
STATIC HEDGING STRATEGIES FOR BARRIER OPTIONS AND THEIR 
ROBUSTNESS TO MODEL RISK

ORÇUN KAYA

SEPTEMBER 2007



STATIC HEDGING STRATEGIES FOR BARRIER OPTIONS AND THEIR 
ROBUSTNESS TO MODEL RISK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ORÇUN KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF FINANCIAL MATHEMATICS

SEPTEMBER 2007



Approval of the Graduate School of Applied Mathematics

_____________________
Prof. Dr. Ersan AKYILDIZ

Director

I certify that this thesis satisfies all the requirements as a thesis for the 
degree of Master of Science.

         _____________________
Prof. Dr. Ersan AKYILDIZ

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of 
Science.

      ________________________
Assoc. Prof Dr. Azize HAYFAVİ

Supervisor

Examining Committee Members

Assoc. Prof Dr. Azize HAYFAVİ _______________________________

Assist Prof. Hakan ÖKTEM _______________________________

Assist Prof. Kasırga YILDIRAK _______________________________

Dr. C. Coşkun Küçüközmen _______________________________



I hereby declare that all information in this document has been obtained 
and presented in accordance with academic rules and ethical conduct. I 
also declare that, as required by these rules and conduct, I have fully 
cited and referenced all material and results that are not original to this 
work.

Name, Last Name: Orçun KAYA

Signature:

iii



ABSTRACT

STATIC HEDGING STRATEGIES FOR BARRIER 
OPTIONS AND THEIR ROBUSTNESS TO MODEL RISK

KAYA,Orçun
M.Sc., Department of Financial Mathematics
Supervisor: Assoc. Prof. Dr. Azize Hayfavi

September 2007,102 pages

With the rapid increase in the usage of barrier options on the OTC markets, 
pricing  and  especially  hedging  of  these  exotic  instruments  became  an 
important field of research. This paper aims to explain, apply and compare 
current  methods  used  for  pricing  and  hedging  barrier  options  with  a 
simulation approach. An overview of most popular methods for pricing and 
hedging is presented in the first part, followed by application of these pricing 
methods and comparing the performances of different dynamic and static 
hedging  techniques  in  Black-Scholes  environment  by  simulation  in  the 
second part.  In  the  third  part  different  models  such  as  ARCH type  and 
Stochastic  Volatility  are  used  with  different  jump  terms  to  relax  the 
assumptions  of  the  Black-Scholes  and  examine  the  effects  of  these 
incomplete  models on both pricing and performance of  different  hedging 
techniques. In the fourth part diffusion models such as Constant Variance 
Elasticity, Heston Stochastic Volatility and Merton Jump Diffusion are used 
to complete the picture.

Keywords: Barrier Options,Static Hedging Strategies
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ÖZ

BARİYER OPSİYONLARI İÇİN STATİK HEDGİNG 
STRATEJİLERİ VE BUNLARIN  MODEL  RİSKİNE GÖRE 

SAĞLAMLIĞI

KAYA,Orçun
Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Doç Dr. Azize Hayfavi

Eylül 2007,102 sayfa

Bariyer Opsiyonlarının kullanımının OTC marketlerinde hızlı artışı ile birlikte, 
bunların  fiyatlandırılması  özeliklede  hedgingi  önemli  bir  araştırma  alanı 
haline  gelmiştir.  Bu  tez,  bariyer  opsiyonlarının  güncel  fiyalandırılma  ve 
hedge  methodlarının  simulasyon  yöntemi  ile  açıklaması,  uygulaması  ve 
karşılaştırmasını  amaçlamaktadır.  İlk  bölümdeki  güncel  fiyatlandırma  ve 
hedging methodlarının gözden geçirilmesini, ikinci bölümde Black- Scholes 
ortamında  bu  fiyatlandırma  ve  hedging  stratejilerinin  performaslarının 
simulasyon ile incelenmesi takip etmektedir. Üçüncü bölümde fiyatlandırma 
ve  hedging  çalışmalarında  Black  Scholes  varsayımlarının  rahatlatılması 
amacı  ile   ARCH tipi  ve Stokastik  Volatilite  modellerinin  değişik  sıçrama 
terimleri  simulasyon  uygulamaları  için  kullanılmıştır.  Son  bölümde  Sabit 
Varyans  Elastik,  Heston  Stokastik  Volatilite  ve  Merton  Sıçrama Difuzyon 
modeli gibi difuzyon modelleri kullanılmıştır.

Anathtar Kelimeler: Bariyer Opsiyonları, Statik Hedging Stratejileri
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CHAPTER 1

BARRIER OPTIONS

1.1 Introductıon

Derivative  markets  have  become  an  essential  part  of  the  global  financial 

system.  Growth of these markets  appears in every kind of instrument  and 

trading  activity  but  the  major  increment  happen  in  the  over-the-counter 

(OTC) markets. The primary reason of the success of the OTC markets has 

been their ability to offer “exotic” derivatives customized to customer needs. 

Banks and financial institutions have been producing exotic options to match 

corporate  end  users  and  investor  requirements:  either  to  reduce  premium 

expenditure or to better fit the risk profile of the client

Exotic  options  appear  to  be  relatively  modern  phenomenon  but  in 

reality  they  have  a  very  long  history  such  that  some  of  them have  been 

available since 1967. However the trading volumes were not very high in the 

previous days and it was not until the end of 70’s and the beginning of 80’s 

that exotic options gain more interest. In these days the trading volumes are 

high and users have a diversified profile from large financial institutions to 

corporations, from fund managers to private bankers. 

One of the most significant interests of exotic options has been on the 

barrier options. Barrier options are vanilla options with an additional feature 
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which allows investors to control their positions at one or more critical levels. 

These instruments are attractive for clients as they are cheaper than the plain-

vanilla counterparts. Barrier options fulfill many different needs and widely 

used in foreign-exchange and fixed-income derivatives markets. The uses of 

barrier options have been discussed by Steinherr (1998). Especially investors 

from  developing  markets  who  suffer  from  high  volatilities  prefer  barrier 

options because these options allow market participants to tailor their trading 

strategies to their specific markets views.

1.2 Definitions

Barrier options are part of the class called path dependent options. Unlike the 

plain vanilla options which depend just on the magnitude of the underlying 

asset price at maturity and the strike price of the option, barrier options also 

depend  on  how  the  settlement  price  is  reached.  Depending  on  how  the 

settlement price is reached there are two types: “in” or “knock in” and “out” 

or “knock out” barrier options.

1.2.1 Vanilla Barrier Options

As mentioned earlier barrier options are simple plain vanilla’s if the barrier is 

not hit  during the life  of the option. But if  the barrier is  hit  they become 

worthless. Using this fact vanilla barrier options can be categorized according 

to the level of the barrier and direction that the barrier is hit. 

The simplest  barrier  options  are  knock outs  which  start  their  lives 

active and become worthless if a certain barrier level is reached during the 

life of the option and knock ins which start their lives inactive and become 

alive if a certain barrier level is reached during the life of the option. Also the 

level of the barrier is determinative for a barrier option. If the barrier is hit 

below then the option is called either “up knock-out” or “up knock-in”. If the 

barrier is hit above then the option is called either “down knock-in” or “down 
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knock-out”. Moreover one has to add the put and call distinction as well. To 

sum  up  plain  vanilla  barrier  options  can  be  categorized  in  8  different 

categories. 

Table 1.1:Summary of types of barrier options

Up Down

Knock out Up knock out call

Up knock out put

Down knock out call

Down knock out put
Knock in Up knock in call

Up knock in put

Down knock in call

Down knock in put

In addition to the plain vanilla barrier options there are other vanillas 

such as double barrier  options.  These options knock in or out  at  the first 

hitting time of either a lower or upper barrier. In the case of single asset, one 

dimensional option, there can be only two barriers one is above and the other 

is below the initial spot price.

1.2.2 Other Types of Barrier Options

Although plain vanilla barrier options are the most traded ones, of course they 

are not the only ones that exist in the market.  There are others which are 

called as exotic or second generation barrier options. These options have a big 

market share as well. Construction of these generally depends on the use of 

plain vanilla barriers.

One touch option is an option that gives the investor a payout when 

the price of the underlying asset hits a predetermined barrier during the life of 

the option. In contrast to the plain vanilla barrier options, one touch does not 

give the owner to buy or sell the underlying at a predefined price. Instead it 

gives the buyer a fixed amount of money in the condition that the barrier is 

hit. No touch options are similar to the one touch. Unlike one touch, no touch 

options pay the owner fixed amount of money if the barrier is not hit during 

the life of the option. One can also add multiple barriers to both of touch 
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options. Double no touch is the most common example to this type. It gives 

the owner to receive a fixed amount if the both of the barriers are not touched 

during  the  life  of  the  option.  On  contrary,  owner  of  a  double  one  touch 

receives a fixed amount if either of the barrier is reached during the life of the 

option.

 Corridor options or so called dual barrier options are options with 

double barriers. They end worthless if knock out happens or become active if 

knock in occurs during the life option. Unlike plain vanilla, meaning of the in 

or out is different. For example it makes no difference whether the upper or 

the lower barrier hit. So it can be said that dual barrier option is an agreement 

to give the purchaser of the option the right to exchange a known quantity of 

one security for a known quantity of a specified currency - subject  to the 

behavior  of  the price of the underlying  security with respect  to  two price 

barriers.  Such  a  security  is  usually  used  to  lower the  cost  of  acquiring a 

similar  option  without  such  barriers.  For  this  reason  these  options  are 

generally cheaper than plain vanilla barrier options. One last feature is that 

corridor options barriers do not have to be fixed. 

One type that has to be mentioned is Forward-start barrier options. For 

this type of options the barrier is active only over the latter period of options 

life. They give the owner to postpone the moment that the barrier becomes 

effective. The forward starts either as down barrier or up barrier option when 

the starting time becomes valid, depending on whether the underling asset 

price is below or above the predefined barrier level. A forced forward start 

barrier option is a special case of forward start option which combines the 

properties of vanilla and forward starts barrier options as it can be guaranteed 

before to be down or up option before.

For the limited barrier option case, barrier is effective within one or 

more periods which are decided before during the life of the option. These 

predefined periods are called windows.

The fluctuation in the underlying asset price can be high which in turn 

affects the payoff  of the barrier option. In order to solve this problem the 
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combination of Asian options and barrier options is introduced. The option 

called Asian barrier option offer the possibility to trade barrier options based 

on the averages of the asset price during the life of the option. The average 

can be arithmetic or geometric for the Asian barrier options.

Outside barrier options are options in which the underlying asset and 

the trigger asset  are  different  variables.  Whether or not  an outside barrier 

options is knock-out depends on whether the price of the measurement asset 

touches a pre specified barrier within the life of the option.

Rolling options are issued with a sequence of barriers which are all 

either above or below the initial spot price. For the below case it is called roll-

down call and the above case roll-up put. When the stock price reaches the 

barrier, the strike of the option is lowered for the call case and increased for 

the up case. The option ends worthless if the last barrier is hit during the life 

of the option.

Ratchet options are a special case of rolling options. Each time the 

barrier is hit the strike price set as that barrier. If the last barrier is reached 

instead of ending worthless the ratchet option strike is ratchet for the last time 

to that barrier level.

Lookback option prices depend on the maximum or minimum price 

level that is reached during the lookback period. Lookback period can start 

before or after the time that option starts its life but it has to finish before 

options maturity.

The categorization mentioned is the most traded barrier options. Of 

course  there  are  many  more  and  structured  barrier  options  traded  on  the 

market as well.

1.3 Pricing Barrier Options

There  is  a  huge  literature  on  pricing  barrier  options  and  for  the  most 

important one’s solutions have been found analytically and numerically. One 

can start  counting from down and out call  in the Black-Scholes model by 
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Merton (1973) and go on till now. Although closed form solutions have been 

found for all plain vanilla barriers in the Black-Scholes environment there are 

no  analytical  solutions  developed  for  other  models  in  which  volatility 

assumed to be not constant and change in time. Of course there are some 

suggestions but neither of them are as apprehensible as Black-Scholes model 

or  have  less  assumptions  than that.  Following is  a  small  summary of  the 

analytical prices for the Black-Scholes model for barrier options.    

1.3.1 Analytical Prices

As mentioned earlier analytical solutions for pricing barrier options are as old 

as Black-Scholes formula.  Down and out call  formula is given by Merton 

(1973) which was followed by a more detailed paper by Reiner&Rubenstein 

(1991) that provides the formulas for all 8 types of barriers. Moreover Haug 

(1998)  gives  a  generalization  of  the  set  of  formulas  provided  by 

Reiner&Rubinstein.

 The following derivation is a shorter one given at Poulsen (2006) for 

Black-Scholes Model (BSM). Derivation depends on the reflection theorem 

which says that it is possible to find sets that resemble the class of all sets. 

The name "reflection principle" comes from the fact that properties of the 

universe of all sets are "reflected" down to a smaller set.

In order to use reflection principle stock price dynamics in 1.3.1 is 

considered under risk-neutral measure Q.

( ) ( ) ( ) ( ) ( )
where;

( ) :Stock Priceat time t
: risk-freeinterest rate
: dividend yield
: volatilityof the stock prices

dS t r d S t dt S t dW t

S t
r
d

σ

σ

= − +

                                                           1.3.1
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r, d, σ are known constants and W(t) is a Q- Brownian motion then consider a 

claim with payoff at maturity  ),( TSg T . For B>0 define a new function *g , 

called image function as in 1.3.2.

2

2*

)(21

)/(.)/()(

σ
drp

xBgBxxg p

−−=

=
                                                                           1.3.2 

The next theorem reveals that ),( TSg T
*g  are related.

Reflection theorem: Let the set up for tS  is like given above and define the 

arbitrage-free price at time t of this claim;

[ ] )),((),()( )()( ttSfeTSgEet tTr
T

Q
t

tTrg −−−− ==Π

Then if we consider a simple claim with pay-off function  *g the arbitrage 

free time-t value of this *g -claim is;












=Π −− t

S
Bf

B
S

et
t

p
ttTrg ,)(

2
)(*

Proof:  Define  the  process  tZ as:  
p

t
t B

S
Z 





= .Using  the  Ito’s  lemma,  it 

follows that;

ttttt dWZpdtZppZdrpdZ σσ +



 −+−= 2)1(

2
1)(  

Since 2

)(21
σ

drp −−=  , drift term cancels and;

ttt dWZpdZ σ=  
0

 is a Q martingale. tZ
Z

Ş  

(At this point one has to mention that exact form of p is needed here 

and the result will not hold if σ  is time-dependent or stochastic.)
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 From that it follows

)0(
)(

Z
TZ

dQ
dQ Z

=   

which defines a probability measure QQ Z ~ . From Girsanov theorem it  is 

known that

dtptdWdW QQ
t

Z

σ−= )(

defines a ZQ Brownian motion.

Value of ∗g  is then;

[ ] 


















==Π −−∗−−∗

T
S
BgE

B
S

eTSgEet
T

Q
t

p
ttTr

T
Q
t

tTrg Z

,),()(
2

)()(

Define a new process
)(

2

tS
BYt = .  Then Ito formula and definition of 

ZQW gives;

)()()()()( tYdWtdtYdrtdY
ZQ

t−+−= σ

which means the law of Y under  ZQ is the same as the law of S under Q. 

