

2-D MESH-BASED MOTION ESTIMATION AND
VIDEO OBJECT MANIPULATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF

NATURAL AND APPLIED SCIENCES OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HÜSEY�N KAVAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2007

Approval of the thesis:

2-D MESH-BASED MOTION ESTIMATION AND VIDEO OBJECT
MANIPULATION

submitted by HÜSEY�N KAVAL in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen _____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. �smet Erkmen _____________________
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Gözde Bozda�ı Akar _____________________
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Mete Severcan _____________________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Gözde Bozda�ı Akar _____________________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Aydın Alatan _____________________
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Ça�atay Candan _____________________
Electrical and Electronics Engineering Dept., METU

Dr. �ener Yılmaz _____________________
Image Processing Dept., ASELSAN

Date: (07.09.2007)

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Last Name : Hüseyin KAVAL

 Signature :

 iv

ABSTRACT

2-D MESH-BASED MOTION ESTIMATION AND

VIDEO OBJECT MANIPULATION

Kaval, Hüseyin

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Gözde Bozda�ı AKAR

September 2007, 60 pages

Motion estimation and compensation plays an important role in video processing

applications. Two-dimensional block-based and mesh-based models are widely

used in this area. A 2-D mesh-based model provides a better representation of

complex real world motion than a block-based model.

Mesh-based motion estimation algorithms are employed in both frame-based and

object-based video compression and coding. A hierarchical mesh-based algorithm

is applied to improve the motion field generated by a single-layer algorithm. 2-D

mesh-based models also enable the manipulation of video objects which is

included in the MPEG-4 standard. A video object in a video clip can be replaced

by another object by the use of a dynamic mesh structure.

In this thesis, a comparative analysis of 2-D block-based and mesh-based motion

estimation algorithms in both frame-based and object-based video

representations is performed. The experimental results indicate that a mesh-

based algorithm produces better motion compensation results than a block-based

algorithm. Moreover, a two-layer mesh-based algorithm shows improvement over

 v

a one-layer mesh-based algorithm. The application of mesh-based motion

estimation and compensation to video object replacement and animation is also

performed.

Keywords: Mesh-Based Motion Estimation, Video Object Manipulation, MPEG-4,

2-D Animation, Hexagonal Matching Algorithm.

 vi

ÖZ

2 BOYUTLU ÖRGÜYE DAYALI DEV�N�M KEST�R�M� VE

V�DEO NESNE ��LEME

Kaval, Hüseyin

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü

Tez Yöneticisi: Doç. Dr. Gözde Bozda�ı AKAR

Eylül 2007, 60 sayfa

Devinim kestirimi ve dengelemesi video i�leme uygulamalarında önemli bir rol

oynamaktadır. �ki boyutlu blo�a dayalı ve örgüye dayalı modeller bu alanda

yaygın olarak kullanılmaktadır. �ki boyutlu örgüye dayalı bir model karma�ık

gerçek dünya devinimleri için blo�a dayalı bir modelden daha iyi bir gösterim

sa�lamaktadır.

Örgüye dayalı devinim kestirimi algoritmaları çerçeveye ve nesneye dayalı video

sıkı�tırma ve kodlamasında kullanılmaktadır. Sıradüzensel örgüye dayalı bir

algoritma, tek katmanlı bir algoritma tarafından üretilen devinim alanını

iyile�tirmek için uygulanmaktadır. �ki boyutlu örgüye dayalı modeller MPEG-4

standardında yer alan video nesne i�lemeye de olanak tanımaktadır. Dinamik bir

örgü yapısı kullanılarak bir video nesnesi ile ba�ka bir nesne yer

de�i�tirilebilmektedir.

Bu tez çalı�masında, iki boyutlu blo�a ve örgüye dayalı devinim kestirimi

algoritmalarının çerçeveye ve nesneye dayalı video gösterimlerinde

kar�ıla�tırmalı bir incelemesi gerçekle�tirilmi�tir. Deneysel sonuçlar örgüye dayalı

 vii

bir algoritmanın blo�a dayalı bir algoritmaya göre daha iyi devinim dengelemesi

sonuçları üretti�ini göstermektedir. Ayrıca, iki katmanlı örgüye dayalı bir algoritma

tek katmanlı örgüye dayalı bir algoritmaya göre iyile�tirme sa�lamaktadır. Örgüye

dayalı devinim kestirimi ve dengelemesinin video nesne yer de�i�imi ve

animasyona uygulaması da gerçekle�tirilmi�tir.

Anahtar Kelimeler: Örgüye Dayalı Devinim Kestirimi, Video Nesne ��leme,

MPEG-4, �ki Boyutlu Animasyon, Altıgene Dayalı E�le�tirme Algoritması.

 viii

 To my mother, my father, and Burak…

 ix

ACKNOWLEDGMENTS

I would like to thank my supervisor Assoc. Prof. Dr. Gözde Bozda�ı Akar for her

guidance and support throughout this thesis study. This work could not be

finished without her efforts and encouragements.

I would also like to thank my family and colleagues at Aselsan for their morale

support, help and understanding.

 x

TABLE OF CONTENTS

ABSTRACT ...…………………………………………………………………..IV

ÖZ ……………………………………………………………………………..VI

ACKNOWLEDGMENTS …………………………………………………………IX

TABLE OF CONTENTS ...…………………………………….…………………X

LIST OF TABLES …………………………………………………………….. XIII

LIST OF FIGURES …………………………………………………………….XIV

CHAPTER

 1. INTRODUCTION ………………………………………………………….1

 1.1. Problem Definition .. 1

 1.2. Scope of the Thesis .. 2

 1.3. Outline of the Thesis... 2

 2. 2-D MOTION ESTIMATION AND COMPENSATION ………………………3

 2.1. Introduction... 3

 2.2. Block-Based Motion Estimation .. 4

 2.2.1. Block Matching Algorithm.. 5

 2.3. 2-D Mesh-Based Motion Estimation.. 8

 2.3.1. 2-D Mesh Design .. 9

 2.3.2. Hexagonal Matching Algorithm ... 10

 2.3.3. Motion Compensation ... 12

 2.4. Hierarchical Motion Estimation ... 16

 2.4.1. Progressive Motion Estimation.. 17

 3. 2-D MESH-BASED VISUAL OBJECT REPRESENTATION 21

 3.1. Introduction... 21

 xi

 3.2. Video Object Extraction .. 21

 3.3. Object-Based 2-D Mesh Design.. 23

 3.3.1. Boundary Node Selection ... 23

 3.3.2. Interior Node Selection ... 26

 3.3.2.1. Regular Mesh Approach.. 26

 3.3.2.2. Content-Based Mesh Approach 26

 3.3.3. Triangulation ... 28

 3.3.3.1. Regular Mesh Approach.. 29

 3.3.3.2. Content-Based Mesh Approach 30

 3.4. Object-Based Motion Estimation... 31

 3.4.1. Initial Estimation by Block Matching 31

 3.4.2. Mesh Refinement by Polygonal Matching 33

 3.4.3. Progressive Motion Estimation.. 34

 3.5. Video Object Manipulation .. 35

 3.5.1. Object Transfiguration... 36

 3.5.2. Augmented Reality.. 36

 3.5.3. Spatio-Temporal Interpolation... 37

 4. EXPERIMENTAL RESULTS ...38

 4.1. Introduction... 38

 4.2. The Experiments .. 39

 4.2.1. Experiment 1: 2-D Frame-Based Motion Estimation and
Compensation for “Suzie” Sequence .. 40

 4.2.2. Experiment 2: 2-D Object-Based Motion Estimation and
Compensation for “Suzie” Sequence .. 45

 4.2.2.1. Comparison of Block-Based and Regular Mesh-Based
Algorithms .. 45

 4.2.2.2. Comparison of Content-Based and Regular Mesh-Based
Algorithms .. 48

 4.2.3. Experiment 3: Video Object Manipulation for “Bream”
Sequence ... 52

 xii

 4.2.3.1. The Augmented Reality Application........................... 53

 4.2.3.2. The Spatial Interpolation Application 54

 5. CONCLUSION AND FUTURE WORK ……………………………………56

REFERENCES …………………………………………………………………58

 xiii

LIST OF TABLES

TABLES

Table 4.1 – Frame-Based Motion Estimation Parameters for the Block-Based and

Regular Mesh-Based Algorithms..41

Table 4.2 – Average PSNR Values for All 150 Frames of “Suzie” Sequence42

Table 4.3 – Average PSNR Values for Frames 11 to 30 of “Suzie” Sequence43

Table 4.4 – Average PSNR Values for Frames 41 to 60 of “Suzie” Sequence44

Table 4.5 – Average PSNR & Entropy Values for Frames 11 to 30 of “Suzie”

Sequence...47

Table 4.6 – Average PSNR & Entropy Values for Frames 41 to 60 of “Suzie”

Sequence...48

Table 4.7 – Average PSNR & Entropy Values for Frames 11 to 30 of “Suzie”

Sequence...51

Table 4.8 – Average PSNR & Entropy Values for Frames 41 to 60 of “Suzie”

