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abstract

ALGEBRAIC PROPERTIES OF THE OPERATIONS

USED IN

BLOCK CIPHER IDEA

Yıldırım, Hamdi Murat

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Ersan Akyıldız

March 2007, 68 pages

In this thesis we obtain several interesting algebraic properties of the op-

erations used in the block cipher IDEA which are important for cryptographic

analyzes. We view each of these operations as a function from Z
n
2 ×Z

n
2 → Z

n
2 .

By fixing one of variables v(z) = Z in Z
n
2 × Z

n
2 , we define functions fz and

gz from Z
n
2 to Z

n
2 for the addition ⊞ and the multiplication ⊙ operations,

respectively. We first show that the nonlinearity of gz remains the same un-

der some transformations of z. We give an upper bound for the nonlinearity

of g2k , where 2 ≤ k < n − 1. We list all linear relations which make the

nonlinearity of fz and gz zero and furthermore, we present all linear relations

for gz having a high probability. We use these linear relations to derive many

more linear relations for 1-round IDEA. We also devise also a new algorithm

to find a set of new linear relations for 1-round IDEA based on known linear

relations. Moreover, we extend the largest known linear class of weak keys

with cardinality 223 to two classes with cardinality 224 and 227.
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Finally, we obtain several interesting properties of the set

{(X,X⊕A) ∈ Z
n
2 × Z

n
2 | (X⋊⋉Z)⊕((X⊕A)⋊⋉Z) = B} for varying

A,B and Z in Z
n
2 , where ⋊⋉ ∈ {⊙,⊞}. By using some of these properties,

we present impossible differentials for 1-round IDEA and Pseudo-Hadamard

Transform.

Keywords: Boolean Functions, Nonlinearity, Modular Arithmetic, Block Ci-

phers, Cryptanalysis.
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öz

IDEA BLOK ŞİFRELEME SİSTEMİNDE

KULLANILAN İŞLEMLERİN CEBİRSEL

ÖZELLİKLERİ

Yıldırım, Hamdi Murat

Doktora, Matematik Bölümü

Tez Danışmanı: Prof. Dr. Ersan Akyıldız

Mart 2007, 68 sayfa

Bu tezde blok şifreleme sistemi IDEA da kullanılan işlemlerinin krip-

tografik analizler açısından önemli birçok ilginç cebirsel özelliklerini elde

ediyoruz. Bu işlemlerden her birini Z
n
2 × Z

n
2 → Z

n
2 ye bir fonksiyon olarak

bakıyoruz. Z
n
2 × Z

n
2 daki deǧişkenlerden birisi olan z yi sabitleyip, Z

n
2 den

Z
n
2 ye fz and gz fonksiyonlarını toplama ⊞ and çarpma ⊙ işlemleri için

tanımlıyoruz. İlk gz nin doǧrusalsızlıǧının, z nin bazı dönüşümleri altında

aynı kaldıǧını gösteriyoruz. 2 ≤ k < n− 1 olduǧunda, g2k nın doǧrusalsızlıǧı

için bir üst sınır veriyoruz. fz ve gz nin doǧrusalsızlıǧını sıfır yapan tüm

doǧrusal baǧıntılarını listeliyoruz ve ek olarak gz nin yüksek bir olasılıǧa sahip

tüm doǧrusal baǧıntılarını sunuyoruz. Bu doǧrusal baǧıntıları IDEA nın

birçok 1-tur IDEA doǧrusal baǧıntılarını bulmak için kullanıyoruz. Ayrıca

bilinen doǧrusal baǧıntılara dayalı, yeni doǧrusal baǧıntılar kümesi bulmak

için yeni bir algoritma tasarlıyoruz. Üstelik 223 elemanlı en büyük, bili-

nen doǧrusal zayıf anahtar sınıfını 224 ve 227 elemanlı iki yeni bir sınıfa
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genişletiyoruz.

Son olarak, Z
n
2 elemanı, deǧişen A,B and Z ve ⋊⋉ ∈ {⊙,⊞} için

{(X,X⊕A) ∈ Z
n
2 × Z

n
2 | (X⋊⋉Z)⊕((X⊕A)⋊⋉Z) = B} kümesinin bir kaç

ilginç özelliklerini elde ediyoruz. Bu özelliklerden bazısını kullanarak 1-tur

IDEA ve Pseudo-Hadamard Dönüşüm’leri için imkansız farkları sunuyoruz.

Anahtar Kelimeler: Boole Fonksiyonları, Doǧrusalsızlık, Modüler Aritmetik,

Blok Şifreleme, Kripto analiz.
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öz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTERS

1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 block ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Differential Cryptanalysis . . . . . . . . . . . . . . . . 7

2.1.2 Linear Cryptanalysis . . . . . . . . . . . . . . . . . . . 11

2.2 IDEA Block Cipher . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 1-round IDEA and the MA-Structure . . . . . . . . . 16

2.2.2 1-round RIDEA and the RMA-Structure . . . . . . . . 18

2.3 Security of IDEA . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 nonlinearity properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . 22

3.2 Nonlinearity of Operations . . . . . . . . . . . . . . . . . . . . 24

3.3 Linear Relations for Operations . . . . . . . . . . . . . . . . . 27

ix



3.4 Linear Relations for 1-round IDEA . . . . . . . . . . . . . . . 32

3.4.1 Known Linear Relations . . . . . . . . . . . . . . . . . 32

3.4.2 New Linear Relations . . . . . . . . . . . . . . . . . . . 36

3.5 Linear Relations for 1-round RIDEA . . . . . . . . . . . . . . 38

3.6 Linear Weak Key Classes for IDEA . . . . . . . . . . . . . . . 38

4 difference properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Difference Properties of Operations . . . . . . . . . . . . . . . 43

4.2 Impossible Differences for Operations . . . . . . . . . . . . . . 47

4.3 Impossible Differentials for 1-round IDEA . . . . . . . . . . . 48

4.4 Impossible Differentials for Pseudo-Hadamard Transform . . . 50

5 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A idea, pes and ridea block ciphers . . . . . . . . . . . . . . . . 58

A.1 Block cipher IDEA . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1.1 Key Schedule and Decryption Algorithm . . . . . . . . 58

A.2 Block Cipher PES . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.3 Block Cipher RIDEA . . . . . . . . . . . . . . . . . . . . . . . 60

B list of new linear relations for 1-round idea . 62

vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

x



list of tables

Table 3.1 List of linear relations for 1-round IDEA given in [8]

(indicated by *) and [34]. Here k is a non-negative integer,

−1 ≡ 0 mod (216 + 1), −215 ≡ 215 + 1 mod (216 + 1) and

−2 ≡ 216 − 1 mod (216 + 1). . . . . . . . . . . . . . . . . . . . 33

Table 3.2 Each round linear relation and ranges for indices of zero

key bits of IDEA master key are considered to derive the linear

relation (1, 0, 1, 0) → (0, 1, 1, 0) for 8,5-round IDEA satisfied

by a linear weak key class with cardinality 223. . . . . . . . . . 39

Table 3.3 Each round linear relation and ranges for indices of zero

key bits of IDEA master key are considered to derive the lin-

ear relation ({1, 3}, 0, 1, 0) → (0, 1, 1, 0) for 8,5-round IDEA

satisfied by a linear weak key class with cardinality 224. . . . . 40

Table A.1 128-bit IDEA master key bits indices starts from 0 and

ends with 127 (indexed left to right). Range of indices of this

key used for each of 52 subblock keys generated by the key

scheduling algorithm . . . . . . . . . . . . . . . . . . . . . . . 59

Table B.1 List of new linear relations for 1-round IDEA, based on

linear relations of Table 3.1, generated by Algorithm 1. Here k

is a non-negative integer, −1 ≡ 0 mod (216+1), −215 ≡ 215+1

mod (216 + 1) and −2 ≡ 216 − 1 mod (216 + 1). . . . . . . . . 62

xi



list of figures

Figure 2.1 Computational graph for the encryption process of the

IDEA cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.2 Computational graph for the encryption process of 1-

round IDEA cipher . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.3 Computational graph for the encryption process of 1-

round RIDEA cipher . . . . . . . . . . . . . . . . . . . . . . . 19

Figure A.1 Computational graph for the encryption process of the

PES cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure A.2 Computational graph for the encryption process of the

RIDEA cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xii



chapter 1

introduction

International Data Encryption Algorithm (IDEA), is a block cipher de-

signed by Xuejia Lai and James L. Massey [16], operates on 64-bit plain-

text/ciphertext blocks, and 128-bit key and consists of 8 iterated rounds and

a final transformation. The design of IDEA is completely based on the con-

cept of mixing operations from different algebraic groups such as multiplica-

tion modulo 216 +1 (⊙), addition modulo 216 (⊞) and bitwise exclusive-OR

(XOR) (⊕, bitwise addition on modulo 2) on 16 bit blocks. MESH ciphers

introduced by Nakahara are also based on these operations [25],[26].

It is easy to introduce these operations for any positive integer n as func-

tions from Z
n
2 × Z

n
2 → Z

n
2 = Z2 × . . .× Z2 (n-times) as follows:

Let Z2n = {0, 1, . . . , 2n− 1}, Z
∗
2n+1 = {1, 2, . . . , 2n}, and let v : Z2n → Z

n
2

and d : Z
∗
2n+1 → Z2n be the invertible functions defined by: v(x) = X, where

X = (xn, . . . , x2, x1) is a bit representation of x =
∑n

i=1 xi2
i−1 and d(x) = x

if x 6= 2n and d(2n) = 0. With this convention, the addition mod 2n, ⊞,

the multiplication mod (2n +1), ⊙ and the XOR ⊕ operations produce the

following functions f , g,h : Z
n
2 × Z

n
2 → Z

n
2 :

The addition operation ⊞;

f(X,Z) = X⊞Z = v(x+ z mod (2n)).

The multiplication operation ⊙;

g(X,Z) = X⊙Z = v(d(d−1(x)d−1(z) mod ( 2n+1))), where d−1 is the

inverse d.

1



The XOR operation ⊕;

h(X,Z) = X⊕Z = (xn, . . . , x1)⊕(zn, . . . , z1) = (xn +

zn mod (2), . . . , x1 + z1 mod (2)) = (xn ⊕ zn, . . . , x1 ⊕ z1),

where v(x) = X and v(z) = Z.

We now list some of the cryptographic and algebraic properties of these

functions studied in [23] and [16]. For integer n ≥ 2 and random vectors

A,B,C ∈ Z
n
2 ,

i) A⊙(B⊞C) = (A⊙B)⊞(A⊙C) holds with probability about 1/4

and

ii) A⊙(B⊞1) = (A⊙B)⊞A holds with probability 1/2−2−n−1+2−2n
≈

1/2, where v(1) = 1 = (0, . . . , 0, 1). and

iii) A⊙(B⊞(1, . . . , 1)) = (A⊙B)⊞(A⊙(1, . . . , 1)) holds with probabil-

ity 2−n − 2−n−1 + 2−2n
≈ 2−n.

iv) Any pair of these operations does not satisfy distributive law and a

generalized associative law. That is, for ⊲ and ⊳ ∈ {⊞,⊙,⊕}, there

exist A,B and C ∈ Z
n
2 such that A ⊲ (B ⊳ C) 6= (A ⊲ B) ⊳ (A ⊲ C)

and A ⊲ (B ⊳ C) 6= (A ⊲ B) ⊳ C.

v) For a fixed n ∈ {1, 2, 4, 8, 16} and y ∈ Z2n+1\{0, 2n}, let

f̄(x, y) =

{
d−1(d(x) + d(y) mod (2n)) for all x and y ∈ Z2n+1

0 otherwise

and let ḡ(x, y) = d(d−1(x)d−1(y) mod (2n + 1)) for all x and y ∈ Z2n .

Then f̄(x, y) is a polynomial over the ring Z2n+1 with degree 2n−1

and ḡ(x, y) can not be written as a polynomial in x over the ring Z2n .

The properties i), ii) and iii) were exploited to cryptanalyze the first

2-round of IDEA in [23] and the property v) leads to the author in [16] to

conclude that the operations ⊞ and ⊙ are highly nonlinear.

2



By fixing one of the variables in Z
n
2 × Z

n
2 , namely Z = v(z) we obtain

vector valued functions fz and gz: Z
n
2 → Z

n
2 , where fz(X) = f(X,Z) = X⊞Z

and gz(X) = g(X,Z) = X⊙Z. In Section 3.2 and 3.3, using the nonlinearity

measurement based on the Hamming distance [29], we find

• those transformation of z’s such that the nonlinearity of gz remains the

same,

• an upper bound for the nonlinearity of g2k , where 2 ≤ k < n− 1,

• many linear relations associated with the set of those z above making

the nonlinearity of fz and gz zero, and

• many linear relations for gz holding with a high probability.

Nonlinearity criteria is an important issue for the linear cryptanalysis

[22]. In fact, it is well known that there exists a linear relation among the

inputs and outputs of a vector valued function if and only if its nonlinearity

is zero. In this respect for any X = (xn, xn−1, . . . , x1), Y = (yn, yn−1, . . . , y1)

and Z = (zn, zn−1, . . . , z1) ∈ Z
n
2 , there exists a trivial linear relation with

probability one for both functions fz and hz, namely

x1 ⊕ z1 = y1.

On the other hand, for any X,Y ∈ Z
n
2 and Z ∈ {(0, . . . , 0), (1, . . . , 1)},

there exists a linear relation with probability one for the function gz, namely

x1 ⊕ z1 ⊕ 1 = y1.

Daemen et al. used these linear relations to derive 15 linear relations

for 1-round IDEA [8] . For z ∈ {2, 2n−1, 2n−1 + 1, 2n − 1}, it was shown

that the nonlinearity of gz is zero [35]. Due to this fact, two additional

linear relations for gz can be derived. These two and the previous linear

3



relations were used to derive 39 linear relations for 1-round IDEA in [34]. In

Section 3.4.2, we present a new algorithm to find new 242 linear relations

(holding with probability one) based on these 54 linear relations. Daemen et

al. successively used 3 of their 15 linear relations for 1-round IDEA to find

a linear relation for 8,5-round IDEA satisfied by each member of a class of

weak keys with cardinality 223. Based on that linear relation, we extend this

linear weak keys class with cardinality 223 to two classes with cardinality 224

and 227 in Section 3.6.

Differential cryptanalysis is an another powerful technique to analyze

symmetric ciphers and hash functions [1]. In [8], this technique was applied

to find a class of weak keys with cardinality 235 and then it was ex-

tended to find another class of weak keys with cardinality 251. In this study,

the basic idea was the following difference properties of the IDEA operations:

For X and v(a) = A ∈ Z
n
2 , let Xa = X⊕A. Then we have

(X⊙Z)⊕(X2n−1⊙Z) = 2n−1 for Z ∈ {v(0), v(1)}, and

(X⊞Z)⊕(X2n−1⊞Z) = 2n−1 and (X⊕Z)⊕(Xa⊕Z) = A for all v(a) = A

and Z ∈ Z
n
2 .

One can view these results as properties of the operations {⊙,⊕}

and {⊞,⊕} applied to the pair {X,Xa} for varying a and v(z) = Z.

Therefore it would be interesting to study the possible similar proper-

ties of the operations {⊞,⊙}. For a, b, z ∈ Z2n and ⋊⋉ ∈ {⊞,⊙}, let

D⋊⋉,z
(a, b) = {(X,Xa) | (X⋊⋉Z)⊕(Xa⋊⋉Z) = B }, where v(z) = Z and

v(b) = B. In Section 4.1 we prove that |D
⊞,z

(a, b)| = |D
⊞,z

(b, a)|,

|D
⊞,z

(a, b)| = |D
⊞,−z(b, a)|, where |S| stands for the cardinality of the set

S, −z is the additive inverse of z in Z2n . Furthermore, for all a, b and z ∈ Z2n

such that gcd(z, 2n + 1) = 1, we show that |D⊙,z
(a, b)| = |D⊙,z−1(b, a)|,

where z−1 is the multiplicative inverse of z mod (2n + 1). In this section we

4



also find those a’s and b’s such that |D
⊞,z

(a, b)| = 2n−1. On the other hand

for all z, we list a, b and ⋊⋉ such that |D⋊⋉,z
(a, b)| = 0. In Sections 4.3 and

4.4 we use this list to obtain impossible differentials for 1-round IDEA and

Pseudo-Hadamard Transform.

This thesis is organized as follows: In Chapter 2 we explain the linear

cryptanalysis, the differential cryptanalysis, the block cipher IDEA and its

security. In Chapter 3 we discuss the nonlinearity properties and linear

relations of the IDEA operations. In Chapter 4 we present our work on

the difference properties of these operations, 1-round IDEA and Pseudo-

Hadamard Transform.

5



chapter 2

block ciphers

2.1 Introduction

In this chapter we shall first give basics for the block ciphers, the linear

and differential cryptanalysis. Then we will introduce the block cipher IDEA

and discuss its security.

Definition 2.1.1. An n-bit block cipher is a function E : Z
n
2 × K → Z

n
2

such that for every k ∈ K, E (P, k) is an invertible function of P from Z
n
2 to

Z
n
2 . This function is called encryption function. The inverse of the encryp-

tion function E (P, k) is called the decryption function which is denoted by

D (C, k) ( i.e. C = E (P, k)). Here K is an arbitrary finite set.

The encryption function E is based on a simple function repeatedly

applied. Each repetition is called a round. Each round uses the previ-

ous round’s output and the subkey derived from the secret key by an

algorithm. For a 128-bit secret key, Rijndael is an example of 10-round

block cipher which was selected as Advanced Encryption Standard (AES)

by the US National Institute of Standards and Technology (NIST) in 2000 [9].

The following two sections descibe two well-known cryptanalysis tech-

niques that have been extensively studied and applied to many block ciphers.

6



2.1.1 Differential Cryptanalysis

Differential cryptanalysis is the very well-known attack on iterative block

ciphers, initially introduced by Murphy [24] and then it was improved by

Eli Biham and Adi Shamir in 1990. Differential cryptanalysis is a chosen

plaintext attack and analyzes the effect of the difference of a pair of plain-

texts on the difference of ciphertext pairs which are the outputs of rounds

in an iterative cipher. In 1992, Eli Biham and Adi Shamir represented the

improved version of the differential cryptanalysis to attack the full 16−round

DES in 237 time and by analyzing 236 ciphertexts obtained from 247 chosen

plaintexts [2]. Differential cryptanalysis is also successfully applied to

analyze more recent block ciphers such as FEAL, Khafre, REDOC-II, LOKI

and Lucifer.

