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ABSTRACT 

 
A NUMERICAL STUDY ON 

 THE DYNAMIC  BEHAVIOUR OF GRAVITY AND CANTILEVER 

RETAINING WALLS WITH GRANULAR BACKFILL 

 

Yıldız, Ersan 

Ph.D., Department of Civil Engineering 

 Supervisor : Prof. Dr. M. Yener Özkan  

 

February 2007, 160 pages 

 

Dynamic behaviour of gravity and cantilever retaining walls is investigated by 

finite element method, incorporating the nonlinear elasto-plastic material 

properties of soil and seperation of the wall and backfill. Two dimensional finite 

element models are developed employing the finite element software ANSYS. The 

wall is modelled to rest on a soil layer allowing translational and rotational 

movements of the wall. Soil-wall systems are subjected to harmonic and real 

earthquake motions with different magnitude and frequency characteristics at the 

base. The maximum lateral force and its application point during dynamic loading 

are determined for each case. It is observed that the frequency content of the base 

motion has a significant influence on the dynamic lateral soil pressures and the 

lateral forces considerably increase as the base motion frequency approaches the 

fundamental frequency of the soil layer. The maximum lateral thrusts calculated 

by finite element analyses are generally found to be greater than those suggested 

by Mononobe-Okabe method and experimental findings. Nevertheless, the 

locations of the application point obtained by finite element method are found to 

be in good agreement with the results of experimental studies. 

  

Keywords : Seismic earth pressure, Retaining wall, Finite element method 
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ÖZ 

 
GRANÜLER DOLGULU AĞIRLIK VE 

 ANKASTRE İSTİNAT DUVARLARININ DİNAMİK 

 DAVRANIŞI ÜZERİNE NÜMERİK BİR ÇALIŞMA 

 

Yıldız, Ersan 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. M. Yener Özkan 

 

Şubat 2007, 160 sayfa 

 

Ağırlık ve ankastre istinat duvarlarının dinamik davranışı sonlu elemanlar metodu 

kullanılarak incelenmiştir. Analizlerde zemin elasto-plastik malzeme olarak 

modellenmiş, dinamik hareket sırasında duvar ile zeminin birbirinden ayrılması 

gözönüne alınmıştır. Analizler ANSYS programı kullanılarak oluşturulan iki 

boyutlu sonlu elemanlar modelleri ile yapılmıştır. Duvar, bir temel zemini tabakası 

üzerinde yeralacak şekilde modellenerek, yanal ötelenme ve dönme hareketlerini 

yapabilmesi sağlanmıştır. Oluşturulan zemin-duvar sistemleri tabanlarına değişik 

büyüklük ve frekans özelliklerinde harmonik hareketler ve gerçek deprem 

hareketleri uygulanmıştır. Dinamik yükleme sırasında oluşan maksimum yanal 

kuvvet ve tatbik noktası incelenen her durum için belirlenmiştir. Taban hareketi 

frekans içeriğinin yanal toprak basınçları üzerinde önemli etkisinin olduğu 

gözlenmiştir. Nümerik analizler ile elde edilen maksimum yanal kuvvet sonuçları, 

genellikle Mononobe-Okabe metodu ve deneysel çalışmalardan elde edilen 

sonuçlardan yüksek çıkmaktadır. Diğer yandan, tatbik noktası lokasyonlarının, 

ağırlık ve ankastre duvarlar için yapılan deneysel sonuçlarla uyumlu olduğu 

görülmüştür. 

  

Anahtar Kelimeler : Sismik toprak basıncı, İstinat duvarı, Sonlu elemanlar metodu 
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CHAPTER 1 

 
 

INTRODUCTION 

 

 
Many types of earth retaining structures are in seismically active areas which make 

it necessary to consider the potential earthquake induced forces that will act on 

these structures in the design. 

 

The objective of this study is to investigate the dynamic behaviour of gravity and 

cantilever retaining walls which are commonly used in practice. 

 

Many theoretical and experimental studies about the dynamic response of gravity 

and cantilever walls have been carried out over the years and several methods have 

been proposed for the calculation of the earthquake-induced earth pressures and 

deformations. A review on these studies including limit-equilibrium methods, 

analytical or numerical solutions and experimental researches are presented in 

Chapter 2. 

 

The dynamic response of a soil-retaining wall system is quite complicated and 

dependent on many factors such as the geometry and type of the wall, soil 

conditions and earthquake motions. It is currently not possible to consider all 

aspects of the dynamic behaviour of retaining walls so that various simplifications 

about the soil, structure and input motions are made in the design methods 

(Kramer, 1996). 

 

Finite element method is one of the most commonly used methods for static and 

dynamic soil mechanics and soil-structure interaction problems in which the soil is 

represented as a continuum consisting of discrete elements. A two dimensional 
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finite element model is developed for the analyses of soil-retaining wall systems in 

this study. Analyses are made by the finite element program ANSYS. The 

nonlinear stress-strain properties of the soil and the relative deformations (sliding 

with friction and gap) between the wall and soil are taken into account. The details 

about the finite element model regarding the  dynamic solution technique (time 

history analysis), material properties, contact between the wall and soil and  

boundary conditions are given in Chapter 3. 

 

The proposed models for gravity and cantilever retaining walls  are subjected to 

harmonic and real earthquake motions at the base. The effect of magnitude and 

frequency content of the base motions on the dynamic response of the wall is 

investigated by using base motions with different characteristics in the analyses. 

The deformation modes of the wall and the variation of the dynamic lateral 

pressures on the wall with time are studied in detail. 

 

Maximum total lateral force and its point of application are calculated for each 

case. The results are compared with the conventional solution methods and 

experimental findings. 

 

Finite element analyses and the obtained results are presented in Chapters 4 and 5 

for walls of different height. The results are compared with the common solution 

methods in these chapters. 

 

Comparison of the  results obtained by finite element analyses with the 

experimental findings is given in Chapter 6. 
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CHAPTER 2 

 
 

LITERATURE REVIEW ON DYNAMIC RESPONSE OF 

RETAINING WALLS 

 

 
A review of the solution methods and studies about the seismic lateral pressures 

acting on rigid and cantilever retaining walls is given in this chapter. 

 

Several approaches have been developed to solve the dynamic earth pressure 

problems. They can be classified into 3 groups stated below: 

 

- Limit-equilibrium methods 

- Analytical and numerical methods based on linear elastic or elasto-plastic 

theory 

- Experimental studies (shake table tests, centrifuge tests and measurements 

on existing structures) 

 

The most common methods used in design relevant to the present study presented 

in detail are Mononobe-Okabe, Steedman and Zeng (1990) and Wood (1973) 

solutions. Other studies are stated briefly. 

 

2.1 Limit-Equilibrium methods 

 

2.1.1 Mononobe-Okabe method 

 

The earliest and one of the most frequently used methods in design for estimating 

the seismic lateral pressures on retaining walls is that developed by Mononobe 

(1929) and Okabe (1926) known as Mononobe-Okabe (M-O) method. It is 
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extension of Coulomb’s earth pressure theory considering the dynamic forces as 

additional static forces acting on the trial Coulomb wedge. The method is 

applicable to dry cohesionless backfill. The basic assumptions of the analysis 

method are summarized by Nazarian and Hadjian (1979) as: 

 

- There is sufficient wall displacement producing a state of static equilibirium 

behind the wall, resulting in minimum active pressure. 

- The maximum shear strength of soil is mobilized along the failure plane 

when the minimum active pressure is attained. 

- The wedge acts as a rigid body that the vertical and horizontal accelerations 

are uniform and have the same magnitudes as the base of the wall. 

- The inertial effects of the retaining structure are neglected. 

- The lateral force acts at a distance of H/3 above the base, H showing the 

height of the wall. 

 

The forces considered in the analysis, in the presence of pseudo-static 

accelerations in the horizontal and vertical directions, ah = khg and av = kvg are 

shown in Figure 2.1.1.1. The total seismic active thrust on the wall is calculated 

from the force equilibrium of the wedge and can be expressed as: 

 

)k1(HK
2
1P v

2
AEAE −γ=  (2.1.1.1) 

 

where the dynamic active earth pressure coefficient KAE is given as: 
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2
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)(cosK

⎥
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⎤
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θ−βψ+θ+δ
ψ−β−φφ+δ

+ψ+θ+δθϕ

ψ−θ−φ
=    (2.1.1.2) 

 

where  ψ = tan-1 [ kh / (1-kv) ]; φ = angle of friction of backfill; δ = angle of friction 

between the backfill and the wall. 
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A detailed review of M-O method was made by Seed and Whitman (1970). For 

vertical walls retaining horizontal dry backfills, they suggested to express the total 

seismic lateral force as the sum of the initial static pressure and the dynamic 

pressure increment ∆PAE as: 

 

AE
2

AAEAE PHK
2
1PpressureStaticP ∆+γ=∆+=  (2.1.1.3) 

 

It is suggested to assume that the static and incremental dynamic components act 

H/3 and 0.6H above the base respectively. Also it is shown that the effect of 

friction angle between the wall and backfill and the vertical acceleration on 

seismic lateral pressures are insignificant especially for higher levels of horizontal 

acceleration. 

 

 
 

Figure 2.1.1.1 Forces in Mononobe-Okabe Analysis 

 

2.1.2 Other studies 

 

A displacement-based method for gravity walls is developed by Richards and Elms 

(1979). The mass of the wall is taken into account in the analysis based on M-O 
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method and Newmark’s sliding block analogy. Figure 2.1.2.1 shows the forces 

acting on the gravity wall by gravitational and pseudo-static accelerations 

considered in the analysis. 

 

 
 

Figure 2.1.2.1 Forces considered in Richards and Elms method 

 

Dimarogona (1983) developed an analytical method for any mode of wall 

movement. The method is an extension of static earth pressure theory by Dubrova 

(1960) that considers the rotation of a failing retaining wall about any point. 

Dimarogona concluded that the distribution of dynamic lateral earth pressures is 

not hydrostatic as assumed by M-O method but rather parabolic which is in 

aggrement with experimental results. 

 

Nadim and Whitman (1984) proposed a model for determining the seismically 

induced permanent rotation and translation of gravity walls retaining dry 

cohesionless backfill. The proposed model and the dynamic forces acting on the 

wall are shown in Figure 2.1.2.2. An important conclusion of the study is that, for 

a tilting wall, when the wall starts to rotate, its rotational acceleration is positive 

and the line of action of the force on the wall drops below the lower third point. 
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Figure 2.1.2.2 Dynamic forces acting on the wall (Nadim and Whitman, 1984) 

 

Richards-Elms (1979) method is studied in detail and factors affecting the choice 

of a suitable safety factor are investigated by Whitman and Liao (1984). 

Uncertainities about modelling the wall as a sliding block, time histories of ground 

motion and strength parameters are examined and recommendations are made. 

 

Das and Puri (1996) presented an improved pseudo-static method for prediction of 

the static and dynamic forces on rigid retaining walls. The solution method is 

based on the wall geometry, inclination of the backfill, surcharge, strength 

parameters of the backfill and the adhesion between the wall and backfill. It is 

found that the assumption by Prakash and Saran (1966) that cohesion of the 
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backfill is equal to the adhesion leads to conservative results for the dynamic 

force. 

 

A new theory based on intermediate soil wedge concept is developed by Zhang et 

al (1998) for determining the dynamic lateral pressures on walls under a condition 

between active and passive status. The dynamic earth pressure is seperated into 

four components as: the weight of the soil wedge, seismic inertial force, surcharge 

on backfill and soil vibro-densification effect at or near neutral state. New 

equations are derived for the pressure distribution of each component depending 

on the level of wall movements as well as the inertial acceleration distribution. 

Good aggrement was found between the results of the proposed method and those 

obtained from previous model tests. 

 

2.2 Analytical and numerical methods based on linear elastic or elasto-plastic 

theory 

 

2.2.1 Wood (1973) solution 

 

Wood (1973) developed an elastic solution for seismic pressures on rigid retaining 

walls. The solution is based on the analysis of a homogenous linear elastic soil 

layer between two rigid walls underlain by a rigid base (Figure 2.2.1.1). Wood 

stated that the dynamic amplification can be neglected for base input motions with 

frequencies less than half of the fundamental frequency of the soil layer. The 

following equations are suggested for the dynamic thrust and bending moment 

about the base induced by ground motion (after Kramer, 1996): 

 

p
h2

EQ F
g

aHP γ=∆  (2.2.1.1) 

 

m
h3

EQ F
g

aHM γ=∆  (2.2.1.2) 
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where; ∆PEQ  = dynamic thrust, 

 ah = maximum horizontal acceleration 

 g = gravitational acceleration 

 Fp,Fm = dimesionless factors given in Figure 2.2.1.2 

 

Wood’s solution results in soil pressures significantly larger than those by M-O 

method. It is concluded that the solution is conservative to the other methods and 

can be used satisfactorily as a first approximation for many problems. 

 

 
 

Figure 2.2.1.1 Wood’s Model (after Kramer, 1996) 
 

 
 

Figure 2.2.1.2 Dimensionless factors for dynamic thrust and  
moment by Wood(1973) (after Kramer, 1996) 
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2.2.2 Steedman and Zeng (1990) solution 

 

M-O method assumes uniform acceleration at the soil wedge behind the wall. A 

pseudo-dynamic approach that accounts for the phase changes and amplification in 

the backfill is suggested by Steedman and Zeng (1990). 

 

Effect of phase change between base and surface: 

 

A typical fixed base cantilever wall shown in Figure 2.2.2.1 is considered. For 

harmonic base motion, the acceleration at depth z and time t can be expressed as: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−ω=

s
h V

zHtsingk)t,z(A  (2.2.2.1) 

 

The weight of the wedge is: 

 

α
γ

=
tan

H
2
1W

2

 (2.2.2.2) 

 

Considering a horizontal thin element of the wedge at depth z, the total horizontal 

inertia force Qh can be obtained by integration along the height of the wall as: 

 

∫ ⎟
⎠
⎞

⎜
⎝
⎛

α
−

ρ=
H

0
h dz)t,z(A

tan
zHQ  (2.2.2.3) 

 

Resolving the forces for the equilibrium of the wedge OAB leads to the expression 

of the total force acting on the wall, PAE and KAE as: 

 

)cos(
)sin(W)cos(QP h

AE α−φ+δ
φ−α+φ−α

=  (2.2.2.4) 
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2
AE

AE H
P2K

γ
=  (2.2.2.5) 

 

KAE is dependent on H / (TVs) which is the ratio of time for a wave to travel the 

full height to the period of the base motion. The influence of phase change on 

earth pressure coefficient is given in Figure 2.2.2.2. 

 

Influence of amplification: 

 

Assuming the lateral acceleration varies linearly from the base of the layer to the 

ground surface with a constant amplification factor fa, the acceleration at depth z is 

modified as: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−ω⎥⎦

⎤
⎢⎣
⎡ −

−
+=

s
ha V

zHtsingk)1f(
H

zH1)t,z(A  (2.2.2.6) 

 

and Qh is obtained similarly from Equation 2.2.2.3. Figure 2.2.2.3 shows the 

variation of the earth pressure coefficient with the amplification factor. 

 

 
 

Figure 2.2.2.1 Assumptions, notations and forces for calculation of  
dynamic earth pressure (Steedman and Zeng, 1990) 
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Figure 2.2.2.2 Influence of phase change on earth pressure coefficient 

 (Steedman and Zeng, 1990) 

 

 
 

Figure 2.2.2.3 Influence of amplification factor, fa on earth pressure coefficient 
 (Steedman and Zeng, 1990) 

 

2.2.3 Other studies 

 

Matsuo and Ohara (1960) developed a solution for the dynamic earth pressures on 

rigid walls making translational motions. The basic equations were derived using 

elastic wave theory, assuming that the wall is stationary and no vertical 

displacement occurs in the soil mass, with the waves travelling in the soil and 
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impinging on the surface of the wall creating the resultant stresses (after Nazarian 

and Hadjian, 1979). Figure 2.2.3.1  shows the computed earth pressures and point 

of application of the resultant force. 

 

 
 

Figure 2.2.3.1 Dynamic earth pressures and point of application of the resultant 
force (Matsuo and Ohara, 1960)  
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Scott (1973), (after Nazarian and Hadjian, 1979) has studied the dynamic response 

of rigid walls using a one-dimensional elastic shear beam connected to the wall by 

springs (Figure 2.2.3.2). Formulas for dynamic pressures for constant and variable 

soil properties are given. It is indicated that the results are in accordance with 

Matsuo and Ohara (1960) but higher than M-O method. The application point is 

acted at a distance of 0.64H from the base (after Çalışan,1999). 

 

 
 

Figure 2.2.3.2 Scott’s (1973) Model (after Wood, 1973) 

 

Finite element solution of  dynamic response of graviy retaining walls with dry 

cohesionless backfill was made by Nadim and Whitman (1983). Figure 2.2.3.3 

shows the proposed finite element model. Permanent displacements of the wall are 

investigated. It is concluded that the amplification of motion in backfill has a 

significant effect on the permanent displacements as shown in Figure 2.2.3.4. 