Sequence...52

 xiv

LIST OF FIGURES

FIGURES

Figure 2.1 – Block Matching Algorithm..6

Figure 2.2 – Block Motion Field...7

Figure 2.3 – Mesh-Based Motion Estimation...8

Figure 2.4 – Regular Mesh Examples ...9

Figure 2.5 – A Content-Based Mesh ...10

Figure 2.6 – Hexagonal Mesh Refinement ..11

Figure 2.7 – Affine Mapping of Patches ..13

Figure 2.8 – Bilinear Interpolation ...14

Figure 2.9 – Assignment of Pixels to Triangles..15

Figure 2.10 – Progressive Motion Estimation Layers...18

Figure 2.11 – Single-Layer Mesh Refinement ...18

Figure 2.12 – Approximated Frame Difference..19

Figure 2.13 – Motion-Active Regions ..20

Figure 2.14 – Second Layer Denser Mesh..20

Figure 3.1 – Thresholding ...22

Figure 3.2 – Manual Object Extraction ..22

Figure 3.3 – Classification of Grid Points...24

Figure 3.4 – Movement of “Close” Points ..25

Figure 3.5 – Determination of Boundary Nodes...25

Figure 3.6 – Image Derivatives ...27

Figure 3.7 – Interior Node Selection..28

Figure 3.8 – Triangulation – Regular Mesh Approach ...30

 xv

Figure 3.9 – Triangulation – Content-Based Mesh Approach30

Figure 3.10 – Candidate Search Blocks for Different Node Locations32

Figure 3.11 – Grid Point Examples..33

Figure 3.12 – Polygonal Mesh Refinement..34

Figure 3.13 – Approximated Frame Difference..35

Figure 4.1 – The Graphical User Interface ..38

Figure 4.2 – Comparison of PSNR Values for All 150 Frames of “Suzie” Sequence

...42

Figure 4.3 – Comparison of PSNR Values for Frames 11 to 30 of “Suzie”

Sequence...43

Figure 4.4 – Comparison of PSNR Values for Frames 41 to 60 of “Suzie”

Sequence...44

Figure 4.5 – Comparison of PSNR Values for Frames 11 to 30 of “Suzie”

Sequence...46

Figure 4.6 – Comparison of Entropy Values for Frames 11 to 30 of “Suzie”

Sequence...46

Figure 4.7 – Comparison of PSNR Values for Frames 41 to 60 of “Suzie”

Sequence...47

Figure 4.8 – Comparison of Entropy Values for Frames 41 to 60 of “Suzie”

Sequence...48

Figure 4.9 – Comparison of PSNR Values for Frames 11 to 30 of “Suzie”

Sequence...50

Figure 4.10 – Comparison of Entropy Values for Frames 11 to 30 of “Suzie”

Sequence...50

Figure 4.11 – Comparison of PSNR Values for Frames 41 to 60 of “Suzie”

Sequence...51

Figure 4.12 – Comparison of Entropy Values for Frames 41 to 60 of “Suzie”

Sequence...52

Figure 4.13 – Mesh Tracking on “Bream” Sequence ...53

 xvi

Figure 4.14 – Augmentation on “Bream” Sequence. ...54

Figure 4.15 – Spatial Interpolation on “Bream” Sequence..55

 1

CHAPTER 1

INTRODUCTION

1.1. Problem Definition

Motion estimation and compensation plays an important role in video processing

applications. Motion estimation is the process of finding a set of motion vectors to

represent the movement of video objects in an image sequence. Motion

compensation uses this motion information to predict a frame from another frame.

It is often employed in video compression. Since successive video frames contain

similar objects, motion estimation and compensation yields good compression

results by removing temporal redundancy.

Two-dimensional block-based and mesh-based models have traditionally been

used in motion estimation and compensation. A 2-D mesh-based model is

powerful for representing the complex real world motion. The main problems in a

2-D mesh-based model are designing the mesh and estimating the motion vectors

of the nodes. Motion compensation using the estimated motion vectors is also

required in video compression applications [3, 8].

The use of 2-D mesh-based models for object-based video representation is

recommended in the MPEG-4 standard. MPEG-4 allows compression and

manipulation of video objects in a scene separately. Thus, extraction of

semantically meaningful video objects becomes a fundamental problem in object-

based video representation. Shape and motion modeling of video objects are the

other problems that need to be addressed [3, 4, 19].

2-D mesh-based models also enable the manipulation of video objects.

Replacement of a video object in a video clip by another object, and merging

computer generated images with real images to create enhanced display

information are some examples of video object manipulation. In these

 2

applications, the design and accurate tracking of a 2-D video object mesh are

required [3].

1.2. Scope of the Thesis

The study described in this thesis is three-fold. First, several 2-D block-based and

mesh-based motion estimation methods are compared in frame-based video

representation. Then, the use of these methods in object-based video

representation is investigated. Finally, application of 2-D mesh-based motion

estimation and compensation to video object manipulation is performed.

1.3. Outline of the Thesis

This thesis consists of five chapters; and references are presented at the end of

the thesis.

In Chapter 1, problem definition and scope of the thesis are presented.

In Chapter 2, two-dimensional motion estimation and compensation methods are

described.

In Chapter 3, adaptation of 2-D mesh-based models to visual object

representation is investigated.

In Chapter 4, results of the experiments for the presented algorithms and the

applications are presented.

In Chapter 5, conclusions on this study and future work are discussed.

 3

CHAPTER 2

2-D MOTION ESTIMATION AND COMPENSATION

2.1. Introduction

2-D motion estimation is often viewed as an initial step for 3-D motion analysis.

Besides, it has other applications such as video filtering, video compression, etc.

Depending on the type of application motion estimation techniques may differ. For

instance, in a video compression application, the estimated motion vectors are

used to predict a frame to be coded from a previously coded reference frame. In

this case, the goal is to minimize the number of bits used in video coding while

providing a good estimation of the real motion. Hence, there is a trade-off and a

motion estimation method must be chosen accordingly [6].

2-D dense motion estimation methods can be classified as pel-recursive, optical

flow equation-based, Bayesian and block-based methods [5]. Pel-recursive

methods estimate the motion pixel-by-pixel. They are simple but they have low

motion estimation accuracy. For this reason, they are rarely used in today’s

codecs [6]. Optical flow equation-based methods produce smooth motion fields

but they have a bad performance in terms of the PSNR [8]. Bayesian methods

employ probabilistic smoothness constraints to predict the motion vectors.

Although they produce good motion estimation results, their main drawback is the

high amount of computations required [5, 8].

Block-based motion estimation has been a popular motion estimation method due

to its simplicity and satisfactory results in many video sequences. One problem

with this approach is that the generated motion field is often not smooth because

of the independent motion estimation of adjacent blocks. Hence, this results in

blocking artifacts in low-bit-rate video compression [3, 6].

 4

Mesh-based motion estimation overcomes the problem of blocking artifacts. It

produces a continuous motion field by constraining the movement of adjacent

patches. Mesh-based model also allows representation of complex motion such

as zooming and rotation [2, 3, 6, 24].

2-D motion estimation methods can also be classified as backward or forward

estimation. In the block-based motion estimation case, backward estimation refers

to searching a block of pixels of the current frame in a previous reference frame to

find the best matching block. In the mesh-based approach, backward estimation

refers to searching the node points of the current frame in a previous reference

frame to find the best matching positions. On the other hand, in forward

estimation, node points are defined in the reference frame and searched for best

matching positions in the current frame. Forward estimation is suitable for tracking

image features through the video sequence but at the expense of complexity.

Backward estimation is widely used due to the lower computational requirements

of the mapping process [1-3].

In the following sections, first, block-based motion estimation is described. Then

the mesh-based motion estimation approach is discussed. Finally, the hierarchical

motion estimation concepts and a technique for performing hierarchical mesh-

based motion estimation are presented.

2.2. Block-Based Motion Estimation

Block-based motion estimation is a popular motion estimation approach. It is

widely used in digital video applications. Block-based motion estimation and

compensation is also adopted in international video compression standards such

as MPEG 1 and 2 [5].

In the block motion model, an image is partitioned into small blocks which are

usually chosen as rectangles. In general, two types of motion are considered for

these blocks; simple 2-D translation or various 2-D deformations. The advantage

of the translational motion model is the low overhead to represent the motion field

since one motion vector is sufficient for each block. However, it fails to represent

complex motion such as zooming and rotation. For this reason, deformable

motion models can be employed for better adaptation to those kinds of motion at

the expense of higher overhead for motion representation [5, 6].

 5

The block matching algorithm (BMA) is considered as the most popular block-

based motion estimation method which adopts the translational motion model

[14]. It is fast and simple requiring less complex hardware. For this reason, it is

utilized in MPEG 1 and 2 codecs. The generalized block matching algorithm is a

sophisticated alternative to classical block matching. It employs deformable

blocks which provide a better representation of the underlying motion. However,

this is achieved at the expense of an increase in the complexity of the motion

estimation process. The hierarchical block matching algorithm also provides an

improved motion representation by employing a layered motion estimation

technique as described in Section 2.4 [5, 6].

In our studies, we have used block-based motion estimation to produce a fast

initial estimation of the motion vectors which are then refined by a mesh-based

motion estimation technique. As a result, the block matching algorithm has been

employed due to its low computational requirements. The following section

describes this algorithm.

2.2.1. Block Matching Algorithm

In the block matching algorithm, first, the current frame is segmented into fixed

sized rectangular blocks. Then, each block is searched independently of each

other in a reference frame to find a matching block. Finally, the displacement

vectors for all blocks are obtained. The procedure is illustrated in Figure 2.1.

As shown in the figure, the search is performed only in a limited area called the

search window. This limitation reduces the computational complexity. In the case

of smooth transitions between the frames, a small search window can be applied

to minimize the time required for computations.

 6

Figure 2.1 – Block Matching Algorithm

There exist several matching criteria for matching of blocks. Jain and Jain [14]

used the mean square error (MSE). However, the MSE implementation is not

simple due to the square operation included. Moreover, according to Srinivasan

and Rao [16], the matching criterion has no significant effect on the search.

Therefore, the mean absolute difference (MAD) is recommended due to its

implementation simplicity [15]. The MSE and MAD are defined as

[]��
= =

− ++−=
M

m

N

n
kk jnimsnms

MN
jiMSE

1 1

2
1),(),(

1
),((2.1)

��
= =

− ++−=
M

m

N

n
kk jnimsnms

MN
jiMAD

1 1
1),(),(

1
),((2.2)

where sk(m, n) is the luminance value of the pixel (m, n) in frame k, (m+i, n+j)

denotes a candidate block position in the search window, and M x N is the block

size.