Differential cryptanalysis is mainly focus on a round of an iterated

n−round cipher. In fact, △X represents the difference X ⊗ (X
′

)−1 between

plaintexts (ciphertexts) pair, X and X
′

, where ⊗ is the group operation on

the set of plaintexts (ciphertexts) and (X
′

)−1 is the inverse element of X
′

in that group. This difference does not contain the key value. For DES-like

cryptosystems, the difference is taken as a fixed exclusive-or (bitwise addi-

tion over modulo 2) of the two plaintexts (ciphertexts). For others, it may

change according to their structure. To analyze differential behaviour of a

round function, the difference distribution table can be constructed accord-

ing to difference of every plaintext and ciphertext pairs. For the extension

of the single round analysis to other rounds, the notion of characteristic was

introduced by Biham and Shamir [1]. An n−round characteristic is a tuple

(α0,α1, . . . ,αn) containing series of differences, where α0 = △P is the cho-

sen difference of a pair of plaintext P0 and P
′

0 which are the inputs of the

first round, αi is the difference of a pair of ciphertext that are the outputs

of ith round related to plaintext P0 and P
′

0. The probability of an i−round

7



characteristic is the following conditional probability:

P (△Ci = αi,△Ci−1 = αi−1, . . . ,△C1 = α1 | △P = α0)

Here, an i−round characteristic can be either the combination of one or

more round characteristic or iteration of some fixed characteristic (iterative

characteristic). The details of the characteristics were given in [3]. In

the differential cryptanalysis, when such probabilities are computed, it is

assumed that all subkeys are independent and uniformly random. A plain-

text P,P
′

with difference △P is a right pair with respect to an n−round

characteristic and an independent key K if they satisfy the differences in

characteristic when they are encrypted. Every pair which is not a right pair

with respect to the characteristic and the independent key is called a wrong

pair. The first step of the chosen plaintext attack, differential cryptanalysis

on an n−round is to find the subkey of the last round by determining n−1

round characteristic (△P = α0,△C1 = α1, . . . ,△Cn−1 = αn−1) which

holds △Cn−1 completely or partially with high, or nearly high probability.

For every right pair P and P
′

with difference α0, the occurence of candidate

subkey for the last round key is counted if ciphertext pair Cr−1 and C
′

r−1

with difference αr−1 is obtained from the last round ciphertext Cr and C
′

r

by that key. For sufficiently many chosen plaintext pairs, the above steps

are repeated. Finally, the most appeared subkey(s) is taken as the actual

subkey of the last round.

The notion of differential was introduced by Lai et al. [16]. Here is its

definition:

Definition 2.1.2. [16]: An i−round differential is a couple (α,β), where

α is the difference of a pair distinct plaintext P and P
′

and where β is

a possible difference for the resulting ith round outputs Ci and C
′

i. The

probability of an i−round differential (α,β) is the conditional probability
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that β is the difference △Ci of the ciphertext pair after i rounds given that

the plaintext pair (P,P
′

) has difference △P = α when the plaintext P and

the subkeys K1, . . . ,Ki are independent and uniformly random. We denote

this differential probability by P (△Ci = β | △P = α).

Lai et al. preferred to use differentials instead of characteristic in the

differential cryptanalysis for an n−round cipher. Their reason is that the

indeterminate differences is not important. This is due to the fact that only

n−1 round difference is needed to find the last round key of n−round cipher.

Note that the probabilities of differentials are greater than characteristics

and for this reason, it was used to derive a lower bound on the complexity

of the differential cryptanalysis in [16]. The probability of an i−round

differential with input difference α and output difference β is the sum of

the probabilities of all i−round characteristics with the corresponding input

and output difference.

Lai presented a definition of higher order derivatives of discrete cryp-

tographic functions that is analogous to the definition of differentiation in

calculus [18]. Knudsen used higher order differentials to cryptanalyze ciphers

probably secure aganist a differential attack using first order differentials

and he showed the existence of the ciphers which are probably secure aganist

a differential attack [14].

Knudsen introduced the notion truncated differentials (partial differ-

entials). For an 2n bit Feistel cipher, Unlike i−round differentials with

difference (α,β), i−round truncated differentials predicts only subsequence

of α and β, namely α
′

and β
′

. Truncated differentials are used to analyze

6-round DES with complexity of about 46 chosen plaintexts and a running

time about time of 3500 encryptions. It is noted that this type of attacks

seems to be useful for ciphers that have a relatively small number of rounds.
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To immunize against differential cryptanalysis, the difference distribution

tables of the S-boxes of a DES-like iterated block cipher must not contain

entries with large values except for the first entry of the first row. In

other words, the values of the difference distribution table of S-Boxes must

be uniformly distributed. In addition to this requirement, the difference

distribution table of an S-Box should also contain less nonzero entries as

possible in its fist column to lessen the probability of the possible iterative

characteristics.

In [28] it was shown that for DES-like iterated ciphers, it is feasible to

find an upper bound on the probabilities of r−round differential by using a

non-trivial 1−round differential with highest probability. If this probability

is chosen to be small, the resistance against the differential cryptanalysis

can be obtained.

In [16] and [17], the notion of Markov Cipher, which gives more in-

formation about the probabilities of differentials, was presented and the

security of these ciphers against differential cryptanalysis by using Markov

chain techniques was discussed. It is known that the block cipher DES,

LOKI, FEAL and REDOC are Markov Ciphers [17]. For the immunity

of Markov Ciphers against the differential cryptanalysis, for r−round

Markov the transition probability matrix of the homogeneous Markov

chain △P = △C0,△C1, . . . ,△Cr is defined and their irreducibility and

the eigenvalues are considered in [17]. In reality, the formulation of these

requirements is not practical for a block cipher with large size. Due to this

issue, by the help of the results of the differential cryptanalysis of PES [16],

the suggested more practical requirement for security is :
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The transition probability matrix of a Markov cipher should be non-

symmetric [16],[17].

The idea behind this suggestion is that when transition matrix of a

Markov cipher is the symmetric, for the one-round differential with high prob-

ability among the others, the concatenation of that differential with itself r−1

can result in the r−round characteristic with high probability that produce

an r−round differential with high probability; however, this situation can be

avoided by making the corresponding transition matrix non-symmetric.

2.1.2 Linear Cryptanalysis

Linear cryptanalysis is one of the most recent method of analysing

iterated ciphers. It is essentially a known-plaintext (statistical) attack and

was initially used to attack the FEAL cipher by Matsui and Yamagishi

[20]. The refinement version of linear cryptanalysis was used to break 16

round DES cipher with 247 known-plaintexts [22]. Matsui’s paper [21] which

represents the improved version of linear cryptanalysis and its application

to first experimental cryptanalysis for breaking the full 16-round DES was

appeared in 1994. This experiment was carried out by using twelve HP9735/

PA-RISK 99 MHZ workstations and finally the 56 secret key bits were

recovered with 243 known-plaintext/ciphertext pairs in fifty days.

The aim of the linear cryptanalysis is to investigate statistical linear

relations between bits of plaintexts, the ciphertexts, the secret keys to get

a linear approximate expression for an entire cipher under consideration.

Similar to the differential cryptanalysis, the linear cryptanalysis deals

with nonlinear parts of the one round of the cipher. To find a statistical

linear relation for the nonlinear part (function), two subset A and B
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containing some index numbers of inputs and output bits of that part,

respectively is constructed and for each input, exclusive-or of inputs bits

and corresponding output bits is calculated according to each possible

subset A and B. For half of the inputs, if exclusive-or values are equal to

zero, then a nonlinear approximation can be obtained by the corresponding

subsets A and B. For a smaller or a larger part of the inputs, if they are

equal to zero, then a linear approximation can be obtained. In this way,

the linear approximations having best probability p ( i.e. |p − 1/2| is

maximal ) are found for the nonlinear parts of one round of the cipher.

Then for each linear approximation of these kinds is extended to the

round function as a linear equation. Finally linear equations for the round

functions are combined to construct a linear expression for the entire

cipher. The probability of that expression is calculated from the prob-

abilities of linear equations of the round functions using the following lemma:

Lemma 2.1.3. ([22]) (Piling-up Lemma) Let xi (1 ≤ i ≤ n) be independent

random variables whose values are 0 with probability pi or 1 with probability

1−pi . Then the probability that x1 ⊕ x2 ⊕ . . .⊕ xn = 0 is

1/2 + 2n−1
∏n

i=1 (pi − 1/2).

Let us denote A is n-bit plaintext (ciphertext or key), A[i] is the the ith

bit of A and A[i, j, . . . , k] := A[i] ⊕ A[j] ⊕ . . .⊕A[k].

For a given m-bit cipher, the linear expression is of the form

P[i1, i2, . . . , ia] ⊕ C[j1, j2, . . . , jb] = K[k1, k2, . . . , kc]

where P is a randomly given plaintext, C is the corresponding ciphertext,

K is the key used to encrypt P, i1, i2, . . . , ia; j1, j2, . . . , jb and k1, k2, . . . , kc

denotes fixed bit locations. This relation holds with the probability p such
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that |p − 1/2| is maximal and p 6= 1/2 . Here the value of |p − 1/2| gives

us a measurement for effectiveness of the above expression . One key bit

of K[k1, k2, . . . , kc] is determined using the maximum likelihood method

described in [22] if sufficient amount of plaintexts is available. The suc-

cess rate of this methods depends on the number of plaintextsN and |p−1/2|.

Matsui [22] succeeded in finding the linear expression,which is described

in above, for the block cipher DES by considering the nonlinear part of its

round function, namely S-Boxes.

Some theorical, practical enhancement and extensions of the linear

cryptanalysis have appeared since its emergence. Kaliski and Robshaw

presented a extension to the linear cryptanalytic attack using multiple linear

approximations [13]. It leads to reduction in the amount of data required for

a successful linear crytpanalysis of a block cipher. Knudsen and Robshaw

[30] suggested an algorithm using non-linear approximations. They replaced

the linear approximations used in linear cryptanalysis with non-linear

approximations. Shimoyama and Kaneko derived 7 quadratic relations of

S-boxes of DES using groebner basis techniques by considering S-Boxes as

Boolean polynomials [32]. By using one of these relations, they constructed

an improved algorithm for attacking 16 round DES that is a combination

of the multiple linear approximation and non-linear approximation methods

mentioned above. This algoritm reduces the number of texts used in

Matsui’s attack [21].

Linear cryptanalysis exploits the low nonlinearity of S-Boxes engaged by

a block cipher. To immunize a S-box against linear cryptanalysis, it suffices

that all entries of its LAT (Linear Approximation Table) should not to

diverge too from 2n−1. Alternatively, its nonlinearity should be high (near to
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2n−1) due to the relation between the nonlinearity of a S-box and its LAT.

2.2 IDEA Block Cipher

International Data Encryption Algorithm (IDEA), a slightly modified

version of Proposed Encryption Standard (PES), is a block cipher designed

by Xuejia Lai and James L. Massey to increase immunity against differential

cryptanalysis [15],[17],[16]. IDEA operates on 64-bit plaintext/ciphertext

blocks, and 128-bit key and consists of 8 iterated rounds and a final trans-

formation. The rounds and final transformation are arranged to achieve the

desired confusion and diffusion by successive usage of three incompatible

group operations. The design of IDEA is completely based on the concept

of ”mixing operations from different algebraic groups such as multiplication

modulo 216 + 1 (⊙), addition modulo 216 (⊞) and bitwise XOR (⊕, bitwise

addition on modulo 2) on 16 bit blocks”.

IDEA was developed at ETH Zurich in Switzerland and is the one of

the block ciphers (CAST, 3-DES, IDEA) used in message encryption’s part

of the popular encryption program PGP (Pretty Good Privacy) [10] and

patented in the United States and in most European countries. No license

fee is required for noncommercial use. The structure of IDEA allows fast

implementations both in hardware and software [19].

IDEA encrypts blocks of 64 bits plaintext to blocks of 64 bits ciphertext

with 128 bit key. For the encryption, this cipher divides 64-bit plain-

text block X into four 16-bit subblocks, X1,X2,X3 and X4 such that

X = (X1,X2,X3,X4) = (X
(0)
1 ,X

(0)
2 ,X

(0)
3 ,X

(0)
4 ). They are transformed

into four 16-bit ciphertext subblocks Y1,Y2,Y3 and Y4 by 8 iterated
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Transformation

Output

1 round

X
(0)
1 X

(0)
2 X

(0)
4X

(0)
3

Z
(1)
1 Z

(1)
2 Z

(1)
3 Z

(1)
4

Z
(1)
5

Z
(1)
6

Z
(9)
1 Z

(9)
2 Z

(9)
3 Z

(9)
4

Y1 Y2 Y3 Y4

Figure 2.1: Computational graph for the encryption process of the IDEA

cipher

rounds and a final output transformation using 52 key subblocks with

length 16 derived from a given 128-bit key block. IDEA uses the six key

subblocks Z
(r)
1 ,Z

(r)
2 , ..,Z

(r)
6 for the rounds r = 1 , 2 , .., 8 and the final output

transformation uses four 16-bit key subblocks Z
(9)
1 ,Z

(9)
2 ,Z

(9)
3 ,Z

(9)
4 . The graph

of the encryption of IDEA can be seen in Figure 2.1. The key scheduling

algorithm and the list of all 16-bit key subblocks (Table A.1) are given in

Appendix A.
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2.2.1 1-round IDEA and the MA-Structure

Throughout the remaining sections, we denote round key, input and

output for 1-round IDEA (see Figure 2.2) as Z = (Z1, . . . ,Z6), X =

(X1,X2,X3,X4) and Y = (Y1,Y2,Y3,Y4), respectively. Then we have

Y1 = (X1⊙Z1)⊕T.

Y2 = (X3⊞Z3)⊕T. (2.1)

Y3 = (X2⊞Z2)⊕U.

Y4 = (X4⊙Z4)⊕U.

We have the following equations for two input subblocks of the MA-

structure P and Q and two output subblocks of the MA-structure U and T

(see Figure 2.2):

P = (X1⊙Z1)⊕(X3⊞Z3) and Q = (X2⊞Z2)⊕(X4⊙Z4). (2.2)

U = (P⊙Z5)⊞T and T = [(P⊙Z5)⊞Q]⊙Z6. (2.3)

It is easy to see that Y1⊕Y2 = P and Y3⊕Y4 = Q.

Definition 2.2.1. For any A and A∗ ∈ Z
n
2 , we denote δA = A⊙(A∗)−1,

∂A = A⊞(−A∗) and △A = A⊕A∗.

For the differential cryptanalysis, two following useful properties of the

MA-structure were provided in [16].

Theorem 2.2.2. [16] If the function computed by the MA-structure is

written as

(U,T) = MA(P,Q;Z5,Z6),

then for every choice of key (Z5,Z6), the inputs (P,Q), (P∗,Q∗) and the out-

puts (U,T), (U∗,T∗) of the MA-structure for the same key (Z5,Z6) satisfy
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MA−Structure

1−round IDEA

X1 X2 X4X3

Z1 Z2 Z3 Z4

Z5

Z6

Y1 Y2 Y3 Y4

P Q

TU

Figure 2.2: Computational graph for the encryption process of 1-round IDEA

cipher

the following relations:

δP = 1 = (1, . . . , 1),∂Q = 0 = (0, . . . , 0) ( i.e. △Q = 0) ⇐⇒ δT = 1,∂U = 0;

(2.4)

and

δP = 0,Q⊞Q∗ = 0 ⇐⇒ δT = 0,U⊞U∗ = 2 = (0, . . . , 1, 0). (2.5)

It is known that δA = 0 ⇐⇒ A⊞A∗ = 1. Note that first property

is trivial since the same inputs of the MA-structure produce the same

outputs. Second property was discovered by Murphy [17]. We will use these

properties to obtain impossible differentials for 1-round IDEA in Section

4.3.
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2.2.2 1-round RIDEA and the RMA-Structure

A description of the RIDEA cipher can be found in Section A.3, Appendix

A. the RIDEA cipher is the same as IDEA cipher except that one of inputs of

the MA-structure, Q and one subblock of round key, Z6 are involved in the

MA-structure by the multiplication and the addition operations respectively.

This slightly changed structure is called the RMA-structure of the RIDEA

cipher and round outputs of 1-round RIDEA (Figure 2.3) can be given as

follows:

Y1 = (X1⊙Z1)⊕T̃.

Y2 = (X3⊞Z3)⊕T̃. (2.6)

Y3 = (X2⊞Z2)⊕Ũ.

Y4 = (X4⊙Z4)⊕Ũ.

Two input subblocks of the RMA-structure P and Q and two output

subblocks of the RMA-structure Ũ and T̃ can be represented as

P = (X1⊙Z1)⊕(X3⊞Z3) and Q = (X2⊞Z2)⊕(X4⊙Z4) (2.7)

Ũ = (P⊙Z5)⊞T̃ and T̃ = [(P⊙Z5)⊞Z6]⊙Q (2.8)

Here one can deduce that Y1⊕Y2 = P and Y3⊕Y4 = Q.

We shall use the following lemma that was given for the implementation

issues of IDEA in [16]:

Lemma 2.2.3 (Low-High algorithm for ⊙). Let a and b be two non-zero

integers in Z2n+1 and let (ab div 2n) denotes the quotient when ab is divided

by 2n. Then we have

ab mod (2n+1) =

{
(ab mod 2n) − (ab div 2n) if (ab mod 2n) ≥ (ab div 2n)

(ab mod 2n) − (ab div 2n) + 2n + 1 if (ab mod 2n) < (ab div 2n)
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RMA−Structure

1−round RIDEA

X1 X2 X4X3

Z1 Z2 Z3 Z4

Z5 Z6

Y1 Y2 Y3 Y4

P Q

T̃Ũ

Figure 2.3: Computational graph for the encryption process of 1-round

RIDEA cipher

2.3 Security of IDEA

The designer of IDEA claimed that the required confusion for IDEA is

achieved by the interaction of the mixing operations from different algebraic

groups associated to the operations ⊙,⊕ and ⊞ the diffusion in the IDEA

cipher is provided by the multiplication-addition (MA) structure (Figure

2.2) [17].

In [17] it was shown that for a suitable chosen difference, IDEA(m) is

a Markov cipher for m = 8, 16, 32, 64 where m = 4n is the length of the

plaintext and n is the length of each subblocks. In addition to this, three

classes of highly probable differentials of the IDEA cipher were determined

and it was concluded that the IDEA cipher is secure against the differential

cryptanalysis attack after 4 rounds [17].
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In the literature, Meier [23] showed that the operations ⊙ and ⊞ satisfy

a partial distributive law with a certain probability and presented an attack

for 2-rounds of IDEA using that property. Harpes, Kramer and Massey [11]

developed a general version of linear cryptanalysis [22] and believed that

IDEA is secure against this generalization. In [37] new attacks, based on the

principles of related-key differential cryptanalysis, on the key schedules of

block ciphers were presented. Because of the simple key schedule of IDEA,

a chosen-key differential attack on 3-round IDEA was provided. Besides

to that attack, a chosen-key ciphertext only timing attack on full 8-round

IDEA was given. Hawkes and O’Connor argued that LSB approximation

produce the best probabilities for a linear cryptanalysis of IDEA with

independent and uniformly distributed subkeys and mentioned such feasible

linear cryptanalysis on IDEA by giving data complexity. Borst, Knudsen

and Rijmen [6] presented two attacks on a reduced number of rounds of

IDEA. One of them uses differential-linear attack for 3-rounds of IDEA and

the other attack uses truncated differentials to analyze 3.5-rounds (3-rounds

and an output transformation) of IDEA. Borst [5] described an attack on

3-rounds of IDEA using differential and linear cryptanalysis techniques.