Therefore;

),
)(

()),(()))(((
2

t
tS

BfttYfTYgE
ZQ

t ==

ٱ

Reflection  principle  has  a  very  long  history  in  Physics,  partial 

differential  equations  and  Stochastic  processes  and  can  be  used  to  price 

barrier  options.  Additionally  it  gives  insight  on  to  the  method  of  static 

hedging for  barrier  options.  The weakness  of  the  theorem is  that  it  holds 

under the BSM assumptions. With volatility of the form )),(( ttSσ , even in 

simple case of time dependent volatility or drift unfortunately it breaks down.
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Figure 1.1: Reflection principle

1.3.1.1 Payoff Function & Price for Down and Out Call Option

There are two cases to be distinguished when considering the price and the 

payoff function for a down and out barrier option. For a regular down and out 

call option where the Barrier B is below the strike price K, payoff function 

))(( TSf at maturity is given by 1.3.3.

0 ( )
( ( ))

( ) ( ) & ( )
S t B

f S T
S T K S T K S T B

≤
=  − > >

                  1.3.3 

Calculation of price of down and out call is given through 1.3.4-1.3.8.

T
TdrKS

d
σ

σ ))(2/()/ln(
1

2
0 −−+

=                            1.3.4 

Tdd σ−= 12                                         1.3.5 

9



T

Tdr
KS

B

h
σ

σ )2/()ln(
1

2

0

2

−−+
=                                                                 1.3.6

Thh σ−= 12  1.3.7

[ ]
[ ])2()/()2(

)1()/()1(),,,,,,(

0

2
000

hNBSdNKe
hNBSdNSeTBKqrSC

prT

pdTDO

−−

−=
−

−−σ
                     1.3.8 

Equation 1.3.8 shows that price of the down and out call option is the 

price of the European call minus a correction factor. This correction term is 

due to the barrier and although it is a bit more complicated than the European 

call, the results are still similar.

1.3.1.2 Payoff & Price for Up and Out Call Option

Two cases have to be distinguished when considering the price and payoff 

function for an up and out barrier option as well. For a reverse up an out call 

option  where  the  Barrier  is  above  the  strike  price  the  payoff  function 

))(( TSf at maturity is given by 1.3.9.

0 ( )
( ( ))

( ) ( ) & ( )
S t B

f S T
S T K S T K S T B

>
=  − > ≤

                                            1.3.9

Calculation of price for up and out call is given through 1.3.10-1.3.14.

T
TdrBS

x
σ

σ ))(2/()/ln(
1

2
0 −−+

=                                                             1.3.10

Txx σ−= 12                                                                                           1.3.11
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T

Tdr
S
B

y
σ

σ )2/()ln(
1

2

0

−−+
=                                                                 1.3.12

Tyy σ−= 12                                                                                             1.3.13

[ ]
[ ] [ ]

[ ])2()1()/(

)1()1()/()2()2(

)1()1(),,,,,,(

1
0

0

00

yNhNBSKe
yNhNeBSBxNdNKe

xNdNSeTBKqrSC

prT

dTprT

dTUO

−+

−−−−

−=

+−

−−

−σ

                      1.3.14

The case for up and out call is more complicated than the down and 

out  case.  They  have  low  premium  which  is  restricted  by  the  knock  out 

feature. Moreover as option approaches the barrier, the value of the option 

decreases although the plain vanillas call option price increases. This kink is 

due to the discontinuity of the up and out call at the barrier level. 

1.3.2 In-Out Parity

If at time t, one has a portfolio consisting of a down and out version of LOφ as 

well as down and in version of  LIφ  then it is obvious that price at maturity 

will be the same as plain vanilla call. So this result leads the in-out parity 

given by 1.3.17.

( )
( )

0LO

x x B
x

x B
φ

φ
>

=  ≤
  Down and out payoff                                          1.3.15

( )
( )

0LI

x x B
x

x B
φ

φ
<

=  ≥
  Down and in payoff                                            1.3.16

);,();,();,( LILO stFstFstF φφφ +=                                                           1.3.17
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In-out parity is of course valid for the up and out and up and in case as 

well. So using in-out parity; analytical results can be extended to the down 

and in and up and in versions of the barrier options easily.
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Figure1.2: Summary&Comparison of Delta and Prices for Barrier Options 

with Plain Vanillas

1.3.3 An Example

The following term sheet is an example of a real market structured product. 

The product is neither a barrier option nor a plain vanilla option completely. 
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It includes features of both types. Consequently it consist problems in pricing 

and/or  finding the volatility or implied volatility driven by market  for the 

product. The main question first to ask is whether the price of the product is 

reasonable or not?

As seen from the sheet that it is a simple put option with a simple 

premium if the trigger levels are not reached. However when trigger levels 

are reached, option behaves like one touch option in some sense. Ie the price 

of  the  option  is  2%  of  the  notional  amount  at  the  beginning,  however 

(2+1.43) % of the notional amount after the first trigger level is reached.  So 

the price of the option can be considered in three different levels given by 

1.3.18.

With the given premiums, option is long in the put and short in the 

one touch. This makes sense because if the price of the underlying decreases 

then the put option ends in the money and one touch ends out of money and 

opposite as well.  

Given S&P initial at 12 August 1998 at closing was 1281.43 USD (by 

Yahoo finance) then the strike price is 1217.3585 and #Contracts is 15608. 

The  price  of  this  claim should  be  less  than  the  price  of  the  plain 

vanilla put option. For example if Black-Scholes model is used for pricing 

then price of a put option with expiry one year, strike price 1217.3585, initial 

price  1281.43 and volatility  and interest  assumed 0.2,  0.06 respectively is 

43.74484. If we multiply this value with the number of contracts 15608 than 

the value is found as “682769” which is larger than 2% of notional amount 

“400000”  as  expected.  So  one  can  say  that  initial  price  of  the  claim  is 

reasonable at the level of being less than plain vanilla put. Of course some 

other factors should be checked which I skip here. 

The second question is finding a reasonable volatility for this option. 

For using an implied volatility, one needs the market price of the option. But 

for our case,  market price is a three level constant.  Consequently one has 

three different implied volatilities for three different intervals. For this reason 

it is not possible to find a well-defined implied volatility. 
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Table 1.2:Example

Over the Counter Option linked to the S&P 500 Index

Option type European put option, with contingent premium 

feature
Notional Amount USD 20 MM
Trade Date 12 August 1998
Expiration date 11 August 1999
Underlying index S&P 500
Settlement Cash Settlement
Cash Settlement Date 5 Business days after the Expiration date
Cash  Settlement 

Amount

Calculated as per the following formula:

#Contracts*max[0,  S&P  strike-  S&P  final] 

where #Contracts=notional Amount/S&P initial

This is same as a conventional put option: S&P 

strike will be equal to %95 of the closing price 

on the trade date

S&P final will be the level of the Underlying 

Index  at  the  valuation  time  on  the  Expiration 

date

S&P initial is the level of the Underlying index 

at the time of execution
Initial  Premium 

Amount

[2%] of Notional Amount

Initial  Premium 

Payment Date

5 business days after Trade Date

Additional  Premium 

Amounts

[1.43%] of Notional Amount per Trigger Level

Additional  Premium 

Amounts  Payment 

Dates

The additional  premium amounts  shall  be due 

only if  the underlying index at  any time from 

and  including  the  trade  date  and  to  and 

including  the  expiration  date  is  equal  to  or 

greater than any of the trigger levels.
Trigger Levels 103%, 106%, 109% of S&P initial
Documentation ISDA
Governing Law New York

14



2% & 103% of S&P initial
3.43% 103 & 106% of S&P initial
4.86% 106 & 109% of S&P initial
6.29% & 109% of S&P initial

notional amount

na if S P
na if S P

Price
na if S P
na if S P

na

<
 ≤ <=  ≤ <
 ≥

=

        1.3.18

One approach for finding an implied volatility can be assuming that 

interest rate is constant and known moreover the probabilities (consequently 

the weights) of touching trigger levels are also constant and known so that a 

general constant price value (expected value) is found by 1.3.19.
4

1

i iwhere w are the weights and P are the prices for trigger levels

i i
i

P w P
=

= ∑              1.3.19

After finding a constant price level one can use any model ie Black-

Scholes formula for a simple implied volatility approach.

1.4 Hedging Barrier Options

Any investor who sells a derivative is faced with two problems:” How should 

I  price  the  derivative”  and  “how  should  I  deal  with  the  risk  about  my 

position”. In the previous part the answer to the first question is given. In this 

part the concern is the second one.

Although  Barrier  options  are  traded  actively  on  the  OTC markets, 

hedging of them is not that easy. The reason why they are more difficult is 

that they have unstable properties of the hedge parameters especially near the 

barrier. They combine the features of plain vanilla options with barriers as 

well. This additional feature makes barrier options sensitive to the price or 

volatility changes. So the Greeks of Barrier options exhibit slightly different 

behavior compared the plain vanilla counter parts. For example as stock price 

approaches to the barrier for the down and out call, the delta for the barrier 

option increases while the delta for the plain vanilla continues to decrease. 
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Moreover the gamma for the barrier options can be very large close to expiry. 

Due  to  the  following  reasons  classical  hedging  techniques  like  dynamic 

hedging is not very practical for barrier options. On the other hand there have 

been many static hedging strategies that are developed since 90’s which are 

more effective in some senses. But these static hedges in general have various 

restrictive  assumptions  as  well.  Some use  BSM assumptions  which  leads 

constant  volatility  over  time  and  it  is  a  known  fact  that  in  real  market 

volatility is not constant over time. Although some allows the volatility to be 

stochastic over time then they restrict the drift terms to be 0.

1.4.1 Dynamic versus Static Hedging

Hedging  a  derivative  or  a  portfolio  is  an  investment  that  is  taken  out 

specifically to reduce or cancel out the risk with a portfolio or derivative that 

is on the opposite direction of the existing one. Additionally a portfolio is 

considered to be dynamically hedged if the weights in the portfolio change 

dynamically with time. While static hedging releases its users from any re 

balancing  needs  by  the  certain  combinations  of  vanilla  options.  The 

traditional method for valuing and hedging barrier option was using dynamic 

adjusted portfolios. But since mid-90’ies several static replication strategies 

have been developed and showed better performance then dynamic ones.

With  the  analytical  solutions  by  Merton  (1973)  and 

Rubenstein&Reiner (1991), classical hedging techniques like delta hedging 

become possible for barrier options. An alternative approach was given by 

Bowie and Carr (1994) to the valuation and hedging of these options. Using 

the  symmetry  between  puts  and calls  in  the  zero  drift  models,  they  have 

created  portfolios  of  just  a  few options  with  fixed  maturities  to  replicate 

barrier options. These results are extended to a symmetric volatility structure 

and to instruments  like double and partial  barrier  by Carr,Ellis  and Gupta 

(1996).  Moreover Derman,  Ergener and Kani(1995) created a static  hedge 

portfolio  with the use  of  plain  vanilla  options with different  expiry dates. 
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Similarly  Carr  and  Chou  (1997)  created  a  hedging  strategy  using  vanilla 

options with same maturity and different strikes. Poulsen and Nalholm (2006) 

constructed  many simulation  studies  to  compare  the  success  of  static  and 

dynamic  hedge  strategies  on  both  Black-Scholes  and  Non  Black-Scholes 

based models. Also Poulsen and Nalholm (2006) introduce a new method for 

static  hedging  of  barrier  options  in  the  presence  of  leverage,  correlated 

stochastic volatility, and jumps in the dynamics of the underlying.

Both  the  dynamic  and  static  hedging  strategies  work  perfectly  in 

theory but the effect of real market dynamics is a serious problem for both. 

The main disadvantage of a perfect  dynamic  replication is  that  it  requires 

continuous trading which can not be performed in real life because of huge 

transaction costs. The general solution to this problem is using delta of the 

Black and Scholes and doing periodical trading. This will reduce the error and 

the cost of replicating portfolio if the Gamma of the underlying is low. But 

barrier  options  often  have  high  gammas  which  directly  affect  the  delta 

hedging results. Also the volatility of the underlying asset has a direct effect 

on the dynamic  hedge strategies but the high gammas  often leads to high 

vegas as in the Barrier options. On the other hand replicating Exotic’s like 

Barrier options with plain vanilla options are easier. Puts and calls can be 

traded on the market easily. They are much more liquid then OTC market 

options.  Also  Vanilla’s  contain  more  market  information  then  just  the 

underlying stock. Finally one needs more assets in incomplete markets and so 

on.

1.4.2  Dynamic Hedging Strategies for Barrier Options

Dynamic  hedging is  strategy  that  involves  rebalancing  hedge  positions  as 

market conditions change. The rebalancing can be daily, bidaily or more. But 

the shorter the time interval the better the hedging result is.
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1.4.2.1 Pure Delta Hedging

The delta  hedging method in the BSM is  a  standard method for  dynamic 

replication. The delta represents the rate of change of the option price with 

respect to the change in the price of the underlying. By holding delta units of 

asset, investors offset the delta of the option position and thus, hold a delta 

neutral portfolio. Since the delta changes over time this action should be done 

periodically by the investor.

The delta of an option is defined by 1.4.1.

where F and S are the values of the option and the underlying, respectively. 

F
S

∂∆ ≡
∂   1.4.1 

In  delta  hedging,  idea  is  immunizing  the  portfolio  against  small 

changes in the underlying asset price. Portfolio is constructed with adding a 

derivative to the underlying asset. Since the price of a derivative is perfectly 

correlated with the underlying asset price, one should be able to balance the 

derivative  against  the  portfolio  in  such  a  way  that  the  adjusted  portfolio 

becomes delta neutral.

The delta value for the down and out call is defined by 1.4.2.
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Delta value for the up and out call is more complex and given by 1.4.3
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where )(tn  stands for the cumulative normal distribution

The hedging strategy  described  above depends on many restrictive 

assumptions. In practice, investors in this strategy are price takers or have 

very small influence compared to the market mass. So for a large change in 

prices can lead too large or too small deltas which are not acceptable because 

neither  banks  nor  investors  has  unlimited  amounts  money  that  they  can 

invest. They have limitations on the amount of borrowing and short selling. 

Also contrary what delta of an option suggests, securities are indivisible. 

 Moreover market has to be complete with no other expenses such as 

taxes or transaction costs. But in practice each delta adjustment implies a cost 

for the trader such as commissions and bid-ask spreads. Especially if gamma 

of the underlying is high it becomes much more difficult to construct delta 

hedge.  Because  high  gammas  lead  high  deltas  which  in  turn  mean  more 

frequent transactions to re balance the position. Also continuous trading is not 

possible in real life.  One has to construct  discrete time intervals  which in 

causes measurement errors.

Among the assumptions of the BSM, the strongest are the constant 

volatility and constant interest and dividend rate assumptions. It is shown by 

hundreds of evidence that assuming constant volatility over time can be very 

dangerous like in jumps for the underlying.

1.4.2.2  Mixed Delta Hedging

Greeks  of  the  barrier  options  are  different  from  the  plain  vanillas  as 

mentioned earlier. This difference in Greeks cause additional problems other 

than mentioned above when it comes to delta hedging. In order to overcome 

these problems there are many suggestions. One of which can be called as 

mix delta hedging.  

The  general  setup  for  the  delta  hedge  was:  a  hedger  sells/buys  a 

barrier option on an underlying stock; he receives/pays the price of the option 

and sets up a hedge portfolio by buying/selling delta shares of the stock and 
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investing the rest in the bank account. During time hedger adjusts the position 

continuously in order to maintain delta neutrality. 

