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ABSTRACT 

 

MIXED-MODE FRACTURE ANALYSIS OF ORTHOTROPIC FGM 
COATINGS UNDER MECHANICAL AND THERMAL LOADS 

 

 

İLHAN, Küçük Ayşe 

Ph.D., Department of Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Serkan DAĞ 

 

September 2007, 164 pages 

 

 

 

In this study, it is aimed to investigate the mixed-mode fracture behavior of 

orthotropic functionally graded material (FGM) coatings bonded to a homogeneous 

substrate through a homogeneous bond-coat. Analytical and computational 

methods are used to solve the embedded cracking problems under mechanical or 

thermal loading conditions. It is assumed that the material property gradation of the 

FGM coating is in the thickness direction and cracks are parallel to the boundaries. 

The principal axes of orthotropy are parallel and perpendicular to the boundaries. A 

single embedded crack in the orthotropic FGM coating is investigated analytically 

assuming that crack surfaces are subjected to either uniform normal or uniform 

shear stresses. Using Fourier transformations, the problem is reduced to a couple of 

singular integral equations that are solved numerically to obtain the mixed-mode 

stress intensity factors, energy release rate and crack opening displacements. To 

investigate the analytically untractable problems without restrictive assumptions, a 

computational approach is employed. The adopted computational approach is based 

on finite element method and displacement correlation technique. Using the 

computational approach, fracture parameters are obtained considering single and 



 v 

periodic embedded cracking conditions in the orthotropic FGM coatings under 

mechanical or thermal loads. The results obtained in this study show the effects of 

material nonhomogeneity, material orthotropy and geometric variables on the 

fracture behavior of the structure.  

 

Keywords: Orthotropic functionally graded coating, embedded crack, periodic 

cracks, singular integral equations, displacement correlation technique.  
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ÖZ 

 

ORTOTROP FDM KAPLAMALARIN MEKANİK VE ISIL YÜKLER 
ALTINDA KARIŞIK MOD KIRILMA ANALİZİ 

 

 

İLHAN, Küçük Ayşe 

Doktora, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Serkan DAĞ 

 

Eylül 2007, 164 sayfa 

 

 

 

Bu çalışmada, homojen bir birleşme tabakası ile homojen bir taban tabakaya 

bağlanmış ortotrop fonksiyonel derecelendirilmiş malzeme (FDM) kaplamaların 

karışık mod kırılma davranışının araştırılması amaçlanmıştır. Gömülü çatlak 

problemlerini mekanik veya ısıl yükleme koşulları altında çözmek için analitik ve 

hesaplamalı yöntemler kullanılmıştır. FDM kaplama malzeme özellik değişiminin 

kalınlık yönünde ve çatlakların sınırlara paralel olduğu varsayılmıştır. Ortotropi ana 

eksenleri sınırlara paralel ve diktir. Ortotrop FDM kaplama içindeki tek gömülü 

çatlak, çatlak yüzeylerinin ya düzgün yayılı normal veya düzgün yayılı kayma 

gerilmelerine uğratıldığı varsayılarak analitik olarak incelenmiştir. Problem, 

Fourier dönüşümleri kullanılarak karışık mod gerilme şiddeti faktörleri, enerji 

bırakma oranı ve çatlak açılma yer değiştirmelerini elde etmek için sayısal olarak 

çözülen bir çift tekil integral denklemine indirgenmiştir. Analitik olarak kontrol 

edilemeyen sınırlayıcı varsayımlar içermeyen problemleri incelemek için bir 

hesaplamalı yaklaşım kullanılmıştır. Benimsenen hesaplamalı yaklaşım sonlu 

elemanlar yöntemine ve yer değiştirme korelasyon tekniğine dayanır. Mekanik 

veya ısıl yükler altındaki ortotrop FDM kaplamalarda tek ve periyodik gömülü 
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çatlak durumları göz önüne alınarak kırılma parametreleri hesaplamalı yaklaşım 

kullanılarak elde edilmiştir. Bu çalışmada elde edilen sonuçlar malzeme 

homojenliğinin olmamasının, malzeme ortotropisinin ve geometrik değişkenlerin 

yapının kırılma davranışı üzerindeki etkilerini göstermektedir.      

 

Anahtar kelimeler: Ortotrop fonksiyonel derecelendirilmiş kaplama, gömülü çatlak, 

periyodik çatlaklar, tekil integral denklemleri, yer değiştirme korelasyon tekniği. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Functionally Graded Materials  

 

Functionally graded materials (FGMs) are nonhomogeneous material systems with 

two constituents. Compositions of the constituent materials change gradually with 

position to satisfy the desired properties. They were originally developed for high 

thermal gradient applications in Japan [1] and their constituent materials are 

generally ceramics and metal alloys. In the coating applications, the gradual change 

in material properties makes the FGMs superior to ceramics by increasing adhesion 

and decreasing thermal stresses resulting from mismatch of thermal expansion 

coefficients.       

 

Today, they are used mainly in the thermal coating applications for high 

performance engines [2], gas turbines, space shuttles [3] and fusion reactors [4], 

interfacial zone applications for increasing the bonding strength and reducing the 

residual stresses [5], wear and corrosion barrier applications [6], contact damage 

resistant material applications [7-8], sensor and energy applications [9], biomedical 

applications [10]. 

 

The FGM manufacturing techniques usually include gradation and consolidation 

steps [11]. Gradation can be prepared via constitutive, homogenizing and 

segregating processes [11]. In constitutive process, graded structure is built up step 

by step from precursor materials or powders [11]. Homogenizing process converts 

a sharp interface between two materials into a gradient by material transport [11]. 
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In segregating process, a macroscopically homogeneous material is graded by 

material transport due to an external field such as a gravitational or an electric field 

[11]. Plasma spraying [12-14], chemical vapor deposition [15], powder metallurgy 

[16-17], centrifugal casting [18], three dimensional printing [19] can be given as 

the examples of FGM processing techniques. 

 

1.2 Literature Survey 

 

In recent years, many researchers studied on the investigation of fracture behavior 

of FGMs under thermal and/or mechanical loading using theoretical or 

experimental approaches.  

 

Delale and Erdogan [20] showed that the stresses around the crack tips in an elastic 

isotropic exponentially graded medium have the square-root singularity. Then, 

Konda and Erdogan [21] investigated the effects of the material nonhomogeneity 

constant, the crack orientation, the loading conditions and the Poisson’s ratio on the 

stress intensity factors of a crack in an elastic exponentially graded medium.  

Erdogan [22] showed that the square-root singularity of the crack-tip stress field is 

unaffected by the discontinuity in the derivative of the shear modulus of a 

nonhomogeneous medium. Erdogan and Wu [23] considered the plane elasticity 

problem for a bounded nonhomogeneous layer containing an internal or an edge 

crack perpendicular to the boundaries. Ozturk and Erdogan [24] investigated an 

axisymmetric crack problem in a nonhomogeneous medium. Marur and Tippur 

[25] analyzed the nature of the singular field around the crack in FGM using finite 

element method by assuming linear variation of material property. Choi [26] 

analyzed the periodic array of parallel cracks in a functionally graded medium. 

Ergüven and Gross [27] considered a penny shaped crack in an infinite 

nonhomogeneous elastic medium. Gu, Dao and Asaro [28] proposed a finite 

element based method for obtaining stress intensity factors in FGMs in which the 

energy release rate is calculated through an area integral. Dag and Erdogan [29] 
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solved the problem of a surface crack in a semi-infinite elastic graded medium 

under general loading conditions. Wang, Mai and Sun [30] investigated the stress 

intensity factors for a FGM layer under anti-plane deformation.  A number of 

authors concentrated on circumferential cracks in FGM cylinders [31-34]. Choi 

[35] analyzed the effects of graded layering on the tip behavior of a vertical crack 

in a substrate under frictional Hertzian contact.  Dag and Erdogan [36] considered a 

coupled problem of crack contact mechanics in a semi-infinite nonhomogeneous 

medium to determine contact stresses and stress intensity factors. Several 

theoretical and experimental studies considered the crack growth behavior [37-46] 

and fracture toughness [47-49] of FGMs. Gu and Asaro [50], Ueda and Shindo [51] 

dealt with crack kinking in FGMs. T-stress effect was also incorporated into 

formulations to predict the crack initiation angle in FGMs [52]. Afsar and Sekine 

[53-54] studied on inverse problem of calculating material distribution intending to 

realize prescribed apparent fracture toughness in FGM circular pipes and in FGM 

coatings around a circular hole. Chen, Wu and Du [55] defined a modified J-

integral that is path independent even in FGMs.   

 

Delale and Erdoğan [56] obtained a solution for an interface crack between bonded 

homogeneous and nonhomogeneous half planes and found that the singular 

behavior of stresses in the nonhomogeneous medium is identical to that in a 

homogeneous medium if the spatial distribution of material properties is 

continuous near and at the crack tip. They also investigated the case of two 

homogeneous elastic half planes bonded through a nonhomogeneous layer with 

collinear cracks [57]. Erdogan and Ozturk [58] considered a mixed boundary value 

problem for a nonhomogeneous medium bonded to a rigid half space having a 

crack along the interface under antiplane shear loading. They also investigated the 

interface crack problem for two elastic half spaces bonded through a 

nonhomogeneous interfacial zone under antiplane shear loading [59]. Erdogan and 

Öztürk [60] also studied the antiplane elasticity problem for a functionally graded 

coating bonded to a homogeneous half space and containing periodic cracks 
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perpendicular to the surface. In another study [61], the same authors investigated 

the axisymmetric problem of a penny-shaped interface crack in homogeneous 

dissimilar materials bonded through a functionally graded interfacial region. Chen 

and Erdogan [62] studied the mixed-mode interface cracking in a homogeneous 

substrate and nonhomogeneous coating system considering continuous material 

properties with discontinuous derivatives at the interface and arbitrary crack 

surface tractions. In another paper, an interface crack between FGM coating and 

finite thickness homogeneous substrate was analyzed under a concentrated load 

[63]. Jin and Batra [64] investigated the interface cracking between ceramic and/or 

FGM coatings and a substrate under antiplane shear. Choi, Lee and Jin [65] 

analyzed a medium consisting of a surface layer and a semi-infinite substrate 

bonded through an interfacial zone with graded properties under the existence of 

three collinear cracks that are perpendicular to the interfaces and located in each 

one of the constituent materials. Shbeeb and Binienda [66] calculated the mixed-

mode stress intensity factors and strain energy release rates of an interface crack for 

a FGM strip sandwiched between two homogeneous layers of finite thickness.  

Huang, Wang and their co-workers [67-69] modeled FGMs as a multilayered 

medium with the shear modulus varying linearly in each sub-layer and continuous 

at the sub-interfaces to investigate the crack problems. In another study, crack 

problems in a FGM whose upper and bottom surfaces are bonded with dissimilar 

homogeneous materials were analyzed using boundary element method [70]. Choi 

[71] provided an elasticity solution for an inclined crack in bonded media with a 

graded nonhomogeneous interlayer. Chi and Chung [72] dealt with the cracking in 

coating-substrate systems with multilayered and FGM coatings using finite element 

method. Chiu and Erdogan [73] formulated a plane strain interface crack problem 

for a graded coating bonded to homogeneous substrate by using a kinematically 

nonlinear continuum theory considering both instability and post-buckling.     

 

FGM coatings and interfacial zones seem to be quite effective in reducing residual 

stresses and this subject was examined in many studies [74-80]. Noda and Jin [81] 
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analyzed a completely insulated crack in a strip of FGM with prescribed surface 

temperature by reducing the thermal and mechanical problems to two systems of 

singular integral equations employing the Fourier transform technique. They also 

solved a crack problem for a semi-infinite nonhomogeneous thermoelastic solid 

subjected to steady heat flux over the boundary using the same method [82]. In 

another paper [83], they analyzed the effect of nonhomogeneity on stress intensity 

factors considering the crack problem for an infinite nonhomogeneous elastic solid 

subjected to steady heat flux over the crack surfaces. Bao and Wang [84] made 

finite element calculations for the energy release rate of the cracks in FGM coating 

bonded to metal substrate considering both mechanical and thermal loads. In their 

study it was found that the effect of different gradations on the crack driving force 

is relatively small under mechanical loading but can be significant under thermal 

loading. Nemat-Alla and Noda [85] investigated an edge crack problem in a semi-

infinite FGM plate with a bi-directional coefficient of thermal expansion under 

two-dimensional thermal loading. Bao and Cai [86] studied a delamination crack 

problem for FGM coating-metal substrate systems performing a steady state heat 

transfer analysis. Lee and Erdogan [87] analyzed partially insulated and 

symmetrically located edge cracks along the interface between homogeneous 

substrate and graded coating under the steady state heat conduction with convective 

boundary conditions. Yang [88] made a stress analysis in a joint with a functionally 

graded material under thermal loading. Noda [89] dealt with optimal composition 

profile problems of FGMs to decrease the thermal stress intensity factors. Wang 

and Noda [90] examined the fracture behavior of a cracked smart FGM actuator on 

a substrate under thermal load by using integral transform method and solving 

singular integral equations numerically. They also investigated thermally loaded 

functionally graded materials containing penny shaped cracks by modeling the 

FGM with a large number of layers having different material properties [91]. El-

Borgi, Erdogan and Hidri [92] examined an infinite functionally graded medium 

with a partially insulated crack subjected to a steady state heat flux away from the 

crack region as well as mechanical crack surface stresses by converting heat 
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conduction and elasticity equations into singular integral equations. El-Borgi, 

Erdogan and Hatira [93] investigated the problem of a FGM coating bonded to an 

infinite homogeneous substrate with a partially insulated interface crack under 

thermal and mechanical loading by using analytical method and finite element 

method. Itou [94] determined the thermal stresses around a crack in a 

nonhomogeneous interfacial layer between two dissimilar elastic half planes under 

uniform heat flow by using insulated crack surface assumption. Yildirim and 

Erdogan [95] investigated an axisymmetric crack problem for FGM thermal barrier 

coatings under a uniform temperature change. Dag [96] investigated the mixed-

mode fracture in FGMs under thermal stresses via a new approach using Jk-

integral. Besides the aforementioned studies, there are also a large number of 

investigations considering transient thermal loading or thermal cycling in FGMs 

[97-114]. 

 

Manufacturing techniques of FGMs generally do not lead to the material isotropy 

[115]. In the literature, there are a number of studies about the fracture analysis of 

orthotropic FGMs. Gu and Asaro [116] analyzed a semi-infinite crack in a strip of 

an isotropic functionally graded material under edge loading and inplane 

deformation conditions. Then, the solution was extended to the case of an 

orthotropic FGM strip. Ozturk and Erdogan [115, 117] investigated mixed-mode 

and mode I crack problems in an orthotropic graded medium using integral 

equations. Kim and Paulino presented isoparametric graded finite elements for 

nonhomogeneous isotropic and orthotropic materials [118] and mixed-mode J-

integral formulation and implementation using graded elements for fracture 

analysis of nonhomogeneous orthotropic materials [119]. They evaluated stress 

intensity factors for two dimensional crack problems in orthotropic FGMs by using 

the displacement correlation technique, modified crack closure method [120] and 

the interaction integral [121]. Dag et al. [122] analyzed the problem of an interface 

crack between a graded orthotropic coating and a homogeneous orthotropic 

substrate using analytical and computational approaches. Yildirim and his 
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coworkers [123] analyzed the steady state heat conduction in orthotropic FGMs 

containing cracks using analytical and computational techniques. Chen [124] 

studied on the determination of thermal stress intensity factors for an interface 

crack in an orthotropic graded coating-substrate structure.  Dag [125] performed a 

thermal fracture analysis of orthotropic functionally graded materials using an 

equivalent domain integral approach. Dag et al. [126] analyzed the mixed-mode 

fracture behavior of an orthotropic FGM layer considering embedded cracking for 

various boundary conditions. 

 

In computational studies, one of the methods used in determining stress intensity 

factors is the displacement correlation technique (DCT). In this technique, finite 

element model of the problem is created using singular elements around the crack 

tip. Then, displacements at specific nodal locations of the singular elements are 

correlated with the known analytical solutions to extract the stress intensity factors. 

Barsoum [127] stated that quadratic isoparametric elements satisfy the square root 

singularity by placing the mid-side node on any side at the quarter point. The 

method for extracting the stress intensity factors from nodal displacements of these 

elements was given for two-dimensional isotropic problems by Shih et al. [128]. 

Ingraffea and Manu [129] employed the DCT for three-dimensional isotropic 

problems. Saouma and Sikiotis [130] used this method for three-dimensional 

anisotropic problems. Boone et al. [131] showed that isoparametric quarter-point 

elements could be used to obtain accurate stress intensity factors for the fracture 

propagation analysis in the two dimensional orthotropic materials. As mentioned 

previously, Kim and Paulino [120] used the DCT to evaluate the mixed-mode 

stress intensity factors for two dimensional crack problems in the orthotropic 

FGMs. 
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1.3 Objective of the Study 

 

The objective of this study is to investigate the mixed-mode fracture behavior of an 

orthotropic FGM coating bonded to a homogeneous substrate through a 

homogeneous bond-coat layer under thermal or mechanical loading conditions. 

Both analytical and computational methods are used to show the effects of material 

nonhomogeneity, material orthotropy and geometric variables on the fracture 

related parameters.  

 

In Chapter 2, analytical mixed-mode fracture analysis of the structure is performed. 

