

 De LAM

DISCRETE TIME/COST TRADE-OFF PROBLEM IN PROJECT SCHEDULING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AHMET BAYKAL HAFIZOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

JUNE 2007

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Çağlar Güven
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Meral Azizoğlu
Supervisor

Examining Committee Members

Prof. Dr. Ömer Kırca (METU, IE)

Prof. Dr. Meral Azizoğlu (METU, IE)

Asst. Prof. Dr. F. Can Çetinkaya (Çankaya Univ., IE)

Assoc. Prof. Dr. Canan Sepil (METU, IE)

Asst. Prof. Dr. Ayten Türkcan (METU, IE)

iv

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name: Ahmet Baykal Hafızoğlu

Signature :

v

ABSTRACT

DISCRETE TIME/COST TRADE-OFF PROBLEM IN PROJECT

SCHEDULING

HAFIZOĞLU, Ahmet Baykal

M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Meral AZİZOĞLU

June 2007, 86 pages

In project scheduling, the activity durations can often be reduced by

dedicating additional resources. Time/Cost Trade-off Problem considers the

compromise between the total cost and project duration. The discrete version of the

problem assumes a number of time/cost pairs, so called modes, and selects a mode

for each activity.

In this thesis we consider the Discrete Time/Cost Trade-off Problem. We first

study the Deadline Problem, i.e., the problem of minimizing total cost subject to a

deadline on project duration. To solve the Deadline Problem, we propose several

optimization and approximation algorithms that are based on optimal Linear

Programming Relaxation solutions. We then analyze the problem of generating all

efficient solutions, and propose an approach that uses the successive solutions of the

Deadline Problem.

Our computational results on large-sized problem instances have revealed the

satisfactory behavior of our algorithms.

Keywords: Project Scheduling, Time/Cost Trade-off, Branch and Bound

vi

ÖZ

PROJE ÇİZELGELEMESİNDE KESİKLİ ZAMAN/MALİYET

ÖDÜNLEŞİM PROBLEMİ

HAFIZOĞLU, Ahmet Baykal

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Meral AZİZOĞLU

Haziran 2007, 86 sayfa

Proje çizelgelemesinde aktivite süreleri ek kaynaklar tahsis edilerek

azaltılabilir. Zaman/Maliyet Ödünleşim Problemi toplam maliyet ve proje süresi

arasındaki uzlaşmayı ele alır. Problemin kesikli versiyonu mod diye tabir edilen,

belirli sayıda zaman/maliyet çiftleri varsayar ve her aktivite için bir mod seçer.

Bu tezde Kesikli Zaman/Maliyet Ödünleşim Problemini ele aldık. Öncelikle

Zaman Sınırı Problemi, başka bir deyişle, proje bitirme süresi sınırına bağlı toplam

maliyet enazlama problemi üzerinde çalıştık. Zaman Sınırı Problemini çözmek için,

optimal doğrusal programlama gevşetmesine dayanan eniyileme ve yaklaşıklama

algoritmaları önerdik. Sonra Tüm Verimli Çözümleri Üretme Problemini inceledik,

ve Zaman Sınırı Probleminin ardışık çözümlerini kullanan bir yaklaşım önerdik.

Büyük ölçekli problem örneklerindeki sonuçlarımız algoritmalarımızın

memnuniyet verici tutumunu göstermektedir.

Anahtar Kelimeler: Proje Çizelgelemesi, Zaman/Maliyet Ödünleşimi, Dal-

Sınır Yöntemi

vii

To my family

viii

ACKNOWLEDGEMENTS

I am deeply grateful my thesis supervisor Prof. Meral Azizoğlu for her

efforts, guidance and support throughout the study. She not only guided me perfectly

throughout the study, but also helped me to develop a bright career as an ideal figure

of an academic.

I would like to thank jury members for their valuable contributions on the

thesis.

I would like to express my deepest appreciation to my family members:

Harzemşah Hafızoğlu, Nuran Hafızoğlu and especially İdil Hafızoğlu for their moral

support I received throughout my thesis. Without their love, such a work would not

exist.

I would like to thank my dear friends Melih Özlen for his invaluable support

and guidance; Banu Lokman for her help, moral support and cheerful company;

Tülin İnkaya and Bora Kat for their company even in the hardest parts of this study;

Pelin Bayındır for her insight and wisdom; Mustafa Gökçe Baydoğan for his support

and invaluable friendship. I would also like to thank to colleagues İbrahim Karahan,

Nihan Görmez, Oğuz Solyalı and Selin Bilgin for providing me a working

environment I will always miss.

I would also like to thank to all occupants of 63/9, namely, Ertuğrul Berk

Gürtekin, Musa Arda and Mehmet Akten and friends Erhan Akbaş, Rafet Çakır, Eda

Çuvaloğlu and Gülçin Haktanır for their friendship and encouragement in the

hardest pieces of this study.

And finally, thanks to our friend in the radio, rain clouds, “green”day and

foxes…

ix

TABLE OF CONTENTS

ABSTRACT ..v

ÖZ………...vi

ACKNOWLEDGEMENTS ..viii

TABLE OF CONTENTS.. ix

LIST OF TABLES..xi

LIST OF FIGURES ..xiii

CHAPTER
1 INTRODUCTION..1

2 PROBLEM DEFINITION AND RELATED LITERATURE................4

2.1 Project Scheduling Problems...4

2.2 Formulations for Multi-Mode Problems11

2.3 Literature Search on Multi-Mode Problems.................................15

3 THE DEADLINE PROBLEM..20

3.1 Problem Size Reduction..20

3.2 Lower Bounds ..27

3.2.1 Naive Bound, LB1 ...27

3.2.2 LP Relaxation Based Bound, LB2..28

3.3 Branch and Bound Algorithm ...31

3.4 Upper Bounds...34

4 THE TIME/COST CURVE PROBLEM ...40

5 COMPUTATIONAL RESULTS ..50

5.1 Data Generation ..50

5.2 Performance Measures..52

5.3 Preliminary Experiments...53

5.4 Main Experiment ..57

5.4.1 Deadline Problem..58

5.4.2 Time/Cost Curve Problem...68

6 CONCLUSIONS ..71

x

REFERENCES..73

APPENDICES

A. NUMERICAL EXAMPLE ON HEURISTICS ..76

B. PRELIMINARY RUN RESULTS OF HEURISTIC BRANCH AND

BOUND ALGORITHM 2..83

C. CPLEX AND BRANCH AND BOUND ALGORITHM CPU TIMES.........84

D. DETAILED RESULTS OF TIME/COST CURVE PROBLEM...................86

xi

LIST OF TABLES

TABLES

Table 2.1: Sample Project Network Precedence Relations..5

Table 2.2: Modes of an Example Instance ..7

Table 2.3: CPM Calculations of an Example ..11

Table 3.1: CPM Calculations Summary with Shortest Activity Durations (Iteration 1

Results with t =11)...23

Table 3.2: CPM Calculations Summary with Longest Activity Durations (Iteration 1

Results with t =11)...24

Table 3.3: CPM Calculations Summary with Shortest Activity Durations (Iteration 2

Results with t =11)...25

Table 3.4: CPM Calculations Summary with Shortest Activity Durations (Iteration 1

Results with t =18)...25

Table 3.5: CPM Calculations Summary with Longest Activity Durations (Iteration 1

Results with t =18)...26

Table 3.6: CPM Calculations Summary with Shortest Activity Durations (Iteration 2

Results with t =18)...27

Table 3.7: Modes and Precedence Relations for Example Problem.........................32

Table 3.8: The Optimal LP Solution, i.e., LB2..33

Table 4.1: All Feasible Solutions of Sample Network ..46

Table 5.1: Time/Cost Curve Problem Parameters ...51

Table 5.2: Deadline Problem Parameters..52

Table 5.3: Branch and Bound Algorithm Versions ...53

Table 5.4: Average CPU Times for Mode Elimination Algorithms.........................54

Table 5.5: Average CPU Time (seconds) for Branching and Selection Strategies ...55

Table 5.6: Average Number of Nodes for Branching and Selection Strategies........55

Table 5.7: Average CPU Times of the Large-Sized Instance55

Table 5.8: Average CPU Times of BAB Using Different Upper Bounds................56

xii

Table 5.9: Average Number of Nodes of BAB Using Different Upper Bounds.......57

Table 5.10: Lower Bound Deviations...59

Table 5.11: Branch and Bound Algorithm Results for Deadline Problem61

Table 5.12: Construction Heuristic Results ..63

Table 5.13: Improvement Heuristic 1 Results...64

Table 5.14: Improvement Heuristic 2 Results...65

Table 5.15: Heuristic Branch and Bound Algorithm 1 Results................................66

Table 5.16: Comparison of Heuristics ..69

Table 5.17: Time/Cost Curve Problem CPU Times (in seconds)70

Table A.1: Data for the Example Instance ..76

Table A.2: Fractional Variables of the LP Relaxation...77

Table A.3: Initial Improvements in Improvement Heuristic 1.................................78

Table A.4: Summary of the Execution of the Improvement Heuristic 179

Table A.5: Improvements of Activity 8 at Improvement Heuristic 2.......................81

Table B.1: Average CPU Times and Deviations of 4 Small-Sized Instances...........76

Table B.2: Average CPU Times and Deviations of the Large-Sized Instance76

Table C.1: CPLEX and Branch and Bound Algorithm CPU Times (in seconds) for

CI=13 Instances ...77

Table C.2: CPLEX and Branch and Bound Algorithm CPU Times (in seconds) for

CI=14 Instances ...77

Table D.1: Time/Cost Curve Results..86

xiii

LIST OF FIGURES

FIGURES

Figure 1.1: Time/Cost Trade-off Problem Categories ...2

Figure 2.1: Activity on Node Representation of Sample Network.............................5

Figure 2.2: Activity on Arc Representation of Sample Network...............................6

Figure 2.3: CPM Example Network ...9

Figure 2.4: Critical Path ...11

Figure 3.1: AoA Representation of the Sample Project Network23

Figure 3.2: Sample Solution Space...28

Figure 3.3: Sample Solution Space with Mode Elimination....................................29

Figure 3.4: Branching Scheme ...31

Figure 3.5: Alternate Branching Scheme ..34

Figure 3.6: Alternate Branching Scheme ..39

Figure 3.7: Heuristic Branch and Bound Algorithm Scheme39

Figure 4.1: Particular Solutions to Time/Cost Curve Problem40

Figure 4.2: Solution Space and Efficient Solutions Space.......................................43

Figure 4.3: AoA Representation of the Sample Project Network45

Figure 4.4: Solution Space of the Sample Project Network.....................................46

1

CHAPTER 1

1 INTRODUCTION

In project scheduling, a set of activities with specified precedence relations

has to be performed so as to create a service or product. An activity of the project

can be performed in several different ways with different times and/or costs.

Usually, it may be possible to accelerate the process by reducing the activity

durations. The activity durations can be reduced by dedicating extra resources. These

resources can be human, tool, machine, alternative processing options, like the

subcontracting. An increase in resource consumption naturally increases the cost and

decreases the time. According to the resource consumption levels, the alternatives

can be defined. Each alternative defines its own cost and time combination and is

referred to as mode in project scheduling terminology.

The number of modes for each activity is usually limited and the decision is

to select an activity mode that leads promising project outcomes. As increasing the

duration of an activity, reduces its cost, such problems are referred to as Time/Cost

Trade-off Problems.

Time/Cost Trade-off Problems have been studied by many researchers and

for many years. The first studies date back to early sixties. There are several

categories of the problem. Figure 1.1 below demonstrates the classification scheme

of Time/Cost Trade-off Problems, according to the nature of time/cost functions.

2

Figure 1.1: Time/Cost Trade-off Problem Categories

The classification used is based on the relation of time and cost figures.

Problems with continuous time cost relations are studied in two subsections: Linear

time/cost relations and nonlinear time/cost relations.

The objective function and the constraints of the problem give rise to three

different Discrete Time/Cost Trade-off Problem categories:

• Deadline Problem

• Budget Problem

• Time/Cost Curve Problem

The Deadline Problem assumes an upper limit on the duration of the project,

i.e., the maximum completion time over all activities. The aim is to minimize the

total cost. The problem is shown to be NP-hard in the strong sense by Dunne et al.

(1997).

The Budget Problem assumes an upper limit on the available amount of

resources allocated. The objective is to minimize the project duration. A special case

of the problem where all activities have a single mode is easily solvable by the

Critical Path Method. The Critical Path Method simply finds the minimum project

duration with given activity durations. The problem is shown to be NP-hard in the

strong sense by Dunne et al. (1997).

The Time/Cost Curve Problem generates all efficient solutions relative to the

total cost, and project duration objectives. A non-dominated, i.e., an efficient, set is

defined using the successive solutions of the Deadline or Budget Problems. The

Time/Cost Curve Problem is strongly NP-hard, as the Deadline Problem and Budget

Problem is strongly NP-hard.

3

In this study, we first consider the Deadline Problem for the discrete

time/cost alternatives. We propose a Branch and Bound Algorithm and several

heuristic procedures. All procedures are based on the Linear Programming

Relaxations of the problem. We define the properties of the Linear Programming

Relaxation and use them in designing our algorithms. We then consider a Discrete

Time/Cost Curve Problem. Our approach uses the successive solutions of the

Deadline Problem. We propose optimization and approximation algorithms to solve

the curve problem.

In the literature, the optimization procedures designed for the Deadline and

Time/Cost Curve Problems could solve only moderate-sized instances up to 50

activities and 4 modes. Our algorithms, on the other hand, solve large-sized

instances with up to 150 activities and about 10 modes in reasonable times.

The rest of the thesis is organized as follows. In Section 2, we define the

problems and discuss the related literature. Section 3 presents our work on the

Deadline Problem. The properties of the optimal solution, our Branch and Bound

Algorithm and heuristic algorithms are discussed. In section 4, we analyze the

Time/Cost Curve Problem. Our approach that uses successive solutions of the

Deadline Problem is presented. Section 5 reports our computational experiment and

its results. We conclude in Section 6 by pointing our main findings and suggestions

for future research.

4

CHAPTER 2

2 PROBLEM DEFINITION AND LITERATURE REVIEW

In this chapter, we first define single and multi-mode project scheduling

problems. We then give the mathematical representations for the different versions

of the multi-mode problems. Finally, we review the previous studies of the multi-

mode problems.

2.1 Project Scheduling Problems

Project is the process of creating a service or product by the contribution of

jobs and resources within an organizational order. Project management is the

discipline of planning and organization of jobs and resources in order to satisfy

project constraints. In many projects resources can be represented by time and

money. Many projects may not allow excess use of resources. Therefore, project

time and project budget may be limiting factors. Some jobs may require some other

jobs to be completed before they begin. These relations between jobs are called

precedence relations which constitute another body of project constraints. In project

scheduling terminology jobs are referred as activities. The relations of activities are

best represented by project networks.

Project Networks

In the literature there are two different representations used for project

networks: Activity on Node (AoN) Representation and Activity on Arc (AoA)

Representation. These representations are separated in terms of activity and

precedence relations. To define the precedence relations, we use the predecessor and

successor activities. If start of activity i requires, activity j to be completed we say

activity j is the predecessor of activity i, and activity i is the successor of activity j. If

activity i can start immediately after activity j, then activity j is the immediate

predecessor of activity i, and activity i is the immediate successor of activity j.

5

Activity on Node (AoN) Representation

In AoN representation, the activities are shown by nodes. Arcs represent the

immediate precedence relations. The direction of an arc shows the precedence

direction. Assume we have an 8 activity project having precedence relations as

shown in Table 2.1. AoN representation of the project network is given in Figure

2.1.

Table 2.1: Sample Project Network Precedence Relations

Activity
Immediate

Predecessor
Immediate
Successor

1 - 2,3
2 1 4,5
3 1 7
4 2 6
5 2 8
6 4 8
7 3 8
8 5,6,7 -

Figure 2.1: Activity on Node Representation of Sample Network

Note that activities 1 and 2 are predecessors of activity 4, and activities 6 and

8 are successors of activity 4.

6

Activity on Arc (AoA) Representation

According to AoA representation scheme the activities are shown by arcs.

All activities have a source node and a sink node. The source node of an activity

represents an event of starting that activity whereas its sink node represents an event

of completing that activity. The arcs representing the immediate successor activities

of an activity should start from the sink node of the activity. Therefore, the

corresponding node becomes the source node of the immediate successor nodes. In

project networks, parallel arcs are not allowed, hence in some cases it is required to

use dummy activities. AoA representation is more widely used to demonstrate

project networks. AoA representation for the sample network, whose data are given

in Table 2.1, is shown in Figure 2.2.

Figure 2.2: Activity on Arc Representation of Sample Network

In Figure 2.2, node 0 is an event for the start of activity 1, therefore, the start

of the project. Node b represents the completion of activity 2 and start of activities 4

and 5. Node f represents the completion of activity 8, therefore, the completion of

the entire project. The completion time of the last activity 8 defines the project

completion time. The project completion time is also referred to as project duration.

In project scheduling problems each activity has a duration, and a cost.

Occasionally, there may be alternative time/cost values for any activity. In such

cases, the durations of the activities are inversely proportional with their cost values.

For instance, in a tunnel project, drilling operation can be completed with a single

drilling machine in a long time. To decrease the operation duration, additional

drilling machines can be assigned to the operation. In such a case, the operation

duration decreases; however, money paid to drilling machines increases. As more

7

drilling machines are assigned to the operation, duration continuously decreases and

total cost increases. The time/cost pair for each alternative situation is called mode.

