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ABSTRACT

MIXED-MODE FRACTURE ANALYSIS OF ORTHOTROPIC FGM
COATINGS UNDER MECHANICAL AND THERMAL LOADS

ILHAN, Kiiciik Ayse
Ph.D., Department of Mechanical Engineering
Supervisor: Asst. Prof. Dr. Serkan DAG

September 2007, 164 pages

In this study, it is aimed to investigate the mixed-mode fracture behavior of
orthotropic functionally graded material (FGM) coatings bonded to a homogeneous
substrate through a homogeneous bond-coat. Analytical and computational
methods are used to solve the embedded cracking problems under mechanical or
thermal loading conditions. It is assumed that the material property gradation of the
FGM coating is in the thickness direction and cracks are parallel to the boundaries.
The principal axes of orthotropy are parallel and perpendicular to the boundaries. A
single embedded crack in the orthotropic FGM coating is investigated analytically
assuming that crack surfaces are subjected to either uniform normal or uniform
shear stresses. Using Fourier transformations, the problem is reduced to a couple of
singular integral equations that are solved numerically to obtain the mixed-mode
stress intensity factors, energy release rate and crack opening displacements. To
investigate the analytically untractable problems without restrictive assumptions, a
computational approach is employed. The adopted computational approach is based
on finite element method and displacement correlation technique. Using the

computational approach, fracture parameters are obtained considering single and

v



periodic embedded cracking conditions in the orthotropic FGM coatings under
mechanical or thermal loads. The results obtained in this study show the effects of
material nonhomogeneity, material orthotropy and geometric variables on the

fracture behavior of the structure.

Keywords: Orthotropic functionally graded coating, embedded crack, periodic

cracks, singular integral equations, displacement correlation technique.
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ORTOTROP FDM KAPLAMALARIN MEKANIK VE ISIL YUKLER
ALTINDA KARISIK MOD KIRILMA ANALIZi

ILHAN, Kiiciik Ayse
Doktora, Makine Miihendisligi Boliimii
Tez Yoneticisi: Yrd. Dog. Dr. Serkan DAG

Eyliil 2007, 164 sayfa

Bu calismada, homojen bir birlesme tabakasi ile homojen bir taban tabakaya
baglanmis ortotrop fonksiyonel derecelendirilmis malzeme (FDM) kaplamalarin
karistk mod kirilma davranigsinin arastirilmasi amaclanmistir. Gomiili catlak
problemlerini mekanik veya 1s1l yiikleme kosullar1 altinda ¢6zmek i¢in analitik ve
hesaplamal1 yontemler kullanmilmistir. FDM kaplama malzeme 6zellik degisiminin
kalinlik yoniinde ve catlaklarin sinirlara paralel oldugu varsayilmistir. Ortotropi ana
eksenleri sinirlara paralel ve diktir. Ortotrop FDM kaplama icindeki tek gomiilii
catlak, catlak yiizeylerinin ya diizgiin yayili normal veya diizgiin yayili kayma
gerilmelerine ugratildigi varsayilarak analitik olarak incelenmistir. Problem,
Fourier doniisiimleri kullanilarak karisik mod gerilme siddeti faktorleri, enerji
birakma oran1 ve catlak agilma yer degistirmelerini elde etmek i¢in sayisal olarak
coziilen bir c¢ift tekil integral denklemine indirgenmistir. Analitik olarak kontrol
edilemeyen sinirlayici varsayimlar igermeyen problemleri incelemek igin bir
hesaplamali yaklasim kullamilmistir. Benimsenen hesaplamali yaklasim sonlu
elemanlar yontemine ve yer degistirme korelasyon teknigine dayanir. Mekanik

veya 1s1l yiikler altindaki ortotrop FDM kaplamalarda tek ve periyodik gomiilii
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catlak durumlar1 gbz Oniine alinarak kirilma parametreleri hesaplamali yaklasim
kullanilarak elde edilmistir. Bu calismada elde edilen sonuglar malzeme
homojenliginin olmamasinin, malzeme ortotropisinin ve geometrik degiskenlerin

yapinin kirilma davranisi iizerindeki etkilerini gostermektedir.

Anabhtar kelimeler: Ortotrop fonksiyonel derecelendirilmis kaplama, gomiilii catlak,

periyodik catlaklar, tekil integral denklemleri, yer degistirme korelasyon teknigi.

vii



To My Family

viii



ACKNOWLEDGMENTS

I would like to thank to my supervisor Asst. Prof. Dr. Serkan DAG for his help and

guidance during this study.

I would like to thank to Prof. Dr. Rusen GECTT, Prof. Dr. Suat KADIOGLU and
Prof. Dr. Miifit GULGEC for their valuable suggestions and comments during this
study.

I express my appreciation to my parents who supported and encouraged me during

this study.

1X



TABLE OF CONTENTS

ABSTRACT ..t iv

O o, vi

DEDICATION ...t e e viii

ACKNOWLEDGMENTS ... e ix

TABLE OF CONTENTS ... e X

LISTOF TABLES ... xiii

LIST OF FIGURES ... e Xiv
CHAPTER

1. INTRODUCTION ...ttt 1

1.1 Functionally Graded Materials ..............cooiiiiiiiiiiiiiiiiiiieienn, 1

1.2 LAterature SUIVEY ... ....eeuuitene ettt 2

1.3 Objective of the Study.........ccooiiiiii e 8

2. ANALYTICAL SOLUTION FOR THE SINGLE EMBEDDED CRACK
PROBLEM IN AN ORTHOTROPIC FGM COATING UNDER CRACK

SURFACE TRACTIONS ..., 10
2.1 Description of the Problem ..................oooi 10
2.2 Formulation of the Problem ... 11



3.2 Review of Displacement Correlation Technique ......................... 44
4. NUMERICAL RESULTS ..ot 50
4.1 Verification of the Analytical Study ...............ccooiiiiiiiiii... 50

4.2 Numerical Results Based on Analytical and Computational Approaches
........................................................................................ 52

4.2.1 Single Embedded Crack Problem Considering Uniform Normal
Stress on Crack Surfaces ... 55

4.2.2 Single Embedded Crack Problem Considering Uniform Shear
Stress on Crack SUIfaces .......cooeeveerieinieeieenienieee e, 71

4.2.3 Periodic Embedded Cracking Problem Considering Uniform
Normal Stress on Crack Surfaces ..........c..cooeviiiiiiiiiiii. 80

5. COMPUTATIONAL SOLUTION FOR THE EMBEDDED CRACK
PROBLEMS IN AN ORTHOTROPIC FGM COATING UNDER THERMAL

LOADING ...ttt 85
5.1 Description of the Problem ... 85
5.2 Numerical Results ..........oooiiiiiiii e 87

5.2.1 Single Embedded Crack Problem under Thermal Loading ....... 88

5.2.2 Periodic Embedded Cracking Problem under Thermal Loading

.................................................................................... 92

6. CONCLUSIONS AND FUTURE STUDIES .........cccoiiiiiiiiiiiiin, 99

6.1 CONCIUSIONS ....eneiti it 99

6.2 Future Studies .........oouoiniiiiii e 107

REFERENCES ... o 109
APPENDICES

A. DETERMINATION OF UNKNOWN FUNCTIONS ......ccccoeiiniiinine 134

B. ASYMPTOTIC BEHAVIORS OF THE INTEGRANDS ........cccccvnenene. 140

X1



C. DEFINITIONS OF FUNCTIONS APPEARING IN THE INTEGRAL

EQUATIONS ..ottt ettt ettt s e 156
D. CHEBYSHEYV POLYNOMIALS ......coooiiiiieienenie et 161
E. INTEGRALS EVALUATED IN CLOSED FORM ......ccccccoevivneinuerncnne. 162
CURRICULUM VITAE ... 163

xii



LIST OF TABLES

TABLES

4.1.1  Comparison of the stress intensity factors, 2h, /(h, +h,)=1.0,
S(hy +1,)/(2¢)=0.35, 0,,(x,,0)=-0, for |x|<c ..ccceviiinniinn.

4.1.2  Comparison of the stress intensity factors, 2h, /(h, +h, )= 0.4,
8(h, +h,)/(2c)=035, 0,,(x,,0)=-0, for |x,|<c ..ccceeiiiiiiiiiins

4.1.3  Comparison of the stress intensity factors, 24, /(h, +h,)=1.0,
S(h, +h,)/(2c)=035, 0,(x,.0)=-7, for|x,|<c .coovrriiiriiinnnn,

4.14  Comparison of the stress intensity factors, 2h, /(h, +h,)= 0.4,
8(hy +1,)/(2¢)=0.35, 0,,(x,,0)=-7, for |x,|<c .ccorirrrriinnis,

Xiii



LIST OF FIGURES

FIGURES

2.1.1 [lustration of the problem ..o, 10
3.2.1 Quarter-point singular elements located at the crack tip ................... 45
4.1.1 lustration of the crack problem solved by Cinar and Erdogan [134]

4.2.1.1

4.2.1.2

42123

4.2.14

4.2.1.5

...................................................................................... 50
Finite element model of the single embedded crack problem under
uniform normal crack surface tractions ...................coc 56
Normalized mode 1 stress intensity factor versus /4, /¢ and
nonhomogeneity constant fc, E, exp(— bh, )= E,=E,/15,
v,=Vv,=025,v,=03, kx,=k,=2, kK, =1, 8, =58 =2, 8, =1,
2h,=2h,=h,/2=c, p(x,)=0,, q(x,)=0 oo 58
Normalized mode II stress intensity factor versus A, /c and
nonhomogeneity constant fc, E, exp(— bh, )= E,=E,/15,
v,=v,=025,v,=03, kx,=k,=2, k,=1, 6] =6, =2, 8, =1,

2h, =2h,=h,[2=c, p(x,)=0,, q(x,)=0 ccccvviiiiiiiiiiiiii, 58
Normalized energy release rate versus /, /¢ and nonhomogeneity
constant fBc, E,exp(-fh,)=E,=E, /1.5, v, =v, =025, v, =0.3,
K,=k,=2,k,=1,6,=6=2,08=1,2h,=2h,=h,[2=c,
p(xl)zo'o, q(xl):O ........................................................... 59

Normalized mode I stress intensity factor versus shear parameter x, and
nonhomogeneity constant fc, E, exp(- Sh,)=E, = E, /1.5,
v,=v,=025,v,=03, k,=k,, kK, =1, 8} =68} =2, &, =1,

2h =2h, =2h, =h,/2=c, p(x,)=0,, q(x,)=0 ........oeiiiin.. 59

X1V



4.2.1.6

4.2.1.7

4.2.1.8

4.2.1.9

4.2.1.10

4.2.1.11

4.2.1.12

Normalized mode II stress intensity factor versus shear parameter x, and
nonhomogeneity constant fc, E, exp(— Bh,)=E, = E, /1.5,

v, =Vv,=025,v,=03, k,=k,, kK, =1, 8 =6, =2, &, =1,

2h =2h, =2h, =h,[2=c, p(x,)=0,, ¢(x,)=0 cccooooriiiin 60

Normalized energy release rate versus shear parameter x,, and
nonhomogeneity constant fSc, E, exp(— Bh,)=E, = E, /1.5,
v,=Vv,=025,v,=03, k,=k,, k, =1, 8] =6, =2, &, =1,

2h =2h, =2h, =h,[2=c, p(x,)=0,, q(x,)=0 ccc0ovriiiinn 60

Normalized mode 1 stress intensity factor versus stiffness ratio &, and
nonhomogeneity constant fc, E, exp(— Bh,)=E, = E, /1.5,
v,=Vv,=025,v,=03, x,=k,=2, k, =1, 8, =6;, 8, =1,

2h =2h, =2h, =h,/2=c, p(x,)=0,, q(x,)=0 cccoooooriiiiii.. 61

Normalized mode II stress intensity factor versus stiffness ratio &, and
nonhomogeneity constant fc, E, exp(— bh, )= E,=E,/15,
v,=Vv,=025,v,=03, k,=k,=2, k, =1, 8, =57, §, =1,

2h =2h, =2h, =h,/2=c, p(x,)=0,, ¢(x,)=0 ccccvvvriiiiii 61

Normalized energy release rate versus stiffness ratio 53 and
nonhomogeneity constant fc, E, exp(— bh, )= E,=E,/15,
v,=Vv,=025,v,=03, k,=k,=2, k, =1, 8, =57, 5§, =1,

2h =2h, =2h, =h,[2=c, plx,)=0,, q(x,)=0 ...............oc.. 62

Normalized mode I stress intensity factor versus effective Poisson’s ratio
v, and nonhomogeneity constant fc, E,exp(- Bh,)=E, = E, /1.5,

v, =V,,V,=03, kx,=k,=2, k,=1, 68, =6, =2, 8, =1,
2h =2h, =2h, =h,/2=c, p(x,)=0,, q(x,)=0 cccoooooriiiiii. 62

Normalized mode II stress intensity factor versus effective Poisson’s ratio
v, and nonhomogeneity constant fc, E, exp(— bh, )= E,=E,/15,

v,=V,,v,=03, k,=k,=2, k,=1,68, =6, =2, 8, =1,
2h =2h, =2h, =h,[2=c, plx,)=0,, qx,)=0 ...............oc.. 63

XV



4.2.1.13

4.2.1.14

4.2.1.15

4.2.1.16

4.2.1.17

4.2.1.18

4.2.1.19

Normalized energy release rate versus effective Poisson’s ratio v, and
nonhomogeneity constant fc, E,exp(— ph,)=E, = E,/1.5, v, =V,,
v,=03, kx,=x,=2,k,=1,68, =6, =2, 8, =1,

2h =2h, =2h, =h,/2=c, p(x,)=0,, ¢(x,)=0 cccvvrrivren 63

Normalized normal crack opening displacement for various values of
shear parameter &, and nonhomogeneity constant fc,

E,exp(-ph,)=E,=E,/15,v,=v,=025,v,=03, k, = k,, k, =1,
0t =6=2,08/=1,2h =2h,=2h,=h,/2=c, px,)=0,. q(x,)=0

Normalized tangential crack opening displacement for various values of
shear parameter &, and nonhomogeneity constant fc,

E,exp(-ph,)=E,=E,/15,v,=v,=025,v,=03, k, = k,, k, =1,
0} =084=2,68=1,2h =2h,=2h, =h,/2=c, plx,)=0,, q(x,)=0

...................................................................................... 64
Normalized normal crack opening displacement for various values of
stiffness ratio 5: and nonhomogeneity constant fc,
E,exp(-ph,)=E,=E,/15,v,=v,=025,v,=03, k, =k, =2,
k,=1,8) =6, 8} =1,2h =2h,=2h,=h,[2=c, plx,)=0,,

G ) =0 L 65

Normalized tangential crack opening displacement for various values of
stiffness ratio §; and nonhomogeneity constant fc,

E,exp(-ph,)=E,=E,/15,v,=v,=025,v,=03, k, =k, =2,
k,=1,8) =6/, 8} =1,2h =2h,=2h,=h,[2=c, plx,)=0,,
G ) =0 L 65

Normalized normal crack opening displacement for various values of
effective Poisson’s ratio v, and nonhomogeneity constant fc,

E,exp(-ph,)=E,=E,/15,v,=v,,v,=03, k, =k, =2, k, =1,
0} =081=2,8=1,2h =2h,=2h, =h,/2=c, plx,)=0,, q(x,)=0

Normalized tangential crack opening displacement for various values of
effective Poisson’s ratio v, and nonhomogeneity constant fc,

XVi



4.2.1.20

4.2.1.21

4.2.1.22

4221

4222

4223

E,exp(-ph,)=E,=E,/15,v,=v,,v,=03, k, =k, =2, k, =1,
0} =04=2,8=1,2h =2h,=2h, =h,/2=c, plx,)=0,, q(x,)=0

Normalized mode I stress intensity factor versus &, /c and
nonhomogeneity constant Sc, E,exp(— fh,)=E, =E, /3.0,
V,=Vv,=025,v,=03, k,=k,=2, kK, =1, 6, =6, =2, 8, =1,

h, =0.95¢c, h, =0.05c, h, =2¢, p(x,)=0,, q(x,)=0 ................ 67

Normalized mode I stress intensity factor versus £, /c and
nonhomogeneity constant fc, E,exp(—fh,)=E, =E, /3.0,
v,=v,=025,v,=03, kx,=k,=2, kK, =1, 6, =58 =2, 8, =1,

h =0.95c, h, =0.05¢, h, =2c, p(x,)=0,, qx,)=0 .....ccoeee... 67

Normalized energy release rate versus 4, /¢ and nonhomogeneity
constant fc, E, exp(~ Bh,)=E,=E,/3.0,v,=v,=0.25,v,=03,
Ky=k,=2,k,=1,6, =6, =2,8, =1, h =095c, h, =0.05c,
h4:2c,p(x1)=0'0,q(xl)=0 ............................................... 68

Normalized mode I stress intensity factor versus shear parameter x, and
nonhomogeneity constant Sc, E,exp(— ph,)=E, = E, /1.5,
v,=v,=025,v,=03, k,=k,, k, =1, 8} =6, =2, 5, =1,

2h =2h, =2h, =h,[2=c, p(x,)=0, qlx,)=7y .coevvrii 72

Normalized mode II stress intensity factor versus shear parameter x, and
nonhomogeneity constant fc, E,exp(- Sh,)=E, = E, /1.5,
v,=Vv,=025,v,=03, k,=k,, kK, =1, 8] =68, =2, &, =1,

2h =2h, =2h, =h,/2=c, p(x,)=0, qlx,)=7y .ccevvriii 73

Normalized mode I stress intensity factor versus stiffness ratio &, and
nonhomogeneity constant fc, E, exp(— bh, )= E,=E,/15,
v,=Vv,=025,v,=03, k,=k,=2, k, =1, 8, =5, 5§, =1,

2hy =2h, =2h, =h,/2=c, p(x,)=0, q(x,) =7y ceoeeriiirrririrnn. 73

Xvii



4224

4225

4226

4227

4228

4229

4.2.2.10

Normalized mode II stress intensity factor versus stiffness ratio &, and
nonhomogeneity constant fc, E,exp(— fh,)=E, = E, /1.5,
v,=Vv,=025,v,=03, x,=k,=2, k, =1, 8, =6;, 8, =1,

2h =2h, =2h, =h,/2=c, p(x,)=0, qlx,)=7y .ceeverii 74

Normalized mode I stress intensity factor versus effective Poisson’s ratio
v, and nonhomogeneity constant fc, E,exp(- fh,)=E, =E, /1.5,

Vo=V, V, =03, kK, =K,=2, k, =1, 5: 2534 =2, 5: =1,
2h =2h, =2h, =h,[2=c, p(x,)=0, qlx,)=7, ccooeeeerrrrrrrrnn. 74

Normalized mode II stress intensity factor versus effective Poisson’s ratio
v, and nonhomogeneity constant fc, E, exp(- Sh,)=E, = E, /1.5,

V,=V,,V,=03, k,=k,=2, k,=1,6, =6} =2, 8, =1,
2h =2h, =2h, =h,/2=c, p(x,)=0, qlx,)=7y .ccevvriii 75

Normalized normal crack opening displacement for various values of
shear parameter k, and nonhomogeneity constant fc,

E,exp(-ph,)=E,=E,/15,v,=v,=025,v,=03, k, = k,, k, =1,
0} =6=2,8!=1,2h =2h,=2h,=h,/2=c, p(x,)=0, qlx,)=1,

Normalized tangential crack opening displacement for various values of
shear parameter k, and nonhomogeneity constant fc,

E,exp(- Bh,)=E,=E, /1.5, v,=v,=025,v,=03, x, =k,, k, =1,
8t =684=2,8=1,2h =2h,=2h,=h,/2=c, px,)=0, q(x,)=7,

...................................................................................... 76
Normalized normal crack opening displacement for various values of
stiffness ratio §; and nonhomogeneity constant fc,
E,exp(-ph,)=E,=E,/15,v,=v,=025,v,=03, k, =k, =2,
k,=1,68 =6, 8/ =1, 2h, =2h, =2h, =h,[2=c, p(x,)=0,

q(x1 )= {7 PP P PP URPP 76

Normalized tangential crack opening displacement for various values of
stiffness ratio 5: and nonhomogeneity constant fc,

E,exp(- Bh,)=E,=E,/1.5,v,=v,=025,v,=03, k, =k, =2,

XViil



42211

42212

4.23.1

4232

4233

4234

4.2.3.5

42.3.6

k,=1,08 =6, 08! =1,2h =2h,=2h,=h,/2=c, p(x,)=0,

Normalized normal crack opening displacement for various values of
effective Poisson’s ratio v, and nonhomogeneity constant fc,

E,exp(- Bh,)=E,=E, /1.5, v,=v,,v,=03, k, =k, =2, k, =1,
0} =6=2,8!=1,2hn =2h,=2h,=h,/2=c, p(x,)=0, qlx,)=1,

Normalized tangential crack opening displacement for various values of
effective Poisson’s ratio v, and nonhomogeneity constant fc,

E,exp(-fh,)=E,=E,/1.5,v,=v,, v, =03, k, =k, =2, k, =1,
Sl =6=2,08!=1,2h =2h,=2h,=h,/2=c, p(x,)=0, q(x,)=1,

...................................................................................... 78
INlustration of the periodic embedded cracking problem .................. 80
Applied symmetry and periodicity conditions on the unitcell ............ 81
Normalized mode I stress intensity factor versus ¢/W and
nonhomogeneity constant fc, E,exp(— fh,)=E, = E, /1.5,
v,=v,=025,v,=03,kx,=k,=2, k, =1, 6] =6, =2, 8, =1,

2hy =2hy=h,[2=c, p(x,)=0y «ceooviiiiiiiii 82
Normalized mode II stress intensity factor versus ¢/W and
nonhomogeneity constant fc, E,exp(— fh,)=E, = E, /1.5,
V,=Vv,=025,v,=03, k,=x,=2, kK, =1, 8, =5, =2, 8, =1,

2h, =2hy = h, /2 =c, P(X,)Z Oy e 83

Normalized energy release rate versus ¢/W and nonhomogeneity constant
Bc, Eyexp(-ph,)=E, =E,/15,v,=v,=025,v,=03,
K,=k,=2,k,=1,6)=6=2,08=1,2h,=2h,=h,[2=c,

L E T o &3
Deformed shape of the unit cell for ¢/W =0.3 and fc=1.0 ............ 84
[lustration of the problem for the single embedded crack ................ 86

X1X



5.2.1.1

52.1.2

52.1.3

5214

5.2.15

5.2.1.6

5221

5222

5223

5224

5.2.2.5

[lustration of the problem for the periodic embedded cracks ............
Applied symmetry conditions ..............cevveviiiiiiiiiiiiiiiieaene.