All candidate blocks in the search window are compared in terms of the MAD

values and the one with the minimum MAD is selected as the best matching

block. This matching procedure is applied to all of the blocks in the current frame.

Finally, a motion field composed of each block’s displacement vector is generated

as shown in Figure 2.2.

 7

Figure 2.2 – Block Motion Field

In a video compression application, this motion field is used to synthesize a

predicted image by motion compensation. The prediction is performed block-by-

block, i.e. the intensities of pixels in a block are predicted from the corresponding

pixels in the matching block.

The block matching algorithm is simple to implement and yields good results for

many video sequences which contain translational motion. However, it suffers

from representing rotational motion, zooming, etc. Besides, block-by-block

prediction generates visual artifacts. Smaller blocks may be used for better motion

modeling and to reduce the visual artifacts but this results in high bit rates in

coding. A better alternative; mesh-based motion estimation is discussed in the

next section.

In our implementations, we have used the block matching algorithm to generate a

fast initial estimation of the motion field which is then refined by the mesh-based

algorithms. In addition, we have applied motion compensation using the motion

vectors produced by block matching to compare the algorithm with the mesh-

based algorithms in terms of the PSNR, and entropy. These comparisons are

presented in the Experimental Results Chapter in detail.

 8

2.3. 2-D Mesh-Based Motion Estimation

Mesh-based motion estimation and compensation is an advanced video

representation and processing technique. In a mesh-based representation, the

underlying image is partitioned into non-overlapping polygonal patches. The

motion field over the entire image is described by the motion vectors at the

corners of the patches which are called the nodes of the mesh. The motion

vectors of the interior points of the patches are interpolated from those node

points. Mesh-based representation provides a continuous motion field over the

entire image [6, 24]. Mesh-based motion estimation is illustrated in the figure

below.

Figure 2.3 – Mesh-Based Motion Estimation.

In a 2-D mesh-based model, when a node location is updated through the motion

estimation process, all of the patches which are connected to the node are

deformed. The deformed patches eventually provides better adaptation to

underlying motion than a block-based model which does not preserve the

neighboring relations of the blocks [4, 7]. On the other hand, a 2-D mesh-based

model may produce bad results in occlusion regions since the motion field is

enforced to be continuous. An occlusion-adaptive mesh-based model was

proposed by Altunba�ak and Tekalp [7] to overcome this problem. In the scope of

this thesis, the occlusion problem is not handled.

In mesh-based motion estimation the primary problems that need to be solved are

2-D mesh design and motion vector estimation at the node points. In a video

 9

compression application, motion compensation using the estimated motion

vectors is also required. This chapter addresses these problems. First, 2-D mesh

design methods are presented. It is followed by the description of an effective

motion estimation method: the hexagonal matching algorithm. Finally, the motion

compensation approach is given.

2.3.1. 2-D Mesh Design

Two-dimensional mesh design is usually performed by the use of either a regular

or an irregular mesh structure. A regular mesh is composed of equal sized

patches. In Figure 2.4 two examples of regular meshes are shown.

Figure 2.4 – Regular Mesh Examples. (a) An Equilateral Mesh, (b) A Right-Angled

Mesh.

Nakaya and Harashima [1] and Park et al. [2] are some of the researchers who

utilized regular meshes in their work. The main benefit of employing a regular

mesh is that the number of bits used in coding is reduced since each node

position does not need to be coded explicitly. On the other hand, a regular mesh

suffers from representing the image content appropriately. For this reason,

irregular meshes are also used. Servais et al. [4], Al-Regib et al. [8], and

Altunba�ak and Tekalp [7] employed content-based irregular meshes. A content-

based mesh represents the object boundaries and non-stationary regions of the

image better. In Figure 2.5, a content-based mesh is illustrated [4].

 10

Figure 2.5 – A Content-Based Mesh

We have used the right-angled regular mesh with triangular patches (Figure 2.4

(b)) in our single-layer and two-layer hexagonal matching algorithm

implementations. In object-based motion estimation studies, this mesh structure is

employed in combination with non-uniform patches to obtain an accurate

representation of video objects. Besides, a content-based irregular mesh is also

applied to the same video objects for comparison purposes. The details of the

object-based 2-D mesh design are presented in Chapter 3.

2.3.2. Hexagonal Matching Algorithm

The hexagonal matching algorithm (HMA) was developed by Nakaya and

Harashima [1]. The algorithm performs motion estimation of the nodes (grid

points) by iterative local minimization of the prediction error. This process is also

called mesh refinement. The process may be applied immediately after the design

of a two-dimensional regular mesh or after an initial estimation of the node motion

vectors which is obtained by the block matching algorithm. We have chosen the

latter since an initial estimation by a fast method like block matching reduces the

time required for the grid points to converge to local or global minima.

As seen on the regular meshes of Figure 2.4, each grid point (except the ones on

the frame boundary) is connected to six triangles, i.e. each grid point is one of the

vertices of six triangles which form a hexagon surrounding the grid point. Mesh

refinement updates the location of each grid point iteratively by minimizing the

prediction error inside this surrounding hexagon. The steps of the algorithm are as

follows:

 11

i. A new grid point GZ is selected as the node to be refined. Locations of

the six surrounding grid points, GA ~ GF are kept fixed during the

refinement process of GZ (Figure 2.6).

Figure 2.6 – Hexagonal Mesh Refinement

ii. GZ is moved to an adjacent point G'
Z. For this candidate grid point

location, we have deformed patches inside the hexagon as shown in

Figure 2.6 (b).

iii. For each of these deformed patches of the reference frame, a

transformation function is estimated to map the patch onto the

corresponding undeformed patch of the current frame. An affine

transformation is applied for this mapping which is described in Section

2.3.3.

iv. The predicted image inside the hexagon is synthesized by warping the

six deformed patches onto the undeformed patches using the

estimated transformation function.

v. The MAD between the predicted image and the current frame is

calculated. This difference is assigned to the candidate grid point

location G'
Z as its error value.

vi. Steps (ii) to (v) are repeated for each candidate grid point location G'
Z

in the search range of GZ.

 12

vii. Among the candidate grid point locations, the one with the smallest

error value is registered as the new location of GZ.

viii. Steps (i) to (vii) are repeated for each grid point of the mesh.

The mesh refinement process described above is iterated until all grid points of

the mesh converge to either local or global minima. An iteration of the process

may not include refinement of some grid points. A grid point GZ is refined in an

iteration only if its location was refined in the previous iteration or location of at

least one of its six surrounding grid points was refined after GZ’s last refinement.

Hence, the number of grid points included in the refinement process decreases as

the iterations continue and finally no improvement is observed in the prediction

error. As a result, the iterative mesh refinement process is finished.

The hexagonal matching algorithm is an effective motion estimation method. Our

simulation results indicate that the algorithm performs better than the block

matching algorithm. In the Experimental Results Chapter, details of the

experiments are presented. One drawback of the algorithm is its high

computational cost. Faster algorithms as the ones proposed by Nakaya and

Harashima [1] and Yu et al. [23] may be employed to reduce the computational

cost.

2.3.3. Motion Compensation

Motion compensation can be performed to synthesize the content of a frame from

another frame using the estimated grid point motion vectors. Mesh-based motion

compensation is achieved by warping the undeformed mesh of the current frame

onto the deformed mesh of the reference frame. The warping is done patch by

patch to synthesize the frame content. Since the patches of the mesh are chosen

as triangles, a six-parameter affine transformation is applied to warp the content

of each triangle.

Affine Transformation

Affine transformation models translation, rotation and scaling of a patch in the

current frame to the corresponding deformed patch in the reference frame [2]. The

 13

intensity value of pixel),(yx in the i th synthesized patch P̂ in the predicted

frame K is calculated by the following formula

),(),(ˆ 1 yxPyxP k
i

k
i ′′= + (2.3)

and the affine transformation for the patch is given by

321 iii ayaxax ++=′ (2.4)

321 iii bybxby ++=′ (2.5)

where),(yx ′′ and),(yx represent the pixel positions in the current and

reference frames, respectively.

Figure 2.7 – Affine Mapping of Patches

Affine transformation has six parameters, 1ia , 2ia , 3ia , 1ib , 2ib , 3ib , and there

exists a one-to-one matching between the vertices of a deformed patch and the

vertices of an undeformed patch as shown in Figure 2.7. Therefore, the six

parameters can be found by solving the equations 2.4 and 2.5 for three vertex

positions of each patch. After finding the affine parameters of a deformed patch,

for each pixel),(yx in that patch, a matching pixel),(yx ′′ in the current frame is

calculated using these parameters. Then, intensity values of these matching

pixels are assigned to the pixels of the synthesized patch. This procedure is

applied to all patches of the deformed mesh. Finally, the contents of all patches

are synthesized and the predicted reference frame is formed.

 14

One problem related to the affine transformation is that the calculated position

),(yx ′′ does not always correspond to a valid pixel location. The transformation

may produce non-integer x′ or y′ values. In this case, an interpolation is needed

to determine the intensity value of pixel),(yx . We have employed the bilinear

interpolation since it uses the nearest integer locations in both x -direction and y -

direction to interpolate the intensity value.

Figure 2.8 – Bilinear Interpolation

Assignment of Pixels to Triangles

One problem in motion compensation by affine transformation is the assignment

of pixels to triangles to be able to perform warping. Although the assignment is

simple in the case of undeformed regular triangles, more computational effort is

required for the deformed triangles. A simple method to solve this problem is

described below.

The triangle shown in Figure 2.9 has three vertices; GA(xA, yA), GB(xB, yB) and

GC(xC, yC), and three line equations:

ABAB bxay += (Line GAGB) (2.6)

ACAC bxay += (Line GAGC) (2.7)

BCBC bxay += (Line GBGC) (2.8)

 15

Figure 2.9 – Assignment of Pixels to Triangles

The pixel assignment procedure for this triangle is as follows:

i. Put the vertex GC(xC, yC) into the equation 2.6. If (yC > aABxC + bAB),

then label GC as “above”, else label GC as “below”.

