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ABSTRACT 
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Ph.D., Department of Electrical and Electronics Engineering 

Supervisor      : Prof.. Dr. Altunkan HIZAL 

Co-Supervisor      : Assoc. Dr. S. Sencer KOÇ 

 
May 2007, 88 pages 

 
 
 
In this PhD thesis, propagation aspects of low altitude radar performance have been modeled 

using geometrical optics. Both the path propagation factor and the radar clutter have been 

modeled. Such models already exist at various complexity levels, such as round earth 

specular reflection combined with knife edge hill diffraction [SEKE:IEEE,Ap-

34,No:8,1980] and round earth and slant plateau reflection combined with hill diffraction 

[RADCAL: 1988-2000,EE,METU]. In the proposed model we have considered an extension 

to RADCAL’s model to include convex and concave slant plateaus between hills and 

depressions (troughs). This propagation model uses a reflection model based on the 

Geometrical Theory of Reflection for the convex and concave surfaces. Also, back 

scattering from surface (clutter) is formulated for the new model of the terrain profile. The 

effects of the features of the terrain profile on the path propagation factor have been 

investigated. A real terrain data have been smoothed on the basis of the above study. In 

order to verify the formulation, the Divergence and Convergence Factors associated with the 

convex and concave plateaus, respectively are inserted into the RADCAL program. The 

chosen terrains have convex or concave plateaus in the model. The output of the RADCAL 

is compared with measured values and other propagation algorithms such as Forward-

Backward Spectrally Accelerated (FBSA) [FBSA:IEEE Vol.53, No:9,2005] and Parabolic 

Equation Method [TPEM:IEEE Vol.42,No:1,1994]. Moreover, as the RADCAL Propagation 

model is based on the ray optics, the results are also compared with another ray optics based 

propagation model. For this purpose the results of SEKE [Lincoln Lab.] propagation model 

are used. SEKE model has been used to compute path loss for different types of terrain as a 

function of receiving antenna height at a fixed distance between transmit and receive 
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antennas. For Beiseker W35 Terrain profile, the results of RADCAL, SEKE and 

measurements are compared. All results are in good agreement with those of RADCAL.   

 

Keywords:  Propagation modeling, convex  and concave surface, path propagation factor, 

detectability factor, ground clutter 
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ÖZ 
 
 
 

ALÇAK İRTİFA RADAR DALGASI YAYILIM MODELLEMESİ 
 
 

Şengül, Orhan 

Doktora, Elektrik ve Elektronik Mühendisliği  Bölümü 

Tez Yöneticisi          : Prof. Dr. Altunkan HIZAL 

Ortak-Tez Yöneticisi          : Doç. Dr. S. Sencer KOÇ 

 
Mayıs 2007, 88 sayfa 

 
 

Bu doktora tezi çalışmasında, alçak irtifa radarların performanslarının geometrik optik 

esasları kullanılarak yayılım yönünden modellenmesi yapılmıştır. Hem yol yayılım faktörü 

hem de radar yansıması modellenmiştir. Bıçak sırtı tepe saçılmaları ile birleşmiş olan 

yuvarlanmış yüzeylerden yansımalar [SEKE: IEEE, AP-34, No:8,1980] ve bıçak sırtı tepe 

saçılmaları ile birleşmiş olan yuvarlanmış yüzeyler ve eğik platolardan olan yansımaların 

[RADCAL: 1988-2000,EE,METU] modellendiği farklı kompleks seviyelerde daha önceden 

yapılmış böyle modeller vardır. Önerilen bu modelde RADCAL modelinin uzantısı olarak 

dağların ve vadilerin arasındaki dışbükey ve içbükey eğik platoları göz önünde 

bulundurulmuştur. Bu yayılım modeli dışbükey ve içbükey yüzeyler için geometrik saçınım 

teorisini temel alan bir saçılma modelini (GTD) temel alan bir modeli kullanılmıştır. Buna 

ek olarak bu yeni arazi profile için araziden (yer yansıması) gelen geri saçınımlar 

hesaplanmıştır. Gerçek arazi profili  özelliklerinin yol yayılım faktörü üzerindeki etkileri 

araştırılmıştır. Gerçek arazi verileri yukarıdaki çalışmalar temel alınarak düzleştirilmiştir. 