 

Seismic response of a flexible wall is studied by Siddharthan and Maragakis 

(1989) using finite element method. The results led to the conclusion that bending 

moments given by current design procedures are nonconservative for stiffer walls. 
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Figure 2.2.3.3 Gravity wall considered and its finite element idealisation 
(Nadim and Whitman, 1983) 

 

Bakeer et al (1990) conducted finite element analyses considering different modes 

of wall movement, and compared the results with experimental findings of the 

tests conducted at University of Washington (Ishibashi and Fang, 1987). 

 

The finite element program ANSYS is used for the analyses. The model examined 

is shown in Figure 2.2.3.5.The wall elements are connected to surrounding soil 

elements by horizontal and vertical interface elements. A sinusodial acceleration 

time history is applied along the line a-b in Figure 2.2.3.5. Different modes of wall 

displacement examined are: active rocking of free wall (ARC), active horizontal 

translation (AT), active rotation about top (ART) and active rotation about base 

(ARB). 

 



 

16

 
 

Figure 2.2.3.4 Effects of ground motion amplification on permanent wall  
displacement (Nadim and Whitman, 1983) 

 

Figure 2.2.3.6 shows the analytical and experimental results of dynamic earth 

pressure distribution. Location of the resultant force values of analytical solution 

and experimental studies are plotted on Figure 2.2.3.7. Based on the finite element 

analyses and experimental research, the following conclusions are made by Bakeer 

et al (1990): 

 

- The magnitude and distribution of the dynamic earth pressure depends on the 

mode of movement. 
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- The earth pressure distribution is always non-hydrostatic during all modes of 

deformation. 

- Mononabe-Okabe solution may underestimate the magnitude of the dynamic 

earth pressures. 

 

Dynamic pressures on rigid vertical walls retaining uniform elastic soil layer of 

constant thickness are studied by Veletsos and Younan (1994). An analytical 

solution assuming the presence of no vertical stress and complete bonding between 

the wall and soil is developed. The investigated system is shown in Figure 2.2.3.8. 

Both harmonic base motions and actual earthquake records are considered. Two 

alternative models (frequency dependent and frequency independent) to Scoot’s 

(1973) model are proposed to consider the effect of soil in the vicinity of the wall 

on the dynamic response of the system. Figure 2.2.3.9 shows the response curves 

for base wall-shears obtained by analytical solution and frequency independent 

model. The significant effect of the frequency ratio (the ratio of the base motion 

frequency to the fundamental frequency of the soil) on the shear force at the base 

of the wall thus the lateral soil forces acting on the wall can be seen in this figure. 

 

 
 

Figure 2.2.3.5 Analytical retaining wall model (Bakeer et al, 1990) 
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Figure 2.2.3.6 Analytical and experimental dynamic earth pressure distributions 
for active rotation at base (ARB) (Bakeer et al, 1990) 
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Figure 2.2.3.7 Analytical and experimental location of the resultant force  
(Bakeer et al, 1990) 
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Figure 2.2.3.8 System considered by Veletsos and Younan (1994) 

 

 
 

Figure 2.2.3.9 Comparison of frequency response curves for base shear computed 
from analytical solution and model with frequency-independent parameters 

(Veletsos and Younan, 1994) 
 

A comparison of pseudo-static and non-linear dynamic behaviour of gravity 

retaining walls is made by Woodward and Griffiths (1996). Finite element method 
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is used for both pseudo-static and dynamic analyses. Only the relative sliding is 

simulated and no gap is allowed between the wall and backfill. The interface 

between the wall and foundation soil is assumed as either smooth (relative sliding 

is allowed with no friction) and rough (completely bonded). It is concluded that 

the pseudo-static finite element approach gives results in good aggrement with 

analytical methods. The results of the dynamic analyses showed that the earth 

pressure coefficient and point of application can vary considerably during 

earthquake. 

 

Veletsos and Younan (1997) examined the dynamic response of flexible walls 

constrained against rotation at their base, by using an analytical method of 

analysis. It was assumed that no vertical stresses are present and there is complete 

bonding between the soil and the wall. The soil-wall system studied is shown in 

Figure 2.2.3.10. Both harmonic base motions and  actual earthquake record are 

considered. It is observed that the wall displacements and pressures induced by 

ground shaking are highly dependent on the flexibility of the wall and the 

rotational stiffness of the base. It is concluded that the total force obtained is in 

reasonable aggrement with that computed by Mononobe-Okabe method for 

realistic wall flexibilities when the dynamic amplification effects are neglected. 

The amplification factors at the base shear of wall for different wall and base 

stifness values and frequency ratios are plotted in Figure 2.2.3.11.  

 

A 2-D finite element solution is used to investigate the seismic response of rigid 

bridge abutments retaining and founded on dry sand by Al-Homoud and Whitman 

(1999). The proposed finite element model is shown in Figure 2.2.3.12. The wall is 

modelled as a rigid substructure and interface elements are used between the wall 

and soil at the backface of the wall and under its base to allow for relative sliding 

and gap. The non-linear stress-strain behaviour of soil is modelled by a failure 

surface and hardening cap together with an associated flow rule. The cap surface is 

activated only for the foundation soil to simulate the compaction during rocking 

displacement of the wall. A bridge abutment of 8m high and 3m wide is studied 

for different sinusodial and earthquake motions. The results showed that the 
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dominant response of the gravity walls is the outward tilting during dynamic 

shaking and permanent tilt is present at the end of the shaking. 

 

 
 

Figure 2.2.3.10 Soil-wall systems investigated by Veletsos and Younan (1997): 
 a)Base excited system, b)Force excited system 

 

 

 
 

Figure 2.2.3.11 Amplification factors for base shear for different wall and base 
flexibilities (Veletsos and Younan, 1997) 

 

Richards et al (1999) suggested a simplified kinematic method base on free-field 

solution to predict the seismic earth pressure distribution on retaining structures for 

different modes of deformation (rotation about top, rotation about bottom and 
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lateral translation). The soil is assumed as an elastic-perfectly plastic material with 

Mohr-Coulomb yield criterion and modelled by a series of springs as shown in 

Figure 2.2.3.13 that shows the considered model. Results of the method are 

compared with test results by Ishibashi and Fang (1987) and reasonably good 

aggrement was obtained. 

 

 
 

Figure 2.2.3.12 Finite element model for gravity wall problem 
 (Al-Homoud and Whitman, 1999) 

 

 
 

Figure 2.2.3.13 Model for dynamic pressure increment (Richards et al, 1999) 
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Wu and Finn (1999) presented design charts for seismic pressures acting on rigid 

retaining walls. An analytical solution is developed for homogenous backfill and 

finite element analyses are conducted for non-homogenous backfills. Charts for 

peak seismic thrusts vs. ratios of the frequency of ground motion to the natural 

vibration frequency of the system are obtained considering three different soil 

profiles and 250 combinations of base motions for each profile. It is concluded 

that, Wood (1973) solution, often used in practice underestimates the thrusts for 

the vicinity of resonance case, and overestimates for high frequency ratios. Figure 

2.2.3.14 shows one of the proposed charts of peak seismic thrust vs. frequency 

ratio. 

 

 
 

Figure 2.2.3.14 Peak seismic thrust curves for L/H = 1.5 (Wu and Finn, 1999) 
  

Younan and Veletsos (2000) studied the dynamic response of flexible walls 

retaining a uniform, linear-elastic soil layer. An analytical method is proposed to 

predict the response of cantilever and top-supported retaining walls and the effect 

of flexibility is investigated. It is assumed that no vertical stresses develop in the 

medium and there is complete bonding between the wall and soil. The wall is fixed 
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against deflection and rotation at the base to which the ground motion is applied. 

Both harmonic and earthquake motions are examined and the effects of           

long-period excitations are considered. It is concluded that the total lateral thrust 

for cantilever walls may be less than one-half of that obtained for fixed-based rigid 

walls with a larger reduction in the bending moment at the base. 

 

Wu (1999) developed a displacement model for rigid walls considering the      

non-linear soil properties and any water condition behind the wall (after Wu and 

Prakash, 2001). Springs and dashpots are used to simulate the stiffness and 

damping behaviour in sliding and rocking in the model. The predicted 

displacement was in reasonable aggrement with centrifuge test by Zeng (1998). 

 

The performance of L-shaped reinforced concrete walls during earthquakes is 

examined by Gazetas et al (2004). The base excitations with either high or low 

dominant frequencies of peak ground acceleration (PGA) of 0.40g and relatively 

short-duration are considered. Soil is modelled as both linear elastic and elasto-

plastic (using Mohr-Coulomb yield criterion) materials. Figure 2.2.3.15 shows the 

system examined and the lateral pressure distributions induced by base motion. It 

is concluded that L-shaped retaining walls are subjected to dynamic forces smaller 

than those predicted by M-O method in many cases, especially for high frequency 

excitation. Exceptions to this rule exist when there is sigificant amplification of the 

ground motion in the soil. However, it is noted that, even higher pressures than  

M-O are present, the retaining systems posses sufficient ductility capacity, in the 

form of unhindered slippage at their base, that they can survive even a strong event 

with minor damage. 

 

Analytical results by Veletsos and Younan (1997) are verified by Psarrapoulos      

et al (2005) by conducting finite element analyses. The effects of the wall 

flexibility and base rocking stiffness are also investigated. Both homogenous and 

inhomogenous soil layers resting on rigid base are considered. Additionally, a  

two-layered system is examined that accounts for the lateral movement of the wall. 

Figure 2.2.3.16 shows the systems and assumptions used in the study. 
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Figure 2.2.3.15 Two-layered model and distribution of dynamic earth pressures 
(Gazetas et al, 2004) 

 

The wall is modelled by beam elements and the rotational stiffness of the 

foundation is simulated by a rotational spring at the base that is fixed in both 

horizontal and vertical directions for one-layer systems. For the two-layer system, 

both the wall and soil are modelled by plane-strain elements. 

 

The influence of the wall flexibility and base rocking stiffness is illustrated in 

Figure 2.2.3.17. It is observed that the shape of the lateral seismic pressure 

distribution is dependent on the wall stiffness.  

 

A comparison of the results of one-layer and two-layer models is shown in Figure 

2.2.3.18. The influence of the base rocking stiffness on the shape of the pressure 

distribution can clearly be seen in the figure. 

 

The models examined by Psarropoulos et al (2005) assume full bonding between 

the wall and soil leading to unrealistic tensile stresses at the wall-soil interface that 
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can affect the overall response of the wall. There is insufficient information about 

the pressure values used in the pressure distributions if they are the values 

corresponding to the maximum lateral thrust at an instance or the maximum values 

obtained at each point during the analysis. 

 

 
 

Figure 2.2.3.16 Systems examined by Psarropoulos et al (2005) 
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Figure 2.2.3.17 Dynamic earth pressure distributions for varying base rotational  
spring stiffness and wall flexibility (Psarropoulos et al, 2005) 

 

 
 

Figure 2.2.3.18 Dynamic earth pressure distributions in the case of resonance for 
different base stiffness and wall flexibility values (Psarropoulos et al, 2005) 
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Ostadan (2005) suggested a simplified method for the calculation of maximum 

seismic soil pressures for building walls resting on firm foundation soil. The 

method is based on conventional 1-D soil column analysis and considers the 

dynamic soil properties and the frequency content of the ground motion. 

 

2.3 Experimental studies 

 

Sherif et al (1982) conducted shaking table experiments to determine the dynamic 

stress distributions on rigid walls with granular backfill material. The model wall 

was designed so that it could rotate about top or bottom and translate. 

 

 Dynamic neutral increment thrust results for non-yielding retaining walls are 

compared to elastic solutions proposed by Matsuo and Ohara (1960) and Wood 

(1973) in Figure 2.3.1. It is seen that the dynamic neutral incremental thrust varies 

nonlinearly contrary to the elastic methods stated above. Variation of the 

application point of the total dynamic neutral force is given in Figure 2.3.2. An 

average value of h/H=0.4 is suggested for design purposes where h is the distance 

of the application point to the base and H is the height of the wall. 

 

For a rigid translating wall, variation of  the coefficient of total dynamic active 

earth pressure and point of application of the total dynamic active thrust are shown 

in Figures 2.3.3 and 2.3.4 respectively. It can be seen that the results are about 

30% higher than the values computed by M-O. An average value of h/H=0.45 is 

proposed for the application point of the total active thrust. 

 

Seismic behaviour of cantilever retaining walls were investigated by centrifuge 

model tests by Ortiz (1982). The prototype walls designed according to M-O 

method are subjected to lateral earthquake motions. The walls were instrumented 

with pressure and displacement transducers, acceleration and strain gauges (See 

Figure 2.3.5). Moment, pressure, shear and displacement distributions were 

obtained from the tests. Figure 2.3.6  shows the pressure distribution for one of the 

tests. The study has led to the following conclusions: 
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- The static earth pressure distributions obtained are not triangular as assumed 

by Coulomb’s or Rankine’s theory. However the resultant forces and points 

of application are in reasonable aggrement indicating that Coulomb’s theory 

estimates an average pressure distribution that is assumed as triangular. 

- The dynamic response of the system is not only dependent on lateral 

accelerations, but also on the energy content of the earthquake indicated by 

the velocities. Maximum pressures are found to be closely associated with 

the velocities, maximum moments with the area under the acceleration 

spikes (changes in velocity). 

- The dynamic pressure distributions are not triangular as for the static cases, 

although the centroids are about 1/3 of the height above the base.  

- The M-O solution is in reasonable aggrement with the experimental results 

(after Ortiz et al, 1983). 

 

 
 

Figure 2.3.1 Dynamic neutral incremental thrust for a 1m high nonyielding wall 
(Sherif et al, 1982) 
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Figure 2.3.2 Variation of application point of  total dynamic thrust for nonyielding 
wall (Sherif et al, 1982) 

 

 
 

Figure 2.3.3 Variation of  the coefficient of total dynamic active earth pressure 
(Sherif et al, 1982) 
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Figure 2.3.4 Variation of  the application point of total dynamic active thrust 
(Sherif et al, 1982) 

 

 
 

Figure 2.3.5 Model wall cross-section (Ortiz, 1982) 
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Figure 2.3.6 Record of wall pressure (Ortiz, 1982) 
 

Sommers and Wolfe (1984) presented the results of shaking table tests. The effects 

of input motion on the displacement of model walls is investigated. The wall 

accelerations are found to be dependent on the amplitude and frequency of the 

input motion. On the other hand, the displacements are found to be dependent on 

the type of input motion. 

 

Fukuoka and Imamura (1984) examined the seismic behaviour of retaining walls 

conducting model tests and using real earthquake measurements. An important 

conclusion indicated is that the earth pressure magnitude is determined by the total 

energy put into the retaining wall-soil system in one or two seconds rather than the 

acceleration acting at that moment. 

 

Shaking table experiments with different modes of wall movement are used to 

investigate the dynamic active earth pressures on rigid retaining walls with dry 

cohesionless backfill by Ishibashi and Fang (1987). They made experiments using 

the University of Washington shaking table and retaining wall assembly for wall 



 

34

movement modes : rotation about the base (RB) and rotation about the top (RT). 

The results are combined with those by Sherif et al (1982) and Ichihara and 

Matsuzawa (1973), who considered pure translation (T) and translation together 

with rotation about the base (RB+T) respectively. 

 

Normalized maximum dynamic lateral earth pressures obtained from the pressure 

cells (shown in Figure 2.3.7) as a function of wall rotation is shown in Figure 

2.3.8. The plotted values are the maximum of the measurements during vibration. 

It can be seen that the maximum pressures decrease rapidly with initial wall 

rotation and reach constant values. 

 

The maximum lateral earth pressure distributions with different wall rotations for 

rotation about base are shown in Figure 2.3.9. It is stated that a very high residual 

stress zone near the wall base is observed since there is little soil movement at that 

region. 

 

The coefficient of maximum dynamic active horizontal thrust values for RB and 

RT walls are plotted on Figure 2.3.10. All the points for RB mode fall within 

123% and 143% of M-O values with an average of 128%. This is considered to 

result due to the extra high residual stress near the wall base. Figure 2.3.11 

summarizes the point of application variation for different modes of wall 

movement. 

 

 It is indicated that at low acceleration levels, the movement and geometry of the 

wall is the controlling factor. Meanwhile at high acceleration levels, the vibrating 

portion of the thrust becomes dominant in determining the application point. 