Mode is simply the word used instead of “alternative” in project scheduling

terminology. Table 2.2 illustrates the data for a 5-mode problem.

Table 2.2: Modes of an Example Instance

Mode Total Cost Time # of Machines Used
1 $100000 12 months 1
2 $200000 8 months 2
3 $300000 5 months 3
4 $400000 3 months 4
5 $500000 2 months 5

As can be observed from the table, the time decreases, with cost increases

due to the additional resources, i.e., machines used.

When there is more than one mode for an activity, a decision has to be made

about which mode to choose. The associated problem is choosing right modes to

minimize project duration or total cost without violating the project constraints.

These kinds of problems are referred as Multi-mode problems.

When there is single mode for each activity the problem is called Single-

mode problem.

Single-Mode Problems

The problem is to determine the project duration. To find minimum project

duration Critical Path Method (CPM) is used. Since there is only one mode for each

activity, total project cost is simply the summation of costs of all activities.

For single-mode problems the parameters that define the problem are

precedence relations and duration of activities. ti is the duration of activity i. ti is also

referred as activity times. Pi (Si) is the set of immediate predecessors (successors) of

activity i. The aim is to find the minimum project duration T.

For a given project, the following information can be derived:

ESi: Earliest possible start time of activity i

LCi: Latest possible completion time of activity i

8

Slack time of activity i: Maximum possible duration of activity i without

increasing the project duration. It is simply the difference between latest possible

completion and earliest possible start time.

Critical Activity: The activity whose slack time is equal to its duration. In

other words, any activity is called critical if an increase in its duration directly

affects the project duration. All activities which are not critical are called non-

critical activities. The set of critical activities are denoted as Crit.

To summarize, we have the following relations:

i i iSlack LC ES= − 1, 2,....,i N=

{ }1,2,..., | i iCrit i N Slack t= = =

Critical Path: A path from source to sink consisting of all critical activities.

 The CPM algorithm works as follows:

In initialization step, the earliest start times of the activities without

predecessors are set to 0. Then the earliest start times of other activities are

calculated. For each activity, the earliest start times of all immediate predecessors

are known. The earliest start time of activity is the maximum of the earliest

completion times of its predecessors. After all earliest start times are computed, the

earliest project duration is found, which is the maximum of all earliest completion

times. The latest completion times are then computed, starting from the activities

having no successors. The latest completion time of an activity is the minimum of

the latest start times of all its immediate successors. After all earliest start and latest

completion times are found, the slack times are computed and the critical activities

are detected. Below is the stepwise description of the CPM.

9

We illustrate the CPM method on the project instance whose data were given

in Table 2.1. The AoA representation is given in Figure 2.3 below. The numbers in

the parentheses on the arcs denote the activity durations.

Figure 2.3: CPM Example Network

We now give the stepwise implementation of the method.

Initialization:

Activity 1 has no immediate predecessor. Therefore ES1 =0

Initialization:

0iES = : ii P = ∅

Main Body:

Repeat

 { }
i

i j jj P
ES Max ES t

∈
= + : is calculatedi ji j P ES∀ ∈

Until iES for 1, 2,....,i N= are calculated

{ }i ii
T Max ES t= +

iLC T= : ii S = ∅

Repeat

 { }
i

i j jj S
LC Min LC t

∈
= − : is calculatedi ji j S LC∀ ∈

Until iLC for 1, 2,....,i N= are calculated

Finalization:

i i iSlack LC ES= − 1, 2,....,i N=

{ }1,2,..., | i iCrit i N Slack t= = =

10

Main Body:

We start by checking the activities that immediately succeed activity 1. These

activities are 2, 3. Activities 2 and 3 have single predecessor. ES2 and ES3 are

calculated as follows:

ES2 =ES3 =ES1 + t1 =0 + 6 =6

Using ES2 and ES3, we calculate ES4 , ES5 and ES7

ES4 =ES5 =ES2 + t2 =6 + 12 =18

ES7 =ES3 + t3 =6 + 7 =13

ES6 is calculated using ES4

ES6 =ES4 + t4 =18 + 5 =23

Activity 8 has 3 predecessors. Therefore,

 ES8 =Max{ES6 + t6 ; ES5 + t5 ; ES7 + t7 } =Max{23+2; 18+3; 13+9}=25

Since all ES values are calculated, the project duration is calculated

 T =Max {ESi + ti}=25 + 5 =30; LC8 =30

As a result, the project duration is calculated. Now it is time to calculate the

latest completion time values. LC5, LC6, LC7 are calculated using LC8

LC5 =LC6 =LC7 =LC8 – t8 =30 – 5 =25

Similarly, LC3 and LC4, are calculated

LC3 =LC7 – t7 =25 – 9 =16

LC4 =LC6 – t6 =25 – 2 =23

Activity 2 has 2 immediate successors. Therefore,

LC2 =Min {LC5 – t5; LC4 – t4} =Min {25 – 3 ; 23 – 5 }=18

Activity 1 has 2 immediate successors.

LC1 =Min {LC2 – t2; LC3 – t3} =Min {18 – 12; 16 – 7} =6

All latest completion times and slack times are calculated and tabulated in

Table 2.3.

From the table, it can be observed that the slack times and durations of the

activities 1, 2, 4, 6 and 8 are equal. These activities are critical, and the path defined

by these activities is the critical path. The critical activities in Figure 2.4 are shown

by solid lines.

11

Table 2.3: CPM Calculations of an Example

Activity Pred. Succ. Duration ES LC slack
1 - 2,3 6 0 6 6
2 1 4,5 12 6 18 12
3 1 7 7 6 16 10
4 2 6 5 18 23 5
5 2 8 3 18 25 7
6 4 8 2 23 25 2
7 3 8 9 13 25 12
8 5,6,7 - 5 25 30 5

Figure 2.4: Critical Path

Observe that T =t1 + t2 + t4 + t6 + t8 =30. Any change in the duration of any

critical activity directly affects the project duration. On the other hand, the duration

of activity 4 is 7, and the slack time of that activity is 10. This means that the

duration of activity could be increased by 3 units without increasing the project

duration. In other words, one can delay the start time of activity 4 by 3 units without

increasing the project duration.

2.2 Formulations for Multi-Mode Problems

The activity durations can often be reduced by dedicating additional money

resources. Money resources are explained as the cost of activities. In the discrete

version of the problem, each activity is given a number of time/cost pairs, so called

modes. The cost time pair of activity is (cik, tik) where cik is the cost of activity i and

tik is the duration (time) of activity i, associated to its k’th mode. For any two modes

(i,k1) and (i,k2), we assume that tik1 > tik2 implies cik1 < cik2, i.e., shorter durations

require extra resources, hence higher costs.

12

Each activity i has mi modes. The problem is to assign a mode for each

activity by considering total cost and project duration as criteria. This problem is

referred to as Discrete Time/Cost Trade-off Problem (DTCTP) in the literature. We

define three versions of the DTCTP and give their mathematical representations.

These problems are Deadline, Budget, and Time/Cost Curve Problems. We give the

mathematical representations of the problem. Similar formulations can be found in

many project scheduling references.

Mathematical Model:

Indices, parameters and decision variables of the mathematical model,

proposed are as follows.

Indices:

i: activity index 1, 2,...., 1i N= +

k: mode index 1, 2,...., ik m=

(N+1 is a dummy activity where all activities having no successors are

connected to)

Parameters:

mi: number of modes for activity i

tik: duration of activity i with mode k

cik: cost of activity i with mode k

Pi: set of immediate predecessors of activity i

Decision Variables:

Si =Starting time of activity i

yik =
1, if activity is assigned to mode
0, otherwise

i k



SN+1 =Project duration

Constraints:

Each activity should be assigned to exactly one mode.

13

1

1
im

ik
k

y
=

=∑ 1, 2,....,i N= (1)c

An activity cannot start before all of its immediate predecessor activities are

completed.

The time of the assigned mode for activity i is ti, where
1

im

i ik ik
k

t t y
=

= ×∑

1

jm

i j jk jk
k

S S y t
=

≥ + ×∑ 1, 2,...., 1i N= + ; ij P∀ ∈ (2)c

Starting time of the activities should be nonnegative.

0iS ≥ 1, 2,...., 1i N= + (3)c

yik’s are binary variables

{ }0,1iky ∈ 1, 2,....,i N= ; 1, 2,...., ik m= (4)c

The problem contains
1

N

i
i

m
=
∑ binary iky variables, and 1N + continuous iS

variables. There are
1

| |
N

i
i

N P
=

+ ∑ constraints.

We now define the additional constraints and the objective of each individual

problem.

1. Deadline Problem

We find the least costly mode assignments subject to the constraint that the

project completes by the specified deadline.

We let t denote this deadline and add the following constraint.

1NS t+ ≤ (5)c

The objective function of the Deadline Problem is the total cost and is

expressed as:

1 1

imN

ik ik
i k

Min c y
= =

×∑∑

The Deadline Problem model is

1 1

 (1), (2), (3), (4), (5)

imN

ik ik
i k

Min c y

Subject to c c c c c
= =

×∑∑

14

2. Budget Problem

We find the smallest project duration, subject to the constraint that the total

cost of the selected modes does not exceed the available budget.

We let b denote the available budget and add the following constraint

1 1

imN

ik ik
i k

B c y b
= =

= × ≤∑∑ (6)c

The objective function of the Budget Problem is expressed as:

1 NMin S Min T+ =

i.e., the project duration is to be minimized.

The Budget Problem model is

1
 (1), (2), (3), (4), (6)

NMin S
Subject to c c c c c

+

3. Time/Cost Curve Problem

The problem is to assign a mode for each activity such that a non decreasing

function of T and B is minimized. We let f (T,B) denote this function. f (T,B) may be

known or unknown. An example to f (T,B) is a linear combination of T and B, such

that w1T + w2B where w1(w2) is the relative weight assigned to T(B). When f (T,B) is

unknown, then the problem reduces to the generation of all efficient solutions with

respect to T and B.

A solution S is efficient if there does not exist a schedule S* such that
*() ()T S T S≤ and *() ()B S B S≤ with strict equality holding at least once. Provided

that f (T,B) is non-decreasing in T and B, an optimal solution is in the efficient set.

Hence to find an optimal solution to any non-decreasing f (T,B), it is sufficient to

generate all efficient solutions, evaluate each solution for f (T,B) and select the best

solution.

In the literature, the Efficient Set Generation Problem is referred to as

Time/Cost Curve Problem. The previous studies solve the Deadline Problem for all

possible realizations of the project durations. Alternatively, one can use Budget

Problem for all possible realizations of the total cost values. In this thesis, we study

the Deadline Problem, and use this problem to generate all efficient solutions, i.e., to

solve the Time/Cost Curve Problem.

15

2.3 Literature Review on Multi-Mode Problems

In this chapter, we explain current studies on Time/Cost Trade-off Problem

in chronological order.

The paper by Fulkerson (1961) is one of the first successful attempts to

handle the project scheduling problem with time/cost trade-offs. The relation

between time and cost of each activity is defined by a single linear function. Activity

on Arc (AoA) representation is used and each activity is represented as (i,j) by its

source node “i” and terminal node “j”. The focused problem is to compute time/cost

curve using the Deadline Problem. Fulkerson (1961) converts the Deadline Problem

into a Network Flow Problem, by taking its dual and doubling each arc. Fulkerson

(1961) proves that the time/cost curve is convex and develops a Network Flow

Algorithm.

Kelley (1961) proposes a very similar algorithm to Fulkerson’s to derive

time/cost curve. He proposes, Primal-Dual Algorithm followed by the Network Flow

Algorithm, which is derived from the dual of the main problem. Moreover, Kelley

(1961) studies on the structure of the project network and relations of the activities.

This study is one of the pioneer studies in network decomposition in project

scheduling. Kelley defines the time/cost curve as “Project Cost Utility Curve”. As a

result, by estimating utility function of the user, Project Cost Curve helps to make

conclusions about the solution and conduct sensitivity analysis. Kelley (1961)

concludes his work by discussing some real life cases.

Meyer and Shaffer (1965) focus on the Deadline Problem and consider

continuous, discontinuous, discrete, combination of discrete and continuous

functions. Moreover, they mention convex, concave and hybrid cases of these

functions separately and develop Mixed Integer Programming Formulations for each

case. They conclude their study with an example of nine-activity project network,

where each activity has time/cost relationship of its own. However, no

computational work is presented.

Butcher (1967) is the first to handle the Budget Problem with Dynamic

Programming Formulation, in which the activities form the stages and the money

paid to activities are state variables. The decision is how much to allocate to each

activity. The author concludes his work by mentioning the need for further analysis

on the networks that cannot be decomposed into serial or parallel structures.

16

Crowston et al. (1967) approach the Discrete Time/Cost Trade-off Problem

from the Decision Critical Path Methodology content. The network is represented as

a decision tree. The activities are represented via nodes. The paper is one of the first

Discrete Time/Cost Trade-off Problem works where Activity on Node representation

is used. Their computational results show the superiority of the Mixed Integer

Formulation over the Complete Enumeration. The interdependency conditions are

added between some decision nodes. The paper models the Deadline Problem by a

Mixed Integer Formulation. By removing some redundant constraints, the new

formulation named Reduced Path Formulation, is provided. Moreover, a Heuristic

Method is proposed which can handle only mutually exclusive type

interdependencies.

Rothfarb et al. (1970) and Frank et al. (1971) work on the optimal design of

Offshore Natural-gas Pipeline Systems Problem. They develop algorithms to merge

series and parallel connected activities and they determine some rules to set up the

modes of the merged activities.

Robinson (1975) develops a Dynamic Programming Algorithm that handles

the Budget Problem for all possible network structures with discrete time/cost

relations. Robinson (1975) states that the complexity of the problem is reduced if the

activity durations are given at uniformly spaced points like: d, 2d, 3d. After defining

a general recursive formula, Robinson (1975) defines sufficiency conditions to

decompose the recursive formula into One-dimensional Optimization Problem. If the

conditions do not hold, the problem is solved as a Multidimensional Allocation

Problem. The author proposes mode elimination methods, elimination and addition

of the precedence relations to reduce the computational effort of the

Multidimensional Problems. To solve the Multidimensional Problem, state variables

are chosen and set to constant values to convert the problem into One-dimensional

Optimization Problem. Later the problem is solved over different values of the state

variables. This paper is the leader in the project network decomposition with the

clearly stated sufficiency and necessary conditions. However, the theoretical work is

not supported with computational experience and examples.

Phillips et al. (1977) work on the Linear Time/Cost Relationship Problem.

They improve the algorithms of Fulkerson (1961) and Kelley (1961) for generating

the time/cost curve. In addition to Fulkerson (1961) and Kelley (1961)’s algorithms,

the proposed algorithm locates the minimal cuts on the network by using flow

17

interpretations. To locate the minimal cuts, manual inspection, Out of Kilter and Cut

Search Algorithms are used. Their computational experience shows that Cut Search

Algorithm performs superior to the Out of Kilter Algorithm.

Elmaghraby (1993) addresses the Budget Problem, and proposes a Dynamic

Programming approach. He first reduces the network to an s/p reducible network by

fixing the activity durations. The reduced problem can be solved as a One-

dimensional Optimization Problem as stated by Robinson (1975). Later the sequence

of node reductions and arc fixings are determined. Dynamic Programming

formulation is used at every step of node reductions and arc fixings. After network

reduction is completed, the network is updated and the fixed activities are labeled.

The reduced problem is solved by Branch and Bound because of the curse of

dimensionality. At each level of the tree a labeled activity is chosen and the decision

is which mode (duration) to choose. The Optimization Algorithm is followed by an

Approximation Algorithm. All proposed algorithms are illustrated by numerical

examples. However, no computational work is presented.

De et al. (1995) present an extensive literature review of Time/Cost Trade-

off Problems in Project Scheduling. All studies are classified according to the

structure of time/cost function and objective function focus. A general definition of

all problem types is provided.

Demeulemeester et al. (1996) consider all optimal procedures of DTCTP for

all problem types: Deadline Problem, Budget Problem, Time/Cost Curve Problem;

and overview the solution methodologies. For s/p reducible networks, series parallel

merge algorithms developed by Rothfarb et al. (1970) is recommended. For s/p

irreducible networks a partial enumeration approach is proposed. The main goal of

the approach is to convert the network into an s/p reducible network by optimal

fixings previously discussed by Elmagraby (1993). A similar network reduction

approach to Bein et al. (1992) is proposed. One main difference is to use “minimum

number of activity fixings”, instead of “minimum number of node reductions” to

evaluate reduction complexity. The “minimum number of activity fixings” is defined

to be the Complexity Index, which is commonly used to evaluate reduction

complexity in later studies. The operations during the reduction are coded, and

recorded as the reduction plan.

For the Time/Cost Curve Problem, the solution is found by complete

enumeration of all modes of fixed activities with the help of backtracking of the

18

reduction plan. For the Budget and Deadline Problems, the solution procedure is

based on the same backtracking procedure. Some dominance rules are also included.

Their new reduction plan performs better in less complex networks than the

reduction plan of Bein et al. (1992). However, in complex networks the new

algorithm is outperformed.

Dunne et al. (1997) prove that all versions of the Discrete Time/Cost Trade-

off Problem are NP Hard, in the strong sense, which is the most important

complexity result of DTCTP literature. They also show that some special structures

like pure parallel, pure series are solvable in polynomial times.

