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ABSTRACT

GAS-KINETIC METHODS FOR 3-D INVISCID AND VISCOUS FLOW

SOLUTIONS ON UNSTRUCTURED/HYBRID GRIDS

Ilgaz, Murat

Ph.D., Department of Aerospace Engineering

Supervisor: Prof. Dr. İsmail H. Tuncer

February 2007, 149 pages

In this thesis, gas-kinetic methods for inviscid and viscous flow simulations

are developed. Initially, the finite volume gas-kinetic methods are investigated

for 1-D flows as a preliminary study and are discussed in detail from theoret-

ical and numerical points of view. The preliminary results show that the gas-

kinetic methods do not produce any unphysical flow phenomena. Especially

the Gas-Kinetic BGK method, which takes into account the particle collisions,

predicts compressible flows accurately. The Gas-Kinetic BGK method is then

extended for the solution of 2-D and 3-D inviscid and viscous flows on un-

structured/hybrid grids. The computations are performed in parallel. Various
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inviscid and viscous test cases are considered and it is shown that the Gas-

Kinetic BGK method predicts both inviscid and viscous flow fields accurately.

The implementation of hybrid grids for viscous flows reduces the overall num-

ber of grid cells while enabling the resolution of boundary layers. The parallel

computations significantly improve the computation time of the Gas-Kinetic

BGK method which, in turn, enable the method for the computation of practi-

cal aerodynamic flow problems.

Keywords: Gas-kinetic methods, Gas-Kinetic BGK method, hybrid grids, par-

allel computing, inviscid and viscous flows.
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ÖZ

DÜZENSİZ/HİBRİD ÇÖZÜM AĞLARI ÜZERİNDE 3-BOYUTLU

VİSKOZİTESİZ VE VİSKOZ AKIŞ ÇÖZÜMLEMELERİ İÇİN GAZ-KİNETİK

YÖNTEMLER

Ilgaz, Murat

Doktora, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. İsmail H. Tuncer

Şubat 2007, 149 sayfa

Bu tezde, viskozitesiz ve viskoz akış benzetimleri için gaz-kinetik yöntemler

geliştirilmiştir. Başlangıç olarak, 1-boyutlu akışlar için sonlu hacim gaz-kinetik

yöntemler araştırılmış ve teorik ve nümerik açıdan detaylı tartışmalar yapıl-

mıştır. Elde edilen ilk sonuçlar, gaz-kinetik yöntemlerin fiziksel olmayan hiçbir

olay ortaya çıkarmadığını göstermiştir. Özellikle, parçacık çarpışmalarını göz

önüne alan Gaz-Kinetik BGK yöntemi sıkıştırılabilir akışları doğru bir şekilde

hesaplamıştır. Gaz-Kinetik BGK yöntemi daha sonra düzensiz/hibrid çözüm

ağları üzerinde 2- ve 3-boyutlu viskozitesiz ve viskoz akış çözümleri için geliş-
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tirilmiştir. Çözümlemeler paralel ortamda yapılmıştır. Çeşitli viskozitesiz ve

viskoz test problemleri göz önüne alınmış ve Gaz-Kinetik BGK yönteminin

hem viskozitesiz hem de viskoz akışları doğru bir şekilde hesapladığı gösteril-

miştir. Viskoz akışlar için hibrid çözüm ağı kullanımı, toplam çözüm ağı sayı-

sını düşürmekle birlikte sınır tabakanın çözümlenmesine olanak sağlamıştır.

Paralel hesaplamalar ise Gaz-Kinetik BGK yönteminin çözümleme süresini

önemli ölçüde geliştirmiş ve yöntemin pratik aerodinamik akış problemleri-

nin çözümünde kullanılabilmesine olanak sağlamıştır.

Anahtar Kelimeler: Gaz-kinetik yöntemler, Gaz-Kinetik BGK yöntemi, hibrid

çözüm ağları, paralel hesaplama, viskozitesiz ve viskoz akışlar.
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CHAPTER 1

INTRODUCTION

There are, in general, two ways to describe fluid motion. The first one is the

continuum approach which is based on macroscopic quantities such as mass,

momentum and energy densities, as well as the physical laws governing the

evolution of these quantities such as Euler and Navier-Stokes equations. The

other description comes from microscopic considerations, i.e., gas-kinetic the-

ory. The fundamental quantity in this description is the gas distribution func-

tion which gives the number density of the molecules in a six-dimensional

phase space (physical and velocity space). The evolution equation for the gas

distribution function is the Boltzmann equation. Physically, the gas-kinetic

equation provides more information about the gas flow and has larger appli-

cability than the macroscopic one.

Over the past years, there has been tremendous amount of effort to develop

numerical methods for the solution of fluid flow equations especially in the
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continuum approach. In the following section, the numerical methods devel-

oped so far have been reviewed in both continuum and gas-kinetic points of

view.

1.1 Overview of Numerical Methods

1.1.1 Methods Based on Continuum Approach

In the continuum approach, an overwhelming number of numerical methods

for the solution of the governing equations has been developed over the years

and the development still continues. Most of these methods employ a separate

discretization in space and in time. Generally, a computational grid is used

first either to construct control volumes and to evaluate the flux integrals, or

to approximate the spatial derivatives of the flow quantities. The resulting

time-dependent equations are then advanced in time, starting from a known

initial solution. The spatial discretization schemes can be investigated in three

main categories, namely finite difference, finite volume, and finite element methods

while the temporal discretization is performed using either explicit or implicit

time integration schemes.

The finite difference method was the first method applied to the numerical so-

lution of differential equations. It is directly applied to the differential form

of the governing equations. The principle is to employ a Taylor series expan-

sion for the discretization of the derivatives of the flow variables on structured

grids. An important advantage of the finite difference methodology is its sim-

plicity. Another advantage is the easy calculation of high-order approxima-
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tions, and hence to achieve high-order accuracy. On the other hand, because

the method requires a structured grid, its application for complex geometries

is limited. Furthermore, the application of finite difference method on curvi-

linear grids requires coordinate transformation, which complicates its formu-

lation.

The finite volume method utilizes the integral formulation of the fluid flow

equations. It discretizes the governing equations by first dividing the physical

domain into a number of discrete control volumes. The physical flux is then

approximated by the sum of the fluxes crossing the individual faces of the

control volume. There are basically two approaches in finite volume method

for the solution strategy in control volumes: cell-centered scheme and cell-vertex

scheme. In cell-centered scheme, the flow quantities are calculated at the cen-

troids of the grid cells. Thus, the control volumes are identical to the grid

cells. In cell-vertex scheme, the flow variables are calculated at the grid points.

The control volume is generally constructed such that it is centered around the

grid point. The main advantage of the finite volume method is that the spatial

discretization is carried out directly in the physical space. Thus, there are no

additional difficulties due to the coordinate transformation as in the case of

the finite difference method. One further advantage over the finite difference

method is that it is very flexible in terms of grid types used. It can be easily

implemented on structured as well as on unstructured grids. Since the un-

structured grids are suitable for the discretization of complex geometries, the

finite volume method is widely used on unstructured grids.
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The finite element method was originally employed for structural analysis

only. However, at the beginning of the 1990’s, the finite element method has

gained popularity in the solution of the Euler and the Navier-Stokes equations.

The finite element method starts with a subdivision of the physical domain

into triangular (in 2-D) or into tetrahedral (in 3-D) elements. Thus, an unstruc-

tured grid has to be generated. Furthermore, the shape functions have to be

defined, which represent the variation of the solution inside an element, and

it is necessary to transform the governing equations from the differential form

into an equivalent integral form. The finite element method is attractive be-

cause of its integral formulation and the use of unstructured grids, which are

both preferable for flows in or around complex geometries. Moreover, it has

been used as a basis for the development of finite volume methods. However,

the finite element method has a very rigorous mathematical foundation and

the numerical effort is much higher in most cases.

1.1.1.1 Spatial Discretization and Flux Evaluations

The finite difference, finite volume and finite element methods are the basic

choices for the spatial discretization. Within each method, various numerical

schemes exist to perform the spatial discretization of both convective and vis-

cous fluxes. Only the schemes used for the discretization of convective fluxes,

namely central schemes and upwind schemes, are considered here.

The first category of schemes, which is based on the usage of central finite dif-

ference, is known as central schemes. In these schemes, the physical properties
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of the Euler equations, such as the characteristics, are not considered. The nu-

merical stability of the central schemes can only be established by adding arti-

ficial dissipation, which is based on a blend of 2nd- and 4th-order differences of

the flow variables. It should be noted that on unstructured/hybrid grids, the

explicit Runge-Kutta time-stepping scheme can become unstable, when com-

bined with a conventional central scheme. The main advantage of the central

schemes is that they are easily implemented and computationally efficient in

comparison to the upwind schemes.

The upwind schemes originate from the physical properties of the Euler equa-

tions. They distinguish between upstream and downstream wave propagation

directions and are able to capture discontinuities much more accurately than

central schemes. The major drawback of the upwind schemes is their inher-

ent numerical diffusion. For second or higher order spatial accuracy, the up-

wind schemes may generate spurious oscillations near strong discontinuities

and may need limiters in flux computations in order to prevent the numerical

instability. The upwind schemes may be considered in two groups: flux dif-

ference splitting schemes (approximate Riemann solvers) and flux vector splitting

schemes.

The flux difference splitting schemes are based on the solution of the Riemann

problem for discontinuous states at an interface. The values of the flow vari-

ables on either side of the interface are generally termed as the left and right

state values. The idea to solve a Riemann problem at the interface between

two control volumes was first introduced by Godunov [1]. In the view of Go-
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dunov’s approach, several approximate Riemann solvers were introduced to

enhance the efficiency of the exact Riemann solver, namely by Roe [2], Os-

her and Solomon [3] and Hartan, Lax and Van Leer [4]. In these methods,

the numerical fluxes at a cell interface are computed by solving the Riemann

problem approximately. In approximate solutions, the Riemann problem is ei-

ther locally linearized or integrated along a simple path defined by the state

variables.

The flux vector splitting schemes decompose the vector of convective fluxes

into two parts according to the sign of certain characteristic variables. The

first flux vector splitting schemes of this type were developed at the begin-

ning of 1980’s by Steger and Warming [5] and by Van Leer [6], respectively.

A second class of flux vector splitting schemes decomposes the flux vector

into a convective and a pressure (an acoustic) part. This idea is utilized by

schemes like AUSM (Advection Upstream Splitting Method) scheme of Liou

and Steffen [7], CUSP (Convective Upwind Split Pressure) scheme of Jame-

son [8, 9], LDFS (Low-Diffusion Flux-Splitting) scheme of Edwards [10] and

MAPS (Mach number-based Advection Pressure Splitting) scheme of Rossow

[10] with different physical and numerical interpretations. Although these

schemes have been found more efficient and robust than the approximate Rie-

mann solvers for many problems, they are not so accurate as approximate Rie-

mann solvers.

The flux difference splitting schemes, especially Roe’s approximate Riemann

solver, have gained much popularity because of their excellent resolution of
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boundary layers and shock-capturing property as well as easy implementation

on structured and unstructured grids. However, widespread applications and

intensive investigations have shown that approximate Riemann solvers still

need to be improved to prevent unphysical solutions such as expansion shocks,

carbuncle phenomena, odd-even decoupling, kinked Mach stem or failure of a local

linearization leading to negative density and/or pressure [12-17].

1.1.2 Methods Based on Gas-Kinetic Theory

In order to overcome the drawbacks of approximate Riemann solvers and flux

vector splitting schemes, researchers have adopted the kinetic formulations for

continuum applications in the last two decades. One group of these kinetic ap-

proaches is the Lattice Gas Cellular Automata (LGCA) and Lattice Boltzmann

Methods (LBM). LGCA and LBM are the methods for the simulation of fluid

flows which are quite different from Molecular Dynamics and methods based

on the spatial discretization of fluid flow equations (finite difference, finite vol-

ume and finite element methods). They are mainly based on discrete velocity

models. The idea is to construct a lattice (empty or occupied by at most one

particle) so that velocity or momentum can be assigned to particles by a vec-

tor connecting each node. The probability of particles in the lattice is given by

the particle distribution function, which is governed by the Bolztmann equa-

tion. The microscopic interactions are local at the nodes and after collisions,

the mass and momentum of the particles are updated and the particles are al-

lowed to move to linked neighboring node accordingly. The introduction of

LGCA and LBM and their history can be found in Refs. [18, 19, 20], and ref-
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erences therein. Although there are numerous studies related to LGCA and

LBM in the literature ranging from incompressible, turbulent flows and flows

for non-ideal gases to high speed thermal flows [21-26], the general idea about

LGCA and LBM is that they are most effective for and should be limited to the

low-Mach number (nearly incompressible) flow simulations due to the sam-

pling of the particle velocities around zero [27].

The other group of the kinetic approaches is based on the finite volume for-

mulation and flux evaluation using the gas-kinetic theory. In contrast to wave

motion that plays a key role in the Riemann solvers, the fundamental idea in

this approach is the particle motion and its trajectory, which are described in

a statistical fashion by a gas distribution function. The governing equation is

the Boltzmann equation which describes the evolution of the gas distribution

function in phase space under some assumptions. Due to the intrinsic non-

linear nature of the collision mechanism reflected in the Boltzmann equation,

simplified forms are usually used in deriving numerical fluxes. The central

issue in this class of schemes is how to model the gas distribution function

(or equivalently, particle motions) at a cell interface, from which numerical

fluxes are obtained by calculation of moments. Most Boltzmann-type schemes

adopt the collisionless Boltzmann equation, arguing that it can recover the Eu-

ler equations if the gas distribution is Maxwellian. After the development of

the Beam scheme by Sanders and Prendergast [28], several versions of colli-

sionless Boltzmann solver were developed by Reitz [29], Pullin (EFM, Equilib-

rium Flux Method) [30], Mandal and Despande (KFVS, Kinetic Flux Vector
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Splitting) [31] and Perthame [32], which employ, in one way or another, up-

winding at the particle level. The physics of particle motions behind this class

of schemes, however, is that the left and right moving particles generated in

each side from the equilibrium state are allowed to penetrate the other side

through a cell boundary without collisions. Due to the absence of collision

mechanism, these schemes always produce a large numerical viscosity and

heat conductivity, which reduce their accuracy. In order to reduce and control

artificial viscosity without losing the robustness of these methods, a numerical

procedure which takes into account of particle collisions was introduced by

Prendergast and Xu [33]. In this method, the collision effects were taken into

account by employing the BGK model [34] as an approximation of the Boltz-

mann equation. In the following studies, the BGK based gas-kinetic methods

have been well-established and extended to solve a wide range of applica-

tions [35-45]. The integral solution of the Gas-Kinetic BGK solvers has some

advantages over the approximate Riemann solvers in terms of the flexibility

of preparing initial data, the satisfaction of the entropy and positivity condi-

tion, a multidimensional gas evolution character and high level of robustness

[35, 37, 46]. This indicates that the Gas-Kinetic BGK solver is a promising al-

ternative to the approximate Riemann solvers for the spatial discretization of

fluid flow equations. Despite its certain advantages over the classical schemes,

the Gas-Kinetic BGK scheme has the major drawback of high computation

time.
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1.1.3 Parallel Computing

With the advent of computer technology in the last two decades, the use of

parallel processing in Computational Fluid Dynamics (CFD) problems has at-

tracted much attention especially when the problem consists of large systems

of equations to be solved in large domains. With parallel processing, the com-

putation time to solve a problem is significantly reduced by having several op-

erations, each being a part of the original computation, performed at the same

time. Today, parallel processing is a must for an efficient CFD algorithm/code

which aims the solution of complex 3-D real configurations.

1.1.4 Hybrid Grids

The type of the grid utilized in the solution of fluid flow equations is an other

important topic. Although numerical methods developed for the solution of

Euler and Navier-Stokes equations initiated in structured grid context, the use

of unstructured grids has become popular after 1990’s. In structured grids,

each grid point (vertex or node) is uniquely identified by the indices i, j, k and

the corresponding cartesian coordinates xi,j,k, yi,j,k and zi,j,k. The grid cells are

quadrilaterals in 2-D and hexahedra in 3-D. On the other hand, in unstructured

grids, the grid cells as well as grid points have no particular ordering, i.e.,

neighboring cells or grid points cannot be directly identified by their indices.

The grid cells are triangles in 2-D and tetrahedra in 3-D.

