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ABSTRACT 

2-D MESH-BASED MOTION ESTIMATION AND  

VIDEO OBJECT MANIPULATION 

 

 

Kaval, Hüseyin 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Gözde Bozda�ı AKAR 

 

September 2007, 60 pages 

 

Motion estimation and compensation plays an important role in video processing 

applications. Two-dimensional block-based and mesh-based models are widely 

used in this area. A 2-D mesh-based model provides a better representation of 

complex real world motion than a block-based model. 

Mesh-based motion estimation algorithms are employed in both frame-based and 

object-based video compression and coding. A hierarchical mesh-based algorithm 

is applied to improve the motion field generated by a single-layer algorithm. 2-D 

mesh-based models also enable the manipulation of video objects which is 

included in the MPEG-4 standard. A video object in a video clip can be replaced 

by another object by the use of a dynamic mesh structure. 

In this thesis, a comparative analysis of 2-D block-based and mesh-based motion 

estimation algorithms in both frame-based and object-based video 

representations is performed. The experimental results indicate that a mesh-

based algorithm produces better motion compensation results than a block-based 

algorithm. Moreover, a two-layer mesh-based algorithm shows improvement over 



 v 

a one-layer mesh-based algorithm. The application of mesh-based motion 

estimation and compensation to video object replacement and animation is also 

performed. 

 

 

Keywords: Mesh-Based Motion Estimation, Video Object Manipulation, MPEG-4, 

2-D Animation, Hexagonal Matching Algorithm. 
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ÖZ 

2 BOYUTLU ÖRGÜYE DAYALI DEV�N�M KEST�R�M� VE                             

V�DEO NESNE ��LEME  

 

 

Kaval, Hüseyin 

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü 

Tez Yöneticisi: Doç. Dr. Gözde Bozda�ı AKAR 

 

Eylül 2007, 60 sayfa 

 

Devinim kestirimi ve dengelemesi video i�leme uygulamalarında önemli bir rol 

oynamaktadır. �ki boyutlu blo�a dayalı ve örgüye dayalı modeller bu alanda 

yaygın olarak kullanılmaktadır. �ki boyutlu örgüye dayalı bir model karma�ık 

gerçek dünya devinimleri için blo�a dayalı bir modelden daha iyi bir gösterim 

sa�lamaktadır. 

Örgüye dayalı devinim kestirimi algoritmaları çerçeveye ve nesneye dayalı video 

sıkı�tırma ve kodlamasında kullanılmaktadır. Sıradüzensel örgüye dayalı bir 

algoritma, tek katmanlı bir algoritma tarafından üretilen devinim alanını 

iyile�tirmek için uygulanmaktadır. �ki boyutlu örgüye dayalı modeller MPEG-4 

standardında yer alan video nesne i�lemeye de olanak tanımaktadır. Dinamik bir 

örgü yapısı kullanılarak bir video nesnesi ile ba�ka bir nesne yer 

de�i�tirilebilmektedir. 

Bu tez çalı�masında, iki boyutlu blo�a ve örgüye dayalı devinim kestirimi 

algoritmalarının çerçeveye ve nesneye dayalı video gösterimlerinde 

kar�ıla�tırmalı bir incelemesi gerçekle�tirilmi�tir. Deneysel sonuçlar örgüye dayalı 
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bir algoritmanın blo�a dayalı bir algoritmaya göre daha iyi devinim dengelemesi 

sonuçları üretti�ini göstermektedir. Ayrıca, iki katmanlı örgüye dayalı bir algoritma 

tek katmanlı örgüye dayalı bir algoritmaya göre iyile�tirme sa�lamaktadır. Örgüye 

dayalı devinim kestirimi ve dengelemesinin video nesne yer de�i�imi ve 

animasyona uygulaması da gerçekle�tirilmi�tir. 

 

 

Anahtar Kelimeler: Örgüye Dayalı Devinim Kestirimi, Video Nesne ��leme,  

MPEG-4, �ki Boyutlu Animasyon, Altıgene Dayalı E�le�tirme Algoritması. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1. Problem Definition 

Motion estimation and compensation plays an important role in video processing 

applications. Motion estimation is the process of finding a set of motion vectors to 

represent the movement of video objects in an image sequence. Motion 

compensation uses this motion information to predict a frame from another frame. 

It is often employed in video compression. Since successive video frames contain 

similar objects, motion estimation and compensation yields good compression 

results by removing temporal redundancy. 

Two-dimensional block-based and mesh-based models have traditionally been 

used in motion estimation and compensation. A 2-D mesh-based model is 

powerful for representing the complex real world motion. The main problems in a 

2-D mesh-based model are designing the mesh and estimating the motion vectors 

of the nodes. Motion compensation using the estimated motion vectors is also 

required in video compression applications [3, 8]. 

The use of 2-D mesh-based models for object-based video representation is 

recommended in the MPEG-4 standard. MPEG-4 allows compression and 

manipulation of video objects in a scene separately. Thus, extraction of 

semantically meaningful video objects becomes a fundamental problem in object-

based video representation. Shape and motion modeling of video objects are the 

other problems that need to be addressed [3, 4, 19]. 

2-D mesh-based models also enable the manipulation of video objects. 

Replacement of a video object in a video clip by another object, and merging 

computer generated images with real images to create enhanced display 

information are some examples of video object manipulation. In these 
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applications, the design and accurate tracking of a 2-D video object mesh are 

required [3]. 

1.2. Scope of the Thesis 

The study described in this thesis is three-fold. First, several 2-D block-based and 

mesh-based motion estimation methods are compared in frame-based video 

representation. Then, the use of these methods in object-based video 

representation is investigated. Finally, application of 2-D mesh-based motion 

estimation and compensation to video object manipulation is performed. 

1.3. Outline of the Thesis 

This thesis consists of five chapters; and references are presented at the end of 

the thesis. 

In Chapter 1, problem definition and scope of the thesis are presented. 

In Chapter 2, two-dimensional motion estimation and compensation methods are 

described. 

In Chapter 3, adaptation of 2-D mesh-based models to visual object 

representation is investigated. 

In Chapter 4, results of the experiments for the presented algorithms and the 

applications are presented. 

In Chapter 5, conclusions on this study and future work are discussed. 
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CHAPTER 2 

 

2-D MOTION ESTIMATION AND COMPENSATION 

 

 

2.1. Introduction 

2-D motion estimation is often viewed as an initial step for 3-D motion analysis. 

Besides, it has other applications such as video filtering, video compression, etc. 

Depending on the type of application motion estimation techniques may differ. For 

instance, in a video compression application, the estimated motion vectors are 

used to predict a frame to be coded from a previously coded reference frame. In 

this case, the goal is to minimize the number of bits used in video coding while 

providing a good estimation of the real motion. Hence, there is a trade-off and a 

motion estimation method must be chosen accordingly [6]. 

2-D dense motion estimation methods can be classified as pel-recursive, optical 

flow equation-based, Bayesian and block-based methods [5]. Pel-recursive 

methods estimate the motion pixel-by-pixel. They are simple but they have low 

motion estimation accuracy. For this reason, they are rarely used in today’s 

codecs [6]. Optical flow equation-based methods produce smooth motion fields 

but they have a bad performance in terms of the PSNR [8]. Bayesian methods 

employ probabilistic smoothness constraints to predict the motion vectors. 

Although they produce good motion estimation results, their main drawback is the 

high amount of computations required [5, 8]. 

Block-based motion estimation has been a popular motion estimation method due 

to its simplicity and satisfactory results in many video sequences. One problem 

with this approach is that the generated motion field is often not smooth because 

of the independent motion estimation of adjacent blocks. Hence, this results in 

blocking artifacts in low-bit-rate video compression [3, 6]. 
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Mesh-based motion estimation overcomes the problem of blocking artifacts. It 

produces a continuous motion field by constraining the movement of adjacent 

patches. Mesh-based model also allows representation of complex motion such 

as zooming and rotation [2, 3, 6, 24]. 

