

ABSTRACTION IN REINFORCEMENT LEARNING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERTAN GİRGİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

MARCH 2007

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree
of Doctor of Philosophy.

Prof. Dr. Volkan Atalay
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Dr. Faruk Polat
Supervisor

Examining Committee Members

Prof. Dr. H. Altay Güvenir (Bilkent Univ., CS)

Prof. Dr. Faruk Polat (METU, CENG)

Prof. Dr. Kemal Leblebicioğlu (METU, EEE)

Assoc. Prof. Dr. İ. Hakkı Toroslu (METU, CENG)

Assoc. Prof. Dr. Halit Oğuztüzün (METU, CENG)

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully
cited and referenced all material and results that are not original to this
work.

Name, Last Name: Sertan Girgin

Signature :

iii

ABSTRACT

ABSTRACTION IN REINFORCEMENT LEARNING

Girgin, Sertan

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

March 2007, 111 pages

Reinforcement learning is the problem faced by an agent that must learn behavior

through trial-and-error interactions with a dynamic environment. Generally, the prob-

lem to be solved contains subtasks that repeat at different regions of the state space.

Without any guidance an agent has to learn the solutions of all subtask instances

independently, which degrades the learning performance.

In this thesis, we propose two approaches to build connections between different

regions of the search space leading to better utilization of gained experience and

accelerate learning is proposed. In the first approach, we first extend existing work

of McGovern and propose the formalization of stochastic conditionally terminating

sequences with higher representational power. Then, we describe how to efficiently

discover and employ useful abstractions during learning based on such sequences. The

method constructs a tree structure to keep track of frequently used action sequences

together with visited states. This tree is then used to select actions to be executed at

each step.

In the second approach, we propose a novel method to identify states with sim-

ilar sub-policies, and show how they can be integrated into reinforcement learning

framework to improve the learning performance. The method uses an efficient data

structure to find common action sequences started from observed states and defines

a similarity function between states based on the number of such sequences. Using

this similarity function, updates on the action-value function of a state are reflected

iv

to all similar states. This, consequently, allows experience acquired during learning

be applied to a broader context.

Effectiveness of both approaches is demonstrated empirically by conducting exten-

sive experiments on various domains.

Keywords: Reinforcement Learning, Abstraction, Similarity, Options, Conditionally

Terminating Sequences

v

ÖZ

PEKIŞTIRMELI ÖĞRENMEDE SOYUTLAMA

Girgin, Sertan

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Mart 2007, 111 sayfa

Pekiştirmeli öğrenme dinamik bir ortam ile deneme-yanılma etkileşimleri aracılığyla

davranış öğrenmeye çalışan bir etmenin karşılaştığı problemdir. Genellikle, çözülmesi

gereken problem durum uzayının farklı bölgelerinde tekrar eden altgörevler barındırır.

Herhangi bir yönlendirme olmadan etmen tüm bu tekrarlamaları birbirinden bağımsız

olarak öğrenmek zorundadır ve bu durum da öğrenme performansının düşmesine yol

açmaktadır.

Bu tezde, arama uzayının farklı bölgeleri arasında bağlantı kurarak edinilen deney-

imin daha verimli kullanımını ve öğrenmenin hızlanmasını sağlayan iki yaklaşım öne-

rilmektedir. Birinci yaklaşımda, McGovern’in mevcut çalışması geliştirilerek daha

yüksek temsil gücüne sahip stokastik koşullu sonlanan diziler tanımlanmıştır. Daha

sonra, bu dizilere dayalı olarak öğrenme esnasında yararlı soyutlamaların nasıl keşfedi-

lebileceği ve kullanılabileceği anlatılmıştır. Yöntem sıkça kullanılan hareket dizilerini

ziyaret edilen durumlar ile birlikte takip edebilmek için bir ağaç yapısı kurmaktadır.

Bu ağaç ile her adımda seçilecek hareketlere karar verilmektedir.

İkinci yaklaşımda, benzer alt-davranış biçimlerine sahip durumları belirlemek için

özgün bir yöntem önerilmiş ve mevcut algoritmalar ile nasıl entegre edilebileceği

gösterilmiştir. Yöntem gözlemlenen durumlardan başlayan ortak hareket dizilerini

bulmak için verimli bir veriyapısı kullanmakta ve bu dizilerin sayısına bağlı olarak

durumlar arasında bir benzerlik fonksiyonu tanımlanmaktadır. Bu fonksiyon ile bir

vi

durumun hareket-değer fonksiyonu üzerindeki güncellemeler tüm benzer durumlara

yansıtılmakta ve dolayısıyla öğrenme esnasında edinilen deneyimin daha geniş bir

alana uygulanmasına olanak sağlamaktadır.

İki yaklaşımın da başarısı çeşitli problemler üzerinde kapsamlı deneyler ile gösteril-

miştir.

Anahtar Kelimeler: Pekiştirmeli Öğrenme, Soyutlama, Benzerlik, Opsiyonlar, Koşullu

Sonlanan Diziler

vii

ACKNOWLEDGMENTS

I, foremost, would like to thank Prof. Dr. Faruk Polat for his excellent advice, help and

mentoring during the development of this work. I also would like to thank and express

gratitude to Prof. Dr. Reda Alhajj for his guidance and support during the period

spent as a visiting researcher at the Department of Computer Science, University

of Calgary, Alberta, Canada. Finally, thanks to my family for their patience and

continuous support.

The work presented in this manuscript is partially supported by the Scientific and

Technological Research Council of Turkey (TÜBİTAK) under Grant No. 105E181

(HD-7).

viii

TABLE OF CONTENTS

PLAGIARISM . iii

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 7

2.1 Markov Decision Processes . 7

2.2 Semi-Markov Decision Processes and Options 10

2.2.1 Options . 12

2.3 Option Discovery . 14

2.4 Equivalence in Reinforcement Learning 16

3 PROBLEM SET . 17

3.1 Six-room Maze Problem . 17

3.2 Taxi Problem . 18

3.3 Keepaway Subtask of Robotic Soccer 20

4 IMPROVING REINFORCEMENT LEARNING BY AUTOMATIC OP-
TION DISCOVERY . 25

4.1 Options in the Form of Conditionally Terminating Sequences . 26

4.1.1 Conditionally Terminating Sequences 26

4.1.2 Extending Conditionally Terminating Sequences . . . 30

4.1.3 Stochastic Conditionally Terminating Sequences . . . 34

4.1.4 Online Discovery of CTS based Abstractions 41

4.2 Experiments . 50

4.2.1 Comparison with Standard RL Algorithms 51

ix

4.2.2 Scalability . 53

4.2.3 Abstraction Behavior 55

4.2.4 Effects of the Parameters 56

4.2.5 Effect of Non-determinism in the Environment 60

4.2.6 Quality of the Discovered Abstractions 61

4.2.7 Results for the Keepaway Problem 63

4.2.8 Comparison with acQuire-macros Algorithm 64

5 EMPLOYING STATE SIMILARITY TO IMPROVE REINFORCE-
MENT LEARNING PERFORMANCE 67

5.1 Reinforcement Learning with Equivalent State Update 68

5.2 Finding Similar States . 77

5.3 Experiments . 85

5.3.1 Comparison with Standard RL Algorithms 87

5.3.2 Scalability . 91

5.3.3 Effects of the Parameters 92

5.3.4 Effect of Non-determinisim in the Environment . . . 96

5.3.5 Comparison with Experience Replay 96

5.4 Combining State Similarity Based Approach with Option Dis-
covery . 98

6 CONCLUSION AND FUTURE WORK 103

REFERENCES . 105

CURRICULUM VITAE . 109

x

LIST OF TABLES

TABLES

Table 3.1 List of primitive actions. 21
Table 3.2 High level skills used in the keepaway subtask of robotic soccer. . . 23

xi

LIST OF FIGURES

FIGURES

Figure 1.1 An agent in its environment. 1

Figure 1.2 Agent–Environment interactions in reinforcement learning. 3

Figure 1.3 Hierarchical task decomposition in complex problems. 4

Figure 2.1 Timeflow of MDP, SMDP, and options. 12

Figure 3.1 Six-room maze. 17

Figure 3.2 Taxi problem of different sizes. 18

Figure 3.3 3 vs. 2 keepaway. 22

Figure 4.1 5 × 5 grid world. 27

Figure 4.2 (a) σen, (b) σne, and (c) σenen. Shaded areas denote the continuation
sets. 28

Figure 4.3 βen ∪ σenen. Dark shaded areas denote the continuation sets of βen. 29

Figure 4.4 (a) σee, and (b) σenn. Shaded areas denote the continuation sets. . 31

Figure 4.5 Combination of σee, σenn and σenen. Shaded areas denote the set of
states where the corresponding action (label of the incoming edge) can be
chosen. Rectangles show the decision points. 32

Figure 4.6 After first step, ςσen,σee behaves like σen if current state is in the
right light shaded area, behaves like σee if it is in top light shaded area, and
either as σen or σee if it is in dark shaded area. 36

Figure 4.7 Two history alternatives for state s1. 43

Figure 4.8 Results for the six-room maze problem. 51

Figure 4.9 Results for the 5 × 5 taxi problem with one passenger. 52

Figure 4.10 Results for the 8 × 8 taxi problem with one passenger. 52

Figure 4.11 Results for the 12 × 12 taxi problem with one passenger. 53

Figure 4.12 Results for the 5 × 5 taxi problem with two passengers. 53

Figure 4.13 Results for the 5 × 5 taxi problem with four passengers. 54

Figure 4.14 The average size of the sequence trees with respect to the size of
state space for 5 × 5 taxi problem with one to four passengers. 54

Figure 4.15 State abstraction levels for four predefined locations (A to D from
left to right) in 5 × 5 taxi problem with one passenger after 50, 100, 150
and 200 (a-d) episodes. Darker colors indicate higher abstraction. 55

Figure 4.16 The average size of sequence trees for different ψdecay values in six-
room maze problem. 57

Figure 4.17 Results for different ψdecay values in six-room maze problem. 57

Figure 4.18 The average size of sequence trees for different ψdecay values in 5× 5
taxi problem with one passenger. 57

Figure 4.19 Results for different ψdecay values in 5 × 5 taxi problem with one
passenger. 58

xii

Figure 4.20 Q-learning with sequence tree for different maximum history lengths
in the 5 × 5 taxi problem with one passenger. 58

Figure 4.21 Average size of the sequence trees for different maximum history
lengths in the 5 × 5 taxi problem with one passenger. 59

Figure 4.22 The effect of psequence in the six-room maze problem. 59

Figure 4.23 The effect of psequence in the 5 × 5 taxi problem with one passenger. 60

Figure 4.24 Results with different levels of non-determinism in actions. 61

Figure 4.25 SMDP Q-learning algorithm when the previously generated sequence
tree is employed as a single option. Each number in the key denotes the
number of episodes used to generate the tree. (a) 10-50 episodes at every
10 episodes, and (b) 50-150 episodes at every 50 episodes. 62

Figure 4.26 Results for the keepaway problem. 63

Figure 4.27 Results for the acQuire-macros algorithm using various minimum
support values. 65

Figure 4.28 Results for the acQuire-macros algorithm using different minimum
sequence lengths on 20 × 20 grid world problem. 65

Figure 4.29 Results for the 20 × 20 grid world problem. 66

Figure 5.1 5 × 5 taxi problem. 68

Figure 5.2 Two instances of the taxi problem. In both cases, the passenger is
situated at location A, but the destinations are different: B in (a) and C in
(b). 68

Figure 5.3 Sample MDP M (a), and its homomorphic image M ′ (b). State
transitions are deterministic and indicated by directed edges. Each edge
label denotes the action causing the transition between connected states
and the associated expected reward. Optimal policies are preserved only if
c ≥ 1/9. 72

Figure 5.4 (a) Q-learning vs. Q-learning with equivalent state update, and (b)
Sarsa vs. Sarsa with equivalent state update on 5×5 taxi problem with one
passenger using partial homomorphic images corresponding to navigation
to four predefined locations. The figure shows number of steps to successful
transportation averaged over 30 runs. 76

Figure 5.5 (a) Q-learning vs. Q-learning with equivalent state update, and
(b) Sarsa vs. Sarsa with equivalent state update on 12 × 12 taxi problem
with one passenger using partial homomorphic images corresponding to
navigation to four predefined locations. 78

Figure 5.6 Path tree for a given set of π-histories. 81

Figure 5.7 After adding π-history s1br2·br1·cr1· to the path tree given in Fig-
ure 5.6. Thick edges indicate the affected nodes. 81

Figure 5.8 (a) Q-learning with equivalent state update vs. Q-learning and
Sarsa(λ), and (b) Q-learning and Sarsa(λ) with equivalent state update
vs. Sarsa(λ) in six-room maze problem. 87

Figure 5.9 Q-learning with equivalent state update vs. Q-learning and Sarsa(λ)
in 5 × 5 taxi problem with one passenger. 88

Figure 5.10 Q-learning with equivalent state update vs. SMDP Q-learning and
L-Cut on 5 × 5 taxi problem with one passenger. 89

Figure 5.11 Q-learning with equivalent state update vs. SMDP Q-learning and
L-Cut on six-room maze problem. 89

xiii

Figure 5.12 Q-learning with equivalent state update vs. Q-learning and Sarsa(λ)
in 12 × 12 taxi problem with one passenger. 90

Figure 5.13 5 × 5 taxi problem with two passengers. 91
Figure 5.14 5 × 5 taxi problem with four passengers. 91
Figure 5.15 Convergence rate of 5× 5 taxi problem with two passengers vs. four

passengers. 92
Figure 5.16 Effect of ξdecay on 5×5 taxi problem with one passenger. (a) Reward

obtained, and (b) average size of the path tree for different ξdecay values. . 93
Figure 5.17 Effect of kmin and kmax on 5 × 5 taxi problem with one passenger.

(a) Reward obtained, and (b) average size of the path tree. 94
Figure 5.18 Execution times in 5×5 taxi problem with one passenger for different

values of (a) ξdecay, and (b) kmax. 94
Figure 5.19 Effect of τsimilarity on 5 × 5 taxi problem with one passenger. . . . 95
Figure 5.20 Results with different levels of non-determinism in actions on 5 × 5

taxi problem with one passenger. 96
Figure 5.21 Q-learning with equivalent state update vs. experience replay with

same number of state updates on 5 × 5 taxi problem with one passenger. . 97
Figure 5.22 Results for the 5 × 5 taxi problem with one passenger. 101
Figure 5.23 Results for the 5 × 5 taxi problem with two passengers. 101
Figure 5.24 Results for the 5 × 5 taxi problem with four passengers. 102

xiv

List of Algorithms

1 Policy of a passive keeper . 23

2 Hand-coded policy of a taker . 24

3 Algorithm to construct a sequence tree from a given set of conditionally

terminating sequences. 33

4 Algorithm to construct the sequence tree corresponding to a given S-CTS. 37

5 Algorithm to generate probable π∗-histories from a given history h. . . 43

6 Algorithm for adding a π-history to an extended sequence tree. 46

7 Algorithm for updating extended sequence tree T 47

8 Reinforcement learning with extended sequence tree. 49

9 Q-learning with equivalent state update. 74

10 Sarsa with equivalent state update. 75

11 Algorithm for adding a π-history to a path tree. 82

12 Algorithm for generating π-histories from a given history of events and

adding them to the path tree. 83

13 Calculating state similarities using the generated path tree. 84

14 Reinforcement learning with equivalent state update. 86

15 Reinforcement learning with extended sequence tree and equivalent

state update. 99

xv

CHAPTER 1

INTRODUCTION

“What we have to learn to do, we learn by doing.”

Aristotle

Single and multi-agent systems are computational systems in which one or more

agents situated in an environment perform some set of tasks or try to satisfy some

set of goals. There are many existing definitions of agents. Russell and Norvig [44]

define an agent as “anything that can be viewed as perceiving its environment through

sensors and acting upon that environment through effectors” (Figure 1.1). Franklin

and Graesser [10] extend this definition as “An autonomous agent is a system situated

within and a part of an environment that senses that environment and acts on it, over

time, in pursuit of its own agenda and so as to effect what it senses in the future”.

According to Maes acting is goal-oriented: “Autonomous agents are computational

systems that inhabit some complex dynamic environment, sense and act autonomously

in this environment, and by doing so realize a set of goals or tasks for which they are

designed”. [28]. Hayes-Roth insists that agents reason during the process of action

selection in her definition - “Intelligent agents continuously perform three functions:

AGENT

ENVIRONMENT

sensor action
outputinput

Figure 1.1: An agent in its environment.

1

perception of dynamic conditions in the environment; action to affect conditions in the

environment; and reasoning to interpret perceptions, solve problems, draw inferences,

and determine actions” [43]. Wooldridge and Jennings [56] distinguish two different

notions of agency. In weak notion of agency, an agent is an entity that has / is capable

of

autonomy operating without direct external intervention

social ability capability of interacting with other agents

reactivity being able to perceive the environment and respond in timely fashion to

changes that occur in it

pro-activeness exhibiting goal-directed behavior by taking the initiative in order to

satisfy design objectives.

For a stronger notion of agency they define the need for mental notions (i.e. knowl-

edge, belief, intention, and obligation) and emotions in addition to the characteristics

presented above.

Regardless of its definition, when designing an agent (or a system of agents),

unless the environment and the problem to be solved is very small and restricted, it is

almost impossible to foresee all situations that the agent may encounter and specify

an (optimal) agent behavior in advance [2]. For example, the state space can be too

large for explicit encoding and/or the environment, including the (behaviors of) agents

that it accommodates, can be non-stationary and may change with time. In order to

handle situations that are yet unknown or with different consequences than what is

observed before, an agent must be able process the the information that it receives

to update or increase its knowledge and abilities, i.e. modify its behavior through

experience or conditioning; it must possess the ability to learn. In computer science,

the development of algorithms and techniques that allow computerized entities to

learn is studied under the machine learning subfield of artificial intelligence [36].

Reinforcement learning (RL) is the problem faced by an agent that must learn

behavior through trial-and-error interactions with a dynamic environment by gaining

percepts and rewards from the world and taking actions to affect it [23, 52] (Figure 1.2).

This is very similar to the kind of learning and decision making problems that people

and animals face in their daily lives (for example, those related to physical activities,

2

perception

Agent

Environment

Environment

Agent

Environment

Agent

t=1
action

action
t=2

t=3

reward + perception

reward + perception

Figure 1.2: Agent–Environment interactions in reinforcement learning.

such as riding a bicycle – everybody falls a couple of times before successfully riding a

bicycle.). A particular class of machine learning algorithms that fall into the scope of

reinforcement learning, called reinforcement learning algorithms, try to find a policy

that maximizes an objective function which is based on the rewards received by the

agent from the environment. Some of the possible objective functions are

• total reward over a fixed horizon,

• discounted cumulative reward, and

• average reward in the limit.

Although the methods presented in this thesis are applicable to different such func-

tions, we will be using discounted cumulative reward which is the most analytically

tractable and most widely studied objective function. Reinforcement learning prob-

lems are generally modeled using Markov Decision Processes and policies are defined

as mappings from states to actions that the agent can take. It is assumed that the

states possess the Markov property, i.e. if the current state of the decision process

at time t is known, transitions to a new state at time t + 1 are independent of all

previous states. By storing the experience of the agent in terms of observed (internal)

state and taken action together with the outcome, i.e. received reward and next state,

it is possible to find an optimal policy using dynamic programming and temporal

differencing techniques [19, 23, 36, 52].

3

State Space

Subtask 1

Subtask 2

Subtask 1

Subtask 1

Subtask 2

Figure 1.3: Hierarchical task decomposition in complex problems.

In most of the realistic and complex domains, the task that the agent is trying to

solve is composed of various subtasks and has a hierarchical structure formed by the

relations between them [3]. Each of these subtasks repeats many times at different

regions of the state space (Figure 1.3). Although, all instances of the same subtask, or

similar subtasks, have almost identical solutions (sub-behaviors), without any (self)

guidance, an agent has to learn the solutions of all instances independently by going

through similar learning stages again and again. This situation affects the learning

process negatively, making it difficult to converge to optimal behavior in a reasonable

time.

The main reason of the problem is the lack of connections, that would allow to share

solutions, between similar subtasks scattered throughout the state space. One possible

way to build connections is to use temporally abstract actions, or options, which are

macro actions that generalize primitive actions and last for a period of time [38, 40, 20,

53, 8, 34, 3]. By providing meta-knowledge about the problem to be solved, they allow

the agent to focus the search at a higher level, instead of learning to combine primitive

actions each time. Although, in terms of performance, it is quite effective to define

temporally abstract actions manually, doing so requires extensive domain knowledge

and gets difficult as the complexity of the problem or the components that are involved

increases. Therefore, several methods that try to discovery useful abstractions without

user intervention are proposed in the literature. These methods either find states that

are possible subgoals of the problem using statistical or graph theoretic approaches and

4

generate sub-policies leading to them [9, 48, 33, 35, 45, 46, 30], or identify frequently

occurring action patterns and convert them into macro-actions [31, 32]. In the first

case, different abstractions are generated separately for each instance of the repeated

subtask or similar subtasks since the subgoals states in each instance may differ. In

the second case, the number of abstractions can be very large, since solutions of

subtasks are not unique and action sequences that differ slightly may have the same

consequences, unless frequent action sequences are restricted in an ad hoc manner.

Motivated by these shortcomings of existing approaches, as the first contribu-

tion of this thesis, we propose a method which efficiently discovers useful options in

the form of a single meta-abstraction without storing all observations. We first ex-

tend conditionally terminating sequence formalization of McGovern [32] and propose

stochastic conditionally terminating sequences which cover a broader range of tempo-

ral abstractions and show how a single stochastic conditionally terminating sequence

can be used to simulate the behavior of a set of conditionally terminating sequences.

Stochastic conditionally terminating sequences are represented using a tree structure,

called sequence tree. Then, we investigate the case where the set of conditionally

terminating sequences is not known in advance but has to be generated during the

learning process. From the histories of states, actions and received rewards, we first

generate trajectories of possible optimal policies, and then convert them into a mod-

ified sequence tree. This helps to identify and compactly represent frequently used

sub-sequences of actions together with states that are visited during their execution.

As learning progresses, this tree is constantly updated and used to implicitly run rep-

resented options. The proposed method can be treated as a meta-heuristic to guide

any underlying reinforcement learning algorithm. We demonstrate the effectiveness

of this approach by reporting extensive experimental results on various test domains.

Also, we compared our work with acQuire-macros, the option framework proposed

by [31, 32]. The results show that the proposed method attains substantial level of

improvement over widely used reinforcement learning algorithms.

As the second contribution of this thesis, following homomorphism notion, we pro-

pose a method to identify states with similar sub-policies without requiring a model

of the MDP or equivalence relations, and show how they can be integrated into re-

inforcement learning framework to improve the learning performance [12, 15]. Using

the collected history of states, actions and rewards, traces of policy fragments are

5

generated and then translated into a tree form to efficiently identify states with sim-

ilar sub-policy behavior based on the number of common action-reward sequences.

Updates on the action-value function of a state are then reflected to all similar states,

expanding the influence of new experiences. We demonstrate the effectiveness of this

approach by reporting test results on various test domains. Further, the proposed

method is compared with other reinforcement learning algorithms, and a substantial

level of improvement is observed on different test cases. Also, although the approaches

are different, we present how the performance of our work compares with option dis-

covery algorithms.

Before describing the our contributions in more detail, we give an overview of

the standard reinforcement learning framework of discrete time finite Markov decision

processes in Chapter 2. Semi-Markov Decision Processes and in particular the options

framework of Sutton et al. [53] is also described in a separate section followed by related

work on option discovery and equivalence in reinforcement learning. In Chapter 3,

we present the test domains which are used to evaluate the performance of proposed

methods. The main contributions of this thesis, namely automatically discovering and

creating useful temporal abstractions in the form of stochastic conditionally terminat-

ing sequences and employing state similarity in reinforcement learning are presented

in Chapters 4 and 5, respectively. In Section 5.4, we also combined these two methods

together and analyzed their overall behavior. The final chapter, Chapter 6, concludes

and discusses our plans for future research in this area.

6

CHAPTER 2

BACKGROUND

In this chapter, we introduce the background necessary to understand the material

introduced in this thesis. We start by defining Markov decision processes and reinforce-

ment learning problem. Then, we describe the generic temporal differencing method

to solve an RL problem. We briefly present learning/update rules for Q-learning and

Sarsa(λ) algorithms, as they are used to evaluate our proposals.