Normalized mode I stress intensity factor versus nonhomogeneity
parameters p and ¢ under steady state thermal loading, r =1.0,

2h =2h, =2h,=h,/2=c, T, =10T, and T, =T woovvvvvvrrrrrrrrrerrerr...

Normalized mode II stress intensity factor versus nonhomogeneity
parameters p and ¢ under steady state thermal loading, r =1.0,

2h =2h, =2h,=h,/2=c, T, =10T, and T, =T, .......c0ecverrer....

Normalized mode I stress intensity factor versus nonhomogeneity
parameters p and r under steady state thermal loading, ¢ =1.0,

2h =2h, =2h,=h,/2=c, T, =10T, and T, =T, .......cecvorver....

Normalized mode II stress intensity factor versus nonhomogeneity
parameters p and r under steady state thermal loading, ¢ =1.0,

2h, =2h, =2h, =h,/2=c,T,=10Ty and T, =T} .....cevvvveenninnnnn.
Deformed shape of the structure for p=g=r=1.0.......................

Applied symmetry and periodicity conditions on the unit cell ............

Normalized mode I stress intensity factor versus ¢/W and the
nonhomogeneity parameter p under steady state thermal loading,
g=10, r=1.0 2h =2h, =2h,=h,/2=c, T,=10T, and T, =T, ...

Normalized mode II stress intensity factor versus ¢/W and the
nonhomogeneity parameter p under steady state thermal loading,
g=10, r=1.0 2h =2h, =2h, =h,/2=c, T,=10T, and T, =T, ...

Normalized mode I stress intensity factor versus ¢/W and the
nonhomogeneity parameter ¢ under steady state thermal loading,
p=10, r=1.0 2h =2h, =2h, =h,/2=c, T,=10T, and T, =T, ...

Normalized mode IT stress intensity factor versus ¢/W and the

nonhomogeneity parameter ¢ under steady state thermal loading,
p=10, r=1.0 2h =2h,=2h, =h,/2=c, T, =10T, and T, =T, ...

XX

94

95

95

96



5.2.2.6

5.2.2.7

5.2.2.8

B.1

Normalized mode I stress intensity factor versus ¢/W and the
nonhomogeneity parameter r under steady state thermal loading,

p=10, ¢=1.0 2h =2h, =2h, =h,/2=c, T, =10T, and T, =T, ... 96
Normalized mode II stress intensity factor versus ¢/W and the
nonhomogeneity parameter » under steady state thermal loading,

p=10, ¢g=1.0 2h =2h, =2h, =h,/2=c, T,=10T, and T, =T, ... 97
Deformed shape of the unit cell for ¢/W =0.3 and p=g=r=1.0.....98

[lustration of the two orthotropic FGM half planes ..........c.cccccueeneen.e. 140

XX1



CHAPTER 1

INTRODUCTION

1.1 Functionally Graded Materials

Functionally graded materials (FGMs) are nonhomogeneous material systems with
two constituents. Compositions of the constituent materials change gradually with
position to satisfy the desired properties. They were originally developed for high
thermal gradient applications in Japan [1] and their constituent materials are
generally ceramics and metal alloys. In the coating applications, the gradual change
in material properties makes the FGMs superior to ceramics by increasing adhesion
and decreasing thermal stresses resulting from mismatch of thermal expansion

coefficients.

Today, they are used mainly in the thermal coating applications for high
performance engines [2], gas turbines, space shuttles [3] and fusion reactors [4],
interfacial zone applications for increasing the bonding strength and reducing the
residual stresses [5], wear and corrosion barrier applications [6], contact damage
resistant material applications [7-8], sensor and energy applications [9], biomedical

applications [10].

The FGM manufacturing techniques usually include gradation and consolidation
steps [11]. Gradation can be prepared via constitutive, homogenizing and
segregating processes [11]. In constitutive process, graded structure is built up step
by step from precursor materials or powders [11]. Homogenizing process converts

a sharp interface between two materials into a gradient by material transport [11].



In segregating process, a macroscopically homogeneous material is graded by
material transport due to an external field such as a gravitational or an electric field
[11]. Plasma spraying [12-14], chemical vapor deposition [15], powder metallurgy
[16-17], centrifugal casting [18], three dimensional printing [19] can be given as

the examples of FGM processing techniques.

1.2 Literature Survey

In recent years, many researchers studied on the investigation of fracture behavior
of FGMs under thermal and/or mechanical loading using theoretical or

experimental approaches.

Delale and Erdogan [20] showed that the stresses around the crack tips in an elastic
isotropic exponentially graded medium have the square-root singularity. Then,
Konda and Erdogan [21] investigated the effects of the material nonhomogeneity
constant, the crack orientation, the loading conditions and the Poisson’s ratio on the
stress intensity factors of a crack in an elastic exponentially graded medium.
Erdogan [22] showed that the square-root singularity of the crack-tip stress field is
unaffected by the discontinuity in the derivative of the shear modulus of a
nonhomogeneous medium. Erdogan and Wu [23] considered the plane elasticity
problem for a bounded nonhomogeneous layer containing an internal or an edge
crack perpendicular to the boundaries. Ozturk and Erdogan [24] investigated an
axisymmetric crack problem in a nonhomogeneous medium. Marur and Tippur
[25] analyzed the nature of the singular field around the crack in FGM using finite
element method by assuming linear variation of material property. Choi [26]
analyzed the periodic array of parallel cracks in a functionally graded medium.
Ergiiven and Gross [27] considered a penny shaped crack in an infinite
nonhomogeneous elastic medium. Gu, Dao and Asaro [28] proposed a finite
element based method for obtaining stress intensity factors in FGMs in which the

energy release rate is calculated through an area integral. Dag and Erdogan [29]



solved the problem of a surface crack in a semi-infinite elastic graded medium
under general loading conditions. Wang, Mai and Sun [30] investigated the stress
intensity factors for a FGM layer under anti-plane deformation. A number of
authors concentrated on circumferential cracks in FGM cylinders [31-34]. Choi
[35] analyzed the effects of graded layering on the tip behavior of a vertical crack
in a substrate under frictional Hertzian contact. Dag and Erdogan [36] considered a
coupled problem of crack contact mechanics in a semi-infinite nonhomogeneous
medium to determine contact stresses and stress intensity factors. Several
theoretical and experimental studies considered the crack growth behavior [37-46]
and fracture toughness [47-49] of FGMs. Gu and Asaro [50], Ueda and Shindo [51]
dealt with crack kinking in FGMs. T-stress effect was also incorporated into
formulations to predict the crack initiation angle in FGMs [52]. Afsar and Sekine
[53-54] studied on inverse problem of calculating material distribution intending to
realize prescribed apparent fracture toughness in FGM circular pipes and in FGM
coatings around a circular hole. Chen, Wu and Du [55] defined a modified J-

integral that is path independent even in FGMs.

Delale and Erdogan [56] obtained a solution for an interface crack between bonded
homogeneous and nonhomogeneous half planes and found that the singular
behavior of stresses in the nonhomogeneous medium is identical to that in a
homogeneous medium if the spatial distribution of material properties is
continuous near and at the crack tip. They also investigated the case of two
homogeneous elastic half planes bonded through a nonhomogeneous layer with
collinear cracks [57]. Erdogan and Ozturk [58] considered a mixed boundary value
problem for a nonhomogeneous medium bonded to a rigid half space having a
crack along the interface under antiplane shear loading. They also investigated the
interface crack problem for two elastic half spaces bonded through a
nonhomogeneous interfacial zone under antiplane shear loading [59]. Erdogan and
Oztiirk [60] also studied the antiplane elasticity problem for a functionally graded

coating bonded to a homogeneous half space and containing periodic cracks



perpendicular to the surface. In another study [61], the same authors investigated
the axisymmetric problem of a penny-shaped interface crack in homogeneous
dissimilar materials bonded through a functionally graded interfacial region. Chen
and Erdogan [62] studied the mixed-mode interface cracking in a homogeneous
substrate and nonhomogeneous coating system considering continuous material
properties with discontinuous derivatives at the interface and arbitrary crack
surface tractions. In another paper, an interface crack between FGM coating and
finite thickness homogeneous substrate was analyzed under a concentrated load
[63]. Jin and Batra [64] investigated the interface cracking between ceramic and/or
FGM coatings and a substrate under antiplane shear. Choi, Lee and Jin [65]
analyzed a medium consisting of a surface layer and a semi-infinite substrate
bonded through an interfacial zone with graded properties under the existence of
three collinear cracks that are perpendicular to the interfaces and located in each
one of the constituent materials. Shbeeb and Binienda [66] calculated the mixed-
mode stress intensity factors and strain energy release rates of an interface crack for
a FGM strip sandwiched between two homogeneous layers of finite thickness.
Huang, Wang and their co-workers [67-69] modeled FGMs as a multilayered
medium with the shear modulus varying linearly in each sub-layer and continuous
at the sub-interfaces to investigate the crack problems. In another study, crack
problems in a FGM whose upper and bottom surfaces are bonded with dissimilar
homogeneous materials were analyzed using boundary element method [70]. Choi
[71] provided an elasticity solution for an inclined crack in bonded media with a
graded nonhomogeneous interlayer. Chi and Chung [72] dealt with the cracking in
coating-substrate systems with multilayered and FGM coatings using finite element
method. Chiu and Erdogan [73] formulated a plane strain interface crack problem
for a graded coating bonded to homogeneous substrate by using a kinematically

nonlinear continuum theory considering both instability and post-buckling.

FGM coatings and interfacial zones seem to be quite effective in reducing residual

stresses and this subject was examined in many studies [74-80]. Noda and Jin [81]



analyzed a completely insulated crack in a strip of FGM with prescribed surface
temperature by reducing the thermal and mechanical problems to two systems of
singular integral equations employing the Fourier transform technique. They also
solved a crack problem for a semi-infinite nonhomogeneous thermoelastic solid
subjected to steady heat flux over the boundary using the same method [82]. In
another paper [83], they analyzed the effect of nonhomogeneity on stress intensity
factors considering the crack problem for an infinite nonhomogeneous elastic solid
subjected to steady heat flux over the crack surfaces. Bao and Wang [84] made
finite element calculations for the energy release rate of the cracks in FGM coating
bonded to metal substrate considering both mechanical and thermal loads. In their
study it was found that the effect of different gradations on the crack driving force
is relatively small under mechanical loading but can be significant under thermal
loading. Nemat-Alla and Noda [85] investigated an edge crack problem in a semi-
infinite FGM plate with a bi-directional coefficient of thermal expansion under
two-dimensional thermal loading. Bao and Cai [86] studied a delamination crack
problem for FGM coating-metal substrate systems performing a steady state heat
transfer analysis. Lee and Erdogan [87] analyzed partially insulated and
symmetrically located edge cracks along the interface between homogeneous
substrate and graded coating under the steady state heat conduction with convective
boundary conditions. Yang [88] made a stress analysis in a joint with a functionally
graded material under thermal loading. Noda [89] dealt with optimal composition
profile problems of FGMs to decrease the thermal stress intensity factors. Wang
and Noda [90] examined the fracture behavior of a cracked smart FGM actuator on
a substrate under thermal load by using integral transform method and solving
singular integral equations numerically. They also investigated thermally loaded
functionally graded materials containing penny shaped cracks by modeling the
FGM with a large number of layers having different material properties [91]. El-
Borgi, Erdogan and Hidri [92] examined an infinite functionally graded medium
with a partially insulated crack subjected to a steady state heat flux away from the

crack region as well as mechanical crack surface stresses by converting heat



conduction and elasticity equations into singular integral equations. El-Borgi,
Erdogan and Hatira [93] investigated the problem of a FGM coating bonded to an
infinite homogeneous substrate with a partially insulated interface crack under
thermal and mechanical loading by using analytical method and finite element
method. Itou [94] determined the thermal stresses around a crack in a
nonhomogeneous interfacial layer between two dissimilar elastic half planes under
uniform heat flow by using insulated crack surface assumption. Yildirim and
Erdogan [95] investigated an axisymmetric crack problem for FGM thermal barrier
coatings under a uniform temperature change. Dag [96] investigated the mixed-
mode fracture in FGMs under thermal stresses via a new approach using Jk-
integral. Besides the aforementioned studies, there are also a large number of
investigations considering transient thermal loading or thermal cycling in FGMs

[97-114].

Manufacturing techniques of FGMs generally do not lead to the material isotropy
[115]. In the literature, there are a number of studies about the fracture analysis of
orthotropic FGMs. Gu and Asaro [116] analyzed a semi-infinite crack in a strip of
an isotropic functionally graded material under edge loading and inplane
deformation conditions. Then, the solution was extended to the case of an
orthotropic FGM strip. Ozturk and Erdogan [115, 117] investigated mixed-mode
and mode I crack problems in an orthotropic graded medium using integral
equations. Kim and Paulino presented isoparametric graded finite elements for
nonhomogeneous isotropic and orthotropic materials [118] and mixed-mode J-
integral formulation and implementation using graded elements for fracture
analysis of nonhomogeneous orthotropic materials [119]. They evaluated stress
intensity factors for two dimensional crack problems in orthotropic FGMs by using
the displacement correlation technique, modified crack closure method [120] and
the interaction integral [121]. Dag et al. [122] analyzed the problem of an interface
crack between a graded orthotropic coating and a homogeneous orthotropic

substrate using analytical and computational approaches. Yildirim and his



coworkers [123] analyzed the steady state heat conduction in orthotropic FGMs
containing cracks using analytical and computational techniques. Chen [124]
studied on the determination of thermal stress intensity factors for an interface
crack in an orthotropic graded coating-substrate structure. Dag [125] performed a
thermal fracture analysis of orthotropic functionally graded materials using an
equivalent domain integral approach. Dag et al. [126] analyzed the mixed-mode
fracture behavior of an orthotropic FGM layer considering embedded cracking for

various boundary conditions.

In computational studies, one of the methods used in determining stress intensity
factors is the displacement correlation technique (DCT). In this technique, finite
element model of the problem is created using singular elements around the crack
tip. Then, displacements at specific nodal locations of the singular elements are
correlated with the known analytical solutions to extract the stress intensity factors.
Barsoum [127] stated that quadratic isoparametric elements satisfy the square root
singularity by placing the mid-side node on any side at the quarter point. The
method for extracting the stress intensity factors from nodal displacements of these
elements was given for two-dimensional isotropic problems by Shih et al. [128].
Ingraffea and Manu [129] employed the DCT for three-dimensional isotropic
problems. Saouma and Sikiotis [130] used this method for three-dimensional
anisotropic problems. Boone et al. [131] showed that isoparametric quarter-point
elements could be used to obtain accurate stress intensity factors for the fracture
propagation analysis in the two dimensional orthotropic materials. As mentioned
previously, Kim and Paulino [120] used the DCT to evaluate the mixed-mode
stress intensity factors for two dimensional crack problems in the orthotropic

FGMs.



1.3 Objective of the Study

The objective of this study is to investigate the mixed-mode fracture behavior of an
orthotropic FGM coating bonded to a homogeneous substrate through a
homogeneous bond-coat layer under thermal or mechanical loading conditions.
Both analytical and computational methods are used to show the effects of material
nonhomogeneity, material orthotropy and geometric variables on the fracture

related parameters.

In Chapter 2, analytical mixed-mode fracture analysis of the structure is performed.
The orthotropic FGM coating is assumed to contain a single embedded crack that is
subjected to either uniform normal or uniform shear surface tractions. The material
property gradation in the FGM coating is represented in moduli of elasticity and
shear modulus along the thickness direction in an exponential form and the crack
lies parallel to the boundaries. Principal directions of orthotropy are parallel and
perpendicular to the crack line. Averaged constants of plane orthotropic elasticity
[132] are employed to express the constitutive relations. Using Fourier
transformations, the problem is reduced to a couple of singular integral equations
that are solved by means of an expansion-collocation technique. Then, the
expressions for the mixed-mode stress intensity factors, energy release rate and

crack opening displacements are obtained.

In Chapter 3, details of the computational approach used to perform the mixed-
mode fracture analysis of the structure are presented. The adopted computational
approach employs the finite element method in conjunction with the displacement
correlation technique (DCT). The reason of investigating the problem using the
computational approach is to examine the analytically untractable conditions

without the restrictive assumptions.



In Chapter 4, some numerical results obtained by analytical and/or computational
approaches are presented for mechanical loading conditions. First, validation of the
analytical study presented in Chaper 2 is performed referring to the literature. Then,
some numerical results showing the effects of material orthotropy, material
nonhomogeneity and geometric parameters on the fracture behavior of the
orthotropic FGM coating are given considering the pure uniform normal stress on
crack surfaces for the single embedded crack problem. Both analytical and
computational results are given for this problem to assess the computational
approach. Later, some numerical results based on analytical method are presented
for the single embedded crack problem to show the effects of material orthotropy
and material nonhomogeneity on fracture parameters when crack surfaces are
subjected to a pure uniform shear stress. Finally, the periodic embedded cracking in
the orthotropic FGM coating is investigated computationally and numerical results
showing the effects of crack periodicity and material nonhomogeneity on the
fracture parameters are given considering the pure uniform normal stress on the

crack surfaces.

In Chapter 5, single and periodic embedded cracking problems are examined
computationally under steady state thermal loading assuming plane stress state. It is
assumed that upper and lower boundaries of the structure are subjected to uniform
constant temperatures. The material property gradation of the FGM coating is
represented by elastic properties, heat conductivities and thermal expansion
coefficients along the thickness direction in the power function form. The obtained
results show the effects of material nonhomogeneity parameters and crack

periodicity on the fracture behavior of the orthotropic FGM coating.

Both of the developed analytical method and the computational method can be used
to provide the useful information for the design optimization of the structure
consisting of an orthotropic FGM coating, a homogeneous bond-coat and a

homogeneous substrate.



CHAPTER 2

ANALYTICAL SOLUTION FOR THE SINGLE EMBEDDED CRACK
PROBLEM IN AN ORTHOTROPIC FGM COATING UNDER CRACK
SURFACE TRACTIONS

2.1 Description of the Problem

Fracture behavior of an orthotropic FGM coating is examined by considering an
embedded crack. The coating is perfectly bonded to a homogeneous orthotropic
substrate through a layer of homogeneous orthotropic bond-coat. Illustration of the

problem is shown in Figure-2.1.1. Principal axes of orthotropy are along x,- and
X, - directions in each medium. Material property gradation of the coating is in x, -
direction. The crack of length 2¢ lies along x, =0 line. Distance from the crack
line to the upper and lower surfaces of the coating is h, and h,, respectively.
Thickness of the bond-coat is &, and thickness of the substrate is 4, . The length of

the structure in x, - direction is infinitely long.

A X2
hi i
E> — —C o Yo
E :
HHE Orthotropic FGM Coating h>
Ey )
@ Ei Homogeneous Orthotropic Bond-Coat hs
Ex
En

Homogeneous Orthotropic Substrate hy

Figure-2.1.1 [llustration of the problem.
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Material properties are taken to be continuous in each medium but can be
discontinuous at the interfaces. The problem is formulated by applying either

uniform normal or uniform shear stresses to the crack surfaces.

2.2 Formulation of the Problem

Using the principal axes of the material, Hooke’s law for plane orthotropic

elasticity can be written in the following form [132]:

£, 67 -v 0 [o,

1
En |= 2|7V 5’ 0 |oy, (2.2.1)
£, 0 0 (x+v)|o,

where €, &,,, &, are the strain components and o,,, 0,,, 0,, are the stress
components with respect to the principal axes of the material. E is the effective

stiffness, v is the effective Poisson’s ratio, 8* is the stiffness ratio and x is the

shear parameter. Definitions of these material parameters are such that [132]:

vJE E,,, generalized plane stress

E= " (2.2.2a)
\/ 117722 , plane strain
(1 —VisVs )(1 —VaVs )

\Vi,V, > generalized plane stress

V= \/(Vlz Vi35 )(V21 +‘/23‘/31)
(1_V13V31 )(1 _V23V32)

(2.2.2b)

, planestrain
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t

1% .
1L =12 generalized plane stress

4 E22 21
ot = (2.2.2¢)
Eny L-vaVyy , plane strain
E,, 1- Vi3V
K= "G —v, for generalized plane stress and plane strain (2.2.2d)

12

where E,, and E,, are the moduli of elasticity, G,, is the shear modulus and v,

(i, j=1,2,3), is the Poisson’s ratio with respect to the principal axes of the

material.