The  construction  of  the  mix  hedge  is  quiet  similar  to  the  above 

construction.  The idea is: since the large part of the error in the pure delta 

hedging is due to the kink in the payoff function off the plain vanilla call, this 

error can be eliminated by buying/selling one plain vanilla call at the strike 

price equal to the barrier option. So the delta of the strategy is as in 1.4.4.

)()()( callbarriermixed ∆−∆≡∆                                                                1.4.4

For example one sells a barrier option with strike price K and barrier 

B at time 0. Let this option costs 1X . Then he buys a call with strike price K 

for 2X . Moreover he buys the  )()()( callbarriermixed ∆−∆≡∆  units of the 

underlying stock which is equal to 3X . So the money that he needs to borrow 

from bank is 321 XXX −− . And the delta which he will adjust during time is 

)()()( callbarriermixed ∆−∆≡∆  which is much smaller than the delta of the 

plain vanilla.  ie delta of the down and out and up and out call  for mixed 

strategy is given through 1.4.5-1.4.6.
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1.4.3 Static Hedging Strategies for Barrier Options

Barrier  options  can  be  hedged  “statically”  using  a  portfolio  of  standard 

options or other products. Such a strategy avoids transaction costs from re-

hedging and this is why it may be preferred especially in illiquid markets. 

With  using  static  hedge portfolios  the  gamma and vega risk exposures  is 

passed from the illiquid OTC markets to liquid plain vanilla options market. 

The idea is trying to construct a hedge such that the payoff function will be 

the same as barrier option if the barrier is hit or not hit.

1.4.3.1 Calendar Spread

One can create static hedges for barrier options with using plain vanilla puts 

and calls with different maturities. The calendar spread method of Derman, 

Ergener and Kani (1995) hedges the payoff of the barrier options along the 

barrier and at maturity using a portfolio of vanilla options. Here the idea is to 

replicate the behavior of the barrier option at any moment of its life with the 

use  of  plain  vanillas.  Consequently  the  more  the  plain  vanilla  options 

included in the portfolio, the better is the hedge.

 For example if one wants to construct calendar spread for down and 

out case he has to start with buying a call with a strike price equal to the 

Barrier options strike price at time 0. 

→Buy one call with strike K expiry T

→Sell one nα strike B expiry T put

Such that;

 

0);/,();/,( 11 =+∗ −− TKtBCallTBtBPut nnnα
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This portfolio has zero value is the barrier is hit. If the barrier is not 

hit, the call option has the same pay off with the barrier option which in turn 

offset it.

Meanwhile more put options are sold with strike price equal to barrier 

with different maturities. So the value of the portfolio is forced to 0 along the 

barrier. 

To continue;

→Sell 1−nα  strike B expiry 1−nt  puts such that;

0);/,();/,();/,( 22121 =+∗+∗ −−−−− TKtBCallTBtBPuttBtBPut nnnnnn αα

Various puts can be added to the portfolio such that;

0);/,();/,();/,( 1
1

11 =+∗+∗ −
+=

−− ∑ TKtBCalltBtBPuttBtBPut n

n

ij
jijiii αα

This portfolio has the same characteristics with the previous one with 

one strike K call and strike B put since it has the same characteristic around 

barrier. If the barrier is hit portfolio has value 0, if it is not hit the puts end 

worthless and call option has the same payoff with the barrier option. 

For the portfolio constructed above if infinitely many puts are taken 

then the portfolio is perfectly hedged and the error is 0. But this is obviously 

impossible in practice and one has to choose the optimal number of puts that 

should be taken.  

One  last  thing  to  mention  is  about  the  weights  of  the  puts  to  be 

calculated. It is easy to calculate the weights of the puts because the system to 

be solved is a triangular system of equations as through 1.4.7 to 1.4.9.

0=+∗ YX α                                                                                               1.4.7
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                                                                            1.4.9

For an up and out call case, the construction of the portfolio is quiet 

similar. One has to buy calls instead of puts to hedge the barrier option. 

1.4.3.2 Strike Spread

Another  way  of  creating  static  hedges  is  with  using  strike  prices  of  the 

options in the portfolio is  constructed.  Here the main  idea  is  to  force the 

payoff of the barrier option to the zero around the barrier. In order to do this 

one has to buy options with different strikes with a weight such that if the 

barrier is hit the value of the portfolio will be 0. 

1.4.3.2.1 Strike Spread by Carr, Ellis and Gupta

The first method to be considered is the one by Carr, Ellis and Gupta (1998) 

(CEG). They use a terminology called put call symmetry (PCS), to develop a 

method for valuation and static hedging of exotic options. PCS can be viewed 

as both an extension and a restriction of widely known put call parity (PCP) 

CEG (1998).  Extension is  PCS allow the  puts  and calls  to  have  different 

strikes.  Meanwhile  the  restriction  is  zero  drift  and  symmetric  volatility 

structure. The symmetry that they found is the following;
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European  Put-Call  Symmetry:  Given  frictionless  markets,  no 

arbitrage, zero drift, and the symmetry condition, following relation holds;
2/12/1 )()( −− = BBPKKC

where the geometric mean of the call strike K and the put strike B is 

the forward price F:

 FKB =2/1)(

With the above symmetry one can construct strike spreads for various 

types  of  barrier  options.  Single  barrier  options,  multiple  barrier  options, 

ratchet options, lookback options are some examples. 

With the use of PCS the construction of static hedge for the down and 

call option where KB < and when BF =  is as in 1.4.10.

)()( 121 −−= KBPKHKC                                                                            1.4.10

According  to  the  equation  above  one  writes  1−KH  European  puts 

struck at 12 −KH to complete the hedge. To complete the replicating portfolio 

for a DOC one sells a down and out call with strike K and buys one plain call 

with strike K as  well.  Then sells 1−KH  European puts struck at  12 −KH to 

complete the hedge. If the barrier is not hit the call and the barrier option will 

have the same payoff. On the other hand if the barrier is hit, PCS guarantees 

that the proceeds from selling the call will be exactly offset by the cost of 

buying back the puts. 

1 2 1( , ) ( ) ( )DOC K B C K KB P B K− −= −                                                      1.4.11

 One other application of PCS is for up and out call. The construction 

of the hedge is a bit complex but it is still simple to understand.

FKBBUIBKBBKUIPKCBKUOC ,)()(),()(),( >−−−=                1.4.12
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where UIP stands for up and in put and UIB stands for up and in bond. 

Writing the equation as above with UIP&UIB has an advantage that it can be 

used for continuous processes. But it has a disadvantage because UIP&UIB 

may not be traded on the market. Applying PCS ),( BKUIP can be replicated 

with  1−KH  European calls struck at 12 −KH .  And )(BUIB can be replicated 

with binary calls BC struck at B and 1−B  calls struck at B as;

)()(2)( 1 BCBBBCBUIB −+=                                                                    1.4.13

To sum up the following information, ),( BKUOC can be hedged with 

the use of following equation;

[ ]
FKB

BCBBBCKBKBCKBKCBKUOC
,

)()(2)()()(),( 1121

>
+−−−= −−−

 1.4.14

Thus to hedge an up and out call one sells one up and out call with 

strike buys  one  vanilla  call  with  strike  K,  sells  1−KB vanilla  call  strike 
12 −KB  and sells (B-K) times two binary calls with strike B and 1−B call with 

strike B as well.

1.4.3.2.2 Strike Spread by Carr and Chou

Carr and Chou convert the problem of hedging a barrier option to a problem 

of hedging a European security with non-linear payoff function. The strike 

spread  that  they  found,  matches  the  payoff  function  of  the  barrier  option 

above or below the barrier, depending on the type of the barrier option. For 

example  if  the  barrier  option  is  up  and  out  call  then  the  strikes  and  the 

matching  points  will  be  larger  than the  barrier.  The success  of  the  strike 

spread depends on increasing the matching points of the hedge. If the hedging 

is done for infinitely many points then the hedge will be perfect and the error 
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will be 0. But of course this is again not possible in practice. The adjusted 

payoff function for down and out call can be written by 1.4.15.
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Similarly the adjusted payoff for up and put case is as in 1.4.16
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                                                       1.4.16

The construction of the strike spread for up and out call is done by 

using calls with different strikes. Since it is impossible to match the adjusted 

payoff at every point in real life, one has to choose some matching points and 

strikes above the barrier. Say the strike points iK  then matching points as iX  

such that the 1.4.17 holds.

BKXKXKX nn >>>>> 2211                                              1.4.17

moreover  let  iα  be  the weights  of  the  calls  in  the  portfolio.  Then unlike 

DEK’s triangular system of equation one has in 1.4.18-1.4.20;

0=+∗ YX α                                                                                             1.4.18
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                                                                  1.4.20

The construction is the similar for down and out call. First difference 

is  choosing  puts  instead  of  calls  while  constructing  the  spread.  And  the 

second difference is matching points and strikes are constructed as in 1.4.21;

BKXKXKX nn <<<<< 2211                                            1.4.21
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Figure1.3: Payoff function for down and out and up and out calls

28



CHAPTER 2

PRICING AND HEDGING IN 

BLACK-SCHOLES MODEL

2.1 Black-Scholes Model

The Black-Scholes model, for which Merton and Scholes received the 1997 

Nobel Prize in Economics, is a tool for option pricing. Prior to its foundation 

there was no standardized way of pricing options. So one can say that Black-

Scholes model marks the beginning of the modern era of pricing financial 

derivatives.

Like all successful models, its success is its ability to simplify the 

reality. But the weakness of the model is that it  relies on many restrictive 

assumptions such as; 

 The price of the underlying instrument (stock price for our case) follows a 

geometric Brownian motion. This means there are no jumps through the 

life of the option

21( ) (0)exp ( )
2

;
( ), , are as defined previosusly
(0) is thestock priceat time0
is the timestep
( ) is Geometric Brownian motion

S t S r t W t

where
S t r
S
t
W t

σ σ

σ

 = − +  

29



 The volatility of the stock priceσ  is constant during the life of the option

 The interest rate r is constant during the life of the option

 There are no arbitrage opportunities in the market.

 It is possible to short sell the underlying stock

  It is possible to borrow or lend cash at a constant rate r

 There are no transaction costs such as taxes or bid ask spreads for neither 

the option nor the stock

 Trading in the stock is continuous

 All securities are divisible perfectly. Ie one can buy 1% of the share

 Investors can only exercise the option at the expiration

 The stock pays no dividends. 

2.2 Pricing Barrier Options in BSM

Pricing  of  options  is  a  big  pool  of  literature  and  survey.  Some  of  these 

literatures construct their results on analytical solutions like for plain vanilla 

barrier options while some others depends on simulation techniques. 

2.2.1 Simulation Approach

In  quantitative  finance,  problems like  finding the  arbitrage-free price  of  a 

derivative is  reduced to computation of an integral.  Most of the cases for 
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these  integrals,  solutions  are  found  analytically  or  computed  with  partial 

differential equations as in BSM. However when the number of dimensions in 

the problem is large, PDE’S and integrals became intractable. At this point 

simulation,  which is  an imitation of real things,  state  affairs  or processes, 

becomes a good candidate for solving such kind of high dimension problems.

The fundamental option pricing theory is that the value of an option is 

simply the expected value of the discounted payoffs where the expectation is 

taken under the risk neutral measure. So finding the value of an option using 

simulation  is  just  generating  stock  price  paths  for  the  given  model  and 

following the value of the derivative through the life of the stock. The steps 

for simulation are the following;

• Simulate  a  stock  price  path  for  the  underlying  asset  with  the  model 

desired under the risk neural condition, over the given time horizon

• Discount the payoff of the option corresponding to the path at the risk free 

rate

• Repeat the procedure for large number of times

• Average the results  which are discounted payoffs  to obtain the desired 

option price. 

The  law  of  large  numbers  guarantees  the  convergence  of  these 

averages to the actual  price of the option. Moreover central  limit  theorem 

guarantees that the standard error of the estimate tends to zero with a rate of 

convergence
N
1

. If one thinks that the convergence rate is slow then further 

variance reduction techniques can be used. Moreover it is possible to have 

better rate of convergence with using quasi-random numbers to reduce the 

number of trials that is needed.
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For example if BSM is used for the simulation of stock price paths the 

following can be used; 

21( ) (0)exp ( )
2

where;
all the parameters are same as above
Δis the timeintervalbetween observations

S t S r t W tσ σ = − ∆ + ∆  

2.2.2 Simulated Prices for Down and Out Call Options

Barrier options are good applications for simulation study since their payoff 

are  more  complicated  than  the  plain  vanilla  counter  parts.  To  check  the 

reliability  of  the  simulations,  simulated  plain  vanilla  prices  are  good 

controllers. So through the simulations the prices of the plain vanillas are also 

going to be found. Through simulation studies for the price of down and out 

barrier options the following steps are followed;

• Price paths for the stock are simulated using Geometric Brownian 

motion at risk free rate

• At each time step it is checked whether the barrier is hit or not

• If the barrier is hit the barrier option ends with zero value while plain 

vanilla counter part continues its life

• At the end of maturity the prices for the options are found

• The result is discounted back with the appropriate discount rate for 

both barrier option and plain vanilla 

• The simulation study is done for10^4 times

• The mean of the results are taken for both cases and are counted as the 

simulated price of the option.

In  order  to  simulate  the  stock  price  paths  as  defined  above  the  R 

program is used and the parameters for the program are given in Table 2.1. 
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Deviations from analytical prices are also a concern for the following 

simulation  study.  For  this  reason  one  last  thing  to  be  mentioned  before 

continuing to the simulation results is the comparison of the simulated prices 

with the analytical ones.

The  error  term  in  2.2.1  can  be  used  to  have  an  idea  of  pricing 

deviation of the simulations for different barrier levels.

( )
100

Abs BSM price simulatedprice
error

BSM price
−

= ∗                                       2.2.1

Table 2.1: Parameters and symbols for simulation study

Quantity Symbol Value

Initial Stock Price S(0) 100
Interest rate r 0.06
Dividend Yield d 0.02
B-S Volatility σ 0.2
Carr-Chou ρ 2/)(21 σdrp −−= -1
Strike  of  the  underlying 

call

K 110

Expiry  of  the  underlying 

call

T 1

Down and out Barrier DOB 90
Up and out Barrier UOB 140
Delta Hedging Time Step t∆ 1/126
No of Simulated Paths N 10.000

Table 2.2:Results of simulation for different barrier levels

Barrier 

level

Down&out call 

price in BS  model

Simulated plain 

vanilla call price

Simulated 

down&out call p.
95 3.326043 5.589557 3.810011
90 4.852342 5.498102 4.936848
85 5.387124 5.566095 5.42816
80 5.521628 5.501014 5.489589
75 5.544258 5.555913 5.555365
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Table 2.3:Results of simulation with different confidence bands

%95 confidence 

level

%95 confidence level

Barrier Lower bound Upper bound Error %
95 2.055146 5.564877 14.55088
90 3.042632 6.831063 1.741594
85 3.479294 7.377027 0.7617449
80 3.58351 7.395668 0.5802481
75 3.595096 7.515634 0.2003465

The vanilla price in the BS model with the parameters defined above 

is 5.5467. Through all the simulations the samples are chosen such that the 

error term for the plain vanilla is less than 1%.

The  results  show  that  as  the  barrier  level  lowers  the  error  in  the 

simulated prices gets smaller.  This is not surprising because as the barrier 

level decreases the probability of hitting to the barrier decreases which means 

the barrier option more behave like plain vanilla option. This result is also 

verified by the analytical price of the barrier option. As the barrier gets lower 

then analytical prices for the plain vanilla and down&out call becomes closer. 

One surprising result happens when the barrier level moves from 90 to 95. 