2.1 Markov Decision Processes

Definition 2.1.1 (Markov Decision Process) A Markov decision process, MDP

in short, is a tuple 〈S,A, T,R〉, where

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A × S → [0, 1] is a state transition function such that ∀s ∈ S,∀a ∈

A,
∑

s′∈S T (s, a, s′) = 1, and

• R : S ×A→ ℜ is a reward function.

T (s, a, s′) denotes the probability of making a transition from state s to state s′ by

taking action a. R(s, a) is the immediate expected reward received when action a is

executed in state s. �

Given an MDP, a stationary policy, π : S×A→ [0, 1], is a mapping that defines the

probability of selecting an action from a particular state. In a non-stationary policy,

the probability distribution may change with time. If ∀s ∈ S, π(s, as) = 1 and ∀a ∈

A, a 6= as, π(s, a) = 0 then π is called deterministic policy.

7

Definition 2.1.2 (State value function) The value of a state s under policy π,

denoted by V π(s), is the expected infinite discounted sum of reward that the agent will

gain if it starts in state s and follows π [23]. It is computed as

V π(s) =
∞
∑

t=0

γtE(rt|π, s0 = s)

where rt is the reward received at time t, and 0 ≤ γ < 1 is the discount factor. V π(s)

is called the policy’s state value function.

Let Qπ(s, a) denote the expected infinite discounted sum of reward that the agent

will gain if it selects action a at s, and then follows π:

Qπ(s, a) = R(s, a) + γ
∑

s′∈S

T (s, a, s′)V π(s′)

Then, we have

V π(s) =
∑

a∈A

π(s, a)Qπ(s, a)

Similar to V π(s), Qπ(s, a) is called the policy’s state-action value function.

In a Markov decision process, the objective of an agent is to find an optimal policy,

π∗, which maximizes the state value function for all states (i.e., ∀π,∀s ∈ S, V π∗

(s) ≥

V π(s)). Every MDP has a deterministic stationary optimal policy; and the following

Bellman equation holds [4] ∀s ∈ S:

V ∗(s) = max
a∈A

(

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)

)

= max
a∈A

Q∗(s, a)

Here, V ∗ and Q∗ are called the optimal value functions. Using Q∗, π∗ can be specified

as:

π∗(s) =

1 if a = arg maxa′∈AQ
∗(s, a′)

0 otherwise

π∗ is a greedy policy; at state s it selects the action having the maximum Q∗(s, ·)

value, i.e. the one which is expected to be most profitable.

When the reward function, R, and the state transition function, T , are known,

π∗ can be found by using dynamic programming techniques [23, 52]. When such

information is not readily available, a model of the environement (i.e. R and T

functions) can be generated online, or Monte Carlo and temporal-difference (TD)

8

learning methods can be used to find the optimal policy directly without building

such a model. Instead of requiring complete knowledge of the underlying model,

these approaches rely on experience in the form of sample sequences of states, actions,

and rewards collected from on-line or simulated trial-and-error interactions with the

environment.

TD learning methods are built on the bootstrapping and sampling principles.

Estimate of the optimal state(-action) value function is kept and updated in part

on the basis of other estimates.

Let Q(s, a) denote the estimated value of Q∗(s, a). In an episodic setting, a TD

learning algorithm which uses the state-action value function has the following form:

1: Initialize Q arbitrarily (e.g., Q(·, ·) = 0)

2: repeat

3: Let s be the current state

4: repeat ⊲ for each step

5: Choose a from s using policy derived from Q with sufficient exploration

6: Take action a, observe r and the next state s′

7: Update Q based on s, r, a, s′

8: s = s′ ⊲ Next state becomes the current state.

9: until s is a6 terminal state

10: until a termination condition holds

The critical point is to update the estimate in such a way that it converges to

the optimal function. Various algorithms basically differ from each other on how

this update is realized. In well-known Q-learning algorithm [54], at step 7, Q(s, a) is

updated according to the following learning rule:

Q(s, a) = (1 − α)Q(s, a) + α[r + γmax
a′∈A

Q(s′, a′)] (2.1)

where α ∈ [0, 1) is the learning rate. If

1. every state-action pair is updated an infinite number of times, and

2. α is appropriately decayed over time (i.e. is square summable, but not summable)

then Q values are guaranteed to converge to optimal Q∗ values when Equation (2.1) is

used as the update formula [54, 23, 27]. In Sarsa algorithm [52], instead of the current

9

state value of the next state, only the current value of Q(s′, a′), where a′ is the action

selected at state s′, is used as an estimate of future discounted rewards:

Q(s, a) = (1 − α)Q(s, a) + α[r + γQ(s′, a′)] (2.2)

Although update rules are similar to each other, the convergence behavior of Q-

learning and Sarsa algorithms are quite different. Q-learning is an off-policy algorithm

which means that Q values converge to Q∗ independent of how the actions are cho-

sen at step 5; the agent can be acting randomly and still Q values will converge to

optimal values. However, in Sarsa algorithm, the convergence depends on the policy

being followed; if the agent acts randomly then it is very likely that convergence will

not be achieved, and consequently an optimal policy could not be found. Algorithms

having this property are called on-policy algorithms.

In simple TD learning algorithms, such as Q-learning or Sarsa, the update of

estimation is based on just the immediate reward received by the agent and a single

step approximation of the expected future reward – current value of the next state

(or next state-action tuple) is assumed to represent the remaining rewards. n-step

TD and TD(λ) algorithms extend this to include a sequence of observed rewards and

discounted average of all such sequences, respectively. By keeping a temporary record

of visited states and selected actions, at each step, change in the value of Q(s, a) is

gradually reflected backwards using mechanisms such as eligibility traces [52]. This

improves the approximation and also increases the convergence rate.

2.2 Semi-Markov Decision Processes and Options

As a discrete time model, Markov Decision Processes introduced in the previous sec-

tion and consequently algorithms based on MDP framework, are restricted in the sense

that all actions are presumed to take unit time duration; it is not possible to model

situations in which actions take variable amount of time, i.e., they are temporally

extended. Semi-Markov Decision Processes extend MDPs to incorporate transitions

with stochastic time duration. Generalizing Definition 2.1.1, a Semi-Markov Decision

Process is formally defined as follows.

Definition 2.2.1 (Semi-Markov Decision Process) A Semi-Markov Decision Pro-

cess, SMDP in short, is a tuple 〈S,A, T,R, F 〉, where

10

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A × S → [0, 1] is a state transition function such that ∀s ∈ S,∀a ∈

A,
∑

s′∈S T (s, a, s′) = 1,

• R : S ×A→ ℜ is a reward function, and

• F is a function giving probability of transition times for each state-action pair.

T (s, a, s′) denotes the probability of making a transition from state s to state s′ by

taking action a. F (t|s, a) denotes the probability that starting at s, action a completes

within time t. R(s, a) is the expected reward that will be received until next transition

when action a is executed in state s; it allows rewards be received during a transition

from one state to another, and computed as

R(s, a) = k(s, a) +

∫ ∞

0

∫ t

0
ρ(s, a, t)dtdF (t|s, a)

where k(s, a) is a fixed reward received upon executing action a at state s, and ρ(s, a, t)

is a reward rate given that the transition takes t time units. �

It is worth noting that when F has the form

F (t|·) =

0 , t < 1

1 , t ≥ 1

i.e. a step function with a jump at 1, an SMDP turns into a MDP. During a transition

from one state to another upon executing an action, the state of the environment may

change continually, i.e., the agent may pass through some intermediate states. How-

ever, it has no direct effect on the course of events until the current action terminates.

Similar to MDPs, a (stationary) policy for an SMDP is a mapping from states to

actions, and the following Bellman equations hold for an optimal policy [39]:

V ∗(s) = max
a∈A

(

R(s, a) +
∑

s′∈S

T (s, a, s′)

∫ ∞

0
γtV ∗(s′)F (t|s, a)dt

)

= max
a∈A

(

R(s, a) + γ(s, a)
∑

s′∈S

T (s, a, s′)V ∗(s′)

)

= max
a∈A

Q∗(s, a)

11

s1 s2 s3 s4 s5 s6 s7

s1 s2 s3 s4 s5 s6 s7

s1 s2 s3 s4 (c)

(b)

(a)
a1

//
a2

//
a3

//
a4

//
a5

//
a6

//

a1
//

a2
//

a3
//

a4
//
a5

//
a6

//

o1

ao1,1
//

o2
//

o3
//• • •

ao2,1 ao2,2 ao2,3 ao3,1 ao3,2

Figure 2.1: Time flow of (a) MDP, (b) SMDP, and (c) discrete-time SMDP embedded
over MDP (options).

where

γ(s, a) =

∫ ∞

0
γtF (t|s, a)dt

is the variable discount rate based on state s and action a. As in the case of MDPs,

when the reward function R and the state transition function T are known, an op-

timal policy for an SMDP can be found by using dynamic programming techniques.

However, when the model is not known, the reinforcement learning algorithms for

MDPs given in Section 2.1 can be generalized or adapted to SMDPs by taking into

account the length of transitions [6, 29, 39]. For example, the update rule of Q-learning

becomes:

Q(s, a) = (1 − α)Q(s, a) + α[r + γt max
a′∈A

Q(s′, a′)]

where a is the action selected at state s, s′ is the observed state after a terminates,

r is the appropriately weighted sum of rewards received during the transition from

state s to s′, and t is the time passed in between.

2.2.1 Options

In SMDP formalism, the actions are treated as “black boxes”, indivisible flow of execu-

tion, which are used as they are irrespective of their underlying internals. Nevertheless,

if the behavior of temporally extended actions are not determined for certain, such as

when they need to adapt to changes in the environment or be learned from simpler ac-

tions, this assumption makes it hard to analyze and modify them. As demonstrated in

Figure 2.1, by embedding a discrete-time SMDP over a MDP, the options framework

12

of [53] extends the theory of reinforcement learning to include temporally extended

actions with an explicit interpretation in terms of the underlying MDP. While keeping

the unit time transition dynamics of MDPs, actions are generalized in the sense that

they may last for a number of discrete time steps and referred to as options.

Definition 2.2.2 (Option) An option is a tuple 〈I, π, β〉, where

• I ⊆ S is the set of states that the option can be initiated at, called initiation set,

• π is the option’s local policy, and

• β is the termination condition.

Once an option is initiated by an agent at a state s ∈ I, π is followed and actions

are selected according to π until the option terminates (stochastically) at a specific

condition determined by β. �

By changing I, π, which is a restricted policy over actions by itself, or β, one

can now alter the behavior of an option. In a Markov option, action selection and

option termination decisions are made solely on the basis of the current state, i.e.,

π : S × A → [0, 1], and β : S → [0, 1]. During option execution, if the environment

makes a transition to state s, then the Markov option terminates with probability β(s)

or else continues, determining the next action a with probability π(s, a). It is generally

assumed that an option can also be initiated at a state where it can continue, which

means that the set of states with termination probability less than one is a subset of

I. In this case, the domain of π is restricted to I only instead of S.

Markov options are limited in their ability to represent some useful abstractions,

such as terminating after a given number of steps, or carrying out a sequence of actions

irrespective of the consequences (as in open-loop control). For more flexibility, Semi-

Markov options extend Markov policies and allow π and/or β to depend on all prior

events since the option was initiated.

Definition 2.2.3 (History) Let st, at, rt+1, st+1, at+1, . . . , rτ , sτ be the sequence of

states, actions and rewards observed by the agent starting from time t until τ . This

sequence is called a history from t to τ , denoted htτ [53]. The length of htτ is τ − t.�

If the set of all possible histories is denoted by Ω, then in a Semi-Markov option,

β and π are defined over Ω instead of S, i.e., β : Ω → [0, 1], π : Ω ×A→ [0, 1].

13

Let O be the set of available options, which also include primitive actions as a

special case, then a (stationary) policy over options, µ : S ×O → [0, 1], is a mapping

that defines the probability of selecting an option from a particular state. If state s

is not in the initiation set of an option o, then µ(s, o) is zero. In [53], it has been

proved that for any MDP and any set of options defined on that MDP, a policy over

options, executing each to termination, is an SMDP. Hence, results given above for

SMDPs also hold for options, and optimal value functions and Bellman equations can

be generalized to options and to policies over options. We have:

V ∗(s) = max
o∈Os

E{r + γkV ∗(s′)}

= max
o∈Os

Q∗(s, o)

where Os denotes the set of options that can be initiated at s, s′ is the state in which

o terminates, k is the number of steps elapsed during the execution of o, and r is

the cumulative discounted reward received between s and s′ (i.e., r = rt+1 + γrt+2 +

. . .+ γk−1rt+k if o is initiated at time t); all conditional on the event that option o is

initiated in state s. Consequently, SMDP learning methods are adapted to use option

set instead of action set. In particular, the update rule of Q-learning is modified as

follows:

Q(s, o) = (1 − α)Q(s, o) + α[r + γt max
o′∈Os

Q(s′, o′)]

which converges to optimal Q-values for all s ∈ S and o ∈ O under conditions similar

to those for basic Q-learning.

2.3 Option Discovery

In most applications, options are part of the problem specification and provided by

the system developer prior to learning. In order to define the options, the system

developer needs to possess extensive knowledge about the problem domain and have

a rough idea of possible solutions. Otherwise, faulty abstractions may be constructed

that will have a negative effect on learning and move the agent away from the solution.

However, this process of creating abstractions manually becomes more difficult as the

complexity of the problem increases; as the number of variables increases it gets harder

to handle the relations between them and their effect on the environment. On the

positive side, compact and multi-leveled hierarchies of abstractions can be defined,

14

leading to effective and efficient solutions. An alternative way is to construct macro

actions automatically using domain information acquired during learning.

Most of the existing research on automatic discovery of temporally abstract ac-

tions are focused on two main approaches. In the first approach, possible subgoals

of the problem are identified first, then abstractions solving them are generated and

utilized. Digney [9], and Stolle and Precup [48] use a statistical approach and define

subgoals as states that are visited frequently or have a high reward gradient. In [33],

McGovern and Barto select most diversely dense regions of the state space (i.e., the

set of states that are visited frequently on successful experiences, where the notion of

success is problem dependent) as subgoals. Menache et al. [35] follow a graph theo-

retical approach and their Q-cut algorithm uses a Min-Cut procedure to find subgoals

which are defined as bottleneck states connecting the strongly connected components

of the graph derived from state transition history. Şimşek and Barto also use a similar

definition of subgoals, but propose two methods for searching them locally as in Q-cut.

Şimşek and Barto also use a similar definition of subgoals, but propose two methods

for searching them locally as in Q-cut. In the first one, subgoal discovery is formu-

lated as a classification problem based on relative novelty of states [45]; and in the

second one as partitioning of local state transition graphs that reflect only the most

recent experiences of the agent [46]. In another graph based method due to Mannor

et al., state space is partitioned into regions using a clustering algorithm (based on

graph topology or state values), and policies for reaching different regions are learned

as macro actions [30]. In all of these methods, sub-policies leading to the discovered

subgoals are explicitly generated by using auxiliary reinforcement learning processes,

such as action replay [25], with artificial rewards executed on the “neighborhood” of

the subgoal states. Note that, since different instances of same or similar subtasks

would probably have different subgoals in terms of state representation, with these

methods they will be discovered and treated separately.

In relatively less explored second approach, temporal abstractions are generated

directly, without identifying subgoals, by analyzing common parts of multiple policies.

An example of this approach is proposed by McGovern, where sequences that occur

frequently on successful action trajectories are detected, and options are created for

those which pass a static filter that eliminates sequences leading to similar results [31,

32]. One drawback of this method is that common action sequences are identified at

15

regular intervals, which is a costly operation and requires all state and action histories

be stored starting from the beginning of learning. Also, since every prefix of a frequent

sequence has at least the same frequency, the number of possible options increases

rapidly, unless limited in a problem specific way. Recently, Girgin et al. [11] also

proposed a method that utilizes a generalized suffix tree structure to identify common

sub-sequences within histories, and select a subset of them to generate corresponding

options without any prior knowledge. Furthermore, they use a classifier to map states

to options in order to generalize the domain of discovered options.

2.4 Equivalence in Reinforcement Learning

Temporally abstract actions try to solve the solution sharing problem inductively.

Based on the fact that states with similar patterns of behavior constitute the regions

of state space corresponding to different instances of similar subtasks, the notion of

state equivalence can be used as a low level and more direct means of solution sharing

compared to methods that make use of temporally abstract actions described above.

By reflecting experience acquired on one state to all similar states, connections between

similar subtasks can be established implicitly which, in effect, reduce the repetitions

in learning and consequently improve the performance.

State equivalence is closely related with model minimization in Markov Decision

Processes (MDPs), and various definitions exist. In [17], Givan et. al. define equiv-

alence of states based upon stochastic bisimilarity, a generalization of the notion of

bisimulation from the literature on concurrent processes. Two states are said to be

equivalent if they are both action sequence and optimal value equivalent. Based on the

formalism of MDP homomorphism Ravindran and Barto extended equivalence over

state-action pairs [41, 42], which allow reductions and relations not possible in case

of bisimilarity. Furthermore, they applied state-(action) equivalence to the options

framework to derive more compact options without redundancies, called relativized

options. However, relativized options are not automatically discovered, but rather de-

fined by the user. Zinkevich and Balch [57] also addressed how symmetries in MDPs

can be used to accelerate learning employing equivalence relations on the state-action

pairs, in particular for multi-agent case where permutations of features corresponding

to various agents are prominent, but without explicitly formalizing them.

16

CHAPTER 3

PROBLEM SET

In this chapter, we describe the details and properties of sample problems that are

used to evaluate the performance of proposed methods in this work. The three test

domains are: a six-room maze, various versions of Dietterich’s taxi problem [8], and

the keepaway subtask of robotic soccer [51]. We selected these domains due to their

distinctive characteristics; the first problem contains bottleneck states and has a rela-

tively small state space, the second one has repeated subtasks applicable at different

regions of the state space, and the third one has a continuous state space and actions

take variable amount of time, i.e. formulated in the SMDP setting.

3.1 Six-room Maze Problem

In the six-room maze problem, there is a grid-world containing six rooms in a 2 × 3

layout (Figure 3.1). Neighboring rooms are connected to each other with doorways.

The task of the agent is to navigate from a randomly chosen position in the top

left room to the gray shaded goal location in the bottom right room. The primitive

actions are movement to a neighboring cell in four directions, north, east, south, and

west. Actions are non-deterministic and each action succeeds with probability psuccess,

Figure 3.1: Six-room maze.

17

3

A B

C D
0 1 2 3 4

0

1

2

4 4

BA

C D

0 1 2 3 4 5 6 7

5

6

7

0

1

2

3

(a) (b)

D

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9

11

10

8 9 10 11

A

B

C

(c)

Figure 3.2: Taxi problem of different sizes. (a) 5 × 5 (Dietterich’s original problem),
(b) 8× 8, and (c) 12 × 12. Predefined locations are labeled with letters from A to D.

or else moves the agent perpendicular, either clockwise or counter clockwise, to the

desired direction with probability 1 − psuccess. Unless stated otherwise, psuccess is set

to 0.9. If an action causes the agent to hit a wall (black squares), the action has no

effect and the position of the agent does not change. The agent only receives a reward

of 1 when it reaches the goal location. For all other cases, it receives a small negative

reward of −0.01. The state space consists of 605 possible positions of the agent. The

agent must learn to reach the goal state in shortest possible way to maximize total

discounted reward.

In this task, for achieving a better performance, the agent needs to learn to make

efficient use of the passages connecting the rooms. These passages can be regarded as

the subgoals of the agent and are also bottleneck states in the solutions.

3.2 Taxi Problem

Our second test domain, the Taxi domain, is an episodic task in which a taxi agent

moves around on an n × n grid world, containing obstacles that limit the movement

18

(Figure 3.2). The agent tries to transport one or more passengers located at predefined

locations, to either the same location or to another one. In order to accomplish this

task, the taxi agent must repeat the following sequence of actions for all passengers:

1. go to the location where a passenger is waiting,

2. pick up the passenger,

3. go to the destination location, and

4. drop off the passenger

At each time step, there are six different actions that can be executed by the agent:

the agent can either move one square in one of four main directions, north, east,

south, and west, attempt to pickup a passenger, or attempt to drop-off the passen-

ger being carried. If a movement action causes the agent hit to wall/obstacle, the

position of the agent does not change. The movement actions are non-deterministic;

each movement action succeeds with probability psuccess, or as in six-room maze prob-

lem with 1 − psuccess probability agent may move perpendicular (either clockwise or

counter-clockwise) to the desired direction. Unless stated otherwise, psuccess is set to

0.8. Passengers can not be co-located at the same position but their destinations can

be the same.

An episode ends when all passengers are successfully transported to their desti-

nations. There is an immediate reward of +20 for each successful transportation of

a passenger, a high negative reward of −10 if pickup or drop-off actions are executed

incorrectly (i.e., if pickup is executed but there is no passenger to pickup at current

position, or drop-off is executed but there is no passenger being carried or current

position is different than the destination of the passenger being carried) and −1 for

any other action. Dietterich’s original version of the taxi problem is defined on a 5×5

grid with a single passenger as presented in Figure 3.2 (a), and used as a testbed for

the Max-Q hierarchical reinforcement learning algorithm [8].

In order to maximize the overall cumulative reward, the agent must transport the

passengers as quickly as possible, i.e., using minimum number of actions. Note that

if there are more than one passenger, the ordering of passengers to be transported is

also important, and the agent needs to learn the optimal ordering for highest possible

19

reward. Initial position of the taxi agent, locations and destinations of the passengers

are selected randomly with uniform probability.

We represent each possible state using a tuple of the form 〈r, c, l1, d1, . . . , lk, dk〉,

where r and c denote the row and column of the taxi’s position, respectively, k is the

number of passengers, and for 1 ≤ i ≤ k, li denotes the location of the ith passenger

(either (i) one of predefined locations, (ii) picked-up by the taxi, or (iii) transported),

and di denotes the destination of the passenger (one of predefined locations). The size

of the state space is RC(L+1)kLk where R×C is the size of the grid, L is the number

of predefined locations, and k is the number of passengers. For the single passenger

case, since there is only one passenger to be carried, it reduces to RC(L + 1)L. In

particular, for the original version of the problem on a 5× 5 grid with one passenger,

there are 500 different tuples in the state space.

Compared to the six-room maze domain, the taxi domain has a larger state space

and possesses a hierarchical structure with repeated subtasks, such as navigating from

one location to another. These subtasks are difficult to describe as state based subgoals

because state trajectories are different in each instance of a subtask. For example, if

there is a passenger at location A, the agent must first learn to navigate there and

pick up the passenger, which has the same sub-policy irrespective of the destination

of the passenger or other state variables at the time of execution.

3.3 Keepaway Subtask of Robotic Soccer

Our last test domain is a subtask of robotic soccer. Robotic soccer is a fully distributed,

multiagent domain with both teammates and adversaries in which two teams of au-

tonomous agents play the game soccer against each other [1]. It is supported by

the Robot World Cup Initiative, or RoboCup for short, an international joint project

which uses game of soccer as a central topic of research to promote artificial intelli-

gence, robotics, and related field. It aims to reach the ultimate goal of “developing

a team of fully autonomous humanoid robots that can win against the human world

champion team in soccer.” by 2050 [1]. RoboCup is divided into five leagues in which

teams consisting of either robots or programs cooperate in order to defeat the oppo-

nent team, i.e. score more goals than the other team. In the simulation league, a

realistic simulator, called the soccerserver, provides a virtual field and simulates all

20

catch dir Catch ball into direction dir if the ball is within the catchable area and the
goalie is inside the penalty area. The goalie is the only player that can execute
this action.

change view width quality

dash pow Accelerate the agent with power pow in the direction of its body.

kick pow dir Kick the ball towards direction dir with power pow if the distance
between ball and agent is less than kickable margin.

say mesg Broadcast message mesg to other agents.

turn mnt Change body direction with moment mnt.

turn neck ang Change the neck angle of the player relative to its body. It can be
executed during the same cycle as turn, dash and kick actions.

Table 3.1: List of primitive actions.

movements of a ball and players. Each agent is controlled by an independent single

client. Environment is partially observable, which means there is hidden state, and

agents receive noisy and inaccurate visual and auditory sensor information every 150

msec. indicating the relative distance and angle to visible objects in the world, such

as the ball and other agents. Agent can communicate with each other only through

the server, which is subject to communication bandwidth and range constraints. They

may execute a primitive, parameterized action such as turn, dash and kick every 100

msec. (see Table 3.1 for a complete listing). The actions are non deterministic which

means that agents may not be able to affect the world exactly as intended. Actions

may sometimes fail or succeed partially (for example trying to turn 20 degrees may

result in a rotation of less than 20 degrees depending on the current state of the agent

and the environment). More detailed information about the soccerserver can be found

in [37].