Both grid types have their own advantages and disadvantages. The main ad-

vantage of structured grids follows from the property that the indices i, j, k
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represent a computational space, since it directly corresponds to how the flow

variables are stored in the computer memory. This property allows it to access

the neighbors of a grid point very quickly and easily, just by adding or sub-

tracting an integer value to or from the corresponding index. The evaluation

of gradients, fluxes, and also the treatment of boundary conditions is greatly

simplified by this feature. The major drawback is the generation of structured

grids for complex geometries. Although this can be overcome by multiblock ap-

proach, the complexity of the flow solver is then increased. On the other hand,

unstructured grids offer the largest flexibility in the treatment of complex ge-

ometries. The main advantage of the unstructured grids is based on the fact

that triangular (2-D) or tetrahedral (3-D) grids can be generated automatically,

independent of the complexity of the domain. Another advantage is that so-

lution dependent grid refinement and coarsening can be handled in relatively

native and easy manner. The disadvantages of unstructured grids are the ne-

cessity of employing sophisticated data structures inside the flow solver and

the higher memory requirements.

Today, hybrid grid concept has become more feasible since it carries favorable

features of both structured and unstructured grids. The hybrid grids usually

consist of a mix of quadrilaterals and triangles in 2-D and of hexahedra, tetra-

hedra, prisms and pyramids in 3-D and they are mainly used in viscous flow

simulations. Quadrilateral elements in 2-D and prismatic or hexahedral ele-

ments in 3-D are employed near the solid walls while the rest of the domain

consists of triangles in 2-D and tetrahedra or pyramids in 3-D. The major ben-
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efit of such a hybrid grid is that the viscous boundary layers are well-resolved

while the total number of grid cells, edges, faces and possibly of grid points

is reduced. Although the generation of hybrid grids is non-trivial for geo-

metrically demanding cases, the time required to construct a hybrid grid for

a complex configuration is still significantly lower than the one required for a

multiblock structured grid.

1.2 Objective of the Thesis

The present thesis aims to accomplish the following tasks:

• Investigation of gas-kinetic theory based numerical methods in 1-D, in-

tensive theoretical and numerical discussions and comparisons with clas-

sical methods through a wide range of application in order to show the

accuracy and robustness of Gas-Kinetic BGK method.

• Design and analysis of finite volume Gas-Kinetic BGK method for 2-D

and 3-D inviscid and viscous flows on unstructured/hybrid grids which

is not done before.

• Implementation of Gas-Kinetic BGK method to obtain solutions on dis-

tributed computers to enhance the computation time.
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CHAPTER 2

GOVERNING EQUATIONS OF FLUID FLOW

AND GAS-KINETIC THEORY

There are two fundamental ways of describing fluid motion: continuum ap-

proach and gas-kinetic theory. In continuum approach, individual molecules are

ignored and the fluid is viewed as a continuous matter. At each point of this

continuous fluid, unique values of the density, velocity, pressure and temper-

ature field are assumed to exist. The fact that this continuous fluid must obey

the conservation laws of mass, momentum and energy gives rise to a set of par-

tial differential equations (Euler or Navier-Stokes equations) in differential or

integral form. These governing equations are closed by specifying equations

of state and constitutive relations. Alternatively, the gas-kinetic theory treats

the fluid as consisting of molecules whose motion is governed by the laws of

dynamics. Actually, it attempts to derive the macroscopic behavior of the fluid

by a statistical or probabilistic approach. The fundamental quantity is the gas
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distribution function and the governing equation is the Boltzmann equation.

The same set of partial differential equations in continuum approach can be

obtained from the gas-kinetic theory provided that the fluid is in near equilib-

rium.

The validity of the two methods lies in two different domains. The contin-

uum approach is appropriate only if the microscopic scale, the mean free path

of molecules [47], is negligible compared to the smallest physical length scale

of the flow field. On the other hand, the gas-kinetic theory is mainly used

when the concept of continuum is no longer valid although it spans all the

flow regimes in molecular level.

In this chapter, the basics of the continuum fluid flow and the gas-kinetic the-

ory are reviewed. First, the governing equations are given in continuum point

of view. Then, basic concepts of gas-kinetic theory is introduced. Finally, the

relations between the two approaches are presented and the Euler and Navier-

Stokes equations are derived from gas-kinetic point of view.

2.1 Continuum Fluid Flow and Governing Equations

Fluid Dynamics is the investigation of interactive motion of a large number of

individual particles. It is supposed that the density of the fluid is high enough

so that it can be approximated as continuum. Continuum approach implies that

even an infinitesimally small element of fluid still contains a sufficient number

of particles for which mean velocity and mean kinetic energy
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can be specified. In this way, one can be able to define velocity, pressure, tem-

perature, density and other important quantities at each point of the fluid.

The derivation of the principal equations of fluid dynamics is based on the fact

that the dynamical behavior of a fluid is determined by the following conserva-

tion laws, namely:

• the conservation of mass,

• the conservation of momentum,

• the conservation of energy.

In addition to the conservation laws, constitutive relations as well as the equa-

tion of state are necessary to close the system.

2.1.1 The Conservation of Mass

The conservation of mass states that the time rate of change of the total mass

inside any fixed volume Ω is equal to the net mass flow through some surface

S on Ω. In integral form, the conservation of mass is simply

∂

∂t

∫
Ω

ρ dΩ +
∮

∂Ω
ρ (V · n) dS = 0. (2.1)

Using the divergence theorem, the differential form becomes

∂ρ

∂t
+

∂(ρui)

∂xi

= 0. (2.2)

2.1.2 The Conservation of Momentum

The conservation of momentum is derived from the Newton’s 2nd Law which

states that the time variation of momentum is caused by the net force acting

15



on a mass element

∂

∂t

∫
Ω

ρV dΩ +
∮

∂Ω
ρV (V · n) dS =

∫
Ω

fe dΩ−
∮

∂Ω
p n dS +

∮
∂Ω

(τ · n) dS (2.3)

where fe are the external body forces (gravitational, magnetic, etc.) which act di-

rectly on the mass of the volume, p is the isotropic pressure component and τ is

the viscous stress tensor both of which act directly on the surface of the control

volume and are called as surface forces. For Newtonian fluids, the constitutive

relation between the stress tensor and flow variables is given by

τij = µ [(
∂ui

∂xj

+
∂uj

∂xi

)− 2

3
δij

∂uk

∂xk

] + ζ δij
∂uk

∂xk

. (2.4)

Here µ is the dynamic viscosity, ζ is the bulk viscosity and δij is the Kroneckers

delta. The corresponding differential form of the momentum equation is

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj

= fi −
∂p

∂xi

+
∂τij

∂xj

. (2.5)

2.1.3 The Conservation of Energy

The underlying principle behind the conservation of energy is the 1st Law of

Thermodynamics. For the control volume Ω, any changes in time of total energy

inside the volume are caused by the rate of work of forces acting on the volume

and by the net heat flux into it. That is,

∂

∂t

∫
Ω

ρE dΩ +
∮

∂Ω
ρE (V · n) dS =

∮
∂Ω

(q · n) dS

+
∫
Ω

(ρfe · V + q̇h) dΩ−
∮

∂Ω
p (V · n) dS +

∮
∂Ω

(τ · V) · n dS (2.6)

where q stands for the conductive heat flux, and q̇h the rate of heat transfer

by radiation or chemical reactions. The constitutive relation is defined by the
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Fourier’s law of heat conduction

qi = κ
∂T

∂xi

. (2.7)

Here κ is the thermal conductivity coefficient, and T is the absolute tempera-

ture. By divergence theorem, the differential form of the energy equation can

be obtained:

∂(ρE)

∂t
+

∂(ρEui)

∂xi

=
∂

∂xi

(κ
∂T

∂xi

) + (ρfiui + q̇h)− p
∂ui

∂xi

+
∂(τijui)

∂xj

. (2.8)

2.1.4 The Equation of State

In order to solve the set of conservation laws above with the constitutive rela-

tions, the equation of state which provides the relation between the thermody-

namic variables must be specified. In aerodynamics, it is generally reasonable

to assume that the fluid behaves like a perfect gas, for which the equation of

state takes the form

p = ρ R T (2.9)

where R denotes the specific gas constant. It is convenient to express the pres-

sure in terms of conservative variables. Using the definitions

R = Cp − Cv, γ =
Cp

Cv

pressure is found to be

p = (γ − 1) ρ [E − U2 + V 2 + W 2

2
]. (2.10)

Finally, for air, the dynamic viscosity and the thermal conductivity coefficient

can be specified as

µ =
1.45 · 10−6 T 3/2

T + 110
,
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κ = Cp
µ

Pr

where the Prandtl number, Pr, is commonly assumed to be constant at 0.72.

2.1.5 Summary

The conservation laws along with the constitutive relations and the equation

of state give full description of a real fluid in continuum approach and this set

of governing equations is called as the Navier-Stokes equations. In differential

conservative form, the Navier-Stokes equations are summarized:

∂Q
∂t

+
∂FC

x

∂x
+

∂FC
y

∂y
+

∂FC
z

∂z
=

∂FV
x

∂x
+

∂FV
y

∂y
+

∂FV
z

∂z
+ Ω (2.11)

where

Q =



ρ

ρU

ρV

ρW

ρE



,

FC
x =



ρU

ρU2 + p

ρUV

ρUW

ρUH



, FC
y =



ρV

ρUV

ρV 2 + p

ρUW

ρV H



, FC
z =



ρW

ρUW

ρV W

ρW 2 + p

ρWH



,
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FV
x =



0

τxx

τyx

τzx

Θx



, FV
y =



0

τxy

τyy

τzy

Θy



, FV
z =



0

τxz

τyz

τzz

Θz



,

Ω =



0

ρfx

ρfy

ρfz

ρUfx + ρV fy + ρWfz + q̇h



,

with

H = E +
p

ρ
,

Θx = Uτxx + V τxy + Wτxz + κ
∂T

∂x
,

Θy = Uτyx + V τyy + Wτyz + κ
∂T

∂y
,

Θz = Uτzx + V τzy + Wτzz + κ
∂T

∂z
.

When the effects of viscosity and heat conductivity are negligibly small, the

real fluid can be approximated as an ideal fluid, the governing equations of

which is called as the Euler equations. The Euler equations are obtained by

taking the viscous fluxes, FV , and the source term, Ω, in Eq. (2.11) equal to 0.

2.2 Gas-Kinetic Theory

In contrast to the continuum approach, the gas-kinetic theory assumes that

gases are comprised of large number of molecular constituents, whose motion
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obey the laws of Newtonian mechanics. Directly solving the system with a

large number of degrees of freedom, which is on the order of approximately

1020, is impossibly difficult nor actually necessary. Rather, the collective be-

havior of such systems are important. Therefore, a statistical description of the

system becomes inevitable. The fundamental assumption in gas-kinetic the-

ory is that complete information of the gas at, or near thermal equilibrium is

included in a particle distribution function for the complete system

F (x, v, t) (2.12)

where x defines the space, v the microscopic velocities, and t the time.

It is important to formulate and solve the transport equation for the particle

distribution function with different collision processes dictated by the nature

of the interactions between the molecules. The solution of the transport equa-

tion leads to the macroscopic properties and transport coefficient of the gas by

taking the moments of the distribution function.

In this section, the gas distribution function and its moments are first pre-

sented. The full Boltzmann equation and the Boltzmann’s H-theorem are dis-

cussed. Finally, the simplified form of the Boltzmann equation, namely the

Boltzmann BGK equation and its solution are given.

2.2.1 The Gas Distribution Function and Its Moments

In gas-kinetic theory, the mass density is defined as

f(x, v, t) = m N F (x, v, t) (2.13)
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where m is the mass of a molecule, N is the number of molecules, and f is the

mass density distribution function (hereafter f will be called as gas distribu-

tion function).

The macroscopic quantities, namely, the density, the velocity and the internal

energy are found by taking the moments of the gas distribution function:

ρ(x, t) =
∫ +∞

−∞
f(x, v, t) dv, (2.14)

ρV(x, t) =
∫ +∞

−∞
v f(x, v, t) dv, (2.15)

ρe(x, t) =
1

2

∫ +∞

−∞
(v − V)2 f(x, v, t) dv. (2.16)

2.2.2 The Boltzmann Equation

The Boltzmann equation is the most widely accepted transport equation for

the gas distribution function in gas-kinetic theory. It is a nonlinear integro-

differential equation which is expressed as

∂f

∂t
+ v · ∂f

∂x
= =(f, f) (2.17)

where the external forces are ignored and the collision operator, =(f, f), is

given by

=(f, f) =
1

m

∫
S

∫ +∞

−∞
‖v1 − v‖ (f ′f ′1 − ff1) dv1 dS. (2.18)

In the above equation, v and v1 are the velocities after a binary collision, and dS

is the collision cross-section (see Refs. [47, 48] for the details of the Boltzmann

equation and collision process). It can be shown that conservation constraint

for the collision operator, =(f, f), yields [48]

∫ +∞

−∞
=(f, f) ϕ dv = 0 (2.19)
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where ϕ is a summational invariant, which can be mass, momentum or energy.

In equilibrium, f is independent of time, and if there is no external force, it is

independent of position. Then, the collision operator vanishes if and only if

f ′f ′1 − ff1 = 0.

The solution which satisfies the above condition is the Maxwell-Boltzmann (also

called as Maxwellian or equilibrium) distribution function defined as

fe = g = ρ (
m

2 π k T
)

D
2 exp [−(

m

2 k T
) (v − V)2] (2.20)

where k is the Boltzmann constant and D is the dimension of the flow.

Defining the Boltzmann function as

H(t) =
∫ +∞

−∞
f ln f dv

the Boltzmann’s H-theorem states that

dH(t)

dt
≤ 0 (2.21)

where the equality holds if and only if f = fe = g. The above theorem indicates

that the Boltzmann function, H(t), is a non-increasing function of time. It can

also be shown that

H(t) ≥ He(t) (2.22)

where He(t) is the Boltzmann function at equilibrium. These two results ver-

ify that H(t) is a monotonic function and is bounded from the below. Thus,

the particle collisions cause the distribution function to approach the equilib-

rium state, which is given in Eq. (2.20). Moreover, Boltzmann’s H-theorem
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(Eq. (2.21)) is consistent with the 2nd Law of Thermodynamics, which states that

the entropy of an isolated system can not decrease.

Due to the nonlinear nature of the collision operator, it is very difficult to solve

the Boltzmann equation directly. A more simplified version of the Boltzmann

equation, called the Bolztmann BGK equation, was suggested by the Bhatnagar,

Gross and Krook [34],

∂f

∂t
+ v · ∂f

∂x
=

g − f

τ
(2.23)

where the external forces are ignored and τ is the collision time. This model

keeps the essential features of the collision mechanism. As shown above, the

Bolztmann’s H-theorem states that the collision mechanism drives the distri-

bution function towards the equilibrium in an irreversible way, which is the

main idea in the BGK model. The equilibrium distribution function for the

Boltzmann BGK equation is defined as

g = ρ (
m

2 π k T
)

K+D
2 exp {−(

m

2 k T
) [(v − V)2 + ξ2]}. (2.24)

where ξ = (ξ1, ξ2, . . . , ξK) is the K-dimensional vector of velocities due to inter-

nal energy and K is given by

K =
2

γ − 1
−D. (2.25)

The only difference between Eq. (2.24) and Eq. (2.20) is the inclusion of ξ. For

molecules with internal energy such as rotational and vibrational energy, the

internal motion is taken into account with ξ. Since the equilibrium distribution

function, g, is determined from the macroscopic variables, the mass, momen-

tum and energy densities can be found by taking the moments of g
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

ρ

ρV

ρE


=

∫ +∞

−∞

∫ +∞

−∞
g



1

v

1
2
(v2 + ξ2)


dvdξ. (2.26)

The integral solution of the Boltzmann BGK equation [49] is

f(x, v, ξ, t) =
1

τ

∫ t

t0
g(x′, v, ξ, t′) exp [−(t− t′)/τ ] dt′

+ exp [(−(t− t0)/τ)] f0(x − v(t− t0)) (2.27)

where x′ = x−v(t− t′) is the trajectory of a particle, f0 is the initial nonequilib-

rium distribution function at t = t0, and g is the equilibrium state approached

by f .

2.3 Connection Between Two Descriptions of Fluid Flow

In this section, connection between the two descriptions of the fluid flow, namely

the continuum approach and gas-kinetic theory, is revealed and the derivation

of the Euler and Navier-Stokes equations from the Boltzmann BGK equation is

presented. For a more detailed derivation, see for example, Refs. [47-50].

Starting with the nondimensionalized form of the Boltzmann BGK equation

ε̂ (
∂f̂

∂t̂
+ v̂ · ∂f̂

∂x̂
) =

ĝ − f̂

τ̂
(2.28)

where ε̂ is a small parameter, the Chapman-Enskog expansion is given as [49]

f̂ = ĝ0 + ε̂ ĝ1 + ε̂2 ĝ2 + . . . =
+∞∑
n=0

ε̂n ĝn. (2.29)
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The recurrence relation here is

ĝn = −(
∂ĝn−1

∂t̂
+ v̂ · ∂ĝn−1

∂x̂
)

for n ≥ 1 and ĝ0 = ĝ. To the zeroth order of τ , similar approach yields f = g.