Put the vertex GB(xB, yB) into the equation 2.7. If (yB > aACxB + bAC),

then label GB as “above”, else label GB as “below”.

Put the vertex GA(xA, yA) into the equation 2.8. If (yA > aBCxA + bBC),

then label GA as “above”, else label GA as “below”.

ii. Select a pixel, Pi(xi, yi), inside a previously defined window as shown in

Figure 2.9.

iii. Put Pi(xi, yi) into the equation 2.6. If (yi > aABxi + bAB), then label the

pixel as “above”, else label the pixel as “below”.

If the label of the pixel and the label of GC are the same, then the

pixel is on the same side of the line GAGB as GC. Otherwise, it is on

the other side.

Put Pi(xi, yi) into the equation 2.7. If (yi > aACxi + bAC), then label the

pixel as “above”, else label the pixel as “below”.

 16

If the label of the pixel and the label of GB are the same, then the

pixel is on the same side of the line GAGC as GB. Otherwise, it is on

the other side.

Put Pi(xi, yi) into the equation 2.8. If (yi > aBCxi + bBC), then label the

pixel as “above”, else label the pixel as “below”.

If the label of the pixel and the label of GA are the same, then the

pixel is on the same side of the line GBGC as GA. Otherwise, it is on

the other side.

iv. Assign the pixel to the triangle if the pixel is on the same side of the

lines as the three vertices GA, GB, and GC.

v. Repeat steps (ii) to (iv) until all pixels inside the window are evaluated.

This procedure assigns the pixels to the deformed triangles. The content of each

deformed triangle is then synthesized by a warping operation based on affine

transformation.

We have performed motion compensation to evaluate the performance of the

motion estimation methods that have been implemented. The results are

presented in detail in the Experimental Results Chapter.

2.4. Hierarchical Motion Estimation

Hierarchical motion estimation can be applied to obtain an improved motion field

representation. There are different implementations of hierarchical motion

estimation in both block-based and mesh-based approaches.

Hierarchical block matching algorithm performs motion estimation by searching

the best matching blocks in each level starting with the lowest resolution image

level. The estimated motion vectors of one level provide an initial prediction for

the motion vectors of next higher resolution level. On the other hand, an

alternative method, known as variable-size block matching uses the same original

image resolution in all levels while dividing the blocks into smaller ones in each

level. Although these hierarchical block matching methods can improve the

 17

motion vectors resulting in higher PSNR values, the generated motion fields may

still include some outliers [5-8].

In hierarchical mesh-based motion estimation, the common approach is to apply

meshes with different densities in each layer of the estimation process. Toklu et

al. [17] proposed to use hierarchical regular meshes. On the other hand, Van

Beek et al. [18] employed coarse-to-fine content-based meshes in their

hierarchical motion estimation process. Al-Regib et al. [8] extended both methods

by using blurred and downsampled images in higher levels to reduce the

computational complexity.

Progressive motion estimation is a hierarchical mesh-based motion estimation

technique proposed by Park et al. [2]. This technique provides hierarchical partial

mesh refinement according to the motion activities. The technique employs

regular meshes in each layer but also features the advantages of a content-based

mesh. It performs the hierarchical refinement without additional overhead to

indicate the motion-active regions. Hence, progressive motion estimation

technique achieves lower bit rates than the other mesh-based hierarchical motion

estimation methods described above. The technique also shows improvement

over the block-based methods by eliminating block distortions. The detailed

information is presented in the next section.

2.4.1. Progressive Motion Estimation

As stated in Section 2.3.1, a regular mesh is not designed according to the image

content. As a result, mesh refinement based on a regular mesh may not produce

accurate motion fields especially for motion-active regions of the image. A

solution for this problem is to apply a hierarchical mesh refinement procedure as

proposed by Park et al. [2]. They developed a progressive motion estimation

technique which uses layered regular meshes designed according to the motion

activities in the image. This section describes the proposed technique.

Progressive motion estimation employs regular meshes in a layered manner. The

technique starts with uniform patches covering the whole image in the first layer.

Then, in the next layers, smaller patches are applied only to the regions which

contain high motion activities. The process is illustrated in Figure 2.10.

 18

Figure 2.10 – Progressive Motion Estimation Layers

In the first step, the technique applies hexagonal matching algorithm as

mentioned in Section 2.3.2. A 2-D mesh is designed for the current frame as seen

in Figure 2.11 (a). Then, an image is synthesized by performing mesh refinement

and motion compensation (Figure 2.11 (b)). This predicted image provides a

coarse estimation of the reference frame.

Figure 2.11 – Single-Layer Mesh Refinement

 19

Figure 2.12 – Approximated Frame Difference

The next step starts with obtaining an approximated difference map. It is

generated by subtracting the predicted reference frame from the current frame.

Figure 2.12 shows an example of an approximated difference map. The

approximated difference gives information about the motion-active regions. These

regions are identified by a comparison based on the variance: If a patch

difference has a greater variance, Pv , than the variance of the frame difference,

Fv , then a motion discontinuity exists in that patch. The variance of the frame

difference is given by

��
= =

−=
M

j

N

i
F fjif

MN
v

1 1

2)),((
1

 (2.9)

where M and N are the frame dimensions,),(jif is the intensity value of pixel

),(ji , and f refers to the mean frame difference. The variance of the patch

difference is given by

�
=

−=
K

i
PPP fif

K
v

1

2))((
1

 (2.10)

where K is the number of pixels in the patch,)(ifP is the intensity value of i th

pixel in the patch, and Pf denotes the mean patch difference.

Figure 2.13 (a) indicates the patches with motion discontinuities on the

approximated difference map of Figure 2.12.

 20

Figure 2.13 – Motion-Active Regions

In the following step, a finer regular mesh is applied to the regions containing

motion discontinuities (Figure 2.13 (b)). A finer regular mesh refers to a mesh with

smaller patches. In Figure 2.14, the current frame with the finer mesh is shown.

On this second layer denser mesh, the refinement procedure is performed again

as in the first step. Consequently, we have a hierarchical mesh refinement

process.

Figure 2.14 – Second Layer Denser Mesh

The progressive motion estimation technique provides a partial mesh refinement

process as described. We have applied the technique using two-layer meshes.

The results indicate that the technique shows improvement over the single-layer

block matching and hexagonal matching algorithms.

 21

CHAPTER 3

2-D MESH-BASED VISUAL OBJECT REPRESENTATION

3.1. Introduction

Object-based video representation which is recommended in the MPEG-4

standard [19] provides a solution for the problem with the 2-D frame-based motion

estimation models: accurate representation of individual video objects in a scene.

MPEG-4 describes the video sequences as video objects. Segmentation of

arbitrarily shaped video objects from the background and other objects is of

primary importance for the effective compression and manipulation of these

objects. This task is difficult especially in the presence of complicated

backgrounds. After the segmentation, shape and motion of the objects need to be

modeled. 2-D mesh-based models provide a good representation of shape and

motion of video objects. A 2-D dynamic mesh also allows the animation of video

objects [3, 12, 20-22].

This chapter focuses on the use of 2-D meshes for visual object representation.

Section 3.2 gives an introductory information about the extraction (or

segmentation) of video objects. Then, 2-D object-based mesh design methods

are presented in Section 3.3. Section 3.4 describes object-based motion

estimation techniques and finally, video object manipulation topic is presented in

Section 3.5.

3.2. Video Object Extraction

Video object extraction (or segmentation) is one of the fundamental problems in

object-based video representation. A simple solution for this problem is

thresholding. Thresholding performs extraction on the basis of the difference in

 22

colors (or intensities) of an object and background. It works well in the scenes as

the one shown in Figure 3.1 (a).

Figure 3.1 – Thresholding

In this scene, a color band is specified for background. Then, pixels inside this

band are assigned a color value, and pixels outside the band are assigned

another color value. This procedure generates the segmented image in Figure 3.1

(b).

On the other hand, segmentation gets complicated for some other scenes where

a foreground object cannot be extracted from background by a simple color

thresholding. An example for such scenes is shown in Figure 3.2 (a).

Figure 3.2 – Manual Object Extraction

 23

In this case, object extraction can be done manually by the user or by some semi-

automatic or automatic extraction methods as the ones proposed by Toklu et al.

[25], Yang et al. [12] and Fan et al. [11]. Considering the difficulty of accurate

object extraction, in our studies, we performed manual object extraction unless a

simple color thresholding gives good results. Figure 3.2 (b) illustrates the image

obtained by manual object extraction for the sample scene in Figure 3.2 (a).

3.3. Object-Based 2-D Mesh Design

Video object extraction is followed by the design of a 2-D object mesh. Similar to

the full-frame mesh design (Chapter 2), regular or irregular meshes can be

applied in the design of an object mesh. The difference is that this time the mesh

generation is limited to the region covered by the video object (Figure 3.8 and

Figure 3.9).

Object-based (2-D) mesh design process includes three stages: determination of

nodes on the object boundary, determination of nodes inside the object, and

triangulation between all nodes. These stages are described in detail in the

following sections.

3.3.1. Boundary Node Selection

We have employed regular meshes in full-frame mesh-based motion estimation

implementations as mentioned in Chapter 2. In a regular mesh, nodes are placed

at fixed distances over the image (Figure 2.4). Hence, this kind of mesh cannot fit

to the object boundary without modification. Our algorithm determines the

boundary nodes by modifying the grid point positions of the regular mesh near the

object boundary.

After performing object segmentation, the boundary node selection algorithm

proceeds as follows:

i. Each grid point of the regular mesh is labeled as “inside” or “outside” of

the object referring to the segmented image as shown in Figure 3.3.