One important property of robotic soccer is that the perception and action cycles

are asynchronous due to the difference in their frequencies. This situation necessitates

a need for keeping an internal world model and predicting the current and future states

of the world since, although possible, it is not feasible to directly map perceptual input

to actions. All these domain characteristics make simulated robot soccer a complex,

realistic and challenging domain for artificial intelligence studies [51].

Keepaway is an episodic subtask of RoboCup soccer played with two teams of

21

Limited region

�
�
�

�
�
�

��
��
��

��
��
��

Takers

Ball

Keepers

��
��
��

��
��
��

Figure 3.3: 3 vs. 2 keepaway.

reduced size, each consisting of two to five agents. At the beginning of each episode,

members of one team, the keepers, are distributed evenly near the corners of a limited

region (ranging from 25m x 25m to 35m x 35m and above) inside the soccer field.

Members of the other team, the takers, are all placed at the bottom left corner of the

region and the ball is placed next to the keeper at the top left corner. Typically, the

number of takers is (one) less than the number of keepers.

The aim of the keepers is to maintain the possession of the ball and at the same

time keep it within the limited region as long as possible by passing the ball to each

other. The takers, on the other hand, try to intercept the ball and gain possession or

send it outside of the region (Figure 3.3). Whenever the takers have the ball or the ball

leaves the region, the episode ends and players are reset for another episode. Recent

versions of RoboCup soccer simulator directly support keepaway subtask and all steps

described above are handled automatically by invoking the server using appropriate

parameters.

Although much simpler than the whole game of soccer, keepaway has continuous

state and action spaces and involves both cooperation (within team members) and

competition (between the members of two teams) making it a complex yet manageable

benchmark problem for machine learning.

In a series of papers, Stone, Sutton and Kuhlmann treated the problem as a semi-

Markov decision process by using action choices consisting of high level skills (see

Table 3.2), which may persist for multiple time steps, instead of primitive actions

provided by the simulator [49, 51, 50, 24]. They focus on learning policies for active

keepers, keepers that are close enough to the ball to kick it, when playing against

other players (keepers and takers) with predefined behaviors (random or hand-coded).

Note that there may be more than one active keeper, since at a given time ball can

22

HoldBall() Remain stationary while keeping possession of the ball in a position that
is as far away from the opponents as possible.

PassBall(k) Kick the ball directly towards keeper k.

GetOpen(p) Move to a position that is free from opponents and open for a pass
from position p.

GoToBall() Intercept a moving ball or move directly towards a stationary ball.

BlockPass(k) Move to a position between the keeper with the ball and keeper k.

Table 3.2: High level skills used in the keepaway subtask of robotic soccer. All
these skills except PassBall(k) are simple functions from state to a corresponding
action; an invocation of one of these normally controls behavior for a single time step.
PassBall(k), however, requires an extended sequence of actions, using a series of kicks
to position the ball, and then accelerate it in the desired direction. Its execution
influences behavior for several time steps. [50]

be kickable by multiple players depending on their position. A passive keeper sticks

to the following policy:

Algorithm 1 Policy of a passive keeper
1: repeat

2: if fastest player in the team to the ball then

3: execute GoToBall() for one time step

4: else

5: Let p be the predicted position of the ball when the fastest teammate

reaches it

6: execute GetOpen(p) for one time step

7: end if

8: until ball is kickable or episode ends

When a taker has the ball, it tries to maintain possession by invoking HoldBall()

for one time step. Otherwise, all takers either

1. choose with uniform probability one of {GoToBall(), BlockPass(1), . . . , Block−

Pass(k)} where k is the number of keepers and execute for one time step (Ran-

dom),

2. GoToBall() for one time step (All-to-Ball), or

3. use the Hand-Coded policy given in Algorithm 2.

23

Algorithm 2 Hand-coded policy of a taker
1: repeat

2: if not closest or second closest taker to the ball then

3: Mark the most open opponent (i.e. with the largest angle with vertex at

the ball that is clear of takers) using BlockPass() option

4: else if another taker doesn’t have the ball then

5: execute GoToBall() for one time step

6: end if

7: until episode ends

An active keeper has multiple choices: it may hold the ball or pass to one of its

teammates. Therefore, there are k options {HoldBall(), PassBall(2), . . . , PassBall(k)}

to select. From the internal world model, the following state variables are available to

the agent:

• dist(Ki, C) i = 1..k

• dist(Ti, C) i = 1..t

• dist(K1,Ki) i = 2..k

• dist(K1, Ti) i = 1..t

• min(dist(Ki, T1), . . . , dist(Ki, Tt)) i = 2..k

• min(ang(Ki,K1, T1), . . . , dist(Ki,K1, Tt)) i = 2..k

where k is the number of keepers, t is the number of takers, C denotes the center

of the playing region, K1 is the self position of the agent, K2 . . . Kk and T1 . . . Tt are

positions of other keepers and takers ordered by increasing distance from the agent,

respectively, dist(a, b) is the distance between a and b, and ang(a, b, c) is the angle

between a and c with vertex at b. All variables are continuous values. The total

number of the variables is 4 ∗ k + 2 ∗ t − 3, which is linear with respect to number

of players involved. The immediate reward received by each agent after selecting a

high level skill is the number of primitive time steps that elapsed while following the

higher-level action.

24

CHAPTER 4

IMPROVING REINFORCEMENT LEARNING BY

AUTOMATIC OPTION DISCOVERY

In this chapter, we propose a method which efficiently discovers useful options in the

form of a single meta-abstraction without storing all observations [14, 13]. We first

extend conditionally terminating sequence formalization of McGovern and propose

stochastic conditionally terminating sequences which cover a broader range of tempo-

ral abstractions and show how a single stochastic conditionally terminating sequence

can be used to simulate the behavior of a set of conditionally terminating sequences.

Stochastic conditionally terminating sequences are represented using a tree structure,

called sequence tree. Then, we investigate the case where the set of conditionally

terminating sequences is not known in advance but has to be generated during the

learning process. From the histories of states, actions and reward, we first gener-

ate trajectories of possible optimal policies, and then convert them into a modified

sequence tree. This helps to identify and compactly represent frequently used sub-

sequences of actions together with states that are visited during their execution. As

learning progresses, this tree is constantly updated and used to implicitly run rep-

resented options. The proposed method can be treated as a meta-heuristic to guide

any underlying reinforcement learning algorithm. We demonstrate the effectiveness of

this approach by reporting test results on three domains, namely room-doorway, taxi

cab and keepaway in robotic soccer problems. The results show that the proposed

method attains substantial level of improvement over widely used RL algorithms.

Also, we compared our work with acQuire-macros, the option framework proposed by

McGovern and Barto [31, 32].

The rest of the chapter is organized as follows. Section 4.1 covers conditionally

terminating sequences and extends them into stochastic conditionally terminating

25

sequences that have higher representational power. Based on stochastic condition-

ally terminating sequences, a novel method to discover useful abstractions during the

learning process is covered in Section 4.1.2. Experimental results are reported in

Section 4.2.

4.1 Options in the Form of Conditionally Terminating Sequences

In this section, we present the theoretical foundations and building blocks of our

automatic option discovery method. We first describe a special case of Semi-Markov

options in the form of conditionally terminating sequences as defined by McGovern [32]

in Section 4.1.1. In Section 4.1.2, we highlight their limitations and propose the novel

concept of sequence trees and the corresponding formalism of stochastic conditionally

terminating sequences that extend conditionally terminating sequences and enable

richer abstractions; they are capable of representing and generalizing the behavior of

a given set of conditionally terminating sequences.

Finally, a method which utilizes a modified version of a sequences tree to find useful

abstractions online, i.e. during the course of learning, is introduced; it is based on the

idea of reinforcing the execution of action sequences that are experienced frequently

by the agent and yield a high return.

4.1.1 Conditionally Terminating Sequences

Definition 4.1.1 (Conditionally Terminating Sequence) A conditionally termi-

nating sequence (CTS) is a sequence of n ordered pairs

σ = 〈C1, a1〉〈C2, a2〉 . . . 〈Cn, an〉

where n is the length, denoted |σ|, and each ordered pair 〈Ci, ai〉 consists of a con-

tinuation set Ci ⊆ S and action ai ∈ A. At step i, ai is selected and the sequence

advances to the next step (i.e., ai is performed) if current state s is in Ci; otherwise

the sequence terminates. �

C1 is the initiation set of σ and denoted by initσ. The sequence act-seqσ =

a1a2 . . . an is called the action sequence of σ. We use Cσ,i and aσ,i to denote the ith

continuation set and action of σ.

26

G

0 1 2 3 4

0

1

2

4

3

Figure 4.1: 5 × 5 grid world.

Lemma 4.1.2 For every CTS σ, one can define a corresponding Semi-Markov option

oσ.

Proof. Let σ = 〈C1, a1〉 . . . 〈Cn, an〉 be a conditionally terminating sequence. A

history htτ = st, a
′
t, rt+1, st+1, a

′
t+1, . . . , rτ , sτ is said to be compatible with σ if and

only if its length is less than the length of σ, and for i = t, . . . , τ−1, si ∈ Ci−t+1∧a
′
i =

ai−t+1, and sτ ∈ Cτ−t+1, i.e., observed states were consecutively in the continuation

sets of σ starting from I1 and at each step actions determined by σ were executed.

Let Hσ denote the set of possible histories in Ω that are compatible with σ. We can

construct a Semi-Markov option oσ = 〈I, π, β〉 as follows:

I = Cσ,1

π(htτ , a) =

1, if htτ ∈ Hσ ∧ a = aσ,τ−t+1

0, otherwise

β(htτ) =

0, if htτ ∈ Hσ

1, otherwise

oσ can only be initiated at states where σ can be initiated. When initiated at time t,

the execution of oσ continues if and only if the state observed at time t+k, 0 ≤ k < n,

is in Ik+1. At time t + k, action ak+1 is selected, for every other possible action

a 6= ak+1, π(·, a) = 0. Therefore, oσ behaves exactly as σ. �

The most important feature of CTSs is that they can be used to represent fre-

quently occurring and useful patterns of actions in a reinforcement learning problem.

For example, consider the 5 × 5 grid world shown in Figure 4.1. Starting from any

location, the agent’s goal is to reach the top rightmost cell marked with “G” as soon

as possible (i.e., with minimum number of actions). At each time step, the agent

can move in one of four directions; assume A = {n, s, e, w} is the set of actions and

S = {(i, j)|0 ≤ i, j ≤ 4} is the set of states where (i, j) denotes the coordinates of

27

1 2 3 4

0

1

2

4

3

G

0 , e

//

1 2 3 4

0

1

2

4

3

G

0 , n 1 2 3 4

0

1

2

4

3

G

0 , n

//

1 2 3 4

0

1

2

4

3

G

0 , e

(a) (b)

1 2 3 4

0

1

2

4

3

G

0 , e

//

1 2 3 4

0

1

2

4

3

G

0 , n

//

1 2 3 4

0

1

2

4

3

G

0 , e

//

1 2 3 4

0

1

2

4

3

G

0 , n

(c)

Figure 4.2: (a) σen, (b) σne, and (c) σenen. Shaded areas denote the continuation sets.

the agent. Note that the rectangular region on the grid with corners at (r1, c1) and

(r2, c2), represented by [(r1, c1), (r2, c2)], is a subset of S.

In order to reach the goal cell, one of the useful action patterns that can be used

by the agent is to move diagonally in the north-east direction, i.e., e followed by n

or alternatively n followed by e. These patterns can be represented by the following

CTSs presented in Figure 4.2 (a) and (b):

σen = 〈[(0, 0), (3, 3)], e〉〈[(0, 1), (3, 4)], n〉

σne = 〈[(0, 0), (3, 3)], n〉〈[(1, 0), (4, 3)], e〉

Conditionally terminating sequences allow an agent to reach the goal more directly

by shortening the path to a solution; in our grid world example, any primitive action

can reduce the Manhattan distance to the goal position (i.e., |4−i|+ |4−j| where (i, j)

is the current position of the agent) by 1 at best, whereas σen and σne defined above

reduce it by 2 when they are applicable. As the complexity of the problem increases,

this shortening through the use of CTSs makes it possible to efficiently explore the

search space to a larger extent. Consequently, this leads to faster convergence and

improves the performance of learning. Although they have a simple structure, a set

of CTSs is quite effective in exploiting temporal abstractions.

Now, consider a longer CTS σenen given in Figure 4.2 (c) that represents moving

diagonally in the north-east direction two times; it is defined as:

σenen = 〈[(0, 0), (2, 2)], e〉〈[(0, 1), (2, 3)], n〉

〈[(1, 1), (3, 3)], e〉〈[(1, 2), (3, 4)], n〉

28

0 2 3 4

0

1

2

4

3

G

1 , e

//

0 2 3 4

0

1

2

4

3

G

1 , n

//

1 2 3 4

0

1

2

4

3

G

0 , e

//

1 2 3 4

0

1

2

4

3

G

0 , n

Figure 4.3: βen ∪ σenen. Dark shaded areas denote the continuation sets of βen.

Note that the action sequence of σenen starts with the action sequence of σen; for

the first two steps, action selection behaviors of σen and σenen are the same. Therefore,

by taking the union of the continuation sets, it is possible to merge σen and σenen into

a new CTS σen−enen which exhibits the behavior of both sequences:

σen−enen = 〈Cσen,1 ∪ Cσenen,1, e〉〈Cσen,2 ∪Cσenen,2, n〉〈Cσenen ,3, e〉〈Cσenen ,4, n〉

= 〈Cσen,1, e〉〈Cσen,2, n〉〈Cσenen ,3, e〉〈Cσenen ,4, n〉

The action sequence of σen−enen is enen and initially it behaves as if it is σen and

σenen, i.e., selects action e and then n at viable states. At the third step, if the current

state is a state where σenen can continue (i.e., in Cσenen,3), then the sequence continues

execution like σenen; otherwise it terminates. We call σen−enen the union of σen and

σenen.

Definition 4.1.3 (Union of two CTSs) Let u = 〈Cu,1, au,1〉 . . . 〈Cu,m, au,m〉 and

v = 〈Cv,1, av,1〉 . . . 〈Cv,n, av,n〉 be two CTSs such that the action sequence of v starts

with the action sequence of u, i.e. m ≤ n and for 1 ≤ i ≤ m,au,i = av,i. The CTS

u ∪ v defined as

u ∪ v = 〈Cu,1 ∪ Cv,1, av,1〉〈Cv,2 ∪ Cv,2, av,2〉 . . . 〈Cu,m ∪ Cv,m, av,m〉

〈Cv,m+1, av,m+1〉 . . . 〈Cv,n, av,n〉

is called the union of u and v. �

Note that, given a sequence of observed states there may be cases in which both

u and v would terminate within |u| = m steps but u ∪ v continues to execute. For

example, let βen = 〈[(2, 2)(3, 3)], e〉〈[(2, 3)(3, 4), n〉 be a restricted version of moving

diagonally in the north-east direction. We have

βen ∪ σenen = 〈[(0, 0)(2, 2)] ∪ [(2, 2)(3, 3)], e〉〈[(0, 1)(2, 3)] ∪ [(2, 3)(3, 4), n〉

〈[(1, 1), (3, 3)], e〉〈[(1, 2), (3, 4)], n〉

29

as presented in Figure 4.3. Initiated at state (3, 2), βen ∪ σenen would start to behave

like βen and select action e. Suppose that, due to non-determinism in the environ-

ment, this action moves the agent to (2, 2) instead of (3, 3). By definition, βen can not

continue to execute from (2, 2) since (2, 2) /∈ Cβen,2; however (2, 2) is in the continua-

tion set of the second tuple of σenen, and therefore βen∪σenen resumes execution from

(2, 2), switching to σenen. Thus, the union of two CTSs also generalizes their behavior

in favor of longer execution patterns, whenever possible, resulting in a more effective

abstraction.

4.1.2 Extending Conditionally Terminating Sequences

One prominent feature of conditionally terminating sequences is that they have a lin-

ear flow of execution; actions are selected sequentially provided that the continuation

conditions hold. In this respect, they cannot be used to represent situations in which

different courses of actions may be followed depending on the observed history of

events. On the other hand, such situations are frequent in most real life problems

due to the hierarchical decomposition inherent in their structure; abstractions contain

common action sequences that solve similar subtasks involved. When conditionally

terminating sequences are to be utilized in these problems, a seperate CTS is required

for each trajectory of a hierarchical component corresponding to a particular subtask.

This consequently leads to a drastic increase in the number of conditionally terminat-

ing sequences that need to be defined as the complexity of the problem increases, and

constitutes one of the drawbacks of CTSs. By extending them to incorporate condi-

tional branching of action selection, it is possible to make use of existing abstractions

in a more compact and effective way, and overcome this shortcoming.

As a demonstrative example, consider σenen defined in the previous section and

two new CTSs presented in Figure 4.4 which are defined as:

σee = 〈[(0, 0), (4, 2)], e〉〈[(0, 1), (4, 3)], e〉

σenn = 〈[(0, 0), (2, 3)], e〉〈[(0, 1), (2, 4)], n〉〈[(1, 1), (3, 4)], n〉

σee has an action pattern of moving east twice, and σenn has an action pattern of

moving east followed by moving north twice. Note that, the action sequences of

these CTSs have common prefixes. They all select action e at the first step, and

furthermore both σenn and σenen select action n at the second step. Suppose that

30

1 2 3 4

0

1

2

4

3

G

0 , e

//

1 2 3 4

0

1

2

4

3

G

0 , e

(a)

1 2 3 4

0

1

2

4

3

G

0 , e

//

1 2 3 4

0

1

2

4

3

G

0 , n

//

1 2 3 4

0

1

2

4

3

G

0 , n

(b)

Figure 4.4: (a) σee, and (b) σenn. Shaded areas denote the continuation sets.

the CTS to be initiated at state s is chosen based on a probability distribution P :

S × {σee, σenn, σenen} → [0, 1]; let viablei = {σ ∈ {σee, σenn, σenen}|∃Iσ,i, si ∈ Iσ,i}

denote the set of CTSs which are compatible with the state si observed by the agent

at step i, and σi be the CTS chosen by P over viablei. Then, by taking the union

of common parts and directing the flow of execution based on viablei it is possible

combine the behavior of these CTSs as follows:

1. If viable1 = ∅ then terminate. Otherwise, execute action e.

2. If viable2 = ∅ then terminate. Otherwise,

(a) If σ2 = σee then execute action e.

(b) Otherwise, i.e. if σ2 ∈ {σenn, σenen}, execute action n.

i. If viable3 = ∅ then terminate. Otherwise,

A. If σ3 = σenn then execute action n.

B. Otherwise, i.e. if σ3 = σenen, execute action e followed by σ
[4:]
enen =

〈Iσenen,4, n〉.

Steps 2 and 2(b)i essentially introduce conditional branching to action selection;

they are called decision points. The entire process can be encapsulated and represented

in a tree form as depicted in Figure 4.5. ∅ represents the root of the tree and decision

points are enclosed in a rectangle. At each node, shaded areas on the grid denote the

states for which the corresponding action (label of the incoming edge) can be chosen.

They are comprised of the union of continuation sets of compatible CTSs. We call

such a tree a sequence tree.

31

∅

e
��

0 2 3 4

0

1

2

4

3

G

1

e
����

��
��

�� n

��
??

??
??

?