2-D motion estimation methods can also be classified as backward or forward 

estimation. In the block-based motion estimation case, backward estimation refers 

to searching a block of pixels of the current frame in a previous reference frame to 

find the best matching block. In the mesh-based approach, backward estimation 

refers to searching the node points of the current frame in a previous reference 

frame to find the best matching positions. On the other hand, in forward 

estimation, node points are defined in the reference frame and searched for best 

matching positions in the current frame. Forward estimation is suitable for tracking 

image features through the video sequence but at the expense of complexity. 

Backward estimation is widely used due to the lower computational requirements 

of the mapping process [1-3]. 

In the following sections, first, block-based motion estimation is described. Then 

the mesh-based motion estimation approach is discussed. Finally, the hierarchical 

motion estimation concepts and a technique for performing hierarchical mesh-

based motion estimation are presented. 

2.2. Block-Based Motion Estimation 

Block-based motion estimation is a popular motion estimation approach. It is 

widely used in digital video applications. Block-based motion estimation and 

compensation is also adopted in international video compression standards such 

as MPEG 1 and 2 [5]. 

In the block motion model, an image is partitioned into small blocks which are 

usually chosen as rectangles. In general, two types of motion are considered for 

these blocks; simple 2-D translation or various 2-D deformations. The advantage 

of the translational motion model is the low overhead to represent the motion field 

since one motion vector is sufficient for each block. However, it fails to represent 

complex motion such as zooming and rotation. For this reason, deformable 

motion models can be employed for better adaptation to those kinds of motion at 

the expense of higher overhead for motion representation [5, 6]. 
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The block matching algorithm (BMA) is considered as the most popular block-

based motion estimation method which adopts the translational motion model 

[14]. It is fast and simple requiring less complex hardware. For this reason, it is 

utilized in MPEG 1 and 2 codecs. The generalized block matching algorithm is a 

sophisticated alternative to classical block matching. It employs deformable 

blocks which provide a better representation of the underlying motion. However, 

this is achieved at the expense of an increase in the complexity of the motion 

estimation process. The hierarchical block matching algorithm also provides an 

improved motion representation by employing a layered motion estimation 

technique as described in Section 2.4 [5, 6]. 

In our studies, we have used block-based motion estimation to produce a fast 

initial estimation of the motion vectors which are then refined by a mesh-based 

motion estimation technique. As a result, the block matching algorithm has been 

employed due to its low computational requirements. The following section 

describes this algorithm. 

2.2.1. Block Matching Algorithm 

In the block matching algorithm, first, the current frame is segmented into fixed 

sized rectangular blocks. Then, each block is searched independently of each 

other in a reference frame to find a matching block. Finally, the displacement 

vectors for all blocks are obtained. The procedure is illustrated in Figure 2.1.  

As shown in the figure, the search is performed only in a limited area called the 

search window. This limitation reduces the computational complexity. In the case 

of smooth transitions between the frames, a small search window can be applied 

to minimize the time required for computations. 

 



 6 

 

Figure 2.1 – Block Matching Algorithm 

 

There exist several matching criteria for matching of blocks. Jain and Jain [14] 

used the mean square error (MSE). However, the MSE implementation is not 

simple due to the square operation included. Moreover, according to Srinivasan 

and Rao [16], the matching criterion has no significant effect on the search. 

Therefore, the mean absolute difference (MAD) is recommended due to its 

implementation simplicity [15]. The MSE and MAD are defined as 
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where sk(m, n) is the luminance value of the pixel (m, n) in frame k, (m+i, n+j) 

denotes a candidate block position in the search window, and M x N is the block 

size. 

All candidate blocks in the search window are compared in terms of the MAD 

values and the one with the minimum MAD is selected as the best matching 

block. This matching procedure is applied to all of the blocks in the current frame. 

Finally, a motion field composed of each block’s displacement vector is generated 

as shown in Figure 2.2. 
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Figure 2.2 – Block Motion Field 

 

In a video compression application, this motion field is used to synthesize a 

predicted image by motion compensation. The prediction is performed block-by-

block, i.e. the intensities of pixels in a block are predicted from the corresponding 

pixels in the matching block. 

The block matching algorithm is simple to implement and yields good results for 

many video sequences which contain translational motion. However, it suffers 

from representing rotational motion, zooming, etc. Besides, block-by-block 

prediction generates visual artifacts. Smaller blocks may be used for better motion 

modeling and to reduce the visual artifacts but this results in high bit rates in 

coding. A better alternative; mesh-based motion estimation is discussed in the 

next section. 

In our implementations, we have used the block matching algorithm to generate a 

fast initial estimation of the motion field which is then refined by the mesh-based 

algorithms. In addition, we have applied motion compensation using the motion 

vectors produced by block matching to compare the algorithm with the mesh-

based algorithms in terms of the PSNR, and entropy. These comparisons are 

presented in the Experimental Results Chapter in detail. 
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2.3. 2-D Mesh-Based Motion Estimation 

Mesh-based motion estimation and compensation is an advanced video 

representation and processing technique. In a mesh-based representation, the 

underlying image is partitioned into non-overlapping polygonal patches. The 

motion field over the entire image is described by the motion vectors at the 

corners of the patches which are called the nodes of the mesh. The motion 

vectors of the interior points of the patches are interpolated from those node 

points. Mesh-based representation provides a continuous motion field over the 

entire image [6, 24]. Mesh-based motion estimation is illustrated in the figure 

below. 

 

 

Figure 2.3 – Mesh-Based Motion Estimation. 

 

In a 2-D mesh-based model, when a node location is updated through the motion 

estimation process, all of the patches which are connected to the node are 

deformed. The deformed patches eventually provides better adaptation to 

underlying motion than a block-based model which does not preserve the 

neighboring relations of the blocks [4, 7]. On the other hand, a 2-D mesh-based 

model may produce bad results in occlusion regions since the motion field is 

enforced to be continuous. An occlusion-adaptive mesh-based model was 

proposed by Altunba�ak and Tekalp [7] to overcome this problem. In the scope of 

this thesis, the occlusion problem is not handled. 

In mesh-based motion estimation the primary problems that need to be solved are 

2-D mesh design and motion vector estimation at the node points. In a video 
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compression application, motion compensation using the estimated motion 

vectors is also required. This chapter addresses these problems. First, 2-D mesh 

design methods are presented. It is followed by the description of an effective 

motion estimation method: the hexagonal matching algorithm. Finally, the motion 

compensation approach is given. 

2.3.1. 2-D Mesh Design 

Two-dimensional mesh design is usually performed by the use of either a regular 

or an irregular mesh structure. A regular mesh is composed of equal sized 

patches. In Figure 2.4 two examples of regular meshes are shown. 

 

 

Figure 2.4 – Regular Mesh Examples. (a) An Equilateral Mesh, (b) A Right-Angled 

Mesh. 

 

Nakaya and Harashima [1] and Park et al. [2] are some of the researchers who 

utilized regular meshes in their work. The main benefit of employing a regular 

mesh is that the number of bits used in coding is reduced since each node 

position does not need to be coded explicitly. On the other hand, a regular mesh 

suffers from representing the image content appropriately. For this reason, 

irregular meshes are also used. Servais et al. [4], Al-Regib et al. [8], and 

Altunba�ak and Tekalp [7] employed content-based irregular meshes. A content-

based mesh represents the object boundaries and non-stationary regions of the 

image better. In Figure 2.5, a content-based mesh is illustrated [4]. 
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Figure 2.5 – A Content-Based Mesh 

 

We have used the right-angled regular mesh with triangular patches (Figure 2.4 

(b)) in our single-layer and two-layer hexagonal matching algorithm 

implementations. In object-based motion estimation studies, this mesh structure is 

employed in combination with non-uniform patches to obtain an accurate 

representation of video objects. Besides, a content-based irregular mesh is also 

applied to the same video objects for comparison purposes. The details of the 

object-based 2-D mesh design are presented in Chapter 3. 

2.3.2. Hexagonal Matching Algorithm 

The hexagonal matching algorithm (HMA) was developed by Nakaya and 

Harashima [1]. The algorithm performs motion estimation of the nodes (grid 

points) by iterative local minimization of the prediction error. This process is also 

called mesh refinement. The process may be applied immediately after the design 

of a two-dimensional regular mesh or after an initial estimation of the node motion 

vectors which is obtained by the block matching algorithm. We have chosen the 

latter since an initial estimation by a fast method like block matching reduces the 

time required for the grid points to converge to local or global minima. 