For the orthotropic FGM coating, it is assumed that E,, E,, and G,, varies
proportionately in x,- direction in an exponential form. v, (i, j=1,2,3), is

assumed to be constant throughout the coating. Hence, v, 0 * and x are constant
throughout the coating and the nonhomogeneity in the medium is represented by

the effective stiffness term. They are written as follows:
E, (xl »Xo )= E, exp(,sz ) K, (xl »Xo )= Ky, O, ('xl » Xy )= 0y, V, ('xl » Xy )= Vv, (2.2.3)

where subscript 1 refers to the coating, f is the material nonhomogeneity

parameter and E|, is the effective stiffness at the crack line.

For the homogeneous orthotropic bond-coat, the material parameters are defined by

the following expressions where subscript 3 refers to the bond-coat.

E\(x,.x,)=E,, k,(x,,x,)=xk,, 8,(x,,x,)=6,, vi(x,,x,) =V, (2.2.4)

12



For the homogeneous orthotropic substrate, the material parameters are defined by

the following expressions where subscript 4 refers to the substrate.

E,(x.x,)=E,, x,(x.,x,)=x,, 6,(x.,x,)=0,, v,(x,.x,)=V, (2.2.5)

Then, suitable transformations are introduced for the coordinates, displacements

and stresses as follows [132]:

xzi, y zxz\/é'_o (2.2.6a)

75

w(x, y)=u, (6, 6, , v(x,y)= 40,%,) (2.2.6b)

Js,

O-ll(xl’xz)

S5 » Oy (x.y)= Oy (xl » X )50 » Oy (x,y)= Oy, (xl » X ) (2.2.6¢)
0

o,.(xy)=

where x and y are the transformed coordinates. u and v are the displacement
components along x- and y- directions, respectively. u, and u, are the

displacement components along x,- and x, - directions, respectively. o, , o and

xx

o, are the stress components in the transformed coordinates.

Strain-displacement equations in x,- and x, - coordinates are given as follows:

g s J(%ﬁﬁj 2.27)

ox, 7 ox, 27y ox, 0x,
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Using Eq.(2.2.6a), Eq.(2.2.6b) and Eq.(2.2.7), strain components in the transformed

coordinates £ _, £, and £, can be found as follows [132]:

=& (2.2.8)

Using Eq.(2.2.1), Eq.(2.2.6c) and Eq.(2.2.8), stress-strain relations in the

transformed coordinates become:

e (5*/ é‘0 )_2 _V* 0 (o
NE LI v (57/s,) 0 |o, (2.2.9)
£, 0 0 (K‘ +v ) o,

where  E'(x,y)=E(x,x,), v'(xny)=vix.x,), & (x,y)=6(,x,) and

K (x.y) =l x,).

Strain-displacement equations in the transformed coordinates are expressed as:

g 20 g O 1o v (2.2.10)
ox 7 9y ¥ 2ldy ox
Then, stress components o _, o, and o, can be obtained as follows:
E (6w .o
o= (—J My (2.2.11a)
1- (V ‘ ) 6, ) ox dy
% 2
o ——E _ V*a_“{@;j Ll (2.2.11b)
> 1_(V*) ox 0 ) oy
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o

: du ov
= —t— 2.2.11
T 2o +v° 5[8y " axj ( 2

Using Eq.(2.2.6a), the material parameters of the orthotropic FGM coating take the

following form in the transformed coordinates:
E: ()C, y) = E() CXP(W), KI*(X’ y) = KO’ 51*()(, y) = 50’ Vl* ()C, y) = VO (2212)

where y= [ / (50 )0‘5 is the material nonhomogeneity parameter in the transformed

coordinates.

For the homogeneous orthotropic bond-coat, the material parameters in the

transformed coordinates are written as:

Ey(x.y)=E,, &5(x.y)=k,, 6 (x.y)=6,, vi(x.y)=v, (2.2.13)

For the homogeneous orthotropic substrate, the material parameters in the

transformed coordinates are written as:

*

E, (x’y) =E,, K':(x’y) =Ky, 5:(x’y): 54’ V:(x’y): Vy (2.2.14)
Governing equations for each medium are derived using the equilibrium and stress-
displacement equations. Equilibrium equations in the transformed coordinates

considering no body force components are expressed as follows:

c,.=0,( j=xv) (2.2.15)

ij,i
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Substituting the stress expressions given by Eq.(2.2.11) in the equilibrium
equations given above and using the material parameters given by Eq.(2.2.12),

governing equations for the orthotropic FGM coating are obtained as [115]:

2 (i) 2 (i) 2. (i) (i) (&)
0 u2 B 0 u2 + B, o°v N ou N v _0 (2.2.16a)
dy ox 0xdy dy  oOx
92y 920 o2y R ou
+ + + —+v,— [=0 2.2.16b
P 131 y2 132 Axdy 131 Jy " o ( )

where the superscript (i) is (1) for the region of the orthotropic FGM coating

above the crack line where 5, \/5_0 >y >0 and (2) for the region of the orthotropic

FGM coating below the crack line where —h, \/5_0 <y<0. B, and S, are defined

as:

20k, +v,)
B :%, By =1+v,5, (2.2.17)
0

For the homogeneous orthotropic bond-coat where — (i, + A, )\/5_0 <y< —hz\/é'_0 ,

governing equations are obtained using Eq.(2.2.11), Eq.(2.2.15) and Eq.(2.2.13) as

follows:

2 (3) 242 (3) 2..(3)
aazz +ﬁ3(%j o u + 5, o =0 (2.2.18a)
0

2. (3) 242 (3) 2..(3)
—88:2 +ﬁ3(%j I +ﬁ4a ©_ =0 (2.2.18b)
3
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where the superscript (3)denotes the bond-coat and p, and f, are defined as:

20k, +V
B, =%, B, =1+v,p, (2.2.19)
3

Governing equations for the homogeneous orthotropic substrate where
—(h, +hy, +h, )\/5_0 <y<—(h+h, )\/5_0 are obtained wusing Eq.(2.2.11),
Eq.(2.2.15) and Eq.(2.2.14) as follows:

azu(4) S 2 82u(4) 82v(4)
ay—z‘l‘ﬁs 5—4 ax2 +ﬁ6 axay =0 (22203.)
0
2 (4) 252 (4) 2, (4)
Ay ¥ 2 Ty S A (2.2.20b)
ox o,) dy 0xdy

where the superscript (4) denotes the substrate and B and S, are defined as:

:35 :M’ :36 :1+V4:35 (2.2.21)

1-v;

Displacement components for the region of the orthotropic FGM coating above the
crack line where 4,4/, >y >0 can be written in the following form using Fourier
transform integrals:

oo

u(l)(x, y)= %j U, (@, y)expliax)dw (2.2.22a)
V4

—oo
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vO(x, y)= i [ vi(@ y)expliax)dw (2.2.22b)

where U, (@, y) and V, (@, y) are Fourier transforms of u"(x, y) and v"(x, y) in x,

respectively.

Using Eq.(2.2.22), governing equations given by Eq.(2.2.16) become:

2
4V, - Bo’U, +la)ﬁ2d—v+ U, i 1}20 (2.2.23a)
dy’ dy dy
2V
-V, +,B1 +i a)ﬂ2 y{ +V, lej 0 (2.2.23b)

Solving the above system of ordinary differential equations, U 1(w, y) and V, (@,y)

can be written in the following form:

(@, y)= ]Z::M (@)expls, (@)y), (j=1,2,3,4) (2.2.24a)
ilM (@)expls, (@)y), (j=1,2,3,4) (2.2.24b)

where
s, (w)=—(y12)- \/(7/ 2) + o'k, + a)\/a)zkj -’ -y, (2.2.252)
s,(w)=—(y/12)- \/(7/ 2) + WK, - K} — 0 — PV, (2.2.25b)
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sy(@)=—(y/2)+ \/(7/ 2) + WK, + OO K — 0 — PV, (2.2.25¢)

s,(@)=—(y/2)+ \/(7/ 2) + WK, - DK} — 0 — PV, (2.2.254d)

M (a)), (j =1,2,3, 4), are unknown functions of @ and N, (a)), (j =1,2,3, 4),

J

are found by using Eq.(2.2.23a) and Eq.(2.2.24) as follows:

( () 1X )+ za) (K() +V() ))

M@= 1+v0+zv0x0>+y<1 =)

,(j=1,2,3,4) (2.2.26)

Substituting Eq.(2.2.24) into Eq.(2.2.22), displacement components can be

obtained as:

u(l)(x, y)= ZL TiMj (a))exp(sj (w)y + iwx)da) (2.2.27a)
b/ 2
v(l)(x, y)= % TiMj (a))Nj (a))exp(sj (w)y + ia)x)da) (2.2.27b)

Lo j=l

Then, stress components o, and o, can be found using Eq.(2.2.11b),

Eq.(2.2.11c¢), Eq.(2.2.12) and Eq.(2.2.27) as follows:

1- V() —o0 j=1

O'SV)(X,y) EoCXP { IZM vla)+N( ) ( ))exp(sj(a))y+ia2x)da)}

(2.2.282)
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o(xy)= ;IE((”:X—E(VW; {ﬁ TiM ; (w)N (w)io+s, (@))expls (@)y+i cax)da)}

(2.2.28b)

Displacement components for the region of the orthotropic FGM coating below the
crack line where —h,,/d, <y<0 can be written in the following form using

Fourier transform integrals:

u(z)(x, y)= %r U, (@, y)explicex)dw (2.2.29a)
.

vO(x,y)= % r; V, (@, y)expliax)dw (2.2.29b)

where U 2((u,y) and V, (@, y) are Fourier transforms of u(Z)(x, y) and v? (x,y) in

X, respectively.

Using Eq.(2.2.29), governing equations given by Eq.(2.2.16) take the following

form:

2
ddyUf - po’U, +iap, dd—‘;z+ ;{dgz +ia)V2J =0 (2.2.30a)
a’v
-V, + B, Fj +iapB, dgz +,Bly[dd—‘;2 +v0ia)U2J =0 (2.2.30b)

Solving Eq.(2.2.30), Uz(w, y) and V, (w, y) are found as:
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(0.7)=36,(0) (@)expls; (@)y), (j=1,2,3,4) (2.2.31a)

(. y) =Z4:GJ (@)expls, (@)y), (j=1,2,3,4) (2.2.31b)

where G, (@), (j=1,2,3,4), are unknown functions of @ .

Substituting Eq.(2.2.31) into Eq.(2.2.29), displacement components can be

obtained as:

u(z)(x, y) = i TiGj (w)exp(sj (a))y + ia)x)da) (2.2.32a)
v (x, y) = i Tic (N (@)expls, (@)y +iax)do (2.2.32b)

L j=1

Then, stress components ¢, and o, are found using Eq.(2.2.11b), Eq.(2.2.11c¢),

Yy

Eq.(2.2.12) and Eq.(2.2.32) as follows:

aﬁ?(x,y):%{ [36,@lvio+ N, (@), (@ ))exp<s,(w>y+m»c)dw}

1-v A
(2.2.33a)
2 E, .
O'iy)(x,y):z(’:%{ J;,,Z;G w)iw+s (o ))exp(sj(a))y+la1x)dw}
(2.2.33b)
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Displacement components for the homogeneous orthotropic bond-coat where
—(hy +h, )\/5_0 <y <—h,/0, can be written in the following form using Fourier

transform integrals:

u(x,y)= ifx U,(w, y)explieox)dw (2.2.34a)
s (x,y)= éfw v, (@, y)explicx)dw (2.2.34b)

where U, (w,y) and V,(w, y) are Fourier transforms of " (x,y) and v*¥(x, y) in

X, respectively.

Using Eq.(2.2.34), governing equations given by Eq.(2.2.18) can be expressed as:

U, o8 dv,
- b0 U, +iw =0 2.2.35a
dyz B, (50 3 B, dy ( )
5.\ dv. dU
—ov. 412 Y5 30 2.2.35b
3 163(51J v’ :84 dy ( )

Solving the above system of ordinary differential equations, U, (@,y) and V, (@,y)

are obtained as:

U,(@.y)= iA S(@)explr; (@)y), (j=1,2,3,4) (2.2.362)

Jj=1
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V,(@,y)= iA [(@)B,(@)explr, (@)y), (j=1,2,3,4) (2.2.36b)

j=l

where

ri(w)= le%\/ K, +4K) -1 (2.2.37a)
r,(w)= le%\/ K=Kl -1 (2.2.37b)
r,(@)= —le%\/lcg +K; —1 (2.2.37¢)

r,(w)= —le%\/lcg —Jx2-1 (2.2.37d)

A, (a)), (j =1,2,3, 4), are unknown functions of @ and B, (a)), (j =1,2,3, 4), are

found by substituting Eq.(2.2.36) into Eq.(2.2.35a) as:

_ ,-[(,»j (@) (2 -1)+20" {?jz (i, +v, )}

B, (w)= ,(j=1,2,3,4) (2.2.38)

Substituting Eq.(2.2.36) into Eq.(2.2.34), displacement components are obtained

as:

u(x, y) = [> A (@)explr; (0)y +imx)io (2.2.39)
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VO (x, y) = i Ti A, (@)B,(@)explr, (@)y +iox)da (2.2.39b)

Then, stress components o, and o, are found using Eq.(2.2.11b), Eq.(2.2.11¢),
Eq.(2.2.13) and Eq.(2.2.39) as follows:

O'Sy)(x y)= 1 v IZA ){V3ia)+(g—j r; (a))Bj (w)}exp(rj (a))y+ia1x)d(0}

(2.2.40a)

4

O'S) (x, y ) = L{i TZ iA i (a))(— r; (a))l + WB, (a)))exp(rj (a)) y+i azx)da)}

(2.2.40b)

Displacement components for the homogeneous orthotropic substrate where
—(hy +hy+h, )\/5_0 <y<—(h,+h, )\/5_0 can be written in the following form

using Fourier transform integrals:

u(4)(x, y)= %J‘W U4(a), y)expliax)dw (2.2.41a)
7 -

v(4)(x, y)= éfm% (@, y)expliax)dw (2.2.41b)

where U, (w,y) and V, (@, y) are Fourier transforms of u(4)(x, y) and v(4)(x, y) in

X, respectively.

Using Eq.(2.2.41), governing equations given by Eq.(2.2.20) can be written as:

24



dU, (8 dv.
-Bo’| 2| U, +iof, —+ =0 2.2.42a
dyz Bs (50 4 Hiadp, dy ( )
2 2
— @V, + B, (ﬁj Ve yiop, Yizo (2.2.42b)
o,) dy dy

Solving the above ordinary differential equation system, U, (w,y) and V, (w,y) are

obtained as:

U, (@.y)= 3¢, (@expln, (@)y)(j=1.2.3.4) (2.2.430)

Jj=1

V,(0,y)= ic (@)D, (@)expln, (@)y). (j=1,2,3,4) (2.2.43b)

Jj=1

where

n,(w)= |a)|%1/1c4 +yK; -1 (2.2.44a)
n,(w)= |w|%1/1c4 —Jxi-1 (2.2.44b)
n,(w)= —|w|%w/ K, +y K -1 (2.2.44¢)

n, (@)= —|a)|%w/ K, —k; —1 (2.2.44d)
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C, (a)), (j =123, 4), are unknown functions of @ and D, (a)) , (j =123, 4), are

found by substituting Eq.(2.2.43) into Eq.(2.2.42a) as:

0

_ {(n/ (@) (V2 —1)+ 20 (jﬁ‘jz (x, +v, )J

,(j=1,2,3,4) (2.2.45)

D,(w)=

on (o)1 +v2 +2v,x,)

Displacement components are obtained by substituting Eq.(2.2.43) into Eq.(2.2.41)

as follows:
u®(x,y)= ZL Ti C, (@)expln @)y + iaox)dw (2.2.462)
Y
@y e L[S ,
vW(x,y)= e JZ C, (a))Dj (a))exp(nj (w)y + zazx)da) (2.2.46b)

e =1

Then, stress components o, and o, are found using Eq.(2.2.11b), Eq.(2.2.11¢),

Eq.(2.2.14) and Eq.(2.2.46) as follows:

4

1 Ti C, (a))[v4ia)+ (%J n (@)D, (a))J exp(nj (w)y + ia)x)da)} (2.2.47a)

o¥(x,y)= __E {i Tiicj ()- n (w)i+wD, (a)))exp(nj (w)y + l(ax)da)}

(2.2.47b)
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In order to determine the unknown functions M j(a)), G, (), A i (w) and C i (w),

( j=12, 3,4), the following boundary and continuity conditions have to be

satisfied.
ol (x,,h)=0, |x,|< oo (2.2.482)
o) (x,. 1) =0, x| <o (2.2.48b)
o)(x,,0)=02)(x,,0), |x,|< o (2.2.48¢)
ol)(x,,0)= 02 (x,,0), x| < oo (2.2.48d)
o2 (x,,~h, )= o (x,,~h, ), x| < oo (2.2.48¢)
o2 (x,,~h,) =0 (x,,~h, ), x| <o (2.2.48f)
u® (x,,~hy) = u (x,,~h, ), x| < oo (2.2.489)
ul (x,,~hy) = ul (x,,~h, ), |x,| < oo (2.2.48h)
o (x,~(h, + 1)) = 0% (x,,~(h, + 1)), |x,] < oo (2.2.48i)
o (x,,~(h, + 1)) = o (x,,~(h, + hy)), |x,| < oo (2.2.48))

u®(x,,~(h, +hy) = ul® (x,~(h, + 1)),

), |x,| <o (2.2.48K)
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ul (x (1, +1y)) = ul? (x, =y + 1)), [x,| < o0 (2.2.481)
o3 (x,.~(hy + hy + 1)) =0, |x,| < o0 (2.2.48m)
o (x,,~(h, + 1y +1,))=0, x| < oo (2.2.48n)

Then, the following equations which imply the perfect bonding condition in the
crack line outside the crack are introduced by defining the derivatives of the

relative displacements of the crack surfaces as unknown functions f, (xl) and

fz(x1)~

fi(x),
1 .0)-u(5.0)=1 (2.2.492)
o, 0, |x1| >c
£, (x), |x | <c
9 0) - 0) =1 (2.2.49b)
o, 0, xl| >c

Expressing Eq.(2.2.48) and Eq.(2.2.49) in the transformed coordinate system and
applying Fourier transformations to them, the following system of equations is

obtained:

iM ()N, (@)s,(@)+voim)expls, (@) 3, )=0 (2.2.50a)

S M (@), (@)+ N (@)io)expls, (@), 3, )=0 (2.2.50b)
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iMj(w)(voiw+Nj(a))sj(w))—Zi:Gj(a))(voiw+Nj(a))sj(w))zO (2.2.50¢)

<
I
—
<

Zi:Mj(a))(Nj(a))iw+sj(a)))—Zi:Gj(a))(Nj(w)iaHsj(w)):0 (2.2.500)

E, expl- ﬂzz\/?o )(iGj(a))(voia)+Nj((0) (@))expl-s, (@)h,5, )j

E, expl- #,/3, )(iGj(w)(sj(a)H N (@)io)expl- s, (@), 5, )J

(2.2.50h)

(2.2.50i)

29



E, [124:‘ iA, (a))(— 7 (a))z + B, (a)))exp(— r (a))(h3 +h, )\/5_0 )J

2xc, +v,) | &

— (iic (@)n,(0)i+ oD, (@)expl-n, (@)h, +1,)5, )J -0

2x, +v )\ 55

(2.2.50j)

A, (@)expl r, (@) + WS, )= 3 €. (@)expl=n, (@)h; + 1 8, )= 0

1 j=1

~

M-

(2.2.50k)

3" 4, ()8, (@)expl-r, (@)s + 1, )5, )

j=1

4

=3¢ (@)D, (@)expln, (@), + 1, )J5,)=0  @2.2.50)

j=1

e (w)(ia)m +[%j " (@)D, (a))J expln (@), + 1, + 1, )J5,) =0 (22.50m)

J=1 4

4

>iC, (@) n, (@) + @D, (0))expl—n, (@)(h, +hy + 1, W5, )=0  (2.2.50n)

4 4 /o
ia{Z_:M SN (0)- ZG SN, (a))j = /_ggl (t)exp(—icx)dt (2.2.50p)
4 4 "/\/?0
ia{Z_:M (@)- ZG ; ((o)j = /jﬁz (t)exp(—icx)dt (2.2.50r)

where ¢,(t)= £,(3,¢) and ¢, (:)= 8, £, /3, 7).
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From Eq.(2.2.50), the unknown functions M j(a)), Gj(a)), A, (w) and C ; (),

( j=12,3, 4), can be written in the following form.

C/«/Eo C/\/Eo
M (0)=Y,(w) I¢l(t)exp(—iax)dt+zj(w) j¢2(t)exp(—iat)dt, (j=1,2,3,4)
76/\/57 ’C/\/‘Tu
(2.2.51a)
c/\/?u C/\/Eo
G,(0)=V,(0) I¢l(t)exp(—iat)dt+Wj(a)) j¢2(t)exp(—iax)dt, (j=1,2,34)
76/«/?0 ’C/\/Eo
(2.2.51b)
PAES /&
A, (0)=X (o) j¢1(t)exp(—iax)dt+Lj(w) j¢2(t)exp(—iax)dt, (j=1,2,3,4)
ey 5
(2.2.51¢)

¢,(@)= P,(0) [0, (Jexpl-iax)ir + 0,(@) | 6, (Vexplianlar, (j=1,2,3,4)

(2.2.51d)

where Y,(0), Z,(0), V,(@), W,(@), X,(®), L/(»), P(w) and Q,(®),

J J J J J J J

(j=1,2,3,4), are found numerically as described in Appendix A.