1 2 3 4

0

1

2

4

3

G

0 , e 0 2 3 4

0

1

2

4

3

G

1

e
~~~~

~~
~~

~~ n

��
??

??
??

?

1 2 3 4

0

1

2

4

3

G

0

n

��

1 2 3 4

0

1

2

4

3

G

0

1 2 3 4

0

1

2

4

3

G

0

Figure 4.5: Combination of σee, σenn and σenen. Shaded areas denote the set of states
where the corresponding action (label of the incoming edge) can be chosen. Rectangles
show the decision points.

32



Definition 4.1.4 (Sequence Tree) A sequence tree is a tuple 〈N,E〉 where N is the

set of nodes and E is the set of edges. Each node represents a unique action sequence;

the root node, denoted by ∅, represents the empty action set. If the action sequence

of node q can be obtained by appending action a to the action sequence represented

by node p, then p is connected to q by an edge with label a; it is denoted by the tuple

〈p, q, a〉. Furthermore, q is associated with a continuation set contq specifying the

states where action a can be chosen after the execution of action sequence p. A node

p with k > 1 out-going edges is called a decision point of order k. �

Algorithm 3 Algorithm to construct a sequence tree from a given set of conditionally

terminating sequences.

1: function construct(Σ) ⊲ Σ is a set of conditionally terminating sequences.

2: N = {∅} ⊲ N is the set of nodes. Initially it contains the root node.

3: E = {} ⊲ E is the set of edges.

4: for all σ ∈ Σ do ⊲ for each CTS in Σ

5: current = ∅

6: for i = 1 to |σ| do ⊲ for each tuple of σ

7: if ∃〈current, p, aσ,i〉 ∈ E then ⊲ Check whether current is already

connected to a node p by an edge with label aσ,i or not.

8: contp = contp ∪ Iσ,i ⊲ Combine the continuation sets.

9: else

10: Create a new node p with contp = {Iσ,i}

11: N = N ∪ {p}

12: E = E ∪ {〈current, p, aσ,i〉} ⊲ Connect current to new node p by

an edge with label aσ,i.

13: end if

14: current = p

15: end for

16: end for

17: return 〈N,E〉

18: end function

Generalizing the example given above, given a set of conditionally terminating

sequences Σ = {σ1, . . . , σn} a corresponding sequence tree TΣ that captures their

33



behavior in a compact form can be constructed using contruct procedure presented

in Algorithm 3. The algorithm initially creates a sequence tree comprised of the root

node only. Then, CTSs in Σ are one by one added to the existing tree by starting

from the root node and following edges according to their action sequence; new nodes

are created as necessary and the continuation sets of the nodes are updated by uniting

them with the continuation sets of the CTSs. The number of nodes in TΣ is equal

to the total number of unique action sequence prefixes of CTSs in Σ, and the space

requirement is dominated by continuation sets of nodes which is bounded by the total

space required for the continuation sets of CTSs.

Initiated at state s, a sequence tree T can be used to select actions thereafter by

following a path starting from the root node and following edges according to the

continuation sets of the outgoing nodes. Initially, the active node of T is the root

node. At each time step, if there exist child nodes of the active node which contain

the current state observed by the agent in their continuation sets, then:

(i) one of them is chosen using a probability distribution defined over the set of

CTSs that T is contructed from,

(ii) the action specified by the label of the edge connecting the active node to the

chosen node is executed,

(iii) active node is set to the chosen node.

Otherwise, the action selection procedure terminates.

A sequence tree is the representational form of a novel type of abstraction that we

named stochastic conditionally terminating sequence (S-CTS) [14]. Stochastic con-

ditionally terminating sequences (S-CTS) extend CTSs to allow alternative action

sequences be followed depending on the history of events starting from its execution.

They make it possible to define a broader class of abstractions in a compact form.

4.1.3 Stochastic Conditionally Terminating Sequences

Definition 4.1.5 (Stochastic Conditionally Terminating Sequence) Let initς

denote the set of states at which a stochastic conditionally terminating sequence ς can

be initiated, and first-actς be the set of possible first actions that can be selected by

ς. A stochastic conditionally terminating sequence (S-CTS) is defined inductively as:

34



1. A CTS σ is a S-CTS; its initiation set and first action set are initσ and {first-

actσ}, respectively.

2. Given a CTS u and a S-CTS v, their concatenation u ◦ v, defined as executing

u followed by v is a S-CTS. initu◦v is equal to initu and first-actu◦v is equal to

first-actu.

3. For a given set of S-CTSs Σ = {ς1, ς2, . . . , ςn} such that each ςi conforms to

either rule (1) or rule (2) and for any two ςi and ςj ∈ Σ, f irst-actςi ∩ first-

actςj = ∅, i.e., their first action sets are disjoint, then ⊙tΣ defined as defined

as:

⊙tΣ







ςi , if s ∈ initςi \
⋃

j 6=i initςj

µΣ,t , otherwise

is a S-CTS. In this definition, s denotes the current state, and µΣ,t : Ω × Σ →

[0, 1] is a branching function which selects and executes one of ς1, . . . , ςn ac-

cording to a probability distribution based on the observed history of the last t

steps. ⊙tΣ behaves like ςi if no other ςj ∈ Σ is applicable at state s. init⊙tΣ =

initς1 ∪ . . .∪ initςn and first-act⊙tΣ = first-actς1 ∪ . . .∪ first-actςn. Note that,

since they are of the form (1) or (2), the first action set of all S-CTSs in Σ has

a single element. ⊙tΣ in effect allows conditional branching of action selection

and corresponds to a decision point of order n = |Σ|.

4. Nothing generated by rules other than 1-3 is a S-CTS. �

Given a CTS σ = 〈C1, a1〉 . . . 〈Cn, an〉, let σ[i:j] = 〈Cσ,i, aσ,i〉 . . . 〈Cσ,j , aσ,j〉 be the

CTS obtained from σ by taking continuation sets and action tuples starting from i up

to and including j; let σ[i:] denote the suffix of σ which starts from the ith position

(i.e. σ[i:|σ|]).

The action pattern that combines σee, σenn and σenen can now be represented by

the S-CTS:

ςσee,σenn,σenen = (σ[1:1]
ee ∪ σ[1:1]

enn ∪ σ[1:1]
enen) ◦ ⊙1{σ

[2:]
ee , (σ

[2:2]
enn ∪ σ[2:2]

enen) ◦ ⊙2{σ
[3:]
enn, σ

[3:]
enen}}

= 〈Cσee,1 ∪ Cσenn,1 ∪ Cσenen,1 , e〉

◦ ⊙1 {
〈Cσee,2 , e〉,

〈Cσenn,2 ∪ Cσenen,2 , n〉
◦ ⊙2{

〈Cσenn,3 , n〉,

〈Cσenen,3 , e〉〈Cσenen,4 , n〉
}}

35



0 1 2 3 4

0

1

2

4

3

G

Figure 4.6: After first step, ςσen,σee behaves like σen if current state is in the right light
shaded area, behaves like σee if it is in top light shaded area, and either as σen or σee
if it is in dark shaded area.

Note that ςσee,σenn,σenen , and in general a S-CTS, also favors abstractions which

last for longer duration by executing 〈Cσee,2, e〉 directly if the state s observed after

the termination of 〈Cσee,1 ∪Cσenn,1 ∪Cσenen,1 , e〉 is in Cσee,2 but not in Cσenn,2 ∪Cσenen,2 .

Similarly, the S-CTS corresponding to the other branch is initiated at once if s is in

Cσenn,2 ∪ Cσenen,2 , but not in Cσee,2.

Given a S-CTS ς, its corresponding sequence tree can be constructed by using

Algorithm 4, given next. The main function create-seq-tree creates a root node

and then calls the auxiliary build procedure to recursively construct the sequence

tree representing ς. build takes two parameters, a parent node and a S-CTS u. If u

is a CTS of length one, then a new node with continuation set initu is created and

connected to the parent by an edge with label first-actu. If u is of the form σ ◦ ς,

where σ is a CTS, then build creates a new node, child, with continuation set initσ,

connects parent to child by an edge with label first-actσ; child is connected to the

sequence tree of ς if |u| = 1 or else to the sequence tree of ς [2:] ◦ ς. Otherwise, u is of

the form u = ⊙t{ς1, . . . , ςn}; for each ςi build calls itself recursively to connect parent

to sequence tree of ςi.

Note that if a S-CTS u is of the form ⊙t{ς1, . . . , ςn}, then by definition each ςi is

either a CTS or of the form σi ◦ υi, where σi is a CTS. Therefore, at every call to

build, a new node representing an action choice is created either directly (lines 8 and

11) or indirectly (line 21). As a result, create-seq-tree requires linear time with

respect to the total number of action sequences that can be generated by the S-CTS

ς to construct the corresponding sequence tree.

Instead of creating more functional and complex S-CTSs from scratch, one can

extend the union operation defined in Definition 4.1.3 for CTSs to combine behaviors

of a conditional terminating sequence and a S-CTS. As we will show later, this also

36



Algorithm 4 Algorithm to construct the sequence tree corresponding to a given

S-CTS.
1: function create-seq-tree(ς) ⊲ Returns the sequence tree of S-CTS ς

2: Create a new node root

3: BUILD(root, ς)

4: return root

5: end function

6: procedure build(parent,u)

7: if u = 〈I, a〉 then

8: Create a new node child with initchild = I

9: Connect parent to child by an edge with label a

10: else if u = σ ◦ ς where σ is a CTS then

11: Create a new node child with initchild = initσ

12: Connect parent to child by an edge with label first-actσ

13: if |σ| = 1 then

14: BUILD(child, ς)

15: else

16: BUILD(child, σ2 ◦ ς)

17: end if

18: else

19: u is of the form ⊙t{ς1, . . . , ςn}

20: for i=1 to n do

21: BUILD(parent, ςi)

22: end for

23: end if

24: end procedure

37



enables to represent a set of CTSs as a single S-CTS. The extension is not trivial since

one needs to consider the branching structure of a S-CTS. For this purpose we define

a time dependent operator ⊗t.

Definition 4.1.6 (Combination operator) Let u be a CTS and v be a S-CTS1

The binary operator ⊗t, when applied to u and v, constructs a new syntactically valid

S-CTS u ⊗t v that represents both u and v, and is defined recursively as follows,

depending on the form of v:

1. If v is a CTS, then

• If action sequence of u is a prefix of action sequence of v (or vice versa),

then u⊗t v = u ∪ v (or v ∪ u).

• If first actions of u and v are different from each other, then u ⊗t v =

⊙t{u, v}.

• Otherwise, action sequences of u and v have a maximal common prefix of

length k − 1, and u⊗t v = (u[1:k−1] ∪ v[1:k−1]) ◦ (⊙t+k{u
[k:], v[k:]}).

2. If v = σ ◦ ς, where σ is a CTS, then,

• If the action sequence of u is a prefix of action sequence of σ, then u⊗t v =

(σ ∪ u) ◦ ς.

• If action sequence of σ is a prefix of action sequence of u, then u ⊗t v =

(σ ∪ u[1:|σ|]) ◦ (u[|σ|+1:] ⊗t+|σ|+1 ς).

• if first actions of u and σ are different from each other, then u ⊗t v =

⊙t{u, v}.

• Otherwise, action sequences of u and σ differ at a position k ≤ |σ|, and

u⊗t v = (σ[1:k−1] ∪ u[1:k−1]) ◦ (⊙t+k{u
[k:], σ[k:] ◦ ς}).

3. if v = ⊙·{ς1, . . . , ςn}, then

u⊗t v =







⊙t{ς1, . . . , ςi−1, u⊗t ςi, ςi+1, . . . , ςn} if first-actu ∈ first-actσi

⊙t{ς1, . . . , ςn, u} otherwise. �

1 It is also possible to define a more general combination operator that acts on two S-CTS.
However the definition is more complicated and the operator is not required for our purposes in this
thesis, therefore we preferred not to include it.

38



The operator ⊗t combines u and v by either directly uniting u with a prefix of

v, or creating a new branching condition or update an existing one depending on the

action sequence of u and the structure of v. When v is represented using a sequence

tree T , it can easily be extended to represent u ⊗t v by starting from the root node

of the tree and following edges that matches the action sequence of u. Let current

denote the active node of T , which is initially the root node. At step k, if there exists

an edge with label au,k connecting current to node n, then the kth continuation set

of u is added to the continuation set of n and current is set to n. Otherwise, there

are three possible cases depending on the number of out-going edges of current. In

all cases, a new sequence tree for u[k:] is created and connected to current by unifying

the root node of the created tree with current. If current has a single out-going edge,

then it becomes a decision point of order 2. If current is already a decision point, then

its order increases by one. The construction of the sequence tree of u ⊗t v from the

sequence tree of v is linear in the length of u and completes at most after |u| steps.2

One important application of the ⊗t operator, as we show next, is that given a set

of CTSs to be used in a reinforcement learning problem, by iteratively applying ⊗t one

can obtain a single S-CTS which represents the given CTSs and extend their overall

behavior to allow different action sequences be followed depending on the history of

observed events. This operation is formally defined as follows:

Definition 4.1.7 (Combination of a set of CTSs) Let Σ = {σ1, . . . , σn} be a set

of CTSs and assume that the sequence to be initiated at state s is chosen on the basis

of the probability distribution P (s, ·) determined by a given function P : S×Σ → [0, 1].

The S-CTS
∏

Σ defined as

∏

Σ =







σ if Σ = {σ}

σ1 ⊗0
∏

{σ2, . . . , σn} otherwise

such that the branching function µ{ς1,...,ςk},t at decision point ⊙t{ς1, . . . , ςk} satisfies

µ{ς1,...,ςk},t(η, ς) = max{P (s, σi)|σi ∈ Σ, A
σ

1,t−1

i
= Γη,t−1 and aσi,t ∈ first-actς}

where Γη,t is the sequence of actions taken during the last t steps of history η ∈ Ω, is

called the combination of CTSs in Σ. �

2 Proof is by induction on u.

39



Suppose that the CTS to be initiated at state s is chosen on
∏

Σ combines se-

quences in Σ one by one, and µ·,t selects a branch based on the initiation probability of

CTSs that are compatible with the sequence of actions observed until time t. Suppose

that
∏

Σ is initiated at state s, and let s1 = s, s2, . . . , sk and a1, . . . , ak−1 be the se-

quence of observed states and actions selected by
∏

Σ until termination, respectively.

Then, by construction of
∏

Σ, for each i = 1, · · · , k−1 there exists a CTS σi ∈ Σ such

that si ∈ Cσi,i and the action sequence of σi starts with a1 . . . ai (i.e., A
σ

1,i
i

= a1 . . . ai).

Furthermore, one can prove that if στ ∈ Σ is selected by P at state s and executed

successfully |στ | steps until termination, then initiated at s,
∏

Σ takes exactly the

same actions as στ , and exhibits the same behavior as we show next.

Theorem 4.1.8 If τ ∈ Σ is selected by P at state s and executed successfully |τ | steps

until termination, then initiated at s,
∏

Σ takes exactly the same actions as τ , and

exhibits the same behavior.

Proof. Let s = s1, s2, . . . , s|τ | be the sequence of observed states during the execution

of τ . By definition, these states are members of the initiation sets of tuples in τ , i.e.,

for all i = 1..|τ |, si ∈ Cτ,i. Let u be a S-CTS, and a be an action in first-actu. The

behavior of u after selecting action a can be represented by a S-CTS, u → a, defined

as follows:

• If u is a CTS then u→ a = u[2:].

• If u = σ ◦ ς where σ is a CTS then

u→ a =







σ[2:] ◦ ς if |σ| > 1

ς otherwise

• If u = ⊙·{ς1, . . . , ςn}, then there exists a unique σi such that a ∈ first-actςi and

u→ a = ςi → a.

Suppose that
∏

Σ chose actions aτ,1, . . . , aτ,k−1 followed by a′ 6= aτ,k. Let
∏

Σi

denote the resulting S-CTS after selecting actions aτ,1, . . . , aτ,i, i.e.,
∏

Σi =
∏

Σ →

aτ,1 → . . .→ aτ,i. By construction of
∏

Σ, sk ∈ init∏ Σk−1 and aτ,k ∈ first-act∏Σk−1 .

Depending on the form of
∏

Σk−1, we have the following cases:

•
∏

Σk−1 = σ ◦ ς, where σ is a CTS. Hence, sk ∈ initσ and a′ = aσ,1 = aστ ,k.⊥

40



•
∏

Σk−1 = ⊙k{ς1, . . . , ςn}. Since aτ,k ∈ first-act∏Σk−1 , by definition, there

exists a S-CTS ςψ which contains aτ,k in its first action set, i.e., aτ,k ∈ fist-

actςψ , and therefore sk is in the initiation set of ςψ. Let X be the set of S-CTSs

{ς1, . . . , ςn}, which can continue from state sk, i.e., X = {ςi : sk ∈ initςi}.

If |X| = 1, then a′ ∈ first-actςψ ; but by the construction of a S-CTS first-

actςψ = {aτ,k}, and consequently a′ = aτ,k. Otherwise, by definition, we have

µX,k(η, ςi) = max{P (s, σj) : σ1,k−1
j = τ1,k−1 and aσj ,k ∈ first-actςi}

But, for all ςi ∈ X other than ςτ , we have µX,k(η, ςi) < µX,k(η, ςψ) = P (s, στ ),

since στ is selected by P , and thus a′ ∈ first-actςψ = {aστ ,k}.⊥

Both cases lead to a contradiction, completing the proof. �

Note that, the total number of action sequences in Σ = {σ1, . . . , σn} is
∑n

i=1 |σi|

and hence it is possible to build the corresponding sequence tree for
∏

Σ in linear

time.

4.1.4 Online Discovery of CTS based Abstractions

In a reinforcement learning problem, when the set of CTSs, Σ, is known in advance, one

can construct a corresponding sequence tree and by employing the process described

above utilize it instead of the CTSs whenever needed. However, determining useful

CTSs is a process of increasing complexity requiring extensive domain knowledge and

such an information may not be always available prior to learning. An alternative, and

certainly more interesting for machine learning, approach is to discover useful CTSs

on-the-fly and integrate them as the learning progresses. Learning macro-actions

in the form of conditionally terminating sequences has been previously studied by

McGovern and an algorithm named acQuire-macros is proposed [31]. In acQuire-

macros algorithm, all state-action trajectories experienced by the agent are stored

and a list of eligible sequences is kept. Periodically, such as at the end of each episode,

(i) using the stored trajectories frequent action sequences having a support over a

given threshold are identified and added to the list of eligible sequences using a

process that makes use of successive doubling starting from sequences of length

1 (which is equivalent to primitive actions),

41



(ii) running averages of identified sequences are incremented and if running average

of a particular sequence is over a giv en threshold and the sequence passes a

problem-specific static filter a new option is created for the action sequence, and

(iii) running averages of all eligible sequences are decayed.

Although empirically it is shown to be quite effective, this approach has several draw-

backs;

• it requires all state-action trajectories since the beginning of the learning be

stored in a database,

• identification of frequent sequences which is repeated at each step is a costly

operation since it requires processing of the entire database, and

• a separate option is created for each sequence which necessitates problem-specific

static filtering to prevent options that are “similar” to each other.

In order to overcome this shortcomings, we propose a novel approach which utilizes a

single abstraction that is modified continuously and the agent executes it as an explo-

ration policy, but does not maintain a value for it in the traditional sense. This single

option is a combination of many action sequences and is represented as a modified

version of a sequence tree. During execution, the choice among different branches is

made using an estimate of the return obtained following their execution. Periodically,

using the observed state-action trajectories this tree is updated to incorporate useful

abstractions. We first start with the determination of valuable sequences.

Definition 4.1.9 (π-history) A history that starts with state s and obtained by fol-

lowing a policy π until the end of an episode (or between designated conditions such

as when a reward peak is reached) is called a π-history of s. �

Let π and π∗ denote the agent’s current policy and an optimal policy, respectively,

and h = s1a1r2 . . . rtst be a π-history of length t for state s1. Total cumulative reward

of h is defined as

R(h) = r2 + γr3 + · · · + γt−2rt

and reflects the discounted accumulated reward obtained by the agent upon following

action choices and state transitions in h. Now, suppose that in h a state appears at

42



...s s ...... ss
i j j1

Figure 4.7: Two history alternatives for state s1.

two positions i and j, i.e., si = sj , i 6= j; and consider the sequence

h′ = s1a1r2 . . . risiaj+1rj+1 . . . rtst

where si and sj are collapsed and the sequence in between is removed (Figure 4.7);

one can observe the following:

Observation 4.1.10 h′ is also a (synthetic) π-history for state s1 and could be a

better candidate for being a π∗-history if R(h′) > R(h).

Observation 4.1.11 Every suffix of h of the form hi = siairi+1 . . . rtst for i =

2, · · · , t− 1 is also a π-history of si.

Algorithm 5 Algorithm to generate probable π∗-histories from a given history h.

1: function generate-probable-histories(h)

h is a history events of the form s1a1r2 . . . rtst

2: best[st−1] = st−1at−1rtst ⊲ best holds current π∗-history candidates.

3: R[st−1] = rt ⊲ R[s] holds the total cumulative reward for best[s].

4: for i = t− 2 down to 1 do ⊲ from rear to front

5: if R[si] is not set or ri+1 + γR[si+1] > R[si] then ⊲ if si is either not

encountered before or has a lower return estimate

6: best[si] = siairi+1 ◦ best[si+1] ⊲ Create or update the candidate history

corresponding to state si.

7: R[si] = Ri+1 + γR[si+1] ⊲ Update maximum reward.

8: end if

9: end for

10: return best

11: end function

Combining these two observations, we can generate a set of potential π∗-history

candidates by processing h from rear to front. Let best(s) denote the π-history for

state s with maximum total cumulative reward, initially best(st−1) = st−1at−1rtst.

43



For each si, i = t − 2, · · · , 1, if si is not encountered before (i.e., for all j > i, sj 6=

si) or ri + γR(best(si+1)) is higher than the total cumulative reward of the current

best(si), R(best(si)), then best(si) is replaced by siairi+1 ◦ best(si+1), where ◦ is the

concatenation operator and appends the history represented by best(si+1) to siairi+1.

Finally, for each unique si in (s1, . . . , st), the resulting best(si) is used as a probable

π∗-history for state si. The complete procedure is given in Algorithm 5.

As learning progresses, probable π∗-histories with action sequences that are part

of useful CTSs (i.e. sub-policies) would appear more frequently in the recent episodes,

whereas the occurrence rate of histories whose action sequences are representatives of

CTSs with dominated sub-policies or that are less general would be low. Therefore, by

keeping track of the generated histories and generalizing them in terms of continuation

sets, one can identify valuable abstractions and utilize them to improve the learning

performance. For efficiency and scalability, this must be accomplished without storing

and processing all state-action trajectories since the beginning of learning. Also, note

that between successive iterations existing abstractions are not expected to change

drastically. Therefore, instead of explicitly creating CTSs first and then constructing

the corresponding sequence tree each time, it is more preferable and practical to build

it directly in an incrementally manner. For this purpose, we propose a modified version

of the sequence tree.

Definition 4.1.12 (Extended Sequence Tree) An extended sequence tree is a tu-

ple 〈N,E〉 where N is the set of nodes and E is the set of edges. Each node represents

a unique action sequence; the root node, denoted by ∅, represents the empty action set.

If the action sequence of node q can be obtained by appending action a to the action

sequence represented by node p, then p is connected to q by an edge with label 〈a, ψ〉; it

is denoted by the tuple 〈p, q, 〈a, ψ〉〉. ψ is the eligibility value of the edge and indicates

how frequently the action sequence of q is executed.

Furthermore, q holds a list of tuples 〈s1, ξs1 , Rs1 , . . . , 〈sk, ξsk , Rsk〉〉 stating that

action a can be chosen at node p if current state observed by the agent is in {s1, . . . , sk}.

{s1, . . . , sk} is called the continuation set of node q and denoted by contq. Rsi is the

expected total cumulative reward that the agent can collect by selecting action a at

state si after having executed the sequence of actions represented by node p. ξsi is the

eligibility value of state si at node q and indicates how frequently action a is actually

selected at state si. �

44



An extended sequence tree is basically an adaptation of sequence tree that contains

additional eligibility and reward attributes to keep statistics about the represented

abstractions; the additional attributes allows discrimination of frequent sequences

with high expected reward.

A π-history h = s1a1r2 . . . rtst can be added to an extended sequence tree T by

invoking Algorithm 6. Similar to the construct procedure presented in Algorithm 3,

add-history starts from the the root node of the tree and follows edges according to

the action sequence of the history. Initially, the active node of T is the root node. At

step i, if the active node has a child node n which is connected by an edge with label

〈ai, ψ〉 then

(i) ψ is incremented to reinforce the eligibility value of the edge,

(ii) if node n contains a tuple 〈si, ξsi , Rsi〉 then ξsi is incremented to reinforce the

eligibility value of the state si, and Rsi is set to Ri = ri+1+γri+2 + · · ·+γt−i−1rt

if Ri is greater than the existing value. Ri denotes the discounted cumulative

reward obtained by the agent upon following h starting from step i. Otherwise

a new tuple 〈si, 1, Ri〉 is added to node n.

If the active node does not have such a child node, then a new node n containing

the tuple 〈si, 1, Ri〉 is created and connected to the active node by an edge with label

〈ai, 1〉. In both cases, n becomes the active node. When h is added to the extended

sequence tree, only the nodes representing the prefixes of the action sequence of h are

modified and associated attributes are updated in support of observing such sequences.

In order to identify and store useful abstractions, based on the sequence of states,

actions and rewards observed by the agent during a specific period of time (such as

throughout an episode, or between reward peaks in case of non-episodic tasks), a set

of probable π∗-histories are generated using Algorithm 5 and added to the extended

sequence tree using Algorithm 6. Then, the eligibility values of edges are decremented

by a factor of 0 < ψdecay < 1, and eligibility values in the tuples of each node are

decremented by a factor of 0 < ξdecay ≤ 1. For an action sequence σ that is frequently

used, edges on the path from the root node to the node representing σ and tuples

corresponding to the visited states in the nodes over that path would have higher

eligibility values since they are incremented each time a π-history with action sequence

σ is added to the tree; whereas they would decay to 0 for sequences that are used

45



Algorithm 6 Algorithm for adding a π-history to an extended sequence tree.

1: procedure add-history(h,T)

h is a π-history of the form s1a1r2 . . . rtst.

2: R[t] = 0 ⊲ Calculate discounted cumulative rewards obtained by the agent.

3: for i = t− 1 to 1 do

4: R[i] = ri + γR[i+ 1]

5: end for