New block cipher MMB was proposed in [7] and compared with IDEA to

show the desire of the designers of IDEA about providing IDEA to be a

successor of DES as a standard block cipher would not be good idea.

In [8], two large classes of weak keys were found for IDEA. This is

certainly better than exhaustive search on 128-bit key space and it was

claimed that with a slight modification of the key schedule of IDEA, the

problem of weak keys can be eliminated. This work was extended to find

larger weak key classes for which membership is tested by conforming that

a differential-linear approximation holds with probability one and related to
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this approximation a weak key class containing 263 128-bit global keys was

found [12]. Besides, a related key differential attack on 4-round IDEA was

presented. For this attack, all global keys are weak, and this was applied to

find weak key classes for various rounds of IDEA.

In [35], it was proven that the nonlinearity of the vector function

corresponds to the multiplication operation ⊙ is zero for 6 fixed points.

Their effects on the linearity of the MA-structure (Multiplication-Addition)

structure was investigated. By changing the MA-structure slightly, the

RMA-structure was introduced. It was observed that the RMA-structure

provides required diffusion for IDEA as the MA-structure does and its

nonlinearity is greater than the one provided by the MA-structure.
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chapter 3

nonlinearity properties

3.1 Notation and Preliminaries

We shall use the following notation throughout the rest of the thesis:

• x ⊕ y = x+ y mod (2) for x, y ∈ Z2;

• Z
n
2 = Z2×. . .×Z2 (n-times) denotes the n-dimensional vector space

over Z2;

• ⊞,⊙ and ⊕ denote the operations on Z
n
2 which are introduced in

Chapter 1;

• When A = (an, an−1, . . . , a1) and X = (xn, xn−1, . . . , x1) ∈ Z
n
2 ,

a) A⊕X = (an ⊕ xn, an−1 ⊕ xn−1, . . . , a1 ⊕ x1).

b) The dot product A · X = (
∑n

i=1 aixi) mod (2) = anxn ⊕

an−1xn−1 ⊕ . . . ⊕ a1x1.

c) for λ ∈ Z2, lA,λ : Z
n
2 → Z2 be the function defined by

lA,λ(X) = A · X ⊕ λ is called an affine function (respectively

linear) if λ 6= 0 (respectively λ = 0).

• A = {lA,λ | A ∈ Z
n
2 , λ ∈ Z2} denotes the set of all affine functions

on Z
n
2 ;

• ⌈x⌉ denotes the smallest integer larger than or equal to x.
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• |S| denotes the cardinality of the set S.

Let f : Z
n
2 → Z2 be any function. The non negative integer

H(f) = minlA,λ ∈A|{X ∈ Z
n
2 | f(X) 6= lA,λ(X)}| which measures the

Hamming distance from f from to the set of all affine functions A is called

the nonlinearity of f .

It is clear that H(f) = 0 iff f is an affine function. The concept of

nonlinearity of arbitrarily vector function F : Z
n
2 → Z

k
2 was introduced in

[29] as follows:

Let F = (fk, . . . , f1), fi : Z
n
2 → Z2, where 1 ≤ i ≤ k.

Definition 3.1.1.

N(F ) = minC=(c1,...,ck)∈Z
k
2\{0}

{H(C · F = ckfk ⊕ ck−1fk−1 ⊕ . . . ⊕ c1f1)}

Definition 3.1.2. Let n be any positive integer and f be a func-

tion from Z
n
2 to Z2. The truth table of a function f is an 2n-tuple

{f(0), f(1), . . . , f(2n − 1)}, denoted by Tf .

For a fixed operation ⋊⋉ ∈ {⊞,⊙,⊕} and z ∈ Z2n , we consider mapping

Z
n
2 → Z

n
2 defined by X → X⋊⋉Z = Y (Z = v(z)). We will now discuss the

nonlinearity of this vector valued function for some special cases. When ⋊⋉ is

the XOR operation ⊕, it is clear that the dot product is distributive over ⊕,

and therefore we get A · (X⊕Z) = A ·X ⊕ A ·Z = A ·Y, or equivalently

A · X ⊕ A ·Y ⊕ A · Z = 0 for every A ∈ Z
n
2 (3.1)

Similarly for ⋊⋉ = ⊞, it is easy to see that 1 · (X⊞Z) = 1 ·X ⊕ 1 ·Z =

1 · Y, or equivalently

1 · X ⊕ 1 ·Y ⊕ 1 · Z = 0 (3.2)
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So for X⋊⋉Z = Y it makes sense to search relations in the form

A ·X ⊕ B · Y ⊕ C · Z ⊕ λ = 0 for some A,B,C ∈ Z
n
2 and λ ∈ Z2. (3.3)

This relation is called a linear relation for the operation ⋊⋉. Let v(a) =

A, v(b) = B, v(c) = C ∈ Z
n
2 and λ ∈ Z2, now we consider those X ∈ Z

n
2

satisfying (3.3), where X⋊⋉Z = Y. Let L⋊⋉,Z
(a, b, c, λ) be the number of

those X ∈ Z
n
2 such that (3.3) holds with X⋊⋉Z = Y. It is clear from the

Definition 3.1.1 that L⋊⋉,Z
(a, b, c, λ) = 2n if and only if the nonlinearity of

the vector valued function X → X⋊⋉Z is zero.

3.2 Nonlinearity of Operations

For a fixed z ∈ Z2n and the operation ⋊⋉ ∈ {⊞,⊙,⊕}, the mapping

Z
n
2 → Z

n
2 given by X → X⋊⋉Z = Y will be denoted in this section by

tz(X) = t(Z,X), where t ∈ {f , g,h}. The following lemma follows easily

from the identity (3.1) and (3.2).

Lemma 3.2.1. For n ≥ 1, the nonlinearity N(fZ) and N(hz) of fz and hz

equal to 0 for every z ∈ Z2n.

For the sake of the completeness of the thesis, we will give the proof of

one case of the following Theorem given in [35]:

Theorem 3.2.2. For n ≥ 2, the nonlinearity N(gz) of the vector function

gz(X) = g(Z,X) is zero for z = 0, 1, 2, 2n−1, 2n−1 + 1, 2n − 1.

Proof For z = 2n−1, let d−1(x) = x̃ =
∑n+1

i=1 x̃i2
i−1 and X =

∑n

i=1 xi2
i−1

. Then we have g2n−1(X) = v(d(2n−1x̃ mod (2n + 1))) for any x ∈ Z2n .

2n−1x̃ mod (2n) =
∑n+1

i=1 x̃i2
n+i−2 mod (2n) = x̃12

n−1 and 2n−1x̃ div

(2n) =
∑n+1

i=1 x̃i2
n+i−2 div (2n) =

∑n+1
i=2 x̃i2

i−2. To compute the component

functions ri : Z
n
2 → Z2 of g2n−1 = (rn, . . . , r1), we need to look at several
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cases:

Case 1 : For x 6= 0 (i.e. x̃ = x) and x1 6= 0,

2n−1 = x12
n−1 = 2n−1x mod (2n) ≥ 2n−1x div (2n) =

∑n

i=2 xi2
i−2. Then

by using Lemma 2.2.3, 2n−1x mod (2n + 1) =
∑n−2

i=0 2i + 1 −
∑n

i=2 xi2
i−2 =

1 +
∑n

i=2(1−xi)2
i−2 and from that equation the right-end component of the

g2n−1(X), r1(X) = (2 − x2) mod (2) = x2.

Case 2 : For x 6= 0 and x1 = 0 ,
∑n

i=2 xi2
i−2 = 2n−1x div (2n) > 2n−1x

mod (2n) = 2n−1x1 = 0. From Lemma 2.2.3, 2n−1X mod (2n + 1) =

2n + 1 − (
∑n

i=2 xi2
i−2). Hence r1(X) = 1 − x2 mod (2) = 1 ⊕ x2.

Case 3 : For x = 0, (i.e. x̃ = 2n), From Lemma 2.2.3, 2n−1x̃mod (2n+1) =

2n+1−2n−1 = 2n−1 +1 since 2n−1x̃ mod (2n) = 0 and 2n−1x̃ div (2n) = 2n−1

and we have g2n−1(0) = (1, 0, . . . , 0, 1). With this we computed explicitly all

the values g2n−1(X) and leave the reader to check that 1·g2n−1(X) = r1(X) =

x1 ⊕ x2 ⊕ 1 = 3 · X ⊕ 1. This gives immediately N(g2n−1) = 0. �

Lemma 3.2.3. For n ∈ Z+ such that gcd(a, 2n + 1) = 1, we have

N(ga) = N(gb) when ab ≡ 1 mod (2n + 1).

Proof We have gb(X) = ga−1(X) since ab ≡ 1 mod (2n+1). By Theorem

1 in [29], N(ga) = N((ga)
−1) = N(gb). �

Lemma 3.2.4. N(ga) = N(gb) when a+ b ≡ 0 mod (2n + 1).

Proof The case a = b = 0 is trivial. For other (a, b) pairs, one can use

the obvious relation v−1(ga(X)) + v−1(gb(X)) ≡ 0 mod (2n + 1) to complete

the proof. �
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Lemma 3.2.5. N(g2k) = N(g2s) when k + s = n for k, s ≥ 0.

Proof For k + s = n, we obtain that 2s(2k + 2(2s)−1) ≡ 2n + 2 ≡

1 mod (2n+1). Here (2s)−1 ≡ 2k+2(2s)−1 mod (2n+1) and we have (2s)−1 +

2k ≡ 0 mod (2n + 1). By using Lemma 3.2.4, we get N(g(2s)−1) = N(g2k).

From Theorem 1 in [29], we known that N(g(2s)−1) = N(g2s). This completes

the proof. �

Theorem 3.2.6. For n ≥ 3 and 2 ≤ k ≤ ⌈(n−1)/2⌉, we have N(gb) ≤ 2k−1

when

(i) b = 2k and b = 2n−k.

(ii) b+ 2k ≡ 0 mod (2n + 1).

(iii) b2k ≡ 1 mod (2n + 1).

Proof Assume that n ≥ 3 and 2 ≤ k ≤ ⌈(n − 1)/2⌉. For every X ∈ Z
n
2 ,

let g2k(X) = (g2k
(n)(X), . . . , g2k

(2)(X), g2k
(1)(X)), and g2k

(i)(X) be ith

coordinate function of g2k(X).

Since g2(0) = 2n − 1, g2(2
n−1) = 0 and g2(2j) is even and g2(2j + 1) is odd

for all j ∈ {1, . . . , 2n−1 − 1}, the truth table of g2
(1), Tg2

(1) = S2n

, where

S2n

= (s2n , . . . , s1) = (1, 0, . . . , 0, 0, 1, . . . , 1) ∈ Z
2n

2 , s2n = 1, s2n−1 = 0,

s2n−1+m = 0 and s2n−1−m = 1 for all m ∈ {1, . . . , 2n−1 − 1}. Then the truth

table of Tg
2k

(1) becomes {S2n−k+1

, . . . , S2n−k+1

︸ ︷︷ ︸
(2k−1)−times

}. Therefore,

g
(1)
2 (X) = x1 x2 . . . xn−1 ⊕ xn and g

(1)

2k (X) = x1 x2 . . . xn−k ⊕ xn−k+1

according to their truth tables, where xi = xi ⊕ 1. We know that

g
(1)

2k (X) ⊕ g
(2)

2k (X) = g
(1)

2k−1(X) since by the proof of Theorem 1 in [35],

y2 ⊕ y1 = x1 for g2(X) = Y. The hamming distance between g
(1)

2k (X) and

xn−k+1 is 2k.

This implies thatN(g
(1)

2k (X)) ≤ 2k. By Theorem 12 in [38], 2k ≤ N(g
(1)

2k (X))
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since the term x1 . . . xn−k is not properly covered (see Definition 9 in

[38]) by any other terms in g
(1)

2k (X). Then, N(g2k
(1)(X)) = 2k and

we get N(g2k
(1)(X) ⊕ g2k

(2)(X)) = N(g2k−1
(1)(X)) = 2k−1. Hence,

N(g2k(X)) ≤ 2k−1 by using Definition 3.1.1. The remaining parts of this

theorem can be easily proven by using Lemma 3.2.3, 3.2.4 and 3.2.5. �

Remark 1 We have checked that the inequalities in this theorem are

equalities for n ≤ 16, and we conjecture that this is also true for n > 16.

3.3 Linear Relations for Operations

As it can be seen from the proof of Theorem 3.2.2, we get the following

linear relations for every X = v(x) ∈ Z
n
2 such that X⊙Z = Y:

1 · X ⊕ 1 · Y ⊕ 1 · Z ⊕ 1 = 0 for z ∈ {0, 1} (3.4)

3 · X ⊕ 1 · Y ⊕ 1 · Z ⊕ 1 = 0 for z ∈ {2n−1, 2n−1 + 1} (3.5)

1 · X ⊕ 3 · Y ⊕ 1 · Z = 0 for z ∈ {2, 2n − 1}, (3.6)

where v(z) = Z.

We now give some properties of L⋊⋉,z
(a, b, c, λ) and in particular compute

them for various z.

Proposition 3.3.1. For n ≥ 2 and z ∈ Z2n, we have the following equalities:

1) For all z and a ∈ {0, . . . , 2n − 1}, L⊕,z
(a, a, a, 0) = 2n.

2) For all z, L
⊞,z

(1, 1, 1, 0) = 2n.
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3) For z ∈ {2n−1, 2n−1 + 1}, L⊙,z
(3, 1, 1, 1) = 2n.

4) For z ∈ {2, 2n − 1}, L⊙,z
(1, 3, 1, 0) = 2n.

5) For those z ∈ Z2n such that gcd(d−1(z), 2n + 1) = 1, let z−1 be the

inverse of d−1(z) in Z
∗
2n+1. Then L⊙,z

(a, b, 0, λ) = L⊙,z−1(b, a, 0, λ).

6) L
⊞,z

(a, b, 0, λ) = L
⊞,−z(b, a, 0, λ).

7) For z + z′ ≡ 0 mod (2n + 1), L⊙,z
(a, b, 0, λ) = L⊙,z′

(a, b, 0, λ′).

8) L⊙,0
(2, 2, 0, 0) = 2n; L⊙,0

(3, 3, 0, 1) = 2n ; L⊙,0
(6, 4, 0, 0) = 2n;

L⊙,0
(7, 5, 0, 1) = 2n; L⊙,0

(4, 6, 0, 0) = 2n; L⊙,0
(5, 7, 0, 1) = 2n.

9) For m ∈ {0, 1, . . . , n− 3},

L⊙,0
(2n−1−m, 2n−1−m, 0, 1) = 2n − 2m+2.

L⊙,0
(2n−1−m + 1, 2n−1−m + 1, 0, 0) = 2n − 2m+2.

L⊙,0
(2n−1−m + 2, 2n−1−m + 2, 0, 1) = 2n − 2m+2.

L⊙,0
(2n−1−m + 3, 2n−1−m + 3, 0, 0) = 2n − 2m+2.

L⊙,0
(2n−1−m + 4, 2n−1−m + 6, 0, 1) = 2n − 2m+2.

L⊙,0
(2n−1−m + 5, 2n−1−m + 7, 0, 0) = 2n − 2m+2.

L⊙,0
(2n−1−m + 6, 2n−1−m + 4, 0, 1) = 2n − 2m+2.

L⊙,0
(2n−1−m + 7, 2n−1−m + 5, 0, 0) = 2n − 2m+2.

L⊙,0
(2n−1−m + 2n−2−m, 2n−1−m + 2n−2−m, 0, 0) = 2n − 2m+2.

L⊙,0
(2n−1−m + 2n−2−m + 1, 2n−1−m + 2n−2−m + 1, 0, 1) = 2n − 2m+2.

L⊙,0
(2n−1−m + 2n−2−m + 2, 2n−1−m + 2n−2−m + 2, 0, 0) = 2n − 2m+2.
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L⊙,0
(2n−1−m + 2n−2−m + 3, 2n−1−m + 2n−2−m + 3, 0, 1) = 2n − 2m+2.

L⊙,0
(2n−1−m + 2n−2−m + 4, 2n−1−m + 2n−2−m + 6, 0, 0) = 2n − 2m+2.

L⊙,0
(2n−1−m + 2n−2−m + 5, 2n−1−m + 2n−2−m + 7, 0, 1) = 2n − 2m+2.

L⊙,0
(2n−1−m + 2n−2−m + 6, 2n−1−m + 2n−2−m + 4, 0, 0) = 2n − 2m+2.

L⊙,0
(2n−1−m + 2n−2−m + 7, 2n−1−m + 2n−2−m + 5, 0, 1) = 2n − 2m+2.

10) For 2 ≤ k ≤ n− 1,

i) L⊙,2k(2
n−k, 1, 0, 0) = 2n − 2k.

ii) L⊙,2k(2
n−k+1, 3, 0, 0) = 2n − 2k−1.

iii) L⊙,2k
(2n−k+1 + 2n−k, 2, 0, 0) = 2n − 2k−1.

11) For 2 ≤ k ≤ n− 1,

i) L⊙,2k
(1, 2k, 0, 1) = 2n − 2k.

For 2 ≤ k ≤ n− 2,

ii) L⊙,2k
(2, 2k+1 + 2k, 0, 0) = 2n − 2k−1.

iii) L⊙,2k(3, 2
k+1, 0, 1) = 2n − 2k−1.

12) For all z, L
⊞,z

(2, 2, 2, 0) = 0.75 ·2n.

13) For z ∈ { 4m+ 1 | m = 0, 1, . . . , 2n−2 − 1 },

L
⊞,z

(1, 1, 0, 1) = L
⊞,z

(3, 2, 0, 0) = 2n.

14) For z ∈ { 4m+ 3 | m = 0, 1, . . . , 2n−2 − 1 },

L
⊞,z

(1, 1, 0, 1) = L
⊞,z

(3, 2, 0, 1) = 2n.
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For the remaining cases, k = 1, 2, . . . , n− 2 :

15) For z ∈ { 2k + j2k+2 | j = 0, 1, . . . , 2n−k−2 − 1} and

a ∈ {1, 22, 23, . . . , 2k−1},

L
⊞,z

(a, a, 0, 0) = L
⊞,z

(2k, 2k, 0, 1) = L
⊞,z

(2k+1 + 2k, 2k+1, 0, 0) = 2n.

16) For z ∈ { 2k + 2k+1 + j2k+2 | j = 0, 1, . . . , 2n−k−2 − 1 } and

a ∈ {1, 22, 23, . . . , 2k−1},

L
⊞,z

(a, a, 0, 0) = L
⊞,z

(2k, 2k, 0, 1) = L
⊞,z

(2k+1 + 2k, 2k+1, 0, 1) = 2n.