Assuming that p(xl) is normal traction and q(xl) is shear traction at the crack

surfaces, the following boundary conditions are written.

0, (x,.0)==plx,), |x|<c (2.2.52a)
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0, (x,.0)=—¢(x,). |x| < c (2.2.52b)

They are written in the transformed coordinates as follows:

Oy (x,O) = ﬁ( )_ op( oxl |x| < C/\/_o (2.2.53a)

o, (x0)=g(x)=—ql/3,x) [ < /5, (2.2.53b)

Using the stress expressions obtained by substituting Eq.(2.2.51a) into Eq.(2.2.28)

and doing some manipulations, Eq.(2.2.53) yields the following integral equations:

e |
lim{ J‘¢l(t)dth‘Fn(a),y)cos(a)(x—t))da)

y—0* —c/\/JT] 0

"‘/\/?0 1 hod

+ j¢1(t)dtngll(—a),y)cos(w(x—t))d(o
—L‘/\/?O 0
s | -

+ j(/ﬁl(t)dtz—jiFH(a),y)sin(w(x—t))da)
—L‘/\/?O jz.O
s L=

+ J.¢1( 2_'[ Fi CUY)Sm( ( _t))d
/3 0
"‘/\/?0 1 hod

+ [0 [ Fy(@,y)cos(olx—1))do
—L‘/\/(Sio 72'0
o5 L=

+ j% (t)a?tz—jF12 (- @, y)cos((x—1))dw
—L‘/\/?O jz.O
arS | =

+ I¢)2 (t)dtz—fiFu(a), y)sin(@(x —1))dw
-\ g
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oo 1 7 1-v?
+ I¢2 2_'[ 12 a)y)SIH((O(x t))dw E—Oﬁ(x)
—c/\/7 0 0

oINS
lim J¢1 t—ID11 @, y)cos(w(x —1))dw
y—0* —L/«/lTo

()

/& -

+ [06)i== [ D, @ y)cos(@lx - 1)de
s 2y,
o3 |-
+ ¢ (t)dtgjiDn(a), y)sin(@(x—1))dew
05, )
o\ |
+ J';/ﬁl dt—I iD,,(- @, y)sin(a(x —t))dw
s 27,
o3 L=
+ [0.0u -, @ y)eos(ats - 1)a
s 0
o5 |-
+ I¢2 (t)dt—J. D,,(~ @, y)cos(@(x—1))dew
s 27,
o3 | -
+ J.¢2(t)dtg'|.iDlz(a),y)sin(a)(x—t))da)
W )
o3 ,
. j¢2(t)dtzi [-iDy (o, y)sin(w(x—t))dw}=m
~¢/[8 5 0

where |x| < c/ \/5_0 and,

4

Fy Ct) y Z(’w‘/o + N S (w))Y, (a))exp(sj ((O)y)

Jj=1

33
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Folw.y)= Y liav, + N, (@)s, @)z, (@)expls, ()y)

j=l

4

D, (@,y)= (s, (@)+ N, (@)ia)y, (@)expls, ()y)

Jj=1

D, (@)= 3(s,(@)+ N, (@)o)z, (@)expls, ()y)

J=1

(2.2.55b)

(2.2.55¢)

(2.2.55d)

Using the symbolic manipulator MAPLE, asymptotic behaviors of the integrands
Fll(w’0)7 Fll(_ (U,O), F ((U,O), F (_ CU,O), Dll(wao)v Dll(_ CU,O), D, (CU,O) and

Dlz(— @,0) are determined in the following form as @ approaches infinity as

described in Appendix B.
o +b
F, (((),O)=a0 +b, + % 2 :
w
w +d
F‘ll (—w,O):CO +d0 +C2—22
w

e+ f +62+f2
w @’

Flzw(a),0)= e+ fo+

g, +h +g2+h2

2

F,”(~®0)=g, +h, + ‘
@

a, +b, " a, +b, " a,+by,

W w? @’

Dnm ((0,0) =a,,+b, +

34
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(2.2.56b)

(2.2.56¢)

(2.2.56d)

(2.2.56¢)



o, tdy n cptd, n c3+dy

Duw(_ w,O): Clp +dyy + @ pe pE (2.2.56f)
o e, +
D" (@.0)= ey, + f, + ‘Zw—f” (2.2.562)
o +h
D, (-@0)= g, +hy, + % (2.2.56h)

where the superscript o denotes the asymptotic expansion as @ approaches
infinity and a,, a,, b,, b,, ¢,, ¢,, d,, d,, ey, e, e,, fo, fi, frs &0» &15 &>
hy, hy, by, ayy, ay, ayy, ags, by, by by, by, s ¢y, €5 €55 dygs dyys dy,
d;, eqs €ss fros fias &5 &ua» My hy, are the functions of the constants 5, o,
k, and v,. Expressions for these asymptotic expansion coefficients are given in

Appendix B.

Subtracting and adding the asymptotic expansion terms, evaluating some of the

integrals in closed form and taking the limit as y approaches 0", the integral

equations can be rearranged as:

e |:i((ao +b0)—(C0 +do ))
al e+ f
+ I |:H15(x7t)+Hlé(x’t)+H17(x7t)_HIS(x’t)_;hl(AISPC_ID
s 2

+H“(x,t>+le(x,r)+H13<x,t)—Hl4(x,z)}l(r)m

- g12+h1 1n(A16|x—t|)+i(e° +fo)_i(go +ho)
/3

271'(x - t) 27Z(x - t)

Lile +f, . (8, +1)) Sl.gn(x_t)}])2 (1)t = (1 _ vi) p(x). [x<c/\3,  (2.2.57a)
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o |:i((el() +f10)_(g1o +h10))+H25 (X,l‘)-l— Hze(x,t)'i‘Hn (xat)_Hzg(x’t):|¢z(t)dt

e a,+b
+ J {HZI(x,t)+H22(x,t)+H23(x,t)—H24(x,t)—uln(A21|x—t|)
-3, d
Oy +d,, ln(A |x—t|)+ i(alo +b10)_ i(c1o +d10)
2z 2 27(x—1)  27(x—1)
+ l(an +by, _4(C11 +d11)) Sign(x—t):|¢1 (l‘)dl‘ _ 2(’(0E+ Vo)c—](x)’ x| < C/\/5_0
0

(2.2.57b)

where A5, A, A, A,, are integration cut-off points and the functions H (x,1),

(i=1,2 and j=1,2,...,8), are given in Appendix C.

Then, the following transformations are introduced:

=% o/ 5 sl <1 (2.2.58a)
C

<1 (2.2.58b)

ry =

o <ol B,
C

Using the above transformations, Eq.(2.2.57) can be written in the following

normalized form:
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j|:i((a() +2b](;_zs__(c:)+d0 ))+H11(S r)+ﬁ12(s,r)+1-}13(s,r)—ILAIM(s,r)}é(V)dV

-1

Lo +f +h, . (e, + f,— (g, +h
4{‘%14 A E 1(A16|s—r|)+’(€° g;(s(_g;) )

-1

+ l(el th ;(gl i ))sign(s —r)+ I'AI15 (s,r)+ I-AI16 (s,r)+ I-AI17 (s,r)— 1'-AI18 (s, r)}(?)(r)dr

(1 Vo) (sc/ \/—) Is|<1 (2.2.59a)

A

1 A r A .
J'{_ a,, +by, ln(A;|S—r|)— ¢, +dy, ln(A;2|s—r|)+ l(alo +by _(CIO +d10)) +

J 2 2 27(s—r)

A A

l(a“ *bn ;(c“ tdy ))sign(s — r)+ ﬁzl (s, r)+ ﬁn (s, r)+ ﬁ23 (s, r)— H,, (s, r)})(r)dr

. j{ (e + f)= (00 +ho)) , (s,r)+ﬁ26(s,r)+ﬁm(s,r)_ﬁzg(s,r)}@(r)dr
27(s—r)

(K o) oo 5 )lsl<1 (22:59)

where

()=, /3,) 9lr)=9.(c//5,) (22.600)
A,(s,r)=H,ls¢/\J8, ,rc/ 3, )/ B, , (i=1,2 and j=1,2,..,8)  (2.2.60b)
é, zelc/\/é'_o, 1, zflc/\/é'_o, 8, zglc/\/5_0, h, =h, c/\/5_0 (2.2.60c)

ay = ay C/\/é‘_o’ 511 =b, C/\/5_o’ = oy C/\/5_0’ 6211 =d, C/\/é‘_o (2.2.60d)
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Ay =Asc/ 8, Ay = Agc/ S, . A=Ay e/, A, = Ay, /S,  (2.2.60e)

Then the solution can be expressed in the following form:

o) =——3 AT () (2.2.61a)
e —

o) =— - > BT, (r) (2.2.61b)
1—r n=0

where T, is the Chebyshev polynomial of the first kind of order n and its

definition is given in Appendix D. fln and l§n are unknown constants.

It is known that relative displacements at the crack tips are zero. Using this

condition and Eq.(2.2.49), the following expressions can be written.

jfl (x,)dx, =0 (2.2.62a)
jfz (x,)dx, =0 (2.2.62b)

Making use of the above expressions, the following equations can be obtained:

[#(s)as =0 (2.2.63)

[9ls)ds =0 (2.2.63b)
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Substituting Eq.(2.2.61) into Eq.(2.2.63) and using the orthogonality condition of
the Chebyshev polynomials of the first kind given in Appendix D, 12\0 and éo are

found to be zero.

Then, the series given by Eq.(2.2.61) are truncated at n = N as follows:

—_~ N ~A
o(r)= ! > AT,(r) (2.2.64a)
1_ r2 n=1
1 &
o(r) = > B,T,(r) (2.2.64b)
1 - 7’2 n=1
It can be shown that,
eo+ fo—8o—hy =0 (2.2.65a)
e+ f -8, —h =0 (2.2.65b)
a, +byy—cp—d,, =0 (2.2.65¢)
G, +b,—¢,—d, =0 (2.2.65d)

Substituting Eq.(2.2.64) and Eq.(2.2.65) into Eq.(2.2.59) and evaluating some of
the integrals in closed form as given in Appendix E, the integral equations can be

rearranged as:
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+an{€l AR TS kg, (5) K, (5) Ko, (s>}
n

_ ;Vg) Blsc/ 8, ) |s| <1 (2.2.66a)

N |4 A
ZAW{““ ot 8t B0 (e, (s>+k23,1(s)—k24n(s>}
n=1 n

+ ﬁ:én {_ i(€10 * T ; 810~ /o )Un—l (S)+k25n (S)+k26n (S)+k27n (S)_k28n (S)}

_ 20 +vo) alse/ (3, ) s <1 (2.2.66b)

0

Where U, is the Chebyshev polynomial of the second kind of order n and the

functions kw( ) ( =1,2and j=1,2, 8) are defined by:

T (r)dr (2.2.67)

To find the unknown constants ;\n and én , (n =1..,.N ) , suitable collocation points

are defined for Eq.(2.2.66) which leads to a 2N x2N linear system of equations.
The collocation points are chosen as the roots of the Chebyshev polynomials of the

first kind which are given in Appendix D.

Definitions of the stress intensity factors are given by the following expressions:
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k(xc)= lim /*2(x, Fc)o,,(x,,0) (2.2.68a)

+
x—Ec™

ky(xe)= lim_\*2(x, Fc)o,, (x,,0) (2.2.68b)

x—Ec™

The dominant parts of the stress components o (x,0) and o, (x,0) are expressed

as follows:
oI o
o (xo)=to L ilay +by —¢, =dy) (1, (2.2.692)
- 1-v; T _Jis 2(x—t)
I L
o (0)z— o L ilew + fio = 8w hl°)¢2(t)dr (2.2.69b)
: 2x, +v,) Tl 2(x—1)

Using Eq.(2.2.69), the stress intensity factors are obtained as:

L ilag +by—cy —dy)Ee &

k(£c)=+ AT (£1 2.2.70
1( C) 250(1_‘/5) et n n( ) ( a)
ile, + fio = 81 — g )Eo e &
k,(tc)=x—10 JW0 10107770 BT (1 2.2.70b
2( C) 4(K0+V0) ; n n( ) ( )

Expressions for the normal and tangential crack opening displacements can be

written using Eq.(2.2.49) as follows:

142(161 ,0+)—u2(x1 ,O_)z _ffl (o, )dx,, |x | < (2.2.71a)
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u,(x,.07)—u,(x,,07) = j £ (), x| <e (2.2.71b)

Then, they can be rearranged in the form given in Eq.(2.2.72) using Eq.(2.2.64) and
the closed form integral [115] given in Eq.(2.2.73) .

S
i, (x,.07) =1, (x,,07)=—c 1—(ﬁj 3 iun_l(ﬁ} x| <c (2.2.72a)
C

=
ul(xl,o+)_u1(xl,0*)=—5i 1{&} Nﬂynl[%} x| <c (2.2.72b)

0 (4 n=1 n

uiip3| (2.2.73)

XI.[/C 7,() ds=—L 1% 2U o
=g’ n c) "Ne)

It is known that the relatively weak fracture planes correspond to the principal

planes of orthotropy in the graded medium [115]. So, the energy release rates at the
crack tips can be obtained assuming the crack extension along x,- axis. Using the

crack closure energy concept, the energy release rate per tip can be expressed as

follows:
G= lim —_— (2.2.74)

where AW is the necessary work to close the crack extension per tip. B is the
thickness of the plate and Ac is the length of the crack propagation at the crack tip.
Considering the mode I and mode II loading conditions, AW can be written as

follows for the crack tips where x, =c¢ and x, = —c, respectively.
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AW(C)= LJ‘. gGZZ(XI 70)[”2(x1 ,O+)—u2 (xl vO_) X

c+Ac

T 2 00l 0

AW(_C): _[ ngz(xl,O)[u( ) uz(x1 ) X

+ J- Op xl xl 0+) ( 1v07) X1

- ,—Ac

Then, strain energy release rate is obtained in the following form:

G(i c): -

7 [ 5()(1_V()2)k12(i C) + 2(K‘() +V())k22(i_c) j

2E, .(ao +by — ¢ _do) i(elo + fio = 810 — Mo )50
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CHAPTER 3

COMPUTATIONAL SOLUTION FOR THE CRACK PROBLEMS IN AN
ORTHOTROPIC FGM COATING

3.1 Computational Solution

Computational approaches are very useful for investigation of analytically
untractable fracture problems. In this chapter, the employed computational

approach is described.

In the adopted computational approach, finite element method is used in
conjunction with the displacement correlation technique (DCT) to investigate the
fracture behavior of the orthotropic FGM coating bonded to a homogeneous

substrate through a homogeneous bond-coat.

Results of the finite element method are obtained using the general purpose finite
element analysis software ANSYS. The finite element models are created using
quarter point singular elements around the crack tips and regular 6-noded triangular
and 8-noded quadrilateral elements in the other regions. To represent the variations
in the material properties of the orthotropic FGM coating, material properties of

each element are assigned according to the centroidal position of the element.

3.2 Review of Displacement Correlation Technique

In this section, a review is made for the displacement correlation technique (DCT)

that is used in a previous study by Kim and Paulino [120] for the mixed-mode two-
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dimensional crack problems in orthotropic FGMs. In this technique, stress intensity
factors are calculated by correlating the displacements at specific nodal locations of
the singular elements located around the crack tips with the known analytical
solutions. An illustration describing the quarter-point singular elements located at

the crack tip is shown in Figure-3.2.1.

Crack

/c

X1

Quarter Point :
Singular Element

Figure-3.2.1 Quarter-point singular elements located at the crack tip.

Considering the crack tip polar coordinate system and definitions of stress intensity
factors given by Eq.(2.2.68), displacement equations in the close vicinity of the
crack tip can be written as given in Eq.(3.2.1) for pure mode I and as given in

Eq.(3.2.2) for pure mode II [120].

Jcos @+ 127 sin 6 i» Jcos @+ 1" sin @

il il ti ti (32 la)
TRy VL7

u, =k,N2rRel 4" p,
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\/cosﬁ+,u§p sin @ o \/cos0+,u1”"’ sin @

u, = k,N2rRel 1" q, i 3 q, T — (3.2.1b)
u, = k,\J2r Re| p, Jeos6+ 4 sind _ 1‘/C°SQ+” " sin g (3.2.2)
tip tip tip tip
M —Hy Hi —Hy ]
9+ 1" sin@ 0+ 11" sin 6 |
u, = k,\2r Re| ¢, JeosO+ i’ sind _ 1‘/003 A S (3.2.2b)
tip tip tip tip
My = M — ]

where k, and k, are the mode I and mode II stress intensity factors, respectively.
u, and u, are the displacement components along x,- and x,- directions,

respectively. u” = ¢, +i,81 and 1 =a, +i,32 are the crack tip parameters and

found as the roots of the following characteristic equation such that

B, >0 (j=12):
a1t = 2a,, 1 + (2a,, + ag ) = 2a, 1+ a,, =0 (3.2.3)

where a,,, a,, a,, a,,, a,, and a, are the terms of the compliance matrix

considering the crack tip Cartesian coordinate system. For plane elasticity problems

in orthotropic materials, they are introduced as follows:

X ay a4 G || Oy

oy | T |G G Gy Xok (3.2.4)
2e 5% Qg Gy Qg5 || Oy,
where €, ., € ., & are the strain components and 0, , 0, , 0, are the

stress components with respect to the crack tip Cartesian coordinate system.
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p; and g, (j=1,2), are given by:

p;=a, (/l;‘ip )2 ta, = am:u;ip . (j=12) (3.2.5)

1i a .
q;=a,u’ + ﬂf; —a,, (j=12) (3.2.6)

J

For quadratic isoparametric quarter point singular elements, normal crack opening
displacement along the edge ABC, COD},., is given by the following equation
[128].

CODye = (4l —ul )\/% +(—4uy + 2u§)£ (3.2.7)

where u? and uf are the displacement components along x, - direction at point B

and point C, respectively.

The tangential crack opening displacement along the edge ABC, COD),., is

written as follows [133]:
COD}ye = duy —uf )\E + (4’ + 2uf) (3.28)

where u” and u are the displacement components along x,- direction at point B

and point C, respectively.
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Considering both edge ABC and edge ADE, resultant normal crack opening

displacement, COD", and resultant tangential crack opening displacement, COD',

are written as follows:

COD" = COD",. —COD",, =

(42 =02 )= (€ =2 =+ (- 4lu? —u?)+ 20l —uf))% (3.2.9)

COD' = COD',,. —COD',,, =

ol )l Dl oo ) G210

where u? and u} are the displacement components along x, - direction at point D

and point E, u” and u are the displacement components along x,- direction at

point D and point E, respectively.

Then, using Eq.(3.2.1), Eq.(3.2.2), Eq.(3.2.9) and Eq.(3.2.10), mode I and mode II

stress intensity factors at the considered crack tip can be obtained as follows [120]:

& 1szguwf—uf)—@f—uf»—léﬁ@f—uf)—wf—uf» (3.2.11a)
L FF, - F,F,

oo [ R )l ) bbb ),

P4 FF,—F,F,
where

i

ﬂtip _ﬂtip ltippz _:ugpp1) (3.2.12a)
1 2

F =Re{
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F, = Re{ e
M

—(p, —pl)}

tip
—H,

fip q, — /u;p 9, )i|
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CHAPTER 4

NUMERICAL RESULTS

4.1 Verification of the Analytical Study

Verification of the analytical study presented in Chapter 2 is performed considering
an embedded crack in a homogeneous orthotropic strip. Cinar and Erdogan [134]
presented the results of a plane elasticity problem for an orthotropic strip
containing a crack parallel to the boundaries. Illustration of the problem is shown
in Figure-4.1.1. This problem is solved using the present formulation by taking
each of the material parameters E, Vv, 0% and « for coating, bond-coat and

substrate as the same and material nonhomogeneity parameter [ of the FGM

coating as equal to 0. For the case of x =1, the value of x is taken as 0.9999999.

— ——— > x| ----f----
En :

Figure-4.1.1 Illustration of the crack problem solved by Cinar and Erdogan [134].

Assuming that the crack surfaces are under uniform normal stress

(0'22 (x,,0)=—-0,, |x1| <c), stress intensity factors obtained by both studies are

given in Table-4.1.1 for 2h /(h +h,)=1.0 and &(h, +h,)/(2c)=0.35 and in
Table-4.1.2 for 2h, /(h, +h,)=0.4 and S(h, +h,)/(2c)=0.35. Assuming that the
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crack surfaces are under uniform shear stress (0'12 (x1 ,0)=—TO, |x1|<c), stress

intensity factors obtained by both studies are given in Table-4.1.3 for

2h /(h, +h,)=1.0 and &(h, +h,)/(2c)=035 and in
2h, /(h, +h,)=0.4 and &(h, +h,)/(2c)=0.35. It is shown that results of the

Table-4.1.4 for

present study agree very well with the results given by Cinar and Erdogan [134].

Table-4.1.1 Comparison of the stress intensity factors, 24, /(h, +h,)=1.0,

8(h, +h,)/(2¢)=035, 0,(x,,0)=-0, for|x|<c.

Cinar and Erdogan [134] Present Study
« k(e)/lo,Ve) k(e)/lo,Ve)
1 4.801 4.801
2 4.657 4.654
4 4.564 4.553

Table-4.1.2 Comparison of the stress intensity factors, 24, /(h, +h,)=0.4,

8(h, +h,)/(2¢)=035, 0,,(x,,0)=-0, for |x|<c.

