y

× + + × + × =

=
− −

0
2 2 2

0 0

0
2 2 2

0 0

                    (11.20)

2
                                                                                                  (11.21)

2
                                  

x
B

r x y

y
C

r x y

− ×
=

− −

− ×
=

− −

0

                                                                (11.22)

This can be rewritten for the original unknowns as;

                                                                      
2

B
x

A

−
=

×

0

2 2

                                        (11.23)

                                                                                                              (11.24)
2

4
              

2

C
y

A

A B C
r

A

−
=

×

× + +
=

×
                                                                               (11.25)

 

Note that by using the linear form of the circle equation, the square of the distance 

from each point to the circle is not the value that is being minimized. 

Using the equation 2 2( ) 1A x y B x C y× + + × + × =  with the unknowns A,B, and C, 

the Jacobian matrix is  

2 2

2 2

( )                                                                            (11.26)

( );  ;                                                                     (11

F A x y B x C y

F F F
x y x y

A B A

δ δ δ

δ δ δ

= × + + × + ×

= + = =

1 1 1

2 2
1 1 1 1

2 22 2 2
2 2 2 2

2 2
3 3 3 3

3 3 3

.27) 

                                                    (11.28)

... ... ...

... ... ...

F F F

A B C
x y x y

F F F
x y x y

J A B C
x y x y

F F F

A B C

δ δ δ

δ δ δ
δ δ δ

δ δ δ

δ δ δ

δ δ δ

 
 

 + 
   +  = =
 + 
  
  

 
 
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Since all initial guesses are zero, the residual vector is 

1

2

3

1

1
                                                                                                   (11.29)

1

...

k

k
K

k

   
   
   = =
   
   
   M

 

In the lack of other informations, the weighting matrix, W, is the identity matrix. 

That is W=I 

The unknowns; A, B, and C, can be solved for using the equation  

X=(JtWJ)-1JtWK=(JtJ)-1JtK                                                                                  (11.30)  

This can be simplified to  

1

2 2 2 2 2 2 2 2 2

2 2 2

2 2 2

(( ) ) (( ) ) (( ) ) ( )

(( ) ) ( ) ( )  (11.31)

(( ) ) ( ) ( )

i i i i i i i i i i

i i i i

i i i i i i i

i i i i

i i i i i i i

i i i i

x y x y x x y y x y
A

B x y x x x y x

C
x y y x y y y

−
   

+ + + +          = + ×              +
      

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

 

When the A, B and C are known, they could be obtained easily from equation 31 

[30]. The circularity is another output of circle and many engineering drawings 

require these properties and therefore the uncertainty of circularity becomes 

significant for part inspection. The circularity is obtained from the equation below. 

This equation is integrated into the algorithm and uncertainty of each point is 

simulated. 

2 2
0 0

For each point;

( ) ( )                                                                                  (11.32)

( ) ( )                                                  

i i i

i i

R x x y y

Circularity Max R Min R

= − + −

= −

0 0

                       (11.33)

,  are the calculated center coodinates of circle with Least Square Method. x y
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Figure 65: Circularity [30] 

 
 
 

The contribution of Monte Carlo Iteration is to change each i and yix according 

to the standard deviation of this location. The time of calculation is directly related 

with the number of Monte Carlo Iteration and points that form the circle.  

 “Chart” buttons show the frequency distribution of each property of circle and 

user could visualize the results, such as how results deviate, what maximum and 

minimum values are. For this visualization, the normal distribution function is used 

as seen below. The normal distribution, also called the Gaussian distribution, is 

an important family of continuous probability distributions, applicable in many 

fields.  

2

2

Normal Distribution Function:

1 ( )
( , ) exp( )                                                                   (11.34)

22

 Standard Deviation

 Mean Value 

x
N

µ
σ µ

σσ π

σ

µ

−
= × −

×

=

=

 

Software plots the normal distribution charts of all feature properties.  

 

11.3.2. Measurement Uncertainty of Sphere 

 
When clicking the “Sphere” button at step 2 zone of the “Main Menu” form, 

the “Sphere Uncertainty” form appears. The input part of this form is similar with the 
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circle’s form that inputs are the coordinates of the points and nominal center position 

and also the Monte Carlo Iteration number.   

 

 

 

  

 

Figure 66: Graphical User Interface of Measurement Uncertainty of Sphere 

 

 

 

Calculation method of sphere properties, e.g. actual center coordinate, radius 

and spherecity, is Linear Least Square Method (Linear LSM) that is common method 

for metrology application. There are also other methods such as Best Fit Chebyshev 

Method but they are not common as LSM.  

The same procedure with circle gives the required properties of sphere as seen 

below [31].  
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Sphere equation; 

2 2 2
0 0 0

0 0 0

( ) ( ) ( )                                                                      (11.35)

Convert;

,                                 ,                                         

If (1

R x x y y z z

x A y B z C

= − + − + −

= = =

2 2 2
i

2 2 2

1

1.35) is denoted as below,

( ) ( ) ( )                                                                     (11.36)

The equation below should be minimized;

( , , , ) ( )           

i i i

i

i

F x A y B z C

T A B C R F R
=

= − + − + −

= −∑
2 2 2 2

                                                                       (11.37)

                                                                                            (11.38)

The necess

D R A B C= − − −

2

1 1 1 1

2

1 1 1 1

2

1 1

ary condition to minimize;

= = = =0 (Jacobian)

Then, above equation is written in matrix form;

2 2 2

2 2

2 2

n n n n

i i i i i i

i i i i

n n n n

i i i i i i

i i i i

n n

i i i i i

i i i

T T T T

A B C R

x x y x z x

x y y y z y

x z y z z

δ δ δ δ

δ δ δ δ

= = = =

= = = =

= =

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

2 2 2

1

2 2 2

1

2 2 2

1 1 1

2 2 2

1 1 1 1

( )

( )

                (11.39)

( )

n ( )

n

i i i i

i

n

i i i i

i

n n n

i i i i i

i i

n n n n

i i i i i i

i i i i

x x y z

A
y x y z

B

C
z z x y z

D

x y z x y z

=

=

= = =

= = = =

   
+ +   

   
    

+ +    
    × =
    

+ +    
    

   
+ +   

   

∑

∑

∑ ∑ ∑

∑ ∑ ∑ ∑

2 2 2

The unknowns; A, B, C and D can be solved for using the equation (11.30).  

The radius;

                                                                                        (11.40)R D A B C= + + +
 

 This linear solution satisfies the uncertainty simulation and gives good results. 

The other necessary output for engineering drawing and metrology application is 

sphericity.   

2 2 2
0 0 0

For each point;

( ) ( ) ( )                                                                 (11.41)

( ) ( )                                                           

i i i i

i i

R x x y y z z

Sphericity Max R Min R

= − + − + −

= −

0 0 0

                (11.42)

, ,  are the calculated center coodinates of circle with Least Square Method. x y z
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“Chart” buttons have same function with the circle’s one and they show the Normal 

Distribution plot of the properties of sphere by using equation 11.34 .  

 

11.4. Evaluation of Flatness Uncertainty on Plane Measurement 

 
When clicking the “Plane” button at step 2 zone of the “Main Menu” form, the 

“Plane Uncertainty” form appears to calculate the uncertainty of plane 

measurements. Different from the circle and sphere input part, plane input part 

consists of the only point coordinates and Monte Carlo Iteration Number; there is no 

need for nominal center coordinates. Plane fitting is also done with Least Square 

method by minimizing the error between points and fitted plane. 

For fitting, the assumption is that the z–component of the data is functionally 

dependent on the x– and y–components. 

To determine A, B and C,  the plane z Ax By C= + +  fits the a set of samples 

( , ,i i ix y z ) in the sense that the sum of the squared errors between the 
iz  and the 

plane values i i iz Ax By C= + +  is minimized. Note that the error is measured only in 

the z–direction. 