The error in the simulated prices is nearly 10 times more than the previous 

barrier level. 

34



Figure 2.1:Payoff function for down and out call option

2.2.3 Simulated Prices for Up and Out Call Options

The  simulation  study  for  up  and  out  call  option  is  done  with  the  same 

principle as in down&out call. Only difference is that the barrier level is now 

140 instead of 90 so that the barrier is hit from below. 

Table 2.4:Results for up&out call case

Barrier 

level

Barrier option 

call BS  model

Simulated plain 

vanilla call price

Simulated up&out 

call price
150 3.512527 5.524443 3.692134
145 2.929400 5.517768 3.131986
140 2.276883 5.507764 2.469064
135 1.600082 5.552361 1.852425
130 0.9684055 5.494151 1.198186
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Table 2.5:Results of simulation with different confidence bands

%95 confidence level %95 confidence level
Barrier Lower bound Upper bound Error %
150 2.391001 4.993268 5.113338
145 1.977027 4.286945 6.915616
140 1.501880 3.436248 8.440544
135 1.073829 2.631021 15.77063
130 0.6172578 1.779115 23.72776

Plain vanilla option price is of course not affected from the change in 

barrier level and it is still 5.5467 and the idea of including samples which 

have less then 1% error for plain vanillas are chosen again.

According to the simulated results it is seen that the error in pricing is 

much higher than the down&out case. This is due to the discontinuity of the 

up and out call at the barrier. Not surprisingly as the barrier level increases 

error of the simulation decreases. This is again the result of barrier options to 

behave like a plain vanilla as the barrier level deviates from the strike price. 
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2.3 Hedging Barrier Options in BSM

2.3.1 Application of Simulation to Hedging Strategies

Simulation  techniques  can  be  very  useful  to  compare  different  hedging 

strategies for barrier options. The idea is simulating stock price paths and then 

checking  the  success  of  the  hedging  technique  used  by  looking  to  the 

simulation results. One can construct the simulation steps as the following;

• Specify the model to be used in the simulation study. For example use 

Geometric Brownian motion for BSM model at risk free rate.

• Suggest different hedging strategies like the ones defined in the previous 

chapter.

• Simulate paths for the stock price from the model chosen.

•  The expiry dates and the strike prices of the options that are used in the 

simulation stay constant through the study. Moreover barrier level that is 

used is linear and does not change during the life of the option as well.

• Adjust  the  dynamic  hedge strategies  along the  stock  price  path  which 

means construct the required hedge portfolio every trading date using the 

delta. For the static hedging strategies construct the portfolio once at the 

beginning before starting trading.  For dynamic hedging strategies keep 

the strategy self financing by borrowing or lending from the bank.

• At each time step check whether the barrier is hit or not.

• If the barrier is hit, barrier option value ends as a zero value option then 

liquidate the portfolio that is constructed.
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• If the barrier is not hit; find the price at the end of maturity. The price of 

the barrier option will be the same with the plain vanilla option.

• Subtract  the barrier option price from the portfolio value and save the 

results as error(Profit/Loss)

• Discount the errors back with the appropriate discount rate  and hitting 

time for barrier option. 

• Do the simulation for many times

• Find the moments such as mean and variance of the errors with respect to 

the real option price. And check the distributional characteristics of the 

errors. 

During the construction of the simulation study that is described above 

the parameters that are used during pricing simulations are used. 

2.3.2 Dynamic Hedging Strategies

2.3.2.1 Pure Delta Hedging

The pure delta hedging technique for barrier options is described in detail in 

the  chapter  1.  Following  are  some  numerical  results  to  compare  the 

performance of this strategy with the other strategies.

2.3.2.1.1 Down and Out Case

The simulation study is done for different barrier levels and the following 

results are on table 2.6.

By looking the results it is seen that the mean values of the errors are 

close to 0 and the standard deviations are around 10% for the error terms. 
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These values do not decrease or increase depending on the level of error. This 

is an interesting result because one expects that the error term will decrease as 

the barrier level decreases.

The reason for this is the structure of the delta hedge for down and out 

case. The strategy is continuous at every point so at the hitting time there is 

no big difference between portfolio value and barrier option price. Moreover 

the delta used at this strategy depends on the barrier level as well. Ie if the 

barrier level is 90 then portfolio has a value 0 around 90 if the barrier is 95 

again the portfolio has a value 0 around 95 because delta of the barrier option 

reflects barrier level as well.

Table 2.6:Results for down&out pure delta hedging

Barrier level Real price Mean of errors SD of errors
95 3.326043 0.0003615876 0.1047099
90 4.852340 0.0009534759 0.1013058
85 5.387124 -0.001083549 0.1071984
80 5.521628 -0.001717777 0.1103815
75 5.544258 -0.001146284 0.1101915
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One more detail that can be mentioned is about the time step. Because 

it  is  known as  the  time  step  increases  then  the  success  of  delta  hedging 

strategy  increases.  And  if  the  time  step  for  hedging  is  assumed  to  be 

continuous then the error will be zero. It can be seen from table 2.7 that as 

time interval for the hedging strategy increases the success of the strategy 

increases as expected. 

Table 2.7:Results for increasing time interval for pure delta hedge

Hedging  time step (Barrier=90) SD of errors
126(every two working day) 0.1013058
252(every working day) 0.07299965
504(two times every working day) 0.05175068
1008(four times every working day) 0.03620822
2016(eight times every working day) 0.02526977

2.3.2.1.2 Up and Out Case

The simulation study is constructed for different barrier levels and results on 

table 2.8 are obtained.

Table 2.8:Results for up&out pure delta hedging

Barrier Real price Mean value of 

errors

Standard deviation of 

errors
150 3.512527 -0.007121712 0.5651317
145 2.929400 0.002121180 0.7580842
140 2.276883 -0.01432327 0.8172131
135 1.600082 0.001035372 1.135409
130 0.9684055 0.006445856 1.395589

Results are, especially the standard error terms, are high for the up and 

out case. The reason having this much of error is due the discontinuity of the 

up and out call at the barrier level. ie consider a delta hedged portfolio that 
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has a value around 29 at the stock price level 139 when the barrier is 140. At 

this point the barrier option price is around 29 as well. But at the time the 

barrier is hit, the portfolio still has a value around 30 on the other hand barrier 

option has a value of 0 which in turn cause extremely high error terms. This 

kind of behavior affects the success of the hedging such that as the barrier 

level decreases SD of error increases. More hitting cases with discontinuities 

occur around strike price. 

Table 4 is the graphical representation of the results above. As it can 

be  seen  from the  graphs  where  the  barrier  value  is  around  160  standard 

deviation and mean of the error terms are near zero. As barrier level gets 

closer to the strike price then the standard deviation appears to be around 10 

which is totally not an acceptable number for a hedging strategy.

2.3.2.2 Mixed Delta Hedging

Since large part of the error in the pure delta hedging is due to the kink in the 

payoff  function off  the  plain  vanilla  call,  this  error  can  be  eliminated  by 

buying one plain vanilla call at the strike price equal to the barrier option as 

mentioned in the first chapter. Consequently the delta of the strategy is give 

by 2.3.1. 

)()()( callbarriermixed ∆−∆≡∆                                                                2.3.1

By using  delta  in  2.3.1,  residuals  are  delta  hedged  with  the  same 

parameters that are used for the pure delta hedging.

2.3.2.2.1 Down and Out Case

Simulation study is done for the same barrier levels as in the pure delta case. 

Only difference is the change in delta that is used during the hedging.  Results 

are given in table 2.9 and 2.10.
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Table 2.9:Results for down&out mix delta hedging

Barrier Real price Mean value of 

error

Standard deviation of 

error
95 3.326043 0.0002084342 0.06477233
90 4.852340 -0.0006053655 0.02747667
85 5.387124 -0.000001008832 0.01071951
80 5.521628 -0.000001352101 0.003268369
75 5.544258 -0.000000710509 0.0006085129

Table 2.10:Results for increasing time interval for mix delta hedge

Hedging  time step (Barrier=90) SD of errors
126(every two working day) 0.02747667
252(every working day) 0.01900768
504(two times every working day) 0.01328525
1008(four times every working day) 0.009168254
2016(eight times every working day) 0.006607005

Figure 2.4:Mean and Deviation of Errors for Different Barriers 
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By looking to table 2.9 it is seen that the mean value is much smaller 

than the case in pure delta hedging. It is almost around zero. Moreover there 

is a high improvement in the standard errors of the estimates. Standard errors 

are more than 5 times less compared to the pure delta hedging. This proves 

that the kink in the delta of the barrier option is mainly from the plain vanilla 

part. Moreover by eliminating the delta of the plain vanilla I have received a 

decreasing standard error with barrier level. 

Figure 2.5:Mean and Standard Deviation for Errors for Increasing 

Time Intervals

Figure  2.5  illustrates  that  increase  in  time  intervals  decrease  the 

standard deviation of the hedge error. Ie there is a SD around 2%when the 

time interval  is  126 days,  every two working day,  while  the  error  that  is 

observed is almost zero as the number of replication goes to 2000 times, eight 

times every working day. Of course this result is not very surprising because 
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it is a known fact for any kind of dynamic hedging that as the number of time 

intervals that is taken increased the performance of the hedge increases. This 

point is one of the most argued assumptions of the dynamic hedges as well 

because in real life it is not possible to make infinitely many time intervals.

2.3.2.2.2 Up and Out Case

Similar arguments can be found for up and out mix hedge as well. Table 2.11 

is a short summary what I have obtained for different barrier levels.

Table 2.11:Results for up&out mix delta hedging

Barrier Real price Mean value of 

errors

Standard deviation 

of errors
150 3.512527 9.26751e-05 0.5629783
145 2.929400 0.01033533 0.7535478
140 2.276883 -0.01200034 0.8033402
135 1.600082 0.005614266 1.134652
130 0.9684055 0.02243552 1.59919

Again even the mix delta hedge does not remove the problems caused 

by the discontinuity of the up and out call option at  the barrier level.  The 

results are almost the same with the results of pure delta hedging.

2.3.3 Static Hedging Strategies

2.3.3.1 Calendar Spread

Through  the  simulation  study below the  calendar  spread  of  DEK is  used 

which has the idea to force the payoff of the barrier option to 0 around the 

barrier level with using different combinations of plain vanillas with different 

strike prices.
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2.3.3.1.1 Down and Out Case

To construct the simulation for the down and out case it is assumed that a 

plain vanilla call option with strike price equals to the strike of down&out 

call option and expiration date which is again the same with the down&out 

call is sold. While doing this transaction 4 plain-vanilla puts with strike prices 

equal to the barrier level are bought. But unlike plain vanilla call these puts 

have different expirations which are 1, 0.75, 0.5, 0.25 times the maturity of 

the down&out call option respectively. The weights of the put options that are 

bought are constructed by using the algorithm explained in the first chapter. 

The value of constructing such a portfolio with the weight given in table 2.12 

and it is 4.785633. The value of the barrier option at time 0 is 4.8523. So the 

error at the beginning is 0.066667. 

Also one can see in Table 2.12 the weights and the expenses that are 

needed to construct DEK calendar spread. Figure 2.6 is an illustrative graph 

that  shows how calendar  spread  works.  The graph is  constructed  for  252 

equal time intervals. So the maturities of the puts are 63,126, 189, and 252. 

The error that is obtained during the life of the option is the smallest at the 

beginning.  But  after  the  first  option  expiries  its  gets  around  0.15  and 

fluctuates at that value till the end of the time that down and out call expiries.

Table 2.12: Results for down&out DEK calendar spread

Weight Strike Maturity Price
1*Call 110 1 5.546741

-0.03420489*Put 90 1 -0.08487433
-0.1650233*Put 90 0.75 -0.3260472
-0.1860512*Put 90 0.5 -0.2515123
-0.1705399*Put 90 0.25 -0.09867438

Value of Portfolio 4.785633
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Figure 2.6:Calendar Spread

It was mentioned before that if one increases the plain vanillas taken, 

then the strategy becomes a perfect hedge. Taking more plain vanillas means 

decreasing the time distance between puts for DEK calendar spread. Table 

2.13 shows how this relation works. For example the value of the portfolio is 

4.7856 when 4 puts are used to hedge the call. As the number of puts used for 

the spread increases then the portfolio value approaches to the barrier option 

price. ie the value of the portfolio when 12 put taken is 4.8391 which is just 

1% less than the real price. Also while the number of puts taken increases the 

standard deviation of the errors decrease. For example standard deviation of 

12 puts is nearly 4 times less than the 4 puts case and is nearly zero. One last 

thing to mention is the mean values which also decreases and becomes less 

than 1 percent after 5 puts.
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Table 2.13: Results for down&out DEK calendar spread

Number of 

options

Portfolio 

value

Mean value of 

errors 

Standard deviation 

of errors
3 4.752915 -0.0208227 0.02488744
4 4.785633 -0.01339361 0.01687666
5 4.803933 -0.001758020 0.01656511
6 4.815303 0.003540346 0.01502267
7 4.822894 0.004519392 0.01236491
8 4.828238 0.004047468 0.009679059
9 4.832155 0.003713828 0.00802814
10 4.835121 0.003007378 0.006451549
11 4.837427 0.002502163 0.00545995
12 4.839153 0.002210231 0.00461457

2.3.3.1.2 Up and Out Case

Like the previous simulations up and out case is a bit problematic in this case 

as well. In order to construct the simulation of DEK approach for up and out 

case it is assumed that again a plain vanilla call option with strike price and 

expiration  date,  equal  to  the  strike  and expiration  of  up&out  call  is  sold. 

Different from down&out case, 12 plain vanilla calls with strike prices equal 

to the barrier level are bought. The idea about the expiration of these calls and 

weights are the same like down and out case. The value of constructing such a 

portfolio with the weight given in table 2.14 and it is 2.481337. The value of 

the barrier option at time 0 is 2.277. So the error at the beginning is 0.204. 

Moreover it is seen in Table 2.14 that the calls which have less maturity has 

less weight on the portfolio and their contribution is very small compared to 

the ones with maturity equal to up&out call.

Figure 2.7 show the error obtained during the life of the option. It can 

be seen from the graph that even though very small time intervals are taken to 

hedge the call error explodes as the options gets close to the expiration. And it 

explodes in the end. 
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Table 2.14:Results for up&out DEK calendar spread

Weight Strike Maturity (months) Price
1*Call 110 1 5.546741

-8.78366834*Call 140 1 -6.07033
3.86844096*Call 140 11/12 2.121116
1.31730262*Call 140 10/12 0.5523386
0.65089526*Call 140 9/12 0.198943
0.38597922*Call 140 8/12 0.08065678
0.25493789*Call 140 7/12 0.0333192
0.18080306*Call 140 6/12 0.01298086
0.13487280*Call 140 5/12 0.00434941
0.10448389*Call 140 4/12 0.001076084
0.08335004*Call 140 3/12 0.0001418492
0.06806551*Call 140 2/12 3.915823e-06
0.05665622*Call 140 1/12 2.507307e-10

Value of Portfolio 2.481337

Figure 2.7:Error for Calendar Spread 

One last thing to mention is the success of the strategy if the number 

of  options  taken increased.  Table  2.15  is  the  summary  of  the  means  and 
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standard deviations of errors respective to the number of options that is taken. 

It is seen that as the options taken increased then the Standard deviation gets 

smaller. However the change in SD is very small compared to the down&ut 

case.

