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ABSTRACT 

DISCRETE TIME/COST TRADE-OFF PROBLEM IN PROJECT 

SCHEDULING 

HAFIZOĞLU, Ahmet Baykal 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Meral AZİZOĞLU 

 

June 2007,  86 pages 

 

In project scheduling, the activity durations can often be reduced by 

dedicating additional resources. Time/Cost Trade-off Problem considers the 

compromise between the total cost and project duration. The discrete version of the 

problem assumes a number of time/cost pairs, so called modes, and selects a mode 

for each activity. 

In this thesis we consider the Discrete Time/Cost Trade-off Problem. We first 

study the Deadline Problem, i.e., the problem of minimizing total cost subject to a 

deadline on project duration. To solve the Deadline Problem, we propose several 

optimization and approximation algorithms that are based on optimal Linear 

Programming Relaxation solutions. We then analyze the problem of generating all 

efficient solutions, and propose an approach that uses the successive solutions of the 

Deadline Problem.  

Our computational results on large-sized problem instances have revealed the 

satisfactory behavior of our algorithms. 

 

Keywords: Project Scheduling, Time/Cost Trade-off, Branch and Bound 
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ÖZ 

PROJE ÇİZELGELEMESİNDE KESİKLİ ZAMAN/MALİYET 

ÖDÜNLEŞİM PROBLEMİ 

 

HAFIZOĞLU, Ahmet Baykal 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Meral AZİZOĞLU 

 

Haziran 2007, 86 sayfa 

 

Proje çizelgelemesinde aktivite süreleri ek kaynaklar tahsis edilerek 

azaltılabilir. Zaman/Maliyet Ödünleşim Problemi toplam maliyet ve proje süresi 

arasındaki uzlaşmayı ele alır. Problemin kesikli versiyonu mod diye tabir edilen, 

belirli sayıda zaman/maliyet çiftleri varsayar ve her aktivite için bir mod seçer. 

Bu tezde Kesikli Zaman/Maliyet Ödünleşim Problemini ele aldık. Öncelikle 

Zaman Sınırı Problemi, başka bir deyişle, proje bitirme süresi sınırına bağlı toplam 

maliyet enazlama problemi üzerinde çalıştık. Zaman Sınırı Problemini çözmek için, 

optimal doğrusal programlama gevşetmesine dayanan eniyileme ve yaklaşıklama 

algoritmaları önerdik. Sonra Tüm Verimli Çözümleri Üretme Problemini inceledik, 

ve Zaman Sınırı Probleminin ardışık çözümlerini kullanan bir yaklaşım önerdik. 

Büyük ölçekli problem örneklerindeki sonuçlarımız algoritmalarımızın 

memnuniyet verici tutumunu göstermektedir.  

 

Anahtar Kelimeler: Proje Çizelgelemesi, Zaman/Maliyet Ödünleşimi, Dal-

Sınır Yöntemi 
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CHAPTER 1 

1 INTRODUCTION 

In project scheduling, a set of activities with specified precedence relations 

has to be performed so as to create a service or product. An activity of the project 

can be performed in several different ways with different times and/or costs. 

Usually, it may be possible to accelerate the process by reducing the activity 

durations. The activity durations can be reduced by dedicating extra resources. These 

resources can be human, tool, machine, alternative processing options, like the 

subcontracting. An increase in resource consumption naturally increases the cost and 

decreases the time. According to the resource consumption levels, the alternatives 

can be defined. Each alternative defines its own cost and time combination and is 

referred to as mode in project scheduling terminology. 

The number of modes for each activity is usually limited and the decision is 

to select an activity mode that leads promising project outcomes. As increasing the 

duration of an activity, reduces its cost, such problems are referred to as Time/Cost 

Trade-off Problems. 

Time/Cost Trade-off Problems have been studied by many researchers and 

for many years. The first studies date back to early sixties. There are several 

categories of the problem. Figure 1.1 below demonstrates the classification scheme 

of Time/Cost Trade-off Problems, according to the nature of time/cost functions. 
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Figure 1.1: Time/Cost Trade-off Problem Categories 

The classification used is based on the relation of time and cost figures. 

Problems with continuous time cost relations are studied in two subsections: Linear 

time/cost relations and nonlinear time/cost relations.  

The objective function and the constraints of the problem give rise to three 

different Discrete Time/Cost Trade-off Problem categories: 

• Deadline Problem 

• Budget Problem 

• Time/Cost Curve Problem 

The Deadline Problem assumes an upper limit on the duration of the project, 

i.e., the maximum completion time over all activities. The aim is to minimize the 

total cost. The problem is shown to be NP-hard in the strong sense by Dunne et al. 

(1997).  

The Budget Problem assumes an upper limit on the available amount of 

resources allocated. The objective is to minimize the project duration. A special case 

of the problem where all activities have a single mode is easily solvable by the 

Critical Path Method. The Critical Path Method simply finds the minimum project 

duration with given activity durations. The problem is shown to be NP-hard in the 

strong sense by Dunne et al. (1997). 

The Time/Cost Curve Problem generates all efficient solutions relative to the 

total cost, and project duration objectives. A non-dominated, i.e., an efficient, set is 

defined using the successive solutions of the Deadline or Budget Problems. The 

Time/Cost Curve Problem is strongly NP-hard, as the Deadline Problem and Budget 

Problem is strongly NP-hard. 
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In this study, we first consider the Deadline Problem for the discrete 

time/cost alternatives. We propose a Branch and Bound Algorithm and several 

heuristic procedures. All procedures are based on the Linear Programming 

Relaxations of the problem. We define the properties of the Linear Programming 

Relaxation and use them in designing our algorithms. We then consider a Discrete 

Time/Cost Curve Problem. Our approach uses the successive solutions of the 

Deadline Problem. We propose optimization and approximation algorithms to solve 

the curve problem.  

In the literature, the optimization procedures designed for the Deadline and 

Time/Cost Curve Problems could solve only moderate-sized instances up to 50 

activities and 4 modes. Our algorithms, on the other hand, solve large-sized 

instances with up to 150 activities and about 10 modes in reasonable times. 

The rest of the thesis is organized as follows. In Section 2, we define the 

problems and discuss the related literature. Section 3 presents our work on the 

Deadline Problem. The properties of the optimal solution, our Branch and Bound 

Algorithm and heuristic algorithms are discussed. In section 4, we analyze the 

Time/Cost Curve Problem. Our approach that uses successive solutions of the 

Deadline Problem is presented. Section 5 reports our computational experiment and 

its results. We conclude in Section 6 by pointing our main findings and suggestions 

for future research. 
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CHAPTER 2 

2 PROBLEM DEFINITION AND LITERATURE REVIEW 

In this chapter, we first define single and multi-mode project scheduling 

problems. We then give the mathematical representations for the different versions 

of the multi-mode problems. Finally, we review the previous studies of the multi-

mode problems. 

2.1 Project Scheduling Problems 

Project is the process of creating a service or product by the contribution of 

jobs and resources within an organizational order. Project management is the 

discipline of planning and organization of jobs and resources in order to satisfy 

project constraints. In many projects resources can be represented by time and 

money. Many projects may not allow excess use of resources. Therefore, project 

time and project budget may be limiting factors. Some jobs may require some other 

jobs to be completed before they begin. These relations between jobs are called 

precedence relations which constitute another body of project constraints. In project 

scheduling terminology jobs are referred as activities. The relations of activities are 

best represented by project networks. 

Project Networks 

In the literature there are two different representations used for project 

networks: Activity on Node (AoN) Representation and Activity on Arc (AoA) 

Representation. These representations are separated in terms of activity and 

precedence relations. To define the precedence relations, we use the predecessor and 

successor activities. If start of activity i requires, activity j to be completed we say 

activity j is the predecessor of activity i, and activity i is the successor of activity j. If 

activity i can start immediately after activity j, then activity j is the immediate 

predecessor of activity i, and activity i is the immediate successor of activity j. 



 
5 

Activity on Node (AoN) Representation  

In AoN representation, the activities are shown by nodes. Arcs represent the 

immediate precedence relations. The direction of an arc shows the precedence 

direction. Assume we have an 8 activity project having precedence relations as 

shown in Table 2.1. AoN representation of the project network is given in Figure 

2.1. 

Table 2.1: Sample Project Network Precedence Relations 

Activity 
Immediate 

Predecessor 
Immediate 
Successor 

1 - 2,3 
2 1 4,5 
3 1 7 
4 2 6 
5 2 8 
6 4 8 
7 3 8 
8 5,6,7 - 

 
Figure 2.1: Activity on Node Representation of Sample Network 

Note that activities 1 and 2 are predecessors of activity 4, and activities 6 and 

8 are successors of activity 4. 
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Activity on Arc (AoA) Representation  

According to AoA representation scheme the activities are shown by arcs. 

All activities have a source node and a sink node. The source node of an activity 

represents an event of starting that activity whereas its sink node represents an event 

of completing that activity. The arcs representing the immediate successor activities 

of an activity should start from the sink node of the activity. Therefore, the 

corresponding node becomes the source node of the immediate successor nodes. In 

project networks, parallel arcs are not allowed, hence in some cases it is required to 

use dummy activities. AoA representation is more widely used to demonstrate 

project networks. AoA representation for the sample network, whose data are given 

in Table 2.1, is shown in Figure 2.2. 

 
Figure 2.2: Activity on Arc Representation of Sample Network 

In Figure 2.2, node 0 is an event for the start of activity 1, therefore, the start 

of the project. Node b represents the completion of activity 2 and start of activities 4 

and 5. Node f represents the completion of activity 8, therefore, the completion of 

the entire project. The completion time of the last activity 8 defines the project 

completion time. The project completion time is also referred to as project duration. 

In project scheduling problems each activity has a duration, and a cost. 

Occasionally, there may be alternative time/cost values for any activity. In such 

cases, the durations of the activities are inversely proportional with their cost values. 

For instance, in a tunnel project, drilling operation can be completed with a single 

drilling machine in a long time. To decrease the operation duration, additional 

drilling machines can be assigned to the operation. In such a case, the operation 

duration decreases; however, money paid to drilling machines increases. As more 
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drilling machines are assigned to the operation, duration continuously decreases and 

total cost increases. The time/cost pair for each alternative situation is called mode. 

Mode is simply the word used instead of “alternative” in project scheduling 

terminology. Table 2.2 illustrates the data for a 5-mode problem. 

Table 2.2: Modes of an Example Instance 

Mode Total Cost Time # of Machines Used 
1 $100000 12 months 1 
2 $200000 8 months 2 
3 $300000 5 months 3 
4 $400000 3 months 4 
5 $500000 2 months 5 

 

 

As can be observed from the table, the time decreases, with cost increases 

due to the additional resources, i.e., machines used. 

 

When there is more than one mode for an activity, a decision has to be made 

about which mode to choose. The associated problem is choosing right modes to 

minimize project duration or total cost without violating the project constraints. 

These kinds of problems are referred as Multi-mode problems. 

When there is single mode for each activity the problem is called Single-

mode problem.  

Single-Mode Problems 

The problem is to determine the project duration. To find minimum project 

duration Critical Path Method (CPM) is used. Since there is only one mode for each 

activity, total project cost is simply the summation of costs of all activities. 

For single-mode problems the parameters that define the problem are 

precedence relations and duration of activities. ti is the duration of activity i. ti  is also 

referred as activity times. Pi (Si) is the set of immediate predecessors (successors) of 

activity i. The aim is to find the minimum project duration T. 

For a given project, the following information can be derived: 

ESi: Earliest possible start time of activity i  

LCi: Latest possible completion time of activity i  
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Slack time of activity i: Maximum possible duration of activity i without 

increasing the project duration. It is simply the difference between latest possible 

completion and earliest possible start time.  

Critical Activity: The activity whose slack time is equal to its duration. In 

other words, any activity is called critical if an increase in its duration directly 

affects the project duration. All activities which are not critical are called non-

critical activities. The set of critical activities are denoted as Crit. 

To summarize, we have the following relations: 

i i iSlack LC ES= −   1, 2,....,i N=  

{ }1,2,..., | i iCrit i N Slack t= = =  

Critical Path: A path from source to sink consisting of all critical activities.  

 The CPM algorithm works as follows: 

In initialization step, the earliest start times of the activities without 

predecessors are set to 0. Then the earliest start times of other activities are 

calculated. For each activity, the earliest start times of all immediate predecessors 

are known. The earliest start time of activity is the maximum of the earliest 

completion times of its predecessors. After all earliest start times are computed, the 

earliest project duration is found, which is the maximum of all earliest completion 

times. The latest completion times are then computed, starting from the activities 

having no successors. The latest completion time of an activity is the minimum of 

the latest start times of all its immediate successors. After all earliest start and latest 

completion times are found, the slack times are computed and the critical activities 

are detected. Below is the stepwise description of the CPM. 
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We illustrate the CPM method on the project instance whose data were given 

in Table 2.1. The AoA representation is given in Figure 2.3 below. The numbers in 

the parentheses on the arcs denote the activity durations. 

 
Figure 2.3: CPM Example Network 

We now give the stepwise implementation of the method. 

Initialization:  

Activity 1 has no immediate predecessor. Therefore ES1 =0 

Initialization: 

0iES =  : ii P = ∅  

Main Body: 

Repeat 

 { }
i

i j jj P
ES Max ES t

∈
= +   :   is calculatedi ji j P ES∀ ∈  

Until iES  for 1, 2,....,i N=  are calculated 

{ }i ii
T Max ES t= +  

iLC T=  : ii S = ∅  

Repeat 

 { }
i

i j jj S
LC Min LC t

∈
= −   :   is calculatedi ji j S LC∀ ∈   

Until iLC  for 1, 2,....,i N=  are calculated 

Finalization: 

i i iSlack LC ES= −   1, 2,....,i N=  

{ }1,2,..., | i iCrit i N Slack t= = =  
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Main Body: 

We start by checking the activities that immediately succeed activity 1. These 

activities are 2, 3. Activities 2 and 3 have single predecessor. ES2 and ES3 are 

calculated as follows: 

ES2  =ES3  =ES1  + t1  =0 + 6 =6  

Using ES2 and ES3, we calculate ES4 , ES5  and ES7  

ES4  =ES5  =ES2  + t2  =6 + 12 =18  

ES7  =ES3  + t3  =6 + 7 =13 

ES6 is calculated using ES4 

ES6  =ES4  + t4  =18 + 5 =23 

Activity 8 has 3 predecessors. Therefore,  

 ES8  =Max{ES6  + t6 ; ES5  + t5 ;  ES7  + t7 } =Max{23+2; 18+3; 13+9}=25 

Since all ES values are calculated, the project duration is calculated 

 T =Max {ESi  + ti}=25 + 5 =30; LC8 =30   

As a result, the project duration is calculated. Now it is time to calculate the 

latest completion time values. LC5, LC6, LC7 are calculated using LC8 

LC5 =LC6 =LC7 =LC8 – t8 =30 – 5 =25 

Similarly, LC3 and LC4, are calculated 

LC3 =LC7 – t7 =25 – 9 =16 

LC4 =LC6 – t6 =25 – 2 =23 

Activity 2 has 2 immediate successors. Therefore, 

LC2 =Min {LC5 – t5; LC4 – t4} =Min {25 – 3 ; 23 – 5 }=18 

Activity 1 has 2 immediate successors.  

LC1 =Min {LC2 – t2; LC3 – t3} =Min {18 – 12; 16 – 7} =6 

All latest completion times and slack times are calculated and tabulated in 

Table 2.3. 

From the table, it can be observed that the slack times and durations of the 

activities 1, 2, 4, 6 and 8 are equal. These activities are critical, and the path defined 

by these activities is the critical path. The critical activities in Figure 2.4 are shown 

by solid lines. 
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Table 2.3: CPM Calculations of an Example 

Activity Pred. Succ. Duration ES LC slack 
1 - 2,3 6 0 6 6 
2 1 4,5 12 6 18 12 
3 1 7 7 6 16 10 
4 2 6 5 18 23 5 
5 2 8 3 18 25 7 
6 4 8 2 23 25 2 
7 3 8 9 13 25 12 
8 5,6,7 - 5 25 30 5 

 

 
Figure 2.4: Critical Path 

Observe that T =t1 + t2 + t4 + t6 + t8 =30. Any change in the duration of any 

critical activity directly affects the project duration. On the other hand, the duration 

of activity 4 is 7, and the slack time of that activity is 10. This means that the 

duration of activity could be increased by 3 units without increasing the project 

duration. In other words, one can delay the start time of activity 4 by 3 units without 

increasing the project duration.  

2.2 Formulations for Multi-Mode Problems 

The activity durations can often be reduced by dedicating additional money 

resources. Money resources are explained as the cost of activities. In the discrete 

version of the problem, each activity is given a number of time/cost pairs, so called 

modes. The cost time pair of activity is (cik, tik) where cik is the cost of activity i and 

tik is the duration (time) of activity i, associated to its k’th mode. For any two modes 

(i,k1) and (i,k2), we assume that tik1 > tik2 implies cik1 < cik2, i.e., shorter durations 

require extra resources, hence higher costs. 
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Each activity i has mi modes. The problem is to assign a mode for each 

activity by considering total cost and project duration as criteria. This problem is 

referred to as Discrete Time/Cost Trade-off Problem (DTCTP) in the literature. We 

define three versions of the DTCTP and give their mathematical representations. 