Skutella (1998) addresses approximation algorithms for Discrete Time/Cost

Trade-off Problem. Skutella first assigns two modes for each activity, where the

shorter is zero. There after, the problem is easily relaxed to a linear problem. Using

linear relaxation results feasible discrete realizations are constructed. Skutella (1998)

proves that there are approximations with performance guarantee l for the problems

with durations range: {0, 1, 2, l} for the Budget Problem. For the special case with

duration range {0, 1, 2}, an approximation algorithm with performance guarantee of

3/2 is presented. The results are extended to an Approximation Algorithm with

performance guarantee O (log l) where l is the ratio of the maximum duration to the

minimum nonzero duration. In the last part, Approximation Algorithms for the

Time/Cost Curve Problem with a constant error factor are discussed.

Demeulemeester et al. (1998) consider the Time/Cost Curve Problem and

solve the problem by a horizon-varying approach using iterative solutions of the

Deadline Problem. The Deadline Problems are solved by Branch and Bound

Algorithm using Linear Relaxation based lower bounds. They provide piecewise

linear approximations for the time/cost function, and solve the Linear Relaxation

Problem by Fulkerson (1961)’s algorithm. This adaptation is due to having more

than two modes which is not taken into account by Fulkerson. Their algorithm

solves the small-sized instances up to 30 activities and 4 modes easily, however fails

to solve the majority of the instances with 40 activities.

Deineko et al. (2001) prove that there cannot exist a polynomial time

approximation algorithm with a performance guarantee better than 3/2 for any

versions of the Discrete Time/Cost Trade-off Problem. They also prove that there

cannot exist a polynomial time (1+ε, 5/4-β)-Approximation Algorithm for any

19

versions of the Discrete Time/Cost Trade-off Problem; given that there exist a real

number ε>0 and β>0.

Akkan et al. (2005a) develop heuristics and lower bounding procedures for

the Deadline Problem. Similar to the previous approaches, they compute linear

relaxation based lower bounds. Their first bound uses cuts based on the earliest start

and latest completion times of the activities in their linear program. Their second

lower bounding procedure uses network decomposition as the basic idea. After a

number of sub networks are found, the mathematical model is re-formulated with the

inclusion of the sub networks. The LP Relaxation of the reformulation gives a lower

bound and it is solved by column generation procedure. The proposed heuristic also

depends on the column generation based realizations of the Deadline Problem. They

propose two rules to eliminate short and long modes. Their extensive computational

study reveals the satisfactory behavior of their algorithm.

The most closely related study to ours is due to Akkan et al. (2005a). We

propose optimization algorithm and heuristic procedures for the Deadline Problem

whereas Akkan et al. (2005a) propose bounding procedures. Moreover, we extend

our findings for Deadline Problem to Time/Cost Curve Problem.

20

CHAPTER 3

3 THE DEADLINE PROBLEM

The Deadline Problem finds the least costly project schedule with a given

project deadline. We develop a Branch and Bound Algorithm to solve the Deadline

Problem. In this section we first discuss procedures used to reduce the problem size.

Next lower bounding procedures are discussed that are used in the Branch and

Bound Algorithm. Finally, we present our upper bounding procedures.

3.1 Problem Size Reduction

We develop some rules that help us to reduce the problem size. These

reductions are done through activity-mode eliminations. Such eliminations are

valuable in the sense that they reduce the number of binary variables, thereby

dispelling the exponential nature of the problem, to some extent.

We develop two elimination rules: one for discarding short modes and one

for long modes.

We use the following notation to state our rules.

LCj(S): latest completion time of activity j when the shortest activity

durations are used.

ESj(S): earliest start time of activity j when the shortest activity durations are

used.

LCj(L): latest completion time of activity j when the longest activity

durations are used.

ESj(L): earliest start time of activity j when the longest activity durations are

used.

tj: the duration of the mode assigned to activity j.

1

jm

j jk jk
k

t t y
=

= ×∑

cj: the cost of the mode assigned to activity j.

21

1

jm

j jk jk
k

c c y
=

= ×∑

We now give the formal statements of our rules. Theorem 1 eliminates long

modes whereas Theorem 2 eliminates short modes.

Theorem 1: If () () 1jk j jt LC S ES S≥ − + then
1

0
k

jr
r

y
=

=∑ , in all feasible

solutions.

Proof: Note that () ()j jLC S ES S− is the maximum allowable processing

time for activity j, as the other activities are set to their smallest activity durations.

Hence any activity duration greater than () ()j jLC S ES S− returns an infeasible

solution. Therefore yjr should be set to zero, if () () 1jk j jt LC S ES S≥ − + . If

() () 1jk j jt LC S ES S≥ − + then () () 1jr j jt LC S ES S≥ − + if r k≤ , as, jr jkt t≥ . This

follows, , , 1 ,1........ 0j k j k jy y y−= = = = , i.e.,
1

0
k

jr
r

y
=

=∑ . ⁭

Akkan et al. (2005a) give the same result for the last mode mj. Hence

Theorem 1 is a simple generalization of Akkan et al. (2005a)’s theorem.

Theorem 2: If () ()jk j jt LC L ES L< − then
1

0
jm

jr
r k

y
= +

=∑ , in all optimal

solutions.

Proof: Assume a solution that contradicts with the condition of the theorem,

i.e., () ()jk j jt LC L ES L< − and yjr=1 for any 1r k≥ + .

Assume the mode of activity j is changed from r to k. Such an exchange is

feasible as () ()jk j jt LC L ES L< − . (Note that any processing smaller than or equal to

() ()j jLC L ES L− will not increase project duration, hence never causes

infeasibility), and it decreases the objective function by 0jr jkc c− > units. This

implies a solution that contradicts with the condition of the theorem cannot be

optimal. ⁭

22

We implement Theorem 1 and Theorem 2 successively, once Theorem 1

eliminates some modes, the longest feasible modes do change and the conditions

stated by Theorem 2 will hold with higher probability. Similarly once Theorem 2

eliminates some short modes, the LCj – ESj values will decrease, and the probability

that Theorem 1 eliminates becomes higher.

We check the theorems alternately and stop when neither of them can

eliminate any mode. Below is the stepwise description of our mode elimination

procedure.

Numerical Example

Consider the following 5-activity network shown in Figure 3.1, where

activities 1, 2, 4 and 5 have three modes and activity 3 has two modes. The time/cost

pairs are given on the arcs of the figure.

Step 0: a=1

Step 1: Find, LCj(S), ESj(S) using critical path method by

setting shortest activity times to each activity.

Step 2: Find smallest k that satisfies () () 1jk j jt LC S ES S≥ − + .

 If no such k exists and a=0, then stop.

 Else Eliminate modes 1,…,k. Set mj=mj – k.

Step 3: a=0

Find, LCj(L), ESj(L) using critical path method by

setting longest activity times to each activity.

Step 4: Find largest k that satisfies () ()jk j jt LC L ES L< − .

 If no such k exists and a=0, then stop.

 Else Eliminate modes k+1,…,mj. Go to Step 1.

23

Figure 3.1: AoA Representation of the Sample Project Network

Based on the given data, the minimum and maximum possible durations are

9 and 22 respectively. The problem is first solved for deadline value of 11.

Step 0: a=1

Step 1: All activities are set to their shortest activity durations. Hence,

1 3t = ; 2 4t = ; 3 4t = ; 4 2t = ; 5 2t = .

Table 3.1 below shows CPM calculations with t=11

Table 3.1: CPM Calculations Summary with Shortest Activity Durations

(Iteration 1 Results with t =11)

Activity Pred. Succ. Duration ES(S) LC(S)
1 - 3,4 3 0 5
2 - 5 4 0 9
3 1 5 4 3 9
4 1 - 2 3 11
5 2,3 - 2 7 11

Step 2: Following mode eliminations can be done:

1 1 1,1() () 1 6 9LC S ES S t− + = < = ; Mode (1,1) is eliminated.

2 2 2,1() () 1 10 11LC S ES S t− + = < = ; Mode (2,1) is eliminated.

3 3 3,1() () 1 7 7LC S ES S t− + = = = ; Mode (3,1) is eliminated.

4 4 4,1() () 1 9 10LC S ES S t− + = < = ; Mode (4,1) is eliminated.

5 5 5,1() () 1 5 6LC S ES S t− + = < = ; Mode (5,1) is eliminated.

24

A total of 5 modes are eliminated. This reduces the number of the binary

variables from 162 (3 3 2 3 3× × × ×) to 16(2 2 1 2 2× × × ×).

Step 3: a=0

Now, all activities are set to their longest activity durations. Table 3.2 below

shows CPM calculations.

Table 3.2: CPM Calculations Summary with Longest Activity Durations

(Iteration 1 Results with t =11)

Activity Pred. Succ. Duration ES(L) LC(L)
1 - 3,4 5 0 3
2 - 5 6 0 7
3 1 5 4 5 7
4 1 - 5 5 11
5 2,3 - 4 9 11

Step 4: Note that activity 3 has a single mode left. Hence, it is not considered

in this step.

1 1() () 3LC L ES L− = ; Activity 1 cannot be shorter.

2 2 2,2() () 7 6LC L ES L t− = > = ; Mode (2,3) is eliminated.

4 4 4,2() () 6 5LC L ES L t− = > = ; Mode (4,3) is eliminated.

5 5() () 2LC L ES L− = ; Activity 5 cannot be shorter.

We eliminate two more modes and return to Step 1.

Step 1: At this step the remaining modes are second modes of all activities

and third modes of activity 1 and 5. Activities with more than one mode are 1 and 5.

Both activities are set to their shortest activity duration. Hence, 1 3t = ; 2 6t = ; 3 4t = ;

4 5t = ; 5 2t = . Table 3.3 below shows the CPM calculations.

25

Table 3.3: CPM Calculations Summary with Shortest Activity Durations

(Iteration 2 Results with t =11)

Activity Pred. Succ. Duration ES(S) LC(S)
1 - 3,4 3 0 5
2 - 5 6 0 9
3 1 5 4 3 9
4 1 - 5 3 11
5 2,3 - 2 7 11

1 1() () 1 6LC S ES S− + = ; Activity 1 cannot be longer.

5 5() () 1 5LC S ES S− + = ; Activity 5 cannot be longer.

No further elimination can be done; a=0. We stop here. Therefore, the

number of binary variables is reduced to 4 (2 1 1 1 2× × × ×) if the deadline is set to 11.

Now consider the deadline of 18.

Step 0: a=1

Step 1: All activities are set to their shortest activity durations.

Hence, 1 3t = ; 2 4t = ; 3 4t = ; 4 2t = ; 5 2t = . Table 3.4 below shows CPM calculations

with t=18.

Step 2: Mode elimination calculations are done as follows:

1 1() () 1 13LC S ES S− + = ; 2 2() () 1 17LC S ES S− + = ;

3 3() () 1 14LC S ES S− + = ; 4 4() () 1 16LC S ES S− + = ;

5 5() () 1 12LC S ES S− + =

There is not any possible mode elimination at this step. We proceed to Step

3.

Table 3.4: CPM Calculations Summary with Shortest Activity Durations

(Iteration 1 Results with t =18)

Activity Pred. Succ. Duration ES(S) LC(S)
1 - 3,4 3 0 12
2 - 5 4 0 16
3 1 5 4 3 16
4 1 - 2 3 18
5 2,3 - 2 7 18

26

Step 3: a=0

All activities are set to their longest activity durations. Table 3.5 below

shows CPM calculations.

Table 3.5: CPM Calculations Summary with Longest Activity Durations

(Iteration 1 Results with t =18)

Activity Pred. Succ. Duration ES(L) LC(L)
1 - 3,4 9 0 5
2 - 5 11 0 12
3 1 5 7 9 12
4 1 - 10 9 18
5 2,3 - 6 16 18

Step 4: Mode elimination calculations are done as follows:

1 1 1,2() () 5LC L ES L t− = = ; Mode (1,3) is eliminated.

2 2 2,2() () 11 6LC L ES L t− = > = ; Mode (2,3) is eliminated.

3 3() () 2LC L ES L− = ; Activity 3 cannot be shorter.

4 4 4,2() () 8 5LC L ES L t− = > = ; Mode (4,3) is eliminated.

5 5() () 1LC L ES L− = ; Activity 5 cannot be shorter.

Three modes are eliminated. We return to Step 1.

Step 1: All modes are set to their shortest activity durations. Table 3.6 below

shows the CPM calculations.

Earliest start and latest completion values do not change. No elimination can

be done, a=0, and hence we stop.

Therefore, the number of binary variables is reduced to 48 (2 2 2 2 3× × × ×).

27

Table 3.6: CPM Calculations Summary with Shortest Activity Durations

(Iteration 2 Results with t =18)

Activity Pred. Succ. Duration ES(S) LC(S)
1 - 3,4 5 0 12
2 - 5 6 0 16
3 1 5 4 5 16
4 1 - 5 5 18
5 2,3 - 2 7 18

When deadline is set to 11, the mode elimination algorithm eliminates long

modes first, then short modes and terminates. When the deadline is set to 18 the

mode elimination algorithm cannot eliminate any long modes but one more short

mode. The results are intuitive as the deadlines closer to minimum possible

durations helps to eliminate more long modes, whereas the deadlines that are closer

to maximum possible duration helps to eliminate more short modes.

3.2 Lower Bounds

We develop two lower bounding procedures on the optimal total budget

value. These are namely Naive Bound and Linear Programming (LP) Relaxation

Based Lower Bound.

3.2.1 Naive Bound, LB1

LB1 is found by assigning each activity to its minimum cost mode. Hence,

LB1 is simply ,1
1

N

i
i

c
=
∑ , where the modes are in their ascending order of costs. The

resulting solution is optimal, if the deadline constraint is satisfied.

In our experiments, we use LB1 as a filtering mechanism. We first compare

LB1 evaluated at a particular node, with the best known solution value, Zinc. If LB1 ≥

Zinc we fathom the node, otherwise we calculate the LP Relaxation based lower

bound.

In calculating naive lower bound, we first make mode eliminations, due to

the long modes, then select the smallest cost among the remaining modes.

28

3.2.2 LP Relaxation Based Bound, LB2

LB2 is found simply by relaxing the integrality constraints on yik values and

letting 0 ≤ yik ≤ 1 for all j and k. We calculate LP Relaxation based LB after reducing

size of the sub problem at a node, by mode elimination rules. We show that mode

eliminations will increase the value of the lower bound without causing infeasibility.

Assume that we have a solution space as shown in Figure 3.2.

Figure 3.2: Sample Solution Space

We have 3 constraints and have an arbitrary minimization function over F1

and F2. The optimal solution and the LP relaxation solution are as shown in the

figure. Mode elimination algorithms reduce solution space in a way that the

discarded modes are never used. Note that, both mode elimination procedures

eliminate successive modes for each activity. In the figure below, mode elimination

addition is represented by an additional line.

29

Figure 3.3: Sample Solution Space with Mode Elimination

 Note that, after mode eliminations, the new solution has no smaller objective

function value as additions of new constraints never improve. Hence the resulting

lower bound is stronger.

Properties of LP Relaxation Solutions

In this section, we present two properties of the optimal LP solutions. We

hereafter refer to LP
it as the optimal duration of activity i in the LP Relaxation

solution. We let LP
ic denote the associated cost of activity i. The following theorem

proves that at most two modes of an activity can take positive values in the optimal

LP Relaxation solution.

Theorem 3: There exists an optimal LP Relaxation Problem in which yik>0

for at most two modes, for each activity.

Proof: The minimum cost LP
it , i.e. the duration found by the optimal LP

relaxation, is available through the following LP Problem.

30

0()P
1

im

ik ik
k

Min c y
=

×∑

1

1

1

0

i

i

m
LP

ik ik i
k

m

ik
k

ik

Subject to

t y t

y

y

=

=

× =

=

≥

∑

∑

Note that 0()P has only two constraints. Therefore, every basic feasible

solution has two basic variables. That is, there are at most two positive yik values, in

all basic feasible solutions. From the LP theory, we know that there is an optimal

solution which is basic feasible solution.

Hence an optimal solution to the LP Relaxation gives at most two positive,

i.e., fractional values, for each activity i. ⁭

The following theorem states that, in the optimal LP Relaxation solution if an

activity is non-critical then it is assigned to the highest duration mode.

Theorem 4: If activity i is non-critical in optimal LP Relaxation solution then

,1
LP
i it t= and ,1

LP
i ic c= .

Proof: In an optimal LP relaxation solution, LP
it cannot be increased due to

the following two reasons:

1. ,1
LP
i it t= , i.e., no further increase is possible

2. Any further increase violates feasibility.

If activity i is non-critical then any further increase does not violate

feasibility. As LP
it cannot be increased for optimal solution and any further increase

does not violate feasibility then ti should be ti,1, i.e., as case 2 does not hold, case 1

should hold.⁭

Theorem 4 implies that if activity i is non-critical then ,1
LP
i it t= . However, the

reverse does not necessarily hold, i.e., a critical activity i may also have ,1
LP
i it t=

31

3.3 Branch and Bound Algorithm

We use the result of Theorem 3 to define our branching structure. At every

branch, LP Relaxation Problem is solved. We always branch from a fractional

variable of the LP Relaxation solution. For the chosen fractional value yik, i.e., 0 < yik

< 1, we generate the following sub problems.

 1: 0
 2 : 1

ik

ik

Subproblem y
Subproblem y

=

=

The associated tree is shown in Figure 3.4 below.

Figure 3.4: Branching Scheme

We know discuss our selection strategies.

Selection Strategies

We employ the following three strategies to select the fractional variable

from which two sub problems are generated.

