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ABSTRACT

A NUMERICAL STUDY ON
THE DYNAMIC BEHAVIOUR OF GRAVITY AND CANTILEVER
RETAINING WALLS WITH GRANULAR BACKFILL

Yildiz, Ersan
Ph.D., Department of Civil Engineering
Supervisor : Prof. Dr. M. Yener Ozkan

February 2007, 160 pages

Dynamic behaviour of gravity and cantilever retaining walls is investigated by
finite element method, incorporating the nonlinear elasto-plastic material
properties of soil and seperation of the wall and backfill. Two dimensional finite
element models are developed employing the finite element software ANSYS. The
wall is modelled to rest on a soil layer allowing translational and rotational
movements of the wall. Soil-wall systems are subjected to harmonic and real
earthquake motions with different magnitude and frequency characteristics at the
base. The maximum lateral force and its application point during dynamic loading
are determined for each case. It is observed that the frequency content of the base
motion has a significant influence on the dynamic lateral soil pressures and the
lateral forces considerably increase as the base motion frequency approaches the
fundamental frequency of the soil layer. The maximum lateral thrusts calculated
by finite element analyses are generally found to be greater than those suggested
by Mononobe-Okabe method and experimental findings. Nevertheless, the
locations of the application point obtained by finite element method are found to

be in good agreement with the results of experimental studies.

Keywords : Seismic earth pressure, Retaining wall, Finite element method
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GRANULER DOLGULU AGIRLIK VE
ANKASTRE iSTINAT DUVARLARININ DINAMIK
DAVRANISI UZERINE NUMERIK BiR CALISMA

Yildiz, Ersan
Doktora, insaat Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. M. Yener Ozkan

Subat 2007, 160 sayfa

Agirlik ve ankastre istinat duvarlarinin dinamik davranisi sonlu elemanlar metodu
kullanilarak incelenmistir. Analizlerde zemin -elasto-plastik malzeme olarak
modellenmis, dinamik hareket sirasinda duvar ile zeminin birbirinden ayrilmasi
g0zoniine alinmistir. Analizler ANSYS programi kullanilarak olusturulan iki
boyutlu sonlu elemanlar modelleri ile yapilmistir. Duvar, bir temel zemini tabakasi
iizerinde yeralacak sekilde modellenerek, yanal Gtelenme ve donme hareketlerini
yapabilmesi saglanmigtir. Olusturulan zemin-duvar sistemleri tabanlarina degisik
biiyiikliik ve frekans 06zelliklerinde harmonik hareketler ve gercek deprem
hareketleri uygulanmistir. Dinamik yiikleme sirasinda olusan maksimum yanal
kuvvet ve tatbik noktasi incelenen her durum i¢in belirlenmistir. Taban hareketi
frekans igeriginin yanal toprak basinglari {izerinde Onemli etkisinin oldugu
gozlenmistir. Niimerik analizler ile elde edilen maksimum yanal kuvvet sonuglari,
genellikle Mononobe-Okabe metodu ve deneysel c¢alismalardan elde edilen
sonuglardan yiiksek ¢ikmaktadir. Diger yandan, tatbik noktasi lokasyonlarinin,
agirlik ve ankastre duvarlar igin yapilan deneysel sonuglarla uyumlu oldugu

gorilmistiir.

Anahtar Kelimeler : Sismik toprak basinct, Istinat duvari, Sonlu elemanlar metodu
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CHAPTER 1

INTRODUCTION

Many types of earth retaining structures are in seismically active areas which make
it necessary to consider the potential earthquake induced forces that will act on

these structures in the design.

The objective of this study is to investigate the dynamic behaviour of gravity and

cantilever retaining walls which are commonly used in practice.

Many theoretical and experimental studies about the dynamic response of gravity
and cantilever walls have been carried out over the years and several methods have
been proposed for the calculation of the earthquake-induced earth pressures and
deformations. A review on these studies including limit-equilibrium methods,
analytical or numerical solutions and experimental researches are presented in
Chapter 2.

The dynamic response of a soil-retaining wall system is quite complicated and
dependent on many factors such as the geometry and type of the wall, soil
conditions and earthquake motions. It is currently not possible to consider all
aspects of the dynamic behaviour of retaining walls so that various simplifications
about the soil, structure and input motions are made in the design methods
(Kramer, 1996).

Finite element method is one of the most commonly used methods for static and
dynamic soil mechanics and soil-structure interaction problems in which the soil is

represented as a continuum consisting of discrete elements. A two dimensional



finite element model is developed for the analyses of soil-retaining wall systems in
this study. Analyses are made by the finite element program ANSYS. The
nonlinear stress-strain properties of the soil and the relative deformations (sliding
with friction and gap) between the wall and soil are taken into account. The details
about the finite element model regarding the dynamic solution technique (time
history analysis), material properties, contact between the wall and soil and

boundary conditions are given in Chapter 3.

The proposed models for gravity and cantilever retaining walls are subjected to
harmonic and real earthquake motions at the base. The effect of magnitude and
frequency content of the base motions on the dynamic response of the wall is
investigated by using base motions with different characteristics in the analyses.
The deformation modes of the wall and the variation of the dynamic lateral

pressures on the wall with time are studied in detail.

Maximum total lateral force and its point of application are calculated for each
case. The results are compared with the conventional solution methods and

experimental findings.

Finite element analyses and the obtained results are presented in Chapters 4 and 5
for walls of different height. The results are compared with the common solution

methods in these chapters.

Comparison of the results obtained by finite element analyses with the

experimental findings is given in Chapter 6.



CHAPTER 2

LITERATURE REVIEW ON DYNAMIC RESPONSE OF
RETAINING WALLS

A review of the solution methods and studies about the seismic lateral pressures

acting on rigid and cantilever retaining walls is given in this chapter.

Several approaches have been developed to solve the dynamic earth pressure

problems. They can be classified into 3 groups stated below:

- Limit-equilibrium methods

- Analytical and numerical methods based on linear elastic or elasto-plastic
theory

- Experimental studies (shake table tests, centrifuge tests and measurements

on existing structures)
The most common methods used in design relevant to the present study presented
in detail are Mononobe-Okabe, Steedman and Zeng (1990) and Wood (1973)
solutions. Other studies are stated briefly.
2.1 Limit-Equilibrium methods

2.1.1 Mononobe-Okabe method

The earliest and one of the most frequently used methods in design for estimating
the seismic lateral pressures on retaining walls is that developed by Mononobe

(1929) and Okabe (1926) known as Mononobe-Okabe (M-O) method. It is



extension of Coulomb’s earth pressure theory considering the dynamic forces as
additional static forces acting on the trial Coulomb wedge. The method is
applicable to dry cohesionless backfill. The basic assumptions of the analysis

method are summarized by Nazarian and Hadjian (1979) as:

- There is sufficient wall displacement producing a state of static equilibirium
behind the wall, resulting in minimum active pressure.

- The maximum shear strength of soil is mobilized along the failure plane
when the minimum active pressure is attained.

- The wedge acts as a rigid body that the vertical and horizontal accelerations
are uniform and have the same magnitudes as the base of the wall.

- The inertial effects of the retaining structure are neglected.

- The lateral force acts at a distance of H/3 above the base, H showing the

height of the wall.

The forces considered in the analysis, in the presence of pseudo-static
accelerations in the horizontal and vertical directions, a, = kng and a, = k,g are
shown in Figure 2.1.1.1. The total seismic active thrust on the wall is calculated

from the force equilibrium of the wedge and can be expressed as:

P,. :%KAEsz(l—kv) (2.1.1.1)

where the dynamic active earth pressure coefficient Kag is given as:

K, = cos’(9=0-y) 2.1.12)

> sin(3 + ¢)sin(¢ - — )
cos(¢p)cos”(0)cos(0+ 0+ w)[l + \/005(8 10+ y)cos(B—6)

where y =tan" [ ky/ (1-k,) ]; ¢ = angle of friction of backfill; & = angle of friction
between the backfill and the wall.



A detailed review of M-O method was made by Seed and Whitman (1970). For
vertical walls retaining horizontal dry backfills, they suggested to express the total
seismic lateral force as the sum of the initial static pressure and the dynamic

pressure increment AP g as:
P, = Static pressure + AP, = %KAsz + AP, (2.1.1.3)

It is suggested to assume that the static and incremental dynamic components act
H/3 and 0.6H above the base respectively. Also it is shown that the effect of
friction angle between the wall and backfill and the vertical acceleration on
seismic lateral pressures are insignificant especially for higher levels of horizontal

acceleration.

Figure 2.1.1.1 Forces in Mononobe-Okabe Analysis

2.1.2 Other studies

A displacement-based method for gravity walls is developed by Richards and Elms

(1979). The mass of the wall is taken into account in the analysis based on M-O



method and Newmark’s sliding block analogy. Figure 2.1.2.1 shows the forces
acting on the gravity wall by gravitational and pseudo-static accelerations

considered in the analysis.

Figure 2.1.2.1 Forces considered in Richards and Elms method

Dimarogona (1983) developed an analytical method for any mode of wall
movement. The method is an extension of static earth pressure theory by Dubrova
(1960) that considers the rotation of a failing retaining wall about any point.
Dimarogona concluded that the distribution of dynamic lateral earth pressures is
not hydrostatic as assumed by M-O method but rather parabolic which is in

aggrement with experimental results.

Nadim and Whitman (1984) proposed a model for determining the seismically
induced permanent rotation and translation of gravity walls retaining dry
cohesionless backfill. The proposed model and the dynamic forces acting on the
wall are shown in Figure 2.1.2.2. An important conclusion of the study is that, for
a tilting wall, when the wall starts to rotate, its rotational acceleration is positive

and the line of action of the force on the wall drops below the lower third point.
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Figure 2.1.2.2 Dynamic forces acting on the wall (Nadim and Whitman, 1984)

Richards-Elms (1979) method is studied in detail and factors affecting the choice
of a suitable safety factor are investigated by Whitman and Liao (1984).
Uncertainities about modelling the wall as a sliding block, time histories of ground

motion and strength parameters are examined and recommendations are made.

Das and Puri (1996) presented an improved pseudo-static method for prediction of
the static and dynamic forces on rigid retaining walls. The solution method is
based on the wall geometry, inclination of the backfill, surcharge, strength
parameters of the backfill and the adhesion between the wall and backfill. It is
found that the assumption by Prakash and Saran (1966) that cohesion of the



backfill is equal to the adhesion leads to conservative results for the dynamic

force.

A new theory based on intermediate soil wedge concept is developed by Zhang et
al (1998) for determining the dynamic lateral pressures on walls under a condition
between active and passive status. The dynamic earth pressure is seperated into
four components as: the weight of the soil wedge, seismic inertial force, surcharge
on backfill and soil vibro-densification effect at or near neutral state. New
equations are derived for the pressure distribution of each component depending
on the level of wall movements as well as the inertial acceleration distribution.
Good aggrement was found between the results of the proposed method and those

obtained from previous model tests.

2.2 Analytical and numerical methods based on linear elastic or elasto-plastic

theory

2.2.1 Wood (1973) solution

Wood (1973) developed an elastic solution for seismic pressures on rigid retaining
walls. The solution is based on the analysis of a homogenous linear elastic soil
layer between two rigid walls underlain by a rigid base (Figure 2.2.1.1). Wood
stated that the dynamic amplification can be neglected for base input motions with
frequencies less than half of the fundamental frequency of the soil layer. The
following equations are suggested for the dynamic thrust and bending moment

about the base induced by ground motion (after Kramer, 1996):

AP, =yH> 2L E 2.2.1.1)
g
AM,, =yH* 2 F, (2.2.12)
g



where; APgq = dynamic thrust,
an = maximum horizontal acceleration
g = gravitational acceleration

Fp,Fm = dimesionless factors given in Figure 2.2.1.2

Wood’s solution results in soil pressures significantly larger than those by M-O
method. It is concluded that the solution is conservative to the other methods and

can be used satisfactorily as a first approximation for many problems.

= -

Rigid % N ’?/Zf
Wall j/é Linear Elastic H ,;ff/%
////1 Soil 77
) N

/ 7, vy ey e - "‘*,H/‘/.: o

i SIS S SIS BaSe

Figure 2.2.1.1 Wood’s Model (after Kramer, 1996)

Figure 2.2.1.2 Dimensionless factors for dynamic thrust and
moment by Wood(1973) (after Kramer, 1996)



2.2.2 Steedman and Zeng (1990) solution

M-O method assumes uniform acceleration at the soil wedge behind the wall. A
pseudo-dynamic approach that accounts for the phase changes and amplification in
the backfill is suggested by Steedman and Zeng (1990).

Effect of phase change between base and surface:

A typical fixed base cantilever wall shown in Figure 2.2.2.1 is considered. For

harmonic base motion, the acceleration at depth z and time t can be expressed as:

A(zt) =k, gsin o{t— HV_Z] (2.2.2.1)

The weight of the wedge is:

_ 1 yH?
2 tan o

W (2.2.2.2)

Considering a horizontal thin element of the wedge at depth z, the total horizontal

inertia force Qy can be obtained by integration along the height of the wall as:

Q, = TP[H - Z]A(z, t)dz (22.2.3)

o tan o

Resolving the forces for the equilibrium of the wedge OAB leads to the expression

of the total force acting on the wall, Pag and K4g as:

_ Q,, cos(a —¢)+ Wsin(a — §)

P
AR cos(0+d—a)

(2.2.2.4)

10



2P
K = ﬁ 2.2.2.5
AE 'YH2 ( )

Kag is dependent on H / (TV;) which is the ratio of time for a wave to travel the
full height to the period of the base motion. The influence of phase change on
earth pressure coefficient is given in Figure 2.2.2.2.

Influence of amplification:

Assuming the lateral acceleration varies linearly from the base of the layer to the
ground surface with a constant amplification factor f,, the acceleration at depth z is

modified as:

H-z

A(z,t) = [1 + (f, - 1)}1(11 gsin co(t - HV_ ZJ (2.2.2.6)

S

and Qyp is obtained similarly from Equation 2.2.2.3. Figure 2.2.2.3 shows the

variation of the earth pressure coefficient with the amplification factor.

0 B(Htana, H)

AR WY

P!! ¢

A
NN \l\\\\

4

Figure 2.2.2.1 Assumptions, notations and forces for calculation of
dynamic earth pressure (Steedman and Zeng, 1990)
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Figure 2.2.2.2 Influence of phase change on earth pressure coefficient
(Steedman and Zeng, 1990)
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Figure 2.2.2.3 Influence of amplification factor, f, on earth pressure coefficient
(Steedman and Zeng, 1990)

2.2.3 Other studies

Matsuo and Ohara (1960) developed a solution for the dynamic earth pressures on
rigid walls making translational motions. The basic equations were derived using
elastic wave theory, assuming that the wall is stationary and no vertical

displacement occurs in the soil mass, with the waves travelling in the soil and

12



impinging on the surface of the wall creating the resultant stresses (after Nazarian
and Hadjian, 1979). Figure 2.2.3.1 shows the computed earth pressures and point

of application of the resultant force.

400f jo——— Nt
s E
L 85 u—
2 o
2 a8
- 7T ‘6 :g_
+~ C
- 6 :E’ -g
® 5
300.. 5 L =
L 4 L

1 1 1 __m-l_H IIE 1 1

2 3 4 5x|0Ms

0 L .
" |
£ 00l | V. of longitudingl | |
> =5 [’ | | i
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s [ |
S (a] H
o 10F
—
-4}
! i
8 "5 1 2 3
R Flastic constant
of eartrL
g 2
100 |— 2+ 2.4 "Bt
L Total vib[!*aﬁng pressure to be
added to|static pressure =k Y (tons)
0 1 1 1 1 1 l_.__.: H N M 1 1 ]
5 |0 15

Height of wall m

Figure 2.2.3.1 Dynamic earth pressures and point of application of the resultant
force (Matsuo and Ohara, 1960)
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Scott (1973), (after Nazarian and Hadjian, 1979) has studied the dynamic response
of rigid walls using a one-dimensional elastic shear beam connected to the wall by
springs (Figure 2.2.3.2). Formulas for dynamic pressures for constant and variable
soil properties are given. It is indicated that the results are in accordance with
Matsuo and Ohara (1960) but higher than M-O method. The application point is
acted at a distance of 0.64H from the base (after Calisan,1999).