The orthotropic FGM coating is assumed to contain a single embedded crack that is 

subjected to either uniform normal or uniform shear surface tractions. The material 

property gradation in the FGM coating is represented in moduli of elasticity and 

shear modulus along the thickness direction in an exponential form and the crack 

lies parallel to the boundaries. Principal directions of orthotropy are parallel and 

perpendicular to the crack line. Averaged constants of plane orthotropic elasticity 

[132] are employed to express the constitutive relations. Using Fourier 

transformations, the problem is reduced to a couple of singular integral equations 

that are solved by means of an expansion-collocation technique. Then, the 

expressions for the mixed-mode stress intensity factors, energy release rate and 

crack opening displacements are obtained.  

 

In Chapter 3, details of the computational approach used to perform the mixed-

mode fracture analysis of the structure are presented. The adopted computational 

approach employs the finite element method in conjunction with the displacement 

correlation technique (DCT). The reason of investigating the problem using the 

computational approach is to examine the analytically untractable conditions 

without the restrictive assumptions. 
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In Chapter 4, some numerical results obtained by analytical and/or computational 

approaches are presented for mechanical loading conditions. First, validation of the 

analytical study presented in Chaper 2 is performed referring to the literature. Then, 

some numerical results showing the effects of material orthotropy, material 

nonhomogeneity and geometric parameters on the fracture behavior of the 

orthotropic FGM coating are given considering the pure uniform normal stress on 

crack surfaces for the single embedded crack problem. Both analytical and 

computational results are given for this problem to assess the computational 

approach. Later, some numerical results based on analytical method are presented 

for the single embedded crack problem to show the effects of material orthotropy 

and material nonhomogeneity on fracture parameters when crack surfaces are 

subjected to a pure uniform shear stress. Finally, the periodic embedded cracking in 

the orthotropic FGM coating is investigated computationally and numerical results 

showing the effects of crack periodicity and material nonhomogeneity on the 

fracture parameters are given considering the pure uniform normal stress on the 

crack surfaces. 

 

In Chapter 5, single and periodic embedded cracking problems are examined 

computationally under steady state thermal loading assuming plane stress state. It is 

assumed that upper and lower boundaries of the structure are subjected to uniform 

constant temperatures. The material property gradation of the FGM coating is 

represented by elastic properties, heat conductivities and thermal expansion 

coefficients along the thickness direction in the power function form. The obtained 

results show the effects of material nonhomogeneity parameters and crack 

periodicity on the fracture behavior of the orthotropic FGM coating.  

 

Both of the developed analytical method and the computational method can be used 

to provide the useful information for the design optimization of the structure 

consisting of an orthotropic FGM coating, a homogeneous bond-coat and a 

homogeneous substrate.   
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CHAPTER 2 

 

 

ANALYTICAL SOLUTION FOR THE SINGLE EMBEDDED CRACK 

PROBLEM IN AN ORTHOTROPIC FGM COATING UNDER CRACK 

SURFACE TRACTIONS  

 

 

2.1 Description of the Problem 

 

Fracture behavior of an orthotropic FGM coating is examined by considering an 

embedded crack. The coating is perfectly bonded to a homogeneous orthotropic 

substrate through a layer of homogeneous orthotropic bond-coat. Illustration of the 

problem is shown in Figure-2.1.1. Principal axes of orthotropy are along 1x - and 

2x - directions in each medium. Material property gradation of the coating is in 2x - 

direction. The crack of length c2  lies along 02 =x  line. Distance from the crack 

line to the upper and lower surfaces of the coating is 1h  and 2h , respectively. 

Thickness of the bond-coat is 3h  and thickness of the substrate is 4h . The length of 

the structure in 1x - direction is infinitely long. 

 

 
Figure-2.1.1 Illustration of the problem.      

 c
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Material properties are taken to be continuous in each medium but can be 

discontinuous at the interfaces. The problem is formulated by applying either 

uniform normal or uniform shear stresses to the crack surfaces. 

 

2.2 Formulation of the Problem 

 

Using the principal axes of the material, Hooke’s law for plane orthotropic 

elasticity can be written in the following form [132]: 
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where 11ε , 22ε , 12ε  are the strain components and 11σ , 22σ , 12σ  are the stress 

components with respect to the principal axes of the material. E  is the effective 

stiffness, ν  is the effective Poisson’s ratio, 4δ  is the stiffness ratio and κ  is the 

shear parameter. Definitions of these material parameters are such that [132]:  
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 for generalized plane stress and plane strain       (2.2.2d) 

 

where 11E  and 22E  are the moduli of elasticity, 12G  is the shear modulus and ijν , 

( )3 ,2 ,1 , =ji , is the Poisson’s ratio with respect to the principal axes of the 

material. 

 

For the orthotropic FGM coating, it is assumed that 11E , 22E  and 12G  varies 

proportionately in 2x - direction in an exponential form. ijν , ( )3 ,2 ,1 , =ji , is 

assumed to be constant throughout the coating. Hence, ν , 4δ  and κ  are constant 

throughout the coating and the nonhomogeneity in the medium is represented by 

the effective stiffness term. They are written as follows: 

 

 ( ) ( ) ( ) ( ) ( ) 02110211021120211 ,  ,,  ,,  ,exp, ννδδκκβ ==== xxxxxxxExxE   (2.2.3)         

 

where subscript 1 refers to the coating, β  is the material nonhomogeneity 

parameter and 0E  is the effective stiffness at the crack line.  

 

For the homogeneous orthotropic bond-coat, the material parameters are defined by 

the following expressions where subscript 3  refers to the bond-coat. 

 

( ) ( ) ( ) ( ) 3213321332133213 ,  ,,  ,,  ,, ννδδκκ ==== xxxxxxExxE         (2.2.4) 
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For the homogeneous orthotropic substrate, the material parameters are defined by 

the following expressions where subscript 4  refers to the substrate. 

 

 ( ) ( ) ( ) ( ) 4214421442144214 ,  ,,  ,,  ,, ννδδκκ ==== xxxxxxExxE         (2.2.5) 

 

Then, suitable transformations are introduced for the coordinates, displacements 

and stresses as follows [132]: 
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where x  and y  are the transformed coordinates. u  and v  are the displacement 

components along x - and y - directions, respectively. 1u  and 2u  are the 

displacement components along 1x - and 2x - directions, respectively. 
xxσ , yyσ  and 

xyσ  are the stress components in the transformed coordinates.  

 

Strain-displacement equations in 1x - and 2x - coordinates are given as follows: 
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Using Eq.(2.2.6a), Eq.(2.2.6b) and Eq.(2.2.7), strain components in the transformed 

coordinates xxε , yyε  and xyε  can be found as follows [132]: 
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Using Eq.(2.2.1), Eq.(2.2.6c) and Eq.(2.2.8), stress-strain relations in the 

transformed coordinates become: 
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where ( ) ( )21
* ,, xxEyxE = , ( ) ( )21

* ,, xxyx νν = , ( ) ( )21
* ,, xxyx δδ =  and 

( ) ( )21
* ,, xxyx κκ = . 

 

Strain-displacement equations in the transformed coordinates are expressed as: 
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Then, stress components 
xxσ , yyσ  and xyσ  can be obtained as follows: 

 

( ) 













∂

∂
+

∂

∂









−
=

y

v

x

uE
xx

*

2

0

*

2*

*

1
ν

δ

δ

ν
σ                                    (2.2.11a) 

 

( ) 











∂

∂








+

∂

∂

−
=

y

v

x

uE
yy

2

*
0*

2*

*

1 δ

δ
ν

ν
σ                                    (2.2.11b) 
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( ) 








∂

∂
+

∂

∂

+
=

x

v

y

uE
xy **

*

2 νκ
σ                                            (2.2.11c) 

 

Using Eq.(2.2.6a), the material parameters of the orthotropic FGM coating take the 

following form in the transformed coordinates: 

 

( ) ( ) ( ) ( ) ( ) 0
*
10

*
10

*
10

*
1 ,  ,,  ,,  ,exp, ννδδκκγ ==== yxyxyxyEyxE         (2.2.12) 

 

where ( ) 5.0
0δβγ =  is the material nonhomogeneity parameter in the transformed 

coordinates. 

 

For the homogeneous orthotropic bond-coat, the material parameters in the 

transformed coordinates are written as: 

 

( ) ( ) ( ) ( ) 3
*
33

*
33

*
33

*
3 ,  ,,  ,,  ,, ννδδκκ ==== yxyxyxEyxE                (2.2.13) 

 

For the homogeneous orthotropic substrate, the material parameters in the 

transformed coordinates are written as: 

 

( ) ( ) ( ) ( ) 4
*
44

*
44

*
44

*
4 ,  ,,  ,,  ,, ννδδκκ ==== yxyxyxEyxE              (2.2.14) 

 

Governing equations for each medium are derived using the equilibrium and stress-

displacement equations. Equilibrium equations in the transformed coordinates 

considering no body force components are expressed as follows: 

 

( )yxjiiij  , ,  ,0, ==σ                                              (2.2.15) 
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Substituting the stress expressions given by Eq.(2.2.11) in the equilibrium 

equations given above and using the material parameters given by Eq.(2.2.12), 

governing equations for the orthotropic FGM coating are obtained as [115]:  

 

( ) ( ) ( ) ( ) ( )

0
2

22

2

12

2

=









∂

∂
+

∂

∂
+

∂∂

∂
+

∂

∂
+

∂

∂

x

v

y

u

yx

v

x

u

y

u
iiiii

γββ                    (2.2.16a) 

 

( ) ( ) ( ) ( ) ( )

001

2

22

2

12

2

=









∂

∂
+

∂

∂
+

∂∂

∂
+

∂

∂
+

∂

∂

x

u

y

v

yx

u

y

v

x

v iiiii

νγβββ                (2.2.16b) 

 

where the superscript ( )i  is ( )1  for the region of the orthotropic FGM coating 

above the crack line where 001 >> yh δ  and ( )2  for the region of the orthotropic 

FGM coating below the crack line where 002 <<− yh δ . 1β  and 2β  are defined 

as: 

 

( )
1022

0

00
1 1  ,

1

2
βνβ

ν

νκ
β +=

−

+
=                                    (2.2.17) 

 

For the homogeneous orthotropic bond-coat where ( ) 02023 δδ hyhh −<<+− , 

governing equations are obtained using Eq.(2.2.11), Eq.(2.2.15) and Eq.(2.2.13) as 

follows: 

 

( ) ( ) ( )

0
32

42

322

0

3
32

32

=
∂∂

∂
+

∂

∂








+

∂

∂

yx

v

x

u

y

u
β

δ

δ
β                          (2.2.18a) 

 

( ) ( ) ( )

0
32

42

322

3

0
32

32

=
∂∂

∂
+

∂

∂








+

∂

∂

yx

u

y

v

x

v
β

δ

δ
β                           (2.2.18b) 
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where the superscript ( )3 denotes the bond-coat and 3β  and 4β  are defined as: 

 

( )
3342

3

33
3 1    ,

1

2
βνβ

ν

νκ
β +=

−

+
=                                      (2.2.19) 

 

Governing equations for the homogeneous orthotropic substrate where 

( ) ( ) 0230234 δδ hhyhhh +−<<++−  are obtained using Eq.(2.2.11), 

Eq.(2.2.15) and Eq.(2.2.14) as follows: 

 

( ) ( ) ( )

0
42

62

422

0

4
52

42

=
∂∂

∂
+

∂

∂








+

∂

∂

yx

v

x

u

y

u
β

δ

δ
β                            (2.2.20a) 

 

( ) ( ) ( )

0
42

62

422

4

0
52

42

=
∂∂

∂
+

∂

∂








+

∂

∂

yx

u

y

v

x

v
β

δ

δ
β                            (2.2.20b) 

 

where the superscript ( )4  denotes the substrate and 5β  and 6β  are defined as: 

 

( )
5462

4

44
5 1    ,

1

2
βνβ

ν

νκ
β +=

−

+
=                                     (2.2.21) 

 

Displacement components for the region of the orthotropic FGM coating above the 

crack line where 001 >> yh δ  can be written in the following form using Fourier 

transform integrals: 

 

( ) ( ) ( ) ( )∫
∞

∞−
= ωωω

π
dxiyUyxu exp,

2

1
, 1

1                              (2.2.22a) 
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( ) ( ) ( ) ( )∫
∞

∞−
= ωωω

π
dxiyVyxv exp,

2

1
, 1

1                             (2.2.22b) 

 

where ( )yU ,1 ω  and ( )yV ,1 ω  are Fourier transforms of ( ) ( )yxu ,1  and ( ) ( )yxv ,1  in x, 

respectively.  

 

Using Eq.(2.2.22), governing equations given by Eq.(2.2.16) become: 

 

01
11

21
2

12
1

2

=








+++− Vi

dy

dU

dy

dV
iU

dy

Ud
ωγωβωβ                  (2.2.23a) 

 






=




++++− 010

1
1

1
22

1
2

11
2 Ui

dy

dV

dy

dU
i

dy

Vd
V ωνγβωββω                (2.2.23b) 

 

Solving the above system of ordinary differential equations, ( )yU ,1 ω  and ( )yV ,1 ω  

can be written in the following form: 

 

( ) ( ) ( )( ) ( )4 ,3 ,2 ,1  ,exp,
4

1
1 ==∑

=

jysMyU
j

jj ωωω                      (2.2.24a) 

 

( ) ( ) ( ) ( )( ) ( )4 ,3 ,2 ,1  ,exp,
4

1
1 ==∑

=

jysNMyV
j

jjj ωωωω                   (2.2.24b) 

 

where 

 

( ) ( ) ( ) 0
222

0
2

0
22

1 2/2/ νγωκωωκωγγω −−++−−=s               (2.2.25a) 

 

( ) ( ) ( ) 0
222

0
2

0
22

2 2/2/ νγωκωωκωγγω −−−+−−=s              (2.2.25b) 



 19 

( ) ( ) ( ) 0
222

0
2

0
22

3 2/2/ νγωκωωκωγγω −−+++−=s                (2.2.25c) 

 

( ) ( ) ( ) 0
222

0
2

0
22

4 2/2/ νγωκωωκωγγω −−−++−=s                (2.2.25d) 

 

( )ωjM , ( )4 ,3 ,2 ,1=j , are unknown functions of ω  and ( )ωjN , ( )4 ,3 ,2 ,1=j , 

are found by using Eq.(2.2.23a) and Eq.(2.2.24) as follows: 

 

( )
( ) ( )( ) ( )) )(( )(

( )( ) ( ))(
( )4 ,3 ,2 ,1  ,

121

21
2
000

2
0

00
222

0
=

−+++

+++−−
= j

s

ssi
N

j

jj

j
νγκννωω

νκωωγων
ω      (2.2.26) 

 

Substituting Eq.(2.2.24) into Eq.(2.2.22), displacement components can be 

obtained as: 

 

( ) ( ) ( ) ( )( )∫∑
∞

∞− =

+=
4

1

1 exp
2

1
,

j

jj dxiysMyxu ωωωω
π

                     (2.2.27a) 

 

( ) ( ) ( ) ( ) ( )( )∫∑
∞

∞− =

+=
4

1

1 exp
2

1
,

j

jjj dxiysNMyxv ωωωωω
π

                (2.2.27b) 

 

Then, stress components yyσ  and xyσ  can be found using Eq.(2.2.11b), 

Eq.(2.2.11c), Eq.(2.2.12) and Eq.(2.2.27) as follows: 

 

( ) ( )
( )

( ) ( )( ( )) ( ) )(










++
−

= ∫∑
∞

∞− =

4

1
02

0

01 exp
2

1

1

exp
,

j

jjjjyy dxiyssNiM
yE

yx ωωωωωωνω
πν

γ
σ      

(2.2.28a) 
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( ) ( )
( )

( )
( ) ( )( ( )) ( ) )(











++
+

= ∫∑
∞

∞− =

4

100

01 exp
2

1

2

exp
,

j

jjjjxy dxiyssiNM
yE

yx ωωωωωωω
πνκ

γ
σ      

(2.2.28b) 

 

Displacement components for the region of the orthotropic FGM coating below the 

crack line where 002 <<− yh δ  can be written in the following form using 

Fourier transform integrals: 

 

( )( ) ( ) ( )∫
∞

∞−
= ωωω

π
dxiyUyxu exp,

2

1
, 2

2                                (2.2.29a) 

 

( )( ) ( ) ( )∫
∞

∞−
= ωωω

π
dxiyVyxv exp,

2

1
, 2

2                                 (2.2.29b) 

 

where ( )yU ,2 ω  and ( )yV ,2 ω  are Fourier transforms of ( ) ( )yxu ,2  and ( )( )yxv ,2  in 

x, respectively. 

 

Using Eq.(2.2.29), governing equations given by Eq.(2.2.16) take the following 

form: 

 

02
22

22
2

12
2

2

=








+++− Vi

dy

dU

dy

dV
iU

dy

Ud
ωγωβωβ                        (2.2.30a) 

 






=




++++− 020

2
1

2
22

2
2

12
2

Ui
dy

dV

dy

dU
i

dy

Vd
V ωνγβωββω                  (2.2.30b) 

 

Solving Eq.(2.2.30), ( )yU ,2 ω  and ( )yV ,2 ω  are found as: 
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( ) ( ) ( )( ) ( )4 ,3 ,2 ,1  ,exp,
4

1
2 ==∑

=

jysGyU
j

jj ωωω                          (2.2.31a) 

 

( ) ( ) ( ) ( )( ) ( )4 ,3 ,2 ,1  ,exp,
4

1
2 ==∑

=

jysNGyV
j

jjj ωωωω                     (2.2.31b) 

 

where ( )ωjG , ( )4 ,3 ,2 ,1=j , are unknown functions of ω .  