17) For z = 2n−1 and a ∈ {1, 22, 23, . . . , 2n−2},

L
⊞,z

(a, a, 0, 0) = L
⊞,z

(2n−1, 2n−1, 0, 1) = 2n.

Proof Parts 1,2,3,4 and both 5 and 6 follow easily from equations

(3.1),(3.2),(3.5),(3.6) and the definition of L⋊⋉,z
, respectively.

Part 7 follows easily from the fact that v−1(gz(X)) + v−1(gZ′(X)) ≡

0 mod (2n + 1).

For part 8, 2 · X = 2 · Y since X⊙0 = v(2n + 1 − x) for ev-

ery v(x) = X ∈ Z
n
2 . Using this equality and equation (4), we get

3 · X ⊕ 1 = 3 · Y. If 2 · X = 0, then 4 · X = 4 · Y. Otherwise,

4 · X ⊕ 1 = 4 ·Y. This means that 4 · X = 6 · Y.

For part 9, for the first K = v(k) such that K·X = 1, we have J·X′ = J·X

and T·X′ = T·X⊕ 1, where J = v(j),T = v(t), 1 ≤ k ≤ n−1, 1 ≤ j ≤ k−1

and k − 1 < t ≤ n − 1 since X⊙0 = v(2n + 1 − x) for every X ∈ Z
n
2 . The
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proof of this part follows from this observation and part 8.

Parts 10(i) and 10(ii) can be directly proven by using the following facts :

• The hamming distance between 1 · g2k(X) and S · X is 2k, where

S = v(n− k).

• 1 · g2k(X) ⊕ 2 · g2k(X) = 1 · g2k−1(X).

To prove part 10(iii), it is enough to combine equalities in parts 10(i)

and 10(ii).

All cases of part 11 can be shown by using parts 5, 7 and 10.

In order to prove part 12, we use the following fact:

2 · Y = 2 ·X ⊕ (1 · X)(1 · Z) for all X and Z ∈ Z
n
2 . (3.7)

To prove parts 13 and 14, it suffices to consider equations (3.3) and

(3.7). Note that for both parts, 1 · Z = 1.

Parts 15 and 16 hold since it is easy to observe that 2l · Z = 0, where

l ∈ {0, . . . , k − 1} and 2k · Z = 1. Moreover, 2k+1 · Z = 0 and 2k+1 · Z = 1

for parts 15 and 16, respectively.

Part 17 is also satisfied because of the equation 2l · Z = 0, where

l ∈ {0, . . . , n− 2}. �

Remark 2

1) A weak key class having 223 keys of IDEA cipher was constructed in
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[8] using three linear relations (with probability one) for IDEA cipher’s

operations given in equations (3.1),(3.2) and (3.4). By the help of these

relations and linear relation in equation (3.5), the number of elements

of this weak key class is increased to 224 in Section 3.6.

2) We note that part 8 was observed by Nakahara independently [27].

3) Parts 10 and 11 hold for z = (2k)−1 and z = 2n + 1 − 2k due to parts

5 and 7.

3.4 Linear Relations for 1-round IDEA

3.4.1 Known Linear Relations

For 1-round IDEA, Daemen et al. [8] found 15 linear relations hold with

probability one due to the linearity of operations of IDEA (see equations in

3.1, 3.2, 3.4). These relations marked by (*) are given in Table 3.1. Note

that for each round of IDEA, four of the six 16-bit key subblocks Zi’s (i =

{1, 4, 5, 6}) are involved by the multiplication operation ⊙. In order to

derive each of these linear relation, at least one of those key subblocks were

restricted to take 0 and 1 (see Example 1 and Table 3.1). Additional key

values, 2, 2n − 1, 2n−1 and 2n−1 + 1, making the nonlinearity of the vector

valued function gz of ⊙ zero were discovered in [33],[35]. Similar to the

work of Daemen et al. [8], 0, 1 and these key values were used as round

multiplicative keys to derive extra 39 linear relations in [34]. All these 54

linear relations (holding with probability one) with the related key subbblocks

restrictions are listed in Table 3.1. Notice that each linear relation for 1-round

IDEA should be based on linear relations for the operations used in IDEA

cipher. Hence under some round key subblocks restrictions, we can express
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Table 3.1: List of linear relations for 1-round IDEA given in [8] (indicated

by *) and [34]. Here k is a non-negative integer, −1 ≡ 0 mod (216 + 1),

−215 ≡ 215 + 1 mod (216 + 1) and −2 ≡ 216 − 1 mod (216 + 1).

φ ψ ω λ z1 z2 z3 z4 z5 z6

1 * (0,0,0,1,0, 1) (0, 0,0,1) (0,0,1,0) 0 - - - ∓1 - ∓1

2 (0, 0,0,1,0,1) (0, 0,0,3) (0,0,1,0) 0 - - - ∓215 - ∓1

3 * (0,0,1,0,1, 1) (0,0, 1, 0) (1,0,1,1) 0 - - - - ∓1 ∓1

4 (0, 0,2,0,1,1) (0, 0,3,0) (3,0,1,1) 1 ∓2 - 2k - ∓215 ∓2

5 (0, 0,2,1,1,1) (0, 2,3,1) (3,0,3,3) 1 ∓2 2k 2k ∓2 ∓215 ∓2

6 * (0,0,1,1,1, 0) (0, 0,1,1) (1,0,0,1) 0 - - - ∓1 ∓1 -

7 (0, 0,1,1,1,0) (0, 0,1,3) (1,0,0,1) 0 - - - ∓215 ∓1 -

8 * (1,0,0,0,0, 1) (0, 1,0,0) (0,0,0,1) 1 - - - - - ∓1

9 * (1,0,0,1,0, 0) (0, 1,0,1) (0,0,1,1) 1 - - - ∓1 - -

10 (0, 2,0,1,0,0) (0, 3,0,1) (0,0,3,3) 0 - 2k - ∓2 - -

11 (0, 1,0,1,0,0) (0, 1,0,3) (0,0,3,3) 1 - - - ∓215 - -

12 * (0,1,1,0,1, 0) (0, 1,1,0) (1,0,1,0) 1 - - - - ∓1 -

13 * (0,1,1,1,1, 1) (0, 1,1,1) (1,0,0,0) 1 - - - ∓1 ∓1 ∓1

14 (0, 1,1,1,1,1) (0, 1,1,3) (1,0,0,0) 1 - - - ∓215 ∓1 ∓1

15 (0, 1,2,1,1,1) (0, 1,3,1) (3,0,0,0) 0 - ∓2 2k ∓1 ∓215 ∓2

16 * (1,0,0,0,0, 1) (1, 0,0,0) (0,1,1,1) 1 ∓1 - - - ∓1 ∓1

17 (1, 0,0,0,0,1) (1, 0,0,0) (0,3,1,1) 1 ∓2 - 2k - ∓215 ∓1

18 * (1,0,0,1,1, 0) (1, 0,0,1) (0,1,0,1) 1 ∓1 - - ∓1 ∓1 -

19 (1, 0,0,1,1,0) (1, 0,0,3) (0,1,0,1) 1 ∓1 - - ∓215 ∓1 -

20 (1, 0,0,1,1,0) (3, 0,0,1) (0,1,0,1) 1 ∓215 - - ∓1 ∓1 -

21 (1, 0,0,1,1,0) (3, 0,0,3) (0,1,0,1) 1 ∓215 - - ∓215 ∓1 -

22 (1, 0,2,1,1,0) (1, 0,2,1) (0,1,0,1) 0 ∓2 - 2k ∓1 ∓215 -

23 (1, 0,2,1,1,0) (1, 0,2,3) (0,1,0,1) 0 ∓2 - 2k ∓215 ∓215 -

24 * (1,0,1,0,0, 0) (1, 0,1,0) (1,1,0,0) 1 ∓1 - - - - -

25 (1, 0,2,0,0,0) (1, 0,3,0) (3,3,0,0) 0 ∓2 - 2k - - -

26 (1, 0,1,0,0,0) (3, 0,1,0) (1,1,0,0) 1 ∓215 - - - - -
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Table 3.1 (cont’d)

φ ψ ω λ z1 z2 z3 z4 z5 z6

27 * (1, 0,1,1,0,1) (1, 0,1,1) (1,1,1,0) 1 ∓1 - - ∓1 - ∓1

28 (1,0,1,1,0,1) (1, 0,1,3) (1,1,1,0) 1 ∓1 - - ∓215 - ∓1

29 (1,0,2,1,0,1) (1, 0,3,1) (3,3,3,0) 0 ∓2 - 2k ∓1 - ∓1

30 (1,0,2,1,0,1) (1, 0,3,3) (3,3,3,0) 0 ∓2 - 2k ∓215 - ∓1

31 (1,0,1,1,0,1) (3, 0,1,1) (1,1,1,0) 1 ∓215 - - ∓1 - ∓1

32 (1,0,1,1,0,1) (3, 0,1,3) (1,1,1,0) 1 ∓215 - - ∓215 - ∓1

33 * (1, 1,0,0,1,0) (1, 1,0,0) (0,1,1,0) 0 ∓1 - - - ∓1 -

34 (1,1,0,0,1,0) (3, 1,0,0) (0,1,1,0) 0 ∓215 - - - ∓1 -

35 (1,1,2,0,1,0) (1, 1,2,0) (0,1,1,0) 1 ∓2 - 2k - ∓215 -

36 * (1, 1,0,1,1,1) (1, 1,0,1) (0,1,0,0) 0 ∓1 - - ∓1 ∓1 ∓1

37 (1,1,2,1,1,1) (1, 1,2,1) (0,1,0,0) 1 ∓2 - 2k ∓1 ∓215 ∓1

38 (1,1,2,1,1,1) (1, 1,2,3) (0,1,0,0) 1 ∓2 - 2k ∓215 ∓215 ∓1

39 (1,1,0,1,1,1) (3, 1,0,1) (0,1,0,0) 0 ∓215 - - ∓1 ∓1 ∓1

40 (1,1,0,1,1,1) (3, 1,0,3) (0,1,0,0) 0 ∓215 - - ∓215 ∓1 ∓1

41 (1,1,0,1,1,1) (1, 1,0,1) (0,3,0,0) 0 ∓2 - - ∓1 ∓215 ∓2

42 (1,1,0,1,1,1) (1, 1,0,3) (0,3,0,0) 0 ∓2 - - ∓215 ∓215 ∓2

43 * (1, 1,1,0,0,1) (1, 1,1,0) (1,1,0,1) 0 ∓1 - - - - ∓1

44 (1,1,1,0,0,1) (3, 1,1,0) (1,1,0,1) 0 ∓215 - - - - ∓1

45 (1,1,2,0,0,1) (1, 1,3,0) (3,3,0,1) 1 ∓2 - 2k - - ∓1

46 * (1, 1,1,1,0,0) (1, 1,1,1) (1,1,1,1) 0 ∓1 - - ∓1 - -

47 (1,1,1,1,0,0) (1, 1,1,3) (1,1,1,1) 0 ∓1 - - ∓215 - -

48 (1,1,1,1,0,0) (3, 1,1,1) (1,1,1,1) 0 ∓215 - - ∓1 - -

49 (1,1,1,1,0,0) (3, 1,1,3) (1,1,1,1) 0 ∓215 - - ∓215 - -

50 (1,1,2,1,0,0) (1, 1,3,1) (3,3,1,1) 1 ∓2 - 2k ∓1 - -

51 (1,1,2,1,0,0) (1, 1,3,3) (3,3,1,1) 1 ∓2 - 2k ∓215 - -

52 (1,2,1,1,0,0) (1, 3,1,1) (1,1,3,3) 1 ∓1 2k - ∓2 - -

53 (1,2,1,1,0,0) (3, 3,1,1) (1,1,3,3) 1 ∓215 2k - ∓2 - -

54 (1,2,2,1,0,0) (1, 3,3,1) (3,3,3,3) 1 ∓2 2k 2k ∓2 - -
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a linear relation for 1-round IDEA as:

φ ⋆ Z ⊕ ψ ⋆X ⊕ ω ⋆Y ⊕ λ = 0

where Z ,X and Y are round key, input and output of 1-round

IDEA, respectively and λ ∈ Z2, φ ⋆ Z = φ1 · Z1 ⊕ . . . ⊕ φ6 · Z6,

ψ ⋆ X = ψ1 ·X1 ⊕ . . . ⊕ ψ4 ·X4 and ω ⋆Y = ω1 ·Y1 ⊕ . . . ⊕ ω4 ·Y4 such

that φ = (φ1, . . . ,φ6), ψ = (ψ1, . . . ,ψ4) and ω = (ω1, . . . ,ω4) for φi, ψi

and ωi ∈ Z
16
2 . Here φi,ψi and ωi are masks for Zi = v(zi),Xi = v(xi) and

Yi = v(yi), respectively and xi, yi, zi ∈ Z2n .

For the sake of clarity, let us derive the 24th linear relation in Table 3.1,

one of 15 linear relations found in [8]:

Example 1: Adding first two output of 1-round IDEA, namely Y1 and

Y2, we have

Y1⊕Y2 = (X1⊕Z1)⊕(X3⊞Z3)

When Z1 = (0, . . . , 0) or Z1 = (1, . . . , 1), the least significant bit of Y1 =

X1⊙Z1 is 1 · Y1 = 1 · X1 ⊕ 1 · Z1 ⊕ 1 from the equation 3.4 and the least

significant bit of Y3 = X3⊞Z3 is 1 ·Y3 = 1 ·X3 ⊕ 1 ·Z3 from the equation

3.2. The addition of 1 · Y1 and 1 · Y2 becomes

1 ·Y1 ⊕ 1 ·Y2 = 1 · X1 ⊕ 1 · Z1 ⊕ 1 · X3 ⊕ 1 · Z3 ⊕ 1 (3.8)

When Z1 = (0, . . . , 0) or (1, . . . , 1), one can represent this equation as a

linear relation for 1-round IDEA

(1, 0, 1, 0, 0, 0) ⋆ Z ⊕ (1, 0, 1, 0) ⋆X ⊕ (1, 1, 0, 0) ⋆Y ⊕ 1 = 0
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Example 2: From the Table 3.1, when Zj = v(zj), z1 = ∓2, z4 = ∓215,

z5 = ∓215 and z6 = ∓2 for φ = (1, 1, 0, 1, 1, 1), ψ = (1, 1, 0, 3), ω =

(0, 3, 0, 0) and λ = 0 we have

1 ·Z1 ⊕ 1 ·Z2 ⊕ 1 ·Z4 ⊕ 1 ·Z5 ⊕ 1 ·Z6 ⊕ 1 ·X1 ⊕ 1 ·X2 ⊕ 3 ·X4 = 3 ·Y2

This relation, one of 39 linear relations derived in [34], is the 42th linear

relation in Table 3.1.

3.4.2 New Linear Relations

Let us consider the 35th and the 45th linear relations for 1-round IDEA

in Table 3.1 to obtain a new relation which is not listed in Table 3.1.

For the 35th linear relation (1, 1, 2, 0) → (0, 1, 1, 0) with key subblocks

restrictions z1 = ∓2, z3 = 2k and z5 = ∓215 and the 45th linear relation

(1, 1, 3, 0) → (3, 3, 0, 1) with restrictions z1 = ∓2, z3 = 2k and z6 = ∓1, we

have two corresponding equations (3.9) and (3.10) respectively

1·Z1 ⊕ 1·Z2 ⊕ 2·Z3 ⊕ 1·Z5 ⊕ 1·X1 ⊕ 1·X2 ⊕ 2·X3 ⊕ 1·Y2 ⊕ 1·Y3 ⊕ 1 = 0

(3.9)

1·Z1 ⊕1·Z2 ⊕2·Z3 ⊕1·Z6 ⊕1·X1 ⊕1·X2 ⊕3·X3 ⊕3·Y1 ⊕3·Y2 ⊕1·Y4 ⊕1 = 0

(3.10)

Equations (3.9) and (3.10) key subblocks restrictions do not give any conflicts

and they can be combined (by adding them in mod 2) to obtain the following

linear relation candidate:

1 ·Z5 ⊕ 1 ·Z6 ⊕ 1 ·X3 ⊕ 3 ·Y1 ⊕2 ·Y2 ⊕ 1 ·Y3 ⊕ 1 ·Y4 ⊕ 1 = 0 (3.11)

We have used many inputs for 1-round IDEA to check that linear relation

in (3.11) holds with probability one under the key subblocks restrictions

z1 = ∓2, z3 = 2k, z5 = ∓215 and z6 = ∓1. In fact, we have observed that

only key restrictions z5 = ∓215 and z6 = ∓1 are enough to make this linear
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relation hold with probability one according to our experiments. Hence we

have devised a new algorithm to find new linear relations for 1-round IDEA

based on a set of 54 linear relations for 1-round IDEA in Table 3.1. Consider-

ing these known linear relations, we found additional 242 new linear relations

for 1-round IDEA (see Table B.1, Appendix B) using the following algorithm:

Algorithm 1 An algorithm for finding new linear relations for 1-round

IDEA based on existing linear ones:

Let S be the set of linear relations with their key subblocks restrictions.

Step 1 All pair of S whose key subblocks values coincided are chosen.

Step 2 Any chosen pairs are also combined (directly added in mod 2).

Step 3 Each linear relation candidates in Step 2 is tested using 10 million

test vectors to check whether it is a linear relation or not.

Step 4 The ones (i.e. candidate linear relations) passing Step 3 added to S.

Step 5 Previous steps are repeated until there is no increase in the number

of the elements of the set S.

Step 6 Key restrictions of each linear relation in S are checked to remove

unneccessary restrictions using 50000 test vectors.

We note that this algorithm with first 5 steps was presented in [36]. The

last step has been added as a result of comments provided by Nakahara [27].

All 54 linear relations in Table 3.1 can be derived by hand calculation

considering all combinations of subblock outputs of 1-round IDEA, Yi and

subblock keys of 1-round IDEA, Zi which give us linear relations for the

operations used in IDEA cipher. By using Algorithm 1, it is possible to

obtain linear relations that can not be derived in this way.
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3.5 Linear Relations for 1-round RIDEA

In order to derive 15 linear relations for 1-round IDEA discovered in [8],

all 15 combinations of round output subblocks Yi in Section 2.2.1 should be

examined. For each of these combinations, there is only one related linear

relation if multiplicative key subblocks are restricted to 0 or 1 when it is

necessary. Using the same approach to derive these relations, other set of 39

linear relations were discovered in [34]. And based on these linear relations,

new set of linear relations has been produced by Algorithm 1 in Section 3.4.2.