Therefore the normalized height of the application point, h/H value converges to 

around 0.4 to 0.55 for horizontal acceleration coefficient, kh > 0.5 regardless of the 

wall movement.  
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Figure 2.3.7 Locations of soil pressure transducers behind model wall 
(Ishibashi and Fang, 1987) 

 

 
 

Figure 2.3.8 Change in lateral pressure with wall rotation for RB mode 
(Ishibashi and Fang, 1987) 
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Figure 2.3.9 Distribution of maximum lateral earth pressure at different wall 
 rotations for RB mode (Ishibashi and Fang, 1987) 

 

 
 

Figure 2.3.10 Coefficient of maximum dynamic active horizontal thrust 
(Ishibashi and Fang, 1987)  
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Figure 2.3.11 Point of application of dynamic thrust (Ishibashi and Fang, 1987) 

 

Centrifuge model tests are conducted to study the seismic behaviour of gravity 

quay walls by Zeng (1998). A gravity wall of 8m high and 4m wide in prototype 

scale with both dry and saturated backfill is considered. A series of model 

earthquakes is applied with a gradual increase in the peak acceleration until failure 

is observed in the tests. Major damage included the lateral displacement, vertical 

settlement and tilting of the gravity wall and ground settlement in the backfill. It is 

concluded that  for a gravity wall retaining dry backfill, the current design 

procedures give satisfactory results. 

 

Madabhashi and Zeng (1998) made a numerical simulation of the centrifuge 

experiments by using finite element method and compared the results. An     

elasto-plastic material model is used for soil and interface elements are used 

between the wall and backfill allowing for relative displacement. It is stated that 

the results for the cases of both dry and saturated backfill are in good aggrement 

with experimental data. The profile of the model wall before and after the test and 

deformed mesh after the analysis are shown in Figure 2.3.12. 
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Figure 2.3.12 Post test profile of centrifuge model 
 (Madabhashi and Zeng, 1998) 

 

Shaking table tests were conducted by Çalışan (1999) to investigate the dynamic 

behaviour of gravity retaining walls. A model wall of 70 cm high, 99 cm wide and 

1 cm thick with a base of 30 cm is set. The wall is instrumented with 

accelerometers, earth pressure cells and displacement transducers (See Figure 

2.3.13). The following conclusions are drawn from the test results: 

 

- The seismic pressures increase with increasing wall mass (See Figure 

2.3.14). 
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- The measured values of the incremental seismic thrust are considerably 

higher than those calculated by M-O method (See Figure 2.3.15). 

 

- The distance of the point of application to the base varies between 0.35H and 

0.45H for the tests in which failure did not occur. On the other hand, the 

point of application shifts below 0.33H for the tests in which considerable 

rotation and translation was observed (See Figure 2.3.16). 

 

 
 

Figure 2.3.13 Model wall dimensions and instrumentation (Çalışan, 1999) 

 

 
 

Figure 2.3.14 Variation of horizontal seismic incremental earth pressure 
 coefficient with wall mass (Çalışan, 1999) 
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Figure 2.3.15 Incremental seismic earth pressure coefficient (Çalışan, 1999) 

 

 
 

Figure 2.3.16 Application point of horizontal seismic incremental thrust 
 (Çalışan, 1999) 
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CHAPTER 3 

 
 

REVIEW ON THEORETICAL ASPECTS 

 

 
Analyses to investigate  the dynamic behaviour of retaining wall-soil systems are 

done by using finite element method. The finite element program ANSYS is used 

for this purpose. In this section, information about the material models 

representing the wall and soil, dynamic finite element procedures, the contact 

algorithm used to simulate the relative motion of the backfill and the wall are 

given. In addition, the verification of the program is presented by comparing the 

results of finite element analysis and analytical solution for one-dimensional wave 

propogation problem.  

  

3.1 Material model 

 

The retaining wall and the soil (backfill and foundation soil) are modelled by using 

4-node plane-strain elements. The wall is assumed as a linear-elastic material with 

appropriate stiffness and mass parameters for concrete, since the stresses and the 

strength of the retaining wall is beyond the scope of this study. On the other hand, 

the soil is modelled as either linear elastic or elasto-plastic so that the non-linear 

stress-strain behaviour of soil may be  taken into account. 

 

3.1.1 Review on plasticity 

 

For many materials, the stress-strain relationship is not unique (as in the linear 

elastic model) and many states of strain can correspond to one state of stress and 

vice versa. The stress-strain curve obtained from a tension test on a metal bar is 

shown in Fig. 3.1.1.1. The relation between stress and strain is linear for the initial 
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portion OA. The stress-strain relation is reversible in any unloading case from any 

point on OA. If the bar is loaded beyond A, subsequent unloading is also 

reversible but non-linear. However, there is a point B beyond which unloading is 

not reversible. This point is called as the yield point of the material. The points A 

and B can often be regarded as coincident for practical purposes. If the bar is 

loaded to point C and unloaded, the path CD is followed, resulting in a permanent 

strain represented by OD. This permanent strain is called as the plastic strain. 

When the material is loaded to point C, the total strain is the sum of the plastic 

strain, OD, and elastic strain, DE. Further loading beyond C continues until the bar 

fails ( at point F ). The stress at the point F is often called as the ultimate strength 

(Britto and Gunn, 1987). 

 

 
 

Figure 3.1.1.1  Typical stress-strain curve (after Britto and Gunn, 1987) 
 

To model the materials having plastic behaviour, some idealisations have to be 

made. In such idealisations, the main features of the behaviour are identified but 

aspects of secondary importance are ignored.  

 

Fig. 3.1.1.2 shows some widely used idealisations of plastic behaviour. In elastic-

perfectly plastic model, the material shows linear elastic behaviour until it yields. 

After yielding, the material continues to deform at constant yield stress. In elastic, 

strain-hardening plastic model, the stress-strain curve remains linear at a reduced 
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slope after yielding. When only collapse loads are to be considered in a 

calculation, it is convenient to use rigid-plastic models in which no elastic strain 

exists.  

 

 
 

Figure 3.1.1.2 Idealisations of plastic behaviour (after Britto and Gunn, 1987) 
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To completely describe the stress-strain relations for an elasto-plastic material, 

four different criteria are required (Britto and Gunn, 1987): 

 

1- A yield function : This generalises the concept of yield stress for one-

dimensional loading  to two or three dimensional stress states. 

 

2- A relationship between the directions of the principal plastic strain increments 

and the principal stresses. 

 

3- A hardening rule : This is the relationship between the amount of hardening and 

plastic strain when the material is yielding. Thus the hardening rule determines 

the changes  in the yield surface. 

 

4- A flow rule : This specifies the relative magnitudes of the incremental plastic 

strains when the material is yielding. 

 

Yield function 

  

If  a material is subjected to two or three dimensional states of stress, the state of 

the material (elastic or plastic) depend on all the stress components (six in the fully 

three dimensional case). If the material is isotropic, then it’s sufficient to consider 

only the principal stresses (σa , σb and σc), and generally the yield functions are 

expressed in terms of them (Britto and Gunn, 1987). 

 

In general a yield function is written as: 

 

f( σa, σb, σc ) = 0, 

 

this equation representing a surface in three-dimensional stress space. Generally 

yield function is written in such a way that, the negative value of the function for 

the current stress state indicates that the behaviour is elastic (inside the yield 

surface). A zero value of the function indicates that yielding takes place and 
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positive values which represent stress states outside the yield surface are not 

allowed. 

 

Hardening rule 

 

The hardening rule is used to define the motion (changes in size,shape and 

location) of the yield surface during plastic loading. Hardening rules are classified 

as isotropic hardening, kinematic hardening and mixed hardening. The yield 

surface expands uniformly in isotropic hardening, while it moves as a rigid body in 

stress space in kinematic hardening (See Fig. 3.1.1.3). Mixed hardening combines 

both of these types of hardening and permits the yield surface to expand or 

contract unifomly and to translate in stress space. 

 

If  the loading is monotonic, then the isotropic hardening rule is adequate to 

describe the material behaviour. The kinematic hardening rule is suitable for 

materials under cyclic and reversed type of loadings (Chen and Mizuno, 1990). 

 

Flow rule 

 

The flow rule defines the ratios of plastic strain increments for a yielding material 

at a particular stress state. It defines only the relative sizes of individual strain 

increments, not their absolute sizes. The following expression is used to define the 

flow rule : 

 

σ∂
∂

δλ=δε
gp    (3.1.1.1) 

 

where pδε  is the plastic strain increment, δλ   is the proportionality factor and g is 

the plastic potential function. 
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Figure 3.1.1.3 Isotropic and kinematic hardening (after Britto and Gunn, 1987) 
 

 
 

Figure 3.1.1.4 The plastic potential (after Britto and Gunn, 1987) 
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The plastic potential function, g(σa , σb , σc) = 0 defines such a surface in principal 

stress space that, the plastic strain increment vectors are normal to this surface 

(See Fig. 3.1.1.4). The yield function can be used as a potential function for many 

materials. This is called as the normality condition or associated flow rule. If a 

potential function different than the yield function is used, then it is called as non-

associated flow. 

 

3.1.2 Drucker-Prager material model 

 

An elastic-perfectly plastic material model using Drucker-Prager yield criterion 

with either associated or nonassociated flow rule is used to represent soil in the 

elasto-plastic analyses. A brief information on the implementation of the model is 

given in this section based on ANSYS Theory Reference. The notations used in 

this section are given in Table 3.1. 

 

The yield criterion (yield function) is expressed as: 

 

F = σe - σy = 0  (3.1.2.1) 

 

The equivalent stress and material yield parameters σe and σy are expressed as: 

 

[ ] 2
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Table 3.1 Notations used in material model theory 
 

Variable Definition 

{εel} elastic strain vector 

{εpl} plastic strain vector 

{εtr} trial strain vector 

{σ} Stress vector 

σe equivalent stress 

σy material yield parameter 

σm mean or hydrostatic stress 

λ plastic multiplier 

[D] stress-strain matrix 

ET tangent modulus 

F yield criterion (yield function) 

Q plastic potential function 

{S} deviatoric stress vector 

c cohesion of material 

φ angle of friction for material 

 

 

The variables in Equation 3.1.2.2 are defined below: 

 

)sin3(3
sin2
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φ

=β  (3.1.2.4) 
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This yield surface (given by Equation 3.1.2.1) is a circular cone chosen such that it 

corresponds to the outer aspices of the hexagonal Mohr-Coulomb yield surface as 

shown in Figure 3.1.2.1. 

 

 
 

Figure 3.1.2.1 Yield surfaces of Mohr-Coulomb and Drucker-Prager  
yield criterions in 3-D principal stress space (after ANSYS Theory Reference) 

 

The flow rule determines the direction of plastic straining and is given as: 

 

⎩
⎨
⎧

⎭
⎬
⎫

σ∂
∂

λ=ε
Q}d{ pl  (3.1.2.8) 

 

Equation 3.1.2.1 can be differentiated so that the consistency condition is: 
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The stress increment can be computed by the elastic stress-strain relation: 

 

[ ] }d{D}d{ elε=σ  (3.1.2.10) 

 

and 

 

}d{}d{}d{ plel ε−ε=ε  (3.1.2.11) 

 

 

since the total strain increment is composed of an elastic and plastic part. 

Substituting Equations 3.1.2.10, 3.1.2.11 and 3.1.2.8 into Equation 3.1.2.9 in 

order, one can obtain the plastic multiplier as: 
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  (3.1.2.12) 

 

so that the size of the plastic increment is related to the total strain increment, the 

current stress state and the forms of yield and potential surfaces. The plastic strain 

increment is then computed by using Equation 3.1.2.8. 

 

⎩
⎨
⎧

⎭
⎬
⎫

σ∂
∂F  can be computed as: 
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⎩
⎨
⎧

⎭
⎬
⎫

σ∂
∂Q  can similarly be computed, however β is calculated using the dilatancy 

angle, ψ instead of friction angle, φ. There will be volumetric expansion with 

plastic straining when ψ > 0. No volumetric expansion of the material occurs when 

ψ = 0. 

 

An Euler backward scheme is used to enforce the consistency condition given by 

Equation 3.1.2.9 which ensures the updated stresses and strains are on the yield 

surface. The implementation algorithm is summarized below: 

 

1- The material parameter σy is calculated for the current time step. 

 

2- The stresses are computed based on the trial strain {εtr}, that is the total strain 

minus the plastic strain of the previous time step: 

 

}{}{}{ pl
1nn

tr
n −ε−ε=ε  (3.1.2.14) 

 

[ ] }{D}{ trtr ε=σ  (3.1.2.15) 

 

3- The equivalent stress σe is calculated by Equation 3.1.2.2. If σe is less than σy, 

the material is in elastic state and no plastic strain increment is computed. 

 

4- If σe>σy, the plastic multiplier, λ is calculated from Equation 3.1.2.12 by using 

a Newton-Raphson iteration procedure. 

 

5- {dεpl} is calculated by Equation 3.1.2.8. 

 

6- The current plastic strain is updated: 

 

}d{}{}{ plpl
1n

pl
n ε+ε=ε −  (3.1.2.16) 
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The elastic strain is computed: 

 

}d{}{}{ pltrel ε−ε=ε  (3.1.2.17) 

 

and the stress vector is: 

 

[ ] }{D}{ elε=σ  (3.1.2.18) 

 

3.2 Dynamic finite element analysis 

 

3.2.1 Review on time history analysis 

 

The equation of motion for a single degree of freedom system can be written as : 

 
)t(Pkuucum =++ &&&  (3.2.1.1) 

 
 
where; m = mass 

c = viscous damping constant 

k = spring constant 

P = applied external load at time t 

u = displacement at time t 

dt
duu =& = velocity at time t 

2

2

dt
udu =&& = acceleration at time t 

 

Similarly the equations of equilibrium governing the dynamic response of a system 

of finite elements can be written in matrix form as (Bathe, 1996): 

 

[ ] [ ] [ ] }P{}u{K}u{C}u{M =++ &&&  (3.2.1.2) 

 
 



 

53

where; [M] = mass matrix of the system 

[C] = damping matrix of the system 

[K] = stiffness matrix of the system 

}u{ && = nodal acc. vector 

}u{& = nodal velocity vector 

{u} = nodal displacement vector 

{P} = applied load vector 

 

which represent a system of linear differential equations of second order. 

 

Step by step methods are generally used for the solution of  3.2.1.2 in finite 

element method. Newmark Beta method is one of the most commonly used step by 

step methods which is employed in the finite element program ANSYS.  

 

There are many different step by step methods (eg. central difference method, the 

Houbolt method, the Wilson method, the Newmark method as stated in Bathe, 

1996) in all of which the loading and the response history of the system are 

divided into small time intervals (steps). The response of the system at each 

interval is calculated from the initial conditions at the beginning of the step and the 

loading during that step. Therefore, each step is assumed to be an independent 

analysis in which the acceleration, velocity and displacement vectors are obtained 

at the end of the time interval. 

 

Step by step methods may be  classified into two categories as: 

 

1- Explicit methods : 

 

In explicit methods, the unknown response values at the end of a step are totally 

dependent on and are calculated from the quantities obtained in the previous step 

or steps, so the analysis proceeds directly from one step to the next. 
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2- Implicit methods : 

 

In implicit methods, the equations giving the unkown values of a given step 

include one or more values corresponding to the same step; thus an iterative 

procedure should be carried out to solve the equations and find the response values 

at the end of the step. It is often desirable to convert an implicit method to an 

explicit form to make the solutions faster. 

 

Newmark Beta Methods 

 

In the Newmark formulation, the final velocity and displacement values are 

expressed as follows : 

 

1001 uhuh)1(uu &&&&&& δ+δ−+=  (3.2.1.3) 

 

1
2

0
2

001 uhuh
2
1uhuu &&&&& α+⎟

⎠
⎞

⎜
⎝
⎛ α−++=  (3.2.1.4) 

 

where h is the size of the time step. The factor  δ  provides a linearly varying 

weighting of the influence of the initial and the final accelerations on the change of 

the velocity; and the factor α provides for weighting of the influence of these 

initial and final accelerations to the change of the displacement. 

 

Taking  δ = 1/2  and  α = 1/4  in Equations 3.2.1.3 and 3.2.1.4  is referred as the 

constant average acceleration method in which the acceleration is assumed to be 

constant during the time step as the average of the initial and final accelerations. 

The constant acceleration method is depicted in Figure 3.2.1.1. 
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Figure 3.2.1.1 Constant acceleration method 
 (Newmark, 1959 (after Clough and Penzien, 1993)) 

 

Implementation in ANSYS 

 

The implementation of the Newmark method in the program is summarized briefly 

below based on ANSYS Theory Reference. 

 

Equations 3.2.1.3 and 3.2.1.4 can be rearranged such that: 

 

}u{a}u{a})u{}u({a}u{ n3n2n1n01n &&&&& −−−= ++  (3.2.1.5) 

 

}u{a}u{a}u{}u{ 1n7n6n1n ++ ++= &&&&&&&  (3.2.1.6) 

 

where; 20 h
1a

α
=  

h
a1 α

δ
=   

h
1a 2 α

=  1
2
1a 3 −
α

=  

 1a 4 −
α
δ

=  ⎟
⎠
⎞

⎜
⎝
⎛ −

α
δ

= 2
2
ha 5  )1(ha 6 δ−=  ha 7 δ=  
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The equations of }u{ 1n+&&  and }u{ 1n+& can be expressed only in terms of the unknown 

displacement vector {un+1} by substituting Equation 3.2.1.5 into 3.2.1.6.  The 

equations formed are then combined with Equation 3.2.1.2 to form: 

 

[ ]
[ ]
[ ]

[ ]
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&&&

&&&  (3.2.1.7) 

 

so that the solution for displacements at time tn+1,{un+1} can be obtained. The 

velocity and acceleration values at tn+1 can then be obtained by Equations 3.2.1.5 

and 3.2.1.6. 