 

Substituting Eq.(2.2.31) into Eq.(2.2.29), displacement components can be 

obtained as: 

 

( ) ( ) ( ) ( )( )∫∑
∞

∞− =

+=
4

1

2 exp
2

1
,

j

jj dxiysGyxu ωωωω
π

                    (2.2.32a) 

 

( ) ( ) ( ) ( ) ( )( )∫∑
∞

∞− =

+=
4

1

2 exp
2

1
,

j

jjj dxiysNGyxv ωωωωω
π

              (2.2.32b) 

 

Then, stress components yyσ  and xyσ  are found using Eq.(2.2.11b), Eq.(2.2.11c), 

Eq.(2.2.12) and Eq.(2.2.32) as follows: 

 

( )( )
( )

( )( ( ) ( )) ( ) )(










++
−

= ∫∑
∞

∞− =

4

1
02

0

02 exp
2

1

1

exp
,

j

jjjjyy dxiyssNiG
yE

yx ωωωωωωνω
πν

γ
σ     

(2.2.33a) 

 

( ) ( )
( )

( )
( ) ( )( ( )) ( ) )(











++
+

= ∫∑
∞

∞− =

4

100

02 exp
2

1

2

exp
,

j

jjjjxy dxiyssiNG
yE

yx ωωωωωωω
πνκ

γ
σ       

(2.2.33b) 
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Displacement components for the homogeneous orthotropic bond-coat where 

( ) 02023 δδ hyhh −<<+−  can be written in the following form using Fourier 

transform integrals: 

 

( ) ( ) ( ) ( )∫
∞

∞−
= ωωω

π
dxiyUyxu exp,

2

1
, 3

3                                 (2.2.34a) 

 

( ) ( ) ( ) ( )∫
∞

∞−
= ωωω

π
dxiyVyxv exp,

2

1
, 3

3                                  (2.2.34b) 

 

where ( )yU ,3 ω  and ( )yV ,3 ω  are Fourier transforms of ( ) ( )yxu ,3  and ( ) ( )yxv ,3  in 

x, respectively.  

 

Using Eq.(2.2.34), governing equations given by Eq.(2.2.18) can be expressed as: 

 

03
43

2

0

32
32

3
2

=+







−

dy

dV
iU

dy

Ud
ωβ

δ

δ
ωβ                                  (2.2.35a) 

 

03
42

3
22

3

0
33

2 =+







+−

dy

dU
i

dy

Vd
V ωβ

δ

δ
βω                                 (2.2.35b) 

 

Solving the above system of ordinary differential equations, ( )yU ,3 ω  and ( )yV ,3 ω  

are obtained as: 

 

( ) ( ) ( )( ) ( )4 ,3 ,2 ,1  ,exp,
4

1
3 ==∑

=

jyrAyU
j

jj ωωω                          (2.2.36a) 
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( ) ( ) ( ) ( )( ) ( )4 ,3 ,2 ,1  ,exp,
4

1
3 ==∑

=

jyrBAyV
j

jjj ωωωω                     (2.2.36b) 

 

where 

 

( ) 12
33

0

3
1 −+= κκ

δ

δ
ωωr                                      (2.2.37a) 

 

( ) 12
33

0

3
2 −−= κκ

δ

δ
ωωr                                      (2.2.37b) 

 

( ) 12
33

0

3
3 −+−= κκ

δ

δ
ωωr                                     (2.2.37c) 

 

( ) 12
33

0

3
4 −−−= κκ

δ

δ
ωωr                                     (2.2.37d) 

 

( )ωjA , ( )4 ,3 ,2 ,1=j , are unknown functions of ω  and ( )ωjB , ( )4 ,3 ,2 ,1=j , are 

found by substituting Eq.(2.2.36) into Eq.(2.2.35a) as: 

 

( )

( )( ) ( ) )(

( )( )
( )4 ,3 ,2 ,1  ,

21

21

33
2
3

33

2

0

322
3

2

=
++














+








+−−

= j
r

ri

B
j

j

j
κννωω

νκ
δ

δ
ωνω

ω      (2.2.38) 

 

Substituting Eq.(2.2.36) into Eq.(2.2.34), displacement components are obtained 

as: 

 

( ) ( ) ( ) ( )( )∫∑
∞

∞− =

+=
4

1

3 exp
2

1
,

j

jj dxiyrAyxu ωωωω
π

                      (2.2.39a) 
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( ) ( ) ( ) ( ) ( )( )∫∑
∞

∞− =

+=
4

1

3 exp
2

1
,

j

jjj dxiyrBAyxv ωωωωω
π

                  (2.2.39b) 

 

Then, stress components yyσ  and xyσ  are found using Eq.(2.2.11b), Eq.(2.2.11c), 

Eq.(2.2.13) and Eq.(2.2.39) as follows: 

 

( ) ( ) ( ) ( ) ( ) ( ) )(













+























+

−
= ∫∑

∞

∞− =

4

1

2

3

0
32

3

33 exp
2

1

1
,

j

jjjjyy dxiyrBriA
E

yx ωωωωω
δ

δ
ωνω

πν
σ

     (2.2.40a) 

 

( ) ( )
( )

( ) ( )( ( )) ( ) )(










++−
+

= ∫∑
∞

∞− =

4

133

33 exp
2

1

2
,

j

jjjjxy dxiyrBiriA
E

yx ωωωωωωω
πνκ

σ         

(2.2.40b) 

 

Displacement components for the homogeneous orthotropic substrate where 

( ) ( ) 0230234 δδ hhyhhh +−<<++−  can be written in the following form 

using Fourier transform integrals: 

 

( )( ) ( ) ( )∫
∞

∞−
= ωωω

π
dxiyUyxu exp,

2

1
, 4

4                          (2.2.41a) 

 

( )( ) ( ) ( )∫
∞

∞−
= ωωω

π
dxiyVyxv exp,

2

1
, 4

4                           (2.2.41b) 

 

where ( )yU ,4 ω  and ( )yV ,4 ω  are Fourier transforms of ( ) ( )yxu ,4  and ( )( )yxv ,4  in 

x, respectively.  

 

Using Eq.(2.2.41), governing equations given by Eq.(2.2.20) can be written as: 
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04
64

2

0

42
52

4
2

=+







−

dy

dV
iU

dy

Ud
ωβ

δ

δ
ωβ                             (2.2.42a) 

 

04
62

4
22

4

0
54

2 =+







+−

dy

dU
i

dy

Vd
V ωβ

δ

δ
βω                            (2.2.42b) 

 

Solving the above ordinary differential equation system, ( )yU ,4 ω  and ( )yV ,4 ω  are 

obtained as: 

 

( ) ( ) ( )( ) ( )4 ,3 ,2 ,1  ,exp,
4

1
4 ==∑

=

jynCyU
j

jj ωωω                       (2.2.43a) 

 

( ) ( ) ( ) ( )( ) ( )4 ,3 ,2 ,1    ,exp,
4

1
4 ==∑

=

jynDCyV
j

jjj ωωωω                  (2.2.43b) 

 

where 

 

( ) 12
44

0

4
1 −+= κκ

δ

δ
ωωn                                    (2.2.44a) 

 

( ) 12
44

0

4
2 −−= κκ

δ

δ
ωωn                                   (2.2.44b) 

 

( ) 12
44

0

4
3 −+−= κκ

δ

δ
ωωn                                  (2.2.44c) 

 

( ) 12
44

0

4
4 −−−= κκ

δ

δ
ωωn                                  (2.2.44d) 
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( )ωjC , ( )4 ,3 ,2 ,1=j , are unknown functions of ω  and ( )ωjD , ( )4 ,3 ,2 ,1=j , are 

found by substituting Eq.(2.2.43) into Eq.(2.2.42a) as: 

 

( )

( )( ) ( ) )(

( )( )
( )4 ,3 ,2 ,1  ,

21

21

44
2
4

44

2

0

422
4

2

=
++














+








+−−

= j
n

ni

D
j

j

j
κννωω

νκ
δ

δ
ωνω

ω     (2.2.45) 

 

Displacement components are obtained by substituting Eq.(2.2.43) into Eq.(2.2.41) 

as follows: 

 

( ) ( ) ( ) ( )( )∫∑
∞

∞− =

+=
4

1

4 exp
2

1
,

j

jj dxiynCyxu ωωωω
π

                      (2.2.46a) 

 

( )( ) ( ) ( ) ( )( )∫∑
∞

∞− =

+=
4

1

4 exp
2

1
,

j

jjj dxiynDCyxv ωωωωω
π

                 (2.2.46b) 

 

Then, stress components yyσ  and xyσ  are found using Eq.(2.2.11b), Eq.(2.2.11c), 

Eq.(2.2.14) and Eq.(2.2.46) as follows: 

 

( )( )
2
4

44

1
,

ν
σ

−
=

E
yxyy   

   ( ) ( ) ( ) ( ) )(













+























+∫∑

∞

∞− =

4

1

2

4

0
4 exp

2

1

j

jjjj dxiynDniC ωωωωω
δ

δ
ωνω

π
    (2.2.47a) 

 

( )( )
( )

( ) ( )( ( )) ( ) )(










++−
+

= ∫∑
∞

∞− =

4

144

44 exp
2

1

2
,

j

jjjjxy dxiynDiniC
E

yx ωωωωωωω
πνκ

σ         

(2.2.47b) 
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In order to determine the unknown functions ( )ωjM , ( )ωjG , ( )ωjA  and ( )ωjC , 

( )4 ,3 ,2 ,1=j , the following boundary and continuity conditions have to be 

satisfied. 

 

( ) ( ) ∞<= 111
1

22   ,0, xhxσ                                                 (2.2.48a) 

 

( ) ( ) ∞<= 111
1

12   ,0, xhxσ                                                 (2.2.48b) 

 

( )( ) ( ) ( ) ∞<= 11
2

221
1

22   ,0,0, xxx σσ                                           (2.2.48c) 

 

( )( ) ( ) ( ) ∞<= 11
2

121
1

12   ,0,0, xxx σσ                                           (2.2.48d) 

 

       ( )( ) ( ) ( ) ∞<−=− 121
3

2221
2

22   ,,, xhxhx σσ                                       (2.2.48e) 

 

( )( ) ( ) ( ) ∞<−=− 121
3

1221
2

12   ,,, xhxhx σσ                                         (2.2.48f) 

 

( ) ( ) ( ) ( ) ∞<−=− 121
3

121
2

1   ,,, xhxuhxu                                         (2.2.48g) 

 

( ) ( ) ( ) ( ) ∞<−=− 121
3

221
2

2   ,,, xhxuhxu                                         (2.2.48h) 

 

( ) ( )( ) ( ) ( )( ) ∞<+−=+− 1321
4

22321
3

22   ,,, xhhxhhx σσ                              (2.2.48i) 

 

( ) ( ) ( ) ( )( ) ∞<+−=+− 1321
4

12321
3

12   ,,),( xhhxhhx σσ                              (2.2.48j) 

 

( ) ( )( ) ( ) ( )( ) ∞<+−=+− 1321
4

1321
3

1   ,,, xhhxuhhxu                              (2.2.48k) 
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( ) ( )( ) ( ) ( )( ) ∞<+−=+− 1321
4

2321
3

2   ,,, xhhxuhhxu                               (2.2.48l) 

 

( ) ( )( ) ∞<=++− 14321
4

22   ,0, xhhhxσ                                      (2.2.48m) 

 

( ) ( )( ) ∞<=++− 14321
4

12   ,0, xhhhxσ                                      (2.2.48n) 

 

Then, the following equations which imply the perfect bonding condition in the 

crack line outside the crack are introduced by defining the derivatives of the 

relative displacements of the crack surfaces as unknown functions ( )11 xf  and 

( )12 xf . 

 

( )( ) ( ) ( )( )
( )







>

<
=−

∂

∂

cx

cxxf
xuxu

x
1

111

1
2

21
1

2
1   ,0

  ,
0,0,                                (2.2.49a) 

 

( ) ( ) ( ) ( )( )






>

<
=−

∂

∂

cx

cxxf
xuxu

x
1

112

1
2

11
1

1
1   ,0

  ),(
0,0,                              (2.2.49b) 

 

Expressing Eq.(2.2.48) and Eq.(2.2.49) in the transformed coordinate system and 

applying Fourier transformations to them, the following system of equations is 

obtained: 

 

( ) ( ) ( )( ) ( )( ) 0exp 01

4

1
0 =+∑

=

δωωνωωω hsisNM j

j

jjj                  (2.2.50a) 

 

( ) ( ) ( )( ) ( )( ) 0exp 01

4

1

=+∑
=

δωωωωω hsiNsM j

j

jjj                    (2.2.50b) 
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( ) ( ) ( )( ) ( ) ( ) ( )( ) 0
4

1
0

4

1
0 =+−+ ∑∑

== j

jjj

j

jjj sNiGsNiM ωωωνωωωωνω       (2.2.50c) 

 

( ) ( ) ( )( ) ( ) ( ) ( )( ) 0
4

1

4

1

=+−+ ∑∑
== j

jjj

j

jjj siNGsiNM ωωωωωωωω          (2.2.50d) 

 

( )
( ) ( ) ( )( ) ( )( )









−+

−

−
∑

=

4

1
0202

0

020 exp
1

exp

j

jjjj hssNiG
hE

δωωωωνω
ν

δγ
 

( ) ( ) ( ) ( )( ) 0exp
1

4

1
02

2

3

0
32

3

3 =













−























+

−
− ∑

=j

jjjj hrrBiA
E

δωωω
δ

δ
ωνω

ν
   (2.2.50e) 

 

( )
( )

( ) ( ) ( )( ) ( )( )








−+

+

−
∑

=

4

1
02

00

020 exp
2

exp

j

jjjj hsiNsG
hE

δωωωωω
νκ

δγ
 

( )
( ) ( ) ( )( ) ( )( ) 0exp

2

4

1
02

33

3 =









−+−

+
− ∑

=j

jjjj hrBiriA
E

δωωωωω
νκ

   (2.2.50f) 

 

( ) ( )( ) ( ) ( )( ) 0expexp
4

1
02

4

1
02 =−−− ∑∑

== j

jj

j

jj hrAhsG δωωδωω           (2.2.50g) 

 

( ) ( ) ( )( ) ( ) ( ) ( )( ) 0expexp
4

1
02

4

1
02 =−−− ∑∑

== j

jjj

j

jjj hrBAhsNG δωωωδωωω  

(2.2.50h) 

 

( ) ( ) ( ) ( )( )( )













+−























+

−
∑

=

4

1
023

2

3

0
32

3

3 exp
1 j

jjjj hhrrBiA
E

δωωω
δ

δ
ωνω

ν
 

( ) ( ) ( ) ( )( )( ) 0exp
1

4

1
023

2

4

0
42

4

4 =













+−























+

−
− ∑

=j
jjjj hhnnDiC

E
δωωω

δ

δ
ωνω

ν
 

(2.2.50i) 
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( )
( ) ( ) ( )( ) ( )( )( )









+−+−

+
∑

=

4

1
023

33

3 exp
2 j

jjjj hhrBiriA
E

δωωωωω
νκ

 

( )
( ) ( ) ( )( ) ( )( )( ) 0exp

2

4

1
023

44

4 =









+−+−

+
− ∑

=j
jjjj hhnDiniC

E
δωωωωω

νκ
           

(2.2.50j) 

 

( ) ( )( )( ) ( ) ( )( )( ) 0expexp
4

1
023

4

1
023 =+−−+− ∑∑

== j

jj

j

jj hhnChhrA δωωδωω  

(2.2.50k) 

 

( ) ( ) ( )( )( )∑
=

+−
4

1
023exp

j

jjj hhrBA δωωω            

( ) ( ) ( )( )( ) 0exp
4

1
023 =+−−∑

=j

jjj hhnDC δωωω         (2.2.50l) 

 

( ) ( ) ( ) ( )( )( ) 0exp 0234

4

1

2

4

0
4 =++−























+∑

=

δωωω
δ

δ
ωνω hhhnDniC j

j

jjj   (2.2.50m) 

 

( ) ( ) ( )( ) ( )( )( ) 0exp 0234

4

1

=++−+−∑
=

δωωωωω hhhnDiniC j

j

jjj       (2.2.50n) 

 

( ) ( ) ( ) ( ) ( ) ( )∫∑∑
−==

−=









−

0

0

exp1

4

1

4

1

δ

δ

ωφωωωωω
c

cj

jj

j

jj dttitNGNMi           (2.2.50p) 

 

( ) ( ) ( ) ( )∫∑∑
−==

−=









−

0

0

exp2

4

1

4

1

δ

δ

ωφωωω
c

cj

j

j

j dttitGMi                    (2.2.50r) 

 

where ( ) ( )tft 011 δφ =  and ( ) ( )tft 0202 δδφ = . 
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From Eq.(2.2.50), the unknown functions ( )ωjM , ( )ωjG , ( )ωjA  and ( )ωjC , 

( )4 ,3 ,2 ,1=j , can be written in the following form.  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 ,3 ,2 ,1  ,expexp
0

0

0

0

21 =−+−= ∫∫
−−

jdttitZdttitYM

c

c

j

c

c

jj

δ

δ

δ

δ

ωφωωφωω

 

(2.2.51a) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 ,3 ,2 ,1  ,expexp
0

0

0

0

21 =−+−= ∫∫
−−

jdttitWdttitVG

c

c

j

c

c

jj

δ

δ

δ

δ

ωφωωφωω          

(2.2.51b) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 ,3 ,2 ,1  ,expexp
0

0

0

0

21 =−+−= ∫∫
−−

jdttitLdttitXA

c

c

j

c

c

jj

δ

δ

δ

δ

ωφωωφωω        

(2.2.51c) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 ,3 ,2 ,1  ,expexp 21 =−+−= ∫∫
−−

jdttitQdttitPC

a

a

j

a

a

jj ωφωωφωω     

(2.2.51d) 

 

where ( )ωjY , ( )ωjZ , ( )ωjV , ( )ωjW , ( )ωjX , ( )ωjL , ( )ωjP  and ( )ωjQ , 

( )4 ,3 ,2 ,1=j , are found numerically as described in Appendix A. 