These problems are Deadline, Budget, and Time/Cost Curve Problems. We give the 

mathematical representations of the problem. Similar formulations can be found in 

many project scheduling references. 

Mathematical Model: 

Indices, parameters and decision variables of the mathematical model, 

proposed are as follows.  

 

Indices: 

i: activity index  1, 2,...., 1i N= +   

k: mode index   1, 2,...., ik m=  

(N+1 is a dummy activity where all activities having no successors are 

connected to) 

 

Parameters: 

mi: number of modes for activity i  

tik: duration of activity i with mode k 

cik: cost of activity i with mode k 

Pi: set of immediate predecessors of activity i  

 

Decision Variables: 

Si =Starting time of activity i 

yik =
1, if activity is assigned to mode  
0, otherwise

i k



 

SN+1 =Project duration 

 

Constraints: 

Each activity should be assigned to exactly one mode. 
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1

1
im

ik
k

y
=

=∑   1, 2,....,i N=      ( 1)c  

An activity cannot start before all of its immediate predecessor activities are 

completed. 

The time of the assigned mode for activity i is ti, where 
1

im

i ik ik
k

t t y
=

= ×∑  

1

jm

i j jk jk
k

S S y t
=

≥ + ×∑  1, 2,...., 1i N= + ; ij P∀ ∈    ( 2)c  

Starting time of the activities should be nonnegative. 

0iS ≥    1, 2,...., 1i N= +     ( 3)c  

yik’s are binary variables 

{ }0,1iky ∈   1, 2,....,i N= ; 1, 2,...., ik m=               ( 4)c  

The problem contains 
1

N

i
i

m
=
∑ binary iky variables, and 1N +  continuous iS  

variables. There are 
1

| |
N

i
i

N P
=

+ ∑  constraints. 

We now define the additional constraints and the objective of each individual 

problem. 

1. Deadline Problem 

We find the least costly mode assignments subject to the constraint that the 

project completes by the specified deadline. 

We let t denote this deadline and add the following constraint. 

1NS t+ ≤         ( 5)c  

The objective function of the Deadline Problem is the total cost and is 

expressed as: 

1 1

imN

ik ik
i k

Min c y
= =

×∑∑  

The Deadline Problem model is 

1 1

  ( 1), ( 2), ( 3), ( 4), ( 5)

imN

ik ik
i k

Min c y

Subject to c c c c c
= =

×∑∑  
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2. Budget Problem 

We find the smallest project duration, subject to the constraint that the total 

cost of the selected modes does not exceed the available budget. 

We let b denote the available budget and add the following constraint 

 
1 1

imN

ik ik
i k

B c y b
= =

= × ≤∑∑       ( 6)c  

The objective function of the Budget Problem is expressed as: 

1  NMin S Min T+ =  

i.e., the project duration is to be minimized.  

The Budget Problem model is 

1 
  ( 1), ( 2), ( 3), ( 4), ( 6)

NMin S
Subject to c c c c c

+  

3. Time/Cost Curve Problem 

The problem is to assign a mode for each activity such that a non decreasing 

function of T and B is minimized. We let f (T,B) denote this function. f (T,B) may be 

known or unknown. An example to f (T,B) is a linear combination of T and B, such 

that w1T + w2B where w1(w2) is the relative weight assigned to T(B). When f (T,B) is 

unknown, then the problem reduces to the generation of all efficient solutions with 

respect to T and B. 

A solution S is efficient if there does not exist a schedule S* such that 
*( ) ( )T S T S≤  and *( ) ( )B S B S≤ with strict equality holding at least once. Provided 

that f (T,B) is non-decreasing in T and B, an optimal solution is in the efficient set. 

Hence to find an optimal solution to any non-decreasing f (T,B), it is sufficient to 

generate all efficient solutions, evaluate each solution for f (T,B) and select the best 

solution. 

In the literature, the Efficient Set Generation Problem is referred to as 

Time/Cost Curve Problem. The previous studies solve the Deadline Problem for all 

possible realizations of the project durations. Alternatively, one can use Budget 

Problem for all possible realizations of the total cost values. In this thesis, we study 

the Deadline Problem, and use this problem to generate all efficient solutions, i.e., to 

solve the Time/Cost Curve Problem. 
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2.3 Literature Review on Multi-Mode Problems 

In this chapter, we explain current studies on Time/Cost Trade-off Problem 

in chronological order. 

The paper by Fulkerson (1961) is one of the first successful attempts to 

handle the project scheduling problem with time/cost trade-offs. The relation 

between time and cost of each activity is defined by a single linear function. Activity 

on Arc (AoA) representation is used and each activity is represented as (i,j) by its 

source node “i” and terminal node “j”.  The focused problem is to compute time/cost 

curve using the Deadline Problem. Fulkerson (1961) converts the Deadline Problem 

into a Network Flow Problem, by taking its dual and doubling each arc. Fulkerson 

(1961) proves that the time/cost curve is convex and develops a Network Flow 

Algorithm. 

Kelley (1961) proposes a very similar algorithm to Fulkerson’s to derive 

time/cost curve. He proposes, Primal-Dual Algorithm followed by the Network Flow 

Algorithm, which is derived from the dual of the main problem. Moreover, Kelley 

(1961) studies on the structure of the project network and relations of the activities. 

This study is one of the pioneer studies in network decomposition in project 

scheduling. Kelley defines the time/cost curve as “Project Cost Utility Curve”. As a 

result, by estimating utility function of the user, Project Cost Curve helps to make 

conclusions about the solution and conduct sensitivity analysis. Kelley (1961) 

concludes his work by discussing some real life cases. 

Meyer and Shaffer (1965) focus on the Deadline Problem and consider 

continuous, discontinuous, discrete, combination of discrete and continuous 

functions. Moreover, they mention convex, concave and hybrid cases of these 

functions separately and develop Mixed Integer Programming Formulations for each 

case. They conclude their study with an example of nine-activity project network, 

where each activity has time/cost relationship of its own. However, no 

computational work is presented.  

Butcher (1967) is the first to handle the Budget Problem with Dynamic 

Programming Formulation, in which the activities form the stages and the money 

paid to activities are state variables. The decision is how much to allocate to each 

activity. The author concludes his work by mentioning the need for further analysis 

on the networks that cannot be decomposed into serial or parallel structures. 
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Crowston et al. (1967) approach the Discrete Time/Cost Trade-off Problem 

from the Decision Critical Path Methodology content. The network is represented as 

a decision tree. The activities are represented via nodes. The paper is one of the first 

Discrete Time/Cost Trade-off Problem works where Activity on Node representation 

is used. Their computational results show the superiority of the Mixed Integer 

Formulation over the Complete Enumeration. The interdependency conditions are 

added between some decision nodes. The paper models the Deadline Problem by a 

Mixed Integer Formulation. By removing some redundant constraints, the new 

formulation named Reduced Path Formulation, is provided. Moreover, a Heuristic 

Method is proposed which can handle only mutually exclusive type 

interdependencies.  

Rothfarb et al. (1970) and Frank et al. (1971) work on the optimal design of 

Offshore Natural-gas Pipeline Systems Problem. They develop algorithms to merge 

series and parallel connected activities and they determine some rules to set up the 

modes of the merged activities. 

Robinson (1975) develops a Dynamic Programming Algorithm that handles 

the Budget Problem for all possible network structures with discrete time/cost 

relations. Robinson (1975) states that the complexity of the problem is reduced if the 

activity durations are given at uniformly spaced points like: d, 2d, 3d. After defining 

a general recursive formula, Robinson (1975) defines sufficiency conditions to 

decompose the recursive formula into One-dimensional Optimization Problem. If the 

conditions do not hold, the problem is solved as a Multidimensional Allocation 

Problem. The author proposes mode elimination methods, elimination and addition 

of the precedence relations to reduce the computational effort of the 

Multidimensional Problems. To solve the Multidimensional Problem, state variables 

are chosen and set to constant values to convert the problem into One-dimensional 

Optimization Problem. Later the problem is solved over different values of the state 

variables. This paper is the leader in the project network decomposition with the 

clearly stated sufficiency and necessary conditions. However, the theoretical work is 

not supported with computational experience and examples. 

Phillips et al. (1977) work on the Linear Time/Cost Relationship Problem. 

They improve the algorithms of Fulkerson (1961) and Kelley (1961) for generating 

the time/cost curve. In addition to Fulkerson (1961) and Kelley (1961)’s algorithms, 

the proposed algorithm locates the minimal cuts on the network by using flow 
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interpretations. To locate the minimal cuts, manual inspection, Out of Kilter and Cut 

Search Algorithms are used. Their computational experience shows that Cut Search 

Algorithm performs superior to the Out of Kilter Algorithm. 

Elmaghraby (1993) addresses the Budget Problem, and proposes a Dynamic 

Programming approach. He first reduces the network to an s/p reducible network by 

fixing the activity durations. The reduced problem can be solved as a One-

dimensional Optimization Problem as stated by Robinson (1975). Later the sequence 

of node reductions and arc fixings are determined. Dynamic Programming 

formulation is used at every step of node reductions and arc fixings. After network 

reduction is completed, the network is updated and the fixed activities are labeled. 

The reduced problem is solved by Branch and Bound because of the curse of 

dimensionality. At each level of the tree a labeled activity is chosen and the decision 

is which mode (duration) to choose. The Optimization Algorithm is followed by an 

Approximation Algorithm. All proposed algorithms are illustrated by numerical 

examples. However, no computational work is presented. 

De et al. (1995) present an extensive literature review of Time/Cost Trade-

off Problems in Project Scheduling. All studies are classified according to the 

structure of time/cost function and objective function focus. A general definition of 

all problem types is provided.  

Demeulemeester et al. (1996) consider all optimal procedures of DTCTP for 

all problem types: Deadline Problem, Budget Problem, Time/Cost Curve Problem; 

and overview the solution methodologies. For s/p reducible networks, series parallel 

merge algorithms developed by Rothfarb et al. (1970) is recommended. For s/p 

irreducible networks a partial enumeration approach is proposed. The main goal of 

the approach is to convert the network into an s/p reducible network by optimal 

fixings previously discussed by Elmagraby (1993). A similar network reduction 

approach to Bein et al. (1992) is proposed. One main difference is to use “minimum 

number of activity fixings”, instead of “minimum number of node reductions” to 

evaluate reduction complexity. The “minimum number of activity fixings” is defined 

to be the Complexity Index, which is commonly used to evaluate reduction 

complexity in later studies. The operations during the reduction are coded, and 

recorded as the reduction plan.  

For the Time/Cost Curve Problem, the solution is found by complete 

enumeration of all modes of fixed activities with the help of backtracking of the 
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reduction plan. For the Budget and Deadline Problems, the solution procedure is 

based on the same backtracking procedure. Some dominance rules are also included. 

Their new reduction plan performs better in less complex networks than the 

reduction plan of Bein et al. (1992). However, in complex networks the new 

algorithm is outperformed.   

Dunne et al. (1997) prove that all versions of the Discrete Time/Cost Trade-

off Problem are NP Hard, in the strong sense, which is the most important 

complexity result of DTCTP literature. They also show that some special structures 

like pure parallel, pure series are solvable in polynomial times.  

Skutella (1998) addresses approximation algorithms for Discrete Time/Cost 

Trade-off Problem. Skutella first assigns two modes for each activity, where the 

shorter is zero. There after, the problem is easily relaxed to a linear problem. Using 

linear relaxation results feasible discrete realizations are constructed. Skutella (1998) 

proves that there are approximations with performance guarantee l for the problems 

with durations range: {0, 1, 2, l} for the Budget Problem. For the special case with 

duration range {0, 1, 2}, an approximation algorithm with performance guarantee of 

3/2 is presented. The results are extended to an Approximation Algorithm with 

performance guarantee O (log l) where l is the ratio of the maximum duration to the 

minimum nonzero duration. In the last part, Approximation Algorithms for the 

Time/Cost Curve Problem with a constant error factor are discussed.  

Demeulemeester et al. (1998) consider the Time/Cost Curve Problem and 

solve the problem by a horizon-varying approach using iterative solutions of the 

Deadline Problem. The Deadline Problems are solved by Branch and Bound 

Algorithm using Linear Relaxation based lower bounds. They provide piecewise 

linear approximations for the time/cost function, and solve the Linear Relaxation 

Problem by Fulkerson (1961)’s algorithm. This adaptation is due to having more 

than two modes which is not taken into account by Fulkerson. Their algorithm 

solves the small-sized instances up to 30 activities and 4 modes easily, however fails 

to solve the majority of the instances with 40 activities.   

Deineko et al. (2001) prove that there cannot exist a polynomial time 

approximation algorithm with a performance guarantee better than 3/2 for any 

versions of the Discrete Time/Cost Trade-off Problem. They also prove that there 

cannot exist a polynomial time (1+ε, 5/4-β)-Approximation Algorithm for any 
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versions of the Discrete Time/Cost Trade-off Problem; given that there exist a real 

number ε>0 and β>0. 

Akkan et al. (2005a) develop heuristics and lower bounding procedures for 

the Deadline Problem. Similar to the previous approaches, they compute linear 

relaxation based lower bounds. Their first bound uses cuts based on the earliest start 

and latest completion times of the activities in their linear program. Their second 

lower bounding procedure uses network decomposition as the basic idea. After a 

number of sub networks are found, the mathematical model is re-formulated with the 

inclusion of the sub networks. The LP Relaxation of the reformulation gives a lower 

bound and it is solved by column generation procedure. The proposed heuristic also 

depends on the column generation based realizations of the Deadline Problem. They 

propose two rules to eliminate short and long modes. Their extensive computational 

study reveals the satisfactory behavior of their algorithm. 

The most closely related study to ours is due to Akkan et al. (2005a). We 

propose optimization algorithm and heuristic procedures for the Deadline Problem 

whereas Akkan et al. (2005a) propose bounding procedures. Moreover, we extend 

our findings for Deadline Problem to Time/Cost Curve Problem. 
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CHAPTER 3 

3 THE DEADLINE PROBLEM 

The Deadline Problem finds the least costly project schedule with a given 

project deadline. We develop a Branch and Bound Algorithm to solve the Deadline 

Problem. In this section we first discuss procedures used to reduce the problem size. 

Next lower bounding procedures are discussed that are used in the Branch and 

Bound Algorithm. Finally, we present our upper bounding procedures. 

3.1 Problem Size Reduction 

We develop some rules that help us to reduce the problem size. These 

reductions are done through activity-mode eliminations. Such eliminations are 

valuable in the sense that they reduce the number of binary variables, thereby 

dispelling the exponential nature of the problem, to some extent. 

We develop two elimination rules: one for discarding short modes and one 

for long modes.  

We use the following notation to state our rules. 

LCj(S): latest completion time of activity j when the shortest activity 

durations are used.  

ESj(S): earliest start time of activity j when the shortest activity durations are 

used.  

LCj(L): latest completion time of activity j when the longest activity 

durations are used.  

ESj(L): earliest start time of activity j when the longest activity durations are 

used.  

tj: the duration of the mode assigned to activity j. 

1

jm

j jk jk
k

t t y
=

= ×∑  

cj: the cost of the mode assigned to activity j. 
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1

jm

j jk jk
k

c c y
=

= ×∑  

We now give the formal statements of our rules. Theorem 1 eliminates long 

modes whereas Theorem 2 eliminates short modes. 

Theorem 1: If ( ) ( ) 1jk j jt LC S ES S≥ − +  then
1

0
k

jr
r

y
=

=∑ , in all feasible 

solutions. 

 

Proof: Note that ( ) ( )j jLC S ES S−  is the maximum allowable processing 

time for activity j, as the other activities are set to their smallest activity durations. 

Hence any activity duration greater than ( ) ( )j jLC S ES S−  returns an infeasible 

solution. Therefore yjr should be set to zero, if ( ) ( ) 1jk j jt LC S ES S≥ − + . If 

( ) ( ) 1jk j jt LC S ES S≥ − +  then ( ) ( ) 1jr j jt LC S ES S≥ − +  if r k≤ , as, jr jkt t≥ . This 

follows, , , 1 ,1........ 0j k j k jy y y−= = = = , i.e., 
1

0
k

jr
r

y
=

=∑ . ⁭     

 

Akkan et al. (2005a) give the same result for the last mode mj. Hence 

Theorem 1 is a simple generalization of Akkan et al. (2005a)’s theorem.  

 

Theorem 2: If ( ) ( )jk j jt LC L ES L< −  then
1

0
jm

jr
r k

y
= +

=∑ , in all optimal 

solutions. 

 

Proof: Assume a solution that contradicts with the condition of the theorem, 

i.e.,  ( ) ( )jk j jt LC L ES L< −  and yjr=1 for any 1r k≥ + . 