Strategy 1: Select the highest yik value.

Strategy 2: Select the highest
iiky value where ki satisfies

{ }| 0i ikk Min k y= > , i.e., for each partially assigned activity, the smallest cost

partial assignment is selected.

Strategy 1 expects that the optimal integer solution is close to the optimal LP

Relaxation cost, hence forces the big yik values to 1, in earlier branches. Strategy 2

considers the objective function of minimizing total cost, and selects the highest

fractional value among the smallest cost choices. Strategy 3, below, considers the

cost differences between the consecutive modes. Among the smaller cost choices of

the fractional activities, it identifies the mode with the highest cost difference with

its consecutive mode. Hence, mode selections that result in high total cost increase

are avoided.

32

Strategy 3: Select the
iiky value with the highest “ , , 1i ii k i kc c +− ” value where ki

satisfies { }| 0i ikk Min k y= > , i.e., for each activity the smallest cost alternative is

evaluated. Among those alternatives, the mode with the highest cost difference with

its successive mode is selected.

We illustrate the selection strategies via the following numerical example

instance. Consider the 15-activity problem instance whose data are given in Table

3.7 below.

Table 3.7: Modes and Precedence Relations for Example Problem

Activity Successors Modes
1 3, 4, 5 16-2; 13-13; 12-16; 11-17; 10-31; 7-35; 4-47; 2-70
2 6, 7 13-6; 10-38; 7-45; 5-52; 3-96
3 9, 10 7-38; 4-71; 3-85
4 13 13-6; 10-38; 7-45; 5-52; 3-96
5 8 17-10; 15-24; 13-28; 10-39; 8-40; 7-77; 5-94; 3-98
6 12 11-7; 10-19; 7-35; 6-57; 4-67; 1-71
7 11, 14 10-15; 7-16; 5-25; 2-75
8 13 12-11; 10-27; 7-35; 6-65; 4-81; 1-90
9 13 15-13; 14-29; 11-41; 8-54; 5-75; 4-77; 2-97

10 15 7-38; 4-71; 3-85
11 12 4-52; 1-73
12 15 17-22; 15-27; 14-30; 11-35; 8-36; 5-37; 2-99
13 15 2-32
14 15 19-39; 17-55; 15-57; 12-63; 10-69; 7-72; 6-86; 3-97
15 16 21-8; 18-19; 15-22; 14-30; 11-33; 8-42; 5-62; 4-73; 2-76

Modes are separated with semicolons. First number is the duration of the

mode and second number is the cost of the mode. For instance, activity 4 has a

single successor and five modes. The second mode of this activity has duration of 10

and cost of 38.

We set the deadline to 20. Table 3.8 below, shows the fractional variables,

and objective function values of LB2.

33

Table 3.8: The Optimal LP Solution, i.e., LB2

Objective Function Value:
673.316667

Fractional Variables
y6,1 0.700
y6,6 0.300
y8,3 0.833
y8,6 0.166
y9,4 0.750
y9,6 0.250
y11,1 0.667
y11,2 0.333
y14,4 0.200
y14,6 0.800

When Strategy 1 is applied, y8,3 is selected as 0.833 is the maximum

fractional value.

When Strategy 2 is applied, we consider y6,1, y8,3, y9,4, y11,1 and y14,4, since

only small cost alternatives are considered for all activities. We select the one having

the highest value, i.e., y8,3 =0.833.

When Strategy 3 is applied, we again consider small cost modes. The

selection is made from y6,1, y8,3, y9,4, y11,1 and y14,4. We should calculate cost

differences from consecutive modes. Following calculations are done:

6,2 6,1

8,4 8,3

9,5 9,4

11,2 11,1

14,5 14,4

19 7 12
65 35 30
75 54 21
73 52 21
33 30 3

c c
c c
c c
c c
c c

− = − =

− = − =

− = − =

− = − =

− = − =

y8,3 is selected since it has the highest cost difference.

Alternate Branching Scheme

We know that in the optimal LP Relaxation solution we have at most two

fractional variables for each activity (See Theorem 3). An Alternate Branching

Scheme is proposed using this property of the LP Relaxation. At each level an

activity with fractional modes is selected. First two nodes assign the activity to the

fractional modes. The third node assigns the activity to one of the non-fractional

modes, i.e., zero assignment modes. In other words, third node does not allow the

34

activity to be assigned to one of fractional modes. Assume that yi,k1 and yi,k2 are

fractional variables. The following figure demonstrates the Alternate Branching

Scheme.

Figure 3.5: Alternate Branching Scheme

One exceptional case for Alternate Branching Scheme is the activities with

two modes. In this case third node does not exist.

Alternate Branching Scheme selects activities instead of modes. After the

mode is selected by the above selection strategies, the activity of the associated

mode is branched, i.e., same selection strategies are used.

3.4 Upper Bounds

In this section, we discuss our heuristic procedures used for obtaining upper

bounds. The upper bounds are either used as an initial feasible solution in our

Branch and Bound Algorithm or as an heuristic solution for the problem. We

classify our upper bounds in two groups:

1. LP Relaxation Based Heuristics

2. Branch and Bound Based Heuristics

LP Relaxation Based Heuristics run in polynomial time, and hence are used

as initial feasible solutions. On the other hand, Branch and Bound Based Heuristics

run in exponential time and provide heuristic solutions. We now explain the

heuristics in detail.

LP Relaxation Based Heuristics

Our LP Relaxation Based Heuristic has two phases. Phase 1 constructs an

initial solution. The solution is obtained by modifying the optimal LP Relaxation

solution. Improvement Heuristic uses two steps. The first step shifts the modes of

35

the activities, whereas the second step makes interchanges between the modes of

different activities.

Construction Heuristic

The construction phase first finds LP Relaxation solution, then maintains the

fractional values without violating the deadline constraint. Note that the duration of

an activity in the LP relaxed solution is LP
it where

1

im
LP
i ik ik

k

t t y
=

= ×∑

Recall that, the LP relaxed solution has at most two fractional modes for each

activity. Hence, LP
it is the weighted average of the fractional modes, say k1 and k2.

Note that 0 < yi,k1 < 1 and 0 < yi,k2 < 1, and LP
it is found as follows:

 , 1 , 1 , 2 , 2
LP
i i k i k i k i kt t y t y= × + ×

Decreasing LP
it will increase the total cost however does not increase the

project duration. Hence, if we set yi,k to one, where ti,k < LP
it , the feasibility will be

preserved. To obtain smaller cost solution we let yi,k =1 if k is the largest processing

time mode for activity i, that is no larger than LP
it . We refer the solution value of this

heuristic as UB1. The stepwise description of UB1 is given below.

Select all fractional activities. Calculate LP relaxation durations

1

im
LP
i ik ik

k

t t y
=

= ×∑ 1, 2,....,i N=

For i Fractional Activities∈

k=1

If (LP
ik it t≤) Then

Select the mode; 1iky =

Else

k=k+1

End If

End For

Calculate upper bound value 1
1

im

ik ik
k

UB c y
=

= ×∑

36

Improvement Heuristic 1

Improvement Heuristic 1 takes the feasible solution by UB1 and tries to

improve. The solution can be improved if the mode of any activity can be increased

without violating feasibility. We move activity j from its current mode kj to mode kj-1

if such a movement yields the maximum reduction over all activities. That is, we set

, 1 1
ji ky − = if { }, , 1 , , 1j j i ij k j k i k i ki

c c Max c c− −− = − . We repeat the procedure until any

further increase in activity durations results in an infeasible solution. We let UB2

denote the total cost of the Improvement Heuristic 1. Below is the stepwise

description of the heuristic.

{ }1,2,....,PI N=

Remove i from PI , If (,1 1iy =) { }1, 2,....,i N=

Calculate improvements , , 1i i k i kIA c c −= − for k’s such that , 1i ky =

Repeat

 Select the activity with maximum improvement; { }iJ Argmax IA=

 Change modes. Check feasibility; Call (Critical Path Method)

If (T t≤) Then

 Let; , 0J ky = ; , 1 1J ky − =

If (1 1k − =) Then

 Remove J from PI.; { }/PI PI J=

Else

 Update improvement amount; , 1 , 2i i k i kIA c c− −= −

End If

 Else

 Let; , 1J ky = ; , 1 0J ky − =

 Remove J from PI.; { }/PI PI J=

End If

Until PI = ∅

Calculate upper bound value 2
1

im

ik ik
k

UB c y
=

= ×∑

37

Note that we ignore the activities that are already set to their minimum cost

alternatives.

Improvement Heuristic 2

Recall that, it is not possible to increase the activity duration of any activity

in Improvement Heuristic 1 solution, without violating feasibility. However, an

improved feasible solution can be obtained by changing modes of two activities

simultaneously. Such a change may lead to a feasible solution, provided that the

activity duration is decreased while the other activity’s processing time is increased

and the activities are on the same path. We let Imp(i,j) be the amount of

improvement obtained if ki is increased by one (duration is decreased) and kj is

decreased by one (duration is increased). Note that Imp(i,j) is not necessarily equal

to Imp(j,i). We let 1r rk k= + and 1s sk k= − if the improvement by activities r and s

is maximum over all pairs (i,j). That is, () (), , 1 , , 1(,)
Imp(r,s)=

i i i ii k i k j k j ki j
Max c c c c+ +− + − .

We terminate when Imp(r,s) is nonpositive. We let UB3 denote the total cost of the

resulting solution. Below is the stepwise description of the Improvement Heuristic 2.

A numerical example that illustrates the implementation of Construction and

Improvement Heuristics is given in APPENDIX A.

38

Branch and Bound Based Heuristics

We develop two Branch and Bound Based Heuristics. The first one uses the

idea given in Theorem 4. The second heuristic relies on the Alternate Branching

Scheme.

Heuristic Branch and Bound Algorithm 1

Theorem 4 states that a non-critical activity in the LP Relaxation solution,

should be set to its first mode, i.e., ,1
LP
i it t= . Heuristic Branch and Bound Algorithm

1 finds non-critical activities at each node and sets them to their first mode, i.e., ti,1.

As, the non-critical activities in the LP Relaxation solution may be critical in the

optimal integer solution, the algorithm cannot ensure optimality. A non-critical

Calculate improvements as follows:

() (), , 1 , , 1Imp(i,j)= i k i k j m j mc c c c+ −− + − for k’s such that , 1i ky = ; ik m≠ ;

 for m’s such that , 1j my = ; 1m ≠ ;

 i and j are on the same path

Imp(i,j) =0 ik m= ; 1m = ; i and j are not on the same path

Let { }
(,)

Imp(r,s)= Imp(i,j)
i j

Max

Repeat

 Change modes;

Check feasibility; Call (Critical Path Method)

If (T t≤) Then

 , 0
rr ky = ; , 1 1

rr ky + = ; , 0
ss ky = ; , 1 1

ss ky − =

Recalculate Imp(i,j) for all i,j

Else

 Imp(r,s) =0

End If

Let { }
(,)

Imp(r,s)= Imp(i,j)
i j

Max

Until Imp(r,s) >0

Calculate upper bound value 3
1

im

ik ik
k

UB c y
=

= ×∑

39

activity in the LP Relaxation is guaranteed to be non-critical in the integer solution

only when all successors and predecessors of the activity are non-critical activities,

as well.

Heuristic Branch and Bound Algorithm 2

Recall that, Alternate branching scheme has the following structure;

Figure 3.6: Alternate Branching Scheme

The fractional variables yi,k1 and yi,k2 are taken from the optimal LP

Relaxation solution. Note that the first two branches assign the activity modes to one

of the fractional values. The third branch searches the other solutions,

i.e.,
1, 2

1
im

ik
k k k

y
≠

=∑ . If we change the condition of the third branch to
2 1

1 1

1
k

ik
k k

y
−

= +

=∑ then the

resulting solution will ignore the modes that are outside the range [k1, k2]. This

implies such a change may lead to a nonoptimal solution. However, the resulting

solution will be obtained quicker. Figure 3.7 below shows the branching scheme of

the Heuristic Branch and Bound Algorithm 2 for a certain level, where the mode of

activity i is decided. In the optimal LP solution 0 < yi,k1 < 1 and 0 < yi,k2 < 1.

Figure 3.7: Heuristic Branch and Bound Algorithm Scheme

2 1

1 1

1
k

ik
k k

y
−

= +

=∑

40

CHAPTER 4

4 THE TIME/COST CURVE PROBLEM

In this section, we discuss our work on the efficient solution generation for

the total cost (B) and project duration (T) criteria. We refer to Efficient Solution

Generation Problem as Time/Cost Curve Problem.

We let X denote the set of feasible solutions to our problem. Figure 4.1

illustrates the images of all solutions in the objective space (T,B).

Figure 4.1: Particular Solutions to Time/Cost Curve Problem

In the figure X2, X3, X5, X6 and X7 are efficient solutions as they are not

dominated by any other solution. X4 is inefficient as it is dominated by X3. X1 and

X2 are minimum project duration solutions. X1 is dominated by efficient point X2 as

2 1(X) (X)T T= and 2 1(X) (X)B B≤ . X7 and X8 are the minimum cost solutions. X8 is

dominated by efficient point X7 as 7 8(X) (X)B B= and 7 8(X) (X)T T≤ . We let X2 and X7

41

as boundary efficient solutions as they optimize a single criterion, T and B

respectively.

Note that, MAXB and MAXT are the maximum total cost and project duration

values for efficient solutions. Hence, they are upper bounds on the associated

criterion values of the efficient solutions. Similarly MINB and MINT are the lower

bounds on the total cost and project duration values of all efficient solutions.

To generate boundary efficient points, one may use the following single

criterion problems.

1()P Min B

 Subject to

1

1
im

ik
k

y
=

=∑ 1, 2,....,i N= (1)c

1

jm

i j jk jk
k

S S y t
=

≥ + ×∑ ij P∀ ∈ ; 1, 2,....,i N= (2)c

0iS ≥ 1, 2,....,i N= (3)c

{ }0,1iky ∈ 1, 2,....,i N= ; 1, 2,...., ik m= (4)c

2()P Min T

 1, 2, 3 4Subject to c c c and c

X1 and X2 are optimal solutions for 2()P whereas X7 and X8 optimize 1()P .

To generate the efficient point with minimum total cost, i.e., MINB , the following

problem has to be solved.

1() 'P Min T

1, 2, 3 4

MINSubject to B B
c c c and c

=

where MINB is the optimal B value of 1()P . An optimal solution to 1() 'P is

efficient; this solution is X2, as it is the minimum completion time solution among

the optimal total cost solutions.

Note that for a sufficiently small 0ε > , 1() 'P is equivalent to 1() ''P

42

1() ''P TMin B Tε+

1, 2, 3 4

Subject to
c c c and c

 Theorem 5 defines a range for Tε , that equates 1() 'P and 1() ''P

Theorem 5: 1() 'P and 1() ''P are equivalent provided that 1
T

MAX MINT T
ε <

−
.

Proof: Tε is the coefficient of T in the objective function of 1() ''P . Tε should

be small enough so that B does not change for any change in the value of T . Since

it takes only integer values, the minimum change in the B value is 1. Maximum

change in T value is MAX MINT T− . Hence, () 1T MAX MINT Tε ⋅ − < , i.e., 1
T

MAX MINT T
ε <

−

should hold. ⁭

We set 1
1T

MAX MINT T
ε =

− +
 , hence solve the 1

1MAX MIN

Min B T
T T

+
− +

 problem

to generate a boundary efficient point, X7.

The solution to 1() ''P is (,)MIN MAXB T , where MAXT is the maximum total cost

value of all efficient solutions, i.e., an upper bound on the project duration.

We follow the similar procedure to find the other boundary point, X2. To

generate the efficient point with minimum project duration we solve the following

problem

2() 'P Min B

1, 2, 3 4

MINSubject to T T
c c c and c

=

where MINT is the optimal T value of 2()P . Note 2() 'P finds an optimal B

schedule among the smallest T schedules, hence generates an efficient point, having

the maximum B value, i.e., MAXB . This efficient point is a boundary point, X2.

For a sufficiently small Bε , 2() 'P is equivalent to 2() ''P

2() ''P BMin T Bε+

 1, 2, 3 4Subject to c c c and c

43

Theorem 6 below, generates a range for Bε that makes 2() 'P and 2() ''P

equivalent.

Theorem 6: 2() 'P and 2() ''P are equivalent provided that 1
B

MAX MINB B
ε <

−
.

Proof: Bε should be small enough so that T does not change for any change

of B value. Since it takes only integer values, the minimum change in T value is 1.

The maximum change in the B value is MAX MINB B− . Hence, () 1B MAX MINB Bε ⋅ − < , i.e.,

1
B

MAX MINB B
ε <

−
 should hold. ⁭

We use 1
1B

MAX MINB B
ε =

− +
. Hence, objective function of 2() ''P can be restated

as 1
1MAX MIN

Min T B
B B

+
− +

Figure 4.2 illustrates the range for all efficient solutions. The shaded

rectangle inside is the range for all efficient solutions. The outer rectangle contains

all solutions.

Figure 4.2: Solution Space and Efficient Solutions Space

44

Constrained Optimization Problem

Consider the following constrained problem, i.e., the Deadline Problem.

()tP TMin B Tε+

1, 2, 3 4

Subject to T t
c c c and c

≤

An optimal solution to ()tP is efficient. If we solve ()tP for all possible value

of t between (TMIN , TMAX], all efficient solutions are generated. The algorithm below

generates all efficient solutions, by varying the t value in range (TMIN, TMAX]

systematically.