Define 2

1

( , , ) [( ) ]
n

i i i

i

F A B C Ax By C z
=

= + + −∑ . This function is non-negative and its 

graph is a hyper paraboloid whose vertex occurs when the gradient satisfies ∆F = (0, 

0, 0). This leads to a system of three linear equations in A, B, and C which can be 

easily solved. Precisely, 

1

1

2 [( ) ] 0                                                                 (11.43)

2 [( ) ] 0                                                                

n

i i i i

i

n

i i i i

i

F
Ax By C z x

A

F
Ax By C z y

B

δ

δ

δ

δ

=

=

= + + − × =

= + + − × =

∑

∑

1

 (11.44)

2 [( ) ] 0                                                                       (11.45)
n

i i i

i

F
Ax By C z

C

δ

δ =

= + + − =∑
 

And so 
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2

1 1 1 1

2

1 1 1 1

1 1 1

                                                           (1

n n n n

i i i i i i

i i i i

n n n n

i i i i i i

i i i i

n n n

i i i

i i i

x x y x x z

A

x y y y B y z

C

x y n z

= = = =

= = = =

= = =

   
   
    
    × =    
        
   
   

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

1.46)

 

The solution provides the least square of z Ax By C= + + .  

The approach to flatness assessment is the use of a least squares method. In this 

method, a sampled data set is represented by a fitted feature. The distance between 

the nearest and furthest points from the reference plane is calculated for the data set. 

Flatness for the given data set is obtained by the difference between the nearest and 

furthest distances. When normal deviations, (deviations of the data set normal to the 

fitted feature (Fig. 67)), are used at the reference plane to a data set, the method is 

called the normal or orthogonal least squares method. 

Flatness tolerance of the plane is calculated with respect to equation below. 

2 2

( )
                                                                                        (11.47)

( 1)

max( ) min( )                                                       

i i i

i

i i

Ax By z C
D

A B

Flatness D D

+ − +
=

+ +

= −                          (11.48)

 

 

 

 

Figure 67: Flatness Theory [32] 
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Figure 68: GUI for Measurement Uncertainty of Plane 

 

 

 

11.5. Comparison of the Experimental and VCTR Results  

 
The test of software for the circle’s measurement uncertainty is done on LK 

Coordinate Measuring Machine in house. At six uniformly distributed positions, a 

ring gauge is measured with five replication of each measurement. The necessity of 

replication is calculating the uncertainty of actual measurements. On the other hand, 

the calibration data of machine (Table 25) is used as input for calculation of point 

uncertainty at simulation.  
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Table 24: Comparison of Experimental and Simulation Results 
 

Meas. No:1 
1 2 3 4 5 

Experimental 

Uncertainty 

VCTR 

UncertaintyDifference Software / Actual Ratio 

X-axis 54,9777 54,978 54,9775 54,9777 54,9779 8,7178E-05 0,00027 0,000183 3,1 

Y-axis 40,8119 40,8122 40,8121 40,8118 40,8118 8,124E-05 0,00022 0,000139 2,7 

Diameter 69,6775 69,6771 69,6774 69,6771 69,6778 0,00013191 0,000458 0,000326 3,0 

Circularity 0,0047 0,0045 0,0045 0,0045 0,0049 8E-05 0,000246 0,000166 3,0 

 

Meas. No:2 
1 2 3 4 5 

Experimental 

Uncertainty 

 VCTR 

Uncertainty Difference Software / Actual Ratio 

X 850,117 850,1167 850,1169 850,1171 850,1172 8,60233E-05 0,00011693,08767E-05 1,36 

Y 21,6159 21,6161 21,6159 21,616 21,6158 5,09902E-05 0,0001156,40098E-05 2,26 

Diameter 69,6769 69,6774 69,677 69,6771 69,6772 8,60233E-05 0,0001869,99767E-05 2,16 

Circularity 0,0035 0,0025 0,0027 0,0023 0,0025 0,000209762 0,0005440,000334238 2,59 

 

 

 

 

One of the difference between results of the experimental and simulated 

uncertainty is the experimental measurements that are replicated at finite number (5) 

so that the whole picture of uncertainty could not be obtained. The other one is the 

statistical assumption which is the coverage factor 3 of simulation. If smaller 

coverage factor is taken, the difference will be smaller. But in that case, this is not a 

good choice because as mentioned before (Look at “Problems and Assumptions of 

Simulations” section) finite number of reputation will be obtained every time for 

actual measurements. So that coverage factor is a safety factor for simulation 

software.  
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Table 25: Calibration Data of CMM 
 

LENGTH 

(mm) 100 200 300 400 500 600 

X AXIS             

1 100,0012 200,0033 300,0072 400,0112 500,0123 600,0152 

2 100,0014 200,0034 300,0072 400,0112 500,0128 600,0158 

3 100,0012 200,0036 300,0077 400,0107 500,0128 600,0159 

STDEV 0,000115 0,000153 0,000289 0,000289 0,000289 0,000379 

Y AXIS             

1 100,0009 200,0061 300,01 400,0116 500,015 600,0182 

2 100,0009 200,006 300,01 400,0116 500,0151 600,0181 

3 100,0009 200,0062 300,01 400,0116 500,0141 600,0169 

STDEV 0 0,0001 0 0 0,000551 0,000723 

Z AXIS             

1 100,0015 200,0061 300,0117 400,0136 500,0145 600,011 

2 100,0014 200,006 300,0117 400,0136 500,0145 600,011 

3 100,0017 200,0062 300,0107 400,0136 500,0145 600,012 

STDEV 0,000153 0,0001 0,000577 0 0 0,000577 

 

 

 

With using equation 11.47 and 11.48, VCTR calculates the measurement 

uncertainty of a plane and flatness tolerance. The accuracy of plane fitting algorithm 

has been checked with using sample set of point coordinates at the paper “ 

Straightness and Flatness Tolerance Evaluation: An Optimization Approach” [16].     

 

 

 

 

 

Table 26: Accuracy Check Table for Plane Fitting Algorithm 

 

X -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 

Y 1 1 1 1 1 0 0 0 0 0 -1 -1 -1 -1 -1 

Z 5 4 1 2 2 4 3 3 2 2 3 4 2 1 2 

 

Example= 1 2 3 

Flatness Value (mm) [32]= 2,3664  0,1856   0,04381   

VCTR Result (mm)= 2,3664  0,1882  0,04497  
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Table 24 shows the verification of flatness algorithm by using coordinates in 

table and appendices. Results imply that VCTR calculates the flatness value correctly 

with using Least Square method. In addition, the normal distribution of the flatness 

values can be seen at the right side of GUI after pushing “Chart” button. 

 
The success of simulation method depends on the validity of the uncertainty 

model of entire machine volume. Therefore, the most significant part of VCTR is 

“Machine Coordinate Uncertainty”. The limit of axes should be covered while 

inspecting the machine volume and probing effect may be included this study. 

Actually, prepared software is applicable to a range of coordinate metrology systems, 

such as conventional CMM, multilateration and laser trackers. This software is 

general and effective for estimating task specific uncertainties arising from the 

CMM. On the other hand, this method contains some difficulties which is the 

unpredictable environmental effects and geometric errors along the axes.  
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CHAPTER 12 
 
 

CONCLUSION 
 
 
 

12.1. Discussion of Results and Conclusions 

 
The study about the measurement uncertainty of CMM is concluded with many 

useful information about the performance and traceability of this machine. Error 

maps of the CMM are constructed with using principals of kinematic modelling and 

two different error measurement techniques. Kinematic and geometric error model 

depends on the structure of the machine and needs the information about the 

deviations of links and joints. Obtaining this deviations is a difficult task and 

required many measurements with different type of sensors. On the other hand, 

kinematical model evaluated by using laser error utilize a pure 3 dimensional  

kinematical motion matrices and the required linear, angular and translational errors 

of probe motion can be measured with interferometer optics. This error measuring 

technique supplies high flexibility and accuracy. Subsequently, all the mathematical 

expressions of both kinematical methods and the algorithms were imposed in user-

defined Matlab functions in m-files to visualize the error within the machine volume. 