Rigid wall

SR
Elastic | >
Shear Beam | Q
P G { \\:
N
= B~ X U

L s rndo
Rigid Foundation

Winkler Springs

Figure 2.2.3.2 Scott’s (1973) Model (after Wood, 1973)

Finite element solution of dynamic response of graviy retaining walls with dry
cohesionless backfill was made by Nadim and Whitman (1983). Figure 2.2.3.3
shows the proposed finite element model. Permanent displacements of the wall are
investigated. It is concluded that the amplification of motion in backfill has a

significant effect on the permanent displacements as shown in Figure 2.2.3.4.
Seismic response of a flexible wall is studied by Siddharthan and Maragakis

(1989) using finite element method. The results led to the conclusion that bending

moments given by current design procedures are nonconservative for stiffer walls.

14
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Figure 2.2.3.3 Gravity wall considered and its finite element idealisation
(Nadim and Whitman, 1983)

Bakeer et al (1990) conducted finite element analyses considering different modes
of wall movement, and compared the results with experimental findings of the

tests conducted at University of Washington (Ishibashi and Fang, 1987).

The finite element program ANSYS is used for the analyses. The model examined
is shown in Figure 2.2.3.5.The wall elements are connected to surrounding soil
elements by horizontal and vertical interface elements. A sinusodial acceleration
time history is applied along the line a-b in Figure 2.2.3.5. Different modes of wall
displacement examined are: active rocking of free wall (ARC), active horizontal
translation (AT), active rotation about top (ART) and active rotation about base

(ARB).

15
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Figure 2.2.3.4 Effects of ground motion amplification on permanent wall
displacement (Nadim and Whitman, 1983)

Figure 2.2.3.6 shows the analytical and experimental results of dynamic earth

pressure distribution. Location of the resultant force values of analytical solution

and experimental studies are plotted on Figure 2.2.3.7. Based on the finite element

analyses and experimental research, the following conclusions are made by Bakeer

et al (1990):

- The magnitude and distribution of the dynamic earth pressure depends on the

mode of movement.
16



- The earth pressure distribution is always non-hydrostatic during all modes of
deformation.
- Mononabe-Okabe solution may underestimate the magnitude of the dynamic

earth pressures.

Dynamic pressures on rigid vertical walls retaining uniform elastic soil layer of
constant thickness are studied by Veletsos and Younan (1994). An analytical
solution assuming the presence of no vertical stress and complete bonding between
the wall and soil is developed. The investigated system is shown in Figure 2.2.3.8.
Both harmonic base motions and actual earthquake records are considered. Two
alternative models (frequency dependent and frequency independent) to Scoot’s
(1973) model are proposed to consider the effect of soil in the vicinity of the wall
on the dynamic response of the system. Figure 2.2.3.9 shows the response curves
for base wall-shears obtained by analytical solution and frequency independent
model. The significant effect of the frequency ratio (the ratio of the base motion
frequency to the fundamental frequency of the soil) on the shear force at the base

of the wall thus the lateral soil forces acting on the wall can be seen in this figure.

* Dimensions in Meters
Not To Scale

1.0 )
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Figure 2.2.3.5 Analytical retaining wall model (Bakeer et al, 1990)
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Figure 2.2.3.6 Analytical and experimental dynamic earth pressure distributions
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Figure 2.2.3.8 System considered by Veletsos and Younan (1994)
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Figure 2.2.3.9 Comparison of frequency response curves for base shear computed
from analytical solution and model with frequency-independent parameters
(Veletsos and Younan, 1994)

A comparison of pseudo-static and non-linear dynamic behaviour of gravity

retaining walls is made by Woodward and Griffiths (1996). Finite element method
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is used for both pseudo-static and dynamic analyses. Only the relative sliding is
simulated and no gap is allowed between the wall and backfill. The interface
between the wall and foundation soil is assumed as either smooth (relative sliding
is allowed with no friction) and rough (completely bonded). It is concluded that
the pseudo-static finite element approach gives results in good aggrement with
analytical methods. The results of the dynamic analyses showed that the earth
pressure coefficient and point of application can vary considerably during

earthquake.

Veletsos and Younan (1997) examined the dynamic response of flexible walls
constrained against rotation at their base, by using an analytical method of
analysis. It was assumed that no vertical stresses are present and there is complete
bonding between the soil and the wall. The soil-wall system studied is shown in
Figure 2.2.3.10. Both harmonic base motions and actual earthquake record are
considered. It is observed that the wall displacements and pressures induced by
ground shaking are highly dependent on the flexibility of the wall and the
rotational stiffness of the base. It is concluded that the total force obtained is in
reasonable aggrement with that computed by Mononobe-Okabe method for
realistic wall flexibilities when the dynamic amplification effects are neglected.
The amplification factors at the base shear of wall for different wall and base

stifness values and frequency ratios are plotted in Figure 2.2.3.11.

A 2-D finite element solution is used to investigate the seismic response of rigid
bridge abutments retaining and founded on dry sand by Al-Homoud and Whitman
(1999). The proposed finite element model is shown in Figure 2.2.3.12. The wall is
modelled as a rigid substructure and interface elements are used between the wall
and soil at the backface of the wall and under its base to allow for relative sliding
and gap. The non-linear stress-strain behaviour of soil is modelled by a failure
surface and hardening cap together with an associated flow rule. The cap surface is
activated only for the foundation soil to simulate the compaction during rocking
displacement of the wall. A bridge abutment of 8m high and 3m wide is studied

for different sinusodial and earthquake motions. The results showed that the
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dominant response of the gravity walls is the outward tilting during dynamic

shaking and permanent tilt is present at the end of the shaking.

e . E.t%, G = Shear modulus of soil
Dy, = Flexural rigidity per unit length of the wall = m—) E., = Elasticity modulus of wall
. . ) ™ tw = Thickness of wall
Re = Stiffness of rotational base constraint vy = Doisson’s ratio of wall
v ¥
4 () LW

i (0

Figure 2.2.3.10 Soil-wall systems investigated by Veletsos and Younan (1997):
a)Base excited system, b)Force excited system

dy = Relative flexibility of the wall and soil = GH? / Dy,
dg = Relative flexibility of rotational base constraint and soil = GH? / Ry

ldo =35 dw =0
Dy, = Flexural rigidity per unit length
1 e E“'t;'\'
of the wall = ——%—
12(1-v2)

Ry = Stiffness of rotational base
constraint

G
J-—:-\\'
tl"'

= Shear modulus of soil
Elasticity modulus of wall
= Thickness of wall

vy = Poisson’s ratio of wall

m/ml

Figure 2.2.3.11 Amplification factors for base shear for different wall and base
flexibilities (Veletsos and Younan, 1997)

Richards et al (1999) suggested a simplified kinematic method base on free-field
solution to predict the seismic earth pressure distribution on retaining structures for

different modes of deformation (rotation about top, rotation about bottom and
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lateral translation). The soil is assumed as an elastic-perfectly plastic material with
Mohr-Coulomb yield criterion and modelled by a series of springs as shown in
Figure 2.2.3.13 that shows the considered model. Results of the method are
compared with test results by Ishibashi and Fang (1987) and reasonably good

aggrement was obtained.
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Figure 2.2.3.12 Finite element model for gravity wall problem
(Al-Homoud and Whitman, 1999)
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Figure 2.2.3.13 Model for dynamic pressure increment (Richards et al, 1999)
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Wu and Finn (1999) presented design charts for seismic pressures acting on rigid
retaining walls. An analytical solution is developed for homogenous backfill and
finite element analyses are conducted for non-homogenous backfills. Charts for
peak seismic thrusts vs. ratios of the frequency of ground motion to the natural
vibration frequency of the system are obtained considering three different soil
profiles and 250 combinations of base motions for each profile. It is concluded
that, Wood (1973) solution, often used in practice underestimates the thrusts for
the vicinity of resonance case, and overestimates for high frequency ratios. Figure

2.2.3.14 shows one of the proposed charts of peak seismic thrust vs. frequency

ratio.
Quax = Peak dynamic force  p = Density of soil G = Shear modulus of soil
Amax = Peak ground ace. = Damping ratio w = Circular freq. of base motion
H = Height of the wall = Poisson’s ratio of soil wy= Fundamental circular freq. of soil
L = Length of the model
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Figure 2.2.3.14 Peak seismic thrust curves for L/H = 1.5 (Wu and Finn, 1999)

Younan and Veletsos (2000) studied the dynamic response of flexible walls
retaining a uniform, linear-elastic soil layer. An analytical method is proposed to
predict the response of cantilever and top-supported retaining walls and the effect
of flexibility is investigated. It is assumed that no vertical stresses develop in the

medium and there is complete bonding between the wall and soil. The wall is fixed
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against deflection and rotation at the base to which the ground motion is applied.
Both harmonic and earthquake motions are examined and the effects of
long-period excitations are considered. It is concluded that the total lateral thrust
for cantilever walls may be less than one-half of that obtained for fixed-based rigid

walls with a larger reduction in the bending moment at the base.

Wu (1999) developed a displacement model for rigid walls considering the
non-linear soil properties and any water condition behind the wall (after Wu and
Prakash, 2001). Springs and dashpots are used to simulate the stiffness and
damping behaviour in sliding and rocking in the model. The predicted

displacement was in reasonable aggrement with centrifuge test by Zeng (1998).

The performance of L-shaped reinforced concrete walls during earthquakes is
examined by Gazetas et al (2004). The base excitations with either high or low
dominant frequencies of peak ground acceleration (PGA) of 0.40g and relatively
short-duration are considered. Soil is modelled as both linear elastic and elasto-
plastic (using Mohr-Coulomb yield criterion) materials. Figure 2.2.3.15 shows the
system examined and the lateral pressure distributions induced by base motion. It
is concluded that L-shaped retaining walls are subjected to dynamic forces smaller
than those predicted by M-O method in many cases, especially for high frequency
excitation. Exceptions to this rule exist when there is sigificant amplification of the
ground motion in the soil. However, it is noted that, even higher pressures than
M-O are present, the retaining systems posses sufficient ductility capacity, in the
form of unhindered slippage at their base, that they can survive even a strong event

with minor damage.

Analytical results by Veletsos and Younan (1997) are verified by Psarrapoulos
et al (2005) by conducting finite element analyses. The effects of the wall
flexibility and base rocking stiffness are also investigated. Both homogenous and
inhomogenous soil layers resting on rigid base are considered. Additionally, a
two-layered system is examined that accounts for the lateral movement of the wall.

Figure 2.2.3.16 shows the systems and assumptions used in the study.
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Figure 2.2.3.15 Two-layered model and distribution of dynamic earth pressures
(Gazetas et al, 2004)

The wall is modelled by beam elements and the rotational stiffness of the
foundation is simulated by a rotational spring at the base that is fixed in both
horizontal and vertical directions for one-layer systems. For the two-layer system,

both the wall and soil are modelled by plane-strain elements.

The influence of the wall flexibility and base rocking stiffness is illustrated in
Figure 2.2.3.17. It is observed that the shape of the lateral seismic pressure

distribution is dependent on the wall stiffness.
A comparison of the results of one-layer and two-layer models is shown in Figure
2.2.3.18. The influence of the base rocking stiffness on the shape of the pressure

distribution can clearly be seen in the figure.

The models examined by Psarropoulos et al (2005) assume full bonding between

the wall and soil leading to unrealistic tensile stresses at the wall-soil interface that
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can affect the overall response of the wall. There is insufficient information about
the pressure values used in the pressure distributions if they are the values
corresponding to the maximum lateral thrust at an instance or the maximum values

obtained at each point during the analysis.
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Figure 2.2.3.16 Systems examined by Psarropoulos et al (2005)
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d,, = Relative flexibility of the . ) .
wall and soil = GHB / D,, ¢ = Dynamic lat soil pressure G = Shear modulus of soil
do = Relative flexibility of rotational oy = P.ca.k ba?c ace. in g w = f‘:lrcu]ar freq. (‘.ﬂ base motion .
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Figure 2.2.3.17 Dynamic earth pressure distributions for varying base rotational
spring stiffness and wall flexibility (Psarropoulos et al, 2005)
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Figure 2.2.3.18 Dynamic earth pressure distributions in the case of resonance for
different base stiffness and wall flexibility values (Psarropoulos et al, 2005)
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Ostadan (2005) suggested a simplified method for the calculation of maximum
seismic soil pressures for building walls resting on firm foundation soil. The
method is based on conventional 1-D soil column analysis and considers the

dynamic soil properties and the frequency content of the ground motion.

2.3 Experimental studies

Sherif et al (1982) conducted shaking table experiments to determine the dynamic
stress distributions on rigid walls with granular backfill material. The model wall

was designed so that it could rotate about top or bottom and translate.

Dynamic neutral increment thrust results for non-yielding retaining walls are
compared to elastic solutions proposed by Matsuo and Ohara (1960) and Wood
(1973) in Figure 2.3.1. It is seen that the dynamic neutral incremental thrust varies
nonlinearly contrary to the elastic methods stated above. Variation of the
application point of the total dynamic neutral force is given in Figure 2.3.2. An
average value of h/H=0.4 is suggested for design purposes where h is the distance

of the application point to the base and H is the height of the wall.

For a rigid translating wall, variation of the coefficient of total dynamic active
earth pressure and point of application of the total dynamic active thrust are shown
in Figures 2.3.3 and 2.3.4 respectively. It can be seen that the results are about
30% higher than the values computed by M-O. An average value of h/H=0.45 is

proposed for the application point of the total active thrust.

Seismic behaviour of cantilever retaining walls were investigated by centrifuge
model tests by Ortiz (1982). The prototype walls designed according to M-O
method are subjected to lateral earthquake motions. The walls were instrumented
with pressure and displacement transducers, acceleration and strain gauges (See
Figure 2.3.5). Moment, pressure, shear and displacement distributions were
obtained from the tests. Figure 2.3.6 shows the pressure distribution for one of the

tests. The study has led to the following conclusions:
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- The static earth pressure distributions obtained are not triangular as assumed
by Coulomb’s or Rankine’s theory. However the resultant forces and points
of application are in reasonable aggrement indicating that Coulomb’s theory
estimates an average pressure distribution that is assumed as triangular.

- The dynamic response of the system is not only dependent on lateral
accelerations, but also on the energy content of the earthquake indicated by
the velocities. Maximum pressures are found to be closely associated with
the velocities, maximum moments with the area under the acceleration
spikes (changes in velocity).

- The dynamic pressure distributions are not triangular as for the static cases,
although the centroids are about 1/3 of the height above the base.

- The M-O solution is in reasonable aggrement with the experimental results

(after Ortiz et al, 1983).
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Figure 2.3.1 Dynamic neutral incremental thrust for a 1m high nonyielding wall
(Sherif et al, 1982)
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Figure 2.3.6 Record of wall pressure (Ortiz, 1982)

Sommers and Wolfe (1984) presented the results of shaking table tests. The effects
of input motion on the displacement of model walls is investigated. The wall
accelerations are found to be dependent on the amplitude and frequency of the
input motion. On the other hand, the displacements are found to be dependent on

the type of input motion.

Fukuoka and Imamura (1984) examined the seismic behaviour of retaining walls
conducting model tests and using real earthquake measurements. An important
conclusion indicated is that the earth pressure magnitude is determined by the total
energy put into the retaining wall-soil system in one or two seconds rather than the

acceleration acting at that moment.

Shaking table experiments with different modes of wall movement are used to
investigate the dynamic active earth pressures on rigid retaining walls with dry
cohesionless backfill by Ishibashi and Fang (1987). They made experiments using

the University of Washington shaking table and retaining wall assembly for wall
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movement modes : rotation about the base (RB) and rotation about the top (RT).
The results are combined with those by Sherif et al (1982) and Ichihara and
Matsuzawa (1973), who considered pure translation (T) and translation together

with rotation about the base (RB+T) respectively.

Normalized maximum dynamic lateral earth pressures obtained from the pressure
cells (shown in Figure 2.3.7) as a function of wall rotation is shown in Figure
2.3.8. The plotted values are the maximum of the measurements during vibration.
It can be seen that the maximum pressures decrease rapidly with initial wall

rotation and reach constant values.

The maximum lateral earth pressure distributions with different wall rotations for
rotation about base are shown in Figure 2.3.9. It is stated that a very high residual
stress zone near the wall base is observed since there is little soil movement at that

region.

The coefficient of maximum dynamic active horizontal thrust values for RB and
RT walls are plotted on Figure 2.3.10. All the points for RB mode fall within
123% and 143% of M-O values with an average of 128%. This is considered to
result due to the extra high residual stress near the wall base. Figure 2.3.11
summarizes the point of application variation for different modes of wall

movement.