Note that each execution of Step 1 produces an efficient solution. The

algorithm is executed R times if there are R efficient solutions.

Alternatively we can use the following constrained optimization problem to

generate all efficient solutions.

()bP BMin T Bε+

1, 2, 3 4

Subject to B b
c c c and c

≤

Step 0:

Solve 1()P ; 2()P ; 2() ''P to find MINT and MAXT .

Let R=1; -1MAXt T=

Step 1:

Solve ()tP ; let the solution be (BR+1, TR+1)

Step 2:

R=R+1

If TR= MINT Then Stop, all efficient solutions are generated.

Let -1Rt T=

Go To Step 1

45

An optimal solution to ()bP is also efficient. We can generate all efficient

solutions by varying b in range (BMIN , BMAX], starting by BMAX and terminating when

BMIN is reached.

We use to solve Deadline Problem to generate all efficient solutions.

Numerical Example

We illustrate our algorithm, which generates all efficient solutions, on the 5-

activity network, depicted in Figure 4.3.

Figure 4.3: AoA Representation of the Sample Project Network

The numbers on each activity indicate the mode of the activity. For example,

activity 1 has two modes. The duration of the first mode is 3 and its cost is 5. We

have 2, 2, 1, 2, 2 modes for activities 1, 2, 3, 4 and 5 respectively. Therefore, we

have a total of 2 2 1 2 2× × × × =16 feasible solutions. All solutions are enumerated,

and determined by the Critical Path Method. The results are reported in Table 4.1,

below.

Note that many solutions tabulated are dominated. For example, X1 is

dominated by X4; X3, X6 and X9 are dominated by X12. The non-dominated, i.e.,

efficient, solutions are: X4 =(31, 11); X11 =(29, 13); X12 =(27, 15); X16 =(25, 17). The

following figure shows the objective space of the problem. It can be easily observed

that all remaining solutions are dominated. The dashed line, called efficient frontier

connects the members of the efficient set. It can be easily observed that all solutions

above the frontier are dominated.

46

Table 4.1: All Feasible Solutions of Sample Network

Mode Solution
1 2 3 4 5

Total
Cost

Project
Duration

1 1 1 1 1 1 35 11
2 2 1 1 1 1 34 14
3 1 2 1 1 1 32 15
4 1 1 1 2 1 31 11
5 1 1 1 1 2 33 13
6 2 2 1 1 1 31 15
7 2 1 1 2 1 30 14
8 2 1 1 1 2 32 16
9 1 2 1 2 1 28 15
10 1 2 1 1 2 30 17
11 1 1 1 2 2 29 13
12 2 2 1 2 1 27 15
13 2 2 1 1 2 29 17
14 2 1 1 2 2 28 16
15 1 2 1 2 2 26 17
16 2 2 1 2 2 25 17

Figure 4.4: Solution Space of the Sample Project Network

Below is the implementation of our algorithm that identifies all four efficient

solutions. We first illustrate the generation of these efficient solutions with

successive solutions of the Deadline Problem.

47

Iteration 1

Step 0: Solve 1()P . The optimal solution is (17, 25).

Solve 2()P . The optimal solution is (11, 35), 11MINT = .

(17, 25) is X16, an efficient point r=1. 17MAXT =

t= 1MAXT − =16

1 0.142
1T

MAX MINT T
ε = =

− +

Iteration 2

Step 1: Solve

 TMin B Tε+

 16Subject to T ≤

Let the optimal solution be (T2,B2).

(T2,B2) =(15, 27) is an efficient point. Note that (15, 27) corresponds to X12.

Step 2: r=2

T2 > MINT ; t = 2 1T − =14

 Iteration 3

Step 1: Solve

 TMin B Tε+

 14Subject to T ≤

Let the optimal solution be (T3,B3).

(T3,B3) =(13, 29) is an efficient point. Note that (13, 29) corresponds to X11.

Step 2: r=3

T3 > MINT

t=T3-1

48

Iteration 4

Step 1: Solve

 TMin B Tε+

 12Subject to T ≤

Let the optimal solution be (T4,B4).

(T4,B4) =(11, 31) is an efficient point. Note that (11, 31) corresponds to X4.

T4= MINT =11, stop all 4 efficient solutions are generated.

Each execution of Step 1 generates an efficient solution. The algorithm

iterates 4 times, hence, there are 4 efficient solutions, i.e., X16, X12, X11, and X4.

We now illustrate the generation of these efficient solutions with successive

solutions of the Budget Problem.

Iteration 1

Step 0: Solve 1()P . The optimal solution is (17, 25), 25MINB = .

Solve 2()P . The optimal solution is (11, 35).

Solve

 BMin T Bε+

 35Subject to B ≤

Let the optimal solution be (', 'T B)

(', 'T B) =(11, 31) is an efficient point. Note that (11, 31) corresponds to X4,

31MAXB = .

b= ' 1B − =30

1 0.091
1B

MAX MINB B
ε = =

− +

Iteration 2

Step 1: Solve

 BMin T Bε+

 30Subject to B ≤

Let the optimal solution be (T2,B2).

(T2,B2) =(13, 29) is an efficient point. Note that (13, 29) is X11.

49

Step 2: r=2

B2 > MINB ; b =B2 -1 =28

 Iteration 3

Step 1: Solve

 BMin T Bε+

 28Subject to B ≤

Let the optimal solution be (T3,B3).

(T3,B3) =(15, 27) is an efficient point. Note (15, 27) is X12.

Step 2: r=3

B3 > MINB ; b =B2 -1 =26

Iteration 4

Step 1: Solve

 BMin T Bε+

 26Subject to B ≤

Let the optimal solution be (T4,B4).

(T4,B4) =(17, 25) is an efficient point. Note that (17, 25) is X16.

Step 2: r=4

B4= MINB ; stop. All 4 efficient solutions are generated.

50

CHAPTER 5

5 COMPUTATIONAL RESULTS

In this section we design an experiment to test the performance of our Branch

and Bound Algorithm, heuristics, and to investigate the effects of parameters on the

performances of the algorithms. We first discuss our problem instance generation

scheme. Later, we present performance measures. Finally we analyze the results of

our experiments.

5.1 Data Generation

We use a total of 30 problem instances for the Time/Cost Curve Problem and

80 instances for the Deadline Problem. All instances are taken from Akkan et al.

(2005b). Small-sized instances are used for the Time/Cost Curve Problem, whereas

large-sized instances are used for the Deadline Problem. We next discuss the

problem parameters and parameter settings used throughout the experiment.

Problem Parameters

There are two measures used to define the complexity of a project network.

These are:

For an AoN representation, CNC is defined as the number of precedence

relations divided by the number of activities. Hence a higher CNC results in higher

number of arcs, therefore more connected network. For AoA representation, CNC is

the ratio of the number of activities to the number of events. Hence increasing CNC

results in higher number of activities.

Another parameter used is the number of node duplications needed to

transform an AoA network into a series-parallel network. This is referred to as the

Complexity Index (CI) and it measures the closeness of the network to a series-

parallel one. Each node duplication brings the network closer to the series-parallel

network but increases the computational time a multiplicative factor. For the details

of the index, the reader is referred to Bein et al. (1992). The studies in the literature

51

point out a relation between the complexity of the solutions and CI, such that

increasing CI results in higher solution times. Below, there are the activity

dependent problem parameters.

Number of Modes (m): The numbers of modes for all activities are generated

from the uniform discrete probability distribution between 1 and 10.

Akkan et al. (2005b) generate the time/cost data as follows: The durations are

generated from discrete uniform distribution between 3 and 123. Then the durations

are sorted such that ,1 ,2 ,........
ii i i mt t t> > > . The minimum cost, ,1ic , is generated from

U[5,15] for each activity. Then 1kc + is set to , , 1()k k i k i kc s t t ++ − where

1 [, 3]k k ks U s s− +: or 1 [(1, 3),]k k ks U Max s s− −:

Number of Activities (N): As CI and CNC define the complexity of the

network, they affect the number of activities

Deadline Setting (θ): A set of t values are generated for the Deadline

Problem, i.e., for constraintT t≤ . Recall that deadline value t should be selected

between MINT and MAXT . Accordingly, t values between MINT and MAXT such that:

()MIN MAX MINt T T T= + −θ where θ is referred to as deadline setting.

The Time/Cost Curve Problem is solved for all t values between

MINT and MAXT .

Parameter Settings

We solve 30 instances for the Time/Cost Curve Problem using the following

parameters; depicted in Table 5.1. CI values are discrete uniform between 4 and 7; 9

and 11 for second and third set of problems respectively. Similarly numbers of

activities are discrete uniform between the numbers indicated in Table 5.1 below.

Table 5.1: Time/Cost Curve Problem Parameters

CI CNC N #of instances
0 2 [29,30] 10

[4,7] 2 [34,38] 10
[9,11] 2 [39,42] 10

52

We solve 80 instances for the Deadline Problem. Each problem instance is

solved for 6 different θ values, we set θ=0.15, 0.30, 0.45, 0.60, 0.75, 0.90. Therefore,

a total of 480 instances are generated and solved. The parameter combinations are

given in Table 5.2.

We set a termination limit of 1 hour for all algorithms. We stop the execution

and report the best solution found after 1 hour.

Table 5.2: Deadline Problem Parameters

CI CNC N #of instances
13 5 85 10
13 6 102 10
13 7 [117,119] 10
13 8 [128,129] 10
14 5 85 10
14 6 102 10
14 7 [116,119] 10
14 8 [128,136] 10

5.2 Performance Measures

In this section, we discuss our performance measures used to evaluate the

efficiency of our Branch and Bound Algorithm, Heuristics and Lower Bounds.

To evaluate our Branch and Bound Algorithm used for the Deadline Problem

we use the following performance measures:

1. CPU time in seconds (average, maximum)

2. Number of nodes generated (average, maximum)

3. Number of unsolved instances, out of 10, in 1 hour.

We use the following performance measures for our heuristics.

1. CPU time in seconds (average, maximum)

2. Percent deviation from the optimal solution (average, maximum)

For lower bound, we only report the percent deviations from the optimal

solutions.

To evaluate our Branch and Bound Algorithm for the Time/Cost Curve

Problem we use the following performance measures:

53

1. Solution time in CPU seconds, simply CPU time.

2. Number of efficient solutions

3. CPU time spent per efficient solution (seconds)

The optimal solutions are found by CPLEX 8.1. CPLEX is run for 1 hour and

unsolved instances after 1 hour of execution are reported. All experimentations are

done in Pentium IV 2.8 GHz, 1GB RAM. All algorithms are coded with MS Visual

C++ 6.0.

5.3 Preliminary Experiments

We design a preliminary experiment to evaluate the performance of our mode

elimination algorithm (ME), upper bounds (UB), selection (SS) and branching

strategies (BS). We define versions of the Branch and Bound Algorithm using

different choices of those mechanisms. We now present the results of our

preliminary runs.

Branch and Bound Algorithm Versions

We summarize the notation used throughout this section, for different

versions of the Branch and Bound Algorithm in Table 5.3.

Table 5.3: Branch and Bound Algorithm Versions

Mode Elimination Algortihm (ME)
ME0 No mode elimination
ME1 Mode elimination only at root node
ME2 Mode elimination at every node

Upper Bounds (UB)
UB1 Improvement 1 at every node
UB2 Improvement 2 at every node
UB3 Imp 2 at root node, Imp 1 at every node

Branching Strategy (BS)
BS1 Normal Branching Scheme
BS2 Alternate Branching Scheme

Selection Strategy (SS)
SS1 Selection Strategy 1
SS2 Selection Strategy 2
SS3 Selection Strategy 3

54

We use 3 versions for ME, 2 versions for UB, 2 versions for BS and 3

versions for SS. Hence we create a total of 36(3 3 2 2× × ×) combinations of the

mechanisms. We evaluate each mechanism separately. We first study the effect of

the Mode Elimination Algorithm.

Mode Elimination Algorithm Selection

We run 5 small instances to evaluate performance of the Mode Elimination

Algorithms. We select the following problem combination: CI=[0, 14]; CNC=2;

N=[31, 44]. Each instance is solved for deadline setting θ=0.15, 0.30, 0.45, 0.60.

UB1, BS1 and SS3 are used. Table 5.4 below reports the average CPU times for 5

instances.

Table 5.4: Average CPU Times for Mode Elimination Algorithms

θ ME0 ME1 ME2
0.15 40.27 39.70 29.61
0.30 13.63 13.37 12.93
0.45 8.39 8.34 8.47
0.60 4.09 4.38 4.15

As can be observed from the table, ME1 is not significantly different from

ME0. However, ME2 significantly differs from ME0 and ME1, in particular when the

deadline constraint gets tighter. This means, if the mode elimination when applied

only at root node, does not reduce the CPU time. However, applying mode

elimination at each node decreases the average CPU time considerably. Therefore,

ME2 is chosen as the Mode Elimination Algorithm in our main runs.

Branching & Selection Strategy Selection

After ME2 is chosen as the Mode Elimination Algorithm, we run 4 instances

to test the performances of our Branching and Selection Strategies. The instances

with CI=[4, 14]; CNC=2; N=[35, 40] are used. Table 5.5 demonstrates the average

CPU times and Table 5.6 demonstrates the average nodes evaluated under 4

different deadline settings.

55

Table 5.5: Average CPU Time (seconds) for Branching and Selection

Strategies

 θ=0.15 SS1 SS2 SS3 θ=0.30 SS1 SS2 SS3
BS1 604.20 405.43 10.73 BS1 115.23 53.69 3.97
BS2 518.51 344.26 517.62 BS2 120.59 35.93 11.86

 θ=0.45 SS1 SS2 SS3 θ=0.60 SS1 SS2 SS3

BS1 119.79 78.22 9.28 BS1 44.37 11.41 4.54
BS2 135.73 11.96 11.6 BS2 48.86 5.31 6.69

Moreover large-sized problem instances with CI=13; CNC=5; N=85 are

solved. Table 5.7 below shows the average CPU times for each branching, selection

strategy over the instances that are solved in 1 hour.

Table 5.6: Average Number of Nodes for Branching and Selection

Strategies

 θ=0.15 SS1 SS2 SS3 θ=0.30 SS1 SS2 SS3
BS1 49403 32472 1005 BS1 7764 3422 259
BS2 33082 23083 33142 BS2 5819 1659 580

 θ=0.45 SS1 SS2 SS3 θ=0.60 SS1 SS2 SS3

BS1 8348 5103 587 BS1 3059 777 303
BS2 6109 521 495 BS2 2307 241 305

Table 5.7: Average CPU Times of the Large-Sized Instance

 θ=0.15 SS1 SS2 SS3 θ=0.30 SS1 SS2 SS3
BS1 1167.30 493.67 BS1 184.92 124.88
BS2 3331.83 BS2 326.25 794.80

 θ=0.45 SS1 SS2 SS3 θ=0.60 SS1 SS2 SS3

BS1 9.95 7.00 6.03 BS1 6.55 3.31 3.09
BS2 13.82 10.08 10.24 BS2 9.93 5.42 5.53

We did not include SS1 when θ=0.15 and θ=0.30 and SS2 when BS2 is used

and θ=0.15, as all instances remained unsolved after 1 hour.

56

As can be observed from the tables, the best alternative is BS1-SS3

combination. The combination produces the smallest average CPU times over all

problems. It also creates the smallest average number of nodes for the majority of

the problems.

Recall that BS1 creates two children for each parent whereas BS2 creates

three children. In absence of any other mechanism, BS1 is expected to perform better

and we observe it is better even we use bounds.

SS3 outperforms the other strategies in all problem combinations. Recall that

SS3, unlike the other strategies, considers the objective function value, i.e., cost, and

branches to the modes with highest difference between next mode. Hence one can

expect a better performance from SS3.

Considering the results of our preliminary runs we conduct our main

experiments by the most powerful combination, i.e., BS1-SS3.

Upper Bound Selection for an Initial Feasible Solution

We run 7 small instances to compare the effect of our upper bound

algorithms on the performance of the Branch and Bound Algorithm. We use small-

sized instances with parameters: CI=[0, 14]; CNC=2; N=[29, 40]. BS1 and SS3 are

chosen as branching and selection strategies. Tables below show the average CPU

times and average number of nodes of our Branch and Bound Algorithm for each

upper bound algorithm over all deadline settings.

Table 5.8: Average CPU Times of BAB Using Different Upper Bounds

θ UB1 UB2 UB3
0.15 51.58 84.72 51.72
0.30 8.66 13.10 8.33
0.45 4.63 5.98 4.64
0.60 3.96 5.26 3.96

57

Table 5.9: Average Number of Nodes of BAB Using Different Upper

Bounds

θ UB1 UB2 UB3
0.15 2937.83 2119.43 2937.83
0.30 429.83 310.17 412.67
0.45 228.83 174.67 228.33
0.60 197.50 162.00 196.17

UB2 is the best performing upper bound. This follows, the Branch and Bound

Algorithm that uses UB2 creates fewest number of nodes. However this efficiency is

achieved at an expense of increased CPU times, as Improvement Heuristic is applied

at all nodes. UB1 and UB3 show similar performances, both in terms of the CPU

times and number of nodes. For some instances, like θ=0.30, UB3 performs slightly

better and we prefer to use UB3.