Entire error map of the CMM designates that the errors are highly correlated with the 

machine hardware such as axes motor position and structure type.  

After the compensation of major part of the systematic errors, the remainder is 

the source of measurement uncertainty. Evaluation of the measurement uncertainty 

requires the definition of all contributors.  Although, the uncertainty estimation of 

measurement is tried to standardized by GUM, the results of methods differ with 

respect to the evaluation of contributors.   

First inspected method “Uncertainty Budgeting” is the most common method 

for the analysis of uncertainty, because it is easy to implement. The process is adding 

the squares of the uncertainty values of each contributors and taking the root of sum. 

Nearly all the uncertainties of contributors extracted from the certificates and 

experiences. Consequently, the method is very rough. This conclusion is proven by 
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comparing the uncertainty value (u= 2.477 microns for 400 mm length bar 

measurement), which is obtained from budgeting for the CMM under inspection, 

with other methods and actual measurements.  

Next method is comparison which involves the inspection of a calibrated 

artifact identical to the piece under measurement. If such an artifact can be obtained, 

this approach is most efficient uncertainty evaluation for the specific measurements 

and the results is very close to the actual uncertainty value. This method is also 

applied on the CMM under inspection for measuring a circle with using a ring gauge 

and the measurement uncertainty value of circle is equal to 0,309 microns without 

coverage factor.     

Third method named as “Statistical Evaluation of Measurement Uncertainty by 

Designing Fractional Factorial Experiment” requires the most complicated 

evaluation of contributors. The main difference of this method from others is 

quantification the effects of contributors. Many measurement factors which effects 

the uncertainty such as sampling strategy, probe diameter, stylus length and 

measurement angle etc. are investigated with designing an experiment. The 

experimentation with actual measurements provides to see the worst measurement 

configuration and its magnitude.  

Hybrid method containing the advantages of methods mentioned above 

consists of the evaluation of repeatability, geometric errors,  probe and thermal 

effects. However,  requirement for repeated measurement and time are the main 

disadvantages  of this method. 

Finally, recently developed simulation method is examined and software is 

designed at Visual Basic to mimic the actual measurement process and calculate 

uncertainty of different task specific measurement by using the Monte Carlo 

Simulation Method. The software eliminates the repeated measurements for each 

task and includes the thermal effects of the part and scales. On the other hand, the 

efficiency of the software is tested by using actual measurements on the CMM and 

some reference points. 

Table 27 indicates the advantages and disadvantages of uncertainty analysis 

methods for measurement of CMM.  
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Table 27: Advantages and Disadvantages of Methods 
 

 
Uncertainty 
Budgeting Comparison 

Statistical 
Evaluation by 
Designing F.F. 
Experiment Hybrid Simulation 

A
D

V
A

N
T

A
G

E
S

 

Easy to 
implement. 

A powerful 
technique to 
obtain feature 
specific 
measurement 
uncertainty, if 
an identical and 
calibrated part 
is available. 

Effects of different 
contributors can 
be evaluated in 
detail.                     
Results of method 
can guide the 
operators about 
choosing the 
measurement 
strategies.  

This method 
includes  effects 
of temperature, 
probing and 
geometric errors 
for uncertainty.      

No need 
actual 
repeated 
measurement 
and calibrated 
artifact for 
each feature.    
Not feature 
task-specific. 
Includes 
temperature 
uncertainty.                       
Save time. 

D
IS

A
D

V
A

N
T

A
G

E
S

 

Provide 
general 
evaluation. 
Many 
contributors 
can not be 
evaluated 
directly.                

Feature - task 
specific.      
Necessity of a 
similar and 
calibrated 
artifact.              
Repeated 
measurements 
are required on 
the artifact in 
addition to 
those on the 
part. 

Feature- task 
specific.           
Repeated 
measurements 
are required on 
the artifact by 
using different 
combination of 
contributors.                       
Required a lot of 
time for 
measurement and 
statistical 
evaluation of 
results.    

Repeated 
measurements 
are required on 
the artifacts by 
using different 
combination of 
contributors.    

Need some 
assumptions 
about the 
mean value of 
point 
coordinates. 

 

 

 

12.2. Future Works 

 

Although, this study covers all the methods about the measurement error and 

uncertainty analysis of CMMs, in order to improve it the following future works are 

recommended. These works can also be considered as the suggestions to achieve 

improvement of the CMMs measurement process.  

1) Software can be improved with using different algorithm for constructing the 

features such as non-linear least square, min-max zone and chebyshev.  
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2) Features used in software increases in variety by analysing the measurement 

uncertainty of cylinder and cone. To do this, mathematical algorithm is 

constructed by using Matlab and converted to the COM Component. 

Afterwards, COM can be implemented in Visual Basic.   

3) Software can be integrated to the actual measurement software and while 

measurement codes are constructed, it simulates the measurement strategy of 

operator and estimates the uncertainty of task specific measurements.       

4) Together with the modelling of kinematic, geometric and thermal errors, the 

dynamic errors can be modelled with respect to the different structure types.   

5) Real time error measurement and compensation system can be analysed and 

also this study may contain new positioning sensor system such as laser 

scales.   

6) Structure of Nano-CMMs can be inspected from design point of view and 

evaluation.    
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APPENDIX A 
 
 

VOLUMETRIC ERROR MATRICES OF KINEMATIC MODEL 
 

Table A1: Error Matrix at Z= -50 mm 
 

 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 

50 1,864 1,8673 1,8709 1,8745 1,8784 1,8824 1,8865 1,8908 1,8953 1,8999 1,9046 1,9095 1,9146 1,9198 1,9251 1,9306 1,9361 

100 1,9418 1,9477 1,9538 1,8719 1,8751 1,8784 1,8818 1,8854 1,8892 1,8931 1,8971 1,9013 1,9057 1,9102 1,9149 1,9197 1,9247 

150 1,9297 1,935 1,9403 1,9458 1,9515 1,9573 1,8802 1,8831 1,8861 1,8893 1,8927 1,8962 1,8999 1,9037 1,9077 1,9118 1,9161 

200 1,9205 1,9251 1,9299 1,9347 1,9397 1,9448 1,95 1,9555 1,9611 1,8889 1,8916 1,8944 1,8974 1,9005 1,9038 1,9072 1,9108 

250 1,9146 1,9184 1,9225 1,9267 1,931 1,9356 1,9401 1,9449 1,9498 1,9548 1,96 1,9654 1,898 1,9004 1,903 1,9057 1,9086 

300 1,9117 1,9149 1,9182 1,9217 1,9254 1,9292 1,9332 1,9373 1,9416 1,9459 1,9505 1,9551 1,9599 1,9649 1,97 1,9073 1,9095 

350 1,9119 1,9143 1,917 1,9198 1,9228 1,9259 1,9292 1,9326 1,9362 1,9399 1,9438 1,9479 1,952 1,9563 1,9608 1,9653 1,9701 

400 1,975 1,917 1,9189 1,9211 1,9233 1,9257 1,9283 1,9311 1,934 1,937 1,9402 1,9436 1,947 1,9507 1,9545 1,9584 1,9625 

450 1,9667 1,971 1,9756 1,9802 1,9271 1,9288 1,9307 1,9328 1,9349 1,9373 1,9398 1,9425 1,9453 1,9482 1,9514 1,9546 1,9581 

500 1,9617 1,9653 1,9692 1,9732 1,9772 1,9816 1,986 1,9374 1,9389 1,9405 1,9423 1,9443 1,9464 1,9487 1,9511 1,9537 1,9564 