It is indicated that at low acceleration levels, the movement and geometry of the
wall is the controlling factor. Meanwhile at high acceleration levels, the vibrating
portion of the thrust becomes dominant in determining the application point.
Therefore the normalized height of the application point, h/H value converges to
around 0.4 to 0.55 for horizontal acceleration coefficient, k;, > 0.5 regardless of the

wall movement.
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Centrifuge model tests are conducted to study the seismic behaviour of gravity
quay walls by Zeng (1998). A gravity wall of 8m high and 4m wide in prototype
scale with both dry and saturated backfill is considered. A series of model
earthquakes is applied with a gradual increase in the peak acceleration until failure
is observed in the tests. Major damage included the lateral displacement, vertical
settlement and tilting of the gravity wall and ground settlement in the backfill. It is
concluded that for a gravity wall retaining dry backfill, the current design

procedures give satisfactory results.

Madabhashi and Zeng (1998) made a numerical simulation of the centrifuge
experiments by using finite element method and compared the results. An
elasto-plastic material model is used for soil and interface elements are used
between the wall and backfill allowing for relative displacement. It is stated that
the results for the cases of both dry and saturated backfill are in good aggrement
with experimental data. The profile of the model wall before and after the test and

deformed mesh after the analysis are shown in Figure 2.3.12.
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Figure 2.3.12 Post test profile of centrifuge model
(Madabhashi and Zeng, 1998)

Shaking table tests were conducted by Calisan (1999) to investigate the dynamic
behaviour of gravity retaining walls. A model wall of 70 cm high, 99 cm wide and
I cm thick with a base of 30 cm is set. The wall is instrumented with
accelerometers, earth pressure cells and displacement transducers (See Figure

2.3.13). The following conclusions are drawn from the test results:

- The seismic pressures increase with increasing wall mass (See Figure

2.3.14).
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- The measured values of the incremental seismic thrust are considerably

higher than those calculated by M-O method (See Figure 2.3.15).

- The distance of the point of application to the base varies between 0.35H and
0.45H for the tests in which failure did not occur. On the other hand, the
point of application shifts below 0.33H for the tests in which considerable

rotation and translation was observed (See Figure 2.3.16).
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DT
[N

0265111

ACCELEROMETERS __ . &7 Eggguns 07m

CELLS
0. 265m
J

DT
O?Bm

Figure 2.3.13 Model wall dimensions and instrumentation (Calisan, 1999)
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Figure 2.3.14 Variation of horizontal seismic incremental earth pressure
coefficient with wall mass (Caligsan, 1999)
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Figure 2.3.15 Incremental seismic earth pressure coefficient (Calisan, 1999)

APPLICATION POINT OF HORIZONTAL INCREMENTAL
SEISMIC THRUST FOR 3.10 mm DISPLACEMENT AMPLITUDE
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Figure 2.3.16 Application point of horizontal seismic incremental thrust
(Calisan, 1999)
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CHAPTER 3

REVIEW ON THEORETICAL ASPECTS

Analyses to investigate the dynamic behaviour of retaining wall-soil systems are
done by using finite element method. The finite element program ANSY'S is used
for this purpose. In this section, information about the material models
representing the wall and soil, dynamic finite element procedures, the contact
algorithm used to simulate the relative motion of the backfill and the wall are
given. In addition, the verification of the program is presented by comparing the
results of finite element analysis and analytical solution for one-dimensional wave

propogation problem.

3.1 Material model

The retaining wall and the soil (backfill and foundation soil) are modelled by using
4-node plane-strain elements. The wall is assumed as a linear-elastic material with
appropriate stiffness and mass parameters for concrete, since the stresses and the
strength of the retaining wall is beyond the scope of this study. On the other hand,
the soil is modelled as either linear elastic or elasto-plastic so that the non-linear

stress-strain behaviour of soil may be taken into account.

3.1.1 Review on plasticity

For many materials, the stress-strain relationship is not unique (as in the linear
elastic model) and many states of strain can correspond to one state of stress and

vice versa. The stress-strain curve obtained from a tension test on a metal bar is

shown in Fig. 3.1.1.1. The relation between stress and strain is linear for the initial

41



portion OA. The stress-strain relation is reversible in any unloading case from any
point on OA. If the bar is loaded beyond A, subsequent unloading is also
reversible but non-linear. However, there is a point B beyond which unloading is
not reversible. This point is called as the yield point of the material. The points A
and B can often be regarded as coincident for practical purposes. If the bar is
loaded to point C and unloaded, the path CD is followed, resulting in a permanent
strain represented by OD. This permanent strain is called as the plastic strain.
When the material is loaded to point C, the total strain is the sum of the plastic
strain, OD, and elastic strain, DE. Further loading beyond C continues until the bar
fails ( at point F ). The stress at the point F is often called as the ultimate strength
(Britto and Gunn, 1987).

Stress

o} Strain

Figure 3.1.1.1 Typical stress-strain curve (after Britto and Gunn, 1987)

To model the materials having plastic behaviour, some idealisations have to be
made. In such idealisations, the main features of the behaviour are identified but

aspects of secondary importance are ignored.

Fig. 3.1.1.2 shows some widely used idealisations of plastic behaviour. In elastic-
perfectly plastic model, the material shows linear elastic behaviour until it yields.
After yielding, the material continues to deform at constant yield stress. In elastic,

strain-hardening plastic model, the stress-strain curve remains linear at a reduced
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slope after yielding. When only collapse loads are to be considered in a
calculation, it is convenient to use rigid-plastic models in which no elastic strain

exists.

Elastic. perfectly plastic

sress
&

¥
¥

» 5Sirain

Elastic. linear strain hardening plastic

stress
A

» 5irain

Rigid-plastic

stress

2
4

» 5train

Figure 3.1.1.2 Idealisations of plastic behaviour (after Britto and Gunn, 1987)
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To completely describe the stress-strain relations for an elasto-plastic material,

four different criteria are required (Britto and Gunn, 1987):

I- A yield function : This generalises the concept of yield stress for one-

dimensional loading to two or three dimensional stress states.

2- A relationship between the directions of the principal plastic strain increments

and the principal stresses.

3- A hardening rule : This is the relationship between the amount of hardening and
plastic strain when the material is yielding. Thus the hardening rule determines

the changes in the yield surface.

4- A flow rule : This specifies the relative magnitudes of the incremental plastic

strains when the material is yielding.

Yield function

If a material is subjected to two or three dimensional states of stress, the state of
the material (elastic or plastic) depend on all the stress components (six in the fully
three dimensional case). If the material is isotropic, then it’s sufficient to consider
only the principal stresses (o, , 6, and o), and generally the yield functions are

expressed in terms of them (Britto and Gunn, 1987).

In general a yield function is written as:

f( 64,0, 0c) =0,

this equation representing a surface in three-dimensional stress space. Generally
yield function is written in such a way that, the negative value of the function for
the current stress state indicates that the behaviour is elastic (inside the yield

surface). A zero value of the function indicates that yielding takes place and
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positive values which represent stress states outside the yield surface are not

allowed.

Hardening rule

The hardening rule is used to define the motion (changes in size,shape and
location) of the yield surface during plastic loading. Hardening rules are classified
as isotropic hardening, kinematic hardening and mixed hardening. The yield
surface expands uniformly in isotropic hardening, while it moves as a rigid body in
stress space in kinematic hardening (See Fig. 3.1.1.3). Mixed hardening combines
both of these types of hardening and permits the yield surface to expand or

contract unifomly and to translate in stress space.

If the loading is monotonic, then the isotropic hardening rule is adequate to
describe the material behaviour. The kinematic hardening rule is suitable for

materials under cyclic and reversed type of loadings (Chen and Mizuno, 1990).

Flow rule

The flow rule defines the ratios of plastic strain increments for a yielding material
at a particular stress state. It defines only the relative sizes of individual strain
increments, not their absolute sizes. The following expression is used to define the

flow rule :

5e” = 51,28 (3.1.1.1)
0c

where 8eP is the plastic strain increment, S\ is the proportionality factor and g is

the plastic potential function.
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Figure 3.1.1.3 Isotropic and kinematic hardening (after Britto and Gunn, 1987)
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Figure 3.1.1.4 The plastic potential (after Britto and Gunn, 1987)
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The plastic potential function, g(c,, o1 , o) = 0 defines such a surface in principal
stress space that, the plastic strain increment vectors are normal to this surface
(See Fig. 3.1.1.4). The yield function can be used as a potential function for many
materials. This is called as the normality condition or associated flow rule. If a
potential function different than the yield function is used, then it is called as non-

associated flow.

3.1.2 Drucker-Prager material model

An elastic-perfectly plastic material model using Drucker-Prager yield criterion
with either associated or nonassociated flow rule is used to represent soil in the
elasto-plastic analyses. A brief information on the implementation of the model is
given in this section based on ANSYS Theory Reference. The notations used in
this section are given in Table 3.1.

The yield criterion (yield function) is expressed as:

F=0.-0,=0 (3.1.2.1)

The equivalent stress and material yield parameters 6. and o, are expressed as:

5. =3po, +B {S}T[M]{S}T (3.1.22)

6¢ccosd

Gy :m (3123)
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Table 3.1 Notations used in material model theory

Variable Definition
{sel} elastic strain vector
(M) plastic strain vector
{e" trial strain vector
{c} Stress vector
Ce equivalent stress
Oy material yield parameter
Om mean or hydrostatic stress
A plastic multiplier
[D] stress-strain matrix
Er tangent modulus
F yield criterion (yield function)
Q plastic potential function
{S} deviatoric stress vector
c cohesion of material
() angle of friction for material

The variables in Equation 3.1.2.2 are defined below:

_ 2sin¢
V33 =sin¢)

_(o,+0,+0,)
" 3

(&)

(St={c}-oc [l 1100 0]"
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(3.1.2.6)



(3.1.2.7)

S O O o o =
S O o o = O
S O o = O O
S O NN O O O
S DV O O O O
N O O O O O

This yield surface (given by Equation 3.1.2.1) is a circular cone chosen such that it
corresponds to the outer aspices of the hexagonal Mohr-Coulomb yield surface as

shown in Figure 3.1.2.1.

Figure 3.1.2.1 Yield surfaces of Mohr-Coulomb and Drucker-Prager
yield criterions in 3-D principal stress space (after ANSYS Theory Reference)

The flow rule determines the direction of plastic straining and is given as:

{de™} = x{a—Q} (3.1.2.8)
0o

Equation 3.1.2.1 can be differentiated so that the consistency condition is:

dF = {G—F} [Ml{ds} =0 (3.1.2.9)
0c
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The stress increment can be computed by the elastic stress-strain relation:

{do} = [D]{de"} (3.1.2.10)
and
{de} = {de} — {de"'} (3.1.2.11)

since the total strain increment is composed of an elastic and plastic part.
Substituting Equations 3.1.2.10, 3.1.2.11 and 3.1.2.8 into Equation 3.1.2.9 in

order, one can obtain the plastic multiplier as:

{7} bl

A= (3.1.2.12)

o) o)

so that the size of the plastic increment is related to the total strain increment, the

current stress state and the forms of yield and potential surfaces. The plastic strain

increment is then computed by using Equation 3.1.2.8.

{@} can be computed as:
0

{ZF} Bl 11 0 0 o] + ! {S} (3.1.2.13)
(¢}
B{S}T[M]{S}}

N | —
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{8_} can similarly be computed, however 3 is calculated using the dilatancy
c

angle, y instead of friction angle, ¢. There will be volumetric expansion with

plastic straining when y > 0. No volumetric expansion of the material occurs when

vy =0.

An Euler backward scheme is used to enforce the consistency condition given by
Equation 3.1.2.9 which ensures the updated stresses and strains are on the yield
surface. The implementation algorithm is summarized below:

1- The material parameter oy is calculated for the current time step.

2- The stresses are computed based on the trial strain {¢"}, that is the total strain
p

minus the plastic strain of the previous time step:
{en ) ={e,}—{el, (3.1.2.14)
{c"}=[Dle"} (3.1.2.15)

3- The equivalent stress o, is calculated by Equation 3.1.2.2. If o, is less than oy,

the material is in elastic state and no plastic strain increment is computed.

4- If o.>0y, the plastic multiplier, A is calculated from Equation 3.1.2.12 by using

a Newton-Raphson iteration procedure.
5- {de™} is calculated by Equation 3.1.2.8.
6- The current plastic strain is updated:

{eP'} = (e} +{de"} (3.1.2.16)
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The elastic strain is computed:

{e} = {e"} — {de"'} (3.1.2.17)
and the stress vector is:

{c} =[D}e"} (3.1.2.18)
3.2 Dynamic finite element analysis

3.2.1 Review on time history analysis

The equation of motion for a single degree of freedom system can be written as :

mii + cu + ku = P(t) (3.2.1.1)

where; m = mass
¢ = viscous damping constant
k = spring constant
P = applied external load at time t

u = displacement at time t
. du . .
u= d—= velocity at time t
t

2

. u . .
u= d_2 = acceleration at time t
t

Similarly the equations of equilibrium governing the dynamic response of a system

of finite elements can be written in matrix form as (Bathe, 1996):

[M]sii} + [Cla} + [K]fu} = (P} (3.2.1.2)
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where; [M] = mass matrix of the system
[C] = damping matrix of the system
[K] = stiffness matrix of the system

{ii} = nodal acc. vector
{u} = nodal velocity vector

{u} = nodal displacement vector

{P} = applied load vector

which represent a system of linear differential equations of second order.

Step by step methods are generally used for the solution of 3.2.1.2 in finite
element method. Newmark Beta method is one of the most commonly used step by

step methods which is employed in the finite element program ANSYS.

There are many different step by step methods (eg. central difference method, the
Houbolt method, the Wilson method, the Newmark method as stated in Bathe,
1996) in all of which the loading and the response history of the system are
divided into small time intervals (steps). The response of the system at each
interval is calculated from the initial conditions at the beginning of the step and the
loading during that step. Therefore, each step is assumed to be an independent
analysis in which the acceleration, velocity and displacement vectors are obtained

at the end of the time interval.

Step by step methods may be classified into two categories as:

1- Explicit methods :

In explicit methods, the unknown response values at the end of a step are totally

dependent on and are calculated from the quantities obtained in the previous step

or steps, so the analysis proceeds directly from one step to the next.
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2- Implicit methods :

In implicit methods, the equations giving the unkown values of a given step
include one or more values corresponding to the same step; thus an iterative
procedure should be carried out to solve the equations and find the response values
at the end of the step. It is often desirable to convert an implicit method to an

explicit form to make the solutions faster.
Newmark Beta Methods

In the Newmark formulation, the final velocity and displacement values are

expressed as follows :

u, =u, +(1-9)hii, + dhi, (3.2.1.3)
u, =u, +hu, +[%—ajh2ﬁo +ah’ii, (3.2.14)

where h is the size of the time step. The factor & provides a linearly varying
weighting of the influence of the initial and the final accelerations on the change of
the velocity; and the factor o provides for weighting of the influence of these

initial and final accelerations to the change of the displacement.

Taking 8= 1/2 and o= 1/4 in Equations 3.2.1.3 and 3.2.1.4 is referred as the
constant average acceleration method in which the acceleration is assumed to be
constant during the time step as the average of the initial and final accelerations.

The constant acceleration method is depicted in Figure 3.2.1.1.
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Figure 3.2.1.1 Constant acceleration method
(Newmark, 1959 (after Clough and Penzien, 1993))

Implementation in ANSYS

The implementation of the Newmark method in the program is summarized briefly

below based on ANSYS Theory Reference.

Equations 3.2.1.3 and 3.2.1.4 can be rearranged such that:

{u, gy =a,({u,,f—{u,p)—a,{0,;—a{i,} (3.2.1.5)
{U,,0={0,}+a{i,}+a,{i,,} (3.2.1.6)
) 1 1
here; a, = — =— = = 1
v T ah? o oh %2 oh % 20

a4=§_1 aszh(é—ZJ a6:h(1—8) 37:8h
a 2
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The equations of {ii_,,} and {u_,,}can be expressed only in terms of the unknown

displacement vector {u,:;} by substituting Equation 3.2.1.5 into 3.2.1.6. The

equations formed are then combined with Equation 3.2.1.2 to form:

a,[M]+ P+
a,[Cl+ [fu,,}=|[M)a,{u,}+a,{0,} +a, i, })+ (3.2.1.7)
K] [Cka,{u,}+a, {u} +a,fii,})

so that the solution for displacements at time t,:+1,{u,+;} can be obtained. The
velocity and acceleration values at t,+; can then be obtained by Equations 3.2.1.5

and 3.2.1.6.