Cinar and Erdogan [134] Present Study
* e | k(o Ve) | k(e)lone) | k() (oo, e)
1 9.519 -4.855 9.526 -4.850
2 8.986 -4.404 8.989 -4.386
4 8.447 -3.908 8.470 -3.882

Table-4.1.3 Comparison of the stress intensity factors, 2A, /(h, +h,)=1.0,

8(h, +h,)/(2¢)=035, 0,,(x,.0)=-7, for |x|<c.

Cinar and Erdogan [134] Present Study
« k,()/le,Ve) k(0)/[e, Ve
1 2.047 2.047
2 1.890 1.889
4 1.717 1.716
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Table-4.1.4 Comparison of the stress intensity factors, 24, /(h, +h,)=0.4,

8, +h,)/(2c)=035, 0,,(x,,0)=-7, for |x|<c.

Cinar and Erdogan [134] Present Study
8 %, (C)/(To\/z) k, (C)/(To\/z) s (C)/(To\/z) k, (C)/(To\/z)
1 0.846 1.658 0.845 1.659
2 0.761 1.553 0.758 1.554
4 0.666 1.441 0.661 1.441

4.2 Numerical Results Based on Analytical and Computational Approaches

In this section, some numerical results obtained using analytical and computational
approaches are presented for the embedded crack problems in the orthotropic FGM

coating bonded to the homogeneous substrate through the homogeneous bond-coat.

First, the analytical and computational results for the normalized fracture related
parameters of the single embedded crack problem are given considering the pure

uniform normal stress ( p(x1 )= o, and q(x1 )=0) on crack surfaces. The reason of

giving the results of the two methods is to verify the computational approach.
Then, analytical results are given for the single embedded crack problem

considering the pure uniform shear stress (p(xl):O and q(xl)zro) on crack

surfaces. Finally, the computational results for the fracture related parameters of

the periodic cracks in the orthotropic FGM coating are presented.

Under the applied loading conditions, the following relations exist:
k(c)=k,(-¢c), k,(c)=—k,(=c) for g(x,)=0, p(x,)=0, (4.2.1a)
k (e)=—k(-c). ky(c)=k,(=c) for g(x,)=7,. p(x,)=0 (4.2.1b)
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So, the tip at which x, = ¢ is selected to give the results for the normalized mixed-

mode stress intensity factors and energy release rate.

The presented results consist of normalized mode I and mode II stress intensity
factors, normalized energy release rate and normalized normal and tangential crack
opening displacements.

Expressions for the normalized mode I stress intensity factors under pure uniform

normal and pure uniform shear crack surface tractions are given in Eq.(4.2.2a) and

Eq.(4.2.2b), respectively.

k()/(04c") (4.2.22)

k() (7pc*) (4.2.2b)

Expressions for the normalized mode II stress intensity factors under pure uniform
normal and pure uniform shear crack surface tractions are given in Eq.(4.2.3a) and

Eq.(4.2.3b), respectively.
k(c)/ (o) (4.2.3a)
k, (c)/(z,c®) (4.2.3b)

Expression for the normalized energy release rate under pure uniform normal crack

surface traction is given in Eq.(4.2.4).

G(c)/(mo; /E,) (4.2.4)
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Expressions for the normalized normal crack opening displacements under pure
uniform normal and pure uniform shear crack surface tractions are given in
Eq.(4.2.5a) and Eq.(4.2.5b), respectively. Expressions for the normalized tangential
crack opening displacements under pure uniform normal and pure uniform shear

crack surface tractions are given in Eq.(4.2.6a) and Eq.(4.2.6b), respectively.

v'(x,)/A, (4.2.52)

v (x,)/A, (4.2.5b)

u'(x,)/A, (4.2.6a)

u (x,)/A, (4.2.6b)

where

v (x,)=ul(x,,0)-u?(x,.0) (4.2.7a)

' (x,)=u(x,,0)—u?(x,,0) (4.2.7b)

A, =2c(x, +v,)o,/E,) (4.2.7¢)

A, =2c(x, +v,)z,/E,) (4.2.7d)

In all of the examined cases, it is assumed that material properties are continuous
with discontinuous derivatives at the interface between the FGM coating and the
homogeneous bond-coat. The homogeneous substrate material is assumed to be

isotropic.
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In the presented results, the examined values of material parameters are changing

such that x, is from —0.2 to 5.0, &, is from 0.25 to 6.0 and v, is from 0.05 to
0.95. The minimum value of x, is taken as —0.2 because (x,+V,) has to be

greater than zero.

In this section, all results are based on the parametric values of the material
properties. For an example about the orthotropic FGM coatings used in real
applications, the FGM consisting of nickel and alumina can be given. When the

FGM coating is 100% alumina, its elastic properties which are given as
E, =116.36 GPa, E,, =90.43 GPa, G, =38.21 GPa and v,, =0.28 [126, 135]

lead to the material parameters of E =102.58 GPa, v =0.25, 0*=1.29 and

k = 1.10 under generalized plane stress state.

4.2.1 Single Embedded Crack Problem Considering Uniform Normal Stress

on Crack Surfaces

In this subsection, some numerical results are presented for the single embedded
crack problem in the orthotropic FGM coating bonded to the homogeneous
substrate through the homogeneous bond-coat considering the uniform normal
stress on crack surfaces such that p(xl )= 0, . For this problem, both analytical and

computational results are given to verify the displacement correlation technique

(DCT).

For the computational analysis, the finite element model of the problem is created
considering half of the structure with the appropriate symmetry boundary

conditions. The structure is taken sufficiently long to satisfy the assumption of
infinite length in x,- direction. The deformed shape of the structure, close-up view

of the crack faces and applied displacement boundary conditions are shown in
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Figure-4.2.1.1 for a typical run. To satisfy the symmetry about x,- axis, the

displacement component u, is fixed as zero at x, =0.

1] ! |

SR

Figure-4.2.1.1 Finite element model of the single embedded crack problem under

uniform normal crack surface tractions.

The normalized mode 1 and mode II stress intensity factors, normalized energy
release rate and normalized crack opening displacements are obtained by varying
the nonhomogeneity constant fc for various values of the material parameters of

the orthotropic FGM coating and geometric parameters of the structure.

The effects of relative coating thickness above the crack, h, /c, on normalized

mode I and mode II stress intensity factors and normalized energy release rates are
plotted in Figure-4.2.1.2, Figure-4.2.1.3 and Figure-4.2.1.4, respectively, for

various values of material nonhomogeneity constant fc. In the examined cases,

h,/c values are changing from 0.25 to 2.0 and geometric parameters are taken as

2h, =2h,=h,[2=c.
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Taking the geometric parameters as 2h, = 2h, = 2h, = h, /2 = ¢, normalized mode
I and mode II stress intensity factors and normalized energy release rates are
plotted with respect to the shear parameter &, in Figure-4.2.1.5, Figure-4.2.1.6 and
Figure-4.2.1.7, with respect to the stiffness ratio &, in Figure-4.2.1.8, Figure-
4.2.1.9 and Figure-4.2.1.10 and with respect to the effective Poisson’s ratio v, in
Figure-4.2.1.11, Figure-4.2.1.12 and Figure-4.2.1.13, respectively, by changing the
values of fc. For the same geometry, normalized normal and tangential crack
opening displacements are given in Figure-4.2.1.14 and Figure-4.2.1.15 for various
values of «,, in Figure-4.2.1.16 and Figure-4.2.1.17 for various values of &, and
in Figure-4.2.1.18 and Figure-4.2.1.19 for various values of v, respectively,
taking fBc as —1 or 1. Since the half of the structure is considered in the

computational approach, finite element method (FEM) results of normalized
normal and tangential crack opening displacements are given for the half crack

length.

To investigate the effect of relative bond-coat thickness, h3/c, on the fracture

related parameters, normalized mode I and mode II stress intensity factors and

normalized energy release rates are plotted with respect to A, /c in Figure-4.2.1.20,

Figure-4.2.1.21 and Figure-4.2.1.22, respectively, for various values of material

nonhomogeneity constant Bc assuming that the crack lies very close to the bond-
coat such that h,/0.95=h,/0.05=h,/2=c. The examined values of h,/c are

changing from 0.025 to 0.5.

From Figure-4.2.1.2 to Figure-4.2.1.19, the plotted data is obtained assuming
E,exp(— ph,)=E,=E,/1.5. In Figure-4.2.1.20, Figure-4.2.1.21 and Figure-

4.2.1.22, it is assumed that E, exp(- Bh,)=E, = E, /3.
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Figure-4.2.1.2 Normalized mode I stress intensity factor versus A /c and
nonhomogeneity constant fc, E,exp(-ph,)=E,=E,/1.5, v,=v,=0.25,
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Figure-4.2.1.3 Normalized mode II stress intensity factor versus #h,/c and
nonhomogeneity constant fc, E,exp(-ph,)=E,=E,/1.5, v,=v,=0.25,
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Figure-4.2.1.5 Normalized mode [ stress intensity factor versus shear parameter

k, and nonhomogeneity constant fc, E|, exp(— ph, )= E,=E,/15,
v,=v,=025, v,=03, «k,=k,, k,=1, &/ =6=2, 06 =1,
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Figure-4.2.1.7 Normalized energy release rate versus shear parameter &, and
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Figure-4.2.1.9 Normalized mode II stress intensity factor versus stiffness ratio &,
and nonhomogeneity constant fSc, E,exp(-ph,)=E,=E,/1.5, v,=v, =025,
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Figure-4.2.1.11 Normalized mode [ stress intensity factor versus effective
Poisson’s ratio v, and nonhomogeneity constant pe,
E,exp(- ph,)=E,=E,/15, v,=v,, v,=03, « =2, k,=1,

0 = K;
St =8 =2,68=1,2h =2h,=2h,=h,/2=c, plx,)=0,, q(x,)=0.
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Figure-4.2.1.12 Normalized mode II stress intensity factor versus effective
Poisson’s ratio v, and nonhomogeneity constant e,
E,exp(- Bh,)=E,=E, /1.5, v,=v,, v,=03, «x =2, k=1,

0 = K;
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Figure-4.2.1.13 Normalized energy release rate versus effective Poisson’s ratio v,
and nonhomogeneity constant fc, E,exp(-ph,)=E,=E,/1.5, v,=V,,
v,=03, k,=k,=2, kK, =1, 6, =56 =2, 8] =1, 2h, =2h, =2h, =h,[2=c,

p(xl)=0'0, Q(X1):0-
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Figure-4.2.1.14 Normalized normal crack opening displacement for various values

of  shear  parameter K, and  nonhomogeneity  constant pe,
E,exp(-ph,)=E,=E,/15, v,=v,=025, v,=03, kx,=k,, k,=1,

8 =07 =2, 6, =1, 2 =2h, =2h, =h,[2=c, p(xl):O-O’ q(x1)=0.
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Figure-4.2.1.15 Normalized tangential crack opening displacement for various

values of shear parameter &k, and nonhomogeneity constant [,
E,exp(- ph,)=E,=E,/15, v,=v,=025, v,=03, x,=k,, k,=1,

St =8 =2,68/=1,2h =2h,=2h,=h,/2=c, plx,)=0,, q(x,)=0.
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Figure-4.2.1.16 Normalized normal crack opening displacement for various values
of stiffness ratio 53 and nonhomogeneity constant P,
E,exp(- Bh,)=E,=E, /1.5, v,=v,=025, v,=03, k,=k,=2, k,=1,

S =8¢, 8} =1,2h =2h, =2h,=h,[2=c, p(x,)=0,, q(x,)=0.
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Figure-4.2.1.17 Normalized tangential crack opening displacement for various
values of stiffness ratio &) and nonhomogeneity constant fc,
E,exp(- Bh,)=E,=E,/1.5, v,=v,=025, v,=03, k,=k,=2, k,=1,

St =01, =1, 2h =2h, =2h,=h,[2=c, p(x,)=0,, q(x,)=0.
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Figure-4.2.1.18 Normalized normal crack opening displacement for various values
of effective Poisson’s ratio Vv, and nonhomogeneity constant fc,
E,exp(- Bh,)=E,=E, /1.5, v,=v,, v,=03, «k,=k,=2, k,=1,
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Figure-4.2.1.19 Normalized tangential crack opening displacement for various
values of effective Poisson’s ratio v, and nonhomogeneity constant pc,
E,exp(- ph,)=E,=E,/15, v,=v,, v,=03, « =2, k=1,

0 = K;
Sy =8 =2,68/=1,2n =2h,=2h,=h,[2=c, plx,)=0,, q(x,)=0
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Figure-4.2.1.20 Normalized mode 1 stress intensity factor versus #,/c and
nonhomogeneity constant fc, E,exp(-ph,)=E,=E,/3.0, v,=v,=0.25,
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Figure-4.2.1.21 Normalized mode II stress intensity factor versus h,/c and
nonhomogeneity constant fc, E,exp(-fh,)=E,=E,/3.0, v,=v,=0.25,
v,=03, x,=k,=2, k,=1, & =6/=2, & =1, h =095¢, h,=0.05¢,

h, =2c, p(x1):00’ ‘I(xl)zo-
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Figure-4.2.1.22 Normalized energy release rate versus h,/c and nonhomogeneity
constant S,  E,exp(-ph,)=E,=E,/30, v,=v,=025, v,=03,
Ky=k,=2, k,=1, 8/ =6 =2, &' =1, h =095, h,=0.05c, h, =2c,

P(X1)=O'O, q(xl)=0.

In all of the examined cases, mode I stress intensity factor is numerically larger
than the mode II stress intensity factor. It is shown that mode I stress intensity
factor and energy release rate are decreasing functions of the material

nonhomogeneity constant fc for all considered values of material and geometric

parameters when only uniform normal stress acts on crack surfaces. As the material

nonhomogeneity constant fSc decreases from positive to negative, the effect of its

variation on mode I stress intensity factor and the energy release rate becomes
more significant. It is also observed that mode II stress intensity factor decreases in

absolute values as the material nonhomogeneity constant fc increases from
negative to positive for all examined values of (h3/c), K,, 0;, vV, and small
values of (h, /c) when crack surfaces are under uniform normal stress. For
relatively large values of (h1 / c) , absolute values of mode II stress intensity factors

first decrease and then increase as fc increases from negative to positive.
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In Figure-4.2.1.2, it is shown that mode I stress intensity factor first decreases and
then becomes almost constant with increasing &, /c for all examined values of
material nonhomogeneity constant fSc. On the other hand, the effect of variation in
Lc on mode I stress intensity factor is more significant for large values of A, /c.

This is expected because both the nonhomogeneity parameter and the distance from

the crack line affect the effective stiffness of the coating.

In Figure-4.2.1.3, mode II stress intensity factor first changes and then becomes
almost constant with increasing h,/c for all examined values of material

nonhomogeneity constant fc.

In Figure-4.2.1.4, the energy release rate first decreases and then becomes almost
constant with increasing #,/c for all considered values of material

nonhomogeneity constant fc.

In Figure-4.2.1.5, mode I stress intensity factor first decreases and then increases

noticeably with increasing shear parameter x, for some of the examined values of

material nonhomogeneity constant fc.

In Figure-4.2.1.6, mode II stress intensity factor first decreases in absolute values

with increasing shear parameter x, and then becomes almost insensitive to the

variations in x,, as Bc increases from negative to positive.

In Figure-4.2.1.7, the energy release rate is an increasing function of the shear

parameter x, for all examined values of material nonhomogeneity constant fc.

In Figure-4.2.1.8, mode I stress intensity factor is a decreasing function of the

stiffness ratio &, for all considered values of material nonhomogeneity constant
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fc. For relatively small values of stiffness ratio J;, the effect of its variation on

mode [ stress intensity factor seems to be more significant.

In Figure-4.2.1.9, mode II stress intensity factor decreases in absolute values as the

stiffness ratio J, increases for all examined values of material nonhomogeneity

constant fc.

In Figure-4.2.1.10, the energy release rate first decreases and then becomes almost

constant with increasing stiffness ratio &, for all examined values of material

nonhomogeneity constant fc.

In Figure-4.2.1.11 and Figure-4.2.1.12, the influence of variation in effective
Poisson’s ratio v, on the mode I and II stress intensity factors depends on the
degree of material nonhomogeneity. Mode I stress intensity factor decreases with
increasing v, for fc=0,1,2 and increases with increasing v, for fc=-1,-2.
Mode II stress intensity factor decreases in absolute values for fc=-1,-2 and
increases in absolute values for fc =0,1,2 as the value of effective Poisson’s ratio

Vv, Increases.

In Figure-4.2.1.13, the effect of the variation in the effective Poisson’s ratio v, on

the energy release rate is relatively small for all considered values of fc.

In the figures related with the normalized normal and tangential crack opening
displacements, the normalized normal crack opening displacements are symmetric
and the normalized tangential crack opening displacements are anti-symmetric
about x, - axis. Normalized normal crack opening displacement and absolute value
of the normalized tangential crack opening displacement decrease with increasing

values of fic, k,, &, and v, .
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In Figure-4.2.1.20, Figure-4.2.1.21 and Figure-4.2.1.22, mode I stress intensity
factor and energy release rate of the single embedded crack increase and the
absolute value of the mode II stress intensity factor decreases slightly with the

increasing relative bond-coat thickness 4, /¢ for all considered values of fc.

When the presented analytical and computational results are compared, it is seen

that the computational method agrees very well with the analytical method.

4.2.2 Single Embedded Crack Problem Considering Uniform Shear Stress on

Crack Surfaces

In this subsection, some numerical results are presented for the analytical solution
of the single embedded crack problem in the orthotropic FGM coating bonded to
the homogeneous substrate through the homogeneous bond-coat considering the

uniform shear stress on crack surfaces such that q()c1 )= T,

When the crack surfaces are subjected to pure uniform shear traction, it is
concluded from Eq.(4.2.1b) that one of the crack tips has always negative mode 1
stress intensity factor. For the case of a negative mode I stress intensity factor, the
formulation of the problem has to be done considering the crack closure condition.
However, the results of the current formulation can still be used in superposition
problems if the resultant mode I stress intensity factor is not negative at both tips of

the crack.

In order to show the effects of nonhomogeneity and material parameters of the
orthotropic FGM coating on the fracture behavior, normalized mode I and mode II

stress intensity factors are plotted with respect to the shear parameter &, in Figure-
4.2.2.1 and Figure-4.2.2.2, with respect to the stiffness ratio §; in Figure-4.2.2.3

and Figure-4.2.2.4 and with respect to the effective Poisson’s ratio v, in Figure-
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4.2.2.5 and Figure-4.2.2.6 for various values of the material nonhomogeneity

constant fc. The normalized normal and tangential crack opening displacements
are given in Figure-4.2.2.7 and Figure-4.2.2.8 for various values of x,, in Figure-
4.2.2.9 and Figure-4.2.2.10 for various values of &, and in Figure-4.2.2.11 and
Figure-4.2.2.12 for various values of v, respectively, taking fc as —1 or 1. For

all of  the examined cases, 2h, =2h, =2h, =h,[2=c¢ and

E,exp(- ph,)=E, =E,/15.

ky(©)/(7,c™)

0.0

0.0 1.0 2.0 3.0 4.0 5.0

Figure-4.2.2.1 Normalized mode [ stress intensity factor versus shear parameter
k, and nonhomogeneity constant fc, E, exp(— ph, )= E,=E,/15,
v, =v,=0.25, v,=03, Ky = Kj, K, =1, S, =0, =2, 5;‘:1,

2k =2h, =2k, =h,[2=c, p(x,)=0, gq(x,)=17,.
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Figure-4.2.2.2 Normalized mode II stress intensity factor versus shear parameter
k, and nonhomogeneity constant fc, E, exp(— bh, )= E,=E,/15,
v,=v,=025, v,=03, «k,=k,, Kk, =1, & =6=2, & =1,

2h, =2h, =2h,=h,/2=c, p(x,)=0, q(x,)=1,.
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Figure-4.2.2.3 Normalized mode I stress intensity factor versus stiffness ratio J;
and nonhomogeneity constant Bc, E,exp(-ph,)=E,=E,/1.5, v,=v, =025,

v,=03, k,=k,=2, k,=1, 8, =6, 6/ =1, 2h, =2h,=2h,=h,[2=c,

w

p(xl):07 q(xl)=T0'
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Figure-4.2.2.4 Normalized mode II stress intensity factor versus stiffness ratio 55‘
and nonhomogeneity constant fSc, E,exp(-ph,)=E,=E,/1.5, v,=v, =025,
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Figure-4.2.2.5 Normalized mode I stress intensity factor versus effective Poisson’s

ratio v, and nonhomogeneity constant fSc, E,exp(-fh,)=E, =E,/1.5, v, =v,,
v,=03, k,=k,=2, kK, =1, 6, =6, =2, 8] =1, 2h, =2h, =2h, =h,[2=c,

p(xl):07 q(xl)=T0'
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Figure-4.2.2.6 Normalized mode II stress intensity factor versus effective

Poisson’s ratio Vv, and nonhomogeneity constant pe,
E,exp(- Bh,)=E,=E, /1.5, v,=v,, v,=03, «k,=k,=2, K, =1,

St =084=2,0)=1,2n=2h,=2h,=h,/2=c, plx,)=0, qlx,)=1,.
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Figure-4.2.2.7 Normalized normal crack opening displacement for various values
of  shear  parameter K, and  nonhomogeneity constant pe,
E,exp(- ph,)=E,=E,/15, v,=v,=025, v,=03, x,=k,, k,=1,

St=084=2,0)=1,2n=2h,=2h,=h,/2=c, plx,)=0, q(x,)=1,.
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Figure-4.2.2.8 Normalized tangential crack opening displacement for various
values of shear parameter &, and nonhomogeneity constant fc,
E,exp(-ph,)=E,=E,/15, v,=v,=025, v,=03, kx,=k,, k,=1,

St =084=2,08)=1,2n=2h,=2h,=h,/2=c, plx,)=0, q(x,)=1,.