550 1,9593 1,9624 1,9656 1,9689 1,9724 1,976 1,9797 1,9836 1,9877 1,9919 1,9482 1,9495 1,9509 1,9525 1,9542 1,9561 1,9581 

600 1,9604 1,9627 1,9652 1,9679 1,9707 1,9736 1,9768 1,98 1,9834 1,9869 1,9905 1,9944 1,9984 1,9593 1,9604 1,9616 1,9629 

650 1,9644 1,9661 1,9679 1,9699 1,972 1,9743 1,9768 1,9793 1,9821 1,985 1,988 1,9912 1,9945 1,9979 2,0015 2,0053 1,9707 

700 1,9716 1,9726 1,9737 1,975 1,9765 1,9781 1,9798 1,9817 1,9838 1,986 1,9884 1,9909 1,9936 1,9963 1,9993 2,0024 2,0056 

750 2,009 2,0125 1,9825 1,9831 1,9839 1,9848 1,9859 1,9871 1,9885 1,99 1,9917 1,9935 1,9956 1,9977 2 2,0025 2,005 

800 2,0077 2,0106 2,0136 2,0168 2,0201 1,9946 1,995 1,9956 1,9963 1,9971 1,9982 1,9993 2,0006 2,0021 2,0037 2,0055 2,0074 

850 2,0095 2,0117 2,0141 2,0166 2,0192 2,0219 2,0249 2,028 2,0071 2,0073 2,0076 2,0081 2,0087 2,0096 2,0105 2,0116 2,0128 

900 2,0142 2,0158 2,0175 2,0193 2,0214 2,0235 2,0258 2,0282 2,0307 2,0335 2,0363 2,0198 2,0197 2,0199 2,0201 2,0205 2,0212 

950 2,0219 2,0228 2,0238 2,025 2,0263 2,0278 2,0294 2,0312 2,0331 2,0352 2,0374 2,0397 2,0422 2,0448 2,0326 2,0323 2,0323 

1000 2,0323 2,0325 2,0329 2,0334 2,0341 2,0349 2,0358 2,037 2,0382 2,0397 2,0412 2,0429 2,0448 2,0467 2,0488 2,0511 2,0536 

 
Table A2: Error Matrix at Z= -100 mm 

 
 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 

50 1,8217 1,8245 1,8274 1,8305 1,8338 1,8372 1,8408 1,8445 1,8484 1,8525 1,8567 1,861 1,8656 1,8703 1,875 1,88 1,8851 

100 1,8903 1,8957 1,9012 1,8306 1,8331 1,8358 1,8386 1,8417 1,8449 1,8482 1,8517 1,8553 1,8591 1,8631 1,8672 1,8715 1,876 

150 1,8805 1,8852 1,8901 1,895 1,9002 1,9055 1,8397 1,842 1,8445 1,8471 1,8498 1,8528 1,8559 1,8592 1,8626 1,8661 1,8699 

200 1,8737 1,8778 1,882 1,8863 1,8907 1,8953 1,9001 1,905 1,9101 1,8494 1,8514 1,8536 1,856 1,8585 1,8612 1,8641 1,8671 

250 1,8703 1,8736 1,8771 1,8807 1,8845 1,8885 1,8926 1,8968 1,9012 1,9056 1,9104 1,9152 1,8593 1,8611 1,8631 1,8652 1,8675 

300 1,87 1,8726 1,8754 1,8783 1,8814 1,8847 1,888 1,8916 1,8954 1,8992 1,9032 1,9073 1,9116 1,9161 1,9207 1,8695 1,8711 

350 1,8729 1,8747 1,8768 1,879 1,8814 1,884 1,8867 1,8895 1,8925 1,8957 1,899 1,9025 1,9061 1,9099 1,9138 1,9178 1,922 

400 1,9264 1,8801 1,8814 1,883 1,8846 1,8864 1,8884 1,8906 1,8929 1,8953 1,8979 1,9007 1,9036 1,9067 1,91 1,9133 1,9169 

450 1,9205 1,9243 1,9283 1,9325 1,8911 1,8922 1,8935 1,8949 1,8965 1,8983 1,9002 1,9023 1,9045 1,9068 1,9094 1,9121 1,9149 

500 1,918 1,9211 1,9244 1,9278 1,9314 1,9352 1,9391 1,9023 1,9031 1,9042 1,9054 1,9067 1,9083 1,9099 1,9118 1,9138 1,9159 

550 1,9182 1,9207 1,9233 1,9261 1,929 1,932 1,9352 1,9386 1,9421 1,9458 1,9139 1,9146 1,9154 1,9164 1,9175 1,9188 1,9202 

600 1,9219 1,9236 1,9255 1,9276 1,9298 1,9322 1,9348 1,9374 1,9403 1,9432 1,9463 1,9496 1,9531 1,9259 1,9264 1,927 1,9277 

650 1,9286 1,9297 1,9309 1,9323 1,9338 1,9355 1,9374 1,9394 1,9415 1,9439 1,9463 1,9489 1,9516 1,9545 1,9576 1,9608 1,9382 

700 1,9384 1,9388 1,9393 1,94 1,9409 1,9419 1,9431 1,9444 1,9458 1,9475 1,9492 1,9512 1,9533 1,9555 1,9579 1,9604 1,963 

750 1,9659 1,9689 1,9508 1,9508 1,951 1,9513 1,9517 1,9524 1,9532 1,9541 1,9552 1,9564 1,9579 1,9594 1,9611 1,963 1,965 

800 1,9672 1,9694 1,9718 1,9745 1,9772 1,9638 1,9636 1,9636 1,9636 1,9639 1,9643 1,9648 1,9656 1,9664 1,9674 1,9687 1,97 

850 1,9715 1,9731 1,9749 1,9768 1,9789 1,981 1,9835 1,986 1,9771 1,9767 1,9765 1,9763 1,9763 1,9766 1,9769 1,9774 1,978 

900 1,9788 1,9798 1,9809 1,9822 1,9836 1,9851 1,9869 1,9887 1,9906 1,9928 1,9952 1,9906 1,99 1,9895 1,9892 1,989 1,989 

950 1,9891 1,9894 1,9898 1,9904 1,9912 1,992 1,9931 1,9943 1,9956 1,9971 1,9987 2,0004 2,0024 2,0045 2,0043 2,0035 2,0028 

1000 2,0022 2,0018 2,0016 2,0015 2,0016 2,0018 2,0021 2,0027 2,0033 2,0042 2,0052 2,0063 2,0075 2,0089 2,0104 2,0122 2,014 
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Table A3: Error Matrix at Z= -300 mm 
 

 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 

50 1,6776 1,6778 1,6781 1,6786 1,6792 1,6801 1,6811 1,6823 1,6837 1,6853 1,687 1,6889 1,6911 1,6934 1,6958 1,6984 1,7012 

100 1,7041 1,7073 1,7106 1,6903 1,6902 1,6903 1,6905 1,6909 1,6915 1,6923 1,6933 1,6944 1,6957 1,6972 1,6988 1,7007 1,7027 

150 1,7049 1,7072 1,7097 1,7124 1,7153 1,7184 1,7033 1,703 1,7028 1,7028 1,7029 1,7033 1,7038 1,7045 1,7054 1,7064 1,7077 

200 1,709 1,7106 1,7124 1,7143 1,7164 1,7187 1,7211 1,7237 1,7265 1,7168 1,7162 1,7157 1,7155 1,7154 1,7155 1,7158 1,7162 

250 1,7168 1,7176 1,7186 1,7198 1,7211 1,7226 1,7243 1,7261 1,7281 1,7302 1,7326 1,7352 1,7305 1,7296 1,7289 1,7284 1,7281 

300 1,728 1,728 1,7282 1,7286 1,7291 1,7299 1,7308 1,7319 1,7332 1,7345 1,7361 1,7379 1,7398 1,7419 1,7442 1,7445 1,7434 