6: current =root node of T ⊲ The active node is initially the root node.

7: for i = 1..t− 1 do

8: if ∃ a node n such that current is connected to n by an edge with label

〈ai, ψ〉 then

9: Increment ψ. ⊲ Reinforce the eligibility value of the edge.

10: if n contains a tuple 〈si, ξsi , Rsi〉 then

11: Increment ξsi . ⊲ Reinforce the eligibility value of state si at node

n.

12: Rsi = max(Rsi , R[i]) ⊲ Update the expected discounted cumulated

reward.

13: else

14: Add a new tuple 〈si, 1, R[i]〉 to node n.

15: end if

16: else

17: Create a new node n containing the tuple 〈si, 1, R[i]〉.

18: Connect current to n by an edge with label 〈ai, 1〉.

19: end if

20: current = n

21: end for

22: end procedure

46



Algorithm 7 Algorithm for updating extended sequence tree T .

1: procedure update-sequence-tree(T ,e) ⊲ e is the history of events observed

by the agent during a specific period of time.

2: H=generate-probable-histories(e)

3: for all h ∈ H do ⊲ Add each generated π-history to T .

4: add-history(h,T )

5: end for

6: update-node(root node of T ) ⊲ Traverse and update the tree.

7: end procedure

8: procedure update-node(n)

9: Let E be the set of outgoing edges of node n.

10: for all e = 〈n, n′, 〈an′ , ψn,n′〉〉 ∈ E do ⊲ for each outgoing edge

11: ψn,n′ = ψn,n′ ∗ ψdecay ⊲ Decay the eligibility value of the edge.

12: if ψn,n′ < ψthreshold then ⊲ Prune the edge if its eligibility value is below

ψthreshold.

13: Remove e and the subtree rooted at n′.

14: else

15: update-node(n′) ⊲ Recursively update the child node n′.

16: if tuple list of n′ is empty then ⊲ Prune the edge if its continuation

set is empty.

17: Remove e and the subtree rooted at n′.

18: end if

19: end if

20: end for

21: for all t = 〈si, ξsi , Rsi〉 in tuple list of n do ⊲ for each tuple in n

22: ξsi = ξsi ∗ ξdecay ⊲ Decay the eligibility value of the tuple.

23: if ξsi < ξthreshold then ⊲ Prune the tuple if its eligibility value is below

ξthreshold.

24: Remove t from the tuple list of n.

25: end if

26: end for

27: end procedure

47



less. This has an overall effect of supporting valuable sequences that are encountered

frequently. If the eligibility value of an edge is very small (less than a given threshold

ψthreshold) then this indicates that the action sequence represented by the outgoing

node is rarely executed by the agent and consequently the edge and the subtree below

it can be removed from the tree to preserve compactness. Similarly, if the eligibility

value of a tuple 〈s, ξ,R〉 in a node n is very small (less than a given threshold ξthreshold)

then it means that the agent no longer observes state s frequently after executing the

action sequence on the path from the root node to node n. Such tuples can also be

pruned to reduce the size of the continuation sets of the nodes. After performing these

operations, the resulting extended sequence tree represents recent useful CTSs in a

compact form. The entire process is presented in Algorithm 7.

An extended sequence tree is used to select actions similar to a sequence tree.

However, a prior probability distribution to determine branching is not available as

in the case of sequence trees. Therefore, when there are multiple viable actions, i.e.

current state observed by the agent is contained in continuation sets of several child

nodes of the active node of the tree, the edge to follow is chosen dynamically based

on the properties of the child nodes. One important consequence of this situation is

that, instead of a single CTS, the agent, in effect, starts with a set of CTSs which

initially contains all those represented by the extended sequence tree; it selects a

subset of CTSs from this set that are compatible with the observed history of events

and follows them concurrently executing their common action. This enables the agent

to broaden the regions of the state space where the CTSs are applicable and results in

longer execution patterns than that may be attained by employing a single CTS (since

it covers are smaller region of the state space). One possible option for branching,

which we opted for the experiments presented in the next section, is to apply an ǫ-

greedy method; with 1−ǫ probability the agent selects the edge connected to the child

node containing the tuple with highest discounted cumulative reward for the current

state, otherwise one of them is chosen randomly.

Since the extended sequence tree, and the associated mechanism defined above to

select which actions to execute based on its structure, is not an option in the tradi-

tional sense, but rather a single meta-abstraction that incorporates a set of evolving

CTSs, it is not feasible to directly integrate it into the reinforcement learning frame-

work by extending the value functions as in the case of SMDP and options framework.

48



Algorithm 8 Reinforcement learning with extended sequence tree.

1: T is an extended sequence tree with root node only.

2: repeat

3: Let current denote the active node of T .

4: current = root ⊲ current is initially set to the root node of T .

5: Let s be the current state.

6: h = s ⊲ Episode history is initially set to the current state.

7: repeat ⊲ for each step

8: if current 6= root then ⊲ Continue action selection from the current node

of T .

9: Let N = {n1, . . . , nk} be the set of child nodes of current which contain

s in their continuation sets.

10: Select ni from N with sufficient exploration.

11: Let 〈ani , ψni〉 be the label of the edge connecting current to ni.

12: a = ani

13: current = ni ⊲ Advance to node ni.

14: else

15: current = root

16: Let N = {n1, . . . , nk} be the set of child nodes of the root node of T

which contain s in their continuation sets.

17: if N is not empty and with probability psequence then

18: Select ni from N with sufficient exploration. ⊲ Initiate action

selection using the extended sequence tree.

19: Let 〈ani , ψni〉 be the label of the edge connecting root to ni.

20: a = ani

21: current = ni ⊲ Advance to node ni.

22: else

23: Choose a from s using the underlying RL algorithm.

24: end if

25: end if

26: Take action a, observe r and next state s′

27: Update state-action value function using the underlying RL algorithm

based on s, r, a, s′.

49



28: Append r, a, s′ to h. ⊲ Update the observed history of events.

29: s = s′ ⊲ Advance to next state.

30: if current 6= root then ⊲ Check whether action selection can continue

from the active node or not.

31: Let N = {n1, . . . , nk} be the set of child nodes of current which contain

s in their continuation sets.

32: if N is empty then

33: current = root ⊲ Action selection using the extended sequence tree

cannot continue from the current state.

34: end if

35: end if

36: until s is a terminal state

37: update-sequence-tree(T, h)

38: until a termination condition holds

Instead, a flat policy approach can be used and the proposed method can be integrated

into any regular reinforcement learning algorithm such as Q-learning, Sarsa(λ), etc,

by triggering the action sequence of the extended sequence tree (and consequently

represented CTSs) with a given probability, psequence, and reflecting the action selec-

tions to the underlying reinforcement learning algorithm for value function updates.

This leads to the learning model given in Algorithm 8 that, based on the generated

extended sequence tree and treating it as meta-heuristic to guide any underlying re-

inforcement learning algorithm, discovers and utilizes useful temporal abstractions

during the learning process.

4.2 Experiments

We applied the method described in Section 4.1.4 to different reinforcement learning

algorithms and compared its effect on performance on three test domains described

in Chapter 3. The performance of the proposed approach is also compared with the

acQuire-macros algorithm of McGovern [31, 32] on a simple grid world problem for

which existing results are available.

After analyzing the outcomes of a set of initial experiments to determine the

optimal values of parameters involved in the learning process, a learning rate of α =

50



-20

-15

-10

-5

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

q
sarsa(0.98)

smdp-q
q w/ stree(0.95)

sarsa(0.98) w/ stree (0.95)

Figure 4.8: Results for the six-room maze problem.

0.125 is used, and λ is taken as 0.98 and 0.90 in the Sarsa(λ) algorithm for the six-

room maze and taxi problems, respectively. Initially, Q-values are set to 0 and ǫ-greedy

action selection mechanism is used with ǫ = 0.1, where action with maximum Q-value

is selected with probability 1 − ǫ and a random action is selected with probability ǫ.

The reward discount factor is set to γ = 0.9. For the SMDP Q-learning algorithm [6],

we implemented hand-coded macro-actions. In the six-room maze problem, these

macro-actions move the agent from any cell in a room, except the bottom right one

which contains the goal location, to one of two doorways that connect to neighboring

rooms in minimum number of steps; in the taxi problem, they move the agent from any

position to one of predefined locations in shortest possible way. In all versions of the

taxi problem, the number of predefined locations was 4. Therefore, there were 4 such

macro-actions each corresponding to one of these locations. All results are averaged

over 50 runs. Unless stated otherwise, while building the sequence tree ψdecay, ξdecay,

and eligibility thresholds are taken as 0.95, 0.99, and 0.01, respectively. The sequence

tree is generated during learning without any prior training session, and at each time

step processed with a probability of psequence = 0.3 to run the represented set of

abstractions. At decision points, actions are chosen ǫ-greedily based on reward values

associated with the tuples.

4.2.1 Comparison with Standard RL Algorithms

We first applied the sequence tree method to standard reinforcement learning algo-

rithms on six-room maze and three different versions of the Taxi domain on 5 × 5,

8× 8 and 12× 12 grids. Figure 4.8 and Figure 4.9 show the progression of the reward

51



-1200

-1000

-800

-600

-400

-200

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

q
sarsa(0.90)

smdp-q
q w/ stree (0.95)

sarsa(0.90) w/ stree (0.95)

Figure 4.9: Results for the 5 × 5 taxi problem with one passenger.

-1400

-1200

-1000

-800

-600

-400

-200

 0

 0  500  1000  1500  2000

re
w

a
rd

episode

q
sarsa(0.90)

smdp-q
q w/ stree (0.95)

sarsa(0.90) w/ stree (0.95)

Figure 4.10: Results for the 8 × 8 taxi problem with one passenger.

obtained per episode for the six-room maze and 5 × 5 taxi problem with one passen-

ger, respectively. As apparent from the learning curves, both Sarsa(λ) and SMDP

Q-learning converge faster compared to regular Q-learning. When the sequence tree

method is applied to Q-learning and Sarsa(λ), the performance of both algorithms

improve substantially. In SMDP Q-learning algorithm the agent receives higher neg-

ative rewards when options that move the agent away from the goal are erroneously

selected at the beginning; SMDP Q-learning needs to learn which options are opti-

mal. The effect of this situation can be seen in the six-room maze problem, where it

causes SMDP Q-learning to converge slower compared to Sarsa(λ). On the contrary,

algorithms that employ sequence tree start to utilize shorter sub-optimal sequences

immediately in the initial stages of learning; this results in more rapid convergence

with respect to hand-coded options.

52



-6000

-5000

-4000

-3000

-2000

-1000

 0

 0  500  1000  1500  2000  2500  3000  3500  4000

re
w

a
rd

episode

q
sarsa(0.90)

smdp-q
q w/ stree (0.95)

sarsa(0.90) w/ stree (0.95)

Figure 4.11: Results for the 12 × 12 taxi problem with one passenger.

-3000

-2500

-2000

-1500

-1000

-500

 0

 0  500  1000  1500  2000

re
w

a
rd

episode

q
sarsa(0.90)

smdp-q
q w/ stree (0.90)

Figure 4.12: Results for the 5 × 5 taxi problem with two passengers.

4.2.2 Scalability

Results for the 8× 8 and 12× 12 taxi problems with one passenger, which have larger

state spaces and contain more obstacles, are given in Figure 4.10 and Figure 4.11. In

both cases, we observed similar learning curves as in the 5×5 version but performance

improvement is more evident.

In the taxi problem, the number of situations to which subtasks can be applied

increases with the number of passengers to be transported. This also applies to other

problems; a new parameter added to the state representation leads to a larger (usually

exponentially) state space, and consequently the number of instances of subtasks that

involve only a subset of variables also increase. Therefore, more significant improve-

ment in learning performance is expected when subtasks can be utilized effectively.

Results for the 5× 5 taxi problem with multiple passengers (from two up to four) are

presented in Figure 4.12 and Figure 4.13. Note that the performance of the algorithms

53



-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0  2000  4000  6000  8000  10000  12000

re
w

a
rd

episode

q
sarsa(0.90)

smdp-q
q w/ stree (0.90)

Figure 4.13: Results for the 5 × 5 taxi problem with four passengers.

 0

 2

 4

 6

 8

 10

 12

 200  400  600  800  1000

#
 o

f 
n
o
d
e
s
/s

ta
te

 s
p
a
c
e

episode

1
2
3
4

Figure 4.14: The average size of the sequence trees with respect to the size of state
space for 5 × 5 taxi problem with one to four passengers.

54



A B C D

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

(a)

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

(b)

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

(c)

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

3

0 1 2 3 4

0

1

2

4

(d)

Figure 4.15: State abstraction levels for four predefined locations (A to D from left
to right) in 5 × 5 taxi problem with one passenger after 50, 100, 150 and 200 (a-d)
episodes. Darker colors indicate higher abstraction.

that do not make use of abstractions degrade rapidly as the number of passengers in-

creases, and consequently common subtasks become more prominent. The results

also demonstrate that the proposed method is effective in identifying solutions in such

cases. Figure 4.14 shows the average size of the sequence tree (i.e., number of nodes)

with respect to the size of the state space for different number of passengers in the

5 × 5 taxi problem. Note that as new passengers are added, the state space increases

exponentially in the number of passengers, i.e., multiplies with the number of prede-

fined locations, whereas the relative space requirement decreases indicating that the

proposed method scales well in terms of space efficiency.

4.2.3 Abstraction Behavior

The content of the sequence tree is mostly determined by the π-histories generated

based on the experiences of the agent. Due to the complex structure of the tree it

55



is not feasible to directly give a snapshot of it to expose what kind of abstractions

it contains. Rather, we opt to take a more comprehensible and qualitative approach,

and at various stages of the learning process examined how successful the tree is in

generating abstractions belonging to similar subtasks. Note that, in the taxi problem,

the agent must first navigate to the location of the passenger to be picked-up inde-

pendent of the passenger’s destination; for the regions of the state space that differ

only in the destination of the passenger the subtask to be solved is the same and

one expects the agent to learn similar action sequences within these regions. In order

to measure this, we conducted a set of experiments on 5 × 5 taxi problem with one

passenger. At various stages of the learning process, we calculated the ratio of the

number of co-occurrences of states that only differ in the variable corresponding to

the destination of the passenger in the tuple lists of the nodes. For a given state, this

ratio must be close to 1 if action sequences that involve that state are also applica-

ble to other states having different destinations for the passenger. The results of the

experiments are presented in Figure 4.15. Each of the four columns denote the case

in which the passenger is at a specific predefined location from A to D, and each row

shows the results for the sequence tree generated after a certain number of episodes

(at every 50 episodes starting from 50 up to 200 episodes). The intensity of color in

each cell indicates the ratio corresponding to the state in which the agent is positioned

at that cell; black represents 1, white represents 0 and the intensity of intermediate

values decrease linearly. One can observe that after 50 episodes all cells have non-

white intensities which get darker with increasing number of episodes and eventually

turn into black, i.e. the ratios converge to 1, which means that the sequence tree is

indeed successful in identifying abstractions that cover multiple instances of the same

or similar subtasks starting from early stages of the learning.

4.2.4 Effects of the Parameters

Apart from the performance, another factor that needs to be considered is the struc-

ture of the sequence tree, its involvement in the learning process, and their overall

effect.

The structure of the sequence tree directly depends on the eligibility and decay

parameters that regulate the amount of information to be retained in the sequence

tree. We found out that from these parameters the most prominent one that causes

56



 0

 20

 40

 60

 80

 100

 120

 0  100  200  300  400  500  600

#
 o

f 
n

o
d

e
s

episode

0.95
0.90
0.80

Figure 4.16: The average size of sequence trees for different ψdecay values in six-room
maze problem.

-20

-15

-10

-5

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

0.95
0.90
0.80

Figure 4.17: Results for different ψdecay values in six-room maze problem.

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

 100  200  300  400  500  600

#
 o

f 
n
o
d
e
s

episode

0.99
0.95
0.90

Figure 4.18: The average size of sequence trees for different ψdecay values in 5× 5 taxi
problem with one passenger.

57



-1200

-1000

-800

-600

-400

-200

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

0.99
0.95
0.90

Figure 4.19: Results for different ψdecay values in 5×5 taxi problem with one passenger.

-1200

-1000

-800

-600

-400

-200

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

5
7

10
12
15

Figure 4.20: Q-learning with sequence tree for different maximum history lengths in
the 5 × 5 taxi problem with one passenger.

the most significant difference is the edge eligibility decay, ψdecay. The results for

various ψdecay presented in Figure 4.16 and Figure 4.18 show that the size of the

sequence tree decreases considerably for both six-room maze and taxi problems as

ψdecay gets smaller. This is due to the fact that only more recent and commonly used

sequences have the opportunity to be kept in the tree and others get eliminated. Note

that, since such sequences are more beneficial for the solution of the problem, different

ψdecay values show almost indistinguishable behavior (Figure 4.17 and Figure 4.19).

Hence, by selecting ψdecay parameter appropriately it is possible to reduce memory

requirements without degrading the performance.

Other than lowering ψdecay value, another possible way to reduce the size of

the extended sequence tree is to limit the length of the probable π∗-histories that

are added to it. After generating probable histories using Algorithm 5, instead of

the entire history h = s1a1r2 . . . rtst, one can only process h up to lmax steps (i.e.,

58



 0

 1000

 2000

 3000

 4000

 5000

 100  200  300  400  500  600

#
 o

f 
n

o
d

e
s

episode

5
7

10
12
15

Figure 4.21: Average size of the sequence trees for different maximum history lengths
in the 5 × 5 taxi problem with one passenger.

-20

-15

-10

-5

 0

 0  50  100  150  200  250  300

re
w

a
rd

episode

0.00
0.02
0.05
0.10
0.20
0.30

Figure 4.22: The effect of psequence in the six-room maze problem.

s1a1r2 . . . rlmax+1slmax+1) in Algorithm 6 by omitting actions taken after lmax steps.

This corresponds to having CTSs of length at most lmax, and therefore maximum

depth of the extended sequence tree will be bounded by lmax. Since shorter abstrac-

tions are prefixes of longer abstractions, and applicability of abstractions decreases

with the increase in length; the performance of the method is not expected to change

drastically when pruning is applied. The learning curves of sequence tree based-Q-

learning on 5 × 5 taxi problem for different lmax values is presented in Figure 4.20,

which conforms to the expectation and demostrates that it is further possible to prune

the sequence tree without compromising performance (Figure 4.21).

The involvement of the sequence tree in the learning process depends on the value

of psequence, i.e. the probability that it is employed in the action selection mechanism.

With decreasing psequence values it is expected that the performance of the proposed

method to degrade and converge to that of which does not make use of the sequence

59



-1200

-1000

-800

-600

-400

-200

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

0.00
0.02
0.05
0.10
0.20
0.30

Figure 4.23: The effect of psequence in the 5 × 5 taxi problem with one passenger.

tree. The results of experiments with different psequence values given in Figure 4.22 and

Figure 4.23 for both problems confirm this expectation. When psequence is very low,

extended sequence tree is not effective because the CTSs represented by the tree, and

therefore discovered abstractions, are not utilized sufficiently. Experiments in largers

taxi problems, which are not included here, also exhibit similar results. In general,

psequence must be determined in a problem specific manner to balance exploration of

the underlying learning algorithm and exploitation of the abstractions. Lower psequence

values reduce exploitation; on the contrary high psequence values hinder exploration.

For the six-room maze and taxi problems (and also for the keepaway problem studied

next), a moderate value of psequence = 0.3 appears to result in sufficient exploitation

without significantly affecting the final performance. A similar effect is expected in

most of the real world problems. Although not studied in this work, it is also possible

to change psequence dynamically and increase it as learning progresses in order to favor

exploitation and further take advantage of useful abstractions.

4.2.5 Effect of Non-determinism in the Environment

In order to examine how the non-determinism of the environment affect the perfor-

mance, we conducted a set of experiments by changing psuccess, i.e. the probability

that movement actions succeed, in the taxi domain. Non-determinism increases with

decreasing psuccess. The results are presented in Figure 4.24. Except more fluctuation

is observed in the received reward due to increased non-determinism, the proposed

method preserves its behavior and methods that employ sequence tree consistently

learn in less number of steps compared to their regular counterparts.

60



-1200

-1000

-800

-600

-400

-200

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

q
q w/ stree (0.95)

-1200

-1000

-800

-600

-400

-200

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

q
q w/ stree (0.95)

psucces = 0.9 psuccess = 0.7

-1200

-1000

-800

-600

-400

-200

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

q
q w/ stree (0.95)

-1200

-1000

-800

-600

-400

-200

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

q
q w/ stree (0.95)

psuccess = 0.5 psuccess = 0.3

Figure 4.24: Results with different levels of non-determinism in actions.

4.2.6 Quality of the Discovered Abstractions

The results given so far demonstrate the on-line performance of the method, i.e. while

it is continuously evolving and abstractions that it represent change dynamically. Since

an off-line pre-learning stage is not involved, this is a more suitable and efficient ap-

proach considering that the aim of the whole process is to solve the problem and learn

an optimal behavior. However, due to the fact that the abstractions represented by

the sequence tree are not fixed, this makes it difficult to assess their quality and raises

the question of whether the proposed method creates good policies efficiently or not.

For this purpose, we let the sequence tree integrated into standard Q-learning algo-

rithm to evolve for different number of episodes, and then used the resulting trees as a

single option, i.e. primitive actions plus sequence tree as pseudo option, in a separate

run using SMDP Q-learning algorithm. This allows us to isolate and observe the ef-

fect of discovered abstractions in a controlled manner. The results of the experiments

for 5 × 5 taxi problem with one passenger are presented in Figure 4.25. The learn-

ing curves demonstrate that even sequence trees in their early stage of development

accommodate useful abstractions. The sequence tree generated after 20 episodes is

quite effective and leads to a substantial improvement. The performance of SMDP Q-

61



-1200

-1000

-800

-600

-400

-200

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

q
10
20
30
40
50

(a)

-1200

-1000

-800

-600

-400

-200

 0

 0  100  200  300  400  500  600

re
w

a
rd

episode

q
50

100
150

(b)

Figure 4.25: SMDP Q-learning algorithm when the previously generated sequence
tree is employed as a single option. Each number in the key denotes the number of
episodes used to generate the tree. (a) 10-50 episodes at every 10 episodes, and (b)
50-150 episodes at every 50 episodes.

62



Figure 4.26: Results for the keepaway problem.

learning increases with the number of episodes used to generate the sequence tree and

then saturates (Figure 4.25 (b)). This indicates that the sequence tree based approach

is successful in finding meaningful abstractions, improving them and preserving the

most useful ones.

4.2.7 Results for the Keepaway Problem

We have extensively analyzed different aspects of the proposed method under sample

domains of moderate size. In order to test how our approach performs in a challenging

machine learning task, we implemented the method described in [51] using the pub-

licly available keepaway player framework [49] and integrated sequence tree to their

algorithm. We conducted the experiments with 3 keepers and 2 takers playing in a

20m × 20m region and the learners were given noiseless visual sensory information.

The state representation used by the learner keeepers is a mapping of full soccer state

to 13 continuous values that are computed based on the positions of the payers and

center of the playing region. In order to approximate the table of Q-values 32 uni-

formly distributed tilings are overlaid which together form a feature vector of length

416 mapping continuous space into a finite discrete one. By using open-addressed