Substituting this result into Eq. (2.23) and taking the moments (see Appendix

A for the calculation of these integrals)

∫ +∞

−∞

∫ +∞

−∞
(
∂g

∂t
+ v · ∂g

∂x
)



1

v

1
2
(v2 + ξ2)


dvdξ = 0, (2.30)

the Euler equations are obtained:

∂Q
∂t

+
∂FC

x

∂x
+

∂FC
y

∂y
+

∂FC
z

∂z
= 0 (2.31)

where

Q =



ρ

ρU

ρV

ρW

ρE



, FC
x =



ρU

ρU2 + ρ
2λ

ρUV

ρUW

1
2
ρU(U2 + V 2 + W 2 + K+5

2λ
)



,

FC
y =



ρV

ρUV

ρV 2 + ρ
2λ

ρUW

1
2
ρV (U2 + V 2 + W 2 + K+5

2λ
)



, FC
z =



ρW

ρUW

ρV W

ρW 2 + ρ
2λ

1
2
ρW (U2 + V 2 + W 2 + K+5

2λ
)



,
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with λ = m
2 k T

, the pressure, p = ρ
2λ

, and the total enthalpy, H = 1
2
(U2 + V 2 +

W 2 + K+5
2λ

).

To the first order of τ , the recurrence relation (Eq. (2.29)) says that the departure

of f from the equilibrium state takes the form

f = g − τ (
∂g

∂t
+ v · ∂g

∂x
).

Inserting this result into Eq. (2.23) and taking the moments of the both sides

∫ +∞

−∞

∫ +∞

−∞
(
∂g

∂t
+ v · ∂g

∂x
)



1

v

1
2
(v2 + ξ2)


dvdξ

= τ
∫ +∞

−∞

∫ +∞

−∞
[
∂2g

∂t2
+ 2v · ∂

∂x
(
∂g

∂t
) + v · ∂

∂x
(v · ∂g

∂x
)]



1

v

1
2
(v2 + ξ2)


dvdξ (2.32)

the Navier-Stokes equations are obtained:

∂Q
∂t

+
∂FC

x

∂x
+

∂FC
y

∂y
+

∂FC
z

∂z
=

∂FV
x

∂x
+

∂FV
y

∂y
+

∂FV
z

∂z
(2.33)

where

Q =



ρ

ρU

ρV

ρW

ρE



, FC
x =



ρU

ρU2 + ρ
2λ

ρUV

ρUW

1
2
ρU(U2 + V 2 + W 2 + K+5

2λ
)



,
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FC
y =



ρV

ρUV

ρV 2 + ρ
2λ

ρUW

1
2
ρV (U2 + V 2 + W 2 + K+5

2λ
)



, FC
z =



ρW

ρUW

ρV W

ρW 2 + ρ
2λ

1
2
ρW (U2 + V 2 + W 2 + K+5

2λ
)



,

FV
x =



0

τ ∗xx

τ ∗yx

τ ∗zx

Θ∗
x



, FV
y =



0

τ ∗xy

τ ∗yy

τ ∗zy

Θ∗
y



, FV
z =



0

τ ∗xz

τ ∗yz

τ ∗zz

Θ∗
z



,

with

τ ∗xx = τp [(
4

3

∂U

∂x
) +

2K

3(K + 3)
(
∂U

∂x
+

∂V

∂y
+

∂W

∂z
)],

τ ∗xx = τp [(
4

3

∂V

∂y
) +

2K

3(K + 3)
(
∂U

∂x
+

∂V

∂y
+

∂W

∂z
)],

τ ∗xx = τp [(
4

3

∂W

∂z
) +

2K

3(K + 3)
(
∂U

∂x
+

∂V

∂y
+

∂W

∂z
)],

τ ∗xy = τ ∗yx = τp (
∂U

∂y
+

∂V

∂x
),

τ ∗xz = τ ∗zx = τp (
∂U

∂z
+

∂W

∂x
),

τ ∗yz = τ ∗zy = τp (
∂V

∂z
+

∂W

∂y
),

Θ∗
x = Uτ ∗xx + V τ ∗xy + Wτ ∗xz + τp [

k(K + 5)

2m

∂T

∂x
],

Θ∗
y = Uτ ∗yx + V τ ∗yy + Wτ ∗yz + τp [

k(K + 5)

2m

∂T

∂y
],

Θ∗
z = Uτ ∗zx + V τ ∗zy + Wτ ∗zz + τp [

k(K + 5)

2m

∂T

∂z
].
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Here, the pressure and the total enthalpy are again p = ρ
2λ

, and H = 1
2
(U2 +

V 2+W 2+ K+5
2λ

), respectively, the dynamic viscosity is µ = τp, the bulk viscosity

is ζ = µ 2K
3(K+3)

and the heat conductivity coefficient is κ = µk(K+5)
2m

.

It should be noted that the above derivation of the Navier-Stokes equations

from the Boltzmann BGK equation corresponds to a Prandtl number of 1. That

is, the Boltzmann BGK equation for the Navier-Stokes solution gives only one

parameter correct, namely, the dynamic viscosity or the heat conductivity co-

efficient and a model should be used to obtain both coefficients correctly.
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CHAPTER 3

NUMERICAL METHOD

The gas-kinetic methods for the fluid flow solutions use the Boltzmann equa-

tion as the governing equation. The fundamental task in the construction of

a finite volume gas-kinetic method is to evaluate the time-dependent gas dis-

tribution function at a cell interface, from which the numerical fluxes can be

computed. That is, in a finite volume gas-kinetic method, the local solution of

the Boltzmann equation is utilized to find the flux at the cell interface.

In this chapter, the gas-kinetic numerical method utilized for the solution of

Euler and Navier-Stokes equations is presented in 2-D and 3-D, respectively.

As a preliminary study, the gas-kinetic theory based methods are investigated

in 1-D and intensive physical and numerical discussions are presented. The

structure of the numerical methodology is then explained in 2-D and 3-D, re-

spectively, in terms of spatial and temporal discretization. Finally, the bound-

ary conditions and the parallel processing methodology employed are sum-
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marized.

3.1 Preliminary Study on Gas-Kinetic Methods in 1-D

In this section, the finite volume gas-kinetic methods are presented in 1-D.

Roe’s flux difference splitting scheme is first reviewed and the discretized forms

of the Kinetic Flux Vector Splitting and the Gas-Kinetic BGK schemes are then

given. The physical and numerical aspect of these methods are discussed in

detail.

3.1.1 The Finite Volume Gas-Kinetic Methods

The finite volume gas-kinetic methods use the Boltzmann equation as the gov-

erning equation. The Boltzmann equation in 1-D can be written as

∂f

∂t
+ u

∂f

∂x
= =(f, f). (3.1)

The connection between the gas distribution function and the macroscopic

flow variables is

Q =



ρ

ρU

ρE


=

∫ +∞

−∞

∫ +∞

−∞
f



1

u

1
2
(u2 + ξ2)


du dξ, (3.2)

and the corresponding numerical fluxes are

F(Q) =



Fρ

FρU

FρE


=

1

∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

−∞
u f



1

u

1
2
(u2 + ξ2)


du dξ dt. (3.3)
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Taking the moments of the Boltzmann equation and integrating with respect

to du dξ in phase space, dx in a numerical cell [xj−1/2, xj+1/2] and dt in a time

step [tn, tn+1] (i.e., forward Euler temporal discretization), a finite volume gas-

kinetic method can be constructed,

∫ tn+1

tn

∫ xj+1/2

xj−1/2

∫ +∞

−∞

∫ +∞

−∞
(
∂f

∂t
+ u

∂f

∂x
)



1

u

1
2
(u2 + ξ2)


du dξ dx dt

=
∫ tn+1

tn

∫ xj+1/2

xj−1/2

∫ +∞

−∞

∫ +∞

−∞
=(f, f)



1

u

1
2
(u2 + ξ2)


du dξ dx dt, (3.4)

from which one can get

Qn+1
j − Qn

j = −∆t

∆x
(Fj+1/2 − Fj−1/2)

+∆t
∫ tn+1

tn

∫ xj+1/2

xj−1/2

∫ +∞

−∞

∫ +∞

−∞
=(f, f)



1

u

1
2
(u2 + ξ2)


du dξ dx dt.

(3.5)

Here the last term (i.e., collision term) is already zero for the collisionless Boltz-

mann equation. For the Bolztmann BGK equation, this term also vanishes due

to the conservation constraint given in Eq. (2.19). Thus, Eq. (3.5) becomes

Qn+1
j − Qn

j = −∆t

∆x
(Fj+1/2 − Fj−1/2). (3.6)

where Fj+1/2 is the numerical flux across a cell interface. Similar finite volume

formulations can be derived in 2-D and 3-D, respectively.
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3.1.2 Roe’s Flux Difference Splitting Scheme in 1-D

The philosophy behind Roe’s approximate Riemann solver is to compute ap-

proximate solutions to the Riemann problem by considering the set of linear

conservation laws. Its derivation is based on a one-dimensional interaction

of characteristic waves. Hence, the velocities parallel to the cell interface are

ignored and the differences in the parallel components are assumed to occur

across the contact surface [2].

One-dimensional space is divided uniformly by numerical cells and each cell

occupies a small space x ∈ [xj−1/2, xj+1/2] where j + 1/2 denotes the cell inter-

face between cells j and j + 1. The first order Roe’s flux difference splitting

schemes is presented below:

3.1.2.1 The First Order Formulation

Since Roe scheme is based on linear conservative laws and the Euler equations

are nonlinear, the equations are linearized by evaluating the Jacobian matrix

A = ∂F/∂Q with the following averaged quantities:

ρ̃ =
√

ρj ρj+1, (3.7)

Ũ =
Uj + Uj+1

√
ρj+1/ρj

1 +
√

ρj+1/ρj

, (3.8)

H̃ =
Hj + Hj+1

√
ρj+1/ρj

1 +
√

ρj+1/ρj

, (3.9)

ã2 = (γ − 1)(H̃ − Ũ2

2
). (3.10)
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The Roe-averaged matrix Ã is the mean value of A with the following proper-

ties:

• Ã(Qj, Qj+1) → A(Q) as Qj → Qj+1 → Q,

• Ã(Qj, Qj+1)[Qj+1 − Qj] = F(Qj+1)− F(Qj),

• Ã has a complete set of real eigenvalues and eigenvectors.

The third property ensures that the matrix Ã has three independent eigenval-

ues, which allows the matrix to be written in canonical form:

|Ã| = R̃ |Λ̃| L̃ (3.11)

where R̃ and L̃ are the right and left eigenvectors, respectively, and Λ̃ is the

diagonal matrix of eigenvalues.

Finally, the numerical fluxes for the mass, momentum and energy across each

cell interface can be found as

Fj+1/2 =



Fρ

FρU

FρE


j+1/2

=
1

2
[F(Qj) + F(Qj+1)− |Ã| (Qj+1 − Qj)]. (3.12)

3.1.2.2 Physical and Numerical Analysis

As specified in the previous section, Roe’s approximate Riemann solver is

based on the linearized conservation laws and depends highly on the Jacobian

matrix. The first property given ensures consistency of the governing equa-

tion so that the approximate solution tends to the exact solution for small dif-
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ferences in data across the cell interface. Moreover, the second property guar-

antees that the Roe-averaged Jacobian matrix satisfies the Rankine-Hugoniot

shock jump condition and is responsible for the sharp resolution of steady

shock waves. However, a major problem may appear for expansion fans in

some extreme cases and the entropy condition may be violated [2, 61]. In or-

der to prevent this unphysical solution, an entropy fix should be employed and

there is no mathematical or physical justification for applying such a fix. In ad-

dition, the scheme is not positivity preserving and negative density/pressure

may be observed for a flow expanding into vacuum [51]. The dependency

on the Jacobian matrix also limits the flexibility of the scheme. That is, the

Jacobian matrix differs for flows with different equations of state (e.g., real

gas flows) and the determination of the matrix for those cases is not always

straightforward.

3.1.3 The Kinetic Flux Vector Splitting Scheme in 1-D

The Kinetic Flux Vector Splitting (KFVS) scheme is based on the collisionless

Boltzmann equation, which ignores the particle collisions in the gas evolution.

In this section, the first and second order accurate upwind formulations for

one-dimensional flows are presented and the physical and numerical aspects

are discussed in detail.

The collisionless Boltzmann equation in 1-D can be written as

∂f

∂t
+ u

∂f

∂x
= 0. (3.13)

When the initial conditions are taken into consideration, the solution of this
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equation around any x is

f = f0(x− ut, t). (3.14)

The equilibrium state is assumed to be a Maxwellian (see Eq. (2.24)) and has

one-to-one correspondence with the macroscopic flow variables (ρ, ρU, ρE):

g = ρ (
λ

π
)

K+1
2 exp {−λ [(u− U)2 + ξ2]} (3.15)

where λ is given by

λ =
m

2 k T
=

K + 1

4

ρ

ρE − 1
2
ρU2

. (3.16)

One-dimensional space is divided uniformly by numerical cells and each cell

occupies a small space x ∈ [xj−1/2, xj+1/2] where j + 1/2 denotes the cell inter-

face between cells j and j + 1. The first and second order Kinetic Flux Vector

Splitting schemes are presented below:

3.1.3.1 The First Order Formulation

Assuming two constant equilibrium states to the left and right of a cell inter-

face (Fig. 3.1), the solution of the collisionless Boltzmann equation (Eq. (3.14))

at xj+1/2 and time t becomes

f(xj+1/2, u, ξ, t) = f0(x− ut)|x=xj+1/2
(3.17)

= gj H(u) + gj+1 [1−H(u)]

where H(u) is the Heaviside function defined as

H(u) =


0, u < 0

1, u > 0

.
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Figure 3.1: Constant initial gas distribution function for the first order KFVS
scheme.

From the above distribution function, the numerical fluxes for the mass, mo-

mentum and energy across the cell interface can be found as

Fj+1/2 =



Fρ

FρU

FρE


j+1/2

=
∫ +∞

−∞

∫ +∞

−∞
u f(xj+1/2, u, ξ, t)ψ du dξ (3.18)

=
∫ +∞

−∞

∫ +∞

0
u gj ψ du dξ +

∫ +∞

−∞

∫ 0

−∞
u gj+1ψ du dξ

where ψ stands for moments vector

ψ =



1

u

1
2
(u2 + ξ2)


. (3.19)

Using the recursive relations given in Appendix A to calculate these integrals,

the explicit form of the numerical fluxes in Eq. (3.18) becomes

Fρ

FρU

FρE


j+1/2

= ρj



Uj

2
erfc(−

√
λjUj) + 1

2

exp(−λjU2
j )√

πλj

(
U2

j

2
+ 1

4λj
)erfc(−

√
λjUj) + Uj

2

exp(−λjU2
j )√

πλj

(
U3

j

4
+ K+3

8λj
Uj)erfc(−

√
λjUj) + (

U2
j

4
+ K+2

8λj
)

exp(−λjU2
j )√

πλj


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+ρj+1



Uj+1

2
erfc(

√
λj+1Uj+1)− 1

2

exp(−λj+1U2
j+1)√

πλj+1

(
U2

j+1

2
+ 1

4λj+1
)erfc(

√
λj+1Uj+1)− Uj+1

2

exp(−λj+1U2
j+1)√

πλj+1

(
U3

j+1

4
+ K+3

8λj+1
Uj+1)erfc(

√
λj+1Uj+1)− (

U2
j+1

4
+ K+2

8λj+1
)

exp(−λj+1U2
j+1)√

πλj+1


where erfc is the complementary error function (a special case of the incom-

plete gamma function) is defined as

erfc(x) =
2

π

∫ ∞

x
exp (−t2) dt.

3.1.3.2 The Second Order Formulation

For the second order scheme, the reconstruction of conservative variables is

based on MUSCL (Monotonic Upstream Schemes for Conservation Laws) ap-

proach proposed by Van Leer [52]

Qj = Qj +
1

2
(∆̃Q)j− 1

2
, (3.20)

Qj+1 = Qj+1 −
1

2
(∆̂Q)j+ 3

2
, (3.21)

where

Q =



ρ

ρU

ρE


and min-mod slope limiter is used to prevent unwanted oscillations,

(∆̃Q)j− 1
2

= minmod [(∆Q)j− 1
2
, ω(∆Q)j+ 1

2
],

(∆̂Q)j+ 3
2

= minmod [(∆Q)j+ 3
2
, ω(∆Q)j+ 1

2
],

with

(∆Q)j+ 1
2

= Qj+1 − Qj.
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Figure 3.2: Linearly varying initial gas distribution function for the second
order KFVS scheme.

