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ABSTRACT 
 
 

MULTI-CAMERA VIDEO SURVEILLANCE: 

DETECTION, OCCLUSION HANDLING, TRACKING 

AND EVENT RECOGNITION 

 
 

Akman, Oytun 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. A. Aydın Alatan 

 
 

August 2007, 153 pages 
 
 
 

In this thesis, novel methods for background modeling, tracking, occlusion 

handling and event recognition via multi-camera configurations are presented. As 

the initial step, building blocks of typical single camera surveillance systems that 

are moving object detection, tracking and event recognition, are discussed and 

various widely accepted methods for these building blocks are tested to asses on 

their performance. Next, for the multi-camera surveillance systems, background 

modeling, occlusion handling, tracking and event recognition for two-camera 

configurations are examined. Various foreground detection methods are 

discussed and a background modeling algorithm, which is based on multi-variate 

mixture of Gaussians, is proposed. During occlusion handling studies, a novel 

method for segmenting the occluded objects is proposed, in which a top-view of 

the scene, free of occlusions, is generated from multi-view data. The experiments 

indicate that the occlusion handling algorithm operates successfully on various 

test data. A novel tracking method by using multi-camera configurations is also 

proposed. The main idea of multi-camera employment is fusing the 2D 
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information coming from the cameras to obtain a 3D information for better 

occlusion handling and seamless tracking. The proposed algorithm is tested on 

different data sets and it shows clear improvement over single camera tracker. 

Finally, multi-camera trajectories of objects are classified by proposed multi-

camera event recogniton method. In this method, concatenated different view 

trajectories are used to train Gaussian Mixture Hidden Markov Models. The 

experimental results indicate an improvement for the multi-camera event 

recognition performance over the event recognition by using single camera. 

 

Key words: multi-camera surveillance, moving object detection, multi-camera 

tracking, event recognition, multi-camera occlusion handling. 
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ÖZ 
 
 

GÜVENLİK AMAÇLI ÇOKLU KAMERA SİSTEMLERİ: 

SAPTAMA, ÖRTÜŞME ÇÖZME, TAKİP VE OLAY 

ANALİZİ 

 
 

Akman, Oytun 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. A. Aydın Alatan 

 
 

Ağustos 2007, 153 sayfa 
 
 

Bu tezde, arka plan modelleme, örtüşme çözme, hedef takip ve olay analizi için 

çoklu kamera sistemleri kullanılan yeni metodlar sunulmuştur. İlk olarak, 

güvenlik amaçlı tekli kamera sistemlerinin temel yapıları olan hareketli nesne 

bulma, takip ve olay analizi anlatılmıştır ve bu yapılarda kullanılan çeşitli 

metodlar performanslarını değerlendirmek amacıyla test edilmiştir. Bir sonraki 

adımda, güvenlik amaçlı çoklu-kamera sistemleri için iki kamera kullanılarak 

arka-plan modelleme, örtüşme çözme, hedef takip ve olay analizi metodları 

sunulmuştur. Çeşitli hareketli nesne saptama metodları incelenmiş ve çoklu-

rastgele değişkenli Gaussianlar kullanan bir arka-plan modelleme metodu tercih 

edilmiştir. Örtüşme çözme çalışmalarında, çoklu-bakış kullanarak örtüşmenin 

oluşmadığı bir görüntünün (üstten görünüş) üretildiği yeni bir metod 

sunulmuştur. Önerilen bu metod çeşitli test verileri üzerinde denenmiş ve başarılı 

sonuçlar alınmıştır. Ayrıca, çoklu kamera kullanılan takip algoritması 

önerilmiştir. Bu algoritmanın ana fikri, örtüşme çözebilmek ve sürekli takip için 

kameralardan gelen 2-B bilginin birleştirilerek 3-B bilginin elde edilmesine 

dayanır. Çeşitli deneysel verilerle incelenen bu metod tekli-kamera takip 
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metodlarına göre daha başarılı sonuçlar vermiştir. Son olarak, farklı kameralardan 

gelen gezingelerin birleştirtirilerek tek bir gezingenin oluşturulduğu ve bu 

gezingenin Gizli Markov Modelleri eğitmek için kullanıldığı bir metod ortaya 

konmuştur. Yapılan deneylerde, birleştirilen gezingelerle eğitilen HMM lerin 

olay sınıflandırmasında daha başarılı sonuçlar verdiği gözlemlenmiştir. 

 

Anahtar Kelimeler: Güvenlik amaçlı çoklu-kamera sistemleri, hareketli nesne 

bulma, çoklu-kamera takip, olay analizi, çoklu-kamera örtüşme çözme 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    To Mom, Dad and Melis 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix

ACKNOWLEDGEMENTS 
 
 
 

I would like to express my gratitude and deep appreciation to my supervisor 

Assoc. Prof. Dr. A. Aydın Alatan for his guidance, positive suggestions and also 

for the great research environment he had provided. 

 

I would like to also express my thanks for their great friendship and assistance to 

Ahmet Saraçoğlu, Yoldaş Ataseven and Cevahir Çığla. We were together for two 

invaluable years and I will surely miss working with them. 

 

I would like to thank my friends in Multimedia Research Group and Evren İmre 

for such a friendly research environment they had provided. I have learned much 

from their suggestions and experiences.  

 

Finally, I would like to thank my Mom, Dad and Melis for their love, support and 

patience over the years. This thesis is dedicated to them. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x

TABLE OF CONTENTS 
 
 
 

ABSTRACT........................................................................................................ iv 

ÖZ ....................................................................................................................... vi 

ACKNOWLEDGEMENTS ................................................................................ ix 

TABLE OF CONTENTS..................................................................................... x 

CHAPTER 

1. INTRODUCTION...................................................................................... 1 

1.1 Overview of Related Work .................................................................. 2 

1.2 Scope of the Thesis .............................................................................. 3 

1.3 Outline of the Thesis ............................................................................ 4 

2. SINGLE CAMERA SURVEILLANCE .................................................... 6 

2.1 Moving Object Detection ..................................................................... 6 

2.1.1 Moving Object Detection Methods............................................... 7 

2.1.1.1 Frame Differencing Method................................................... 8 

2.1.1.2 Eigenbackground Subtraction ................................................ 9 

2.1.1.3 Parzen Window Based Moving Object Detection................ 10 

2.1.1.4 Mixture of Gaussians Based Moving Object Detection....... 12 

2.1.2 Simulation Results and Discussion ............................................. 13 

2.1.3 Noise Removal and Connected Component Labeling ................ 14 

2.1.3.1 Morphological Operators ..................................................... 14 

2.1.3.1.1 Erosion .......................................................................... 16 

2.1.3.1.2 Dilation.......................................................................... 17 

2.1.3.2 Connected Component Labeling.......................................... 17 

2.1.4 Shadow Removal ........................................................................ 18 

2.2 Object Tracking.................................................................................. 20 

2.2.1 Object Tracking Methods............................................................ 21 

2.2.1.1 Object Association ............................................................... 22 

2.2.1.2 Mean-Shift Tracker .............................................................. 22 



 

xi

2.2.1.3 Cam-Shift Tracker................................................................ 23 

2.2.1.4 Kanade-Lucas-Tomasi Tracker ............................................ 23 

2.2.1.5 Kalman Tracker.................................................................... 25 

2.2.2 Simulation Results ...................................................................... 25 

2.3 Event Recognition .............................................................................. 28 

2.3.1 Hidden Markov Models .............................................................. 29 

2.3.1.1 Markov Models .................................................................... 30 

2.3.1.2 Extensions to HMMs............................................................ 30 

2.3.1.3 Fundamental Problems of HMMs........................................ 32 

2.3.1.3.1 Evaluation Stage............................................................ 32 

2.3.1.3.2 Decoding Stage ............................................................. 33 

2.3.1.3.3 Learning Stage............................................................... 34 

2.3.1.4 Continuous Observation Densities in HMMs ...................... 36 

2.3.2 Event Recognition by Using HMMs........................................... 37 

3. BACKGROUND MATERIAL................................................................ 41 

3.1 Camera Model .................................................................................... 41 

3.1.1 Basic Pinhole Camera Model...................................................... 42 

3.1.2 Principal Point Offset .................................................................. 44 

3.1.3 Camera Rotation and Translation................................................ 45 

3.1.4 Computation of the Camera Matrix P ......................................... 47 

3.1.5 Homography Matrix.................................................................... 48 

3.2 Epipolar Geometry and Fundamental Matrix..................................... 49 

3.2.1 Epipolar Geometry ...................................................................... 49 

3.2.2 Fundamental Matrix .................................................................... 51 

3.2.2.1 Geometric Derivation........................................................... 51 

3.2.2.2 Algebraic Derivation............................................................ 52 

3.2.2.3 Properties of Fundamental Matrix........................................ 53 

3.3 Trifocal Tensor................................................................................... 54 

3.4 A Brief Introduction to Graph Theory ............................................... 56 

4. MULTI-CAMERA BACKGROUND MODELING ............................... 58 

4.1 Related Work...................................................................................... 59 



 

xii

4.2 Background Modeling from Multi-view Video ................................. 61 

4.3 Relating Images With Homography................................................... 62 

4.4 Foreground Detection by Unanimity.................................................. 63 

4.5 Foreground Detection by Weighted Voting ....................................... 69 

4.6 Mixture of Multivariate Gaussians Background Model..................... 70 

4.7 Conclusion.......................................................................................... 77 

5. MULTI-CAMERA OCCLUSION HANDLING..................................... 78 

5.1 Related Work...................................................................................... 79 

5.2 Occlusion Handling from Multi-view Video ..................................... 82 

5.3 Graph-Based Segmentation................................................................ 84 

5.3.1 Recursive Shortest Spanning Tree .............................................. 84 

5.3.2 K-Means Clustering .................................................................... 85 

5.3.3 Segmentation Results .................................................................. 86 

5.4 Point Transfer Using Trifocal Tensor ................................................ 89 

5.4.1 Camera Calibration ..................................................................... 89 

5.4.1.1 Feature Point Detection........................................................ 89 

5.4.1.1.1 Harris Corner................................................................. 90 

5.4.2 Point Transfer.............................................................................. 93 

5.5 Graph-Based Clustering ..................................................................... 96 

5.5.1 Constructing Minimal Spanning Tree......................................... 96 

5.6 Experimental Results and Conclusion................................................ 98 

6. MULTI-CAMERA TRACKING AND EVENT RECOGNITION....... 102 

6.1 Related Work.................................................................................... 103 

6.2 Tracking and Event Recognition from Multi-view Video ............... 105 

6.3 Kalman Filter.................................................................................... 106 

6.4 Proposed Multi-camera Tracking..................................................... 107 

6.5 Multi-view Event Recognition ......................................................... 111 

6.6 Simulation Results and Conclusion.................................................. 112 

6.6.1 Simulation Results for Multi-view Tracking ............................ 113 

6.6.2 Simulation Results for Multi-view Event Recognition............. 120 

7. CONCLUSION ...................................................................................... 125 



 

xiii

7.1 Summary of the Thesis..................................................................... 125 

7.2 Discussions on Single Camera Surveillance .................................... 127 

7.3 Discussions on Multi-Camera Surveillance ..................................... 128 

7.4 Future Work ..................................................................................... 130 

REFERENCES........................................................................................... 131 

 



 

1

CHAPTER 1 
 

 

INTRODUCTION 

 

 

 
The field of machine (computer) vision is concerned with problems that involve 

interfacing computers with their surrounding environment through visual means. 

One such problem, surveillance, has an objective to monitor a given environment 

and report the information about the observed activity that is of significant 

interest. In this respect, video surveillance usually utilizes electro-optical sensors 

(video cameras) to collect information from the environment. In a typical 

surveillance system, these video cameras are mounted on fixed positions or on 

pan-tilt devices and transmit video streams to a certain location, called 

monitoring room. Then, the received video streams are monitored on displays and 

traced by human operators. However, the human operators might face many 

issues, while they are monitoring these sensors. One problem is due to the fact 

that the operator must navigate through the cameras, as the suspicious object 

moves between the limited field of view of cameras and should not miss any 

other object while tracking it. Thus, monitoring becomes more and more 

challenging, as the number of sensors in such a surveillance network increases. 

Therefore, surveillance systems must be automated to improve the performance 

and eliminate such operator errors. Ideally, an automated surveillance system 

should only require the objectives of application, in which real time interpretation 

and robustness is needed. Then, the challenge is to provide robust and real-time 

performing surveillance systems in an affordable price.  
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With the decrease in costs of off-the-shelf hardware for sensing and computing, 

and the increase in the processor speeds, surveillance systems have became 

commercially available, and they are now applied to a number of different 

applications, such as traffic monitoring, airport and bank security, etc. However, 

machine vision algorithms (especially for single camera) are still severely 

affected by many shortcomings, like occlusions, shadows, weather conditions, 

etc. As these costs decrease almost in daily basis, multi-camera networks that 

utilize 3D information are becoming more available. Although, the use of 

multiple cameras leads to better handling of these problems, compared to a single 

camera, unfortunately, multi-camera surveillance is still not the ultimate solution 

yet. 

 

There are still challenging problems within the surveillance algorithms, such as 

background modeling, feature extraction, tracking, occlusion handling and event 

recognition. Moreover, machine vision algorithms are still not robust enough to 

handle fully automated systems and many research studies on such improvements 

are still being done. 

 

1.1 Overview of Related Work 

 

The set of challenges outlined above span several domains of research and the 

majority of relevant work will be reviewed in the upcoming chapters. In this 

section, only the representative video surveillance systems are discussed for better 

understanding of the fundamental concept.  

 

Haritaoglu et al. [1] propose a real time visual surveillance system, W4, for 

detecting and tracking multiple people and monitoring their activities in an 

outdoor environment. The system can identify and segment the objects that are 

carried by people and can track both objects and people separately. Moreover, it 

can recognize events between people and objects, such as depositing an object, 
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exchanging bags, or removing an object. Mittal and Davis [41] present a system, 

M2 tracker, that is capable of segmenting, detecting and tracking multiple people 

in a cluttered scene by using multiple synchronized surveillance cameras located 

far from each other. The system is fully automatic, and takes decisions about 

object detection and tracking by the help of evidence collected from many pairs 

of cameras. 

 

Beymer et al. [18] developed a system to measure the traffic parameters. The 

proposed video traffic surveillance system extracts the 3D positions and 

velocities of vehicles and processes the track data to compute local traffic 

parameters, including vehicle counts per lane, average speeds, lane change 

frequencies, etc. These parameters, together with track information (time stamp, 

vehicle type, color, shape, position), are transferred to the transportation 

management centers at regular intervals. 

 

Carnegie Mellon University (CMU) and the Sarnoff Corporation (Sarnoff) 

constructed a video surveillance program, denoted as ‘Video Surveillance and 

Monitoring (VSAM)’ [52]. The objective of the program is to develop a 

cooperative multi-sensor video surveillance system that provides continuous 

information over given environment. The system provides the capability to detect 

moving objects, classify them as human or vehicle, keep track of people, vehicles 

and their interactions, as well as classify these activities. 

 

1.2 Scope of the Thesis 

 

This thesis is devoted to the problem of defining and developing the fundamental 

building blocks of automated video surveillance systems via single-camera and 

multi-camera configurations. The fundamental building blocks can be 

decomposed into two main parts. The first part consists of the blocks that can be 

used in single camera configurations as well as in multi-camera configurations. 
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The second part is based on the methods which use the advantages of multi-

camera systems and utilization of 3D information. 

 

For the first part, initial problem, which is the extraction of the objects or features 

that are subject to interest in surveillance application, is discussed and 

background subtraction and feature extraction methods are compared. 

Furthermore, the second problem, which is tracking of extracted features to 

obtain their motion history, is also discussed and some tracking algorithms are 

examined. Finally, event recognition which is the higher-level task needed to 

interpret the motion histories, is explained and a Hidden Markov Model based 

approach is discussed. 

 

For the second part, background modeling problem is discussed in a multi-camera 

point of view. A major problem for surveillance applications, which is occlusion, 

is discussed and a novel algorithm to handle occlusions by using two cameras is 

proposed. Finally, multi-camera tracking and event recognition by using multi-

view data are explained. 