Assume the mode of activity j is changed from r to k. Such an exchange is 

feasible as ( ) ( )jk j jt LC L ES L< − . (Note that any processing smaller than or equal to 

( ) ( )j jLC L ES L−  will not increase project duration, hence never causes 

infeasibility), and it decreases the objective function by 0jr jkc c− >  units. This 

implies a solution that contradicts with the condition of the theorem cannot be 

optimal. ⁭ 

         



 
22 

We implement Theorem 1 and Theorem 2 successively, once Theorem 1 

eliminates some modes, the longest feasible modes do change and the conditions 

stated by Theorem 2 will hold with higher probability. Similarly once Theorem 2 

eliminates some short modes, the LCj – ESj values will decrease, and the probability 

that Theorem 1 eliminates becomes higher. 

We check the theorems alternately and stop when neither of them can 

eliminate any mode. Below is the stepwise description of our mode elimination 

procedure.   

 
  

Numerical Example 

Consider the following 5-activity network shown in Figure 3.1, where 

activities 1, 2, 4 and 5 have three modes and activity 3 has two modes. The time/cost 

pairs are given on the arcs of the figure.  

Step 0:   a=1 

Step 1: Find, LCj(S), ESj(S) using critical path method by 

setting shortest activity times to each activity. 

Step 2:   Find smallest k that satisfies ( ) ( ) 1jk j jt LC S ES S≥ − + . 

   If no such k exists and a=0, then stop. 

     Else Eliminate modes 1,…,k. Set mj=mj – k. 

Step 3:   a=0    

Find, LCj(L), ESj(L) using critical path method by        

setting longest activity times to each activity. 

Step 4:   Find largest k that satisfies ( ) ( )jk j jt LC L ES L< − .  

   If no such k exists and a=0, then stop. 

   Else Eliminate modes k+1,…,mj. Go to Step 1. 
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Figure 3.1: AoA Representation of the Sample Project Network 

Based on the given data, the minimum and maximum possible durations are 

9 and 22 respectively. The problem is first solved for deadline value of 11. 

Step 0: a=1 

Step 1: All activities are set to their shortest activity durations. Hence, 

1 3t = ; 2 4t = ; 3 4t = ; 4 2t = ; 5 2t = .  

Table 3.1 below shows CPM calculations with t=11 

Table 3.1: CPM Calculations Summary with Shortest Activity Durations 

(Iteration 1 Results with t =11) 

Activity Pred. Succ. Duration ES(S) LC(S) 
1 - 3,4 3 0 5 
2 - 5 4 0 9 
3 1 5 4 3 9 
4 1 - 2 3 11 
5 2,3 - 2 7 11 

 

 

Step 2: Following mode eliminations can be done: 

1 1 1,1( ) ( ) 1 6 9LC S ES S t− + = < = ;  Mode (1,1)  is eliminated. 

2 2 2,1( ) ( ) 1 10 11LC S ES S t− + = < = ;  Mode (2,1)  is eliminated. 

3 3 3,1( ) ( ) 1 7 7LC S ES S t− + = = = ;  Mode (3,1)  is eliminated. 

4 4 4,1( ) ( ) 1 9 10LC S ES S t− + = < = ;  Mode (4,1)  is eliminated. 

5 5 5,1( ) ( ) 1 5 6LC S ES S t− + = < = ;  Mode (5,1)  is eliminated. 
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A total of 5 modes are eliminated. This reduces the number of the binary 

variables from 162 ( 3 3 2 3 3× × × × ) to 16( 2 2 1 2 2× × × × ). 

Step 3: a=0 

Now, all activities are set to their longest activity durations. Table 3.2 below 

shows CPM calculations.  

Table 3.2: CPM Calculations Summary with Longest Activity Durations 

(Iteration 1 Results with t =11) 

Activity Pred. Succ. Duration ES(L) LC(L) 
1 - 3,4 5 0 3 
2 - 5 6 0 7 
3 1 5 4 5 7 
4 1 - 5 5 11 
5 2,3 - 4 9 11 

 

 

Step 4: Note that activity 3 has a single mode left. Hence, it is not considered 

in this step. 

1 1( ) ( ) 3LC L ES L− = ;   Activity 1 cannot be shorter. 

2 2 2,2( ) ( ) 7 6LC L ES L t− = > = ; Mode (2,3) is eliminated. 

4 4 4,2( ) ( ) 6 5LC L ES L t− = > = ; Mode (4,3) is eliminated. 

5 5( ) ( ) 2LC L ES L− = ;   Activity 5 cannot be shorter. 

We eliminate two more modes and return to Step 1. 

Step 1: At this step the remaining modes are second modes of all activities 

and third modes of activity 1 and 5. Activities with more than one mode are 1 and 5. 

Both activities are set to their shortest activity duration. Hence, 1 3t = ; 2 6t = ; 3 4t = ; 

4 5t = ; 5 2t = . Table 3.3 below shows the CPM calculations. 
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Table 3.3: CPM Calculations Summary with Shortest Activity Durations 

(Iteration 2 Results with t =11) 

Activity Pred. Succ. Duration ES(S) LC(S) 
1 - 3,4 3 0 5 
2 - 5 6 0 9 
3 1 5 4 3 9 
4 1 - 5 3 11 
5 2,3 - 2 7 11 

 

1 1( ) ( ) 1 6LC S ES S− + = ;  Activity 1 cannot be longer. 

5 5( ) ( ) 1 5LC S ES S− + = ;  Activity 5 cannot be longer. 

No further elimination can be done; a=0. We stop here. Therefore, the 

number of binary variables is reduced to 4 ( 2 1 1 1 2× × × × ) if the deadline is set to 11. 

 

Now consider the deadline of 18. 

Step 0: a=1 

Step 1: All activities are set to their shortest activity durations. 

Hence, 1 3t = ; 2 4t = ; 3 4t = ; 4 2t = ; 5 2t = . Table 3.4 below shows CPM calculations 

with t=18. 

Step 2: Mode elimination calculations are done as follows: 

1 1( ) ( ) 1 13LC S ES S− + = ; 2 2( ) ( ) 1 17LC S ES S− + = ;  

3 3( ) ( ) 1 14LC S ES S− + = ; 4 4( ) ( ) 1 16LC S ES S− + = ;    

5 5( ) ( ) 1 12LC S ES S− + =  

There is not any possible mode elimination at this step. We proceed to Step 

3.    

Table 3.4: CPM Calculations Summary with Shortest Activity Durations 

(Iteration 1 Results with t =18) 

Activity Pred. Succ. Duration ES(S) LC(S) 
1 - 3,4 3 0 12 
2 - 5 4 0 16 
3 1 5 4 3 16 
4 1 - 2 3 18 
5 2,3 - 2 7 18 
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Step 3: a=0 

All activities are set to their longest activity durations. Table 3.5 below 

shows CPM calculations.  

Table 3.5: CPM Calculations Summary with Longest Activity Durations 

(Iteration 1 Results with t =18) 

Activity Pred. Succ. Duration ES(L) LC(L) 
1 - 3,4 9 0 5 
2 - 5 11 0 12 
3 1 5 7 9 12 
4 1 - 10 9 18 
5 2,3 - 6 16 18 

 

 

Step 4: Mode elimination calculations are done as follows:  

1 1 1,2( ) ( ) 5LC L ES L t− = = ;  Mode (1,3)  is eliminated. 

2 2 2,2( ) ( ) 11 6LC L ES L t− = > = ; Mode (2,3)  is eliminated. 

3 3( ) ( ) 2LC L ES L− = ;   Activity 3 cannot be shorter. 

4 4 4,2( ) ( ) 8 5LC L ES L t− = > = ; Mode (4,3)  is eliminated. 

5 5( ) ( ) 1LC L ES L− = ;   Activity 5 cannot be shorter. 

 

Three modes are eliminated. We return to Step 1. 

Step 1: All modes are set to their shortest activity durations. Table 3.6 below 

shows the CPM calculations. 

Earliest start and latest completion values do not change. No elimination can 

be done, a=0, and hence we stop.  

Therefore, the number of binary variables is reduced to 48 ( 2 2 2 2 3× × × × ). 
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Table 3.6: CPM Calculations Summary with Shortest Activity Durations 

(Iteration 2 Results with t =18) 

Activity Pred. Succ. Duration ES(S) LC(S) 
1 - 3,4 5 0 12 
2 - 5 6 0 16 
3 1 5 4 5 16 
4 1 - 5 5 18 
5 2,3 - 2 7 18 

 

When deadline is set to 11, the mode elimination algorithm eliminates long 

modes first, then short modes and terminates. When the deadline is set to 18 the 

mode elimination algorithm cannot eliminate any long modes but one more short 

mode. The results are intuitive as the deadlines closer to minimum possible 

durations helps to eliminate more long modes, whereas the deadlines that are closer 

to maximum possible duration helps to eliminate more short modes. 

3.2 Lower Bounds 

We develop two lower bounding procedures on the optimal total budget 

value. These are namely Naive Bound and Linear Programming (LP) Relaxation 

Based Lower Bound. 

3.2.1 Naive Bound, LB1 

LB1 is found by assigning each activity to its minimum cost mode. Hence, 

LB1 is simply ,1
1

N

i
i

c
=
∑ , where the modes are in their ascending order of costs. The 

resulting solution is optimal, if the deadline constraint is satisfied. 

In our experiments, we use LB1 as a filtering mechanism. We first compare 

LB1 evaluated at a particular node, with the best known solution value, Zinc. If LB1 ≥ 

Zinc we fathom the node, otherwise we calculate the LP Relaxation based lower 

bound. 

In calculating naive lower bound, we first make mode eliminations, due to 

the long modes, then select the smallest cost among the remaining modes. 
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3.2.2 LP Relaxation Based Bound, LB2 

LB2 is found simply by relaxing the integrality constraints on yik values and 

letting 0 ≤ yik ≤ 1 for all j and k. We calculate LP Relaxation based LB after reducing 

size of the sub problem at a node, by mode elimination rules. We show that mode 

eliminations will increase the value of the lower bound without causing infeasibility. 

Assume that we have a solution space as shown in Figure 3.2. 

 
Figure 3.2: Sample Solution Space 

We have 3 constraints and have an arbitrary minimization function over F1 

and F2. The optimal solution and the LP relaxation solution are as shown in the 

figure. Mode elimination algorithms reduce solution space in a way that the 

discarded modes are never used. Note that, both mode elimination procedures 

eliminate successive modes for each activity. In the figure below, mode elimination 

addition is represented by an additional line.  
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Figure 3.3: Sample Solution Space with Mode Elimination 

 Note that, after mode eliminations, the new solution has no smaller objective 

function value as additions of new constraints never improve. Hence the resulting 

lower bound is stronger. 

Properties of LP Relaxation Solutions 

In this section, we present two properties of the optimal LP solutions. We 

hereafter refer to LP
it  as the optimal duration of activity i in the LP Relaxation 

solution. We let LP
ic  denote the associated cost of activity i. The following theorem 

proves that at most two modes of an activity can take positive values in the optimal 

LP Relaxation solution. 

 

Theorem 3: There exists an optimal LP Relaxation Problem in which yik>0 

for at most two modes, for each activity.  

 

Proof: The minimum cost LP
it , i.e. the duration found by the optimal LP 

relaxation, is available through the following LP Problem. 
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0( )P  
1

im

ik ik
k

Min c y
=

×∑  

1

1

  

1

0

i

i

m
LP

ik ik i
k

m

ik
k

ik

Subject to

t y t

y

y

=

=

× =

=

≥

∑

∑
 

Note that 0( )P  has only two constraints. Therefore, every basic feasible 

solution has two basic variables. That is, there are at most two positive yik values, in 

all basic feasible solutions. From the LP theory, we know that there is an optimal 

solution which is basic feasible solution. 

Hence an optimal solution to the LP Relaxation gives at most two positive, 

i.e., fractional values, for each activity i. ⁭       

   

 

The following theorem states that, in the optimal LP Relaxation solution if an 

activity is non-critical then it is assigned to the highest duration mode.  

 

Theorem 4: If activity i is non-critical in optimal LP Relaxation solution then 

,1
LP
i it t=  and ,1

LP
i ic c= . 

Proof: In an optimal LP relaxation solution, LP
it cannot be increased due to 

the following two reasons: 

1. ,1
LP
i it t= , i.e., no further increase is possible 

2. Any further increase violates feasibility.  

If activity i is non-critical then any further increase does not violate 

feasibility. As LP
it  cannot be increased for optimal solution and any further increase 

does not violate feasibility then ti should be ti,1, i.e., as case 2 does not hold, case 1 

should hold.⁭ 

        

Theorem 4 implies that if activity i is non-critical then ,1
LP
i it t= . However, the 

reverse does not necessarily hold, i.e., a critical activity i may also have ,1
LP
i it t=  
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3.3 Branch and Bound Algorithm 

We use the result of Theorem 3 to define our branching structure. At every 

branch, LP Relaxation Problem is solved. We always branch from a fractional 

variable of the LP Relaxation solution. For the chosen fractional value yik, i.e., 0 < yik 

< 1, we generate the following sub problems.  

 1:  0
 2 :  1

ik

ik

Subproblem y
Subproblem y

=

=
 

The associated tree is shown in Figure 3.4 below. 

 
Figure 3.4: Branching Scheme

We know discuss our selection strategies. 

Selection Strategies 

We employ the following three strategies to select the fractional variable 

from which two sub problems are generated. 

Strategy 1: Select the highest yik value. 

Strategy 2: Select the highest 
iiky value where ki satisfies 

{ }| 0i ikk Min k y= > , i.e., for each partially assigned activity, the smallest cost 

partial assignment is selected.  

Strategy 1 expects that the optimal integer solution is close to the optimal LP 

Relaxation cost, hence forces the big yik values to 1, in earlier branches. Strategy 2 

considers the objective function of minimizing total cost, and selects the highest 

fractional value among the smallest cost choices. Strategy 3, below, considers the 

cost differences between the consecutive modes. Among the smaller cost choices of 

the fractional activities, it identifies the mode with the highest cost difference with 

its consecutive mode. Hence, mode selections that result in high total cost increase 

are avoided.  
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Strategy 3: Select the 
iiky value with the highest “ , , 1i ii k i kc c +− ” value where ki 

satisfies { }| 0i ikk Min k y= > , i.e., for each activity the smallest cost alternative is 

evaluated. Among those alternatives, the mode with the highest cost difference with 

its successive mode is selected.  

We illustrate the selection strategies via the following numerical example 

instance. Consider the 15-activity problem instance whose data are given in Table 

3.7 below. 

Table 3.7: Modes and Precedence Relations for Example Problem 

Activity Successors Modes 
1 3, 4, 5   16-2; 13-13; 12-16; 11-17; 10-31; 7-35; 4-47; 2-70 
2 6, 7   13-6; 10-38; 7-45; 5-52; 3-96 
3 9, 10    7-38; 4-71; 3-85 
4 13   13-6; 10-38; 7-45; 5-52; 3-96 
5 8   17-10; 15-24; 13-28; 10-39; 8-40; 7-77; 5-94; 3-98 
6 12   11-7; 10-19; 7-35; 6-57; 4-67; 1-71 
7 11, 14   10-15; 7-16; 5-25; 2-75 
8 13   12-11; 10-27; 7-35; 6-65; 4-81; 1-90 
9 13   15-13; 14-29; 11-41; 8-54; 5-75; 4-77; 2-97 

10 15    7-38; 4-71; 3-85 
11 12    4-52; 1-73 
12 15   17-22; 15-27; 14-30; 11-35; 8-36; 5-37; 2-99 
13 15    2-32 
14 15   19-39; 17-55; 15-57; 12-63; 10-69; 7-72; 6-86; 3-97 
15 16   21-8; 18-19; 15-22; 14-30; 11-33; 8-42; 5-62; 4-73; 2-76 

 

Modes are separated with semicolons. First number is the duration of the 

mode and second number is the cost of the mode. For instance, activity 4 has a 

single successor and five modes. The second mode of this activity has duration of 10 

and cost of 38.  

We set the deadline to 20. Table 3.8 below, shows the fractional variables, 

and objective function values of LB2. 

 

 

 

 



 
33 

Table 3.8: The Optimal LP Solution, i.e., LB2 

Objective Function Value: 
673.316667 

Fractional Variables 
y6,1                          0.700 
y6,6                          0.300 
y8,3                          0.833 
y8,6                          0.166 
y9,4                          0.750 
y9,6                          0.250 
y11,1                         0.667 
y11,2                         0.333 
y14,4                         0.200 
y14,6                         0.800 

 

 

When Strategy 1 is applied, y8,3 is selected as 0.833 is the maximum 

fractional value.  

When Strategy 2 is applied, we consider y6,1, y8,3, y9,4, y11,1 and y14,4, since 

only small cost alternatives are considered for all activities. We select the one having 

the highest value, i.e., y8,3 =0.833.  