 

It is stated by Zienkiewicz (1977) that the numerical solution of Equation 3.2.1.2 

by Equations 3.2.1.5 and 3.2.1.6 is unconditionally stable for: 

0
2
1,

2
1,)1(

4
1 2 >α+δ+≥δγ+≥α . 

 

In ANSYS, the Newmark parameters are related to an amplitude decay factor, γ as: 

 

γ+=δγ+=α
2
1,)1(

4
1 2  (3.2.1.8) 

 

When ,0≥γ  the solution will be unconditionally stable. Assuming γ=0 the 

Newmark method becomes the constant average acceleration method. Results 

from the constant average acceleration method do not show any numerial damping 

in terms of displacement errors. If other sources of damping are not present, the 

lack of numerical damping can be undesirable in that the higher frequencies of the 

system can produce unaceptable levels of numerical noise (Zienkiewicz, 1977). So 

usually a certain level of numerical damping is desired and γ is given a small 

value. In this study, γ is assumed as 0.005 which is the default value suggested in  

the program. 
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About integration time step  

 

The accuracy of the solution depends on the time step size. The accuracy gets 

higher as the time step size decreases. A time step that is too large leads to error 

that effects the response of the higher modes of the system. A time step too small 

will lead to time-consuming analyses and large output data. Therefore an optimum 

time step should be chosen considering the following statements: 

 

1- The time step should be small enough to resolve the response (motion) of the 

system. It has been found that reasonably accurate results are obtained using 

approximately twenty points for cycle of the highest frequency, fmax. Hence the 

integration time step (ITS) is: ITS=1/(20fmax). 

 

2- The time step should be small enough to resolve the loading function so that the 

changes in loads can be followed sufficiently. 

 

3- For wave-propogation problems, the time step should be small enough to 

capture the wave as it travels through the elements. 

 

ANSYS has the option of automatic time stepping so that the time step is adjusted 

during the solution based on the response frequency and the nonlinearity effects. 

Automatic time stepping or time step optimization is used in this study such that 

the time step variation is bounded between the 1/20 and 1/2000 of the ground 

motion period (the time step can be reduced to 1/2000 if necessary but can not 

exceed 1/20 of the period of the ground motion) for greater accuracy. 

 

3.2.2 Damping 

 

Rayleigh damping is one of the most commonly used methods in transient finite 

element analyses. According to Rayleigh damping, the damping matrix, [C] in 

Equation 3.2.1.2 is assumed as a combination of the mass and stiffness matrices 

as: 
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[C] = α[Μ] + β[K] (3.2.2.1) 

 

Rayleigh damping leads to the following relation between damping ratio and 

frequency (Clough and Penzien, 1993): 

 

22
n

n
n

βω
+

ω
α

=ξ  (3.2.2.2) 

 

where ξn is the damping ratio for a particular mode of vibration, n and ωn is the 

natural circular frequency of mode n. The damping factors α and β can be obtained 

by a pair of simultaneous equations using two damping ratios ξm and ξn with 

corresponding frequencies ωm and ωn. It is commonly assumed that the sum of the 

α and β terms is nearly constant over a range of frequencies as shown in Figure 

3.2.2.1. 

 

 
 

Figure 3.2.2.1 Damping ratio for Rayleigh damping 
 (after ANSYS Theory Reference) 

 

3.2.3 Absorbing boundaries 

 

In static analyses, either displacements or tractions are applied to the boundaries of 

the finite element model at some distance from the region of interest. However, 

such boundary conditions lead to the reflection of the waves propogating outward. 
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The viscous boundaries suggested by Lysmer and Kuhlemeyer (1969) are 

generally used in time-domain finite element analyses to absorb the energy of the 

outward propogating waves. The method suggests the use of dashpot elements in 

normal and shear directions at the boundaries. The dashpot constans in the normal 

and shear directions are taken such that the tractions provided by the dashpots are: 

 

tn = -ρCpVn,  ts = -ρCsVs (3.2.3.1) 

 

where ρ is the density of the material, Cp and Cs are compression and shear wave 

velocities respectively,Vn and Vs are the velocities in the normal and shear 

directions at the boundary. 

 

An alternative to this approach (as stated in FLAC user manual by Itasca Inc.) is to 

connect the boundaries to a shear beam(that simulates the free-field motion) by the 

dashpots, hence to satisfy the free-field conditions at the boundaries of the model. 

The left and right boundaries are connected to shear beams by vertical and 

horizontal dashpots with appropriate parameters based on Equations 3.2.3.1 in this 

study. 

 

3.2.4 Verification by 1-D wave propogation problem 

 

The finite element analysis results are verified for one-dimensional wave 

propogation. For this purpose, a model is established and analysed by ANSYS and 

SHAKE91 which is a computer program for site response analysis based on 1-D 

wave propogation theory (Idriss and Sun, 1992) and the results are compared. 

 

The considered model is summarized below: 

- 5m deep soil deposit underlain by a rigid base, H=5m. 

- The soil parameters are: 

 Elasticity modulus (E) = 100 Mpa 

 Poisson’s ratio (ν) = 0.33 

 Damping ratio (ξ) = 0.1 
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 Unit weight (γ) = 20 kN/m3
 

- A sinusodial acceleration time history with the following properties is 

applied to the base: 

 Duration (t) = 4 sec. 

 Peak acceleration (accmax) = 0.2 g 

 Period of the motion (Tm) = 0.2 sec. 

 

ANSYS model and analysis 

 

The finite element model used in the analysis is shown in Figure 3.2.4.1. 4-node 

plane strain elements of 0.5m edge size are used to represent soil. The width of the 

model is taken as 5 times the height. Dashpots are used to connect the left and 

right side boundaries to shear beams to satisfy free-field conditions.  

 

 
 

Figure 3.2.4.1 Finite element model for verification 
 

Comparison of the results 

 

Figure 3.2.4.2 shows the results obtained from ANSYS and SHAKE91 analyses. It 

can be seen that the results are in very good agreement and the finite element 

solution is succesful for the wave propogation problem. 
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Figure 3.2.4.2 Comparison of the result of ANSYS and SHAKE91 

 

3.2.5 About contact model 

 

The interface between the structure and soil is of major concern in numerical 

computations including soil-structure interaction due to the very different stiffness 

and strength properties of the soil and structure. Simulating the relative motion 

(sliding+gap) of the soil to the structure in a correct way by considering the 

interaction (e.g. friction) between is essential for a realistic analysis. 

 

There are two conventional approaches to soil-structure interaction problems: 

 

- Using interface elements between soil and structure: Interface elements with 

either elastic or elasto-plastic behaviour are modelled between the associated 

nodes of the structure and soil to simulate the relative sliding and/or gap. 

This approximation can be referred as node-to-node contact. 
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- Assigning same degree of freedom in one direction only, hence allowing the 

relative displacements in the other directions. This approximation assumes 

smooth surfaces between the wall and structure. 

 

The use of node-to-node contact models is reasonable for problems involving 

small relative sliding and deflections (rotations) of the surfaces (ANSYS Theory 

Reference). 

 

A rather new approximation, surface-to-surface contact model is used in this study. 

In this model, the behaviour of the contact surfaces (which are two seperate 

bodies) is determined by a specified contact algorithm. Unlike the node-to-node 

contact models, the contacting components need not have a compatible mesh and 

large deformation and large relative sliding are allowed. A brief summary about 

the contact model used in the study is given below based on ANSYS Theory 

Reference. 

 

The contact model and algorithm 

 

In studying the contact between two bodies, the surface of one body is taken as a 

contact surface and the surface of the other body as a target target surface. The 

contact and target surfaces constitute a contact pair. 

 

Shear stress between the surfaces are calculated according to Coulomb’s law of 

friction. The two contacting surfaces can carry shear stresses up to a certain 

magniude across their interface before they start sliding relative to each other. This 

state is referred as sticking. The Coulomb friction model is defined as: 

 

τlim = µP + c (3.2.5.1) 

 

limτ≤τ  (3.2.5.2) 
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where; τlim = limit shear stress 

 τ = shear stress on contact 

 µ = coefficient of friction 

 P = contact normal pressure 

 c = contact cohesion 

 

Once the shear stress exceed τlim, the contact and target surfaces slide relative to 

each other. This state is referred as sliding. The sticking/sliding calculations 

determine when a point transitions from sticking to sliding or vice versa. Figure 

3.2.5.1 illustrates the friciton model. 

 

In pure-penalty contact algorithm, the contact pressure is given as: 

 

⎩
⎨
⎧

≤
>

=
0uif
0uif
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P
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n

nn

 (3.2.5.3) 

 

where; Kn = contact normal stiffness 

 un = contact gap size 

 

The main drawback of this algorithm is that the amount of penetration between the 

surfaces depends on the normal stiffness. Higher stiffness values decrease the 

amount of penetration, but can lead to ill-conditioning of the global stiffness 

matrix and to convergence difficulties. 

 

The augmented Lagrangian method is an alternative to pure-penalty method. It is 

an iteration series of penalty updates to find the Lagrange multipliers (contact 

pressures). This method usually leads to better conditioning and is less sensitive to 

the magnitude of the contact stiffness value. In this method, the contact pressure is 

defined by: 
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where, 
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where; λi = Lagrange multiplier component at iteration i 

 ε = tolerance of compatibility 

 

The tangential contact stress is obtained by Coulomb’s law: 
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where; Kt = tangential contact stiffness 

 ut = contact slip distance in tangential direction 

 

 
 

Figure 3.2.5.1 Contact friction model  
(after ANSYS Thoery Reference) 
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3.3 Linear quadrilateral plane-strain element 

 

The soil and the wall are represented by 4-node quadrilateral plane-strain 

elements. Isoparametric formulation in which the displacements are expressed in 

terms of natural coordinates is used in the generation of the element matrices. 

 

Figure 3.3.1 shows a 4-node quadrilateral element that is transformed into a square 

element in natural coordinates for the formulations. The element has 2 degrees of 

freedom at each node: in the directions of the x and y axes of the global coordinate 

system. 

 

111(x ,y ) 222(x ,y )

444(x ,y ) 333(x ,y )
u4

4v
3u

v3

2u

v2

1u

v1

x

1(-1,-1) 2(1,-1)

4(-1,1) 3(1,1)

r

s

Global coordinates Natural coordinates  
 

Figure 3.3.1 4-node quadrilateral plane element 

 

Although the displacements are expressed in terms of natural coordinates, they 

must be differentiated with respect to global coordinates x and y, hence a 

transformation matrix called [J] must be used. In addition, the integrations must be 

done numerically rather than analytical when the elemets are nonrectangular 

(Cook et al, 1989). 
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The coordinates and the displacements are interpolated from the values at the 

nodes by using the same shape functions, hence the term “isoparametric” is used 

for the formulation. 

 

The coordinates x and y are calculated from the nodal coordinates as: 
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where the shape functions Ni are: 
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 (3.3.2) 

  

The stiffness matrix 

 

The unknowns which are the displacement in the x direction, u and the 

displacement in the y direction, v are expressed by using the shape functions given 

by Eq. 3.3.2 as: 

 

 ∑∑
==

==
4

1i
ii

4

1i
ii vNvanduNu  (3.3.3) 

 

The strains are related to the displacements by the strain displacement matrix [B] 

by the equation: 

 

{ε}=[B]{d}  (3.3.4) 

 

where {d}= [u1,v1,u2,v2,u3,v3,u4,v4] 
T. [B] is the product of the rectangular matrices 

in the following three equations (Cook et al, 1989): 
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u,x denotes the partial derivative of u with respect to x ( x/u ∂∂ ). Γij can be 

obtained by the following equation: 
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where [J] is the jacobian matrix expressed as: 
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The element stiffness matrix [k] is obtained by the following integration over the 

area of the element : 
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where the constitutive matrix [E] that relates the strains to stresses by the equation               

{σ}= [E]{ε} is given below for isotropic linear elastic material and plane-strain 

condition. 
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CHAPTER 4 

 
 

FINITE ELEMENT ANALYSES FOR 8 METER HIGH WALL 

RESTING ON ELASTIC FOUNDATION SOIL 

 

 
In this section, the dynamic behaviour of gravity and cantilever walls, and the 

effect of the frequency characteristics of base motions on the lateral pressures 

acting on the walls are investigated. For this purpose, a gravity and a cantilever 

retaining wall of  8m high with identical soil and loading conditions are 

considered. The soil-wall systems are subjected to base motions with constant 

peak acceleration but different frequencies. 

 

4.1 Gravity wall 

 

The dynamic response of a typical gravity retaining wall is presented in this 

section. Both sliding and rocking deformations of the wall are taken into account 

as the wall is modelled to rest on a soil layer. 

  

4.1.1 The model and the parameters 

 

The typical model used in the analyses is shown in Figure 4.1.1.1. The wall is 

resting on a foundation soil layer that is underlain by a rigid base which is fixed in 

the vertical direction and subjected to the base motion in the horizontal direction. 

Appropriate dashpots are utilized at the side boundaries to satisfy the free-field 

conditions (See Section 3.2.3 for details). The wall and the backfill soil are 

seperated from each other and the  contact is defined  between the adjacent 

surfaces. 
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The typical finite element mesh is shown in Figure 4.1.1.2. The mesh is formed of 

4 node quadrilateral plane-strain elements to represent the soil and the wall. In 

addition, contact elements between the wall and backfill, and dashpots between 

shear beams and the soil boundaries are provided. The dimensions and the material 

parameters are summarized in Table 4.1.1.1. 

 

The base motion applied to the base is a sinusodial acceleration time-history given  

by : 

 

a(t) = α.g.sin(ωg.t) (4.1) 

 

where g is the gravitational acceleration, α is the acceleration coefficient, ωg is the 

circular frequency of the ground motion that can be expressed as: 

 

ωg = 2.π.fg (4.2) 

 

where fg denotes the frequency of the base motion. 

 

The frequency ratio, Rf is defined as: 

 

Rf = fg/fn (4.3) 

 

where fn is the natural vibration frequency of the soil layer which can be 

determined by the folowing formula: 

 

fn = Vs / (4Ht) (4.4) 

 

where Ht  is the height of the soil layer above the base at which the base motion is 

applied. 

 

6 different base motions with varying frequency ratios of: Rf = 0.2, 0.5, 0.75, 

1(resonance case), 2, 3 and 5 are considered for the examination of the effect of Rf 
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on the lateral pressure distributions. The acceleration amplitude (or the peak 

acceleration) of the base motion is assumed as 0.3g. 

 

The system is solved statically and the initial stress conditions are calculated prior 

to the dynamic loading. In the calculations, the weight of the wall and soil is taken 

into account. For all cases, the time interval for the static loading is taken as 0-1 

seconds, so as to reach the static stresses and deformations at t=1 seconds. Thus, 

the base motion, hence the dynamic loading starts at t=1 seconds.  

 

The acceleration time-history of the ground motion for the resonance case is given 

in Figure 4.1.1.3 as a sample of the ground motions. In the preliminary analyses, it 

is observed that the response of the system may be too large when the maximum 

accelerations are applied suddenly to the system (e.g. in the first cycle of the 

loading). Therefore, the acceleration is increased gradually to the peak value in the 

first 3 cycles. The peak acceleration value is remained in the following 6 cycles 

and diminished to zero in the last 3 cycles in a similar manner as in the first 3 ones. 

 

The foundation layer and the retaining wall are assumed to be linear elastic while 

both linear elastic and elasto-plastic material models are used for the backfill so 

that the  influence of yielding of backfill material on the lateral pressures can also 

be examined. 

 

The damping ratio of the system is assumed to be 5% and Rayleigh damping is 

utilized with appropriate damping parameters as explained in Section 3.2.2 for 

each loading case.  
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Table 4.1.1.1 Dimensions and material parameters 
 considered in the gravity wall analyses 

 
Symbol Description Unit Value 

        
H Height of the wall m 8 
D Foundation layer thickness m 2.4 

Dw Wall foundation depth m 1.6 
B1 m 1.6 
B2 

Wall dimensions 
m 3.2 

        
ρs Density of soil t/m3 1.8 
Es Elasticity mod. of soil kPa 47 880 
νs Poisson's ratio of soil - 0.33 
Vs Shear wave velocity of soil m/s 100 
c kPa 0 
φ 

Drucker-Prager parameters 
(For E-P analysis) degree 33 

        
ρw Density of the wall t/m3 2.4 
Ew Elasticity mod. of the wall kPa 25 x 106 
νw Poisson's ratio of the wall - 0.2 

 

4.1.2 The results and comparisons 

 

Analyses are carried out for the base motions with different frequency ratios of    

Rf = 0.2, 0.5, 1, 2, 3 and 5 as stated in Section 4.1.1 by using the finite element 

software ANSYS. For each time step, the total lateral thrust and base moment 

values are calculated by integrating the lateral soil stresses on the wall. In this way, 

the maximum total (static+dynamic) lateral thrust and its point of application are 

determined for each loading. Tensile stresses are omitted in the integration since 

the wall and backfill are seperated at this stage and no force is exerted on the wall. 