 

1.3 Outline of the Thesis 

 

In Chapter 2, building blocks of single camera surveillance, which are moving 

object detection, tracking and event recognition, are discussed. Moving object 

detection algorithms include frame differencing, eigenbackground subtraction, 

Parzen window based moving object detection and mixture of Gaussians (MOG) 

based moving object detection, while tracking algorithms include object 

association, mean-shift tracker, cam-shift tracker and Kanade-Lucas-Tomasi 

Tracker. In this chapter, the performances of all these algorithms are compared 

and also simulation results are presented. HMMs are briefly introduced and event 

recognition by using HMMs is explained. 
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In Chapter 3, some background material is given about the camera models, 

epipolar geometry, trifocal tensor and graph theory. These fundamental concepts 

are utilized in the subsequent chapters of this thesis. 

 

Chapter 4 discusses the multi-camera foreground detection algorithms. Two 

methods for foreground detection are explained and an algorithm is proposed to 

model background by using MOG. The performances are compared and some 

simulation results are presented. 

 

In Chapter 5, an algorithm is presented to handle occlusions by using two 

cameras. The proposed method starts with the oversegmentation of foreground 

regions. Next, point transfer by using trifocal tensor is performed and transferred 

points are grouped together. At the end of this chapter, the simulation results for 

these methods are given. 

 

Tracking and event recognition algorithms in multi-camera networks are 

discussed in Chapter 6. A multi-camera tracking method which fuses the 

information coming from two cameras is proposed. Also, 3D (top-view) locations 

of the tracked objects are extracted for better visualization of the motion 

trajectories. A HMM based event recognition method, in which the trajectories of 

objects in different views are concatenated and used to represent the motion, is 

explained. 

 

Finally, the summary of the thesis is given in Chapter 7 and the future work plan 

is suggested. 
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CHAPTER 2 

 

 

SINGLE CAMERA SURVEILLANCE 

 

 

 
A typical automated single camera surveillance system usually consists of 3 main 

parts, which can be listed as moving object detection, object tracking and event 

recognition. In this chapter, some recent studies from the related literature for 

each main block are discussed, and brief descriptions of several methods are 

given. Finally, at the end of each part, the examined methods are tested by 

simulations to analyze their performances.  

 

2.1 Moving Object Detection 

 

The performance of a surveillance system considerably depends on its first step 

that is detection of the foreground objects which do not belong to the background 

scene. These foreground regions have a significant role for subsequent actions, 

such as tracking and event detection. 

 

Moving object segmentation is simply based on a comparison between the input 

frame and a certain background model, and different regions between the input 

and the model are labeled as foreground based on this comparison. This 

assessment can be simple frame differencing, if the background is static (has no 

moving parts and is easier to model).  
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Figure 2.1 Moving object detection process : Foreground mask is obtained by determining 

the difference between the input image and the available background model 

 
 
 
However, more complex comparison methods are required to segment foreground 

regions when background scenes have dynamic parts, such as moving tree 

branches and bushes. 

 
In the literature, there are various algorithms, which can cope with these 

situations, that will be discussed in the following sections. Moreover, noise 

removal from the foreground mask, connected component labeling and shadow 

removal are also discussed in this section. 

 

2.1.1 Moving Object Detection Methods 

 
Although there are numerous proposals for the solution of moving object 

detection problem in surveillance systems, some of these methods are found out 

to be more promising by the researchers in the field. Haritaoglu et al. [1] use a 

two-stage method based on excluding moving pixels from background model 

computation. In the first stage, a pixel-wise temporal median filter is applied to 

several seconds of video in order to distinguish moving pixels from stationary 

points. In the second stage, only those stationary pixels are processed to construct 

the initial background model. 
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Elgammal et al. [2] use nonparametric kernel density estimation for background 

modeling. The model uses pixel intensity (color) as the basic feature for modeling 

the background and with such a formulation, it can handle cases where the 

background of the scene is cluttered and not completely static, but contains small 

motions. The kernel-based model is updated continuously and therefore adapts to 

changes in the scene background. 

 

Grimson and Stauffer [3] model the values of a particular pixel in the background 

model as a mixture of Gaussians. Based on the persistence and the variance of 

each of the Gaussians of the mixture, they determine which Gaussians may 

correspond to background colors. Proposed method is robust to small motions in 

the background. KaewTraKulPong and Bowden [4], later improve the adaptation 

speed of this method [3] by using online expectation maximization. 

 

Oliver et al. [5] adaptively built an eigenspace that models the background. In 

order to reduce the dimensionality of the space, they use the principal component 

analysis. Consequently, the segments of an image containing a moving object 

cannot be well described by this eigenspace model, whereas the static portions of 

the image can be accurately described as a sum of the various eigenbasis vectors. 

 

2.1.1.1 Frame Differencing Method 

 

Frame differencing could be the simplest moving object detection method, which 

is based on determining the difference between input frame intensities and 

background model by using pixel per pixel subtraction, as formulated in (2.1). 

 

⎩
⎨
⎧

<
>

=

−−=

thresholdtyxBD
thresholdtyxBD

tyxFM

tyxBMtyxItyxBD

),,(0
),,(1

),,(
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   (2.1) 
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where ),,( tyxI  is the input frame pixel at time t at the location (x,y), and 

)1,,( −tyxBM  is the background model pixel at time t-1 at location (x,y). 

 

Apart from separation, background model could also be adapted in time by using 

the following equation 

 

)1,,()1(),,(),,( −−+= tyxBMtyxItyxBM αα   (2.2) 

 

where α  is the learning rate; i.e. how fast one would like to update the model in 

time. This simple method has a drawback for modeling dynamic backgrounds in 

which moving parts in the background exist. 

 

2.1.1.2 Eigenbackground Subtraction 

 

Eigenbackground modeling [5] is based on constructing an eigenspace by using 

feature vectors (sample images). The dimension of the constructed eigenspace is 

reduced by using Principal Component Analysis (PCA). By choosing the k 

principal components (k eigenvectors with largest eigenvalues), the most 

representative k vectors that capture the major energy variance are selected. 

Hence, the lower dimensional subspace, which encapsulates the most common 

information between the training frames, is constructed. Since background 

regions are covered in all training frames, such a subspace represents the 

background. 

 

Next, the incoming frame is projected onto the subspace and reconstructed. The 

regions that can be reconstructed accurate enough (difference between the 

original frame and the reconstructed frame is smaller than a certain threshold) are 

labeled as background, while others are labeled as foreground [6][7]. 
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The most important advantage of this method is due to its real-time foreground-

background segmentation performance. However, it is sensitive to the motions in 

the dynamic background regions and has a major drawback of computationally 

expensive update procedure. 

 
 
 

 
 

Figure 2.2 Graphical representation of a PCA transformation in two dimensions. The 

variance of the data in the original Cartesian space (x, y) is best captured by the basis 

vectors v1 and v2 in a rotated space [19]. 

 
 
 

2.1.1.3 Parzen Window Based Moving Object Detection 

 

Parzen window based moving object detection method [2] depends on estimating 

the probability of observing pixel intensity values in a non-parametrical manner, 

based on the sample intensities. Thus, in the background model, each pixel’s 

probability distribution function is estimated by using Parzen windows for each 

color channel. 

 



 

11

The estimate of the probability of observing a pixel intensity, x, at a particular 

location on the image is given as 

 

∑∏
=

−−

=
k i
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i

i

kii

e
N
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3

1

2
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2

2

2
11)( σ

πσ
   (2.3) 

 

for three color channels (RGB), by using the assumption that they are all 

independent. 

 
 
 

 
 

Figure 2.3 Estimated pdf of a pixel by using Red and Green values of training samples. 

 
 
 
Suitable kernel bandwidth iσ  must be chosen carefully for each color channel, 

since a small bandwidth might lead to a ragged density estimate, while relatively 

wide bandwidths should lead to an over-smoothed density estimate. Thus, for 

each pixel, differences between its pixel values in consecutive training frames can 

be found and the mean value of these differences can be used as a kernel 

bandwidth [2][7]. Then, a new incoming pixel is labeled as background pixel, if 

the probability of observing that pixel’s intensity value in the corresponding 
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model, as in (2.3), is greater than a certain threshold. Otherwise, it is labeled as 

foreground pixel. Foreground-background separation by kernel density estimation 

has an advantage for its robustness in the scenes with cluttered background and 

small motions. 

 

2.1.1.4 Mixture of Gaussians Based Moving Object Detection 

 

Mixture of Gaussians based moving object detection method [3] depends on 

modeling of each pixel in the background model by mixture of K Gaussian 

distributions. Then, the probability of observing pixel value xN at time N is 

 

( )
( ) ( )

∑
=

−∑−− −

∑
=

K

k

xx

k
DkN

kNk
T

kNewxp
1

2
1

2/12/

1

2
1)(

μμ

π  (2.4) 

 

where Ikk
2σ=∑  (assuming that R,G,B are independent) and wk is the weight of 

kth Gaussian. 

 

Every new pixel value, Xt, is compared against the existing K Gaussian 

distributions, until a match is found. A match is defined as a pixel value within 

2.5 standard deviations of a distribution. If none of the K distributions match the 

current pixel value, the least probable distribution is replaced with the current Xt 

by its mean value with an initially high variance, and a low prior weight [3]. The 

prior weight of the kth Gaussian at time t is adjusted as follows 

 

tktktk Mww ,1,, )1( αα +−= −     (2.5) 

 

where α  is the learning rate and tkM ,  is ‘1’ for matched models, and ‘0’ for 

remaining models. 
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The μ  and σ  for unmatched distributions remain same while matched ones are 

updated as follows [3] 

 

)()()1(

)1(
2

1
2

1

tt
T

tttt

ttt

xx

x

μμϕσϕσ

ϕμϕμ

−−+−=

+−=

−

+
  (2.6) 

 

where ),|( kktX σμαηϕ = . 

 

2.1.2 Simulation Results and Discussion 

 

Discussed methods are tested by using a typical traffic surveillance sequence 

which is recorded at 25 fps in MPEG-2 format with a resolution of 640x480. 

 

Frame differencing is found out to be very sensitive to small motions happening 

in the background. As shown in Figure 2.4 (b), branches of the trees and the 

person waiting by the road are classified as foreground regions. Due to its 

sensitivity, frame differencing is not suitable for backgrounds with dynamic 

objects.  

 

Eigenbackground subtraction method is shown to have a better modeling 

performance compared to frame differencing. However, it is still not adaquate for 

complex scenes with dynamic background regions.  

 

On the other hand, Parzen window based modeling and MOG based modeling 

methods have far better results for dynamic scenes. Parzen window based 

modeling resulted in more noisy foreground regions when compared to MOG 

based modeling method’s foreground masks. 
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2.1.3 Noise Removal and Connected Component Labeling 

 

Background subtraction algorithms that are discussed in the previous section have 

quite accurate results. However, it is probable to encounter with noise that 

deforms the actual shapes of object silhouettes in the foreground masks, and 

results in false foreground region segmentation. These deformed or false 

segmented moving objects decrease the performance of object tracking methods 

and cause inaccurate results. For this purpose, some well-known noise removal 

methods, called as morphological operators, are usually utilized to remove the 

noise from the foreground mask [8]. After background subtraction, foreground 

pixels must also be grouped to form moving objects, since pixel level tracking is 

not appropriate for surveillance systems. Connected Component Labeling (CCL) 

[8] method is used for this purpose. Additionally, CCL also helps to filter the 

objects that have areas which are smaller than some certain threshold value. 

 

2.1.3.1 Morphological Operators 

 

Morphological image processing [8] gets its name from the study of shape, and it 

has collection of techniques for processing images based on mathematical 

morphology. Morphological operators work mostly on binary images by using a 

structuring element and a set operator (intersection, union, complement, etc.). In 

most of the cases, the structuring element is sized 3×3 and has its origin at the 

center pixel. It is shifted over the image and at each pixel of the image its 

elements are compared with the set of the underlying pixels. If the two sets of 

elements match the condition defined by the set operator (e.g. if the set of pixels 

in the structuring element is a subset of the underlying image pixels), the pixel 

underneath the origin of the structuring element is set to a pre-defined value (0 or 

1) [8]. In this section, some popular morphological operators, such as erosion and 

dilation, are discussed briefly. 
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(a) 

  
(b)      (c) 

  
(d)      (e) 

 

Figure 2.4 Simulation results of moving object detection algorithms  (a) Input frame (b) 

Frame differencing result (c) Eigen background result (d) Parzen window result (e) Mixture 

of Gaussians result 
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2.1.3.1.1 Erosion 

 

Erosion operator affects the boundaries of the foreground regions [8]. Moreover, 

it removes the individual pixels that do not have enough neighbor pixels and 

usually uses the following structuring element; 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

010
111
010

se  

 

For each pixel having a value “1” in the structuring element, if the corresponding 

pixels in the image are a foreground pixel, then the input pixel is not changed. 

However, if any of the surrounding pixels (considering 4-connectedness) belongs 

to the background the input pixel is also set to the background value. 

 
 
 

  
(a)      (b) 

 

Figure 2.5 Simulation result of erosion operation  (a) Input mask  (b) Eroded mask 
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2.1.3.1.2 Dilation 

 

Dilation is the dual operation of erosion [8]. It mainly uses the following 

structuring element  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

111
111
111

se  

For each foreground pixel in the image, its 8 neighbor pixels are also set to the 

foreground value. 

 
 
 

  
(a)      (b) 

 

Figure 2.6 Simulation result of dilation operation  (a) Input mask  (b) Dilated mask 

 
 
 

2.1.3.2 Connected Component Labeling 

 

A connected component labeling (CCL) algorithm finds all connected 

components in an image and assigns a unique label to all points in the same 

component [8]. Although there are different versions of CCL exists, one of the 

most popular CCL algorithm is as follows; 
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1. Scan the binary image to find an unlabeled foreground pixel and 

assign it a new label L 

2. Recursively assign a label L to all its foreground neighbors (having 

value ‘1’) 

3. Stop if there are no more unlabeled foreground pixels 

4. Go to initial step 

 
 
 

  
(a)      (b) 

 

Figure 2.7 Simulation result of ccl  (a) Input mask  (b) Labeled output mask 

 
 
 

2.1.4 Shadow Removal 

 
Moving shadows in the scene might cause false segmentation results in the 

silhouettes of the moving objects. Additionally, large shadows result in 

occlusions in the foreground regions. In order to understand shadow removal 

algorithms, it is useful to identify shadows. Shadows are composed of two parts, 

umbra and penumbra [9]. The umbra corresponds to the area where the direct 

light is totally blocked by the object, whereas light is partially blocked in the 

penumbra area.  
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In literature, there are several methods to find and remove shadows [10]. For 

instance, Mikic et al. [11] propose a statistical parametric approach which is 

based on the detection of umbra of moving cast shadow in outdoor traffic video 

scene. Some other approaches prefer to use the HSV color space, since a shadow 

cast on a background does not change its hue significantly, while its value (V) 

and saturation (S) values decrease [12]. 

 
 
 

  
(a)      (b) 

 

Figure 2.8 Effects of shadow  (a) Input mask  (b) Deformed foreground mask 

 
 
 
In this thesis, a similar method to [12] is used to remove the shadows. First, 

foreground regions are obtained by using proper background subtraction 

algorithm. Then, the shadow detection algorithm in [12] is used to find the 

shadow pixels in the foreground mask. The algorithm is based on the assumption 

that the shadow pixels have the same color with the background whereas are of 

lower brightness. HSV color space is preferred, since hue represents the color 

type, while saturation and value represent the intensity and brightness. Then, for 

each foreground pixel, its corresponding pixels in the input frame and 

background model are compared in HSV color space and shadow mask is 

determined by using the following relation: 
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  (2.7) 

 

where I(x; y) and B(x; y) are the pixel HSV values at coordinate (x,y) in the input 

image and in the background model, respectively. 

 
 
 

  
(a)      (b) 

 

Figure 2.9 Simulation result of the shadow removal algorithm  (a) Input image  (b) Shadow 

removed mask 

 
 
 

2.2 Object Tracking 

 

Object tracking is one of the most crucial parts of a surveillance system. After 

moving object detection is performed, the detected moving objects in consecutive 

frames must be associated to obtain their trajectories. These trajectories are 

necessary for interpretation of the behaviors of the moving objects.  
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2.2.1 Object Tracking Methods 

 

In their seminal work, Tomasi and Kanade [16] proposed a method for tracking 

some “good” features, that are basically the intensity corners in the image. Their 

method is based on finding optical flow of the features between two consecutive 

frames. 

 

Later, Bouguet [17] proposed a pyramidal version of the Kanade-Lucas-Tomasi 

Tracker. In his method, input frames are downsampled for k times and for each 

one KLT procedures are repeated, and calculated optical flow is used as initial 

estimate for next iteration. 