Starting point for finding linear relations 1-round RIDEA is to study all 15

combinations of round output subblocks Yi in Section 2.2.2. For only combi-

nations Y1⊕Y2, Y3⊕Y4, Y1⊕Y2⊕Y3⊕Y4, Y2⊕Y3, Y1⊕Y4, Y1⊕Y3

and Y2⊕Y4, there are 7 linear relations for 1-round RIDEA like those dis-

covered in [8]. Because T̃ in Section 2.2.2 can not be expressed by a linear

relation since Q involves in the RMA-structure by ⊙ operation, Q frequently

changes and it can not be restricted as round multiplicative key subblocks.

This is also case for Ũ because Ũ = (P⊙Z5)⊞T̃. Hence the number of

linear relations for 1-round RIDEA is 7 if restriction for only key points 0 or

1 is done. This means that the number of linear relations for 1-round RIDEA

is quite less than for 1-round IDEA considering other approaches introduced

for 1-round IDEA to obtain more linear relations based on known ones.

3.6 Linear Weak Key Classes for IDEA

As indicated in Table 3.2, three linear relations, namely the 24th, the 33th

and the 12th relations in Table 3.1 were successively used to find a linear

relation for 8,5-round IDEA holding with probability one [8]. Because of key

subblocks restrictions done in each round, this linear relation is satisfied for

all 64-bit plaintexts provided that ranges of zero key bits’ indices of a 128-bit
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Table 3.2: Each round linear relation and ranges for indices of zero key bits

of IDEA master key are considered to derive the linear relation (1, 0, 1, 0) →

(0, 1, 1, 0) for 8,5-round IDEA satisfied by a linear weak key class with car-

dinality 223.

Round i Linear Relation ψ → ω Z
(i)
1 Z

(i)
5

1 (1,0,1,0) → (1, 1,0,0) 0-14 -

2 (1,1,0,0) → (0, 1,1,0) 96-110 57-71

3 (0,1,1,0) → (1, 0,1,0) - 50-64

4 (1,0,1,0) → (1, 1,0,0) 82-96 -

5 (1,1,0,0) → (0, 1,1,0) 75-89 11-25

6 (0,1,1,0) → (1, 0,1,0) - 4-18

7 (1,0,1,0) → (1, 1,0,0) 36-50 -

8 (1,1,0,0) → (0, 1,1,0) 29-44 93-107

8,5 (0,1,1,0) → (0, 1,1,0) - -

master key bits are between 0-25, 29-71, and 75-110. Such key is a member

of a class of weak keys with size 223 since each of the remaining 23 bits of

the master key can take 0 or 1.

Note that this has been the largest known class of weak keys based on a

linear relation for 8,5-round IDEA. Hence this linear relation can be regarded

as the best linear relation for 8,5-round IDEA. Based on this linear relation,

we have found a new class of weak keys with cardinality 224. For this con-

struction, we replace the first round linear relation (1, 0, 1, 0) → (1, 1, 0, 0)

with ({1, 3}, 0, 1, 0) → (1, 1, 0, 0) (see Table 3.3). For the former and latter

relations, Z
(1)
1 is chosen 0 = (0, . . . , 0) or 1 = (1, . . . , 1) and Z

(1)
1 is restricted

to 0 or 215, respectively. Note that ({1, 3}, 0, 1, 0) = (1, 0, 1, 0) (respectively

({1, 3}, 0, 1, 0) = (3, 0, 1, 0) ) if Z
(1)
1 is equal to 0 (respectively Z

(1)
1 = 215).

Therefore, zero key bits’ indices of a 128-bit key are between 1-25, 29-71, and

75-110. Then linear relation ({1, 3}, 0, 1, 0) → (0, 1, 1, 0) for the 8,5-round

IDEA holds with probability one (Figure 3.3) and there are 224 such keys.

If we choose four 16-bit input subblocks for 8,5-round IDEA as X
(1)
1 ∈
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Table 3.3: Each round linear relation and ranges for indices of zero

key bits of IDEA master key are considered to derive the linear relation

({1, 3}, 0, 1, 0) → (0, 1, 1, 0) for 8,5-round IDEA satisfied by a linear weak

key class with cardinality 224.

Round i Linear Relation ψ → ω Z
(i)
1 Z

(i)
5

1 ({1, 3},0,1,0) → (1, 1,0,0) 1-15 -

2 (1,1,0,0) → (0, 1,1,0) 96-110 57-71

3 (0,1,1,0) → (1, 0,1,0) - 50-64

4 (1,0,1,0) → (1, 1,0,0) 82-96 -

5 (1,1,0,0) → (0, 1,1,0) 75-89 11-25

6 (0,1,1,0) → (1, 0,1,0) - 4-18

7 (1,0,1,0) → (1, 1,0,0) 36-50 -

8 (1,1,0,0) → (0, 1,1,0) 29-44 93-107

8,5 (0,1,1,0) → (0, 1,1,0) - -

{0, 1} and for any X
(1)
2 ,X

(1)
3 and X

(1)
4 ∈ {0, . . . , 216 − 1} and we remove

restriction on Z
(1)
1 subkey of the first round relation in Table 3.2, we can

construct a class of weak keys with cardinality 227. Because in this case

zero key bits’ indices of the master key are between 4-25, 29-71, and 75-110.

Hence we have the same linear relation (1, 0, 1, 0) → (0, 1, 1, 0) for 8,5-round

IDEA in Table 3.2 under the chosen plaintext assumption given above.

We haven’t discovered other linear relations in Table 3.1 and Table B.1

similar to the best linear relation giving a large class of weak keys because

of the following reasons:

• If we compare Table 3.1 with Table B.1 in Appendix, then it can be

seen that for most cases, linear relations in Table 3.1 derived in [8] have

less key restrictions than others.

• In Table 3.1, each of linear relations numbered with 8, 9, 12, 24, 26 has

one key subblock restriction and each of linear relations numbered with

1, 2, 3, 6, 7, 10, 25, 34, 43, 44, 46, 47, 48, 49 has two key subblocks restric-
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tions. There aren’t any linear relations with one key subblock re-

striction in Table B.1, but there are linear relations numbered with

44, 226, 105, 141, 181 having two key subblocks restrictions in Table B.1.

In order to find a linear relation for 8,5-round IDEA providing a large

class of weak keys, it is better to use those relations (with less key sub-

blocks restrictions) listed above. However, it is not possible to derive

such linear relation for 8,5-round IDEA using these relations and linear

relations with key subblocks ∓2 or ∓215 restrictions other than those

derived in [8] in both Table 3.1 and Table B.1. Because

i) we faced with key subblocks restrictions giving conflicts, that is,

some bits of the master 128-bit of IDEA are both 0 and 1 due

to key subblocks restrictions of two linear relations considered

for two different rounds, especially when a key subblock of one

linear relation is equal to 0 or 1 and a key subblock of other one

is chosen as ∓2 or ∓215;

ii) we haven’t found successive linear relations for many linear rela-

tions with key subblock restriction like ∓2 or ∓215 while deriving

multi round linear relation. For example, for the 138th linear re-

lation in Table B.1, namely (3, 3, 0, 1) → (2, 3, 2, 2) there aren’t

any linear relations whose input mask is equal to (2, 3, 2, 2) in

both Table 3.1 and Table B.1.

Now we discuss cases for which the nonlinearity of a function of the

form xiyj ⊕ yk is zero, where X = (xn, xn−1, . . . , x1), gZ(X) = Y = Z⊙X,

xi = 2i−1 · X, yk = 2k−1 · Y.

Proposition 3.6.1. For all n ≥ 2, we have

1) H((1·X)(1·g0(X)) ⊕ 1·g0(X)) = H((2·X)(2·g0(X)) ⊕ 1·g0(X)) = 0.

H((1·X)(1·g0(X))⊕ 2·g0(X)) = H((22·X)(2·g0(X))⊕ 23·g0(X)) = 0.
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H((1·X)(1·g0(X))⊕ 22·g0(X)) = H((2·X)(2·g0(X))⊕ 22·g0(X)) = 0.

H((2 · X)(22 · g0(X)) ⊕ 23 · g0(X)) = H((22 · X)(22 · g0(X)) ⊕ 23 ·

g0(X)) = 0.

2) For k ∈ {2, . . . , n− 1}, H((2n−k ·X)(1 · g2k(X)) ⊕ 2 · g2k(X)) = 0.

3) H((1 ·X)(2n−1 ·g2n−2(X)) ⊕ 1 ·g2n−2(X)) = H((22 ·X)(1 ·g2n−2(X)) ⊕

2 · g2n−2(X)) = 0.

4) H((1 ·X)(1 ·g2n−1(X)) ⊕ 2 ·g2n−1(X)) = H((2 ·X)(1 ·g2n−1(X)) ⊕ 2 ·

g2n−1(X)) = 0.

5) For z ∈ {2n−1, 2n−1 + 1} H((1 · X)(1 · gz(X)) ⊕ 2 · gz(X)) = H((2 ·

X)(1 · gz(X)) ⊕ 2 · gz(X)) = 0

6) For i ∈ {2, . . . , n − 1}, H((2i−1 · X)(2i−2 · g2n−1+1(X)) ⊕ 2i−1 ·

g2n−1+1(X)) = 0.

Proof Proposition 3.3.1 can be directly used to prove part 1.

To prove part 2, we consider the following facts used in the proof of Theorem

3.2.6:

• 1 · g2k(X) ⊕ 2 · g2k(X) = 1 · g2k−1(X)

• 1 · g2k(X) = 1 · g2k(X) = x1 x2 . . . xn−k ⊕ xn−k+1

From these two facts, we have 2 · g2k(X) = 2 · g2k(X) = 1 · g2k(X) ⊕

1 · g2k−1(X) and therefore, we get (2n−k · X)(1 · g2k(X)) ⊕ 2 · g2k(X) =

1 ⊕ 2n−k+1 · X. This finishes the proof of this part. In a similar fashion,

other parts can be easily proven. �
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chapter 4

difference properties

4.1 Difference Properties of Operations

Differential cryptanalysis is a powerful technique to analyze symmetric

ciphers and cryptographic hash functions (Section 2.1.1). This is done by

considering how input differences affect the output differences. This fact leads

us to do the similar thing for the function X → X⋊⋉Z = Y corresponding

to the operation ⋊⋉ ∈ {⊞,⊙,⊕}. We introduce the set D⋊⋉,z
(a, b) for fixed

a, b and z ∈ Z2n associated to ⋊⋉ and obtain several interesting properties of

it. We hope that these properties could be exploited to cryptanalyze ciphers

which operation ⋊⋉ is used.

Definition 4.1.1. For fixed a = v−1(A), b = v−1(B), z = v−1(Z) ∈ Z2n and

⋊⋉ ∈ {⊞,⊙,⊕}, let

D⋊⋉,z
(a, b) = {(X,Xa) ∈ Z

n
2 × Z

n
2 | (X⋊⋉Z)⊕(Xa⋊⋉Z) = B ,Xa = X⊕A}.

Proposition 4.1.2. We have the following:

1) |D
⊞,z

(a, b)| = |D
⊞,−z(b, a)|, where −z is the additive inverse of z in

Z2n.

2) |D
⊞,z

(a, b)| = |D
⊞,−z(a, b)|.

3) |D
⊞,z

(a, b)| = |D
⊞,z

(b, a)|.

4) |D⊙,z
(a, b)| = |D⊙,z−1(b, a)|, where z−1 = d((d−1(z))

−1
) provided that

d−1(z) has the inverse (d−1(z))−1 in Z
∗
2n+1.
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Proof For part 1, it is easy to see that the map

ϕ : D
⊞,z

(a, b) −→ D
⊞,−z(b, a) given by (X,Xa) 7−→ (X⊞Z,Xa⊞Z).

is one-to-one and onto, and therefore |D
⊞,z

(a, b)| = |D
⊞,−z(b, a)|.

Part 2 follows from the bijectivity property of the map

φ : D
⊞,z

(a, b) −→ D
⊞,−z(a, b), φ(X,Xa) =

((2n − 1)⊞(−X), (2n − 1)⊞(−Xa)) and the following two facts:

• ((2n − 1)⊞(−X))⊕((2n − 1)⊞(−Xa)) = A for every (X,Xa).

• (((2n − 1)⊞(−X))⊞(−Z))⊕(((2n − 1)⊞(−Xa))⊞(−Z)) =

((2n − 1)⊞(−(X⊞Z)))⊕((2n − 1)⊞(−(Xa⊞Z))) = B for every

(X,Xa) ∈ D
⊞,z

(a, b).

Part 3 follows from parts 1 and 2.

For part 4, the following ψ map is bijective:

ψ : D⊙,z
(a, b) −→ D⊙,z−1(b, a) given by (X,Xa) 7−→ (X⊙Z,Xa⊙Z).

Hence these two sets have the same cardinality. �

Proposition 4.1.3. Let a, b and z ∈ Z2n. Then

1) For all a, b and z, 0 ≤ |D⋊⋉,z
(a, b)| ≤ 2n−1.

2) For all a and z, |D⊕,z
(a, a)| = 2n−1.
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3) For all a, |D
⊞,0(a, a)| = |D

⊞,2n−1(a, a)| = |D⊙,1
(a, a)| = 2n−1.

4) For all z, |D
⊞,z

(2n−1, 2n−1)| = 2n−1.

5) For z ∈ {0, 1}, |D⊙,z
(2n−1, 2n−1)| = 2n−1.

6) For z ∈ {0, 1}, |D⊙,z
(1, 1)| = 2n−1.

7) For all even z, |D
⊞,z

(1, 1)| = 2n−1.

8) For 2 ≤ k ≤ n − 2, z ∈ {2k, 2n − 2k}, and (a, b) ∈

{(m,m), (2n−1 +m, 2n−1 +m) |m = 1, . . . , 2k−1}, |D
⊞,z

(a, b)| = 2n−1.

9) For z ∈ {2n−2, 2n − 2n−2} and (a, b) ∈ {(j, j), (2n−2 + j, 2n−2 + 2n−1 +

j), (2n−2 +2n−1 +j, 2n−2 +j) | j = 1, . . . , 2n−2−1}, |D
⊞,z

(a, b)| = 2n−1.

10) For z ∈ { 2lk, 2n−2lk | 2 ≤ l ≤ n−2 , k = 2m−1 , m ∈ Z
+ and 2lk <

2n } and a ∈ {1, . . . , 2l − 1}, |D
⊞,z

(a, a)| = 2n−1.

Proof It is easy to check the parts 1 through 5 and therefore we shall

give the proof for the rest. Assume that Y = X⊞Z and Ya = Xa⊞Z for

A = v(a) ∈ Z
n
2 and Xa = X⊕A.

For part 6, it is known that Y = X⊙ 0 = v(2n + 1 − x) and

Y1 = X1⊙ 0 = v(2n + 1 − x1). Hence we have Y⊕Y1 = 1 when z = 0.
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For part 7, for even values of z, we have (1 · (X⊞Z))⊕(1 · (X1⊞Z)) =

(1 · X)⊕(1 · X1) = 1 and 2l · Y1 = 2l · Y for 1 ≤ l ≤ n− 1.

To prove part 8, for z = 2k, a ∈ {1, . . . , 2k − 1} and every (X,Xa) pair,

Y⊕Ya = A since 2l · Ya = 2l · X ⊕ 2l · A and 2l · Y = 2l · X, where

l ∈ {0, . . . , k − 1}, 2k · Ya = 2k · Y = 2k · X ⊕ 1 and 2l · Ya = 2l · Xa =

2l · X = 2l · Y for k < l ≤ n− 1 because 2t · A = 0 for t ≥ k.

For z = 2k and a = 2n−1 +m, where m ∈ {1, . . . , 2k − 1}, Y⊕Ya = A.

Because only difference comparing to first case is as follows:

2n−1 · Ya = 2n−1 · X ⊕ 1 = 2n−1 ·Y

By Proposition 4.1.2, part 8 also hold for −z = 2n − 2k which is an

additive inverse of z = 2k.

Similar to part 8, part 9 (respectively part 10 ) can be proven by using

the former (respectively the latter) fact:

• 2n−1 · Ya = 2n−1 · Y ⊕ 1 = 2n−1 · X ⊕ 2n−2 · X ⊕ 1, where

2n−1 · Xa = 2n−1 · X.

• 2s · (2l · k) = 0 for 0 ≤ s ≤ l − 1. �

Remark 3 In [8], a weak class of keys with cardinality 235 and extended

version of this class having 251 keys were found based on parts 2, 4 and 5.
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4.2 Impossible Differences for Operations

Lemma 4.2.1. For all integer n ≥ 4,

1) |D
⊞,z

(a, b)| = 0 for all z ∈ Z2n, when

(i) a is odd and b is even or

(ii) a is even and b is odd.

2) |D
⊞,z

(a, 2k − 1)| = |D
⊞,z

(2k − 1, a)| = 0 for all z ∈ Z2n , when k ∈

{2, . . . , n−2} and odd a ∈ {2s+1, . . . , (
∑s

i=k 2i)−1 | k+1 ≤ s ≤ n−1}.

3) |D
⊞,2k(2k, 2k)| = 0 for k ∈ {1, . . . , n− 2}.

4) |D
⊞,z

(a, b)| = |D
⊞,z

(b, a)| = 0 for all z ∈ Z2n for even a and b such

that 2i · A = 0, 2l · A = 1, 2j · B = 0, 2k · B = 1, where l < k,

i ∈ {0, . . . , l − 1} and j ∈ {0, . . . , k − 1} .

5) |D
⊞,z

(a, b)| = 0 for all z ∈ Z2n \ {0} and all a, b ∈ Z2n such that

b ≡ a+ z mod 2n.

Proof

For part 1, let us consider the least significant bits of both sides of

the equality (X⊞Z)⊕(Xa⊞Z) = B. If |D
⊞,z

(a, b)| > 0, then they

should be equal to each other due to the equations 3.1 and 3.2. That is,

1 ·X ⊕ 1 ·Z ⊕ 1 ·Xa ⊕ 1 ·Z = 1 ·A = 1 ·B. This completes the proof of

this part.
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For part 5, |D
⊞,z

(a, b)| = 0 for every odd z since if |D
⊞,z

(a, b)| > 0,

then 1 · ((X⊞Z)⊕(Xa⊞Z)) = 1 · A = 1 · B = 1 · A ⊕ 1 · Z. With

comparing other bits of (X⊞Z)⊕(Xa⊞Z) and B, it can be easily concluded

that |D
⊞,z

(a, b)| > 0 only if z = 0. We leave the proof of other parts to the

reader.

Conjecture 4.2.2. For all z ∈ Z2n, there exists one and only one (a, b) such

that |D⊙,z
(a, b)| = 0. In fact, this (a, b) is equal to (1, 2n−1).

4.3 Impossible Differentials for 1-round

IDEA

In [4], a general technique called miss in the middle was used to construct

impossible differential by finding two events with probability one whose con-

ditions cannot be satisfied together. (A; 0;A; 0) −→ (B;B; 0; 0) (respec-

tively (0;A; 0;A) −→ (0; 0;B;B) ), a 2,5-round IDEA impossible differen-

tial (where A = v(a),B = v(b) and a 6= 0 6= b) was discovered in [4]. In this

section we find impossible differentials for 1-round IDEA directly.