V*(xl)/Ar
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Figure-4.2.2.9 Normalized normal crack opening displacement for various values
of stiffness ratio 53 and nonhomogeneity constant P,
E,exp(- Bh,)=E,=E,/1.5, v,=v,=025, v,=03, k,=k,=2, k,=1,

S} =6}, 68 =1,2n =2h,=2h,=h,/2=c, p(x,)=0, q(x,)=7,.
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Figure-4.2.2.10 Normalized tangential crack opening displacement for various

values of stiffness ratio 53 and nonhomogeneity constant  fc,

E,exp(- Bh,)=E,=E, /1.5, v,=v,=025, v,=03, k,=k,=2, k,=1,

S} =6}, 68 =1,2n =2h,=2h, =h,/2=c, p(x,)=0, q(x,)=7,.

v*(xl)/AT

x,/c

Figure-4.2.2.11 Normalized normal crack opening displacement for various values

of effective Poisson’s ratio Vv, and nonhomogeneity constant [,

E,exp(-ph,)=E,=E,/15, v,=v,, Vv,=03, k,=k,=2, Kk,=1,

St =8 =2,68=1,2h =2h,=2h,=h,[2=c, px)=0, q(x,)=7,.
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Figure-4.2.2.12 Normalized tangential crack opening displacement for various
values of effective Poisson’s ratio v, and nonhomogeneity constant pc,
E,exp(- Bh,)=E,=E, /1.5, v,=v,, v,=03, «k,=k,=2, k,=1,

St =684=2,08)=1,2n=2h,=2h,=h,/2=c, plx,)=0, qlx,)=1,.

In all of the examined cases, it is observed that the mode 1II stress intensity factor is
numerically larger than the mode I stress intensity factor. It is shown that mode I

stress intensity factor is an absolutely decreasing function of fc and mode II stress
intensity factor is an increasing function of fSc for all considered values of «,, J;

and v, when the crack surfaces are under pure uniform shear traction.

In Figure-4.2.2.1, mode I stress intensity factor decreases in absolute values with

increasing shear parameter &, for small values of Sc and becomes almost

independent of x, for large values of fc.
In Figure-4.2.2.2, mode II stress intensity factor decreases with increasing shear

parameter x, for all considered values of fc. When k, has small values, the

effect of its variation on mode II stress intensity factor is more significant.
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In Figure-4.2.2.3, mode 1 stress intensity factor is an absolutely decreasing function
of the stiffness ratio &, for all examined values of fic. When &, has large values,

the effect of its variation on the mode I stress intensity factor becomes less

significant.

In Figure-4.2.2.4, mode II stress intensity factor decreases with increasing &, for
all considered values of fc. The effect of variation in 8, on mode II stress

intensity factor is less noticeable for large values of &; .

In Figure-4.2.2.5, mode I stress intensity factor behaves as an absolutely decreasing

function of effective Poisson’s ratio v, for fc=-1,-2 and an absolutely

increasing function of v, for fc=0,1,2.

In Figure-4.2.2.6, mode II stress intensity factor increases with increasing effective

Poisson’s ratio v, for fc=-1,-2 and decreases with increasing v, for

Bc=0,1,2.

In the figures related with the normalized normal and tangential crack opening
displacements, normalized normal crack opening displacements are anti-symmetric
about x, - axis which means that there is crack closure at either tip of the crack for
the pure uniform shear loading on crack surfaces. Normalized tangential crack
opening displacements are symmetric about x,- axis. Normalized normal crack
opening displacement decreases in absolute values as fc increases from negative
to positive whereas normalized tangential crack opening displacement increases as
[c increases from negative to positive for all examined values of «,, Jd; and v, .

Normalized tangential crack opening displacement and absolute values of
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normalized normal crack opening displacement are decreasing functions of «,, &,

and v,,.

4.2.3 Periodic Embedded Cracking Problem Considering Uniform Normal

Stress on Crack Surfaces

In this subsection, the problem described in Chapter 2 is investigated
computationally considering embedded periodic cracks in the orthotropic FGM
coating rather than the single embedded crack. The illustration of the problem is
shown in Figure-4.2.3.1. The orthotropic FGM coating is perfectly bonded to
homogeneous substrate through the homogeneous bond-coat. The periodic cracks
of length 2c¢ and spacing W are located parallel to the boundaries along x, =0
line. Distance from the crack line to the upper and lower surfaces of the coating is

h, and h,, respectively. Thickness of the bond-coat is s, and thickness of the

substrate is h,. Principal axes of orthotropy are along x,- and x,- directions in

each medium. The material property distributions of the orthotropic FGM coating,
homogeneous bond-coat and homogeneous substrate are as defined by Eq.(2.2.3),

Eq.(2.2.4) and Eq.(2.2.5), respectively.

Orthotropic FGM Co_ating - 4, c | "
 E e N R
fas=: > «—c— :
% En w w hy
: F ' :
% Ei Homogeneous Orthotropic Bond-Coat hy
i Ey '
% Ey Homogeneous Orthotropic Substrate ha

Figure-4.2.3.1 Illustration of the periodic embedded cracking problem.
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Assuming that p(xl) is the normal traction, the surfaces of all the cracks are

subjected to the following boundary condition:

0, (x,.0)=-p(x,)= -0, 4.2.3.1)

The finite element model of the problem is created considering a unit cell. The
applied symmetry and periodicity conditions [126] are depicted in Figure-4.2.3.2.
To satisfy the symmetry about x, - axis, the horizontal displacement component u,
is fixed as zero at x; = 0. Since the structure is infinitely long in x, direction, the
lines x, = i(n/ 2W, (n=1,2,3,...), are the symmetry lines and they should be free
to undergo both rigid body translation and rotation [126]. Satisfaction of this
condition is achieved by using a rigid block in contact with the unit cell at
x, =W/2 and creating a set of coupling between the horizontal displacement

components of the coinciding nodes of the unit cell and the rigid block [126].

X2

c
BEe—x
FGM Coating

Homogeneous Bond-Coat Rigid Block

Homogeneous Substrate

Wi2

=

uy=0atx; =0 u, of coinciding nodes are
coupled at x; = W/2

Figure-4.2.3.2 Applied symmetry and periodicity conditions on the unit cell.
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Taking E,exp(-fBh,)=E,=E,/1.5, v,=v,=025, v,=03, k,=k,=2,
kK, =1, 8§ =8{ =2, 8/ =1 and 2h, =2h, =2h, =h,/2=c, the effects of the
relative crack length ¢/W on normalized mode I and mode II stress intensity
factors and normalized energy release rate are shown in Figure-4.2.3.3, Figure-
4234 and Figure-4.2.3.5, respectively, for various values of material
nonhomogeneity constant. In these figures, examined values of ¢/W change from

0.02 to 0.45.

2.4
23t
S22
CL)O
S a1
S
~ 20+
19 ¢
1.8 ‘ ‘ ‘ ‘
0.0 0.1 0.2 0.3 0.4 0.5
c/W

Figure-4.2.3.3 Normalized mode I stress intensity factor versus ¢/W and
nonhomogeneity constant fc, E,exp(-ph,)=E,=E,/1.5, v,=v,=0.25,

v, =03, k,=k,=2, k,=1, &'=68'=2, &' =1, 2h,=2h,=h,/2=c,
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Figure-4.2.3.4 Normalized mode II stress intensity factor versus ¢/W and
nonhomogeneity constant fc, E,exp(-ph,)=E,=E,/1.5, v,=v,=0.25,
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Figure-4.2.3.5 Normalized energy release rate versus ¢/W and nonhomogeneity
constant fBc, E,exp(—ph,)=E, =E,/15, v,=v,=0.25,v,=03, x, =k, =2,

k,=1,6, =6¢=2,8/=1,2h,=2h,=h,/2=c, plx,)=0,.
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It is seen that mode I and mode II stress intensity factors and energy release rate are
almost constant for small values of ¢/W. As ¢/W increases further, they first
make a minimum and then start increasing significantly. The reason of the
reduction in mixed-mode stress intensity factors and energy release rate is the
interaction of stress fields developing around the cracks. Similar reductions
resulting from the same reason were observed by Cinar and Erdogan [134] for two
collinear cracks in an orthotropic homogeneous strip and by Dag et al. [122] for
periodic interface cracks between an orthotropic FGM coating and orthotropic
homogeneous substrate. It is also seen that the influence of nonhomogeneity

constant fc on the mode I stress intensity factor and energy release rate becomes

less noticeable for large values of ¢/W .

The deformed shape of the unit cell is shown in Figure-4.2.3.6 for ¢/W =0.3 and
Pc=10.

Figure-4.2.3.6 Deformed shape of the unit cell for ¢/W =0.3 and fc=1.0.
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CHAPTER 5

COMPUTATIONAL SOLUTION FOR THE EMBEDDED CRACK
PROBLEMS IN AN ORTHOTROPIC FGM COATING UNDER THERMAL
LOADING

5.1 Description of the Problem

In this chapter, fracture behavior of an orthotropic FGM coating containing a single
embedded crack or periodic embedded cracks is analyzed computationally under
thermal loading assuming the plane stress state. The problem is illustrated in
Figure-5.1.1 for the case of single embedded crack and in Figure-5.1.2 for the case
of periodic cracks. The orthotropic FGM coating is perfectly bonded to a

homogeneous isotropic substrate through a homogeneous isotropic bond-coat.

Principal axes of orthotropy are along x,- and x, - directions in the FGM coating.
The embedded cracks of length 2¢ lie along x, =0 line. Distance from the crack
line to the upper and lower surfaces of the coating is h, and h,, respectively.
Thickness of the bond-coat is A, and thickness of the substrate is /,. The structure
is infinitely long in x,- direction. The crack surfaces are considered to be

completely insulated. Top and bottom surfaces of the structure are subjected to

uniform constant temperatures 7, and 7,,, respectively. The reference temperature
is denoted by 7;,. The material properties are continuous in each medium. At the

interface between the coating and the bond-coat, material properties are taken to be

continuous with discontinuous derivatives.
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Figure-5.1.1 Illustration of the problem for the single embedded crack.
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Figure-5.1.2 Illustration of the problem for the periodic embedded cracks.

Material property variation in the FGM coating is in x, - direction and defined as

follows:

E1 | (x2 ) EBC E1C1TS EBC
Eale)| | B 1 B | B2 x40 (5.1.1)
Gy, (x,) G* GS" G || h +h, o

)

BC CTS BC
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a,(x,) _|@ n a, |_|& Xy thy (5.1.1b)
1255 (xz) o’ azczTS a”™ N\ +h,
kn(xz) _ k n ki _ k xZ—+h? (5.1.1¢)
ky (xz) k" kzczTS k¢ hy +h,

where E denotes the modulus of elasticity, G denotes the shear modulus, Vv
denotes the Poisson’s ratio, & denotes the thermal expansion coefficient and &

denotes the heat conductivity. Subscripts 11 and 22 denote the directions with
respect to x,-x, coordinate system. Superscripts BC and CTS stand for bond-coat
material and coating top surface material, respectively. The nonhomogeneity

parameter controlling the elastic properties is denoted by p, the nonhomogeneity
parameter controlling the thermal expansion coefficients is denoted by g and the

nonhomogeneity parameter controlling the heat conductivities is denoted by r .
5.2 Numerical Results

In this section, numerical results for the fracture parameters are presented

considering single and periodic embedded crack problems under thermal loading.

All of the results are obtained assuming that the top surface of the coating is 100%
orthotropic alumina, the bond-coat is nickel-chromium-aluminum-zirconium and
the substrate is nickel. The elastic properties of alumina are taken as E,, =90.43
GPa, E,, =116.36 GPa, G,, =38.21 GPa and v,, =0.28 [126, 135]. The heat
conductivities of alumina are taken as k,; =21.25 W/(m°C) and k,, =29.82
W/(m°C) [126, 136]. The thermal expansion coefficients of alumina are assumed to
be such that ;,, =8.0x10™° (°C)" and a,, =7.5x10™ (°C)"" [126]. The material

properties of nickel-chromium-aluminum-zirconium are taken as E =137.9 GPa,
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v=0.27, k=25 W/(m°C), o =15.16x10"° ("C)'l [137]. Finally, the material
properties of nickel are taken as E =204 GPa, v=0.31, k=70 W/(m°C),
a=13.3x10" (°C)" [126, 138].

In all of the examined cases, the top and the bottom surfaces of the structure are

subjected to the constant uniform temperatures such that 7'(x,,k,)=T, =107, and
T(x,,~(h, +hy +h,))=T, =T, for |x1|<oo. Geometric dimensions are taken as

2h, =2h, =2h, =h,[2=c.

The presented results consist of normalized mixed-mode stress intensity factors.
Definitions of normalized mode I and mode II stress intensity factors are given as

follows, respectively.

k,
k, = (Ezcsz TST\/_)

(5.2.1a)

k2

k, =
" EP e )

(5.2.1b)

5.2.1 Single Embedded Crack Problem under Thermal Loading

In this subsection, the effect of material nonhomogeneity on mixed-mode stress
intensity factors is investigated considering a single embedded crack problem under

thermal loading.

The finite element model of the problem is created using half of the structure with
appropriate symmetry boundary conditions shown in Figure-5.2.1.1. The structure

is taken sufficiently long to satisfy the infinite length assumption in x, - direction.
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Figure-5.2.1.1 Applied symmetry conditions.

The insulation of the crack surfaces is imposed to the finite element model by

fixing the heat flux as zero at the crack surfaces such that:

a—T=0, 0<x <c, x,=0" (5.2.1.1)
ox,

The constant uniform temperatures at the top and bottom surfaces of the structure

T, =107, and T, =T, respectively, are applied as the thermal loading.

The normalized mode I and mode 1II stress intensity factors are plotted with respect

to nonhomogeneity parameter p for various values of nonhomogeneity parameter
g in Figure-5.2.1.2 and Figure-5.2.1.3 and for various values of nonhomogeneity

parameter r in Figure-5.2.1.4 and Figure-5.2.1.5, respectively.
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Figure-5.2.1.2 Normalized mode I stress intensity factor versus nonhomogeneity

parameters p and ¢ under steady state thermal loading, r=1.0,

2h =2h, =2h,=h,[2=c, T, =10T, and T, =T,.
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Figure-5.2.1.3 Normalized mode II stress intensity factor versus nonhomogeneity

parameters p and ¢ under steady state thermal loading, r=1.0,

2h, =2h, =2h, =h,[2=c, T, =10T, and T, =T,.
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Figure-5.2.1.4 Normalized mode I stress intensity factor versus nonhomogeneity

parameters p and r under steady state thermal loading, ¢=1.0,

2h, =2h, =2h, =h,/2=c, T, =10T, and T, =T,.
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Figure-5.2.1.5 Normalized mode II stress intensity factor versus nonhomogeneity

parameters p and r under steady state thermal loading, ¢=1.0,

2h, =2h, =2h, =h,/2=c, T, =10T, and T, =T,.

Under the applied loading condition, the mode II stress intensity factor is found to

be numerically larger than the mode I stress intensity factor. It is shown that the
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increase in both nonhomogeneity parameters p and ¢ increases the mixed-mode

stress intensity factors. It is observed that mode I and mode II stress intensity
factors are decreasing functions of nonhomogeneity parameter r for all interested

values of p. When p, ¢ and r have small values, the effect of their variation on

mixed-mode stress intensity factors is more significant.

The deformed shape of the structure is shown in Figure-5.2.1.6 for p=¢g=r=1.0.
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mEmmA

T T
T

wwwww

Figure-5.2.1.6 Deformed shape of the structure for p =g =r =1.0.

5.2.2 Periodic Embedded Cracking Problem under Thermal Loading

In this subsection, fracture behavior of the orthotropic FGM coating is investigated

considering the periodic embedded cracks of spacing W as shown in Figure-5.1.2.

The finite element model of the problem is created considering a unit cell. The

applied symmetry and periodicity conditions [126] are depicted in Figure-5.2.2.1.

Since the x,- axis is the symmetry axis, the heat flux and the horizontal

displacement component u, is fixed as zero at x;, =0 line. Since the structure is
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infinitely long in x, direction, the lines x, =i(n/2)W, (n=l,2,3,...), are also
symmetry lines [126]. Therefore, the heat flux is fixed as zero at x, =W/2 line and
the structure is allowed to be free to undergo both rigid body translation and
rotation at x, =W/2 [126]. The free rigid body translation and rotation condition is
achieved by using a rigid block in contact with the unit cell at x, =W/2 and

creating a set of coupling between the horizontal displacement components of the

coinciding nodes of the unit cell and the rigid block [126].

FGM Coating

Homogeneous Bond-Coat Rigid Block

Homogeneous Substrate
Wi2
by
uy=0atx; =0 u, of coinciding nodes are
coupled at x; = W/2

T P !
—=0atx; =0 oT

X, =0atx, =Wn2

ox,

Figure-5.2.2.1 Applied symmetry and periodicity conditions on the unit cell.

The insulation of the crack surfaces is imposed to the finite element model by

fixing the heat flux as zero at the crack surfaces such that:

I o 0<x <c, x,=0° (5.2.2.1)
ox,
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The constant uniform temperatures at the top and bottom surfaces of the structure

T, =107, and T, =T, respectively, are applied as the thermal loading.

The normalized mode I and mode II stress intensity factors are plotted with respect
to the relative crack length ¢/W for various values of nonhomogeneity parameter
p in Figure-5.2.2.2 and Figure-5.2.2.3, for various values of nonhomogeneity
parameter ¢ in Figure-5.2.2.4 and Figure-5.2.2.5 and for various values of
nonhomogeneity parameter r in Figure-5.2.2.6 and Figure-5.2.2.7, respectively. In

these figures, examined values of ¢/W change from 0.02 to 0.45.
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Figure-5.2.2.2 Normalized mode I stress intensity factor versus ¢/W and the
nonhomogeneity parameter p under steady state thermal loading, ¢ =1.0, r=1.0

2h, =2h, =2h, =h,/2=c, T, =10T, and T, =T,.
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Figure-5.2.2.3 Normalized mode II stress intensity factor versus ¢/W and the
nonhomogeneity parameter p under steady state thermal loading, ¢ =1.0, r=1.0

2h, =2h, =2h, =h,/2=c, T, =10T, and T, =T,.
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Figure-5.2.2.4 Normalized mode I stress intensity factor versus ¢/W and the
nonhomogeneity parameter ¢ under steady state thermal loading, p =1.0, r=1.0

2h, =2h, =2h, =h,/2=c, T, =10T, and T, =T,.
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Figure-5.2.2.5 Normalized mode 1II stress intensity factor versus ¢/W and the
nonhomogeneity parameter g under steady state thermal loading, p =1.0, r=1.0

2h, =2h, =2h,=h,/2=c, T, =10T, and T, =T,.
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Figure-5.2.2.6 Normalized mode I stress intensity factor versus ¢/W and the
nonhomogeneity parameter r under steady state thermal loading, p =1.0, ¢ =1.0

2h, =2h, =2h, =h,[2=c, T, =10T, and T, =T,.
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Figure-5.2.2.7 Normalized mode 1II stress intensity factor versus ¢/W and the
nonhomogeneity parameter r under steady state thermal loading, p =1.0, ¢ =1.0

2h, =2h, =2h, =h,/2=c, T, =10T, and T, =T,.
It is seen that mode I and mode II stress intensity factors vary very little until
¢/W =0.28 and then make sharp decreases with increasing ¢/W for all examined

values of nonhomogeneity parameters p, g and r.

The deformed shape of the unit cell is shown in Figure-5.2.2.8 for ¢/W =0.3 and

p=g=r=1.0.
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Figure-5.2.2.8 Deformed shape of the unit cell for ¢/W =0.3 and p=g=r=1.0.
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CHAPTER 6

CONCLUSIONS AND FUTURE STUDIES

6.1 Conclusions

In certain applications, thermal barrier coatings designed for high temperature
environments are bonded to the substrate through a bond-coat layer that provides

oxidation resistance [137].

In this study, it is aimed to investigate the fracture behavior of an orthotropic FGM
coating bonded to a homogeneous substrate through a homogeneous bond-coat
considering embedded cracking problems under crack surface tractions or steady
state thermal loading. Both analytical and computational approaches are utilized to

obtain the solutions.

In Chapter 2, a single embedded crack in an orthotropic FGM coating bonded to a
homogeneous orthotropic substrate through a homogeneous orthotropic bond-coat
is investigated analytically considering the uniform normal or uniform shear
stresses on crack surfaces. It is assumed that the length of the structure is infinite.
For the FGM coating, the gradation in the thickness direction is represented by the
effective stiffness term in an exponential form and effective Poisson’s ratio,
stiffness ratio and shear parameter is kept constant. The crack lies perpendicular to
the thickness direction and principal axes of orthotropy are considered as parallel
and perpendicular to the crack line. Governing equations for the coating, bond-coat
and substrate are derived using the equilibrium and the stress-displacement

equations. Then a homogeneous ordinary differential equation system is obtained
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for each medium applying Fourier transformations to the corresponding governing
equations. After satisfying the continuity and boundary conditions, a couple of
singular integral equations are derived. These singular integral equations are solved
using an expansion-collocation technique. Then, the expressions for the mixed-
mode stress intensity factors, energy release rate and crack opening displacements

are obtained.

In this study, the adopted computational approach employs the finite element
method in conjunction with the displacement correlation technique (DCT). In
Chapter 3, the used computational approach is described and the displacement
correlation technique is reviewed. Utilization of the computational approach
provides the solutions for the analytically untractable problems without the

restrictive assumptions.