 

Comaniciu et al. [13][14] propose a tracking algorithm of non-rigid objects based 

on visual features, such as color and/or texture, whose statistical distributions 

characterize the object of interest. The mean-shift iterations are employed to find 

the target candidate, which is the most similar to a given target model, with the 

similarity being expressed by a metric based on the Bhattacharyya coefficient 

[13].  

 

Bradski [15] designed a face tracker where the mean-shift algorithm operates on 

probability distributions, usually denoted as cam-shift in vision literature. In order 

to track colored objects in video frame sequences, the color image data are 

represented with a probability distribution by using color histograms.  

 

Beymer et al. [18] use common motion constraint to group features tracked by 

Kalman filter based tracker. Point features that are found to be moving rigidly 

together will be grouped together into a single object. 
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2.2.1.1 Object Association 

 

Object association is one of the simplest tracking approaches. It is based on 

matching the objects in consecutive frames by using their bounding box locations 

and color models [7]. 

 

Object-i at time t and object-j at time t+1 are matched, )1()( += tOtO ji , if 

thebounding boxes of i, Bi and j, Bj are overlapping and, ))1(),(( +tOtOD ji  is 

smaller than a certain threshold, where D(.) is a distance metric between the color 

histograms of objects. This distance measure could be selected as 

 

Kullback-Leibler divergence [75] 
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or Bhattacharya coefficient [13] 

 

∑−= 2121 1),( hhhhD      (2.9) 

 

2.2.1.2 Mean-Shift Tracker 

 

Mean-shift tracker [13][14] is a color model tracker which is based on 

minimization of a cost function between the target model and candidate models 

by using mean-shift procedure. Models of the target and candidate objects are 

constructed by using color histograms and similarity function d(y) between the 

target model q and the candidate model p(y) is as follows; 
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where p and q are m-bin color histograms. By minimizing this function, 

Bhattacharyya coefficient is maximized. In order to find the mode (local 

maximum) of the density function (Bhatt. coeff.), the mean-shift vector which is 

the estimate of gradient vector’s density function should be traced. When mean-

shift vector converges to a certain region y0, which maximizes the density 

function, y0 becomes the new location of the target object in the next frame. 

 

2.2.1.3 Cam-Shift Tracker 

 

Cam-shift tracker [15] is implemented to handle dynamically changing 

distributions. For finding the location of the target object in the current frame 

 
1. Model (color histogram) of the target is created 

2. Incoming video frame is converted to a probability of the model 

image, denoted as backprojection image [15], where image pixels, 

having similar intensity values with color model, have larger weights,  

3. The mode of probability distribution image around the previous target 

location is obtained by using mean-shift algorithm 

4. The determined mode is the new location of target 

 

2.2.1.4 Kanade-Lucas-Tomasi Tracker 

 

Kanade-Lucas-Tomasi Tracker [16] tracks the feature points which are selected 

in the video image from one frame to the next frame by means of a gradient 

method. The features are obtained by using Harris corner detector [24] which is 

explained in detail in Chapter 5. Displacement of a feature point between two 
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consecutive frames, which is called optical flow vector of that feature, d=[dx dy] 

of the feature point (corner) u=[ux uy] in the first image I(x,y) is found by 

minimizing the error function ε  where; 
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yxyx dydxJyxIddd 2),(),(),()( εε      (2.11) 

 

such that 

][][ yyxxyx duduvvv ++==    (2.12) 

 

where v is new location of u in the second image ),( yxJ , and )(uI  and )(vJ  are 

similar. 

 
 
 

  
(a)      (b) 

 

Figure 2.10 Probability image generation  (a) Input image  (b) backprojection image where 

the face is used as the color model 

 
 
 

In the pyramidal version [17] of the Kanade-Lucas-Tomasi Tracker, performance 

is improved by downsampled images. In this method, optical flow of the selected 
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feature point is determined in the k-times downsampled image and it is used as an 

initial estimate for the same KLT procedure in the next (k-1) times downsampled 

image. These iterations are achieved until original sized image is reached. 

Moreover, similar point features are grouped to find the moving objects [18]. 

Since the trajectories of the moving objects are needed to interpret their motion, 

the feature points with similar optical flow vectors and close distances are 

grouped together and the mean of their trajectories is assigned to the 

corresponding object trajectory. 

 

2.2.1.5 Kalman Tracker 

 

Kalman tracker predicts the new position of the moving object by using a Kalman 

filter [20][21] with a defined motion model, like motion with constant speed or 

motion with constant acceleration. A brief discussion about Kalman filter can be 

found in Chapter 6 to better understand the tracker. 

 

In this chapter, Kalman filter is used as a dynamical system model that supports 

the main tracker. In each of the tested trackers, the location of the moving object 

in the next frame is predicted by using a Kalman filter, and then the search for the 

exact location of the object in the next frame is started from that predicted point. 

When the exact location is determined, then this location is used to update the 

filter. Moreover, in ‘no measurement case’ where the tracker cannot find the 

object, Kalman filter prediction is accepted as the valid location. 

 

2.2.2 Simulation Results 

 

The aforementioned methods are tested by using various traffic video sequences, 

which are in MPEG-2 format that are recorded at 25 fps with a resolution of 

320x240.  
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Object association is found to be inappropriate for the surveillance systems, 

which have severe occlusions, since its basic idea is too simple for complex 

scenes.  

 

Mean-shift tracker, which is accepted as one of the state-of-the-art tracker, 

follows the defined color model successfully. The tracking performance of mean-

shift algorithm in occluded scenes is very high, if the model for target object is 

initially well defined. However, in the crowded scenes, such as stop-and-go 

traffic scenes, where the objects enter the field of view region by occluding each 

other, there may be the cases that representative model for object is not obtained 

due to occlusions. Apart from this fact, this algorithm also demands some high 

computational load and therefore, the real-time performance for multi-object 

tracking is not suitable for a surveillance system. 

 

KLT tracker is observed to be more robust to the occlusions, since it tracks the 

features instead of the objects. Moreover, it could be the only solution for the 

cases in which the application is tested during night in the darkness with 

conventional RGB cameras, where the background and color models of targets 

are not available.  

 

However, segmenting the features and grouping them into individual objects in 

complex scenes is quite difficult to achieve. The features are detected in the 

previously defined entrance regions and grouped together when they enter the 

exit regions. 

 

Cam-shift tracker has the same initial model generation problem with mean-shift 

tracker, however it has a low computational load and it can achieve real time 

performance in the multi-object tracking. 
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Figure 2.11 Mean-shift tracker for different time instants 

 
 
 

 
 

Figure 2.12 Cam-shift tracker performance for two moving vehicles whose trajectories are 

shown 
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(a) 

  
(b)      (c) 

 

Figure 2.13 KLT based vehicler tracking results  (a) Day scene,  (b) and (c) night scene 

 
 
 

2.3 Event Recognition 

 

Event recognition is the final part of a typical surveillance system, where the 

extracted motions of detected objects are interpreted. As the studies in the 

literature point out, there is no universally acceptable activity type that is of 

significant interest [7]. They are strongly application dependent. However, a 

meaningful method to recognize events is separating them as ‘normal’ or 

‘abnormal’ events, where abnormal can be defined as an unusual event, which 

does not have any previous occurrences through the observation interval. 
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Many methods have attempted to identify the activities [5][67][68][69][70][71]. 

Bashir et al. [73] propose a technique to recognize the motion trajectories of 

objects. They use Principal Component Analysis (PCA) to segment the 

trajectories into similar pieces of motions and employ Gaussian Mixture Models 

(GMMs) to recognize the segmented trajctories. Also in [74], they employ 

Hidden Markov Models (HMMs) instead of GMMs. The hidden states in HMMS 

are represented by GMs. In [72], Porikli and Li propose a traffic congestion 

estimation algorithm that employs Gaussian Mixture Hidden Markov Models 

(GM-HMM). They extract the congestion features in the compressed domain.  

 

These two methods, [72] and [74], have quite acceptable results and they are 

pursued as the event recognition algorithm. In this thesis, Gaussian Mixture 

Hidden Markov Models [22][23] are used to classify trajectories of objects as 

‘normal’ or ‘abnormal’, after they are trained by trajectories that are accepted to 

be ‘normal’. 

 

2.3.1 Hidden Markov Models 

 
Hidden Markov Model [22] is a statistical method to characterize the spectral 

properties of the frames of a pattern, which is also called Markov sources or 

probabilistic functions of Markov Chains. 

 

In this section, some background information about Markov processes is given 

for better understanding of the HMMs, and HMMs are described with some 

extensions to Markov processes. Apart this brief explanation, basic problems of 

HMMs are discussed and finally, event recognition by using HMMs is also 

examined. Most of the definitions about HMMs follow the text in [22][23] and 

the reader should refer to these resources for further information. 
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2.3.1.1 Markov Models 

 

General networks, such as those in Figure 2.14, are denoted as finite state 

machines, and when they have associated state transition probabilities ija , they 

are called Markov Networks [22]. These networks are strictly causal which 

means that the probability of being in one state is dependent on only upon 

predecessor states. However, for the first order discrete time Markov chains, the 

probabilistic dependence is truncated to just the previous state, as 

 

)|(,...),|( 121 iqjqPkqiqjqP ttttt ====== −−−   (2.15) 

 

The state transition probability ija  is given 

 

)|( 1 iqjqPa ttij === −      (2.16) 

 

with the following properties 0≥ija  and 1
1

=∑
=

N

j
ija  where N is the number of 

states.  

 

A Markov model is interpreted as ergodic, if every one of the states has a non-

zero probability of occurring given some starting state [22]. 

 

2.3.1.2 Extensions to HMMs 

 

Until now, it is assumed that each state in the Markov model corresponds to an 

observable event. However, the model can also emit some (visible) symbol )(tv  

(observable events). While sophisticated Markov models allow for the emission 

of continuous functions (e.g., spectra), at this point for the sake of simplicity, 

only the case, where a discrete symbol is emitted, is discussed. 
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The model is then, that in any state, )(tw , it has a probability of emitting a 

particular visible state, )(tvk . This probability is denoted as 

 

))(|)(( twtvPb jkjk =      (2.17) 

 
 
 

 
 

Figure 2.14 A typical finite state machine [22] 

 
 
 

Finally, the model is consisted of states, )(tw , which have probability of emitting 

a particular visible state, )(tvk , ijb , with state transition probabilities ija . If it is 

accessible only to the visible states, while iw  are not observable, then such a 

model is called a Hidden Markov Model [22].  

 

The HMM λ can be characterized by five parameters which are 

 
1. Number of states in the model, N 

2. Number of observation states per state, M 
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3. State transition probabilities, A ( ija ) 

4. Observation probabilities, B ( ijb ) 

5. Initial state distributions, π ( iπ ) 

 

where ),,( πλ BA=  as a compact notation. 

 

2.3.1.3 Fundamental Problems of HMMs 

 

For each HMM, there are 3 critical problems that must be solved. The first one is 

the evaluation problem that is finding the probability of observation sequence for 

a given model. The second one is the decoding problem that is finding the 

optimal state sequence for a given observation sequence, and the last one is the 

learning problem that is adjusting the parameters of a HMM. 

 

2.3.1.3.1 Evaluation Stage 

 

The probability of observing sequence O for fixed sequence q where 

)...( 21 ToooO =  and )...( 21 Tqqqq =  is 
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where it is assumed that observations are statistically independent. Then, the 

probability of observing sequence O for given model λ is; 
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Above probability can be solved inductively in an efficient way by using the 

forward-backward algorithm [22] as follows; 

 

1 Initialization 

   )()( 11 obi iiπα =   Ni ≤≤1  

2 Induction 
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3 Termination 
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i
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2.3.1.3.2 Decoding Stage 

 

There are more than one solution to find the ‘optimal’ state sequence associated 

with the given observation sequence. The problem lies within the definition of the 

optimal state sequence, since there are several possible optimality criteria. For 

example, when the HMM has zero state transition probabilities, the ‘optimal’ 

sequence may not be a valid one. In order to find a single best state sequence, 

Viterbi Algorithm [23] can be used 

 

For finding the best state sequence q for the given observation sequence O, it is 

required to define the quantity as follows 

 

))|...,,...((max)( 21121... 121

λδ tttqqqt oooiqqqqPi
t

== −
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  (2.20) 

 

where )(itδ  is the highest probability along a single path at time t which accounts 

for the first t observations and ends in state i. 
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By induction 

 

)(.])(max[)( 11 ++ = tjijtit obaij δδ    (2.21) 

 

The complete procedure for finding the best state sequence can now be stated as 

follows; 

 

1. Initialization 
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4. Path backtracking 
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2.3.1.3.3 Learning Stage 

 

The most difficult problem of HMMs is to determine the model parameters 

),,( πBA  to satisfy a certain optimization criterion. There is no defined way to 

analytically solve for the model parameter set that maximizes the probability of 

observation sequence. However, ),,( πλ BA=  can be selected such that its 
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likelihood, )|( λOP , is locally maximized by using an iterative procedure, such 

as the Baum-Welch Method [23]. 

 

The probability of being in state-i at time t, and state-j at time t+1, given the 

model and the observation sequence, ),( jitε  is defined as 

 

),|,(),( 1 λε OjqiqPji ttt === +     (2.22) 

 

By using the definitions of forward and backward variables, ),( jitε  can be 

written as 
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Then, the probability of being in state-i at time t, given the entire observation 

sequence and the model, )(itγ  is related with ),( jitε  as follows 
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Then, ∑
−

=

1

1
)(

T

t
t iγ  can be interpreted as expected number of transitions from state-i 

in O while ∑
−

=

1

1
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T

t
t jiε  can be interpreted as expected number of transitions from 

state-i to state-j in O.  
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By using these formulas, a set of reasonable reestimation formulas forπ , A, and 

B is 

 

jπ = expected number of times in state at time t=1= )(1 iγ  
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It is stated in [23] that, if the current model is defined as ),,( πλ BA=  and the 

reestimated model is defined as ),,( πλ BA= , then either λλ = ; or λ is more 

likely than λ  in the sense that )|()|( λλ OPOP = . 

 

If the reestimated model λ  is used in place of the current modelλ , and the 

reestimation calculation are repeated, then a certain limiting point which is the 

ML estimate of the HMM is reached. 

 

2.3.1.4 Continuous Observation Densities in HMMs 

 

Observations of HMMs are considered as discrete symbols. However, in some 

applications, the observations are continuous signals and discretization causes 

loss of information. Hence, HMMs with continuous observation densities [23] are 

used to model continuous signals. 
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The most general representation of the observation pdf is a finite mixture of 

Gaussians; 

 

∑
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where o is the observation vector modeled and jkc is the weight of kth mixture at 

state-j. 

 

2.3.2 Event Recognition by Using HMMs 

 

Motion history of a moving object must be extracted to interpret its behavior. The 

position and the velocity information of the object of interest can be used to 

define its motion history. Furthermore, the position is sufficient enough to model 

the motion history when the time between the position measurements is known, 

because position information together with time information encapsulates the 

velocity.  

 

Positions of the moving objects, during the observation interval, are obtained by 

using the previously discussed moving object segmentation and tracking methods 

in each input frame. The position of the thi  object in the thk  frame is shown as 

the position vector; 

 

[ ]i
k

i
k

i
k yxp =       (2.26) 

 

Then, these position vectors are concatenated to form a trajectory vector, in order 

to generate a motion history, which is defined as; 
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     (2.27) 

 

where m is the starting frame number in which the object enters the field-of-view 

(FOV) region, n is the end frame number in which the object leaves the FOV 

region. 

 

As stated in the previous sections, GM-HMMs should be trained by ‘normal’ data 

to classify ‘abnormal’ data. Therefore, trajectories, which are known to be 

‘normal’, are used to train GM-HMMs. 

 

In order to give some idea, the discussed method is tested by using a traffic video 

sequence which is in MPEG-2 format recorded at 25 fps with a resolution of 

320x240.  

 

Single GM-HMMs is found to have difficulties in modeling the whole traffic 

flow, since each lane has different characteristics. For example, 30 kmph is a 

‘normal’ speed for the rightmost lane, whereas it is ‘abnormal’ (too slow) for the 

leftmost lane in free-flow traffic. Hence, the same number of GM-HMMs as 

traffic lanes is used to model the traffic flow. Moreover, the number of states in 

the GM-HMMs of comparatively fast lanes is small with respect to other lanes, 

since fewer measurements are available for those lanes. These models are 

illustrated in Figure 2.15. 