When Strategy 3 is applied, we again consider small cost modes. The 

selection is made from y6,1, y8,3, y9,4, y11,1 and y14,4. We should calculate cost 

differences from consecutive modes. Following calculations are done: 

6,2 6,1

8,4 8,3

9,5 9,4

11,2 11,1

14,5 14,4

19 7 12
65 35 30
75 54 21
73 52 21
33 30 3

c c
c c
c c
c c
c c

− = − =

− = − =

− = − =

− = − =

− = − =

 

y8,3 is selected since it has the highest cost difference. 

Alternate Branching Scheme 

We know that in the optimal LP Relaxation solution we have at most two 

fractional variables for each activity (See Theorem 3). An Alternate Branching 

Scheme is proposed using this property of the LP Relaxation. At each level an 

activity with fractional modes is selected. First two nodes assign the activity to the 

fractional modes. The third node assigns the activity to one of the non-fractional 

modes, i.e., zero assignment modes. In other words, third node does not allow the 



 
34 

activity to be assigned to one of fractional modes. Assume that yi,k1 and yi,k2 are 

fractional variables. The following figure demonstrates the Alternate Branching 

Scheme. 

 
Figure 3.5: Alternate Branching Scheme 

One exceptional case for Alternate Branching Scheme is the activities with 

two modes. In this case third node does not exist.  

Alternate Branching Scheme selects activities instead of modes. After the 

mode is selected by the above selection strategies, the activity of the associated 

mode is branched, i.e., same selection strategies are used. 

3.4 Upper Bounds 

In this section, we discuss our heuristic procedures used for obtaining upper 

bounds. The upper bounds are either used as an initial feasible solution in our 

Branch and Bound Algorithm or as an heuristic solution for the problem. We 

classify our upper bounds in two groups: 

1. LP Relaxation Based Heuristics 

2. Branch and Bound Based Heuristics 

LP Relaxation Based Heuristics run in polynomial time, and hence are used 

as initial feasible solutions. On the other hand, Branch and Bound Based Heuristics 

run in exponential time and provide heuristic solutions. We now explain the 

heuristics in detail. 

LP Relaxation Based Heuristics 

Our LP Relaxation Based Heuristic has two phases. Phase 1 constructs an 

initial solution. The solution is obtained by modifying the optimal LP Relaxation 

solution. Improvement Heuristic uses two steps. The first step shifts the modes of 
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the activities, whereas the second step makes interchanges between the modes of 

different activities. 

Construction Heuristic  

The construction phase first finds LP Relaxation solution, then maintains the 

fractional values without violating the deadline constraint. Note that the duration of 

an activity in the LP relaxed solution is LP
it  where 

1

im
LP
i ik ik

k

t t y
=

= ×∑  

Recall that, the LP relaxed solution has at most two fractional modes for each 

activity. Hence, LP
it  is the weighted average of the fractional modes, say k1 and k2. 

Note that 0 < yi,k1 < 1 and 0 < yi,k2 < 1, and LP
it  is found as follows: 

  , 1 , 1 , 2 , 2
LP
i i k i k i k i kt t y t y= × + ×  

Decreasing LP
it  will increase the total cost however does not increase the 

project duration. Hence, if we set yi,k to one, where ti,k < LP
it , the feasibility will be 

preserved. To obtain smaller cost solution we let yi,k =1 if k is the largest processing 

time mode for activity i, that is no larger than LP
it . We refer the solution value of this 

heuristic as UB1. The stepwise description of UB1 is given below.  

 

Select all fractional activities. Calculate LP relaxation durations  

1

im
LP
i ik ik

k

t t y
=

= ×∑   1, 2,....,i N=  

For  i Fractional Activities∈  

k=1 

If ( LP
ik it t≤ ) Then   

Select the mode; 1iky =  

Else 

k=k+1 

End If 

End For 

Calculate upper bound value 1
1

im

ik ik
k

UB c y
=

= ×∑  
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Improvement Heuristic 1 

Improvement Heuristic 1 takes the feasible solution by UB1 and tries to 

improve. The solution can be improved if the mode of any activity can be increased 

without violating feasibility. We move activity j from its current mode kj to mode kj-1 

if such a movement yields the maximum reduction over all activities. That is, we set 

, 1 1
ji ky − =  if { }, , 1 , , 1j j i ij k j k i k i ki

c c Max c c− −− = − . We repeat the procedure until any 

further increase in activity durations results in an infeasible solution. We let UB2 

denote the total cost of the Improvement Heuristic 1. Below is the stepwise 

description of the heuristic.  

   

{ }1,2,....,PI N=   

Remove i from PI , If ( ,1 1iy = ) { }1, 2,....,i N=  

Calculate improvements , , 1i i k i kIA c c −= −  for k’s such that , 1i ky =  

Repeat 

 Select the activity with maximum improvement; { }iJ Argmax IA=  

 Change modes. Check feasibility; Call (Critical Path Method) 

If (T t≤ ) Then 

 Let; , 0J ky = ; , 1 1J ky − =  

If ( 1 1k − = ) Then 

  Remove J from PI.; { }/PI PI J=  

Else 

  Update improvement amount; , 1 , 2i i k i kIA c c− −= −  

End If 

 Else 

  Let; , 1J ky = ; , 1 0J ky − =  

 Remove J from PI.; { }/PI PI J=  

End If 

Until PI = ∅  

Calculate upper bound value 2
1

im

ik ik
k

UB c y
=

= ×∑  
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Note that we ignore the activities that are already set to their minimum cost 

alternatives. 

Improvement Heuristic 2 

Recall that, it is not possible to increase the activity duration of any activity 

in Improvement Heuristic 1 solution, without violating feasibility. However, an 

improved feasible solution can be obtained by changing modes of two activities 

simultaneously. Such a change may lead to a feasible solution, provided that the 

activity duration is decreased while the other activity’s processing time is increased 

and the activities are on the same path. We let Imp(i,j) be the amount of 

improvement obtained if ki is increased by one (duration is decreased) and kj is 

decreased by one (duration is increased). Note that Imp(i,j) is not necessarily equal 

to Imp(j,i). We let 1r rk k= + and 1s sk k= −  if the improvement by activities r and s 

is maximum over all pairs (i,j). That is, ( ) ( ), , 1 , , 1( , )
Imp(r,s)=

i i i ii k i k j k j ki j
Max c c c c+ +− + − . 

We terminate when Imp(r,s) is nonpositive. We let UB3 denote the total cost of the 

resulting solution. Below is the stepwise description of the Improvement Heuristic 2.  

A numerical example that illustrates the implementation of Construction and 

Improvement Heuristics is given in APPENDIX A.  
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Branch and Bound Based Heuristics 

We develop two Branch and Bound Based Heuristics. The first one uses the 

idea given in Theorem 4. The second heuristic relies on the Alternate Branching 

Scheme.  

Heuristic Branch and Bound Algorithm 1 

Theorem 4 states that a non-critical activity in the LP Relaxation solution, 

should be set to its first mode, i.e., ,1
LP
i it t= . Heuristic Branch and Bound Algorithm 

1 finds non-critical activities at each node and sets them to their first mode, i.e., ti,1. 

As, the non-critical activities in the LP Relaxation solution may be critical in the 

optimal integer solution, the algorithm cannot ensure optimality. A non-critical 

Calculate improvements as follows: 

( ) ( ), , 1 , , 1Imp(i,j)= i k i k j m j mc c c c+ −− + −  for k’s such that , 1i ky = ; ik m≠ ; 

     for m’s such that , 1j my = ; 1m ≠ ; 

      i and j are on the same path 

Imp(i,j) =0  ik m= ; 1m = ; i and j are not on the same path 

Let { }
( , )

Imp(r,s)= Imp(i,j)
i j

Max  

Repeat 

 Change modes;  

Check feasibility; Call (Critical Path Method) 

If (T t≤ ) Then 

  , 0
rr ky = ; , 1 1

rr ky + = ; , 0
ss ky = ; , 1 1

ss ky − =  

Recalculate Imp(i,j)  for all i,j 

Else 

  Imp(r,s) =0 

End If 

Let { }
( , )

Imp(r,s)= Imp(i,j)
i j

Max  

Until Imp(r,s) >0 

Calculate upper bound value 3
1

im

ik ik
k

UB c y
=

= ×∑  
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activity in the LP Relaxation is guaranteed to be non-critical in the integer solution 

only when all successors and predecessors of the activity are non-critical activities, 

as well.  

Heuristic Branch and Bound Algorithm 2 

Recall that, Alternate branching scheme has the following structure; 

 
Figure 3.6: Alternate Branching Scheme 

The fractional variables yi,k1 and yi,k2 are taken from the optimal LP 

Relaxation solution. Note that the first two branches assign the activity modes to one 

of the fractional values. The third branch searches the other solutions, 

i.e.,
1, 2

1
im

ik
k k k

y
≠

=∑ . If we change the condition of the third branch to 
2 1

1 1

1
k

ik
k k

y
−

= +

=∑  then the 

resulting solution will ignore the modes that are outside the range [k1, k2]. This 

implies such a change may lead to a nonoptimal solution. However, the resulting 

solution will be obtained quicker. Figure 3.7 below shows the branching scheme of 

the Heuristic Branch and Bound Algorithm 2 for a certain level, where the mode of 

activity i is decided. In the optimal LP solution 0 < yi,k1 < 1 and 0 < yi,k2 < 1.    

 
Figure 3.7: Heuristic Branch and Bound Algorithm Scheme 

 

2 1

1 1

1
k

ik
k k

y
−

= +

=∑
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CHAPTER 4 

4 THE TIME/COST CURVE PROBLEM 

In this section, we discuss our work on the efficient solution generation for 

the total cost (B) and project duration (T) criteria. We refer to Efficient Solution 

Generation Problem as Time/Cost Curve Problem. 

We let X denote the set of feasible solutions to our problem. Figure 4.1 

illustrates the images of all solutions in the objective space (T,B). 

 
Figure 4.1: Particular Solutions to Time/Cost Curve Problem 

In the figure X2, X3, X5, X6 and X7 are efficient solutions as they are not 

dominated by any other solution. X4 is inefficient as it is dominated by X3. X1 and 

X2 are minimum project duration solutions. X1 is dominated by efficient point X2 as 

2 1(X ) (X )T T=  and 2 1(X ) (X )B B≤ . X7 and X8 are the minimum cost solutions. X8 is 

dominated by efficient point X7 as 7 8(X ) (X )B B=  and 7 8(X ) (X )T T≤ . We let X2 and X7 
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as boundary efficient solutions as they optimize a single criterion, T and B 

respectively.  

Note that, MAXB  and MAXT are the maximum total cost and project duration 

values for efficient solutions. Hence, they are upper bounds on the associated 

criterion values of the efficient solutions. Similarly MINB  and MINT are the lower 

bounds on the total cost and project duration values of all efficient solutions. 

To generate boundary efficient points, one may use the following single 

criterion problems. 

1( )P   Min B  

 Subject to  

1

1
im

ik
k

y
=

=∑   1, 2,....,i N=      ( 1)c  

1

jm

i j jk jk
k

S S y t
=

≥ + ×∑  ij P∀ ∈  ; 1, 2,....,i N=     ( 2)c  

0iS ≥    1, 2,....,i N=      ( 3)c  

{ }0,1iky ∈   1, 2,....,i N= ; 1, 2,...., ik m=               ( 4)c  

 

2( )P   Min T  

  1, 2, 3  4Subject to c c c and c   

 

X1 and X2 are optimal solutions for 2( )P  whereas X7 and X8 optimize 1( )P . 

To generate the efficient point with minimum total cost, i.e., MINB , the following 

problem has to be solved. 

1( ) 'P   Min T  

  
1, 2, 3  4

MINSubject to B B
c c c and c

=
 

where MINB  is the optimal B value of 1( )P . An optimal solution to 1( ) 'P  is 

efficient; this solution is X2, as it is the minimum completion time solution among 

the optimal total cost solutions. 

Note that for a sufficiently small 0ε > , 1( ) 'P  is equivalent to 1( ) ''P  
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1( ) ''P   TMin B Tε+  

 
1, 2, 3  4

Subject to
c c c and c

 

 

 Theorem 5 defines a range for Tε , that equates 1( ) 'P and 1( ) ''P  

Theorem 5: 1( ) 'P  and 1( ) ''P are equivalent provided that 1
T

MAX MINT T
ε <

−
.  

Proof: Tε  is the coefficient of T  in the objective function of 1( ) ''P . Tε  should 

be small enough so that B  does not change for any change in the value of T . Since 

it takes only integer values, the minimum change in the B  value is 1. Maximum 

change in T  value is MAX MINT T− . Hence, ( ) 1T MAX MINT Tε ⋅ − < , i.e., 1
T

MAX MINT T
ε <

−
 

should hold. ⁭ 

 

We set 1
1T

MAX MINT T
ε =

− +
 , hence solve the 1 

1MAX MIN

Min B T
T T

+
− +

 problem 

to generate a boundary efficient point, X7.  

The solution to 1( ) ''P  is ( , )MIN MAXB T , where MAXT  is the maximum total cost 

value of all efficient solutions, i.e., an upper bound on the project duration.  

We follow the similar procedure to find the other boundary point, X2. To 

generate the efficient point with minimum project duration we solve the following 

problem 

2( ) 'P   Min B  

  
1, 2, 3  4

MINSubject to T T
c c c and c

=
 

where MINT  is the optimal T value of 2( )P . Note 2( ) 'P  finds an optimal B 

schedule among the smallest T schedules, hence generates an efficient point, having 

the maximum B value, i.e., MAXB . This efficient point is a boundary point, X2.  

For a sufficiently small Bε , 2( ) 'P  is equivalent to 2( ) ''P  

2( ) ''P   BMin T Bε+  

  1, 2, 3  4Subject to c c c and c  
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Theorem 6 below, generates a range for Bε  that makes 2( ) 'P  and 2( ) ''P  

equivalent.  

 

Theorem 6: 2( ) 'P  and 2( ) ''P are equivalent provided that 1
B

MAX MINB B
ε <

−
.  

Proof: Bε  should be small enough so that T does not change for any change 

of B value. Since it takes only integer values, the minimum change in T value is 1. 

The maximum change in the B value is MAX MINB B− . Hence, ( ) 1B MAX MINB Bε ⋅ − < , i.e., 

1
B

MAX MINB B
ε <

−
 should hold. ⁭ 

 

We use 1
1B

MAX MINB B
ε =

− +
. Hence, objective function of 2( ) ''P  can be restated 

as 1 
1MAX MIN

Min T B
B B

+
− +

 

Figure 4.2 illustrates the range for all efficient solutions. The shaded 

rectangle inside is the range for all efficient solutions. The outer rectangle contains 

all solutions.  

 
Figure 4.2: Solution Space and Efficient Solutions Space 
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Constrained Optimization Problem 

Consider the following constrained problem, i.e., the Deadline Problem. 

 

( )tP   TMin B Tε+  

  
1, 2, 3  4

Subject to T t
c c c and c

≤
 

 

An optimal solution to ( )tP  is efficient. If we solve ( )tP  for all possible value 

of t between (TMIN , TMAX], all efficient solutions are generated. The algorithm below 

generates all efficient solutions, by varying the t value in range (TMIN, TMAX] 

systematically.   

 
 

Note that each execution of Step 1 produces an efficient solution. The 

algorithm is executed R times if there are R efficient solutions. 

Alternatively we can use the following constrained optimization problem to 

generate all efficient solutions. 

( )bP   BMin T Bε+  

  
1, 2, 3  4

Subject to B b
c c c and c

≤
 

 

Step 0: 

Solve 1( )P ; 2( )P ; 2( ) ''P  to find MINT and MAXT . 

Let R=1; -1MAXt T=  

Step 1: 

Solve ( )tP ; let the solution be (BR+1, TR+1) 

Step 2: 

R=R+1 

If TR= MINT  Then Stop, all efficient solutions are generated. 

Let -1Rt T=  

Go To Step 1 
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An optimal solution to ( )bP  is also efficient. We can generate all efficient 

solutions by varying b in range (BMIN , BMAX], starting by BMAX and terminating when 

BMIN is reached. 

We use to solve Deadline Problem to generate all efficient solutions. 

Numerical Example 

We illustrate our algorithm, which generates all efficient solutions, on the 5-

activity network, depicted in Figure 4.3.  

 
Figure 4.3: AoA Representation of the Sample Project Network 

 

 

The numbers on each activity indicate the mode of the activity. For example, 

activity 1 has two modes. The duration of the first mode is 3 and its cost is 5. We 

have 2, 2, 1, 2, 2 modes for activities 1, 2, 3, 4 and 5 respectively. Therefore, we 

have a total of 2 2 1 2 2× × × × =16 feasible solutions. All solutions are enumerated, 

and determined by the Critical Path Method. The results are reported in Table 4.1, 

below. 