As seen on the regular meshes of Figure 2.4, each grid point (except the ones on 

the frame boundary) is connected to six triangles, i.e. each grid point is one of the 

vertices of six triangles which form a hexagon surrounding the grid point. Mesh 

refinement updates the location of each grid point iteratively by minimizing the 

prediction error inside this surrounding hexagon. The steps of the algorithm are as 

follows: 
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i. A new grid point GZ is selected as the node to be refined. Locations of 

the six surrounding grid points, GA ~ GF are kept fixed during the 

refinement process of GZ (Figure 2.6). 

 

 

Figure 2.6 – Hexagonal Mesh Refinement 

 

ii. GZ is moved to an adjacent point G'
Z. For this candidate grid point 

location, we have deformed patches inside the hexagon as shown in 

Figure 2.6 (b).  

iii. For each of these deformed patches of the reference frame, a 

transformation function is estimated to map the patch onto the 

corresponding undeformed patch of the current frame. An affine 

transformation is applied for this mapping which is described in Section 

2.3.3. 

iv. The predicted image inside the hexagon is synthesized by warping the 

six deformed patches onto the undeformed patches using the 

estimated transformation function. 

v. The MAD between the predicted image and the current frame is 

calculated. This difference is assigned to the candidate grid point 

location G'
Z as its error value. 

vi. Steps (ii) to (v) are repeated for each candidate grid point location G'
Z 

in the search range of GZ. 
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vii. Among the candidate grid point locations, the one with the smallest 

error value is registered as the new location of GZ. 

viii. Steps (i) to (vii) are repeated for each grid point of the mesh. 

The mesh refinement process described above is iterated until all grid points of 

the mesh converge to either local or global minima. An iteration of the process 

may not include refinement of some grid points. A grid point GZ is refined in an 

iteration only if its location was refined in the previous iteration or location of at 

least one of its six surrounding grid points was refined after GZ’s last refinement. 

Hence, the number of grid points included in the refinement process decreases as 

the iterations continue and finally no improvement is observed in the prediction 

error. As a result, the iterative mesh refinement process is finished. 

The hexagonal matching algorithm is an effective motion estimation method. Our 

simulation results indicate that the algorithm performs better than the block 

matching algorithm. In the Experimental Results Chapter, details of the 

experiments are presented. One drawback of the algorithm is its high 

computational cost. Faster algorithms as the ones proposed by Nakaya and 

Harashima [1] and Yu et al. [23] may be employed to reduce the computational 

cost. 

2.3.3. Motion Compensation 

Motion compensation can be performed to synthesize the content of a frame from 

another frame using the estimated grid point motion vectors. Mesh-based motion 

compensation is achieved by warping the undeformed mesh of the current frame 

onto the deformed mesh of the reference frame. The warping is done patch by 

patch to synthesize the frame content. Since the patches of the mesh are chosen 

as triangles, a six-parameter affine transformation is applied to warp the content 

of each triangle. 

Affine Transformation 

Affine transformation models translation, rotation and scaling of a patch in the 

current frame to the corresponding deformed patch in the reference frame [2]. The 
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intensity value of pixel ),( yx  in the i th synthesized patch P̂  in the predicted 

frame K  is calculated by the following formula 

),(),(ˆ 1 yxPyxP k
i

k
i ′′= +                                                                 (2.3) 

and the affine transformation for the patch is given by 

321 iii ayaxax ++=′                                                                    (2.4) 

321 iii bybxby ++=′                                                                     (2.5) 

where ),( yx ′′  and ),( yx  represent the pixel positions in the current and 

reference frames, respectively. 

 

 

Figure 2.7 – Affine Mapping of Patches 

 

Affine transformation has six parameters, 1ia , 2ia , 3ia , 1ib , 2ib , 3ib , and there 

exists a one-to-one matching between the vertices of a deformed patch and the 

vertices of an undeformed patch as shown in Figure 2.7. Therefore, the six 

parameters can be found by solving the equations 2.4 and 2.5 for three vertex 

positions of each patch. After finding the affine parameters of a deformed patch, 

for each pixel ),( yx  in that patch, a matching pixel ),( yx ′′  in the current frame is 

calculated using these parameters. Then, intensity values of these matching 

pixels are assigned to the pixels of the synthesized patch. This procedure is 

applied to all patches of the deformed mesh. Finally, the contents of all patches 

are synthesized and the predicted reference frame is formed. 
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One problem related to the affine transformation is that the calculated position 

),( yx ′′  does not always correspond to a valid pixel location. The transformation 

may produce non-integer x′  or y′  values. In this case, an interpolation is needed 

to determine the intensity value of pixel ),( yx . We have employed the bilinear 

interpolation since it uses the nearest integer locations in both x -direction and y -

direction to interpolate the intensity value. 

 

 

Figure 2.8 – Bilinear Interpolation 

 

Assignment of Pixels to Triangles 

One problem in motion compensation by affine transformation is the assignment 

of pixels to triangles to be able to perform warping. Although the assignment is 

simple in the case of undeformed regular triangles, more computational effort is 

required for the deformed triangles. A simple method to solve this problem is 

described below. 

The triangle shown in Figure 2.9 has three vertices; GA(xA, yA), GB(xB, yB) and 

GC(xC, yC), and three line equations: 

ABAB bxay +=  (Line GAGB)           (2.6) 

ACAC bxay +=  (Line GAGC)           (2.7) 

BCBC bxay +=  (Line GBGC)           (2.8) 
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Figure 2.9 – Assignment of Pixels to Triangles 

 

The pixel assignment procedure for this triangle is as follows: 

i. Put the vertex GC(xC, yC) into the equation 2.6. If (yC > aABxC + bAB), 

then label GC as “above”, else label GC as “below”. 

Put the vertex GB(xB, yB) into the equation 2.7. If (yB > aACxB + bAC), 

then label GB as “above”, else label GB as “below”. 

Put the vertex GA(xA, yA) into the equation 2.8. If (yA > aBCxA + bBC), 

then label GA as “above”, else label GA as “below”. 

ii. Select a pixel, Pi(xi, yi), inside a previously defined window as shown in 

Figure 2.9. 

iii. Put Pi(xi, yi) into the equation 2.6. If (yi > aABxi + bAB), then label the 

pixel as “above”, else label the pixel as “below”. 

If the label of the pixel and the label of GC are the same, then the 

pixel is on the same side of the line GAGB as GC. Otherwise, it is on 

the other side. 

Put Pi(xi, yi) into the equation 2.7. If (yi > aACxi + bAC), then label the 

pixel as “above”, else label the pixel as “below”. 
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If the label of the pixel and the label of GB are the same, then the 

pixel is on the same side of the line GAGC as GB. Otherwise, it is on 

the other side. 

Put Pi(xi, yi) into the equation 2.8. If (yi > aBCxi + bBC), then label the 

pixel as “above”, else label the pixel as “below”. 

If the label of the pixel and the label of GA are the same, then the 

pixel is on the same side of the line GBGC as GA. Otherwise, it is on 

the other side. 

iv. Assign the pixel to the triangle if the pixel is on the same side of the 

lines as the three vertices GA, GB, and GC. 

v. Repeat steps (ii) to (iv) until all pixels inside the window are evaluated. 

This procedure assigns the pixels to the deformed triangles. The content of each 

deformed triangle is then synthesized by a warping operation based on affine 

transformation. 

We have performed motion compensation to evaluate the performance of the 

motion estimation methods that have been implemented. The results are 

presented in detail in the Experimental Results Chapter. 

2.4. Hierarchical Motion Estimation 

Hierarchical motion estimation can be applied to obtain an improved motion field 

representation. There are different implementations of hierarchical motion 

estimation in both block-based and mesh-based approaches.  

Hierarchical block matching algorithm performs motion estimation by searching 

the best matching blocks in each level starting with the lowest resolution image 

level. The estimated motion vectors of one level provide an initial prediction for 

the motion vectors of next higher resolution level. On the other hand, an 

alternative method, known as variable-size block matching uses the same original 

image resolution in all levels while dividing the blocks into smaller ones in each 

level. Although these hierarchical block matching methods can improve the 



 17 

motion vectors resulting in higher PSNR values, the generated motion fields may 

still include some outliers [5-8].  