Table 2.15:Results for up&out DEK calendar spread

Number 

of options

Portfolio 

value

Mean value of 

errors 

Standard deviation 

of errors
4 2.828615 0.1976777 1.094790
5 2.73168 0.1832293 1.127013
6 2.663754 0.1580366 1.115838
7 2.613534 0.1300902 0.8874873
8 2.574899 0.1289557 1.033159
9 2.544254 0.1047604 0.9054844
10 2.519353 0.0990386 0.8858212
11 2.498717 0.1003617 0.7974267
12 2.481337 0.0912353 0.7878372

2.3.3.2 Strike Spread

The strike spread approach that is used in the following study is Carr&Chou 

approach.  The  idea  is  trying  to  force  the  value  of  the  portfolio  that  is 

constructed  to  0  around  the  barrier  by  buying/selling  plain  vanillas  with 

different strikes. 

2.3.3.2.1 Down and Out Case

For the down and out case the strategy can be constructed by buying one call 

at time 0 with maturity T and strike price equal to the strike of the underlying 

barrier option. At the same time puts with maturity T and strike prices lower 

then  barrier  are  sold  so  that  the  price  is  forced  to  0  among  the  levels 

defined(lower than barrier again).  Finding the weights of the puts is more 

complex than the calendar spread but it is still easy and described in detail in 
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chapter 1. The price of constructing such a portfolio is found to be 4.79 for 

down and out case.

Table 2.16 shows the weights and the corresponding prices for constructing 

strike  spread.  The  strike  prices  are  chosen  such  that  they  are  around

63.73
2

=
K
B .  The  contributions  of  the  puts  are  not  very  high because  the 

match points for constructing the hedge are chosen as: minus one the strike of 

puts. Since in BSM there are no jumps the values can not go far lower than 

the barrier which means it can not reach the matching points any time through 

the life of the option. Moreover the strategy has a mean error of -1.2% and 

standard deviation error of 1.6%. Again increasing the number of puts taken 

with different strikes will increase the efficiency of the strategy. If infinitely 

many puts taken with infinitely many matching points then the hedge will be 

a perfect hedge

Table 2.16: Results for down&out C&C strike spread

Weight Strike Maturity Price
1*Call 110 1 5.546741

-3.680654079*Put 72 1 -0.7662671
0.017560624*Put 73 1 0.004381155
0.011497392*Put 74 1 0.00341625
0.005912212*Put 75 1 0.002079772

Value of Portfolio 4.790351

2.3.3.2.2 Up and Out Case

For the up and out case the maturities and computation of the weights are the 

same  with  the  down&out  case.  But  there  are  two  differences  in  the 

construction of the portfolio. Firstly plain vanilla calls are taken instead of 

plain vanilla puts, secondly the matching points are chosen plus one of the 

corresponding strike prices. CC strike spread costs 2.46 for up&out case.
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Table  2.17  shows  the  weights  and  the  corresponding  prices  for 

constructing strike spread. The strike prices are chosen such that they start 

just above the barrier. The contributions of the first two calls are the largest. 

The others are 100 times smaller when compared to the first two. The strategy 

has a mean error of 8% and standard deviation error of 47%. 

Table 2.17:Results for up&out C&C strike spread

Weight Strike Maturity (months) Price
1*Call 110 1 5.546741

-59.80136814*Call 140 1 -41.32829
59.96933021*Call 141 1 38.35004
-0.02973914*Call 142 1 -0.01759057
-0.02884226*Call 143 1 -0.01577299
-0.02797772*Call 144 1 -0.01414010
-0.02714416*Call 145 1 -0.01267352
-0.02634027*Call 146 1 -0.01135667
-0.02556481*Call 147 1 -0.01017458
-0.02481661 *Call 148 1 -0.009113714
-0.02409455*Call 149 1 -0.008161885
-0.02339756*Call 150 1 -0.00730809

Value of Portfolio 2.462200

2.3.4 Summary of the Hedging Results

Different hedging techniques are investigated in chapter 2 with BSM. Table 

2.18 is the summary what is obtained for specific barrier levels for different 

hedging strategies.  The results  for  are  such that  static  hedging strategies 

perform  better  or  at  least  with  the  same  performance  that  of  dynamic 

strategies

The  accuracy  when it’s  passed  from delta  to  mix  delta  is  5  times 

higher. This result shows that most of the error occurred in delta hedge is 

because of the kink in plain vanillas delta. Moreover taking only 4 plain 

vanilla options is enough to have better results than the mix hedge for static 

ones. Static hedges have accuracies around two times more than the mix 
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hedge. If one consider the cost of constructing a static hedge portfolio in 

real market, it is definitely more acceptable than the dynamic ones in BSM. 

For the up and out case static hedging does not remove the exploding 

Greeks problem. Still the error terms are too high and risky. The standard 

deviations  vary  from  %50  to  %100.  This  is  because  with  taking  plain 

vanillas the discontinuity problem of up and out call is not solved, it is just 

shifted from barrier to strike price K.

Table 2.18: Summary of results for different hedging techniques

BLACK SCHOLES MODEL

Down and out call B=90 Up and out call B=140

HEDGE M Price Mean SD Price Mean SD

Delta 4.8523 0.1% 10% 2.2772 -0.1% 105%

Mix Delta 4.8523 -0.1% 2.7% 2.2772 1% 80%

STR-Static 4.7903 -1.2% 1.6% 2.4622 8% 47%

CAL-Static 4.7856 -1.3% 1.6% 2.4813 9% 78%
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CHAPTER 3

PRICING AND HEDGING IN ARCH 
TYPE AND SV MODELS

3.1 Introduction

Volatility  is  the  most  basic  statistical  risk  measure.  It  can be  used for  any 

purpose from measuring the risk of a derivative or the risk of a portfolio of 

instruments  including  this  derivative.  While  it  can  be  expressed  in  many 

different ways, the most common one which is used in finance is simply the 

standard deviation. 

The measurement of fluctuation and movement of a price series is said 

to be volatility of the series. Intuitively, a series that fluctuates a lot or has high 

volatility  includes  more  risk.  For  this  reason,  volatility  becomes  a  major 

market parameter to which key concepts in risk management and derivatives 

pricing are based upon.

However in the BSM, the volatility of the underlying is assumed to be 

constant which constructs the weakest part of the famous model. Hence, it is a 

very logical  question  how to  devise a  method where one  can estimate  and 

forecast a reasonable volatility. 

The popular  method of  estimating  volatility  is  deducing the  implied 

volatility. Implied volatility of an option is simply the volatility implied by the 
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real market price of the option based on the BSM. This method of estimating 

volatility has advantage on estimating volatility directly from historical price 

changes however implied volatility is found to give rise to a skew or smile 

depending on the market. Moreover implied volatility only gives the current 

market estimate of volatility.  It  gives no insight what is going to happen in 

future.  Given  that  on  of  the  most  important  component  of  option  pricing 

theory,  often  practitioners  and  investors  require  more  general  picture  of 

volatility.

It  is  known  that  volatility  is  higher  in  some  periods  while  more 

stationary in others. And it is also known that high volatility periods tend to 

make clusters.  For this reason one would expect  to  some extend there is  a 

correlation between present and future volatilities. Moreover volatility tends to 

revert to some long run average known as mean reversion which ensures that 

the volatility processes are statistically stationary. These two reasons canalize 

researchers develop models to estimate volatility which both includes former 

persistency and the mean reversions at the same time. 

The  first  idea  comes  from  Engle  (1982)  which  is  called  the 

autoregressive conditional  heteroskedasticity (ARCH) model  to estimate  the 

volatility of UK inflation. The idea was developed by Bollerslev (1986) to a 

more generalized form of ARCH model which is called Generalized ARCH 

(GARCH). The structure of the parameters of GARCH model leads Bollerslev 

and  Engle  (1986)  to  develop  another  model  called  Integrated  GARCH 

(IGARCH) which has a different mean reversion but still reasonable approach. 

One  important  contribution  to  the  GARCH  family  volatility  modeling  is 

developed by Nelson (1991) with Exponential GARCH (EGARCH). 

One alternative approach of ARCH-type volatility modeling is to allow 

volatility  to  depend  not  on  the  past  observations  but  on  some  unobserved 

components or latent structure. Taylor (1986) developed the most famous one 

called Stochastic Volatility Models (SV). There are some extensions developed 

to generate more realistic SV models like the ones which include heavy tails, 

jumps as well.  These kinds of extensions and comparisons are examined in 
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Kim, Shephard, Chib (1998) in detail. The statistical aspects of all the models 

that up till now are investigated by Shephard(1996) in detail.

3.2   Conditional Heteroscedastic Models

3.2.1     ARCH Model

3.2.1.1 Description of the Model

The ARCH by Engle (1982)  is  the first  model  that  provides  a systematic 

framework for volatility modeling. The model uses the log returns of the asset 

that is chosen. Two points to be mentioned about Arch Model is that;

• Mean corrected asset return tX  is serially uncorrelated but dependent.

• The dependence of  tX  can be described by quadratic function of its 

lagged values.

So with the following information the ARCH (p) model is given in 3.2.1;

1

2 2 2
0 1 1

log( ) log( )

where , (0,1), 0 0
t t

t t t
iid

t t t t p t p i

X S S

X X X for iσ ε σ α α α ε α

−

− −

= −

= = + + + > >K :

3.2.1

In general tε is assumed to be Standard Normal distributed but if one 

wants to include jumps in the model it is also possible to assume  tε  to be 

Student-t distributed as well. It can be seen from the model that under the 

ARCH frame work, large shocks tend to be followed by another large shock. 

This future of ARCH is similar to the volatility clustering of observed stock 

price returns.
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3.2.1.2 ARCH (1)

Since the concern of the simulation study will be ARCH (1) it is enough to 

give some very general properties of this model. The model is given in 3.2.2;

2 2
0 1 1 0,1where , (0,1), 0

t t

iid

t t t tX Xσ ε σ α α ε α−= = + >:                             3.2.2

For  0 10 0 1andα α> ≤ <  the model is geometrically ergodic and has 

finite  second  order  moments.  The above  is  an  important  point  because  it 

makes it much easier to estimate the parameters µ µ
0 1,α α .

3.2.1.3 Weaknesses of ARCH Model

In addition to its properties mentioned above there are some negative effects 

of estimation in ARCH model such as;

• It is assumed in the model that both the positive and negative shocks 

have the same effect on volatility because of taking the square of the 

previous log stock price. In practice it is know that the response of 

stock price to positive and negative shocks is different.

• The model is likely to over predict the volatility because of its slow 

response to large shocks.

• It has some restrictive assumptions of the parameters that are 

estimated to have the higher order moments. 

• Model just gives a general idea about what is happening to volatility 

estimates. It does not include any details like what or how much of 

something has an effect on the volatility that is estimated.
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3.2.1.4 Pricing in ARCH (1)

One  can  use  two  different  innovation  terms  for  the  simulation  study  for 

ARCH (1).  First  one is  standard normal  innovations.  For  standard normal 

innovations  no  additional  parameters  are  needed.  Second  one  is  student-t 

innovations. In order to construct student-t innovations, one needs reasonable 

degrees of freedom (df). The smaller the df the larger the frequency of the 

jumps and the jump size that occur during the simulations. 

All the parameters that are used in the simulation study are assumed to 

be under risk- neutral measure¤ . Construction of the simulation for pricing 

is;

• Simulate  stock  price  paths  assuming  the  parameters  are  ¤  

parameters.

• If the barrier is hit barrier option price ends as 0 while plain vanilla 

continues till the end of expiration.

• At expiry calculate the price of both barrier option and plain vanilla. 

Keep in mind that even if the barrier is hit, plain vanilla continues its 

life.

• Do the simulation for many times say10 ^ 5 times.

• Take the average of both barrier option and the plain vanilla prices 

and register as the price of the derivative. 

Spot price, strike price, interest rate, barriers for both up and down, 

expiry  and  number  of  hedging  steps  are  same  as  in  BSM  for  pricing 

simulation. On the other hand number of replications for the simulation is 
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constructed for 10^5 times and ARCH (1) model given in 3.2.3 is used to 

simulate  stock  prices  which’s  parameters  are  assumed  to  be  under  risk- 

neutral  measure¤ .  Also in order to have rare jumps with relatively small 

jump size, df is chosen to be 10 for the student-t innovations.

2 2
10.0002 0.45 where either normalor student-t

t t

iid

t t t tX Xσ ε σ ε−= = + :

3.2.3

The R code for pricing down and out call is the following;

source("Barrieroption.R") 1

pricing<-function(spot,r,expiry,strike,barrier,nohedges,nofrep,sigmas,alfa)

{

st<-rep(spot,nofrep)

dt<-expiry/nohedges

hit<-rep(1<0,nofrep)

tau<-rep(0,nofrep)

stau<-st

yt<-0

for(i in 1:nohedges) 

{

sigmat<-sigmas+alfa*yt^2

yt<-sqrt(sigmat)*rnorm(nofrep) 

## for student-t innovations use  rt(nofrep,10) instead of  

rnorm(nofrep)##

st<-exp(yt)*st

oldhit<-hit

hit<-hit|st<barrier

tau[!hit]<-i*dt
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stau[!hit]<-st[!hit]

update<-oldhit==FALSE&hit==TRUE

stau[update]<-st[update]

}

barrieroption<-exp(-r*(expiry))*pmax(stau-strike,0)

calloption<-exp(-r*(expiry))*pmax(st-strike,0)

print(mean(barrieroption))

print(mean(calloption))

}

Figure one shows two different simulations of ARCH (1) model. It 

can be seen from figure 3.1 that student-t returns has wider interval  when 

compared with normal returns. It is four times wider than normal innovations 

in the positive side and three times in the negative side.
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Figure 3.1:Normal versus Student-t Innovations
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By looking table 3.1 it is seen that, error term(computed same as in 

BSM simulations) when compared with BSM prices is %2 for plain vanilla 

call,  3% for  down and out  case  and 5% for  up  and  out  case  for  normal 

innovations. On the other hand for student-t innovations errors increase to 

40%, 28%, and 15% respectively. Which means it is more difficult to find the 

price of options with jumps. Moreover if one includes jumps in the process, 

value of the option increases for the down and out case. However for up and 

out case it decreases. This is because if there is a big jump which happens 

above the barrier then the probability of option ending worthless increases on 

the other hand jumps below the strike does not have the same effect.

Table 3.1:Pricing Summary for ARCH (1)

Innovations With
Normal Student-t 

Down &out call with B=90 4.692304 6.219885
Plain vanilla call 5.339224 7.768752

Up &out call with B=140 2.146543 1.926766

3.2.1.5 Hedging in ARCH (1)

For hedging study, all parameters are again assumed to be under risk- neutral 

measure¤ . Spot price, strike price, interest rate, dividend, barriers for both 

up and down, expiry, number of hedging steps and number of replications for 

the study are same as in BSM. However there is an additional problem about 

the dynamic hedges when it comes to models other than BSM. The problem 

is “how to find the delta” of the option in order to construct dynamic hedging. 

The  easiest  approach  is  using  the  delta  of  the  BSM  with  employing  an 

implied volatility. But as mentioned earlier there are some problems that can 

be  caused  by  using  implied  volatility.  So  instead  of  implied  volatility, 

volatility in 3.2.4 is plugged into the simulation which allows volatility to 
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fluctuate with the log returns. As seen from the figure 3.2 both negative and 

positive shocks can be seen in the volatility.