 

Assuming that ( )1xp  is normal traction and ( )1xq  is shear traction at the crack 

surfaces, the following boundary conditions are written. 

 

( ) ( ) cxxpx <−= 11122   ,0,σ                                         (2.2.52a) 
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( ) ( ) cxxqx <−= 11112   ,0,σ                                          (2.2.52b) 

 

They are written in the transformed coordinates as follows: 

 

( ) ( ) ( ) 000   ,0, δδδσ cxxpxpxyy <−==                                (2.2.53a) 

 

( ) ( ) ( ) 00   ,0, δδσ cxxqxqxxy <−==                                  (2.2.53b) 

 

Using the stress expressions obtained by substituting Eq.(2.2.51a) into Eq.(2.2.28) 

and doing some manipulations, Eq.(2.2.53) yields the following integral equations: 

 

( ) ( ) ( )( )






−∫∫
∞

−
→ +

ωωω
π

φ
δ

δ

dtxyFdtt

c

c
y

cos,
2

1
lim

0

111
0

0

0

   

( ) ( ) ( )( ) ωωω
π

φ
δ

δ

dtxyFdtt

c

c

−−+ ∫∫
∞

−

cos,
2

1

0

111

0

0

 
( ) ( ) ( )( ) ωωω

π
φ

δ

δ

dtxyiFdtt

c

c

−+ ∫∫
∞

−

sin,
2

1

0

111

0

0

 
( ) ( ) ( )( ) ωωω

π
φ

δ

δ

dtxyiFdtt

c

c

−−−+ ∫∫
∞

−

sin,
2

1

0

111

0

0

 
( ) ( ) ( )( ) ωωω

π
φ

δ

δ

dtxyFdtt

c

c

−+ ∫∫
∞

−

cos,
2

1

0

122

0

0

 
( ) ( ) ( )( ) ωωω

π
φ

δ

δ

dtxyFdtt

c

c

−−+ ∫∫
∞

−

cos,
2

1

0

122

0

0

 
( ) ( ) ( )( ) ωωω

π
φ

δ

δ

dtxyiFdtt

c

c

−+ ∫∫
∞

−

sin,
2

1

0

122

0

0  
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( ) ( ) ( )( ) ( )xp
E

dtxyiFdtt

c

c 0

2
0

0

122

1
 sin,

2

10

0

ν
ωωω

π
φ

δ

δ

−
=







−−−+ ∫∫
∞

−

         (2.2.54a) 

 

( ) ( ) ( )( )






−∫∫
∞

−
→ +

ωωω
π

φ
δ

δ

dtxyDdtt

c

c
y

cos,
2

1
lim

0

111
0

0

0

 

( ) ( ) ( )( ) ωωω
π

φ
δ

δ

dtxyDdtt

c

c

−−+ ∫∫
∞

−

cos,
2

1

0

111

0

0    

( ) ( ) ( )( ) ωωω
π

φ
δ

δ

dtxyiDdtt

c

c

−+ ∫∫
∞

−

sin,
2

1

0

111

0

0    

( ) ( ) ( )( ) ωωω
π

φ
δ

δ

dtxyiDdtt

c

c

−−−+ ∫∫
∞

−

sin,
2

1

0

111

0

0  

( ) ( ) ( )( ) ωωω
π

φ
δ

δ

dtxyDdtt

c

c

−+ ∫∫
∞

−

cos,
2

1

0

122

0

0  

( ) ( ) ( )( ) ωωω
π

φ
δ

δ

dtxyDdtt

c

c

−−+ ∫∫
∞

−

cos,
2

1

0

122

0

0

( ) ( ) ( )( ) ωωω
π

φ
δ

δ

dtxyiDdtt

c

c

−+ ∫∫
∞

−

sin,
2

1

0

122

0

0

  

( ) ( ) ( )( ) ( )xq
E

dtxyiDdtt

c

c 0

00

0

122

)(2
sin,

2

10

0

νκ
ωωω

π
φ

δ

δ

+
=







−−−+ ∫∫
∞

−

  (2.2.54b) 

 

where 0δcx <  and, 

 

( ) ( ) ( )( ) ( ) ( )( )∑
=

+=
4

1
011 exp,

j

jjjj ysYsNiyF ωωωωωνω               (2.2.55a) 
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( ) ( ) ( )( ) ( ) ( )( )∑
=

+=
4

1
012 exp,

j

jjjj ysZsNiyF ωωωωωνω                (2.2.55b) 

 

( ) ( ) ( )( ) ( ) ( )( )∑
=

+=
4

1
11 exp,

j

jjjj ysYiNsyD ωωωωωω                  (2.2.55c) 

 

( ) ( ) ( )( ) ( ) ( )( )∑
=

+=
4

1
12 exp,

j

jjjj ysZiNsyD ωωωωωω                   (2.2.55d) 

 

Using the symbolic manipulator MAPLE, asymptotic behaviors of the integrands 

( )0,11 ωF , ( )0,11 ω−F , ( )0,12 ωF , ( )0,12 ω−F , ( )0,11 ωD , ( )0,11 ω−D , ( )0,12 ωD  and 

( )0,12 ω−D  are determined in the following form as ω  approaches infinity as 

described in Appendix B. 

 

( )
2

22
0011 0,

ω
ω

ba
baF

+
++=

∞                                       (2.2.56a) 

 

( )
2

22
0011 0,

ω
ω

dc
dcF

+
++=−

∞                                      (2.2.56b) 

 

( )
2

2211
0012 0,

ωω
ω

fefe
feF

+
+

+
++=

∞                              (2.2.56c) 

 

( )
2

2211
0012 0,

ωω
ω

hghg
hgF

+
+

+
++=−

∞                           (2.2.56d) 

 

( )
3

1313
2

12121111
101011 0,

ωωω
ω

bababa
baD

+
+

+
+

+
++=

∞                (2.2.56e) 
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( )
3

1313
2

12121111
101011 0,

ωωω
ω

dcdcdc
dcD

+
+

+
+

+
++=−

∞              (2.2.56f) 

 

( )
2

1212
101012 0,

ω
ω

fe
feD

+
++=

∞                                (2.2.56g) 

 

( )
2

1212
101012 0,

ω
ω

hg
hgD

+
++=−

∞                             (2.2.56h) 

 

where the superscript ∞  denotes the asymptotic expansion as ω  approaches 

infinity and 0a , 2a , 0b , 2b , 0c , 2c , 0d , 2d , 0e , 1e , 2e , 0f , 1f , 2f , 0g , 1g , 2g , 

0h , 1h , 2h , 10a , 11a , 12a , 13a , 10b , 11b , 12b , 13b , 10c , 11c , 12c , 13c , 10d , 11d , 12d , 

13d , 10e , 12e ,  10f , 12f , 10g , 12g , 10h , 12h  are the functions of the constants β , 0δ , 

0κ  and 0ν . Expressions for these asymptotic expansion coefficients are given in 

Appendix B.  

 

Subtracting and adding the asymptotic expansion terms, evaluating some of the 

integrals in closed form and taking the limit as y approaches +0 , the integral 

equations can be rearranged as: 

 

( ) ( )( )
( )

( ) ( ) ( ) ( ) ( )dtttxHtxHtxHtxH
tx

dcbai
c

c

114131211
0000

0

0

,,,,
2

φ
π

δ

δ

∫
−









−+++

−

+−+
 

( ) ( ) ( ) ( ) ( )∫
−





−

+
−−+++

0

0

15
11

18171615 ln
2

,,,,
δ

δ
π

c

c

txA
fe

txHtxHtxHtxH  

( ) ( )
( )

( )
( )tx

hgi

tx

fei
txA

hg

−

+
−

−

+
+−

+
−

πππ 22
ln

2
0000

16
11  

( )( )
( ) ( )

( )
( ) 0

0

2
0

2
1111   ,

1

4
δ

ν
φ cxxp

E
dtttxsign

hgfei
<

−
=




−

+−+
+          (2.2.57a) 
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( ) ( )( )
( )

( ) ( ) ( ) ( ) ( )dtttxHtxHtxHtxH
tx

hgfei
c

c

228272625
10101010

0

0

,,,,
2

φ
π

δ

δ

∫
−









−+++

−

+−+

( ) ( ) ( ) ( ) ( )∫
−





−

+
−−+++

0

0

21
1111

24232221 ln
2

,,,,
δ

δ
π

c

c

txA
ba

txHtxHtxHtxH  

( ) ( )
( )

( )
( )tx

dci

tx

bai
txA

dc

−

+
−

−

+
+−

+
−

πππ 22
ln

2
10101010

22
1111  

( )( )
( ) ( )

( )
( ) 0

0

00
1

11111111   ,
2

4
δ

νκ
φ cxxq

E
dtttxsign

dcbai
<

+
=




−

+−+
+  

(2.2.57b) 

 

where 15A , 16A , 21A , 22A  are integration cut-off points and the functions ( )txH ij , , 

( )8 , ... ,2 ,1  and  2 ,1 == ji , are given in Appendix C. 

 

Then, the following transformations are introduced: 

 

1  ,  , 0
0

<<= scx
c

x
s δ

δ
                                         (2.2.58a) 

 

1  ,  , 0
0

<<= rct
c

t
r δ

δ
                                          (2.2.58b) 

 

Using the above transformations, Eq.(2.2.57) can be written in the following 

normalized form: 
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( ) ( )( )
( )

( ) ( ) ( ) ( ) ( )drrrsHrsHrsHrsH
rs

dcbai
φ

π
ˆ,ˆ,ˆ,ˆ,ˆ

2

1

1

14131211
0000∫

−









−+++

−

+−+
 

( ) ( ) ( )( )
( )∫

− 





−

+−+
+−

+
−−

+
−+

1

1

0000*
16

11*
15

11

2
ln

2

ˆˆ
ln

2

ˆˆ

rs

hgfei
rsA

hg
rsA

fe

πππ
 

( )( )
( ) ( ) ( ) ( ) ( ) ( )drrrsHrsHrsHrsHrssign

hgfei
ϕ̂,ˆ,ˆ,ˆ,ˆ

4

ˆˆˆˆ
18171615

1111






−+++−

+−+
+

( ) ( ) 1  ,
1
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where 

 

( ) ( ) ( ) ( )0201   , δφϕδφφ crrcrr ==
))

                                     (2.2.60a) 

 

( ) ( ) ( )8 , ... ,2 ,1  and  2 ,1  ,,,ˆ
000 === jiccrcsHrsH ijij δδδ           (2.2.60b) 

 

011011011011
ˆ   ,ˆ   ,ˆ   ,ˆ δδδδ chhcggcffcee ====                  (2.2.60c) 

 

01111011110111101111
ˆ   ,ˆ   ,ˆ   ,ˆ δδδδ cddccccbbcaa ====         (2.2.60d) 
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022
*
22021

*
21016

*
16015

*
15   ,  ,  , δδδδ cAAcAAcAAcAA ====      (2.2.60e) 

 

Then the solution can be expressed in the following form: 
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where nT  is the Chebyshev polynomial of the first kind of order n  and its 

definition is given in Appendix D. nÂ  and nB̂  are unknown constants. 

 

It is known that relative displacements at the crack tips are zero. Using this 

condition and Eq.(2.2.49), the following expressions can be written. 
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=
c

c
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=
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Making use of the above expressions, the following equations can be obtained: 
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Substituting Eq.(2.2.61) into Eq.(2.2.63) and using the orthogonality condition of 

the Chebyshev polynomials of the first kind given in Appendix D, 00
ˆ and ˆ BA  are 

found to be zero. 

 

Then, the series given by Eq.(2.2.61) are truncated at Nn =  as follows: 
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ϕ̂                                            (2.2.64b) 

 

It can be shown that, 

 

00000 =−−+ hgfe                                                 (2.2.65a) 

 

0ˆˆˆˆ 1111 =−−+ hgfe                                                 (2.2.65b) 

 

010101010 =−−+ dcba                                              (2.2.65c) 

 

0ˆˆˆˆ 11111111 =−−+ dcba                                              (2.2.65d) 

 

Substituting Eq.(2.2.64) and Eq.(2.2.65) into Eq.(2.2.59) and evaluating some of 

the integrals in closed form as given in Appendix E, the integral equations can be 

rearranged as: 

 

 



 40 

( )
( ) ( ) ( ) ( ) ( )∑

=
−





−+++


 −−+
−

N

n

nnnnnn sksksksksU
dcbai

A
1

141312111
0000

2
ˆ  

( )
( ) ( ) ( ) ( )∑

= 





−+++




 +++

+
N

n

nnnn

n

n sksksksk
n

sThgfe
B

1
18171615

1111

2

ˆˆˆˆˆ   

( ) ( ) 1  ,
1

0
0

2
0 <

−
= scsp

E
δ

ν
                   (2.2.66a) 

 

 

( )
( ) ( ) ( ) ( )∑

= 





−+++




 +++N

n

nnnn

n

n sksksksk
n

sTdcba
A

1
24232221

11111111

2

ˆˆˆˆˆ  

( )
( ) ( ) ( ) ( ) ( )∑

=
−





−+++


 −−+
−+

N

n

nnnnnn sksksksksU
hgfei

B
1

282726251
10101010

2
ˆ  

( ) ( ) 1  ,
2

0
0

00 <
+

= scsq
E

δ
νκ

               (2.2.66b) 

 

Where nU  is the Chebyshev polynomial of the second kind of order n  and the 

functions ( )sk ijn , ( )8 , ... ,2 ,1 and 2 ,1 == ji , are defined by: 
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                                     (2.2.67) 

 

To find the unknown constants nn BA ˆ and ˆ , ( )Nn ,...,1= , suitable collocation points 

are defined for Eq.(2.2.66) which leads to a NN 22 ×  linear system of equations. 

The collocation points are chosen as the roots of the Chebyshev polynomials of the 

first kind which are given in Appendix D. 

 

Definitions of the stress intensity factors are given by the following expressions: 
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The dominant parts of the stress components ( )0,xyyσ  and ( )0,xxyσ  are expressed 

as follows: 
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Using Eq.(2.2.69), the stress intensity factors are obtained as: 
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Expressions for the normal and tangential crack opening displacements can be 

written using Eq.(2.2.49) as follows: 

 

( ) ( ) ( )    ,0,0, 11111212
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−+                        (2.2.71a) 
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Then, they can be rearranged in the form given in Eq.(2.2.72) using Eq.(2.2.64) and 

the closed form integral [115] given in Eq.(2.2.73) . 
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It is known that the relatively weak fracture planes correspond to the principal 

planes of orthotropy in the graded medium [115]. So, the energy release rates at the 

crack tips can be obtained assuming the crack extension along 1x - axis. Using the 

crack closure energy concept, the energy release rate per tip can be expressed as 

follows: 

 

cB

W
G

c ∆

∆
=

→∆ 0
lim                                                      (2.2.74) 

 

where W∆  is the necessary work to close the crack extension per tip. B  is the 

thickness of the plate and c∆  is the length of the crack propagation at the crack tip. 

Considering the mode I and mode II loading conditions, W∆  can be written as 

follows for the crack tips where cx =1  and cx −=1 , respectively.    
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Then, strain energy release rate is obtained in the following form: 
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CHAPTER 3 

 

 

COMPUTATIONAL SOLUTION FOR THE CRACK PROBLEMS IN AN 

ORTHOTROPIC FGM COATING 

 
 

3.1 Computational Solution 

 

Computational approaches are very useful for investigation of analytically 

untractable fracture problems. In this chapter, the employed computational 

approach is described.    

 

In the adopted computational approach, finite element method is used in 

conjunction with the displacement correlation technique (DCT) to investigate the 

fracture behavior of the orthotropic FGM coating bonded to a homogeneous 

substrate through a homogeneous bond-coat.     

 

Results of the finite element method are obtained using the general purpose finite 

element analysis software ANSYS. The finite element models are created using 

quarter point singular elements around the crack tips and regular 6-noded triangular 

and 8-noded quadrilateral elements in the other regions. To represent the variations 

in the material properties of the orthotropic FGM coating, material properties of 

each element are assigned according to the centroidal position of the element. 

 

3.2 Review of Displacement Correlation Technique 

 

In this section, a review is made for the displacement correlation technique (DCT) 

that is used in a previous study by Kim and Paulino [120] for the mixed-mode two-
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dimensional crack problems in orthotropic FGMs. In this technique, stress intensity 

factors are calculated by correlating the displacements at specific nodal locations of 

the singular elements located around the crack tips with the known analytical 

solutions. An illustration describing the quarter-point singular elements located at 

the crack tip is shown in Figure-3.2.1.    

 

 

Figure-3.2.1 Quarter-point singular elements located at the crack tip. 

 

Considering the crack tip polar coordinate system and definitions of stress intensity 

factors given by Eq.(2.2.68), displacement equations in the close vicinity of the 

crack tip can be written as given in Eq.(3.2.1) for pure mode I and as given in 

Eq.(3.2.2) for pure mode II [120]. 
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where 1k  and 2k  are the mode I and mode II stress intensity factors, respectively. 