The variation of the total lateral thrust with time is given in Figure 4.1.2.1 for the 

case of linear elastic backfill and a frequency ratio of fg/fn=2 as an example of the 

results. 
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There is a linear increase of the lateral pressures in the interval between t=0 and 

t=1 seconds wherein the static loading is applied. After t=1 seconds, as it is to be 

expected, the total lateral thrust varies with a pattern of the harmonic base motion. 

  

The dynamic behaviour of the gravity retaining wall is illustrated on the Figures 

4.1.2.2 to 4.1.2.6 where the deformed mesh at various instants are shown.The 

deformations are magnified by 50 times in the figures. It can be seen that even the 

wall is quite stiff, it undergoes a considerable rotation which may lead to a 

decrease of the lateral soil pressures.  

 

The Drucker-Prager parameters are assumed to be  c=0 and φ=33 as given in Table 

4.1.1.1. However, in the elasto-plastic analyses that frequency ratios are chosen to 

be 1 and 0.75, due to the large amplification of the accelerations and complex 

contact behaviour, convergence difficulties are encountered and the cohesion value 

is increased up to 20 kPa for some of the backfill elements at the near-bottom of 

the wall as indicated in Figure 4.1.2.2 by “x” marks on the elements to achieve 

convergence. Yielding of the backfill has taken place in all of the cases considered 

herein. The uniform plastic strain vectors for two cases are shown in Figures 

4.1.2.7 and 4.1.2.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

77

05010
0

15
0

20
0

25
0

30
0

35
0

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4

Ti
m

e 
(s

ec
.)

Total lateral thrust (kN)

α
 =

 0
.3

, R
f =

 2
Li

ne
ar

 e
la

st
ic

 b
ac

kf
ill

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fi
gu

re
 4

.1
.2

.1
 S

am
pl

e 
va

ria
tio

n 
of

  t
he

 to
ta

l l
at

er
al

 fo
rc

e 
 w

ith
 ti

m
e 

fo
r g

ra
vi

ty
 w

al
l 



 

78

 
 

Figure 4.1.2.2 Deformed mesh for the gravity wall 
(H=8m, L.E backfill, α=0.3, Rf =0.5, t=7.036 s.) 
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Figure 4.1.2.3 Deformed mesh for the gravity wall 
(H=8m, L.E backfill, α=0.3, Rf =0.5, t=7.452 s.) 
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Figure 4.1.2.4 Deformed mesh for the gravity wall 
(H=8m, L.E backfill, α=0.3, Rf =3, t=1.98 s.) 
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Figure 4.1.2.5 Deformed mesh for the gravity wall 
(H=8m, L.E backfill, α=0.3, Rf =3, t=2.056 s.) 
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Figure 4.1.2.6 Deformed mesh for the gravity wall 
(H=8m, L.E backfill, α=0.3, Rf =3, t=2.084 s.) 
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Figure 4.1.2.7 Plastic strain vectors for the gravity wall(H=8m, α=0.3, Rf =0.5) 
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Figure 4.1.2.8 Plastic strain vectors for the gravity wall(H=8m, α=0.3, Rf =2) 

 

The total lateral force vs. frequency ratio is shown in Figure 4.1.2.9 in which the 

results of Mononobe-Okabe, Steedman and Zeng and Wood solutions are also 

included. In the graph, the total lateral force is expressed in non-dimensional form 

as: 

 

2
t

td H
F

F
γ

=      (4.5) 

 

where Ft is the maximum total lateral force, γ is the unit weight of the backfill and 

H is the height of the wall. 

 

The amplification ratios of the surface acceleration to the base acceleration for the 

considered soil layer are shown in Figure 4.1.2.10 for different Rf values and 5% 

damping. 

  

The significant effect of the frequency ratio can be seen from Figure 4.1.2.9. For 

low frequency motions (fg<fn), the lateral force increases as fg increases and takes 
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the peak value at fg=fn. For high frequency motions (fg>fn), the lateral force 

decreases with increasing fg. 

 

Extremely high values of the total lateral thrust are obtained from the finite 

element (FE) analyses for the resonance case compared to the other frequency 

ratios. Such high values are mainly due to the great amplification in the backfill, 

resulting in a good agreement with Steedman and Zeng solution especially for the 

case of linear elastic backfill. On the other hand, for high frequency motions, the 

amplification ratio has no considerable influence on the lateral thrust as can be 

seen particularly from the results for Rf = 3.  

 

Since there is a considerable rotation of the gravity wall as mentioned before, the 

results are reasonably agreeable with M-O solution except in the vicinity of         

Rf = 1. 

 

Results of elasto-plastic analyses are similar to those of linear elastic analyses 

especially for high frequency motions. 

 

The distance of points of application of the total lateral force from the wall base, 

normalized to the wall height; hn vs. frequency ratio are given in Figure 4.1.2.11. 

Here, hn is defined as: 

 

hn = h / H   (4.6) 

 

where h is the distance of the application point to the base of the wall.The height 

of the application point is generally in good agreement with M-O method . Both 

total lateral thrust and location of application points found by elasto-plastic and 

linear elastic analyses are in good agreement. 

  

Maximum total bending moments at the base of the wall vs. frequency ratios are 

presented on Figure 4.1.2.12. The moment is expressed in non-dimensional form 

as: 
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3
t

td H
M

M
γ

=      (4.7) 

 

where Mt is the total bending moment at the base of the wall due to the lateral 

pressures acting on the wall. It can be observed that the moments are lower than 

those obtained by Wood solution, but in good agreement with M-O or Seed and 

Whitman methods depending on Rf, except for the resonance case.  

 

The total lateral pressure distributions corresponding to the maximum lateral thrust 

are shown in Figures 4.1.2.13, 4.1.2.14 and 4.1.2.15. Here the non-dimensional 

lateral pressure qhd is defined as: 

 

H
qq h

hd γ
=     (4.8) 

 

where qh is the total lateral stress. It can be seen from the figures that the total 

lateral stress falls below the static lateral stress at some points. Additionally 

negative total lateral stresses are obtained at some points where static lateral 

stresses are positive. This makes it impractible to consider the application point of 

the dynamic force seperately. 

 

Obtained results for the gravity wall of  H = 8 m high are summarized in Table 

4.1.2.1. The maximum dynamic lateral forces, obtained by subtracting the static 

lateral forces from the maximum total lateral forces are given in Table 4.1.2.2. The 

maximum dynamic lateral force is normalized to the peak base acceleration and 

expressed in non-dimensional form as: 

 

2
ps

d
dd Ha

F
F

ρ
=   (4.9) 

 

where Fd is the maximum dynamic lateral force and ap is the peak acceleration of 

the base motion (ap = αg for harmonic base motions).  
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Figure 4.1.2.9  Maximum total lateral force vs. frequency ratio 
 for gravity wall (α=0.3) 
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Figure 4.1.2.10  Amplification ratio vs. frequency ratio of the  
considered soil layer for 5% damping ratio. 
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Point of application vs. freq. ratio (Gravity Wall, H=8m, α=0.3)
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Figure 4.1.2.11  Distance of the point of application vs. frequency ratio 
 for gravity wall (α=0.3) 
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Figure 4.1.2.12  Maximum total moment force vs. frequency ratio 
 for gravity wall (α=0.3) 
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Table 4.1.2.1 Summary of the results for gravity wall 
 

Freq. 
ratio (Rf)

Backfill 
material 
model

Total lat. 
force, Ft 

(kN)

Total 
base 

moment, 
Mt (kNm)

Height of 
application 

point, h

Non-
dimensional 

total lat. 
force, Ftd

Non-
dimensional 

total base 
moment, Mtd

Normalized 
height of 

app. point, 
hn

0.2 L.E 295 729 2.47 0.261 0.081 0.31
0.2 E-P 297 805 2.71 0.263 0.089 0.34
0.5 L.E 329 806 2.45 0.291 0.089 0.31
0.5 E-P 357 967 2.71 0.316 0.107 0.34

0.75 L.E 453 1092 2.41 0.401 0.121 0.30
0.75 E-P 396 939 2.37 0.350 0.104 0.30

1 L.E 1950 6923 3.55 1.725 0.766 0.44
1 E-P 1489 5271 3.54 1.318 0.583 0.44

1.5 L.E 339 942 2.78 0.300 0.104 0.35
1.5 E-P 337 991 2.94 0.298 0.110 0.37
2 L.E 301 903 3 0.266 0.100 0.38
2 E-P 261 783 3 0.231 0.087 0.38
3 L.E 253 911 3.6 0.224 0.101 0.45
3 E-P 237 910 3.84 0.210 0.101 0.48
5 L.E 196 625 3.19 0.173 0.069 0.40
5 E-P 193 612 3.17 0.171 0.068 0.40  

 

Table 4.1.2.2 Maximum dynamic lateral force results for gravity wall 
 

Freq. ratio 
(Rf)

Backfill 
material 
model

Static lat. 
force, Fsta 

(kN)

Total lat. 
force, Ft (kN)

Dynamic 
lat. force, 
Fd (kN)

Non-
dimensional 
dynamic lat. 

force, Fdd

0.2 L.E 171 295 124 0.37
0.2 E-P 174 297 123 0.36
0.5 L.E 171 329 158 0.47
0.5 E-P 174 357 183 0.54

0.75 L.E 171 453 282 0.83
0.75 E-P 174 396 222 0.65

1 L.E 171 1950 1779 5.25
1 E-P 174 1489 1315 3.88

1.5 L.E 171 339 168 0.50
1.5 E-P 174 337 163 0.48
2 L.E 171 301 130 0.38
2 E-P 174 261 87 0.26
3 L.E 171 253 82 0.24
3 E-P 174 237 63 0.19
5 L.E 171 196 25 0.07
5 E-P 174 193 19 0.06  
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Figure 4.1.2.13  Total lateral stress distributions for 
 max. thrust  for various freq. ratios (α=0.3, Gravity wall, H=8m) 
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Figure 4.1.2.14  Total lateral stress distributions for 
 max. thrust  for various freq. ratios (α=0.3, Gravity wall, H=8m) 
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Figure 4.1.2.15  Total lateral stress distribution for  
max. thrust for the resonance case (α=0.3, Gravity wall, H=8m) 

 

4.2 Cantilever wall 

 

The dynamic behaviour of a gravity wall has been presented in the previous 

section. In this section, a typical cantilever wall of same height with identical 

backfill and loading conditions are examined. 

 

4.2.1 The model and the parameters 

 

The typical model is shown in Figure 4.2.1.1. A foundation soil layer underlain by 

a rigid base is modelled beneath the base of the wall. The contact elements are 

defined between the vertical adjacent surfaces of the wall and backfill. Dashpots 

connecting the soil layers to the shear beams are utilized to simulate free-field 

conditions at the side boundaries. 
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The finite element mesh used in the analyses is shown in figure 4.2.1.2. 4 node 

quadrilateral plane strain elements are used to represent the wall and soil. Contact 

elements and dashpots are also used in the mesh. The dimensions and the material 

parameters are summarized in Table 4.2.1.1. 

 

The same base motions used for the gravity wall analyses are used in this part of 

the study having frequency ratios of Rf = 0.2, 0.5, 0.75, 1, 1.5, 2, 3 and 5.The 

dynamic loading starts following the static solution that takes place between t=0-1 

seconds as described in Section 4.1.1. 

 

Similar to the case of gravity wall, the foundation soil layer and the retaining wall 

are assumed to be linear elastic, while linear elastic and elasto-plastic material 

models are used for backfill soil. The damping ratio is assumed as 5% and 

Rayleigh damping (explained in Section 3.2.2) is utilized in the analyses.  

 
Table 4.2.1.1 Dimensions and material parameters 
 considered in the typical cantilever wall analyses 

 
Symbol Description Unit Value 

        
H Height of the wall m 8 
D Foundation layer thickness m 2.4 
T1 m 0.8 
T2 m 0.8 
B1 m 2.4 
B2 

Wall dimensions 

m 5.6 
        

ρs Density of soil t/m3 1.8 
Es Elasticity mod. of soil kPa 47 880 
νs Poisson's ratio of soil - 0.33 
Vs Shear wave velocity of soil m/s 100 
c kPa 0 
φ 

Drucker-Prager parameters 
(For E-P analysis) degree 33 

        
ρw Density of the wall t/m3 2.4 
Ew Elasticity mod. of the wall kPa 25 x 106 
νw Poisson's ratio of the wall - 0.2 
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4.2.2 The results and comparisons 

 

The maximum total lateral thrust and its point of application are determined for 

each case. The variation of the total lateral force with time is presented in Figure 

4.2.2.1 for the case of linear elastic backfill and Rf = 2 as an example of the results. 

Following the static solution completed at t = 1 seconds, the total lateral force 

variation is similar to the base motion as seen in the figure. 

 

The deformed mesh plots (magnified by 50 times) at various instants are shown 

through Figures 4.2.2.2 to 4.2.2.5. The seperation between the wall and backfill is 

clearly illustrated in Figures 4.2.2.3 and 4.2.2.4. The rotation of the wall is 

insignificant and the deflection of the wall, hence the flexibility of the wall mainly 

affects the lateral pressures. 

 

For the cases of elasto-plastic backfill and Rf values of  0.75 and 1, the Drucker-

Prager parameter, c is inreased up to 20 kPa for some elements at the near bottom 

of the wall as indicated by “x” marks in Figure 4.2.2.2  to overcome convergence 

problems. Yielding of the backfill (full or partial) has taken place in all of  the 

considered cases. The uniform plastic strain vectors for two cases are shown in 

Figures 4.2.2.6 and 4.2.2.7. 
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Figure 4.2.2.2 Deformed mesh for the cantilever wall 
(H=8m, L.E backfill, α=0.3, Rf =0.5, t=7.019 s.) 
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Figure 4.2.2.3 Deformed mesh for the cantilever wall 
(H=8m, L.E backfill, α=0.3, Rf =0.5, t=7.477 s.) 

 



 

96

1
DISPLACEMENT

STEP=2
SUB =148
TIME=1.983
DMX =.015512

 
 

Figure 4.2.2.4 Deformed mesh for the cantilever wall 
(H=8m, L.E backfill, α=0.3, Rf =3, t=1.983 s.) 
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Figure 4.2.2.5 Deformed mesh for the cantilever wall 
(H=8m, L.E backfill, α=0.3, Rf =3, t=2.06 s.) 
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Figure 4.2.2.6 Plastic strain vectors for the cantilever wall(H=8m, α=0.3, Rf =0.5) 
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Figure 4.2.2.7 Plastic strain vectors for the cantilever wall(H=8m, α=0.3, Rf =2) 
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The non-dimensional maximum total lateral force, Ftd; distance of the point of 

application from the base of the wall, hn and the maximum total bending moment 

at the base of the wall, Mtd, are given in Figures 4.2.2.8, 4.2.2.9 and 4.2.2.10 

respectively as a function of the frequency ratio, Rf. 

 

The dynamic lateral force  increases as the base motion frequency approaches the 

natural vibration frequency of the soil layer. Ftd and Mtd results for the resonance 

case are quite high as compared to other frequency ratios and to the results of M-O 

and Wood solutions. For the cantilever wall, finite element results are rather 

different from those obtained by Steedman and Zeng method that is directly 

affected by the amplification ratio (the lateral force increases with increasing 

amplification in the backfill in Steedman and Zeng method) at about resonance 

frequencies.  FEM results of Ftd are in good agreement with Wood solution at      

Rf = 0.5 and 1.5 and M-O solution at Rf = 3 and 5. 

 

The distances of application point to the base are smaller than those suggested by 

Seed and Whitman and Wood solutions resulting in relatively lower bending 

moments at the base. 

 

There is reasonable similarity between the  results obtained from analyses of linear 

elastic and elasto-plastic backfill except for the resonance case. 

 

The total lateral stress distributions at the backfill corresponding to the maximum 

total lateral thrust are presented in Figures 4.2.2.11, 4.2.2.12 and 4.2.2.13. Similar 

to the gravity wall case, the total lateral stress falls below the static lateral stress at 

some points which makes it impractible to seperately examine the application 

point of the  dynamic lateral thrust. 