2

2

 where;

0.18,
as defined in 3.2.3;
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Figure 3.2:Log Returns and Volatility Paths

Example: Construction of the R code for simple delta hedging

Construction of codes for simple delta hedging strategy for down and out 

call can be categorized in three steps although these steps are connected in 

coding. 
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First step, which can be considered as transactions at time zero, is the 

one that the prices of the barrier options consequently the initial investments 

are found. Also first delta of the option is found and plugged at this stage. 

The first bank account and portfolio is constructed at this stage as well.

Second step is simulating the stock price and checking whether the 

barrier is hit or not also plugging again the relevant delta. Portfolio is adjusted 

dynamically at this stage.

 Third  step  is  finishing  the  stock  price  simulation,  liquidating  the 

portfolio and finding the price of the barrier option, the error of the hedge 

strategy, the mean and the variance of the hedge error relative to the price. 

i. Construction of the code at time 0;

source("Barrieroption.R")

Deltaarch<-

function(spot,r,q,expiry,strike,barrier,sigma,nohedges,nofrep,sigmas,alfa)

{

dt<-expiry/nohedges

st<-rep(spot,nofrep)

sigmat<-rep(sigmas,nofrep)

alfa<-rep(alfa,nofrep)

initialinvestment<-StandardBarrier("cdo",spot,strike,barrier,0,expiry,r,r-q,  

sigma+sqrt(sigmas))

deltabarrier<-

delta.StandardBarrier("cdo",st,strike,barrier,rebate=0,expiry,r,r-q,  

sigma+sqrt(sigmas))

nofstock<-deltabarrier

portfolio<-rep(initialinvestment,nofrep)

bankaccount<-portfolio-nofstock*st

hit<-rep(1<0,nofrep)

tau<-rep(0,nofrep)
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stau<-st

s.sigmat<-sigmat

yt<-0

The initial investment and the delta for the barrier options are obtained 

using BSM model. Volatility used in the BSM is the one as defined in 3.2.4. 

ie sigma is assumed to be 0.18 and volatility of volatilities assumed to be 

0.0002.  Consequently  volatility  of  the  BSM  model  is  0.1941  and  initial 

investment, which is the price of barrier option, is found to be 4.7113. 

ii. Construction of the code at time t;

for(i in 2:nohedges) 

 {

sigmat<-sigmas+alfa*yt^2

yt<-sqrt(sigmat)*rnorm(nofrep)

### For student-t innovations use rt(nofrep,10) instead of rnorm(nofrep)###

st<-exp(yt)*st

oldhit<-hit

hit<-hit|st<barrier

tau[!hit]<-i*dt

stau[!hit]<-st[!hit]

s.sigmat[!hit]<-sigmat[!hit]

update<-oldhit==FALSE&hit==TRUE

stau[update]<-st[update]

portfolio<-nofstock*stau*exp(q*dt)+bankaccount*exp(r*dt)

deltabarrier[!hit]<-

delta.StandardBarrier("cdo",stau[!hit],strike,barrier,rebate=0,expiry-dt*(i-

1),r,r-q, sigma+sqrt(s.sigmat[!hit]))

nofstock[!hit]<-deltabarrier[!hit]

bankaccount[!hit]<-portfolio[!hit]-nofstock[!hit]*st[!hit]

}

63



In this part, price paths are simulated and whether the stock price hits 

the barrier or not is checked. The delta of the option is found using BSM 

model again. The volatility that is used in BSM calculations is not constant 

and  assumed  to  follow the  pattern  in  3.2.4.  The  portfolio  is  dynamically 

adjusted using BSM delta if the barrier is not hit. If the barrier is hit process 

stops for that path. 

iii. Construction of the code either at T or when the barrier is hit;

sigmat<-sigmas+alfa*yt^2

yt<-sqrt(sigmat)*rnorm(nofrep)

## For student-t innovations use rt(nofrep,10) instead of rnorm(nofrep)##

st<-exp(yt)*st

oldhit<-hit

hit<-hit|st<barrier

stau[!hit]<-st[!hit]

s.sigmat[!hit]<-sigmat[!hit]

update<-oldhit==FALSE&hit==TRUE

stau[update]<-st[update]

portfolio<-nofstock*stau*exp(q*pmin(expiry-

tau,dt))+bankaccount*exp(r*dt)

barrieroption<-StandardBarrier("cdo",stau,strike,barrier,0,expiry-tau,r,r-q,  

sigma+sqrt(s.sigmat))

error<-(portfolio-barrieroption)*exp(-r*tau)

print(initialinvestment)

print(mean(error/initialinvestment))

print(sqrt(var(error/initialinvestment)))

plot(error,type="l",xlab="#of 

errors",ylab="Error",main="Barrier=90",col="red")

}
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At the beginning of the code one last stock price path is simulated 

since the simulation in part two is started from 2. This is done for the cases 

where barrier is  not hit  till  maturity.  The prices of the barrier  options are 

found simply by BSM model. The volatility of the model is inserted as in 

3.2.4. At the end of the process, portfolios are liquidated and the error term is 

found by simply subtracting the portfolio value from barrier option price, and 

discounting the value with the appropriate rate. The mean and the variance of 

the error are found with respect to the initial investment found. 

A short description of R codes for other types of hedging strategies:

For the  mix delta hedge,  an additional plain vanilla call  price and delta is 

needed. These values of call price and delta can be found using BSM model 

with  employing  the  volatility  as  in  3.2.4.  All  the  assumptions  and  the 

parameters are same with simple delta hedge for this strategy as well.

For the strike spread, portfolio construction in the first step is the same 

as in BSM with the same strike prices and same maturities. Only difference is 

the volatility that is used in the model which is assumed to be 0.1941. This 

difference leads small changes in the weights of the puts and/or calls taken for 

the hedge. No dynamic adjustment is needed for this case so there is no such 

problem as delta. At time T BSM is used with volatility given in 3.2.4 to find 

the price of plain vanilla and barrier options. 

For calendar spread the maturities are the same with the ones used in 

BSM  model.  Only  difference  again  is  the  volatility  employed  at  the 

beginning. Moreover no delta is needed for this strategy again. At time T 

BSM is used with volatility given in 3.2.4 to find the price of plain vanilla 

and barrier options.

By looking the results of Table 3.2 and Table 3.3 it is seen that the 

static hedging strategies perform better than the dynamic ones. 

For the model with normal innovations, SD of the down and out call 

with delta hedge is 23.5. Passing from delta to mix hedge one has 4 times less 

SD. Moreover  the accuracy of the static  hedges is  nearly two times more 
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when compared to the dynamic ones. When it comes to up out call the strike 

spread performs the best with the lowest accuracy which is three times better 

than the delta hedge

When moved from normal to the student-t innovations, static hedges 

still perform better. Again strike spread performs the best for up and out case 

while calendar spread performs best for down and out. Largest increase in the 

mean value happens in mix delta hedging strategy when it is passed form 

down to  up  case.   Standard  deviations  increase  150% when compared  to 

normal innovations for up and out case and 200% for down and out case for 

all hedges. 

Table 3.2:Hedging Summary for ARCH (1) with normal 

innovations

ARCH(1)Model with standard normal innovations

Down and out call B=90

HEDGE M Price Mean SD

Delta 4.7113 8.8% 23.5%

Mix Delta 4.7113 2.8% 6.8%

STR-Static 4.6730 -1.9% 3.7%

CAL-Static 4.6488 -0.6% 2.6%

Up and out call B=140

Price Mean SD

2.3328 9.3% 112%

2.3328 38% 131%

2.5232 10% 48%

2.5285 6.2% 96%

3.2.2 GARCH Model

3.2.2.1 Description of the Model

Although ARCH model  is  a  very simple  model,  it  requires  many lags  to 

adequately  describe  the  process.  As  a  result  of  many  lags  one  needs  to 

estimate many parameters as well.  This complexity of ARCH modeling is 
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reduced  with  the  introduction  of  GARCH  model  by  Bollerslev  (1986). 

GARCH (p,q) model is formulized in 3.2.5.

As  used  in  ARCH  model  different tε ’s  like,  Standard  Normal  or 

Student-t distributed can be used in GARCH. In addition to simple GARCH 

model there are some extensions of the model which is discussed in more 

detail later. 

Table 3.3:Hedging Summary for ARCH (1) with student-t 

innovations

ARCH(1)Model with student-t innovations with df=10

Down and out call B=90

HEDGE M Price Mean SD

Delta 4.7113 -28% 45.6%

Mix Delta 4.7113 8.6% 13.9%

STR-Static 4.6730 3.2% 8%

CAL-Static 4.6488 -0.5% 5.4%

Up and out call B=140

Price Mean SD

2.3328 32% 184%

2.3328 141% 231%

2.5232 21% 67%

2.5285 2.7% 159%
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3.2.2.2 GARCH (1, 1)

GARCH (1,  1)  is  usually  enough  to  describe  the  behavior  of  a  volatility 

series. So in the simulation GARH (1, 1) is employed with the structure in 

3.2.6.
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                                                                            3.2.6

The  statistical  estimation  of  parameters  of  a  GARCH  process  is 

uncomplicated as one can use Gaussian quasi-maximum likelihood. Moreover 

by looking the model it can be concluded;

• A large  1tX −  tends  to  cause tX  which  is  the  well  known behavior  of 

volatility clustering

• The  tail  distribution  of  the  process  is  heavier  than  that  of  normal 

distribution

• Model provides a simple parametric function that can be used to describe 

the volatility evolution.

3.2.2.3 Weaknesses of GARCH Model 

GARCH model has the same weaknesses as in ARCH model. For example 

the  positive  and negative shocks  still  have  the same effect  on the model. 

Moreover,  empirical  studies  of  high  frequency  financial  time  series  data 

reveals that the tail behavior of GARCH models remains too short even with 

standardized Student- t innovations.
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3.2.2.4 Pricing in GARCH (1, 1) 

Simulation  study  for  GARCH  (1,  1)  model  is  constructed  with  same 

innovation terms, assumptions and parameters used in ARCH (1) model. The 

only difference is  GARCH model its  self.  GARCH (1,  1) model  with the 

parameters given in 3.2.7 is used to simulate stock price paths. Study is again 

constructed for standard normal and student–t (with d.f=10) innovations. Also 

parameters are assumed to be under risk neutral measure¤ .

2 2 2
1 1

where either normalor student-t

0.000075 0.05 0.75
t t

iid

t t

t t t

X

GARCH X

σ ε ε

σ σ− −

=

= + +Ş

:
                                       3.2.7

By looking table  3.4 it  is  seen that,  error  term(found like in  BSM 

simulations) when compared with BSM prices is 3.6% for plain vanilla call, 

2.3%  for  down  and  out  call  and  4.7%  for  up  and  out  call  for  normal 

innovations. On the other hand for student-t innovations, errors increase to 

25%, 19%, and 14% respectively. Differences in simulated prices and BSM 

prices  are  high  when  jumps  are  included  in  the  model.  Moreover  when 

compared to ARCH (1) model, simulated prices are very close for normal 

innovations. For example GARCH (1, 1) price for plain vanilla is 5.341446 

while ARCH (1) is 5.339224. However for student-t innovations, effect of 

jumps is smaller in GARCH (1, 1) model when compared to ARCH (1). For 

example plain vanilla price in GARCH (1, 1) model is 6.937883 while in 

ARCH (1) price is 7.768752.

Table 3.4:Pricing Summary for GARCH (1, 1)

GARCH(1,1)
Normal Student-t

Down &out call with B=90 4.696828 5.774296
Plain vanilla call 5.341446 6.937883

Up &out call with B=140 2.168628 1.957688
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3.2.2.5 Hedging in GARCH (1, 1)

For hedging study, all the dynamic and static hedging strategy principles are 

same as in ARCH (1) model, also parameters are again assumed to be under 

risk-  neutral  measure¤ .  Spot  price,  strike  price,  interest  rate,  dividend, 

barriers for both up and down, expiry, number of hedging steps and number 

of replications for the study are same as in BSM. However volatility ( 2σ ) is 

numerically different from the previous model. For GARCH (1, 1), 2σ is 0.19 

instead of 0.18. This volatility is used because constant term or the variance 

of variances for GARCH (1, 1) model is smaller this time. GARCH (1, 1) 

parameters specified in the model described in section 3.2.7 are employed 

again for simulating stock price paths. Moreover the volatility approach for 

calculation of delta which was used for ARCH (1) is used again. 

2 2 2 2 2
1 1where 0.19 & 0.000075 0.05 0.75t t t t tXσ σ σ σ σ σ∆

− −= + = = + +  3.2.7

From table 3.5&3.6 it is seen that static hedges performs better for 

both models. When compared with the BSM model, Standard Deviations of 

dynamic hedges in GARCH (1, 1) are a bit higher.

For the model with normal innovation term, simple delta hedging has 

the lowest accuracy with 13% when compared with all the other strategies. 

Moreover static hedges have more accuracy then the mixed delta hedge if one 

looks to the SD’s. Calendar spread performs best for the down and out case 

with lowest  accuracy 1.3%. For the up and out case strike spread has the 

lowest SD with 42% and is the best. 

When  it  comes  to  student-t  innovations,  the  accuracy  of  dynamic 

models  lowered  nearly  twice.  The  means  of  the  static  hedges  remains 

relatively same when compared with the dynamic hedges for the down and 

out case. Largest loose in accuracy is in Delta hedging. If one looks to the up 

and out case there is a dramatic increase in the mean of mix delta hedge. 
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Strike spread is the best with SD 52% for up and out case. Calendar spread 

looses it is accuracy when it is passed from down& out to up& out case with 

an increase in SD from 1.7% to 109%.

Table 3.5:Hedging Summary for GARCH (1,1) with normal 

innovations

GARCH(1, 1)Model with standard normal innovations

Down and out call B=90

HEDGE M Price Mean SD

Delta 4.8205 -7.8% 13%

Mix Delta 4.8205 3.1% 3.6%

STR-Static 4.7643 -3% 3.4%

CAL-Static 4.7547 0.01% 1.3%

Up and out call B=140

Price Mean SD

2.2899 7.5% 99%

2.2899 32% 95%

2.4845 10% 42%

2.4924 4.3% 91%

Table 3.6:Hedging Summary for GARCH (1, 1) with student-t 

innovations

GARCH(1, 1)Model with student-t innovations with df=10

Down and out call B=90

HEDGE M Price Mean SD

Delta 4.8205 -21% 25%

Mix Delta 4.8205 6.7% 5.6%

STR-Static 4.7643 -3.6% 3.7%

CAL-Static 4.7547 0.4% 1.7%

Up and out call B=140

Price Mean SD

2.2899 24% 124%

2.2899 102% 136%

2.4845 15.9% 52%

2.4924 5.4% 109%
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3.2.3 Extensions of ARCH Type Models

3.2.3.1 IGARCH

All volatility models are expected to deal with real life data. However when 

GARCH model is employed for this purpose it often results with a strange 

outcome as it is often observed that parameters tend to sum up very close to 

one.

µ ¶
1 1

1
m n

i j
i j

α β
= =

+ ≈∑ ∑

This fact of GARCH model  is formulized by Engle and Bollerslev 

(1986) as IGARCH which has the following property; 

1 1
1

m n

i j
i j

α β
= =

+ =∑ ∑

Although this model makes sense in practical applications it consists 

some  difficulties  about  statistical  properties  since  the  process  has  infinite 

variance.

IGARCH model is interesting for pricing and hedging studies because 

in this model shocks are very persistent. For example a major positive shock 

followed by another one is important for up and out call hedging as dynamic 

strategies  are  effected from these kind of  behavior  negatively.  Simulation 

studies can be constructed easily with using estimated parameters sum up to 

one for all the hedging studies constructed before.