 24

Figure 3.3 – Classification of Grid Points

ii. Among the grid points which are “outside”, the ones that are close to

the object boundary are found and marked as “close” (Figure 3.3). The

closeness criterion is:

If at least one neighbor of the grid point is “inside”, then the grid

point is “close” to the object boundary.

iii. A grid point which is “outside” and “close” is moved on the line towards

one of its “inside” neighbors until the grid point reaches the object

boundary (Figure 3.4). This candidate position and its distance to

original grid point position are recorded. The grid point is put back to its

original position. This procedure is repeated for all “inside” neighbors

of the grid point and the candidate with the minimum distance is

designated as the winner. Then, the grid point is moved to the winner

position.

 25

Figure 3.4 – Movement of “Close” Points

iv. Step (iii) is repeated for all grid points that are “outside” and “close”.

Finally, we obtain a boundary representation for the video object by

determination of all boundary nodes as seen in Figure 3.5.

Figure 3.5 – Determination of Boundary Nodes

This algorithm does not make any modification on the “inside” points; rather it

modifies the positions of the “outside” points near the boundary. The reason is

that we want to preserve the uniform mesh inside the object to be able to perform

object-based progressive motion estimation which is described in Section 3.4.3.

After the determination of boundary nodes, the boundary polygon is formed by

sorting and connecting those nodes. The edges of this polygon are used as

constraints for the generation of irregular patches inside the object as described in

the triangulation stage (Section 3.3.3).

 26

In our simulations, we have used the same boundary nodes and boundary

polygon for both regular and irregular (content-based) mesh approaches for

comparison purposes.

3.3.2. Interior Node Selection

Determination of the nodes inside a video object can be performed by one of the

two popular approaches: the regular (uniform) mesh approach and the content-

based mesh approach [3]. We have applied both of them in our object-based

motion estimation and compensation studies. In the following sections, interior

node selection by these two approaches is mentioned.

3.3.2.1. Regular Mesh Approach

In this approach, interior nodes are uniformly placed inside the video object as

seen in Figure 3.5. Uniform distribution of the nodes provides lower bit rates than

a non-uniform distribution in coding. Toklu et al. [10] applied this approach to

synthetic object transfiguration.

3.3.2.2. Content-Based Mesh Approach

In the content-based mesh approach, interior nodes are placed according to some

features of the region inside the video object such as spatial edges and motion

activities. Content-based node selection algorithm proposed by Altunbasak et al.

[7, 9] is used in our implementations. The algorithm for the object-based

representation is as follows:

i. Estimate a 2-D dense motion field between the current and the

reference frames. Label all pixels in the current frame as “unmarked”.

ii. Compute an average displaced frame difference, avgDFD , inside the

object as

K

yxDFD
DFD yx

p

avg

�
=),(

)),((
 (3.1)

where K is the number of unmarked pixels inside the object, p is a

positive number (selected as 2),),(yxDFD denotes the displaced

 27

frame difference at pixel),(yx , and the summation is over all

unmarked pixels inside the object.

iii. For each unmarked pixel inside the object, compute a cost function

),(yxC as

),(),(),(yxIyxIyxC yx += (3.2)

where),(yxI x and),(yxI y denote the partials of the intensity with

respect to x and y coordinates evaluated at pixel),(yx (Figure 3.6).

The cost is a function of spatial intensity gradient. This eventually

results in that interior nodes are placed at the spatial edges.

Figure 3.6 – Image Derivatives

iv. Find the unmarked pixel with the highest),(yxC which is not closer to

any other previously selected node point (including the boundary

nodes) than a prespecified distance. Label this point as a node point.

v. Grow a circle around this node point until �
pyxDFD)),((in this

circle is greater than avgDFD or the circle exceeds the object

boundaries. Label all pixels inside this circle as “marked”. Set

),(yxDFD at these pixels as zero. Figure 3.7 illustrates the

procedure.

 28

Figure 3.7 – Interior Node Selection

vi. Go to step (ii) until a desired number of node points, N, are selected or

the distance criterion in step (iv) is violated.

The next stage is triangulation between the boundary and the interior nodes which

is described in the following section. This algorithm places the nodes in such a

way that after triangulation, each patch has approximately the same DFD value.

As shown in Figure 3.7, a high temporal activity is represented by a small circle,

while a low temporal activity is represented by a large circle. The reason for

labeling all pixels in a circle as marked is that only one node point is allowed in a

circle. This constraint provides a node point distribution proportional to the

temporal activity [7].

Node point distribution is directly affected by the parameters of the algorithm.

Minimum allowed distance between any two node points and desired number of

node points are some of those parameters. In our implementations, we tuned

them for the best performance of the algorithm. In the Experimental Results

Chapter, we discuss the effect of these parameters on the results.

3.3.3. Triangulation

In the scope of object-based mesh design, triangulation refers to generation of a

mesh by partitioning the video object into triangular patches. This is achieved by

connecting all boundary and interior nodes of the object by a selected method.

Hence, these nodes become the vertices of the patches of the mesh (Figure 3.8

and Figure 3.9).

 29

The regular and content-based mesh approaches also differ in the way of

triangulation as described below.

3.3.3.1. Regular Mesh Approach

A 2-D regular mesh inside the object is generated in the same way as in the full-

frame mesh design procedure (Chapter 2). However, this time, the regular mesh

is generated between only the interior nodes as seen in Figure 3.8 (b). If the

outside nodes were also used to cover the whole region inside the object, the

mesh would exceed the object boundaries as shown in Figure 3.8 (c). Hence, it

would result in an inaccurate object representation around the boundary.

In order to solve the problem near the boundary, another triangulation method

called the Constrained Delaunay Triangulation is applied. The details of the

method are given in the next section. Constrained Delaunay Triangulation

produces irregular patches in the region between the boundary nodes and the

nearest interior nodes which is not covered by the regular mesh. Hence, the

whole region inside the object is well approximated by the combination of regular

and irregular patches (Figure 3.8 (d)).

We have used this combination to adapt the single layer hexagonal matching and

progressive motion estimation methods to object-based motion estimation as

described in Section 3.4.

 30

Figure 3.8 – Triangulation – Regular Mesh Approach

3.3.3.2. Content-Based Mesh Approach

Content-based triangulation follows the selection of boundary and content-based

interior nodes. The Constrained Delaunay Triangulation [13] is employed to

generate a content-based object mesh. The triangulation is performed between all

boundary and interior nodes resulting in a non-uniform structure.

This method constructs the object mesh using the edges of the boundary polygon

as constraints. Using these constraints guarantees that all triangles are

constructed inside the object. One nice property of Delaunay Triangulation is that

it eliminates too small angles between the triangle edges [3, 13].

We have used the software, Triangle, provided by Shewchuk [13] to construct a

content-based Delaunay mesh inside the object. In Figure 3.9 (b), a Delaunay

mesh generated by this software is illustrated.

Figure 3.9 – Triangulation – Content-Based Mesh Approach

 31

3.4. Object-Based Motion Estimation

Motion estimation in object-based video processing refers to generating a motion

field by updating the positions of the boundary and the interior nodes of an object.

Altunbasak et al. [7] stated that there are two approaches for node motion

estimation: i) estimating the motion vectors at each node independently of each

other (e.g., performing block matching at each node); ii) estimating motion vectors

optimized for warping transformations (e.g., applying a constrained search

procedure such as hexagonal matching algorithm [1]). They employed the former

approach in their paper due to the high computational requirements of the latter

approach.

In object-based motion estimation implementations, we have employed both

approaches mentioned above; block matching is used for a coarse estimation of

node motion vectors, and then, single layer hexagonal matching (or generally

polygonal matching) is applied to refine these motion vectors. Besides, for the

specific case of object-based progressive motion estimation, we have also

employed a second layer mesh refinement procedure as in the full-frame

progressive motion estimation process.

The following sections give information about the application of those motion

estimation techniques to object-based video representation.

3.4.1. Initial Estimation by Block Matching

A block matching procedure similar to the classical block matching algorithm

described in Chapter 2 is used to obtain an initial prediction of the 2-D motion field

representing the object motion. The main difference of this procedure is in the

way of locating the blocks. While in full-frame motion estimation whole image is

segmented into non-overlapping rectangular blocks independently of the image

content, this time we need to consider the shape of the object as a constraint. The

procedure determines the locations of blocks on the basis of boundary and

interior node positions.

Figure 3.10 illustrates the possible blocks for different types of nodes. For a node,

four or five (depending on the type of node) candidate search blocks are formed,

each having the node as one of its corners or on its center. Then, for each

 32

candidate, the number of pixels which belong to the region inside the object is

calculated. The candidate with the maximum number of pixels inside the object is

selected as the block to be searched in the reference frame. This selection

procedure is repeated for all boundary and interior points to locate their search

blocks in the object. These blocks are then searched in the reference frame to

find the best matches as in the classical block matching algorithm.

Figure 3.10 – Candidate Search Blocks for Different Node Locations

As shown in Figure 3.10, five candidate blocks are formed for an interior node

while four is sufficient for a boundary node. The reason for forming a fifth

candidate for interior nodes is that an interior node may be far from object

boundary. In this case, this center block remains completely inside the object as

seen in Figure 3.10 (c). Hence, this block is selected for the search in the

reference frame since it provides a better representation of the motion field

around the node than the other four candidates.

The search in the reference frame is limited to a search window and the MAD is

used as the matching criterion as in the classical block matching algorithm.

The procedure given in this section is employed as the first step of motion

estimation and provides a coarse estimation of the motion vectors at the nodes. It

is followed by a mesh refinement procedure to find the optimal node vectors as

described in the next section.

 33

3.4.2. Mesh Refinement by Polygonal Matching

Refinement of the 2-D object mesh is realized by a polygonal matching algorithm

(PMA) which is based on the hexagonal matching algorithm (HMA) described in

Chapter 2. In fact, PMA is a generalized version of HMA for different kinds of

polygons. Hence, mesh refinement proceeds very similar to the refinement

process proposed in HMA.