 
After GM-HMMs are trained by the observed “normal” sequences, trajectories of 

the moving objects are classified by GM-HMMs of the corresponding lane and 

decided to be ‘normal’ or ‘abnormal’. If the given trajectory can be modeled by 
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the corresponding GM-HMMs, which means that the calculated Viterbi distance 

[23] is smaller than a certain threshold, then the trajectory is classified as 

‘normal’; otherwise, as ‘abnormal’. A classification example is given in the 

Figure 2.16. 

 
 
 

 
 

Figure 2.15 HMM lay out example 
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(a)      (b) 

 
(c) 

 

Figure 2.16 Event detection by using GM-HMMs (a) object with horizontal motion (b) 

object leaves the road (c) classified as 'abnormal', since GM-HMMs are trained with 

vertical trajectories 
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CHAPTER 3 

 

 

BACKGROUND MATERIAL 

 

 

 
In this chapter, some fundamental concepts, which are strictly necessary for 

better understanding of the remaining chapters in this thesis, are briefly 

discussed. This chapter contains information about important material, such as 

camera model, epipolar geometry, fundamental matrix, trifocal tensor, as well as 

an introduction to the graph theory. Most of the definitions about camera model, 

epipolar geometry, fundamental matrix and trifocal tensor follow the text in 

[24][25] and the reader should refer these resources for further information. 

 

3.1 Camera Model 

 

A camera model is a simple mapping between the 3D world coordinates and a 2D 

image. Transformation between the 3D world coordinates and a 2D image are 

mostly represented as a simple matrix. Throughout this thesis, the camera model 

with finite optical center, which is denoted as finite camera [24], is utilized. In the 

beginning, the most specialized and simplest finite camera model, which is the 

basic pinhole camera, is explained and then this model is progressively 

generalized through a series of modifications. 
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3.1.1 Basic Pinhole Camera Model 

 

In basic pinhole model [24], projection of a point in 3D world coordinates onto 

2D image plane or focal plane (or Z = f plane) is simply achieved by passing a 

line between the 3D point and the camera center. Intersection of this line with the 

image plane is the location of the projection of the 3D point on the 2D image 

plane, as shown in the Figure 3.1. 

 
 
 

 
 

Figure 3.1 Basic pinhole camera model 

 
 
 
By using similar triangles as shown in Figure 3.2, it can easily be computed that 

3D point TZYXX ),,(=  on the space is mapped to the 2D point on the image 

plane. 

 

( ) ( )ZfYZfXZYX /,/,, a      (3.1) 
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Figure 3.2 Side view of the basic pinhole camera model 

 
 
 
If both 3D (world) and 2D (image plane) point coordinates are expressed by 

using homogeneous vectors, then the projection is a linear mapping between their 

homogeneous coordinates. Then, (3.1) can be written as 
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And (3.2) can be written more compactly as  

 

XPx =        (3.3) 
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Equation (3.3) defines the 3x4 camera matrix (camera projection matrix) P  for 

the basic pinhole model of central projection as [24] 

 

[ ]0|)1,,( IffdiagP =      (3.4) 

 

3.1.2 Principal Point Offset 

 

Intersection point of the principal axis and image plane is called ‘principal point’ 

[24] (P in Figure 3.3). In expression (3.1), it is assumed that the origin of the 

image plane is at the principal point. However, in practical cases this relation may 

not hold, and hence, the mapping becomes 

 

( ) ( )Tyx
T pZfYpZfXZYX ++ /,/,, a    (3.5) 

 

where (px, py)
 
are the coordinates of the principal point seen on Figure 3.3. This 

relation can be written in matrix form 
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then (3.6) has the concise form  

 

[ ] camXIKx 0|=       (3.7) 
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Figure 3.3 Principal point of the image plane 

 
 
 
The matrix K is called the camera calibration matrix [24] and the camera is 

assumed to be located at the origin of a Euclidean coordinate system with its 

principal axis pointing straight down the Z-axis, and the point camX  is expressed 

in this coordinate system. Such a coordinate system is called the camera 

coordinate frame.  

 

3.1.3 Camera Rotation and Translation 

 

Points in space can be expressed in terms of a different Euclidean coordinate 

frame which is known as the world coordinate frame, and it is related to camera 

coordinate frame via a rotation and a translation, as shown in Figure 3.4. If X is 

an inhomogeneous 3-vector representing the coordinates of a point in the world 

coordinate frame, and camX  represents the same point in the camera coordinate 

frame, then )( CXRX cam −=  and this relation can be written can be written in 

homogeneous coordinates as  
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where C represents the coordinates of the camera centre in the world coordinate 

frame, and R is a 3 x 3 rotation matrix representing the orientation of the camera 

coordinate frame.  

 
 
 

 
 

Figure 3.4 Transformation between world coordinate frame and camera coordinate frame 

 
 
 
Then (3.7) and (3.9) lead to 

 

]|[ tRKP =        (3.10) 

 

where RCt −= . 
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3.1.4 Computation of the Camera Matrix P 

 

In computation of the camera matrix P, point correspondences ii xX ↔  between 

3D points and 2D image points are used. The camera matrix P must satisfy the 

relation 

 

ii XPx =        (3.11) 
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Then using (3.11) 
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is derived where each iTP  is a 4-vector, which is the thi  row of P. Since three 

equations in (3.12) are linearly dependent, then 
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The above relation could be used instead of (3.12). 
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The projection matrix P is computed by solving a set of equations 0=Ap , where 

p is the vector containing the entries of the matrix P. Since the camera matrix has 

12 entries and 11 degrees of freedom, 11 equations are needed to solve for P. For 

each point correspondence, one has 2 equations, hence, 6 point correspondence is 

enough to solve for P. Then, the algorithm [24] is  

 

(i) For each correspondence ii xX ↔ , compute the matrix iA  (only the 

first two rows are required in general).  

(ii) Assemble the n 2x9 matrices iA  into a single 2nx9 matrix A.  

(iii) Obtain SVD of A. The unit singular vector corresponding to the 

smallest singular value is the solution h. Specifically, if TUDVA =  

with D diagonal with positive diagonal entries, arranged in descending 

order down the diagonal, then h is the last column of V.  

(iv) The matrix P is determined from p as in (3.12). 

 

3.1.5 Homography Matrix 

 

Homography [24] is a projective mapping that maps coplanar points ix  on the 

plane 1π  to coplanar points ′
ix  on the plane 2π . Homography can be represented 

by 3x3 matrix, H, which can be derived by using the mapping between the points 

ix  and ′
ix .  

 

The matrix H contains 9 entries, but it can be defined only up to a scale. Thus, the 

total number of degrees of freedom in a 2D projective transformation is 8. 

Therefore, we need 4 points to compute H matrix, since a 2D point has two 

degrees of freedom corresponding to the x and y components. Computation 

procedure is similar to that of the projection matrix P. 
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3.2 Epipolar Geometry and Fundamental Matrix 

 

The epipolar geometry [24] is the intrinsic projective relation between two views. 

It only depends on the internal parameters and relative positions of the cameras; 

therefore, it is independent of the scene structure. Fundamental matrix [24], F, 

represents the epipolar geometry between two views and encapsulates the 

intrinsic geometry. 

 

3.2.1 Epipolar Geometry 

 

The epipolar geometry [24] between two views is the geometry of the intersection 

of two image planes with the line between the two camera centers. The 

intersection point of the line joining two camera centers (the baseline) with the 

image plane is denoted as epipole. Therefore, the epipole is the image in one view 

of the camera center of the other view. The plane containing the baseline is called 

as epipolar plane and the line formed by intersecting the epipolar plane with the 

image plane is called epipolar line. All epipolar lines intersect at the epipole and 

an epipolar plane intersects the image planes in epipolar lines. 

 

In the case where only 2D image coordinates, x, of the 3D point X are known, 

epipolar plane can be obtained by using the ray connecting x and camera center 

and baseline. Then, the intersection of this epipolar plane and the other image 

plane will be the epipolar line and the correspondence of x in the second view x′  

which is the projection of X onto second image plane, must be on this epipolar 

line. By using some stereo matching algorithms, location of the x′  in image plane 

can be determined. Hence, the intersection of the ray passing through the first 

camera center and x with the ray passing through the second camera center and 

x′  is the 3D location of the X. 
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Figure 3.5 Epipolar geometry 

 
 
 
 
 

 
 

Figure 3.6 Point correspondence geometry 
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3.2.2 Fundamental Matrix 

 

The fundamental matrix [24] is the algebraic representation of the epipolar 

geometry and it can be derived by using the mapping between the point and its 

epipolar line. For each point x in one image, there exists an epipolar line l ′  in the 

other image which contains the match of the point x, as x′ . The epipolar line is 

the projection in the second image of the ray passing through the point x and 

camera center C. Hence, there is a mapping between x and l ′ ; lx ′a . This 

mapping can be represented by a 3x3 matrix, which is the Fundamental Matrix, 

F, and it is a projective mapping from points to lines. 

 

3.2.2.1 Geometric Derivation 

 

Geometric derivation of the fundamental matrix starts with the mapping of the 

point x to some point x′  in the other image lying on the epipolar line l ′ . This 

mapping is achieved by using a plane π  in space not passing through either of 

the two camera centers. The ray through the camera center and image point x 

intersects the plane π  at the point X. Projection of this point X onto the other 

image plane is the image point x′  and x′  must line on the epipolar line l ′  as 

shown in the Figure 3.7. The points x and x′  are both images of the 3D point X 

lying on a plane. Thus, there is a 2D homography πH  mapping between each ix  

and ix′ , as 

 

xHxi π=′        (3.13) 

 

Then, the epipolar line l ′  passing through the image point x′  and epipolar line e′  

can be written as 

 

[ ] [ ] FxxHexexel xx =′=′′=′×′=′ π      (3.14) 
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Figure 3.7 Projection of image point onto the other image plane 

 
 
 

where [ ] πHeF x′= . F is the fundamental matrix and [ ]X expression is the 3x3 

skew symmetric matrix  which is defined for an arbitrary vector Taaaa ),,( 321=  

as 
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3.2.2.2 Algebraic Derivation 

 
The Fundamental Matrix can also be derived algebraically using the two camera 

projection matrices P and P′ . The ray back-projected from x by P is obtained by 

solving PX = x.  

 

CxPX λλ += +)(       (3.16) 
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where λ  is some scalar to parameterize the ray, +P  is the pseudo-inverse of P 

satisfying P +P =I and C its null vector, namely the camera center, defined by 

PC=0. 

 

In particular, two points on the ray are +P x (at A = 0), and the first camera 

centre C (at A = ∞ ). These two points are imaged by the second camera P′  at 

xPP +′  and CP′  respectively in the second view. The epipolar line is the line 

joining these two projected points, )()( xPPCPl +′×′=′ . The point CP′  is the 

epipole in the second image, namely the projection of the first camera centre, and 

might be denoted by e′ . Thus,  

 

[ ] ( ) FxxPPel x =′′=′ +       (3.17) 

 

where +′′= PPeF x][ , which is the same result with the previous one 

since +′= PPHπ . 

 

3.2.2.3 Properties of Fundamental Matrix 

 

Fundamental matrix is a projective mapping from a point to a line. Therefore, it 

has a rank two and there is not any inverse mapping between the images since F 

is not full rank. The fundamental matrix satisfies the epipolar constraint  

 

0=′ Fxx T        (3.18) 

 

for any pair of corresponding points xx ′↔  in the two images and maps 2D 

image point onto epipolar line l ′ . 

 

lFx ′= .        (3.19) 
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The important properties of fundamental matrix are summarized in Table 3.1. 

 
 
 

Table 3.1 Summary of fundamental matrix properties [24] 

 

• F is a rank 2 homogeneous matrix with 7 degrees of freedom 

• Epipolar constraint : If x and x′  are corresponding image points, then 

0=′ Fxx T  

• Epipolar lines: 

o Fxl =′  is the epipolar line corresponding to x 

o xFl T ′= is the epipolar line corresponding to x′  

• Epipoles: 

o 0=Fe  

o 0=′eF T  

• Derivation of F: 

o Geometric derivation: [ ] πHeF x′=  where πH  mapping each ix  

to ix′ . 

o Arithmetic derivation: +′′= PPeF x][  where +P  is the pseudo-

inverse of P. 

 
 
 

3.3 Trifocal Tensor 

 

Trifocal tensor [24] has an analogous role in three-view geometry to that of 

fundamental matrix in two-view geometry. It encapsulates all the projective 

geometric relations between three views that are independent of the scene 

structure. The tensor only depends on the orientation between views and the 

internal parameters of the cameras and could be uniquely defined by the camera 
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matrices of the views. It could be computed from image correspondences alone 

without requiring knowledge of the orientation or calibration.  

 

In this section, only point transfer property of the trifocal tensor from a 

correspondence in two views to the corresponding point in the third view will be 

discussed briefly. The point transfer problem is finding the corresponding point 

x ′′  in the third image, while knowing the matched pair x  and x′  in the first two 

views. This problem can be solved using the projection matrices P1, P2 and P3 of 

three views.  

 

As discussed in the Section 3.2.2.2, fundamental matrices F31 and F32 can be 

obtained by using these projection matrices. Then, corresponding epipolar lines 

for x  and x′  on the third image can be determined by using (3.19). The required 

point x ′′  must lie on both of the epipolar lines, since it is the epipolar match of 

point x  in the first image and point x′  in the second image. Taking the 

intersection of the epipolar lines results with the required point x ′′ , as shown in 

the Figure 3.8. 

 

( ) ( )xFxFx 3231 ×=′′       (3.20) 

 

 

 

 
 

Figure 3.8 Point transfer 
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3.4 A Brief Introduction to Graph Theory 

 

A graph [26] is a set of objects, called points, nodes, or vertices that are 

connected by links, denoted as lines or edges. In a proper graph, which is by 

default undirected, a line from point A to point B is considered to be the same 

thing as a line from point B to point A. Typically, a graph is depicted in 

diagrammatic form as a set of dots (for the points, vertices, or nodes), joined by 

curves (for the lines or edges). [26], as shown in Figure 3.9. 

 

Given a connected undirected graph, a spanning tree [27] of that graph is a 

subgraph which is a tree and connects all its vertices together. A single graph 

might have many different spanning trees. A weight to each edge can also be 

assigned, which is a number, representing how unfavorable it is, and can be used 

to assign a weight to a spanning tree by computing the sum of the weights of the 

edges in that spanning tree. A minimum spanning tree (or minimum weight 

spanning tree) is then a spanning tree with weight less than or equal to the weight 

of every other spanning tree. More generally, any undirected graph has a 

minimum spanning forest [27]. 

 

 

 

 

 

Figure 3.9 A labeled graph on 6 vertices and 7 edges. 

2

3

4

5

1 
6



 

57

The minimal spanning tree can be found by using Kruskal’s algorithm [26]. 

Kruskal's algorithm is an algorithm in graph theory that finds a minimum 

spanning tree for a connected weighted graph. In other words, it finds a subset of 

the edges that forms a tree that includes every vertex, where the total weight of all 

the edges in the tree is minimized. If the graph is not connected, then it finds a 

minimum spanning forest (a minimum spanning tree for each connected 

component). Kruskal's algorithm is a typical example for a greedy algorithm and 

can be summarized as follows [26]: 

1. Create a forest F (a set of trees), where each vertex in the graph is a 

separate tree 

2. Create a set S containing all the edges in the graph 

3. While S is nonempty  

4. Remove an edge with minimum weight from S 

5. If that edge connects two different trees, then add it to the forest, 

combining two trees into a single tree 

6. Otherwise discard that edge 

At the termination of the algorithm, the forest has only one component and forms 

a minimum spanning tree of the graph. 

 
 
 

 
 

Figure 3.10 The minimum spanning tree of a planar graph. Each edge is labeled with its 

weight, which here is equal to its length. 
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CHAPTER 4 

 

 

MULTI-CAMERA BACKGROUND MODELING 

 

 

 
Foreground object detection via background subtraction has been used 

extensively in video surveillance applications due to its satisfactory performance 

and computational effectiveness. However, when a single camera is used, it is 

relatively difficult to deal with false segmentation results caused by dynamic 

scenes and shadows. These false segmentations result in failure in subsequent 

actions, such as tracking and event recognition. 

 

The use of multiple cameras leads to better handling of dynamic scenes, shadows 

and illumination changes due to the utilization of 3D information, compared to a 

single camera. However multi-camera methods usually have heavy computational 

load with respect to the previously discussed single camera methods.  