350 1,7425 1,7417 1,7412 1,7408 1,7406 1,7405 1,7407 1,741 1,7415 1,7421 1,743 1,744 1,7451 1,7465 1,7479 1,7496 1,7515 

400 1,7535 1,7588 1,7575 1,7563 1,7553 1,7545 1,7539 1,7534 1,7532 1,7531 1,7531 1,7534 1,7537 1,7543 1,7551 1,756 1,7571 

450 1,7583 1,7597 1,7614 1,7631 1,7734 1,7719 1,7705 1,7693 1,7683 1,7674 1,7667 1,7662 1,7659 1,7657 1,7657 1,7658 1,7662 

500 1,7667 1,7674 1,7682 1,7692 1,7703 1,7717 1,7733 1,7883 1,7865 1,7849 1,7835 1,7822 1,7811 1,7802 1,7795 1,7789 1,7784 

550 1,7782 1,7781 1,7782 1,7785 1,7789 1,7795 1,7803 1,7812 1,7823 1,7836 1,8036 1,8016 1,7998 1,7981 1,7966 1,7953 1,7942 

600 1,7932 1,7924 1,7917 1,7913 1,7909 1,7908 1,7909 1,791 1,7914 1,7919 1,7925 1,7934 1,7945 1,8192 1,817 1,8149 1,813 

650 1,8113 1,8098 1,8084 1,8072 1,8062 1,8053 1,8046 1,8041 1,8037 1,8035 1,8035 1,8036 1,8039 1,8043 1,8049 1,8057 1,835 

700 1,8326 1,8304 1,8283 1,8263 1,8246 1,823 1,8216 1,8203 1,8192 1,8183 1,8175 1,8169 1,8165 1,8162 1,8161 1,8162 1,8163 

750 1,8168 1,8173 1,8511 1,8485 1,8461 1,8438 1,8416 1,8397 1,8379 1,8362 1,8347 1,8334 1,8323 1,8313 1,8305 1,8298 1,8293 

800 1,829 1,8288 1,8287 1,8289 1,8293 1,8676 1,8648 1,8622 1,8596 1,8573 1,8551 1,8531 1,8512 1,8495 1,848 1,8466 1,8454 

850 1,8444 1,8435 1,8428 1,8422 1,8418 1,8415 1,8415 1,8416 1,8844 1,8814 1,8785 1,8758 1,8732 1,8709 1,8686 1,8666 1,8646 

900 1,8629 1,8613 1,8599 1,8586 1,8575 1,8566 1,8558 1,8551 1,8546 1,8544 1,8542 1,9013 1,8981 1,895 1,8921 1,8893 1,8868 

950 1,8843 1,882 1,8799 1,8779 1,8762 1,8745 1,873 1,8717 1,8705 1,8695 1,8686 1,8679 1,8674 1,8671 1,9183 1,9149 1,9117 

1000 1,9085 1,9056 1,9028 1,9001 1,8977 1,8953 1,8932 1,8912 1,8893 1,8876 1,8861 1,8847 1,8835 1,8824 1,8814 1,8807 1,8801 

 
Table A4: Error Matrix at Z= -550 mm 

 
 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 

50 1,5641 1,5604 1,5568 1,5535 1,5503 1,5473 1,5446 1,542 1,5396 1,5373 1,5354 1,5335 1,5319 1,5306 1,5293 1,5282 1,5274 

100 1,5267 1,5263 1,5261 1,5818 1,5779 1,5741 1,5705 1,5671 1,5639 1,5609 1,558 1,5554 1,5529 1,5507 1,5486 1,5468 1,5451 

150 1,5436 1,5423 1,5412 1,5402 1,5396 1,539 1,5998 1,5956 1,5916 1,5878 1,5842 1,5808 1,5775 1,5744 1,5716 1,5688 1,5664 

200 1,564 1,5619 1,56 1,5582 1,5567 1,5553 1,5541 1,5532 1,5524 1,6181 1,6138 1,6096 1,6055 1,6017 1,598 1,5945 1,5912 

250 1,5881 1,5851 1,5824 1,5799 1,5775 1,5754 1,5733 1,5715 1,5699 1,5684 1,5672 1,5662 1,6366 1,632 1,6276 1,6234 1,6193 

300 1,6154 1,6117 1,6082 1,6049 1,6016 1,5987 1,5959 1,5933 1,5909 1,5886 1,5866 1,5847 1,583 1,5815 1,5802 1,6554 1,6506 

350 1,646 1,6415 1,6372 1,6331 1,6292 1,6255 1,6219 1,6185 1,6153 1,6123 1,6094 1,6068 1,6043 1,602 1,5998 1,5979 1,5962 

400 1,5946 1,6744 1,6694 1,6646 1,6599 1,6554 1,6511 1,647 1,643 1,6392 1,6355 1,6321 1,6289 1,6258 1,6229 1,6202 1,6176 

450 1,6153 1,6131 1,6111 1,6093 1,6937 1,6885 1,6834 1,6786 1,6739 1,6694 1,665 1,6608 1,6568 1,653 1,6493 1,6458 1,6426 

500 1,6395 1,6365 1,6337 1,6311 1,6286 1,6265 1,6244 1,713 1,7077 1,7025 1,6974 1,6925 1,6878 1,6832 1,6788 1,6746 1,6705 

550 1,6667 1,663 1,6595 1,6562 1,6529 1,6499 1,6471 1,6444 1,642 1,6397 1,7328 1,7273 1,7219 1,7166 1,7115 1,7066 1,7019 

600 1,6973 1,6928 1,6885 1,6845 1,6806 1,6769 1,6733 1,6699 1,6666 1,6636 1,6607 1,658 1,6555 1,7527 1,747 1,7414 1,736 

650 1,7307 1,7256 1,7207 1,7159 1,7113 1,7068 1,7025 1,6984 1,6945 1,6907 1,687 1,6836 1,6803 1,6772 1,6743 1,6716 1,7729 

700 1,767 1,7612 1,7556 1,7501 1,7449 1,7397 1,7347 1,7299 1,7252 1,7208 1,7165 1,7123 1,7084 1,7045 1,7009 1,6973 1,694 

750 1,6909 1,688 1,7932 1,7871 1,7812 1,7754 1,7698 1,7643 1,759 1,7538 1,7488 1,744 1,7393 1,7348 1,7305 1,7263 1,7222 

800 1,7184 1,7146 1,7111 1,7078 1,7046 1,8138 1,8076 1,8015 1,7955 1,7897 1,7841 1,7786 1,7733 1,7681 1,763 1,7582 1,7535 

850 1,7489 1,7446 1,7403 1,7362 1,7323 1,7286 1,725 1,7216 1,8347 1,8282 1,822 1,8159 1,8099 1,8041 1,7984 1,7929 1,7875 

900 1,7823 1,7773 1,7723 1,7676 1,7631 1,7586 1,7543 1,7502 1,7462 1,7425 1,7389 1,8555 1,849 1,8426 1,8363 1,8301 1,8242 

950 1,8183 1,8126 1,8071 1,8016 1,7964 1,7913 1,7864 1,7817 1,777 1,7726 1,7682 1,7641 1,7601 1,7563 1,8765 1,8698 1,8632 

1000 1,8568 1,8505 1,8443 1,8383 1,8324 1,8267 1,8211 1,8158 1,8105 1,8054 1,8005 1,7956 1,791 1,7864 1,7821 1,7779 1,7739 

 
 
 
 
 



 149 

 
APPENDIX B 

 
VOLUMETRIC ERROR MATRICES OF KINEMATIC MODEL BY 

USING  LASER ERROR DATA 
 

 
Table B1: Error Matrix at Z= -50 mm 

 
 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 

50 1,9272 1,9303 1,9334 1,9373 1,9415 1,9443 1,9495 1,9526 1,9562 1,9593 1,9638 1,9699 1,9742 1,9762 1,9816 1,9859 1,9912 