In hierarchical mesh-based motion estimation, the common approach is to apply 

meshes with different densities in each layer of the estimation process. Toklu et 

al. [17] proposed to use hierarchical regular meshes. On the other hand, Van 

Beek et al. [18] employed coarse-to-fine content-based meshes in their 

hierarchical motion estimation process. Al-Regib et al. [8] extended both methods 

by using blurred and downsampled images in higher levels to reduce the 

computational complexity. 

Progressive motion estimation is a hierarchical mesh-based motion estimation 

technique proposed by Park et al. [2]. This technique provides hierarchical partial 

mesh refinement according to the motion activities. The technique employs 

regular meshes in each layer but also features the advantages of a content-based 

mesh. It performs the hierarchical refinement without additional overhead to 

indicate the motion-active regions. Hence, progressive motion estimation 

technique achieves lower bit rates than the other mesh-based hierarchical motion 

estimation methods described above. The technique also shows improvement 

over the block-based methods by eliminating block distortions. The detailed 

information is presented in the next section. 

2.4.1. Progressive Motion Estimation 

As stated in Section 2.3.1, a regular mesh is not designed according to the image 

content. As a result, mesh refinement based on a regular mesh may not produce 

accurate motion fields especially for motion-active regions of the image. A 

solution for this problem is to apply a hierarchical mesh refinement procedure as 

proposed by Park et al. [2]. They developed a progressive motion estimation 

technique which uses layered regular meshes designed according to the motion 

activities in the image. This section describes the proposed technique. 

Progressive motion estimation employs regular meshes in a layered manner. The 

technique starts with uniform patches covering the whole image in the first layer. 

Then, in the next layers, smaller patches are applied only to the regions which 

contain high motion activities. The process is illustrated in Figure 2.10. 
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Figure 2.10 – Progressive Motion Estimation Layers 

 

In the first step, the technique applies hexagonal matching algorithm as 

mentioned in Section 2.3.2. A 2-D mesh is designed for the current frame as seen 

in Figure 2.11 (a). Then, an image is synthesized by performing mesh refinement 

and motion compensation (Figure 2.11 (b)). This predicted image provides a 

coarse estimation of the reference frame. 

 

 

Figure 2.11 – Single-Layer Mesh Refinement 
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Figure 2.12 – Approximated Frame Difference 

 

The next step starts with obtaining an approximated difference map. It is 

generated by subtracting the predicted reference frame from the current frame. 

Figure 2.12 shows an example of an approximated difference map. The 

approximated difference gives information about the motion-active regions. These 

regions are identified by a comparison based on the variance: If a patch 

difference has a greater variance, Pv , than the variance of the frame difference, 

Fv , then a motion discontinuity exists in that patch. The variance of the frame 

difference is given by 
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where M  and N  are the frame dimensions, ),( jif  is the intensity value of pixel 

),( ji , and f  refers to the mean frame difference. The variance of the patch 

difference is given by 

�
=

−=
K

i
PPP fif

K
v

1

2))((
1

          (2.10) 

where K  is the number of pixels in the patch, )(ifP  is the intensity value of i th 

pixel in the patch, and Pf  denotes the mean patch difference. 

Figure 2.13 (a) indicates the patches with motion discontinuities on the 

approximated difference map of Figure 2.12. 
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Figure 2.13 – Motion-Active Regions 

 

In the following step, a finer regular mesh is applied to the regions containing 

motion discontinuities (Figure 2.13 (b)). A finer regular mesh refers to a mesh with 

smaller patches. In Figure 2.14, the current frame with the finer mesh is shown. 

On this second layer denser mesh, the refinement procedure is performed again 

as in the first step. Consequently, we have a hierarchical mesh refinement 

process. 

 

 

Figure 2.14 – Second Layer Denser Mesh 

 

The progressive motion estimation technique provides a partial mesh refinement 

process as described. We have applied the technique using two-layer meshes. 

The results indicate that the technique shows improvement over the single-layer 

block matching and hexagonal matching algorithms. 
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CHAPTER 3 

 

2-D MESH-BASED VISUAL OBJECT REPRESENTATION 

 

 

3.1. Introduction 

Object-based video representation which is recommended in the MPEG-4 

standard [19] provides a solution for the problem with the 2-D frame-based motion 

estimation models: accurate representation of individual video objects in a scene.  

MPEG-4 describes the video sequences as video objects. Segmentation of 

arbitrarily shaped video objects from the background and other objects is of 

primary importance for the effective compression and manipulation of these 

objects. This task is difficult especially in the presence of complicated 

backgrounds. After the segmentation, shape and motion of the objects need to be 

modeled. 2-D mesh-based models provide a good representation of shape and 

motion of video objects. A 2-D dynamic mesh also allows the animation of video 

objects [3, 12, 20-22]. 

This chapter focuses on the use of 2-D meshes for visual object representation. 

Section 3.2 gives an introductory information about the extraction (or 

segmentation) of video objects. Then, 2-D object-based mesh design methods 

are presented in Section 3.3. Section 3.4 describes object-based motion 

estimation techniques and finally, video object manipulation topic is presented in 

Section 3.5. 

3.2. Video Object Extraction 

Video object extraction (or segmentation) is one of the fundamental problems in 

object-based video representation. A simple solution for this problem is 

thresholding. Thresholding performs extraction on the basis of the difference in 
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colors (or intensities) of an object and background. It works well in the scenes as 

the one shown in Figure 3.1 (a). 

 

 

Figure 3.1 – Thresholding 

 

In this scene, a color band is specified for background. Then, pixels inside this 

band are assigned a color value, and pixels outside the band are assigned 

another color value. This procedure generates the segmented image in Figure 3.1 

(b). 

On the other hand, segmentation gets complicated for some other scenes where 

a foreground object cannot be extracted from background by a simple color 

thresholding. An example for such scenes is shown in Figure 3.2 (a). 

 

 

Figure 3.2 – Manual Object Extraction 
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In this case, object extraction can be done manually by the user or by some semi-

automatic or automatic extraction methods as the ones proposed by Toklu et al. 

[25], Yang et al. [12] and Fan et al. [11]. Considering the difficulty of accurate 

object extraction, in our studies, we performed manual object extraction unless a 

simple color thresholding gives good results. Figure 3.2 (b) illustrates the image 

obtained by manual object extraction for the sample scene in Figure 3.2 (a). 

3.3. Object-Based 2-D Mesh Design 

Video object extraction is followed by the design of a 2-D object mesh. Similar to 

the full-frame mesh design (Chapter 2), regular or irregular meshes can be 

applied in the design of an object mesh. The difference is that this time the mesh 

generation is limited to the region covered by the video object (Figure 3.8 and 

Figure 3.9). 

Object-based (2-D) mesh design process includes three stages: determination of 

nodes on the object boundary, determination of nodes inside the object, and 

triangulation between all nodes. These stages are described in detail in the 

following sections. 

3.3.1. Boundary Node Selection 

We have employed regular meshes in full-frame mesh-based motion estimation 

implementations as mentioned in Chapter 2. In a regular mesh, nodes are placed 

at fixed distances over the image (Figure 2.4). Hence, this kind of mesh cannot fit 

to the object boundary without modification. Our algorithm determines the 

boundary nodes by modifying the grid point positions of the regular mesh near the 

object boundary. 

After performing object segmentation, the boundary node selection algorithm 

proceeds as follows:  

i. Each grid point of the regular mesh is labeled as “inside” or “outside” of 

the object referring to the segmented image as shown in Figure 3.3. 
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Figure 3.3 – Classification of Grid Points 

 

ii. Among the grid points which are “outside”, the ones that are close to 

the object boundary are found and marked as “close” (Figure 3.3). The 

closeness criterion is: 

If at least one neighbor of the grid point is “inside”, then the grid 

point is “close” to the object boundary. 

iii. A grid point which is “outside” and “close” is moved on the line towards 

one of its “inside” neighbors until the grid point reaches the object 

boundary (Figure 3.4). This candidate position and its distance to 

original grid point position are recorded. The grid point is put back to its 

original position. This procedure is repeated for all “inside” neighbors 

of the grid point and the candidate with the minimum distance is 

designated as the winner. Then, the grid point is moved to the winner 

position. 
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Figure 3.4 – Movement of “Close” Points 

 

iv. Step (iii) is repeated for all grid points that are “outside” and “close”. 