In a right-angled regular mesh covering whole frame as shown in Figure 2.4, a

node (grid point) is connected to six triangles unless it is on the frame boundary.

On the other hand, a node point in an object mesh can be connected to different

number of triangles due to the irregular structure of the mesh. Figure 3.11 shows

two examples for different node placements in both the regular mesh and the

content-based mesh approaches.

Figure 3.11 – Grid Point Examples

Although each node shown in the figure is connected to different number of

triangles, the same mesh refinement procedure is applied to all of them: iterative

local minimization of the prediction error within the bounding polygon of the node.

The procedure follows the same steps as the mesh refinement procedure of HMA.

All of the surrounding nodes of GZ are kept fixed and GZ is sequentially moved to

adjacent positions in a limited search region to find the optimum displacement

which yields the minimum prediction error (Figure 3.12). The procedure is

repeated iteratively for all nodes of the mesh until all of them converge to either

local or global minima.

 34

Figure 3.12 – Polygonal Mesh Refinement

In the content-based mesh approach, motion estimation phase is completed with

this refinement procedure. However, in the regular mesh implementations, we

refine the object motion field further by applying a second layer mesh as in the

progressive motion estimation technique.

3.4.3. Progressive Motion Estimation

This technique, as described in Chapter 2, provides a hierarchical partial

refinement. In each layer, denser regular meshes designed according to motion

activity are employed (Figure 2.10). Park et al. proposed the technique with

applications to full-frame regular meshes in their paper [2]. We have used the

technique in object-based motion estimation by making some modifications.

Following the polygonal mesh refinement given in the previous section, we apply

partial refinement. This time, motion-active regions inside the object are identified

from the approximated difference map (Figure 3.13 (a)). Then, a denser mesh is

applied inside the region covered by the regular mesh of first layer (Figure 3.13

(b)).

 35

Figure 3.13 – Approximated Frame Difference

While identifying motion-active regions which are shown in Figure 3.13 (a),

individual patch variances (given by Equation 2.10) are compared with the

variance of the object difference given by

�
=

−=
K

i
OOO fif

K
v

1

2))((
1

 (3.3)

where K is the number of pixels inside the object,)(ifO is the intensity value of

i th pixel inside the object, and Of denotes the mean object difference. The

patches whose variances are greater than the variance of object difference are

included in the partial refinement process as described in Chapter 2.

Progressive motion estimation technique with the modifications described in this

section provides a hierarchical refinement for object-based video processing. It

produces better results than single-layer hexagonal matching algorithm and block

matching algorithm according to our experiments. (See the Experimental Results

Chapter).

3.5. Video Object Manipulation

2-D mesh-based models enable several functionalities for manipulation of video

objects such as animating a still image of one object by motion parameters of

another similar object and combining natural and synthetic objects interactively

within a unified framework. In addition, the mesh structure allows spatio-temporal

video interpolation [3].

 36

In this section, video object manipulation is described in detail.

3.5.1. Object Transfiguration

Object transfiguration refers to synthesizing an animated video object from a still

image of the same or a replacement object by texture mapping based on a

dynamic 2-D mesh representation. Object transfiguration is classified as self-

transfiguration and synthetic transfiguration. Self-transfiguration refers to

animating a video object from a still image of the same object using its dynamic

mesh representation. It is employed in object-based video compression.

Transmitting texture maps only at selected key frames and animating these

texture maps to obtain the intermediate frames may improve the efficiency of

compression [3, 10, 17].

Synthetic transfiguration refers to replacing a natural video object in a video clip

by another video object. The replacement video object may be animated from one

of its still images using the motion vectors of the object to be replaced. This

requires accurate motion tracking of the existing object. The 2-D dynamic mesh

representation which is included in the MPEG-4 standard allows tracking of object

motion through the video sequence [3, 19].

3.5.2. Augmented Reality

Augmented reality refers to merging synthetic (computer generated) video,

images, text and/or graphics with natural moving images (video) to create

enhanced display information. The synthetic content must remain in perfect

registration with the moving real images [3, 19].

Merging synthetic or natural content with a moving object can be performed by

first tracking the motion of the existing object using 2-D dynamic meshes. Then,

registration of the augmentation object with the initial appearance of the object to

be augmented is performed. Finally, 2-D mesh-based texture mapping is applied

to obtain the new merged sequence. The 2-D mesh-based texture mapping can

be performed in a way similar to self-transfiguration: the animation parameters

obtained by motion tracking of the existing natural object are applied to the

composite object [3, 19].

 37

In the Experimental Results Chapter, we present an application in which a text is

augmented onto a moving fish.

3.5.3. Spatio-Temporal Interpolation

Spatio-temporal interpolation is another functionality enabled by 2-D mesh-based

models. Mesh-based spatial interpolation is achieved by first scaling the object

mesh, and then applying texture mapping onto the scaled mesh. This technique

may be applied for performing zooming in and out on an object through the video

sequence [3]. In the Experimental Results Chapter, a mesh-based spatial

interpolation application for the moving fish sequence is presented.

Mesh-based temporal interpolation is performed by computing an intermediate

mesh geometry between the two given meshes and then applying forward and/or

backward texture mapping from one or both of the given object texture maps.

Linear interpolation of node points is a way of computing the intermediate mesh

geometry in the presence of two original meshes. Mesh-based temporal

interpolation may be applied in the case of frame rate up-conversion [3].

 38

CHAPTER 4

EXPERIMENTAL RESULTS

4.1. Introduction

In this chapter, the experimental results of the algorithms described in the

previous chapters are given. The algorithms are implemented in C++ using

Borland C++ Builder 6.0 IDE and the OpenCV library is used for the

implementation of some image processing algorithms. The graphical user

interface is shown in the following figure.

Figure 4.1 – The Graphical User Interface

 39

This interface enables the user to perform several tasks related to motion

estimation and compensation. The user can select a frame of a video sequence

for displaying, generate a regular or an irregular mesh on a selected frame or start

the motion estimation process between two frames. The user is also informed

about the results of the experiments.

We have conducted the experiments on the selected video sequences by using

this user interface. The following section gives information about the details of the

experiments and results.

4.2. The Experiments

The first two experiments were conducted to compare the performance of the

algorithms described in the previous chapters. The tests were performed in both

frame-based and object-based video representations. The algorithms were

compared in terms of peak signal-to-noise ratio (PSNR) and entropy.

The PSNR is commonly used as a measure of the quality of a predicted image in

video compression. It is defined via the mean square error given by

[]��
= =

−=
M

m

N

n
PI nmsnms

MN
MSE

1 1

2),(),(
1

 (4.1)

where M and N are the frame dimensions, sI(m, n) is the luminance value of the

pixel (m, n) in the original frame, and sP(m, n) denotes the luminance value of the

pixel (m, n) in the predicted frame. The PSNR is defined as

)(log20 10 MSE
I

PSNR MAX= (4.2)

where MAXI is the maximum intensity value of the pixels in the image. MAXI is 255

for our test sequences.

Entropy is a measure of average information. Entropy of the difference between

the original and predicted frames can be used to measure the quality of motion

compensation. Entropy of an 8-bit image is given by

 40

)(log)(2

255

0

ipipH
i

X �
=

−= (4.3)

where)(ip denotes the probability of the i th intensity level in the image. A high

entropy value indicates a less compressible image.

In the third experiment, application of mesh-based modeling to video object

manipulation was performed.

The “Suzie” sequence used in the first two experiments has 150 frames of 176 x

144 size and the “Bream” sequence employed in the third experiment has 60

frames of 352 x 288 size.

4.2.1. Experiment 1: 2-D Frame-Based Motion Estimation

and Compensation for “Suzie” Sequence

The aim of this experiment is to compare the block-based and regular mesh-

based methods in frame-based video representation. The experiment was

performed using one-layer block matching, and both one-layer and two-layer

hexagonal matching algorithms. Two-layer hexagonal matching was realized by

the use of the progressive motion estimation technique.

In the experiment, current and reference frames were selected as consecutive

frames. For instance, when the second frame of the sequence was selected as

the current frame, the first frame was used as the reference frame. Motion

estimation was performed in the backward direction for all of the three algorithms.

The resulting motion vectors were then used to generate the motion-compensated

reference frame. The PSNR values were calculated based on the difference

between the original and motion-compensated reference frames.

In the following table, motion estimation parameters for the three algorithms are

listed.

 41

Table 4.1 – Frame-Based Motion Estimation Parameters for the Block-Based and

Regular Mesh-Based Algorithms

 1-Layer Block
Matching

1-Layer Hexagonal
Matching

2-Layer Hexagonal
Matching

Block / Patch
Size (pixels) 16 x 16 16 x 16 8 x 8

Search Range
(pixels) ± 3 ± 3 ± 3

Number of
Iterations 1 Up to Local or Global

Minima
Up to Local or Global

Minima

Mesh
Connectivity

Range (pixels)
Not Applicable ± 7 ± 3

Figure 4.2 shows the PSNR values over all frames of the “Suzie” sequence for the

three algorithms. In Table 4.2, the average PSNR values are also given. The

results indicate that the two mesh-based algorithms perform more accurate

motion compensation than the block matching algorithm. Moreover, the two-layer

hexagonal matching algorithm realized by the progressive motion estimation

technique shows improvement over the one-layer hexagonal matching algorithm.

The average improvement is 0.16 dB which is close to the improvement achieved

by Park et al. [2].

 42

22

24

26

28

30

32

34

36

38

40

42

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Frame Number

P
S

N
R

, d
B

1-layer block matching
1-layer hexagonal matching
2-layer hexagonal matching

Figure 4.2 – Comparison of PSNR Values for All 150 Frames of “Suzie” Sequence

Table 4.2 – Average PSNR Values for All 150 Frames of “Suzie” Sequence

 1-Layer Block
Matching

1-Layer Hexagonal
Matching

2-Layer Hexagonal
Matching

PSNR (dB) 34,60 35,99 36,15

The “Suzie” sequence contains different types of motion. Performance of the

algorithms heavily depends on the type of motion. For this reason, we have also

evaluated the algorithms for two specific cases.