It is stated by Zienkiewicz (1977) that the numerical solution of Equation 3.2.1.2
by Equations 3.2.1.5 and 3.2.1.6 is unconditionally stable for:

+0+a>0.

2

azi(l+y)2,82

N | —

1
2
In ANSYS, the Newmark parameters are related to an amplitude decay factor, y as:

1 1
a=—1+7)%8==—+ 3.2.1.8
4( Y) S+ ( )

When y >0, the solution will be unconditionally stable. Assuming y=0 the

Newmark method becomes the constant average acceleration method. Results
from the constant average acceleration method do not show any numerial damping
in terms of displacement errors. If other sources of damping are not present, the
lack of numerical damping can be undesirable in that the higher frequencies of the
system can produce unaceptable levels of numerical noise (Zienkiewicz, 1977). So
usually a certain level of numerical damping is desired and y is given a small
value. In this study, y is assumed as 0.005 which is the default value suggested in

the program.
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About integration time step

The accuracy of the solution depends on the time step size. The accuracy gets
higher as the time step size decreases. A time step that is too large leads to error
that effects the response of the higher modes of the system. A time step too small
will lead to time-consuming analyses and large output data. Therefore an optimum

time step should be chosen considering the following statements:

1- The time step should be small enough to resolve the response (motion) of the
system. It has been found that reasonably accurate results are obtained using
approximately twenty points for cycle of the highest frequency, f.x. Hence the

integration time step (ITS) is: ITS=1/(20fax)-

2- The time step should be small enough to resolve the loading function so that the

changes in loads can be followed sufficiently.

3- For wave-propogation problems, the time step should be small enough to

capture the wave as it travels through the elements.

ANSYS has the option of automatic time stepping so that the time step is adjusted
during the solution based on the response frequency and the nonlinearity effects.
Automatic time stepping or time step optimization is used in this study such that
the time step variation is bounded between the 1/20 and 1/2000 of the ground
motion period (the time step can be reduced to 1/2000 if necessary but can not

exceed 1/20 of the period of the ground motion) for greater accuracy.

3.2.2 Damping

Rayleigh damping is one of the most commonly used methods in transient finite
element analyses. According to Rayleigh damping, the damping matrix, [C] in
Equation 3.2.1.2 is assumed as a combination of the mass and stiffness matrices

as:
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[C]=a[M] + B[K] (3.2.2.1)

Rayleigh damping leads to the following relation between damping ratio and

frequency (Clough and Penzien, 1993):

=— 4= 3.2.2.2
S =0t ( )

where &, is the damping ratio for a particular mode of vibration, n and w, is the
natural circular frequency of mode n. The damping factors o and 3 can be obtained
by a pair of simultaneous equations using two damping ratios &, and &, with
corresponding frequencies oy, and ®,. It is commonly assumed that the sum of the

o and B terms is nearly constant over a range of frequencies as shown in Figure

3.2.2.1.

Damping Ratio, \ Total

: —

[Z-damping

c-damping

Figure 3.2.2.1 Damping ratio for Rayleigh damping
(after ANSY'S Theory Reference)

3.2.3 Absorbing boundaries
In static analyses, either displacements or tractions are applied to the boundaries of

the finite element model at some distance from the region of interest. However,

such boundary conditions lead to the reflection of the waves propogating outward.
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The viscous boundaries suggested by Lysmer and Kuhlemeyer (1969) are
generally used in time-domain finite element analyses to absorb the energy of the
outward propogating waves. The method suggests the use of dashpot elements in
normal and shear directions at the boundaries. The dashpot constans in the normal

and shear directions are taken such that the tractions provided by the dashpots are:

ty = -pCypVn, t;=-pCsVy (3.2.3.1)

where p is the density of the material, C, and C, are compression and shear wave
velocities respectively,V, and V are the velocities in the normal and shear

directions at the boundary.

An alternative to this approach (as stated in FLAC user manual by Itasca Inc.) is to
connect the boundaries to a shear beam(that simulates the free-field motion) by the
dashpots, hence to satisfy the free-field conditions at the boundaries of the model.
The left and right boundaries are connected to shear beams by vertical and
horizontal dashpots with appropriate parameters based on Equations 3.2.3.1 in this

study.

3.2.4 Verification by 1-D wave propogation problem

The finite element analysis results are verified for one-dimensional wave
propogation. For this purpose, a model is established and analysed by ANSYS and
SHAKE91 which is a computer program for site response analysis based on 1-D

wave propogation theory (Idriss and Sun, 1992) and the results are compared.

The considered model is summarized below:
- 5m deep soil deposit underlain by a rigid base, H=5m.
- The soil parameters are:
Elasticity modulus (E) = 100 Mpa
Poisson’s ratio (v) = 0.33

Damping ratio (§) = 0.1
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Unit weight (y) = 20 kN/m’
- A sinusodial acceleration time history with the following properties is
applied to the base:
Duration (t) = 4 sec.
Peak acceleration (accyax) = 0.2 g

Period of the motion (T,,,) = 0.2 sec.

ANSYS model and analysis

The finite element model used in the analysis is shown in Figure 3.2.4.1. 4-node
plane strain elements of 0.5m edge size are used to represent soil. The width of the
model is taken as 5 times the height. Dashpots are used to connect the left and

right side boundaries to shear beams to satisfy free-field conditions.

Figure 3.2.4.1 Finite element model for verification

Comparison of the results
Figure 3.2.4.2 shows the results obtained from ANSYS and SHAKE91 analyses. It

can be seen that the results are in very good agreement and the finite element

solution is succesful for the wave propogation problem.
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Figure 3.2.4.2 Comparison of the result of ANSYS and SHAKE91

3.2.5 About contact model

The interface between the structure and soil is of major concern in numerical

computations including soil-structure interaction due to the very different stiffness

and strength properties of the soil and structure. Simulating the relative motion

(sliding+gap) of the soil to the structure in a correct way by considering the

interaction (e.g. friction) between is essential for a realistic analysis.

There are two conventional approaches to soil-structure interaction problems:

Using interface elements between soil and structure: Interface elements with
either elastic or elasto-plastic behaviour are modelled between the associated
nodes of the structure and soil to simulate the relative sliding and/or gap.

This approximation can be referred as node-to-node contact.
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- Assigning same degree of freedom in one direction only, hence allowing the
relative displacements in the other directions. This approximation assumes

smooth surfaces between the wall and structure.

The use of node-to-node contact models is reasonable for problems involving
small relative sliding and deflections (rotations) of the surfaces (ANSYS Theory

Reference).

A rather new approximation, surface-to-surface contact model is used in this study.
In this model, the behaviour of the contact surfaces (which are two seperate
bodies) is determined by a specified contact algorithm. Unlike the node-to-node
contact models, the contacting components need not have a compatible mesh and
large deformation and large relative sliding are allowed. A brief summary about
the contact model used in the study is given below based on ANSYS Theory

Reference.

The contact model and algorithm

In studying the contact between two bodies, the surface of one body is taken as a
contact surface and the surface of the other body as a target target surface. The
contact and target surfaces constitute a contact pair.

Shear stress between the surfaces are calculated according to Coulomb’s law of
friction. The two contacting surfaces can carry shear stresses up to a certain
magniude across their interface before they start sliding relative to each other. This
state is referred as sticking. The Coulomb friction model is defined as:

Tiim = WP + ¢ (3.2.5.1)

1< T (3.2.5.2)
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where; Tiim = limit shear stress
T = shear stress on contact
u = coefficient of friction

P = contact normal pressure

¢ = contact cohesion

Once the shear stress exceed Tim, the contact and target surfaces slide relative to
each other. This state is referred as sliding. The sticking/sliding calculations
determine when a point transitions from sticking to sliding or vice versa. Figure

3.2.5.1 illustrates the friciton model.

In pure-penalty contact algorithm, the contact pressure is given as:

. (3.2.5.3)
K,u, ifu, <0

{ 0 ifu,>0
where; K, = contact normal stiffness

u, = contact gap size

The main drawback of this algorithm is that the amount of penetration between the
surfaces depends on the normal stiffness. Higher stiffness values decrease the
amount of penetration, but can lead to ill-conditioning of the global stiffness

matrix and to convergence difficulties.

The augmented Lagrangian method is an alternative to pure-penalty method. It is
an iteration series of penalty updates to find the Lagrange multipliers (contact
pressures). This method usually leads to better conditioning and is less sensitive to

the magnitude of the contact stiffness value. In this method, the contact pressure is

defined by:
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P 0 ifu, >0
CK,u, +A,, ifu, <0

where,

> €

uﬂ
A, if

1

A +K u, if
7\'i+1 = <s

un

where; A; = Lagrange multiplier component at iteration i

€ = tolerance of compatibility

The tangential contact stress is obtained by Coulomb’s law:

K., 1if t, —pP <0 (sticking)
T, =
" |pK,u, if T, —uP =0 (sliding)

where; K; = tangential contact stiffness

u; = contact slip distance in tangential direction

tr| &
/ Sliding
. /
ma< T
+—Tlim
m
Sticking
b
-
p

Figure 3.2.5.1 Contact friction model
(after ANSYS Thoery Reference)
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3.3 Linear quadrilateral plane-strain element

The soil and the wall are represented by 4-node quadrilateral plane-strain
elements. Isoparametric formulation in which the displacements are expressed in

terms of natural coordinates is used in the generation of the element matrices.

Figure 3.3.1 shows a 4-node quadrilateral element that is transformed into a square
element in natural coordinates for the formulations. The element has 2 degrees of
freedom at each node: in the directions of the x and y axes of the global coordinate

system.

4(-1,1) 3(1,1)

i(Xpyl) 2%y, 1(-1-1)  2(1,-1)

Global coordinates Natural coordinates

Figure 3.3.1 4-node quadrilateral plane element

Although the displacements are expressed in terms of natural coordinates, they
must be differentiated with respect to global coordinates x and y, hence a
transformation matrix called [J] must be used. In addition, the integrations must be

done numerically rather than analytical when the elemets are nonrectangular

(Cook et al, 1989).

65



The coordinates and the displacements are interpolated from the values at the
nodes by using the same shape functions, hence the term “isoparametric” is used

for the formulation.

The coordinates x and y are calculated from the nodal coordinates as:

x:iNixi and y:iNiyi (3.3.1)
i=1

i=1
where the shape functions N; are:

1 1
Ny=(-n-5)  Ny=_(+(-9)
N4

(3.3.2)

1 1
N, —Z(1+r)(l+s) —Z(l—r)(l+s)

The stiffness matrix

The unknowns which are the displacement in the x direction, u and the
displacement in the y direction, v are expressed by using the shape functions given

by Eq. 3.3.2 as:

u= ZA“‘Niui and v= ZA“‘NiVi (3.3.3)

i=1 i=1

The strains are related to the displacements by the strain displacement matrix [B]

by the equation:

{e}=[B]{d} (3.3.4)

where {d}=[u},v},u2,V2,U3,V3,U4,V4] T [B] is the product of the rectangular matrices

in the following three equations (Cook et al, 1989):
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u,.
€, 1 0 0 O
u,,
{ef=4¢e, t=[0 0 0 1
V,,
Yy 01 10
Vs,
u,, r, r, O 0 [{u,,
u,, _ r, r,, 0 0 [|u,,
Y,y 0 0 I, I,|lv,
A\ 0 0 I, I,|lv,
uar Nl,r 0 N2,r 0 N3,r 0
u,, Ny, 0 N, 0 N, 0
V’r - 0 Nl,r 0 N2,r 0 N3,r
Vas O Nl,s 0 N2,s 0 N3,s

uy denotes the partial derivative of u with respect to x (du/ox). I';j can be

obtained by the following equation:

where [J] is the jacobian matrix expressed as:
X N. x.
AN

zNi,rYi
zNi,in

ZNi,SYi

The element stiffness matrix [k] is obtained by the following integration over the

area of the element :

11

II 8x3 3x3 3x8 dX dy J-J‘

-1-1
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N,
Ny,
0
0

B|det[T]dr ds

0
0
N,
Ny,

}

8x1

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)



where the constitutive matrix [E] that relates the strains to stresses by the equation

{c}= [E]{e} is given below for isotropic linear elastic material and plane-strain

condition.
o, B I-v v 0 €,
6, r=——————| v l-v 0 €, (3.3.11)
(1+v)1-2v) 1-2v
Ty 0 0 Xy
2
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CHAPTER 4

FINITE ELEMENT ANALYSES FOR 8 METER HIGH WALL
RESTING ON ELASTIC FOUNDATION SOIL

In this section, the dynamic behaviour of gravity and cantilever walls, and the
effect of the frequency characteristics of base motions on the lateral pressures
acting on the walls are investigated. For this purpose, a gravity and a cantilever
retaining wall of 8m high with identical soil and loading conditions are
considered. The soil-wall systems are subjected to base motions with constant

peak acceleration but different frequencies.

4.1 Gravity wall

The dynamic response of a typical gravity retaining wall is presented in this
section. Both sliding and rocking deformations of the wall are taken into account

as the wall is modelled to rest on a soil layer.

4.1.1 The model and the parameters

The typical model used in the analyses is shown in Figure 4.1.1.1. The wall is
resting on a foundation soil layer that is underlain by a rigid base which is fixed in
the vertical direction and subjected to the base motion in the horizontal direction.
Appropriate dashpots are utilized at the side boundaries to satisfy the free-field
conditions (See Section 3.2.3 for details). The wall and the backfill soil are
seperated from each other and the contact is defined between the adjacent

surfaces.
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The typical finite element mesh is shown in Figure 4.1.1.2. The mesh is formed of
4 node quadrilateral plane-strain elements to represent the soil and the wall. In
addition, contact elements between the wall and backfill, and dashpots between
shear beams and the soil boundaries are provided. The dimensions and the material

parameters are summarized in Table 4.1.1.1.

The base motion applied to the base is a sinusodial acceleration time-history given

by :

a(t) = a..g.sin(wg.t) (4.2)

where g is the gravitational acceleration, a is the acceleration coefficient, wg is the

circular frequency of the ground motion that can be expressed as:

wg= 215, (4.2)

where fq denotes the frequency of the base motion.

The frequency ratio, Ry is defined as:

where f, is the natural vibration frequency of the soil layer which can be

determined by the folowing formula:

fa= Vs / (4H) (4.4)

where H; is the height of the soil layer above the base at which the base motion is

applied.

6 different base motions with varying frequency ratios of: Ry = 0.2, 0.5, 0.75,

1(resonance case), 2, 3 and 5 are considered for the examination of the effect of Rt
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on the lateral pressure distributions. The acceleration amplitude (or the peak
acceleration) of the base motion is assumed as 0.3g.

The system is solved statically and the initial stress conditions are calculated prior
to the dynamic loading. In the calculations, the weight of the wall and soil is taken
into account. For all cases, the time interval for the static loading is taken as 0-1
seconds, so as to reach the static stresses and deformations at t=1 seconds. Thus,

the base motion, hence the dynamic loading starts at t=1 seconds.

The acceleration time-history of the ground motion for the resonance case is given
in Figure 4.1.1.3 as a sample of the ground motions. In the preliminary analyses, it
is observed that the response of the system may be too large when the maximum
accelerations are applied suddenly to the system (e.g. in the first cycle of the
loading). Therefore, the acceleration is increased gradually to the peak value in the
first 3 cycles. The peak acceleration value is remained in the following 6 cycles

and diminished to zero in the last 3 cycles in a similar manner as in the first 3 ones.