 

Maximum total lateral thrusts are summarized in Table 4.2.2.1. A summary of the 

maximum dynamic lateral thrusts are given in Table 4.2.2.2. 
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Figure 4.2.2.8  Maximum total lateral force vs. frequency ratio for 
 cantilever wall (H=8m, α=0.3) 
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Figure 4.2.2.9  Distance of the point of application vs. frequency ratio 
 for cantilever wall (H=8m, α=0.3) 
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Maximum Total Moment vs. frequency ratio
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Figure 4.2.2.10  Maximum total moment vs. frequency ratio 
 for cantilever wall (H=8m, α=0.3) 

 

Table 4.2.2.1 Summary of the results for cantilever wall 
 

Freq. 
ratio (Rf)

Backfill 
material 
model

Total lat. 
force, Ft 

(kN)

Total 
base 

moment, 
Mt (kNm)

Height of 
application 

point, h

Non-
dimensional 

total lat. 
force, Ftd

Non-
dimensional 

total base 
moment, Mtd

Normalized 
height of 

app. point, 
hn

0.2 L.E 396 923 2.33 0.350 0.102 0.29
0.2 E-P 415 1021 2.46 0.367 0.113 0.31
0.5 L.E 435 1044 2.4 0.385 0.115 0.30
0.5 E-P 481 1188 2.47 0.426 0.131 0.31

0.75 L.E 615 1636 2.66 0.544 0.181 0.33
0.75 E-P 580 1531 2.64 0.513 0.169 0.33

1 L.E 1397 4387 3.14 1.236 0.485 0.39
1 E-P 871 3179 3.65 0.771 0.352 0.46

1.5 L.E 442 1375 3.11 0.391 0.152 0.39
1.5 E-P 484 1529 3.16 0.428 0.169 0.40
2 L.E 415 1340 3.23 0.367 0.148 0.40
2 E-P 333 949 2.85 0.295 0.105 0.36
3 L.E 274 521 1.9 0.242 0.058 0.24
3 E-P 281 562 2 0.249 0.062 0.25
5 L.E 233 496 2.13 0.206 0.055 0.27
5 E-P 220 462 2.1 0.195 0.051 0.26  
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Table 4.2.2.2 Dynamic lateral force results for cantilever wall 
 

Freq. ratio 
(Rf)

Backfill 
material 
model

Static lat. 
force, Fsta 

(kN)

Total lat. 
force, Ft (kN)

Dynamic 
lat. force, 
Fd (kN)

Non-
dimensional 
dynamic lat. 

force, Fdd

0.2 L.E 201 396 195 0.58
0.2 E-P 206 415 209 0.62
0.5 L.E 201 435 234 0.69
0.5 E-P 206 481 275 0.81

0.75 L.E 201 615 414 1.22
0.75 E-P 206 580 374 1.10

1 L.E 201 1397 1196 3.53
1 E-P 206 871 665 1.96

1.5 L.E 201 442 241 0.71
1.5 E-P 206 484 278 0.82
2 L.E 201 415 214 0.63
2 E-P 206 333 127 0.37
3 L.E 201 274 73 0.22
3 E-P 206 281 75 0.22
5 L.E 201 233 32 0.09
5 E-P 206 220 14 0.04  
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Figure 4.2.2.11  Total lateral stress distribution for 
 max. thrust for the resonance case (α=0.3, Cantilever wall, H=8m) 
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Total Lateral Stress Distribution
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Figure 4.2.2.12  Total lateral stress distributions for 
 max. thrust  for various freq. ratios (α=0.3, Cantilever wall, H=8m) 
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Total Lateral Stress Distribution
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Figure 4.2.2.13  Total lateral stress distributions for 
 max. thrust  for various freq. ratios (α=0.3, Cantilever wall, H=8m) 
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4.3 Analyses with real earthquake records 

 

The dynamic response of a typical gravity and a cantilever wall subjected to 

harmonic base motions have been examined in Sections 4.2 and 4.3. In this 

section, the dynamic behaviour of the walls when subjected to actual earthquake 

motions are investigated. For this purpose, the same soil-wall systems are 

considered and real earthquake records are used as base motions in the analyses. 

 

4 earthquake records with different frequency content and similar peak ground 

accelerations are considered. Information about the earhquake records and 

simplified frequency content parameters are given in Table 4.3.1. The simplified 

frequency content parameters examined are: the predominant frequency, fp; the 

smoothed spectral predominant frequency, f0; and the mean frequency, fm as 

suggested by Rathje et al (1998). 

 

The predominant frequency, fp is defined as the frequency corresponding to the 

peak spectral acceleration in the acceleration response spectrum. 

 

The smoothed spectral predominant frequency, f0 is given by: 

 

[ ] [ ]

[ ] [ ]MHA2.1)T(SH)T(SlnT
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f
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iai

ia

nPer

1i
ia

0

−

−
=

∑

∑

=

=   (4.10) 

 

where; nPer = number of periods in the response spectrum, 

            Ti = discrete periods in the response spectrum, 

            Sa(Ti) = spectral acceleration at period Ti, 

            H[x] = the Heaviside function (equals 1 when x>0 and 0 for x<0). 
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The mean frequency, fm is defined as: 
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where; Ci = Fourier amplitudes of the accelerogram, 

             fi = Discrete Fourier transform frequency. 

 

The acceleration time histories and the acceleration response spectra of the 

earthquake motions are shown in Figure 4.3.1 and 4.3.2 respectively. 

 

Using the whole earthquake record in the analysis leads to very large output data 

and time consumption. Since the goal is to examine the maximum lateral 

pressures, a part of these records are used which contain the maximum 

acceleration with a total duration of not less than 10 seconds. 

 

Table 4.3.1 Summary of the earthquake records 
  

Ground motion EQ1 EQ2 EQ3 EQ4

Earthquake name
San Fernando 

1971 Düzce 1999 Loma Prieta 
1989

Loma Prieta 
1989

Station
128 Lake 

Hughes #12 Düzce Saratoga W 
Valley Coll.

1002 Apeel 2 
Redwood City

Peak acc. (g) 0.27 0.3 0.33 0.27
Peak spectral acc. (g) 1.32 1.82 0.75 1.18

fp (1/s) 4.17 2.5 3.84 0.91
f0 (1/s) 6.23 3.15 4.33 1.57
fm (1/s) 4.64 1.46 1.03 0.99
fp / fn 1.74 1.04 1.60 0.38
f0 / fn 2.60 1.31 1.80 0.65
fm / fn 1.93 0.61 0.43 0.41  
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The results obtained from the analyses of gravity and cantilever walls are 

summarized in Tables 4.3.2 to 4.3.5. 

 

The variation of the total lateral thrust with time for diferent base motions are 

shown in Figures 4.3.3 and 4.3.4 for gravity and cantilever walls respectively. 

 
Table 4.3.2 Summary of the results for real earthquake motions 

(Gravity wall, H=8m) 
 

Ground 
Motion

Backfill 
material 
model

Max. total 
lat. force, 
Ft (kN)

Max. total 
base 

moment, 
Mt (kNm)

Height of 
application 

point, h

Non-
dimensional 

total lat. 
force, Ftd

Non-
dimensional 

total base 
moment, Mtd

Normalized 
height of 

app. point, 
hn

EQ1 L.E 330 858 2.6 0.292 0.095 0.33
EQ1 E-P 323 930 2.88 0.286 0.103 0.36
EQ2 L.E 1406 5413 3.85 1.244 0.599 0.48
EQ2 E-P 1333 5185 3.89 1.180 0.574 0.49
EQ3 L.E 404 1010 2.5 0.357 0.112 0.31
EQ3 E-P 374 1047 2.8 0.331 0.116 0.35
EQ4 L.E 327 818 2.5 0.289 0.090 0.31
EQ4 E-P 311 846 2.72 0.275 0.094 0.34  

 
Table 4.3.3 Dynamic lateral force results for real earthquake motions 

(Gravity wall, H=8m) 
 

Ground 
Motion

Peak 
acc. (g)

Backfill 
material 
model

Static lat. 
force, Fsta 

(kN)

Total lat. 
force, Ft 

(kN)

Dynamic 
lat. force, 
Fd (kN)

Non-
dimensional 
dynamic lat. 

force, Fdd

EQ1 0.27 L.E 171 330 159 0.52
EQ1 0.27 E-P 174 323 149 0.49
EQ2 0.3 L.E 171 1406 1235 3.64
EQ2 0.3 E-P 174 1333 1159 3.42
EQ3 0.33 L.E 171 404 233 0.62
EQ3 0.33 E-P 174 374 200 0.54
EQ4 0.27 L.E 171 327 156 0.51
EQ4 0.27 E-P 174 311 137 0.45  
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Table 4.3.4 Summary of the results for real earthquake motions 
(Cantilever wall, H=8m) 

 

Ground 
Motion

Backfill 
material 
model

Max. total 
lat. force, 
Ft (kN)

Max. total 
base 

moment, 
Mt (kNm)

Height of 
application 

point, h

Non-
dimensional 

total lat. 
force, Ftd

Non-
dimensional 

total base 
moment, Mtd

Normalized 
height of 

app. point, 
hn

EQ1 L.E 439 1146 2.61 0.388 0.127 0.33
EQ1 E-P 455 1356 2.98 0.403 0.150 0.37
EQ2 L.E 975 2711 2.78 0.863 0.300 0.35
EQ2 E-P 897 3516 3.92 0.794 0.389 0.49
EQ3 L.E 530 1367 2.58 0.469 0.151 0.32
EQ3 E-P 543 1450 2.67 0.480 0.160 0.33
EQ4 L.E 438 1060 2.42 0.388 0.117 0.30
EQ4 E-P 448 1245 2.78 0.396 0.138 0.35  

 
Table 4.3.5 Dynamic lateral force results for real earthquake motions 

(Cantilever wall, H=8m) 
 

Ground 
Motion

Peak 
acc. (g)

Backfill 
material 
model

Static lat. 
force, Fsta 

(kN)

Total lat. 
force, Ft 

(kN)

Dynamic 
lat. force, 
Fd (kN)

Non-
dimensional 
dynamic lat. 

force, Fdd

EQ1 0.27 L.E 201 439 238 0.78
EQ1 0.27 E-P 206 455 249 0.82
EQ2 0.3 L.E 201 975 774 2.28
EQ2 0.3 E-P 206 897 691 2.04
EQ3 0.33 L.E 201 530 329 0.88
EQ3 0.33 E-P 206 543 337 0.90
EQ4 0.27 L.E 201 438 237 0.78
EQ4 0.27 E-P 206 448 242 0.79  

 

Comparing the results of the analyses using real earthquake records (summarized 

in Tables 4.3.1 to 4.3.5) and harmonic motions (summarized in Tables 4.1.2.1, 

4.1.2.2, 4.2.2.1 and 4.2.2.2) the following conclusions can be made: 

 

-  The total lateral thrusts and their application points obtained by using real 

earthquake records are close to those obtaine by harmonic base motions. 

  

-  As far as  the maximum total lateral forces acting on the wall are considered, it 

can be said that none of the proposed parameters to represent the frequency 
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content of the earthquake motions, fp, f0 or fm can be used as the frequency of an 

equivalent harmonic motion with same peak acceleration to represent the 

earthquake alone. 

 

- Examining the results for the maximum total lateral thrust and its point of 

application, it can be stated that the results of EQ1, EQ2 and EQ4 motions are 

in reasonably good agreement with those obtained by utilizing harmonic base 

motions with a frequency of fp. For EQ3 motion, the results are in reasonably 

good agreement with those calculated by using harmonic base motion with a 

frequency of fm. 
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Figure 4.3.1 Time histories of the earthquake records used 
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Acceleration Response Spectrum of EQ1 Ground Motion
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Figure 4.3.2 Acceleration response spectra of earthquake motions 
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Total lateral thrust vs. time for gravity wall
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Figure 4.3.3 Total lateral force vs. time for real earthquake motions 
(Gravity wall, H=8m) 
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Total lateral thrust vs. time for cantilever wall
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Figure 4.3.4 Total lateral force vs. time for real earthquake motions 
 (Cantilever wall, H=8m) 
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CHAPTER 5 

 
 

FINITE ELEMENT ANALYSES FOR 5 METER HIGH WALL 

RESTING ON ELASTO-PLASTIC FOUNDATION SOIL 

 

 
Analyses and results of 8m high gravity and cantilever walls subjected to harmonic 

and real earthquake base motions have been presented in Chapter 4. Harmonic 

base motions of constant peak acceleration (0.3g) with different frequencies and 

strong motion acceleration time histories having similar peak acceleration values 

(0.27g-0.33g) with different frequency content are used in the analyses. The 

foundation soil is assumed as linear elastic and elasto-plastic material model is 

used for backfill. 

  

In this chapter, typical gravity and cantilever walls of 5m high are considered. 

Dynamic response of the walls when subjected to harmonic and recorded real 

earthquake base motions with various peak accelerations and frequency content 

are examined. Both the foundation and backfill soil are assumed to be           

elasto-plastic material in the analyses.  

 

The dimensions of the walls are assessed by Mononobe-Okabe method using the 

peak base accelerations. The factor of safety (F.S) values are assumed to be 1.5 

and 2.0 for sliding and overturning respectively for static case. For dynamic cases, 

the factor of safety values are decreased to 75% of assumed for static case. 

Therefore the F.S values for dynamic loading are assumed to be 1.12 and 1.5  for  

sliding and overturning respectively. 
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5.1 Gravity wall 

 

This section presents the analyses and results of a typical gravity retaining wall of 

5m high subjected to harmonic base motions with varying magnitude and 

frequency.  

 

5.1.1 The model and the parameters 

 

The typical soil-wall system used in the analyses has been shown in Figure 4.1.1.1. 

The wall is resting on a foundation soil layer that is underlain by a rigid base 

which is fixed in the vertical direction and subjected to the base motion in the 

horizontal direction. Information about the model, boundary conditions and 

loading  is given in Section 4.1.1.  

 

An elastic-perfect plastic material model with Drucker-Prager yield criterion is 

used for both the foundation and backfill soil. The damping ratio of the system is 

assumed to be 5% and Rayleigh damping is utilized with appropriate damping 

parameters as explained in Section 3.2.2 for each loading case. 

 

Harmonic base motions (defined by Equation 4.1) with varying peak accelerations 

of 0.1g, 0.2g, 0.3g and varying frequency ratios of: Rf = 0.2, 0.5, 2, 5 are used in 

the analyses. Rf is the ratio of the base motion frequency to the fundamental 

frequency of the soil layer defined by Equation 4.3 as: 

 

Rf = fg/fn (4.3) 

 

The model dimensions and parameters are given in Table 5.1.1.1. As stated before, 

the wall dimensions are determined considering the sliding and overturning of the 

wall using Mononobe-Okabe method. The peak base acceleration of the soil-wall 

system (peak acceleration of the motion applied along the base of underlying soil 

beneath the foundation) is used to assess the seismic coefficient, kh. The passive 
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resistance of the soil in front of the wall is neglected in the assessment of wall 

dimensions. 

 

As explained in Section 4.1.1, the base motion, hence the dynamic loading starts at 

t=1 seconds, after the static stresses and deformations are reached. 

 

Table 5.1.1.1 Dimensions and material parameters 
 considered in the gravity wall analyses 

 
Symbol Description Unit Value 

        
H Height of the wall m 5 
D Foundation layer thickness m 5.5 

Dw Wall foundation depth m 1 
B1 m 1 
B2 

Wall dimensions for peak 
base acc. of  0.1g m 2 

B1 m 1.5 
B2 

Wall dimensions for peak 
base acc. of  0.2g m 2.5 

B1 m 2 
B2 

Wall dimensions for peak 
base acc.of  0.3g m 3 

        
ρs Density of soil t/m3 1.8 
Es Elasticity mod. of soil kPa 80 000 
νs Poisson's ratio of soil - 0.33 
Vs Shear wave velocity of soil m/s 129 
c kPa 0 
φ 

Drucker-Prager parameters 
(For E-P analysis) degree 33 

        
ρw Density of the wall t/m3 2.4 
Ew Elasticity mod. of the wall kPa 25 x 106 
νw Poisson's ratio of the wall - 0.2 

 

5.1.2 The results and comparisons 

 

Acceleration amplitudes and frequency ratios utilized during the calculations has 

been presented in Section 5.1.1. For each time step, the total lateral thrust and base 

moment values are found by integrating the lateral stresses on the wall, and the 
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maximum total (static+dynamic) lateral thrust and its point of application are 

determined for each loading. Tensile stresses are not considered since the wall and 

backfill are seperated at this stage and no force is exerted on the wall.  

 

The dynamic behaviour of the gravity retaining wall is illustrated on the Figures 

5.1.2.1 and 5.1.2.2 where the deformed mesh at different instants are shown.The 

deformations are magnified by 100 times in the figures. It is observed that the stiff 

wall rotates considerably lateral pressures decrease for the walls and soil 

configurations and range of frequency of the base excitations used in the 

calculations.  

 

The Drucker-Prager parameters are selected to be  c=0 and φ=33 as given in Table 

5.1.1.1. However, in the elasto-plastic analyses with peak base acceleration of 0.3g 

and frequency ratios of 0.5 and 2, due to the large accelerations and complex 

contact behaviour, convergence difficulties are encountered and the cohesion value 

is increased up to 20 kPa for some of the soil elements at the near-bottom of the 

wall as indicated by “x” marks in Figure 5.1.2.1 to achieve convergence.  