Finally, we obtain a boundary representation for the video object by 

determination of all boundary nodes as seen in Figure 3.5. 

 

 

Figure 3.5 – Determination of Boundary Nodes 

 

This algorithm does not make any modification on the “inside” points; rather it 

modifies the positions of the “outside” points near the boundary. The reason is 

that we want to preserve the uniform mesh inside the object to be able to perform 

object-based progressive motion estimation which is described in Section 3.4.3. 

After the determination of boundary nodes, the boundary polygon is formed by 

sorting and connecting those nodes. The edges of this polygon are used as 

constraints for the generation of irregular patches inside the object as described in 

the triangulation stage (Section 3.3.3).  
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In our simulations, we have used the same boundary nodes and boundary 

polygon for both regular and irregular (content-based) mesh approaches for 

comparison purposes. 

3.3.2. Interior Node Selection 

Determination of the nodes inside a video object can be performed by one of the 

two popular approaches: the regular (uniform) mesh approach and the content-

based mesh approach [3]. We have applied both of them in our object-based 

motion estimation and compensation studies. In the following sections, interior 

node selection by these two approaches is mentioned. 

3.3.2.1. Regular Mesh Approach 

In this approach, interior nodes are uniformly placed inside the video object as 

seen in Figure 3.5. Uniform distribution of the nodes provides lower bit rates than 

a non-uniform distribution in coding. Toklu et al. [10] applied this approach to 

synthetic object transfiguration. 

3.3.2.2. Content-Based Mesh Approach 

In the content-based mesh approach, interior nodes are placed according to some 

features of the region inside the video object such as spatial edges and motion 

activities. Content-based node selection algorithm proposed by Altunbasak et al. 

[7, 9] is used in our implementations. The algorithm for the object-based 

representation is as follows:  

i. Estimate a 2-D dense motion field between the current and the 

reference frames. Label all pixels in the current frame as “unmarked”. 

ii. Compute an average displaced frame difference, avgDFD , inside the 

object as 

K

yxDFD
DFD yx

p

avg

�
= ),(

)),((
          (3.1) 

where K  is the number of unmarked pixels inside the object, p  is a 

positive number (selected as 2), ),( yxDFD  denotes the displaced 
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frame difference at pixel ),( yx , and the summation is over all 

unmarked pixels inside the object. 

iii. For each unmarked pixel inside the object, compute a cost function 

),( yxC  as 

),(),(),( yxIyxIyxC yx +=                      (3.2) 

where ),( yxI x  and ),( yxI y  denote the partials of the intensity with 

respect to x  and y  coordinates evaluated at pixel ),( yx  (Figure 3.6). 

The cost is a function of spatial intensity gradient. This eventually 

results in that interior nodes are placed at the spatial edges. 

 

 

Figure 3.6 – Image Derivatives 

 

iv. Find the unmarked pixel with the highest ),( yxC  which is not closer to 

any other previously selected node point (including the boundary 

nodes) than a prespecified distance. Label this point as a node point. 

v. Grow a circle around this node point until �
pyxDFD )),((  in this 

circle is greater than avgDFD  or the circle exceeds the object 

boundaries. Label all pixels inside this circle as “marked”. Set 

),( yxDFD  at these pixels as zero. Figure 3.7 illustrates the 

procedure. 
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Figure 3.7 – Interior Node Selection 

 

vi. Go to step (ii) until a desired number of node points, N, are selected or 

the distance criterion in step (iv) is violated. 

The next stage is triangulation between the boundary and the interior nodes which 

is described in the following section. This algorithm places the nodes in such a 

way that after triangulation, each patch has approximately the same DFD value. 

As shown in Figure 3.7, a high temporal activity is represented by a small circle, 

while a low temporal activity is represented by a large circle. The reason for 

labeling all pixels in a circle as marked is that only one node point is allowed in a 

circle. This constraint provides a node point distribution proportional to the 

temporal activity [7].  

Node point distribution is directly affected by the parameters of the algorithm. 

Minimum allowed distance between any two node points and desired number of 

node points are some of those parameters. In our implementations, we tuned 

them for the best performance of the algorithm. In the Experimental Results 

Chapter, we discuss the effect of these parameters on the results.  

3.3.3. Triangulation 

In the scope of object-based mesh design, triangulation refers to generation of a 

mesh by partitioning the video object into triangular patches. This is achieved by 

connecting all boundary and interior nodes of the object by a selected method. 

Hence, these nodes become the vertices of the patches of the mesh (Figure 3.8 

and Figure 3.9).  
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The regular and content-based mesh approaches also differ in the way of 

triangulation as described below. 

3.3.3.1. Regular Mesh Approach 

A 2-D regular mesh inside the object is generated in the same way as in the full-

frame mesh design procedure (Chapter 2). However, this time, the regular mesh 

is generated between only the interior nodes as seen in Figure 3.8 (b). If the 

outside nodes were also used to cover the whole region inside the object, the 

mesh would exceed the object boundaries as shown in Figure 3.8 (c). Hence, it 

would result in an inaccurate object representation around the boundary.  

In order to solve the problem near the boundary, another triangulation method 

called the Constrained Delaunay Triangulation is applied. The details of the 

method are given in the next section. Constrained Delaunay Triangulation 

produces irregular patches in the region between the boundary nodes and the 

nearest interior nodes which is not covered by the regular mesh. Hence, the 

whole region inside the object is well approximated by the combination of regular 

and irregular patches (Figure 3.8 (d)). 

We have used this combination to adapt the single layer hexagonal matching and 

progressive motion estimation methods to object-based motion estimation as 

described in Section 3.4. 
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Figure 3.8 – Triangulation – Regular Mesh Approach 

 

3.3.3.2. Content-Based Mesh Approach 

Content-based triangulation follows the selection of boundary and content-based 

interior nodes. The Constrained Delaunay Triangulation [13] is employed to 

generate a content-based object mesh. The triangulation is performed between all 

boundary and interior nodes resulting in a non-uniform structure. 

This method constructs the object mesh using the edges of the boundary polygon 

as constraints. Using these constraints guarantees that all triangles are 

constructed inside the object. One nice property of Delaunay Triangulation is that 

it eliminates too small angles between the triangle edges [3, 13]. 

We have used the software, Triangle, provided by Shewchuk [13] to construct a 

content-based Delaunay mesh inside the object. In Figure 3.9 (b), a Delaunay 

mesh generated by this software is illustrated.  

 

 

Figure 3.9 – Triangulation – Content-Based Mesh Approach 
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3.4. Object-Based Motion Estimation 

Motion estimation in object-based video processing refers to generating a motion 

field by updating the positions of the boundary and the interior nodes of an object. 

Altunbasak et al. [7] stated that there are two approaches for node motion 

estimation: i) estimating the motion vectors at each node independently of each 

other (e.g., performing block matching at each node); ii) estimating motion vectors 

optimized for warping transformations (e.g., applying a constrained search 

procedure such as hexagonal matching algorithm [1]). They employed the former 

approach in their paper due to the high computational requirements of the latter 

approach.  

In object-based motion estimation implementations, we have employed both 

approaches mentioned above; block matching is used for a coarse estimation of 

node motion vectors, and then, single layer hexagonal matching (or generally 

polygonal matching) is applied to refine these motion vectors. Besides, for the 

specific case of object-based progressive motion estimation, we have also 

employed a second layer mesh refinement procedure as in the full-frame 

progressive motion estimation process.  

The following sections give information about the application of those motion 

estimation techniques to object-based video representation. 

3.4.1. Initial Estimation by Block Matching 

A block matching procedure similar to the classical block matching algorithm 

described in Chapter 2 is used to obtain an initial prediction of the 2-D motion field 

representing the object motion. The main difference of this procedure is in the 

way of locating the blocks. While in full-frame motion estimation whole image is 

segmented into non-overlapping rectangular blocks independently of the image 

content, this time we need to consider the shape of the object as a constraint. The 

procedure determines the locations of blocks on the basis of boundary and 

interior node positions. 