In the first case, frames from 11 to 30 of the sequence were considered. In this

range, smooth transitions (small changes in pixel positions) occur between the

consecutive frames. Hence, all of the algorithms yielded high PSNR values as

shown in Figure 4.3 and Table 4.3. Another feature of the frames in this range is

that they contain “blinking”, an example of local motion. This motion is limited to a

small region. In this case, the two-layer hexagonal matching algorithm performed

 43

better than the single-layer hexagonal matching algorithm since smaller patches

employed in the second layer of the mesh refinement procedure represent the

local motion better. As a result, the difference between the average PSNR values

of the two algorithms (0,24 dB) was larger than the difference for the entire

sequence (0,16 dB).

30

32

34

36

38

40

42

10 15 20 25 30

Frame Number

P
S

N
R

, d
B

1-layer block matching
1-layer hexagonal matching
2-layer hexagonal matching

Figure 4.3 – Comparison of PSNR Values for Frames 11 to 30 of “Suzie” Sequence

Table 4.3 – Average PSNR Values for Frames 11 to 30 of “Suzie” Sequence

 1-Layer Block
Matching

1-Layer Hexagonal
Matching

2-Layer Hexagonal
Matching

PSNR (dB) 36,31 37,25 37,49

In the second case, frames from 41 to 60 were used. These frames contain

occluded and discovered areas. As a result, the algorithms produced lower PSNR

 44

values compared to the average values of the entire sequence. This result was as

expected since we did not employ any occlusion handling mechanism.

In this range, transitions between the consecutive frames are generally not

smooth. As a result, grid point motion vectors tend to be large. However, because

of the grid point connectivity constraint, each grid point was allowed to move in a

small region (±3 pixels) in the second-layer of the hierarchical mesh refinement

procedure. Hence, the two-layer hexagonal matching algorithm yielded less

accurate motion compensation than the one-layer hexagonal matching algorithm.

Comparison of the algorithms in terms of the PSNR values is given in Figure 4.4

and Table 4.4.

20

22

24

26

28

30

32

34

36

40 45 50 55 60

Frame Number

P
S

N
R

, d
B

1-layer block matching
1-layer hexagonal matching
2-layer hexagonal matching

Figure 4.4 – Comparison of PSNR Values for Frames 41 to 60 of “Suzie” Sequence

Table 4.4 – Average PSNR Values for Frames 41 to 60 of “Suzie” Sequence

 1-Layer Block
Matching

1-Layer Hexagonal
Matching

2-Layer Hexagonal
Matching

PSNR (dB) 27,97 31,37 30,85

 45

4.2.2. Experiment 2: 2-D Object-Based Motion Estimation

and Compensation for “Suzie” Sequence

In this experiment, performances of the block-based and mesh-based algorithms

were measured and compared in object-based video representation. Backward

motion estimation was applied again. This time, motion vectors were calculated

only for the segmented video object instead of the entire frame. Then, these

motion vectors were used to predict an object in the reference frame.

Comparisons were performed in terms of the PSNR and entropy based on the

difference between the original and predicted objects of the reference frame.

4.2.2.1. Comparison of Block-Based and Regular

Mesh-Based Algorithms

In the first part of the experiment, one-layer block matching and both one-layer

and two-layer hexagonal matching algorithms were compared as in experiment 1.

Two-layer hexagonal matching was realized by using the progressive motion

estimation technique. The same motion estimation parameters were used for the

three algorithms as the ones in experiment 1.

Comparisons have been performed for the two specific cases described in

experiment 1. The results were very similar to the results of the 2-D frame-based

video representation experiment. In the first case, two-layer hexagonal matching

algorithm showed improvement over the other two algorithms due to the motion in

small regions inside the video object and smooth transitions between the

consecutive frames. On the other hand, in the second case where occluded and

discovered areas exist, one-layer hexagonal matching algorithm yielded better

motion compensation results in terms of the PSNR and entropy due to the small

search region associated with the second-layer mesh refinement procedure.

 46

30

32

34

36

38

40

42

10 15 20 25 30

Frame Number

P
S

N
R

, d
B

1-layer block matching
1-layer hexagonal matching
2-layer hexagonal matching

Figure 4.5 – Comparison of PSNR Values for Frames 11 to 30 of “Suzie” Sequence

2,2

2,4

2,6

2,8

3,0

3,2

10 15 20 25 30

Frame Number

E
nt

ro
py

, b
its

/s
ym

bo
l

1-layer block matching
1-layer hexagonal matching
2-layer hexagonal matching

Figure 4.6 – Comparison of Entropy Values for Frames 11 to 30 of “Suzie”

Sequence

 47

Table 4.5 – Average PSNR & Entropy Values for Frames 11 to 30 of “Suzie”
Sequence

 1-Layer Block
Matching

1-Layer Hexagonal
Matching

2-Layer Hexagonal
Matching

PSNR (dB) 35,25 36,19 36,39

Entropy
(bits/symbol) 2,90 2,83 2,82

18

20

22

24

26

28

30

32

34

40 45 50 55 60

Frame Number

P
S

N
R

, d
B

1-layer block matching
1-layer hexagonal matching
2-layer hexagonal matching

Figure 4.7 – Comparison of PSNR Values for Frames 41 to 60 of “Suzie” Sequence

 48

3,0

3,2

3,4

3,6

3,8

4,0

4,2

4,4

4,6

4,8

5,0

40 45 50 55 60

Frame Number

E
nt

ro
py

, b
its

/s
ym

bo
l

1-layer block matching
1-layer hexagonal matching
2-layer hexagonal matching

Figure 4.8 – Comparison of Entropy Values for Frames 41 to 60 of “Suzie”

Sequence

Table 4.6 – Average PSNR & Entropy Values for Frames 41 to 60 of “Suzie”
Sequence

 1-Layer Block
Matching

1-Layer Hexagonal
Matching

2-Layer Hexagonal
Matching

PSNR (dB) 26,09 29,07 28,50

Entropy
(bits/symbol) 4,26 3,86 3,96

4.2.2.2. Comparison of Content-Based and Regular

Mesh-Based Algorithms

The second part of the experiment was performed to compare the one-layer

regular mesh-based algorithm (the hexagonal matching algorithm) with a one-

layer content-based algorithm. This algorithm is based on the content-based

 49

interior node selection and triangulation approaches that are described in Chapter

3.

The performance of the content-based algorithm depends on several parameters

associated with the interior node selection algorithm. One of the parameters is

minimum allowed distance between any two node points. This distance affects the

distribution of node points. A small value of the parameter is preferred since a

large value may limit the number of node points and reduce the dependency on

the image content. The distance was selected as 10 pixels in the tests.

Desired number of node points is another parameter. This parameter controls the

number of nodes and triangles in the generated mesh. In the tests, this parameter

was tuned for each frame to obtain the same number of triangles as the regular

mesh used in one-layer hexagonal matching.

In the experiment, the content-based algorithm performed better than the one-

layer hexagonal matching algorithm. This was as expected since the content-

based mesh is designed according to the image content while the one-layer

regular mesh is designed independently of the underlying image. As a result, the

content-based algorithm yielded a more accurate representation of the motion

field.

 50

30

32

34

36

38

40

42

10 15 20 25 30

Frame Number

P
S

N
R

, d
B

1-layer content-based mesh
1-layer regular mesh

Figure 4.9 – Comparison of PSNR Values for Frames 11 to 30 of “Suzie” Sequence

2.2

2.4

2.6

2.8

3.0

3.2

10 15 20 25 30

Frame Number

E
nt

ro
py

, b
its

/s
ym

bo
l

1-layer content-based mesh
1-layer regular mesh

Figure 4.10 – Comparison of Entropy Values for Frames 11 to 30 of “Suzie”

Sequence

 51

Table 4.7 – Average PSNR & Entropy Values for Frames 11 to 30 of “Suzie”
Sequence

 1-Layer Content-
Based Mesh

1-Layer Regular
Mesh

PSNR (dB) 36,25 36,19

Entropy
(bits/symbol) 2,84 2,83

18

20

22

24

26

28

30

32

34

40 45 50 55 60

Frame Number

P
S

N
R

, d
B

1-layer content-based mesh

1-layer regular mesh

Figure 4.11 – Comparison of PSNR Values for Frames 41 to 60 of “Suzie” Sequence

 52

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

40 45 50 55 60

Frame Number

E
nt

ro
py

, b
its

/s
ym

bo
l

1-layer content-based mesh

1-layer regular mesh

Figure 4.12 – Comparison of Entropy Values for Frames 41 to 60 of “Suzie”

Sequence

Table 4.8 – Average PSNR & Entropy Values for Frames 41 to 60 of “Suzie”
Sequence

 1-Layer Content-
Based Mesh

1-Layer Hexagonal
Matching

PSNR (dB) 30,25 29,07

Entropy
(bits/symbol) 3,77 3,86

4.2.3. Experiment 3: Video Object Manipulation for

“Bream” Sequence

In this experiment, application of 2-D mesh-based video representation to video

object manipulation was performed. Video object manipulation was realized by an

augmented reality and a spatial interpolation application on the “Bream”

sequence.

 53

In the two applications, the content-based irregular mesh approach, as described

in the previous chapter, was employed. An initial 2-D content-based mesh was

designed for the first appearance of the video object (the moving fish in the

“Bream” sequence) which is assumed to be planar as seen in Figure 4.13 (a).

Then, this mesh was tracked in the following frames to obtain the animation

parameters for the object (Figure 4.13 (b)). Motion estimation at the nodes of the

mesh was performed by the polygonal matching algorithm as described in

Chapter 3.

Connectivity of the mesh was preserved by using some constraints on the

displacement of the mesh nodes such as the minimum allowed patch size, etc.