hashing technique size of the state space is further reduced and only needed parts are

stored. Since the feature vector spans an extremely large space and hashing does not

preverve locality, i.e. states with similar feature vectors get mapped to unrelated ad-

dressed, an alternative discretization method is needed while generating the sequence

tree. For this purpose, we chose 5 variables out of 13 state variables that are shown

63



to display similar results to those obtained when all state variables are utilized. Each

variable is then discretized into 12 classes and together used to represent states while

building and employing the sequence tree. The immediate reward received by each

agent after selecting a high level skill is the number of primitive time steps that elapsed

while following the action. The takers use a hand-coded policy implemented in [49]:

A taker either tries to (a) catch the ball if he is the closest or second closest taker to

the ball or if no other taker can get to the ball faster than he does, or (b) position

himself in order to block a pass from the keeper with the largest angle with vertex

at the ball that is clear of takers. The learning parameters were as follows: γ = 1.0,

α = 0.125, ǫ = 0.01, λ = 0.9, psequence = 0.3, ψdecay = 0.95, ξdecay = 0.95, and

ψthreshold = ξthreshold = 0.01. The learning curves showing the progression of episode

time with respect to training time are presented in Figure 4.26. SMDP Sarsa(λ) al-

gorithm with sequence tree converges faster, achieving an episode time of around 14

seconds in almost one third of the time required by its regular counterpart. This data

also supports that the proposed sequence tree based method is successful in utilizing

useful abstractions and improve the learning performance in more complex domains.

4.2.8 Comparison with acQuire-macros Algorithm

Finally, we compared the performance of our method with the acQuire-macros algo-

rithm of McGovern [31, 32], which is the starting point of the work presented in this

manuscript; and it is also based on CTSs. For a fair comparison, the experiments are

conducted on a 20 × 20 empty grid world problem, one room without any obstacles,

which is the domain already studied by McGovern and empirical results are reported

in the literature. In this problem, the agent is initially positioned at the lower left cor-

ner of the grid and tries to reach the upper right corner. The action set and dynamics

of the environment are same as in the six-room maze problem. The agent receives an

immediate reward of 1 when it reaches the goal cell, and 0 otherwise. The discount

rate is set to γ = 0.9, so that the goal state must be reached in as few steps as pos-

sible to maximize the total discounted reward. In order to comply with the existing

work, a learning rate of α = 0.05 and ǫ-greedy action selection with ǫ = 0.05 is used.

In order to determine best paremeter setting, we applied acQuire-macros algorithm

using various minimum support, minimum running average and minimum sequence

length values. The results of the experiments show that as the minimum running

64



 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200

re
w

a
rd

episode

q
am (ra=9)
am (ra=6)
am (ra=3)
am (ra=1)

 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200

re
w

a
rd

episode

q
am (ra=9)
am (ra=6)
am (ra=3)
am (ra=1)

(a) (b)

 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200

re
w

a
rd

episode

q
am (ra=9)
am (ra=6)
am (ra=3)
am (ra=1)

 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200

re
w

a
rd

episode

q
am (ra=9)
am (ra=6)
am (ra=3)
am (ra=1)

(c) (c)

Figure 4.27: Results for the acQuire-macros algorithm using minimum support of
(a) 0.1, (b) 0.3, (c) 0.6, and (d) 0.9 on 20 × 20 grid world problem. In each figure,
the learning curves for different minimum running average values of 1, 3, 6 and 9 are
plotted and compared with regular Q-learning. Minimum sequence length is taken as
4.

 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200

re
w

a
rd

episode

2
3
4
6
8

Figure 4.28: Results for the acQuire-macros algorithm using different minimum se-
quence lengths on 20 × 20 grid world problem. Minimum support and minimum
running average are taken as 0.6 and 3, respectively.

65



 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200

re
w

a
rd

episode

q
sarsa(0.90)

am (sup=6, ra=1)
q w/ stree (0.90)

Figure 4.29: Results for the 20 × 20 grid world problem.

average gets smaller the acQuire-macros algorithm converges to optimal policy faster

irrespective of the minimum support. A moderate minimum support of 0.6 performs

better than a fairly high value of 0.9 that filters out most of the sequences. Lower

minimum support values lead to high number of options, and in the extreme fails to

converge to optimal behavior. Best result is achieved with minimum sequence length

of 4. Figures showing the effect of parameters are presented in Figure 4.27 and 4.28).

Results for various learning algorithms on the 20×20 grid world problem are given

in Figure 4.29. Although acQuire-macros performs better than regular Q-learning, it

falls behind Sarsa(λ). This is due to the fact that options are not created until

sufficient number of instances are observed and there is no discrimination between

options based on their expected total discounted rewards. The sequence tree based

Q-learning algorithm, does not suffer from such problems and shows a fast convergence

by making efficient use of abstractions in the problem.

66



CHAPTER 5

EMPLOYING STATE SIMILARITY TO IMPROVE

REINFORCEMENT LEARNING PERFORMANCE

In this chapter, following MDP homomorphism notion proposed by Ravindran and

Barto [41, 42], we propose a method to identify states with similar sub-policies with-

out requiring a model of the MDP or equivalence relations, and show how they can

be integrated into reinforcement learning framework to improve the learning perfor-

mance [12, 16, 15]. As in Chapter 4, we first collect history of states, actions and

rewards, from which traces of policy fragments are generated. These policy fragments

are then translated into a tree structure to efficiently identify states with similar sub-

policy. The number of common action-reward sequences is used as a metric to define

the similarity between two states. Updates on the action-value function of a state are

then reflected to all similar states, expanding the influence of new experiences. Similar

to sequence tree based approach discussed in Chapter 4, the proposed method can be

treated as a meta-heuristic to guide any underlying reinforcement learning algorithm.

The effectiveness of the proposed method is demonstrated by reporting experimental

results on two domains, namely six-room maze and various versions of taxi prob-

lem. Furthermore, it is compared with other RL algorithms, and a substantial level

of improvement is observed on different test cases. Also, although the approaches

are different, we present how the performance of our work compared to other option

discovery algorithms.

This chapter is organized as follows: Our approach to reinforcement learning with

equivalent state update is presented in Section 5.1 on an illustrative example. A

method to find similar states during the learning process is described in Section 5.2.

We present experimental results in Section 5.3. Finally, in Section 5.4 proposed

method is combined with option discovery algorithm described in previous chapter

67



3

A B

C D
0 1 2 3 4

0

1

2

4

Figure 5.1: 5 × 5 taxi problem. Predefined locations are labeled with letters A to D.

3

A B

C
0 1 2 3 4

0

1

2

4

3

A B

C
0 1 2 3 4

0

1

2

4

(a) (b)

Figure 5.2: Two instances of the taxi problem. In both cases, the passenger is situated
at location A, but the destinations are different: B in (a) and C in (b).

and the results are presented.

5.1 Reinforcement Learning with Equivalent State Update

Let L = {A,B,C,D} be the set of possible locations on the 5 × 5 version of the

Dietterich’s taxi problem presented in Figure 5.1 (a). As described in Chapter 3, we

represent each possible state by a tuple of the form 〈r, c, l, d〉, where r, c ∈ {0, 1, 2, 3, 4}

denote the row and column of the taxi’s position, respectively, l ∈ L∪{T} denotes the

location of the passenger (either one of predefined locations or in case of l = T picked-

up by the taxi), and d ∈ L denotes the destination of the passenger. (rl, cl) is the

position of the location l ∈ L on the grid. Let Mtaxi = 〈Staxi, Ataxi,Ψtaxi, Ttaxi, Rtaxi〉

be the corresponding Markov decision process, where Staxi is the set of states, Ataxi

is the set of actions, Ψ = Staxi ×Ataxi is the set of admissible state-action pairs, and

Ttaxi : Ψtaxi× Staxi → [0, 1] and Rtaxi : Ψtaxi → ℜ are the state transition and reward

functions conforming to the description given above, respectively.

The taxi domain inherently contains subtasks that need to be solved by the agent.

For example, consider an instance of the problem in which the passenger is situated

at location A and is to be transported to location B as presented in Figure 5.2 (a).

Starting at any position (r, c), the agent must first navigate to location A in order

to pick up the passenger. Let 〈r, c〉ld denote the state tuple 〈r, c, l, d〉 ∈ Staxi. This

68



navigation subtask can be modeled by using a simpler Markov decision process MA =

〈SA, AA,ΨA, TA, RA〉, where

• SA = {〈r, c〉|r, c ∈ {0, . . . , 4}, 〈r, c〉 6= 〈rA, cA〉} ∪ {sΥ} is the set of states,

• AA = Ataxi ∪ {aΥ} is the set of actions,

• ΨA = {(〈r, c〉, a)|(〈r, c〉AB , a) ∈ Ψtaxi, (r, c) 6= (rA, cA)} ∪ {(sΥ, aΥ)} is the set of

admissible state-action pairs,

• TA : ΨA × SA → [0, 1] defined as

TA(〈r, c〉, a, 〈r′ , c′〉) = Ttaxi(〈r, c〉AB , a, 〈r
′, c′〉AB)

TA(〈r, c〉, a, sΥ) = Ttaxi(〈r, c〉AB , a, 〈rA, cA〉AB)

TA(sΥ, aΥ, sΥ) = 1

is the state transition function, and

• RA : ΨA → ℜ, such that

RA(〈r, c〉, a) = Rtaxi(〈r, c〉AB , a)

RA(sΥ, aΥ) = 0

is the expected reward function.

In MA, the state sΥ is an absorbing (in other words, sub-goal or termination) state,

corresponding to state 〈rA, cA〉AB in Mtaxi, with one action aΥ that transitions to

itself with probability one. Once control reaches sΥ, it stays there. Note that, for

every state 〈r, c〉AB ∈ S such that r, c ∈ {0, . . . , 4} and (r, c) 6= (rA, cA), there exists

a state 〈r, c〉 ∈ S′ with exactly the same state-transition and reward structure, and

all other states in S are mapped to the absorbing state, sΥ. By defining a surjection

from Ψtaxi to ΨA, it is possible to transform Mtaxi to MA, and such a transformation

is called a partial MDP homomorphism [41].

Definition 5.1.1 Let M = 〈S,A,Ψ, T,R〉 and M ′ = 〈S′∪{sΥ}, A
′∪{aΥ},Ψ

′, T ′, R′〉,

such that sΥ /∈ S′ and aΥ /∈ A′, be two Markov decision processes. M is partially

homomorphic to M ′ if there exists a surjection f : S → S′ ∪ Υ and a set of state

dependent surjections {gs : As → A′
f(s)|s ∈ S} such that the following conditions hold:

69



1. Ψ′ = {(f(s), gs(a))|(s, a) ∈ Ψ} ∪ {(sΥ, aΥ)},

2. ∀s ∈ f−1(S′), s′ ∈ S, a ∈ As,

T ′(f(s), gs(a), f(s′)) =
∑

s′′∈{t∈S|f(t)=f(s′)}

T (s, a, s′′)

3. T ′(sΥ, aΥ, sΥ) = 1,

4. R′(f(s), gs(a)) = R(s, a), ∀s ∈ f−1(S′), a ∈ As, and

5. gs(a) = aΥ,∀s ∈ f−1(sΥ).

Condition (2) states that state-action pairs that have the same image under f and

gs have the same block transition behavior in M , and condition (4) states that they

have the same expected reward. sΥ is an absorbing, or termination, state with a

single admissible action aΥ which transitions sΥ back to itself. The surjection h :

Ψ → Ψ′ ∪ {(sΥ, aΥ)} defined by h((s, a)) = (f(s), gs(a)) is called a partial MDP

homomorphism from M to M ′, and M ′ is called the partial homomorphic image of M

under h = 〈f, {gs|s ∈ S}〉. ⊳

Going back to our example, for MA given above, the surjections f : Staxi →

SA ∪ {sΥ} and {gs : As → A′
f(s)|s ∈ Staxi} defined as

f(s) =







〈r, c〉, s = 〈r, c〉AB ∧ (r, c) 6= (rA, cA)

sΥ, otherwise
(5.1)

gs(a) =







a, s ∈ {〈r, c〉AB |(r, c) 6= (rA, cA)}

aΥ, otherwise
(5.2)

satisfy the imposed conditions, and thereforeMA is a partial homomorphic image ofM

under h = 〈f, {gs|s ∈ Staxi}〉. Now, suppose that instead of location B, the passenger

is to be transported to any other location d; for example C as in Figure 5.2 (b).

Despite the change in destination, the agent must again first navigate to location A.

Furthermore, for any state s = 〈r, c〉Ad∧(r, c) 6= (rA, cA) and admissible action a ∈ As,

we have

RA(〈r, c〉, a) = Rtaxi(s, a)

TA(〈r, c〉, a, 〈r′, c′〉) = Ttaxi(s, a, 〈r
′, c′〉Ad)

= Ttaxi(s, a, 〈r
′, c′〉AB)

70



TA(〈r, c〉, a, sΥ) = Ttaxi(s, a, 〈rA, cA〉Ad)

= Ttaxi(s, a, 〈rA, cA〉AB)

Hence, h′ = 〈f ′, {g′s|s ∈ S}〉 which extends h given in (5.1) and defined as

f ′(s) =







〈r, c〉, s = 〈r, c〉A·, (r, c) 6= (rA, cA)

sΥ, otherwise

g′s(a) =







a, s ∈ {〈r, c〉A·|(r, c) 6= (rA, cA)}

aΥ, , otherwise

is a partial MDP homomorphism from Mtaxi to MA. Let s1 = 〈r, c〉Ad1 and s2 =

〈r, c〉Ad2 be two states in Staxi such that (r, c) 6= (rA, cA) and d1 6= d2. For any

admissible action a, the image of the state-action pairs (s1, a) and (s2, a) under h′, are

the same, i.e. (f ′(s1), g
′
s1

(a)) = (f ′(s2), g
′
s2

(a)) = (〈r, c〉, a), which means that both

states are equivalent with respect to state transition and reward structures.

Definition 5.1.2 Given an MDP M = 〈S,A,Ψ, T,R〉, state-action pairs (s1, a1) and

(s2, a2) ∈ Ψ are equivalent if there exists an MDP M ′ which is a partial homomorphic

image of M under h = 〈f, {gs|s ∈ S}〉 such that f(s1) = f(s2) and gs1(a1) = gs2(a2).

States s1 and s2 are equivalent if f(s1) = f(s2) and there exists a bijection ρ : As1 →

As2 such that gs1(a) = gs2(ρ(a)),∀a ∈ As1. ⊳

The set of state-action pairs equivalent to (s, a), and the set of states equiva-

lent to s are called the equivalence classes of (s, a) and s, respectively. Let M ′ =

〈S′, A′,Ψ′, T ′, R′〉 be the image of M = 〈S,A,Ψ, T,R〉 under the partial MDP ho-

momorphism h = 〈f, {gs|s ∈ S}〉. Ravindra and Barto [41] proved that if h is a

complete homomorphism, i.e. the set of absorbing states is empty, then an optimal

policy π∗ for M can be constructed from an optimal policy π∗M ′ for M ′ such that for

any a ∈ g−1
s (a′),

π∗(s, a) =
π∗M ′(f(s), a′)

|g−1
s (a′)|

(5.3)

This makes it possible to solve an MDP by solving one of its homomorphic images

which can be structurally simpler and easier to solve. However, in general such a

construction is not viable in case of partial MDP homomorphisms, since the optimal

policies would depend on the rewards associated with absorbing states.

For example, let M = 〈S,A,Ψ, P,R〉 be an MDP with

71



s1 s2 s3 s4
a1/1 a2/0 a1/2

a1/0 a1/0
(a)

s1 s2 sΥ
a1/1 a2/0

a1/0 aΥ/c
(b)

Figure 5.3: Sample MDP M (a), and its homomorphic image M ′ (b). State transitions
are deterministic and indicated by directed edges. Each edge label denotes the action
causing the transition between connected states and the associated expected reward.
Optimal policies are preserved only if c ≥ 1/9.

• S = {s1, s2, s3, s4},

• A = {a1, a2},

• Ψ = {(s1, a1), (s2, a1), (s2, a2), (s3, a1), (s4, a1)}

where all state transitions are deterministic and expected rewards are as given in

Figure 5.3(a). Suppose that discount factor, γ, is 0.9. Then, optimal policy at s2 is to

select action a2 (Q∗(s2, a1) = 1, and Q∗(s2, a2) = 1.8). Consider deterministic MDP

M ′ = 〈S′ ∪ {sΥ}, A
′ ∪ {aΥ},Ψ

′ ∪ (sΥ, aΥ), P ′, R′〉 with

• S = {s1, s2},

• A = {a1, a2}, and

• Ψ′ = {(s1, a1), (s2, a1), (s2, a2)}

having state transitions and expected rewards given in Figure 5.3(b), where the ex-

pected reward for executing action aΥ at the absorbing state is a constant c. M ′ is a

partial homomorphic image of M under h = 〈f, {gs|s ∈ S}〉 defined as

f(s1) = s1

f(s2) = s2

f(s3) = f(s4) = sΥ

gs1(a1) = gs2(a1) = a1

gs2(a2) = a2

gs3(a1) = gs4(a1) = aΥ

(5.4)

72



One can easily calculate that Q∗(s2, a1) = 1 and Q∗(s2, a2) = 9 ∗ c. Accordingly,

the optimal policy for M ′ at s2 is to select a1 if c < 1/9, and a2 otherwise, which is

different than the optimal policy for M .

As the example given above demonstrates, unless reward functions are chosen

carefully, it may not be possible to employ the solutions of partial homomorphic

images of a given MDP to solve it. However, if equivalence classes of state-action

pairs and states are known they can be used to speed up the learning process. Let

(s, a) and (s′, a′) be two equivalent state-action pairs in M = 〈S,A,Ψ, T,R〉 based on

the partial homomorphic image M ′ = 〈S′ ∪ {sΥ}, A
′ ∪ {aΥ},Ψ

′, T ′, R′〉 of M under

h = 〈f, {gs|s ∈ S}〉. Suppose that while learning the optimal policy, the agent selects

action a at state s which takes it to state t with an immediate reward r such that

f(t) 6= sΥ, and consequently estimate of state-action value function Q(s, a) is updated

as described in Section 3.2. Let tM ′ = f(t) be the image of state t under h, and

Ω = {t′|f ′(t′) = tM ′ ∧ P (s′, a′, t′) > 0} be the set of states that map to tM ′ under h.

By definition, for any t′ ∈ Ω, the probability of experiencing a transition from s′ to t′

upon taking action a′ is equal to that of from s to t upon taking action a. Also, since

(s, a) and (s′, a′) are equivalent, we have R(s, a) = R(s′, a′), i.e. both state-action

pairs have the same expected reward, and, since t is non-absorbing state, independent

of the reward assigned to the absorbing state, they have the same policy. Therefore,

for any state t′ ∈ Ω, o = 〈s′, a′, r, t′〉 can be regarded as a virtual experience tuple and

Q(s′, a′) can be updated similar to Q(s, a) based on observation o, i.e. pretending as

if action a′ transitioned the agent from state s′ to state t′ with an immediate reward

r. In particular, for the Q-learning algorithm Q(s′, a′) is updated using

Q(s′, a′) = (1 − α)Q(s′, a′) + α(r + γ max
a′′∈At′

Q(t′, a′′))

The complete Q-learning with equivalent state update is presented in Algorithm 9.

Note that, since partial MDP homomorphisms do not preserve state transition

and reward behavior for states that map to absorbing states, special care must be

taken when adapting on-policy methods to incorporate equivalent state update. In

particular, consider the Sarsa algorithm that has the update rule

Q(s, a) = (1 − α)Q(s, a) + α(r + γQ(s′, a′)) (5.5)

where 〈s, a, r, s′〉 is the experience tuple and a′ is chosen from s′ using policy derived

from the learning policy πQ based on current Q-values, i.e. a′ = πQ(s′). Let (t, at)

73



Algorithm 9 Q-learning with equivalent state update.

1: Initialize Q arbitrarily (e.g., Q(·, ·) = 0)

2: repeat

3: Let s be the current state

4: repeat ⊲ for each step

5: Choose a from s using policy derived from Q with sufficient exploration

6: Take action a, observe r and the next state s′

7: Q(s, a) = (1 − α)Q(s, a) + α(r + γmaxa′′∈As′ Q(s′, a′′))

8: for all (t, at) equivalent to (s, a) under a partial MDP homomorphism

h = 〈f, {gs|s ∈ S}〉 do

9: Let t′ be a state in f−1(f(s′))

10: Q(t, at) = (1 − α)Q(t, at) + α(r + γmaxat′∈At′ Q(t′, at′))

11: end for

12: s = s′

13: until s is a terminal state

14: until a termination condition holds

and (t′, at′) be equivalent to (s, a) and (s′, a′) under a partial MDP homomorphism,

such that the image of s′, and consequently t′, is the absorbing state of the homo-

morphic image. Then, if the update rule of Sarsa is applied using virtual experience

〈t, at, t
′, at′〉, Q(t, at) is not guaranteed to converge to optimal value since (t′, at′) may

not be a greedy action selection [47]. In order to overcome this problem, updates can

be restricted to those that transitioned to non-absorbing states, or alternatively the

action πQ(t′) imposed by the learning policy at t′ can be used instead of at′ , leading

to the Sarsa with equivalent state update given in Algorithm 10.

Figure 5.4(a) compares the performance of regular Q-learning and Q-learning with

equivalent state update on 5×5 taxi problem when equivalence classes of state-action

pairs are calculated based on four partial homomorphic images each corresponding to

navigating to four predefined locations. It shows the number of steps taken by the

agent until passenger is successfully delivered to its destination. The initial Q-values

are set to 0, the learning rate and discount factor are chosen as α = 0.05, and γ = 0.9,

respectively. In order to determine these learning parameters, we conducted a set

of initial experiments that cover a range of possible values and picked the ones that

74



Algorithm 10 Sarsa with equivalent state update.

1: Initialize Q arbitrarily (e.g., Q(·, ·) = 0)

2: repeat

3: Let s be the current state

4: repeat ⊲ for each step

5: Choose a from s using policy derived from Q with sufficient exploration

6: Take action a, observe r and the next state s′

7: Choose a′ from s′ using policy derived from Q

8: Q(s, a) = (1 − α)Q(s, a) + α(r + γQ(s′, a′))

9: for all (t, at) equivalent to (s, a) under partial MDP homomorphism h =

〈f, {gs|s ∈ S}〉 do

10: Let t′ be a state in f−1(f(s′)) such that P (t, at, t
′) > 0

11: Choose at′ from t′ using policy derived from Q

12: Q(t, at) = (1 − α)Q(t, at) + α(r + γQ(t′, at′))

13: end for

14: s = s′

15: a′ = a

16: until s is a terminal state

17: until a termination condition holds

75



-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

sarsa
sarsa w/ equ. using orig. update rule

sarsa w/ equ.

(a)

-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

q
q w/ equ.

(b)

Figure 5.4: (a) Q-learning vs. Q-learning with equivalent state update, and (b) Sarsa
vs. Sarsa with equivalent state update on 5×5 taxi problem with one passenger using
partial homomorphic images corresponding to navigation to four predefined locations.
The figure shows number of steps to successful transportation averaged over 30 runs.

76



perform best overall on regular RL algorithms (i.e. without equivalent state update).

ǫ-greedy action selection mechanism is used with ǫ = 0.1. Starting state which in-

cludes the initial position of the taxi agent, location of passenger and its destination

are selected randomly with uniform probability. The results are averaged over 30 runs.

As expected, even though we do not take advantage of all possible state-action equiv-

alences in the domain, the taxi agents learns and converges to optimal policy faster

when equivalent state-action pairs are also updated. Sarsa with equivalent state up-

date given in Algorithm 10 also shows similar results, outperforming regular Sarsa as

presented in Figure 5.4(b). When equivalent state update is applied to Sarsa using

the update rule of Equation 5.5, we observe a steep learning curve during the initial

episodes of the task, but then due to broken links of virtual experiences, i.e. transitions

to absorbing states, the convergence rate falls drastically below that of Algorithm 10.

In more complex 12× 12 version of the problem with larger state space, Figure 3.2, it

even fails to converge to optimal policy, whereas Q-learning and Sarsa with equivalent

state update outperform their regular counterparts (Figure 5.5).

The method described above assumes that equivalence classes of states and corre-

sponding partial MDP homomorphisms are already known. If such information is not

available prior to learning, then for a restricted class of partial MDP homomorphisms

it is still possible to identify states that are similar to each other with respect to state

transition and reward behavior as learning progresses based on the collected history

of events, as we show in the next section. Experience gathered on one state, then, can

be reflected to similar states to improve the performance of learning.

5.2 Finding Similar States

For the rest of this chapter, we will restrict our attention to direct partial MDP

homomorphisms h = 〈f, {gs|s ∈ S}〉, where for each state s that maps to a non-

absorbing state, gs is the identity function, i.e. gs(a) = a, and for the sake of simplicity,

f will be used to denote h = 〈f, {gs|s ∈ S}〉.

Let M = 〈S,A,Ψ, T,R〉 be a given MDP. As previously given in Definition 4.1.9,

starting from state s, a sequence of states, actions and rewards

σ = s1, a2, r2, . . . , rn−1, sn

such that s1 = s and each ai, 2 ≤ i ≤ n − 1, is chosen by following a policy π, i.e.,

77



-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0  500  1000  1500  2000

re
w

a
rd

episode

q
q w/ equ.

(a)

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0  500  1000  1500  2000

re
w

a
rd

episode

sarsa
sarsa w/ equ. using orig. update rule

sarsa w/ equ.

(b)

Figure 5.5: (a) Q-learning vs. Q-learning with equivalent state update, and (b) Sarsa
vs. Sarsa with equivalent state update on 12 × 12 taxi problem with one passenger
using partial homomorphic images corresponding to navigation to four predefined
locations.

78



based on π(si), is called a π-history of s with length n [53]. ARσ = a1r1a2 . . . an−1rn−1

is the action-reward sequence of σ, and the restriction of σ to Σ ⊆ S, denoted by σΣ,

is the longest prefix s1, a2, r2, . . . , ri−1, si of σ, such that for all j = 1..i, sj ∈ Σ and

si+1 /∈ Σ.

Suppose that (s, a) and (s′, a′) are two state-action pairs in M that are equiv-

alent to each other based on partial homomorphic image M ′ = 〈S′ ∪ {sΥ}, A ∪

{aΥ},Ψ
′, T ′, R′〉 of M under direct partial MDP homomorphism f . Consider a π-

history of state s, σ = s1, a2, r2, . . . , rn−1, sn. Let Σf ⊆ S be the inverse image of S′

under f , and σΣf = s1, a2, r2, . . . , rk−1, sk where k ≤ n be the restriction of σ on Σf .

The image of σΣf under f , denoted by F (σΣf ), is obtained by mapping each state

si to its counterpart in S′, i.e. F (σΣf ) = f(s1), a2, r2, f(s2), a3, . . . , rk−1, f(sk). By

definition, F (σΣf ) is a π-history of f(s) in M ′, and since s and s′ are equivalent, there

exists a π-history σ′ of s′ such that the image of its restriction to Σf under f is equal to

F (σΣf ), i.e. F (σ′Σf ) = F (σΣf ), and furthermore ARσ′
Σf

= ARσΣf
. Therefore, if two

states are equivalent under the direct partial MDP homomorphism f , then the set of

images of π-histories restricted to the states that map to non-absorbing states under

f , and consequently, the list of associated action-reward sequences are the same. This

property of equivalent states leads to a natural approach to calculate the similarity

between any two states based on the number of common action-reward sequences.

Given any two states s and s′ in S, let Πs,i be the set of π-histories of state s with

length i, and ςi(s, s
′) calculated as

ςi(s, s
′) =

i
∑

j=1

|{σ ∈ Πs,j|∃σ
′ ∈ Πs′,j, ARσ = ARσ′}|

i
∑

j=1

|Πs,j|

(5.6)

be the ratio of the number of common action-reward sequences of π-histories of s and

s′ with length up to i to the number of action-reward sequences of π-histories of s

with length up to i. One can observe the following:

• ςi(s, s
′) will be high, close to 1, if s′ is similar to s in terms of state transition