Definition 4.3.1. For a fixed round key Z , a differential for 1-round IDEA

under the XOR operation is of the form:

(△X1,△X2,△X3,△X4) −→ (△Y1,△Y2,△Y3,△Y4), where △Xi =

Xi⊕X∗
i for i ∈ {1, 2, 3, 4} and

△Y1 = {(X1⊙Z1)⊕T}⊕{(X∗
1⊙Z1)⊕T∗} = (X1⊙Z1)⊕(X∗

1⊙Z1)⊕△T

△Y2 = {(X3⊞Z3)⊕T}⊕{(X∗
3⊞Z3)⊕T∗} = (X3⊞Z3)⊕(X∗

3⊞Z3)⊕△T

△Y3 = {(X2⊞Z2)⊕U}⊕{(X∗
2⊞Z2)⊕U∗} = (X2⊞Z2)⊕(X∗

2⊞Z2)⊕△U

△Y4 = {(X4⊙Z4)⊕U}⊕{(X∗
4⊙Z4)⊕U∗} = (X4⊙Z4)⊕(X∗

4⊙Z4)⊕△U

Definition 4.3.2. A differential for 1-round IDEA is impossible if it is not

satisfied by any round key Z .
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From the identity (2.4) in Section 2.2.1, we know that if △P = P⊕P∗ =

0 and △Q = Q⊕Q∗ = 0, then we have △U = U⊕U∗ = 0 and △T =

T⊕T∗ = 0 for two MA-structure outputs (U,T) and (U∗,T∗). Assuming

that △P = 0 and △Q = 0, we have the following type of differentials for

1-round IDEA for every △Xi differences

(△X1,△X2,△X3,△X4) −→ (△Y1,△Y2,△Y3,△Y4) (4.1)

where △Y1 = (X1⊙Z1)⊕(X∗
1⊙Z1), △Y2 = (X3⊞Z3)⊕(X∗

3⊞Z3),

△Y3 = (X2⊞Z2)⊕(X∗
2⊞Z2), △Y4 = (X4⊙Z4)⊕(X∗

4⊙Z4).

Note that if △Y1 = △Y2 and △Y3 = △Y4, then many types of impos-

sible differentials for 1-round IDEA can be derived by using parts of Lemma

4.2.1. For example,

• let us consider the part 5 of Lemma 4.2.1. For all a, b, z ∈ Z2n such

that z 6= 0, b ≡ a + z mod 2n and B = v(b), if we choose △X2 as

A = v(a), then we have the following type of impossible differentials

for 1-round IDEA based on (4.1) type of differential for 1-round IDEA:

(△X1,A,△X3,△X4) −→ (△Y1,△Y2,B,B)

• The following type of impossible differentials for 1-round IDEA can be

derived due to the part 3 of Lemma 4.2.1 by choosing △X2 as odd

a ∈ {2s + 1, . . . , (
∑s

i=k 2i) − 1 | k + 1 ≤ s ≤ 15, k = 1, . . . , 14}:

(△X1,A,△X3,△X4) −→ (△Y1,△Y2,Ck,Ck),

where Ck = v(2k − 1).

Let us discuss another type of differentials for 1-round IDEA to find

impossible differentials using the identity (2.5) in Section 2.2.1 and the part
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2 of Lemma 4.2.1. Assuming that P⊞P∗ = 1 and Q⊞Q∗ = 0, we have

U⊞U∗ = 2 (i.e. △U = U⊕U∗ is even) and T⊞T∗ = 1 (i.e. △T =

T⊕T∗ is odd). Then considering △Y2 or △Y3 listed in Definition 4.3.1,

the following differentials for 1-round IDEA are impossible:

• (△X1,△X2,A,△X4) −→ (△Y1,B,△Y3,△Y4) if both a and b are

even (respectively odd).

• (△X1,A,△X3,△X4) −→ (△Y1,△Y2,B,△Y4) if a is even (respec-

tively odd) b is odd (respectively even).

4.4 Impossible Differentials for Pseudo-

Hadamard Transform

The Pseudo-Hadamard transform (PHT), used in block ciphers such as

SAFER and Twofish, is a reversible transformation of two n-bit blocks that

provides cryptographic diffusion. The PHT can be defined as

PHT(X1, X2) = (Y1, Y2) = (2X1⊞X2,X1⊞X2).

For △Xi = Xi⊕X∗
i and △Yi = Yi⊕Y∗

i , i ∈ {1, 2}, let

(△X1, △X2) −→ (△Y1, △Y2) be a differential for PHT, where

△Y1 = (2X1⊞X2)⊕(2X∗
1⊞X∗

2) and △Y2 = (X1⊞X2)⊕(X∗
1⊞X∗

2).

If △X1 = 0 for such differentials, then we have 2X1 = 2X∗
1 and X1 = X∗

1.

Here both v−1(2X1) and v−1(X1) can be considered as z in all parts of

Lemma 4.2.1 and then for varying △X2, all impossible differences △Y1 and

△Y2 can be found by using all parts of this Lemma to list many impossible

differentials for PHT. In the same manner, if △X2 is chosen as 0, then many

impossible differentials for PHT can be found.
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chapter 5

conclusion

We considered three mixing operations, the addition (⊞), the multipli-

cation (⊙) and the XOR (⊕) as vector functions from Z
n
2 × Z

n
2 to Z

n
2 . By

fixing one of the variables, namely Z = v(z) ∈ Z
n
2 in Z

n
2 × Z

n
2 , we obtained

vector valued functions fz, gz and hz: Z
n
2 → Z

n
2 . In this thesis,

• We gave some transformations τ : Z2n → Z2n such that the nonlinearity

of gz and the nonlinearity of gτ(z) are the same.

• We presented an upper bound for the nonlinearity of g2k and we checked

that this upper bound is sharp for n ≤ 16 and conjectured that it is so

for any positive integer n.

• We provided the list of those z such that the nonlinearity of fz and

the nonlinearity of gz are zero and we obtained all associated linear

relations for those fz and gz. In addition to this, for some z ∈ Z2n we

obtained relations from the function gz which are almost linear, namely

linear relations with a high probability.

• We derived an algorithm to find 242 new linear relations for 1-round

IDEA.

• We found two classes of weak keys with cardinality 224 and 227. This

fact extends the related work done by Daemen et al.

• We observed that 1-round RIDEA has quite less linear relations than

1-round IDEA.
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• We obtained several algebraic properties of the operations ⊞, ⊙, ⊕

and cryptographic properties of the set of input and output differences

defined by them.

• We found impossible differentials for 1-round IDEA and Pseudo-

Hadamard Transform.

The design of the MESH block ciphers are based on operations of IDEA.

In fact, both operations ⊞ and ⊕ have been widely used as building blocks

in many cryptosystems such as RC6, Twofish, MARS, FEAL, SAFER family

and Helix ciphers. In the literature some of the properties of the operations

were used to attack the block cipher IDEA. We hope that the several other

properties of the mixing operations presented in this thesis can be used to

cryptanalyze the ciphers mentioned above.

52



references

[1] E. Biham and A. Shamir, Differential Cryptanalysis of DES-like Cryp-

tosystems. Journal of Cryptography, 4(1):3-72, 1991.

[2] E. Biham and A. Shamir, Differential Cryptanalysis of the Full 16-round

DES, Advances in Cryptology – CRYPTO ’92, Springer Verlag, pp.487-

496, 1992

[3] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryp-

tion Standard, Springer-Verlag, 1993.

[4] E. Biham, A. Biryukov and A. Shamir, Miss in the Middle Attacks on

IDEA and Khufu, Fast Software Encryption Workshop, LNCS 1636, pp

124-138, Springer-Verlag, 1999.

[5] J. Borst, Differential-Linear Cryptanalysis of IDEA, Department of Elec-

trical Engineering, ESAT-COSIC Technical Report 96/2, 14 pages.

[6] J. Borst, L.R. Knudsen and V. Rijmen, Two Attacks on Reduced IDEA

(Extended Abstract), Advances in Cryptology - EUROCRYPTO’97, Pro-

ceedings, Springer-Verlag, pp.1–13, 1998.

[7] J. Daemen, R. Govaerts, J. Vandewalle, Block ciphers based on modular

arithmetic, Proceedings of the 3rd symposium on State and Progress of

Research in Cryptography, W. Wolfowicz, Ed., Fondazione Ugo Bordoni,

1993, pp. 80-89.

[8] J. Daemen, R. Govaerts and J. Vandewalle, Weak Keys for IDEA. Ad-

vances in Cryptology, Proc. EUROCRYPTO’93, LNCS 773, Springer-

Verlag, pp. 224-231, 1994.

53



[9] J. Daemen and V. Rijmen, The Design of Rijndael, ISBN 3540425802,

Springer Verlag, 2002.

[10] S. Garfinkel, PGP: Pretty Good Privacy, ISBN 1565920988, O’Reilly

Media, 1994.

[11] C. Harpes, G. G. Kramer, and J.L. Massey, Generilisation of linear

cryptanalysis and the applicability of Matsui’s piling-up lemma, Advances

in Cryptology, EUROCRYPT0’95, LNCS, vol 921, pp 24-38, 1995.

[12] P. Hawkes, Differential-Linear Weak Key Classes of IDEA, Advances in

Cryptology, EUROCRYPT0’98, pp. 112-126, 1998.

[13] B. Kaliski, M. Robshaw , Linear Cryptanalysis Using Multiple Approx-

imations, CRYPTO’94, LNCS 839, page 26-38, (1994)

[14] L.R. Knudsen, Truncated and higher order differentials, In B. Preneel,

editor, Fast Software Encryption - Second International Workshop, Leu-

ven, Belgium, LNCS 1008, pages 196-211. Springer Verlag, 1995.

[15] X. Lai and J. L. Massey, A Proposal for a New Block Encryption Stan-

dard. Advances in Cryptology - EUROCRYPTO’90, Proceedings, LNCS

473, pp. 389-404, Springer-Verlag, Berlin, 1990.

[16] X. Lai, On the design and security of block cipher. ETH Series in Infor-

mation Processing, V.1, Konstanz: Hartung-Gorre Verlag, 1992

[17] X. Lai, J. L. Massey and S. Murphy, Markov Ciphers and Differential

Cryptanalysis. Advances in Cryptology EUROCRYPT91, Proceedings,

Springer-Verlag, LNCS 547, pp. 1738, Springer-Verlag, 1991.

[18] X. Lai, Higher order derivatives and differential cryptanalysis, In Proc.

”Symposium on Communication, Coding and Cryptography”, in honor

54



of James L. Massey on the occasion of his 60’th birthday, Feb. 10-13,

1994, Monte-Verita, Ascona, Switzerland, 1994.

[19] H. Lipmaa, IDEA: A Cipher for Multimedia Architectures?, Selected

Areas in Cryptography 1998, LNCS volume 1556 , pp 253–268, Kingston,

Canada, August 17–18, 1998. Springer-Verlag.

[20] M. Matsui and A.Yamagishi, A New Method for Known Plaintext At-

tack of FEAL Cipher, Lectures Notes in Computer Science, Advances in

Cryptology, proceedings of EUROCRYPT‘92, pp. 81-91, 1992.

[21] M. Matsui, The First Experimental Cryptanalysis of the Data Encryp-

tion Standard, Advances in Cryptology — CRYPTO’94. 1-11

[22] M. Matsui, Linear Cryptanalysis Method for DES Cipher. Advances in

Cryptology EUROCRYPT 93 Proceedings, Springer-Verlag, LNCS 765,

1994, pp. 386397.

[23] W. Meier, On the Security of the IDEA Block Cipher. Advances in

Cryptology EUROCRYPT 93 Proceedings, Springer-Verlag, LNCS 765,

1994, pp. 371385.

[24] S. Murphy, The Cryptanalysis of FEAL-4 with 20 Chosen Plaintexts,

Journal of Cryptography, No.3, 1990

[25] J. Nakahara Jr., Cryptanalysis and Design of Block Ciphers,

SCD/COSIC Group, Dept. Elektrotechniek, Katholieke Universiteit Leu-

ven, Belgium, Jun. 2, 2003.

[26] J. Nakahara, Jr., V. Rijmen, B. Preneel, J. Vandewalle, The MESH

Block Ciphers. The 4th International Workshop on Info. Security Appli-

cations, WISA 2003, Springer-Verlag, LNCS 2908, 2003, pp. 458-473.

[27] J. Nakahara Jr., personal communication, November 2004.

55



[28] K. Nyberg and L.R. Knudsen, Provable security against differential

cryptanalysis, Advances in Cryptology – CRYPTO ’92 pp. 566-574, 1992.

[29] K. Nyberg, On the construction of highly nonlinear permutations. In

Extended Abstracts – EUROCRYPTO’92, pages 89-94, May 1992.

[30] M. Robshaw and L.R. Knudsen, Non-Linear Approximations in Linear

Cryptanalysis, EUROCRYPTO’96, LNCS 1070, pp. 224-236, 1996.

[31] C. Shannon, Communication Theory of Secrecy Systems, Bell Systems

Technical Journal, v28, Oct 1949, pp. 659-715.

[32] T. Shimoyama and T. Kaneko, Quadratic Reation of S-box and Its Ap-

plication to the Linear Attack of Full Round DES, Advances in Cryptol-

ogy, CRYPTO’98, LNCS 1462, pp. 200-211

[33] H. M. Yıldırım, Nonlinearity Properties of the Mixing Operations of the

Block Cipher IDEA, Master Thesis, Middle East Technical University,

Sep 2000.

[34] H. M. Yıldırım, Some Linear Relations for Block Cipher IDEA, Master

Thesis (Term Project), Middle East Technical University, Jan 2002.

[35] H. M. Yıldırım, Nonlinearity Properties of the Mixing Operations of the

Block Cipher IDEA, Progress in Cryptology - INDOCRYPT 2003, LNCS

2904, pp. 68-81, Springer-Verlag Heidelberg, 2003.

[36] H. M. Yıldırım and E. Akyıldız, New Properties of IDEA Cipher Op-

erations, National Cryptology Symposium I, METU, Proceedings Book,

pp. 156-166, November 18-19-20, 2005.

[37] J. Kelsey, B. Schneier, and D. Wagner, Key-schedule cryptanalysis of

IDEA, G-DES, GOST, SAFER, and Triple-DES, Advances in Cryptology,

CRYPT0’96, LNCS, vol 1109, pp 237-251, 1996.

56



[38] X. Zhang, Y. Zheng and H. Imai, Duality of Boolean Functions and

Its Cryptographic Significance, Information and Communications Secu-

rity, Proceedings of ICICS’97, Beijing , LNCS, Vol. 1334, pp. 159-169,

Springer-Verlag, 1997.

57



appendix A

idea, pes and ridea block

ciphers

A.1 Block cipher IDEA

A.1.1 Key Schedule and Decryption Algorithm

For a given 128-bit key, 52 16-bit key subblocks are generated for the en-

cryption. For the construction of these subblocks, the first step is to partition

given 128-bit key into 8 pieces and assign them as the first 8 key subblocks

of the 52 subblocks:

Z
(1)
1 ,Z

(1)
2 , ..,Z

(1)
6 ,Z

(2)
1 ,Z

(2)
2 , ..,Z

(2)
6 , ..,Z

(8)
1 ,Z

(8)
2 , ..,Z

(8)
6 ,Z

(9)
1 ,Z

(9)
2 ,Z

(9)
3 ,Z

(9)
4 .

Then the key under the consideration is cyclically shifted to the left by 25

positions. The resulting key block is again partitioned into eight subblocks

that are assigned to the next eight subblock keys. This process is repeated

until all 52 subblock keys are derived.

IDEA uses the algorithm used for the encryption in its decryption. For

the decryption process of IDEA (Figure 2.1), the ciphertext

Y = (Y1,Y2,Y3,Y4) taken as an input and the decryption key subblocks

K
(r)
i derived from the encryption key subblocks Z

(r)
i . The decryption key

subblocks K
(r)
i are computed as:

For r = 2, 3, .., 8,(
K

(r)
1 ,K

(r)
2 ,K

(r)
3 ,K

(r)
4

)
=

(
Z

(10−r)
1 ,−Z

(10−r)
3 ,−Z

(10−r)
2 ,Z

((10−r))−1

4

)
;

58



Table A.1: 128-bit IDEA master key bits indices starts from 0 and ends with

127 (indexed left to right). Range of indices of this key used for each of 52

subblock keys generated by the key scheduling algorithm

r Z1 Z2 Z3 Z4 Z5 Z6

1 0-15 16-31 32-47 48-63 64-79 80-95

2 96-111 112-127 25-40 41-56 57-72 73-88

3 89-104 105-120 121-8 9-24 50-65 66-81

4 82-97 98-113 114-1 2-17 18-33 34-49

5 75-90 91-106 107-122 123-10 11-26 27-42

6 43-58 59-74 100-115 116-3 4-19 20-35

7 36-51 52-67 68-83 84-99 125-12 13-28

8 29-44 45-60 61-76 77-92 93-108 109-124

9 22-37 38-53 54-69 70-85 - -

For r = 1 and 9,(
K

(r)
1 ,K

(r)
2 ,K

(r)
3 ,K

(r)
4

)
=

(
Z

(10−r)
1 ,−Z

(10−r)
2 ,−Z

(10−r)
3 ,Z

((10−r))−1

4

)
;

For r = 1, 2, .., 8,(
K

(r)
5 ,K

(r)
6

)
=

(
Z

(r)
5 ,Z

(r)
6

)
;

where z−1 denotes the multiplicative inverse (modulo 216 + 1) of z , i.e.,

Z⊙Z−1 = 1 and −z denotes the additive (modulo 216) of z, i.e., −Z⊞Z = 0.

A.2 Block Cipher PES

As it can be seen from the graph of the encryption of PES (see Figure

A.2 and Figure 2.1), there is a minor changes between the block ciphers

IDEA and PES. In fact it was stated by the designers of IDEA that ”The

only essential modification is that a different (and simpler) permutation of

subblocks is used at the end of each of the first 7 rounds. The software

implementation of IDEA is in fact more efficient than that of PES” [16].

Due to that change, the encryption algorithm and the formulation for the

subblock keys used in PES is slightly changed in IDEA. Similar to the block
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2 − 8 rounds

Transformation 

Output

1 round 

X
(0)
1 X

(0)
2 X

(0)
4X

(0)
3

Z
(1)
1 Z

(1)
2 Z

(1)
3 Z

(1)
4

Z
(1)
5

Z
(1)
6

Z
(9)
1 Z

(9)
2 Z

(9)
3 Z

(9)
4

Y1
Y2 Y3 Y4

Figure A.1: Computational graph for the encryption process of the PES

cipher

cipher IDEA, PES encrypts blocks of 64 bits plaintext to blocks of 64 bits

ciphertext with 128 bit key and uses the same operations ⊞, ⊙ and ⊕.