100 1,9987 2,0033 2,0075 1,8983 1,9014 1,9046 1,9086 1,9128 1,9157 1,921 1,924 1,9277 1,9308 1,9354 1,9416 1,9459 1,9479 

150 1,9534 1,9578 1,9631 1,9707 1,9753 1,9796 1,8733 1,8765 1,8797 1,8837 1,888 1,8909 1,8963 1,8994 1,9031 1,9063 1,911 

200 1,9171 1,9216 1,9236 1,9292 1,9336 1,9389 1,9466 1,9513 1,9557 1,8469 1,8501 1,8534 1,8575 1,8618 1,8647 1,8701 1,8732 

250 1,877 1,8802 1,8849 1,8911 1,8956 1,8977 1,9032 1,9077 1,9131 1,9208 1,9255 1,9299 1,8179 1,8211 1,8244 1,8285 1,8328 

300 1,8358 1,8412 1,8443 1,8481 1,8513 1,8561 1,8623 1,8668 1,8689 1,8745 1,879 1,8844 1,8921 1,8968 1,9013 1,7943 1,7976 

350 1,8009 1,805 1,8094 1,8124 1,8179 1,8211 1,8249 1,8282 1,833 1,8393 1,8438 1,846 1,8516 1,8561 1,8616 1,8694 1,8742 

400 1,8787 1,7698 1,7732 1,7766 1,7808 1,7852 1,7883 1,7938 1,7971 1,8009 1,8043 1,8092 1,8155 1,8201 1,8224 1,8281 1,8327 

450 1,8382 1,8461 1,851 1,8555 1,7431 1,7464 1,7499 1,7541 1,7585 1,7616 1,7672 1,7705 1,7744 1,7778 1,7827 1,7891 1,7937 

500 1,796 1,8017 1,8063 1,8119 1,8198 1,8247 1,8293 1,7174 1,7208 1,7244 1,7286 1,7332 1,7364 1,742 1,7454 1,7494 1,7529 

550 1,7578 1,7643 1,7691 1,7714 1,7773 1,782 1,7877 1,7956 1,8006 1,8054 1,6947 1,6982 1,7017 1,706 1,7106 1,7138 1,7195 

600 1,7229 1,7269 1,7304 1,7354 1,7419 1,7467 1,749 1,7549 1,7596 1,7653 1,7733 1,7783 1,7831 1,6703 1,6737 1,6772 1,6815 

650 1,6861 1,6893 1,6949 1,6983 1,7023 1,7058 1,7108 1,7172 1,722 1,7243 1,7302 1,7349 1,7405 1,7485 1,7534 1,7581 1,6457 

700 1,6491 1,6527 1,657 1,6616 1,6648 1,6705 1,6739 1,6779 1,6814 1,6864 1,6929 1,6977 1,7 1,7059 1,7106 1,7163 1,7242 

750 1,7292 1,734 1,6213 1,6248 1,6284 1,6327 1,6373 1,6406 1,6463 1,6497 1,6537 1,6573 1,6623 1,6688 1,6736 1,676 1,6818 

800 1,6866 1,6923 1,7002 1,7053 1,71 1,6 1,6036 1,6072 1,6116 1,6162 1,6195 1,6253 1,6288 1,6329 1,6364 1,6415 1,6481 

850 1,6529 1,6554 1,6613 1,6661 1,6718 1,6798 1,6849 1,6897 1,5762 1,5798 1,5834 1,5879 1,5925 1,5959 1,6016 1,6052 1,6093 

900 1,6129 1,618 1,6246 1,6294 1,6319 1,6378 1,6427 1,6484 1,6565 1,6616 1,6664 1,5503 1,554 1,5577 1,5623 1,567 1,5704 

950 1,5763 1,58 1,5841 1,5879 1,5931 1,5998 1,6047 1,6073 1,6133 1,6183 1,6241 1,6323 1,6375 1,6424 1,5249 1,5286 1,5325 

1000 1,5371 1,542 1,5455 1,5515 1,5553 1,5595 1,5634 1,5687 1,5755 1,5806 1,5833 1,5895 1,5945 1,6005 1,6088 1,6142 1,6192 

 
Table B2: Error Matrix at Z= -300 mm 

 
 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 

50 1,9224 1,9257 1,9291 1,933 1,9372 1,9404 1,9452 1,9488 1,9525 1,9558 1,9605 1,9667 1,971 1,9731 1,9789 1,9832 1,9885 

100 1,9956 2,0004 2,0048 1,8935 1,8969 1,9003 1,9043 1,9085 1,9117 1,9166 1,9203 1,9239 1,9273 1,932 1,9383 1,9427 1,9448 

150 1,9506 1,955 1,9604 1,9675 1,9724 1,9768 1,8683 1,8717 1,8752 1,8792 1,8835 1,8868 1,8917 1,8954 1,8992 1,9026 1,9074 

200 1,9137 1,9181 1,9203 1,9262 1,9306 1,9361 1,9433 1,9482 1,9527 1,8419 1,8454 1,8489 1,8529 1,8572 1,8605 1,8655 1,8693 

250 1,873 1,8765 1,8813 1,8877 1,8921 1,8943 1,9003 1,9047 1,9102 1,9174 1,9224 1,927 1,8137 1,8171 1,8207 1,8247 1,8291 

300 1,8324 1,8374 1,8412 1,845 1,8484 1,8533 1,8596 1,8641 1,8664 1,8723 1,8768 1,8823 1,8895 1,8945 1,8991 1,7901 1,7936 

350 1,7972 1,8013 1,8057 1,8091 1,8141 1,818 1,8218 1,8253 1,8302 1,8366 1,8412 1,8435 1,8495 1,854 1,8596 1,8669 1,8719 

400 1,8765 1,7657 1,7693 1,773 1,7772 1,7816 1,785 1,7902 1,7941 1,7979 1,8015 1,8065 1,813 1,8176 1,82 1,8261 1,8307 

450 1,8363 1,8437 1,8488 1,8535 1,7396 1,7432 1,7469 1,7511 1,7555 1,759 1,7642 1,7681 1,772 1,7756 1,7806 1,7871 1,7918 

500 1,7942 1,8003 1,8049 1,8106 1,8179 1,8231 1,8278 1,7133 1,717 1,7207 1,725 1,7295 1,7331 1,7383 1,7424 1,7464 1,7501 

550 1,7552 1,7618 1,7665 1,769 1,7752 1,7799 1,7857 1,7932 1,7984 1,8033 1,6907 1,6944 1,6982 1,7025 1,7071 1,7106 1,7159 

600 1,72 1,724 1,7277 1,7328 1,7394 1,7442 1,7467 1,7529 1,7577 1,7635 1,771 1,7762 1,7811 1,6672 1,6709 1,6746 1,6789 

650 1,6835 1,687 1,6923 1,6963 1,7003 1,704 1,7091 1,7157 1,7204 1,7229 1,7291 1,7338 1,7396 1,747 1,7522 1,7571 1,6431 

700 1,6468 1,6506 1,6549 1,6595 1,663 1,6683 1,6724 1,6764 1,6801 1,6852 1,6919 1,6966 1,6991 1,7053 1,71 1,7158 1,7233 

750 1,7285 1,7334 1,6192 1,6229 1,6267 1,631 1,6356 1,6392 1,6445 1,6486 1,6526 1,6564 1,6615 1,6682 1,6729 1,6754 1,6817 

800 1,6864 1,6922 1,6997 1,705 1,7098 1,5975 1,6012 1,6051 1,6095 1,6141 1,6178 1,6232 1,6273 1,6313 1,6351 1,6403 1,647 

850 1,6518 1,6544 1,6607 1,6655 1,6713 1,6788 1,6842 1,6891 1,5741 1,5779 1,5818 1,5862 1,5909 1,5946 1,6 1,6041 1,6082 