and reward behavior, and low, close to 0, in case they differ considerably from

each other.

• Even for equivalent states the action-reward sequences will eventually deviate

79



and follow different courses as the subtask that they are part of ends. As a

result, for i larger than some threshold value, ςi would inevitably decrease and

no longer be a permissible measure of the state similarity.

• On the contrary, for very small values of i, such as 1 or 2, ςi may over estimate

the amount of similarity since number of common action-reward sequences can

be high for short action-reward sequences.

Combining these observations, and also since optimal value of i depends on the

subtasks of the problem, in order to increase robustness it is necessary to take into

account action-reward sequences of various lengths. Therefore, the maximum value

or weighted average of ςi(s, s
′) over a range of problem specific i values, kmin and

kmax, can be used to combine the results of evaluations and approximately measure

the degree of similarity between states s and s′, which we will denoted by ς(s, s′).

Once ς(s, s′) is calculated, s′ is regarded as equivalent to s if ς(s, s′) is over a given

threshold value τsimilarity. Likewise, by restricting the set of π-histories to those that

start with a given action a in the calculation of ς(s, s′), similarity between state-action

pairs (s, a) and (s′, a) can be measured approximately.

If the set of π-histories for all states are available in advance, then using Equa-

tion 5.6 similarities between all state pairs can be calculated and equivalent states can

be identified prior to learning. However, in most of the RL problems, the dynamics of

the system is not known in advance and consequently such information is not available.

Therefore, using the history of observed events (i.e. sequence of states, actions taken

and rewards received), the agent must incrementally store the π-histories of length up

to kmax during learning and enumerate common action-reward sequences of states in

order to calculate similarities between them. For this purpose, we propose an auxil-

iary structure called path tree, which stores the prefixes of action-reward sequences of

π-histories for a given set of states.

Definition 5.2.1 A path tree P = 〈N,E〉 is a labeled rooted tree, where N is the set

of nodes, such that each node represents a unique action-reward sequence; and e =

(u, v, 〈a, r〉) ∈ E is an edge from u to v with label 〈a, r〉, indicating that action-reward

sequence v is obtained by appending a, r to u, i.e., v = uar. The root node represents

the empty action sequence. Furthermore, each node u holds a list of 〈s, ξ〉 ∈ S × R

tuples, stating that state s has one or more π-histories starting with action sequence

80



root

s1, s2 s2, s3

s1 s2, s3 s2, s3

s2

a, r1 b, r2

c, r1 b, r1 c, r3

a, r1

Figure 5.6: Path tree for π-histories {s1ar1·cr1·, s2ar1·, s2br2·br1·ar1·
, s2br2·cr3·, s3br2·cr3·, s3br2·br1·}. · represents intermediate states, i.e. states of
the π-history except the first one. Eligibility values of edges and tuples in the nodes
are not displayed.

root

s1, s2 s2, s3, s1

s1 s2, s3, s1 s2, s3

s2 s1

a, r1 b, r2

c, r1 b, r1 c, r3

a, r1 c, r1

Figure 5.7: After adding π-history s1br2·br1·cr1· to the path tree given in Figure 5.6.
Thick edges indicate the affected nodes.

σu. ξ is the eligibility value of σu for state s, representing its occurrence frequency.

It is incremented every time a new π-history for state s starting with action sequence

σu is added to the path tree, and gradually decremented otherwise. ⊳

A sample path tree for a given set of π-histories is presented in Figure 5.6.

A π-history h = s1a2r2 . . . rk−1sk can be added to a path tree by starting from

the root node and following edges according to their label. Let n̂ denote the active

node of the path tree, which is initially the root node. For i = 1..k − 1, if there is a

node n such that n̂ is connected to n by an edge with label 〈ai, ri〉, then either ξ of

the tuple 〈s1, ξ〉 in n is incremented or a new tuple 〈s1, 1〉 is added to n if it does not

exist, and n̂ is set to n. Otherwise, a new node containing tuple 〈s1, 1〉 is created, and

n̂ is connected to this node by an edge with label 〈ai, ri〉. The new node becomes the

active node (Algorithm 11).

The state of the sample path tree after adding a new π-history s1br2·br1·cr1· using

81



Algorithm 11 Algorithm for adding a π-history to a path tree.

1: procedure add-history(h,T)

h is a π-history of the form s1a2r2 . . . rk−1sk.

2: Let n̂ be the root node of T .

3: for i = 1 to k − 1 do

4: if ∃ node n such that n̂ is connected to n by an edge with label 〈ai, ri〉

then

5: if ∃ a tuple 〈s1, ξ〉 in n then

6: Increment ξ.

7: else

8: Add a new tuple 〈s1, 1〉 to n.

9: end if

10: else

11: Create a new node n containing tuple 〈s1, 1〉.

12: Connect n̂ to n by an edge with label 〈ai, ri〉.

13: end if

14: n̂ = n

15: end for

16: end procedure

82



the algorithm described above is given in Figure 5.7.

Algorithm 12 Algorithm for generating π-histories from a given history of events

and adding them to the path tree.

1: procedure update-path-tree(H,T,kmax)

H is a sequence of tuples of the form 〈s1, a1, r1〉 . . . 〈sn, an, rn〉

2: for i = 1 to n do

3: h = siairi ⊲ h is a π-history of state si.

4: for j = i+ 1 to min(n, i+ kmax − 1) do

5: Append sjajrj to h

6: end for

7: ADD-HISTORY(h, T )

8: end for

9: end procedure

At each time step the agent keeps track of the current state, action it chooses and

the reward received from the environment in return, and stores them as a sequence of

tuples 〈s1, a1, r1〉, 〈s2, a2, r2〉 . . .. After each episode or for non-episodic tasks when a

specific condition holds, such as executing a fixed number of steps or when a reward

peak is reached, the following steps are executed:

1. This sequence is processed from front to back; for each tuple 〈si, ai, ri〉 using

the next kmax − 1 tuples 〈si+1, ai+1, ri+1〉 . . . 〈si+kmax−1, ai+kmax−1, ri+kmax−1〉 a

new set π-history is generated and added to the path tree using the algorithm

described above (Algorithm 12). Once this is done, the sequence of tuples is no

longer needed and can be disposed.

2. The eligibility values of tuples in the nodes of the tree are decremented by a

factor of 0 < ξdecay < 1, called eligibility decay rate, and tuples with eligibility

value less than a given threshold, ξthreshold, are removed to keep the tree in

a manageable size and focus the search on recent and frequently used action-

reward sequences.

Using the generated path tree, ς(s, s′) can be calculated incrementally for all s, s′ ∈

S by traversing it in breadth-first order and keeping two arrays κ(s) and K(s, s′).

κ(s) denotes the number of nodes containing s, and K(s, s′) denotes the number of

83



Algorithm 13 Calculating state similarities using the generated path tree.

1: procedure calculate-similarity(T, kmin, kmax)

2: Initialize ς(u, v), κ(u), and K(u, v) to 0

3: level = 1

4: currentNodes = 〈 root node of T〉 ⊲ currentNodes contains the list of nodes

in the curent level.

5: while currentNodes 6= ∅ and level ≤ kmax do

6: nextNodes = 〈〉

7: for all node ∈ currentNodes do ⊲ for each node in the current level

8: for all u in the tuple list of node do

9: Increment κ(u)

10: for all v 6= u in the tuple list of node do

11: Increment K(u, v) ⊲ Increment number of common sequences.

12: end for

13: end for

14: Append children of node to nextNodes

15: end for

16: if level ≥ kmin then ⊲ Update similarity values if level of kmin is reached.

17: for all 〈u, v〉 such that K(u, v) > 0 do

18: ς(u, v) = max(K(u, v)/κ(u), ς(u, v))

19: end for

20: end if

21: currentNodes = nextNodes ⊲ Next level consists of the children of the

nodes in the current level.

22: level = level + 1

23: end while

24: end procedure

84



nodes containing both s and s′ in their tuple lists. Initially ς(s, s′), K(s, s′), and

κ(s) are set to 0. At each level of the tree, the tuple lists of nodes at that level are

processed, and κ(s) and K(s, s′) are incremented accordingly. After processing level

i, kmin ≤ i ≤ kmax, for every s, s′ pair that co-exist in the tuples list of a node at that

level, ς(s, s′) is compared with K(s, s′)/κ(s) and updated if the latter one is greater

(Algorithm 13). Note that, since eligibility values stored in the nodes of the path tree

is a measure of occurrence frequencies of corresponding sequences, it is possible to

extend the similarity function by incorporating eligibility values in the calculations

as normalization factors. This would improve the quality of the metric and also

result in better discrimination in domains with high degree of non-determinism, since

the likelihood of the trajectories will also be taken into consideration. In order to

simplify the discussion, we opted to omit this extension. Once ς values are calculated,

equivalent states, i.e. state pairs with ς greater than τsimilarity, can be identified and

incorporated into learning. Note that, since similarities of states are not expected to

change drastically each episode this last step, i.e. calculation of similarities, can be

executed at longer intervals. The overall process described above leads to the general

learning model given in Algorithm 14.

5.3 Experiments

We applied the similar state update method described in Section 5.2 to Q-learning and

compared its performance with different RL algorithms on two test domains: a six-

room maze and various versions of the taxi problem. Also, its behavior under various

parameter settings, such as maximum length of π-histories and eligibility decay rate,

are examined.

In all test cases, the initial Q-values are set to 0, and ǫ-greedy action selection

mechanism, where action with maximum Q-value is selected with probability 1−ǫ and

a random action is selected otherwise, is used with ǫ = 0.1. The results are averaged

over 50 runs. Unless stated otherwise, the path tree is updated using an eligibility

decay rate of ξdecay = 0.95 and an eligibility threshold of ξthreshold = 0.1, and in

similarity calculations the following parameters are employed: kmin = 3, kmax = 5,

and τsimilarity = 0.8. As will be seen from the results presented in the rest of this

section, these values are found to perform well both in terms of learning performance

85



Algorithm 14 Reinforcement learning with equivalent state update.

1: Initialize Q arbitrarily (e.g., Q(·, ·) = 0).

2: T = 〈root〉 ⊲ Initially the path tree contains only the root node.

3: repeat ⊲ for each episode

4: Let s be the current state which is initially the starting state.

5: H = ∅ ⊲ Initially episode history is empty.

6: repeat ⊲ for each step

7: Choose a from s using using the underlying RL algorithm.

8: Take action a, observe r and the next state s′.

9: Update Q(s, a) based on s, a, r, s′.

10: for all t similar to s do

11: if probability of receiving reward r at t by taking action a > 0 then

12: Update Q(t, a) based on t, a, r, ς(s, t).

13: end if

14: end for

15: Append 〈s, a, r〉 to H.

16: s = s′

17: until s is a terminal state

18: update-path-tree(H,T, kmax)

19: Traverse T and update eligibility values.

20: if time to re-calculate similarities of states then ⊲ ex. every n episodes.

21: CALCULATE-SIMILARITY(T, kmin, kmax)

22: end if

23: until a termination condition holds

86



-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 0  100  200  300  400  500  600  700

re
w

a
rd

episode

q
sarsa(0.98)

q w/ equ.

(a)

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 0  20  40  60  80  100

re
w

a
rd

episode

sarsa(0.98)
q w/ equ.

sarsa(0.98) w/ equ.

(b)

Figure 5.8: (a) Q-learning with equivalent state update vs. Q-learning and Sarsa(λ),
and (b) Q-learning and Sarsa(λ) with equivalent state update vs. Sarsa(λ) in six-room
maze problem.

and the size of the path tree. Since our aim is to analyze the effect of the proposed

method when it is applied to an existing algorithm, other related learning parameters

(ex. learning rate or λ in Sarsa(λ)) are chosen in such a way that best overall results

are achieved on the existing algorithms. For this purpose, we conducted a set of

initial experiments and tested a range of values for each parameter. In both of the

test domains, an episode is terminated automatically if the agent could not successfully

complete the given task within 20000 time steps.

5.3.1 Comparison with Standard RL Algorithms

Figure 5.8 shows the total reward obtained by the agent until goal position is reached

in six-room maze problem when equivalent state update is applied to Q-learning and

Sarsa(λ) algorithms. Based on initial testing, we used a learning rate and discount

factor of α = 0.125, and γ = 0.90, respectively. For the Sarsa(λ) algorithm, λ is

87



-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

q
sarsa(0.90)

q w/ equ.

Figure 5.9: Q-learning with equivalent state update vs. Q-learning and Sarsa(λ) in
5 × 5 taxi problem with one passenger.

taken as 0.98. The path tree is updated and state similarities are calculated after

each episode. As expected, due to backward reflection of received rewards, Sarsa(λ)

converges much faster compared to Q-learning. The learning curve of Q-learning

with equivalent state update indicates that, starting from early states of learning, the

proposed method can effectively utilize state similarities and improve the performance

considerably. Since convergence is attained in the in less than 20 episodes, the result

obtained using Sarsa(λ) with equivalent state update is almost indistinguishable from

that of Q-learning with equivalent state update as plotted in Figure 5.8 (b).

The results of the corresponding experiments in 5 × 5 taxi problem showing the

total reward obtained by the agent until passenger is successfully delivered to its

destination is presented in Figure 5.9. At each episode, the starting state (i.e. the

initial position of the taxi agent, location of the passenger and its destination) is

selected randomly with uniform probability. Learning rate, α, is set to 0.05, and λ is

taken as 0.9 in Sarsa(λ) algorithm. The path tree is updated after each episode and

state similarities are computed every 5 episodes starting from the 20th episode in order

to let agent gain experience for the initial path tree. Similar to six-room maze problem,

Sarsa(λ) learns faster than regular Q-learning. The learning curves of algorithms with

equivalent state update reveals that the proposed method is successful in identifying

similar states which leads to an early improvement in performance, and consequently

allows the agent to learn the task more efficiently. Q-learning with equivalent state

update converges to optimal behavior after 200 episodes, Sarsa(λ) reaches the same

level after 1000 episodes, and regular Q-learning falls far behind of both algorithms

88



-250

-200

-150

-100

-50

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

smdp-q
l-cut

q w/ equ.

Figure 5.10: Q-learning with equivalent state update vs. SMDP Q-learning and L-Cut
on 5 × 5 taxi problem with one passenger.

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 0  20  40  60  80  100

re
w

a
rd

episode

q
lcut1
lcut2

smdp-q
q w/ equ.

Figure 5.11: Q-learning with equivalent state update vs. SMDP Q-learning and L-Cut
on six-room maze problem.

(average reward of -100 after 1000 episodes).

Figure 5.10 and 5.11 compare Q-learning with equivalent state update in six-

room maze and taxi domains with more advanced RL methods that make use of

temporal abstractions. In SMDP Q-learning [7], in addition to primitive actions,

the agent can select and execute macro-actions, or options. For the six room maze

problem, we defined hand-coded options which optimally, i.e. using minimum number

of steps, move the agent from its current position to one of door-ways connecting

to a neighboring room. Similarly, for the taxi domain, an option is defined for each

of the predefined locations which moves the agent from its current position to the

corresponding predefined location as soon as possible. The L-Cut algorithm of Simsek

and Barto [46], instead of relying on user defined abstractions, automatically finds

possible sub-goal states as the learning progresses and generates and utilizes options

for solving them. The subgoal states of the problem are identified by approximately

89



-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0  500  1000  1500  2000

re
w

a
rd

episode

q
sarsa (0.90)

q w/ equ.

Figure 5.12: Q-learning with equivalent state update vs. Q-learning and Sarsa(λ) in
12 × 12 taxi problem with one passenger.

partitioning a state transition graph generated using recent experiences of the agent,

such that the probability of transition is low between states in different blocks but

high within the same partition. Then, options are created by executing action replay

on the neighborhood of the sub-goal states using artificial rewards. It is one of the

recent methods proposed for option discovery in the field of hierarchical reinforcement

learning, and follows the tradition of a different approach, which tries to identify sub-

goals or sub-tasks of the problem explicitly instead of implicitly making use of relations

between states as proposed in this work. In the experiments with the taxi domain,

we run L-Cut algorithm using the parameters as specified in [46]. As presented in

Figure5.10, although SMDP Q-learning has a very steep learning curve in the initial

stages, by utilizing abstractions and symmetries more effectively both Q-learning with

equivalent state update and L-Cut perform better in the long run and converge to

optimal policy faster. However, in the six-room maze problem, despite the fact that

we tested under various parameter settings two of which are plotted1, L-cut algorithm

is found to perform poorly, possibly due to generating options that move the agent to

a door-way away from the goal since number of transitions between rooms would be

high both ways during the initial stages of the learning, compared to Q-learning with

equivalent state update which exhibits rapid improvement.

90



-2000

-1500

-1000

-500

 0

 0  500  1000  1500  2000

re
w

a
rd

episode

q
sarsa (0.90)

smdp-q
lcut

q w/ equ.

Figure 5.13: 5 × 5 taxi problem with two passengers.

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0  2000  4000  6000  8000  10000  12000

re
w

a
rd

episode

q
sarsa(0.90)

smdp-q
q w/ equ.

Figure 5.14: 5 × 5 taxi problem with four passengers.

5.3.2 Scalability

The results for the larger 12× 12 taxi problem presented in Figure 5.12 demonstrates

that the improvement becomes more evident as the complexity of the problem in-

creases. In this case, both regular Q-learning and Sarsa(λ) fail to converge to optimal

behavior within 2000 episodes (average reward of -600), whereas Q-learning when pro-

posed method is applied successfully converges to optimal behavior after 250 episodes.

In taxi problem, the number of equivalent states increases with the number of

passengers to be transported. Therefore, more improvement in learning performance

is expected when they can be utilized effectively. In order to test the performance

of the proposed method, we also run experiments on different versions of the taxi

problem with multiple passengers, where the passengers must be successively trans-

ported to their destinations one by one. Note that, the ordering of how passengers are

to be transported is also important and the problem involves additional complexity

1 lcut1: parameters as specified in [46], lcut2: tc = 0.1, h = 300, to = 5, tp = 0.1

91



-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.2  0.4  0.6  0.8  1

n
o

rm
. 
re

w
a

rd

norm. episode

2
4

Figure 5.15: Convergence rate of 5 × 5 taxi problem with two passengers vs. four
passengers.

and optimization in this respect. Results for the 5 × 5 taxi problem with two and

four passengers are presented in Figure 4.12 and Figure 4.13, respectively. Note that

the convergence rate of the regular algorithms decrease as the number of passengers

increases, and common subtasks, consequently equivalent states, become more promi-

nent. The results demonstrate that the proposed method is effective in identifying

solutions in such cases. Figure 5.15 shows the convergence rate of Q-learning with

equivalent state update for the case of two and four passengers. The x-axis (number

of episodes) is normalized based on the time then the optimal policy is attained, and

y-axis (reward) is normalized using the minimum and maximum rewards received by

the agent. As can be seen from Figure 5.15, the proposed method has a steeper learn-

ing curve and converges relatively faster when there are more passengers indicating

that the equivalent states are utilized effectively.

5.3.3 Effects of the Parameters

In order to analyze how various parameter choices of the proposed method affect the

learning behavior, we conducted a set of experiments under different settings. The

results for various ξdecay values are presented in Figure 5.16. As the eligibility decay

decreases, the number of π-histories represented in the path tree also decrease which

considerably reduces the execution time of the algorithm (Figure 5.18(a)). On the

other hand, this also causes recent π-histories to dominate over existing ones, less

number of equivalent states can be identified and the performance of the method also

converges to that of regular Q-learning as ξdecay gets smaller. Figure 5.17 shows how

the length of π-histories affect the performance in the taxi domain. Different kmax

values are found to display almost indistinguishable behavior, even though the path

92



-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

q
0.95
0.75
0.50

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  200  400  600  800  1000

a
v
g
. 

tr
e
e
 s

iz
e

episode

0.95
0.75
0.50

(b)

Figure 5.16: Effect of ξdecay on 5 × 5 taxi problem with one passenger. (a) Reward
obtained, and (b) average size of the path tree for different ξdecay values.

93



-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

3,4
3,5
3,6
3,7

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  200  400  600  800  1000

a
v
g
. 

tr
e
e
 s

iz
e

episode

3,4
3,5
3,6
3,7

(b)

Figure 5.17: Effect of kmin and kmax on 5 × 5 taxi problem with one passenger. (a)
Reward obtained, and (b) average size of the path tree.

 0

 0.5

 1

 1.5

 2

0.500.750.95

re
l.
 e

x
e
c
. 

ti
m

e

xidecay

 0

 0.5

 1

 1.5

 2

 3  4  5  6  7  8

re
l.
 e

x
e
c
. 

ti
m

e

kmax

(a) (b)

Figure 5.18: Execution times in 5 × 5 taxi problem with one passenger for different
values of (a) ξdecay, and (b) kmax.

94



-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  50  100  150  200  250  300

re
w

a
rd

episode

q
0.4
0.6
0.8

(a)

-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  100  200  300  400  500

re
w

a
rd

episode

q
0.8
0.9

0.95

(b)

Figure 5.19: Effect of τsimilarity on 5 × 5 taxi problem with one passenger.

tree shrinks substantially as kmax decreases which directly affects the execution time

(Figure 5.18(b)). Although that minimum and maximum π-history lengths are inher-

ently problem specific, in most applications, kmax near kmin is expected to perform

well as restrictions of partial MDP homomorphisms to smaller state sets will also be

partial MDP homomorphisms themselves.

Figure 5.19 show the results obtained using different similarity threshold values, i.e.

τsimilarity. As τsimilarity increases, less number of states are regarded as equivalent;

this leads to a decrease in the number of state-action value updates per time step

and therefore the convergence rate also decreases. On the contrary, the range of the

reflected experience expands as τsimilarity decreases which improves the performance

and speeds up the learning process. The learning curves of small τsimilarity values

also indicate that the similarity function can successfully separate equivalent and

non-equivalent states with a high accuracy.

95



-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

q
q w/ equ.

-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

q
q w/ equ.

psuccess = 0.9 psuccess = 0.7

-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

q
q w/ equ.

-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

q
q w/ equ.

psuccess = 0.5 psuccess = 0.3

Figure 5.20: Results with different levels of non-determinism in actions on 5 × 5 taxi
problem with one passenger.

5.3.4 Effect of Non-determinisim in the Environment

In order to examine how the non-determinism of the environment affect the perfor-

mance, we conducted a set of experiments by changing psuccess, i.e. the probability

that movement actions succeed, in the 5×5 taxi problem. Non-determinism increases

with decreasing psuccess. The results are presented in Figure 5.20. Although more fluc-

tuation is observed in the received reward due to increased non-determinism, for mod-

erate levels of non-determinism when the proposed method is applied to Q-learning

it consistently learns in less number of steps compared to its regular counterpart.

When the amount of non-determinism is very high in the environment, as in case

of psuccess = 0.3, path tree cannot capture meaningful information and therefore the

performance gain is minimal.

5.3.5 Comparison with Experience Replay

The proposed idea of using state similarities and then updating similar states leads to

more state-action value, i.e. Q-value, updates per experience. It is known that remem-

bering past experiences and reprocessing them as if the agent repeatedly experienced

96



-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

q
er (q)

er (sarsa)
q w/ equ.

Figure 5.21: Q-learning with equivalent state update vs. experience replay with same
number of state updates on 5 × 5 taxi problem with one passenger.

what it has experienced before, which is called experience replay [25], speed up the

learning process by accelerating the propagation of rewards. In general, a sequence of

experiences are replayed in temporally backward order to increase the effectiveness of

the process. Experience replay also results in more updates per experience. In order

to test whether the gain of the equivalent state update method in terms of learning

speed is simply due to the fact that more Q-value updates are made or not, we com-

pared its performance to experience replay using the same number of updates. The

results obtained by applying both methods to regular Q-learning algorithm on the

5 × 5 taxi problem are presented in Figure 5.21. Note that in on-policy algorithms

(such as Sarsa) or when function approximation is used to store Q-values, only expe-

riences involving actions that follow the current policy of the agent must be replayed

for experience replay to be useful. Otherwise, utilities of some state-action pairs may