 

The variation of maximum total lateral thrust with peak acceleration of the base 

motion is depicted in Figure 5.1.2.3. The static lateral force (corresponding to 

α=0) is also shown in the figure. The increase in the maximum lateral thrust with 

the base acceleration amplitude  is approximately linear as can be seen in this 

figure. There is a considerable difference between the static lateral force found by 

finite elemen method and Coulomb’s Earth Pressure Theory for static loading, 

which conributes to the difference between the total lateral force results. 

 

The height of the application point of the total lateral thrust are given in Figure 

5.1.2.4. The results are generally between those suggested by M-O and Seed and 

Whitman (1970). 
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Figure 5.1.2.1 Deformed mesh for the gravity wall 
(H=5m, α=0.3, Rf =0.5, t=3.459 s.) 
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Figure 5.1.2.2 Deformed mesh for the gravity wall 
(H=5m, α=0.3, Rf =0.5, t=3.767 s.) 
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Maximum total lateral force vs. amplitude of base motion
(Gravity Wall, H=5m)
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Figure 5.1.2.3 Maximum total lateral force vs. amplitude of base motion 
(Gravity wall, H=5m) 
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Figure 5.1.2.4 Height of the application point of the total lateral force vs. 

amplitude of base motion (Gravity wall, H=5m) 
 

Figure 5.1.2.5 depicts the maximum total moments at the base versus base motion 

acceleration amplitudes. The finite element results are generally higher than M-O 

and Seed and Whitman (1970) methods. Nevertheless, it can be seen that the 
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difference is mainly due to the difference between static solution by finite element 

method and Coulomb’s solution (on which  M-O and Seed and Whitman methods 

are based). 
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Figure 5.1.2.5 Maximum total base moment vs. amplitude of base motion 

(Gravity wall, H=5m) 

 

The variation of the maximum thrust with frequency ratio are given through Figure 

5.1.2.6 to 5.1.2.8 for different base motion amplitudes. Mononobe-Okabe, 

Steedman and Zeng and Wood solutions are also included in the figures. The finite 

element results seem to be between those suggested by M-O and Wood 

approaches. The maximum lateral thrust increases as the frequency of the base 

motion approaches the fundamental frequency of the soil layer. 

 

In the calculations using Steedman and Zeng approach, the amplification of the 

accelerations between the base of the wall and the soil surface is assumed to be 

equal to the  amplification between the base of the model and the soil surface. This 

is the main reason of the significant difference between finite element and 

Steedman and Zeng results. 
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Figure 5.1.2.6 Maximum total lateral force vs. frequency ratio 
(Gravity wall, H=5m, α = 0.1)  
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Figure 5.1.2.7 Maximum total lateral force vs. frequency ratio 
(Gravity wall, H=5m, α = 0.2)  
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Maximum total lateral force vs. frequency ratio
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Figure 5.1.2.8 Maximum total lateral force vs. frequency ratio 
(Gravity wall, H=5m, α = 0.3)  

 

The result of the analyses for harmonic base motions are summarized in Tables 

5.1.2.1 and 5.1.2.2. The non-dimensional parameters in the tables, Ftd, hn, Mtd and 

Fdd defined by Equations 4.5, 4.6, 4.7 and 4.9 respectively in Section 4.1.2 are 

provided in the tables. 

 

Table 5.1.2.1 Summary of the results for gravity wall 
 

Acc. 
amplitude 

of base 
motion (g)

Freq. 
ratio 
(Rf)

Total lat. 
force, Ft 

(kN)

Total base 
moment, 
Mt (kNm)

Height of 
application 

point, h

Non-
dimensional 

total lat. 
force, Ftd

Non-
dimensional 

total base 
moment, Mtd

Normalized 
height of 

app. point, 
hn

0.1 0.2 95 174 1.82 0.216 0.079 0.36
0.1 0.5 98 165 1.69 0.222 0.075 0.34
0.1 2 101 189 1.88 0.228 0.086 0.38
0.1 5 77 153 1.99 0.174 0.069 0.40
0.2 0.2 120 214 1.78 0.273 0.097 0.36
0.2 0.5 148 245 1.66 0.335 0.111 0.33
0.2 2 140 251 1.80 0.316 0.114 0.36
0.2 5 83 182 2.19 0.188 0.083 0.44
0.3 0.2 141 275 1.95 0.319 0.124 0.39
0.3 0.5 182 336 1.85 0.411 0.152 0.37
0.3 2 184 350 1.90 0.417 0.158 0.38
0.3 5 93 222 2.40 0.210 0.101 0.48

     Ftd = Ft / (γH
2)      Mtd = Mt / (γH

3)      hn= h / H  
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Table 5.1.2.2 Maximum dynamic lateral force results for gravity wall 
 

Acc. 
amplitude 

of base 
motion (g)

Freq. 
ratio 
(Rf)

Static lat. 
force, Fsta 

(kN)

Total lat. 
force, Ft 

(kN)

Dynamic 
lat. force, 
Fd (kN)

Non-
dimensional 
dynamic lat. 

force, Fdd

0.1 0.2 74 95 21 0.48
0.1 0.5 74 98 24 0.54
0.1 2 74 101 27 0.60
0.1 5 74 77 3 0.06
0.2 0.2 76 120 44 0.50
0.2 0.5 76 148 72 0.81
0.2 2 76 140 64 0.72
0.2 5 76 83 7 0.08
0.3 0.2 76 141 65 0.49
0.3 0.5 76 182 106 0.80
0.3 2 76 184 108 0.82
0.3 5 76 93 17 0.13

     Fdd = Fd / (ρs ap H
2)  

 

Table 5.1.2.3 presents the dynamic lateral forces obtained by Mononobe-Okabe 

and Wood methods. 

 

Table 5.1.2.3 Maximum dynamic lateral forces by M-O and Wood’s solutions 
 

Peak acc. 
(g)

Solution 
method

Dynamic 
lat. force, 
Fd (kN)

Non-
dimensional 
dynamic lat. 

force, Fdd

0.1 M-O 13 0.29
0.2 M-O 31 0.35
0.3 M-O 53 0.40
0.4 M-O 85 0.48
0.5 M-O 133 0.60
all Wood all 1.00  

 

The variation of the maximum dynamic lateral force with the amplitude of the base 

motion is shown in Figure 5.1.2.9. It can be seen that the finite element results are 

generally between those of M-O and Wood approaches as was the case for the 

total lateral force results. 
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Figure 5.1.2.9 Maximum dynamic lateral force vs. amplitude of base motion 
(Gravity wall, H=5m) 

 

5.2 Cantilever wall 

 

In this section, dynamic response of gravity wall-soil systems subjected to 

dynamic loading at the base has been investigated in Section 5.1. In this section, 

the dynamic behaviour of a typical cantilever retaining wall having the same 

height and soil conditions is studied. 

 

5.2.1 The model and the parameters 

 

The typical geometry of the model and the finite element mesh used for cantilever 

wall-soil systems have been given in Figures 4.2.1.1 and 4.2.1.2 of the previous 

chapter. The wall rests on a foundation soil layer underlain by a rigid base at 

which the horizontal excitations are applied. The reader is referred to Section 4.2.1 

for the detailed information about the model, boundary conditions and loading. 

 

The foundation and backfill soil are assumed to consist of elastic-perfect plastic 

materials obeying Drucker-Prager yield criterion. The damping ratio of the system 

is taken as 5%. 
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Harmonic base motions having peak accelerations, αg = 0.1g, 0.3g, 0.5g and 

frequency ratios, Rf = 0.2, 0.5, 2, 5 are used (Rf has been defined by Equation 4.3). 

 

The model dimensions and the parameters are presented in Table 5.2.1.1. As 

explained in Section 5.1.1, the wall dimensions are determined to satisfy the 

sliding and overturning resistance required by Mononobe-Okabe method. The 

peak base acceleration of base motion applied to the soil-wall system is used 

during the calculations with M-O method. The passive resistance of the soil in 

front of the wall is neglected in the assessment of the wall dimensions. 

 

Table 5.2.1.1 Dimensions and material parameters 
 considered in the typical cantilever wall analyses 

 
Symbol Description Unit Value 

        
H Height of the wall m 5 
D Foundation layer thickness m 5 
T1 m 0.5 
T2 

Wall dimensions 
m 0.5 

B1 m 1 
B2 

Wall dimensions 
 for peak base acc. of 0.1 g m 1.5 

B1 m 1 
B2 

Wall dimensions 
 for peak base acc. of 0.3 g m 3 

B1 m 1.5 
B2 

Wall dimensions 
 for peak base acc. of 0.5 g m 5 

    
ρs Density of soil t/m3 1.8 
Es Elasticity mod. of soil kPa 80 000 
νs Poisson's ratio of soil - 0.33 
Vs Shear wave velocity of soil m/s 129 
c kPa 0 
φ 

Drucker-Prager parameters 
(For E-P analysis) degree 33 

        
ρw Density of the wall t/m3 2.4 
Ew Elasticity mod. of the wall kPa 25 x 106 
νw Poisson's ratio of the wall - 0.2 
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5.2.2 The results and comparisons 

 

Figures 5.2.2.1 and 5.2.2.2 show the deformed mesh at different times. The 

displacements are magnified by 100 times in the figures. It may be said that the 

main mode of response consists of the deflection of the stem of the wall during 

dynamic loading. 

 

The Drucker-Prager parameters are assumed to be c=0 and φ=33 as given in Table 

5.2.1.1. However, for base motions with greater acceleration amplitudes, due to the 

large accelerations and complex contact behaviour, convergence difficulties are 

encountered and the cohesion value is increased up to 30 kPa for some of the soil 

elements especially in the vicinity of the wall base as indicated by “x” marks in 

Figure 5.2.2.1 to achieve convergence. 

 

 
 

Figure 5.2.2.1 Deformed mesh for the cantilever wall 
(H=5m, α=0.3, Rf =0.5, t=3.45 s.) 
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Figure 5.2.2.2 Deformed mesh for the cantilever wall 
(H=5m, α=0.3, Rf =0.5, t=3.759 s.) 

 

Maximum total lateral thrust vs. base motion amplitude is plotted in Figure 5.2.2.3. 

Similar to the results of gravity wall analyses, the increase of the total lateral force 

with base motion amplitude is approximately linear. The results of finite element 

analyses approach to M-O solution for higher peak acceleration values of the base 

motion. 

 

Figure 5.2.2.4 shows the location of the application point of the total lateral thrust. 

The finite element analyses give lower application points as compared to M-O and 

Seed and Whitman methods as can be seen from the figure. 

 

Maximum total base moment vs. base motion amplitude is presented in Figure 

5.2.2.5. Although the total thrust values are greater as obtained by finite element 

analyses, due to the smaller moment arm, base moments are generally in good 

agreement with M-O method. 
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Figure 5.2.2.3 Maximum total lateral force vs. amplitude of the base motion 
(Cantilever wall, H=5m) 

 

Point of application vs. amplitude of base motion
 (Cantilever Wall, H=5m)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0 0.1 0.2 0.3 0.4 0.5
Acc. amplitude of the base motion, α (g)

N
or

m
al

iz
ed

 h
ei

gh
t o

f t
he

 
ap

pl
ic

at
io

n 
po

in
t, 

h n

Rf=0.2 Rf=0.5
Rf=2 Rf=5
M-O Seed&Whitman(1970)  

 
Figure 5.2.2.4 Height of the point of application of the total lateral force vs. 

amplitude of the base motion (Cantilever wall, H=5m) 
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Figure 5.2.2.5 Maximum total base moment vs. amplitude of the base motion 

(Cantilever wall, H=5m) 
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Figure 5.2.2.6 Maximum total lateral force vs. frequency ratio 
(Cantilever wall, H=5m, α = 0.1)  
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Figure 5.2.2.7 Maximum total lateral force vs. frequency ratio 
(Cantilever wall, H=5m, α = 0.3)  
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Figure 5.2.2.8 Maximum total lateral force vs. frequency ratio 
(Cantilever wall, H=5m, α = 0.5)  

 

The variation of the maximum total thrust with frequency ratio is depicted in 

Figures 5.2.2.6 to 5.2.2.9 for different peak accelerations. It can be seen that the 

total lateral thrust is significantly affected by the frequency ratio and generally lies 

between the results of M-O and Wood solutions. 
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The result of the finite element analyses are summarized in Tables 5.2.2.1 and 

5.2.2.2. The non-dimensional parameters in the tables, Ftd, hn, Mtd and Fdd are 

defined by Equations 4.5, 4.6, 4.7 and 4.9 respectively in Section 4.1.2 and 

presented in the tables. 

 

Table 5.2.2.1 Summary of the results for cantilever wall 
 

Acc. 
amplitude 

of base 
motion (g)

Freq. 
ratio 
(Rf)

Total lat. 
force, Ft 

(kN)

Total base 
moment, 
Mt (kNm)

Height of 
application 

point, h

Non-
dimensional 

total lat. 
force, Ftd

Non-
dimensional 

total base 
moment, Mtd

Normalized 
height of 

app. point, 
hn

0.1 0.2 103 121 1.17 0.234 0.055 0.23
0.1 0.5 109 147 1.35 0.246 0.066 0.27
0.1 2 120 160 1.33 0.272 0.072 0.27
0.1 5 87 104 1.19 0.197 0.047 0.24
0.3 0.2 148 186 1.26 0.335 0.084 0.25
0.3 0.5 171 212 1.24 0.386 0.096 0.25
0.3 2 186 256 1.38 0.421 0.116 0.28
0.3 5 105 120 1.14 0.238 0.054 0.23
0.5 0.2 214 282 1.32 0.484 0.128 0.26
0.5 0.5 233 329 1.41 0.528 0.149 0.28
0.5 2 241 386 1.60 0.547 0.175 0.32
0.5 5 126 158 1.25 0.285 0.071 0.25

     Ftd = Ft / (γH
2)      Mtd = Mt / (γH

3)      hn = h / H  
 

Table 5.2.2.2 Maximum dynamic lateral force results for gravity wall 
 

Acc. 
amplitude 

of base 
motion (g)

Freq. 
ratio 
(Rf)

Static lat. 
force, Fsta 

(kN)

Total lat. 
force, Ft 

(kN)

Dynamic 
lat. force, 
Fd (kN)

Non-
dimensional 
dynamic lat. 

force, Fdd

0.1 0.2 83 103 20 0.46
0.1 0.5 83 109 26 0.58
0.1 2 83 120 37 0.84
0.1 5 83 87 4 0.09
0.3 0.2 84 148 64 0.48
0.3 0.5 84 171 87 0.65
0.3 2 84 186 102 0.77
0.3 5 84 105 21 0.16
0.5 0.2 95 214 119 0.54
0.5 0.5 95 233 138 0.63
0.5 2 95 241 146 0.66
0.5 5 95 126 31 0.14

     Fdd = Fd / (ρs ap γH
2)  
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Maximum dynamic lateral thrust vs. amplitude of the base motion is shown in 

Figure 5.2.2.9. It can be seen that the difference between the finite element results 

and M-O solution decreases as the amplitude of the base motion increases in 

general. 
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Figure 5.2.2.9 Maximum dynamic lateral force vs. amplitude of the base motion 

(Cantilever wall, H=5m) 

 

5.3 Analyses with real earthquake records 

 

The dynamic behaviour of soil-wall systems subjected to harmonic base motion 

has been presented in Sections 5.1 and 5.2. In this section, the results obtained by 

using real earthquake records with varying peak acceleration and frequency 

content are presented for identical soil-wall configurations. 

  

Table 5.3.1 presents the earthquake motions used. EQ4 motion has been used in 

the analyses presented in Chapter 4. 

 

Acceleration time histories and acceleration response spectra of the earthquake 

records are shown given Figures 5.3.1 and 5.3.2 respectively. During the finite 
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element analyses, a part of these records are used which contain the maximum 

acceleration, with a total duration of not less than 10 seconds, in order to decrease 

the long calculation time and very large output data. 

 

EQ4, EQ5 and EQ6 motions with peak accelerations varying between 0.1g – 0.27g 

are used in the analysis of gravity wall-soil system. EQ4, EQ5, EQ6 and EQ7 

motions are used in cantilever wall-soil models which have peak acceleration 

between 0.1g and 0.4g.  

 
Table 5.3.1 Summary of the earthquake records 

 
Ground motion EQ4 EQ5 EQ6 EQ7

Earthquake name
Loma Prieta 

1989
Landers 

1992
Coalinga 

1983
Imperial 

Valley 1979

Station
1002 Apeel 2 
Redwood City

33083 Boron 
Fire Station

1608 Oil 
Fields Fire 

Station

942 El Centro 
Array #6

Peak acc. (g) 0.27 0.1 0.21 0.4
Peak spectral acc. (g) 1.18 0.43 0.74 1.23

fp (1/s) 0.91 1.25 10.53 10
f0 (1/s) 1.57 3.57 4.46 3.73
fm (1/s) 0.99 1.59 2.7 1.1
fp / fn 0.30 0.41 3.43 3.26
f0 / fn 0.51 1.16 1.45 1.21
fm / fn 0.32 0.52 0.88 0.36  

 
Table 5.3.2 Summary of the results for real earthquake motions 

(Gravity wall, H=5m) 
 

Peak 
acc. (g)

Ground 
motion

Total lat. 
force, Ft 

(kN)

Total base 
moment, 
Mt (kNm)

Height of 
application 

point, h

Non-
dimensional 

total lat. 
force, Ftd

Non-
dimensional 

total base 
moment, Mtd

Normalized 
height of 

app. point, 
hn

0.1 EQ5 125 216 1.72 0.284 0.098 0.34
0.21 EQ6 152 258 1.70 0.343 0.117 0.34
0.27 EQ4 144 282 1.96 0.326 0.128 0.39  
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The finite element results of the total lateral thrust versus time are given in Figure 

5.3.3 for the gravity wall, and in Figure 5.3.4 for the cantilever wall. The results 

are summarized in Tables 5.3.2 to 5.3.5. 