1u  and 2u  are the displacement components along 1x - and 2x - directions, 

respectively. 111 β̂αµ i
tip +=  and 222 β̂αµ i

tip +=  are the crack tip parameters and 

found as the roots of the following characteristic equation such that 

( )2 ,1  0ˆ => jjβ : 

 

02)2(2 2226
2

6612
3

16
4

11 =+−++− aaaaaa µµµµ                   (3.2.3) 

 

where 11a , 12a , 16a , 22a , 26a  and 66a  are the terms of the compliance matrix 

considering the crack tip Cartesian coordinate system. For plane elasticity problems 

in orthotropic materials, they are introduced as follows: 
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where 
11xxε , 

22xxε , 
21xxε  are the strain components and 

11xxσ , 
22 xxσ , 

21xxσ  are the 

stress components with respect to the crack tip Cartesian coordinate system. 
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jp  and jq , ( )2 ,1=j , are given by: 

 

( ) ( )2 ,1  ,1612

2
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tip
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jj µµ                                (3.2.5) 
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jj
µ

µ                                   (3.2.6) 

 

For quadratic isoparametric quarter point singular elements, normal crack opening 

displacement along the edge ABC, n

ABCCOD , is given by the following equation 

[128]. 

 

     ( )
L

r
uu

L

r
uuCOD CBCBn

ABC )24(4 2222 +−+−=                     (3.2.7) 

 

where Bu2  and Cu2  are the displacement components along 2x - direction at point B 

and point C, respectively.   

 

The tangential crack opening displacement along the edge ABC, t

ABCCOD , is 

written as follows [133]: 
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r
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r
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where Bu1  and Cu1  are the displacement components along 1x - direction at point B 

and point C, respectively.   
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Considering both edge ABC and edge ADE, resultant normal crack opening 

displacement, n
COD , and resultant tangential crack opening displacement, t

COD , 

are written as follows: 
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where Du2  and Eu2  are the displacement components along 2x - direction at point D 

and point E, Du1  and Eu1  are the displacement components along 1x - direction at 

point D and point E, respectively.   

 

Then, using Eq.(3.2.1), Eq.(3.2.2), Eq.(3.2.9) and Eq.(3.2.10), mode I and mode II 

stress intensity factors at the considered crack tip can be obtained as follows [120]: 
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CHAPTER 4 

 

 

NUMERICAL RESULTS 

 

 

4.1 Verification of the Analytical Study 

 

Verification of the analytical study presented in Chapter 2 is performed considering 

an embedded crack in a homogeneous orthotropic strip. Cinar and Erdogan [134] 

presented the results of a plane elasticity problem for an orthotropic strip 

containing a crack parallel to the boundaries. Illustration of the problem is shown 

in Figure-4.1.1. This problem is solved using the present formulation by taking 

each of the material parameters E , ν , 4δ  and κ  for coating, bond-coat and 

substrate as the same and material nonhomogeneity parameter β  of the FGM 

coating as equal to 0. For the case of 1=κ , the value of κ  is taken as 0.9999999. 

 

 

Figure-4.1.1 Illustration of the crack problem solved by Cinar and Erdogan [134]. 

 

Assuming that the crack surfaces are under uniform normal stress 

( )( )cxx <−= 10122   ,0, σσ , stress intensity factors obtained by both studies are 

given in Table-4.1.1 for ( ) 0.12 211 =+ hhh  and ( ) ( ) 35.0221 =+ chhδ  and in 

Table-4.1.2 for ( ) 4.02 211 =+ hhh  and ( ) ( ) 35.0221 =+ chhδ . Assuming that the 

 c
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h1 

h2 
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x2  

E11 
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crack surfaces are under uniform shear stress ( )( )cxx <−= 10112   ,0, τσ , stress 

intensity factors obtained by both studies are given in Table-4.1.3 for 

( ) 0.12 211 =+ hhh  and ( ) ( ) 35.0221 =+ chhδ  and in Table-4.1.4 for 

( ) 4.02 211 =+ hhh  and ( ) ( ) 35.0221 =+ chhδ . It is shown that results of the 

present study agree very well with the results given by Cinar and Erdogan [134].      

 

Table-4.1.1 Comparison of the stress intensity factors, ( ) 0.12 211 =+ hhh , 

( ) ( ) 35.0221 =+ chhδ , ( )  0, 0122 σσ −=x  for cx <1 . 

Cinar and Erdogan [134] Present Study 
κ  ( ) ( )cck 01 σ  ( ) ( )cck 01 σ  

1 4.801 4.801 
2 4.657 4.654 
4 4.564 4.553 

 

Table-4.1.2 Comparison of the stress intensity factors, ( ) 4.02 211 =+ hhh , 

( ) ( ) 35.0221 =+ chhδ , ( )  0, 0122 σσ −=x  for cx <1 . 

Cinar and Erdogan [134] Present Study 
κ  ( ) ( )cck 01 σ  ( ) ( )cck 02 δσ  ( ) ( )cck 01 σ  ( ) ( )cck 02 δσ  

1 9.519 -4.855 9.526 -4.850 
2 8.986 -4.404 8.989 -4.386 
4 8.447 -3.908 8.470 -3.882 

 

Table-4.1.3 Comparison of the stress intensity factors, ( ) 0.12 211 =+ hhh , 

( ) ( ) 35.0221 =+ chhδ , ( )  0, 0112 τσ −=x  for cx <1 . 

Cinar and Erdogan [134] Present Study 
κ  ( ) ( )cck 02 τ  ( ) ( )cck 02 τ  

1 2.047 2.047 
2 1.890 1.889 
4 1.717 1.716 
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Table-4.1.4 Comparison of the stress intensity factors, ( ) 4.02 211 =+ hhh , 

( ) ( ) 35.0221 =+ chhδ , ( )  0, 0112 τσ −=x  for cx <1 . 

Cinar and Erdogan [134] Present Study 
κ  ( ) ( )cck 01 τδ  ( ) ( )cck 02 τ  ( ) ( )cck 01 τδ  ( ) ( )cck 02 τ  

1 0.846 1.658 0.845 1.659 
2 0.761 1.553 0.758 1.554 
4 0.666 1.441 0.661 1.441 

 

 

4.2 Numerical Results Based on Analytical and Computational Approaches  

 

In this section, some numerical results obtained using analytical and computational 

approaches are presented for the embedded crack problems in the orthotropic FGM 

coating bonded to the homogeneous substrate through the homogeneous bond-coat.  

 

First, the analytical and computational results for the normalized fracture related 

parameters of the single embedded crack problem are given considering the pure 

uniform normal stress ( ) ( )( )0  and  101 == xqxp σ  on crack surfaces. The reason of 

giving the results of the two methods is to verify the computational approach. 

Then, analytical results are given for the single embedded crack problem 

considering the pure uniform shear stress ( ) ( )( )011   and  0 τ== xqxp  on crack 

surfaces. Finally, the computational results for the fracture related parameters of 

the periodic cracks in the orthotropic FGM coating are presented.  

 

Under the applied loading conditions, the following relations exist: 

 

( ) ( ) ( ) ( ) ( ) ( ) 0112211   ,0for    c  ,c-c σ==−−== xpxqckkkk               (4.2.1a) 

 

( ) ( ) ( ) ( ) ( ) ( ) 0  ,for    c  ,c-c 1012211 ==−=−= xpxqckkkk τ               (4.2.1b) 
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So, the tip at which cx =1  is selected to give the results for the normalized mixed-

mode stress intensity factors and energy release rate. 

 

The presented results consist of normalized mode I and mode II stress intensity 

factors, normalized energy release rate and normalized normal and tangential crack 

opening displacements.  

 

Expressions for the normalized mode I stress intensity factors under pure uniform 

normal and pure uniform shear crack surface tractions are given in Eq.(4.2.2a) and 

Eq.(4.2.2b), respectively. 

 

( ) ( )5.0
01 cck σ                                                 (4.2.2a) 

 

( ) ( )5.0
01 cck τ                                                 (4.2.2b) 

 

Expressions for the normalized mode II stress intensity factors under pure uniform 

normal and pure uniform shear crack surface tractions are given in Eq.(4.2.3a) and 

Eq.(4.2.3b), respectively. 

 

( ) ( )5.0
02 cck σ                                               (4.2.3a) 

 

( ) ( )5.0
02 cck τ                                               (4.2.3b) 

 

Expression for the normalized energy release rate under pure uniform normal crack 

surface traction is given in Eq.(4.2.4). 

 

( ) ( )0
2
0 EccG σπ                                                (4.2.4) 
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Expressions for the normalized normal crack opening displacements under pure 

uniform normal and pure uniform shear crack surface tractions are given in 

Eq.(4.2.5a) and Eq.(4.2.5b), respectively. Expressions for the normalized tangential 

crack opening displacements under pure uniform normal and pure uniform shear 

crack surface tractions are given in Eq.(4.2.6a) and Eq.(4.2.6b), respectively. 

 

( ) σ∆1
*

xv                                                    (4.2.5a) 

 

( ) τ∆1
*

xv                                                    (4.2.5b) 

 

( ) σ∆1
*

xu                                                    (4.2.6a) 

 

( ) τ∆1
* xu                                                    (4.2.6b) 

 

where 

 

( ) ( )( ) ( )( )0,0, 1
2

21
1

21
* xuxuxv −=                                   (4.2.7a) 

 

( ) ( ) ( ) ( ) ( )0,0, 1
2

11
1

11
* xuxuxu −=                                   (4.2.7b) 

 

( )( )00002 Ec σνκσ +=∆                                      (4.2.7c) 

 

( )( )00002 Ec τνκτ +=∆                                       (4.2.7d) 

 

In all of the examined cases, it is assumed that material properties are continuous 

with discontinuous derivatives at the interface between the FGM coating and the 

homogeneous bond-coat. The homogeneous substrate material is assumed to be 

isotropic. 
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In the presented results, the examined values of material parameters are changing 

such that 0κ  is from 2.0−  to 0.5 , 4
0δ  is from 0.25 to 6.0 and 0ν  is from 0.05 to 

0.95. The minimum value of 0κ  is taken as 2.0−  because ( )00 νκ +  has to be 

greater than zero.  

 

In this section, all results are based on the parametric values of the material 

properties. For an example about the orthotropic FGM coatings used in real 

applications, the FGM consisting of nickel and alumina can be given. When the 

FGM coating is 100% alumina, its elastic properties which are given as 

36.11611 =E  GPa, 43.9022 =E  GPa, 21.3812 =G  GPa and 28.012 =ν  [126, 135] 

lead to the material parameters of 58.102≅E GPa, 25.0≅ν , 29.14 ≅δ  and 

10.1≅κ  under generalized plane stress state. 

 

4.2.1 Single Embedded Crack Problem Considering Uniform Normal Stress 

on Crack Surfaces 

 

In this subsection, some numerical results are presented for the single embedded 

crack problem in the orthotropic FGM coating bonded to the homogeneous 

substrate through the homogeneous bond-coat considering the uniform normal 

stress on crack surfaces such that ( ) 01 σ=xp . For this problem, both analytical and 

computational results are given to verify the displacement correlation technique 

(DCT).  

 

For the computational analysis, the finite element model of the problem is created 

considering half of the structure with the appropriate symmetry boundary 

conditions. The structure is taken sufficiently long to satisfy the assumption of 

infinite length in 1x - direction. The deformed shape of the structure, close-up view 

of the crack faces and applied displacement boundary conditions are shown in 
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Figure-4.2.1.1 for a typical run. To satisfy the symmetry about 2x - axis, the 

displacement component 1u  is fixed as zero at 01 =x . 

 

 

Figure-4.2.1.1 Finite element model of the single embedded crack problem under 

uniform normal crack surface tractions.  

 

The normalized mode I and mode II stress intensity factors, normalized energy 

release rate and normalized crack opening displacements are obtained by varying 

the nonhomogeneity constant cβ  for various values of the material parameters of 

the orthotropic FGM coating and geometric parameters of the structure. 

 

The effects of relative coating thickness above the crack, ch1 , on normalized 

mode I and mode II stress intensity factors and normalized energy release rates are 

plotted in Figure-4.2.1.2, Figure-4.2.1.3 and Figure-4.2.1.4, respectively, for 

various values of material nonhomogeneity constant cβ . In the examined cases, 

ch1  values are changing from 0.25 to 2.0 and geometric parameters are taken as 

chhh === 222 432 . 
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Taking the geometric parameters as chhhh ==== 2222 4321 , normalized mode 

I and mode II stress intensity factors and normalized energy release rates are 

plotted with respect to the shear parameter 0κ  in Figure-4.2.1.5, Figure-4.2.1.6 and 

Figure-4.2.1.7, with respect to the stiffness ratio 4
0δ  in Figure-4.2.1.8, Figure-

4.2.1.9 and Figure-4.2.1.10 and with respect to the effective Poisson’s ratio 0ν  in 

Figure-4.2.1.11, Figure-4.2.1.12 and Figure-4.2.1.13, respectively, by changing the 

values of cβ . For the same geometry, normalized normal and tangential crack 

opening displacements are given in Figure-4.2.1.14 and Figure-4.2.1.15 for various 

values of 0κ , in Figure-4.2.1.16 and Figure-4.2.1.17 for various values of 4
0δ  and 

in Figure-4.2.1.18 and Figure-4.2.1.19 for various values of 0ν , respectively, 

taking cβ  as 1−  or 1. Since the half of the structure is considered in the 

computational approach, finite element method (FEM) results of normalized 

normal and tangential crack opening displacements are given for the half crack 

length. 

 

To investigate the effect of relative bond-coat thickness, ch3 , on the fracture 

related parameters, normalized mode I and mode II stress intensity factors and 

normalized energy release rates are plotted with respect to ch3  in Figure-4.2.1.20, 

Figure-4.2.1.21 and Figure-4.2.1.22, respectively, for various values of material 

nonhomogeneity constant cβ  assuming that the crack lies very close to the bond-

coat such that chhh === 205.095.0 421 . The examined values of ch3  are 

changing from 0.025 to 0.5. 

 

From Figure-4.2.1.2 to Figure-4.2.1.19, the plotted data is obtained assuming 

( ) 5.1exp 4320 EEhE ==− β . In Figure-4.2.1.20, Figure-4.2.1.21 and Figure-

4.2.1.22, it is assumed that ( ) 3exp 4320 EEhE ==− β .  
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Figure-4.2.1.2 Normalized mode I stress intensity factor versus ch1  and 

nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 230 == κκ , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , chhh === 222 432 , 

( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.3 Normalized mode II stress intensity factor versus ch1  and 

nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 230 == κκ , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , chhh === 222 432 , 

( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.4 Normalized energy release rate versus ch1  and nonhomogeneity 

constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 230 == κκ , 

14 =κ , 24
3

4
0 == δδ , 14

4 =δ , chhh === 222 432 , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.5 Normalized mode I stress intensity factor versus shear parameter 

0κ  and nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 

25.030 ==νν , 3.04 =ν , 30 κκ = , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , 

chhhh ==== 2222 4321 , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.6 Normalized mode II stress intensity factor versus shear parameter 

0κ  and nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 

25.030 ==νν , 3.04 =ν , 30 κκ = , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , 

chhhh ==== 2222 4321 , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.7 Normalized energy release rate versus shear parameter 0κ  and 

nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 30 κκ = , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , 

( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.8 Normalized mode I stress intensity factor versus stiffness ratio 4
0δ  

and nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 230 == κκ , 14 =κ , 4
3

4
0 δδ = , 14

4 =δ , chhhh ==== 2222 4321 , 

( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.9 Normalized mode II stress intensity factor versus stiffness ratio 4
0δ  

and nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 230 == κκ , 14 =κ , 4
3

4
0 δδ = , 14

4 =δ , chhhh ==== 2222 4321 , 

( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.10 Normalized energy release rate versus stiffness ratio 4
0δ  and 

nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 230 == κκ , 14 =κ , 4
3

4
0 δδ = , 14

4 =δ , chhhh ==== 2222 4321 , 

( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.11 Normalized mode I stress intensity factor versus effective 

Poisson’s ratio 0ν  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 30 νν = , 3.04 =ν , 230 == κκ , 14 =κ , 

24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.12 Normalized mode II stress intensity factor versus effective 

Poisson’s ratio 0ν  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 30 νν = , 3.04 =ν , 230 == κκ , 14 =κ , 

24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.13 Normalized energy release rate versus effective Poisson’s ratio 0ν  

and nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 30 νν = , 

3.04 =ν , 230 == κκ , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , 

( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.14 Normalized normal crack opening displacement for various values 

of shear parameter 0κ  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 30 κκ = , 14 =κ , 

24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.15 Normalized tangential crack opening displacement for various 

values of shear parameter 0κ  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 30 κκ = , 14 =κ , 

24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.16 Normalized normal crack opening displacement for various values 

of stiffness ratio 4
0δ  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 230 == κκ , 14 =κ , 

4
3

4
0 δδ = , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.17 Normalized tangential crack opening displacement for various 

values of stiffness ratio 4
0δ  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 230 == κκ , 14 =κ , 

4
3

4
0 δδ = , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 σ=xp , ( ) 01 =xq . 

 



 66 

x1/c

-1.0 -0.5 0.0 0.5 1.0
v

*
(x

1)
/ ∆

σ
-2.0

0.0

2.0

4.0

6.0

ν0=0.05ν0=0.5

ν0=0.95

Αnalytical, βc=1.0
Αnalytical, βc=-1.0

FEM

 

Figure-4.2.1.18 Normalized normal crack opening displacement for various values 

of effective Poisson’s ratio 0ν  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 30 νν = , 3.04 =ν , 230 == κκ , 14 =κ , 

24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.19 Normalized tangential crack opening displacement for various 

values of effective Poisson’s ratio 0ν  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 30 νν = , 3.04 =ν , 230 == κκ , 14 =κ , 

24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.20 Normalized mode I stress intensity factor versus ch3  and 

nonhomogeneity constant cβ , ( ) 0.3exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 230 == κκ , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , ch 95.01 = , ch 05.02 = , 

ch 24 = , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.21 Normalized mode II stress intensity factor versus ch3  and 

nonhomogeneity constant cβ , ( ) 0.3exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 230 == κκ , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , ch 95.01 = , ch 05.02 = , 

ch 24 = , ( ) 01 σ=xp , ( ) 01 =xq . 
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Figure-4.2.1.22 Normalized energy release rate versus ch3  and nonhomogeneity 

constant cβ , ( ) 0.3exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 

230 == κκ , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , ch 95.01 = , ch 05.02 = , ch 24 = , 

( ) 01 σ=xp , ( ) 01 =xq . 