Heuristic Branch and Bound Algorithm 2

From Section 3.3 we observe that Alternate Branching Scheme has a

significant drawback in CPU time. Since Heuristic Branch and Bound Algorithm 2

uses Alternate Branching Scheme a preliminary experiment is conducted to evaluate

the performance of the heuristic. We use ME2, UB3, SS4 settings and run 4 small and

1 large-sized instances. It is observed that although our exact Branch and Bound

Algorithm is able to solve all 5 instances with all deadline settings, Heuristic Branch

and Bound Algorithm 2 does not terminate in 1 hour for the large-sized instance for

θ=0.15. Moreover, it gives an average percentage deviation of 6.14, for the small-

sized instances which is not acceptable when it is compared to other heuristics. The

results are provided in APPENDIX B. Consequently, Heuristic Branch and Bound

Algorithm 2 is not considered in main computational results.

5.4 Main Experiment

We perform our main experiment using BB1-SS3 with mode elimination and.

UB3. We first discuss the results for the Deadline Problem and then for the

Time/Cost Curve Problem.

58

5.4.1 Deadline Problem

We first study the performance of the lower bounds. The lower bounds are

the objective function values of the optimal LP Relaxed Problem obtained after

mode eliminations.

In Table 5.10, we report on the average and maximum deviations of the

lower bounds from the optimal solution. We compute the deviation for an instance

as % 100OPT LBdev
OPT

−
= × where

 Optimal total cost
 Optimal LP_relaxed cost

OPT
LB

=
=

As can be observed from the table, the lower bounds behave consistently

well over all problem combinations. All average deviations are below 10% and

almost all maximum deviations are below 15%. The satisfactory behavior of the

lower bounds can be attributed to the result of Theorem 3. Recall that, the LP

Relaxation produces very few, at most two, fractional variables for each activity.

Hence the solution is close to the exact solution with no fractional variables. It can

also be observed from the table that, the tightness of the deadline affects the power

of the lower bounds. As θ increases, the deadlines become larger, hence the deadline

constraint gets looser. When the constraint is looser, there are many activities that

complete at their longest durations, in the LP Relaxation solution. Hence, the lower

bounds perform superior, when θ is bigger. Moreover, when CNC increases, the

number of activities increases, and the performance of the lower bounds slightly

deteriorate.

We now discuss the performance of our Branch and Bound Algorithm that

solves the Deadline Problem exactly. In Table 5.11, we report the average and

maximum CPU times and the number of nodes. We assume each unsolved instance

contributes to the total CPU time by 3600 seconds, hence those instances are

considered while computing average CPU times. We report the results for two

values of CI; these values are 13 and 14. The CNC values are between 5 and 8, in

unit increments. Recall that, CNC is the ratio of number of arcs to the number of

nodes, in the AoA representations. As the arcs represent activities, CNC value

directly affects the number of activities, hence the complexity of the problem.

59

Table 5.10: Lower Bound Deviations

CI CNC N θ Avg. Dev (%) Max. Dev. (%)
0.15 7.58 14.92
0.30 5.04 9.60
0.45 4.32 9.76
0.60 2.86 7.53
0.75 2.48 4.63

13 5 85

0.90 3.31 11.24
0.15 9.15 13.04
0.30 7.09 11.20
0.45 6.06 10.13
0.60 2.88 5.51
0.75 2.12 5.90

13 6 102

0.90 3.48 12.83
0.15 10.06 14.68
0.30 9.23 16.92
0.45 6.92 13.66
0.60 5.90 12.57
0.75 4.64 9.46

13 7 [117,119]

0.90 4.41 11.40
0.15 9.90 16.61
0.30 7.52 13.05
0.45 5.81 10.67
0.60 3.65 9.00
0.75 3.19 7.78

13 8 [128,129]

0.90 1.43 3.87
0.15 5.52 10.39
0.30 3.52 7.62
0.45 3.10 4.93
0.60 2.85 6.03
0.75 2.73 6.69

14 5 85

0.90 2.07 5.62
0.15 6.32 8.51
0.30 4.27 6.66
0.45 2.84 4.95
0.60 1.90 3.54
0.75 2.29 6.58

14 6 102

0.90 1.76 5.71
0.15 9.13 17.66
0.30 6.73 12.16
0.45 3.86 8.51
0.60 3.31 8.49
0.75 2.14 5.56

14 7 [116,119]

0.90 1.65 4.76
0.15 9.08 14.12
0.30 6.93 13.86
0.45 5.14 10.37
0.60 4.24 9.25
0.75 4.17 16.69

14 8 [128,136]

0.90 1.60 6.10

60

As can be observed from Table 5.11, when CNC increases, the CPU times

and in turn number of nodes increase. The increase is more pronounced when CNC

is increased from 5 to 6. For example, for CI=13 and θ=0.15, the average CPU times

are 1109.42 when CNC=5 (N=85) and 2702.21 when CNC=6 (N=102). When

CI=14 these averages become 102.35 and 1626.30 seconds. There are some

exceptions for which the increase in CNC leads to a decrease in the CPU times.

Some of those exceptions can be explained by our termination limit and the

dominant contribution of these instances. Such pronounced exception is for CI=13

and CNC=7, 8. Due to the dominant effect of unsolved instances we experience a

decrease in CPU times when CNC becomes 8. We could not observe a significant

effect of CI on the complexity of the problem.

The deadline setting “θ” has a significant effect on the problem complexity.

Recall that, θ is employed in the deadline constraint as follows:

()MIN MAX MINT T T T≤ + −θ . As θ approaches to 1, the activities tend to be closer to

their maximum duration modes. As θ gets close to 0, the deadline constraint

becomes tighter and, the activities tend to their lower duration modes to maintain

feasibility. As the activities become more competing for the tight deadline, lower θ

values indicate more complex problems.

We observe the significant effect of θ in our experiments as well. As θ

becomes smaller, the CPU times, number of nodes, number of unsolved instances all

decrease. When 0.6θ ≥ , all problem instances are solved in very small CPU times.

For the most pronounced effect of θ, one can make the following observation. When

CI=14, CNC=8, θ=0.15, the average CPU time is 2967.47 seconds with 7 unsolved

instances. For the same CI and CNC values, but for θ=0.9, the average CPU time

becomes 1.03 seconds and the maximum CPU time is 4.91 seconds, i.e., all

instances are solved in less than 5 CPU seconds.

We next discuss the performances of our heuristic procedures. We measure

the performance of our procedures using the following deviation measure.

 % 100Heuristic Solution OPTdev
OPT

−
= ×

61

Table 5.11: Branch and Bound Algorithm Results for Deadline Problem

CI CNC N θ
Avg. CPU

Time
Max. CPU

Time
Avg. # of

Nodes
Max. # of

Nodes
0.15 1109.42 2921.73 44451.8 136461
0.30 109.83 402.92 3750.7 13211
0.45 42.96 169.20 1456.2 5351
0.60 2.45 4.30 94.5 151
0.75 0.81 1.81 34.8 78

13 5 85

0.90 0.32 1.14 16.6 62
0.15 2702.21 3600.05 (6) 83498.3 126613
0.30 1961.88 3600.05 (4) 56954.4 108399
0.45 470.44 1822.83 12931.2 50412
0.60 9.36 52.25 277.8 1545
0.75 1.55 3.33 50.7 117

13 6 102

0.90 0.78 1.59 32.9 74
0.15 2700.92 3600.06 (7) 70822.1 122900
0.30 2032.41 3600.05 (3) 47849.1 98572
0.45 624.79 3600.02 (1) 14470.1 84122
0.60 22.59 108.52 564.3 2780
0.75 2.67 5.14 71.5 140

13 7 [117,119]

0.90 0.78 1.89 25.9 63
0.15 2408.18 3600.06 (6) 57235 101017
0.30 1046.96 3600.03 (1) 21209 80195
0.45 152.93 356.63 3035.4 7034
0.60 28.64 89.97 637.4 2003
0.75 4.09 10.06 95 251

13 8 [128,129]

0.90 0.45 1.02 12 26
0.15 102.35 246.95 3927.6 11722
0.30 63.23 157.58 2110.9 5772
0.45 36.32 239.61 1354.1 9234
0.60 6.28 20.64 238 757
0.75 2.91 12.38 127.7 589

14 5 85

0.90 0.39 1.05 17.1 47
0.15 1626.30 3600.03 (2) 48056.8 108429
0.30 64.64 156.64 1573.5 3707
0.45 31.62 166.64 829.8 4391
0.60 7.21 23.73 210.3 724
0.75 0.80 1.70 24.4 55

14 6 102

0.90 0.60 1.45 23.4 61
0.15 2253.89 3600.06 (5) 59291.5 109965
0.30 956.94 3600.03 (2) 21802.5 87960
0.45 40.93 161.89 887.7 3529
0.60 17.62 80.83 422.5 2025
0.75 9.60 80.80 271 2316

14 7 [116,119]

0.90 0.51 1.58 15.2 50
0.15 2967.47 3600.08 (7) 63345.9 97624
0.30 1789.93 3600.06 (3) 34766.4 72302
0.45 170.80 494.80 3378.5 10421
0.60 18.28 50.02 382 1145
0.75 7.05 38.75 161.2 907

14 8 [128,136]

0.90 1.03 4.91 28.4 141
*The figures in parenthesis indicate number of unsolved instances in 1 hour (out of 10)

62

Table 5.12, Table 5.13, Table 5.14 and Table 5.15 report the performances of

Construction Heuristic, Improvement Heuristic 1, Improvement Heuristic 2, and

Heuristic Branch and Bound Algorithm 1, respectively. The tables report the average

and maximum deviations and CPU times. We also include the number of times the

heuristic procedures find the optimal solution.

As can be observed from Table 5.12, all deviations are very small. Note that

the maximum, average CPU time is 0.04 seconds and the worst CPU time overall

instances are 0.06 seconds. Hence the Construction Heuristic produces solutions in

negligible CPU times consistently. The CPU times increase slightly with an increase

in CNC values, in turn the number of activities. Moreover, increasing θ, leads to a

decrease in CPU times. This is due to the fact that LP quickly detects many discrete

variables that are close to their maximum durations. Note that, the relatively high

CPU times are associated to small θ values.

All average deviations are smaller than 15%. However, we observe a

maximum deviation of 38.88% at worst. Hence we cannot conclude that the

Construction Heuristic performs consistently well over all instances. We observe

that θ has significant effect on the deviations. The smaller and larger θ values lead to

better performances. This is due to the fact that the LP tends to maximum and

minimum duration modes for large and small θ values, respectively. Moreover, we

observe that when θ is small there are about 2 instances out of 10 for which the

heuristic solutions are optimal. For example when CNC=7, CI=14 and θ=0.90, there

are 4 optimal solutions and the average deviation is 2.07%. On the other hand, for

the same combination, but for θ=0.15, the average deviation is 8.81% with

nonoptimal solutions. Moreover, we observe slight increase in deviations with

increases in CNC values. This is due to the increased problem size brought by more

activities.

63

Table 5.12: Construction Heuristic Results

CI CNC N θ Avg. CPU Time Max. CPU Time Avg. Dev(%) Max. Dev(%)
0.15 0.02 0.03 7.12 13.40
0.30 0.02 0.03 9.06 16.18
0.45 0.01 0.02 12.02 23.62
0.60 0.01 0.02 10.17 25.80
0.75 0.01 0.02 8.94 16.19

13 5 85

0.90 0.01 0.02 5.94 30.40 (2)
0.15 0.02 0.03 9.63 14.21
0.30 0.02 0.03 13.41 22.95
0.45 0.02 0.03 13.75 21.16
0.60 0.02 0.03 9.09 17.71
0.75 0.01 0.02 7.83 15.79

13 6 102

0.90 0.01 0.02 8.74 25.65 (2)
0.15 0.03 0.05 9.40 14.55
0.30 0.02 0.03 12.81 21.98
0.45 0.02 0.03 14.00 22.03
0.60 0.02 0.03 13.50 35.01
0.75 0.02 0.03 18.18 38.88

13 7 [117,119]

0.90 0.02 0.02 8.16 29.96 (2)
0.15 0.04 0.05 7.40 13.55
0.30 0.03 0.05 12.13 22.91
0.45 0.03 0.03 12.76 30.13
0.60 0.03 0.03 12.05 26.45
0.75 0.02 0.03 7.54 21.49

13 8 [128,129]

0.90 0.02 0.02 2.02 5.60 (2)
0.15 0.02 0.03 5.08 8.78
0.30 0.02 0.03 7.25 19.38
0.45 0.02 0.03 4.54 9.92
0.60 0.01 0.02 7.80 25.73
0.75 0.01 0.02 13.13 25.06

14 5 85

0.90 0.01 0.02 5.07 12.31 (2)
0.15 0.03 0.03 6.46 10.82
0.30 0.02 0.03 9.89 16.72
0.45 0.02 0.03 10.70 19.89
0.60 0.02 0.03 6.58 17.08
0.75 0.02 0.02 3.45 10.75 (2)

14 6 102

0.90 0.02 0.02 4.18 9.65 (2)
0.15 0.03 0.05 8.81 16.02
0.30 0.03 0.03 12.05 24.84
0.45 0.02 0.03 7.65 11.02
0.60 0.02 0.03 5.65 13.48
0.75 0.02 0.03 5.17 10.81 (1)

14 7 [116,119]

0.90 0.02 0.02 2.07 12.80 (4)
0.15 0.04 0.06 11.07 19.03
0.30 0.03 0.03 10.42 18.97
0.45 0.03 0.03 9.79 15.96
0.60 0.03 0.03 12.38 22.54
0.75 0.02 0.03 5.92 14.41 (1)

14 8 [128,136]

0.90 0.02 0.03 2.53 8.59
*The figures in parenthesis indicate the number of times the optimal solution is found.

64

Table 5.13: Improvement Heuristic 1 Results

CI CNC N θ Avg. CPU Time Max. CPU Time Avg. Dev(%) Max. Dev(%)
0.15 0.02 0.03 3.49 7.00
0.30 0.02 0.03 3.33 7.06
0.45 0.02 0.02 4.37 12.63 (1)
0.60 0.01 0.02 2.59 8.12
0.75 0.01 0.02 3.53 10.31 (2)

13 5 85

0.90 0.01 0.02 2.85 15.45 (4)
0.15 0.03 0.03 4.63 7.12
0.30 0.02 0.03 5.67 14.64
0.45 0.02 0.03 4.91 11.99
0.60 0.02 0.03 4.14 9.15
0.75 0.02 0.02 2.61 10.35

13 6 102

0.90 0.01 0.02 2.40 12.79 (2)
0.15 0.04 0.05 4.40 8.15
0.30 0.03 0.03 5.10 7.52
0.45 0.03 0.03 5.80 14.28
0.60 0.02 0.03 4.52 17.84
0.75 0.02 0.03 5.50 13.97

13 7 [117,119]

0.90 0.02 0.02 0.76 2.68 (3)
0.15 0.04 0.05 3.82 6.85
0.30 0.03 0.05 4.92 9.63 (1)
0.45 0.03 0.03 6.32 20.86
0.60 0.02 0.03 5.42 15.37 (1)
0.75 0.02 0.03 3.76 8.13 (1)

13 8 [128,129]

0.90 0.02 0.02 0.83 2.67 (4)
0.15 0.02 0.03 2.56 5.51
0.30 0.02 0.03 1.79 3.84
0.45 0.02 0.02 2.35 5.45 (1)
0.60 0.01 0.02 2.54 5.07 (1)
0.75 0.01 0.02 6.15 19.27

14 5 85

0.90 0.01 0.02 3.54 12.31 (2)
0.15 0.03 0.03 3.62 6.67
0.30 0.02 0.03 4.99 9.68
0.45 0.02 0.03 2.86 6.67
0.60 0.02 0.03 2.34 7.45 (1)
0.75 0.02 0.02 1.46 9.93 (3)

14 6 102

0.90 0.01 0.02 2.70 8.09 (3)
0.15 0.03 0.05 3.58 7.18
0.30 0.03 0.03 3.40 9.80
0.45 0.03 0.03 2.24 5.76 (1)
0.60 0.02 0.03 3.04 7.65
0.75 0.02 0.03 2.09 5.65 (1)

14 7 [116,119]

0.90 0.02 0.02 0.90 5.80 (4)
0.15 0.04 0.05 5.67 15.81
0.30 0.04 0.05 4.44 15.99
0.45 0.03 0.03 4.64 10.75 (1)
0.60 0.03 0.03 3.52 7.21
0.75 0.02 0.03 1.46 5.75 (2)

14 8 [128,136]

0.90 0.02 0.03 0.49 1.51 (4)
*The figures in parenthesis indicate the number of times the optimal solution is found.