A.3 Block Cipher RIDEA

By changing MA-structure slightly, so-called RMA (Reverse MA) struc-

ture was introduced. It is clear that this modification is minor and it does not

change any other structure of IDEA like operations, encryption-decryption

similarity and key scheduling algoritm. This slightly modified version of

IDEA having the RMA-structure, the block cipher RIDEA (Reverse IDEA)
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Transformation 

Output

2 − 8 rounds

1 round

X
(0)
1 X

(0)
2 X

(0)
4X

(0)
3

Z
(1)
1 Z

(1)
2 Z

(1)
3 Z

(1)
4

Z
(1)
5 Z

(1)
6

Z
(9)
1 Z

(9)
2 Z

(9)
3 Z

(9)
4

Y1 Y2 Y3 Y4

Figure A.2: Computational graph for the encryption process of the RIDEA

cipher

was proposed as a variant of IDEA [33] and [35]. According to calculations

given in [33],[35], it was believed that RMA-structure not only provides the

required diffusion but also increases the nonlinearity of IDEA.
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appendix B

list of new linear relations

for 1-round idea

Table B.1: List of new linear relations for 1-round IDEA, based on linear

relations of Table 3.1, generated by Algorithm 1. Here k is a non-negative

integer, −1 ≡ 0 mod (216+1), −215 ≡ 215+1 mod (216+1) and −2 ≡ 216−1

mod (216 + 1).

φ ψ ω λ z1 z2 z3 z4 z5 z6

1 (1, 2,2,1,0,0) (1,2,2,1) (3,3,3,3) 0 ∓2 2k + 1 2k + 1 ∓2 - -

2 (0, 1,0,1,1,1) (0,1,1,1) (3,2,0,0) 1 - - 2k ∓1 ∓215 ∓1

3 (1, 1,2,1,1,1) (1,1,3,1) (0,3,0,0) 1 ∓1 - 2k + 1 ∓1 ∓1 ∓2

4 (0, 1,3,1,1,1) (0,1,3,1) (1,2,0,0) 0 - - 2k ∓1 ∓1 ∓2

5 (1, 1,1,1,1,1) (3,1,0,3) (2,3,0,0) 0 ∓215 - 2k ∓215 ∓215 ∓1

6 (1, 3,0,1,0,1) (1,3,1,1) (3,1,3,2) 0 ∓2 2k + 1 2k + 1 ∓2 - ∓2

7 (0, 0,0,0,1,1) (0,0,1,0) (3,2,1,1) 1 - - 2k + 1 - ∓215 ∓1

8 (1, 1,1,1,1,1) (1,1,0,1) (2,1,0,0) 1 ∓2 - 2k + 1 ∓1 ∓1 ∓2

9 (1, 0,3,0,1,1) (3,0,2,0) (2,1,1,1) 0 ∓215 - 2k - ∓215 ∓2

10 (0, 1,2,1,1,1) (0,1,2,1) (3,0,0,0) 1 - - 2k + 1 ∓1 ∓215 ∓2

11 (1, 2,3,1,1,1) (3,2,3,1) (2,1,2,2) 0 ∓215 2k + 1 2k + 1 ∓2 ∓215 ∓2

12 (1, 2,2,1,0,0) (1,3,2,1) (3,3,3,3) 1 ∓2 2k 2k + 1 ∓2 - -

13 (1, 2,3,1,1,1) (1,2,2,1) (2,3,2,2) 1 ∓2 2k + 1 2k ∓2 ∓1 ∓1

14 (1, 2,3,1,1,1) (1,3,2,1) (2,3,2,2) 0 ∓2 2k 2k ∓2 ∓1 ∓1

15 (0, 0,2,1,0,1) (0,0,3,1) (0,2,1,0) 1 - - 2k + 1 ∓1 - ∓2

16 (0, 0,0,1,1,0) (0,0,1,1) (3,2,0,1) 1 - - 2k + 1 ∓1 ∓215 -

17 (1, 0,3,1,0,1) (3,0,3,3) (1,3,1,0) 0 ∓215 - 2k ∓215 - ∓2

18 (1, 0,3,1,1,0) (1,0,2,3) (2,3,0,1) 0 ∓2 - 2k ∓215 ∓1 -

19 (1, 1,3,1,1,1) (1,1,3,1) (2,1,0,0) 0 ∓1 - 2k + 1 ∓1 ∓215 ∓2

20 (1, 2,1,1,1,1) (3,2,0,1) (2,3,2,2) 1 ∓215 2k + 1 2k + 1 ∓2 ∓215 ∓1
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Table B.1 (cont’d)

φ ψ ω λ z1 z2 z3 z4 z5 z6

21 (1, 2,1,1,1,1) (3,3,0,1) (2,3,2,2) 0 ∓215 2k 2k + 1 ∓2 ∓215 ∓1

22 (1, 2,3,1,1,1) (3,3,3,1) (2,1,2,2) 1 ∓215 2k 2k + 1 ∓2 ∓215 ∓2

23 (1, 0,1,1,1,0) (3,0,0,3) (2,3,0,1) 0 ∓215 - 2k + 1 ∓215 ∓215 -

24 (0, 1,2,1,1,1) (0,1,3,3) (3,0,0,0) 0 - - 2k ∓215 ∓215 ∓2

25 (1, 1,2,1,1,1) (1,1,2,3) (0,3,0,0) 1 ∓1 - 2k ∓215 ∓1 ∓2

26 (1, 1,1,1,1,1) (1,1,0,1) (2,3,0,0) 1 ∓1 - 2k + 1 ∓1 ∓215 ∓1

27 (1, 3,1,1,1,0) (1,3,0,1) (2,3,2,3) 1 ∓1 2k + 1 2k ∓2 ∓215 -

28 (1, 3,3,1,1,0) (1,2,3,1) (2,3,2,3) 0 ∓2 2k 2k + 1 ∓2 ∓1 -

29 (1, 0,1,0,1,1) (1,0,0,0) (2,1,1,1) 1 ∓2 - 2k - ∓1 ∓2

30 (1, 1,3,0,1,0) (1,1,2,0) (2,3,1,0) 1 ∓2 - 2k - ∓1 -

31 (1, 2,2,1,1,1) (1,3,3,1) (0,1,2,2) 0 ∓2 2k 2k + 1 ∓2 ∓215 ∓1

32 (1, 0,0,1,0,1) (1,0,1,1) (3,1,1,0) 0 ∓2 - 2k + 1 ∓1 - ∓2

33 (0, 0,2,1,0,1) (0,0,2,3) (0,2,1,0) 1 - - 2k ∓215 - ∓2

34 (1, 1,2,1,1,1) (3,1,3,1) (0,3,0,0) 1 ∓215 - 2k + 1 ∓1 ∓1 ∓2

35 (1, 3,0,1,1,0) (1,3,0,1) (0,1,2,3) 1 ∓1 2k + 1 - ∓2 ∓1 -

36 (1, 3,3,1,0,1) (1,2,2,1) (1,3,3,2) 1 ∓1 2k 2k + 1 ∓2 - ∓2

37 (1, 1,1,0,1,0) (3,1,0,0) (2,3,1,0) 1 ∓215 - 2k + 1 - ∓215 -

38 (1, 1,2,1,0,0) (1,1,2,1) (3,3,1,1) 0 ∓2 - 2k + 1 ∓1 - -

39 (1, 2,3,1,1,1) (1,2,2,1) (2,1,2,2) 1 ∓1 2k + 1 2k ∓2 ∓215 ∓2

40 (0, 1,3,1,1,1) (0,1,2,3) (1,2,0,0) 0 - - 2k + 1 ∓215 ∓1 ∓2

41 (1, 2,3,1,1,1) (1,3,2,1) (2,1,2,2) 0 ∓1 2k 2k ∓2 ∓215 ∓2

42 (1, 1,3,1,1,1) (1,1,3,3) (2,3,0,0) 0 ∓2 - 2k + 1 ∓215 ∓1 ∓1

43 (1, 0,1,0,1,1) (1,0,0,0) (2,3,1,1) 1 ∓1 - 2k - ∓215 ∓1

44 (0, 2,0,1,0,0) (0,2,0,1) (0,0,3,3) 1 - 2k + 1 - ∓2 - -

45 (0, 3,1,1,1,0) (0,2,1,1) (1,0,2,3) 1 - 2k - ∓2 ∓1 -

46 (1, 1,3,1,1,1) (3,1,3,1) (2,1,0,0) 0 ∓215 - 2k + 1 ∓1 ∓215 ∓2

47 (1, 3,2,1,0,1) (1,3,3,1) (3,3,3,2) 0 ∓2 2k + 1 2k ∓2 - ∓1

48 (1, 1,3,1,1,1) (1,1,2,1) (2,3,0,0) 1 ∓2 - 2k ∓1 ∓1 ∓1

49 (1, 3,1,1,0,1) (1,2,1,1) (1,1,3,2) 0 ∓1 2k - ∓2 - ∓1

50 (1, 1,2,0,1,0) (1,1,3,0) (0,1,1,0) 1 ∓2 - 2k + 1 - ∓215 -

51 (1, 1,3,0,0,1) (1,1,2,0) (1,3,0,1) 1 ∓1 - 2k + 1 - - ∓2

52 (1, 0,1,1,1,0) (1,0,0,1) (2,3,0,1) 1 ∓1 - 2k ∓1 ∓215 -

53 (1, 1,2,1,1,1) (3,1,2,3) (0,3,0,0) 1 ∓215 - 2k ∓215 ∓1 ∓2

54 (1, 3,2,1,0,1) (1,2,2,1) (3,3,3,2) 0 ∓2 2k 2k + 1 ∓2 - ∓1

55 (1, 1,1,1,1,1) (3,1,0,1) (2,3,0,0) 1 ∓215 - 2k + 1 ∓1 ∓215 ∓1

56 (1, 2,1,1,0,0) (3,2,1,1) (1,1,3,3) 0 ∓215 2k + 1 - ∓2 - -

57 (1, 3,1,1,1,0) (3,3,0,1) (2,3,2,3) 1 ∓215 2k + 1 2k ∓2 ∓215 -

58 (1, 3,0,1,0,1) (1,2,1,1) (3,1,3,2) 0 ∓2 2k 2k ∓2 - ∓2

59 (1, 3,1,1,1,0) (1,2,0,1) (2,3,2,3) 1 ∓1 2k 2k + 1 ∓2 ∓215 -

60 (1, 2,2,1,1,1) (1,2,3,1) (0,1,2,2) 1 ∓2 2k + 1 2k + 1 ∓2 ∓215 ∓1

61 (1, 0,2,1,1,0) (1,0,3,3) (0,1,0,1) 0 ∓2 - 2k + 1 ∓215 ∓215 -

62 (1, 3,3,1,0,1) (3,2,2,1) (1,3,3,2) 1 ∓215 2k 2k + 1 ∓2 - ∓2

63 (0, 2,0,1,1,1) (0,3,1,1) (3,2,2,2) 1 - 2k 2k + 1 ∓2 ∓215 ∓1

64 (0, 3,0,1,0,1) (0,2,0,1) (0,0,3,2) 1 - 2k - ∓2 - ∓1

65 (1, 1,2,0,0,1) (1,1,2,0) (3,3,0,1) 0 ∓2 - 2k + 1 - - ∓1

66 (0, 3,0,1,1,0) (0,2,1,1) (3,2,2,3) 1 - 2k 2k ∓2 ∓215 -
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Table B.1 (cont’d)

φ ψ ω λ z1 z2 z3 z4 z5 z6

67 (1, 2,3,1,1,1) (3,3,2,1) (2,1,2,2) 0 ∓215 2k 2k ∓2 ∓215 ∓2

68 (0, 0,2,1,0,1) (0,0,3,3) (0,2,1,0) 1 - - 2k + 1 ∓215 - ∓2

69 (1, 1,3,1,1,1) (1,1,3,3) (2,1,0,0) 0 ∓1 - 2k + 1 ∓215 ∓215 ∓2

70 (1, 1,0,0,0,1) (1,1,1,0) (3,1,0,1) 0 ∓2 - 2k - - ∓2

71 (0, 1,0,0,1,0) (0,1,1,0) (3,2,1,0) 0 - - 2k + 1 - ∓215 -

72 (1, 0,1,0,1,1) (3,0,0,0) (2,3,1,1) 1 ∓215 - 2k - ∓215 ∓1

73 (0, 0,3,0,1,1) (0,0,2,0) (1,2,1,1) 1 - - 2k + 1 - ∓1 ∓2

74 (1, 3,1,1,0,1) (3,2,1,1) (1,1,3,2) 0 ∓215 2k - ∓2 - ∓1

75 (1, 2,1,1,1,1) (1,2,0,1) (2,1,2,2) 0 ∓2 2k + 1 2k ∓2 ∓1 ∓2

76 (1, 1,3,0,0,1) (3,1,2,0) (1,3,0,1) 1 ∓215 - 2k + 1 - - ∓2

77 (1, 0,1,1,1,0) (3,0,0,1) (2,3,0,1) 1 ∓215 - 2k ∓1 ∓215 -

78 (1, 0,2,0,1,1) (1,0,2,0) (0,3,1,1) 0 ∓1 - 2k - ∓1 ∓2

79 (1, 0,0,0,1,1) (3,0,0,0) (0,1,1,1) 1 ∓215 - - - ∓1 ∓1

80 (1, 3,3,1,0,1) (1,2,3,1) (1,3,3,2) 1 ∓1 2k 2k ∓2 - ∓2

81 (0, 1,0,1,1,1) (0,1,1,3) (3,2,0,0) 1 - - 2k ∓215 ∓215 ∓1

82 (1, 0,0,1,0,1) (1,0,1,3) (3,1,1,0) 0 ∓2 - 2k + 1 ∓215 - ∓2

83 (0, 2,0,1,1,1) (0,2,1,1) (3,2,2,2) 0 - 2k + 1 2k + 1 ∓2 ∓215 ∓1

84 (1, 1,2,1,1,1) (1,1,3,3) (0,3,0,0) 1 ∓1 - 2k + 1 ∓215 ∓1 ∓2

85 (1, 2,1,1,1,1) (1,3,0,1) (2,1,2,2) 1 ∓2 2k 2k ∓2 ∓1 ∓2

86 (0, 1,3,1,1,1) (0,1,3,3) (1,2,0,0) 0 - - 2k ∓215 ∓1 ∓2

87 (1, 3,3,1,0,1) (1,3,2,1) (1,3,3,2) 0 ∓1 2k + 1 2k + 1 ∓2 - ∓2

88 (1, 1,1,1,1,1) (1,1,0,3) (2,1,0,0) 1 ∓2 - 2k + 1 ∓215 ∓1 ∓2

89 (0, 1,2,1,1,1) (0,1,2,3) (3,0,0,0) 1 - - 2k + 1 ∓215 ∓215 ∓2

90 (1, 3,3,1,1,0) (1,3,3,1) (2,3,2,3) 1 ∓2 2k + 1 2k + 1 ∓2 ∓1 -

91 (1, 2,1,1,1,1) (1,2,0,1) (2,3,2,2) 0 ∓1 2k + 1 2k ∓2 ∓215 ∓1

92 (0, 3,2,1,0,1) (0,2,2,1) (0,2,3,2) 0 - 2k 2k ∓2 - ∓2

93 (1, 3,0,1,1,0) (3,3,0,1) (0,1,2,3) 1 ∓215 2k + 1 - ∓2 ∓1 -

94 (1, 1,2,1,1,1) (1,1,3,1) (0,1,0,0) 1 ∓2 - 2k + 1 ∓1 ∓215 ∓1

95 (1, 2,3,1,1,1) (3,2,2,1) (2,1,2,2) 1 ∓215 2k + 1 2k ∓2 ∓215 ∓2

96 (0, 0,0,1,1,0) (0,0,1,3) (3,2,0,1) 1 - - 2k + 1 ∓215 ∓215 -

97 (1, 3,2,1,1,0) (1,2,2,1) (0,1,2,3) 1 ∓2 2k 2k ∓2 ∓215 -

98 (1, 1,3,1,1,1) (3,1,3,3) (2,1,0,0) 0 ∓215 - 2k + 1 ∓215 ∓215 ∓2

99 (1, 1,3,0,0,1) (1,1,3,0) (1,3,0,1) 1 ∓1 - 2k - - ∓2

100 (0, 3,1,1,1,0) (0,3,1,1) (1,0,2,3) 0 - 2k + 1 - ∓2 ∓1 -

101 (1, 1,3,1,1,1) (1,1,2,1) (2,1,0,0) 1 ∓1 - 2k ∓1 ∓215 ∓2

102 (1, 2,1,1,1,1) (1,3,0,1) (2,3,2,2) 1 ∓1 2k 2k ∓2 ∓215 ∓1

103 (1, 0,1,1,1,0) (1,0,0,3) (2,3,0,1) 1 ∓1 - 2k ∓215 ∓215 -

104 (1, 1,1,1,1,1) (1,1,0,3) (2,3,0,0) 1 ∓1 - 2k + 1 ∓215 ∓215 ∓1

105 (0, 1,2,0,0,1) (0,1,2,0) (0,2,0,1) 0 - - 2k - - ∓2

106 (1, 0,2,0,1,1) (3,0,2,0) (0,3,1,1) 0 ∓215 - 2k - ∓1 ∓2

107 (1, 0,3,0,1,1) (1,0,3,0) (2,3,1,1) 1 ∓2 - 2k + 1 - ∓1 ∓1

108 (1, 1,1,0,1,0) (1,1,0,0) (2,3,1,0) 0 ∓1 - 2k - ∓215 -

109 (1, 2,0,1,1,1) (1,3,0,1) (0,1,2,2) 1 ∓1 2k - ∓2 ∓1 ∓1

110 (1, 3,1,1,0,1) (1,3,1,1) (1,1,3,2) 1 ∓1 2k + 1 - ∓2 - ∓1

64



Table B.1 (cont’d)