 

In all of the examined cases, mode I stress intensity factor is numerically larger 

than the mode II stress intensity factor. It is shown that mode I stress intensity 

factor and energy release rate are decreasing functions of the material 

nonhomogeneity constant cβ  for all considered values of material and geometric 

parameters when only uniform normal stress acts on crack surfaces. As the material 

nonhomogeneity constant cβ  decreases from positive to negative, the effect of its 

variation on mode I stress intensity factor and the energy release rate becomes 

more significant. It is also observed that mode II stress intensity factor decreases in 

absolute values as the material nonhomogeneity constant cβ  increases from 

negative to positive for all examined values of ( )ch3 , 0κ , 4
0δ , 0ν  and small 

values of ( )ch1  when crack surfaces are under uniform normal stress. For 

relatively large values of ( )ch1 , absolute values of mode II stress intensity factors 

first decrease and then increase as cβ  increases from negative to positive. 
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In Figure-4.2.1.2, it is shown that mode I stress intensity factor first decreases and 

then becomes almost constant with increasing ch1  for all examined values of 

material nonhomogeneity constant cβ . On the other hand, the effect of variation in 

cβ  on mode I stress intensity factor is more significant for large values of ch1 . 

This is expected because both the nonhomogeneity parameter and the distance from 

the crack line affect the effective stiffness of the coating.  

 

In Figure-4.2.1.3, mode II stress intensity factor first changes and then becomes 

almost constant with increasing ch1  for all examined values of material 

nonhomogeneity constant cβ . 

 

In Figure-4.2.1.4, the energy release rate first decreases and then becomes almost 

constant with increasing ch1  for all considered values of material 

nonhomogeneity constant cβ . 

 

In Figure-4.2.1.5, mode I stress intensity factor first decreases and then increases 

noticeably with increasing shear parameter 0κ  for some of the examined values of 

material nonhomogeneity constant cβ .  

 

In Figure-4.2.1.6, mode II stress intensity factor first decreases in absolute values 

with increasing shear parameter 0κ  and then becomes almost insensitive to the 

variations in 0κ  as cβ  increases from negative to positive.   

 

In Figure-4.2.1.7, the energy release rate is an increasing function of the shear 

parameter 0κ  for all examined values of material nonhomogeneity constant cβ . 

 

In Figure-4.2.1.8, mode I stress intensity factor is a decreasing function of the 

stiffness ratio 4
0δ  for all considered values of material nonhomogeneity constant 
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cβ . For relatively small values of stiffness ratio 4
0δ , the effect of its variation on 

mode I stress intensity factor seems to be more significant.  

 

In Figure-4.2.1.9, mode II stress intensity factor decreases in absolute values as the 

stiffness ratio 4
0δ  increases for all examined values of material nonhomogeneity 

constant cβ . 

 

In Figure-4.2.1.10, the energy release rate first decreases and then becomes almost 

constant with increasing stiffness ratio 4
0δ  for all examined values of material 

nonhomogeneity constant cβ . 

 

In Figure-4.2.1.11 and Figure-4.2.1.12, the influence of variation in effective 

Poisson’s ratio 0ν  on the mode I and II stress intensity factors depends on the 

degree of material nonhomogeneity. Mode I stress intensity factor decreases with 

increasing 0ν  for 2 ,1 ,0=cβ  and increases with increasing 0ν  for 2- ,1-=cβ . 

Mode II stress intensity factor decreases in absolute values for 2- ,1-=cβ  and 

increases in absolute values for 2 ,1 ,0=cβ  as the value of effective Poisson’s ratio 

0ν  increases.  

 

In Figure-4.2.1.13, the effect of the variation in the effective Poisson’s ratio 0ν  on 

the energy release rate is relatively small for all considered values of cβ .  

 

In the figures related with the normalized normal and tangential crack opening 

displacements, the normalized normal crack opening displacements are symmetric 

and the normalized tangential crack opening displacements are anti-symmetric 

about 2x - axis. Normalized normal crack opening displacement and absolute value 

of the normalized tangential crack opening displacement decrease with increasing 

values of cβ , 0κ , 4
0δ  and 0ν . 



 71 

In Figure-4.2.1.20, Figure-4.2.1.21 and Figure-4.2.1.22, mode I stress intensity 

factor and energy release rate of the single embedded crack increase and the 

absolute value of the mode II stress intensity factor decreases slightly with the 

increasing relative bond-coat thickness ch3  for all considered values of cβ . 

 

When the presented analytical and computational results are compared, it is seen 

that the computational method agrees very well with the analytical method.   

 

4.2.2 Single Embedded Crack Problem Considering Uniform Shear Stress on 

Crack Surfaces 

 

In this subsection, some numerical results are presented for the analytical solution 

of the single embedded crack problem in the orthotropic FGM coating bonded to 

the homogeneous substrate through the homogeneous bond-coat considering the 

uniform shear stress on crack surfaces such that ( ) 01 τ=xq .  

 

When the crack surfaces are subjected to pure uniform shear traction, it is 

concluded from Eq.(4.2.1b) that one of the crack tips has always negative mode I 

stress intensity factor. For the case of a negative mode I stress intensity factor, the 

formulation of the problem has to be done considering the crack closure condition. 

However, the results of the current formulation can still be used in superposition 

problems if the resultant mode I stress intensity factor is not negative at both tips of 

the crack. 

 

In order to show the effects of nonhomogeneity and material parameters of the 

orthotropic FGM coating on the fracture behavior, normalized mode I and mode II 

stress intensity factors are plotted with respect to the shear parameter 0κ  in Figure-

4.2.2.1 and Figure-4.2.2.2, with respect to the stiffness ratio 4
0δ  in Figure-4.2.2.3 

and Figure-4.2.2.4 and with respect to the effective Poisson’s ratio 0ν  in Figure-
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4.2.2.5 and Figure-4.2.2.6 for various values of the material nonhomogeneity 

constant cβ . The normalized normal and tangential crack opening displacements 

are given in Figure-4.2.2.7 and Figure-4.2.2.8 for various values of 0κ , in Figure-

4.2.2.9 and Figure-4.2.2.10 for various values of 4
0δ  and in Figure-4.2.2.11 and 

Figure-4.2.2.12 for various values of 0ν , respectively, taking cβ  as 1−  or 1. For 

all of the examined cases, chhhh ==== 2222 4321  and 

( ) 5.1exp 4320 EEhE ==− β . 
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Figure-4.2.2.1 Normalized mode I stress intensity factor versus shear parameter 

0κ  and nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 

25.030 ==νν , 3.04 =ν , 30 κκ = , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , 

chhhh ==== 2222 4321 , ( ) 01 =xp , ( ) 01 τ=xq . 
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Figure-4.2.2.2 Normalized mode II stress intensity factor versus shear parameter 

0κ  and nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 

25.030 ==νν , 3.04 =ν , 30 κκ = , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , 

chhhh ==== 2222 4321 , ( ) 01 =xp , ( ) 01 τ=xq . 
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Figure-4.2.2.3 Normalized mode I stress intensity factor versus stiffness ratio 4
0δ  

and nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 230 == κκ , 14 =κ , 4
3

4
0 δδ = , 14

4 =δ , chhhh ==== 2222 4321 , 

( ) 01 =xp , ( ) 01 τ=xq . 
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Figure-4.2.2.4 Normalized mode II stress intensity factor versus stiffness ratio 4
0δ  

and nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 230 == κκ , 14 =κ , 4
3

4
0 δδ = , 14

4 =δ , chhhh ==== 2222 4321 , 

( ) 01 =xp , ( ) 01 τ=xq . 
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Figure-4.2.2.5 Normalized mode I stress intensity factor versus effective Poisson’s 

ratio 0ν  and nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 30 νν = , 

3.04 =ν , 230 == κκ , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , 

( ) 01 =xp , ( ) 01 τ=xq . 
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Figure-4.2.2.6 Normalized mode II stress intensity factor versus effective 

Poisson’s ratio 0ν  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 30 νν = , 3.04 =ν , 230 == κκ , 14 =κ , 

24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 =xp , ( ) 01 τ=xq . 
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Figure-4.2.2.7 Normalized normal crack opening displacement for various values 

of shear parameter 0κ  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 30 κκ = , 14 =κ , 

24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 =xp , ( ) 01 τ=xq . 
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Figure-4.2.2.8 Normalized tangential crack opening displacement for various 

values of shear parameter 0κ  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 30 κκ = , 14 =κ , 

24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 =xp , ( ) 01 τ=xq . 
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Figure-4.2.2.9 Normalized normal crack opening displacement for various values 

of stiffness ratio 4
0δ  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 230 == κκ , 14 =κ , 

4
3

4
0 δδ = , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 =xp , ( ) 01 τ=xq . 
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Figure-4.2.2.10 Normalized tangential crack opening displacement for various 

values of stiffness ratio 4
0δ  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 230 == κκ , 14 =κ , 

4
3

4
0 δδ = , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 =xp , ( ) 01 τ=xq . 
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Figure-4.2.2.11 Normalized normal crack opening displacement for various values 

of effective Poisson’s ratio 0ν  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 30 νν = , 3.04 =ν , 230 == κκ , 14 =κ , 

24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 =xp , ( ) 01 τ=xq . 

 



 78 

x1/c

-1.0 -0.5 0.0 0.5 1.0
u

* (x
1)

/ ∆
τ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

βc=-1.0
βc=1.0

ν0=0.05

ν0=0.5

ν0=0.95

 

Figure-4.2.2.12 Normalized tangential crack opening displacement for various 

values of effective Poisson’s ratio 0ν  and nonhomogeneity constant cβ , 

( ) 5.1exp 4320 EEhE ==− β , 30 νν = , 3.04 =ν , 230 == κκ , 14 =κ , 

24
3

4
0 == δδ , 14

4 =δ , chhhh ==== 2222 4321 , ( ) 01 =xp , ( ) 01 τ=xq . 

 

In all of the examined cases, it is observed that the mode II stress intensity factor is 

numerically larger than the mode I stress intensity factor. It is shown that mode I 

stress intensity factor is an absolutely decreasing function of cβ  and mode II stress 

intensity factor is an increasing function of cβ  for all considered values of 0κ , 4
0δ  

and 0ν  when the crack surfaces are under pure uniform shear traction. 

 

In Figure-4.2.2.1, mode I stress intensity factor decreases in absolute values with 

increasing shear parameter 0κ  for small values of cβ  and becomes almost 

independent of 0κ  for large values of cβ . 

 

In Figure-4.2.2.2, mode II stress intensity factor decreases with increasing shear 

parameter 0κ  for all considered values of cβ . When 0κ  has small values, the 

effect of its variation on mode II stress intensity factor is more significant.  
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In Figure-4.2.2.3, mode I stress intensity factor is an absolutely decreasing function 

of the stiffness ratio 4
0δ  for all examined values of cβ . When 4

0δ  has large values, 

the effect of its variation on the mode I stress intensity factor becomes less 

significant. 

 

In Figure-4.2.2.4, mode II stress intensity factor decreases with increasing 4
0δ  for 

all considered values of cβ . The effect of variation in 4
0δ  on mode II stress 

intensity factor is less noticeable for large values of 4
0δ . 

 

In Figure-4.2.2.5, mode I stress intensity factor behaves as an absolutely decreasing 

function of effective Poisson’s ratio 0ν  for 2- ,1-=cβ  and an absolutely 

increasing function of 0ν  for 2 ,1 ,0=cβ . 

 

In Figure-4.2.2.6, mode II stress intensity factor increases with increasing effective 

Poisson’s ratio 0ν  for 2- ,1-=cβ  and decreases with increasing 0ν  for 

2 ,1 ,0=cβ .  

 

In the figures related with the normalized normal and tangential crack opening 

displacements, normalized normal crack opening displacements are anti-symmetric 

about 2x - axis which means that there is crack closure at either tip of the crack for 

the pure uniform shear loading on crack surfaces. Normalized tangential crack 

opening displacements are symmetric about 2x - axis. Normalized normal crack 

opening displacement decreases in absolute values as cβ  increases from negative 

to positive whereas normalized tangential crack opening displacement increases as 

cβ  increases from negative to positive for all examined values of 0κ , 4
0δ  and 0ν . 

Normalized tangential crack opening displacement and absolute values of 
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normalized normal crack opening displacement are decreasing functions of 0κ , 4
0δ  

and 0ν . 

 

4.2.3 Periodic Embedded Cracking Problem Considering Uniform Normal 

Stress on Crack Surfaces 

 

In this subsection, the problem described in Chapter 2 is investigated 

computationally considering embedded periodic cracks in the orthotropic FGM 

coating rather than the single embedded crack. The illustration of the problem is 

shown in Figure-4.2.3.1. The orthotropic FGM coating is perfectly bonded to 

homogeneous substrate through the homogeneous bond-coat. The periodic cracks 

of length c2  and spacing W  are located parallel to the boundaries along 02 =x  

line. Distance from the crack line to the upper and lower surfaces of the coating is 

1h  and 2h , respectively. Thickness of the bond-coat is 3h  and thickness of the 

substrate is 4h . Principal axes of orthotropy are along 1x - and 2x - directions in 

each medium. The material property distributions of the orthotropic FGM coating, 

homogeneous bond-coat and homogeneous substrate are as defined by Eq.(2.2.3), 

Eq.(2.2.4) and Eq.(2.2.5), respectively.  

 

 

Figure-4.2.3.1 Illustration of the periodic embedded cracking problem. 

 

x1 
x2 

E11 
E22 

h1 

h2 

-c c 

E11 
E22 

E11 
E22 

h3 

h4 

Orthotropic FGM Coating 

Homogeneous Orthotropic Bond-Coat 

Homogeneous Orthotropic Substrate 

W W 
c c 



 81 

x1 
c 

 FGM Coating 

Homogeneous Substrate 

 

x2 

W/2 

Rigid Block 

u1 of coinciding nodes are 
coupled at x1 = W/2 

Homogeneous Bond-Coat 

u1 = 0 at x1 = 0 

Assuming that ( )1xp  is the normal traction, the surfaces of all the cracks are 

subjected to the following boundary condition: 

 

( ) ( ) 01122 0, σσ −=−= xpx                                         (4.2.3.1) 

 

The finite element model of the problem is created considering a unit cell. The 

applied symmetry and periodicity conditions [126] are depicted in Figure-4.2.3.2. 

To satisfy the symmetry about 2x - axis, the horizontal displacement component 1u  

is fixed as zero at 01 =x . Since the structure is infinitely long in 1x  direction, the 

lines ( )Wnx 21 ±= , ( ),...3,2,1=n , are the symmetry lines and they should be free 

to undergo both rigid body translation and rotation [126]. Satisfaction of this 

condition is achieved by using a rigid block in contact with the unit cell at 

21 Wx =  and creating a set of coupling between the horizontal displacement 

components of the coinciding nodes of the unit cell and the rigid block [126]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-4.2.3.2 Applied symmetry and periodicity conditions on the unit cell. 
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Taking ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 230 == κκ , 

14 =κ , 24
3

4
0 == δδ , 14

4 =δ  and chhhh ==== 2222 4321 , the effects of the 

relative crack length Wc  on normalized mode I and mode II stress intensity 

factors and normalized energy release rate are shown in Figure-4.2.3.3, Figure-

4.2.3.4 and Figure-4.2.3.5, respectively, for various values of material 

nonhomogeneity constant. In these figures, examined values of Wc  change from 

0.02 to 0.45. 
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Figure-4.2.3.3 Normalized mode I stress intensity factor versus Wc  and 

nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 230 == κκ , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , chhh === 222 432 , 

( ) 01 σ=xp . 
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Figure-4.2.3.4 Normalized mode II stress intensity factor versus Wc  and 

nonhomogeneity constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 

3.04 =ν , 230 == κκ , 14 =κ , 24
3

4
0 == δδ , 14

4 =δ , chhh === 222 432 , 

( ) 01 σ=xp . 

 

c/W

0.0 0.1 0.2 0.3 0.4 0.5

G
(c

)/
( π

c
σ

02 /E
0)

4.0

5.0

6.0

7.0

8.0

9.0

10.0

βc=-2.0

βc=-1.0

βc=0

βc=1.0

βc=2.0

 

Figure-4.2.3.5 Normalized energy release rate versus Wc  and nonhomogeneity 

constant cβ , ( ) 5.1exp 4320 EEhE ==− β , 25.030 ==νν , 3.04 =ν , 230 == κκ , 

14 =κ , 24
3

4
0 == δδ , 14

4 =δ , chhh === 222 432 , ( ) 01 σ=xp . 
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It is seen that mode I and mode II stress intensity factors and energy release rate are 

almost constant for small values of Wc .  As Wc  increases further, they first 

make a minimum and then start increasing significantly. The reason of the 

reduction in mixed-mode stress intensity factors and energy release rate is the 

interaction of stress fields developing around the cracks. Similar reductions 

resulting from the same reason were observed by Cinar and Erdogan [134] for two 

collinear cracks in an orthotropic homogeneous strip and by Dag et al. [122] for 

periodic interface cracks between an orthotropic FGM coating and orthotropic 

homogeneous substrate. It is also seen that the influence of nonhomogeneity 

constant cβ  on the mode I stress intensity factor and energy release rate becomes 

less noticeable for large values of Wc . 