The min-mod limiter function is defined as

minmod (a, ω b) = sgn(a) max{0, min[|a|, ω b sgn(a)]}

where 1 ≤ ω ≤ 2 and sgn(x) denotes the sign of x.

Assuming two linearly varying equilibrium states to the left and right of a

cell interface (Fig. 3.2), the solution of the collisionless Boltzmann equation at

xj+1/2 and time t becomes

f(xj+1/2, u, ξ, t) = f0(x− ut)|x=xj+1/2
(3.22)

= gj (1− aj ut) H(u) + gj+1 (1− aj+1 ut) [1−H(u)]

where aj and aj+1 are the spatial slopes of the form

aj = a
(1)
j + a

(2)
j u + a

(3)
j

1

2
(u2 + ξ2), (3.23)

aj+1 = a
(1)
j+1 + a

(2)
j+1 u + a

(3)
j+1

1

2
(u2 + ξ2). (3.24)

Based on the relation between macroscopic and microscopic variables (see

Eq. (2.26)), the equilibrium states to the left and right of the cell interface can
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be determined using the Eqs. (3.20) and (3.21):

Qj =
∫ +∞

−∞

∫ +∞

0
gj ψ du dξ, Qj+1 =

∫ +∞

−∞

∫ 0

−∞
gj+1ψ du dξ. (3.25)

Once gj and gj+1 are obtained, the spatial slopes of the initial gas distribution

function, which have unique correspondence with the slopes of the conserva-

tive variables to the left and right of the cell interface, can be found from

Qj − Qj

∆x
=

∫ +∞

−∞

∫ +∞

0
aj gj ψ du dξ, (3.26)

Qj+1 − Qj+1

∆x
=

∫ +∞

−∞

∫ 0

−∞
aj+1 gj+1ψ du dξ. (3.27)

Finally, the corresponding numerical fluxes for the mass, momentum and en-

ergy across the cell interface can be obtained using

Fj+1/2 =



Fρ

FρU

FρE


j+1/2

=
1

∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

−∞
u f(xj+1/2, t, u, ξ)ψ du dξ dt

(3.28)

=
1

∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

0
u gj (1− aj ut)ψ du dξ dt

+
1

∆t

∫ ∆t

0

∫ +∞

−∞

∫ 0

−∞
u gj+1 (1− aj+1 ut)ψ du dξ dt.

3.1.3.3 Physical and Numerical Analysis

The gas evolution model in the Kinetic Flux Vector Splitting scheme is based

on the collisionless Boltzmann equation and it is shown in Chapter 2 that the

Euler equations can be derived from the Boltzmann equation with a local equi-

librium distribution function. Although the gas distribution is a Maxwellian
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inside each cell, the real gas distribution function which is used to evaluate

the numerical fluxes across the cell boundary is not Maxwellian at all; it is

composed of two half Maxwellians in u < 0 and u > 0 regions separately (see

Figs. 3.1 and 3.2). These nonequilibrium distributions do not correspond to the

real Euler solutions! In order to better understand the physical and numerical

mechanism, the first order scheme is analyzed in detail.

As every numerical scheme, the first order Kinetic Flux Vector Splitting scheme

is composed of two parts: the gas evolution and the projection. In the gas evo-

lution stage, the collisionless Boltzmann equation is solved and the particles

can transport freely at this stage. This free transport mechanism in the gas

evolution stage always evolves the system away from the Euler solutions (i.e.,

f becomes more and more different from the Maxwellian)! In the projection

stage, the conservative variables are averaged inside each cell through conser-

vation principles to have an equilibrium state, which actually corresponds to

a numerical collision process. Therefore, the projection stage drives the sys-

tem back to approach the Euler solution (i.e., the preparation of the equilib-

rium state) and without the projection stage, the Kinetic Flux Vector Splitting

scheme can not approach to Euler solutions.

On the other hand, the positivity property of the first order KFVS scheme has

been proved [53]. That is, negative density or pressure have never been ob-

served in the first order KFVS once the initial conditions are physically reason-

able, even in the case of flow expanding into vacuum. Practically, positivity is

an important property for any numerical scheme especially in the inviscid flow
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solution of high speed flows. There are many popular methods which can not

satisfy this property, one of which is Roe’s approximate Riemann solver [51]!

It should also be noted that the evaluation of pressure which is based on the

equation of state employed does not appear in the formulations explicitly.

Therefore, the Kinetic Flux Vector Splitting scheme can easily be applied to

real gas flows as opposed to the Roe scheme, which requires the reformulation

of the Jacobian matrix.

In summary, although the KFVS scheme is positivity preserving and converges

to the Euler solution with the time step ∆t and cell size ∆x approaching zero,

with finite time step and cell size, the scheme usually gives dissipative results

due to the underlying physical and numerical consideration (i.e., insufficient

numerical collisions in the projection stage) and a real physical collision mecha-

nism is necessary.

3.1.4 The Gas-Kinetic BGK Scheme in 1-D

The Gas-Kinetic BGK scheme is based on the Boltzmann BGK equation. In

this section, the first and second order accurate upwind formulations for one-

dimensional flows are presented and the physical and numerical aspects are

discussed in detail.

The Boltzmann BGK equation in 1-D can be written as

∂f

∂t
+ u

∂f

∂x
=

g − f

τ
(3.29)
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where g is the equilibrium state approached by f over particle collision time τ ,

g = ρ (
λ

π
)

K+1
2 exp {−λ [(u− U)2 + ξ2]}. (3.30)

Since mass, momentum and energy are conserved during particle collisions, f

and g must satisfy the conservation constraint of

∫ +∞

−∞

∫ +∞

−∞

g − f

τ
ψ du dξ = 0. (3.31)

The general solution of this equation around any x is (see Eq. (2.27))

f(x, u, ξ, t) =
1

τ

∫ t

0
g(x′, u, ξ, t′) exp [−(t−t′)/τ ] dt′+exp (−t/τ) f0(x−ut) (3.32)

where x′ = x − u(t − t′) is the trajectory of a particle, f0 is the initial nonequi-

librium distribution function and g is the corresponding equilibrium state.

One-dimensional space is divided uniformly by numerical cells and each cell

occupies a small space x ∈ [xj−1/2, xj+1/2] where j + 1/2 denotes the cell in-

terface between cells j and j + 1. The first and second order Gas-Kinetic BGK

schemes are presented below:

3.1.4.1 The First Order Formulation

Assuming two constant equilibrium states for the initial gas distribution func-

tion to the left and right of a cell interface and a constant equilibrium state at

the cell interface (Fig. 3.3),

f0(x− ut)|x=xj+1/2
= gj H(u) + gj+1 [1−H(u)], (3.33)

g|x=xj+1/2
= g0, (3.34)
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Figure 3.3: Constant initial gas distribution function and the equilibrium state
for the first order Gas-Kinetic BGK scheme.

the solution of the Boltzmann BGK equation (Eq. 3.30) at xj+1/2 and time t

becomes

f(xj+1/2, u, ξ, t) = [1− exp (−t/τ)] g|x=xj+1/2
+ exp (−t/τ) f0|x=xj+1/2

. (3.35)

The equilibrium state at the cell interface, g0, is found by applying the conser-

vation constraint (Eq. (3.31)) along the cell interface

∫ +∞

−∞

∫ +∞

−∞
g0ψ du dξ =

∫ +∞

−∞

∫ +∞

−∞
f0(x− ut)|x=xj+1/2

ψ du dξ (3.36)

=
∫ +∞

−∞

∫ +∞

0
gj ψ du dξ +

∫ +∞

−∞

∫ 0

−∞
gj+1ψ du dξ.

The underlying physical assumption in the above equation is that the left and

right moving particles collapse at the cell interface to form an equilibrium state

g0.

From the above distribution function, the numerical fluxes for the mass, mo-
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mentum and energy across the cell interface can be found as

Fj+1/2 =



Fρ

FρU

FρE


j+1/2

=
1

∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

−∞
u f(xj+1/2, u, ξ, t)ψ du dξ dt.

(3.37)

In the first order Gas-Kinetic BGK scheme for 1-D flows, the term exp (−t/τ)

in Eq. (3.35) is usually assumed to be a constant (χ). Using the relations in

Appendix A, the explicit form of the numerical fluxes in Eq. (3.37) becomes



Fρ

FρU

FρE


j+1/2

= χ



F †
ρ

F †
ρU

F †
ρE


j+1/2

+ (1− χ)



F ‡
ρ

F ‡
ρU

F ‡
ρE


j+1/2

where



F †
ρ

F †
ρU

F †
ρE


j+1/2

= ρj



Uj

2
erfc(−

√
λjUj) + 1

2

exp(−λjU2
j )√

πλj

(
U2

j

2
+ 1

4λj
)erfc(−

√
λjUj) + Uj

2

exp(−λjU2
j )√

πλj

(
U3

j

4
+ K+3

8λj
Uj)erfc(−

√
λjUj) + (

U2
j

4
+ K+2

8λj
)

exp(−λjU2
j )√

πλj



+ρj+1



Uj+1

2
erfc(

√
λj+1Uj+1)− 1

2

exp(−λj+1U2
j+1)√

πλj+1

(
U2

j+1

2
+ 1

4λj+1
)erfc(

√
λj+1Uj+1)− Uj+1

2

exp(−λj+1U2
j+1)√

πλj+1

(
U3

j+1

4
+ K+3

8λj+1
Uj+1)erfc(

√
λj+1Uj+1)− (

U2
j+1

4
+ K+2

8λj+1
)

exp(−λj+1U2
j+1)√

πλj+1


,

and 

F ‡
ρ

F ‡
ρU

F ‡
ρE


j+1/2

= ρ0



U0

U2
0 + 1

2λ0

1
2
U3

0 + K+3
4λ0

U0


.
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Here the conservative variables at equilibrium state are found from Eq. (3.36)



ρ0

ρ0U0

ρ0E0


j+1/2

= ρj



1
2
erfc(−

√
λjUj)

Uj

2
erfc(−

√
λjUj) + 1

2

exp(−λjU2
j )√

πλj

(
U2

j

2
+ 1

4λj
)erfc(−

√
λjUj) + Uj

2

exp(−λjU2
j )√

πλj



+ρj+1



1
2
erfc(

√
λj+1Uj+1)

Uj+1

2
erfc(

√
λj+1Uj+1)− 1

2

exp(−λj+1U2
j+1)√

πλj+1

(
U2

j+1

2
+ 1

4λj+1
)erfc(

√
λj+1Uj+1)− Uj+1

2

exp(−λj+1U2
j+1)√

πλj+1


.

3.1.4.2 The Second Order Formulation

For the second order scheme, the reconstruction of conservative variables is

again based on MUSCL approach

Qj = Qj +
1

2
(∆̃Q)j− 1

2
, (3.38)

Qj+1 = Qj+1 −
1

2
(∆̂Q)j+ 3

2
. (3.39)

Assuming two linearly varying equilibrium states for the initial gas distribu-

tion function to the left and right of a cell interface and a linearly varying

equilibrium state at the cell interface (Fig. 3.4),

f0(x− ut)|x=xj+1/2
= gj (1− aj ut) H(u)

+gj+1 (1− aj+1 ut) [1−H(u)], (3.40)

g|x=xj+1/2
= g0 {1 + H(u) (1− aj ut)

+[1−H(u)] (1− aj+1 ut) + At}, (3.41)
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Figure 3.4: Linearly varying initial gas distribution function and the equilib-
rium state for the second order Gas-Kinetic BGK scheme.

the solution of the Boltzmann BGK equation (Eq. (3.29)) at xj+1/2 and time t

becomes

f(xj+1/2, u, ξ, t) = [1− exp (−t/τ)] g0

+{τ [−1 + exp (−t/τ)]} {aj H(u) + aj+1 [1−H(u)]}u g0

+τ [t/τ − 1 + exp (−t/τ)] A g0

+ exp (−t/τ){(1− aj ut) H(u) gj

+(1− aj+1 ut) [1−H(u)] gj+1}. (3.42)

Here aj and aj+1 are the spatial slopes of the initial distribution function, aj

and aj+1 are the spatial slopes of the equilibrium state and A is the time slope

all given by

aj = a
(1)
j + a

(2)
j u + a

(3)
j

1

2
(u2 + ξ2), (3.43)

aj+1 = a
(1)
j+1 + a

(2)
j+1 u + a

(3)
j+1

1

2
(u2 + ξ2), (3.44)

aj = a
(1)
j + a

(2)
j u + a

(3)
j

1

2
(u2 + ξ2), (3.45)

aj+1 = a
(1)
j+1 + a

(2)
j+1 u + a

(3)
j+1

1

2
(u2 + ξ2), (3.46)
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A = A
(1)

+ A
(2)

u + A
(3) 1

2
(u2 + ξ2). (3.47)

Based on the relation between macroscopic and microscopic variables (see

Eq. (2.26)), the equilibrium states to the left and right of the cell interface can

be determined using the Eqs. (3.38) and (3.39):

Qj =
∫ +∞

−∞

∫ +∞

0
gj ψ du dξ, Qj+1 =

∫ +∞

−∞

∫ 0

−∞
gj+1ψ du dξ. (3.48)

Once gj and gj+1 are obtained, the spatial slopes of the initial gas distribution

function, which have unique correspondence with the slopes of the conserva-

tive variables to the left and right of the cell interface, can be found from

Qj − Qj

∆x
=

∫ +∞

−∞

∫ +∞

0
aj gj ψ du dξ, (3.49)

Qj+1 − Qj+1

∆x
=

∫ +∞

−∞

∫ 0

−∞
aj+1 gj+1ψ du dξ (3.50)

After determining f0, the equilibrium state at the cell interface, g0, can be ob-

tained by applying the conservation constraint (Eq. 3.31) along the cell inter-

face

∫ +∞

−∞

∫ +∞

−∞
g0ψ du dξ =

∫ +∞

−∞

∫ +∞

0
gj ψ du dξ +

∫ +∞

−∞

∫ 0

−∞
gj+1ψ du dξ (3.51)

from which ρ0, ρ0U0 and ρ0E0 can be found. The spatial slopes of the equilib-

rium state can then be determined from

Qj − Q0

∆x
=

∫ +∞

−∞

∫ +∞

0
aj g0ψ du dξ, (3.52)

Qj+1 − Q0

∆x
=

∫ +∞

−∞

∫ 0

−∞
aj+1 g0ψ du dξ. (3.53)

Up to this point, the equilibrium states to the left, right and in the middle of

the cell interface as well as the corresponding spatial slopes are determined.
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The only unknown term is the time slope term A. Since both f and g contain

the time slope A, the conservation constraint (Eq. (3.31)) at the cell interface

can be applied and integrated over the time step ∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

−∞
(f − g)ψ du dξ dt = 0, (3.54)

from which A can be calculated.

Finally, the corresponding numerical fluxes for the mass, momentum and en-

ergy across the cell interface can be obtained using

Fj+1/2 =



Fρ

FρU

FρE


j+1/2

=
1

∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

−∞
u f(xj+1/2, u, ξ, t)ψ du dξ dt.

(3.55)

3.1.4.3 Physical and Numerical Analysis

The gas evolution model in the Gas-Kinetic BGK scheme is based on the Boltz-

mann BGK equation, which takes into account the particle collisions. As stated

by the Boltzmann’s H-theorem, this physical collision mechanism, which is

the main deficiency in the Kinetic Flux Vector Splitting scheme, causes the

nonequilibrium gas distribution function to approach to the equilibrium state

in the gas evolution stage. Thus, the Gas-Kinetic BGK scheme captures the Eu-

ler solutions without giving dissipative results. Moreover, the entropy increas-

ing property in the gas evolution stage along with the dissipative property in

the projection stage prevents the formation of any unphysical phenomena in

the Gas-Kinetic BGK scheme.
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As derived in Chapter 2, the Gas-Kinetic BGK scheme converges to the Navier-

Stokes equations in its second order approximation. The viscous fluxes are

related to the linear slope of the equilibrium state at the cell interface so that

separate evaluation of the viscous fluxes is not necessary as in the classical

schemes.

The positivity property of the first order Gas-Kinetic BGK scheme can be proved.

Since g0 > 0, f0 > 0 and χ ∈ [0, 1], f is strictly positive for all particle velocities.

Therefore, f has a positive density and temperature at the cell interface due to

the following relations

∫ +∞

−∞

∫ +∞

−∞
f dudξ > 0;

∫ +∞

−∞

∫ +∞

−∞
u2 f dudξ −

(
∫ +∞
−∞

∫ +∞
−∞ u f dudξ)2∫ +∞

−∞
∫ +∞
−∞ f dudξ

> 0.