 

Most of the methods employing multi-camera systems, which are discussed in the 

following section, use stereo cameras and depth information to model their 

background. However, stereo cameras are not available in most of the 

surveillance applications, and systems consisting of individual cameras with 

intersecting field of views (FOVs), as shown in Figure 4.1, are generally 

preferred, due to their wide area coverage. 
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Figure 4.1 An example of camera lay-out in surveillance applications [28] 

 
 
 
In this chapter, multi-camera background modeling methods, which are 

comparatively less demanding in terms of computation, are discussed. These 

methods use the information coming from two separate cameras with intersecting 

FOVs, that is obtained by relating the input images by the homography matrix. 

The incoming information from the cameras is concatenated by using various 

simple fusion methods and therefore, they might achieve real-time performance. 

The simulation results are presented at the end of each section. 

 

4.1 Related Work 

 

Many methods have attempted to solve some of the background modeling 

problems by using multi-camera configurations. Most of them use stereo cameras 

to segment the foreground regions. Goldlucke and Magnor [30] present an 
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algorithm to reconstruct the 3D-geometry of a static scene by using images 

captured from a number of calibrated cameras directly. A depth value is assigned 

to each pixel which defines its location in 3D-space; hence, a 3D background 

model is presented. However, in case of a stereo camera, it is necessary to find 

the stereo correspondences precisely, to model the background. Thus, stereo 

algorithms can be used, as proposed in [31][32]. Goldlucke and Magnor assume 

that they have a set of fully calibrated cameras and an image of the static 

background for each camera with at least approximate per-pixel depth 

information. However, these assumptions are difficult to satisfy, when wide-

baseline camera configurations are considered. 

 

Ivanov et al. [33] described a method that employs the accurate stereo, for 

constructing the background model, where the color difference between 

conjugate pixels is used to distinguish between background and foreground. 

Hence, the on-line computation of depth and the reconstruction of the 3D model 

of space at each step are avoided. Their method is based on the fact that if the 

background is geometrically static, stereo disparity between a primary and an 

auxiliary camera views of the background scene is also static, fully specifying the 

pixel-to-pixel transformation from one image of empty scene to another. This 

method has the obvious drawback of pixel-to-pixel stereo disparity calculation in 

wide-baseline systems with dynamic background. 

 

Lim et al. [34] propose a sensor configuration that eliminates false detections of 

the method proposed in [33]. They claim that the performance of the method 

discussed in [33] is improved by eliminating most detection errors due to missed 

detections, specular reflections and objects being geometrically close to the 

background. However, their method still has the drawbacks of [33] when wide-

baseline configurations are considered. 

 

Harville et al. [29] proposed a multimodal system, which adapts Gaussian 

mixture models of the expected background appearance, to the combined image 
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feature space of depth and luminance-normalized color. They use spatially-

registered, time-synchronized pairs of color and depth images that are obtained 

by static cameras. This method has quite interesting results. However, the 

complexity of the algorithm is relatively high and the depth information for the 

observation vector of each pixel is, again, difficult to find for camera 

configurations for wide-baseline systems. 

 

4.2 Background Modeling from Multi-view Video 

 

Multi-camera background modeling algorithms give promising results, 

considering the previous research efforts. Many false segmentation results which 

occurred due to illumination variances and dynamic background objects, are 

eliminated by using the fused information coming from the multi-sensor network. 

However, depth information is still not available for most of the surveillance 

applications. 

 

The simplest way of segmenting foreground regions by using multi-view system 

is fusing the incoming images via homography between images. Homography 

relation is explained in Section 4.3 and two different foreground decision 

methods are also discussed in Section 4.4 and 4.5. 

 

Harville et al. [29] is pursued for developing a background modeling algorithm 

due to their promising results with relatively simple algorithm. In their method, a 

common background model for two-views is constructed by using mixture of 

Gaussians. However, instead of constructing the observation vector by color and 

depth information, which is relatively hard to obtain, RGB values of matched (by 

homography) pixels can be used. This proposed method is described in detail at 

Section 4.5. 
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4.3 Relating Images With Homography 

 

Information coming from the different camera systems must be related to each 

other to generate a common framework. Camera calibration and fundamental 

matrix can be used to relate them; however, automated camera calibration is a 

difficult task, when typical wide-baseline camera systems are considered. It is 

difficult to find the epipolar matches and the 3D coordinates of the 

features/objects, and 3D computations demand heavy computational load.  

 

In this chapter, instead of fundamental matrix, homography matrix is used to 

relate the images to each other which are taken by different camera 

configurations. Homography matrix 12H  between two camera views, assuming 

that the region of interest is planar (ground-plane assumption), can be derived by 

using the matched points ix  and ix′  as shown in the Figure 4.2. Homography 

matrix calculation is explained in detail in the Section 3.1.5. 

 
 
 

 

 

Figure 4.2 Corresponded points used to find homography matrix 
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Moreover, the common region of interest (ROI) for the camera pair must be 

defined to specify the region in which the cameras will cooperate. In the regions 

excluding common ROI, cameras perform their single camera tasks. This region 

of interest is defined by the intersection of the FOVs of cameras and it is obtained 

by using the homography matrix. 

 

Projections of all pixels in the first camera view onto the second camera view, 

which are calculated by using the homography matrix, can be used to find the 

intersecting FOV. Projected pixels which are inside the boundaries of second 

camera’s image plane are the pixels of intersecting FOV. It is illustrated in the 

Figure 4.3 and Figure 4.4. 

 

In the following sections, the homography matrix is used by planar object 

assumption in which the foreground objects are assumed planar and lie on the 

ground plane. Furthermore, in such two-camera systems, one of the cameras is 

defined as reference camera, whereas the other one is defined as auxiliary 

camera.  

 

4.4 Foreground Detection by Unanimity 

 

One of the primary decision methods, which can be used to integrate incoming 

information, is checking the unanimity of foreground-background decisions of 

the two cameras. Final decision is given according to the individual decisions of 

both cameras, if a certain foreground pixel in the first camera view is also labeled 

as a foreground pixel in the second camera view, then it is decided as foreground 

in the final decision. 

 

In this method, each camera has its own background model, and performs its 

background subtraction independently by using one of the background modeling 

algorithms discussed in Chapter 2. Next, homography matrix 12H  between the
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(a)      (b) 

  
(c)      (d) 

 

Figure 4.3 Related images of “junction data” (a) and (b) are the input images of first and 

second cameras respectively, (c) and (d) are the defined common FOVs 
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(a)      (b) 

  
(c)      (d) 

 

Figure 4.4 Related images of “PETS2001 dataset1” [76] (a) and (b) are the input images of 

first and second cameras respectively, (c) and (d) are the defined common FOVs 
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first and second camera is calculated. After foreground masks are generated for 

each camera, foreground pixels in the first camera’s intersecting FOV are 

checked by the foreground pixels in the second camera’s intersecting FOV 

region. 

 

For each foreground pixel ix  in the first camera’s ground plane (intersecting 

FOV), corresponding point ix′  in the second camera’s ground plane is 

determined. If the point ix′  is also labeled as foreground pixel by the second 

camera, then ix  remained untouched, otherwise, it is labeled as background. The 

foreground pixels which are out of the common FOV, are processed by using 

single camera algorithms. 

 

This method eliminates the false detected regions in the first camera view which 

are segmented correctly in the second camera view. As shown in Figure 4.5, false 

segmented regions due to the flags are eliminated. In this simulation, foreground 

pixels, which are outside the common FOV, are masked to show only the results 

of discussed algorithm. 

 

The most important drawbacks of the proposed system are the projection errors 

that occur due to the plane object assumption and the segmentation errors in the 

second camera view. Any error in the second camera view directly affects the 

final decision and masks the foreground regions of the first camera. Therefore, a 

method based on the weighting of the decisions is proposed in the next section. 
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(a)      (b) 

  
(c)      (d) 

 
(e) 

 

Figure 4.5 Simulation results of “junction data” (a) and (b) are input images, (c) and (d) are 

corresponding foreground masks obtained by using MOG method, (e) is the final 

foreground mask 
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(a)      (b) 

  
(c)      (d) 

 
(e) 

 

Figure 4.6 Simulation results of “PETS2001 dataset1” [76] (a) and (b) are input images, (c) 

and (d) are corresponding foreground masks obtained by using MOG method, (e) is the 

final foreground mask 
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4.5 Foreground Detection by Weighted Voting 

 

In multi-camera configurations, different parts of the scene may be monitored 

more clearly by different cameras due to their positions. Therefore, utilization of 

the decisions of cameras by equal weights is not suitable in some cases. In the 

proposed method, instead of checking unanimity, a similar method for “voting 

with weights” is used. Each camera votes for a common FOV pixel with a certain 

weight whether it is a foreground pixel or not. The weight of the vote for the 

pixel is decided with respect to the corresponding pixel’s background model. If 

the pixel differs strongly from its background model, it is voted with larger 

weight as foreground. Moreover, one of the cameras with a better positioning is 

decided as the reference camera and it has a larger weight with respect to the 

other (auxiliary) camera. The final decision is given by adding the votes and 

comparing the sum with a certain threshold. 

 

Similar to the previous method, each camera has its own background model. For 

each pixel in the first camera view ix , corresponding point ix′  in the second view 

is obtained by using a homography. Then, for each pixel in the pair ii xx ′↔ , its 

difference with the corresponding background model is obtained. Next, their 

votes are weighted by using (in proportion) the calculated differences and 

corresponding camera’s weight. After this step, the weighted votes are added and 

resulting sum is compared against a certain threshold and the foreground mask is 

determined, as formulated in (4.1). 
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where ),( txI i  and ),( txI i′  are the intensity values of the pixels in the matched 

pair at time t, )1,( −txBM ii  and )1,( −txBM ii  are the corresponding pixels’ 
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background models at time t-1, α .and β  are the coefficients to adjust the 

contributions of the cameras. Generally, the contribution for the first camera 

(reference camera with better positioning) is larger than the second one, and 

βα ≥ . 

 

As a result, weak vote (with small weight), given by one of the cameras as 

foreground for a certain pixel, is suppressed, if the decision, given by the other 

camera for the corresponding pixel as background, is strong (large weight) or 

vice versa. Moreover, two weak foreground votes might result in foreground 

decision, if their sum is large enough. 

 

Frame differencing is performed to find the foreground masks, as shown in 

Figure 4.7 (a) and (b), and segmented foreground pixels, which are outside the 

common FOV, are masked to show only the results of discussed algorithm. As 

shown in the Figure 4.7 (c), false segmented regions due to the flags are mostly 

eliminated, while the segmented vehicle masks are preserved. However, plane-

object assumption also adds some projection error noise to the segmented 

foreground masks. 

 

4.6 Mixture of Multivariate Gaussians Background Model 

 

The proposed methods that are considered up to this point, are based on 

segmentation of the foreground regions by using two camera models. Hence. 

each input image pair is first compared with its corresponding background 

models. Then, decisions or comparison results of each camera are fused to give 

the final decision. However, these methods are very sensitive to this final 

decision method and votes given by cameras can be unified by several different 

methods. For example, the final decision can be given by taking the majority of 

votes into account, or by just unanimity. However, each decision method is 

suitable for a different case and not appropriate for an overall system. 
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(a)      (b) 

 
(c) 

 

Figure 4.7 Simulation results of “junction data” (a) and (b) are corresponding foreground 

masks obtained by using frame differencing method, (c) is the final foreground mask 
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(a)      (b) 

 
(c) 

 

Figure 4.8 Simulation results of “PETS2001 dataset1“ [76] (a) and (b) are corresponding 

foreground masks obtained by using frame differencing method, (c) is the final foreground 

mask 
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Hence. a multi-camera background modeling technique, which is similar to the 

one discussed in [29], by using mixture of multivariate Gaussians, is proposed. 

 

Multivariate Gaussians can be thought of as a generalization to higher dimensions 

of the one-dimensional Gaussians. Therefore, mixture of multivariate Gaussians 

background modeling can be thought of as a generalization to higher dimensions 

of the single camera mixture of Gaussians background modeling [3]. Each 

dimension is constructed by using the information coming from one of the 

cameras. For a two camera case, which is discussed in this thesis, the first camera 

and the second camera construct a single background model  

 

Each pixel in the main camera view and intersecting FOV’s unified background 

model is constructed by mixture of K  multivariate Gaussian distributions. The 

pixels in the non-overlapping field of the main camera view are modeled by using 

mixture of one dimensional Gaussians, which is similar to the single camera case. 

Then, the probability of observing a pixel value XN in the common FOV at time 

N is  
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In the formulation above, Nx  refers to a pixel in the main camera’s intersecting 

FOV, while Nx′  is the homographic projection of Nx  onto the auxiliary camera’s 

intersecting FOV.  
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Then  

 

NN xHx 12=′ .      (4.3) 

 

Finally, for each pixel Nx , there are 3 mixtures of K  multivariate Gaussian 

models, each corresponding to a color channel, R, G or B. For other pixels, 

formulation that is explained in the Section 2.1.1.4 is used. 

 

Every new pixel value, tx , is checked against the existing K  Gaussian 

distributions, until a match is found. A match is defined as a pixel value within 

2.5 standard deviations of a distribution. If none of the K  distributions match the 

current pixel value, the least probable distribution is replaced with the current 

value as its mean value, an initially high variance, and low prior weight. 

 

The prior weight of the kth Gaussian at time t  is adjusted as follows 

 

tktktk Mww ,1,, )1( αα +−= −    (4.4) 

 

where α  is the learning rate and tkM ,  is ‘1’ for matched models, and ‘0’ for 

remaining models. 

 

The μ  and σ  for unmatched distributions remain same, while the matched ones 

are updated as follows; 
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(a)      (b) 

 
(c) 

 

Figure 4.9 Simulation results of “junction data”, (a) input frame (b) corresponding 

foreground mask found by using single camera MOG, (c) foreground mask found bu using 

mulltivariate MOG 
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(a)      (b) 

 
(c) 

 

Figure 4.10 Simulation results of “PETS2001 dataset1” [76], (a) input frame (b) 

corresponding foreground mask found by using single camera MOG, (c) foreground mask 

found bu using mulltivariate MOG 
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This method suffers from projection errors due to the assumption that objects are 

planar and, in some cases, in which the tall vehicles are considered; these errors 

result in larger foreground masks than the actual size of the objects. However, 

some missed vehicles in single camera MOG method can be segmented in 

multivariate MOG method, as shown in the Figure 4.9, and the proposed method 

also has real time performance. 

 

4.7 Conclusion 

 

In all of the discussed methods, the projection errors have important effect on the 

false segmented foreground masks. The assumption that the moving objects are 

considered planar, results erroneous masks especially for large vehicles. 

Therefore, these methods and homography matrix usage to relate images are 

more suitable for systems in which the cameras are mounted on devices at high 

altitudes, where the height of the object becomes negligible with respect to the 

altitude of the camera. If the camera lay-out is as suggested, the projection errors 

are minimized and the proposed method could give more precise foreground 

masks. 
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CHAPTER 5 

 

 

MULTI-CAMERA OCCLUSION HANDLING 

 

 

 
Occlusion is one of the primary problems of single camera surveillance systems. 

In the moving object detection process, occlusions cause moving objects to be 

either segmented in an erroneous shape or became totally lost. These false 

segmentation results cause subsequent actions to fail or a decrease in their 

performance.  

 

Occlusions could be separated into two main classes. The first one is static 

occlusion where the foreground object is occluded by an obstacle in the 

background scene. In partial static occlusion, moving object can still be tracked 

with a loss in size and shape information. However, in the total occlusion cases, 

track of the occluded object is generally lost and must be predicted within the 

frames in which the occlusion has occurred. In the second type, which is called 

dynamic occlusion, a moving object occludes another moving object. In partial 

dynamic occlusions, occluded objects can be separated by using some prior 

information about the objects, such as their size or shape, or the background 

environment, like the road lines. However, in total dynamic occlusions, 

separation methods do not succeed and tracking is performed by prediction.  

 

The use of multiple cameras leads to better handling of occlusions compared to a 

single camera, due to the utilization of 3D information and the presence of 
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different points of views. This information can be gathered to form an occlusion-

free result. 

 

In this chapter, an occlusion handling method by using multi-camera (2 camera) 

system with intersecting FOVs is explained. First, various related work in the 

literature is briefly discussed. Then, performed segmentation algorithms and the 

point transfer method are explained. Finally, point segmentation method is 

discussed. 