In Chapter 4, after verifying the analytical study performed in Chapter 2, some
numerical results based on analytical and/or computational methods are given
considering the single or periodic embedded cracking problems under crack surface

tractions.

In order to verify the derived analytical formulation, results of the present study is
compared with the analytical results given by Cinar and Erdogan [134] for an
embedded crack in an orthotropic homogeneous strip and it is observed that the two

studies agree with each other quite well.

Then, the numerical results for the single embedded crack problem are presented
considering the pure uniform normal stress on crack surfaces. Both analytical and
computational solutions are given for this problem to assess the computational

method. These results show how the material nonhomogeneity constant of the

coating fic, the relative coating thickness above the crack line A, /c, the relative

thickness of the bond-coat A, /c, shear parameter of the coating &, , stiffness ratio
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of the coating &, and effective Poisson’s ratio of the coating v, affects the fracture

related parameters. It is assumed that material properties are continuous at the

coating and bond-coat interface with discontinuous derivatives and the

homogeneous substrate material is isotropic. While examining the effects of &, /c
and h,/c on fracture parameters, the dimensions of the structure are taken as
2h, =2h,=h,/2=c and h/0.95=h,/0.05=h,/2=c, respectively. To
investigate the effects of x,, &, and v, on the fracture behavior of the structure,

the geometric dimensions are taken as 2k, =2h, =2h, =h,[2=c.

It is observed that mode I stress intensity factor of the single embedded crack is
numerically larger than the mode II stress intensity factor when the crack surfaces

are under the pure uniform normal stress.

Considering the uniform normal stress on the surfaces of the single embedded

crack, the following concluding remarks can be stated:

e Mode I stress intensity factors and energy release rates are decreasing
functions of material nonhomogeneity constant fc for all examined values
of h/c, hy/c, k,, &, and v, . Absolute values of mode II stress intensity
factors are also decreasing functions of material nonhomogeneity constant
pe for all examined values of i, /c, k,, &, v, and small values of A, /c.
For larger values of &, /c, absolute values of mode II stress intensity factors
first decrease and then increase with increasing fc from —2.0 to 2.0. As
the material nonhomogeneity constant fc decreases from 2.0 to —2.0, the

effect of its variation on mode I stress intensity factor and energy release

rate becomes more significant. The influence of variation in fc on mode I

stress intensity factor is more noticeable for large values of 7, /¢ due to the
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dependence of effective stiffness of coating on both the nonhomogeneity

parameter and the distance from the crack line.

Mode I stress intensity factors and energy release rates first decrease and
then become almost constant with increasing 4, /¢ for all considered values
of fc. Absolute values of mode II stress intensity factors also show an

almost constant behavior for large values of A, /c .

Mode 1 stress intensity factors show first a decreasing and then an
increasing trend with increasing «x, for the examined small values of fc.
Mode II stress intensity factors decrease in absolute values with increasing
k, for the negative large values of Bc and become almost insensitive to the

variation in k, for positive large values of fc. The energy release rates are

increasing functions of x,, for all considered values of fc.

Mode I stress intensity factors and absolute values of mode II stress
intensity factors are decreasing functions of &, for all considered values of
Pc. As 504 becomes smaller, the effect of its variation on mode I stress
intensity factor seems to be more significant. The energy release rate first
decreases and then becomes almost constant with increasing &, for all

examined values of fc.

The effect of variation in v, on mode I and mode II stress intensity factors

depends on the degree of material nonhomogeneity. Mode I stress intensity

factor decreases and absolute value of mode II stress intensity factor
increases with increasing v, for the examined positive values of fc. On

the other hand, mode I stress intensity factor increases and absolute value of
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mode II stress intensity factor decreases with increasing v, for the
considered negative values of fc. It is observed that the influence of the
variation in v, on the energy release rate is relatively small for all

examined values of fc.

e Mode I stress intensity factor and energy release rate increase and the

absolute value of the mode II stress intensity factor decreases slightly with

increasing relative bond-coat thickness #,/c for all considered values of

pe.

e The normalized normal crack opening displacement and absolute value of

the normalized tangential crack opening displacement decrease with
increasing examined values of fc, k,, 8, and v,. The normal crack
opening displacement is symmetric and tangential crack opening

displacement is anti-symmetric with respect to the center line of the

structure at mid-length.

When the presented results of analytical and computational solutions are compared

with each other, a good agreement is observed.

Then, the numerical results for the single embedded crack problem are presented
based on the analytical method considering the pure uniform shear stress on crack

surfaces. These results show the effects of the material nonhomogeneity constant of
the coating fic, shear parameter of the coating «,, stiffness ratio of the coating &,
and effective Poisson’s ratio of the coating v, on the fracture parameters. It is

assumed that material properties are continuous at the coating and bond-coat

interface with discontinuous derivatives and the homogeneous substrate material is
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isotropic. For all of the examined cases, geometric dimensions of the structure are

taken as 2h, =2h, =2h, =h,[2=c.

When the crack surfaces are under the uniform shear traction, it is observed that the
crack is always closed at either of its tips which requires the reformulation of the
problem by taking into account the crack closure condition. For this reason, results
for the mixed-mode stress intensity factors based on present study considering the
uniform shear traction on crack surfaces are only applicable in superposition
applications if the resultant mode I stress intensity factor is positive at both of the

crack tips.

It is also observed that mode II stress intensity factor of the single embedded crack
is the numerically larger stress intensity factor when crack surfaces are under the

uniform shear stress.

Considering the uniform shear stress on the surfaces of the single embedded crack,

the following concluding remarks can be stated:

® Mode I stress intensity factor at the open tip of the crack is decreasing

function of fc and mode II stress intensity factor is increasing function of

pe for all examined values of k,, &, and v, .

e Mode I stress intensity factor at the open tip of the crack decreases

considerably with increasing x, for small values of fc and becomes
almost independent of x, for large values of fc. Mode II stress intensity
factor decreases with increasing «, for all examined values of fSc. When

k, has small values, the effect of its variation on mode II stress intensity

factor is more significant.

104



® Mode I stress intensity factor obtained at the open tip of the crack and mode

II stress intensity factor are decreasing functions of &, for all considered
values of fc. The effect of variation in &, on mode I and mode II stress

intensity factors is less significant when &, has large values.

e Mode I stress intensity factor obtained at the open tip of the crack behaves

as a decreasing function of v, for the considered negative values of Sc and
an increasing function of v, for the considered positive values of fc.

Mode II stress intensity factor shows the opposite trend.

e Normalized normal crack opening displacement is anti-symmetric and
normalized tangential crack opening displacement is symmetric with
respect to the center line at the mid-length of the structure. The anti-
symmetry in normalized normal crack opening displacement means that a

crack closure condition is experienced by the structure.

Then, using the computational approach, embedded periodic cracking problem is
investigated in the orthotropic FGM coating bonded to a homogeneous isotropic
substrate through a homogeneous bond-coat considering uniform normal stress on
the crack surfaces. It is assumed that the cracks of length 2¢ are located parallel to
the boundaries with spacing W in the structure of infinite length. The directions for
the principal axes of orthotropy and material property distribution in each layer are
taken the same as the ones for previously investigated single embedded crack
problem. The presented numerical results show the effects of crack periodicity and
material nonhomogeneity on the fracture parameters. The geometric dimensions of

the structure are taken as 2k, =2h, =2h, =h,[2=c.

It is observed that mode I and mode II stress intensity factors and energy release

rate of the periodic cracks under the uniform normal stress are almost constant if
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W is relatively large with respect to ¢. As W decreases relative to ¢, mixed-mode
stress intensity factors and energy release rate first make a minimum and then start
increasing significantly. The reduction in these fracture parameters results from the
interaction of stress fields developing around the cracks. Similar behavior due to
the same reason was observed also by Cinar and Erdogan [134] for two collinear
cracks in an orthotropic homogeneous strip and by Dag et al. [122] for periodic
interface cracks between an orthotropic FGM coating and orthotropic
homogeneous substrate. In the examined periodic cracking cases, the influence of

nonhomogeneity constant fc on the mode I stress intensity factor and energy

release rate is insignificant for relatively small values of W with respect to c.

In Chapter 5, single and periodic embedded cracking problems in an orthotropic
FGM coating are investigated computationally under steady state thermal loading
assuming the plane stress state. The orthotropic FGM coating is bonded to a
homogeneous isotropic substrate through a homogeneous isotropic bond-coat
considering an infinite length. The embedded cracks of length 2c¢ are located
parallel to the boundaries in both of the single and periodic cracking problems. In
periodic cracking case, the spacing between the cracks is equal to W . The top and
the bottom surfaces of the structure are subjected to uniform constant temperatures
and crack surfaces are insulated. The material property gradation in the FGM
coating is represented in a power function form with separate nonhomogeneity

parameters p, g and r for elastic properties, thermal expansion coefficients and

heat conductivities, respectively. For the numerical results, the top surface of the
coating is taken as 100% orthotropic alumina, the bond-coat is taken as nickel-
chromium-aluminum-zirconium and the substrate is taken as nickel. It is assumed
that the material properties at the coating and bond-coat interface are continuous
with discontinuous derivatives. The geometric dimensions of the structure are taken

as 2h =2h, =2h, =h,[2=c.
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According to the presented numerical results for the single embedded crack
problem under thermal loading, the mode II stress intensity factor is numerically
larger than the mode I stress intensity factor. The mixed-mode stress intensity

factors are increasing functions of nonhomogeneity parameters p and ¢ and
decreasing functions of nonhomogeneity parameter ». When p, ¢ and r have

small values, the effects of their variation on mixed-mode stress intensity factors

are found to be more significant.

According to the presented numerical results for the periodic embedded cracking
problem under thermal loading, the mixed-mode stress intensity factors are almost
constant if W is relatively large with respect to ¢ and then make sharp decreases
with decreasing W relative to ¢ for all examined values of nonhomogeneity

parameters p, g and r.

Using the analytical method developed in this study to examine the fracture
behavior of the orthotropic FGM coating bonded to a homogeneous substrate
through a homogeneous bond-coat, design optimization of the structure can be
made efficiently by applying tractions to the crack surfaces and employing the
superposition technique. The adopted computational method is found to agree very
well with the analytical method. Using the computational method it is possible to
deal with more complex problems related with the orthotropic FGM coatings
without restrictive assumptions about the form of gradation profiles and loading

condition.

6.2 Future Studies

In this study, the examined embedded cracks in the orthotropic FGM coating are

parallel to the boundaries. As a future study, inclined embedded cracks in the

orthotropic FGM coating can be investigated.
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In this study, the investigated cracks are embedded in the orthotropic FGM coating.

The surface cracks in the structure can be considered in the future.

In the future studies, crack propagation analysis of the structure can be performed

considering both embedded and surface cracks in the structure.

In this study, the crack closure condition is not taken into account. This condition

can be dealt with in the future studies.
The thermal loading condition considered in this study is assumed to be steady

state. Transient thermal loading conditions can be studied in the future works using

temperature dependent material properties.
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APPENDIX A

DETERMINATION OF UNKNOWN FUNCTIONS

The functions Yj(cu), Z (@), V.(@), W.(&), X (@), L. (@), Pj(w) and Qj(aJ),

J J J J J

(j=1,2,3,4), are found from the following equations.

SIS

D

1,16

S NN =KX=

S

<
TSEREE

g

Moy Mg - - - Mg |

g

<
AgAA

S

(A.1a)

SO O O O O O O oo o oo o o o~ o O

P =Re - - B
S
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[Z,(@)] [0]
Z,(@)| |0
Z(@)| |0
Z,(@)| |1
W(@)| |0
_mll m, my 6 ] Wz(w) 0
m,, My, m 6 W3(w) 0
W, (o)| |0
L) | |0
L(o)| |0
| M6y Mien - -+ Mige | L3((0) 0
L(o)| |0
0,(@)| [0
0, (@) |0
0\(@)| |0 Ab)
10.(@)] [0 '
where
m,, =N, (0)s (0)+v,io, (j=1234) (A.2)
m,, =N, (@)s,(@)+vyio), (j=5,6,7,8) (A.3)
m,, =0, (j=9,10,...,16) (A.4)
m,,; =s,(0)+ N, (0o, (j=1234) (A.5)
m,, =—(s,(0)+ N, (0)iw), (j=56,7.8) (A.6)
m,,; =0, (j=9,10,...,16) (A7)
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m3,j = le} (a))’ (,] = 1’ 27 37 4) (A8)

my,; =—iaN (w), (j=5,6,7,8) (A.9)
m;,; =0, (j=9,10,...,16) (A.10)
m,,; =i, (j=1,2,34) (A.11)
m,, =—iw, (j=5,6,7,8) (A.12)
m,,; =0, (j=9,10,...,16) (A.13)
my, = (N (@)s, (@) +vyio)expls (@), 5, ) (j=1,2,3,4) (A.14)
ms; =0, (j=5,6,...,16) (A.15)
mg, = (s, (@)+ N, (@)iw)expls (@ /3, ) (j=1,2,3,4) (A.16)
m, =0, (j=5,6,..,16) (A.17)
m,, =0, (j=1,2,3,4) (A.18)

:EOCXP( ?'hﬂ/_)(voi(o+Nj( )j( )exp( h\/_o) (j=5,6,7,8)

" 1-v;

(A.19)
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2
m, = E32[V3"“’+(%J B, (o)r, (@ Jexp( (@), 5, ). (j=9.10,11,12)
3

1-v;
(A.20)
m,,; =0, (j=13,14,15,16) (A.21)
mg,; =0, (j=1,2,3,4) (A.22)

my; = EOeXp(_?hﬂ/é‘_O)(sj(a))+Nj( )za))exp( o)h \/_0) (j=5,6,7,8)

2x, +v,)

(A.23)

my == i ()i + B, (@)explr, (@), 8, ) (j=9.10,11,12) (A24)
2k, +vy)

mg; =0, (j=13,14,15,16) (A.25)
m,,; =0, (j=1,2,3,4) (A.26)
my, =expl-s,(@h[3,) (j=5.6,7.8) (A.27)
my , =—expl-r, (@[3, ) (j=9,10,11,12) (A.28)
m,; =0, (j=13,14,15,16) (A.29)
my,; =0, (j=1,2,3,4) (A.30)
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mg, =N (@)expl-s, (@), /5, ) (j=56,7.8)

m

(@), f5, ) (j=9.10.11,12)

0,; =—B; ( CXP(

my,,; =0, (j=13,14,15,16)

(A31)

(A.32)

(A.33)

(A.34)

my, ;= lf‘:/z{v3iw+ (gzj B, (@)r, (w)J explr, (@), + 1, W8, ) (j=9,10,11,12)

m, ;= —1E—42[v4ia)+ (g—zj D, (o), (a))J exp(— n (@), +h, )\/5_0)

m,,; =0, (j=12,..,8)

my; = Li(_ F; (w)l + @B, (a)))exp(— r; (a))(h3 +h, )\/5_0),

2k, +v,)

(A.35)
(j=13,14,15,16) (A.36)
(A.37)

(j=9,10,11,12) (A.38)

mlz,jz—L)i(—nj(a))i+a)Dj( )expl-n, (@)(h, + )3, )

2x, +v,

my,; =0, (j=12,..,8)

138

(j =13,14,15,16) (A.39)

(A.40)



my,, = expl—r, (@)h, + b, W5, ) (j=9,10,11,12) (A41)

my,,; =—expl=n (@), +m, W3, ) (j=13,14,15,16) (A.42)
m,,; =0, (j=12,...8) (A.43)
my, , = B, (@)expl-r, (@), + 1,3, ) (j=9,10,11,12) (A.44)
my,,; =D, (@)expl-n, (@), +1,){3, ) (j=13,14,15,16) (A.45)
mys,; =0, (j=12,..,12) (A.46)

s, = [mm t (%Jznj (@)D, (a))J expl-n, (@), +hy + 1, W5, )

4

(j =13,14,15,16) (A.47)

my,; =0, (j=12,..,12) (A.48)

mye, =i(=n,(@)i+ D, (@))expl-n, (@)h, +hy+ 1, |3, ) (j=13,14,15,16)
(A.49)
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APPENDIX B

ASYMPTOTIC BEHAVIORS OF THE INTEGRANDS

To determine the asymptotic behaviors of the integrands Fll(w,O), F, l(— @,0),
FIZ((U’O)7 F12 (_ (U,O), D11(w,0)7 Dll(_ (U,O), D12 ((U,O) and DIZ(_ (U,O) as w
approaches infinity, two orthotropic FGM half planes are considered instead of the

orthotropic FGM coating of finite thickness as shown in Figure-B.1.

Orthotropic FGM Half Plane #1

Eq 4 x

Figure-B.1 Illustration of the two orthotropic FGM half planes.

In a similar way described in Section 2.2, governing equations for the orthotropic

FGM half planes can be obtained as [115]:

2. (i) 2. (i) 2. (i) (i) ()
0 u2 +B 0 u2 + B, o°v N Ju +8v _0 (B.1a)
dy X oxdy ady ox
92 92y 92y PG ou
+ + + — 4y, — =0 B.1b
ax2 ﬂ 1 ayz ﬂ 2 axay ﬂ 1 ay 0 ax ( )
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where the superscript (i) is (1) for the orthotropic FGM half plane #1 where y > 0
and (2) for the orthotropic FGM half plane #2 where y<0. S, and S, are given
in Eq.(2.2.17).

In a similar way described in Section 2.2, the displacement and stress components
for the orthotropic FGM half plane #1 can be obtained as given in Eq.(B.2) and
Eq.(B.3), respectively.

u(l)(x, y)= i Ti[\;l] (a))exp(sj (w)y + icwc)da) (B.2a)
v (x, y)= i TZZ:M SN, (@)expls @)y + iox)dw (B.2b)

o (x, y)= EOLP(ZW){L TZM] (@), iw+ N, (w)s, (a)))exp(sj (w)y + l(()X)dCU}

(B.3a)

o(xy)= Ey expl() {L Tzz:l\?l] (w)(Nj (@)iw+s, (a)))exp(sj (w)y + zcwc)da)}
(B.3b)

A

where M j(a)), ( j=1, 2), are unknown functions of @. sj(a)) and N j(a)),

(j =1,2), are given in Eq.(2.2.25) and Eq.(2.2.26), respectively.

In a similar way described in Section 2.2, the displacement and stress components
for the orthotropic FGM half plane #2 can be obtained as given in Eq.(B.4) and
Eq.(B.5), respectively.
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14(2)()c,y):L Ti[\;lj(a))exp(sj(a))y+iazx)da) (B.4a)

V(5 y) = [0 (@, (@)expls, (@)y +iaxkio (B.4b)

(B.5a)

O'S)(x, }’) = EOLP(W){L Til\;l] (a))(Nj (a))ia)+sj (a)))exp(sj (a))y + za)x)da)}

2k, +v,) |27 1 =

(B.5b)

where M ](a)) (j=3,4), are unknown functions of @. s J(a)) and N J(a))

(j =3,4), are given in Eq.(2.2.25) and Eq.(2.2.26), respectively.

In order to determine the unknown functions M ; (), (j=1,2,3,4), the following

boundary and continuity conditions have to be satisfied.

o)(x,,0)= 02 (x,,0), x| < o0 (B.6a)
o) (x,,0)= 02 (x,,0), x| <o (B.6b)
f (x ), x| <c
9 (9, 0) - (x,.0)) =] | (B.6c)
ox, 0, |x1| >c
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fo(x)s |x | <c
L (uP(x,.0)-u? (x,0)=1" | (B.6d)
ox, 0, |x1| >c

where fl (xl) and fz (xl) are the primary unknown functions of the problem.

Expressing Eq.(B.6) in the transformed coordinate system and applying Fourier

transformations to them, the following system of equations is obtained:

iM Holvyio+ N, (0)s;(@)- 24: o)vyio+ N (@)s,(@)=0 (B.72)
ZM @V, (@) s, (@) ZM @V, (@)~ s, (@)=0 (B.7H)

2 4 e
ZA{ZM (0N, (0)->M ()N, (a))J = [6(0)exp(—icr)dr (B.7¢)
J=1 =3 /8,
. s I3,
ZA{ZM Ho)->m, (a))J = j &, (t)exp(—icor)dr (B.7d)
J=1 Jj=3 7(‘/\/?(,

where (,/31() fl( t) and (/52() o, fz( t) From Eq.(B.7), the unknown

functions M i (), (j=1,2,3,4), can be determined in the following form.

c/ Vo c/ e

M ,(@)=Y,(@) [ ()exp(-ian)dt+Z,() [4,()exp(-iar)dr, (j=1,2) (B.8a)
ﬂ/ﬁ &

R L/ﬁo t/ﬁo

M, (0)=V, j 6,(t)exp(~iax)dr + W (@ j &, (t)exp(—ier)dt, (j=3,4) (B.8b)
/8 ~c/\é
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Assuming that p(xl) is the normal traction and q(xl) is the shear traction at the

crack surfaces, the problem is reduced to two singular integral equations using the

following boundary conditions.

|< c (B.9a)

0y (x1 ’O) = P(x1

Oy (xl ’0) = Q(xl (B.9b)

In a similar way described in Section 2.2, the singular integral equations are

obtained as follows.