Figure 3.10 illustrates the possible blocks for different types of nodes. For a node, 

four or five (depending on the type of node) candidate search blocks are formed, 

each having the node as one of its corners or on its center. Then, for each 
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candidate, the number of pixels which belong to the region inside the object is 

calculated. The candidate with the maximum number of pixels inside the object is 

selected as the block to be searched in the reference frame. This selection 

procedure is repeated for all boundary and interior points to locate their search 

blocks in the object. These blocks are then searched in the reference frame to 

find the best matches as in the classical block matching algorithm. 

 

 

Figure 3.10 – Candidate Search Blocks for Different Node Locations 

 

As shown in Figure 3.10, five candidate blocks are formed for an interior node 

while four is sufficient for a boundary node. The reason for forming a fifth 

candidate for interior nodes is that an interior node may be far from object 

boundary. In this case, this center block remains completely inside the object as 

seen in Figure 3.10 (c). Hence, this block is selected for the search in the 

reference frame since it provides a better representation of the motion field 

around the node than the other four candidates. 

The search in the reference frame is limited to a search window and the MAD is 

used as the matching criterion as in the classical block matching algorithm. 

The procedure given in this section is employed as the first step of motion 

estimation and provides a coarse estimation of the motion vectors at the nodes. It 

is followed by a mesh refinement procedure to find the optimal node vectors as 

described in the next section. 



 33 

3.4.2. Mesh Refinement by Polygonal Matching 

Refinement of the 2-D object mesh is realized by a polygonal matching algorithm 

(PMA) which is based on the hexagonal matching algorithm (HMA) described in 

Chapter 2. In fact, PMA is a generalized version of HMA for different kinds of 

polygons. Hence, mesh refinement proceeds very similar to the refinement 

process proposed in HMA. 

In a right-angled regular mesh covering whole frame as shown in Figure 2.4, a 

node (grid point) is connected to six triangles unless it is on the frame boundary. 

On the other hand, a node point in an object mesh can be connected to different 

number of triangles due to the irregular structure of the mesh. Figure 3.11 shows 

two examples for different node placements in both the regular mesh and the 

content-based mesh approaches.  

 

 

Figure 3.11 – Grid Point Examples 

 

Although each node shown in the figure is connected to different number of 

triangles, the same mesh refinement procedure is applied to all of them: iterative 

local minimization of the prediction error within the bounding polygon of the node. 

The procedure follows the same steps as the mesh refinement procedure of HMA. 

All of the surrounding nodes of GZ are kept fixed and GZ is sequentially moved to 

adjacent positions in a limited search region to find the optimum displacement 

which yields the minimum prediction error (Figure 3.12). The procedure is 

repeated iteratively for all nodes of the mesh until all of them converge to either 

local or global minima. 
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Figure 3.12 – Polygonal Mesh Refinement 

 

In the content-based mesh approach, motion estimation phase is completed with 

this refinement procedure. However, in the regular mesh implementations, we 

refine the object motion field further by applying a second layer mesh as in the 

progressive motion estimation technique. 

3.4.3. Progressive Motion Estimation 

This technique, as described in Chapter 2, provides a hierarchical partial 

refinement. In each layer, denser regular meshes designed according to motion 

activity are employed (Figure 2.10). Park et al. proposed the technique with 

applications to full-frame regular meshes in their paper [2]. We have used the 

technique in object-based motion estimation by making some modifications. 

Following the polygonal mesh refinement given in the previous section, we apply 

partial refinement. This time, motion-active regions inside the object are identified 

from the approximated difference map (Figure 3.13 (a)). Then, a denser mesh is 

applied inside the region covered by the regular mesh of first layer (Figure 3.13 

(b)). 
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Figure 3.13 – Approximated Frame Difference 

 

While identifying motion-active regions which are shown in Figure 3.13 (a), 

individual patch variances (given by Equation 2.10) are compared with the 

variance of the object difference given by 

�
=

−=
K

i
OOO fif

K
v

1

2))((
1

                                                   (3.3) 

where K  is the number of pixels inside the object, )(ifO  is the intensity value of 

i th pixel inside the object, and Of  denotes the mean object difference. The 

patches whose variances are greater than the variance of object difference are 

included in the partial refinement process as described in Chapter 2. 

Progressive motion estimation technique with the modifications described in this 

section provides a hierarchical refinement for object-based video processing. It 

produces better results than single-layer hexagonal matching algorithm and block 

matching algorithm according to our experiments. (See the Experimental Results 

Chapter). 

3.5. Video Object Manipulation 

2-D mesh-based models enable several functionalities for manipulation of video 

objects such as animating a still image of one object by motion parameters of 

another similar object and combining natural and synthetic objects interactively 

within a unified framework. In addition, the mesh structure allows spatio-temporal 

video interpolation [3].  
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In this section, video object manipulation is described in detail. 

3.5.1. Object Transfiguration 

Object transfiguration refers to synthesizing an animated video object from a still 

image of the same or a replacement object by texture mapping based on a 

dynamic 2-D mesh representation. Object transfiguration is classified as self-

transfiguration and synthetic transfiguration. Self-transfiguration refers to 

animating a video object from a still image of the same object using its dynamic 

mesh representation. It is employed in object-based video compression. 

Transmitting texture maps only at selected key frames and animating these 

texture maps to obtain the intermediate frames may improve the efficiency of 

compression [3, 10, 17]. 

Synthetic transfiguration refers to replacing a natural video object in a video clip 

by another video object. The replacement video object may be animated from one 

of its still images using the motion vectors of the object to be replaced. This 

requires accurate motion tracking of the existing object. The 2-D dynamic mesh 

representation which is included in the MPEG-4 standard allows tracking of object 

motion through the video sequence [3, 19]. 

3.5.2. Augmented Reality 

Augmented reality refers to merging synthetic (computer generated) video, 

images, text and/or graphics with natural moving images (video) to create 

enhanced display information. The synthetic content must remain in perfect 

registration with the moving real images [3, 19]. 

Merging synthetic or natural content with a moving object can be performed by 

first tracking the motion of the existing object using 2-D dynamic meshes. Then, 

registration of the augmentation object with the initial appearance of the object to 

be augmented is performed. Finally, 2-D mesh-based texture mapping is applied 

to obtain the new merged sequence. The 2-D mesh-based texture mapping can 

be performed in a way similar to self-transfiguration: the animation parameters 

obtained by motion tracking of the existing natural object are applied to the 

composite object [3, 19]. 
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In the Experimental Results Chapter, we present an application in which a text is 

augmented onto a moving fish. 

3.5.3. Spatio-Temporal Interpolation 

Spatio-temporal interpolation is another functionality enabled by 2-D mesh-based 

models. Mesh-based spatial interpolation is achieved by first scaling the object 

mesh, and then applying texture mapping onto the scaled mesh. This technique 

may be applied for performing zooming in and out on an object through the video 

sequence [3]. In the Experimental Results Chapter, a mesh-based spatial 

interpolation application for the moving fish sequence is presented. 

Mesh-based temporal interpolation is performed by computing an intermediate 

mesh geometry between the two given meshes and then applying forward and/or 

backward texture mapping from one or both of the given object texture maps. 

Linear interpolation of node points is a way of computing the intermediate mesh 

geometry in the presence of two original meshes. Mesh-based temporal 

interpolation may be applied in the case of frame rate up-conversion [3]. 
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CHAPTER 4 

 

EXPERIMENTAL RESULTS 

 

 

4.1. Introduction 

In this chapter, the experimental results of the algorithms described in the 

previous chapters are given. The algorithms are implemented in C++ using 

Borland C++ Builder 6.0 IDE and the OpenCV library is used for the 

implementation of some image processing algorithms. The graphical user 

interface is shown in the following figure. 

 

Figure 4.1 – The Graphical User Interface 
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This interface enables the user to perform several tasks related to motion 

estimation and compensation. The user can select a frame of a video sequence 

for displaying, generate a regular or an irregular mesh on a selected frame or start 

the motion estimation process between two frames. The user is also informed 

about the results of the experiments. 

We have conducted the experiments on the selected video sequences by using 

this user interface. The following section gives information about the details of the 

experiments and results. 