 

5.1 Related Work 

 

There are several methods for single camera surveillance with some occlusion 

handling, but all have limited performance, especially in severe occlusions. 

Haritaoglu et al. [1] propose a method to count and track people in groups with 

occlusions. System use local shape information by analyzing the boundary of the 

object, and try to find pieces that are similar to human heads based on local shape 

approximations to the object boundary. Moreover, global shape information and 

constraints, derived from the requirement that the head to be aligned with the axis 

of the torso are used to locate torso as well. Then, each detected head is tracked 

by using correlation-based matching. However, their method necessitates correct 

initial masks to locate people and create their appearance models, which is 

difficult to satisfy in severe occlusions and noisy foreground masks. 

 

Tekalp and Dockstade [35] use combination of the tracking results from previous 

frames with motion estimates generated from the current frame to split regions by 

a clustering routine. Allowing regions to split provides the Kalman filtering 

process with a set of observations for occluding and occluded objects. 

Nevertheless their method has the obvious drawback of handling (tracking) 

initially occluded objects. 
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Pang et al. [36] employed the texture-based vehicle-segmentation approach to 

extract the moving vehicles for segmentation. Based on the segmented shape of 

the object and due to the reason that the shape can be represented by a simple 

cubical model, they propose a two-step method: first, detection of the curvature 

of the shape contour to generate a data set of the occluded vehicles and, second, 

decomposing it into individual vehicle models by using a vanishing point in three 

dimensions and the set of curvature points of the composite model. This method 

is strongly dependent to the extracted foreground mask and therefore very 

sensitive to the segmentation noise. 

 

Xuefeng and Nevatia [37] use generic shape models of classes of vehicles, such 

as for a sedan or an SUV, to detect, classify and track vehicles from motion 

foreground blobs. They assume that these blobs are generated by moving vehicles 

or by noise. Shadows and reflections are assumed to be absent or removed by 

some pre-processing. However, these assumptions are difficult to satisfy and the 

complexity of the algorithm is relatively high. 

 

Apart from the aforementioned methods, feature-based trackers are also used to 

handle occlusions where partial occlusions relatively solved [18][38]. However, 

segmentation of the features into individual objects, generally fail in dynamic 

occlusions. 

 

On the other hand, multi-camera based surveillance systems have improved 

occlusion handling capabilities with respect to single camera systems. Krumm et 

al. [39] present an algorithm that information from stereo cameras is combined in 

3D space. After performing background subtraction, human-shaped blobs in 3D 

space are detected. In their method, color and other information is used to 

identify and track people over time. However, stereo cameras are not available in 

most of the surveillance systems and 3D calculations are computationally 

demanding. 
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M2Tracker [41], which is similar to the method in [40], used a region-based 

stereo algorithm to find 3D points inside an object, and Bayesian pixel 

classification with occlusion analysis to segment people occluded in different 

levels of crowd density. The complexity of this algorithm is relatively high due to 

the pixel-wise classification. 

 

Orwell et al. [43] propose a color tracking algorithm to track multiple objects via 

multiple cameras. Connected blobs obtained from background subtraction are 

modeled by using color histogram techniques and are used to match and track 

objects. However, their method is also dependent to the initial masks of the object 

and lacks a solution for initially occluded objects. 

 

Kim and Davis [40] propose a method, a multi-view multi-hypothesis approach, 

for segmenting and tracking multiple persons (possibly occluded) on a ground 

plane. In order to more precisely locate the ground location of a person, all center 

vertical axes of the person across views are mapped to the top-view plane and 

their intersection point on the ground is estimated.  

 

Also in [42], Mittal and Davis describe an algorithm for detecting and tracking 

multiple people in a cluttered scene using multiple synchronized cameras located 

far away from each other. They over-segment each image, and use these 

segments to compare regions across the views along epipolar lines. The centers of 

the matching segments are projected onto the ground plane to identify 3D points 

in the scene which are potentially corresponding to people. The results from 

cameras are then combined to estimate the 2D locations of the people. These 

estimates are then used to track people across time. These two interesting 

methods [40][42] have quite acceptable experimental results. 
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5.2 Occlusion Handling from Multi-view Video 

 
Considering the previous research attempts in the literature, occlusion handling in 

multi-camera settings is quite promising, in which the information from two (or 

more) sources are fused appropriately to eliminate the effects of occlusions in at 

least one of their views. In this thesis, the approach by Mittal and Davis [42] is 

pursued as the occlusion handling algorithm due to their promising results with 

their relatively simple algorithm. 

 

The simplest way of handling the occlusion problem is to generate (virtual) views 

of the scene that are free of occlusions from multi-view data. However, the 

rendering process is a computationally demanding procedure for each pixel; 

hence, such methods should be applied in a simpler manner by utilizing small 

regions, instead of pixels [42]. Typical segmentation algorithms are examined 

and compared in Section 5.3 for this purpose. 

 

Following the region-based modeling, the regions should be transferred to 

occlusion-free views so that the tracking of the objects could be obtained better. 

In Section 5.4, point transfer via trifocal transfer is presented in detail. 

 

Since the objects are converted into sparse set of regions (rather than a dense 

pixel set), the segmentation problem of those points into different objects in the 

top view should still be solved. A clustering-based approach is presented in 

Section 5.5 as a solution alternative. 

 

Proposed algorithms are tested using various data sets. Typical two results and 

conclusion is given in Section 5.6. 

 

The overall method is shown in Figure 5.1 as a block diagram. The details of this 

method are given in the following sections. 
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Figure 5.1 Block diagram of the proposed method 
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5.3 Graph-Based Segmentation 

 

The occlusion-free view generation should only be performed for foreground 

regions, which consist of moving objects. Background model for each of the two 

views could be constructed separately by using any of the background modeling 

algorithms that are presented in Chapter 2. Then, background subtraction is 

performed for the incoming frames to extract foreground regions.  

 

After moving object detection stage, foreground regions are segmented for 

partitioning these objects into homogeneous regions by the help of the features of 

pixels extracted from the image. These features are the intensity values of the 

pixels and their coordinates. As a result, the pixels that are close to each other 

with similar intensities are grouped together. However, in order to obtain more 

precision, the segmentation step is performed so that every foreground object will 

consist of many small regions. These small segments are used to replace the 

pixel-based view rendering process, while finding the epipolar matches in two 

views. 

 

Two popular algorithms are tested for the segmentation of the foreground 

regions, which are Recursive Shortest Spanning Tree (RSST) [44] and K-Means 

Algorithm [22]. 

 

5.3.1 Recursive Shortest Spanning Tree 

 

RSST [44] algorithm starts by a mapping from the image onto a weighted map. 

During the start up, each pixel corresponds to a different vertex or region in the 

weighted graph. Vertex values and link weights of the weighted graph are 

calculated by using the intensity values of the image pixels. A vertex value is 

defined as the average intensity value of the corresponding region, whereas a link 
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weight is evaluated by a link weight function or a cost function, which is 

basically a function of the vertex values and the sizes of the connected regions. 

 

Then, all links are sorted based on their link weights and a link with the least link 

weight in the graph is selected to be the next link of the shortest spanning tree 

(SST). The chosen link is saved and the connecting regions are merged. The 

vertex values of the newly merged region is updated, hence, all surrounding links 

need to be recalculated and all loop-forming links, also known as duplicated 

links, will be removed. Subsequently, all remaining links are sorted. Thus, the 

number of regions is progressively reduced from M x N in an M pixel by N pixel 

image, down to just one region, if desired. Those saved links form a spanning tree 

representation of the image [44]. By noting the order in which the links are saved, 

hierarchical representation of the original image can also be created  

 

5.3.2 K-Means Clustering 

 

The main idea of K-means clustering [22] is to find the k  mean vectors 

kμμμ ,...,, 21  that represent all the intensities of the image in the most efficient 

way, where k  is the number of cluster centers. By choosing those mean vectors, 

which include the intensity and coordinate information of the image pixels, it is 

also possible to segment images. It is typical to randomly choose initial cluster 

centers [22]. The algorithm is then summarized as 

 

1. Initialize n , k , kμμμ ,...,, 21  

2. Classify n samples according to the nearest iμ  

3. Recompute iμ  

4. Return step 2 until no change in iμ  
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5.3.3 Segmentation Results 

 

Foreground regions are detected by using simple frame differencing algorithm 

and filtered by using morphological operators, as shown in the Figure 5.2.  

 

Detected foreground regions are over-segmented by two methods to test their 

performance and the overall performance, as shown in the Figure 5.3 and Figure 

5.4. 

 
The results for both segmentation methods are found out to be applicable for 

epipolar matching. The number of segments has an important role for the 

occlusion handling method. If the number of segments is relatively small, such as 

300-500 segments, generated view does not represent the foreground objects. 

When the number of segments is equal to, for example between 700-1000 

segments, the proposed algorithm yields better results. However, the time to 

segment foreground regions increases by increasing the number of segments. 

Moreover, the area of the foreground regions affects the computational load of 

the algorithms. These two algorithms are implemented in C++, and tested on a 

computer with Pentium-IV processor and 1 GB RAM with two sets of images 

with different sizes that are tabulated in Table 5.1. 

 
 
 

Table 5.1 Time measurements of segmentation algorithms 

 

Execution Time (sec.) 320 x 240 640 x 480 

Number of Segments RSST K-Means RSST K-Means 

300 192 0.9 234 11.2 

500 210 0.93 295 13 

1000 272 1.9 326 17.5 
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(a)      (b) 

  
(c)      (d) 

 

Figure 5.2 Input image (a) First camera and (b) second camera view. (c) and (d) are 

corresponding foreground masks. 
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(a)      (b) 

 

Figure 5.3 K-means segmentation method results with K=1000 segments;  (a) first camera 

and (b) second camera view. 

 
 
 

  
(a)      (b) 

 

Figure 5.4 RSST segmentation method results with 1000 segments; (a) first camera and (b) 

second camera view. 

 
 
 
It could be concluded that RSST segmentation method has a heavy computational 

load and hence, it is not suitable for real-time applications. At the end of the 

experiments both methods have similar results subjectively in terms of their 
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segmentation performance and K-means segmentation method is accepted to be 

more appropriate due to its low computational load. 

 

5.4 Point Transfer Using Trifocal Tensor 

 

Camera point of view and the angle between the camera and the object plane are 

the main reasons for the occlusions. It is obvious that the most appropriate view 

in which the occlusion is minimized is the top-view for the vehicles and people 

that move on a plane (note the possible shortcomings of top-view for the flying 

vehicles). Hence, in the proposed method, a top-view is generated to handle 

occluded objects and this step is performed by using trifocal tensor where the 

camera calibration is required. 

 

5.4.1 Camera Calibration 

 

The camera matrix P is computed by using point correspondences ii xX ↔  

between 3D feature points and their projections onto 2D image points. These 

feature points must be distinguishable and salient elements of an image with 

known 3D coordinates. For this purpose 3D patterns with known structures could 

be used. Checker-board structures, with precisely known dimensions as shown in 

Figure 5.5, are used to calibrate cameras. 

 

5.4.1.1 Feature Point Detection 

 

There are various feature detection algorithms in literature [45][46][47][48][49] 

[50]. In the past, Harris and Stephens [46] have improved the Moravec corner 

detector [51] by performing an analytic expansion about the shift origin, instead 

of discrete shifts. Moreover, robustness to noise was also improved by using a 

smooth circular window. 
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Figure 5.5 Checker-board patterns which are used to calibrate cameras 

 
 
 
Later, the method by Lowe [50] extracts some distinctive features from the 

images by using difference of Gaussians. These features, denoted as SIFT, are 

invariant to scale changes, as well as rotations, and robust to illumination 

differences and camera movements. It has been shown that Harris corner has 

more consistent results when compared to many other methods [46]. Therefore, 

Harris corner is utilized to find features from the calibration patterns. 

 

5.4.1.1.1 Harris Corner 

 

Moravec’s corner detector [51] functions by considering a local window in the 

image, and determining the average changes of image intensity that result from 

shifting the window by a small amount in various directions. These shifts result in 

 
• small changes, if the windowed image patch has constant intensity 

values 

• small changes in the direction of edges and large changes in the 

direction perpendicular to the edges 

• large changes in all directions for corners. 
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The change in intensity C produced by a shift ( )yx ΔΔ ,  for point (x,y) is 

formulated as  

 

∑ Δ+Δ+−=
w

yyxxIyxIyxC 2|),(),(|),(    (5.1) 

 

where I is the image intensity and w is the image window centered at (x,y). 

Moravec’s corner detector simply looks for local maxima in min{C} above some 

threshold value. Harris corner detector [46] improves the anisotropic response of 

Moravec’s corner detector (at every 45 degrees) by approximating the shifted 

image by a Taylor expansion truncated to the first order terms. Then  
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in which the first gradients are approximated by 

 

[ ] xIII x ∂∂=−⊗= /101  and [ ] yIII T
y ∂∂=−⊗= /101 . 

 

Then equation (5.1) becomes 
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Also noisy response of Moravec’s corner detector is improved by using a 

Gaussian window. 
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( )222
, 2/)(exp σyxw yx +−=     (5.4) 

 

C(x,y) is closely related to local autocorrelation function, with M describing its 

shape at the origin. Let 1λ  and 2λ  be the eigenvalues of M. Then the eigenvalues 

form a rotationally invariant description. There are three cases to be considered as 

in the Moravec’s detector: 

 

1. If both 1λ  and 2λ   are small, so that the local auto-correlation function is flat 

(i.e., small change in M(x, y) in any direction), the windowed image region is of 

approximately constant intensity. 

 

2. If one eigenvalue is high and the other low, so the local auto-correlation 

function is ridge shaped, then only local shifts in one direction (along the ridge) 

cause little change in C(x, y) and significant change in the orthogonal direction; 

this indicates an edge. 

 

3. If both eigenvalues are high, so the local auto-correlation function is sharply 

peaked, then shifts in any direction will result in a significant increase; this 

indicates a corner. 

 

Therefore, a function R is needed to represent the measure of corner response 

which is required to be a function of 1λ  and 2λ . Trace and determinant operations 

are suitable for formulation, as this avoids the explicit eigenvalue decomposition 

of M. 

 

Thus, if ⎥
⎦

⎤
⎢
⎣

⎡
=

BC
CA

M  then BAMTr +=+= 21)( λλ  and 

2
21)( CABMDet −== λλ . 
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Finally,  

 
2)()()( MkTrMDetMR −=      (5.5) 

 

The features, which are detected by using Harris corner method in sub-pixel 

accuracy, are shown in Figure 5.6. 

 
 
 
 

  
 

Figure 5.6 Features that are detected by using Harris corner method 

 
 
 

5.4.2 Point Transfer 

 

Camera projection matrix of the imaginary top-view camera is obtained by 

assuming that the camera is located above the center of region of interest without 

any rotation and translation, and with zero principal point offset. Moreover, an 

appropriate f (focal length) of the top view camera is chosen by considering the 

resolution of the image that will be generated and the area of the region of 

interest. 
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Epipolar match of each segment in the first camera view must be determined for 

the second camera view in order to be able to transfer them onto the top-view. 

Therefore, the color models (color histograms) of all the segments (both in the 

first ad second views) are generated. Then, for segment’s center point ip  (center 

of mass) in the first camera view, corresponding epipolar line il ′  is obtained by 

using fundamental matrix 12F . Epipolar match of the ip , which is ip′ , must lie 

on the epipolar line il ′ . For finding the match of ip , its color model is compared 

with all segments in the second camera view which have intersection with the 

epipolar line il ′ . A distance measure is used to compare the color models, and the 

segment with minimum distance is selected as the best match. 

 
 
 

 
 

Figure 5.7 Point transfer by using trifocal tensor 
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Then for matched point pair ip  and ip′ , corresponding two epipolar lines on the 

top-view is determined by using 13F .and 23F . Since the required point ip ′′  must 

lie on both of the epipolar lines, taking the intersection of the epipolar lines 

results in the required point ip ′′ .  

 

The discussed procedure, which is also illustrated in the Figure 5.Figure 5.7, is 

repeated for all segments in the first camera view and a top-view that is 

consisting of points, which correspond to segment centers, is generated. 

 

During simulations, Kullback-Leibler divergence [75] is used as a distance 

measure to compare the color models of segments. The images are segmented 

into 1000 parts and shown in the Figure 5.3 and Figure 5.4. The results for point 

transfer are shown in Figure 5.8. 