The foundation layer and the retaining wall are assumed to be linear elastic while
both linear elastic and elasto-plastic material models are used for the backfill so
that the influence of yielding of backfill material on the lateral pressures can also

be examined.
The damping ratio of the system is assumed to be 5% and Rayleigh damping is

utilized with appropriate damping parameters as explained in Section 3.2.2 for

each loading case.
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Table 4.1.1.1 Dimensions and material parameters
considered in the gravity wall analyses

Symbol Description Unit | Value

H Height of the wall m 8

D Foundation layer thickness | m 2.4
Dw Wall foundation depth m 1.6
Bl Wall dimensions m 16
B2 m 3.2
Ds Density of soil t/m* 1.8
Es Elasticity mod. of soil kPa | 47880
Vs Poisson's ratio of soil - 0.33
A Shear wave velocity of soil | m/s 100

c Drucker-Prager parameters | kPa 0

) (For E-P analysis) degree 33
Pw Density of the wall t/m* 2.4
Ew | Elasticity mod. of the wall | kPa | 25 x 10°
Vw Poisson's ratio of the wall - 0.2

4.1.2 The results and comparisons

Analyses are carried out for the base motions with different frequency ratios of
R = 0.2, 0.5, 1, 2, 3 and 5 as stated in Section 4.1.1 by using the finite element
software ANSYS. For each time step, the total lateral thrust and base moment
values are calculated by integrating the lateral soil stresses on the wall. In this way,
the maximum total (static+dynamic) lateral thrust and its point of application are
determined for each loading. Tensile stresses are omitted in the integration since
the wall and backfill are seperated at this stage and no force is exerted on the wall.
The variation of the total lateral thrust with time is given in Figure 4.1.2.1 for the
case of linear elastic backfill and a frequency ratio of fy/f,=2 as an example of the

results.
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There is a linear increase of the lateral pressures in the interval between t=0 and
t=1 seconds wherein the static loading is applied. After t=1 seconds, as it is to be

expected, the total lateral thrust varies with a pattern of the harmonic base motion.

The dynamic behaviour of the gravity retaining wall is illustrated on the Figures
4.1.2.2 to 4.1.2.6 where the deformed mesh at various instants are shown.The
deformations are magnified by 50 times in the figures. It can be seen that even the
wall is quite stiff, it undergoes a considerable rotation which may lead to a

decrease of the lateral soil pressures.

The Drucker-Prager parameters are assumed to be ¢=0 and $=33 as given in Table
4.1.1.1. However, in the elasto-plastic analyses that frequency ratios are chosen to
be 1 and 0.75, due to the large amplification of the accelerations and complex
contact behaviour, convergence difficulties are encountered and the cohesion value
is increased up to 20 kPa for some of the backfill elements at the near-bottom of
the wall as indicated in Figure 4.1.2.2 by “x” marks on the elements to achieve
convergence. Yielding of the backfill has taken place in all of the cases considered
herein. The uniform plastic strain vectors for two cases are shown in Figures
4.1.2.7and 4.1.2.8.
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DISPLACEMENT

STEP=2

SUB =150
TIME=7.036
DM =.078682

Figure 4.1.2.2 Deformed mesh for the gravity wall
(H=8m, L.E backfill, a=0.3, R¢=0.5, t=7.036 s.)

DISPLACEMENT

STEP=2

SUB =160
TIME=7.452
DMX =.080379

Figure 4.1.2.3 Deformed mesh for the gravity wall
(H=8m, L.E backfill, a=0.3, R¢=0.5, t=7.452 s.)
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DISPLACEMENT

STEP=2

SUB =143
TIME=1.98
DMX =.016409

Figure 4.1.2.4 Deformed mesh for the gravity wall
(H=8m, L.E backfill, =0.3, R¢=3, t=1.98 s.)

DISPLACEMENT

STEP=2

SUB =154
TIME=2.056
DMX =.0162

Figure 4.1.2.5 Deformed mesh for the gravity wall
(H=8m, L.E backfill, «=0.3, Rf =3, t=2.056 s.)
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Figure 4.1.2.7 Plastic strain vectors for the gravity wall(H
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Figure 4.1.2.8 Plastic strain vectors for the gravity wall(H=8m, a.=0.3, Rf =2)

The total lateral force vs. frequency ratio is shown in Figure 4.1.2.9 in which the
results of Mononobe-Okabe, Steedman and Zeng and Wood solutions are also
included. In the graph, the total lateral force is expressed in non-dimensional form
as:

Fu = (45)

where F is the maximum total lateral force, vy is the unit weight of the backfill and
H is the height of the wall.

The amplification ratios of the surface acceleration to the base acceleration for the
considered soil layer are shown in Figure 4.1.2.10 for different R values and 5%

damping.

The significant effect of the frequency ratio can be seen from Figure 4.1.2.9. For

low frequency motions (fy<f,), the lateral force increases as fy increases and takes
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the peak value at fy=f,. For high frequency motions (fg>f,), the lateral force

decreases with increasing fg.

Extremely high values of the total lateral thrust are obtained from the finite
element (FE) analyses for the resonance case compared to the other frequency
ratios. Such high values are mainly due to the great amplification in the backfill,
resulting in a good agreement with Steedman and Zeng solution especially for the
case of linear elastic backfill. On the other hand, for high frequency motions, the
amplification ratio has no considerable influence on the lateral thrust as can be
seen particularly from the results for R¢= 3.

Since there is a considerable rotation of the gravity wall as mentioned before, the
results are reasonably agreeable with M-O solution except in the vicinity of
Rf: 1.

Results of elasto-plastic analyses are similar to those of linear elastic analyses

especially for high frequency motions.

The distance of points of application of the total lateral force from the wall base,
normalized to the wall height; h, vs. frequency ratio are given in Figure 4.1.2.11.

Here, h, is defined as:

ha=h/H (4.6)

where h is the distance of the application point to the base of the wall.The height
of the application point is generally in good agreement with M-O method . Both
total lateral thrust and location of application points found by elasto-plastic and

linear elastic analyses are in good agreement.

Maximum total bending moments at the base of the wall vs. frequency ratios are
presented on Figure 4.1.2.12. The moment is expressed in non-dimensional form

as:
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M, = 4.7)

where M; is the total bending moment at the base of the wall due to the lateral
pressures acting on the wall. It can be observed that the moments are lower than
those obtained by Wood solution, but in good agreement with M-O or Seed and

Whitman methods depending on Ry, except for the resonance case.

The total lateral pressure distributions corresponding to the maximum lateral thrust
are shown in Figures 4.1.2.13, 4.1.2.14 and 4.1.2.15. Here the non-dimensional

lateral pressure ghg is defined as:
Qg = An (4.8)

where @ is the total lateral stress. It can be seen from the figures that the total
lateral stress falls below the static lateral stress at some points. Additionally
negative total lateral stresses are obtained at some points where static lateral
stresses are positive. This makes it impractible to consider the application point of

the dynamic force seperately.

Obtained results for the gravity wall of H = 8 m high are summarized in Table
4.1.2.1. The maximum dynamic lateral forces, obtained by subtracting the static
lateral forces from the maximum total lateral forces are given in Table 4.1.2.2. The
maximum dynamic lateral force is normalized to the peak base acceleration and

expressed in non-dimensional form as:

F
F. = d 4.9
dd psasz ( )

where Fq is the maximum dynamic lateral force and a, is the peak acceleration of

the base motion (a, = ag for harmonic base motions).
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Max. total lateral thrust, Fy

(dimensionless)
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Figure 4.1.2.9 Maximum total lateral force vs. frequency ratio

for gravity wall (=0.3)
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Figure 4.1.2.10 Amplification ratio vs. frequency ratio of the
considered soil layer for 5% damping ratio.
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Table 4.1.2.1 Summary of the results for gravity wall

Backfill Total lat. 1°%  Heightof . or - Non-  Normalized

Freq. . se > dimensional dimensional height of
. material force, Fy application .

ratio (Ry) model  (kN) moment, point, h total lat. total base  app. point,
M, (KNm) ‘ force, Fy  moment, My h,
0.2 L.E 295 729 2.47 0.261 0.081 0.31
0.2 E-P 297 805 2.71 0.263 0.089 0.34
0.5 L.E 329 806 2.45 0.291 0.089 0.31
0.5 E-P 357 967 2.71 0.316 0.107 0.34
0.75 L.E 453 1092 241 0.401 0.121 0.30
0.75 E-P 396 939 2.37 0.350 0.104 0.30
1 L.E 1950 6923 3.55 1.725 0.766 0.44
1 E-P 1489 5271 3.54 1.318 0.583 0.44
15 L.E 339 942 2.78 0.300 0.104 0.35
1.5 E-P 337 991 2.94 0.298 0.110 0.37
2 L.E 301 903 3 0.266 0.100 0.38
2 E-P 261 783 3 0.231 0.087 0.38
3 L.E 253 911 3.6 0.224 0.101 0.45
3 E-P 237 910 3.84 0.210 0.101 0.48
5 L.E 196 625 3.19 0.173 0.069 0.40
5 E-P 193 612 3.17 0.171 0.068 0.40

Table 4.1.2.2 Maximum dynamic lateral force results for gravity wall

. . . Non-

Freq. ratio BaCkf_'” Static lat, Total lat. Dynamic dimensional

R) material ~ force, Fg, force, F, (kN) lat. force, dynamic lat.

model (kN) Fq (kN) force, Fg

0.2 L.E 171 295 124 0.37
0.2 E-P 174 297 123 0.36
0.5 L.E 171 329 158 0.47
0.5 E-P 174 357 183 0.54
0.75 L.E 171 453 282 0.83
0.75 E-P 174 396 222 0.65
1 L.E 171 1950 1779 5.25
1 E-P 174 1489 1315 3.88
15 L.E 171 339 168 0.50
1.5 E-P 174 337 163 0.48
2 L.E 171 301 130 0.38
2 E-P 174 261 87 0.26
3 L.E 171 253 82 0.24
3 E-P 174 237 63 0.19
5 L.E 171 196 25 0.07
5 E-P 174 193 19 0.06
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Total Lateral Stress Distribution
(Gravity wall, L.E Backfill, a=0.3)
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Figure 4.1.2.13 Total lateral stress distributions for
max. thrust for various freg. ratios (a=0.3, Gravity wall, H=8m)
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Total Lateral Stress Distribution
(Gravity wall, E-P Backfill, a=0.3)
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Figure 4.1.2.14 Total lateral stress distributions for
max. thrust for various freg. ratios (a=0.3, Gravity wall, H=8m)
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Total Lateral Stress Distribution
(Gravity wall, L.E & E-P Backfill, 0=0.3)
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Figure 4.1.2.15 Total lateral stress distribution for
max. thrust for the resonance case (a=0.3, Gravity wall, H=8m)

4.2 Cantilever wall

The dynamic behaviour of a gravity wall has been presented in the previous
section. In this section, a typical cantilever wall of same height with identical
backfill and loading conditions are examined.

4.2.1 The model and the parameters

The typical model is shown in Figure 4.2.1.1. A foundation soil layer underlain by
a rigid base is modelled beneath the base of the wall. The contact elements are
defined between the vertical adjacent surfaces of the wall and backfill. Dashpots
connecting the soil layers to the shear beams are utilized to simulate free-field
conditions at the side boundaries.
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The finite element mesh used in the analyses is shown in figure 4.2.1.2. 4 node
quadrilateral plane strain elements are used to represent the wall and soil. Contact
elements and dashpots are also used in the mesh. The dimensions and the material

parameters are summarized in Table 4.2.1.1.

The same base motions used for the gravity wall analyses are used in this part of
the study having frequency ratios of R = 0.2, 0.5, 0.75, 1, 1.5, 2, 3 and 5.The
dynamic loading starts following the static solution that takes place between t=0-1

seconds as described in Section 4.1.1.

Similar to the case of gravity wall, the foundation soil layer and the retaining wall
are assumed to be linear elastic, while linear elastic and elasto-plastic material
models are used for backfill soil. The damping ratio is assumed as 5% and

Rayleigh damping (explained in Section 3.2.2) is utilized in the analyses.

Table 4.2.1.1 Dimensions and material parameters
considered in the typical cantilever wall analyses

Symbol Description Unit | Value

H Height of the wall m 8

D Foundation layer thickness | m 2.4
Tl m 0.8
12 Wall dimensions m 08
Bl m 2.4
B2 m 5.6
Ds Density of soil t/m* 1.8
Es Elasticity mod. of soil kPa | 47880
Vs Poisson's ratio of soil - 0.33
Vs Shear wave velocity of soil | m/s 100
c Drucker-Prager parameters | kPa 0

) (For E-P analysis) degree 33
Pw Density of the wall t/m* 2.4
Ew | Elasticity mod. of the wall | kPa | 25 x 10°
Vi Poisson's ratio of the wall - 0.2
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Figure 4.2.1.2 Typical finite element mesh for the cantilever wall analyses



4.2.2 The results and comparisons

The maximum total lateral thrust and its point of application are determined for
each case. The variation of the total lateral force with time is presented in Figure
4.2.2.1 for the case of linear elastic backfill and R = 2 as an example of the results.
Following the static solution completed at t = 1 seconds, the total lateral force

variation is similar to the base motion as seen in the figure.

The deformed mesh plots (magnified by 50 times) at various instants are shown
through Figures 4.2.2.2 to 4.2.2.5. The seperation between the wall and backfill is
clearly illustrated in Figures 4.2.2.3 and 4.2.2.4. The rotation of the wall is
insignificant and the deflection of the wall, hence the flexibility of the wall mainly

affects the lateral pressures.

For the cases of elasto-plastic backfill and R¢ values of 0.75 and 1, the Drucker-
Prager parameter, c is inreased up to 20 kPa for some elements at the near bottom
of the wall as indicated by “x” marks in Figure 4.2.2.2 to overcome convergence
problems. Yielding of the backfill (full or partial) has taken place in all of the
considered cases. The uniform plastic strain vectors for two cases are shown in
Figures 4.2.2.6 and 4.2.2.7.
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DISPLACEMENT

STEP=2Z

SUB =149
TIME=7.01%
DM =.077543

Figure 4.2.2.2 Deformed mesh for the cantilever wall
(H=8m, L.E backfill, =0.3, Rf =0.5, t=7.019 s.)

DISPLACEMENT

STEP=2

SUB =160
TIME=7.477
DMX =.078968

Figure 4.2.2.3 Deformed mesh for the cantilever wall
(H=8m, L.E backfill, «=0.3, Rf =0.5, t=7.477 s.)
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DISPLACEMENT

STEP=2

SUB =148
TIME=1.983
DMX =.015512

Figure 4.2.2.4 Deformed mesh for the cantilever wall
(H=8m, L.E backfill, =0.3, Rf =3, t=1.983 s.)

DISPLACEMENT

STEP=2

SUB =159
TIME=2.06
DMX =.016014

Figure 4.2.2.5 Deformed mesh for the cantilever wall
(H=8m, L.E backfill, «=0.3, R =3, t=2.06 s.)
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Figure 4.2.2.6 Plastic strain vectors for the cantilever wall(H
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Figure 4.2.2.7 Plastic strain vectors for the cantilever wall(H



The non-dimensional maximum total lateral force, Fy; distance of the point of
application from the base of the wall, h, and the maximum total bending moment
at the base of the wall, My, are given in Figures 4.2.2.8, 4.2.2.9 and 4.2.2.10

respectively as a function of the frequency ratio, Ry.

The dynamic lateral force increases as the base motion frequency approaches the
natural vibration frequency of the soil layer. Fig and My results for the resonance
case are quite high as compared to other frequency ratios and to the results of M-O
and Wood solutions. For the cantilever wall, finite element results are rather
different from those obtained by Steedman and Zeng method that is directly
affected by the amplification ratio (the lateral force increases with increasing
amplification in the backfill in Steedman and Zeng method) at about resonance
frequencies. FEM results of Fy are in good agreement with Wood solution at
R¢= 0.5 and 1.5 and M-O solution at R = 3 and 5.

The distances of application point to the base are smaller than those suggested by
Seed and Whitman and Wood solutions resulting in relatively lower bending

moments at the base.

There is reasonable similarity between the results obtained from analyses of linear

elastic and elasto-plastic backfill except for the resonance case.

The total lateral stress distributions at the backfill corresponding to the maximum
total lateral thrust are presented in Figures 4.2.2.11, 4.2.2.12 and 4.2.2.13. Similar
to the gravity wall case, the total lateral stress falls below the static lateral stress at
some points which makes it impractible to seperately examine the application
point of the dynamic lateral thrust.