900 1,612 1,6172 1,624 1,6288 1,6314 1,6377 1,6425 1,6484 1,6559 1,6612 1,6662 1,5479 1,5518 1,5557 1,5602 1,565 1,5688 

950 1,5743 1,5785 1,5827 1,5866 1,5919 1,5988 1,6037 1,6064 1,6128 1,6177 1,6237 1,6313 1,6368 1,6418 1,5218 1,5257 1,5298 

1000 1,5344 1,5393 1,5432 1,5488 1,5532 1,5574 1,5615 1,5669 1,5739 1,579 1,5818 1,5883 1,5934 1,5995 1,6073 1,6128 1,618 
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Table B3: Error Matrix at Z= -400 mm 
 
 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 

50 1,9187 1,9222 1,9258 1,9297 1,9339 1,9373 1,9419 1,946 1,9496 1,9531 1,9579 1,9642 1,9685 1,9706 1,9767 1,981 1,9864 

100 1,9932 1,9981 2,0026 1,8898 1,8933 1,897 1,9009 1,9051 1,9086 1,9132 1,9174 1,921 1,9246 1,9294 1,9357 1,9401 1,9423 

150 1,9485 1,9528 1,9583 1,965 1,9701 1,9746 1,8644 1,8681 1,8717 1,8757 1,88 1,8836 1,8882 1,8924 1,8961 1,8997 1,9046 

200 1,911 1,9154 1,9177 1,9239 1,9283 1,9339 1,9407 1,9458 1,9504 1,8381 1,8417 1,8454 1,8494 1,8537 1,8573 1,862 1,8663 

250 1,87 1,8736 1,8786 1,885 1,8895 1,8918 1,898 1,9024 1,908 1,9149 1,92 1,9246 1,8104 1,8141 1,8178 1,8219 1,8262 

300 1,8298 1,8345 1,8388 1,8425 1,8462 1,8511 1,8576 1,8621 1,8644 1,8706 1,8751 1,8807 1,8876 1,8927 1,8974 1,7869 1,7906 

350 1,7943 1,7985 1,8028 1,8065 1,8113 1,8156 1,8194 1,8231 1,8281 1,8346 1,8391 1,8415 1,8478 1,8523 1,858 1,8649 1,8701 

400 1,8749 1,7626 1,7664 1,7702 1,7744 1,7788 1,7825 1,7874 1,7917 1,7956 1,7994 1,8045 1,811 1,8156 1,8181 1,8245 1,8291 

450 1,8348 1,8418 1,8471 1,8519 1,7369 1,7407 1,7446 1,7488 1,7532 1,757 1,7618 1,7662 1,7701 1,7739 1,779 1,7856 1,7902 

500 1,7927 1,7991 1,8037 1,8095 1,8165 1,8218 1,8266 1,7101 1,714 1,7179 1,7222 1,7267 1,7306 1,7355 1,74 1,744 1,7479 

550 1,7531 1,7598 1,7645 1,7671 1,7736 1,7783 1,7842 1,7913 1,7967 1,8016 1,6877 1,6915 1,6955 1,6998 1,7043 1,7082 1,7132 

600 1,7177 1,7217 1,7256 1,7308 1,7375 1,7423 1,7449 1,7514 1,7561 1,762 1,7691 1,7746 1,7795 1,6648 1,6687 1,6726 1,6769 

650 1,6814 1,6853 1,6902 1,6947 1,6987 1,7026 1,7078 1,7145 1,7192 1,7217 1,7282 1,7329 1,7388 1,7458 1,7512 1,7561 1,6411 

700 1,645 1,6489 1,6532 1,6578 1,6617 1,6667 1,6712 1,6752 1,6791 1,6843 1,691 1,6957 1,6983 1,7048 1,7095 1,7154 1,7225 

750 1,7279 1,7328 1,6175 1,6214 1,6254 1,6297 1,6343 1,6381 1,6432 1,6477 1,6517 1,6557 1,6609 1,6676 1,6724 1,675 1,6815 

800 1,6862 1,6921 1,6992 1,7046 1,7096 1,5955 1,5994 1,6035 1,6078 1,6125 1,6164 1,6215 1,6261 1,6301 1,6341 1,6394 1,6462 

850 1,651 1,6536 1,6602 1,6649 1,6709 1,678 1,6835 1,6885 1,5725 1,5765 1,5805 1,5849 1,5896 1,5935 1,5986 1,6033 1,6073 

900 1,6113 1,6166 1,6234 1,6282 1,6309 1,6375 1,6423 1,6482 1,6554 1,6609 1,6659 1,546 1,55 1,5542 1,5587 1,5634 1,5674 

950 1,5727 1,5774 1,5815 1,5856 1,591 1,598 1,6029 1,6056 1,6123 1,6172 1,6233 1,6305 1,6362 1,6413 1,5194 1,5235 1,5278 

1000 1,5324 1,5372 1,5414 1,5467 1,5515 1,5558 1,56 1,5656 1,5726 1,5777 1,5806 1,5874 1,5924 1,5986 1,606 1,6118 1,617 

 
Table B4: Error Matrix at Z= -550 mm 

 
 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 

50 1,9149 1,9186 1,9223 1,9262 1,9304 1,9341 1,9384 1,9429 1,9466 1,9502 1,9551 1,9615 1,9658 1,968 1,9744 1,9787 1,9842 

100 1,9905 1,9957 2,0003 1,8859 1,8897 1,8935 1,8974 1,9016 1,9054 1,9097 1,9143 1,918 1,9217 1,9266 1,933 1,9374 1,9397 

150 1,9461 1,9504 1,956 1,9624 1,9676 1,9723 1,8605 1,8642 1,8681 1,8721 1,8764 1,8802 1,8846 1,8892 1,8929 1,8967 1,9017 

200 1,9082 1,9126 1,915 1,9214 1,9258 1,9315 1,9379 1,9432 1,9479 1,8341 1,8379 1,8418 1,8458 1,8501 1,854 1,8584 1,8631 

250 1,8668 1,8706 1,8756 1,8821 1,8866 1,889 1,8955 1,8999 1,9056 1,9121 1,9174 1,9222 1,807 1,8109 1,8148 1,8188 1,8231 

300 1,827 1,8315 1,8362 1,8399 1,8438 1,8488 1,8553 1,8598 1,8622 1,8687 1,8732 1,8789 1,8854 1,8907 1,8955 1,7835 1,7874 

350 1,7913 1,7954 1,7998 1,8037 1,8082 1,813 1,8168 1,8207 1,8258 1,8324 1,8369 1,8394 1,846 1,8505 1,8562 1,8628 1,8682 

400 1,873 1,7593 1,7633 1,7673 1,7714 1,7759 1,7799 1,7844 1,7893 1,7931 1,7971 1,8022 1,8089 1,8135 1,816 1,8227 1,8273 

450 1,8331 1,8397 1,8452 1,8501 1,7341 1,7381 1,7421 1,7463 1,7507 1,7547 1,7593 1,7642 1,7681 1,7721 1,7772 1,7839 1,7885 

500 1,7911 1,7978 1,8024 1,8082 1,8149 1,8204 1,8253 1,7068 1,7109 1,715 1,7192 1,7238 1,7279 1,7326 1,7375 1,7415 1,7456 

550 1,7508 1,7576 1,7623 1,765 1,7718 1,7765 1,7824 1,7892 1,7948 1,7998 1,6844 1,6885 1,6926 1,6969 1,7015 1,7056 1,7103 

600 1,7152 1,7192 1,7233 1,7286 1,7354 1,7402 1,7428 1,7496 1,7543 1,7603 1,7671 1,7727 1,7777 1,6623 1,6663 1,6704 1,6747 

650 1,6792 1,6833 1,688 1,693 1,6969 1,701 1,7063 1,713 1,7178 1,7204 1,7271 1,7318 1,7378 1,7445 1,7501 1,7551 1,6389 