Note that many solutions tabulated are dominated. For example, X1 is 

dominated by X4; X3, X6 and X9 are dominated by X12. The non-dominated, i.e., 

efficient, solutions are: X4 =(31, 11); X11 =(29, 13); X12 =(27, 15); X16 =(25, 17). The 

following figure shows the objective space of the problem. It can be easily observed 

that all remaining solutions are dominated. The dashed line, called efficient frontier 

connects the members of the efficient set. It can be easily observed that all solutions 

above the frontier are dominated. 
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Table 4.1: All Feasible Solutions of Sample Network 

Mode Solution 
# 1 2 3 4 5 

Total 
Cost 

Project 
Duration 

1 1 1 1 1 1 35 11 
2 2 1 1 1 1 34 14 
3 1 2 1 1 1 32 15 
4 1 1 1 2 1 31 11 
5 1 1 1 1 2 33 13 
6 2 2 1 1 1 31 15 
7 2 1 1 2 1 30 14 
8 2 1 1 1 2 32 16 
9 1 2 1 2 1 28 15 
10 1 2 1 1 2 30 17 
11 1 1 1 2 2 29 13 
12 2 2 1 2 1 27 15 
13 2 2 1 1 2 29 17 
14 2 1 1 2 2 28 16 
15 1 2 1 2 2 26 17 
16 2 2 1 2 2 25 17 

 

 
Figure 4.4: Solution Space of the Sample Project Network 

Below is the implementation of our algorithm that identifies all four efficient 

solutions. We first illustrate the generation of these efficient solutions with 

successive solutions of the Deadline Problem. 
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Iteration 1 

Step 0: Solve 1( )P . The optimal solution is (17, 25). 

Solve 2( )P . The optimal solution is (11, 35), 11MINT = . 

(17, 25) is X16, an efficient point r=1. 17MAXT =  

t= 1MAXT − =16 

1 0.142
1T

MAX MINT T
ε = =

− +
 

 

Iteration 2 

Step 1: Solve 

  TMin B Tε+  

  16Subject to T ≤  

Let the optimal solution be (T2,B2).  

(T2,B2) =(15, 27) is an efficient point. Note that (15, 27) corresponds to X12. 

 

Step 2: r=2 

T2 > MINT ; t = 2 1T − =14 

 

 Iteration 3 

Step 1: Solve 

  TMin B Tε+  

  14Subject to T ≤  

Let the optimal solution be (T3,B3).  

(T3,B3) =(13, 29) is an efficient point. Note that (13, 29) corresponds to X11. 

 

Step 2: r=3 

T3 > MINT  

t=T3-1 
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Iteration 4 

Step 1: Solve 

  TMin B Tε+  

  12Subject to T ≤  

Let the optimal solution be (T4,B4).  

(T4,B4) =(11, 31) is an efficient point. Note that (11, 31) corresponds to X4. 

T4= MINT =11, stop all 4 efficient solutions are generated. 

Each execution of Step 1 generates an efficient solution. The algorithm 

iterates 4 times, hence, there are 4 efficient solutions, i.e., X16, X12, X11, and X4. 

We now illustrate the generation of these efficient solutions with successive 

solutions of the Budget Problem. 

 

Iteration 1 

Step 0: Solve 1( )P . The optimal solution is (17, 25), 25MINB = .  

Solve 2( )P . The optimal solution is (11, 35).  

Solve  

 BMin T Bε+  

  35Subject to B ≤  

Let the optimal solution be ( ', 'T B ) 

( ', 'T B ) =(11, 31) is an efficient point. Note that (11, 31) corresponds to X4, 

31MAXB = . 

b= ' 1B − =30 

1 0.091
1B

MAX MINB B
ε = =

− +
 

 

Iteration 2 

Step 1: Solve 

 BMin T Bε+  

  30Subject to B ≤  

Let the optimal solution be (T2,B2).  

(T2,B2) =(13, 29) is an efficient point. Note that (13, 29) is X11. 
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Step 2: r=2 

B2 > MINB ; b =B2 -1 =28 

 

 Iteration 3 

Step 1: Solve 

 BMin T Bε+  

  28Subject to B ≤  

Let the optimal solution be (T3,B3).  

(T3,B3) =(15, 27) is an efficient point. Note (15, 27) is X12. 

Step 2: r=3 

B3 > MINB ; b =B2 -1 =26 

 

Iteration 4 

Step 1: Solve 

 BMin T Bε+  

  26Subject to B ≤  

Let the optimal solution be (T4,B4).  

(T4,B4) =(17, 25) is an efficient point. Note that (17, 25) is X16. 

Step 2: r=4 

B4= MINB ; stop. All 4 efficient solutions are generated. 
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CHAPTER 5 

5 COMPUTATIONAL RESULTS 

In this section we design an experiment to test the performance of our Branch 

and Bound Algorithm, heuristics, and to investigate the effects of parameters on the 

performances of the algorithms. We first discuss our problem instance generation 

scheme. Later, we present performance measures. Finally we analyze the results of 

our experiments. 

5.1 Data Generation 

We use a total of 30 problem instances for the Time/Cost Curve Problem and 

80 instances for the Deadline Problem. All instances are taken from Akkan et al. 

(2005b). Small-sized instances are used for the Time/Cost Curve Problem, whereas 

large-sized instances are used for the Deadline Problem. We next discuss the 

problem parameters and parameter settings used throughout the experiment.  

Problem Parameters 

There are two measures used to define the complexity of a project network. 

These are: 

For an AoN representation, CNC is defined as the number of precedence 

relations divided by the number of activities. Hence a higher CNC results in higher 

number of arcs, therefore more connected network. For AoA representation, CNC is 

the ratio of the number of activities to the number of events. Hence increasing CNC 

results in higher number of activities. 

Another parameter used is the number of node duplications needed to 

transform an AoA network into a series-parallel network. This is referred to as the 

Complexity Index (CI) and it measures the closeness of the network to a series- 

parallel one. Each node duplication brings the network closer to the series-parallel 

network but increases the computational time a multiplicative factor. For the details 

of the index, the reader is referred to Bein et al. (1992). The studies in the literature 
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point out a relation between the complexity of the solutions and CI, such that 

increasing CI results in higher solution times. Below, there are the activity 

dependent problem parameters. 

Number of Modes (m): The numbers of modes for all activities are generated 

from the uniform discrete probability distribution between 1 and 10. 

Akkan et al. (2005b) generate the time/cost data as follows: The durations are 

generated from discrete uniform distribution between 3 and 123. Then the durations 

are sorted such that ,1 ,2 ,........
ii i i mt t t> > > . The minimum cost, ,1ic , is generated from 

U[5,15] for each activity. Then 1kc +  is set to , , 1( )k k i k i kc s t t ++ −  where 

1 [ , 3]k k ks U s s− +:  or 1 [ (1, 3), ]k k ks U Max s s− −:  

Number of Activities (N): As CI and CNC define the complexity of the 

network, they affect the number of activities  

Deadline Setting (θ): A set of t values are generated for the Deadline 

Problem, i.e., for constraintT t≤ . Recall that deadline value t should be selected 

between MINT and MAXT . Accordingly, t values between MINT and MAXT  such that:  

( )MIN MAX MINt T T T= + −θ  where θ is referred to as deadline setting. 

The Time/Cost Curve Problem is solved for all t values between 

MINT and MAXT . 

Parameter Settings 

We solve 30 instances for the Time/Cost Curve Problem using the following 

parameters; depicted in Table 5.1. CI values are discrete uniform between 4 and 7; 9 

and 11 for second and third set of problems respectively. Similarly numbers of 

activities are discrete uniform between the numbers indicated in Table 5.1 below. 

Table 5.1: Time/Cost Curve Problem Parameters 

CI CNC N #of instances 
0 2 [29,30] 10 

[4,7] 2 [34,38] 10 
[9,11] 2 [39,42] 10 
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We solve 80 instances for the Deadline Problem. Each problem instance is 

solved for 6 different θ values, we set θ=0.15, 0.30, 0.45, 0.60, 0.75, 0.90. Therefore, 

a total of 480 instances are generated and solved. The parameter combinations are 

given in Table 5.2.  

We set a termination limit of 1 hour for all algorithms. We stop the execution 

and report the best solution found after 1 hour. 

Table 5.2: Deadline Problem Parameters 

CI CNC N #of instances 
13 5 85 10 
13 6 102 10 
13 7 [117,119] 10 
13 8 [128,129] 10 
14 5 85 10 
14 6 102 10 
14 7 [116,119] 10 
14 8 [128,136] 10 

 

 

5.2 Performance Measures 

In this section, we discuss our performance measures used to evaluate the 

efficiency of our Branch and Bound Algorithm, Heuristics and Lower Bounds. 

To evaluate our Branch and Bound Algorithm used for the Deadline Problem 

we use the following performance measures: 

1. CPU time in seconds (average, maximum) 

2. Number of nodes generated (average, maximum) 

3. Number of unsolved instances, out of 10, in 1 hour. 

We use the following performance measures for our heuristics.  

1. CPU time in seconds (average, maximum) 

2. Percent deviation from the optimal solution (average, maximum) 

For lower bound, we only report the percent deviations from the optimal 

solutions. 

To evaluate our Branch and Bound Algorithm for the Time/Cost Curve 

Problem we use the following performance measures: 
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1. Solution time in CPU seconds, simply CPU time.  

2. Number of efficient solutions 

3. CPU time spent per efficient solution (seconds)  

The optimal solutions are found by CPLEX 8.1. CPLEX is run for 1 hour and 

unsolved instances after 1 hour of execution are reported. All experimentations are 

done in Pentium IV 2.8 GHz, 1GB RAM. All algorithms are coded with MS Visual 

C++ 6.0.  

5.3 Preliminary Experiments 

We design a preliminary experiment to evaluate the performance of our mode 

elimination algorithm (ME), upper bounds (UB), selection (SS) and branching 

strategies (BS). We define versions of the Branch and Bound Algorithm using 

different choices of those mechanisms. We now present the results of our 

preliminary runs. 

Branch and Bound Algorithm Versions 

We summarize the notation used throughout this section, for different 

versions of the Branch and Bound Algorithm in Table 5.3. 

Table 5.3: Branch and Bound Algorithm Versions 

Mode Elimination Algortihm (ME) 
ME0 No mode elimination 
ME1 Mode elimination only at root node 
ME2 Mode elimination at every node 

Upper Bounds (UB) 
UB1 Improvement 1 at every node 
UB2 Improvement 2 at every node 
UB3 Imp 2 at root node, Imp 1 at every node 

Branching Strategy (BS) 
BS1 Normal Branching Scheme 
BS2 Alternate Branching Scheme 

Selection Strategy (SS) 
SS1 Selection Strategy 1 
SS2 Selection Strategy 2 
SS3 Selection Strategy 3 
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We use 3 versions for ME, 2 versions for UB, 2 versions for BS and 3 

versions for SS. Hence we create a total of 36( 3 3 2 2× × × ) combinations of the 

mechanisms. We evaluate each mechanism separately. We first study the effect of 

the Mode Elimination Algorithm. 

Mode Elimination Algorithm Selection 

We run 5 small instances to evaluate performance of the Mode Elimination 

Algorithms. We select the following problem combination: CI=[0, 14]; CNC=2; 

N=[31, 44]. Each instance is solved for deadline setting θ=0.15, 0.30, 0.45, 0.60. 

UB1, BS1 and SS3 are used. Table 5.4 below reports the average CPU times for 5 

instances. 

Table 5.4: Average CPU Times for Mode Elimination Algorithms 

θ ME0 ME1 ME2 
0.15 40.27 39.70 29.61 
0.30 13.63 13.37 12.93 
0.45 8.39 8.34 8.47 
0.60 4.09 4.38 4.15 

 

 

As can be observed from the table, ME1 is not significantly different from 

ME0. However, ME2 significantly differs from ME0 and ME1, in particular when the 

deadline constraint gets tighter. This means, if the mode elimination when applied 

only at root node, does not reduce the CPU time. However, applying mode 

elimination at each node decreases the average CPU time considerably. Therefore, 

ME2 is chosen as the Mode Elimination Algorithm in our main runs. 

Branching & Selection Strategy Selection 

After ME2 is chosen as the Mode Elimination Algorithm, we run 4 instances 

to test the performances of our Branching and Selection Strategies. The instances 

with CI=[4, 14]; CNC=2; N=[35, 40] are used. Table 5.5 demonstrates the average 

CPU times and Table 5.6 demonstrates the average nodes evaluated under 4 

different deadline settings.  
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Table 5.5: Average CPU Time (seconds) for Branching and Selection 

Strategies 

 θ=0.15   SS1 SS2 SS3    θ=0.30   SS1 SS2 SS3 
BS1 604.20 405.43 10.73  BS1 115.23 53.69 3.97 
BS2 518.51 344.26 517.62  BS2 120.59 35.93 11.86 

           
 θ=0.45   SS1 SS2 SS3   θ=0.60   SS1 SS2 SS3 

BS1 119.79 78.22 9.28  BS1 44.37 11.41 4.54 
BS2 135.73 11.96 11.6   BS2 48.86 5.31 6.69 

 

Moreover large-sized problem instances with CI=13; CNC=5; N=85 are 

solved. Table 5.7 below shows the average CPU times for each branching, selection 

strategy over the instances that are solved in 1 hour.  

Table 5.6: Average Number of Nodes for Branching and Selection 

Strategies 

 θ=0.15   SS1 SS2 SS3    θ=0.30   SS1 SS2 SS3 
BS1 49403 32472 1005  BS1 7764 3422 259 
BS2 33082 23083 33142  BS2 5819 1659 580 

           
 θ=0.45   SS1 SS2 SS3   θ=0.60   SS1 SS2 SS3 

BS1 8348 5103 587  BS1 3059 777 303 
BS2 6109 521 495   BS2 2307 241 305 

 

Table 5.7: Average CPU Times of the Large-Sized Instance 

 θ=0.15   SS1 SS2 SS3    θ=0.30   SS1 SS2 SS3 
BS1  1167.30 493.67  BS1  184.92 124.88 
BS2   3331.83  BS2  326.25 794.80 

           
 θ=0.45   SS1 SS2 SS3   θ=0.60   SS1 SS2 SS3 

BS1 9.95 7.00 6.03  BS1 6.55 3.31 3.09 
BS2 13.82 10.08 10.24   BS2 9.93 5.42 5.53 

 

 

We did not include SS1 when θ=0.15 and θ=0.30 and SS2 when BS2 is used 

and θ=0.15, as all instances remained unsolved after 1 hour. 
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As can be observed from the tables, the best alternative is BS1-SS3 

combination. The combination produces the smallest average CPU times over all 

problems. It also creates the smallest average number of nodes for the majority of 

the problems.  

Recall that BS1 creates two children for each parent whereas BS2 creates 

three children. In absence of any other mechanism, BS1 is expected to perform better 

and we observe it is better even we use bounds. 

SS3 outperforms the other strategies in all problem combinations. Recall that 

SS3, unlike the other strategies, considers the objective function value, i.e., cost, and 

branches to the modes with highest difference between next mode. Hence one can 

expect a better performance from SS3. 

Considering the results of our preliminary runs we conduct our main 

experiments by the most powerful combination, i.e., BS1-SS3.   

Upper Bound Selection for an Initial Feasible Solution 

We run 7 small instances to compare the effect of our upper bound 

algorithms on the performance of the Branch and Bound Algorithm. We use small-

sized instances with parameters: CI=[0, 14]; CNC=2; N=[29, 40]. BS1 and SS3 are 

chosen as branching and selection strategies. Tables below show the average CPU 

times and average number of nodes of our Branch and Bound Algorithm for each 

upper bound algorithm over all deadline settings. 

Table 5.8: Average CPU Times of BAB Using Different Upper Bounds 

θ UB1 UB2 UB3 
0.15 51.58 84.72 51.72 
0.30 8.66 13.10 8.33 
0.45 4.63 5.98 4.64 
0.60 3.96 5.26 3.96 
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Table 5.9: Average Number of Nodes of BAB Using Different Upper 

Bounds 

θ UB1 UB2 UB3 
0.15 2937.83 2119.43 2937.83 
0.30 429.83 310.17 412.67 
0.45 228.83 174.67 228.33 
0.60 197.50 162.00 196.17 

 

 

UB2 is the best performing upper bound. This follows, the Branch and Bound 

Algorithm that uses UB2 creates fewest number of nodes. However this efficiency is 

achieved at an expense of increased CPU times, as Improvement Heuristic is applied 

at all nodes. UB1 and UB3 show similar performances, both in terms of the CPU 

times and number of nodes. For some instances, like θ=0.30, UB3 performs slightly 

better and we prefer to use UB3.  

Heuristic Branch and Bound Algorithm 2 

From Section 3.3 we observe that Alternate Branching Scheme has a 

significant drawback in CPU time. Since Heuristic Branch and Bound Algorithm 2 

uses Alternate Branching Scheme a preliminary experiment is conducted to evaluate 

the performance of the heuristic. We use ME2, UB3, SS4 settings and run 4 small and 

1 large-sized instances. It is observed that although our exact Branch and Bound 

Algorithm is able to solve all 5 instances with all deadline settings, Heuristic Branch 

and Bound Algorithm 2 does not terminate in 1 hour for the large-sized instance for 

θ=0.15. Moreover, it gives an average percentage deviation of 6.14, for the small-

sized instances which is not acceptable when it is compared to other heuristics. The 

results are provided in APPENDIX B. Consequently, Heuristic Branch and Bound 

Algorithm 2 is not considered in main computational results.   