Maximum total lateral thrusts are summarized in Table 4.2.2.1. A summary of the

maximum dynamic lateral thrusts are given in Table 4.2.2.2.
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Maximum Tot. Lat.Force vs. freq. ratio
(Cantilever Wall, H=8m, a=0.3)
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Figure 4.2.2.8 Maximum total lateral force vs. frequency ratio for
cantilever wall (H=8m, a.=0.3)
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Figure 4.2.2.9 Distance of the point of application vs. frequency ratio
for cantilever wall (H=8m, a=0.3)
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Maximum Total Moment vs. frequency ratio
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Figure 4.2.2.10 Maximum total moment vs. frequency ratio
for cantilever wall (H=8m, a=0.3)
Table 4.2.2.1 Summary of the results for cantilever wall
Backfill Total lat.  'O%  Heightof . Nom- - Non- - Normalized
Freq. . > dimensional dimensional height of
. material force, F; application .
ratio (Ry) moment, . total lat. total base  app. point,
model (kN M, (KNm) point, h force, Fy  moment, My h,
0.2 L.E 396 923 2.33 0.350 0.102 0.29
0.2 E-P 415 1021 2.46 0.367 0.113 0.31
0.5 L.E 435 1044 24 0.385 0.115 0.30
0.5 E-P 481 1188 247 0.426 0.131 0.31
0.75 L.E 615 1636 2.66 0.544 0.181 0.33
0.75 E-P 580 1531 2.64 0.513 0.169 0.33
1 L.E 1397 4387 3.14 1.236 0.485 0.39
1 E-P 871 3179 3.65 0.771 0.352 0.46
15 L.E 442 1375 3.11 0.391 0.152 0.39
15 E-P 484 1529 3.16 0.428 0.169 0.40
2 L.E 415 1340 3.23 0.367 0.148 0.40
2 E-P 333 949 2.85 0.295 0.105 0.36
3 L.E 274 521 1.9 0.242 0.058 0.24
3 E-P 281 562 2 0.249 0.062 0.25
5 L.E 233 496 2.13 0.206 0.055 0.27
5 E-P 220 462 2.1 0.195 0.051 0.26
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Table 4.2.2.2 Dynamic lateral force results for cantilever wall

. . . Non-
Freq. ratio BaCkf_III Static lat, Total lat. Dynamic dimensional
R) material ~ force, Fg, force, F, (kN) lat. force, dynamic lat.
model (kN) FaGN) e, o
0.2 L.E 201 396 195 0.58
0.2 E-P 206 415 209 0.62
0.5 L.E 201 435 234 0.69
0.5 E-P 206 481 275 0.81
0.75 L.E 201 615 414 1.22
0.75 E-P 206 580 374 1.10
1 L.E 201 1397 1196 3.53
1 E-P 206 871 665 1.96
15 L.E 201 442 241 0.71
15 E-P 206 484 278 0.82
2 L.E 201 415 214 0.63
2 E-P 206 333 127 0.37
3 L.E 201 274 73 0.22
3 E-P 206 281 75 0.22
5 L.E 201 233 32 0.09
5 E-P 206 220 14 0.04
Total Lateral Stress Distribution
(Cantilever wall, L.E & E-P Backfill, =0.3)
1 .
—O— Static, L.E
—0O— Static, E-P
0.8
——Rf=1,LE
—O0—Rf=1,E-P
0.6
I
<

0.4

0.2

0 ;
05 00 05 1.0 15 20 25 30 35
Total lat. soil pressure, g,y (dimensionless)

Figure 4.2.2.11 Total lateral stress distribution for
max. thrust for the resonance case (a=0.3, Cantilever wall, H=8m)
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Total Lateral Stress Distribution
(Cantilever wall, L.E Backfill, 0=0.3)
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Figure 4.2.2.12 Total lateral stress distributions for
max. thrust for various freg. ratios («=0.3, Cantilever wall, H=8m)
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Total Lateral Stress Distribution
(Cantilever wall, E-P Backfill, 0=0.3)
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Figure 4.2.2.13 Total lateral stress distributions for
max. thrust for various freg. ratios («=0.3, Cantilever wall, H=8m)
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4.3 Analyses with real earthquake records

The dynamic response of a typical gravity and a cantilever wall subjected to
harmonic base motions have been examined in Sections 4.2 and 4.3. In this
section, the dynamic behaviour of the walls when subjected to actual earthquake
motions are investigated. For this purpose, the same soil-wall systems are

considered and real earthquake records are used as base motions in the analyses.

4 earthquake records with different frequency content and similar peak ground
accelerations are considered. Information about the earhquake records and
simplified frequency content parameters are given in Table 4.3.1. The simplified
frequency content parameters examined are: the predominant frequency, fp; the
smoothed spectral predominant frequency, fo; and the mean frequency, f, as
suggested by Rathje et al (1998).

The predominant frequency, f, is defined as the frequency corresponding to the

peak spectral acceleration in the acceleration response spectrum.

The smoothed spectral predominant frequency, fo is given by:

rfln[sa(Ti)]H[sa(Ti) ~1.2MHA]
f, = it (4.10)

%Ti In[S, (T)[H[S, (T;) ~1.2MHA]

i=1

where; nPer = number of periods in the response spectrum,
T; = discrete periods in the response spectrum,
Sa(Ti) = spectral acceleration at period T;,

H[x] = the Heaviside function (equals 1 when x>0 and 0 for x<0).
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The mean frequency, fr, is defined as:

C?
f L for 0.25Hz < f, <20Hz (4.11)

0

where; C; = Fourier amplitudes of the accelerogram,

f; = Discrete Fourier transform frequency.

The acceleration time histories and the acceleration response spectra of the
earthquake motions are shown in Figure 4.3.1 and 4.3.2 respectively.

Using the whole earthquake record in the analysis leads to very large output data
and time consumption. Since the goal is to examine the maximum lateral
pressures, a part of these records are used which contain the maximum

acceleration with a total duration of not less than 10 seconds.

Table 4.3.1 Summary of the earthquake records

Ground motion EQ1 EQ2 EQ3 EQ4
San Fernando .. Loma Prieta Loma Prieta
Earthquake name 1971 Diizce 1999 1989 1089
. 128 Lake y Saratoga W 1002 Apeel 2
Station Hughes #12 Dlzee Valley Coll. Redwood City
Peak acc. (g) 0.27 0.3 0.33 0.27
Peak spectral acc. () 1.32 1.82 0.75 1.18
fo (1/s) 4.17 2.5 3.84 0.91
£y (1/) 6.23 3.15 4.33 1.57
fn (1/5) 4.64 1.46 1.03 0.99
o/ f, 1.74 1.04 1.60 0.38
fol £ 2.60 1.31 1.80 0.65
fnl fo 1.93 0.61 0.43 0.41

105



The results obtained from the analyses of gravity and cantilever walls are
summarized in Tables 4.3.2 t0 4.3.5.

The variation of the total lateral thrust with time for diferent base motions are

shown in Figures 4.3.3 and 4.3.4 for gravity and cantilever walls respectively.

Table 4.3.2 Summary of the results for real earthquake motions
(Gravity wall, H=8m)

Backfill Max. total M2 08 eineor  Non- o Non-  -Normalized
Ground . 2~ dimensional dimensional height of
. material lat. force, application .
Motion moment, . total lat. total base  app. point,
model  Fy (kN) M, (kNm) point, h force, Fy moment, My h,
EQ1 L.E 330 858 2.6 0.292 0.095 0.33
EQ1 E-P 323 930 2.88 0.286 0.103 0.36
EQ2 L.E 1406 5413 3.85 1.244 0.599 0.48
EQ2 E-P 1333 5185 3.89 1.180 0.574 0.49
EQ3 L.E 404 1010 25 0.357 0.112 0.31
EQ3 E-P 374 1047 2.8 0.331 0.116 0.35
EQ4 L.E 327 818 2.5 0.289 0.090 0.31
EQ4 E-P 311 846 2.72 0.275 0.094 0.34

Table 4.3.3 Dynamic lateral force results for real earthquake motions
(Gravity wall, H=8m)

Backfill ~ Static lat.  Total lat. Dynamic Non-
Ground  Peak . dimensional
Motion  acc. (g) material  force, Fq,  force, F,  lat. force, dynamic lat,
model (kN) (kN) Fa (KN) force, Fq
EQ1L 0.27 L.E 171 330 159 0.52
EQ1 0.27 E-P 174 323 149 0.49
EQ2 0.3 L.E 171 1406 1235 3.64
EQ2 0.3 E-P 174 1333 1159 3.42
EQ3 0.33 L.E 171 404 233 0.62
EQ3 0.33 E-P 174 374 200 0.54
EQ4 0.27 L.E 171 327 156 0.51
EQ4 0.27 E-P 174 311 137 0.45
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Table 4.3.4 Summary of the results for real earthquake motions
(Cantilever wall, H=8m)

Backfill Max. total 2 08l iontor  Non- - Non- - Normalized
Ground . ba 2" dimensional dimensional height of

material lat. force, application .
Moti moment, . total lat. total base  app. point,

model  F (kN) M, (kNm) point, h force, Fy moment, My h,
EQ1L L.E 439 1146 2.61 0.388 0.127 0.33
EQ1 E-P 455 1356 2.98 0.403 0.150 0.37
EQ2 L.E 975 2711 2.78 0.863 0.300 0.35
EQ2 E-P 897 3516 3.92 0.794 0.389 0.49
EQ3 L.E 530 1367 2.58 0.469 0.151 0.32
EQ3 E-P 543 1450 2.67 0.480 0.160 0.33
EQ4 L.E 438 1060 242 0.388 0.117 0.30
EQ4 E-P 448 1245 2.78 0.396 0.138 0.35

Table 4.3.5 Dynamic lateral force results for real earthquake motions
(Cantilever wall, H=8m)

Backfill ~ Staticlat. Total lat. Dynamic . Non-
Ground  Peak . dimensional
Motion  acc. (g) material force, Fq,  force, F,  lat. force, dynamic lat.
model (kN) (kN) Fa (kN) force, Fy,
EQ1 0.27 L.E 201 439 238 0.78
EQ1 0.27 E-P 206 455 249 0.82
EQ2 0.3 L.E 201 975 774 2.28
EQ2 0.3 E-P 206 897 691 2.04
EQ3 0.33 L.E 201 530 329 0.88
EQ3 0.33 E-P 206 543 337 0.90
EQ4 0.27 L.E 201 438 237 0.78
EQ4 0.27 E-P 206 448 242 0.79

Comparing the results of the analyses using real earthquake records (summarized
in Tables 4.3.1 to 4.3.5) and harmonic motions (summarized in Tables 4.1.2.1,

4.1.2.2,4.2.2.1 and 4.2.2.2) the following conclusions can be made:

- The total lateral thrusts and their application points obtained by using real

earthquake records are close to those obtaine by harmonic base motions.

- As far as the maximum total lateral forces acting on the wall are considered, it

can be said that none of the proposed parameters to represent the frequency
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content of the earthquake motions, f,, fo or f, can be used as the frequency of an
equivalent harmonic motion with same peak acceleration to represent the

earthquake alone.

Examining the results for the maximum total lateral thrust and its point of
application, it can be stated that the results of EQ1, EQ2 and EQ4 motions are
in reasonably good agreement with those obtained by utilizing harmonic base
motions with a frequency of f,. For EQ3 motion, the results are in reasonably
good agreement with those calculated by using harmonic base motion with a
frequency of fp,.
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Figure 4.3.1 Time histories of the earthquake records used
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Acceleration Response Spectrum of EQ1 Ground Motion
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CHAPTER 5

FINITE ELEMENT ANALYSES FOR 5 METER HIGH WALL
RESTING ON ELASTO-PLASTIC FOUNDATION SOIL

Analyses and results of 8m high gravity and cantilever walls subjected to harmonic
and real earthquake base motions have been presented in Chapter 4. Harmonic
base motions of constant peak acceleration (0.3g) with different frequencies and
strong motion acceleration time histories having similar peak acceleration values
(0.279-0.33g) with different frequency content are used in the analyses. The
foundation soil is assumed as linear elastic and elasto-plastic material model is
used for backfill.

In this chapter, typical gravity and cantilever walls of 5m high are considered.
Dynamic response of the walls when subjected to harmonic and recorded real
earthquake base motions with various peak accelerations and frequency content
are examined. Both the foundation and backfill soil are assumed to be

elasto-plastic material in the analyses.

The dimensions of the walls are assessed by Mononobe-Okabe method using the
peak base accelerations. The factor of safety (F.S) values are assumed to be 1.5
and 2.0 for sliding and overturning respectively for static case. For dynamic cases,
the factor of safety values are decreased to 75% of assumed for static case.
Therefore the F.S values for dynamic loading are assumed to be 1.12 and 1.5 for

sliding and overturning respectively.
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5.1 Gravity wall

This section presents the analyses and results of a typical gravity retaining wall of
5m high subjected to harmonic base motions with varying magnitude and

frequency.

5.1.1 The model and the parameters

The typical soil-wall system used in the analyses has been shown in Figure 4.1.1.1.
The wall is resting on a foundation soil layer that is underlain by a rigid base
which is fixed in the vertical direction and subjected to the base motion in the
horizontal direction. Information about the model, boundary conditions and

loading is given in Section 4.1.1.

An elastic-perfect plastic material model with Drucker-Prager yield criterion is
used for both the foundation and backfill soil. The damping ratio of the system is
assumed to be 5% and Rayleigh damping is utilized with appropriate damping

parameters as explained in Section 3.2.2 for each loading case.

Harmonic base motions (defined by Equation 4.1) with varying peak accelerations
of 0.1g, 0.2g, 0.3g and varying frequency ratios of: R = 0.2, 0.5, 2, 5 are used in
the analyses. Ry is the ratio of the base motion frequency to the fundamental
frequency of the soil layer defined by Equation 4.3 as:

The model dimensions and parameters are given in Table 5.1.1.1. As stated before,
the wall dimensions are determined considering the sliding and overturning of the
wall using Mononobe-Okabe method. The peak base acceleration of the soil-wall
system (peak acceleration of the motion applied along the base of underlying soil
beneath the foundation) is used to assess the seismic coefficient, k,. The passive
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resistance of the soil in front of the wall is neglected in the assessment of wall

dimensions.

As explained in Section 4.1.1, the base motion, hence the dynamic loading starts at

t=1 seconds, after the static stresses and deformations are reached.

Table 5.1.1.1 Dimensions and material parameters
considered in the gravity wall analyses

Symbol Description Unit | Value

H Height of the wall m 5

D Foundation layer thickness | m 55
Dw Wall foundation depth m 1
Bl Wall dimensions for peak m 1
B2 base acc. of 0.1g m 2
Bl Wall dimensions for peak m 1.5
B2 base acc. of 0.2g m 25
Bl Wall dimensions for peak m 2
B2 base acc.of 0.3g m 3
Ds Density of soil t/m* 1.8
Es Elasticity mod. of soil kPa | 80000
Vs Poisson's ratio of soil - 0.33
A Shear wave velocity of soil | m/s 129
c Drucker-Prager parameters | kPa 0

) (For E-P analysis) degree 33
Pw Density of the wall t/m® 2.4
Ew | Elasticity mod. of the wall | kPa | 25 x 10°
Vw Poisson's ratio of the wall - 0.2

5.1.2 The results and comparisons
Acceleration amplitudes and frequency ratios utilized during the calculations has

been presented in Section 5.1.1. For each time step, the total lateral thrust and base

moment values are found by integrating the lateral stresses on the wall, and the
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maximum total (static+dynamic) lateral thrust and its point of application are
determined for each loading. Tensile stresses are not considered since the wall and

backfill are seperated at this stage and no force is exerted on the wall.

The dynamic behaviour of the gravity retaining wall is illustrated on the Figures
5.1.2.1 and 5.1.2.2 where the deformed mesh at different instants are shown.The
deformations are magnified by 100 times in the figures. It is observed that the stiff
wall rotates considerably lateral pressures decrease for the walls and soil
configurations and range of frequency of the base excitations used in the

calculations.

The Drucker-Prager parameters are selected to be ¢=0 and ¢$=33 as given in Table
5.1.1.1. However, in the elasto-plastic analyses with peak base acceleration of 0.3g
and frequency ratios of 0.5 and 2, due to the large accelerations and complex
contact behaviour, convergence difficulties are encountered and the cohesion value
is increased up to 20 kPa for some of the soil elements at the near-bottom of the

wall as indicated by “x” marks in Figure 5.1.2.1 to achieve convergence.