700 1,643 1,6471 1,6514 1,656 1,6601 1,6648 1,6698 1,6738 1,6779 1,6831 1,69 1,6947 1,6974 1,7041 1,7088 1,7148 1,7215 

750 1,7271 1,7321 1,6156 1,6197 1,6239 1,6282 1,6328 1,6369 1,6416 1,6466 1,6506 1,6547 1,6601 1,6669 1,6716 1,6743 1,6811 

800 1,6858 1,6918 1,6985 1,7041 1,7091 1,5933 1,5975 1,6017 1,606 1,6107 1,6148 1,6196 1,6247 1,6287 1,6329 1,6382 1,6451 

850 1,6499 1,6526 1,6595 1,6642 1,6703 1,677 1,6827 1,6878 1,5707 1,5749 1,5791 1,5835 1,5881 1,5923 1,5971 1,6022 1,6063 

900 1,6105 1,6158 1,6227 1,6275 1,6303 1,6371 1,6419 1,6479 1,6547 1,6604 1,6655 1,5439 1,5481 1,5525 1,5569 1,5617 1,566 

950 1,5709 1,576 1,5802 1,5845 1,5899 1,597 1,6018 1,6047 1,6116 1,6165 1,6227 1,6296 1,6354 1,6406 1,5168 1,5211 1,5256 

1000 1,5301 1,535 1,5394 1,5445 1,5497 1,554 1,5584 1,564 1,5712 1,5762 1,5792 1,5862 1,5913 1,5976 1,6046 1,6105 1,6158 
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APPENDIX C 
 
 

FLATNESS DATA POINT 
 
 

Table C1: Flatness Data Point  
 
 

Example 1 Example 2 Example 3 
X Y Z X Y Z X Y Z 

-2 1 5 0,2 0,2 -0,0645 0,3846 0,2416 -0,0828 

-1 1 4 0,2 0,4 -0,06438 1,5008 0,2922 -0,0821 

0 1 1 0,2 0,6 0,008761 2,3107 0,3289 -0,0787 

1 1 2 0,2 0,8 -0,01117 2,9817 0,3593 -0,0789 

2 1 2 0,2 1 -0,06237 3,6964 0,3917 -0,076 

-2 0 4 0,4 0,2 -0,03829 3,6743 0,8794 -0,0785 

-1 0 3 0,4 0,4 0,0655 3,1195 0,8543 -0,0735 

0 0 3 0,4 0,6 0,06357 2,3552 0,8196 -0,0745 

1 0 2 0,4 0,8 0,02849 1,5875 0,7849 -0,0714 

2 0 2 0,4 1 -0,006113 0,5573 0,7382 -0,074 

-2 -1 3 0,6 0,2 -0,09525 0,5413 1,0921 -0,073 

-1 -1 4 0,6 0,4 -0,01154 1,22205 1,1229 -0,0727 

0 -1 2 0,6 0,6 -0,02406 2,1673 1,1658 -0,0716 

1 -1 1 0,6 0,8 0,03515 3,0881 1,2076 -0,0749 

2 -1 2 0,6 1 -0,01997 3,8459 1,2419 -0,0799 

      0,8 0,2 0,054 3,8305 1,5796 -0,0848 

      0,8 0,4 -0,01324 3,2057 1,5514 -0,041 

      0,8 0,6 -0,02225 2,423 1,5159 -0,0759 

      0,8 0,8 0,0771 1,671 1,4819 -0,0746 

      0,8 1 -0,0003596 0,5263 1,43 -0,0745 

      1 0,2 0,05773       

      1 0,4 -0,0562       

      1 0,6 0,09206       

      1 0,8 0,06536       

      1 1 -0,02121       
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APPENDIX D 
 
 

MATLAB FUNCTION OF KINEMATIC ERROR MODELLING 
 
 
---------------------------------------------------------------------------------------------------------------------------   

function [S1, J1, T1, S2, J2, T2, S3, J3, T3, Tactual, T_ideal,Error_Place, VolError, 
ErrorX, ErrorY, ErrorZ ] = ...  
           Models_Differences_Vol3den (T, Alfa1, Beta1, Theta1, a1, b1, c1, TEC1, 
del_a1, del_b1, del_c1,  Alfa2, Beta2, Theta2, a2, b2, c2, TEC2, del_a2, del_b2, 
del_c2, Alfa3, Beta3, Theta3, a3, b3, c3, TEC3, del_a3, del_b3, del_c3) 
% 'INPUTS 
% 'TEC = Thermal Expansion Coefficient of machine parts 
% 'T is homogeneous machine temperature 
% 'a,b,c are the length of the links. 
% 'del_a,del_b,del_c are the error of the links. 
% 'Alfa is the roll error . 
% 'Beta is the pitch error. 
% 'Theta is the yaw error. 
% 'OUTPUTS 
% 'S1,S2... are the link error matrices. 
% 'J1,J2... are the joint error matrices. 
% 'T1,T2... are the axis error matrices. 
% 'Tactual is actual coordinate matrix with errors.  
% 'T_ideal is ideal coordinate matrix. Error values are assumed zero. 
% 'VolError, ErrorX, ErrorY, ErrorZ are error matrices and scalar error values 
% of each axis. 
 

Figure 69: Inputs and Outputs of Matlab Modelling Function   
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APPENDIX E 

 
 

SPECIFICATIONS OF RENISHAW TP7M PROBE  
 

Table E1: Specifications of Renishaw TP7M Probe 
 

    Sensitivity Level Value 

1 Unidirectional Repeatability     

    Level 1 0,25 µm 

    Level 2 0,25 µm 

2 3D (XYZ) Pretravel variation     

    Level 1 0,5 µm 

    Level 2 1 µm 

3 2D (XY) Pretravel variation     

    Level 1 0,25 µm 

    Level 2 0,5 µm 

4 Typical pretravel before trigger     

    Level 1 2 µm 

    Level 2 4 µm 

5 Stylus force at trigger     

  Min X,Y Plane   0,02 N 

  Max Z Axis   0,15 N 

6 Stylus overtravel limit     

  XY axes   ± 16
0
 

  ± Zaxis   ± 5 mm 

7 Full overtravel force     

  XY axes   0,49 N 

  ± Zaxis   2,84 N 

8 Trigger rate   Max. 3 triggers per second 

9 Allowable probing speed range   0.5 to 40 mm/sec (±10%) 

 
 

APPENDIX F 
 

LINEAR SENSORS OF CMM USED IN THESIS 
 

Table F1: Specifications of Linear Sensors 
 

AXIS SCALE MODEL PROPERTIES 

X Heidenhain LS 703 
Glass Scale with Diadur Grating  
Thermal Expansion Coefficient=11*10-6 / 0C  

Y Heidenhain LS 707 
Glass Scale with Diadur Grating  
Thermal Expansion Coefficient=11*10-6 / 0C 

Z Heidenhain LS 403 
Glass Scale with Diadur Grating  
Thermal Expansion Coefficient=11*10-6 / 0C 

S Heidenhain LB 326 
Steel Scale with Aurodur Grating  
Thermal Expansion Coefficient=10*10-6 / 0C 
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APPENDIX  G 

 
 

CALIBRATION CERTIFICATE OF RING GAUGE USED IN THESIS 

 
 
 

Figure 70: Calibration Certificate of Ring Gauge Used in Thesis Studies         
(Page 1) 
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Figure 71: Calibration Certificate of Ring Gauge Used in Thesis Studies         
(Page 2) 
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APPENDIX H 

 
SPECIFICATIONS OF CMM UNDER INSPECTION 

 
 

 

 

Figure 72: The structure of CMM used in this study 
 

 

 

The properties of CMM;  

 X Axis: 1000 mm 

 Y Axis: 900 mm 

 Z Axis: 600 mm 

Certificate Accuracy: 1.2µm+ L/400  (L = Distance) 

Probe: Renishaw TP7M Enhanced Performance. 