 
Table 5.3.3 Dynamic lateral force results for real earthquake motions 

(Gravity wall, H=5m) 
 

Peak acc. 
(g)

Ground 
motion

Static lat. 
force, Fsta 

(kN)

Total lat. 
force, Ft 

(kN)

Dynamic 
lat. force, 
Fd (kN)

Non-
dimensional 
dynamic lat. 

force, Fdd

0.1 EQ5 74 125 51.3 1.16
0.21 EQ6 74 152 77.6 0.84
0.27 EQ4 76 144 68 0.57  

 

Table 5.3.4 Summary of the results for real earthquake motions 
(Cantilever wall, H=5m) 

 

Peak 
acc. (g)

Ground 
motion

Total lat. 
force, Ft 

(kN)

Total base 
moment, 
Mt (kNm)

Height of 
application 

point, h

Non-
dimensional 

total lat. 
force, Ftd

Non-
dimensional 

total base 
moment, Mtd

Normalized 
height of 

app. point, 
hn

0.1 EQ5 126 175 1.39 0.285 0.079 0.28
0.21 EQ6 149 189 1.27 0.338 0.086 0.25
0.27 EQ4 150 192 1.28 0.339 0.087 0.26
0.4 EQ7 223 312 1.40 0.505 0.141 0.28  

 

Table 5.3.5 Dynamic lateral force results for real earthquake motions 
(Cantilever wall, H=5m) 

 

Peak acc. 
(g)

Ground 
motion

Static lat. 
force, Fsta 

(kN)

Total lat. 
force, Ft 

(kN)

Dynamic 
lat. force, 
Fd (kN)

Non-
dimensional 
dynamic lat. 

force, Fdd

0.1 EQ5 83 126 43 0.97
0.21 EQ6 83 149 66 0.71
0.27 EQ4 84 150 66 0.55
0.4 EQ7 95 223 128 0.72  
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Comparison of the results of analyses using real earthquake records (summarized 

in Tables 5.3.1 to 5.3.5) and harmonic base motions (summarized in Tables 

5.1.2.1, 5.1.2.2, 5.2.2.1 and 5.2.2.2) may lead to the following conclusions : 

 

- The maximum total lateral thrusts  and their application points obtained using 

real earthquake records close to those obtained by harmonic motions. 

 

- Examining the results for the maximum total lateral thrust and its point of 

application, it can be oberved that the results of all real EQ motions are in 

reasonably good agreement with those obtained by utilizing harmonic base 

motions with a frequency of f0 of the earthquake. The lateral thrust and point of 

application calculated using EQ4 and EQ6 motions can also be assessed by 

using harmonic base motion with a frequency of fm by reasonable accuracy. 
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Figure 5.3.1 Acceleration time histories of the earthquake records used 
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Acceleration Response Spectrum of EQ4 Ground Motion
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Figure 5.3.2 Acceleration response spectra of earthquake motions 
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Total lateral thrust vs. time for gravity wall
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Figure 5.3.3 Total lateral force vs. time for real earthquake motions 
(Gravity wall, H=5m) 
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Figure 5.3.4 Total lateral force vs. time for real earthquake motions 
 (Cantilever wall, H=5m) 
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5.4 On the effect of wall mass 

 

In this section the effects of wall mass on the dynamic behaviour of soil-wall 

system and the dynamic lateral earth pressures acting on the wall are summarized. 

 

In the finite element analyses carried out, mass of the wall is taken into account by 

assigning a density of 2.4 t/m3. Gravitational acceleration of of 9.81 m/s2 is applied 

to the mass to calculate the weight of the wall. In this way, effect of inertia of the 

wall is incorporated in the analyses. 

  

In a second set of analyses, the mass of the wall is neglected in the calculations. 

Nevertheless, the weight of the wall is represented by a vertical force. So, the 

inertial forces induced by dynamic motion are neglected while the weight of the 

wall is considered in the analyses. 

 

The results of two sets of analyses are summarized in Tables 5.4.1 and 5.4.2. 

 

Table 5.4.1 Summary of the results for gravity wall 
 

Acc. 
amplitude 

of base 
motion (g)

Freq. 
ratio 
(Rf)

Wall inertia
Total lat. 
force, Ft 

(kN)

Total base 
moment, 
Mt (kNm)

Height of 
application 

point, h

Peak outward 
rotation of the 

wall (rad.)

Normalized 
height of 

app. point, 
hn

0.1 0.5 considered 98 165 1.69 0.000178 0.34
0.1 0.5 ignored 112 212 1.89 0.000078 0.38
0.3 0.5 considered 182 336 1.85 0.000600 0.37
0.3 0.5 ignored 231 494 2.14 0.000234 0.43
0.3 2 considered 184 350 1.90 0.000560 0.38
0.3 2 ignored 207 414 2.00 0.000023 0.40  
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Table 5.4.2 Summary of the results for cantilever wall 
 

Acc. 
amplitude 

of base 
motion (g)

Freq. 
ratio 
(Rf)

Wall inertia
Total lat. 
force, Ft 

(kN)

Total base 
moment, 

Mt (kNm)

Height of 
application 

point, h

Normalized 
height of app. 

point, hn

0.3 0.5 considered 170 211 1.24 0.25
0.3 0.5 ignored 195 252 1.29 0.26
0.3 2 considered 186 257 1.38 0.28
0.3 2 ignored 209 274 1.31 0.26  

 

Figure 5.4.1 shows the the total lateral force variation with time found by using 

different harmonic base motions. It can be seen that the inertia of the wall 

significantly effects the dynamic lateral earth pressures where larger dynamic 

lateral forces act on the wall when the mass of the wall is neglected. Figure 5.4.2 

shows the rotation of the wall vs. time plots. For gravity walls, it can be sen that 

when the inertia of the wall is neglected, rotation of the wall is significantly 

smaller as compared to the wall rotation when wall inertia is not neglected. On the 

other hand, lateral thrust acting on the wall gets smaller in case of wall inertia is 

taken into account. 

  

Examining Table 5.4.2 and Figures 5.4.3 and 5.4.4 where the results of cantilever 

wall analyses are given, it is seen that the mass of the wall does not significantly 

affect the seismic lateral earth pressures or the deformations for cantilever walls. 
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Total lateral thrust vs. time for gravity wall (α = 0.1, H=5m, Rf=0.5)
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Figure 5.4.1 Total lateral thrust variation with time for gravity wall 
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Rotation of the wall vs. time for gravity wall (α = 0.1, H=5m, Rf=0.5)
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Figure 5.4.2 Rotation of the wall vs. time for gravity wall 
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Total lateral thrust vs. time for cantilever wall (α = 0.3, H=5m, Rf=0.5)
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Figure 5.4.3 Total lateral thrust variation with time for cantilever wall 
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Displacement at top of the wall vs. time for cantilever wall
 (α = 0.3, H=5m, Rf=0.5)
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Figure 5.4.4 Displacement at the top of the wall vs. time for cantilever wall 
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CHAPTER 6 

 
 

COMPARISON WITH EXPERIMENTAL STUDIES 

 

 
In Chapters 4 and 5, results of analyses made for soil-wall systems subjected to 

base motions and the maximum dynamic lateral forces and application points of 

these forces are given. The obtained results are compared with commonly used 

design methods. 

 

In this chapter, a comparison of finite element analyses results with the 

experimental findings is presented. 

 

6.1 Gravity wall 

 

Shake table tests conducted by Ichihara & Matsuzawa (1973), Sherif et al (1982) 

and Ishibashi & Fang (1987) are of most important studies about the dynamic 

response of rigid, displacing retaining walls. Sherif et al (1982) considered rigid 

walls making translational movement (denoted by T in Figures 6.1.1 and 6.1.2), 

Ishibasi & Fang (1987) considered rigid walls rotating about base only (denoted by 

RB in Figures 6.1.1 and 6.1.2) and Ichihara & Matsuzawa (1973) conducted 

experiments on rigid walls making both translational and rotational movement 

(denoted by RB+T in Figures 6.1.1 and 6.1.2). 

 

Dry sand is used as backfill material in the aforementioned studies. The frequency 

of the harmonic base motion is 3.3 Hz in the experiments by Ichihara & 

Matsuzawa, and 3.5 Hz in the other two studies. 
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Information about the fundamental period of the soil-wall systems is not given in 

the papers. However, considering the small heights of the model walls (0.75m and 

1m) and soil conditions, it can be stated that the base motion frequencies are 

considerably smaller than the fundamental frequencies of the models. 

 

As discussed in Chapter 4 and 5, the results of finite element analyses carried out 

indicate that the dynamic lateral forces are significantly affected by the frequency 

of the base motion. Since the base motion frequencies of experiments are smaller 

than the fundamental frequencies of the models, finite element results for low 

frequency ratio (Rf=0.2) are considered for comparison of the lateral thrusts. 

 

Figure 6.1.1 shows experimental values of the maximum total lateral thrusts 

reported and those obtained by numerical analyses. It can be seen that the finite 

element results are considerably higher than the experimental ones.Recalling that 

the movement of the wall is controlled independently from the forces acting on the 

wall during the experiments, it is probable that this may result is smaller lateral 

soil pressures. As a matter of fact, it is shown in Section 5.4 that the movements 

caused by the inertial effect of the wall result in a considerable decrease on the 

lateral pressures acting on the wall. 

 

Location of application point found by finite element approach and experiments 

are given together in Figure 6.1.2. It can be seen that pure translational (T) and 

pure rotational (RB) modes of movement give the lower and upper boundaries 

respectively as found by experimental work. The results of both translational and 

rotational movement  (RB+T) are generally between those of T and RB modes. 

 

In the finite element models, the wall is allowed to make both translational and 

rotational displacements as mentioned before. It can be observed from the same 

figure that the finite element method yields point of application between those 

corresponding to pure translational and pure rotational wall movements, and 

generally agreeable with the experiental results of both tranlational and rotational 

movement. 
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Comparison of finite element results of KA with 
experimental findings for gravity walls
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Figure 6.1.1 Comparison of the total lateral  force coefficient (KA) by 
 experimental studies and numerical solution 
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Figure 6.1.2 Comparison of the application point of the maximum total lateral  

force by experimental studies and numerical solution 
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6.2 Cantilever wall 

 

Ortiz (1982) conducted centrifuge model tests to investigate the seismic behaviour 

of cantilever retaining walls. The lateral earth pressure distributions along the 

height of the wall for two of the tests with zero backfill slope and medium dense 

sand are reproduced in Figure 6.2.1 

 

 
 

Figure 6.2.1 Earth pressure distributions on model cantilever walls by Ortiz (1982) 
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It can be seen from this figure that the maximum lateral pressure magnitudes are in 

good agreement with Mononobe-Okabe solution. However the pressure 

distribution is not linear as assumed by M-O method. 

 

Finite element results of this study give the maximum lateral thrust values higher 

than the experimental results given by Ortiz which are similar to those calculated 

by Mononobe-Okabe method. Comparison of the total lateral thrusts calculated by 

finite element analyses and Mononobe-Okabe method has been presented in 

Figure 5.2.2.3. 

 

On the other hand, as shown in Figure 6.2.2, experimental and finite element 

results for the location of application point of the maximum lateral thrust are 

almost similar. 

 

Similar to the results for gravity walls, although the magnitude of the total lateral 

thrust is higher in the finite element analyses, the location of the application point 

is in good agreement with the experimental findings for the cantilever walls.  

 

Comparison of finite element results of hn with 
experimental findings for cantilever walls
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Figure 6.2.2 Comparison of the application point of the maximum total lateral  

force by experimental studies and numerical solution 
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CHAPTER 7 

 
 

CONCLUSIONS 

 

 
The purpose of this study was to investigate the dynamic response of gravity and 

cantilever retaining walls and determine the magnitude and distribution of the 

seismic soil pressures acting on the walls. 

 

A two dimensional finite element model was developed for the analyses wherein 

the soil and the wall are represented by plane strain elements. The backfill and the 

foundation soil were assumed as dry granular material. The nonlinear stress-strain 

relationship of soil and the relative movement (sliding and gap) between the wall 

and soil were taken into account. 

 

Harmonic motions and real earthquake records with different amplitude and 

frequency content were used as base motions in the analyses. Since the 

deformation mode of the wall is of concern in the dynamic behaviour of the wall, 

the wall is modelled to rest on a soil layer allowing both translational and 

rotational displacements. 

 

On the basis of the analyses results, the following conclusions can be made: 

 

1- In soil-wall systems subjected to harmonic base motions, the frequency of the 

motion has a significant effect on the dynamic response of the wall. The 

maximum dynamic lateral force on the wall considerably increases as the 

frequency of the base motion approaches the natural vibration frequency of the 

soil layer. However, the variation of the dynamic lateral force can not be related 

directly to the amplification in the soil due to the fact that smaller total thrust 
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values are obtained for high frequency motions corresponding to greater 

amplification ratios. The results indicate that relatively small dynamic forces 

act on the wall when high frequency base excitations are applied. 

 

2- For harmonic base motions, the effect of the frequency ratio (defined as the 

ratio of the base motion to the fundamental frequency of the soil layer) on the  

lateral pressure distribution hence the location of the application point of the 

maximum total dynamic thrust is relatively small. 

 

3- The finite element method yields higher static lateral forces than Coulomb’s 

Earth Pressure Theory. This contributes to the difference between the maximum 

total (static + dynamic) lateral forces between the numerical results and 

Mononobe-Okabe method. 

 

4- The maximum dynamic forces are generally between those suggested by 

Mononobe-Okabe and Wood (1973) solutions depending on the frequency 

ratio. Considerably smaller lateral forces than Mononobe-Okabe method are 

obtained for high frequency motions while higher forces than Wood solution 

are found for resonance case. 

 

5- For gravity walls, location of the application point of the maximum total lateral 

thrust is found to be slightly higher than Mononobe-Okabe method when high 

frequency motions which result in significantly smaller lateral forces are 

neglected. The distance of the application point to the base of the wall varies 

between 0.33H and 0.39H which is well below the distance as suggested by 

Wood (1973) and Seed and Whitman (1970). Good agreement is obtained with 

the results of experimental studies for dynamic earth pressures acting on rigid, 

displacing walls. 

 

6- Similar to the results for gravity walls, the location of the application point of 

the maximum total lateral force is in good agreement with experimental results 

for cantilever walls. 
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7- For real earthquake motions, the maximum lateral thrust and its point of 

application are found to be close to those obtained by harmonic base motions. 

In order to represent the real earthquake motion by a harmonic function, the 

frequency of the harmonic function can be chosen as the one closest to the 

fundamental frequency of the soil layer, among the frequencies fp, f0 and fm 

where fp is the predominant frequency, f0 is the smoothed spectral predominant 

frequency and fm is the mean frequency of the earthquake motion. 

 

8- For gravity walls, tilting of the wall is found to be the dominant mode of 

deformation during dynamic loading. Sliding of the wall, on the other hand, is 

relatively small for the soil-wall models studied. 

 

9- For cantilever retaining walls, deflection of the stem is the dominant mode of 

deformation during the dynamic loading. Rotation and sliding of the wall are 

relatively small for the soil-wall models examined. 

 

10- It is observed that the inertia of the wall mass significantly affects the 

deformations and dynamic lateral earth pressures for gravity walls. The rotation 

and sliding of the wall is found to be mainly induced by the inertia of the wall 

mass. Considerably higher lateral pressures are obtained when the inertia of the 

wall is neglected. The inertial effects of the wall are found to be negligible for 

cantilever retaining walls. 

 

11- No considerable permanent displacements or residual soil pressures are 

obtained in the analyses of the considered soil-wall systems, since the 

seperation of the wall and foundation soil is not taken into account. 

 

Recommendations for future work 

 

In the conducted analyses, the damping of the system and the stiffness of the soil 

are taken constant. In the future, the variation in the damping and the stiffness of 
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the soil associated with strains may be considered and the effects on the dynamic 

response may be investigated. 

 

The dynamic response of other types of retaining structures such as anchored or 

strutted retaining walls may be of concern in future studies. 

 

The material model used to represent soil was an elastic-perfect plastic model 

without hardening. It is suggested to use a soil model which considers the shear 

and volumetric hardening in order to reach more realistic results as far as the  

displacements are concerned in the future. 
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