5.4 Main Experiment 

We perform our main experiment using BB1-SS3 with mode elimination and. 

UB3. We first discuss the results for the Deadline Problem and then for the 

Time/Cost Curve Problem. 
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5.4.1 Deadline Problem 

We first study the performance of the lower bounds. The lower bounds are 

the objective function values of the optimal LP Relaxed Problem obtained after 

mode eliminations. 

In Table 5.10, we report on the average and maximum deviations of the 

lower bounds from the optimal solution. We compute the deviation for an instance 

as % 100OPT LBdev
OPT

−
= ×  where  

 Optimal total cost
 Optimal LP_relaxed cost

OPT
LB

=
=

 

As can be observed from the table, the lower bounds behave consistently 

well over all problem combinations. All average deviations are below 10% and 

almost all maximum deviations are below 15%. The satisfactory behavior of the 

lower bounds can be attributed to the result of Theorem 3. Recall that, the LP 

Relaxation produces very few, at most two, fractional variables for each activity. 

Hence the solution is close to the exact solution with no fractional variables. It can 

also be observed from the table that, the tightness of the deadline affects the power 

of the lower bounds. As θ increases, the deadlines become larger, hence the deadline 

constraint gets looser. When the constraint is looser, there are many activities that 

complete at their longest durations, in the LP Relaxation solution. Hence, the lower 

bounds perform superior, when θ is bigger. Moreover, when CNC increases, the 

number of activities increases, and the performance of the lower bounds slightly 

deteriorate. 

We now discuss the performance of our Branch and Bound Algorithm that 

solves the Deadline Problem exactly. In Table 5.11, we report the average and 

maximum CPU times and the number of nodes. We assume each unsolved instance 

contributes to the total CPU time by 3600 seconds, hence those instances are 

considered while computing average CPU times. We report the results for two 

values of CI; these values are 13 and 14. The CNC values are between 5 and 8, in 

unit increments. Recall that, CNC is the ratio of number of arcs to the number of 

nodes, in the AoA representations. As the arcs represent activities, CNC value 

directly affects the number of activities, hence the complexity of the problem. 
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Table 5.10: Lower Bound Deviations 

CI CNC N θ Avg. Dev (%) Max. Dev. (%)  
0.15 7.58 14.92 
0.30 5.04 9.60 
0.45 4.32 9.76 
0.60 2.86 7.53 
0.75 2.48 4.63 

13 5 85 

0.90 3.31 11.24 
0.15 9.15 13.04 
0.30 7.09 11.20 
0.45 6.06 10.13 
0.60 2.88 5.51 
0.75 2.12 5.90 

13 6 102 

0.90 3.48 12.83 
0.15 10.06 14.68 
0.30 9.23 16.92 
0.45 6.92 13.66 
0.60 5.90 12.57 
0.75 4.64 9.46 

13 7 [117,119] 

0.90 4.41 11.40 
0.15 9.90 16.61 
0.30 7.52 13.05 
0.45 5.81 10.67 
0.60 3.65 9.00 
0.75 3.19 7.78 

13 8 [128,129] 

0.90 1.43 3.87 
0.15 5.52 10.39 
0.30 3.52 7.62 
0.45 3.10 4.93 
0.60 2.85 6.03 
0.75 2.73 6.69 

14 5 85 

0.90 2.07 5.62 
0.15 6.32 8.51 
0.30 4.27 6.66 
0.45 2.84 4.95 
0.60 1.90 3.54 
0.75 2.29 6.58 

14 6 102 

0.90 1.76 5.71 
0.15 9.13 17.66 
0.30 6.73 12.16 
0.45 3.86 8.51 
0.60 3.31 8.49 
0.75 2.14 5.56 

14 7 [116,119] 

0.90 1.65 4.76 
0.15 9.08 14.12 
0.30 6.93 13.86 
0.45 5.14 10.37 
0.60 4.24 9.25 
0.75 4.17 16.69 

14 8 [128,136] 

0.90 1.60 6.10 
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As can be observed from Table 5.11, when CNC increases, the CPU times 

and in turn number of nodes increase. The increase is more pronounced when CNC 

is increased from 5 to 6. For example, for CI=13 and θ=0.15, the average CPU times 

are 1109.42 when CNC=5 (N=85) and 2702.21 when CNC=6 (N=102). When 

CI=14 these averages become 102.35 and 1626.30 seconds. There are some 

exceptions for which the increase in CNC leads to a decrease in the CPU times. 

Some of those exceptions can be explained by our termination limit and the 

dominant contribution of these instances. Such pronounced exception is for CI=13 

and CNC=7, 8. Due to the dominant effect of unsolved instances we experience a 

decrease in CPU times when CNC becomes 8. We could not observe a significant 

effect of CI on the complexity of the problem. 

The deadline setting “θ” has a significant effect on the problem complexity. 

Recall that, θ is employed in the deadline constraint as follows: 

( )MIN MAX MINT T T T≤ + −θ . As θ approaches to 1, the activities tend to be closer to 

their maximum duration modes. As θ gets close to 0, the deadline constraint 

becomes tighter and, the activities tend to their lower duration modes to maintain 

feasibility. As the activities become more competing for the tight deadline, lower θ 

values indicate more complex problems. 

We observe the significant effect of θ in our experiments as well. As θ 

becomes smaller, the CPU times, number of nodes, number of unsolved instances all 

decrease. When 0.6θ ≥ , all problem instances are solved in very small CPU times. 

For the most pronounced effect of θ, one can make the following observation. When 

CI=14, CNC=8, θ=0.15, the average CPU time is 2967.47 seconds with 7 unsolved 

instances. For the same CI and CNC values, but for θ=0.9, the average CPU time 

becomes 1.03 seconds and the maximum CPU time is 4.91 seconds, i.e., all 

instances are solved in less than 5 CPU seconds. 

We next discuss the performances of our heuristic procedures. We measure 

the performance of our procedures using the following deviation measure. 

 % 100Heuristic Solution OPTdev
OPT

−
= ×  
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Table 5.11: Branch and Bound Algorithm Results for Deadline Problem 

CI CNC N θ 
Avg. CPU 

Time 
Max. CPU 

Time 
Avg. # of 

Nodes 
Max. # of 

Nodes 
0.15 1109.42 2921.73 44451.8 136461 
0.30 109.83 402.92 3750.7 13211 
0.45 42.96 169.20 1456.2 5351 
0.60 2.45 4.30 94.5 151 
0.75 0.81 1.81 34.8 78 

13 5 85 

0.90 0.32 1.14 16.6 62 
0.15 2702.21 3600.05 (6) 83498.3 126613 
0.30 1961.88 3600.05 (4) 56954.4 108399 
0.45 470.44 1822.83 12931.2 50412 
0.60 9.36 52.25 277.8 1545 
0.75 1.55 3.33 50.7 117 

13 6 102 

0.90 0.78 1.59 32.9 74 
0.15 2700.92 3600.06 (7) 70822.1 122900 
0.30 2032.41 3600.05 (3) 47849.1 98572 
0.45 624.79 3600.02 (1) 14470.1 84122 
0.60 22.59 108.52 564.3 2780 
0.75 2.67 5.14 71.5 140 

13 7 [117,119] 

0.90 0.78 1.89 25.9 63 
0.15 2408.18 3600.06 (6) 57235 101017 
0.30 1046.96 3600.03 (1) 21209 80195 
0.45 152.93 356.63 3035.4 7034 
0.60 28.64 89.97 637.4 2003 
0.75 4.09 10.06 95 251 

13 8 [128,129] 

0.90 0.45 1.02 12 26 
0.15 102.35 246.95 3927.6 11722 
0.30 63.23 157.58 2110.9 5772 
0.45 36.32 239.61 1354.1 9234 
0.60 6.28 20.64 238 757 
0.75 2.91 12.38 127.7 589 

14 5 85 

0.90 0.39 1.05 17.1 47 
0.15 1626.30 3600.03 (2) 48056.8 108429 
0.30 64.64 156.64 1573.5 3707 
0.45 31.62 166.64 829.8 4391 
0.60 7.21 23.73 210.3 724 
0.75 0.80 1.70 24.4 55 

14 6 102 

0.90 0.60 1.45 23.4 61 
0.15 2253.89 3600.06 (5) 59291.5 109965 
0.30 956.94 3600.03 (2) 21802.5 87960 
0.45 40.93 161.89 887.7 3529 
0.60 17.62 80.83 422.5 2025 
0.75 9.60 80.80 271 2316 

14 7 [116,119] 

0.90 0.51 1.58 15.2 50 
0.15 2967.47 3600.08 (7) 63345.9 97624 
0.30 1789.93 3600.06 (3) 34766.4 72302 
0.45 170.80 494.80 3378.5 10421 
0.60 18.28 50.02 382 1145 
0.75 7.05 38.75 161.2 907 

14 8 [128,136] 

0.90 1.03 4.91 28.4 141 
*The figures in parenthesis indicate number of unsolved instances in 1 hour  (out of 10) 
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Table 5.12, Table 5.13, Table 5.14 and Table 5.15 report the performances of 

Construction Heuristic, Improvement Heuristic 1, Improvement Heuristic 2, and 

Heuristic Branch and Bound Algorithm 1, respectively. The tables report the average 

and maximum deviations and CPU times. We also include the number of times the 

heuristic procedures find the optimal solution. 

As can be observed from Table 5.12, all deviations are very small. Note that 

the maximum, average CPU time is 0.04 seconds and the worst CPU time overall 

instances are 0.06 seconds. Hence the Construction Heuristic produces solutions in 

negligible CPU times consistently. The CPU times increase slightly with an increase 

in CNC values, in turn the number of activities. Moreover, increasing θ, leads to a 

decrease in CPU times. This is due to the fact that LP quickly detects many discrete 

variables that are close to their maximum durations. Note that, the relatively high 

CPU times are associated to small θ values. 

All average deviations are smaller than 15%. However, we observe a 

maximum deviation of 38.88% at worst. Hence we cannot conclude that the 

Construction Heuristic performs consistently well over all instances. We observe 

that θ has significant effect on the deviations. The smaller and larger θ values lead to 

better performances. This is due to the fact that the LP tends to maximum and 

minimum duration modes for large and small θ values, respectively. Moreover, we 

observe that when θ is small there are about 2 instances out of 10 for which the 

heuristic solutions are optimal. For example when CNC=7, CI=14 and θ=0.90, there 

are 4 optimal solutions and the average deviation is 2.07%. On the other hand, for 

the same combination, but for θ=0.15, the average deviation is 8.81% with 

nonoptimal solutions. Moreover, we observe slight increase in deviations with 

increases in CNC values. This is due to the increased problem size brought by more 

activities. 
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Table 5.12: Construction Heuristic Results 

CI CNC N θ Avg. CPU Time Max. CPU Time Avg. Dev(%) Max. Dev(%) 
0.15 0.02 0.03 7.12 13.40 
0.30 0.02 0.03 9.06 16.18 
0.45 0.01 0.02 12.02 23.62 
0.60 0.01 0.02 10.17 25.80 
0.75 0.01 0.02 8.94 16.19 

13 5 85 

0.90 0.01 0.02 5.94 30.40 (2) 
0.15 0.02 0.03 9.63 14.21 
0.30 0.02 0.03 13.41 22.95 
0.45 0.02 0.03 13.75 21.16 
0.60 0.02 0.03 9.09 17.71 
0.75 0.01 0.02 7.83 15.79 

13 6 102 

0.90 0.01 0.02 8.74 25.65 (2) 
0.15 0.03 0.05 9.40 14.55 
0.30 0.02 0.03 12.81 21.98 
0.45 0.02 0.03 14.00 22.03 
0.60 0.02 0.03 13.50 35.01 
0.75 0.02 0.03 18.18 38.88 

13 7 [117,119] 

0.90 0.02 0.02 8.16 29.96 (2) 
0.15 0.04 0.05 7.40 13.55 
0.30 0.03 0.05 12.13 22.91 
0.45 0.03 0.03 12.76 30.13 
0.60 0.03 0.03 12.05 26.45 
0.75 0.02 0.03 7.54 21.49 

13 8 [128,129] 

0.90 0.02 0.02 2.02 5.60 (2) 
0.15 0.02 0.03 5.08 8.78 
0.30 0.02 0.03 7.25 19.38 
0.45 0.02 0.03 4.54 9.92 
0.60 0.01 0.02 7.80 25.73 
0.75 0.01 0.02 13.13 25.06 

14 5 85 

0.90 0.01 0.02 5.07 12.31 (2) 
0.15 0.03 0.03 6.46 10.82 
0.30 0.02 0.03 9.89 16.72 
0.45 0.02 0.03 10.70 19.89 
0.60 0.02 0.03 6.58 17.08 
0.75 0.02 0.02 3.45 10.75 (2) 

14 6 102 

0.90 0.02 0.02 4.18 9.65 (2) 
0.15 0.03 0.05 8.81 16.02 
0.30 0.03 0.03 12.05 24.84 
0.45 0.02 0.03 7.65 11.02 
0.60 0.02 0.03 5.65 13.48 
0.75 0.02 0.03 5.17 10.81 (1) 

14 7 [116,119] 

0.90 0.02 0.02 2.07 12.80 (4) 
0.15 0.04 0.06 11.07 19.03 
0.30 0.03 0.03 10.42 18.97 
0.45 0.03 0.03 9.79 15.96 
0.60 0.03 0.03 12.38 22.54 
0.75 0.02 0.03 5.92 14.41 (1) 

14 8 [128,136] 

0.90 0.02 0.03 2.53 8.59 
*The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table 5.13: Improvement Heuristic 1 Results 

CI CNC N θ Avg. CPU Time Max. CPU Time Avg. Dev(%) Max. Dev(%) 
0.15 0.02 0.03 3.49 7.00 
0.30 0.02 0.03 3.33 7.06 
0.45 0.02 0.02 4.37 12.63 (1) 
0.60 0.01 0.02 2.59 8.12 
0.75 0.01 0.02 3.53 10.31 (2) 

13 5 85 

0.90 0.01 0.02 2.85 15.45 (4) 
0.15 0.03 0.03 4.63 7.12 
0.30 0.02 0.03 5.67 14.64 
0.45 0.02 0.03 4.91 11.99 
0.60 0.02 0.03 4.14 9.15 
0.75 0.02 0.02 2.61 10.35 

13 6 102 

0.90 0.01 0.02 2.40 12.79 (2) 
0.15 0.04 0.05 4.40 8.15 
0.30 0.03 0.03 5.10 7.52 
0.45 0.03 0.03 5.80 14.28 
0.60 0.02 0.03 4.52 17.84 
0.75 0.02 0.03 5.50 13.97 

13 7 [117,119] 

0.90 0.02 0.02 0.76 2.68 (3) 
0.15 0.04 0.05 3.82 6.85 
0.30 0.03 0.05 4.92 9.63 (1) 
0.45 0.03 0.03 6.32 20.86 
0.60 0.02 0.03 5.42 15.37 (1) 
0.75 0.02 0.03 3.76 8.13 (1) 

13 8 [128,129] 

0.90 0.02 0.02 0.83 2.67 (4) 
0.15 0.02 0.03 2.56 5.51 
0.30 0.02 0.03 1.79 3.84 
0.45 0.02 0.02 2.35 5.45 (1) 
0.60 0.01 0.02 2.54 5.07 (1) 
0.75 0.01 0.02 6.15 19.27 

14 5 85 

0.90 0.01 0.02 3.54 12.31 (2) 
0.15 0.03 0.03 3.62 6.67 
0.30 0.02 0.03 4.99 9.68 
0.45 0.02 0.03 2.86 6.67 
0.60 0.02 0.03 2.34 7.45 (1) 
0.75 0.02 0.02 1.46 9.93 (3) 

14 6 102 

0.90 0.01 0.02 2.70 8.09 (3) 
0.15 0.03 0.05 3.58 7.18 
0.30 0.03 0.03 3.40 9.80 
0.45 0.03 0.03 2.24 5.76 (1) 
0.60 0.02 0.03 3.04 7.65 
0.75 0.02 0.03 2.09 5.65 (1) 

14 7 [116,119] 

0.90 0.02 0.02 0.90 5.80 (4) 
0.15 0.04 0.05 5.67 15.81 
0.30 0.04 0.05 4.44 15.99 
0.45 0.03 0.03 4.64 10.75 (1) 
0.60 0.03 0.03 3.52 7.21 
0.75 0.02 0.03 1.46 5.75 (2) 

14 8 [128,136] 

0.90 0.02 0.03 0.49 1.51 (4) 
*The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table 5.14: Improvement Heuristic 2 Results 