 
 
 

  
(a)       (b) 

 

Figure 5.8 Generated top-views by using images segmented with (a) RSST and (b) K-means 
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5.5 Graph-Based Clustering 

 

Generated top-view is composed of points which are obtained independent of 

each other. These points must be segmented to cluster them into individual 

objects, and the only information which is available is positions and colors of 

points. Point clustering is performed by using ‘minimal spanning tree’ which is 

discussed in Chapter 3.  

 

5.5.1 Constructing Minimal Spanning Tree 

 

Top-view points, obtained by intersecting the epipolar lines of the segment pairs, 

are defined as nodes or vertices of the undirected graph. In order to decrease the 

computational cost, only one node is chosen in a NN ×  neighborhood of that 

node. Assuming that the segments of the same object are close to each other and 

most of the cases they have similar color values, the weights of the links or edges 

between these nodes could be defined as follows; 

 

Weight value of the edge between nodes-i and j is 

 

diffdiffji DHW βα +=      (5.6) 

 

where diffH  is the difference between the hue values of the nodes-i and j, diffD  is 

the Euclidian distance between nodes-i and j, whereas α  and β  are the weights 

between these measures. By using the weight function in (5.6), points, which 

have similar color values and close to each other, are connected by edges with 

smaller weight values. 

 

Next, Kruskal’s algorithm [26] is used to generate minimal spanning tree of the 

undirected graph, which is shown in Figure 5.9. 
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(a)      (b) 

 
Figure 5.9 Generated minimal spanning trees by using the images segmented with (a) RSST 

and (b) K-means 

 
 
 
Edges, whose weights are greater than certain threshold value in the minimal 

spanning tree, are cut and minimal spanning forests are generated. Then, the 

forests, which have nodes smaller than certain threshold, are qmasked to 

eliminate noisy and uncertain regions. The resulting forests are labeled with 

different colors and the individual objects are generated, as shown in Figure 5.10. 

 
 
 

 
(a)      (b) 

 
Figure 5.10 Generated individual objects by using the images segmented with (a) RSST and 

(b) K-means 
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As a result, a single foreground mask is divided into three regions which are 

corresponding to different objects (vehicles). 

 

5.6 Experimental Results and Conclusion 
 

The method discussed to segment occluded objects is tested by using 14 data sets. 

The performance of the overall system is obtained as quite convenient for 

segmenting partially occluded objects. However, under strong occlusions, 

epipolar matching cannot be performed accurately and the generated top view 

does not represent the foreground objects. Moreover, the foreground mask is 

under-segmented, when the objects in the mask have similar color values and 

they are close to each other, since the transferred points are not distinguishable. 

Typical two experimental results are given in Figure 5.11 and Figure 5.12.. False 

epipolar matching results also decrease the performance of the method. However, 

as the number of segments increase, these false epipolar matches are 

compensated and satisfactory results could be obtained. 
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(a)      (b) 

  
(c)      (d) 

  
(e)       (f) 

 

Figure 5.11 Simulation results of the dataset 7, (a) and (b) are the input images, (c) and (d) 

are the corresponding segmented foreground masks, (e) is the calculated top-view points, (f) 

is the constructed minimal spanning 
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(a)      (b) 

  
(c)      (d) 

  
(e)       (f) 

 

Figure 5.12 Simulation results of the dataset 6, (a) and (b) are the input images, (c) and (d) 

are the corresponding segmented foreground masks, (e) is the calculated top-view points, (f) 

is the constructed minimal spanning 
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Figure 5.13 Simulation results of the dataset 7, clustered minimal spanning forests 

 
 
 

 
 

Figure 5.14 Simulation results of the dataset 6, clustered minimal spanning forests 
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CHAPTER 6 

 

 

MULTI-CAMERA TRACKING AND EVENT 

RECOGNITION 

 

 

 
Tracking of the objects in the observed scene is another vital property in video 

surveillance systems. One common cause of tracking failure in single-camera 

configuration is due to the static and dynamic occlusions. When occlusion is 

minimal, single camera is sufficient for tracking. However, as the density of static 

and dynamic occlusions is increased, objects are segmented in an erroneous way 

or become totally lost; hence, lack of visibility results in tracking failure. Since 

the multi-camera configurations have larger field of view due to observation from 

different angles, it is expected that these systems should be capable of resolving 

static, as well as dynamic occlusions better than single-camera configurations. It 

should be noted that in multi-camera systems, occlusions might occur in different 

time instants at separate views, and the overall system should be able to track 

occluded objects successfully after exploiting the available track information at 

different views. 

 

The use of multiple cameras might lead to extraction of more reliable trajectories 

due to the utilization of 3D information, compared to a single camera. By the help 

of proposed multi-camera tracking method, obtained trajectories of the object can 

be used during event recognition. Since occlusion-free 3D information is being 
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utilized, these trajectories lead to better interpretations of activity type that is of 

significant interest. 

 

In this chapter, a tracking method by using multi-camera (2 cameras) system is 

explored. First, various related work in the literature is briefly discussed. Then, 

performed tracking algorithm and trajectory generation method are proposed. 

Finally, event recognition by using multi-view trajectories is discussed. 

Simulation results and conclusion are given at the end of the chapter. 

 

6.1 Related Work 
 

There are various methods in multi-camera tracking [53]. The main idea of multi-

camera employment is fusing 2D information due to the cameras in order to 

obtain 3D information for better occlusion handling and continuous tracking. 

Kettnaker et al. [43] perform motion detection and tracking on each video stream, 

and then, synthesize the tracking results of different cameras to obtain an 

integrated trajectory. The major drawback of this system is the requirement a set 

of allowable paths, and a set of transition probabilities and times, to be given as 

input. 

 

Dockstader et al. [55] propose a distributed system for tracking multiple 

interacting persons which provide increased robustness against temporary feature 

point occlusions. A Bayesian network is employed to fuse 2D state vectors 

acquired from various image sequences to obtain a 3D state vector. However, 

motion extraction is a difficult problem to solve in real time, and the complexity 

of this algorithm is quite high. 

 

Collins et al. [56] propose an algorithm that obtains an integrated representation 

of an entire scene by fusing information from every camera into a 3D geometric 

coordinate system. However, wide-baseline triangulation for 3D localization is 
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still a difficult process for cluttered scenes with densely located objects and 

significant occlusion. 

 

Chang and Gong [59][60] propose a method to track people by using two camera 

views in an indoor area. The system is based on fusion of Bayesian modalities, 

such as geometric and appearance modalities for cooperative tracking. In order to 

track individuals seamlessly, the system assigns an identity to a detected subject 

and keeps tracking the subject with this identity. If this subject has already 

appeared in other cameras or loses its identity during tracking, the system then 

passes identity and re-assigns it to this subject by matching subjects across other 

camera views by using a Bayesian framework. However, their system is robust 

indoors, since the lighting conditions are fairly stable, whereas this approach 

could only be applied outdoors during times when the lighting conditions do not 

vary considerably. 

 

Kogut and Trivedi [61] propose a system for traffic surveillance. They propose a 

hybrid method, utilizing color and spatial information to construct labeled graphs 

of small groups, or platoons, of cars, as they travel through a camera site. Then, 

the cars are matched by using probabilistic graph matching between the camera 

sites. Therefore, the system could track platoons of vehicles between each camera 

site. However, they do not propose a solution for the occlusion scenarios and they 

tried to minimize the errors due to occlusions by using the high perspective view. 

However, high perspective view is not available in most of the traffic surveillance 

systems due to the camera placements. 

 

Khan et al. [62][63][64][65][66] present a system for multi-view surveillance that 

can be applied to both indoor and outdoor environments by a set of uncalibrated 

cameras. Their method can automatically identify the field of view boundaries 

between overlapping cameras. Once this information is available, it is possible 

for the multi-view tracking algorithm to consistently assign the correct identity to 

objects, even when they appear in more than one camera view. In order to handle 



 

105

the scenario of tracking objects between non-overlapping cameras, they use a 

combination of spatio-temporal information and color cues. They assume that 

training data is available for objects moving between the fields of view of each 

non-overlapping camera. 

 

Black et al. [57][58] present a multi-view tracking method using a set of 

calibrated cameras. They perform background subtraction and use homography to 

map segmented objects in different views. 3D line intersection algorithm is used 

to find 3D coordinates of matched objects. The Kalman filter is used to track each 

object in 3D world coordinates and 2D image coordinates. This interesting 

method has quite acceptable experimental results and seems to have real-time 

performance due to the simplicity of the proposed algorithm. 

 

6.2 Tracking and Event Recognition from Multi-view Video 
 

The previous research efforts show that the multi-camera employment is expected 

to give promising results during tracking. Especially for the occluded scenes, 

collaboration of multi-camera configurations leads better handling of track losses. 

In this thesis, the approach by Black et al. [57] is pursued for developing a 

tracking algorithm due to their promising results with their relatively simple 

algorithm. 

 

As stated in [57], moving object segmentation is performed by background 

subtraction and Kalman filter is used to track segmented objects in each of the 

views. When there is no measurement associated with the track due to occlusion, 

other views are used to generate measurement. In order to fuse the information 

coming from different cameras, a relation between these two tracks should be 

defined. The simplest way of relating different views is point transferring via 

homography, since epipolar matching, by using epipolar lines, is computationally 

expensive and difficult to perform for wide-baseline configurations.  
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In the upcoming sections of this chapter, Kalman filter paradigm is briefly 

discussed in Section 6.3 to better understand any tracker, and the tracking 

algorithm is explained in Section 6.4. After tracking, motion models of the 

objects must be extracted to classify their behaviors. Therefore, in each camera 

view, from the extracted 2D trajectories of the objects, multi-view trajectories are 

obtained. Then, Hidden Markov Models [22][23] are used to classify the 

extracted 2D trajectories of the tracked object and event recognition is performed 

according to this classification. In Section 6.5, event recognition via HMMs is 

explained in detail. 

 

6.3 Kalman Filter 
 

A Kalman filter [20][21], is used to estimate the state X of a discrete-time 

controlled process that is governed by the linear stochastic difference equation, as  

 

111 −−− ++= kkkk wBuAxx      (6.1) 

 

with a measurement  

 

kkk vHxz +=        (6.2) 

 

kw and kv are process and measurement noise, which are independent of each 

other, white and usually assumed to have normal probability distribution. 

 

),0(~)( QNwp   where Q is the process noise covariance 

),0(~)( RNvp   where R is the measurement noise covariance 

 

The Kalman filter estimates a process by using a form of feedback control. The 

filter estimates the process state at a certain time and then obtains feedback in the 
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form of noisy measurements. The equations for the Kalman filter fall into two 

groups 

 

• Time update equations: obtain a priori estimate for next time step 

• Measurement update equations: incorporating a new measurement into the 

a priori estimate to obtain an improved a posteriori estimate. 

 

Next, time update equations act like predictors, while the measurement update 

equations are playing the role of a corrector. These equations are as follows: 

 

Time update equations: (Kalman predict) 

11ˆˆ −−
− += kkk BuxAx  

QAAPP T
kk += −

−
1  

 

Measurement update equations: (Kalman Correct) 
1)( −−− += RHHPHPK T

k
T

kk  

)ˆ(ˆˆ −− −+= kkkkk xHzKxx  

−−= kkk PHKIP )(  

 

where Pk is the estimate error covariance. 

 

6.4 Proposed Multi-camera Tracking 
 

In the proposed approach, tracking is performed in both of the views and trackers 

in different views are related to each other via homography. The object states are 

tracked in 2D by using separate Kalman filters. The object state in 2D Kalman 

filter includes the image location of object as well as its velocity in pixels. 

Moreover, constant speed assumption for object velocity is used. 
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Utilized models are as follows; 

 

2D state model: 

 

][ yxi vvyxX =      (6.3) 

 

State transition model:  
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Observation model: 
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When an object is observed for the first time, a separate Kalman filter is initiated 

for this object. Then, for next incoming frame, background subtraction is 

performed and a set of foreground moving objects are obtained. Among these 

objects, the nearest moving object to the predicted state of the tracked object is 

labeled as the next position of that object and the position is used to update the 

corresponding Kalman filter. Hence, object association between the consecutive 

frames is achieved via Kalman predictions. If the distance between the nearest 

moving object and the predicted state of tracked object is larger than some certain 

threshold, or there is no moving object in the foreground mask, then this situation 

is named as “no measurement case”. When “no measurement case” occurs in one 

of the views, mostly due to occlusions, while there is a measurement in the other 

view for tracked object, the position information projected from the other view is 

used as a measurement to update for the corresponding Kalman filter. In order to 
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utilize this information, a match of the object in the other camera view must be 

determined. Given a set of detected moving objects in each camera view, a match 

between a correspondence pair is defined when the following transfer error 

condition is satisfied: 

 

τ<′−+−′ − 212 )()( xHxHxx     (6.6) 

 

where x and x' are image coordinates in the first and second camera views, 

respectively. This constraint is applied to determine correspondence between the 

moving objects, detected in each camera view. The representative coordinate of 

an object is assumed to, be the closest point of its foreground mask to the ground 

plane (which is generally the rear end of the mask), since its location minimizes 

the projection errors. When “no measurement case” occurs in both of the views 

associated with the tracked object, updates of the Kalman filters are calculated 

separately by using corresponding predicted state values. 

 

The aforementioned steps are repeated until the tracked object leaves the field of 

view (FOV). When the object leaves the common FOV, its trajectories for both of 

the cameras are extracted for event recognition. The proposed method is 

illustrated in Figure 6.1. In the first frames from camera 1 and 2, 3 objects are 

observed for the first time in the common FOV and observed objects in different 

views are matched to each other ( aa ′− , bb ′−  and cc ′− ). Also, separate 

Kalman filters are initiated for these objects and next-states are predicted. In the 

second frames, there is no measurement for aObject −  and the position 

information from second view, aObject ′− , is projected as a measurement to 

update corresponding Kalman filter. In the third frames, there is no measurement 

for cObject ′−  and the measurement from first view, cObject − , is projected 

instead. In the final image pair, ‘no measurement case’ occurs for both of the 

bObject −  and bObject ′− . Therefore, Kalman filter updates are performed by 

using previously predicted Kalman states, separately. 
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Figure 6.1 Multi-camera tracking for consecutive time instants  
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6.5 Multi-view Event Recognition 
 

A similar method, which is already discussed in Chapter 2, is utilized to 

recognize the spatio-temporal events that occur in the observed scene. The events 

are classified into two sets, as ‘normal’ and ‘abnormal’ due to their spatio-

temporal behaviors that are stored in their trajectories. Normality is simply 

defined by being in the training set. The extracted object trajectories, which are 

accepted to be ‘normal’, are used to train a GM-HMM and new trajectories are 

classified by using this model. More information about GM-HMMs can be found 

in Chapter 2. 

 

For the single camera case, the measurements can be obtained by using only one 

sensor. Therefore, the extracted data are limited, compared to the multi-camera 

case. In the proposed multi-camera (two cameras) event recognition method, 

three different trajectory vectors are defined for each object, such that the first 

one is the image locations of the object in the first camera view, whereas the 

second one is the image locations of its matched pair in the second camera view. 

The last trajectory vector is obtained by concatenating the first and the second 

trajectories.  

 

The positions of the thi  object in the thk  frame of first and second camera are 

shown as the position vectors; 
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where x and y are the image coordinates in the corresponding camera views. 

 

Then, the first and second trajectory vectors consist of 
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The third trajectory vector is 
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  (6.8) 

 

where m denotes the starting frame number, in which the object enters the FOV, 

and n is the end frame number, in which the object leaves the FOV. 

 

These three trajectory vector types are used to train 3 different GM-HMMs and 

the incoming trajectory vectors are tested separately by using these three models 

in order to check their applicability to these trained models. The simulation 

results are given in the Section 6.6.2. 

 

6.6 Simulation Results and Conclusion 
 

In this section, the simulation results for multi-view tracking and event 

recognition are presented and discussed. The discussed two methods are tested by 

using various video sequences which are in MPEG-2 format recorded at 30 fps 
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with a resolution of 640x480. All these simulations are conducted in controlled 

laboratory environments. 

 

6.6.1 Simulation Results for Multi-view Tracking 

 

The discussed method is tested by using 14 different video sequences each of 

which a vehicle runs in front of a camera and 2 typical results are given in the 

Figure 6.2 and Figure 6.5. Also, individual performances of trackers (without 

other view measurement assistance) are tested by using the same video sequences 

and the results are given in the Figure 6.3 and Figure 6.6. The generated top-view 

trajectories for both cases are presented in the Figure 6.4 and Figure 6.7. 