The variation of maximum total lateral thrust with peak acceleration of the base
motion is depicted in Figure 5.1.2.3. The static lateral force (corresponding to
o=0) is also shown in the figure. The increase in the maximum lateral thrust with
the base acceleration amplitude is approximately linear as can be seen in this
figure. There is a considerable difference between the static lateral force found by
finite elemen method and Coulomb’s Earth Pressure Theory for static loading,

which conributes to the difference between the total lateral force results.
The height of the application point of the total lateral thrust are given in Figure

5.1.2.4. The results are generally between those suggested by M-O and Seed and
Whitman (1970).
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Figure 5.1.2.1 Deformed mesh for the gravity wall
(H=5m, 0=0.3, R¢=0.5, t=3.459 s.)
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Figure 5.1.2.2 Deformed mesh for the gravity wall
(H=5m, a=0.3, R¢=0.5, t=3.767 s.)
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Maximum total lateral force vs. amplitude of base motion
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Figure 5.1.2.3 Maximum total lateral force vs. amplitude of base motion
(Gravity wall, H=5m)

Point of application vs. amplitude of base motion
(Gravity Wall, H=5m)
0.50 ‘ ‘ ‘
| | |
© | ! X
e | | -
e 0.45 | | - |
o . | | - |
- = | X, - |
c £ | . |
> O ! .- | |
a o | . | |
£ c 040 f-----------—- P R EE b ]
© il -7 | X
(T A |
N o $ | o
= = |
3159 w ¢ |
s ® o ___ o
Z | ] |
| | |
| | |
0.30 ‘
0 0.1 0.2 0.3
Acc. amplitude of the base motion, a (g)
o Ri=0.2 O Rf=0.5
A Rf=2 X  Rf=5
— — — M-O — - — - Seed & Whitman(1970)

Figure 5.1.2.4 Height of the application point of the total lateral force vs.
amplitude of base motion (Gravity wall, H=5m)

Figure 5.1.2.5 depicts the maximum total moments at the base versus base motion
acceleration amplitudes. The finite element results are generally higher than M-O
and Seed and Whitman (1970) methods. Nevertheless, it can be seen that the
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difference is mainly due to the difference between static solution by finite element
method and Coulomb’s solution (on which M-O and Seed and Whitman methods

are based).

Maximum total base moment vs. amplitude of base motion
(Gravity Wall, H=5m)

Max. total base moment, My
(dimensionless)

Amplitude of the base motion, o ()

—o—Rf=0.2 — 8 —Rf=0.5
- - a-- Rf=2 — X— -Rf=5
— % —M-O ——e— Seed&Whitman(1970)

Figure 5.1.2.5 Maximum total base moment vs. amplitude of base motion
(Gravity wall, H=5m)

The variation of the maximum thrust with frequency ratio are given through Figure
5.1.2.6 to 5.1.2.8 for different base motion amplitudes. Mononobe-Okabe,
Steedman and Zeng and Wood solutions are also included in the figures. The finite
element results seem to be between those suggested by M-O and Wood
approaches. The maximum lateral thrust increases as the frequency of the base

motion approaches the fundamental frequency of the soil layer.

In the calculations using Steedman and Zeng approach, the amplification of the
accelerations between the base of the wall and the soil surface is assumed to be
equal to the amplification between the base of the model and the soil surface. This
is the main reason of the significant difference between finite element and

Steedman and Zeng results.
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Maximum total lateral force vs. frequency ratio

Frequency ratio, Ry (fy/f)
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Max. total lateral thrust, Fy
(dimensionless)

Maximum total lateral force vs. frequency ratio
(Gravity Wall, H=5m, o.=0.3)
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Figure 5.1.2.8 Maximum total lateral force vs. frequency ratio
(Gravity wall, H=5m, o = 0.3)

The result of the analyses for harmonic base motions are summarized in Tables

5.1.2.1 and 5.1.2.2. The non-dimensional parameters in the tables, F, hn, My and

Fqq defined by Equations 4.5, 4.6, 4.7 and 4.9 respectively in Section 4.1.2 are

provided in the tables.

Table 5.1.2.1 Summary of the results for gravity wall

AC_C' Freq. Total lat. Total base Height of . Non_— . N‘”T‘ Norm alized
amplitude . > dimensional dimensional height of
ratio force, Ft moment, application ;
of base R) (kN) M, (kNm) oint. h total lat. total base  app. point,
motion (g) f ! point, force, Fy  moment, My h,
0.1 0.2 95 174 1.82 0.216 0.079 0.36
0.1 0.5 98 165 1.69 0.222 0.075 0.34
0.1 2 101 189 1.88 0.228 0.086 0.38
0.1 5 77 153 1.99 0.174 0.069 0.40
0.2 0.2 120 214 1.78 0.273 0.097 0.36
0.2 0.5 148 245 1.66 0.335 0.111 0.33
0.2 2 140 251 1.80 0.316 0.114 0.36
0.2 5 83 182 2.19 0.188 0.083 0.44
0.3 0.2 141 275 1.95 0.319 0.124 0.39
0.3 0.5 182 336 1.85 0.411 0.152 0.37
0.3 2 184 350 1.90 0.417 0.158 0.38
0.3 5 93 222 2.40 0.210 0.101 0.48
Fu = F/ (H) M = Mi/ (/H’) h.=h/H
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Table 5.1.2.2 Maximum dynamic lateral force results for gravity wall

AC.C' Freq. Static lat. Total lat.  Dynamic . Noq-

amplitude - dimensional

of base ratio force, Fy, force, F; lat. force, dynamic lat,

motion (g) (Rq) (kN) (kN) Fa (kN) force, Fyq
0.1 0.2 74 95 21 0.48
0.1 0.5 74 98 24 0.54
0.1 2 74 101 27 0.60
0.1 5 74 77 3 0.06
0.2 0.2 76 120 44 0.50
0.2 0.5 76 148 72 0.81
0.2 2 76 140 64 0.72
0.2 5 76 83 7 0.08
0.3 0.2 76 141 65 0.49
0.3 0.5 76 182 106 0.80
0.3 2 76 184 108 0.82
0.3 5 76 93 17 0.13
Faa = Fa/ (psap H°)

Table 5.1.2.3 presents the dynamic lateral forces obtained by Mononobe-Okabe
and Wood methods.

Table 5.1.2.3 Maximum dynamic lateral forces by M-O and Wood’s solutions

D . Non-
Peak acc.  Solution | ynamic dimensional
at. force, .
(9) method F, (N) dynamic lat.
d force, Fyq
0.1 M-O 13 0.29
0.2 M-O 31 0.35
0.3 M-O 53 0.40
0.4 M-O 85 0.48
0.5 M-O 133 0.60
all Wood all 1.00

The variation of the maximum dynamic lateral force with the amplitude of the base
motion is shown in Figure 5.1.2.9. It can be seen that the finite element results are
generally between those of M-O and Wood approaches as was the case for the

total lateral force results.
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Maximum dynamic lateral force vs. amplitude of base motion
(Gravity Wall, H=5m)
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Figure 5.1.2.9 Maximum dynamic lateral force vs. amplitude of base motion
(Gravity wall, H=5m)

5.2 Cantilever wall

In this section, dynamic response of gravity wall-soil systems subjected to
dynamic loading at the base has been investigated in Section 5.1. In this section,
the dynamic behaviour of a typical cantilever retaining wall having the same

height and soil conditions is studied.

5.2.1 The model and the parameters

The typical geometry of the model and the finite element mesh used for cantilever
wall-soil systems have been given in Figures 4.2.1.1 and 4.2.1.2 of the previous
chapter. The wall rests on a foundation soil layer underlain by a rigid base at
which the horizontal excitations are applied. The reader is referred to Section 4.2.1

for the detailed information about the model, boundary conditions and loading.

The foundation and backfill soil are assumed to consist of elastic-perfect plastic
materials obeying Drucker-Prager yield criterion. The damping ratio of the system

is taken as 5%.
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Harmonic base motions having peak accelerations, ag = 0.1g, 0.3g, 0.5g and

frequency ratios, Rs = 0.2, 0.5, 2, 5 are used (Rt has been defined by Equation 4.3).

The model dimensions and the parameters are presented in Table 5.2.1.1. As
explained in Section 5.1.1, the wall dimensions are determined to satisfy the
sliding and overturning resistance required by Mononobe-Okabe method. The
peak base acceleration of base motion applied to the soil-wall system is used
during the calculations with M-O method. The passive resistance of the soil in

front of the wall is neglected in the assessment of the wall dimensions.

Table 5.2.1.1 Dimensions and material parameters
considered in the typical cantilever wall analyses

Symbol Description Unit | Value

H Height of the wall m 5

D Foundation layer thickness | m 5
E Wall dimensions m 0.5
T2 m 0.5
Bl Wall dimensions m 1
B2 for peak base acc. of 0.19 | m 1.5
Bl Wall dimensions m 1
B2 for peak base acc. of 0.39 | m 3
Bl Wall dimensions m 1.5
B2 for peak base acc. of 0.59 | m 5
Ds Density of soil t/m* 1.8
Es Elasticity mod. of soil kPa | 80000
Vs Poisson's ratio of soil - 0.33
Vs Shear wave velocity of soil | m/s 129
c Drucker-Prager parameters | kPa 0

) (For E-P analysis) degree 33
Pw Density of the wall t/m* 2.4
Ew | Elasticity mod. of the wall | kPa | 25 x 10°
Vi Poisson's ratio of the wall - 0.2
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5.2.2 The results and comparisons

Figures 5.2.2.1 and 5.2.2.2 show the deformed mesh at different times. The
displacements are magnified by 100 times in the figures. It may be said that the
main mode of response consists of the deflection of the stem of the wall during
dynamic loading.

The Drucker-Prager parameters are assumed to be c=0 and $=33 as given in Table
5.2.1.1. However, for base motions with greater acceleration amplitudes, due to the
large accelerations and complex contact behaviour, convergence difficulties are
encountered and the cohesion value is increased up to 30 kPa for some of the soil
elements especially in the vicinity of the wall base as indicated by “x” marks in
Figure 5.2.2.1 to achieve convergence.

DISPLACEMENT

STER=Z

SUE =81
TIME=3.45
D =. 047261

Figure 5.2.2.1 Deformed mesh for the cantilever wall
(H=5m, 0=0.3, Rf =0.5, 1=3.45 s.)
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Figure 5.2.2.2 Deformed mesh for the cantilever wall
(H=5m, 0=0.3, Rs =0.5, t=3.759 s.)

Maximum total lateral thrust vs. base motion amplitude is plotted in Figure 5.2.2.3.
Similar to the results of gravity wall analyses, the increase of the total lateral force
with base motion amplitude is approximately linear. The results of finite element
analyses approach to M-O solution for higher peak acceleration values of the base

motion.

Figure 5.2.2.4 shows the location of the application point of the total lateral thrust.
The finite element analyses give lower application points as compared to M-O and

Seed and Whitman methods as can be seen from the figure.

Maximum total base moment vs. base motion amplitude is presented in Figure
5.2.2.5. Although the total thrust values are greater as obtained by finite element
analyses, due to the smaller moment arm, base moments are generally in good

agreement with M-O method.
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Maximum total lateral force vs. amplitude of base motion
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Figure 5.2.2.3 Maximum total lateral force vs. amplitude of the base motion
(Cantilever wall, H=5m)
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Figure 5.2.2.4 Height of the point of application of the total lateral force vs.
amplitude of the base motion (Cantilever wall, H=5m)
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Maximum total base moment vs. amplitude of base motion
(Cantilever Wall, H=5m)
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Figure 5.2.2.5 Maximum total base moment vs. amplitude of the base motion
(Cantilever wall, H=5m)

Maximum total lateral force vs. frequency ratio
(Cantilever Wall, H=5m, a.=0.1)
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Maximum total lateral force vs. frequency ratio
(Cantilever Wall, H=5m, a.=0.3)
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Figure 5.2.2.7 Maximum total lateral force vs. frequency ratio
(Cantilever wall, H=5m, o = 0.3)
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Figure 5.2.2.8 Maximum total lateral force vs. frequency ratio
(Cantilever wall, H=5m, o = 0.5)

The variation of the maximum total thrust with frequency ratio is depicted in
Figures 5.2.2.6 to 5.2.2.9 for different peak accelerations. It can be seen that the
total lateral thrust is significantly affected by the frequency ratio and generally lies

between the results of M-O and Wood solutions.
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The result of the finite element analyses are summarized in Tables 5.2.2.1 and
5.2.2.2. The non-dimensional parameters in the tables, Fy, h,, My and Fqyq are
defined by Equations 4.5, 4.6, 4.7 and 4.9 respectively in Section 4.1.2 and

presented in the tables.

Table 5.2.2.1 Summary of the results for cantilever wall

Acc. Freq. Total lat. Total base Heightof . Non- _ Non-~ Normalized
amplitude . > dimensional dimensional height of
ratio force, F; moment, application :
of base R) KN M, (kNm) oint. h total lat. total base  app. point,
motion (g) f (kN) ! point, force, Fy  moment, My h,
0.1 0.2 103 121 1.17 0.234 0.055 0.23
0.1 0.5 109 147 1.35 0.246 0.066 0.27
0.1 2 120 160 1.33 0.272 0.072 0.27
0.1 5 87 104 1.19 0.197 0.047 0.24
0.3 0.2 148 186 1.26 0.335 0.084 0.25
0.3 0.5 171 212 1.24 0.386 0.096 0.25
0.3 2 186 256 1.38 0.421 0.116 0.28
0.3 5 105 120 1.14 0.238 0.054 0.23
0.5 0.2 214 282 1.32 0.484 0.128 0.26
0.5 0.5 233 329 1.41 0.528 0.149 0.28
0.5 2 241 386 1.60 0.547 0.175 0.32
0.5 5 126 158 1.25 0.285 0.071 0.25
Fu=F/ (H) My = M/ (yH’) ha=h/H

Table 5.2.2.2 Maximum dynamic lateral force results for gravity wall

AC_C' Freq. Static lat. Total lat.  Dynamic . Noq-

amplitude - dimensional

of base ratio force, Fy, force, F; lat. force, dynamic lat,

motion () (Ro) (kN) (kN) Fo (kN) force, Fyq
0.1 0.2 83 103 20 0.46
0.1 0.5 83 109 26 0.58
0.1 2 83 120 37 0.84
0.1 5 83 87 4 0.09
0.3 0.2 84 148 64 0.48
0.3 0.5 84 171 87 0.65
0.3 2 84 186 102 0.77
0.3 5 84 105 21 0.16
0.5 0.2 95 214 119 0.54
0.5 0.5 95 233 138 0.63
0.5 2 95 241 146 0.66
0.5 5 95 126 31 0.14
Faa = Fa/ (ps dp YHZ)
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Maximum dynamic lateral thrust vs. amplitude of the base motion is shown in
Figure 5.2.2.9. It can be seen that the difference between the finite element results
and M-O solution decreases as the amplitude of the base motion increases in

general.

Maximum dynamic lateral force vs. amplitude of base motion
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Figure 5.2.2.9 Maximum dynamic lateral force vs. amplitude of the base motion
(Cantilever wall, H=5m)

5.3 Analyses with real earthquake records

The dynamic behaviour of soil-wall systems subjected to harmonic base motion
has been presented in Sections 5.1 and 5.2. In this section, the results obtained by
using real earthquake records with varying peak acceleration and frequency

content are presented for identical soil-wall configurations.

Table 5.3.1 presents the earthquake motions used. EQ4 motion has been used in

the analyses presented in Chapter 4.

Acceleration time histories and acceleration response spectra of the earthquake

records are shown given Figures 5.3.1 and 5.3.2 respectively. During the finite
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element analyses, a part of these records are used which contain the maximum
acceleration, with a total duration of not less than 10 seconds, in order to decrease

the long calculation time and very large output data.

EQ4, EQ5 and EQ6 motions with peak accelerations varying between 0.1g — 0.27g
are used in the analysis of gravity wall-soil system. EQ4, EQ5, EQ6 and EQ7
motions are used in cantilever wall-soil models which have peak acceleration

between 0.1g and 0.4g.