3.2.3.2 EGARCH

To overcome some weaknesses of GARCH model Nelson (1991) introduced 

a new model called EGARCH. With this model returns are no more has to be 

72



symmetric.  It  responds  non-symmetrical  to  shocks.  The  model  is  the  one 

given by 3.2.8.

The difference of the model from the previous ones is that conditional 

variance  is  modeled  as  a  function  of  variables  not  just  depending on  the 

squares the observations. The asymmetry of information is useful especially 

for dynamic hedging strategies because it allows the variance to respond more 

rapidly to falls in the market than the corresponding rises. Although model 

looks complicated it has nice statistical properties which are easy to find
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                             3.2.8

3.3 Stochastic Volatility Models

There are many ways to model variance changes. One way of modeling was 

to  let  the  conditional  variance  be  a  function  of  squares  of  previous 

observations  and/or  past  variances  which  is  called  the  Conditional 

Heteroscedastic models.

The basic alternative to ARCH-type modeling is to allow 2
tσ  depend 

on not on the past observations but on some unobserved components or latent 

structure. These types of models are called Stochastic Volatility (SV) models 

which  have gradually  emerged as  a  useful  way of  modeling  time-varying 

volatility with significant potential for applications, especially in finance

Definition: Given an iid sequence tε of random variables with zero mean and 

unit variance one can say that ty  is a stochastic volatility model if 

t tyt σ ε=
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where tσ  is a  stochastic process independent of tε . The volatility tσ  

usually is a Markov chain. One has to note that ARCH processes do not fit in 

to this definition as tσ  depends on 1ty −  and therefore 1tε −

3.3.1 Log Normal SV Model

3.3.1.1 Description of the Model

The simplest formulation of SV model is the log normal model as introduced 

in Taylor (1986) which is by 3.3.1.

( )
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1 1

2

1 2
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1
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t t

t t n t

y e t
h h

h N

β ε
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:

                                                                       3.3.1

ty  is  the  mean  corrected  return  on  holding the  asset  at  time t,  th  is  log 

volatility at time t which is assumed to be stationary for(׀Ф 1<׀ ) with  1h  is 

normally distributed with mean μ, and variance  
2

21
σ
− Φ

. For the simulation 

study the constant  scaling factor β is  chosen 1 so that  the parameter  μ is 

unrestricted  where  β=exp  (μ/2).  &t tε η  are  uncorrelated  standard  normal 

white  noise  parameters.  Ф  is  the  persistence  in  volatility  and  nσ  is  the 

volatility of lognormal volatility. 

The  model  above is  heavily  analyzed  in  literature  for  most  of  the 

statistical properties. Many Monte Carlo Markov Chain (MCMC) algorithms 

are developed to estimate and find the distribution of this  model.  A good 

example of these MCMC algorithms is given by Kim (1998)

74



3.3.1.2 Pricing in SV Models

In order to construct the simulation study for SV model, there is no need to 

add any parameters other than the model parameters its self which is given in 

3.3.2.  Again  a  student-t  distribution  can  be  used  to  model  a  more  tailed 

return. 

To  sum  up;  all  parameters  are  assumed  to  be  under risk  neutral 

measure¤  and simulation study is constructed with same innovation terms 

and  parameters  that  are  used  in  ARCH  (1)  model  other  than  the  model 

parameters  of SV model.  In the SV context,  Student-t  error-based models 

were used by Harvey, Ruiz and Shephard (1994). 
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                                                              3.3.2

By looking table 3.7 it is seen that SV model prices are approximately 

same with the simulated prices in the previous models. Again the price for up 

and out case with student-t innovations is less than the normal innovation up 

and  out  prices.  Moreover  opposite  relation  of  simulated  plain  vanilla  and 

down and out case prices still remain for the down and out case. 

Table 3.7:Pricing Summary for SV

Innovations With
Normal Student-t 

Down &out call with B=90 4.798011 5.881475
Plain vanilla call 5.437155 6.805012

Up &out call with B=140 2.104128 1.976563
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3.3.1.3 Hedging in SV Models

For hedging study, all the dynamic and static hedging strategy principles are 

same as in ARCH (1) model except; for simplicity in the construction of the 

code at time=0 BSM volatility is used. Spot price, strike price, interest rate, 

volatility, dividend, barriers for both up and down, expiry, number of hedging 

steps and number of replications for the study are same as in BSM. 

However for hedging in SV models the problem of finding a suitable 

delta  at  time t  for  dynamic  hedges still  remains.  Contrary to  ARCH type 

models this time a different volatility is plugged to the find delta of BSM 

model. The calculation of the delta is given in 3.3.3.
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                                                                    3.3.3

The summary of table 3.8&3.9 is that static hedging strategies perform 

better for both cases. 

For the model with normal innovations calendar spread performs the 

best for the down and out case with a SD of 1.5%. Strike spread has roughly 

the same result with mix delta hedge which are around 5-6%. Delta hedge has 

a very low accuracy with both having the highest mean and variance at the 

same  time.  However  for  the  up  and  out  case  strike  spread  defeats  the 

performance calendar spread with having the lowest SD 44%. Moreover mix 

hedging results  has lower performance than delta hedge results like in the 

previous models. Calendar spread has SD around 70% which is more than 

strike spread this time.
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When student-t  innovations are checked it  is  seen that  problematic 

results  are  generally means.  The SD’s remains roughly the same with the 

model with normal innovations. The most dramatic change in the means is 

again at the mix delta hedge. The best static hedging results for up and out 

case is strike spread with SD 54%. Then calendar spread follows with and SD 

of 84%. For down and out case calendar spread is best with SD 1.7%. There 

is a big difference between calendar spread and other models even the strike 

spread is 3 has three times less accuracy.

Table 3.8:Hedging Summary for SV with normal innovations

SV Model with standard normal innovations

Down and out call  B=90

HEDGE M Price Mean SD

Delta 4.8523 -7% 21%

Mix Delta 4.8523 1.6% 5.9%

STR-Static 4.7903 -4.6% 5.4%

CAL-Static 4.7856 -0.8% 1.5%

Up and out call B=140

Price Mean SD

2.2768 9.6% 111%

2.2768 30% 120%

2.4622 8.6% 44%

2.4813 5.9% 70%

Table 3.9:Hedging Summary for SV with student-t innovations

SV Model with student-t innovations with df=10

Down and out call  B=90

HEDGE M Price Mean SD

Delta 4.8523 -17% 28%

Mix Delta 4.8523 4.5% 7.2%

STR-Static 4.7903 -5.2% 5.8%

CAL-Static 4.7856 0.1% 1.7%

Up and out call  B=140

Price Mean SD

2.2768 20% 132%

2.2768 84% 158%

2.4622 12% 54%

2.4813 6.9% 84%
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3.3.2 Log Normal SV Model with Jumps

3.3.2.1 Description of the Model

Jump models are quite popular in continuous time models of financial asset 

pricing.  Keeping this  in  mind another  model  is  used  for  simulation  study 

which  is  log  normal  SV  model  that  contains  a  jump  component  in  the 

observation equation to allow for large,  transient  movements.  This  model, 

which is called SV model with jumps model is as given by 3.3.4.

In  the model  given by 3.3.4  tq is  a  Bernoulli  random variable  that 

takes  the  value  one  with  unknown probability  k and  the  value  zero  with 

probability1 k− . Moreover time-varying variable tk represents the size of the 

jump  when  a  jump  occurs.   Taken  together  t tk q  can  be  viewed  as  a 

discretization of a finite activity Levy process. Recent econometric work on 

SV models with jumps for parameter estimation, model checking, volatility 

estimation via filtering and model comparisons can be found on the paper by 

Nielsen and Shephard (2001).
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Figure 3.3 shows that returns of SV model with jumps has four times 

wider interval  on both at  positive and negative side of the graph then the 

model without jumps. Although rarely happening, these wider intervals are 

the  result  of  the  jumps that  occurs  during  the process.  These  jumps have 

78



direct  effect  on  both  pricing  and  hedging  results.  For  example  if  one 

remembers one of the requirements of simple delta hedging which assumes 

that the change of the price change called gamma should be low then it is 

understood better how important the effect of jumps for a process. Moreover 

for the strike spread that is constructed there was some matching points that 

the stock price is assumed to reach. But for a jump model these prices can be 

surpassed easily.
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3.3.2.2 Pricing in SV Model with Jumps

In order to price the barrier options in SV model with jumps; model in 3.3.5 

is used. All parameters are assumed to be under risk neutral measure¤  and 

simulation study is constructed with same innovation terms and parameters 

that are used in SV model other than the model parameters of SV model with 

jumps. 
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Table 3.10 is the summary of the pricing results in SV model with 

jumps. The prices that are found are higher than the model without jumps for 

both normal and student-t errors for down and out case. This is because if a 

jump occurs on the inactive side of the option ( tS K< ), this movement has 

no effect on the value since option is already worthless. Contrary if a jump 

occurs when tS K> , the value becomes even higher when compared to the 

model  without  jumps.  So up and out  prices  are  less  when jump effect  is 

added. One can also include the innovation effect like in the previous models 

as well. 

Table 3.10:Pricing Summary for SV with jumps

Innovations With
Normal Student-t 

Down &out call with B=90 4.950269 5.864632
Plain vanilla call 5.913776 7.072211

Up &out call with B=140 2.044065 1.791158
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3.3.2.3 Hedging in SV with Jumps

There  is  no  difference  with  the  model  without  jumps  in  either  hedging 

strategies  or  parameters  and  assumptions  of  the  strategies.  The  only 

difference is the model that is used. From table 3.11&3.12 it is seen that jump 

model with both innovations has higher results than the model without jumps.

For  the  case  of  standard  normal  innovations  the  SD’s  of  dynamic 

hedges are approximately one and half times the SV model without jumps. 

There are increases in the static hedges as well but it is small compared to the 

dynamic ones. Especially strike spread seems to be not effected by the jumps 

at the model at all with a change form 4.8 to 4.9. For the up and out case 

again the changes in the Static hedges are less when compared to the model 

without  jumps.  Again  strike  spread  performs  much  better  than  all  the 

strategies with a SD of 40%.

The results of student-t innovations are more or less the same. The 

accuracy  of  all  hedges  decreases  when compared  with  the  model  without 

jumps and the model with jumps with normal innovations. Especially there 

are large increases in the mean values. Strike spread performs best for both 

down&out and up&out cases.

Table 3.11:Hedging Summary for SV with jumps and normal 

innovations

SV Model with jumps and standard normal innovations

Down and out call  B=90

HEDGE M Price Mean SD

Delta 4.7438 -11.7% 28.5%

Mix Delta 4.7113 3% 9.1%

STR-Static 4.7005 -4% 4.8%

CAL-Static 4.6804 -0.7% 2.9%

Up and out call  B=140

Price Mean SD

2.3203 14% 140%

2.3203 58% 158%

2.5008 9.8% 40%

2.5181 6.5% 80%
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Table 3.12:Hedging Summary for SV with jumps and student-t 

innovations

SV Model with jumps and student-t innovations with df=10

Down and out call  B=90

HEDGE M Price Mean SD

Delta 4.7438 -21% 36%

Mix Delta 4.7113 5.8% 9.5%

STR-Static 4.7005 -4.4% 4.9%

CAL-Static 4.6804 -0.9% 3.0%

Up and out call  B=140

Price Mean SD

2.3203 25% 157%

2.3203 108% 185%

2.5008 10% 42%

2.5181 5.2% 114%

3.3.3 Extensions of SV Model

The  study  constructed  for  SV  models  can  be  extended  in  some  other 

directions as well. The most remarkable one is the SV models in which the 

parameters are allowed to switch among a given number of states according 

to a Hidden Markov process. The Markov model can be formulized as in 

3.3.6.
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The  process  is  interesting  and  important  for  pricing  and  hedging 

studies  of  barrier  options  because with  this  model  it  is  possible  to  model 

regime switching in a time series.  For example regime changes is expected to 

have a direct affect on the prices or the persistence's in volatilities.

3.4 Summary of Chapter

Through  discrete  time study frequently  used  models  are  taken  as  starting 

points.  Some extensions to these models are discussed and the benefits of 

using these extended models are described briefly. The prices and the hedging 

results of barrier options for frequently used methods are found. 

Pricing study is constructed for normal and student-t innovations for 

all models. For down and out case prices increase one move from standard 

normal to student-t distribution. Conversely for up and out case when one 

moves from standard normal to student-t innovations prices decrease. Some 

prices have values which were close to the ones in BSM however all these 

experiments depend on the parameters chosen. So no real comparison can be 

made at this point.

For all models static hedges perform better than dynamic ones. Either 

strike spread or calendar spread has lower SD’s than both delta and mix delta 

hedges.  Again in all  simulation  results  classic  delta  hedging performs the 

worst for down and out case. On the other hand mix delta hedge was the 

worst for the up and out case. The strike spread in general was the best for up 

and out case while calendar spread was the best down and out case for most 

of the models.
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CHAPTER 4

PRICING AND HEDGING IN 
DIFFUSION MODELS

4.1 Introduction

It is necessary to remind the readers that the prices of the options that are path 

dependent,  such  as  barrier  options,  generally  much  more  sensitive  to  the 

specification of the underlying price process than the plain vanilla options. 

Keeping  this  in  mind  without  discussing  the  diffusion  models,  picture  of 

pricing and hedging of barrier options is  not going to be complete.  These 

models can be considered as alternatives or extensions of the BSM model. 

For the models that are of interest in this study, stock prices have Markov 

property and follow a geometric Brownian motion. 

These diffusion models can be categorized into two groups. First one 

is  one  factor  models  which  consider  only  one  random  parameter.  The 

Constant Elasticity of Variance Model (CEV) is  a part  of this group. The 

second group is  the  multi-factor  models  like  stochastic  volatility  or  jump 

models. Both of these models have more than one random variable as their 

parameters.

One can start with CEV which was originally proposed by Cox and 

Ross (1976). In this model volatility of the process depends on the stock price 

and the size  of  the elasticity  parameter  chosen which makes  sense  if  one 

considers of stocks as options on firm value.
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Another  model  to  be  investigated  for  hedging  strategies  is  the 

Stochastic  Volatility model  of Heston (1993).  The aim of the model  is  to 

capture the price change variances which display variation over time.

One  last  model  that  is  taken  into  consideration  is  Merton  jump 

diffusion model (1976). In this model returns of the stock are hit by Poisson 

arrivals of lognormal jumps. 

Before passing on the results  I have to mention that the results for 

diffusion models are similar to the study from Poulsen and Nalholm (2006). 

In this paper one can find more jump models and various extensions of the 

static hedging strategies described before.

4.2 Constant Elasticity of Variance Model

A company with improvement which is enjoying high profits expects to have 

higher stock prices which lead a decreasing volatility.  On the other hand a 

company  which  suffers  from  financial  troubles  should  expect  decreasing 

stock prices which in turn increase the volatility.  With these in mind CEV 

model assumes that the volatility at time t of the underlying asset depends on 

its  price level.  The stock prices  are  assumed to follow 4.1 under  the risk 

neutral probability measure Q.

( ) 1 ;t t t tdS S r d dt S S dWt whereασ −= − +                                                         4.1

Wt  is  a  standard  Brownian  motion,  &σ α are  constant  parameters  and 

elasticity factor α has to be in the interval [ )0,1  .

If one assumes that  1α = then CEV model becomes a BSM model. 

When 1α <  volatility increases as stock price falls. Moreover it can be shown 

that the variance of elasticity is constant.