be underestimated2, causing the process not to converge to optimal policy. We can

clearly observe this behavior in Figure 5.21 when Sarsa update rule is used with expe-

rience replay; it fails to learn a meaningful policy. When past experiences are replayed

using the update rule of Q-learning, the performance of learning improves, but falls

short of Q-learning with equivalent state update (optimal policy is attained after 1000

episodes compared to 200). This indicates that in addition to number of updates, how

they are determined is also important. By reflecting updates in a semantically rich

manner based on the similarity of action-reward patterns, rather than neutrally as in

2 Replaying bad actions repeatedly will disturb the sampling of the current policy in case of
on-policy algorithms, and have side effects on the function approximators. More detailed discussion
can be found in [25].

97



experience replay, the proposed method turns out to be more efficient. Furthermore,

in order to apply experience replay, the state transition and reward formulation of a

problem should not change over time as past experiences may no longer be relevant

otherwise. The dynamic nature of the sequence tree allows the proposed method to

handle such situations as well.

5.4 Combining State Similarity Based Approach with Option Dis-

covery

The two methods described in this chapter and Chapter 4 are both based on collected

state-action(-reward) sequences and applicable to problems containing subtasks. Also,

both are meta-level in the sense that they can be applied to any underlying reinforce-

ment learning algorithm. However, they focus on different kinds of abstraction; one

of them tries to discover useful higher-level behavior, whereas the other one tries to

increase the range of gained experiences. We would expect first method to be more

successful in domains with less number of subtasks with large number of instances,

since sequence tree allows efficient clustering of such subtasks. On the other hand,

the second method is expected to work better on domains containing a large number

of simple subtasks, due to the fact that state similarities can be found more efficiently

and accurately in that case. Therefore, it is possible to cascade the proposed ap-

proaches together in order to combine their impact and improve the performance of

learning. The actions to be executed are determined using the extended sequence

tree as described in Section 4.1.4, and then the experience is reflected to all similar

states using the path tree based approach as described in Section 5.2. This leads to

the learning model given in Algorithm 15 that both discovers useful temporal abstrac-

tions and utilizes state similarity to improve the performance of learning online, i.e.

during the learning process.

We applied the method which combines two proposed approaches to the Q-learning

algorithm and compared its effect on different versions of the taxi problem described

in Chapter 3.

Initially, Q-values are set to 0 and ǫ-greedy action selection mechanism is used

with ǫ = 0.1, where action with maximum Q-value is selected with probability 1 − ǫ

and a random action is selected with probability ǫ. The reward discount factor is

98



Algorithm 15 Reinforcement learning with extended sequence tree and equivalent

state update.

1: Tseq is an extended sequence tree with root node only.

2: Tpath = 〈root〉 ⊲ Initially the path tree contains only the root node.

3: repeat

4: Let current denote the active node of Tseq.

5: current = root ⊲ current is initially set to the root node of Tseq.

6: Let s be the current state.

7: h = s ⊲ Episode history is initially set to the current state.

8: repeat ⊲ for each step

9: if current 6= root then ⊲ Continue action selection from the current node

of Tseq.

10: Let N = {n1, . . . , nk} be the set of child nodes of current which contain

s in their continuation sets.

11: Select ni from N with sufficient exploration.

12: Let 〈ani , ψni〉 be the label of the edge connecting current to ni.

13: a = ani

14: current = ni ⊲ Advance to node ni.

15: else

16: current = root

17: Let N = {n1, . . . , nk} be the set of child nodes of the root node of Tseq

which contain s in their continuation sets.

18: if N is not empty and with probability psequence then

19: Select ni from N with sufficient exploration. ⊲ Initiate action

selection using the extended sequence tree.

20: Let 〈ani , ψni〉 be the label of the edge connecting root to ni.

21: a = ani

22: current = ni ⊲ Advance to node ni.

23: else

24: Choose a from s using the underlying RL algorithm.

25: end if

26: end if

27: Take action a, observe r and next state s′

28: Update Q(s, a) based on s, a, r, s′.

99



29: for all t similar to s do

30: if probability of receiving reward r at t by taking action a > 0 then

31: Update Q(t, a) based on t, a, r, ς(s, t).

32: end if

33: end for

34: Append r, a, s′ to h. ⊲ Update the observed history of events.

35: s = s′ ⊲ Advance to next state.

36: if current 6= root then ⊲ Check whether action selection can continue

from the active node or not.

37: Let N = {n1, . . . , nk} be the set of child nodes of current which contain

s in their continuation sets.

38: if N is empty then

39: current = root ⊲ Action selection using the extended sequence tree

cannot continue from the current state.

40: end if

41: end if

42: until s is a terminal state

43: update-sequence-tree(Tseq, h)

44: update-path-tree(H,Tpath, kmax)

45: Traverse Tpath and update eligibility values.

46: if time to re-calculate similarities of states then ⊲ ex. every n episodes.

47: calculate-similarity(Tpath, kmin, kmax)

48: end if

49: until a termination condition holds

100



-100

-80

-60

-40

-20

 0

 0  200  400  600  800  1000

re
w

a
rd

episode

q
q w/ stree(0.95)

q w/ equ.
q w/ cas.

Figure 5.22: Results for the 5 × 5 taxi problem with one passenger.

-600

-500

-400

-300

-200

-100

 0

 0  200  400  600  800  1000  1200  1400

re
w

a
rd

episode

q
q w/ stree(0.95)

q w/ equ.
q w/ cas.

Figure 5.23: Results for the 5 × 5 taxi problem with two passengers.

set to γ = 0.9 and a learning rate of alpha = 0.05 is used. All results are averaged

over 50 runs. While building the sequence tree in option discovery approach, ψdecay,

ξdecay, and eligibility thresholds are taken as 0.95, 0.99, and 0.01, respectively. The

sequence tree is generated during learning without any prior training session, and at

each time step processed with a probability of psequence = 0.3 to run the represented

set of abstractions. At decision points, actions are chosen ǫ-greedily based on reward

values associated with the tuples. While employing state similarity based approach,

the path tree is updated using an eligibility decay rate of ξdecay = 0.95 and an eligibility

threshold of ξthreshold = 0.1. In similarity calculations, we set kmin = 3, kmax = 5,

and τsimilarity = 0.8. The path tree is updated and state similarities are calculated

after each episode. An episode is terminated automatically if the agent could not

successfully complete the given task within 20000 time steps.

We first applied the combined method to 5 × 5 taxi problem with one passenger.

Figure 5.22 shows the progression of the reward obtained per episode. As it can be

101



-1400

-1200

-1000

-800

-600

-400

-200

 0

 0  500  1000  1500  2000  2500  3000

re
w

a
rd

episode

q
q w/ stree(0.95)

q w/ equ.
q w/ cas.

Figure 5.24: Results for the 5 × 5 taxi problem with four passengers.

seen from the learning curves, when both methods are used together, the agent learns

faster compared to the situation in which they are used individually. Furthermore, the

fluctuations are smaller which means that online performance is also more consistent.

The results show that two methods do not affect each other in a negative way.

Results for the 5 × 5 taxi problem with two and four passengers are presented in

Figure 5.23 and Figure 5.24. In both cases, we observed an improvement when the

combined method is used. As the number of passengers increase, i.e. the complexity

of the problem increases, the improvement becomes more evident.

102



CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we first proposed and analyzed the interesting and useful characteristics

of a tree-based learning approach that utilizes stochastic conditionally terminating

sequences. We showed how such an approach can be utilized for better represen-

tation of temporal abstractions. First, we emphasized the usefulness of discovering

Semi-Markov options automatically using domain information acquired during learn-

ing. Then, we demonstrated the importance of constructing a dynamic and compact

sequence-tree from histories. This helps to identify and compactly represent frequently

used sub-sequences of actions together with states that are visited during their exe-

cution. As learning progresses, this tree is constantly updated and used to implicitly

locate and run the appropriately represented options. Experiments conducted on

three well-known domains – with bottleneck states, repeated subtasks and continuous

state space, and macro-actions, respectively – highlighted the applicability and effec-

tiveness of utilizing such a tree structure in the learning process. The reported test

results demonstrate the advantages of the proposed tree-based learning approach over

the other learning approaches described in the literature.

Secondly, we demonstrated a novel approach, which during learning, identifies

states similar to each other with respect to action-reward patterns and based on

this information reflects state-action value updates of one state to multiple states.

Experiments conducted on two well-known domains highlighted the applicability and

effectiveness of utilizing such a relation between states in the learning process. The

reported test results demonstrate that experience transfer performed by the algorithm

is an attractive approach to make learning systems more efficient.

In this work we mainly focused on single-agent reinforcement learning, in which

other agents in the system are treated as a part of the environment. In the case of

103



multiple learning agents co-existing in the same environment this is problematic since

the environment is no longer stationary; the observations and actions of other agents

must also be taken into account while building policies. This necessitates the use of

game theoretic concepts, and in particular notion of stochastic games is needed to

model the interaction between learning agents and the environment [26, 21, 22, 5,

27, 18, 55]. Also, directly extending the state-action(-reward) histories, which both

methods are based upon, and related algorithms to include all such information from

each agent would not suffice or produce expected results, since, depending on the

agent’s situation and subtask to be solved, the behavior of the agent may depend only

a subset of other agents in the environment. The agent will additionally be faced with

the decision of selecting which history streams from other agents to consider. This

would require more complex metrics to be devised then those currently used. Thesis

work will be extended to handle multi-agent cooperative learning.

Our future work will first examine guaranteed convergence of the proposed meth-

ods and their adaptation to more complex and realistic domains which would require

the use of function approximators, such as neural networks, to represent larger state

and action spaces.

104



REFERENCES

[1] Robocup official site. http://www.robocup.org.

[2] E. Alonso, M. d’Inverno, D. Kudenko, M. Luck, and J. Noble. Learning in multi-
agent systems. Knowledge Engineering Review, 16(3):277–284, 2001.

[3] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13(4):341–379, 2003.

[4] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[5] M. Bowling and M. M. Veloso. An analysis of stochastic game theory for multi-
agent reinforcement learning. Technical report CMU-CS-00-165, Computer Sci-
ence Department, Carnegie Mellon University, 2000.

[6] S. J. Bradtke and M. O. Duff. Reinforcement learning methods for continuous-
time Markov decision problems. In G. Tesauro, D. Touretzky, and T. Leen,
editors, Advances in Neural Information Processing Systems, volume 7, pages
393–400. The MIT Press, 1994.

[7] S. J. Bradtke and M. O. Duff. Reinforcement learning methods for continuous-
time markov decision problems. In Advances in Neural Information Processing
Systems 7, pages 393–400, 1994.

[8] T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

[9] B. Digney. Learning hierarchical control structure for multiple tasks and changing
environments. In SAB ’98: Proceedings of the Fifth Conference on the Simulation
of Adaptive Behavior, 1998.

[10] S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy
of autonomous agents. In ECAI ’96: Proceedings of the Workshop on Intelligent
Agents III, Agent Theories, Architectures, and Languages, pages 21–35, London,
UK, 1997. Springer-Verlag.

[11] S. Girgin and F. Polat. Option discovery in reinforcement learning using frequent
common subsequences of actions. In IAWTIC ’05: International Conference on
Intelligent Agents, Web Technologies and Internet Commerce, pages 371–376, Los
Alamos, CA, USA, 2005. IEEE Computer Society.

[12] S. Girgin, F. Polat, and R. Alhajj. Effectiveness of considering state similarity for
reinforcement learning. In IDEAL ’06: International Conference on Intelligent
Data Engineering and Automated Learning. Springer Verlag, 2006.

[13] S. Girgin, F. Polat, and R. Alhajj. Improving reinforcement learning by using
stochastic conditionally terminating sequences. Submitted for Journal Review,
2006.

105



[14] S. Girgin, F. Polat, and R. Alhajj. Learning by automatic option discovery
from conditionally terminating sequences. In ECAI ’06: Proceedings of the 17th
European Conference on Artificial Intelligence, 2006.

[15] S. Girgin, F. Polat, and R. Alhajj. Positive impact of state similarity on reinforce-
ment learning performance. IEEE Transactions on System, Man, and Cybernetics
Part B: Cybernetics, 2007.

[16] S. Girgin, F. Polat, and R. Alhajj. State similarity based approach for improving
performance in rl. In IJCAI ’07: Proceedings of the 20th International Joint
Conference on Artificial Intelligence, 2007.

[17] R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization
in markov decision processes. Artificial Intelligence, 147(1-2):163–223, 2003.

[18] A. Greenwald and K. Hall. Correlated-q learning. In ICML ’03: Proceedings
of the Twentieth International Conference on Machine Learning, pages 242–249,
Washington DC, 2003. AAAI Press.

[19] M. E. Harmon and S. S. Harmon. Reinforcement learning: A tutorial.
http://www-anw.cs.umass.edu/ mharmon/rltutorial/, 1996.

[20] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier. Hierar-
chical solution of Markov decision processes using macro-actions. In Uncertainty
in Artificial Intelligence, pages 220–229, 1998.

[21] J. Hu and M. P. Wellman. Multiagent reinforcement learning: Theoretical frame-
work and an algorithm. In ICML ’98: Proceedings of the Fifteenth International
Conference on Machine Learning, pages 242–250, San Francisco, CA, USA, 1998.
Morgan Kaufmann Publishers Inc.

[22] J. Hu and M. P. Wellman. Nash q-learning for general-sum stochastic games.
Journal of Machine Learning Research, 4:1039–1069, 2003.

[23] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996.

[24] G. Kuhlmann and P. Stone. Progress in learning 3 vs. 2 keepaway. In D. Polani,
B. Browning, A. Bonarini, and K. Yoshida, editors, RoboCup-2003: Robot Soccer
World Cup VII. Springer Verlag, Berlin, 2004.

[25] L.-J. Lin. Self-improving reactive agents based on reinforcement learning, plan-
ning and teaching. Machine Learning, 8(3-4):293–321, 1992.

[26] M. L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In ICML ’94: Proceedings of the Eleventh International Conference on
Machine Learning, pages 157–163, New Brunswick, 1994.

[27] M. L. Littman. Friend or foe q-learning in general-sum markov games. In ICML
’01: Proceedings of the Eighteenth International Conference on Machine Learn-
ing, pages 322–328, June 2001.

[28] P. Maes. Artificial life meets entertainment: Life like autonomous agents. Com-
munications of ACM, 38(11):108–114, 1995.

106



[29] S. Mahadevan, N. Marchallek, T. K. Das, and A. Gosavi. Self-improving fac-
tory simulation using continuous-time average-reward reinforcement learning. In
ICML ’97: Proceedings of the 14th International Conference on Machine Learn-
ing, pages 202–210. Morgan Kaufmann, 1997.

[30] S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in reinforce-
ment learning via clustering. In ICML ’04: Proceedings of the 21st International
Conference on Machine Learning, pages 71–78, New York, NY, USA, 2004. ACM
Press.

[31] A. McGovern. acquire-macros: An algorithm for automatically learning macro-
actions. In the Neural Information Processing Systems Conference (NIPS’98)
workshop on Abstraction and Hierarchy in Reinforcement Learning, 1998.

[32] A. McGovern. Autonomous Discovery of Temporal Abstractions From Interac-
tions With An Environment. PhD thesis, University of Massachusetts Amherts,
May 2002.

[33] A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement
learning using diverse density. In ICML ’01: Proceedings of the 18th International
Conference on Machine Learning, pages 361–368, San Francisco, CA, USA, 2001.
Morgan Kaufmann Publishers Inc.

[34] A. McGovern and R. S. Sutton. Macro-actions in reinforcement learning: An
empirical analysis. Technical Report 98-79, University of Massachusetts, Depart-
ment of Comp. Science, 1998.

[35] I. Menache, S. Mannor, and N. Shimkin. Q-cut - dynamic discovery of sub-
goals in reinforcement learning. In ECML ’02: Proceedings of the 13th European
Conference on Machine Learning, pages 295–306, London, UK, 2002. Springer
Verlag.

[36] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[37] I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research
on multiagent systems. Applied Artificial Intelligence, 12(2–3):233–250, 1998.

[38] R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. In
Advances in Neural Information Processing Systems 10, pages 1043–1049, 1998.

[39] R. E. Parr. Hierarchical Control and learning for Markov decision processes. PhD
thesis, University of California at Berkeley, 1998.

[40] D. Precup, R. S. Sutton, and S. P. Singh. Theoretical results on reinforcement
learning with temporally abstract options. In ECML ’98: Proceedings of the 10th
European Conference on Machine Learning, pages 382–393, 1998.

[41] B. Ravindran and A. G. Barto. Symmetries and model minimization in
markov decision processes. Technical Report 01-43, University of Massachusetts,
Amherst, 2001.

[42] B. Ravindran and A. G. Barto. Model minimization in hierarchical reinforce-
ment learning. In SARSA ’02: Proceedings of the 5th International Symposium
on Abstraction, Reformulation and Approximation, pages 196–211, London, UK,
2002. Springer-Verlag.

107



[43] B. H. Roth. Architectural foundations for real-time performance in intelligent
agents. Real-Time Systems, 2(1-2):99–125, 1990.

[44] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2003.

[45] O. Simsek and A. G. Barto. Using relative novelty to identify useful temporal
abstractions in reinforcement learning. In ICML ’04: Proceedings of the 21st
International Conference on Machine Learning, Banff, Canada, 2004. ACM.

[46] O. Simsek, A. P. Wolfe, and A. G. Barto. Identifying useful subgoals in reinforce-
ment learning by local graph partitioning. In ICML ’05: Proceedings of the 22nd
International Conference on Machine Learning, pages 816–823. ACM, 2005.

[47] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvŕi. Convergence results
for single-step on-policy reinforcement-learning algorithms. Machine Learning,
38(3):287–308, 2000.

[48] M. Stolle and D. Precup. Learning options in reinforcement learning. In Pro-
ceedings of the 5th International Symposium on Abstraction, Reformulation and
Approximation, pages 212–223, London, UK, 2002. Springer Verlag.

[49] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu. Keepaway soccer: From
machine learning testbed to benchmark. In I. Noda, A. Jacoff, A. Bredenfeld,
and Y. Takahashi, editors, RoboCup-2005: Robot Soccer World Cup IX. Springer
Verlag, Berlin, 2006. To appear.

[50] P. Stone and R. S. Sutton. Scaling reinforcement learning toward RoboCup
soccer. In ICML ’01: Proceedings of the Eighteenth International Conference on
Machine Learning, pages 537–544. Morgan Kaufmann, San Francisco, CA, 2001.

[51] P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement learning for RoboCup-
soccer keepaway. Adaptive Behavior, 2005. To appear.

[52] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998. A Bradford Book.

[53] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: a frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence,
112(1-2):181–211, 1999.

[54] C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3/4):279–292,
1992.

[55] M. Weinberg and J. S. Rosenschein. Best-response multiagent learning in non-
stationary environments. In The Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems, New York, July 2004. To appear.

[56] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2):115–152, 1995.

[57] M. Zinkevich and T. R. Balch. Symmetry in markov decision processes and its
implications for single agent and multiagent learning. In C. E. Brodley and A. P.
Danyluk, editors, ICML ’01: Proceedings of the 18th International Conference
on Machine Learning, pages 632–. Morgan Kaufmann, 2001.

108



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Girgin, Sertan

Nationality: Turkish (TC)

Date and Place of Birth: 19 October 1979, Ankara

Marital Status: Single

email: sertan@ceng.metu.edu.tr

EDUCATION

Degree Institution Year of Graduation

MS METU Computer Engineering 2003

BS METU Computer Engineering 2000

BS METU Mathematics (Double Major) 2000

High School Gazi Anatolian High School, Ankara 1996

WORK EXPERIENCE

Year Place Enrollment

2005-2006 University of Calgary, Canada Researcher

2000-2005 METU Department of Computer Engineering Research Assistant

1996-2000 TUBITAK Bilten Part-time Researcher

FOREIGN LANGUAGES

Advanced English, Intermediate German

PUBLICATIONS

1. Girgin S., Polat F., and Alhajj R., Positive Impact of State Similarity on Re-

inforcement Learning Performance, IEEE Transactions on Systems, Man, and

Cybernetics Part B: Cybernetics, 2007

2. Girgin S., Polat F., and Alhajj R., State Similarity Based Approach for Improv-

ing Performance in RL, Proceedings of the 20th International Joint Conference

109



on Artificial Intelligence (IJCAI), 2007

3. Girgin S., Polat F., and Alhajj R., Effectiveness of Considering State Similarity

for Reinforcement Learning, Proceedings of the 7th International Conference on

Intelligent Data Engineering and Automated Learning (IDEAL), 2006

4. Sahin E., Girgin S., and Ugur E., Area Measurement of large closed regions with

a mobile robot, Autonomous Robots, Vol. 21, No. 3, pp 255-266, November 2006

5. Girgin S., Polat F., and Alhajj R., Learning by Automatic Option Discovery

from Conditionally Terminating Sequences, Proceedings of the 17th European

Conference on Artificial Intelligence (ECAI), 2006

6. Girgin S., and Polat F., Option Discovery in Reinforcement Learning using Fre-

quent Common Subsequences of Actions, Proceedings of International Confer-

ence on Intelligent Agents, Web Technologies and Internet Commerce (IAWTIC),

2005

7. Sahin E., Girgin S., and Ugur E., Area Measurement of large closed regions with

a mobile robot, METU-CENG-TR-2005-06, Technical Report, 2005

8. Polat F., Cosar A., Girgin S., Tan M., Cilden E., Balci M., Gokturk E., Ka-

pusuz E., Koc V., Yavas A., and Undeger C., Küçük Ölçekli Harekatın Modellen-

mesi ve Simülasyonu, USMOS’05 I. Ulusal Savunma Uygulamaları Modelleme

ve Simülasyon Konferansı, 2005, Ankara, Turkey

9. Girgin S., and Sahin E., Blind area measurement with mobile robots, Proceed-

ings of the 8th Conference on Intelligent Autonomous Systems (IAS 8), 2004,

Amsterdam, The Netherlands, (Also published as Technical report CMU-RI-

TR-03-42, Carnegie Mellon University, Pittsburgh, USA, October 2003.)

10. Undeger C., Balci M., Girgin S., Koc V., Polat F., Bilir S. and Ipekkan Z.,

Platform Optimization and Simulation for Surviellance of Large Scale Terrains,

Proceedings of Interservice/Industry Training, Simulation and Education Con-

ference, 2002, Orlando, FL

110



ACADEMIC GRANTS

• The Scientific and Technical Research Council of Turkey, December 2005 - De-

cember 2006, Discovery of Temporal Abstraction and Hierarchical Structure in

Reinforcement Learning, Project No. 105E181(HD-7)

PERSONAL ACHIEVEMENTS

• Best Graduation Project Reward, Comparison of Genetic Operators in OBDD

Variable Ordering Problem, Department of Computer Engineering, Middle East

Technical University, 2000

• 2nd Place, II. Programming Contest, ACM-SIGART and Computer Society of

Bilkent University, 1996

• Member of National Team, Balkan Olympiad in Informatics, 1995

• Bronze Medal, II. National Olympics in Informatics, TUBITAK, 1994

• 1st Place, Golden Diskette’94 Programming Contest, PCWORLD/Turkey Mag-

azine, 1994

• 1st Place, Golden Diskette’93 Programming Contest, PCWORLD/Turkey Mag-

azine, 1993

HOBBIES

Outdoor sports (XC Skiing, Orienteering, Running, Bicycling, Canoeing), Amateur

Radio Operator (TA2MFB, 1999-), Amateur Seaman (2004-)

111


	PLAGIARISM
	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER
	INTRODUCTION
	BACKGROUND
	Markov Decision Processes
	Semi-Markov Decision Processes and Options
	Options

	Option Discovery
	Equivalence in Reinforcement Learning

	PROBLEM SET
	Six-room Maze Problem
	Taxi Problem
	Keepaway Subtask of Robotic Soccer

	IMPROVING REINFORCEMENT LEARNING BY AUTOMATIC OPTION DISCOVERY
	Options in the Form of Conditionally Terminating Sequences
	Conditionally Terminating Sequences
	Extending Conditionally Terminating Sequences
	Stochastic Conditionally Terminating Sequences
	Online Discovery of CTS based Abstractions

	Experiments
	Comparison with Standard RL Algorithms
	Scalability
	Abstraction Behavior
	Effects of the Parameters
	Effect of Non-determinism in the Environment
	Quality of the Discovered Abstractions
	Results for the Keepaway Problem
	Comparison with acQuire-macros Algorithm


	EMPLOYING STATE SIMILARITY TO IMPROVE REINFORCEMENT LEARNING PERFORMANCE
	Reinforcement Learning with Equivalent State Update
	Finding Similar States
	Experiments
	Comparison with Standard RL Algorithms
	Scalability
	Effects of the Parameters
	Effect of Non-determinisim in the Environment
	Comparison with Experience Replay

	Combining State Similarity Based Approach with Option Discovery

	CONCLUSION AND FUTURE WORK
	REFERENCES