4.2. The Experiments 

The first two experiments were conducted to compare the performance of the 

algorithms described in the previous chapters. The tests were performed in both 

frame-based and object-based video representations. The algorithms were 

compared in terms of peak signal-to-noise ratio (PSNR) and entropy. 

The PSNR is commonly used as a measure of the quality of a predicted image in 

video compression. It is defined via the mean square error given by 
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where M and N are the frame dimensions, sI(m, n) is the luminance value of the 

pixel (m, n) in the original frame, and sP(m, n) denotes the luminance value of the 

pixel (m, n) in the predicted frame. The PSNR is defined as 

)(log20 10 MSE
I

PSNR MAX=                                                (4.2) 

where MAXI  is the maximum intensity value of the pixels in the image. MAXI  is 255 

for our test sequences. 

Entropy is a measure of average information. Entropy of the difference between 

the original and predicted frames can be used to measure the quality of motion 

compensation. Entropy of an 8-bit image is given by 
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where )(ip  denotes the probability of the i th intensity level in the image. A high 

entropy value indicates a less compressible image. 

In the third experiment, application of mesh-based modeling to video object 

manipulation was performed. 

The “Suzie” sequence used in the first two experiments has 150 frames of 176 x 

144 size and the “Bream” sequence employed in the third experiment has 60 

frames of 352 x 288 size. 

4.2.1. Experiment 1: 2-D Frame-Based Motion Estimation 

and Compensation for “Suzie” Sequence 

The aim of this experiment is to compare the block-based and regular mesh-

based methods in frame-based video representation. The experiment was 

performed using one-layer block matching, and both one-layer and two-layer 

hexagonal matching algorithms. Two-layer hexagonal matching was realized by 

the use of the progressive motion estimation technique. 

In the experiment, current and reference frames were selected as consecutive 

frames. For instance, when the second frame of the sequence was selected as 

the current frame, the first frame was used as the reference frame. Motion 

estimation was performed in the backward direction for all of the three algorithms. 

The resulting motion vectors were then used to generate the motion-compensated 

reference frame. The PSNR values were calculated based on the difference 

between the original and motion-compensated reference frames. 

In the following table, motion estimation parameters for the three algorithms are 

listed. 
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Table 4.1 – Frame-Based Motion Estimation Parameters for the Block-Based and 

Regular Mesh-Based Algorithms 

 1-Layer Block 
Matching 

1-Layer Hexagonal 
Matching 

2-Layer Hexagonal 
Matching 

Block / Patch 
Size (pixels) 16 x 16 16 x 16 8 x 8 

Search Range 
(pixels) ± 3 ± 3 ± 3 

Number of 
Iterations 1 Up to Local or Global 

Minima 
Up to Local or Global 

Minima 

Mesh 
Connectivity 

Range (pixels) 
Not Applicable ± 7 ± 3 

 

 

Figure 4.2 shows the PSNR values over all frames of the “Suzie” sequence for the 

three algorithms. In Table 4.2, the average PSNR values are also given. The 

results indicate that the two mesh-based algorithms perform more accurate 

motion compensation than the block matching algorithm. Moreover, the two-layer 

hexagonal matching algorithm realized by the progressive motion estimation 

technique shows improvement over the one-layer hexagonal matching algorithm. 

The average improvement is 0.16 dB which is close to the improvement achieved 

by Park et al. [2]. 
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Figure 4.2 – Comparison of PSNR Values for All 150 Frames of “Suzie” Sequence 

 

Table 4.2 – Average PSNR Values for All 150 Frames of “Suzie” Sequence 

 1-Layer Block 
Matching 

1-Layer Hexagonal 
Matching 

2-Layer Hexagonal 
Matching 

PSNR (dB) 34,60 35,99 36,15 

 

 

The “Suzie” sequence contains different types of motion. Performance of the 

algorithms heavily depends on the type of motion. For this reason, we have also 

evaluated the algorithms for two specific cases. 

In the first case, frames from 11 to 30 of the sequence were considered. In this 

range, smooth transitions (small changes in pixel positions) occur between the 

consecutive frames. Hence, all of the algorithms yielded high PSNR values as 

shown in Figure 4.3 and Table 4.3. Another feature of the frames in this range is 

that they contain “blinking”, an example of local motion. This motion is limited to a 

small region. In this case, the two-layer hexagonal matching algorithm performed 
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better than the single-layer hexagonal matching algorithm since smaller patches 

employed in the second layer of the mesh refinement procedure represent the 

local motion better. As a result, the difference between the average PSNR values 

of the two algorithms (0,24 dB) was larger than the difference for the entire 

sequence (0,16 dB). 
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Figure 4.3 – Comparison of PSNR Values for Frames 11 to 30 of “Suzie” Sequence 

 

Table 4.3 – Average PSNR Values for Frames 11 to 30 of “Suzie” Sequence 

 1-Layer Block 
Matching 

1-Layer Hexagonal 
Matching 

2-Layer Hexagonal 
Matching 

PSNR (dB) 36,31 37,25 37,49 

 

 

In the second case, frames from 41 to 60 were used. These frames contain 

occluded and discovered areas. As a result, the algorithms produced lower PSNR 
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values compared to the average values of the entire sequence. This result was as 

expected since we did not employ any occlusion handling mechanism. 

In this range, transitions between the consecutive frames are generally not 

smooth. As a result, grid point motion vectors tend to be large. However, because 

of the grid point connectivity constraint, each grid point was allowed to move in a 

small region (±3 pixels) in the second-layer of the hierarchical mesh refinement 

procedure. Hence, the two-layer hexagonal matching algorithm yielded less 

accurate motion compensation than the one-layer hexagonal matching algorithm. 

Comparison of the algorithms in terms of the PSNR values is given in Figure 4.4 

and Table 4.4. 
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Figure 4.4 – Comparison of PSNR Values for Frames 41 to 60 of “Suzie” Sequence 

 

Table 4.4 – Average PSNR Values for Frames 41 to 60 of “Suzie” Sequence 

 1-Layer Block 
Matching 

1-Layer Hexagonal 
Matching 

2-Layer Hexagonal 
Matching 

PSNR (dB) 27,97 31,37 30,85 
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4.2.2. Experiment 2: 2-D Object-Based Motion Estimation 

and Compensation for “Suzie” Sequence 

In this experiment, performances of the block-based and mesh-based algorithms 

were measured and compared in object-based video representation. Backward 

motion estimation was applied again. This time, motion vectors were calculated 

only for the segmented video object instead of the entire frame. Then, these 

motion vectors were used to predict an object in the reference frame. 

Comparisons were performed in terms of the PSNR and entropy based on the 

difference between the original and predicted objects of the reference frame. 

4.2.2.1. Comparison of Block-Based and Regular 

Mesh-Based Algorithms 

In the first part of the experiment, one-layer block matching and both one-layer 

and two-layer hexagonal matching algorithms were compared as in experiment 1. 

Two-layer hexagonal matching was realized by using the progressive motion 

estimation technique. The same motion estimation parameters were used for the 

three algorithms as the ones in experiment 1. 

Comparisons have been performed for the two specific cases described in 

experiment 1. The results were very similar to the results of the 2-D frame-based 

video representation experiment. In the first case, two-layer hexagonal matching 

algorithm showed improvement over the other two algorithms due to the motion in 

small regions inside the video object and smooth transitions between the 

consecutive frames. On the other hand, in the second case where occluded and 

discovered areas exist, one-layer hexagonal matching algorithm yielded better 

motion compensation results in terms of the PSNR and entropy due to the small 

search region associated with the second-layer mesh refinement procedure. 
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Figure 4.5 – Comparison of PSNR Values for Frames 11 to 30 of “Suzie” Sequence 
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Figure 4.6 – Comparison of Entropy Values for Frames 11 to 30 of “Suzie” 

Sequence 
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Table 4.5 – Average PSNR & Entropy Values for Frames 11 to 30 of “Suzie” 
Sequence 

 1-Layer Block 
Matching 

1-Layer Hexagonal 
Matching 

2-Layer Hexagonal 
Matching 

PSNR (dB) 35,25 36,19 36,39 

Entropy 
(bits/symbol) 2,90 2,83 2,82 
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Figure 4.7 – Comparison of PSNR Values for Frames 41 to 60 of “Suzie” Sequence 
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Figure 4.8 – Comparison of Entropy Values for Frames 41 to 60 of “Suzie” 

Sequence 

 

Table 4.6 – Average PSNR & Entropy Values for Frames 41 to 60 of “Suzie” 
Sequence 

 1-Layer Block 
Matching 

1-Layer Hexagonal 
Matching 

2-Layer Hexagonal 
Matching 

PSNR (dB) 26,09 29,07 28,50 

Entropy 
(bits/symbol) 4,26 3,86 3,96 

 

 

4.2.2.2. Comparison of Content-Based and Regular 

Mesh-Based Algorithms 

The second part of the experiment was performed to compare the one-layer 

regular mesh-based algorithm (the hexagonal matching algorithm) with a one-

layer content-based algorithm. This algorithm is based on the content-based 
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interior node selection and triangulation approaches that are described in Chapter 

3. 