 

The deformed shape of the unit cell is shown in Figure-4.2.3.6 for 3.0=Wc  and 

0.1=cβ . 

 

 

Figure-4.2.3.6 Deformed shape of the unit cell for 3.0=Wc  and 0.1=cβ . 
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CHAPTER 5  

 

 

COMPUTATIONAL SOLUTION FOR THE EMBEDDED CRACK 

PROBLEMS IN AN ORTHOTROPIC FGM COATING UNDER THERMAL 

LOADING 

 

 

5.1 Description of the Problem 

 

In this chapter, fracture behavior of an orthotropic FGM coating containing a single 

embedded crack or periodic embedded cracks is analyzed computationally under 

thermal loading assuming the plane stress state. The problem is illustrated in 

Figure-5.1.1 for the case of single embedded crack and in Figure-5.1.2 for the case 

of periodic cracks. The orthotropic FGM coating is perfectly bonded to a 

homogeneous isotropic substrate through a homogeneous isotropic bond-coat.  

Principal axes of orthotropy are along 1x - and 2x - directions in the FGM coating. 

The embedded cracks of length c2  lie along 02 =x  line. Distance from the crack 

line to the upper and lower surfaces of the coating is 1h  and 2h , respectively. 

Thickness of the bond-coat is 3h  and thickness of the substrate is 4h . The structure 

is infinitely long in 1x - direction. The crack surfaces are considered to be 

completely insulated. Top and bottom surfaces of the structure are subjected to 

uniform constant temperatures 1T  and 2T , respectively. The reference temperature 

is denoted by 0T . The material properties are continuous in each medium. At the 

interface between the coating and the bond-coat, material properties are taken to be 

continuous with discontinuous derivatives. 
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Figure-5.1.1 Illustration of the problem for the single embedded crack. 

 

 

Figure-5.1.2 Illustration of the problem for the periodic embedded cracks. 

 

Material property variation in the FGM coating is in 2x - direction and defined as 

follows: 
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where E  denotes the modulus of elasticity, G  denotes the shear modulus, ν  

denotes the Poisson’s ratio, α  denotes the thermal expansion coefficient and k  

denotes the heat conductivity.  Subscripts 11 and 22 denote the directions with 

respect to 1x - 2x  coordinate system. Superscripts BC and CTS stand for bond-coat 

material and coating top surface material, respectively. The nonhomogeneity 

parameter controlling the elastic properties is denoted by p , the nonhomogeneity 

parameter controlling the thermal expansion coefficients is denoted by q  and the 

nonhomogeneity parameter controlling the heat conductivities is denoted by r . 

 

5.2 Numerical Results 

 

In this section, numerical results for the fracture parameters are presented 

considering single and periodic embedded crack problems under thermal loading. 

 

All of the results are obtained assuming that the top surface of the coating is 100% 

orthotropic alumina, the bond-coat is nickel-chromium-aluminum-zirconium and 

the substrate is nickel. The elastic properties of alumina are taken as 43.9011 =E  

GPa, 36.11622 =E  GPa, 21.3812 =G  GPa and 28.021 =ν  [126, 135]. The heat 

conductivities of alumina are taken as 25.2111 =k  W/(m°C) and 82.2922 =k  

W/(m°C) [126, 136]. The thermal expansion coefficients of alumina are assumed to 

be such that 6
11 100.8 −×=α  (°C)-1 and 6

22 105.7 −×=α  (°C)-1 [126]. The material 

properties of nickel-chromium-aluminum-zirconium are taken as 9.137=E  GPa, 
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27.0=ν , 25=k  W/(m°C), 61016.15 −×=α  (°C)-1 [137]. Finally, the material 

properties of nickel are taken as 204=E  GPa, 31.0=ν , 70=k  W/(m°C), 

6103.13 −×=α  (°C)-1 [126, 138].  

 

In all of the examined cases, the top and the bottom surfaces of the structure are 

subjected to the constant uniform temperatures such that ( ) 0111 10, TThxT ==  and 

( )( ) 024321 , TThhhxT ==++−  for ∞<1x . Geometric dimensions are taken as 

chhhh ==== 2222 4321 . 

 

The presented results consist of normalized mixed-mode stress intensity factors. 

Definitions of normalized mode I and mode II stress intensity factors are given as 

follows, respectively. 

 

( )cTE

k
k

CTSCTSn
πα 02222

1
1 =                                         (5.2.1a) 

 

( )cTE

k
k

CTSCTSn
πα 02222

2
2 =                                        (5.2.1b) 

 

5.2.1 Single Embedded Crack Problem under Thermal Loading 

 

In this subsection, the effect of material nonhomogeneity on mixed-mode stress 

intensity factors is investigated considering a single embedded crack problem under 

thermal loading. 

 

The finite element model of the problem is created using half of the structure with 

appropriate symmetry boundary conditions shown in Figure-5.2.1.1. The structure 

is taken sufficiently long to satisfy the infinite length assumption in 1x - direction.  
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Figure-5.2.1.1 Applied symmetry conditions. 

 

The insulation of the crack surfaces is imposed to the finite element model by 

fixing the heat flux as zero at the crack surfaces such that: 

 

  0  ,0  ,0 21
2

±=<<=
∂

∂
xcx

x

T
                               (5.2.1.1) 

 

The constant uniform temperatures at the top and bottom surfaces of the structure 

01 10TT =  and 02 TT = , respectively, are applied as the thermal loading. 

 

The normalized mode I and mode II stress intensity factors are plotted with respect 

to nonhomogeneity parameter p  for various values of nonhomogeneity parameter 

q  in Figure-5.2.1.2 and Figure-5.2.1.3 and for various values of nonhomogeneity 

parameter r  in Figure-5.2.1.4 and Figure-5.2.1.5, respectively.  
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Figure-5.2.1.2 Normalized mode I stress intensity factor versus nonhomogeneity 

parameters p  and q  under steady state thermal loading, 0.1=r , 

chhhh ==== 2222 4321 , 01 10TT =  and 02 TT = . 
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Figure-5.2.1.3 Normalized mode II stress intensity factor versus nonhomogeneity 

parameters p  and q  under steady state thermal loading, 0.1=r , 

chhhh ==== 2222 4321 , 01 10TT =  and 02 TT = . 

 

 

 



 91 

p

0.0 1.0 2.0 3.0 4.0 5.0
k

1n
0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34
r = 0

r = 0.5

r= 1.0r = 2.0

 

Figure-5.2.1.4 Normalized mode I stress intensity factor versus nonhomogeneity 

parameters p  and r  under steady state thermal loading, 0.1=q , 

chhhh ==== 2222 4321 , 01 10TT =  and 02 TT = . 
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Figure-5.2.1.5 Normalized mode II stress intensity factor versus nonhomogeneity 

parameters p  and r  under steady state thermal loading, 0.1=q , 

chhhh ==== 2222 4321 , 01 10TT =  and 02 TT = . 

 

Under the applied loading condition, the mode II stress intensity factor is found to 

be numerically larger than the mode I stress intensity factor. It is shown that the 
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increase in both nonhomogeneity parameters p  and q  increases the mixed-mode 

stress intensity factors. It is observed that mode I and mode II stress intensity 

factors are decreasing functions of nonhomogeneity parameter r  for all interested 

values of p . When p , q  and r  have small values, the effect of their variation on 

mixed-mode stress intensity factors is more significant. 

 

The deformed shape of the structure is shown in Figure-5.2.1.6 for 1=== rqp .0. 

 

 

Figure-5.2.1.6 Deformed shape of the structure for 1=== rqp .0. 

 

5.2.2 Periodic Embedded Cracking Problem under Thermal Loading 

 

In this subsection, fracture behavior of the orthotropic FGM coating is investigated 

considering the periodic embedded cracks of spacing W  as shown in Figure-5.1.2. 

 

The finite element model of the problem is created considering a unit cell. The 

applied symmetry and periodicity conditions [126] are depicted in Figure-5.2.2.1. 

Since the 2x - axis is the symmetry axis, the heat flux and the horizontal 

displacement component 1u  is fixed as zero at 01 =x  line. Since the structure is 
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infinitely long in 1x  direction, the lines ( )Wnx 21 ±= , ( ),...3,2,1=n , are also 

symmetry lines [126]. Therefore, the heat flux is fixed as zero at 21 Wx =  line and 

the structure is allowed to be free to undergo both rigid body translation and 

rotation at 21 Wx =  [126]. The free rigid body translation and rotation condition is 

achieved by using a rigid block in contact with the unit cell at 21 Wx =  and 

creating a set of coupling between the horizontal displacement components of the 

coinciding nodes of the unit cell and the rigid block [126].  

 

Figure-5.2.2.1 Applied symmetry and periodicity conditions on the unit cell. 

 

The insulation of the crack surfaces is imposed to the finite element model by 

fixing the heat flux as zero at the crack surfaces such that: 
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The constant uniform temperatures at the top and bottom surfaces of the structure 

01 10TT =  and 02 TT = , respectively, are applied as the thermal loading. 

 

The normalized mode I and mode II stress intensity factors are plotted with respect 

to the relative crack length Wc  for various values of nonhomogeneity parameter 

p  in Figure-5.2.2.2 and Figure-5.2.2.3, for various values of nonhomogeneity 

parameter q  in Figure-5.2.2.4 and Figure-5.2.2.5 and for various values of 

nonhomogeneity parameter r  in Figure-5.2.2.6 and Figure-5.2.2.7, respectively. In 

these figures, examined values of Wc  change from 0.02 to 0.45. 
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Figure-5.2.2.2 Normalized mode I stress intensity factor versus Wc  and the 

nonhomogeneity parameter p  under steady state thermal loading, 0.1=q , 0.1=r  

chhhh ==== 2222 4321 , 01 10TT =  and 02 TT = . 
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Figure-5.2.2.3 Normalized mode II stress intensity factor versus Wc  and the 

nonhomogeneity parameter p  under steady state thermal loading, 0.1=q , 0.1=r  

chhhh ==== 2222 4321 , 01 10TT =  and 02 TT = . 
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Figure-5.2.2.4 Normalized mode I stress intensity factor versus Wc  and the 

nonhomogeneity parameter q  under steady state thermal loading, 0.1=p , 0.1=r  

chhhh ==== 2222 4321 , 01 10TT =  and 02 TT = . 
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Figure-5.2.2.5 Normalized mode II stress intensity factor versus Wc  and the 

nonhomogeneity parameter q  under steady state thermal loading, 0.1=p , 0.1=r  

chhhh ==== 2222 4321 , 01 10TT =  and 02 TT = . 
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Figure-5.2.2.6 Normalized mode I stress intensity factor versus Wc  and the 

nonhomogeneity parameter r  under steady state thermal loading, 0.1=p , 0.1=q  

chhhh ==== 2222 4321 , 01 10TT =  and 02 TT = . 
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Figure-5.2.2.7 Normalized mode II stress intensity factor versus Wc  and the 

nonhomogeneity parameter r  under steady state thermal loading, 0.1=p , 0.1=q  

chhhh ==== 2222 4321 , 01 10TT =  and 02 TT = . 

 

It is seen that mode I and mode II stress intensity factors vary very little until 

28.0≅Wc  and then make sharp decreases with increasing Wc  for all examined 

values of nonhomogeneity parameters p , q  and r . 

 

The deformed shape of the unit cell is shown in Figure-5.2.2.8 for 3.0=Wc  and 

1=== rqp .0. 
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Figure-5.2.2.8 Deformed shape of the unit cell for 3.0=Wc  and 1=== rqp .0. 
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CHAPTER 6 

 

 

CONCLUSIONS AND FUTURE STUDIES 

 

 

6.1 Conclusions 

 

In certain applications, thermal barrier coatings designed for high temperature 

environments are bonded to the substrate through a bond-coat layer that provides 

oxidation resistance [137].  

 

In this study, it is aimed to investigate the fracture behavior of an orthotropic FGM 

coating bonded to a homogeneous substrate through a homogeneous bond-coat 

considering embedded cracking problems under crack surface tractions or steady 

state thermal loading. Both analytical and computational approaches are utilized to 

obtain the solutions.  

 

In Chapter 2, a single embedded crack in an orthotropic FGM coating bonded to a 

homogeneous orthotropic substrate through a homogeneous orthotropic bond-coat 

is investigated analytically considering the uniform normal or uniform shear 

stresses on crack surfaces. It is assumed that the length of the structure is infinite. 

For the FGM coating, the gradation in the thickness direction is represented by the 

effective stiffness term in an exponential form and effective Poisson’s ratio, 

stiffness ratio and shear parameter is kept constant. The crack lies perpendicular to 

the thickness direction and principal axes of orthotropy are considered as parallel 

and perpendicular to the crack line. Governing equations for the coating, bond-coat 

and substrate are derived using the equilibrium and the stress-displacement 

equations. Then a homogeneous ordinary differential equation system is obtained 
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for each medium applying Fourier transformations to the corresponding governing 

equations. After satisfying the continuity and boundary conditions, a couple of 

singular integral equations are derived. These singular integral equations are solved 

using an expansion-collocation technique. Then, the expressions for the mixed-

mode stress intensity factors, energy release rate and crack opening displacements 

are obtained. 

 

In this study, the adopted computational approach employs the finite element 

method in conjunction with the displacement correlation technique (DCT). In 

Chapter 3, the used computational approach is described and the displacement 

correlation technique is reviewed. Utilization of the computational approach 

provides the solutions for the analytically untractable problems without the 

restrictive assumptions.   

 

In Chapter 4, after verifying the analytical study performed in Chapter 2, some 

numerical results based on analytical and/or computational methods are given 

considering the single or periodic embedded cracking problems under crack surface 

tractions.   

 

In order to verify the derived analytical formulation, results of the present study is 

compared with the analytical results given by Cinar and Erdogan [134] for an 

embedded crack in an orthotropic homogeneous strip and it is observed that the two 

studies agree with each other quite well.  

 

Then, the numerical results for the single embedded crack problem are presented 

considering the pure uniform normal stress on crack surfaces. Both analytical and 

computational solutions are given for this problem to assess the computational 

method. These results show how the material nonhomogeneity constant of the 

coating cβ , the relative coating thickness above the crack line ch1 , the relative 

thickness of the bond-coat ch3 , shear parameter of the coating 0κ , stiffness ratio 
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of the coating 4
0δ  and effective Poisson’s ratio of the coating 0ν  affects the fracture 

related parameters. It is assumed that material properties are continuous at the 

coating and bond-coat interface with discontinuous derivatives and the 

homogeneous substrate material is isotropic. While examining the effects of ch1  

and ch3  on fracture parameters, the dimensions of the structure are taken as 

chhh === 222 432  and chhh === 205.095.0 421 , respectively. To 

investigate the effects of 0κ , 4
0δ  and 0ν  on the fracture behavior of the structure, 

the geometric dimensions are taken as chhhh ==== 2222 4321 . 

 

It is observed that mode I stress intensity factor of the single embedded crack is 

numerically larger than the mode II stress intensity factor when the crack surfaces 

are under the pure uniform normal stress. 

 

Considering the uniform normal stress on the surfaces of the single embedded 

crack, the following concluding remarks can be stated:  

 

• Mode I stress intensity factors and energy release rates are decreasing 

functions of material nonhomogeneity constant cβ  for all examined values 

of ch1 , ch3 , 0κ , 4
0δ  and 0ν . Absolute values of mode II stress intensity 

factors are also decreasing functions of material nonhomogeneity constant 

cβ  for all examined values of ch3 , 0κ , 4
0δ , 0ν  and small values of ch1 . 

For larger values of ch1 , absolute values of mode II stress intensity factors 

first decrease and then increase with increasing cβ  from 0.2−  to 0.2 . As 

the material nonhomogeneity constant cβ  decreases from 0.2  to 0.2− , the 

effect of its variation on mode I stress intensity factor and energy release 

rate becomes more significant. The influence of variation in cβ  on mode I 

stress intensity factor is more noticeable for large values of ch1  due to the 
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dependence of effective stiffness of coating on both the nonhomogeneity 

parameter and the distance from the crack line.  

  

• Mode I stress intensity factors and energy release rates first decrease and 

then become almost constant with increasing ch1  for all considered values 

of cβ . Absolute values of mode II stress intensity factors also show an 

almost constant behavior for large values of ch1 .   

 

• Mode I stress intensity factors show first a decreasing and then an 

increasing trend with increasing 0κ  for the examined small values of cβ . 

Mode II stress intensity factors decrease in absolute values with increasing 

0κ  for the negative large values of cβ  and become almost insensitive to the 

variation in 0κ  for positive large values of cβ . The energy release rates are 

increasing functions of 0κ  for all considered values of cβ . 

 

• Mode I stress intensity factors and absolute values of mode II stress 

intensity factors are decreasing functions of 4
0δ  for all considered values of 

cβ . As 4
0δ  becomes smaller, the effect of its variation on mode I stress 

intensity factor seems to be more significant. The energy release rate first 

decreases and then becomes almost constant with increasing 4
0δ  for all 

examined values of cβ . 

 

• The effect of variation in 0ν  on mode I and mode II stress intensity factors 

depends on the degree of material nonhomogeneity. Mode I stress intensity 

factor decreases and absolute value of mode II stress intensity factor 

increases with increasing 0ν  for the examined positive values of cβ . On 

the other hand, mode I stress intensity factor increases and absolute value of 
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mode II stress intensity factor decreases with increasing 0ν  for the 

considered negative values of cβ . It is observed that the influence of the 

variation in 0ν  on the energy release rate is relatively small for all 

examined values of cβ . 