/&
lim [, ()d I £, (@, y)cos(a(x—1))de
B s

% 1 %A

- A M o.y)eoslofs— o
s 2,
ARy 1% -

+ j &, (t)dt— j if, (o, )sin(@(x—1))de
—L‘/\/?O 272:0
Ry 15 4

+ I¢1(f)df—j—iF11(— o, y)sin(w(x—1))dw
s 27,
/3, | -

+ J' 4, —J' (@, y)cos(a(x —1))dw
m 2
ARy 1 %A

- j¢2 (t)dtz—jF12 (- @, y)cos(a(x—1))dw
—L‘/\/?O ﬂ:O
RN 1% ~

+ |4, (t)dtz—fiFlz(w, y)sin(@(x —1))dw
-\ 7%

N I 1-v?
+ 6. (1)t [~iF, (- o.y)sin(@(x - ot =-—"05,p([5,x)  (B.100
AT ) E,
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o\%
mgg{ [4,) j 1 (@, y)cos(@(x —1))dew

w27

/N8y 1=

+ .|.¢1 2_-[ — o, y)cos(w(x—1))dw
Bty g
o, 1 .a

+ j¢1 (t)dtz—jiDn(a), y)sin(@(x—t))de
—L‘/\/? 7[0
e |

+ j¢1 dtz—j iD,, (- @, y)sin(a(x —1))dew
% T
/N8y

+ J.(Dz( dtz—J.D12 a)y)cos( (x t))d
/&
RN 1 %4

+ I¢2 (r)dtﬂjl D, (- @, y)cos(@(x—1t))dw
7(‘/\/?(, 0
N, 1 % A

+ '|'¢2(t)dt2—'|'iD12(w,y)sin(a)(x—t))da)
/5 T

/&
+ j¢2 dtLJ‘ lD12 (— @, y)sin(e(x - t))dw} Wq(\/ﬁ_ox) (B.10b)
AT 0

where |x| < c/ \/5_0 and,

a) y = Zz_:(twvo + N s (a)))fj (a))exp(sj(a))y) (B.11a)
Fulo.) =3 iov, + N, (@) ()2 (@)exsls, (@) @.11b)
Dy (0.5)= X s, @)+ N, {0k, (@)expls, (o)) ®B.110)
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By (@.y)= Y (s, (@)+ N, (@)io)2, (@)expls, (@)y) (B.11d)

1

A

Asymptotic expansions of the integrands I:"“(a), y), Fll(—a),y), ﬁlz(w, y),

ﬁlZ(_ @, )’) ) ﬁn(@ )’), 1311(— @, y), 1512((0, y) and 1512(— @, y) are expressed in the

following form as @ approaches infinity.

A A A

I ((0, )’) =F, (a))exp(sl ((())y) +F, (a))eXp(Sz (a)))’) (B.12a)

A A

ﬁllm (_ o, )’) =Fu (_ w)exp(51 (_ w))’)+ F, (_ a))exp(s2 (_ w))’) (B.12b)

A A

13‘120o (@, y)= Fy” (w)eXP(Sl (@)y)+ Fo” (w)eXP(Sz (@)y) (B.12¢)

A

ﬁlzm (_ @, y) = 13‘1210o (_ w)eXP(Sl (_ w)y) +Fy, (_ w)eXP(Sz (_ w))’) (B.12d)

A A

ﬁllw (w, }’) =D,,” (w)exp(sl (w)}’)+ D,,” (a))exp(S2 ((O)y) (B.12¢)

A A A

D,~ (_ , )’) =D,,” (_ w)exp(s1 (_ w))’)"‘ D,,,” (_ a))exp(s2 (_ w))’) (B.12f)

A A A

D,,” (w, }’) =D~ (w)exp(sl (w)}’) + Dy, (a))exp(S2 (w))’) (B.12¢)

A A A

D,,” (_ w.y)= D~ (_ w)eXP(Sl (- w)y)+ Dy,,” (_ w)eXP(Sz (-w)y) (B.12h)

where

9>

111W(w):ao +ZJ_2 (B.13a)
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By (o) c0+c22
ﬁ“;(_w)zc]ﬁ%
Fia (w)=eo+zl+%

Dlll (a))_a10+_+ 2 +_3
w

D,1,” b, b, b,
D,, (a)):blo+—+_2+_3
w ) @

Cu Cu o, G

>t

15 W_a) = 4+
111 ( ) Cio p - 4
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(B.13b)

(B.13¢)

(B.13d)

(B.13¢)

(B.13f)

(B.13g)

(B.13h)

(B.13i)

(B.13))

(B.13k)



dll d12 dl%

ﬁllzw(_w):dm"'_"'_z"‘_g (B.131)
(0] (0] (0]
~ e
Dy,," (@) o3 (B.13m)
D,,” (@)= f +& (B.13n)
122 —J1o (02 .
D, (~aw)=g,+52 B.13
121 —810"'(02 (B.13p)
A h12
D,,, (_a))=h10 +? (B.13r)

where a,, a,, b, b,, ¢,, ¢,, dy, d,, e, e, e, fo, fis fas 800 815 825 oy Iy
hy, ayy, ay, Gy, ay, by, by, by, by, ¢y ¢y €y €y dyg,s dyy, dy, dys e

e,s fi> fias 80> &ns M. hy, are determined using symbolic manipulator

MAPLE as follows:

a, = (1/4)i\/ Ky + v Kg _1(_ VKo _1+Vo\/ Kg _1XV0 _V(? _K()V(§ + K,
-1
+\/K§—1V§—\/K§—1X(1+V§+2V0KOL/K§—1) (B.14)

a, =—(32)i’ C it + 2t — v + 210K — W2+ dv i — 20K — 1
+a K, — Wik, +3vek, —dk Ky —1v, =3k, +8Vik, — 2K, — 1V K,
— 8V K, + 2K\ K2 —1 =63 K2 =13 —vE + 6V, /K2 —1 +1)

(— K, ++/ K2 —1)_3 (1(0 +/K2 —1)_5/2(/(5 1) (B.15)
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by = —(1/4)iy K, — K2 —I(VOK‘O +1+V K] —IX—VO +V K Ve — K,
+\/K§—1V§—\/K§—1X(1+V§+2VOKOL/K§—1)_I (B.16)

b, = (1/32)iy* (w2 it =2k + 4Vl + 260K — v —dv i — 2K — 1
+a K, — Wik, —3vik, — 4K K, —1v, +3K; —8Vvok, — 2k, — 1V K,
+ 8V, K, + 2K K2 —1 =63 K2 =13 + V2 + 6V, K2 —1—1)

(k2 —1)" (KO — K —1)_5/2 (KO +4/K2 —1)_3 (B.17)

¢y = (/4)i\ K, — /K, —I(VOK'O F1+v, K0 —IX—VO +V Ve — K,
+ K2 = =K} —1X(1+v§ + 2V, i, K —1)_1 (B.18)

c, = —(1/32)1'72(21/3 K} =2k, +4v K] + 2K+ Ko — v —dv k) — 2K 4K —1

+a K, — Wik, —3vik, — 4K K, —1v, +3K; —8Vok, — 2\ K, — 1V K,
2 2 3 2 2
+8v,k, +21(0\//(0 —1—6\/1(0 —lv, +vy +6v 4K, —1—1)

(2 —1)" (1(0 — & —1)_5/2 (1(0 +JK2 —1)_3 (B.19)

d, = (/a2 -1}k, ++/x2 —1(1/01(0 +1-v K] —IXV0 + K, =K, —1)

((1+vg+2v0;c0) K(f—l)_l (B.20)

d, = (1/32)iy (v k! =2k + 4V — 20K — v — v,k + 260K —1
—d\ K, W Kk, =3Vik, +4K Ko —1v, +3Kk; =8V K, +24/K; — 1V K,

+ 8V, Ky — 2Ky Ko — 1+ 6/ K2 =113 +V2 =6V, K2 —1 —1)
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(KO —Jx —1)_3 (KO +4K2 —1)_5/2(143 ~1)7* B.21)

e, =(—v0 +V, + KV, — K, —\/KOZ ~1v; +\/K'§ —1lv, + Kk, ++/K; —1)

(4(1+v§ +2v,k, N K2 —1)_1 (B.22)

e = y(2v§1c§ =2k, —2Kkp — Wik, + 2K, Ko —1 +1—V§)
(8(1(0 L —1)2\/1(0 +y Ky — 1K —1)1 (B.23)

e, = 8)y2v, (v2 —1)x2 1) (1(0 +y K — 1)_3 (1(0 —\K; —1)_3 (B.24)

fo =—(—v0 +Vo +KWVe — Ky HA/ Ko — Ve =K, —1Xv0 + K, — K] _1)
(4(1+v§ +2v,k, N K2 —1)_1 (B.25)

fi =—7(2V§’f§ =25 + 2\ K, — v K, = 2K, K, —1+1—v§)
(81/1(0 —\Kp —1(1(0 +y K —1)21/1(3 —1)1 (B.26)

£ =~ 0/8)v v 1 1)l + Vs 1) o o 1) ®.27)
o =—(—v0 +V + Ko — Ky A Ky — V) =K —1Xv0 + K, — KL _1)

(4(1+vg+2v0x0 Kg—l)_l (B.28)
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= ovin? —2x2 +2K2 ik, — 2k, K2 1 +1-v2)
(81/1(0 L (K‘O + K, —1)21/1('3 —1)_1 (B.29)

g, =8y, (v2 —1)x2 -1)" (1(0 +4K2 —1)_3 (— K, ++ K —1)_3 (B.30)

h, = (—vo +V, + KV — K, —\//cj ~v; +\/1c§ —1lv, + &, ++/ K] —1)
(4(1+v§ + 2V, i, N K —1)_l (B.31)

h, = 7/(21/ Ky =2k, —24Jk; — WV K, + 2K, K; —1+1-V, )
((K‘— K‘ )W(+ K‘— K‘—l) (B.32)

h, = (1/8)y%v, (v2 —1)x2 - 1) (1(0 +4K2 —1)_3 (KO —JK —1)_3 (B.33)

a, :—(Kovj + K, =Ko =1V, +Vv, +V, K =Ko =1,k XVOK' +1+vy K —1)
(2(1+v§ + 20k, N K —1)_l (B.34)

a,, = ¥(x, +v0)(41/1(§ — 1K, + K —1)_1 (B.35)

a,, =—(1/4)x, +v, )y’ vo( 1) (K‘O - K} —1)_3 (K‘O +y K] —1)_3 (B.36)
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_ 4 3 3 2 2.2 2 2 2 2 2
a; ——(K‘O +3V Kk, — Ky K, —1+2v Kk, =3k, K, —1v, — K, =2k, — IV, K,

=TV Ky + KoKy =1 —6V; + Vi Ko —1);/3(32(1(3 —1)" (K‘O VL —1)13/2

-1

(;co — K —1)6j (B.37)

b, = (Kovj + Ky HAlKg =1V +V, +V K+l K —IVOK‘OXVOK‘O +1-V, K, —1)
bl+ve + v W2 —1) ®38)

b,, =—7/(K0+V0)(41/K§—11/K0 —\JK —1j_l (B.39)

b, =1/, (x, +v, ) (x2 -1 (1(0 +K2 - 1)_3 (— Ky 4K — 1)_3 (B.40)

by, = (it 3V KK 1+ 22k 4382 K2 — v, — K2 4 24K — 2K,

— TV Ky — Ko\ Ko =1 =6V =V, /K —1)}/3(32(1(5 —1)3/2(1(0 +y Ko —1)6

-1

(;co — K2 —1)13/2j (B.41)

Cpp = (zcovo2 K, HAlKG =1V +V, +V K 4K —IVOK'OXVOK'O +1-V K, —1)
(2(1+v§ + 20k, N & —1)_1 (B.42)

s =—7/(K0+V0)(41/K§—1\/K0 K —1j_l (B.43)
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R 17 YN LR () N P B SO /o) R W70

Cp5 = (1(5‘ +3V kK, + Ko Ky — 1+ 2V K, + 3K, K, —1v, — Kk + 24K, — 1V K,

=TV Ky — Ko\ Ko =1 =6V =V, Ko —1);/3(32(/(3 —1)3/2(/(0 +y K —1)6

-1

(k, - 2 —1)13/2j (B.45)

d, = —(Kovj + K, — Ko WV +V, +V K —A[Ko —IVOK'OXVOK'O +1+v K] —1)
(2(1 V2 + 2,k WK —1)_l (B.46)

d,, =%, +v0)(4w/1c§ 1K, /K2 —1j_1 (B.47)

dy, = (1/4), (K, +v, ) (2 -1 (Ko +K — 1)_3 (— Ky + K — 1)_3 (B.48)

diy =[xt =30,k + K 1= 22K 432K — vy + &2 + 24K — V2K,

+ TV Ky — Ko\ Ko —1+6Vy =V K —1);/3(32(1(3 —1)" (— Ky ++/ Ko —1)6
(1(0 +/x2 —JWT (B.49)

e, = (1/2)i(v0 + K, ++ K —IXKOV(f + K, kg =WV, +V KL+ K —lvozco)

( Ky +JK2 —1{1+V2 +2v, 5, W &2 —1) (B.50)
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e =—(1/16)i72 [kt v, — K2 —1 - 22k 4 k2K — 1y, — &2
+2JKe — Wik, =3V K, + Ky Ko —1 =2V +V 4K —1)
-1

(e =)o+ =1 "l =i -1 | e

fio = —(1/2)1'(1(01/3 + K, — K — V]V, +V K =KD —1V0KoxVo + K, =Ko _1)
-1

( Ico—1/K§—1(1+v§+2v01(0)1/1c§—lj (B.52)

fi, = (W/16)iy? (K()‘ —V Ko KoK —1 =2V K, — K, —KoAKo =1y,
—2Kp — Wik, =3V K, — Kyy Ko —1 =2V, =V, K, —1)
-1

(-1l — i =) o+ i 1) | ey

20 = (1/2)1‘(1(01/3 + i, —JKg =V +V, +V KL — K] —1V0K‘OXV0 + K, — K] —1)
(JKO K =1(+v2 +2v e WK —1j_1 (B.54)

g, =—(1/16)iy (K{)‘ —V ko KoK — 1 =2vik, — K, — KoK — 1y,

— 2K} — Wik, =3k, — Ky Ky —1=2V] =V K, —1)
-1

((;cg Y PR Py (PR e )4) (B.55)

hy, = —(1/2)i(v0 + K, +4 KL —IXK'OV()z K, kg — VeV, +V K+ KD —lvozco)
-1
( Ky K2 —1{1+V2 +2v, 50 W K2 —1) (B.56)
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B Y1 ) Py SRV e P S P T
13V K,y — Koy K2 — 1= 24[K2 =Wk, + 202 =V K? —1)

((/(5 _1)3/2(;(0 +4x2 —1)7/2 (— Ky + K —1)4j_1 (B.57)

Then, the asymptotic expansions of the integrands Fll(a),y) F ( @,y),

Flz(CU’y)’ Flz(_w’y)7 D“((U,y), Du(_w’y)’ Dlz(w’)’) and DIZ( @, y) are taken
).

F (o),
Fy(o.y), F,(~woy), D,(wy), D,(-ay), D,(wy) and D,(-a.y),

F.” (- 0),
F,” (@0), F,”(-®0), D,”(w,0), D,”(-w0), D,”(w,0) and D,,” (-~ @,0) are
given in Eq.(2.2.56).

as equal to the asymptotic expansions of the integrands F, 1(a) y

respectively, as @ approaches infinity. Expressions for F, lm( 0),
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APPENDIX C

DEFINITIONS OF FUNCTIONS APPEARING IN THE INTEGRAL
EQUATIONS

Definitions of H (x,2), (=12 and j=1,2,...,8), are given as follows:

Hll(x t 2 {/]LI[FU (00) (ao +b0)]COS(a)(x—l‘))da)

+ T|:F11(w70)_(a0 +b0)_

AII

2 feo(ats- o [ o a)(x—t))da)}

AII

(C.1a)

A12

050~ 2] [ 000+ - o

0

v T{Fll(—w,O)—(cO +d0)_"2a+)2d2}os( o+ [

AIZ AIZ

2 cos(@(x — r))da)}

(C.1b)

A13

)= 2] ) ok -

0

+ T|:Fll(w’0)_(a0 +bo)_

AI3

2 it - [

A13

2 sin(@(x - z))dw}

(C.1c)
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2z |y

s)= 2o 100t ol o

. {Fll(—a),o) (6 +dy) -5

Ay

2 sinfals - o+ j > sina(x - t))da)}

(C.1d)

H; (XJ) = %{ I[EZ(W,O)— (eo +fo )]COS(Q)()C - l))dw

0

oo

+ I |:F12(w’0)_(eo + fo)—ﬂ—ez;—zﬂ}cos(w(x—t))dw

0]
Ass

Als‘xft‘ .
— (e, +fl){y0 + J. La’_ld()(}+ J.%zfzcos(a)(x—t))da)} (C.le)

0 o A

Asg

)= 3| 00 ol o

0

[ elr0) oy o) 2 eonfofe o

gl+h){ J' cosa -1, } J.gz 2 cos(afx — t))da)} (C.1DH)

0

Hy (v >2LM Fa(@0)= (e £)- 5 ik 1)o

[ Rul0)(e £)- AL inota—no

(1]
Ay

T f2 sin(ew(x — t))da)} (C.1g)
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2z |y

ng(x,z>:ii{Aj“[az<—w,o> (0 1)~ E st~

+ T{Fn(—w,o)—(go why)- S8 ihz}sin(w(x—f))dw

A () @

j 827 in a)(x—t))dw} (C.1h)

AIR

A2]

H2l(x’t) J.[Du . O) (am + bm)]cos(w(x - t))dw
o

oo

+ J[D“w,o)—(amwm)—““*b“ _ by —“B”’B}os(w(x—r))dw

2 3
Ay

@ @ (1)

Ay ‘ xft‘

(44

“a b Nyt [ S g | [ [ Bethe st ) (- )W
11 11 0 3
AN @

0 21

(C.1i)

Ay

sz(x,t) = i{ J.:[Dll(_ a),O)— (CIO +d,, )]COS(a)(x - t))da)

0

+ [ [Dn(— 00)— (e, +dyy)— TGt dy G ;ﬂcos(w(x—r))dw
AZZ

0] @
Al cosa’ 1
C11+d11 70 j

0

+ (Cn ENCERE jcos(a)(x— t))da)}

e @ @

(C.1j)
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H23(x,t)=—i{A_ﬂDll(a),O)—(am+b10) it “}sm(a)(x o

+ | [D“(w 0)= (4 +by) P _Guthy Gy +bw}m(w<x_,))dw

Aps @ o @
+ I (6112 +2b12 " a; +b; jsin(a)(x—l))dw} (C.1k)
A @ w3

H24(x,t): il{f |:D11(_ w70)_(610 +d10) T P 11i|Sln(a)(x—t)}i

2 3

+ '[ D, (- ®,0)—(c,, +d,,)— oy td, _cptd, cytdg sin(@(x - 1)@
[0 w [0

]o( by | C”;d”jsm(a)(x t))da)} (C.11)

Ags

H s (x,l‘) = %{ J;[Dlz(w’o)_ ("10 + flo)]cos(a)(x_ t))da)

0

+ j {Dn(w,())— (e, + ﬁo)—elz;—ﬁ}os(w(x_t))dw

AZS

o [ @2t fie og(fx— 1o (C.1m)
wZ

A25
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H%<x,r):§ﬁlaz<— ©0)~ (g, + hy Jeos(@(x— 1)kl

oo

| Dt @0+ )~ £ cos(ol- e

Ass

TR R R (C.In)
w2

A26

H27(x,z>:ii{Af[Du(w,o)—(em+ﬁo)]sin(w<x—r»dw

27 |

] [Du(00)-te + )22 fantote- o

A27

+ [ @2t fe ol — e (C.1p)
[

A27

H,q (x,t) = ii{]ﬁ[l)m (_ a),O) - (810 +hy, )]Sin(a)(x - t))da)

* T {Dlz(_ ®,0)= (8, + )~ glthhn} sin(o(x —1)dw

AZS

o [ Bt o ox- o (C.1)
Ang wz

where A,.j, (i =1,2 and j =1, 2,...,8), integration cut-off points and p, is the

Euler’s constant.
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APPENDIX D

CHEBYSHEYV POLYNOMIALS

Chebyshev polynomials of the first kind is defined as follows [139]:

T, (x) = cos(narccos(x)) D.1)

Roots of T, (x) are given as follows [139]:

X, = COS(%H—I%} j=l.n (D.2)

Orthogonality condition of the Chebyshev polynomials is given as follows [139]:

0, k#r
1 dx
— | T, ()T, (x) =<1 k=r=0 (D.3)
71'1'.1 ¢ V1= x?

1/2, k=r>0

161



APPENDIX E

INTEGRALS EVALUATED IN CLOSED FORM

The integrals evaluated in closed form to obtain Eq.(2.2.66) are given as follows:

_i(ao +by —¢, _do)

ljﬁ'(ao +by—c,—d,) T,(r)
T

- dr = U, (s), |s|<1 and n =1

-1 2(S_r) 1—r2 2
(E.1)
11é1+j?1 . \T(r) e1+f1T(s)
[ (Al s = n dr = n /. land n>1 E.2
71'1[1 5 n( 15|18 r|,m r 5 s|< and n (E.2)
R .
_lfgl_Jrhlln(A;s_rD L,(r) 4 &ith T”(S), |s|]<1 and n>1 (E.3)
V2 2 1—r2 2 n

1

lji(e10+f10_g10_h10) Tn(r) dr:_i(€10+f10_g10_h10)

% 2(s — r) m 2

Un—l (S )’

T

|s)<1and n>1 (E4)

b ) B0 g 8t T) gt )
V4 n

-1 2 }\ll—rz 2

A

_lj‘cn+‘211 ) Tn(r) dr=511+‘211 Tn(s)
2 n

T ALL s —
73 2 n( 2|S r|, 2

, |s§<land n>1  (E.6)
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