65

Table 5.14: Improvement Heuristic 2 Results

CI CNC N θ Avg. CPU Time Max. CPU Time Avg. Dev(%) Max. Dev(%)
0.15 0.29 0.64 2.43 4.96
0.30 0.19 0.39 1.93 5.14
0.45 0.14 0.25 2.18 6.34 (1)
0.60 0.06 0.08 1.54 5.17
0.75 0.03 0.05 3.08 10.31 (3)

13 5 85

0.90 0.02 0.02 2.13 12.96 (6)
0.15 0.77 1.28 2.85 5.79
0.30 0.57 1.05 3.19 5.07
0.45 0.34 0.84 3.08 11.99 (2)
0.60 0.14 0.30 1.26 5.65 (1)
0.75 0.09 0.23 1.23 7.02 (3)

13 6 102

0.90 0.03 0.05 2.37 12.79 (2)
0.15 1.20 2.89 2.57 6.54
0.30 0.97 1.95 3.03 5.50
0.45 0.57 1.56 2.54 5.28
0.60 0.20 0.36 2.28 7.25 (1)
0.75 0.10 0.20 4.74 13.43 (1)

13 7 [117,119]

0.90 0.03 0.05 0.26 2.04 (7)
0.15 1.71 3.38 2.52 5.06
0.30 0.96 2.08 3.09 7.35 (1)
0.45 0.52 1.24 1.51 4.17 (1)
0.60 0.34 0.64 2.53 11.81 (2)
0.75 0.14 0.31 1.91 5.66 (1)

13 8 [128,129]

0.90 0.04 0.06 0.61 2.67 (6)
0.15 0.33 0.66 0.96 1.93
0.30 0.17 0.41 1.34 3.47
0.45 0.13 0.27 0.90 3.34 (2)
0.60 0.08 0.16 1.25 5.07 (2)
0.75 0.04 0.08 2.86 7.69

14 5 85

0.90 0.02 0.03 1.77 4.11 (3)
0.15 0.56 0.92 1.50 4.04
0.30 0.55 0.77 2.06 6.98 (1)
0.45 0.34 0.86 2.26 5.89 (1)
0.60 0.18 0.44 1.17 2.83 (3)
0.75 0.07 0.16 1.31 9.93 (4)

14 6 102

0.90 0.03 0.05 2.10 8.09 (5)
0.15 0.95 3.47 2.21 5.96
0.30 0.58 1.44 2.77 9.80
0.45 0.42 1.27 1.42 4.32 (1)
0.60 0.21 0.44 1.31 6.56
0.75 0.10 0.27 1.19 5.48 (1)

14 7 [116,119]

0.90 0.03 0.05 0.87 5.80 (5)
0.15 1.76 3.88 2.87 5.55
0.30 1.51 2.45 1.55 2.99
0.45 0.81 1.95 1.38 4.04 (1)
0.60 0.45 1.11 2.38 6.56
0.75 0.16 0.38 0.53 1.84 (3)

14 8 [128,136]

0.90 0.05 0.09 0.44 1.51 (4)
*The figures in parenthesis indicate the number of times the optimal solution is found.

66

Table 5.15: Heuristic Branch and Bound Algorithm 1 Results

CI CNC N θ Avg. CPU Time Max. CPU Time Avg. Dev(%) Max. Dev(%)
0.15 69.95 182.92 0.94 4.96 (2)
0.30 14.27 82.75 0.48 1.37 (3)
0.45 10.85 61.72 1.00 2.59 (3)
0.60 1.32 3.31 0.51 3.47 (7)
0.75 0.57 1.23 0.23 2.33 (9)

13 5 85

0.90 0.26 0.78 0.47 4.69 (9)
0.15 455.61 1423.97 0.32 1.78 (4)
0.30 221.53 1370.98 1.17 3.00 (2)
0.45 54.57 244.41 0.47 2.09 (5)
0.60 4.28 25.83 0.20 1.32 (6)
0.75 1.25 2.39 0.13 0.59 (7)

13 6 102

0.90 0.68 1.42 0.09 0.85 (9)
0.15 143.12 655.89 1.13 6.44 (2)
0.30 172.61 738.97 0.97 3.26 (4)
0.45 35.74 89.94 0.93 2.66 (4)
0.60 6.16 16.27 0.36 2.06 (7)
0.75 2.01 6.11 0.80 5.04 (6)

13 7 [117,119]

0.90 0.64 1.27 0.00 0.00 (10)
0.15 352.52 1322.30 0.85 1.50
0.30 65.33 344.92 1.13 5.37 (2)
0.45 31.05 61.16 0.25 1.36 (6)
0.60 14.97 44.91 0.17 1.26 (7)
0.75 2.58 6.06 0.01 0.07 (9)

13 8 [128,129]

0.90 0.40 0.92 0.00 0.00 (10)
0.15 24.31 91.88 0.50 1.37 (5)
0.30 20.30 47.20 0.07 0.69 (8)
0.45 24.67 161.78 0.21 1.44 (6)
0.60 3.97 11.14 0.00 0.00 (10)
0.75 2.57 10.25 0.09 0.88 (9)

14 5 85

0.90 0.37 0.94 0.00 0.00 (10)
0.15 173.84 555.78 0.46 0.98 (2)
0.30 21.07 54.19 0.72 2.77 (2)
0.45 18.89 116.64 0.16 0.66 (5)
0.60 4.67 15.08 0.00 0.00 (10)
0.75 0.65 1.36 0.00 0.00 (10)

14 6 102

0.90 0.57 1.33 0.00 0.00 (10)
0.15 216.66 1103.63 0.79 2.60 (2)
0.30 80.11 432.52 0.74 4.40 (2)
0.45 16.46 58.16 0.12 0.62 (7)
0.60 9.08 40.73 0.08 0.68 (7)
0.75 5.92 50.77 0.02 0.20 (9)

14 7 [116,119]

0.90 0.47 1.45 0.00 0.00 (10)
0.15 1012.24 2585.09 1.10 2.19
0.30 161.98 603.28 0.75 2.41 (2)
0.45 34.10 91.22 0.55 1.54 (3)
0.60 9.46 32.44 0.08 0.64 (6)
0.75 3.85 22.20 0.10 0.63 (7)

14 8 [128,136]

0.90 1.10 4.47 0.10 1.03 (9)
*The figures in parenthesis indicate the number of times the optimal solution is found.

67

We next study the performance of the Improvement Heuristics. Recall that,

the first improvement heuristic takes the Construction Heuristic as a starting step.

Table 5.13 reports the results of Improvement Heuristic 1. We used Improvement

Heuristic 1 in our Branch and Bound as an initial feasible solution. We observed that

using such a heuristic enhances the efficiency significantly. Hence we expect

satisfactory behavior from Improvement Heuristic 1, as an approximate solution.

Our results in Table 5.13 support our expectations. We observe that the majority of

the average deviations are below 5%. The worst, maximum average deviation is

20.86% (which was 38.88% by Construction Heuristic). Note that the average CPU

times are very small. Hence the improvements over Construction Heuristic are

obtained in negligible CPU times,. as the CPU times by Construction and

Improvement Heuristics are almost the same. The improvement over Construction

Heuristic can also be verified by the increase in the number of optimal solutions.

The Construction Heuristic could find 21 optimal solutions, whereas Improvement

Heuristic 1 finds 43 optimal solutions out of 480 problem instances.

The results for the Improvement Heuristic 2 are given in Table 5.14.

Improvement Heuristic 2 is implemented over Improvement Heuristic 1. The

deviations are significantly smaller for Improvement Heuristics. Almost all average

deviations are below 3% and the worst maximum deviation is 13.43%. The number

of optimal solutions is increased to 74. Hence about 20% of the problems are

optimally solved by Improvement Heuristic 2. But such improvements are achieved

at an expense of increased CPU times. The CPU times are relatively high when

compared with the other heuristics, however they are still low. Note that, the

majority of the average CPU times are below 1.5 seconds, and the maximum CPU

time over all instances is 3.88 seconds.

The results of Heuristic Branch and Bound Algorithm 1 are presented in

Table 5.15 above. It can be observed that, the heuristic gives the best solutions over

all the heuristics mentioned up to now. Heuristic Branch and Bound Algorithm 1

relies on the idea of Theorem 4. The Heuristic Branch and Bound Algorithm 1

assigns non critical activities of the LP Relaxation solution to their highest duration

modes. Since there is a chance that non-critical activity in LP Relaxation becomes

critical, and is assigned to a lower duration mode in the optimal solution, the

algorithm does not guarantee the optimality.

68

It can be observed from Table 5.15 that, in more than half of the instances

(284 out of 480), the heuristic finds the optimal solution. For such instances, the

noncritical activities of LP Relaxation solution are turned to be noncritical in the

optimal solution as well. For the other instances, we observe very small deviations.

Almost all average and maximum deviations are below 1% and 5% respectively. We

did not use an initial feasible solution to start the Heuristic Branch and Bound

Algorithm 1. Note that we could even obtain better performances with initial

feasible solutions.

The Heuristic Branch and Bound Algorithm 1 runs in exponential time. The

CPU times are significantly smaller than those of Branch and Bound Algorithm;

however they are much larger than those of other heuristics. So it can be favored

when a satisfactory solution is required in a tolerable time.

The effect of the parameters on the CPU times is close to that of Branch and

Bound Algorithm. The CPU times are not as consistent as deviations.

We also use CPLEX Algorithm to solve the Deadline Problem to optimality.

We observe satisfactory CPU times, even better than our Branch and Bound

Algorithm for the test instances. The average CPU times of the CPLEX Algorithm

and our Branch and Bound Algorithm are tabulated in APPENDIX C.

We finally compare the performance of our heuristics with that of Akkan et

al. (2005a). The average CPU times and % deviations with respect to different CI, θ

and CNC values are reported in Table 5.16, below. The average deviations are

relative to optimal solutions for our algorithms. Akkan et al. (2005a) report the

deviations relative to their lower bounds, as the optimal solutions are not available,

so they can be interpreted as upper bounds on actual deviations. The software and

hardware used in our study and Akkan et al.’s (2005a) study are compatible; hence

the CPU times are comparable.

As can be observed from Table 5.16, in all problem combinations, our

Improvement Heuristics return better average deviations and smaller CPU times than

that of Akkan et al. (2005a). The Branch and Bound Based Heuristic, finds much

better solutions when compared to all heuristics including Akkan et al. (2005a)’s

however at an expense of higher CPU times.

69

Table 5.16: Comparison of Heuristics

 Avg. CPU Times (in seconds)
CI Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a)
13 0.02 0.56 103.37 5.57
14 0.02 0.56 114.49 5.29

 Avg. % Deviations

CI Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a)
13 4.59 2.41 0.68 7.44
14 3.35 1.71 0.40 6.21

 Avg. CPU Times (in seconds)

θ Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a)
0.15 0.03 0.95 306.03 7.45
0.30 0.03 0.69 94.65 5.62
0.45 0.02 0.41 28.29 4.68
0.60 0.02 0.21 6.74 3.96

 Avg. % Deviations

θ Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a)
0.15 3.97 2.24 0.76 8.47
0.30 4.20 2.37 0.75 7.54
0.45 4.19 1.91 0.46 6.42
0.60 3.51 1.72 0.17 4.85

 Avg. CPU Times (in seconds)
CNC Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a)

5 0.02 0.17 21.21 2.98
6 0.02 0.43 119.31 4.67
7 0.03 0.64 84.99 6.24
8 0.03 1.01 210.21 7.81

 Avg. % Deviations
CNC Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a)

5 2.88 1.57 0.46 5.59
6 4.14 2.17 0.44 6.77
7 4.01 2.26 0.64 7.38
8 4.85 2.23 0.61 7.54

70

5.4.2 Time/Cost Curve Problem

We generate and solve 30 problem instances to test the performance of our

Branch and Bound Algorithm for the Time/Cost Curve Problem in generating all

efficient solutions. The detailed results of all instances are tabulated in APPENDIX

D. We report the average and maximum results in Table 5.17. The table reports the

average number of efficient solutions, i.e., the average number of problems solved

for each problem instance. The table also includes the average and maximum CPU

times spent for each efficient solution and for all efficient solutions of an instance. In

all problem combinations, we set CNC to 2 and change CI value to generate

problems of different sizes.

Table 5.17: Time/Cost Curve Problem CPU Times (in seconds)

 All Efficient Solutions One Efficient Solution

CI CNC N
Avg. #
of eff.

Avg. CPU
Time

Max. CPU
Time

Avg. CPU
Time

Max. CPU
Time

0 2 [29,30] 764.10 4673.71 16008.66 5.21 13.82
[4,7] 2 [34,38] 624.70 9436.60 13872.86 15.23 22.26
[9,11] 2 [38,42] 373.50 18069.60 74244.77 41.80 146.73

The number of efficient solutions is affected by the magnitudes of the

activity durations and cost figures. We could not observe the effect of the number of

the activities in the number of efficient solutions.

It can be observed from the table that the average time of obtaining an

efficient solution is affected by the number of activities, i.e., the CI value. When CI

is smaller, we solve the Deadline Problem easier; hence obtain an efficient solution

quicker. Note that when CI=0, the average time to obtain an efficient solution is 5.21

CPU seconds. When CI is between 9 and 14, the average time for an efficient

solution is 32.74 CPU seconds.

The total time of obtaining an efficient set is influenced by the number of

efficient solutions and the time of obtaining an efficient solution.

71

CHAPTER 6

6 CONCLUSIONS

In this thesis, we consider a Discrete Time/Cost Trade-off Problem. We

study two versions of the problem: minimizing total cost subject to a given deadline

and generating all efficient solutions relative to the total cost and project duration

criteria, i.e., solving Time/Cost Curve Problem. In the literature, there are some

studies that tackle with Deadline and Time/Cost Curve Problems. However, none of

them could solve problem instances with more than 50 activities, optimally. Hence

efficient solution procedures are required to solve large-sized problem instances.

Recognizing this fact, we develop some efficient solution procedures for both

problems. For the Deadline Problem, we propose a Branch and Bound Algorithm

that uses Linear Programming Relaxation based lower bounds. We also develop

several heuristic procedures that are based on Linear Programming Relaxation and

branch and bound scheme. To generate all efficient solutions, i.e., to solve

Time/Cost Curve Problem, we use the Deadline Problem for all possible realizations

of the project duration.

To reduce the size of the Deadline Problem, we generate some mode

elimination mechanisms. Moreover, we benefit from the optimal Linear

Programming solutions to define some properties of the optimal and near optimal

solutions.

Our computational results with up to about 150 activities and 10 modes have

revealed the satisfactory behavior of our Branch and Bound Algorithm used to solve

the Deadline Problem. We observe that the efficiency of the algorithm is affected by

the number of activities and the tightness of the deadline value.

Our heuristic procedures generate solutions that deviate from the optimal

solutions by no more than ten percent on average. The two-step heuristic procedure,

which constructs an initial feasible solution and makes improvements by

interchanges, runs in polynomial time. Hence it generates quick solutions. Branch

and Bound Based Heuristic procedure generates higher quality solutions, but at an

72

expense of increased solution times. So, the decision maker should prefer the two-

step procedure if the speed of obtaining solutions is more essential. If quality, is

more important then Branch and Bound Based solutions should be favored.

We also perform an experiment to test the efficiency of the algorithm to

generate all efficient solutions. As the Deadline Problem could be solved optimally

with up to 150 activities, we could generate all efficient solutions for 150 activity

problems. In our experiments, we see that the number of the efficient solutions is in

hundreds for about 40 activity problems; hence we prefer to limit our runs to 40

activities.

We hope our work stimulates some further research work in project

scheduling. Some noteworthy of future research directions can be listed as follows:

• Solving the Budget Problem, i.e., minimizing project duration subject to

a constraint on total cost.

• Incorporating resource-constraints: We assume there are unlimited

resources, however in many practical situations there may be limited

resources for which the activities compete.

• Considering the continuous version of the problem: The continuous

version of our problem with linear time/cost relation has been solved

polynomial time. Further research may consider nonlinear continuous

time/cost functions.

73

REFERENCES

Akkan, C., Drexl, A., and Kimms, A., (2005a), “Generating an acyclic directed

graph with a given complexity index by constraint logic programming”, Journal of

Logic and Algebraic Programming, 62, pp. 1-39.

Akkan, C., Drexl, A., and Kimms, A., (2005b), “Network decomposition-based

benchmark results for the discrete time-cost tradeoff problem”, European Journal of

Operational Research, 165, pp. 339-358.

Bein, W.W., Kamburowski, J., and Stallmann, M.F.M., (1992), “Optimal reduction

of two-terminal directed acyclic graphs”, SIAM Journal on Computing, 21, pp.

1112–1129.

Butcher, W.S., (1967), “Dynamic programming for project cost-time curves”,

Journal of the Construction Division, Proceedings of the ASCE 93, pp. 59-73.

Crowston, W.B., and Thompson, G.L., (1967), “Decision CPM: A method for

simultaneous planning, scheduling, and control of projects”, Operations Research,

15, pp. 407–426.

De, P., Dunne, E.J., Ghosh, J.B., and Wells, C.E., (1995), “The discrete time–cost

tradeoff problem revisited”, European Journal of Operational Research, 81, pp. 225–

238.

De, P., Dunne, E.J., Ghosh, J.B., and Wells, C.E., (1997), “Complexity of the

discrete time–cost tradeoff problem for project networks”, Operations Research, 45,

pp. 302–306.

Deineko, V.G., and Woeginger, G.J., (2001), “Hardness of approximation of the

discrete time–cost tradeoff problem”, Operations Research Letters, 29, pp. 207–210.

74

Demeulemeester, E., Herroelen, W., and Elmaghraby, S.E., (1996), “Optimal

procedures for the discrete time/cost trade-off problem in project networks”,

European Journal of Operational Research, 88, pp. 50–68.

Demeulemeester, E., De Reyck, B., Foubert, B., Herroelen, W., and Vanhoucke, M.,

(1998), “New computational results on the discrete time/cost trade-off problem in

project networks”, Journal of the Operational Research Society, 49, pp. 1153–1163.

Elmaghraby, S.E., (1993), “Resource allocation via dynamic programming in

activity networks”, European Journal of Operational Research, 64, pp. 199-215.

Frank,H., Frisch, I.T., Van Slyke, R., and Chou, W.S., (1971), “Optimal design of

centralized computer networks”, Networks, 1, pp. 43–57.

Fulkerson, D.R., (1961), “A network flow computation for project cost curves”,

Management Science, 7, pp. 167–178.