The performance of the content-based algorithm depends on several parameters 

associated with the interior node selection algorithm. One of the parameters is 

minimum allowed distance between any two node points. This distance affects the 

distribution of node points. A small value of the parameter is preferred since a 

large value may limit the number of node points and reduce the dependency on 

the image content. The distance was selected as 10 pixels in the tests. 

Desired number of node points is another parameter. This parameter controls the 

number of nodes and triangles in the generated mesh. In the tests, this parameter 

was tuned for each frame to obtain the same number of triangles as the regular 

mesh used in one-layer hexagonal matching. 

In the experiment, the content-based algorithm performed better than the one-

layer hexagonal matching algorithm. This was as expected since the content-

based mesh is designed according to the image content while the one-layer 

regular mesh is designed independently of the underlying image. As a result, the 

content-based algorithm yielded a more accurate representation of the motion 

field. 
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Figure 4.9 – Comparison of PSNR Values for Frames 11 to 30 of “Suzie” Sequence 
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Figure 4.10 – Comparison of Entropy Values for Frames 11 to 30 of “Suzie” 

Sequence 
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Table 4.7 – Average PSNR & Entropy Values for Frames 11 to 30 of “Suzie” 
Sequence 

 1-Layer Content-
Based Mesh 

1-Layer Regular 
Mesh 

PSNR (dB) 36,25 36,19 

Entropy 
(bits/symbol) 2,84 2,83 
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Figure 4.11 – Comparison of PSNR Values for Frames 41 to 60 of “Suzie” Sequence 
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Figure 4.12 – Comparison of Entropy Values for Frames 41 to 60 of “Suzie” 

Sequence 

 

Table 4.8 – Average PSNR & Entropy Values for Frames 41 to 60 of “Suzie” 
Sequence 

 1-Layer Content-
Based Mesh 

1-Layer Hexagonal 
Matching 

PSNR (dB) 30,25 29,07 

Entropy 
(bits/symbol) 3,77 3,86 

 

 

4.2.3. Experiment 3: Video Object Manipulation for 

“Bream” Sequence 

In this experiment, application of 2-D mesh-based video representation to video 

object manipulation was performed. Video object manipulation was realized by an 

augmented reality and a spatial interpolation application on the “Bream” 

sequence. 
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In the two applications, the content-based irregular mesh approach, as described 

in the previous chapter, was employed. An initial 2-D content-based mesh was 

designed for the first appearance of the video object (the moving fish in the 

“Bream” sequence) which is assumed to be planar as seen in Figure 4.13 (a). 

Then, this mesh was tracked in the following frames to obtain the animation 

parameters for the object (Figure 4.13 (b)). Motion estimation at the nodes of the 

mesh was performed by the polygonal matching algorithm as described in 

Chapter 3. 

Connectivity of the mesh was preserved by using some constraints on the 

displacement of the mesh nodes such as the minimum allowed patch size, etc. 

While enabling continuous tracking of the initial mesh structure, these constraints 

caused some of the nodes to converge to incorrect positions (Figure 4.13 (b)). 

The future work on mesh tracking may include the update of the mesh structure 

by node addition and deletion particularly in the presence of occluded or 

discovered areas. 

 

 

Figure 4.13 – Mesh Tracking on “Bream” Sequence. (a) Initial Mesh in Frame 1, (b) 

Tracked Mesh in Frame 25. 

 

4.2.3.1. The Augmented Reality Application 

Augmented reality, as described in the previous chapter, can be realized by 

merging synthetic images with real moving images. In this application, the text 
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“Fish” was used as the synthetic augmentation image as illustrated in Figure 4.14. 

The animation parameters obtained by motion tracking of the original fish object 

were applied to synthesize a merged sequence. In Figure 4.14 (b), a synthesized 

composite object is illustrated. 

 

 

Figure 4.14 – Augmentation on “Bream” Sequence. (a) Original Composite Object in 

Frame 1, (b) Synthesized Composite Object in Frame 25. 

 

4.2.3.2. The Spatial Interpolation Application 

Mesh-based spatial interpolation can be used for performing zooming in and out 

on video objects or replacing a single object with several different sized objects 

through the video sequence. In the mesh-based representation, changing the size 

of a video object requires scaling of the 2-D object mesh and applying texture 

mapping on the new scaled mesh. In this application, the original fish object was 

replaced with its three different sized copies. All of the three objects had the same 

motion as the original object. 
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Figure 4.15 – Spatial Interpolation on “Bream” Sequence. (a) Original Objects in 

Frame 1, (b) Synthesized Objects in Frame 25. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

 

Block-based and mesh-based models are extensively employed in 2-D motion 

estimation and compensation which has great importance for video compression 

applications. In this thesis, several block-based and mesh-based motion 

estimation methods have been investigated. The advantages and drawbacks of 

these methods have been stated and their performances have been evaluated by 

a number of experiments on both frame-based and object-based video 

representations. In addition, application of a 2-D mesh-based model to video 

object manipulation has been performed. 

Block-based motion estimation has been realized by the use of the block 

matching algorithm. The algorithm is fast and simple to implement. However, the 

algorithm performed worse than the mesh-based algorithms in terms of the PSNR 

and entropy in both frame-based and object-based experiments. The reason is 

that the block matching algorithm adopts a 2-D translational motion model which 

suffers from representing complex motion. 

Mesh-based models provide a better representation of complex real world motion 

than block-based models. A 2-D mesh-based model produces a continuous 

motion field due to the constraints on the movement of mesh nodes. Hence, such 

a model is most suitable in the presence of mild deformations. This kind of model 

fails to represent motion discontinuities. High computational complexity is another 

drawback of mesh-based models. 

In the frame-based experiment, mesh-based motion estimation was realized by 

both one-layer and two-layer hexagonal matching algorithms. The two layer 

hexagonal matching algorithm was implemented by using the progressive motion 

estimation technique. The technique showed improvement over the one-layer 
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hexagonal matching algorithm particularly in the presence of smooth transitions 

and local motion which is represented better by the smaller triangles of the 

second layer. The one-layer hexagonal matching algorithm performed better in 

the occlusion regions due to the small search range used in the second layer of 

the two-layer hexagonal matching algorithm. 

In the object-based experiment, the results were similar to the frame-based 

experiment but this time all of the algorithms produced low PSNR values. The 

reason is that the segmented object had higher motion activities than the 

background. In this experiment, a content-based algorithm was also compared 

with the single-layer hexagonal matching algorithm. The content-based algorithm 

yielded more accurate motion compensation results since it represents the object 

boundaries and non-stationary regions of the image better. 

2-D mesh-based models also enable the tracking of video objects. Two video 

object manipulation applications utilizing the object tracking by 2-D dynamic 

meshes were performed in this thesis. In the first application, augmented reality 

was realized by merging a synthetic image with a natural video object. The 

second application involved the replacement of the same video object with its 

three different sized copies. 

The future work on mesh-based motion estimation covers the application of the 

presented algorithms to video coding. Research can be conducted to further 

improve the coding efficiency of the algorithms. Moreover, reduction of 

computational complexity of the mesh-based algorithms can be examined for real-

time applications. Lastly, 3-D mesh-based modeling can be investigated for the 

manipulation of video objects. 
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