While enabling continuous tracking of the initial mesh structure, these constraints

caused some of the nodes to converge to incorrect positions (Figure 4.13 (b)).

The future work on mesh tracking may include the update of the mesh structure

by node addition and deletion particularly in the presence of occluded or

discovered areas.

Figure 4.13 – Mesh Tracking on “Bream” Sequence. (a) Initial Mesh in Frame 1, (b)

Tracked Mesh in Frame 25.

4.2.3.1. The Augmented Reality Application

Augmented reality, as described in the previous chapter, can be realized by

merging synthetic images with real moving images. In this application, the text

 54

“Fish” was used as the synthetic augmentation image as illustrated in Figure 4.14.

The animation parameters obtained by motion tracking of the original fish object

were applied to synthesize a merged sequence. In Figure 4.14 (b), a synthesized

composite object is illustrated.

Figure 4.14 – Augmentation on “Bream” Sequence. (a) Original Composite Object in

Frame 1, (b) Synthesized Composite Object in Frame 25.

4.2.3.2. The Spatial Interpolation Application

Mesh-based spatial interpolation can be used for performing zooming in and out

on video objects or replacing a single object with several different sized objects

through the video sequence. In the mesh-based representation, changing the size

of a video object requires scaling of the 2-D object mesh and applying texture

mapping on the new scaled mesh. In this application, the original fish object was

replaced with its three different sized copies. All of the three objects had the same

motion as the original object.

 55

Figure 4.15 – Spatial Interpolation on “Bream” Sequence. (a) Original Objects in

Frame 1, (b) Synthesized Objects in Frame 25.

 56

CHAPTER 5

CONCLUSION AND FUTURE WORK

Block-based and mesh-based models are extensively employed in 2-D motion

estimation and compensation which has great importance for video compression

applications. In this thesis, several block-based and mesh-based motion

estimation methods have been investigated. The advantages and drawbacks of

these methods have been stated and their performances have been evaluated by

a number of experiments on both frame-based and object-based video

representations. In addition, application of a 2-D mesh-based model to video

object manipulation has been performed.

Block-based motion estimation has been realized by the use of the block

matching algorithm. The algorithm is fast and simple to implement. However, the

algorithm performed worse than the mesh-based algorithms in terms of the PSNR

and entropy in both frame-based and object-based experiments. The reason is

that the block matching algorithm adopts a 2-D translational motion model which

suffers from representing complex motion.

Mesh-based models provide a better representation of complex real world motion

than block-based models. A 2-D mesh-based model produces a continuous

motion field due to the constraints on the movement of mesh nodes. Hence, such

a model is most suitable in the presence of mild deformations. This kind of model

fails to represent motion discontinuities. High computational complexity is another

drawback of mesh-based models.

In the frame-based experiment, mesh-based motion estimation was realized by

both one-layer and two-layer hexagonal matching algorithms. The two layer

hexagonal matching algorithm was implemented by using the progressive motion

estimation technique. The technique showed improvement over the one-layer

 57

hexagonal matching algorithm particularly in the presence of smooth transitions

and local motion which is represented better by the smaller triangles of the

second layer. The one-layer hexagonal matching algorithm performed better in

the occlusion regions due to the small search range used in the second layer of

the two-layer hexagonal matching algorithm.

In the object-based experiment, the results were similar to the frame-based

experiment but this time all of the algorithms produced low PSNR values. The

reason is that the segmented object had higher motion activities than the

background. In this experiment, a content-based algorithm was also compared

with the single-layer hexagonal matching algorithm. The content-based algorithm

yielded more accurate motion compensation results since it represents the object

boundaries and non-stationary regions of the image better.

2-D mesh-based models also enable the tracking of video objects. Two video

object manipulation applications utilizing the object tracking by 2-D dynamic

meshes were performed in this thesis. In the first application, augmented reality

was realized by merging a synthetic image with a natural video object. The

second application involved the replacement of the same video object with its

three different sized copies.

The future work on mesh-based motion estimation covers the application of the

presented algorithms to video coding. Research can be conducted to further

improve the coding efficiency of the algorithms. Moreover, reduction of

computational complexity of the mesh-based algorithms can be examined for real-

time applications. Lastly, 3-D mesh-based modeling can be investigated for the

manipulation of video objects.

 58

REFERENCES

[1] Y. Nakaya and H. Harashima, “Motion Compensation Based on Spatial

Transformations”, IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 4, No. 3, pp. 339-356, June 1994.

[2] H. Park, A. C. Yu, and G. R. Martin, “Progressive Mesh-Based Motion

Estimation Using Partial Refinement”, Proceedings of International Workshop on

Very Low Bit-rate Video (VLBV) 2005, 4 pp., September 2005.

[3] A. M. Tekalp, P. J. L. Van Beek, C. Toklu, and B. Günsel, “Two-

Dimensional Mesh-Based Visual-Object Representation for Interactive

Synthetic/Natural Digital Video”, Proceedings of the IEEE, Vol. 86, No. 6, pp.

1029-1051, June 1998.

[4] M. Servais, T. Vlachos, and T. Davies, “Affine Motion Compensation Using

a Content-Based Mesh”, IEE Proceedings on Vision, Image and Signal

Processing, Vol. 152, No. 4, pp. 415-423, August 2005.

[5] A. M. Tekalp, Digital Video Processing. Englewood Cliffs, NJ: Prentice-

Hall, 1995.

[6] Y. Wang, J. Ostermann, and Y. Q. Zhang, Digital Video Processing and

Communications. Prentice-Hall 2001.

[7] Y. Altunbasak and A. M. Tekalp, “Occlusion-Adaptive, Content-Based

Mesh Design and Forward Tracking”, IEEE Transactions on Image Processing,

Vol. 6, No. 9, pp. 1270-1280, September 1997.

[8] G. Al-Regib, Y. Altunbasak, and R. M. Mersereau, “Hierarchical Motion

Estimation with Content-Based Meshes”, IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 13, No. 10, pp. 1000-1005, October 2003.

[9] Y. Altunbasak, A. M. Tekalp, and G. Bozdagi, “Two-Dimensional Object-

Based Coding Using a Content-Based Mesh and Affine Motion Parameterization”,

IEEE International Conference on Image Processing, Vol. 2, pp. 394-397, October

1995.

 59

[10] C. Toklu, A. T. Erdem, M. I. Sezan, and A. M. Tekalp, “2-D Mesh Tracking

for Synthetic Transfiguration”, IEEE International Conference on Image

Processing, Vol. 3, pp. 536-539, October 1995.

[11] J. Fan, X. Zhu, and L. Wu, “Automatic Model-Based Semantic Object

Extraction Algorithm”, IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 11, No. 10, pp. 1073-1084, October 2001.

[12] W. Yang, J. Liu, and H. Chen, “Automatic Extraction of Moving Objects in

Video Sequences Based on Spatio-Temporal Information”, 31th Annual

Conference of the IEEE Industrial Electronics Society, pp. 369-372, November

2005.

[13] J. R. Shewchuk, “Triangle: Engineering a 2D Quality Mesh Generator and

Delaunay Triangulator”, Proceedings of the 1st Workshop on Applied

Computational Geometry, pp. 124–133, May 1996.

[14] J. R. Jain and A. K. Jain, “Displacement Measurement and Its Application

in Interframe Image Coding”, IEEE Transactions on Communications, Vol. COM-

29, No. 12, pp. 1799-1808, December 1981.

[15] H. G. Musmann, P. Pirsch, and H. J. Grallert, “Advances in Picture

Coding”, Proceedings of the IEEE, Vol. 73, No. 4, pp. 523-548, April 1985.

[16] R. Srinivasan and K. R. Rao, “Predictive Coding Based on Efficient Motion

Estimation”, IEEE Transactions on Communications, Vol. COM-33, No. 8, pp.

888-896, August 1985.

[17] C. Toklu, A. Erdem, M. Sezan, and A. M. Tekalp, “Tracking Motion and

Intensity Variations Using Hierarchical 2-D Mesh Modelling for Synthetic Object

Transfiguration”, Graphical Models and Image Processing, Vol. 58, No. 6, pp.

553-573, November 1996.

[18] P. V. Beek, A. M. Tekalp, N. Zhuang, I. Celasun, and M. Xia, “Hierarchical

2D Mesh Representation, Tracking, and Compression for Object-Based Video”,

IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, pp.

353-369, March 1999.

[19] “MPEG-4 Overview”, ISO/IEC JTC1/SC29/WG11 N4668, March 2002.

 60

[20] I. Celasun and A. M. Tekalp “Optimal 2-D Hierarchical Content-Based

Mesh Design and Update for Object-Based Video”, IEEE Transactions on Circuits

and Systems for Video Technology, Vol. 10, No. 7, pp. 1135-1153, October 2000.

[21] C. Toklu, A. M. Tekalp, A. T. Erdem, and M. I. Sezan, “2-D Mesh-Based

Tracking of Deformable Objects with Occlusion”, IEEE International Conference

on Image Processing, Vol. 1, pp. 933-936, September 1996.

[22] A. Mahboubi, J. Benois-Pineau, and D. Barba, “Tracking of Hierarchical

Active Meshes for Object-Based Manipulation of Video Content”, IEEE TENCON

2000. Proceedings, Vol. 1, pp. 53-58, September 2000.

[23] A. C. Yu, H. Park, and G. R. Martin, “Fast Mesh-Based Motion Estimation

Employing an Embedded Block Model”, IEEE International Symposium on

Circuits and Systems 2006, pp. 4703-4706, May 2006.

[24] A. Nosratinia, “New Kernels for Fast Mesh-Based Motion Estimation”,

IEEE Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 1,

pp. 40-51, January 2001.

[25] C. Toklu, A. M. Tekalp, and A. T. Erdem, “Semi-Automatic Video Object

Segmentation in the Presence of Occlusion”, IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 10, No. 4, pp. 624-629, June 2000.