 

• Mode I stress intensity factor and energy release rate increase and the 

absolute value of the mode II stress intensity factor decreases slightly with 

increasing relative bond-coat thickness ch3  for all considered values of 

cβ . 

 

• The normalized normal crack opening displacement and absolute value of 

the normalized tangential crack opening displacement decrease with 

increasing examined values of cβ , 0κ , 4
0δ  and 0ν . The normal crack 

opening displacement is symmetric and tangential crack opening 

displacement is anti-symmetric with respect to the center line of the 

structure at mid-length. 

 

When the presented results of analytical and computational solutions are compared 

with each other, a good agreement is observed. 

 

Then, the numerical results for the single embedded crack problem are presented 

based on the analytical method considering the pure uniform shear stress on crack 

surfaces. These results show the effects of the material nonhomogeneity constant of 

the coating cβ , shear parameter of the coating 0κ , stiffness ratio of the coating 4
0δ  

and effective Poisson’s ratio of the coating 0ν  on the fracture parameters. It is 

assumed that material properties are continuous at the coating and bond-coat 

interface with discontinuous derivatives and the homogeneous substrate material is 



 104 

isotropic. For all of the examined cases, geometric dimensions of the structure are 

taken as chhhh ==== 2222 4321 . 

 

When the crack surfaces are under the uniform shear traction, it is observed that the 

crack is always closed at either of its tips which requires the reformulation of the 

problem by taking into account the crack closure condition. For this reason, results 

for the mixed-mode stress intensity factors based on present study considering the 

uniform shear traction on crack surfaces are only applicable in superposition 

applications if the resultant mode I stress intensity factor is positive at both of the 

crack tips.   

 

It is also observed that mode II stress intensity factor of the single embedded crack 

is the numerically larger stress intensity factor when crack surfaces are under the 

uniform shear stress. 

 

Considering the uniform shear stress on the surfaces of the single embedded crack, 

the following concluding remarks can be stated: 

 

• Mode I stress intensity factor at the open tip of the crack is decreasing 

function of cβ  and mode II stress intensity factor is increasing function of 

cβ  for all examined values of 0κ , 4
0δ  and 0ν . 

 

• Mode I stress intensity factor at the open tip of the crack decreases 

considerably with increasing 0κ  for small values of cβ  and becomes 

almost independent of 0κ  for large values of cβ . Mode II stress intensity 

factor decreases with increasing 0κ  for all examined values of cβ . When 

0κ  has small values, the effect of its variation on mode II stress intensity 

factor is more significant.  
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• Mode I stress intensity factor obtained at the open tip of the crack and mode 

II stress intensity factor are decreasing functions of 4
0δ  for all considered 

values of cβ . The effect of variation in 4
0δ  on mode I and mode II stress 

intensity factors is less significant when 4
0δ  has large values. 

 

• Mode I stress intensity factor obtained at the open tip of the crack behaves 

as a decreasing function of 0ν  for the considered negative values of cβ  and 

an increasing function of 0ν  for the considered positive values of cβ . 

Mode II stress intensity factor shows the opposite trend. 

 

• Normalized normal crack opening displacement is anti-symmetric and 

normalized tangential crack opening displacement is symmetric with 

respect to the center line at the mid-length of the structure. The anti-

symmetry in normalized normal crack opening displacement means that a 

crack closure condition is experienced by the structure. 

 

Then, using the computational approach, embedded periodic cracking problem is 

investigated in the orthotropic FGM coating bonded to a homogeneous isotropic 

substrate through a homogeneous bond-coat considering uniform normal stress on 

the crack surfaces. It is assumed that the cracks of length c2  are located parallel to 

the boundaries with spacing W  in the structure of infinite length. The directions for 

the principal axes of orthotropy and material property distribution in each layer are 

taken the same as the ones for previously investigated single embedded crack 

problem. The presented numerical results show the effects of crack periodicity and 

material nonhomogeneity on the fracture parameters. The geometric dimensions of 

the structure are taken as chhhh ==== 2222 4321 .  

 

It is observed that mode I and mode II stress intensity factors and energy release 

rate of the periodic cracks under the uniform normal stress are almost constant if 
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W  is relatively large with respect to c . As W  decreases relative to c , mixed-mode 

stress intensity factors and energy release rate first make a minimum and then start 

increasing significantly. The reduction in these fracture parameters results from the 

interaction of stress fields developing around the cracks. Similar behavior due to 

the same reason was observed also by Cinar and Erdogan [134] for two collinear 

cracks in an orthotropic homogeneous strip and by Dag et al. [122] for periodic 

interface cracks between an orthotropic FGM coating and orthotropic 

homogeneous substrate. In the examined periodic cracking cases, the influence of 

nonhomogeneity constant cβ  on the mode I stress intensity factor and energy 

release rate is insignificant for relatively small values of W  with respect to c .    

 

In Chapter 5, single and periodic embedded cracking problems in an orthotropic 

FGM coating are investigated computationally under steady state thermal loading 

assuming the plane stress state. The orthotropic FGM coating is bonded to a 

homogeneous isotropic substrate through a homogeneous isotropic bond-coat 

considering an infinite length. The embedded cracks of length c2  are located 

parallel to the boundaries in both of the single and periodic cracking problems. In 

periodic cracking case, the spacing between the cracks is equal to W . The top and 

the bottom surfaces of the structure are subjected to uniform constant temperatures 

and crack surfaces are insulated. The material property gradation in the FGM 

coating is represented in a power function form with separate nonhomogeneity 

parameters p , q  and r  for elastic properties, thermal expansion coefficients and 

heat conductivities, respectively. For the numerical results, the top surface of the 

coating is taken as 100% orthotropic alumina, the bond-coat is taken as nickel-

chromium-aluminum-zirconium and the substrate is taken as nickel. It is assumed 

that the material properties at the coating and bond-coat interface are continuous 

with discontinuous derivatives. The geometric dimensions of the structure are taken 

as chhhh ==== 2222 4321 . 
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According to the presented numerical results for the single embedded crack 

problem under thermal loading, the mode II stress intensity factor is numerically 

larger than the mode I stress intensity factor. The mixed-mode stress intensity 

factors are increasing functions of nonhomogeneity parameters p  and q  and 

decreasing functions of nonhomogeneity parameter r . When p , q  and r  have 

small values, the effects of their variation on mixed-mode stress intensity factors 

are found to be more significant. 

 

According to the presented numerical results for the periodic embedded cracking 

problem under thermal loading, the mixed-mode stress intensity factors are almost 

constant if W  is relatively large with respect to c  and then make sharp decreases 

with decreasing W  relative to c  for all examined values of nonhomogeneity 

parameters p , q  and r .  

 

Using the analytical method developed in this study to examine the fracture 

behavior of the orthotropic FGM coating bonded to a homogeneous substrate 

through a homogeneous bond-coat, design optimization of the structure can be 

made efficiently by applying tractions to the crack surfaces and employing the 

superposition technique. The adopted computational method is found to agree very 

well with the analytical method. Using the computational method it is possible to 

deal with more complex problems related with the orthotropic FGM coatings 

without restrictive assumptions about the form of gradation profiles and loading 

condition.     

   

6.2 Future Studies 

 

In this study, the examined embedded cracks in the orthotropic FGM coating are 

parallel to the boundaries. As a future study, inclined embedded cracks in the 

orthotropic FGM coating can be investigated.   
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In this study, the investigated cracks are embedded in the orthotropic FGM coating. 

The surface cracks in the structure can be considered in the future.   

 

In the future studies, crack propagation analysis of the structure can be performed 

considering both embedded and surface cracks in the structure. 

 

 In this study, the crack closure condition is not taken into account. This condition 

can be dealt with in the future studies. 

 

The thermal loading condition considered in this study is assumed to be steady 

state. Transient thermal loading conditions can be studied in the future works using 

temperature dependent material properties. 
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APPENDIX A 

 

 

DETERMINATION OF UNKNOWN FUNCTIONS 

 

 

The functions ( )ωjY , ( )ωjZ , ( )ωjV , ( )ωjW , ( )ωjX , ( )ωjL , ( )ωjP  and ( )ωjQ , 

( )4 ,3 ,2 ,1=j , are found from the following equations. 
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where 

 

( ) ( ) ( )4 ,3 ,2 ,1   ,0,1 =+= jisNm jjj ωνωω                                                            (A.2) 

 

( ) ( )( ) ( )8 ,7 ,6 ,5   ,0,1 =+−= jisNm jjj ωνωω                                                       (A.3) 

 

( )61 , ... ,01 ,9   ,0,1 == jm j                                                                                   (A.4) 

 

( ) ( ) ( )4 ,3 ,2 ,1   ,,2 =+= jiNsm jjj ωωω                                                               (A.5) 

 

( ) ( )( ) ( )8 ,7 ,6 ,5   ,,2 =+−= jiNsm jjj ωωω                                                          (A.6) 

 

( )61 , ... ,01 ,9   ,0,2 == jm j                                                                                  (A.7) 
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( ) ( )4 ,3 ,2 ,1   ,,3 == jNim jj ωω                                                                            (A.8) 

 

( ) ( )8 ,7 ,6 ,5    ,,3 =−= jNim jj ωω                                                                        (A.9) 

 

( )61 , ... ,01 ,9   ,0,3 == jm j                                                                                (A.10) 

 

( )4 ,3 ,2 ,1   ,,4 == jim j ω                                                                                   (A.11) 

 

( )8 ,7 ,6 ,5    ,,4 =−= jim j ω                                                                                (A.12) 

 

( )61 , ... ,01 ,9   ,0,4 == jm j                                                                                (A.13) 

 

( ) ( )( ) ( )( ) ( )4 ,3 ,2 ,1   ,exp 010,5 =+= jhsisNm jjjj δωωνωω                            (A.14) 

 

( )61 , ... ,6 ,5   ,0,5 == jm j                                                                                  (A.15) 

 

( ) ( )( ) ( )( ) ( )4 ,3 ,2 ,1  ,exp 01,6 =+= jhsiNsm jjjj δωωωω                                (A.16) 

 

( )61 , ... ,6 ,5   ,0,6 == jm j                                                                                  (A.17) 

 

( )4 ,3 ,2 ,1  ,0,7 == jm j                                                                                      (A.18) 
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( )16 ,15 ,14 ,13  ,0,7 == jm j                                                                               (A.21) 

 

( )4 ,3 ,2 ,1  ,0,8 == jm j                                                                                       (A.22) 
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( )16 ,15 ,14 ,13  ,0,8 == jm j                                                                                (A.25) 

 

( )4 ,3 ,2 ,1  ,0,9 == jm j                                                                                       (A.26) 

 

( )( ) ( )8 ,7 ,6 ,5   ,exp 02,9 =−= jhsm jj δω                                                         (A.27) 

 

( )( ) ( )21 ,11 ,01 ,9  ,exp 02,9 =−−= jhrm jj δω                                                   (A.28) 

 

( )16 ,15 ,14 ,13  ,0,9 == jm j                                                                               (A.29) 

 

( )4 ,3 ,2 ,1  ,0,10 == jm j                                                                                      (A.30) 
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( ) ( )( ) ( )8 ,7 ,6 ,5   ,exp 02,10 =−= jhsNm jjj δωω                                             (A.31) 

 

( ) ( )( ) ( )21 ,11 ,01 ,9  ,exp 02,10 =−−= jhrBm jjj δωω                                        (A.32) 

 

( )16 ,15 ,14 ,13  ,0,10 == jm j                                                                              (A.33) 

 

( )8 , ... ,2 ,1  ,0,11 == jm j                                                                                    (A.34) 
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( )8 , ... ,2 ,1  ,0,13 == jm j                                                                                    (A.40) 
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( )( )( ) ( )21 ,11 ,01 ,9  ,exp 023,13 =+−= jhhrm jj δω                                           (A.41) 

 

( )( )( ) ( )16 ,15 ,14 ,13  ,exp 023,13 =+−−= jhhnm jj δω                                     (A.42) 
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(A.49) 
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APPENDIX B 

 

 

ASYMPTOTIC BEHAVIORS OF THE INTEGRANDS 

 

 

To determine the asymptotic behaviors of the integrands ( )0,11 ωF , ( )0,11 ω−F , 

( )0,12 ωF , ( )0,12 ω−F , ( )0,11 ωD , ( )0,11 ω−D , ( )0,12 ωD  and ( )0,12 ω−D   as ω  

approaches infinity, two orthotropic FGM half planes are considered instead of the 

orthotropic FGM coating of finite thickness as shown in Figure-B.1.  

 

 
Figure-B.1 Illustration of the two orthotropic FGM half planes. 

 

In a similar way described in Section 2.2, governing equations for the orthotropic 

FGM half planes can be obtained as [115]:  
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where the superscript ( )i  is ( )1  for the orthotropic FGM half plane #1 where 0>y  

and ( )2  for the orthotropic FGM half plane #2 where 0<y . 1β  and 2β  are given 

in Eq.(2.2.17). 

 

In a similar way described in Section 2.2, the displacement and stress components 

for the orthotropic FGM half plane #1 can be obtained as given in Eq.(B.2) and 

Eq.(B.3), respectively.  
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where ( )ωjM̂ , ( )2 ,1=j , are unknown functions of ω . ( )ωjs  and ( )ωjN , 

( )2 ,1=j , are given in Eq.(2.2.25) and Eq.(2.2.26), respectively.  

 

In a similar way described in Section 2.2, the displacement and stress components 

for the orthotropic FGM half plane #2 can be obtained as given in Eq.(B.4) and 

Eq.(B.5), respectively. 
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where ( )ωjM̂ , ( )4 ,3=j , are unknown functions of ω . ( )ωjs  and ( )ωjN , 

( )4 ,3=j , are given in Eq.(2.2.25) and Eq.(2.2.26), respectively. 

 

In order to determine the unknown functions ( )ωjM̂ , ( )4 ,3 ,2 ,1=j , the following 

boundary and continuity conditions have to be satisfied. 
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where ( )11̂ xf  and ( )12
ˆ xf  are the primary unknown functions of the problem. 

Expressing Eq.(B.6) in the transformed coordinate system and applying Fourier 

transformations to them, the following system of equations is obtained: 
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where ( ) ( )tft 011
ˆˆ δφ =  and ( ) ( )tft 0202

ˆˆ δδφ = . From Eq.(B.7), the unknown 

functions ( )ωjM̂ , ( )4 ,3 ,2 ,1=j , can be determined in the following form.  
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Assuming that ( )1xp  is the normal traction and ( )1xq  is the shear traction at the 

crack surfaces, the problem is reduced to two singular integral equations using the 

following boundary conditions. 
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( ) ( ) cxxqx <−= 11112   ,0,σ                                          (B.9b) 

 

In a similar way described in Section 2.2, the singular integral equations are 

obtained as follows. 
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where 0δcx <  and, 
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Asymptotic expansions of the integrands ( )yF ,1̂1 ω , ( )yF ,1̂1 ω− , ( )yF ,1̂2 ω , 

( )yF ,1̂2 ω− , ( )yD ,ˆ
11 ω , ( )yD ,ˆ

11 ω− , ( )yD ,ˆ
12 ω  and ( )yD ,ˆ

12 ω−  are expressed in the 

following form as ω  approaches infinity. 
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where 0a , 2a , 0b , 2b , 0c , 2c , 0d , 2d , 0e , 1e , 2e , 0f , 1f , 2f , 0g , 1g , 2g , 0h , 1h , 

2h , 10a , 11a , 12a , 13a , 10b , 11b , 12b , 13b , 10c , 11c , 12c , 13c , 10d , 11d , 12d , 13d , 10e , 

12e ,  10f , 12f , 10g , 12g , 10h , 12h  are determined using symbolic manipulator 

MAPLE as follows: 
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Then, the asymptotic expansions of the integrands ( )yF ,11 ω , ( )yF ,11 ω− , 

( )yF ,12 ω , ( )yF ,12 ω− , ( )yD ,11 ω , ( )yD ,11 ω− , ( )yD ,12 ω  and ( )yD ,12 ω−  are taken 

as equal to the asymptotic expansions of the integrands ( )yF ,1̂1 ω , ( )yF ,1̂1 ω− , 

( )yF ,1̂2 ω , ( )yF ,1̂2 ω− , ( )yD ,ˆ
11 ω , ( )yD ,ˆ

11 ω− , ( )yD ,ˆ
12 ω  and ( )yD ,ˆ

12 ω− , 

respectively, as ω  approaches infinity. Expressions for ( )0,11 ω
∞

F , ( )0,11 ω−
∞

F , 

( )0,12 ω
∞

F , ( )0,12 ω−
∞

F , ( )0,11 ω
∞

D , ( )0,11 ω−
∞

D , ( )0,12 ω
∞

D  and ( )0,12 ω−
∞

D  are 

given in Eq.(2.2.56). 
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APPENDIX C 

 

 

DEFINITIONS OF FUNCTIONS APPEARING IN THE INTEGRAL 

EQUATIONS 

 

 

Definitions of ( )txH ij , , ( )8 , ... ,2 ,1  and  2 ,1 == ji , are given as follows: 
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where ijA , ( )8 , ... ,2 ,1  and  2 ,1 == ji , integration cut-off points and 0γ  is the 

Euler’s constant. 
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APPENDIX D 

 

 

CHEBYSHEV POLYNOMIALS 

 

 

Chebyshev polynomials of the first kind is defined as follows [139]: 

 

( ) ( )( )xnxTn arccoscos=                                        (D.1) 

 

Roots of ( )xTn  are given as follows [139]: 
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Orthogonality condition of the Chebyshev polynomials is given as follows [139]: 
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APPENDIX E 

 

 

INTEGRALS EVALUATED IN CLOSED FORM 

 

 

The integrals evaluated in closed form to obtain Eq.(2.2.66) are given as follows: 
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