CI CNC N θ Avg. CPU Time Max. CPU Time Avg. Dev(%) Max. Dev(%) 
0.15 0.29 0.64 2.43 4.96 
0.30 0.19 0.39 1.93 5.14 
0.45 0.14 0.25 2.18 6.34 (1) 
0.60 0.06 0.08 1.54 5.17 
0.75 0.03 0.05 3.08 10.31 (3) 

13 5 85 

0.90 0.02 0.02 2.13 12.96 (6) 
0.15 0.77 1.28 2.85 5.79 
0.30 0.57 1.05 3.19 5.07 
0.45 0.34 0.84 3.08 11.99 (2) 
0.60 0.14 0.30 1.26 5.65 (1) 
0.75 0.09 0.23 1.23 7.02 (3) 

13 6 102 

0.90 0.03 0.05 2.37 12.79 (2) 
0.15 1.20 2.89 2.57 6.54 
0.30 0.97 1.95 3.03 5.50 
0.45 0.57 1.56 2.54 5.28 
0.60 0.20 0.36 2.28 7.25 (1) 
0.75 0.10 0.20 4.74 13.43 (1) 

13 7 [117,119] 

0.90 0.03 0.05 0.26 2.04 (7) 
0.15 1.71 3.38 2.52 5.06 
0.30 0.96 2.08 3.09 7.35 (1) 
0.45 0.52 1.24 1.51 4.17 (1) 
0.60 0.34 0.64 2.53 11.81 (2) 
0.75 0.14 0.31 1.91 5.66 (1) 

13 8 [128,129] 

0.90 0.04 0.06 0.61 2.67 (6) 
0.15 0.33 0.66 0.96 1.93 
0.30 0.17 0.41 1.34 3.47 
0.45 0.13 0.27 0.90 3.34 (2) 
0.60 0.08 0.16 1.25 5.07 (2) 
0.75 0.04 0.08 2.86 7.69 

14 5 85 

0.90 0.02 0.03 1.77 4.11 (3) 
0.15 0.56 0.92 1.50 4.04 
0.30 0.55 0.77 2.06 6.98 (1) 
0.45 0.34 0.86 2.26 5.89 (1) 
0.60 0.18 0.44 1.17 2.83 (3) 
0.75 0.07 0.16 1.31 9.93 (4) 

14 6 102 

0.90 0.03 0.05 2.10 8.09 (5) 
0.15 0.95 3.47 2.21 5.96 
0.30 0.58 1.44 2.77 9.80 
0.45 0.42 1.27 1.42 4.32 (1) 
0.60 0.21 0.44 1.31 6.56 
0.75 0.10 0.27 1.19 5.48 (1) 

14 7 [116,119] 

0.90 0.03 0.05 0.87 5.80 (5) 
0.15 1.76 3.88 2.87 5.55 
0.30 1.51 2.45 1.55 2.99 
0.45 0.81 1.95 1.38 4.04 (1) 
0.60 0.45 1.11 2.38 6.56 
0.75 0.16 0.38 0.53 1.84 (3) 

14 8 [128,136] 

0.90 0.05 0.09 0.44 1.51 (4) 
*The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table 5.15: Heuristic Branch and Bound Algorithm 1 Results 

CI CNC N θ Avg. CPU Time Max. CPU Time Avg. Dev(%) Max. Dev(%) 
0.15 69.95 182.92 0.94 4.96 (2) 
0.30 14.27 82.75 0.48 1.37 (3) 
0.45 10.85 61.72 1.00 2.59 (3) 
0.60 1.32 3.31 0.51 3.47 (7) 
0.75 0.57 1.23 0.23 2.33 (9) 

13 5 85 

0.90 0.26 0.78 0.47 4.69 (9) 
0.15 455.61 1423.97 0.32 1.78 (4) 
0.30 221.53 1370.98 1.17 3.00 (2) 
0.45 54.57 244.41 0.47 2.09 (5) 
0.60 4.28 25.83 0.20 1.32 (6) 
0.75 1.25 2.39 0.13 0.59 (7) 

13 6 102 

0.90 0.68 1.42 0.09 0.85 (9) 
0.15 143.12 655.89 1.13 6.44 (2) 
0.30 172.61 738.97 0.97 3.26 (4) 
0.45 35.74 89.94 0.93 2.66 (4) 
0.60 6.16 16.27 0.36 2.06 (7) 
0.75 2.01 6.11 0.80 5.04 (6) 

13 7 [117,119] 

0.90 0.64 1.27 0.00 0.00 (10) 
0.15 352.52 1322.30 0.85 1.50  
0.30 65.33 344.92 1.13 5.37 (2) 
0.45 31.05 61.16 0.25 1.36 (6) 
0.60 14.97 44.91 0.17 1.26 (7) 
0.75 2.58 6.06 0.01 0.07 (9) 

13 8 [128,129] 

0.90 0.40 0.92 0.00 0.00 (10) 
0.15 24.31 91.88 0.50 1.37 (5) 
0.30 20.30 47.20 0.07 0.69 (8) 
0.45 24.67 161.78 0.21 1.44 (6) 
0.60 3.97 11.14 0.00 0.00 (10) 
0.75 2.57 10.25 0.09 0.88 (9) 

14 5 85 

0.90 0.37 0.94 0.00 0.00 (10) 
0.15 173.84 555.78 0.46 0.98 (2) 
0.30 21.07 54.19 0.72 2.77 (2) 
0.45 18.89 116.64 0.16 0.66 (5) 
0.60 4.67 15.08 0.00 0.00 (10) 
0.75 0.65 1.36 0.00 0.00 (10) 

14 6 102 

0.90 0.57 1.33 0.00 0.00 (10) 
0.15 216.66 1103.63 0.79 2.60 (2) 
0.30 80.11 432.52 0.74 4.40 (2) 
0.45 16.46 58.16 0.12 0.62 (7) 
0.60 9.08 40.73 0.08 0.68 (7) 
0.75 5.92 50.77 0.02 0.20 (9) 

14 7 [116,119] 

0.90 0.47 1.45 0.00 0.00 (10) 
0.15 1012.24 2585.09 1.10 2.19  
0.30 161.98 603.28 0.75 2.41 (2) 
0.45 34.10 91.22 0.55 1.54 (3) 
0.60 9.46 32.44 0.08 0.64 (6) 
0.75 3.85 22.20 0.10 0.63 (7) 

14 8 [128,136] 

0.90 1.10 4.47 0.10 1.03 (9) 
*The figures in parenthesis indicate the number of times the optimal solution is found. 
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We next study the performance of the Improvement Heuristics. Recall that, 

the first improvement heuristic takes the Construction Heuristic as a starting step. 

Table 5.13 reports the results of Improvement Heuristic 1. We used Improvement 

Heuristic 1 in our Branch and Bound as an initial feasible solution. We observed that 

using such a heuristic enhances the efficiency significantly. Hence we expect 

satisfactory behavior from Improvement Heuristic 1, as an approximate solution. 

Our results in Table 5.13 support our expectations. We observe that the majority of 

the average deviations are below 5%. The worst, maximum average deviation is 

20.86% (which was 38.88% by Construction Heuristic). Note that the average CPU 

times are very small. Hence the improvements over Construction Heuristic are 

obtained in negligible CPU times,. as the CPU times by Construction and 

Improvement Heuristics are almost the same. The improvement over Construction 

Heuristic can also be verified by the increase in the number of optimal solutions. 

The Construction Heuristic could find 21 optimal solutions, whereas Improvement 

Heuristic 1 finds 43 optimal solutions out of 480 problem instances. 

The results for the Improvement Heuristic 2 are given in Table 5.14. 

Improvement Heuristic 2 is implemented over Improvement Heuristic 1. The 

deviations are significantly smaller for Improvement Heuristics. Almost all average 

deviations are below 3% and the worst maximum deviation is 13.43%. The number 

of optimal solutions is increased to 74. Hence about 20% of the problems are 

optimally solved by Improvement Heuristic 2. But such improvements are achieved 

at an expense of increased CPU times. The CPU times are relatively high when 

compared with the other heuristics, however they are still low. Note that, the 

majority of the average CPU times are below 1.5 seconds, and the maximum CPU 

time over all instances is 3.88 seconds.  

The results of Heuristic Branch and Bound Algorithm 1 are presented in 

Table 5.15 above. It can be observed that, the heuristic gives the best solutions over 

all the heuristics mentioned up to now. Heuristic Branch and Bound Algorithm 1 

relies on the idea of Theorem 4. The Heuristic Branch and Bound Algorithm 1 

assigns non critical activities of the LP Relaxation solution to their highest duration 

modes. Since there is a chance that non-critical activity in LP Relaxation becomes 

critical, and is assigned to a lower duration mode in the optimal solution, the 

algorithm does not guarantee the optimality. 
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It can be observed from Table 5.15 that, in more than half of the instances 

(284 out of 480), the heuristic finds the optimal solution. For such instances, the 

noncritical activities of LP Relaxation solution are turned to be noncritical in the 

optimal solution as well. For the other instances, we observe very small deviations. 

Almost all average and maximum deviations are below 1% and 5% respectively. We 

did not use an initial feasible solution to start the Heuristic Branch and Bound 

Algorithm 1. Note that we could even obtain better performances with initial 

feasible solutions. 

The Heuristic Branch and Bound Algorithm 1 runs in exponential time. The 

CPU times are significantly smaller than those of Branch and Bound Algorithm; 

however they are much larger than those of other heuristics. So it can be favored 

when a satisfactory solution is required in a tolerable time. 

The effect of the parameters on the CPU times is close to that of Branch and 

Bound Algorithm. The CPU times are not as consistent as deviations. 

We also use CPLEX Algorithm to solve the Deadline Problem to optimality. 

We observe satisfactory CPU times, even better than our Branch and Bound 

Algorithm for the test instances. The average CPU times of the CPLEX Algorithm 

and our Branch and Bound Algorithm are tabulated in APPENDIX C. 

We finally compare the performance of our heuristics with that of Akkan et 

al. (2005a). The average CPU times and % deviations with respect to different CI, θ 

and CNC values are reported in Table 5.16, below. The average deviations are 

relative to optimal solutions for our algorithms. Akkan et al. (2005a) report the 

deviations relative to their lower bounds, as the optimal solutions are not available, 

so they can be interpreted as upper bounds on actual deviations. The software and 

hardware used in our study and Akkan et al.’s (2005a) study are compatible; hence 

the CPU times are comparable. 

As can be observed from Table 5.16, in all problem combinations, our 

Improvement Heuristics return better average deviations and smaller CPU times than 

that of Akkan et al. (2005a). The Branch and Bound Based Heuristic, finds much 

better solutions when compared to all heuristics including Akkan et al. (2005a)’s 

however at an expense of higher CPU times. 
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Table 5.16: Comparison of Heuristics 

 Avg. CPU Times (in seconds) 
CI Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a) 
13 0.02 0.56 103.37 5.57 
14 0.02 0.56 114.49 5.29 

     
 Avg. % Deviations 

CI Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a) 
13 4.59 2.41 0.68 7.44 
14 3.35 1.71 0.40 6.21 

     
 Avg. CPU Times (in seconds) 

θ Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a) 
0.15 0.03 0.95 306.03 7.45 
0.30 0.03 0.69 94.65 5.62 
0.45 0.02 0.41 28.29 4.68 
0.60 0.02 0.21 6.74 3.96 

     
 Avg. % Deviations 

θ Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a) 
0.15 3.97 2.24 0.76 8.47 
0.30 4.20 2.37 0.75 7.54 
0.45 4.19 1.91 0.46 6.42 
0.60 3.51 1.72 0.17 4.85 

     
 Avg. CPU Times (in seconds) 
CNC Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a) 

5 0.02 0.17 21.21 2.98 
6 0.02 0.43 119.31 4.67 
7 0.03 0.64 84.99 6.24 
8 0.03 1.01 210.21 7.81 

     
 Avg. % Deviations 
CNC Imp. Heur 1 Imp. Heur 2 BaB Heur 1 Akkan et al. (2005a) 

5 2.88 1.57 0.46 5.59 
6 4.14 2.17 0.44 6.77 
7 4.01 2.26 0.64 7.38 
8 4.85 2.23 0.61 7.54 
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5.4.2 Time/Cost Curve Problem 

We generate and solve 30 problem instances to test the performance of our 

Branch and Bound Algorithm for the Time/Cost Curve Problem in generating all 

efficient solutions. The detailed results of all instances are tabulated in APPENDIX 

D. We report the average and maximum results in Table 5.17. The table reports the 

average number of efficient solutions, i.e., the average number of problems solved 

for each problem instance. The table also includes the average and maximum CPU 

times spent for each efficient solution and for all efficient solutions of an instance. In 

all problem combinations, we set CNC to 2 and change CI value to generate 

problems of different sizes. 

Table 5.17: Time/Cost Curve Problem CPU Times (in seconds) 

    All Efficient Solutions One Efficient Solution 

CI CNC N 
Avg. # 
of eff. 

Avg. CPU 
Time 

Max. CPU 
Time 

Avg. CPU 
Time 

Max. CPU 
Time 

0 2 [29,30] 764.10 4673.71 16008.66 5.21 13.82 
[4,7] 2 [34,38] 624.70 9436.60 13872.86 15.23 22.26 
[9,11] 2 [38,42] 373.50 18069.60 74244.77 41.80 146.73 

 

 

The number of efficient solutions is affected by the magnitudes of the 

activity durations and cost figures. We could not observe the effect of the number of 

the activities in the number of efficient solutions. 

It can be observed from the table that the average time of obtaining an 

efficient solution is affected by the number of activities, i.e., the CI value. When CI 

is smaller, we solve the Deadline Problem easier; hence obtain an efficient solution 

quicker. Note that when CI=0, the average time to obtain an efficient solution is 5.21 

CPU seconds. When CI is between 9 and 14, the average time for an efficient 

solution is 32.74 CPU seconds. 

The total time of obtaining an efficient set is influenced by the number of 

efficient solutions and the time of obtaining an efficient solution.  
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CHAPTER 6 

6 CONCLUSIONS 

In this thesis, we consider a Discrete Time/Cost Trade-off Problem. We 

study two versions of the problem: minimizing total cost subject to a given deadline 

and generating all efficient solutions relative to the total cost and project duration 

criteria, i.e., solving Time/Cost Curve Problem. In the literature, there are some 

studies that tackle with Deadline and Time/Cost Curve Problems. However, none of 

them could solve problem instances with more than 50 activities, optimally. Hence 

efficient solution procedures are required to solve large-sized problem instances. 

Recognizing this fact, we develop some efficient solution procedures for both 

problems. For the Deadline Problem, we propose a Branch and Bound Algorithm 

that uses Linear Programming Relaxation based lower bounds. We also develop 

several heuristic procedures that are based on Linear Programming Relaxation and 

branch and bound scheme. To generate all efficient solutions, i.e., to solve 

Time/Cost Curve Problem, we use the Deadline Problem for all possible realizations 

of the project duration. 

To reduce the size of the Deadline Problem, we generate some mode 

elimination mechanisms. Moreover, we benefit from the optimal Linear 

Programming solutions to define some properties of the optimal and near optimal 

solutions. 

Our computational results with up to about 150 activities and 10 modes have 

revealed the satisfactory behavior of our Branch and Bound Algorithm used to solve 

the Deadline Problem. We observe that the efficiency of the algorithm is affected by 

the number of activities and the tightness of the deadline value. 

Our heuristic procedures generate solutions that deviate from the optimal 

solutions by no more than ten percent on average. The two-step heuristic procedure, 

which constructs an initial feasible solution and makes improvements by 

interchanges, runs in polynomial time. Hence it generates quick solutions. Branch 

and Bound Based Heuristic procedure generates higher quality solutions, but at an 
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expense of increased solution times. So, the decision maker should prefer the two-

step procedure if the speed of obtaining solutions is more essential. If quality, is 

more important then Branch and Bound Based solutions should be favored. 

We also perform an experiment to test the efficiency of the algorithm to 

generate all efficient solutions. As the Deadline Problem could be solved optimally 

with up to 150 activities, we could generate all efficient solutions for 150 activity 

problems. In our experiments, we see that the number of the efficient solutions is in 

hundreds for about 40 activity problems; hence we prefer to limit our runs to 40 

activities. 

We hope our work stimulates some further research work in project 

scheduling. Some noteworthy of future research directions can be listed as follows:  

• Solving the Budget Problem, i.e., minimizing project duration subject to 

a constraint on total cost. 

• Incorporating resource-constraints: We assume there are unlimited 

resources, however in many practical situations there may be limited 

resources for which the activities compete. 

• Considering the continuous version of the problem: The continuous 

version of our problem with linear time/cost relation has been solved 

polynomial time. Further research may consider nonlinear continuous 

time/cost functions. 
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APPENDIX A 

A. NUMERICAL EXAMPLE ON HEURISTICS 

Table A.1 below shows the precedence relations and modes of activities of a 

29-activity sample network.  