Positive density and pressure at a cell interface does not mean that the final

scheme will keep the density and pressure positive inside each cell in the next

time step. However, the general proof of positivity for the Gas-Kinetic BGK

scheme is very difficult. The difficulty is mainly due to the variation of χ in a

real flow situation and an inappropriate choice of χ will not keep the scheme

positive. There have been various numerical studies for different values of χ

and it has been shown numerically that the Gas-Kinetic BGK scheme satisfies

the positivity up to a Mach number of 104 as long as χ ∈ [0, 1] [54, 55].

From gas-kinetic theory, the collision time should depend on macroscopic flow

variables such as density and temperature. For the Euler calculations, the col-

lision time τ is composed of two parts

τ = C1 ∆t + min[1, C2
|ρj+1/λj+1 − ρj/λj|
(ρj+1/λj+1 + ρj/λj)

] ∆t (3.56)
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where ∆t is the time step. The first term on the right hand side gives a limiting

threshold for the collision time to avoid the blowing up of the scheme in the

evaluations of ∆t/τ and exp(∆t/τ). It also provides a background dissipation

for the numerical calculations. For example, if C1 = 0.01, there will be 100

collisions in the smooth flow regions, which means that the artificial viscosity

coefficient in the Gas-Kinetic BGK scheme is reduced to 1/100 of the value in

the KFVS scheme. The second term is related to the pressure jump which intro-

duces additional artificial dissipation if high pressure gradients are present in

the flow. Generally, for 1-D shock tube problems, the results are not sensitive

to the values of C1 and C2. C1 takes the values from 0.01 to 0.1 and C2 is on the

order of 1. However, the values of C1 and C2 for 2-D and 3-D flows is a major

question!

Similar to the Kinetic Flux Vector Splitting scheme, in the Gas-Kinetic BGK

scheme, the evaluation of pressure, which is based on the equation of state

employed, does not appear in the formulations explicitly. Therefore, the Gas-

Kinetic BGK scheme can easily be applied to real gas flows as opposed to the

Roe scheme, which requires the reformulation of the Jacobian matrix.

3.2 Numerical Methodology in 2-D and 3-D

In this section, numerical methodology for the finite volume Gas-Kinetic BGK

method in 2-D and 3-D is presented. Since the finite volume method is con-

structed on separate discretization in space and time, the methodology em-

ployed is explained in terms of spatial and temporal discretization.

50



Figure 3.5: Elements of unstructured grids in 2-D and 3-D.

3.2.1 Spatial Discretization

The physical domain is first subdivided into a number of elements or con-

trol volumes in order to construct a finite volume spatial discretization. In

the present study, unstructured and hybrid grids are employed. Unstructured

grids consist of triangular and tetrahedral elements in 2-D and 3-D, respec-

tively (Fig. 3.5). On the other hand, hybrid grids are comprised of triangular

and quadrilateral elements in 2-D and a combination of tetrahedron, prismatic,

pyramid and hexahedron elements are used in 3-D (Fig. 3.6).

Following the methodology given in § 3.1.1, finite volume spatial discretization

for the Gas-Kinetic BGK method can be derived in 2-D and 3-D to be

∂Q
∂t

= − 1

Ω

∮
∂Ω

F · dS (3.57)

where Ω is any control volume and the surface integral denotes the fluxes

through control surfaces. Specifically, for the grid element volumes mentioned
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Figure 3.6: Elements of hybrid grids in 2-D and 3-D.

above, Eq. (3.57) can be approximated as

dQ
dt

= − 1

Ωe

N∑
j=1

Fj
ci ∆Sj. (3.58)

Here Ωe is the surface area or volume of the grid element, ∆Sj is the length

or surface area of the jth edge or surface, Fj
ci is the numerical flux through the

midpoint or centroid of jth edge or surface and N is the number of edges or

faces in 2-D or 3-D, respectively. This approach is called as cell-centered ap-

proach, where the fluxes are evaluated through the boundaries of the grid ele-

ments and the conservative variables are updated at the cell centroids.

In the following sections, the Gas-Kinetic BGK scheme to evaluate the numer-

ical fluxes (Eq. (3.58)) in 2-D and 3-D is presented.

52



3.2.1.1 The Gas-Kinetic BGK Scheme in 2-D

The Boltzmann BGK equation in 2-D can be written as

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
=

g − f

τ
(3.59)

where g is the equilibrium state approached by f over particle collision time τ ,

g = ρ (
λ

π
)

K+2
2 exp {−λ [(u− U)2 + (v − V )2 + ξ2]}. (3.60)

and λ is given by

λ =
m

2 k T
=

K + 2

4

ρ

ρE − 1
2
ρ(U2 + V 2)

. (3.61)

Since mass, momentum and energy are conserved during particle collisions, f

and g must satisfy the conservation constraint of

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

g − f

τ
ψ du dv dξ = 0 (3.62)

where ψ is moments vector given by

ψ =



1

u

v

1
2
(u2 + v2 + ξ2)


. (3.63)

The general solution of this equation around any s is

f(s, u, v, ξ, t) =
1

τ

∫ t

0
g(s′, u, v, ξ, t′) exp [−(t− t′)/τ ] dt′

+ exp (−t/τ) f0(s− ut− vt) (3.64)

where s′ = s− u(t− t′)− v(t− t′) is the trajectory of a particle, f0 is the initial

nonequilibrium distribution function and g is the corresponding equilibrium

state.
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Figure 3.7: Sample triangular control volumes, cell interface and coordinate
systems.

Consider the sample triangular control volumes, cell interface and coordinate

systems given in Fig. 3.7 where dots in red represent cell centroids, the dot in

black shows the midpoint of the cell interface, L and R the left and right states,

x and y the local coordinate system normal and tangent to the cell interface

ci, respectively, X and Y the global coordinate system. In cell-centered, finite

volume Gas-Kinetic BGK scheme on unstructured/hybrid grids, the local co-

ordinate system at the cell interface is used to find the numerical fluxes. The

velocity components Ux and Uy in local (normal and tangential) coordinate sys-

tem are found from global coordinate system counterparts U and V . The first

and second order Gas-Kinetic BGK schemes are presented below:

The First Order Formulation

Assuming two constant equilibrium states for the initial gas distribution func-

tion to the left and right of a cell interface and a constant equilibrium state at

the cell interface
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f0(x− uxt− uyt)|x=xci
= gL H(ux) + gR [1−H(ux)], (3.65)

g|x=xci
= g0, (3.66)

the solution of the Boltzmann BGK equation at the cell interface xci and time t

becomes

f |x=xci
= [1− exp (−t/τ)] g|x=xci

+ exp (−t/τ) f0|x=xci
. (3.67)

Here the equilibrium distribution functions to the left, right and in the middle

of the cell interface ci are expressed as

g∗ = ρ∗ (
λ∗
π

)
K+2

2 exp {−λ∗ [(u∗x − U∗
x)2 + (u∗y − U∗

y )2 + ξ2]}. (3.68)

The equilibrium state at the cell interface, g0, is found by applying the conser-

vation constraint (Eq. (3.62)) along the cell interface

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
g0ψci dux duy dξ

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f0(x− uxt− uyt)|x=xci

ψci dux duy dξ (3.69)

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
ψci gL dux duy dξ

+
∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
ψci gR dux duy dξ.

where ψci stands for moments vector

ψci =



1

ux

uy

1
2
(u2

x + u2
y + ξ2)


. (3.70)
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Figure 3.8: Reconstruction procedure in an arbitrary triangular cell.

From the above distribution function, the numerical fluxes for the mass, mo-

mentum and energy across the cell interface can be found as

Fci =



Fρ

FρUx

FρUy

FρE


ci

=
1

∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
ux f |x=xci

ψci dux duy dξ dt. (3.71)

The numerical fluxes found in the local coordinate system are finally converted

to the global coordinate system.

The Second Order Formulation

For the second order scheme, the reconstruction of conservative flow variables

is achieved by expanding the cell-centered solution to each cell interface with

a Taylor series (Fig. 3.8)

Qci = Qcc +∇Qcc ∆r + O(∆r2) (3.72)

where
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Q =



ρ

ρU

ρV

ρE


,

ci and cc refer to the cell interface and cell centroid, respectively and ∆r is the

vector from the cell centroid to the midpoint of the cell interface. The midpoint

pointwise values of Q are first estimated by forming an arithmetic average

of the two cells that share a common edge and then the gradient at the cell

centroid is calculated using the midpoint trapezoidal rule.

Assuming two linearly varying equilibrium states for the initial gas distribu-

tion function to the left and right of a cell interface and a linearly varying equi-

librium state at the cell interface,

f0(x− uxt− uyt)|x=xci
= gL (1− aL uxt) H(ux)

+gR (1− aR uxt) [1−H(ux)], (3.73)

g|x=xci
= g0 {1 + H(ux) (1− aL uxt)

+[1−H(ux)] (1− aR uxt) + At}, (3.74)

the solution of the Boltzmann BGK equation (Eq. (3.59)) at xci and time t be-

comes
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f |x=xci
= [1− exp (−t/τ)] g0 (3.75)

+{τ [−1 + exp (−t/τ)]}{aL H(ux) + aR [1−H(ux)]}ux g0

+τ [t/τ − 1 + exp (−t/τ)] A g0

+ exp (−t/τ){(1− aL uxt) H(ux) gL + (1− aR uxt) [1−H(ux)] gR}.

Here aL and aR are the spatial slopes of the initial distribution function, aL and

aR are the spatial slopes of the equilibrium state and A is the time slope all

given by

aL = a
(1)
L + a

(2)
L ux + a

(3)
L uy + a

(4)
L

1

2
(u2

x + u2
y + ξ2), (3.76)

aR = a
(1)
R + a

(2)
R ux + a

(3)
R uy + a

(4)
R

1

2
(u2

x + u2
y + ξ2), (3.77)

aL = a
(1)
L + a

(2)
L ux + a

(3)
L uy + a

(4)
L

1

2
(u2

x + u2
y + ξ2), (3.78)

aR = a
(1)
R + a

(2)
R ux + a

(3)
R uy + a

(4)
R

1

2
(u2

x + u2
y + ξ2), (3.79)

A = A
(1)

+ A
(2)

ux + A
(3)

uy + A
(4) 1

2
(u2

x + u2
y + ξ2). (3.80)

Based on the relation between macroscopic and microscopic variables, the

equilibrium states to the left and right of the cell interface can be determined:

QL
ci =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
gLψci dux duy dξ, (3.81)

QR
ci =

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
gRψci dux duy dξ. (3.82)

Once gL and gR are obtained, the spatial slopes of the initial gas distribution

function, which have unique correspondence with the slopes of the conserva-

tive variables to the left and right of the cell interface, can be found from

QL
ci − QL

cc

∆r
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
aL gLψci dux duy dξ, (3.83)
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QR
ci − QR

cc

∆r
=

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
aR gRψci dux duy dξ. (3.84)

After determining f0, the equilibrium state at the cell interface, g0, can be ob-

tained by using applying the conservation constraint along the cell interface

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
g0ψci dux duy dξ =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
gLψci dux duy dξ

+
∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
gRψci dux duy dξ (3.85)

from which the conservative variables at the cell interface can be found. The

spatial slopes of the equilibrium state can then be determined from

QL
ci − Q0

∆r
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
aL g0ψci dux duy dξ, (3.86)

QR
ci − Q0

∆r
=

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
aR g0ψci dux duy dξ. (3.87)

Up to this point, the equilibrium states to the left, right and in the middle of

the cell interface as well as the corresponding spatial slopes are determined.

The only unknown term is the time slope term A. Since both f and g contain

the time slope A, the conservation constraint at the cell interface can be applied

and integrated over the time step ∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(f − g)ψci dux duy dξ dt = 0 (3.88)

from which A can be calculated.

Finally, the corresponding numerical fluxes for the mass, momentum and en-

ergy across the cell interface can be obtained using
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Fci =



Fρ

FρUx

FρUy

FρE


ci

=
1

∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
ux f |x=xci

ψci dux duy dξ dt. (3.89)

The numerical fluxes found in the local coordinate system are then converted

to the global coordinate system.

3.2.1.2 The Gas-Kinetic BGK Scheme in 3-D

The Boltzmann BGK equation in 3-D can be written as

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
=

g − f

τ
(3.90)

where g is the equilibrium state approached by f over particle collision time τ ,

g = ρ (
λ

π
)

K+3
2 exp {−λ [(u− U)2 + (v − V )2 + (w −W )2 + ξ2]}. (3.91)

and λ is given by

λ =
m

2 k T
=

K + 3

4

ρ

ρE − 1
2
ρ(U2 + V 2 + W 2)

. (3.92)

Since mass, momentum and energy are conserved during particle collisions, f

and g must satisfy the conservation constraint of

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

g − f

τ
ψ du dv dw dξ = 0 (3.93)

where ψ stands for moments vector
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Figure 3.9: Sample tetrahedron control volumes, cell interface and coordinate
systems.

ψ =



1

u

v

w

1
2
(u2 + v2 + w2 + ξ2)



. (3.94)

The general solution of this equation around any s is

f(s, u, v, w, ξ, t) =
1

τ

∫ t

0
g(s′, u, v, w, ξ, t′) exp [−(t− t′)/τ ] dt′

+ exp (−t/τ) f0(s− ut− vt− wt) (3.95)

where s′ = s − u(t − t′) − v(t − t′) − w(t − t′) is the trajectory of a particle, f0

is the initial nonequilibrium distribution function and g is the corresponding

equilibrium state.
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Consider the sample tetrahedron control volumes, cell interface and coordi-

nate systems given in Fig. 3.9 where dots in black represent cell centroids, the

dot in red shows the cell interface centroid, L and R the left and right states, x,

y and z the local coordinate system normal and tangent to the cell interface ci,

respectively, X , Y and Z the global coordinate system. In cell-centered, finite

volume Gas-Kinetic BGK scheme on unstructured/hybrid grids, the local co-

ordinate system at the cell interface is used to find the numerical fluxes. The

velocity components Ux, Uy and Uz in local (normal and tangential) coordinate

system are found from global coordinate system counterparts U , V and W .

The first and second order Gas-Kinetic BGK schemes are presented below:

The First Order Formulation

Assuming two constant equilibrium states for the initial gas distribution func-

tion to the left and right of a cell interface and a constant equilibrium state at

the cell interface

f0(x− uxt− uyt− uzt)|x=xci
= gL H(ux) + gR [1−H(ux)], (3.96)

g|x=xci
= g0, (3.97)

the solution of the Boltzmann BGK equation at the cell interface xci and time t

becomes

f |x=xci
= [1− exp (−t/τ)] g|x=xci

+ exp (−t/τ) f0|x=xci
. (3.98)

Here the equilibrium distribution functions to the left, right and at the centroid

of the cell interface ci are expressed as

g∗ = ρ∗ (
λ∗
π

)
K+3

2 exp {−λ∗ [(u∗x − U∗
x)2 + (u∗y − U∗

y )2 + (u∗z − U∗
z )2 + ξ2]}. (3.99)
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The equilibrium state at the cell interface, g0, is found by applying the conser-

vation constraint (Eq. (3.93)) across the cell interface

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
g0ψci dux duy duy dξ

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f0|x=xci

ψci dux duy duz dξ(3.100)

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
gLψci dux duy duz dξ

+
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
gRψci dux duy duz dξ

where ψci stands for moments vector

ψci =



1

ux

uy

uz

1
2
(u2

x + u2
y + u2

z + ξ2)



. (3.101)

From the above distribution function, the numerical fluxes for the mass, mo-

mentum and energy across the cell interface can be found as

Fci =



Fρ

FρUx

FρUy

FρUz

FρE


ci

=
1

∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
ux f |x=xci

ψci dux duy duz dξ dt.

(3.102)

The numerical fluxes found in the local coordinate system are finally converted

to the global coordinate system.
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The Second Order Formulation

For the second order scheme, the reconstruction of conservative flow variables

is again achieved by expanding the cell-centered solution to each cell interface

with a Taylor series

Qci = Qcc +∇Qcc ∆r + O(∆r2) (3.103)

where

Q =



ρ

ρU

ρV

ρW

ρE



,

ci and cc refer to the cell interface and cell centroid, respectively and ∆r is the

vector from the cell centroid to the centroid of the cell interface. The centroidal

pointwise values of Q are first estimated by forming an arithmetic average of

the two cells that share a common face and then the gradient at the cell centroid

is calculated using the midpoint trapezoidal rule.