 

The performance of the proposed method is strongly dependent on the correct 

matching performance of the tracked object between the two views. Therefore, 

the object must be segmented correctly in the initial frames, when it enters the 

common FOV. Moreover, a couple of correct measurements are needed to initiate 

the Kalman filters. The small variations in the object trajectories are caused by 

erroneous foreground masks. During background subtraction step, the foreground 

mask of the object differs slightly in size (especially along its borders) between 

consecutive frames. Therefore, the location of the object, which is the rear-end 

point of its foreground mask, slightly vibrates between frames. 

 

The proposed method has an obvious advantage compared to single-camera 

tracking, when tracked object stops behind an obstacle. As long as one of the 

cameras continues to observe the object, it can be tracked correctly along the 

frames. However, in the single-camera case, Kalman tracker for the occluded 

object would fail and object becomes lost. As shown in the simulation results, 

Kalman trackers (without assistance) failed and lost the track of object when it 

passed behind an obstacle. Also new Kalman trackers are mistakenly initiated 

since lost objects are incorrectly identified as appearing for the first time. 
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(a)      (b) 

  
(c)      (d) 

 

Figure 6.2 Simulation results of multi-camera tracking algorithm tested on dataset 1 (a) and 
(b) are corresponding camera views, (c) and (d) are the trajectories of segmented object in 

corresponding views 
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(a)      (b) 

  
(c)      (d) 

 

Figure 6.3 Simulation results of multi-camera tracking algorithm, in which other view 
measurements are not used in ‘no measurement case’, tested on separate views of dataset 1 
(a) and (b) are corresponding camera views, (c) and (d) are the trajectories of segmented 

object in corresponding views 
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(a) 

 
(b) 

 

Figure 6.4 Generated top-view trajectories by using extracted trajectories from dataset 1: in 
‘no measurement case’ other view measurements are (a) used (b) not used 
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(a)      (b) 

  
(c)      (d) 

 

Figure 6.5 Simulation results of multi-camera tracking algorithm tested on dataset 6 (a) and 
(b) are corresponding camera views, (c) and (d) are the trajectories of segmented object in 

corresponding views 
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(a)      (b) 

  
(c)      (d) 

 
Figure 6.6 Simulation results of multi-camera tracking algorithm, in which other view 

measurements are not used in ‘no measurement case’, tested on separate views of dataset 6 
(a) and (b) are corresponding camera views, (c) and (d) are the trajectories of segmented 

object in corresponding views 
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(a) 

 
(b) 

 

Figure 6.7 Generated top-view trajectories by using extracted trajectories from dataset 6: in 
‘no measurement case’ other view measurements are (a) used (b) not used 
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6.6.2 Simulation Results for Multi-view Event Recognition 

 

Training trajectory vectors that are assumed to be ‘normal’ (such as typical traffic 

flow between two lanes) are extracted by using 27 objects and each object results 

in 3 types of trajectory vectors. Therefore, each of the 3 GM-HMMs is trained by 

using 27 trajectory vectors. Then, various ‘abnormal’ (such as reverse traffic flow 

or lane crossing) cases are generated and resulting trajectory vectors are tested via 

each of the GM-HMMs separately. The utilized test environment and trajectories 

are shown in Figure 6.6. The first model, GM_HMM_1, is trained by using first 

camera trajectories, whereas the second model, GM_HMM_2, is inputs the 

second camera trajectories. The last case, GM_HMM_1+2 is trained by using 

both trajectories. Each model has left-to-right connected 4 states, as shown in the 

Figure 6.8. 

 
 
 

GM_HMM_1

1 2 3 4

GM_HMM_2

1 2 3 4

GM_HMM_1+2

1 2 3 4

Training

Training

Training

Camera_1 'normal'
     Trajectories

Concatenated 'normal'
       Trajectories

Camera_2 'normal'
     Trajectories

 
 

Figure 6.8 Trained Gaussian Mixture Hidden Markov Models 
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The resulting Viterbi distances [23] of the trajectories for the training object 

vectors are given in the Table 6.1. Average Viterbi distance of training objects for 

the three models is obtained as follows: 

 

- Average distance to GM_HMM_1: 10.20 

- Average distance to GM_HMM_2: 10.06 

- Average distance to GM_HMM_1+2: 20.04 

 

Viterbi distances of the most representative six trajectories, which are known to 

be ‘abnormal’, to the models are given in Table 6.2 and ratios of the test objects’ 

Viterbi distances to the average Viterbi distances are given in the Table 6.3. 

 

These ratios indicate that GM_HMM_1+2, which is trained by using 

concatenated trajectories, gives the best results to recognize ‘abnormal’ events for 

the given data set. In this data set, Objects 28 and 29 go in the opposite direction 

and Object 30 enters the FOV from sideways with respect to the training samples. 

Object 31 enters the FOV correctly but leaves slightly out of the ‘normal’ lane. 

Object 32 makes stop-and-go motion while Object 33 drops its speed during its 

motion. The first three trajectories, 28, 29, 30, are classified as ‘abnormal’ 

clearly, whereas 32nd and 33rd trajectories are classifies as ‘normal’ due to the 

time-warping property of the HMMs. Moreover, 31st one is also classified as 

‘normal’, since its trajectory is not distinctive enough when compared to the 

training trajectories. 
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Table 6.1 Training case: Viterbi distances of trajectories for the training object vectors to 
the models 

 
Object 

ID 

Viterbi 
Distance to 
GM_HMM_1 

Viterbi 
Distance to 
GM_HMM_2 

Viterbi 
Distance to 

GM_HMM_1+2 
1 10.0797 9.90183 19.7285 
2 10.2908 10.1049 20.1867 
3 10.2266 10.1233 20.1006 
4 10.577 10.6716 21.2304 
5 9.99018 9.84572 19.6763 
6 10.0584 9.85901 19.6572 
7 10.0608 9.88434 19.7496 
8 10.2821 10.2472 20.3949 
9 10.0773 9.8764 19.7181 

10 10.3629 10.2508 20.3399 
11 10.0322 9.86696 19.6382 
12 10.0695 9.92222 19.7072 
13 10.1321 9.95447 19.7818 
14 10.2666 10.139 20.2119 
15 10.2661 10.0629 20.0147 
16 10.038 9.92932 19.6548 
17 10.126 9.98202 19.7991 
18 10.2134 10.108 19.9983 
19 10.8046 10.5149 21.3008 
20 10.4454 10.2919 20.333 
21 10.111 9.90018 19.6983 
22 10.1791 9.9294 19.9025 
23 10.0511 10.0658 20.1564 
24 10.1007 10.2248 20.248 
25 10.3782 9.8986 19.9865 
26 10.0308 9.9264 19.8682 
27 10.0816 10.2139 20.1286 
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Table 6.2 Test case: Viterbi distances of test objects’ trajectory vectors to the models 

 

Object 
ID 

Viterbi 
Distance to 
GM_HMM_1 

Viterbi 
Distance to 
GM_HMM_2 

Viterbi 
Distance to 

GM_HMM_1+2 
28 20.4058 19.9481 45.1818 

29 21.2409 19.7736 45.034 

30 26.9917 24.7016 55.2278 

31 10.7213 10.5773 21.2099 

32 10.4648 10.5105 22.1852 

33 10.1611 9.97222 19.7785 

 
 
 

Table 6.3 Ratios of the Viterbi distances of test objects’ trajectory vectors to the average 
Viterbi distances of training objects’ trajectory vectors 

 

Object 
ID 

GM_HMM_1 
ratios 

GM_HMM_2 
ratios 

GM_HMM_1+2 
ratios 

28 2.00106 1.98236 2.25404 

29 2.08295 1.96502 2.24666 

30 2.64690 2.45474 2.75521 

31 1.05137 1.05113 1.05812 

32 1.02621 1.04448 1.10678 

33 0.99643 0.99100 0.98671 
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(a)       (b) 

  
(c)       (d) 

 
(e) 

 

Figure 6.9 Test environment and training trajectories: (a) 1st camera view, (b) 2nd camera 
view and (c) 1st camera view trajectories of training samples (d) 2nd camera view trajectories 

of training samples (e) generated top-view trajectories of training samples  
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CHAPTER 7 

 

 

CONCLUSION 

 

 

 

7.1 Summary of the Thesis 
 

In this thesis, novel methods for background modeling, tracking, occlusion 

handling and event recognition via multi-camera configurations are presented. 

Single camera employed versions of these methods are also examined. The 

proposed methods are mostly aimed for solving the problems in single camera 

surveillance systems by the help of multi-camera configurations. 

 

In Chapter 2, fundamental building blocks of a single camera surveillance system 

are presented. First, four basic methods to segment moving objects are discussed 

and their performances in different conditions are compared. Some noise removal 

and shadow removal algorithms are also discussed. Second, four tracking 

algorithms are explained and their performances are compared. Finally, event 

recognition by using Gaussian Mixture Hidden Markov Models (GM-HMMs) is 

proposed for the mono-camera case. In this method, object locations in the image 

plane are used to construct trajectory vectors. Then, these vectors are used to train 

models. In the traffic data simulations, a different model is employed for each 

traffic lane, since each lane usually has different characteristics. 
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Moving object segmentation algorithms via multi-camera configurations are 

presented in Chapter 4. One of the key benefits of multi-camera usage is that it is 

possible to handle erroneous segmentation results by using auxiliary views. The 

first examined method is based on checking unanimity of the camera votes. Each 

camera has its own background model and votes for each pixel whether or not it 

is background. If one of the pixels is labeled as foreground in all off the views, 

then it is decided as foreground, otherwise it is forced to be background. In the 

second method, instead of unanimity, weighted voting is used. For each pixel, 

foreground decision is voted by each camera and final decision is given according 

to the sum of the all votes. Finally, background modeling by multivariate mixture 

of Gaussians is explained. In this method, a background model for each pixel is 

obtained by using multivariate Gaussians in which the each dimension is 

constructed by using the information coming from the different views. 

 

In Chapter 5, a novel method for occlusion handling is proposed. One of the main 

problems of any surveillance system is occlusion, which might result in failure in 

all the aforementioned fundamental building blocks. The simplest way of 

handling occlusion is to generate an occlusion-free view. However, pixel-wise 

rendering methods are computationally demanding procedures for view 

generation and therefore, small (over-segmented) regions are used instead of 

pixels. In the proposed method, foreground masks (moving objects) in all views 

are over-segmented to obtain homogeneous regions by using RSST and K-means 

clustering methods. Then, segmented regions are matched between the views and 

region pairs are obtained. These region pairs are transferred to the occlusion-free 

view via a trifocal tensor by using the epipolar geometry. As a result, objects are 

converted into sparse set of regions in the generated view and they must be 

segmented to extract objects. Finally, graph-based clustering is performed to 

cluster similar regions which are belonging to distinct objects. 

 

A multi-camera tracking and event recognition method is discussed in Chapter 6. 

Each object is tracked in different views by using a Kalman filter. As long as a 
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measurement can be found, separate trackers in different views continue tracking. 

When ‘no measurement’ case occurs in one of the views, the other view’s 

measurements are projected to ‘no measurement’ view via the homography 

between image planes and used to update corresponding tracker with a 

(projected) measurement. This method enables continuous tracking as long as one 

of the cameras can observe the object of interest. During tracking, trajectory 

vector of the object is extracted for all views. In proposed event recognition 

method, these trajectories are concatenated to generate a multi-view trajectory. 

These multi-view trajectories are used to train a GM-HMM. Then, incoming 

object trajectories are tested by this GM-HMM to classify their motion as 

‘normal’ or ‘abnormal’, in order to detect incidents in the scene. 

 

7.2 Discussions on Single Camera Surveillance 
 

During moving object segmentation simulations, it is observed that one of the 

main problems of the single camera methods is the dynamic background regions. 

Frame differencing and the eigenbackground subtraction algorithms are found out 

to be sensitive to the dynamic backgrounds. Eigenbackground subtraction 

performs better, compared to the frame differencing but its update procedure 

demands a higher computational load. Parzen window based and Mixture of 

Gaussians based methods are more robust to these variations in the background. 

However, Parzen window based method has a quite demanding computational 

load. Also, computational cost of the MOG based moving object segmentation 

method increases as the number of Gaussians in the mixture increases, and 3-5 

Gaussians found out to be convenient for each pixel’s model. Furthermore, time 

complexity of Parzen based and MOG based methods is strongly dependent to the 

size of the input image since pixel-wise modeling and comparison calculations 

are computational load demanding when compared to the frane differencing and 

eigenbackground subtraction. 
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The experimental results indicate that tracking via object association fails in the 

occluded scenes. Cam-shift and mean-shift trackers have promising results, when 

the occlusions are handled. However, they need correct initial models for the 

tracked objects and these algorithms would fail, if the objects enter the field of 

view, while occluding each other. Moreover, mean-shift tracker has a high 

computational complexity and observed as inappropriate for multi-object 

tracking. Also, cam-shift tracker fails when the target model has similar color 

values with background model due to its continiously adaptive nature which 

results in inconsistent variations in the search window of the tracked object. 

Kanade-Lucas-Tomasi Tracker is observed to be more robust to the occlusions 

and it could be the only solution for the cases in which the tracker is tested, 

especially during night surveillance. However, segmentation of the features for 

grouping them into individual objects is the most important drawback of the KLT 

method. It is observed that features which belong to the different objects, while 

close to each other, cannot be separated, when they move with similar velocities. 

 

Single camera event recognition results imply that single HMM fails to model the 

entire scene, if there are more than one ‘normal’ event types for same 

measurement. In the traffic scenario, each lane has different trajectory vectors 

that can be named as ‘normal’. Therefore, an event that can be classified as 

‘normal’ for one of the lanes might be ‘abnormal’ for another lane, and hence, 

more than one HMM is needed to model traffic. Experimental results from 

different scenarios in typical traffic videos indicate that the classifiers are 

successful to recognize ‘abnormal’ events. 

 

7.3 Discussions on Multi-Camera Surveillance 
 

In the proposed multi-camera moving object segmentation methods, the views are 

related via homography to each other and objects are assumed to be planar on the 

ground plane. Therefore, heights of the objects must be negligible compared to 
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the camera altitudes to satisfy this assumption and cameras must be mounted on 

devices at high altitudes. Otherwise, as shown during the simulations, the 

projection errors due to the plane assumption results in slight distortions in the 

foreground masks. Apart from this fact, the objects, which are occluded by static 

background obstacles in one of the views, can be segmented as foreground via the 

proposed methods, if other views can see the object. Also, false segmented 

regions in one of the views can be eliminated if the same region is correctly 

segmented in the other views. 

 

During the simulations of the occlusion handling method, it is observed that the 

proposed method gives succesfull results when objects are partially occluded or 

have different colors with respect to each other. Similar colored objects could 

also be separated, if one of the cameras is able to see the objects without 

occlusion. However, for the cases, where similar colored objects occlude each 

other heavily or single object has different colors on it, system may under-

segments or over-segments the objects. Moreover, performances of the 

segmentation algorithms, RSST and K-means, are found out to be similar, when 

final results are considered. However, K-means segments the data much faster 

than RSST and is observed to be better suited for any real-time application. 

 

Multi-camera tracking simulation results imply that once the same objects in 

different views are matched, the examined method gives promising results. 

Therefore, clear masks of foreground objects must be segmented, when they 

initially appear in the common field of view. The obvious advantage of the 

proposed system over single camera trackers is due to continues tracking as long 

as one of the cameras is able to view the object. As shown in the simulation 

results, Kalman tracker (without assistance) failed to track the object passing 

behind an obstacle and new Kalman trackers are mistakenly initiated since lost 

objects are incorrectly identified as appearing for the first time. Moreover, it is 

observed that GM-HMM, which is trained by the trajectories, extracted via multi-
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cameras, yields better results, when the classification of ‘abnormal’ events is 

considered. 

 

7.4 Future Work 
 

The proposed multi-camera methods are designed for the static camera 

configurations and must be calibrated after installation. This calibration is 

performed by an operator via 3D landmarks and must be automated. Moreover, 

many surveillance systems use active PTZ-cameras (pan-tilt-zoom) that can be 

controlled remotely, and these systems have advantages when static cameras are 

considered. In the future work, self calibration of these cameras should be 

possible to be performed automatically. 

 

Occlusion handling and tracking are considered as separate modules. An 

automated combination unit should be incorporated into a surveillance system, 

which will automatically recognize the occlusions and performs occlusion 

handling while tracker continues to track resulting separated objects. 
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