φ ψ ω λ z1 z2 z3 z4 z5 z6

111 (0, 0,0,0,1,1) (0,0,1,0) (3,2,1,1) 0 - - 2k - ∓215 ∓1

112 (1, 1,1,1,1,1) (1,1,0,1) (2,1,0,0) 0 ∓2 - 2k ∓1 ∓1 ∓2

113 (1, 3,3,1,0,1) (3,2,3,1) (1,3,3,2) 1 ∓215 2k 2k ∓2 - ∓2

114 (1, 3,3,1,1,0) (1,2,2,1) (2,3,2,3) 1 ∓2 2k 2k ∓2 ∓1 -

115 (1, 0,3,1,0,1) (1,0,2,1) (1,3,1,0) 0 ∓1 - 2k + 1 ∓1 - ∓2

116 (1, 0,2,0,1,1) (1,0,3,0) (0,3,1,1) 0 ∓1 - 2k + 1 - ∓1 ∓2

117 (1, 3,1,1,1,0) (1,3,0,1) (2,3,2,3) 0 ∓1 2k + 1 2k + 1 ∓2 ∓215 -

118 (1, 0,3,1,1,0) (1,0,3,1) (2,3,0,1) 1 ∓2 - 2k + 1 ∓1 ∓1 -

119 (1, 1,2,1,1,1) (3,1,3,3) (0,3,0,0) 1 ∓215 - 2k + 1 ∓215 ∓1 ∓2

120 (1, 3,2,1,0,1) (1,3,2,1) (3,3,3,2) 1 ∓2 2k + 1 2k + 1 ∓2 - ∓1

121 (1, 3,3,1,0,1) (3,3,2,1) (1,3,3,2) 0 ∓215 2k + 1 2k + 1 ∓2 - ∓2

122 (1, 3,1,1,1,0) (3,2,0,1) (2,3,2,3) 1 ∓215 2k 2k + 1 ∓2 ∓215 -

123 (1, 0,1,0,1,1) (1,0,0,0) (2,1,1,1) 0 ∓2 - 2k + 1 - ∓1 ∓2

124 (1, 1,2,1,0,0) (1,1,2,3) (3,3,1,1) 0 ∓2 - 2k + 1 ∓215 - -

125 (0, 0,2,0,1,1) (0,0,2,0) (3,0,1,1) 0 - - 2k + 1 - ∓215 ∓2

126 (1, 3,0,1,0,1) (1,3,1,1) (3,1,3,2) 1 ∓2 2k + 1 2k ∓2 - ∓2

127 (0, 1,0,1,1,1) (0,1,1,1) (3,2,0,0) 0 - - 2k + 1 ∓1 ∓215 ∓1

128 (0, 3,0,1,0,1) (0,3,0,1) (0,0,3,2) 0 - 2k + 1 - ∓2 - ∓1

129 (1, 2,1,1,1,1) (3,2,0,1) (2,3,2,2) 0 ∓215 2k + 1 2k ∓2 ∓215 ∓1

130 (0, 3,0,1,1,0) (0,3,1,1) (3,2,2,3) 0 - 2k + 1 2k ∓2 ∓215 -

131 (0, 0,3,0,1,1) (0,0,3,0) (1,2,1,1) 1 - - 2k - ∓1 ∓2

132 (1, 1,1,1,1,1) (1,1,0,1) (2,3,0,0) 0 ∓1 - 2k ∓1 ∓215 ∓1

133 (1, 1,3,0,0,1) (3,1,3,0) (1,3,0,1) 1 ∓215 - 2k - - ∓2

134 (0, 3,2,1,0,1) (0,2,3,1) (0,2,3,2) 0 - 2k 2k + 1 ∓2 - ∓2

135 (1, 1,3,1,1,1) (1,1,2,3) (2,3,0,0) 1 ∓2 - 2k ∓215 ∓1 ∓1

136 (1, 2,0,1,1,1) (1,2,0,1) (0,1,2,2) 0 ∓1 2k + 1 - ∓2 ∓1 ∓1

137 (1, 1,3,1,1,1) (3,1,2,1) (2,1,0,0) 1 ∓215 - 2k ∓1 ∓215 ∓2

138 (1, 2,1,1,1,1) (3,3,0,1) (2,3,2,2) 1 ∓215 2k 2k ∓2 ∓215 ∓1

139 (1, 3,2,1,1,0) (1,2,3,1) (0,1,2,3) 1 ∓2 2k 2k + 1 ∓2 ∓215 -

140 (1, 0,1,0,1,1) (1,0,0,0) (2,3,1,1) 0 ∓1 - 2k + 1 - ∓215 ∓1

141 (1, 0,2,0,0,0) (1,0,2,0) (3,3,0,0) 1 ∓2 - 2k + 1 - - -

142 (1, 1,1,1,1,1) (3,1,0,3) (2,3,0,0) 1 ∓215 - 2k + 1 ∓215 ∓215 ∓1

143 (1, 0,3,0,1,1) (1,0,3,0) (2,1,1,1) 1 ∓1 - 2k + 1 - ∓215 ∓2

144 (0, 2,2,1,1,1) (0,2,3,1) (3,0,2,2) 0 - 2k + 1 2k ∓2 ∓215 ∓2

145 (1, 2,2,1,1,1) (1,3,2,1) (0,3,2,2) 0 ∓1 2k 2k ∓2 ∓1 ∓2

146 (1, 3,3,1,0,1) (1,3,3,1) (1,3,3,2) 0 ∓1 2k + 1 2k ∓2 - ∓2

147 (1, 1,1,0,1,0) (3,1,0,0) (2,3,1,0) 0 ∓215 - 2k - ∓215 -

148 (1, 0,1,1,1,0) (1,0,0,1) (2,3,0,1) 0 ∓1 - 2k + 1 ∓1 ∓215 -

149 (1, 0,2,0,1,1) (1,0,2,0) (0,1,1,1) 0 ∓2 - 2k - ∓215 ∓1

150 (1, 3,1,1,0,1) (3,3,1,1) (1,1,3,2) 1 ∓215 2k + 1 - ∓2 - ∓1

151 (1, 0,2,1,0,1) (1,0,2,1) (3,3,1,0) 1 ∓2 - 2k + 1 ∓1 - ∓1

152 (1, 0,3,1,0,1) (3,0,2,1) (1,3,1,0) 0 ∓215 - 2k + 1 ∓1 - ∓2

153 (1, 0,2,0,1,1) (3,0,3,0) (0,3,1,1) 0 ∓215 - 2k + 1 - ∓1 ∓2

154 (0, 2,2,1,1,1) (0,3,3,1) (3,0,2,2) 1 - 2k 2k ∓2 ∓215 ∓2
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Table B.1 (cont’d)

φ ψ ω λ z1 z2 z3 z4 z5 z6

155 (1, 0,0,1,0,1) (1,0,1,1) (3,1,1,0) 1 ∓2 - 2k ∓1 - ∓2

156 (1, 1,2,1,1,1) (1,1,3,3) (0,1,0,0) 1 ∓2 - 2k + 1 ∓215 ∓215 ∓1

157 (0, 0,0,1,1,0) (0,0,1,1) (3,2,0,1) 0 - - 2k ∓1 ∓215 -

158 (1, 3,2,1,1,0) (1,3,2,1) (0,1,2,3) 0 ∓2 2k + 1 2k ∓2 ∓215 -

159 (1, 2,0,1,1,1) (1,2,0,1) (0,3,2,2) 0 ∓2 2k + 1 - ∓2 ∓215 ∓2

160 (0, 2,3,1,1,1) (0,2,2,1) (1,2,2,2) 0 - 2k + 1 2k + 1 ∓2 ∓1 ∓2

161 (1, 1,3,1,1,1) (1,1,2,3) (2,1,0,0) 1 ∓1 - 2k ∓215 ∓215 ∓2

162 (1, 3,0,1,0,1) (1,2,1,1) (3,1,3,2) 1 ∓2 2k 2k + 1 ∓2 - ∓2

163 (1, 0,3,0,1,1) (1,0,2,0) (2,3,1,1) 0 ∓2 - 2k - ∓1 ∓1

164 (0, 3,2,1,0,1) (0,3,2,1) (0,2,3,2) 1 - 2k + 1 2k ∓2 - ∓2

165 (0, 3,0,1,1,0) (0,2,1,1) (3,2,2,3) 0 - 2k 2k + 1 ∓2 ∓215 -

166 (1, 2,0,1,1,1) (3,2,0,1) (0,1,2,2) 0 ∓215 2k + 1 - ∓2 ∓1 ∓1

167 (1, 2,0,1,1,1) (1,3,0,1) (0,3,2,2) 1 ∓2 2k - ∓2 ∓215 ∓2

168 (1, 0,1,0,1,1) (3,0,0,0) (2,3,1,1) 0 ∓215 - 2k + 1 - ∓215 ∓1

169 (0, 2,3,1,1,1) (0,3,2,1) (1,2,2,2) 1 - 2k 2k + 1 ∓2 ∓1 ∓2

170 (1, 0,1,1,1,0) (3,0,0,3) (2,3,0,1) 1 ∓215 - 2k ∓215 ∓215 -

171 (1, 0,3,1,0,1) (1,0,3,1) (1,3,1,0) 0 ∓1 - 2k ∓1 - ∓2

172 (1, 0,3,0,1,1) (3,0,3,0) (2,1,1,1) 1 ∓215 - 2k + 1 - ∓215 ∓2

173 (1, 2,2,1,1,1) (1,2,2,1) (0,3,2,2) 1 ∓1 2k + 1 2k ∓2 ∓1 ∓2

174 (1, 2,3,1,1,1) (1,3,3,1) (2,3,2,2) 1 ∓2 2k 2k + 1 ∓2 ∓1 ∓1

175 (1, 2,2,1,1,1) (3,3,2,1) (0,3,2,2) 0 ∓215 2k 2k ∓2 ∓1 ∓2

176 (1, 3,3,1,1,0) (1,3,2,1) (2,3,2,3) 0 ∓2 2k + 1 2k ∓2 ∓1 -

177 (1, 0,3,1,0,1) (1,0,2,3) (1,3,1,0) 0 ∓1 - 2k + 1 ∓215 - ∓2

178 (1, 3,3,1,0,1) (3,3,3,1) (1,3,3,2) 0 ∓215 2k + 1 2k ∓2 - ∓2

179 (1, 2,0,1,1,1) (3,3,0,1) (0,1,2,2) 1 ∓215 2k - ∓2 ∓1 ∓1

180 (1, 2,2,1,0,0) (1,2,3,1) (3,3,3,3) 1 ∓2 2k + 1 2k ∓2 - -

181 (0, 1,2,0,0,1) (0,1,3,0) (0,2,0,1) 0 - - 2k + 1 - - ∓2

182 (1, 2,2,1,0,0) (1,3,3,1) (3,3,3,3) 0 ∓2 2k 2k ∓2 - -

183 (1, 2,2,1,1,1) (1,3,3,1) (0,3,2,2) 0 ∓1 2k 2k + 1 ∓2 ∓1 ∓2

184 (1, 3,1,1,1,0) (3,3,0,1) (2,3,2,3) 0 ∓215 2k + 1 2k + 1 ∓2 ∓215 -

185 (0, 1,0,1,1,1) (0,1,1,3) (3,2,0,0) 0 - - 2k + 1 ∓215 ∓215 ∓1

186 (0, 2,1,1,1,1) (0,3,1,1) (1,0,2,2) 0 - 2k - ∓2 ∓1 ∓1

187 (1, 1,3,0,1,0) (1,1,3,0) (2,3,1,0) 0 ∓2 - 2k + 1 - ∓1 -

188 (0, 2,1,1,1,1) (0,2,1,1) (1,0,2,2) 1 - 2k + 1 - ∓2 ∓1 ∓1

189 (0, 0,2,1,0,1) (0,0,2,1) (0,2,1,0) 1 - - 2k ∓1 - ∓2

190 (1, 0,3,0,1,1) (1,0,2,0) (2,1,1,1) 0 ∓1 - 2k - ∓215 ∓2

191 (1, 1,3,1,1,1) (3,1,2,3) (2,1,0,0) 1 ∓215 - 2k ∓215 ∓215 ∓2

192 (1, 1,1,1,1,1) (3,1,0,1) (2,3,0,0) 0 ∓215 - 2k ∓1 ∓215 ∓1

193 (1, 3,2,1,1,0) (1,3,3,1) (0,1,2,3) 0 ∓2 2k + 1 2k + 1 ∓2 ∓215 -

194 (1, 2,3,1,1,1) (1,2,3,1) (2,3,2,2) 0 ∓2 2k + 1 2k + 1 ∓2 ∓1 ∓1

195 (0, 1,3,1,1,1) (0,1,2,1) (1,2,0,0) 0 - - 2k + 1 ∓1 ∓1 ∓2

196 (1, 2,1,1,1,1) (1,3,0,1) (2,3,2,2) 0 ∓1 2k 2k + 1 ∓2 ∓215 ∓1

197 (1, 2,3,1,1,1) (1,3,3,1) (2,1,2,2) 1 ∓1 2k 2k + 1 ∓2 ∓215 ∓2

198 (1, 0,3,1,0,1) (3,0,3,1) (1,3,1,0) 0 ∓215 - 2k ∓1 - ∓2
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Table B.1 (cont’d)

φ ψ ω λ z1 z2 z3 z4 z5 z6

199 (1, 0,3,1,1,0) (1,0,2,1) (2,3,0,1) 0 ∓2 - 2k ∓1 ∓1 -

200 (1, 3,1,1,1,0) (1,2,0,1) (2,3,2,3) 0 ∓1 2k 2k ∓2 ∓215 -

201 (1, 0,2,1,0,1) (1,0,2,3) (3,3,1,0) 1 ∓2 - 2k + 1 ∓215 - ∓1

202 (1, 1,1,1,1,1) (1,1,0,3) (2,1,0,0) 0 ∓2 - 2k ∓215 ∓1 ∓2

203 (1, 0,3,1,0,1) (3,0,2,3) (1,3,1,0) 0 ∓215 - 2k + 1 ∓215 - ∓2

204 (1, 2,2,1,1,1) (3,2,2,1) (0,3,2,2) 1 ∓215 2k + 1 2k ∓2 ∓1 ∓2

205 (1, 0,0,1,0,1) (1,0,1,3) (3,1,1,0) 1 ∓2 - 2k ∓215 - ∓2

206 (1, 0,3,1,1,0) (1,0,3,3) (2,3,0,1) 1 ∓2 - 2k + 1 ∓215 ∓1 -

207 (0, 2,0,1,1,1) (0,2,1,1) (3,2,2,2) 1 - 2k + 1 2k ∓2 ∓215 ∓1

208 (1, 0,1,1,1,0) (3,0,0,1) (2,3,0,1) 0 ∓215 - 2k + 1 ∓1 ∓215 -

209 (1, 1,0,0,0,1) (1,1,1,0) (3,1,0,1) 1 ∓2 - 2k + 1 - - ∓2

210 (0, 2,0,1,1,1) (0,3,1,1) (3,2,2,2) 0 - 2k 2k ∓2 ∓215 ∓1

211 (0, 0,0,1,1,0) (0,0,1,3) (3,2,0,1) 0 - - 2k ∓215 ∓215 -

212 (1, 2,2,1,1,1) (1,2,3,1) (0,3,2,2) 1 ∓1 2k + 1 2k + 1 ∓2 ∓1 ∓2

213 (1, 1,2,1,1,1) (1,1,2,1) (0,3,0,0) 1 ∓1 - 2k ∓1 ∓1 ∓2

214 (1, 3,0,1,1,0) (1,2,0,1) (0,1,2,3) 0 ∓1 2k - ∓2 ∓1 -

215 (0, 2,3,1,1,1) (0,2,3,1) (1,2,2,2) 0 - 2k + 1 2k ∓2 ∓1 ∓2

216 (1, 0,2,0,1,1) (1,0,3,0) (0,1,1,1) 0 ∓2 - 2k + 1 - ∓215 ∓1

217 (1, 2,1,1,1,1) (1,2,0,1) (2,1,2,2) 1 ∓2 2k + 1 2k + 1 ∓2 ∓1 ∓2

218 (1, 2,1,1,1,1) (1,3,0,1) (2,1,2,2) 0 ∓2 2k 2k + 1 ∓2 ∓1 ∓2

219 (0, 2,2,1,1,1) (0,2,2,1) (3,0,2,2) 1 - 2k + 1 2k + 1 ∓2 ∓215 ∓2

220 (0, 2,2,1,1,1) (0,3,2,1) (3,0,2,2) 0 - 2k 2k + 1 ∓2 ∓215 ∓2

221 (1, 1,1,0,1,0) (1,1,0,0) (2,3,1,0) 1 ∓1 - 2k + 1 - ∓215 -

222 (1, 1,1,1,1,1) (1,1,0,3) (2,3,0,0) 0 ∓1 - 2k ∓215 ∓215 ∓1

223 (0, 2,3,1,1,1) (0,3,3,1) (1,2,2,2) 1 - 2k 2k ∓2 ∓1 ∓2

224 (1, 0,2,1,1,0) (1,0,3,1) (0,1,0,1) 0 ∓2 - 2k + 1 ∓1 ∓215 -

225 (1, 2,3,1,1,1) (1,2,3,1) (2,1,2,2) 0 ∓1 2k + 1 2k + 1 ∓2 ∓215 ∓2

226 (0, 1,0,0,1,0) (0,1,1,0) (3,2,1,0) 1 - - 2k - ∓215 -

227 (1, 0,3,1,0,1) (1,0,3,3) (1,3,1,0) 0 ∓1 - 2k ∓215 - ∓2

228 (1, 1,0,1,1,1) (1,1,0,3) (0,1,0,0) 0 ∓1 - - ∓215 ∓1 ∓1

229 (1, 2,1,1,1,1) (1,2,0,1) (2,3,2,2) 1 ∓1 2k + 1 2k + 1 ∓2 ∓215 ∓1

230 (0, 3,0,1,1,0) (0,3,1,1) (3,2,2,3) 1 - 2k + 1 2k + 1 ∓2 ∓215 -

231 (0, 3,2,1,0,1) (0,3,3,1) (0,2,3,2) 1 - 2k + 1 2k + 1 ∓2 - ∓2

232 (1, 1,3,1,1,1) (1,1,3,1) (2,3,0,0) 0 ∓2 - 2k + 1 ∓1 ∓1 ∓1

233 (1, 3,2,1,0,1) (1,2,3,1) (3,3,3,2) 1 ∓2 2k 2k ∓2 - ∓1

234 (1, 3,1,1,1,0) (3,2,0,1) (2,3,2,3) 0 ∓215 2k 2k ∓2 ∓215 -

235 (1, 0,1,1,1,0) (1,0,0,3) (2,3,0,1) 0 ∓1 - 2k + 1 ∓215 ∓215 -

236 (1, 2,2,1,1,1) (1,3,2,1) (0,1,2,2) 0 ∓2 2k 2k ∓2 ∓215 ∓1

237 (1, 2,2,1,1,1) (1,2,2,1) (0,1,2,2) 1 ∓2 2k + 1 2k ∓2 ∓215 ∓1

238 (1, 2,1,1,0,0) (1,2,1,1) (1,1,3,3) 0 ∓1 2k + 1 - ∓2 - -

239 (1, 2,2,1,1,1) (3,3,3,1) (0,3,2,2) 0 ∓215 2k 2k + 1 ∓2 ∓1 ∓2

240 (1, 1,2,1,1,1) (3,1,2,1) (0,3,0,0) 1 ∓215 - 2k ∓1 ∓1 ∓2

241 (1, 2,2,1,1,1) (3,2,3,1) (0,3,2,2) 1 ∓215 2k + 1 2k + 1 ∓2 ∓1 ∓2

242 (1, 3,0,1,1,0) (3,2,0,1) (0,1,2,3) 0 ∓215 2k - ∓2 ∓1 -
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