Assuming two linearly varying equilibrium states for the initial gas distribu-

tion function to the left and right of a cell interface and a linearly varying equi-

librium state at the cell interface,

f0(x− uxt− uyt− uzt)|x=xci
= gL (1− aL uxt) H(ux)

+gR (1− aR uxt) [1−H(ux)], (3.104)
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g|x=xci
= g0 {1 + H(ux) (1− aL uxt)

+[1−H(ux)] (1− aR uxt) + At}, (3.105)

the solution of the Boltzmann BGK equation (Eq. (3.90)) at xci and time t be-

comes

f |x=xci
= [1− exp (−t/τ)] g0 (3.106)

+{τ [−1 + exp (−t/τ)]}{aL H(ux) + aR [1−H(ux)]}ux g0

+τ [t/τ − 1 + exp (−t/τ)] A g0

+ exp (−t/τ){(1− aL uxt) H(ux) gL + (1− aR uxt) [1−H(ux)] gR}.

Here aL and aR are the spatial slopes of the initial distribution function, aL and

aR are the spatial slopes of the equilibrium state and A is the time slope all

given by

aL = a
(1)
L + a

(2)
L ux + a

(3)
L uy + a

(4)
L uz + a

(5)
L

1

2
(u2

x + u2
y + u2

z + ξ2), (3.107)

aR = a
(1)
R + a

(2)
R ux + a

(3)
R uy + a

(4)
R uz + a

(5)
R

1

2
(u2

x + u2
y + u2

z + ξ2), (3.108)

aL = a
(1)
L + a

(2)
L ux + a

(3)
L uy + a

(4)
L uz + a

(5)
L

1

2
(u2

x + u2
y + u2

z + ξ2), (3.109)

aR = a
(1)
R + a

(2)
R ux + a

(3)
R uy + a

(4)
R uz + a

(5)
R

1

2
(u2

x + u2
y + u2

z + ξ2), (3.110)

A = A
(1)

+ A
(2)

ux + A
(3)

uy + A
(4)

uz + A
(5) 1

2
(u2

x + u2
y + u2

z + ξ2). (3.111)

Based on the relation between macroscopic and microscopic variables, the

equilibrium states to the left and right of the cell interface can be determined:

QL
ci =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
gLψci dux duy duz dξ, (3.112)

QR
ci =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
gRψci dux duy duz dξ. (3.113)
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Once gL and gR are obtained, the spatial slopes of the initial gas distribution

function, which have unique correspondence with the slopes of the conserva-

tive variables to the left and right of the cell interface, can be found from

QL
ci − QL

cc

∆r
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
aL gLψci dux duy duz dξ, (3.114)

QR
ci − QR

cc

∆r
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
aR gRψci dux duy duz dξ. (3.115)

After determining f0, the equilibrium state at the cell interface, g0, can be ob-

tained by using applying the conservation constraint along the cell interface

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
g0ψci dux duy duz dξ

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
gLψci dux duy duz dξ

+
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
gRψci dux duy duz dξ (3.116)

from which the conservative variables at the cell interface can be found. The

spatial slopes of the equilibrium state can then be determined from

QL
ci − Q0

∆r
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
aL g0ψci dux duy duz dξ, (3.117)

QR
ci − Q0

∆r
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
aR g0ψci dux duy duz dξ. (3.118)

Up to this point, the equilibrium states to the left, right and at the centroid of

the cell interface as well as the corresponding spatial slopes are determined.

The only unknown term is the time slope term A. Since both f and g contain

the time slope A, the conservation constraint at the cell interface can be applied

and integrated over the time step ∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(f − g)ψci dux duy duz dξ dt = 0 (3.119)
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from which A can be calculated.

Finally, the corresponding numerical fluxes for the mass, momentum and en-

ergy across the cell interface can be obtained using

Fci =



Fρ

FρUx

FρUy

FρUz

FρE


ci

=
1

∆t

∫ ∆t

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
ux f |x=xci

ψci dux duy duz dξ dt.

(3.120)

The numerical fluxes found in the local coordinate system are then converted

to the global coordinate system.

3.2.1.3 Inviscid and Viscous Solutions From the Gas-Kinetic BGK Scheme

In this section, the first and second order Gas-Kinetic BGK schemes are dis-

cussed for the Euler and Navier-Stokes solutions and the some simplified ver-

sions are given.

For the first order Gas-Kinetic BGK scheme, the gas distribution function at the

cell interface (Eq. (3.67) or (3.98)), which is comprised of the constant states, is

rewritten as

f |x=xci
= g0 + exp (−t/τ) (f0 − g0). (3.121)

The first term in Eq. (3.121) is similar to the well-known Lax-Wendroff type

Euler fluxes presented in [56]. The second term is the dissipation term, which

should be large in discontinuous regions in order to keep f staying in a nonequi-
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librium state. As a result, the parameter exp (−t/τ) should go to zero in smooth

regions and should be large in discontinuous regions. There is not any pa-

rameter related to the viscous terms, thus, the first order Gas-Kinetic BGK

scheme could only be used for the Euler solutions. For steady state solutions,

Eq. (3.121) could be simplified further. The parameter exp (−t/τ) is replaced

by a local switching function and a time-independent gas distribution function

is obtained

f |x=xci
= g0 + ε (f0 − g0) (3.122)

where the switching function ε is related to the local pressure gradient:

ε = 1− exp (−0.5
|pL − pR|
pL + pR

).

Here the pL and pR are the local pressures to the left and right of the cell inter-

face, respectively.

For the second order Gas-Kinetic BGK scheme, the gas distribution function at

the cell interface (Eq. (3.75) or (3.106)) is comprised of linearly varying states:

f |x=xci
= [1− exp (−t/τ)] g0 (3.123)

+{τ [−1 + exp (−t/τ)]} {aL H(ux) + aR [1−H(ux)]}ux g0

+τ [t/τ − 1 + exp (−t/τ)] A g0

+ exp (−t/τ){(1− aLuxt) H(ux) gL + (1− aRuxt) [1−H(ux)] gR}.

The first term in Eq. (3.123) is again similar to the Lax-Wendroff type Euler

fluxes mentioned above. The second term, actually the spatial slopes of the

equilibrium state at the cell interface, represents the viscous fluxes and ac-

counts for the physical viscosity and heat conductivity effects. The third term
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contributes to both the time evolution and the viscous term. The fourth term

is the dissipative term and the spatial slopes of the equilibrium states to the

left and right of the cell interface cause additional dissipation. Although the

second order Gas-Kinetic BGK scheme actually results in the Navier-Stokes so-

lutions, it could also be employed for the Euler solutions. The only difference

is the use of the collision time. For the Euler solutions, the collision time given

in Eq. (3.56) could be used while the collision time is chosen according to the

physical viscosity coefficient for the Navier-Stokes solutions:

τ =
µ

p
+
|ρL/λL − ρR/λR|
(ρL/λL + ρR/λR)

∆t (3.124)

Here the second term controls the numerical viscosity and necessary in the

under-resolved flow regions. On the other hand, much simplified versions

could also be obtained for both Euler and Navier-Stokes solutions in order to

reduce the computation time. For example, the Gas-Kinetic BGK scheme can

be simplified as

f = g0(1 + At) + ε (f0 − g0) (3.125)

for Euler solutions and

f = g0{1 + A(t− τ)− τux(aL H(ux) + aR [1−H(ux)])}+ ε (f0 − g0) (3.126)

for the Navier-Stokes solutions by deleting the corresponding slopes terms.

Here f0 is the same as in Eq. (3.73) or (3.104). In the present study, Eqs. (3.125)

and (3.126) are utilized for the Euler and Navier-Stokes solutions, respectively.
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3.2.2 Temporal Discretization

The finite volume temporal discretization is performed based on Eq. (3.58) af-

ter the numerical fluxes are evaluated:

dQ
dt

= − 1

Ωe

Re. (3.127)

Here the total numerical flux at the control volume is called as the residual.

From Eq. (3.127), a basic explicit scheme can be derived

∆Qn = −∆t

Ωe

Rn
e (3.128)

where

∆Qn = Qn+1 − Qn.

In the present study, an explicit three-stage Runge-Kutta time-stepping scheme

is employed, the details of which is given in the following section.

3.2.2.1 Explicit Three-Stage Runge-Kutta Time-Stepping Scheme

The concept of explicit multistage schemes was first presented by Jameson et

al. [57]. The multistage scheme advances the solution in a number of steps

so-called stages. Based on Eq. (3.127), three-stage Runge-Kutta time-stepping

scheme is given by

Q(0) = Q(n), (3.129)

Q(1) = Q(0) − α1
∆t

Ωe

R(0)
e , (3.130)

Q(2) = Q(0) − α2
∆t

Ωe

R(1)
e , (3.131)

Q(n+1) = Q(0) − α3
∆t

Ωe

R(2)
e , (3.132)
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where αk are the stage coefficients with

α1 =
1

3
, α2 =

1

2
, α3 = 1,

∆t is the local time step calculated in each control volume and R(k)
e are the

residuals evaluated with the solution Q(k) of the kth stage. The local time-

stepping is used in steady-state solutions to accelerate the convergence.

3.3 Boundary Conditions

In the inviscid and viscous flow computations, flow tangency, no-slip wall,

farfield and symmetry boundary conditions are employed. The boundary con-

dition are implemented through the use of ghost cells, which are the imagi-

nary cells neighboring the actual boundary cells. In the flux evaluations at the

boundaries, these ghost cells define the proper flow properties at the right state,

(R).

3.3.1 Wall Boundary Condition

The inviscid wall boundary condition imposes the flow tangency at the wall

boundary. The normal momentum density of the ghost cell is assigned to the

negative of that of the computational cell adjacent to the boundary. The nor-

mal velocity component at the wall is effectively set to zero. The remaining

momentum densities as well as the mass and energy densities at the ghost cell

are set to those of the corresponding interior cell so as to ensure that no mass

or energy transfer exist through the wall.
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The viscous wall boundary condition imposes a no-slip condition and a zero

pressure gradient at the wall. Therefore, all the momentum densities of the

ghost cell is assigned to the negative of those of the computational cell adjacent

to the boundary. The mass and energy densities of the ghost cell are set to those

of the corresponding interior cell.

3.3.2 Farfield Boundary Condition

Characteristic boundary conditions are applied at the farfield boundaries us-

ing fixed and extrapolated Riemann invariants. The Riemann invariants cor-

respond to the incoming and outgoing waves traveling in the characteristic

directions, which are defined normal to the boundary [58, 59]. The two locally

one-dimensional Riemann invariants are given by

R± = U ± 2a

γ − 1
(3.133)

where R− is the incoming Riemann invariant determined from the freestream

conditions, R+ is the outgoing Riemann invariant extrapolated from the in-

terior flow conditions, U and a are the corresponding velocity and speed of

sound, all normal to the boundary. Using the local Mach number and charac-

teristic directions, the farfield boundary can be decided to be a subsonic inflow,

subsonic outflow, supersonic inflow or supersonic outflow. The boundary con-

ditions are then determined using the Riemann invariants, entropy condition

and the equation of state.
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3.3.3 Symmetry Boundary Condition

The symmetry boundary condition is the same as the inviscid wall boundary

condition. It is simply a reflecting boundary condition. The flow tangency at

the symmetry boundary is enforced by setting the normal component of the

flow velocity to zero.

3.4 Parallel Processing Methodology

The parallel processing methodology utilized in the present study is based on

domain decomposition. The unstructured/hybrid grid is partitioned using

METIS software package. For unstructured grids, METIS partitions the com-

putational domain automatically. On the other hand, a graph file is necessary

for the hybrid grids, which is actually the neighbor connectivity of the control

volume cells. A sample hybrid grid and the corresponding graph is given in

Fig. 3.10. The numbers written in the grid elements denote the cell indices. The

Figure 3.10: Sample hybrid grid in 2-D and the corresponding graph.
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first line in the graph represents the total number of cells, total number of nodes,

weighting option and number of weights, respectively. The remaining lines show

the number of edges and the cell indices of the neighbors of the corresponding cell.

For example, the sixth line says that the fifth cell has 3 edges and the cell indices

of its neighbors are 6, 9 and 3. The partitioning of the graph is performed using

kmetis program. During the partitioning, each cell is weighted by its number

of edges so that each partition has about the same number of total edges to

improve the load balancing in parallel computations.

Parallel Virtual Machine (PVM) message-passing library routines are employed

in a master-worker algorithm. The master process performs all the input-output,

starts up PVM, spawns worker processes and sends the initial data to the

workers. The worker processes first receive the initial data, apply the interface

and the flow boundary conditions, and solve the flowfield within the partition.

The flow variables at the interface boundaries are exchanged among the neigh-

boring partitions at each time step for the implementation of inter-partition

boundary conditions.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, the gas-kinetic methods developed are applied to various flow

problems ranging from subsonic to supersonic, inviscid to viscous in 1-D, 2-D

and 3-D. The inviscid flows solutions are obtained on unstructured grids while

hybrid grids are used in viscous flow computations. The results are discussed

in terms of accuracy, robustness and parallel efficiency.

4.1 1-D Shock-Tube Problems

In this section, preliminary results obtained from the gas-kinetic methods in

1-D are presented. Three different shock-tube problems, which are well-known

in the literature, are solved with gas-kinetic methods and they are compared

to the exact solutions as well as the results of the classical methods. In all com-

putations 400 grid cells are employed.
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4.1.1 Case 1: Sod Shock-Tube Problem

This case is first considered by Sod [60]. The initial conditions for this case

are given in Table 4.1. The L and R indices in Table 4.1 show the left and right

states. The length of the tube is 2 unit and x varies from −1 to +1. The gas is

separated at x = 0.

Table 4.1: Initial conditions for Case 1.

ρL UL pL ρR UR pR

1.0 0.0 1.0 0.125 0.0 0.1

Figures 4.1, 4.2 and 4.3 present comparisons of the results of the first order ac-

curate Kinetic Flux Vector Splitting and the Gas-Kinetic BGK schemes with the

exact solution as well as the results of the classical schemes in terms of den-
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Figure 4.1: Density distribution for Case 1 (First order results).
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Figure 4.2: Mach number distribution for Case 1 (First order results).
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Figure 4.3: Pressure distribution for Case 1 (First order results).
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sity, Mach number and pressure at t = 0.35. The results obtained from the

classical flux vector splitting schemes (Steger-Warming, Van-Leer FVS) seem

slightly more dissipative than those of Roe’s flux difference splitting and the

Gas-Kinetic BGK schemes. It is attributed to the fact that the classical flux vec-

tor splitting schemes give accurate results especially in smooth regions. Due to

the underlying principles explained in Chapter 2, the Kinetic Flux Vector Split-

ting scheme gives similar results as the classical flux vector splitting schemes.

The results obtained from the Gas-Kinetic BGK scheme are more accurate than

those of the flux vector splitting schemes and nearly the same with the Roe’s

flux difference splitting scheme. This is not surprising since the Gas-Kinetic

BGK scheme has an advanced gas evolution model, which is based on parti-

cle collisions. The comparisons of the second order accurate results with the
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Figure 4.4: Density distribution for Case 1 (Second order results).
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Figure 4.5: Mach number distribution for Case 1 (Second order results).
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Figure 4.6: Pressure distribution for Case 1 (Second order results).
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exact solution are given in Figs. 4.4, 4.5 and 4.6. All the second order accu-

rate results are based on the MUSCL approach and min-mod limiter is uti-

lized. Since Roe’s flux difference splitting scheme is shown to be more suc-

cessful than other classical schemes in the first order accurate results, only this

scheme is used in the comparisons. The results of all the schemes exhibit ob-

vious improvement over first order accurate results although the results of the

Gas-Kinetic BGK and Roe scheme is slightly better than those of the Kinetic

Flux Vector Splitting scheme.

4.1.2 Case 2: Arora-Roe Shock-Tube Problem

This case is first utilized by Arora and Roe [61]. It is an interesting case that

reveals the weaknesses of the classical schemes. The initial conditions for this

case are given in Table 4.2. The L and R indices in Table 4.2 show the left and

right states. The length of the tube is again 2 unit and x varies from −1 to +1.

The gas is separated at x = 0.

Table 4.2: Initial conditions for Case 2.

ρL UL pL ρR UR pR

3.857 0.92 10.333 1.0 3.55 1.0

Figures 4.7, 4.8 and 4.9 present comparisons of the results of the first order

accurate Kinetic Flux Vector Splitting and the Gas-Kinetic BGK schemes with

the exact solution as well as the results of the classical schemes in terms of

density, Mach number and pressure at t = 0.09. Roe’s flux difference split-

ting scheme gives wrong solution for this case. This is due to the fact that Roe
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Figure 4.7: Density distribution for Case 2 (First order results).
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Figure 4.8: Mach number distribution for Case 2 (First order results).
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Figure 4.9: Pressure distribution for Case 2 (First order results).

scheme does not catch the sonic rarefactions and that results in negative en-

tropy near the sonic region. This problem can be corrected with an entropy fix

to the scheme, but this fix has no physical meaning. The classical flux vector

splitting schemes have also some problems in this region. On the other hand,

the gas-kinetic theory based schemes have no problem near the sonic region.