Kelley, J.E., (1961), “Critical path planning and scheduling: Mathematical basis”,

Operations Research, 9, pp. 296–320.

Meyer, W.L., and Shaffer, L.R., (1965), “Expanding CPM for multiform project

time-cost curves”, Journal of the Construction Division, Proceedings of the ASCE,

pp. 45–65.

Phillips, S., and Dessouky, M.I., (1977), “Solving the project time/cost tradeoff

problem using the minimal cut concept”, Management Science, 24, pp. 393–399.

Robinson, D.R., (1975), “A dynamic programming solution to the cost–time tradeoff

for CPM”, Management Science, 22, pp. 158–166.

Rothfarb, B., Frank, H., Kleitman, D.M., Steiglitz, K., and Rosenbaum, D.M.,

(1970), “Optimal design of offshore natural-gas pipeline systems”, Operations

Research, 18, pp. 992–1020.

75

Skutella, M., (1998), “Approximation algorithms for the discrete time–cost tradeoff

problem”, Mathematics of Operations Research, 23, pp. 195–203.

76

APPENDIX A

A. NUMERICAL EXAMPLE ON HEURISTICS

Table A.1 below shows the precedence relations and modes of activities of a

29-activity sample network.

Table A.1: Data for the Example Instance

Activity Successors Modes
1 3, 4 116-6; 69-524; 56-679; 52-722;15-1043
2 10, 11 109-8; 98-78; 80-231; 73-307; 55-492; 32-773
3 5, 6 118-6; 113-81; 69-681; 59-820; 54-883; 3-1486
4 10, 11 98-11; 20-89
5 7, 8 65-9; 47-84; 39-109
6 10, 11 96-5; 88-72; 85-104; 47-462; 7-835
7 9 87-10; 42-230; 30-277; 9-410

8 10, 11
 118-15; 94-121; 88-149; 81-164; 74-181; 64-235; 61-254; 20-

590; 6-713
9 10, 11 118-10; 103-95; 98-137; 94-181; 74-419; 31-877
10 12, 13 114-8; 94-97; 82-164; 51-380; 44-449; 36-514; 15-748
11 17, 18 98-9; 72-121; 21-325; 9-388
12 14, 15 48-5; 43-25; 31-52

13 17, 18
 120-10; 112-167; 110-211; 97-466; 59-1190; 40-1545; 38-

1579; 17-1886; 11-1982

14 16
 119-12; 109-157; 100-307; 82-610; 78-671; 49-1175; 42-

1300; 30-1509; 17-1773; 13-1844

15 17, 18
 109-13; 87-339; 74-550; 67-650; 55-818; 54-835; 44-1003;

29-1247; 7-1615
16 17, 18 88-9; 68-104; 44-201; 30-271
17 19, 20 116-15; 44-386; 41-407; 21-526
18 30 114-8; 64-330
19 21, 22 85-6; 78-50; 62-162; 48-275; 19-472

20 30
 119-13; 117-83; 94-839; 80-1286; 64-1773; 56-2010; 53-

2098; 45-2331; 15-3181; 8-3383
21 23, 24, 25 87-7; 51-228
22 30 118-8; 106-61; 81-226; 43-561; 35-609
23 26 28-13; 25-16
24 27, 28 120-13; 112-55; 82-140; 64-198; 57-229; 32-408
25 30 104-7; 78-176; 8-579
26 27, 28 103-13; 94-78; 90-106; 86-132; 31-513
27 29 96-12; 75-33
28 30 117- 6; 105-166; 71-608; 58-816; 7-1554; 5-1577
29 30 115-10; 112-41; 85-321; 77-414; 68-496; 66-517; 13-1001

77

We find that 1503MAXT = ; 421MINT = The instance is solved for 0.15=θ ,

i.e., () 583MIN MAX MINt T T T= + − =θ . The fractional variables of LP Relaxation

solution are listed as follows:

Table A.2: Fractional Variables of the LP Relaxation

Objective Function Value:
7755.86

Fractional Variables
y8,1 0.068
y8,5 0.931
y9,4 0.587
y9,6 0.412
y24,5 0.960
y24,6 0.040
y29,1 0.284
y29,7 0.715

.

The activity durations of LP solution, i.e.,
1

im
LP
i ik ik

k

t t y
=

= ×∑ are computed

below.

8 0.068 118 0.931 74 77LPt = × + × =

9 0.587 94 0.412 31 68LPt = × + × =

24 0.96 57 0.04 32 56LPt = × + × =

29 0.284 115 0.715 13 42LPt = × + × =

The longest modes that are no shorter than LP
it are listed below,

8,5 8 8,5

9,6 9 9,6

24,6 24 24,6

29,7 29 29,7

74 77; 1

31 68; 1

32 56; 1

13 42; 1

LP

LP

LP

LP

t t y

t t y

t t y

t t y

= < = =

= < = =

= < = =

= < = =

The upper bound is found as follows:

1
1

8629
im

ik ik
k

UB c y
=

= × =∑

Improvement Heuristic 1 finds the improvement amounts for all activities as

78

1 1, , 1k i kIA c c −= − for k’s such that , 1i ky =

Table A.3 reports IAi values for all i.

Table A.3: Initial Improvements in Improvement Heuristic 1

Activity Mode Improvement Amount
1 5 321
2 1 0
3 6 603
4 1 0
5 3 25
6 1 0
7 4 133
8 5 17
9 6 458

10 7 234
11 1 0
12 3 27
13 1 0
14 2 145
15 1 0
16 4 70
17 4 119
18 1 0
19 5 197
20 1 0
21 2 221
22 1 0
23 2 3
24 5 179
25 1 0
26 5 381
27 2 21
28 1 0
29 7 484

All activities with positive improvement amounts are put in set PI and the

activity with maximum improvement in PI is selected; J=3; IA3 =603.

79

The mode of Activity 3 is decreased from 6 to 5. The project duration is

calculated with CPM. 631 583T t= > = . Note that the solution is infeasible. Then

mode of Activity 3 is increased to 6 and it is removed from PI.

The activity in PI with the maximum improvement is selected; J=29; IA29

=484.

The mode of Activity 29 is decreased from 7 to 6. Project duration is

calculated with CPM. 604 583T t= > = . Solution is infeasible. The mode of Activity

29 is increased to 6. Activity 3 is removed from PI.

Below Table A.4 summarizes all iterations.

Table A.4: Summary of the Execution of the Improvement Heuristic 1

Iter. J IAJ T Imp. PI
1 3 603 631 - {1,3,5,7,8,9,10,12,14,16,17,19,21,23,24,26,27,29}
2 29 484 604 - {1,5,7,8,9,10,12,14,16,17,19,21,23,24,26,27,29}
3 9 458 589 - {1,5,7,8,9,10,12,14,16,17,19,21,23,24,26,27}
4 26 381 635 - {1,5,7,8,10,12,14,16,17,19,21,23,24,26,27}
5 1 321 617 - {1,5,7,8,10,12,14,16,17,19,21,23,24,27}
6 10 234 601 - {5,7,8,10,12,14,16,17,19,21,23,24,27}
7 21 221 616 - {5,7,8,12,14,16,17,19,21,23,24,27}
8 19 197 609 - {5,7,8,12,14,16,17,19,23,24,27}
9 24 179 581 179 {5,7,8,12,14,16,17,23,24,27}

10 14 145 591 - {5,7,8,12,14,16,17,23,24,27}
11 7 133 581 133 {5,7,8,12,16,17,23,24,27}
12 17 119 601 {5,7,8,12,16,17,23,24,27}
13 16 70 595 - {5,7,8,12,16,23,24,27}
14 7 47 591 47 {5,7,8,12,23,24,27}
15 7 220 625 - {5,7,8,12,23,24,27}
16 24 31 588 - {5,8,12,23,24,27}
17 12 27 593 - {5,8,12,23,27}
18 5 25 589 - {5,8,23,27}
19 27 21 581 21 {8,23,27}*
20 8 17 588 - {8,23}
21 23 3 583 3 {23}*

At each iteration the activity is shown in column J, improvement amount is

shown in column IAJ, the project duration after the corresponding mode change is

tabulated in column T . The associated solution is feasible, if the improvement

amount is reported in column Imp. The Set PI is shown in column PI. We observe

80

the first successful mode change in the 9th iteration where the mode of Activity 24 is

decreased from 5 to 4. Note that, 581 583T t= < = and Activity 24 is not removed

from PI. On the other hand, on iterations 19 and 21 the activities 27 and 23 are

removed from PI respectively. From Table A.3 we observe that Activities 27 and 23

are at their 2nd modes, i.e., they can be moved only once. Moreover, observe that

Activity 7 is moved 2 times but its third movement in iteration 15 produces an

infeasible schedule. When PI becomes an empty set we calculate the upper bound

value, as

2
1

8246
im

ik ik
k

UB c y
=

= × =∑

Note that the difference UB2 – UB1 =383 is the total improvement amount

made by the Improvement Heuristic 1.

We then apply Improvement Heuristic 2 to the same problem instance with

deadline setting 0.30=θ , i.e., () 745MIN MAX MINt T T T= + − =θ . We calculate the

improvements for each activity pair in the solution of Improvement Heuristic 1. At

the end of the Improvement Heuristic we found out that 2 5962UB = . Since there are

too many activity pairs (29 28×), we only show improvement calculations for the

Activity 8, in Table A.5 below.

Activity 8 is currently assigned to its 2nd mode. From Table A.1 we know

that c8,2=121 and c8,1=15; c8,3=149. Activity 1 has 5 modes and it is assigned to its

5th mode. From Table A.1 we know that c1,5=1043 and c1,4=722. Since Activity 1 is

assigned to its last mode, its mode cannot be increased. Imp(8,1) is the improvement

obtained when Activity 8 is assigned to its 3rd mode; and Activity 1 is assigned to its

4th mode, i.e., () ()Imp(8,1)= 1043 722 121 149 293− + − =

Since, Activity 8 and 2 are not on the same path; improvement of Activity 8-

2 pair is not calculated. Activity 3 is assigned to its 1st mode. Hence, its mode

cannot be decreased any further. From Table A.1 we know that c3,1=6 and c3,2=81.

Thus, () ()Imp(3,8)= 121 15 6 81 31− + − =

All remaining improvements are calculated similarly. Table A.5 below gives

the improvement amounts of all pairs with Activity 8. The mode column indicates

the current mode of the corresponding activity. Note that all activities which are

currently assigned to their first modes cannot yield to an improvement. Moreover,

81

improvements for activities 2, 4, 6, 7 and 9 are not calculated since they are not

located on the same path with Activity 8.

After all improvements are calculated Improvement Heuristic 2 executes like

Improvement Heuristic 1. The mode change with the maximum improvement

amount is selected. The feasibility of the mode change is checked. If mode change is

feasible, the mode change is realized. Otherwise, the improvement of the

corresponding mode change is set to zero. Algorithm terminates when there are not

any positive improvement mode changes.

Table A.5: Improvements of Activity 8 at Improvement Heuristic 2

Activity (J) Mode Imp(J,8) Imp(8,J)
1 5 0 293
2 1 - -
3 1 31 0
4 1 - -
5 3 0 -3
6 1 - -
7 4 - -
8 2 - -
9 2 - -

10 7 0 206
11 1 -6 0
12 3 0 -1
13 1 -51 0
14 1 -39 0
15 1 -220 0
16 4 0 42
17 4 0 91
18 1 -216 0
19 5 0 169
20 1 36 0
21 2 0 193
22 1 53 0
23 2 0 -25
24 5 -73 3
25 1 -63 0
26 5 0 353
27 1 85 0
28 1 -54 0
29 7 0 456

82

Improvement Heuristic 2 makes 202 iterations and makes the single feasible

move at the 99th iteration. Mode of the Activity 8 is decreased to 1 and mode of

Activity 3 is increased to 2. Move is feasible as 745 745T t= ≤ = and the

improvement is 31 as Imp(3,8) 31= . We calculate the upper bound value, as

3
1

5931
im

ik ik
k

UB c y
=

= × =∑

Note that the difference UB3 – UB2 =31 is the total improvement amount

made by the Improvement Heuristic 2

83

APPENDIX B

A. PRELIMINARY RUN RESULTS OF HEURISTIC BRANCH AND

BOUND ALGORITHM 2

Table B.1: Average CPU Times and Deviations of 4 Small-Sized

Instances

 Average CPU Times (in seconds)

θ
Average %
Deviations Heuristic BAB Exact BAB

0.15 6.14 5.75 10.73
0.30 2.80 7.14 3.97
0.45 1.85 6.71 9.28
0.60 2.17 2.21 4.54
0.75 0.50 0.55 1.13
0.90 4.34 0.22 0.23

Table B.2: Average CPU Times and Deviations of the Large-Sized

Instance

 CPU Times (in seconds)
θ % Deviations Heuristic BAB Exact BAB

0.15 4.65 3600.04 493.67
0.30 0.69 773.73 124.88
0.45 12.67 678.46 6.03
0.60 0.00 5.17 3.09
0.75 7.75 2.95 0.36
0.90 6.57 0.09 0.39

84

APPENDIX C

A. CPLEX AND BRANCH AND BOUND ALGORITHM CPU TIMES

Table C.1: CPLEX and Branch and Bound Algorithm CPU Times (in

seconds) for CI=13 Instances

 Cplex Branch and Bound

CI CNC N θ

Avg.
CPU
Time

Max. CPU
Time

Avg.
CPU
Time

Max.
CPU
Time

0.15 4.70 11.58 1109.42 2921.73
0.30 0.78 2.22 109.83 402.92
0.45 0.28 0.92 42.96 169.20
0.60 0.09 0.16 2.45 4.30
0.75 0.06 0.09 0.81 1.81

13 5 85

0.90 0.06 0.08 0.32 1.14
0.15 68.93 351.44 2702.21 3600.05
0.30 29.08 189.97 1961.88 3600.05
0.45 1.67 3.31 470.44 1822.83
0.60 0.16 0.27 9.36 52.25
0.75 0.10 0.14 1.55 3.33

13 6 102

0.90 0.08 0.11 0.78 1.59
0.15 796.42 3601.36 2700.92 3600.06
0.30 25.08 112.14 2032.41 3600.05
0.45 1.26 5.16 624.79 3600.02
0.60 0.27 0.53 22.59 108.52
0.75 0.12 0.24 2.67 5.14

13 7 [117,119]

0.90 0.10 0.13 0.78 1.89
0.15 164.78 616.81 2408.18 3600.06
0.30 3.66 14.20 1046.96 3600.03
0.45 0.53 0.97 152.93 356.63
0.60 0.23 0.33 28.64 89.97
0.75 0.16 0.23 4.09 10.06

13 8 [128,129]

0.90 0.10 0.19 0.45 1.02

85

Table C.2: CPLEX and Branch and Bound Algorithm CPU Times (in

seconds) for CI=14 Instances

 Cplex Branch and Bound

CI CNC N θ

Avg.
CPU
Time

Max. CPU
Time

Avg.
CPU
Time

Max.
CPU
Time

0.15 0.76 2.22 102.35 246.95
0.30 0.30 0.89 63.23 157.58
0.45 0.14 0.33 36.32 239.61
0.60 0.11 0.24 6.28 20.64
0.75 0.08 0.16 2.91 12.38

14 5 85

0.90 0.05 0.08 0.39 1.05
0.15 16.40 59.47 1626.30 3600.03
0.30 0.56 1.13 64.64 156.64
0.45 0.29 0.95 31.62 166.64
0.60 0.11 0.19 7.21 23.73
0.75 0.08 0.14 0.80 1.70

14 6 102

0.90 0.07 0.11 0.60 1.45
0.15 84.25 482.03 2253.89 3600.06
0.30 2.82 13.45 956.94 3600.03
0.45 0.30 0.61 40.93 161.89
0.60 0.18 0.36 17.62 80.83
0.75 0.11 0.24 9.60 80.80

14 7 [116,119]

0.90 0.09 0.13 0.51 1.58
0.15 84.13 267.13 2967.47 3600.08
0.30 5.42 11.30 1789.93 3600.06
0.45 0.73 2.06 170.80 494.80
0.60 0.25 0.38 18.28 50.02
0.75 0.17 0.27 7.05 38.75

14 8 [128,136]

0.90 0.10 0.13 1.03 4.91

86

APPENDIX D

A. DETAILED RESULTS OF TIME/COST CURVE PROBLEM

Table D.6: Time/Cost Curve Results

CI CNC N

of
efficient
solutions

Total time (in
seconds)

Average efficient
solution time (in
seconds)

29 854 4848.72 5.68
29 683 3326.16 4.87
29 1211 11643.19 9.61
29 500 1904.2 3.81
30 1158 16008.66 13.82
30 366 852.73 2.33
29 751 1428.33 1.9
30 661 4719.17 7.14
29 513 898.97 1.75

0 2

29 944 1107.02 1.17
34 599 9455.97 15.79
34 565 9560.63 16.92
35 615 8113.95 13.19
35 505 8165.8 16.17
36 497 11061.8 22.26
36 624 7921.75 12.7
35 965 13872.86 14.38
38 554 7201.27 13
37 739 12994.69 17.58

4-7 2

38 584 6017.34 10.3
38 506 74244.77 146.73
42 332 3104.23 9.35
39 302 10918.7 36.15
40 401 20250 50.5
42 275 5880.8 21.38
38 323 3986.39 12.34
42 374 2949.27 7.89
38 324 17365.06 53.6
38 552 38292.97 69.37

9-11 2

38 346 3703.78 10.7