Table A.1: Data for the Example Instance 

Activity Successors Modes 
1 3, 4   116-6; 69-524; 56-679; 52-722;15-1043 
2 10, 11   109-8; 98-78; 80-231; 73-307; 55-492; 32-773 
3 5, 6   118-6; 113-81; 69-681; 59-820; 54-883; 3-1486 
4 10, 11    98-11; 20-89 
5 7, 8    65-9; 47-84; 39-109 
6 10, 11    96-5; 88-72; 85-104; 47-462; 7-835 
7 9    87-10; 42-230; 30-277; 9-410 

8 10, 11 
  118-15; 94-121; 88-149; 81-164; 74-181; 64-235; 61-254; 20-

590; 6-713 
9 10, 11   118-10; 103-95; 98-137; 94-181; 74-419; 31-877 
10 12, 13   114-8; 94-97; 82-164; 51-380; 44-449; 36-514; 15-748 
11 17, 18    98-9; 72-121; 21-325; 9-388 
12 14, 15    48-5; 43-25; 31-52 

13 17, 18 
  120-10; 112-167; 110-211; 97-466; 59-1190; 40-1545; 38-

1579; 17-1886; 11-1982 

14 16 
  119-12; 109-157; 100-307; 82-610; 78-671; 49-1175; 42-

1300; 30-1509; 17-1773; 13-1844 

15 17, 18 
  109-13; 87-339; 74-550; 67-650; 55-818; 54-835; 44-1003; 

29-1247; 7-1615 
16 17, 18    88-9; 68-104; 44-201; 30-271 
17 19, 20   116-15; 44-386; 41-407; 21-526 
18 30   114-8; 64-330 
19 21, 22    85-6; 78-50; 62-162; 48-275; 19-472 

20 30 
  119-13; 117-83; 94-839; 80-1286; 64-1773; 56-2010; 53-

2098; 45-2331; 15-3181; 8-3383 
21 23, 24, 25    87-7; 51-228 
22 30   118-8; 106-61; 81-226; 43-561; 35-609 
23 26    28-13; 25-16 
24 27, 28   120-13; 112-55; 82-140; 64-198; 57-229; 32-408 
25 30   104-7; 78-176; 8-579 
26 27, 28   103-13; 94-78; 90-106; 86-132; 31-513 
27 29    96-12; 75-33 
28 30   117- 6; 105-166; 71-608; 58-816; 7-1554; 5-1577 
29 30   115-10; 112-41; 85-321; 77-414; 68-496; 66-517; 13-1001 
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We find that 1503MAXT = ; 421MINT =  The instance is solved for 0.15=θ , 

i.e.,  ( ) 583MIN MAX MINt T T T= + − =θ . The fractional variables of LP Relaxation 

solution are listed as follows:  

Table A.2: Fractional Variables of the LP Relaxation 

Objective Function Value: 
7755.86 

Fractional Variables 
y8,1                          0.068 
y8,5                          0.931 
y9,4                          0.587 
y9,6                          0.412 
y24,5                          0.960 
y24,6                          0.040 
y29,1                         0.284 
y29,7                         0.715 

. 

The activity durations of LP solution, i.e., 
1

im
LP
i ik ik

k

t t y
=

= ×∑ are computed 

below. 

8 0.068 118 0.931 74 77LPt = × + × =  

9 0.587 94 0.412 31 68LPt = × + × =  

24 0.96 57 0.04 32 56LPt = × + × =  

29 0.284 115 0.715 13 42LPt = × + × =  

The longest modes that are no shorter than LP
it  are listed below, 

8,5 8 8,5

9,6 9 9,6

24,6 24 24,6

29,7 29 29,7

74 77; 1

31 68; 1

32 56; 1

13 42; 1

LP

LP

LP

LP

t t y

t t y

t t y

t t y

= < = =

= < = =

= < = =

= < = =

 

The upper bound is found as follows: 

1
1

8629
im

ik ik
k

UB c y
=

= × =∑  

Improvement Heuristic 1 finds the improvement amounts for all activities as 
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1 1, , 1k i kIA c c −= −  for k’s such that , 1i ky =  

Table A.3 reports IAi values for all i. 

Table A.3: Initial Improvements in Improvement Heuristic 1 

Activity Mode Improvement Amount 
1 5 321 
2 1 0 
3 6 603 
4 1 0 
5 3 25 
6 1 0 
7 4 133 
8 5 17 
9 6 458 

10 7 234 
11 1 0 
12 3 27 
13 1 0 
14 2 145 
15 1 0 
16 4 70 
17 4 119 
18 1 0 
19 5 197 
20 1 0 
21 2 221 
22 1 0 
23 2 3 
24 5 179 
25 1 0 
26 5 381 
27 2 21 
28 1 0 
29 7 484 

 

All activities with positive improvement amounts are put in set PI and the 

activity with maximum improvement in PI is selected; J=3; IA3 =603. 
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The mode of Activity 3 is decreased from 6 to 5. The project duration is 

calculated with CPM. 631 583T t= > = . Note that the solution is infeasible. Then 

mode of Activity 3 is increased to 6 and it is removed from PI.  

The activity in PI with the maximum improvement is selected; J=29; IA29 

=484. 

The mode of Activity 29 is decreased from 7 to 6. Project duration is 

calculated with CPM. 604 583T t= > = . Solution is infeasible. The mode of Activity 

29 is increased to 6. Activity 3 is removed from PI.  

Below Table A.4 summarizes all iterations. 

Table A.4: Summary of the Execution of the Improvement Heuristic 1 

Iter. J IAJ T  Imp. PI 
1 3 603 631 - {1,3,5,7,8,9,10,12,14,16,17,19,21,23,24,26,27,29} 
2 29 484 604 - {1,5,7,8,9,10,12,14,16,17,19,21,23,24,26,27,29} 
3 9 458 589 - {1,5,7,8,9,10,12,14,16,17,19,21,23,24,26,27} 
4 26 381 635 - {1,5,7,8,10,12,14,16,17,19,21,23,24,26,27} 
5 1 321 617 - {1,5,7,8,10,12,14,16,17,19,21,23,24,27} 
6 10 234 601 - {5,7,8,10,12,14,16,17,19,21,23,24,27} 
7 21 221 616 - {5,7,8,12,14,16,17,19,21,23,24,27} 
8 19 197 609 - {5,7,8,12,14,16,17,19,23,24,27} 
9 24 179 581 179 {5,7,8,12,14,16,17,23,24,27} 

10 14 145 591 - {5,7,8,12,14,16,17,23,24,27} 
11 7 133 581 133 {5,7,8,12,16,17,23,24,27} 
12 17 119 601  {5,7,8,12,16,17,23,24,27} 
13 16 70 595 - {5,7,8,12,16,23,24,27} 
14 7 47 591 47 {5,7,8,12,23,24,27} 
15 7 220 625 - {5,7,8,12,23,24,27} 
16 24 31 588 - {5,8,12,23,24,27} 
17 12 27 593 - {5,8,12,23,27} 
18 5 25 589 - {5,8,23,27} 
19 27 21 581 21 {8,23,27}* 
20 8 17 588 - {8,23} 
21 23 3 583 3 {23}* 

  

At each iteration the activity is shown in column J, improvement amount is 

shown in column IAJ, the project duration after the corresponding mode change is 

tabulated in column T . The associated solution is feasible, if the improvement 

amount is reported in column Imp. The Set PI is shown in column PI. We observe 
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the first successful mode change in the 9th iteration where the mode of Activity 24 is 

decreased from 5 to 4. Note that, 581 583T t= < =  and Activity 24 is not removed 

from PI. On the other hand, on iterations 19 and 21 the activities 27 and 23 are 

removed from PI respectively. From Table A.3 we observe that Activities 27 and 23 

are at their 2nd modes, i.e., they can be moved only once. Moreover, observe that 

Activity 7 is moved 2 times but its third movement in iteration 15 produces an 

infeasible schedule. When PI becomes an empty set we calculate the upper bound 

value, as 

2
1

8246
im

ik ik
k

UB c y
=

= × =∑  

Note that the difference UB2 – UB1 =383 is the total improvement amount 

made by the Improvement Heuristic 1. 

We then apply Improvement Heuristic 2 to the same problem instance with 

deadline setting 0.30=θ , i.e., ( ) 745MIN MAX MINt T T T= + − =θ . We calculate the 

improvements for each activity pair in the solution of Improvement Heuristic 1. At 

the end of the Improvement Heuristic we found out that 2 5962UB = . Since there are 

too many activity pairs ( 29 28× ), we only show improvement calculations for the 

Activity 8, in Table A.5 below.  

Activity 8 is currently assigned to its 2nd mode. From Table A.1 we know 

that c8,2=121 and c8,1=15; c8,3=149. Activity 1 has 5 modes and it is assigned to its 

5th mode. From Table A.1 we know that c1,5=1043 and c1,4=722. Since Activity 1 is 

assigned to its last mode, its mode cannot be increased. Imp(8,1) is the improvement 

obtained when Activity 8 is assigned to its 3rd mode; and Activity 1 is assigned to its 

4th mode, i.e., ( ) ( )Imp(8,1)= 1043 722 121 149 293− + − =  

Since, Activity 8 and 2 are not on the same path; improvement of Activity 8-

2 pair is not calculated. Activity 3 is assigned to its 1st mode. Hence, its mode 

cannot be decreased any further. From Table A.1 we know that c3,1=6 and c3,2=81. 

Thus, ( ) ( )Imp(3,8)= 121 15 6 81 31− + − =  

All remaining improvements are calculated similarly. Table A.5 below gives 

the improvement amounts of all pairs with Activity 8. The mode column indicates 

the current mode of the corresponding activity. Note that all activities which are 

currently assigned to their first modes cannot yield to an improvement. Moreover, 
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improvements for activities 2, 4, 6, 7 and 9 are not calculated since they are not 

located on the same path with Activity 8. 

After all improvements are calculated Improvement Heuristic 2 executes like 

Improvement Heuristic 1. The mode change with the maximum improvement 

amount is selected. The feasibility of the mode change is checked. If mode change is 

feasible, the mode change is realized. Otherwise, the improvement of the 

corresponding mode change is set to zero. Algorithm terminates when there are not 

any positive improvement mode changes.  

Table A.5: Improvements of Activity 8 at Improvement Heuristic 2 

Activity (J) Mode Imp(J,8) Imp(8,J) 
1 5 0 293 
2 1 - - 
3 1 31 0 
4 1 - - 
5 3 0 -3 
6 1 - - 
7 4 - - 
8 2 - - 
9 2 - - 

10 7 0 206 
11 1 -6 0 
12 3 0 -1 
13 1 -51 0 
14 1 -39 0 
15 1 -220 0 
16 4 0 42 
17 4 0 91 
18 1 -216 0 
19 5 0 169 
20 1 36 0 
21 2 0 193 
22 1 53 0 
23 2 0 -25 
24 5 -73 3 
25 1 -63 0 
26 5 0 353 
27 1 85 0 
28 1 -54 0 
29 7 0 456 
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Improvement Heuristic 2 makes 202 iterations and makes the single feasible 

move at the 99th iteration. Mode of the Activity 8 is decreased to 1 and mode of 

Activity 3 is increased to 2. Move is feasible as 745 745T t= ≤ =  and the 

improvement is 31 as Imp(3,8) 31= . We calculate the upper bound value, as 

3
1

5931
im

ik ik
k

UB c y
=

= × =∑  

Note that the difference UB3 – UB2 =31 is the total improvement amount 

made by the Improvement Heuristic 2 
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APPENDIX B 

A. PRELIMINARY RUN RESULTS OF HEURISTIC BRANCH AND 

BOUND ALGORITHM 2 

Table B.1: Average CPU Times and Deviations of 4 Small-Sized 

Instances 

  Average CPU Times (in seconds) 

θ 
Average % 
Deviations Heuristic BAB Exact BAB 

0.15 6.14 5.75 10.73 
0.30 2.80 7.14 3.97 
0.45 1.85 6.71 9.28 
0.60 2.17 2.21 4.54 
0.75 0.50 0.55 1.13 
0.90 4.34 0.22 0.23 

  

Table B.2: Average CPU Times and Deviations of the Large-Sized 

Instance 

  CPU Times (in seconds) 
θ  % Deviations Heuristic BAB Exact BAB 

0.15 4.65 3600.04 493.67 
0.30 0.69 773.73 124.88 
0.45 12.67 678.46 6.03 
0.60 0.00 5.17 3.09 
0.75 7.75 2.95 0.36 
0.90 6.57 0.09 0.39 
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APPENDIX C 

A. CPLEX AND BRANCH AND BOUND ALGORITHM CPU TIMES 

Table C.1: CPLEX and Branch and Bound Algorithm CPU Times (in 

seconds) for CI=13 Instances 

    Cplex Branch and Bound 

CI CNC N θ 

Avg. 
CPU 
Time 

Max. CPU 
Time 

Avg. 
CPU 
Time 

Max. 
CPU 
Time 

0.15 4.70 11.58 1109.42 2921.73 
0.30 0.78 2.22 109.83 402.92 
0.45 0.28 0.92 42.96 169.20 
0.60 0.09 0.16 2.45 4.30 
0.75 0.06 0.09 0.81 1.81 

13 5 85 

0.90 0.06 0.08 0.32 1.14 
0.15 68.93 351.44 2702.21 3600.05 
0.30 29.08 189.97 1961.88 3600.05 
0.45 1.67 3.31 470.44 1822.83 
0.60 0.16 0.27 9.36 52.25 
0.75 0.10 0.14 1.55 3.33 

13 6 102 

0.90 0.08 0.11 0.78 1.59 
0.15 796.42 3601.36 2700.92 3600.06 
0.30 25.08 112.14 2032.41 3600.05 
0.45 1.26 5.16 624.79 3600.02 
0.60 0.27 0.53 22.59 108.52 
0.75 0.12 0.24 2.67 5.14 

13 7 [117,119] 

0.90 0.10 0.13 0.78 1.89 
0.15 164.78 616.81 2408.18 3600.06 
0.30 3.66 14.20 1046.96 3600.03 
0.45 0.53 0.97 152.93 356.63 
0.60 0.23 0.33 28.64 89.97 
0.75 0.16 0.23 4.09 10.06 

13 8 [128,129] 

0.90 0.10 0.19 0.45 1.02 
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Table C.2: CPLEX and Branch and Bound Algorithm CPU Times (in 

seconds) for CI=14 Instances 

    Cplex Branch and Bound 

CI CNC N θ 

Avg. 
CPU 
Time 

Max. CPU 
Time 

Avg. 
CPU 
Time 

Max. 
CPU 
Time 

0.15 0.76 2.22 102.35 246.95 
0.30 0.30 0.89 63.23 157.58 
0.45 0.14 0.33 36.32 239.61 
0.60 0.11 0.24 6.28 20.64 
0.75 0.08 0.16 2.91 12.38 

14 5 85 

0.90 0.05 0.08 0.39 1.05 
0.15 16.40 59.47 1626.30 3600.03 
0.30 0.56 1.13 64.64 156.64 
0.45 0.29 0.95 31.62 166.64 
0.60 0.11 0.19 7.21 23.73 
0.75 0.08 0.14 0.80 1.70 

14 6 102 

0.90 0.07 0.11 0.60 1.45 
0.15 84.25 482.03 2253.89 3600.06 
0.30 2.82 13.45 956.94 3600.03 
0.45 0.30 0.61 40.93 161.89 
0.60 0.18 0.36 17.62 80.83 
0.75 0.11 0.24 9.60 80.80 

14 7 [116,119] 

0.90 0.09 0.13 0.51 1.58 
0.15 84.13 267.13 2967.47 3600.08 
0.30 5.42 11.30 1789.93 3600.06 
0.45 0.73 2.06 170.80 494.80 
0.60 0.25 0.38 18.28 50.02 
0.75 0.17 0.27 7.05 38.75 

14 8 [128,136] 

0.90 0.10 0.13 1.03 4.91 
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APPENDIX D 

A. DETAILED RESULTS OF TIME/COST CURVE PROBLEM 

Table D.6: Time/Cost Curve Results 

CI CNC N 

# of 
efficient 
solutions 

Total time (in 
seconds) 

Average efficient 
solution time (in 
seconds) 

29 854 4848.72 5.68 
29 683 3326.16 4.87 
29 1211 11643.19 9.61 
29 500 1904.2 3.81 
30 1158 16008.66 13.82 
30 366 852.73 2.33 
29 751 1428.33 1.9 
30 661 4719.17 7.14 
29 513 898.97 1.75 

0 2 

29 944 1107.02 1.17 
34 599 9455.97 15.79 
34 565 9560.63 16.92 
35 615 8113.95 13.19 
35 505 8165.8 16.17 
36 497 11061.8 22.26 
36 624 7921.75 12.7 
35 965 13872.86 14.38 
38 554 7201.27 13 
37 739 12994.69 17.58 

4-7 2 

38 584 6017.34 10.3 
38 506 74244.77 146.73 
42 332 3104.23 9.35 
39 302 10918.7 36.15 
40 401 20250 50.5 
42 275 5880.8 21.38 
38 323 3986.39 12.34 
42 374 2949.27 7.89 
38 324 17365.06 53.6 
38 552 38292.97 69.37 

9-11 2 

38 346 3703.78 10.7 
 