The comparisons of the second order accurate results with the exact solution

are given in Figs. 4.10, 4.11 and 4.12. All the second order accurate results are

based on the MUSCL approach and min-mod limiter is utilized. Again, only

Roe’s flux difference splitting scheme is considered. The problem of the Roe

scheme near the sonic region is disappeared with the second order accurate

formulation. On the other hand, it is interesting to note that the results of the

Roe scheme near the discontinuities are not so good as the gas-kinetic schemes.
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Figure 4.10: Density distribution for Case 2 (Second order results).

x

M
ac

h
N

um
be

r

-1 -0.5 0 0.5 10

1

2

3

4

5

6

Exact
Roe FDS
Kinetic FVS
Gas-Kinetic BGK

Figure 4.11: Mach number distribution for Case 2 (Second order results).
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Figure 4.12: Pressure distribution for Case 2 (Second order results).

For this case, the most accurate results are obtained from the Gas-Kinetic BGK

scheme.

4.1.3 Case 3: Woodward-Colella Shock-Tube Problem

This case is first tested by Woodward and Colella [62]. It is a difficult case

with three different initial states, which are given in Table 4.3. The L, M and

R indices in Table 4.3 show the left, middle and right states, respectively. The

length of the tube is 2 unit and x varies from −1 to +1. The gas is separated at

x = −0.8 and x = 0.8.

Table 4.3: Initial conditions for Case 3.

ρL UL pL ρM UM pM ρR UR pR

1.0 0.0 1000.0 1.0 0.0 0.01 1.0 0.0 100.0
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Figure 4.13: Density distribution for Case 3 (First order results).
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Figure 4.14: Mach number distribution for Case 3 (First order results).
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Figure 4.15: Pressure distribution for Case 3 (First order results).

Figures 4.13, 4.14 and 4.15 present comparisons of the results of the first order

accurate Kinetic Flux Vector Splitting and the Gas-Kinetic BGK schemes with

the exact solution as well as the results of the classical schemes in terms of

density, Mach number and pressure at t = 0.075. All of the first order accurate

results are far from matching the exact solution for this difficult case. Roe’s flux

difference splitting and Gas-Kinetic BGK schemes seem to be slightly more

accurate than others. The comparisons of the second order accurate results

with the exact solution are given in Figs. 4.16, 4.17 and 4.18. All the second

order accurate results are based on the MUSCL approach and min-mod limiter

is used. The results obtained from the Gas-Kinetic BGK scheme are the most

accurate one among others and the Kinetic Flux Vector Splitting scheme gives

again dissipative results.
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Figure 4.16: Density distribution for Case 3 (Second order results).
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Figure 4.17: Mach number distribution for Case 3 (Second order results).
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Figure 4.18: Pressure distribution for Case 3 (Second order results).

4.1.4 Summary

The preliminary study in 1-D indicates that the results obtained from gas-

kinetic theory based methods are comparable with those of classical methods.

The gas-kinetic methods do not give unphysical results nor need any special

treatment in certain problems as their classical counterparts. The Kinetic Flux

Vector Splitting scheme show similar behavior as the classical flux vector split-

ting schemes. The Gas-Kinetic BGK scheme gives accurate results due to its

underlying theory based on particle collisions.
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4.2 2-D Flows

In this section, 2-D flow solutions based on the Gas-Kinetic BGK scheme are

presented. Various inviscid and viscous test cases are considered to show the

accuracy and robustness of the methodology. The solutions are obtained in

parallel, which significantly improves the computation time, a significant de-

ficiency of the gas-kinetic methods. The results are compared to those of clas-

sical schemes as well as available experimental data.

4.2.1 Case 1: Inviscid Flow Over a Transonic Airfoil

RAE 2822 transonic airfoil, which has available experimental data [63], is se-

lected as a first test case. The freestream conditions and the computational

mesh with partitions for this case are given in Table 4.4 and Fig. 4.19, respec-

tively. These conditions actually correspond to a chordwise Reynolds number

of 6.5 million. The computational mesh consists of 7652 nodes and 14872 cells.

Table 4.4: Freestream conditions for Case 1.

Mach Number Angle of Attack, deg Pressure, Pa Temperature, K
0.729 2.31 101325 288

Figures 4.20, 4.21, 4.22 and 4.23, 4.24, 4.25 show the Mach and entropy contours

for the Kinetic Flux Vector Splitting, the Gas-Kinetic BGK, Roe’s flux difference

splitting schemes, respectively. The Gas-Kinetic BGK and Roe schemes give

very similar results and they clearly capture the shock wave generatedon the

upper surface of the airfoil. In addition, the entropy generation levels behind
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Figure 4.19: Computational mesh with partitions for Case 1 (Zoomed view).

the shock wave and entropy distributions predicted by the two schemes agree

quite well. On the other hand, due to the dissipative nature common in flux

vector splitting schemes, the Kinetic Flux Vector Splitting scheme smears out

this shock wave. Moreover, it appears that the numerical entropy generation

is significantly higher than those of the Gas-Kinetic BGK and Roe schemes.

In Figs. 4.26, 4.27 and 4.28, the comparisons of pressure coefficient obtained

from the Kinetic Flux Vector Splitting, the Gas-Kinetic BGK and Roe schemes

with the experimental data are given. The results of Gas-Kinetic BGK and

Roe schemes are generally in good agreement with the experimental data. The

shock wave on the upper surface is well-captured; however, the shock loca-

tion is overpredicted in comparison to the experimental data and the pressure

is underpredicted at the trailing edge. These disagreements are attributed to
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Figure 4.20: Mach number contours for Case 1 (Kinetic FVS scheme).
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Figure 4.21: Mach number contours for Case 1 (Gas-Kinetic BGK scheme).

91



x/c

y/
c

-1 0 1 2

-1

0

1
Mach

1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 4.22: Mach number contours for Case 1 (Roe’s FDS scheme).
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Figure 4.23: Entropy contours for Case 1 (Kinetic FVS scheme).
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Figure 4.24: Entropy contours for Case 1 (Gas-Kinetic BGK scheme).

x/c

y/
c

-1 0 1 2

-1

0

1
Entropy

1.050
1.045
1.040
1.035
1.030
1.025
1.020
1.015
1.010
1.005

Figure 4.25: Entropy contours for Case 1 (Roe’s FDS scheme).
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the viscous effects which are absent in the present inviscid flow computations.

The Kinetic Flux Vector Splitting scheme smears out the shock wave and un-

derpredicts the suction pressure on the upper surface.

Numerical entropy generation of the Gas-Kinetic BGK scheme is also assessed

in a low speed inviscid flow solution. The flow around the RAE 2822 airfoil

is now computed at a Mach number of 0.3 and the entropy distributions com-

puted by both the Gas-Kinetic BGK and Roe scheme are given in Fig. 4.29.

The contour levels are plotted with ∆s = 0.001. As shown in the figures, the

numerical entropy generation of the Gas-Kinetic BGK scheme is significantly

smaller than that of the Roe scheme.
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Figure 4.26: Pressure distribution on the airfoil surface for Case 1 (Kinetic FVS
scheme, every other three data point is displayed).
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Figure 4.27: Pressure distribution on the airfoil surface for Case 1 (Gas-Kinetic
BGK scheme, every other three data point is displayed).
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Figure 4.28: Pressure distribution on the airfoil surface for Case 1 (Roe’s FDS
scheme, every other three data point is displayed).
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Figure 4.29: Entropy contours over RAE 2822 airfoil at M = 0.3.
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Table 4.5: Parallel efficiency of computations.

Computational Efficiency, sec/iter
Number of Nodes Kinetic FVS Gas-Kinetic BGK Roe’s FDS

1 0.0388 0.0439 0.0308
2 0.0195 0.0222 0.0156
4 0.0101 0.0114 0.0083
8 0.0051 0.0057 0.0046
16 0.0027 0.0029 0.0029

The parallel computations are performed on an Itanium 2 cluster running on

Linux. Dual Itanium 2 processors operate at 1.3Ghz with 3MB L2 cache and

2GB of memory for each. The parallel efficiency of the computations is given

in Table 4.5 and Fig. 4.30. It is observed that the Gas-Kinetic BGK scheme is

about 1.13 times computationally more expensive than the Kinetic Flux Vec-

tor Splitting scheme and about 1.42 times more expensive than Roe scheme
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Figure 4.30: Computational speed-up for Case 1.
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in serial computations. On the other hand, the high parallel efficiency of the

gas-kinetic schemes is maintained as the number of processors increases as

opposed to Roe scheme, which is attributed to the high computing to com-

munication ratio in the gas-kinetic schemes. Although the gas-kinetic schemes

are more expensive in serial computations, it may not be an issue in parallel

computations.

Finally, the convergence histories are shown in Fig. 4.31. The Kinetic Flux Vec-

tor Splitting scheme, which is the most dissipative one, converges faster and

smoother than the others. The Gas-Kinetic BGK and Roe schemes have similar

convergence behavior.
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Figure 4.31: Convergence history for Case 1.
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4.2.2 Case 2: Inviscid Supersonic Flow Over a Wedge

The inviscid supersonic flow over a wedge is selected as a second test case,

which is taken from [64]. This is actually a channel flow in which there is a 15◦

ramp. The freestream conditions and the computational mesh with partitions

for this case are given in Table 4.6 and Fig. 4.32, respectively. The computa-

tional mesh consists of 30819 nodes and 60132 cells.

Table 4.6: Freestream conditions for Case 2.

Mach Number Angle of Attack, deg Pressure, Pa Temperature, K
1.8 0.0 101325 288

x

y

0 0.5 1 1.5 2 2.5 30

0.5

1

Figure 4.32: Computational mesh with partitions for Case 2.

Figures 4.33 and 4.34 show the Mach and pressure contours obtained from

the Gas-Kinetic BGK scheme, respectively. It can be clearly seen that there is

an attached shock at the compression corner of the ramp, which is reflected

from the top wall forming a Mach stem. The shock wave continues to reflect

from the bottom and top walls before exiting the channel. The expansion fan

at the expansion corner of the ramp weakens the first reflected shock from
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Figure 4.33: Mach number contours for Case 2.

1

1

1

1

2

2

2

2

3

3

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6 7

7

7

8

8

9

10

11
12

13

14

15

Level p

15 2.4741
14 2.3568
13 2.2395
12 2.1221
11 2.0048
10 1.8875
9 1.7702
8 1.6528
7 1.5355
6 1.4182
5 1.3009
4 1.1836
3 1.0662
2 0.9489
1 0.8316

Figure 4.34: Pressure contours for Case 2.

Figure 4.35: Pressure contours taken from [64].
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Figure 4.36: Nondimensional pressure distribution along the lower wall of the
channel for Case 2.

the top wall. Although the present case is solved with first order accurate

Gas-Kinetic BGK scheme, the pressure contours are in very good agreement

with the second order accurate results of [64], which is given in Fig. 4.35. The

pressure distribution along the lower wall of the channel is shown in Fig. 4.36.

As seen, the present prediction is in good agreement with the data given in

Ref. [64].

4.2.3 Case 3: Inviscid High-Speed Flow Over a Blunt Body

The inviscid high-speed flow over a blunt body is selected as a third test case.

The importance of this case comes from the fact that most of the classical

schemes fail for such high-speed flows due to numerical instability [13, 14].
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Table 4.7: Freestream conditions for Case 3.

Mach Number Angle of Attack, deg Pressure, Pa Temperature, K
6.0 0.0 101325 288
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Figure 4.37: Computational mesh with partitions for Case 3.

This is known as the carbuncle phenomenon. The freestream conditions and the

computational mesh with partitions are given in Table 4.7 and Fig. 4.37, re-

spectively. The computational mesh consists of 13904 nodes and 27614 cells.

Since the spurious oscillations are expected behind the bow shock along the

stagnation streamline, computational grid is refined in this region.

Figures 4.38 and 4.39 show the density contours for the Gas-Kinetic BGK and

Roe schemes, respectively. The Gas-Kinetic BGK scheme resolve the bow shock

and stagnation region very well. On the other hand, Roe scheme could not add
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Figure 4.38: Density contours for Case 3 (Gas-Kinetic BGK scheme, zoomed
view).
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Figure 4.39: Density contours for Case 3 (Roe’s FDS scheme, zoomed view).
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enough dissipation in this region via contact and shear waves and gives spuri-

ous oscillations, so-called carbuncle phenomenon. Although this phenomenon

can definitely be cured with entropy fix, there is no justification, either physical

or mathematical for applying such a fix. It is also reported in the literature that

there are other failings of Roe scheme without entropy fix such as odd-even

decoupling and kinked Mach stem [13, 14]. The Gas-Kinetic BGK scheme is

immune to this type of instabilities due to its underlying theory based on the

particle distribution function.

4.2.4 Case 4: Laminar Flow Over a Flat Plate

A flat plate at zero angle of attack is selected as a fourth test case for which

the analytical Blasius solution is available. The freestream conditions and the

computational mesh with partitions for this case are given in Table 4.8 and

Fig. 4.40, respectively. The computational mesh consists of 14456 nodes and

22623 cells. The flat plate is placed between 0 and 1 and the boundary layer re-

gion is meshed with quadrilateral cells while triangular cells are used outside

the boundary layer.

Table 4.8: Freestream conditions for Case 4.

Mach Number Angle of Attack, deg Reynolds Number
0.1 0.0 10000

Figure 4.41 shows the Mach contours and velocity vectors inside the boundary

layer on the flat plate and theu-velocity and v-velocity profiles at four different

x-locations are given in Figs. 4.42 and 4.43, respectively, along with the analyt-
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Figure 4.40: Computational mesh with partitions for Case 4 (Zoomed view).

x

y

0.4 0.42 0.44 0.46 0.480

0.02

0.04

0.06

0.08

Figure 4.41: Mach number contours and velocity vectors for Case 4 (Zoomed
view).
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Figure 4.42: u-velocity profile in the boundary layer for Case 4.
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Figure 4.43: v-velocity profile in the boundary layer for Case 4.
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ical Blasius solutions. The results compare well with the Blasius solutions. The

Gas-Kinetic BGK scheme produces Navier-Stokes solution in smooth flow re-

gions as expected. Moreover, the use of quadrilateral cells near the wall region

leads to the better resolution of the boundary layers while the use of triangular

cells outside reduces the overall number of cells.

4.2.5 Case 5: Laminar Flow Over a Transonic Airfoil

The laminar flow over NACA0012 airfoil is selected as a fifth test case. This

case has been used as a benchmark for viscous flows [65]. The freestream con-

ditions and the computational mesh with partitions are given in Table 4.9 and

Fig. 4.44, respectively. The computational mesh consists of 10662 nodes and

13914 cells.

Table 4.9: Freestream conditions for Case 5.

Mach Number Angle of Attack, deg Reynolds Number
0.8 10.0 500

The Mach contours obtained from the Gas-Kinetic BGK scheme is shown in

Fig. 4.45. The shock wave on the upper surface of the airfoil interacts with the

boundary layer and the flow separates near the trailing-edge. The separation

on the suction side of the airfoil can be seen more clearly with streamlines,

which is given in Fig. 4.46. Recently, May and Jameson [66] solved the same

problem with a modified Gas-Kinetic BGK scheme on unstructured grids. A

snapshot of the separation region presented in [66] is shown in Fig. 4.47. The

size and shape of the recirculation region found in the two studies are in good

agreement. The nondimensional pressure distribution on the surface of the
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Figure 4.44: Computational mesh with partitions for Case 5 (Zoomed view).
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Figure 4.45: Mach number contours for Case 5.
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Figure 4.46: Streamlines and the separation on the suction side for Case 5.

Figure 4.47: Streamlines and the separation on the suction side taken from [66].
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Figure 4.48: Nondimensional pressure distribution on the airfoil surface for
Case 5.
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Figure 4.49: Convergence history for Case 5.
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airfoil is presented in Fig. 4.48 along with the results of May and Jameson [66].

The two results compare quite well. The discrepancies near the leading- and

trailing-edge may be attributed to the different grid resolutions used in the two

studies. The present grid density near the leading- and trailing-edge regions

appears to be much higher than the one in the reference study and it may be

assumed that those regions are resolved better in the present study.

Finally, the convergence history is shown in Fig. 4.49. The Gas-Kinetic BGK

scheme converges smoothly for this case.