Hedging  study  for  CEV  model  can  be  constructed  with  the  same 

parameters for BSM.α  assumed to be 0.5 for the model and 2.0472CEVσ = . 
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One can create different implied volatilities for finding delta in this model. 

For  simulation  study  BSM  volatility,  which  is  equal  to  0.2,  is  used  for 

simplicity.

The simulated price for down and out call is 4.9063 which is slightly 

more than BSM price. On the other hand price for up and out call is 2.9066 

which is again just a bit higher than BSM price.

Table  4.1  is  the  summary  of  hedging  results  constructed  for  CEV 

model. For the down and out case pure delta hedging has again the lowest 

accuracy with 10%. Contrary to previous models this time strike spread has 

the second lowest SD. With a SD equals to 1.8% calendar spread performs 

double in accuracy when compared to mix delta hedge.

For up and out case the accuracies are again very low compared to the 

down and out case. Mix delta hedging does not form any improvement over 

pure delta hedge with a SD 129%. The best strategy for up and out model is 

the strike spread with an accuracy of 37%. This time calendar spread ha a low 

accuracy compared to strike spread with a SD of 75%.

Table 4.1:Hedging Summary for CEV model

CEV Model

Down and out call B=90

HEDGE M Price Mean SD

Delta 4.8523 1% 10%

Mix Delta 4.8523 0.8% 2.9%

STR-Static 4.7903 -17% 14%

CAL-Static 4.7856 -1.5% 1.8%

Up and out call B=140

Price Mean SD

2.2772 -14% 125%

2.2772 2% 129%

2.4622 9% 37%

2.4813 20% 75%

Poulsen  and Nalholm (2006)  construct  the  hedging study for  CEV 

model  in  many  different  ways.  For  example  they  give  two  different 

approaches which are BSM and CEV based hedging methods for dynamic 
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strategies.  Moreover  they  have  constructed  three  different  Strike  spreads 

which  are  BSM based,  uniformly  scaled  and  Smile  scaled  strike  spreads. 

Finally they include two different Calendar spreads which are again BSM and 

CEV based.

4.3 Stochastic Volatility Model

Heston (1993) stochastic volatility model become a classical reference and a 

very good starting point in the research related to stochastic modeling. The 

main  assumption  is  that  the  volatility  of  the  underlying  asset  price  is 

stochastic.  In this  model  volatility  process is  chosen to be mean reverting 

square root variance process.

Heston model allows for stochastic interest rates and can be used for 

other  exotic  options  as  well.  In  this  model  stock  price  follows  the  usual 

diffusion process while variance is supposed to fluctuate according to well-

known square root process by Cox, Ingersoll and Ross (1985). The model is 

given in 4.2.

( )
( ) ( )

1

2
1 21

t t t t

t SV t t

dS r d S dt v S dW t

dv v dt v dW t dW tκ θ η ρ ρ

= − +

= − + + −
             4.2

The  skewness  of  spot  returns  can  be  explained  by  the  correlation 

between asset prices and volatility. If there is a positive correlation than the 

model  will  provide higher  prices  for  out of  the money options and lower 

prices for in the money ones compared to BSM. The reason for kurtosis and 

fat tails is the volatility of the volatility. 

The simulation study for Heston SV model  is  constructed with the 

parameters on 4.3. The volatility that is used for the simulation of dynamic 

hedges is simply the square root of the volatility in the model which is tv .
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Mean reversion of variance 1.301
Long-term variance level 0.044
Volatility of variance 0.105
Correlation(stock,variance) 0.608

SV

κ
θ

η
ρ −

                                                  4.3

The price of the down and out call is found to be 4.8860 for down and out 

case in Heston SV model. This price is very close to the BSM price which 

was 4.8523. Moreover the price for up and out call is simulated to be 2.8415. 

This price is higher compared to the BSM model.

Table 4.2 is the summary of hedging results constructed for CEV model. 

For the down and out case pure delta hedging has again the lowest accuracy 

with 15%. Mix delta hedging performs better than strike spread with a SD of 

4.6. Best hedging strategy for this model is calendar spread with a SD of 3.3

For Up and out case strike spread performs the best with an accuracy of 

52%.Calendar spread does not perform any improvement over the dynamic 

hedges with a SD of 90% which is equal to the SD of pure delta hedge and a 

bit less than  mix delta hedge which is 98%.

Again in the paper by Poulsen and Nalholm (2006) one can find some 

extensions of hedging strategies for Heston model. For example they use Fink 

(2003) approach for calendar spread. Moreover they have included calendar 

spread with conditional volatility in the spirit of Dupire (1994).

Table 4.2:Hedging Summary for Heston SV model

Heston SV Model

Down and out call B=90

HEDGE M Price Mean SD

Delta 4.8524 2.3% 15%

Mix Delta 4.8524 1% 4.6%

STR-Static 4.7903 -4.2% 6.3%

CAL-Static 4.7856 0.7% 3.3%

Up and out  call B=140

Price Mean SD

2.2768 -14.7% 90%

2.2828 -19% 98%

2.4663 4.7% 52%

2.4863 16.7% 90%
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4.4 Merton Jump Diffusion Model

A jump model which allows a fatter tail process is given by Merton (1976). 

The model has the form in 4.4.

( ) ( )
( ) ( ) ( ) [ ]

1 ;

ln , , 1
t k t JD t t t t

Q
t t t

dS r d S dt S dWt J S dq where

J N dq Poisson and k E J

λ σ

γ δ λ

= − − + + −

= −: :
                              4.4

Thus  we  can  say  that  Merton  jump diffusion  model  is  capable  to 

contain  skewness  and  excess  kurtosis  caused  by  random  jumps  in  the 

underlying asset returns. The first element for the random jumps is the jump 

size which determines the amount of jump that occurs during the process. 

Other component is the frequency of the jumps which determines how of then 

the  jumps  occur  during  the  process.  One  can  also  add  that  as  maturity 

approaches these jumps effects cancel each other in time.

The parameters of the simulation study are given on 4.5 for Merton 

jump diffusion model. The volatility employed is simply the BSM volatility 

for dynamic hedging strategies.

6

Jump intensity 1.158
Mean jump size 0.135
Jump size variance 4.7 10
Volatility of diffusion part 0.148JD

λ
γ
δ

σ

−

−
∗

                                                4.5

Table 4.3 is the summary of the results for Merton model. Pure delta 

hedging has the lowest accuracy with 32% for the down and out case. Mix 

delta hedging again performs better than strike spread with a SD of 6.With 

lowest SD 2.9% best hedging strategy for this model is calendar spread.
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For Up and out case strike spread performs the best with an accuracy of 

32%. It is much lower than other dynamic strategies which show again in 

jump  models  strike  spread  is  a  good  candidate.  Calendar  spread  is  also 

powerful tool when compared to dynamic one with an SD of %57 less tan 

half of dynamic strategies. Dynamic hedges with a SD of around 130-150% 

have very low accuracies for Merton jump model.

If one want to increase the jump models for hedging he can include 

the variance gamma model from Madan, Carr and Chang (1998) to use a pure 

a jump process with small jumps but infinite arrival time as investigated in 

Poulsen and Nalholm (2006). Moreover the strike spread extensions which 

are uniformly scaled and smile scaled, can also provide improvements over 

the traditional static hedges. One can also check the papers by Leisen (1998) 

and  Metwlly&Atiya(2002)  if  interested  the  research  methods  to  reduce 

convergence  time  and  quantitative  errors,  on  jump  processes  for  barrier 

options. 

Table 4.3:Hedging Summary for Merton Jump Diffusion Model

Merton Jump Diffusion Model

Down and out call B=90

HEDGE M Price Mean SD

Delta 4.8564 3% 32%

Mix Delta 4.8564 -2% 6%

STR-Static 4.1378 -11% 13%

CAL-Static 4.7777 -1% 2.9%

Up and out  call B=140

Price Mean SD

2.2752 -14.7% 129%

2.2752 -19% 147%

2.9942 4.9% 32%

3.0145 6.1% 57%
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APPENDIX

R Codes for calculating delta and price for plain vanilla and barrier  

options

################# B/S

BlackScholesFormula  <-  function  (spot,timetomat,strike,r,q=0,sigma,  

opttype=1,greektype=1)

{ 

d1<-(log(spot/strike)+((r-q)+0.5*sigma^2)*timetomat)  

/(sigma*sqrt(timetomat))

d2<-d1-sigma*sqrt(timetomat)

if  (opttype==1  &&  greektype==1)  result<-spot*exp(-

q*timetomat)*pnorm(d1)-strike*exp(-r*timetomat)*pnorm(d2)

if  (opttype==2  &&  greektype==1)  result<-spot*exp(-

q*timetomat)*pnorm(d1)-strike*exp(-r*timetomat)*pnorm(d2)-spot*exp(-

q*timetomat)+strike*exp(-r*timetomat)

if (opttype==1 && greektype==2) result<-exp(-q*timetomat)*pnorm(d1)

if (opttype==2 && greektype==2) result<-exp(-q*timetomat)*(pnorm(d1)-1)

BlackScholesFormula<-result
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}

StandardBarrier <- function (TypeFlag,S, X, H, K,  time2mat, r, b, v){

    mu <-(b - v ^ 2 / 2) / v ^ 2

    lambda <- sqrt(mu ^ 2 + 2 * r / v ^ 2)

    X1 <- log(S / X) / (v * sqrt(time2mat)) + (1 + mu) * v * sqrt(time2mat)

    X2 <- log(S / H) / (v * sqrt(time2mat)) + (1 + mu) * v * sqrt(time2mat)

    y1  <-  log(H  ^  2  /  (S  *  X))  /  (v  *  sqrt(time2mat))  +  (1  +  mu)  *  v  *  

sqrt(time2mat)

    y2 <- log(H / S) / (v * sqrt(time2mat)) + (1 + mu) * v * sqrt(time2mat)

    Z <- log(H / S) / (v * sqrt(time2mat)) + lambda * v * sqrt(time2mat)

    if (TypeFlag=="cdi" | TypeFlag=="cdo"){ 

         eta <- 1

         phi <- 1

    }

    if (TypeFlag=="cui" |  TypeFlag=="cuo"){ 

         eta <- -1

         phi <- 1
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    }

    if (TypeFlag=="pdi" |  TypeFlag=="pdo"){ 

         eta <- 1

         phi <- -1

    }

    if (TypeFlag=="pui" |  TypeFlag=="puo"){ 

         eta <- -1

         phi <- -1

   }

####### code is formally correct, but breaks down for low vols due to eval of 

Inf*0

#    f1 <- phi * S * exp((b - r) * time2mat) * pnorm(phi * X1) - phi * X * 

exp(-r * time2mat) * pnorm(phi * X1 - phi * v * sqrt(time2mat))

#    f2 <- phi * S * exp((b - r) * time2mat) * pnorm(phi * X2) - phi * X * 

exp(-r * time2mat) * pnorm(phi * X2 - phi * v * sqrt(time2mat))

#    f3 <- phi * S * exp((b - r) * time2mat) * (H / S) ^ (2 * (mu + 1)) *  

pnorm(eta * y1)  - phi * X * exp(-r * time2mat)  * (H / S) ^ (2 * mu) *  

pnorm(eta * y1 - eta * v * sqrt(time2mat))

#    f4 <- phi * S * exp((b - r) * time2mat) * (H / S) ^ (2 * (mu + 1)) *  

pnorm(eta * y2)  - phi * X * exp(-r * time2mat)  * (H / S) ^ (2 * mu) *  

pnorm(eta * y2 - eta * v * sqrt(time2mat))
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#     f5  <-  K  *  exp(-r  *  time2mat)  *  (pnorm(eta  *  X2  -  eta  *  v  *  

sqrt(time2mat))  -  (H  /  S)  ^  (2  *  mu)  *  pnorm(eta  *  y2  -  eta  *  v  *  

sqrt(time2mat)))

#    f6 <- K * ((H / S) ^ (mu + lambda) * pnorm(eta * Z) + (H / S) ^ (mu - 

lambda) * pnorm(eta * Z - 2 * eta * lambda * v * sqrt(time2mat)))

if (X > H){ 

        if(TypeFlag=="cdi") StandardBarrier <- f3 + f5

        if(TypeFlag=="cui") StandardBarrier <- f1 + f5

        if(TypeFlag=="pdi") StandardBarrier <- f2 - f3 + f4 + f5

        if(TypeFlag=="pui") StandardBarrier <- f1 - f2 + f4 + f5

        if(TypeFlag=="cdo") StandardBarrier <- f1 - f3 + f6

        if(TypeFlag=="cuo") StandardBarrier <- f6

        if(TypeFlag=="pdo") StandardBarrier <- f1 - f2 + f3 - f4 + f6

        if(TypeFlag=="puo") StandardBarrier <- f2 - f4 + f6

    }

    if (X <= H){

        if(TypeFlag=="cdi") StandardBarrier <- f1 - f2 + f4 + f5

        if(TypeFlag=="cui") StandardBarrier <- f2 - f3 + f4 + f5
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        if(TypeFlag=="pdi") StandardBarrier <- f1 + f5

        if(TypeFlag=="pui") StandardBarrier <- f3 + f5

        if(TypeFlag=="cdo") StandardBarrier <- f2 + f6 - f4

        if(TypeFlag=="cuo") StandardBarrier <- f1 - f2 + f3 - f4 + f6

        if(TypeFlag=="pdo") StandardBarrier <- f6

        if(TypeFlag=="puo") StandardBarrier <- f1 - f3 + f6

      }

StandardBarrier

  }

delta.StandardBarrier  <-function(TypeFlag,  spot,  strike,  barrier,  rebate,   

time2mat, r, b, v)

{

  eps<-0.001

 eps

(StandardBarrier(TypeFlag,spot+eps,strike,barrier,rebate,time2mat,r,b,v) -

StandardBarrier(TypeFlag,spot-eps,strike,barrier,rebate,time2mat,r,b,v))/  

(2*eps)

}

DOprob.BS<- function (spot,timetomat,barrier,r,q,sigma)

{

    y<-log(barrier/spot)

    nu<-(r-q-0.5*sigma^2)

    if(y<=0)
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    {

Doprob.BS<-pnorm((y+nu*timetomat)/(sigma*sqrt(timetomat)))  

exp(2*y*nu/sigma^2)* pnorm((y + nu*timetomat)/(sigma*sqrt(timetomat)))

    }

    if(y>0) {DOprob.BS<- 1}

    DOprob.BS

}

UOprob.BS<- function (spot,timetomat,barrier,r,q,sigma)

{

    y<-log(barrier/spot)

    nu<-(r-q-0.5*sigma^2)

    if(y>=0)

    {

Uoprob.BS<-pnorm((y+-nu*timetomat)/(sigma*sqrt(timetomat)))

exp(2*y*nu/sigma^2)* pnorm((-y - nu*timetomat)/(sigma*sqrt(timetomat)))

    }

    if(y<0) {UOprob.BS<- 1}

    1-UOprob.BS

}

fhat<- function(type,x,strike,barrier,p)

{ 

  fhat<-1:length(x)

  if(type=="cdo")

  {

   fHIGH<-pmax(x-strike,0)

    fLOW<--(x/barrier)^p*pmax(barrier^2/x-strike,0)
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  }

  if(type=="cuo")

  {

    fLOW<-pmax(x-strike,0)

    fHIGH<--(x/barrier)^p*pmax(barrier^2/x-strike,0)

  }

  HIGH<-(x>=barrier)

  fhat<-c(fLOW[!HIGH],fHIGH[HIGH])  

}
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