Table 5.3.1 Summary of the earthquake records

Ground motion EQ4 EQ5 EQ6 EQ7
Earthquake name Loma Prieta Landers Coalinga Imperial
1989 1992 1983 Valley 1979
. 1002 Apeel 2 33083 Boron 008 O 945 £ Centro
Station . . . Fields Fire
Redwood City Fire Station . Array #6
Station
Peak acc. (g) 0.27 0.1 0.21 0.4
Peak spectral acc. (g) 1.18 0.43 0.74 1.23
fo (1/s) 0.91 1.25 10.53 10
fo (1/s) 1.57 3.57 4.46 3.73
fin (1/5) 0.99 1.59 2.7 1.1
fo /1y 0.30 0.41 3.43 3.26
fo ! £, 0.51 1.16 1.45 1.21
fon ! Tn 0.32 0.52 0.88 0.36

Table 5.3.2 Summary of the results for real earthquake motions
(Gravity wall, H=5m)

Total lat. Total base Height of . Non- _ Non- Normalized

Peak  Ground 2~ dimensional dimensional height of
. force, F;, moment, application .

acc. (g) motion KN M, (KNm) oint. h total lat. total base  app. point,

(kN) ! point, force, Fy  moment, My h,

0.1 EQ5 125 216 1.72 0.284 0.098 0.34
0.21 EQ6 152 258 1.70 0.343 0.117 0.34
0.27 EQ4 144 282 1.96 0.326 0.128 0.39
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The finite element results of the total lateral thrust versus time are given in Figure

5.3.3 for the gravity wall, and in Figure 5.3.4 for the cantilever wall. The results

are summarized in Tables 5.3.2 to 5.3.5.

Table 5.3.3 Dynamic lateral force results for real earthquake motions
(Gravity wall, H=5m)

Static lat.  Total lat. Dynamic . Non-
Peak acc. Ground dimensional
@ motion force, Fy, force, F; lat. force, dynamic lat
(kN) (kN) Fo (kN) force, Fyq
0.1 EQ5 74 125 51.3 1.16
0.21 EQ6 74 152 77.6 0.84
0.27 EQ4 76 144 68 0.57

(Cantilever wall, H=5m)

Table 5.3.4 Summary of the results for real earthquake motions

Total lat. Total base Height of . Non- _ Non-~ ~ Normalized

Peak  Ground > dimensional dimensional height of
. force, F; moment, application .

acc. (g) motion KN M, (kNm) oint. h total lat. total base  app. point,

(kN) t pomnt, force, Fy  moment, My h,

0.1 EQ5 126 175 1.39 0.285 0.079 0.28
0.21 EQ6 149 189 1.27 0.338 0.086 0.25
0.27 EQ4 150 192 1.28 0.339 0.087 0.26
0.4 EQ7 223 312 1.40 0.505 0.141 0.28

Table 5.3.5 Dynamic lateral force results for real earthquake motions
(Cantilever wall, H=5m)

. . Non-
Peak acc.  Ground Static lat. - Total lat. - Dynamic dimensional
@ motion force, Fy, force, F; lat. force, dynamic lat
(kN) (kN) Fa (kN) force, Fyq
0.1 EQ5 83 126 43 0.97
0.21 EQ6 83 149 66 0.71
0.27 EQ4 84 150 66 0.55
0.4 EQ7 95 223 128 0.72
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Comparison of the results of analyses using real earthquake records (summarized
in Tables 5.3.1 to 5.3.5) and harmonic base motions (summarized in Tables
5.1.2.1,5.1.2.2,5.2.2.1 and 5.2.2.2) may lead to the following conclusions :

- The maximum total lateral thrusts and their application points obtained using
real earthquake records close to those obtained by harmonic motions.

- Examining the results for the maximum total lateral thrust and its point of
application, it can be oberved that the results of all real EQ motions are in
reasonably good agreement with those obtained by utilizing harmonic base
motions with a frequency of f, of the earthquake. The lateral thrust and point of
application calculated using EQ4 and EQ6 motions can also be assessed by

using harmonic base motion with a frequency of f., by reasonable accuracy.
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Acceleration Response Spectrum of EQ4 Ground Motion
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5.4 On the effect of wall mass

In this section the effects of wall mass on the dynamic behaviour of soil-wall

system and the dynamic lateral earth pressures acting on the wall are summarized.

In the finite element analyses carried out, mass of the wall is taken into account by
assigning a density of 2.4 t/m>. Gravitational acceleration of of 9.81 m/s” is applied
to the mass to calculate the weight of the wall. In this way, effect of inertia of the

wall is incorporated in the analyses.

In a second set of analyses, the mass of the wall is neglected in the calculations.
Nevertheless, the weight of the wall is represented by a vertical force. So, the
inertial forces induced by dynamic motion are neglected while the weight of the
wall is considered in the analyses.

The results of two sets of analyses are summarized in Tables 5.4.1 and 5.4.2.

Table 5.4.1 Summary of the results for gravity wall

AC.C' Freq. Total lat. Total base Height of Peak outward Norm alized
amplitude . L halip . height of
of base ratio Wall inertia force, F, moment, appl!catlon rotation of the app. point,
motion () (Ry) (kN) M; (KNm)  point, h wall (rad.) h,
0.1 0.5 considered 98 165 1.69 0.000178 0.34
0.1 0.5 ignored 112 212 1.89 0.000078 0.38
0.3 0.5 considered 182 336 1.85 0.000600 0.37
0.3 0.5 ignored 231 494 2.14 0.000234 0.43
0.3 2 considered 184 350 1.90 0.000560 0.38
0.3 2 ignored 207 414 2.00 0.000023 0.40
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Table 5.4.2 Summary of the results for cantilever wall

Acc.

amplitude Fre-q. Total lat. Total base Height of N_ormalized
of base ratio Wall inertia force, Ft moment, appl.ication helgh.t of app.
motion () (Ry) (kN) Mt (kNm)  point, h point, h,
0.3 0.5 considered 170 211 1.24 0.25
0.3 0.5 ignored 195 252 1.29 0.26
0.3 2 considered 186 257 1.38 0.28
0.3 2 ignored 209 274 1.31 0.26

Figure 5.4.1 shows the the total lateral force variation with time found by using
different harmonic base motions. It can be seen that the inertia of the wall
significantly effects the dynamic lateral earth pressures where larger dynamic
lateral forces act on the wall when the mass of the wall is neglected. Figure 5.4.2
shows the rotation of the wall vs. time plots. For gravity walls, it can be sen that
when the inertia of the wall is neglected, rotation of the wall is significantly
smaller as compared to the wall rotation when wall inertia is not neglected. On the
other hand, lateral thrust acting on the wall gets smaller in case of wall inertia is

taken into account.
Examining Table 5.4.2 and Figures 5.4.3 and 5.4.4 where the results of cantilever

wall analyses are given, it is seen that the mass of the wall does not significantly
affect the seismic lateral earth pressures or the deformations for cantilever walls.
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Total lateral thrust vs. time for gravity wall (o = 0.1, H=5m, Rf=0.5)
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Total lateral thrust vs. time for cantilever wall (a0 = 0.3, H=5m, Rf=0.5)
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Displacement at top of the wall vs. time for cantilever wall
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Figure 5.4.4 Displacement at the top of the wall vs. time for cantilever wall
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CHAPTER 6

COMPARISON WITH EXPERIMENTAL STUDIES

In Chapters 4 and 5, results of analyses made for soil-wall systems subjected to
base motions and the maximum dynamic lateral forces and application points of
these forces are given. The obtained results are compared with commonly used

design methods.

In this chapter, a comparison of finite element analyses results with the

experimental findings is presented.

6.1 Gravity wall

Shake table tests conducted by Ichihara & Matsuzawa (1973), Sherif et al (1982)
and Ishibashi & Fang (1987) are of most important studies about the dynamic
response of rigid, displacing retaining walls. Sherif et al (1982) considered rigid
walls making translational movement (denoted by T in Figures 6.1.1 and 6.1.2),
Ishibasi & Fang (1987) considered rigid walls rotating about base only (denoted by
RB in Figures 6.1.1 and 6.1.2) and Ichihara & Matsuzawa (1973) conducted
experiments on rigid walls making both translational and rotational movement
(denoted by RB+T in Figures 6.1.1 and 6.1.2).

Dry sand is used as backfill material in the aforementioned studies. The frequency

of the harmonic base motion is 3.3 Hz in the experiments by Ichihara &
Matsuzawa, and 3.5 Hz in the other two studies.
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Information about the fundamental period of the soil-wall systems is not given in
the papers. However, considering the small heights of the model walls (0.75m and
1m) and soil conditions, it can be stated that the base motion frequencies are

considerably smaller than the fundamental frequencies of the models.

As discussed in Chapter 4 and 5, the results of finite element analyses carried out
indicate that the dynamic lateral forces are significantly affected by the frequency
of the base motion. Since the base motion frequencies of experiments are smaller
than the fundamental frequencies of the models, finite element results for low
frequency ratio (R=0.2) are considered for comparison of the lateral thrusts.

Figure 6.1.1 shows experimental values of the maximum total lateral thrusts
reported and those obtained by numerical analyses. It can be seen that the finite
element results are considerably higher than the experimental ones.Recalling that
the movement of the wall is controlled independently from the forces acting on the
wall during the experiments, it is probable that this may result is smaller lateral
soil pressures. As a matter of fact, it is shown in Section 5.4 that the movements
caused by the inertial effect of the wall result in a considerable decrease on the
lateral pressures acting on the wall.

Location of application point found by finite element approach and experiments
are given together in Figure 6.1.2. It can be seen that pure translational (T) and
pure rotational (RB) modes of movement give the lower and upper boundaries
respectively as found by experimental work. The results of both translational and

rotational movement (RB+T) are generally between those of T and RB modes.

In the finite element models, the wall is allowed to make both translational and
rotational displacements as mentioned before. It can be observed from the same
figure that the finite element method yields point of application between those
corresponding to pure translational and pure rotational wall movements, and
generally agreeable with the experiental results of both tranlational and rotational

movement.
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6.2 Cantilever wall

Ortiz (1982) conducted centrifuge model tests to investigate the seismic behaviour
of cantilever retaining walls. The lateral earth pressure distributions along the
height of the wall for two of the tests with zero backfill slope and medium dense
sand are reproduced in Figure 6.2.1

PRESSURE :

o

]
o 8
o ¥ —~
T
*
22
[ ==Y
~
- 0.1 e
=
it - = A=i
T H
== ? L
a 0. 10.0 20.0
- T*F1
[5]
o ! 2
T o I (=1 T
g3 , hyy(max) = 0.26
= v hn(sta]-= 022
= “
L g &) I n M-0
= (=]
> IMAL
0.4 -
=] M.._.—__.-T,,—-—-_.—————— ;
— | 1 | MAX (B-B)
0. .o 8.0 12.0 16.0 20.0 - 1. prec
TIME (T=FL) - kdabes -
=0.20 0.50 1.00
TEST 1CHDDOZ  3- 4-B1 CRNTILEVER WALL KO, | PEAD BAC

ALEXANDER OATIZ

HFILL SLOPE
HSE )

WEVADA 120 SAND (DRT.MEDIUM DE

P/CRO%*G*H )

PRESSURE :
[=] b
a B
=1 o 2
de \V‘.—_
| * x|
al ’ 2
el Y
| .
:I: { 9 i ok
oIy | 0 10.0 20.0
{ T=F1
=
= 1
o L=
Tl 02 S :
B hp{max) = 0.24
= h hy(sta}y= 0.3
o ;‘. -
(=] iy w
.'ll,‘ =a
t; o.
23 A
0.08  u.0 8.0 12.0 5.0 200 AX B-8
TIME (T=«F1) -
0.ug 0.80
FCErRER ORT1Z 0 O T I EVE oR 120 SAND" CORY MEDTUM DENGES P/¢ RO*GxH )

148

Figure 6.2.1 Earth pressure distributions on model cantilever walls by Ortiz (1982)




It can be seen from this figure that the maximum lateral pressure magnitudes are in
good agreement with Mononobe-Okabe solution. However the pressure

distribution is not linear as assumed by M-O method.

Finite element results of this study give the maximum lateral thrust values higher
than the experimental results given by Ortiz which are similar to those calculated
by Mononobe-Okabe method. Comparison of the total lateral thrusts calculated by
finite element analyses and Mononobe-Okabe method has been presented in
Figure 5.2.2.3.

On the other hand, as shown in Figure 6.2.2, experimental and finite element
results for the location of application point of the maximum lateral thrust are

almost similar.

Similar to the results for gravity walls, although the magnitude of the total lateral
thrust is higher in the finite element analyses, the location of the application point

is in good agreement with the experimental findings for the cantilever walls.

Comparison of finite element results of h,, with
experimental findings for cantilever walls
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Figure 6.2.2 Comparison of the application point of the maximum total lateral
force by experimental studies and numerical solution
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CHAPTER 7

CONCLUSIONS

The purpose of this study was to investigate the dynamic response of gravity and
cantilever retaining walls and determine the magnitude and distribution of the

seismic soil pressures acting on the walls.

A two dimensional finite element model was developed for the analyses wherein
the soil and the wall are represented by plane strain elements. The backfill and the
foundation soil were assumed as dry granular material. The nonlinear stress-strain
relationship of soil and the relative movement (sliding and gap) between the wall

and soil were taken into account.

Harmonic motions and real earthquake records with different amplitude and
frequency content were used as base motions in the analyses. Since the
deformation mode of the wall is of concern in the dynamic behaviour of the wall,
the wall is modelled to rest on a soil layer allowing both translational and

rotational displacements.

On the basis of the analyses results, the following conclusions can be made:

1- In soil-wall systems subjected to harmonic base motions, the frequency of the
motion has a significant effect on the dynamic response of the wall. The
maximum dynamic lateral force on the wall considerably increases as the
frequency of the base motion approaches the natural vibration frequency of the
soil layer. However, the variation of the dynamic lateral force can not be related

directly to the amplification in the soil due to the fact that smaller total thrust
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6-

values are obtained for high frequency motions corresponding to greater
amplification ratios. The results indicate that relatively small dynamic forces

act on the wall when high frequency base excitations are applied.

For harmonic base motions, the effect of the frequency ratio (defined as the
ratio of the base motion to the fundamental frequency of the soil layer) on the
lateral pressure distribution hence the location of the application point of the

maximum total dynamic thrust is relatively small.

The finite element method yields higher static lateral forces than Coulomb’s
Earth Pressure Theory. This contributes to the difference between the maximum
total (static + dynamic) lateral forces between the numerical results and
Mononobe-Okabe method.

The maximum dynamic forces are generally between those suggested by
Mononobe-Okabe and Wood (1973) solutions depending on the frequency
ratio. Considerably smaller lateral forces than Mononobe-Okabe method are
obtained for high frequency motions while higher forces than Wood solution

are found for resonance case.

For gravity walls, location of the application point of the maximum total lateral
thrust is found to be slightly higher than Mononobe-Okabe method when high
frequency motions which result in significantly smaller lateral forces are
neglected. The distance of the application point to the base of the wall varies
between 0.33H and 0.39H which is well below the distance as suggested by
Wood (1973) and Seed and Whitman (1970). Good agreement is obtained with
the results of experimental studies for dynamic earth pressures acting on rigid,

displacing walls.

Similar to the results for gravity walls, the location of the application point of
the maximum total lateral force is in good agreement with experimental results

for cantilever walls.
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7- For real earthquake motions, the maximum lateral thrust and its point of
application are found to be close to those obtained by harmonic base motions.
In order to represent the real earthquake motion by a harmonic function, the
frequency of the harmonic function can be chosen as the one closest to the
fundamental frequency of the soil layer, among the frequencies f,, fo and fi,
where f, is the predominant frequency, fo is the smoothed spectral predominant

frequency and fy, is the mean frequency of the earthquake motion.

8- For gravity walls, tilting of the wall is found to be the dominant mode of
deformation during dynamic loading. Sliding of the wall, on the other hand, is

relatively small for the soil-wall models studied.

9- For cantilever retaining walls, deflection of the stem is the dominant mode of
deformation during the dynamic loading. Rotation and sliding of the wall are

relatively small for the soil-wall models examined.

10- It is observed that the inertia of the wall mass significantly affects the
deformations and dynamic lateral earth pressures for gravity walls. The rotation
and sliding of the wall is found to be mainly induced by the inertia of the wall
mass. Considerably higher lateral pressures are obtained when the inertia of the
wall is neglected. The inertial effects of the wall are found to be negligible for

cantilever retaining walls.

11- No considerable permanent displacements or residual soil pressures are
obtained in the analyses of the considered soil-wall systems, since the
seperation of the wall and foundation soil is not taken into account.

Recommendations for future work

In the conducted analyses, the damping of the system and the stiffness of the soil
are taken constant. In the future, the variation in the damping and the stiffness of
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the soil associated with strains may be considered and the effects on the dynamic
response may be investigated.

The dynamic response of other types of retaining structures such as anchored or

strutted retaining walls may be of concern in future studies.

The material model used to represent soil was an elastic-perfect plastic model
without hardening. It is suggested to use a soil model which considers the shear
and volumetric hardening in order to reach more realistic results as far as the

displacements are concerned in the future.
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