4.2.6 Summary

The 2-D test cases considered in this section show that the Gas-Kinetic BGK

scheme gives accurate results for both inviscid and viscous flows. The unphys-

ical phenomena such as carbuncle, odd-even decoupling, etc. have never been

observed while it is found that the Roe scheme needs some special treatment

in certain problems. It is also observed that the numerical entropy generation

in the Gas-Kinetic BGK scheme is much less than that of Roe scheme. Since

the flow solution based on the Kinetic Flux Vector Splitting scheme is found to

be dissipative, this scheme is not considered in the remaining test cases. The

use of hybrid grids leads to the better resolution of boundary layers in viscous

flows while reducing the total number of grid cells. It is worth noting that the

high parallel efficiency of the Gas-Kinetic BGK scheme is maintained as the

number of processors increases. Thus, the parallel computations significantly

improve the computation time of the Gas-Kinetic BGK scheme.
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4.3 3-D Flows

In this section, 3-D results based on the Gas-Kinetic BGK scheme are presented.

Inviscid flows over missile configurations and a wing, and a viscous flow over

a flat plate are considered. The solutions are obtained in parallel. The results

are compared to those of the classical schemes as well as analytical and the

available experimental data.

4.3.1 Case 1: Inviscid Subsonic Flow Over a Missile

As a first validation case, the inviscid subsonic flow over a Sidewinder-type

missile is computed at various angles of attack and the aerodynamic loads are

compared to the available experimental data [67]. The freestream conditions

and the surface mesh for this case are given in Table 4.10 and Fig. 4.50, respec-

tively. The computational mesh consists of 228649 nodes and 1340023 cells.

Table 4.10: Freestream conditions for Case 1.

Mach Number Pressure, Pa Temperature, K
0.2 101325 288

Figure 4.51 shows the pressure contours on the missile vertical plane of sym-

metry at an angle of attack of 8◦. The longitudinal aerodynamic coefficients ob-

tained from the Gas-Kinetic BGK scheme along with the experimental data are

presented in Figs. 4.52, 4.53 and 4.54. The normal force and pitching moment

predictions agree quite well with the experimental values. In the numerical so-

lution, the base pressure correction is made by setting the base area pressures

to the freestream pressure as specified in [67]. The axial force coefficient results
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Figure 4.51: Pressure contours on the vertical plane of symmetry at 8◦ angle of
attack for Case 1.
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Figure 4.52: Axial force coefficient for Case 1.
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Figure 4.53: Normal force coefficient for Case 1.
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Figure 4.54: Pitching moment coefficient for Case 1.

are underpredicted and do not match the experimental data. This is attributed

to the viscous (turbulence) effects.

4.3.2 Case 2: Inviscid Transonic Flow Over a Wing

ONERA M6 transonic wing, which has available experimental data [68], is se-

lected as a second validation case. The freestream conditions and the surface

mesh with partitions for this case are given in Table 4.11 and Fig. 4.55, respec-

tively. These conditions actually correspond to a Reynolds number of 11.72

Table 4.11: Freestream conditions for Case 2.

Mach Angle of Attack, Angle of Sideslip, Pressure, Temperature,
Number deg deg Pa K
0.8395 3.06 0.0 101325 288
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Figure 4.55: Surface mesh with partitions for Case 2.
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Figure 4.56: Mach number contours for Case 2.
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million based on the mean aerodynamic chord. The computational mesh con-

sists of 90696 nodes and 513722 cells.

Figure 4.56 shows the Mach number contours obtained from the Gas-Kinetic

BGK scheme at the wing surface and symmetry plane. The comparisons of

the surface pressure coefficient at different sections of the wing with the ex-

perimental data are given in Figs. 4.57, 4.58, 4.59, 4.60 and 4.61. The results of

the Gas-Kinetic BGK and Roe schemes are generally in good agreement with

the experimental data. The pressure distribution at the lower wing surface

is predicted better by the the Gas-Kinetic BGK scheme than the Roe scheme.

The shock waves generated at different sections of the wing are well captured,

however, the shock locations are expectedly overpredicted in comparison to

the experimental data due to the inviscid flow assumption.
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Figure 4.57: Surface pressure coefficient at y/b=0.2 for Case 2.

117



x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Experiment
Roe FDS
Gas-Kinetic BGK

Figure 4.58: Surface pressure coefficient at y/b=0.44 for Case 2.
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Figure 4.59: Surface pressure coefficient at y/b=0.65 for Case 2.
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Figure 4.60: Surface pressure coefficient at y/b=0.8 for Case 2.
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Figure 4.61: Surface pressure coefficient at y/b=0.95 for Case 2.
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Figure 4.62: Convergence history for Case 2.

Finally, the convergence histories are shown in Fig. 4.62. The Gas-Kinetic BGK

and Roe schemes have similar convergence behavior.

4.3.3 Case 3: Inviscid Supersonic Flow Over a Missile

Inviscid supersonic flow over a Sparrow-type missile is selected as a third case.

The solutions are obtained for various angles of attack and the results are com-

pared to the available experimental data [69]. The freestream conditions and

the surface mesh for this case are given in Table 4.12 and Fig. 4.63, respectively.

The computational mesh consists of 214630 nodes and 1238305 cells.

Table 4.12: Freestream conditions for Case 3.

Mach Number Pressure, Pa Temperature, K
1.5 101325 288
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Figure 4.63: Surface mesh for Case 3.
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Figure 4.64: Pressure contours on the vertical plane of symmetry at 10◦ angle
of attack for Case 3.
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Figure 4.65: Axial force coefficient for Case 3.
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Figure 4.66: Normal force coefficient for Case 3.
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Figure 4.67: Pitching moment coefficient for Case 3.

Figure 4.64 shows the pressure contours on the missile vertical plane of sym-

metry at an angle of attack of 10◦. The longitudinal aerodynamic coefficients

obtained from the Gas-Kinetic BGK scheme along with the experimental data

are presented in Figs. 4.65, 4.66 and 4.67. The normal force and pitching mo-

ment coefficient results agree very well with the experimental values up to an

angle of attack of approximately 12◦. At high angles of attack, the vortices

generated by the wings of the missile generates a complex flowfield on the tail

section and this flowfield causes nonlinearities on the normal force and pitch-

ing moment coefficients. Present Euler solution could not resolve this complex

flowfield and that is why the results of the Gas-Kinetic BGK scheme at high

angles of attack are far from the experimental data. In the numerical solution,

the base pressure correction is made by setting the base area pressures to the
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freestream pressure as specified in [69]. The axial force coefficient results are

underpredicted and do not match the experimental data. This is also attributed

to the viscous (turbulence) effects.

4.3.4 Case 4: Laminar Flow Over a Flat Plate

As a fourth case, the flat plate given in § 4.2.4 is solved by extruding it in the

third dimension and the results are compared to the analytical Blasius solu-

tion. The freestream conditions are given in Table 4.13. Three different com-

Table 4.13: Freestream conditions for Case 4.

Mach Number Angle of Attack, deg Reynolds Number
0.1 0.0 10000

XY

Z

Figure 4.68: Coarse mesh for Case 4.
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Figure 4.69: Medium mesh for Case 4.
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Figure 4.70: Fine mesh for Case 4.

125



putational meshes are used for this case in order to see the mesh dependency,

which are presented in Figs. 4.68, 4.69 and 4.70 respectively. The coarse mesh

consists of 3545 nodes and 5223 cells, the medium mesh consists of 11403 nodes

and 12005 cells and the fine mesh consists of 41407 nodes and 33807 cells. The

flat plate is again placed between 0 and 1 and the boundary layer region is

meshed with hexahedron cells while pyramid and tetrahedron cells are used

at the farfield.

Figures 4.71 and 4.72 show the comparison of u-velocity and v-velocity pro-

files obtained from three different meshes at y = 0 plane and at x = 0.44. The

results on medium and fine mesh are quite similar indicating that the mesh

independency is reached while the coarse mesh gives overpredicted results

for both velocity profiles. The Mach contours and velocity vectors inside the

boundary layer on the flat plate at y = 0 plane for the medium mesh is pre-

sented in Fig. 4.73. The comparisons of u-velocity and v-velocity profiles at

three different y-planes for two different x-locations are given in Figs. 4.74,

4.75, 4.76 and 4.77, respectively, for the medium mesh along with the analyti-

cal Blasius solutions. The results of the Gas-Kinetic BGK scheme compare quite

well with the Blasius solutions at different y-planes and x-locations. Moreover,

the use of hexahedron cells near the wall region leads to the better resolution of

the boundary layer while the use of tetrahedron cells outside greatly reduces

the overall number of cells. This verifies the accuracy and robustness of the

proposed approach. Finally, the convergence history for the medium mesh is

shown in Fig. 4.78.
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Figure 4.71: Comparison of u-velocity profile in the boundary layer at x=0.44
for different meshes.

0 0.2 0.4 0.6 0.8 1 1.20

1

2

3

4

5

6

Blasius
Coarse mesh
Medium mesh
Fine mesh

√ 2 Re. . xw/U

z/
x.
√

0.
5

R
e

.

⎜ ⎜ ⎜

⎜
⎜
⎜

Figure 4.72: Comparison of v-velocity profile in the boundary layer at x=0.44
for different meshes.
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Figure 4.73: Mach number contours and velocity vectors at y=0 plane for Case
4 (Medium mesh, zoomed view).
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Figure 4.74: u-velocity profile in the boundary layer at x=0.44 for Case 4
(Medium mesh).
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Figure 4.75: u-velocity profile in the boundary layer at x=0.66 for Case 4
(Medium mesh).
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Figure 4.76: v-velocity profile in the boundary layer at x=0.44 for Case 4
(Medium mesh).
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Figure 4.77: v-velocity profile in the boundary layer at x=0.66 for Case 4
(Medium mesh).
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Figure 4.78: Convergence history for Case 4 (Medium mesh).
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4.3.5 Summary

The 3-D test cases considered in this section show that the Gas-Kinetic BGK

scheme produces highly accurate results for both inviscid and viscous flows.

In viscous flows, the use of hexahedron cells near the wall regions and tetra-

hedron cells at the farfield provides the required resolution of boundary layers

while reducing the total number of grid cells. The present results for 3-D flows

again show that the Gas-Kinetic BGK method can effectively be used for the

simulation of practical aerodynamic problems.
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CHAPTER 5

CONCLUDING REMARKS

Numerical methods for the analysis of fluid flow can be designed from two

fundamental descriptions of the fluid motion: continuum approach and gas-

kinetic theory. In the present study, gas-kinetic theory based methods for in-

viscid and viscous flow simulations on unstructured/hybrid grids are devel-

oped. At the beginning, the finite volume gas-kinetic methods in 1-D are in-

vestigated. Intensive theoretical and numerical discussions as well as com-

parisons with classical methods are made. The Gas-Kinetic BGK method is

then extended for the solution of 2-D and 3-D inviscid and viscous flows on

unstructured/hybrid grids. The computations are performed in parallel and

various inviscid and viscous validation cases are considered. Based on the nu-

merical solutions for both inviscid and viscous flows on unstructured/hybrid

grids, the following conclusions can be drawn:
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• The theoretical and numerical investigations reveal the basic properties

of the Gas-Kinetic BGK method, which can be summarized as (1) a higher

order gas evolution model, (2) the satisfaction of entropy and positivity

conditions, and (3) multidimensional character. All these properties are

not readily available in classical approximate Riemann solvers. Instead,

the most popular one, the approximate Riemann solver of Roe, is a one

dimensional model which needs an entropy fix and violates the posi-

tivity condition in certain flow problems. When compared to the gas-

kinetic counterpart (i.e., Kinetic Flux Vector Splitting), the Gas-Kinetic

BGK scheme has a more advanced and complex gas evolution model,

which is based on particle collisions, and hence the numerical diffusion is

controlled in the Gas-Kinetic BGK scheme, which is the main deficiency

in the Kinetic Flux Vector Splitting scheme. The weakest point of the Gas-

Kinetic BGK scheme is observed to be its computational cost due to the

use of extensive exponential functions.

• In gas-kinetic methods, the equation of state can easily be replaced to

accommodate various flow regimes as opposed to the approximate Rie-

mann solver of Roe, which requires the reformulation of averaged Jaco-

bian matrix.

• In the Gas-Kinetic BGK method, the convective (inviscid) and diffusive

(viscous) fluxes are evaluated at once through the gas distribution func-

tion. It should be noted that inviscid and viscous fluxes are computed

separately in classical methods.
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• The preliminary studies in 1-D indicate that the results obtained from

gas-kinetic theory based methods are comparable with those of classical

methods. The gas-kinetic methods do not give any unphysical results.

The Kinetic Flux Vector Splitting scheme show similar behavior as the

classical flux vector splitting schemes. On the other hand, the Gas-Kinetic

BGK scheme gives highly accurate results due to its underlying theory

based on particle collisions.

• The 2-D flow cases considered show that the Gas-Kinetic BGK scheme

produces very accurate results for both inviscid and viscous flows. The

unphysical phenomena such as carbuncle, odd-even decouling, etc. are

not observed while it is found that the Roe scheme may need special

treatments such as entropy fix in certain problems.

• It is observed that the numerical entropy generation in the Gas-Kinetic

BGK scheme is significantly less than that of Roe scheme, which con-

tributes to the accuracy of the Gas-Kinetic BGK method.

• The use of hybrid grids provides an efficient and high resolution of bound-

ary layers in viscous flows while reducing the total number of grid cells.

• The parallel computations exhibit that the high parallel efficiency of the

Gas-Kinetic BGK scheme is maintained as the number of processors in-

creases. This is due to the high computing to communication ratio in

the Gas-Kinetic BGK schemes. The parallel computations significantly

improve the computation time of the Gas-Kinetic BGK scheme which, in
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turn, enable the method for the computation of practical aerodynamic

flow problems.

Considering the results obtained in the present study, the following sugges-

tions about the Gas-Kinetic BGK method can be made as future work:

• In order to simulate the real flow physics, turbulence effects should be

taken into account. The inclusion of turbulence effect to the Gas-Kinetic

BGK method may be an challenging study. Another way is to incorpo-

rate one- or two-equation turbulent models with the Gas-Kinetic BGK

scheme.

• The Gas-Kinetic BGK scheme is also quite suitable for the solution of

hypersonic, chemically reacting flows including real gas effects.
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APPENDIX A

MOMENTS OF THE GAS DISTRIBUTION

FUNCTION

The Kinetic Flux Vector Splitting and Gas-Kinetic BGK schemes contain bounded

or unbounded integrals which are the moments of the Maxwellian distribution

function in half or full space. In the following, the recursive relations to calcu-

late these integrals are given.

For a 1-D Maxwellian distribution function

g = ρ (
λ

π
)

K+1
2 exp {−λ [(u− U)2 + ξ2]},

by introducing the notation for the integral of moments of g

< . . . >=
1

ρ

∫ +∞

−∞

∫ +∞

−∞
(. . .) g du dξ

the general formula is

< un ξm >=< un >< ξm >
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where n is an integer, m is an even integer. The values of < ξm > are

< ξ2 >=
K

2 λ
,

< ξ4 >=
3 K + K (K − 1)

4 λ2
.

The values of < un > depend on the integration limits. In full space, the recur-

sive relations are

< u0 >= 1

< u1 >= U

...

< un >= U < un−1 > +
n− 1

2 λ
< un−2 >

whereas in half space, with the notations,

< . . . >u>0=
1

ρ

∫ +∞

−∞

∫ +∞

0
(. . .) g du dξ

< . . . >u<0=
1

ρ

∫ +∞

−∞

∫ 0

−∞
(. . .) g du dξ

the recursive relations involve complementary error function:

< u0 >u>0=
1

2
erfc (−

√
λ U)

< u1 >u>0= U < u0 >u>0 +
1

2

exp (−λ U2)√
π λ

...

< un >u>0= U < un−1 >u>0 +
n− 1

2 λ
< un−2 >u>0

and

< u0 >u<0=
1

2
erfc (

√
λ U)
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< u1 >u<0= U < u0 >u<0 −
1

2

exp (−λ U2)√
π λ

...

< un >u<0= U < un−1 >u<0 +
n− 1

2 λ
< un−2 >u<0

In 2-D and 3-D, the Maxwellian distribution function can be decomposed into

the form of the 1-D and the above integration formula can be used. For exam-

ple, in 2-D,

< . . . >=
1

ρ

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(. . .) g du dv dξ

and

< un vm ξp >=< un >< vm >< ξp > .

On the other hand, in 3-D,

< . . . >=
1

ρ

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(. . .) g du dv dw dξ

and

< un vm wp ξq >=< un >< vm >< wp >< ξq > .

Similarly, the recursive relations for < vm > and < wp > can be obtained by

replacing U ’s with V ’s and W ’s, respectively, in the above formulas.
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• Ilgaz M., Tuncer İ. H., A Parallel Gas-Kinetic BGK Method for 3-D Invis-

cid Flows on Unstructured Grids (in preparation, to be submitted to AIAA

Journal).
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