Formülleri doğrulamak için dışbükey ve içbükey yüzeylerden olan dağılma ve toplam 

faktörleri RADCAL programının içerisine eklenmiştir. Modelde seçilen araziler içbükey ve 

dışbükey platolar içermektedir. RADCAL sonuçları ölçülen değerler ve İleri Geri 

Hızlandırılmış Spektrallar (FBSA) [ FBSA:IEEE Vol.53, Issue 9,2005] ve Parabolik Eşitlik 

Metodu [TPEM:IEEE Vol. 42, No:1,1994] gibi diğer yayılım algoritmaları ile 

karşılaştırılmıştır.  Hatta RADCAL Yayılım Modeli ışın optiği teorisine dayandığı için onun 

sonuçları diğer ışın optik temelli yayılım modelleri ile de karşılaştırılmıştır. Bu amaçla 

SEKE (Lincoln Lab.)  Yayılım Modeli kullanılmıştır. SEKE Modeli değişik arazi tipleri için 

gönderici ve alıcı arasında ki mesafe sabit kalırken alıcı antenin yüksekliğine bağlı olarak 
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yol kaybını hesaplamaktadır. Beiseker W35 Arazi modeli için RADCAL, SEKE ve ölçülen 

değerler karşılaştırılmıştır. Tüm sonuçlar RADCAL’ın sonuçları ile iyi uyumludur. 

 

Anahtar Kelimeler: Yayılım modellemesi, içbükey ve dışbükey yüzeyler, yol yayılım 

faktörü, tespit faktörü, yer karışıklığı,  radar simülasyonu 
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Equation Chapter 1 Section 1 

  CHAPTER 1 
 
 
1             INTRODUCTION 
 
 
1.1 Introduction 
 
RADAR (RAdio Detection And Ranging) is an electromagnetic remote sensing instrument, 

which operates by transmitting a particular type of waveform and detecting the echo signal. 

Radar is used to extend the capability of one's sense for observing the outside environment 

and gathers information from objects, which are generally called  "targets". The usual 

parameters extracted from a radar can be range of target, azimuth and elevation bearings of 

target and radial velocity of target. Signal processing of these parameters obtained from a 

target can lead to identification of a target. Moreover, amplitude and phase of the echo signal 

can be recorded for imaging of a target. 

 

The major user of radar has been military, which is also contributor of the cost of almost all 

its development, although there are lots of civilian areas where a radar application is used. 

Typical examples are; Air Traffic Control, Aircraft Navigation, Ship Safety, Space, Remote 

Sensing, Law Enforcement and Military. 

 

When a radar is to be used in an application, the user must concern with the radar system 

with regard to receiver and transmitter, the propagation path between the radar and target 

and also characteristics of the target. The prediction of radar performance requires a detailed 

examination of all these factors that build up the radar system. Radar simulation programs 

help not only the radar system designer but also the radar system user to enhance the 

performance of radar.  

 

The following factors are effective in determining the radar performance: 

 

(i) The technical characteristics of the radar equipment: Maximum transmitter power, IF 

filtering characteristics, antenna parameters, pulse repetition frequency, pulse repetition 

interval, pulse compression and integration, receiver noise figure, radar's one way and two 

way plumbing loses, frequency agility bandwidth, type of radar (MTI, pulsed doppler, etc.) 

and all the transmitter and receiver features of radar are to be considered. 
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(ii) The layout of the propagation path: The layout of the propagation path is affected by 

attenuation of radar waves due to atmospheric conditions; attenuation caused by 

meteorological effects, like rain, snow, hail; reflection from ground (land or sea); diffraction 

of radar waves from obstructions along the ray paths; obstruction of direct or reflected ray 

by plateaus and hills; properties of land and sea; bending of radar rays due to tropospheric 

refraction and earth's curvature. These factors have considerable influence on the radar 

performance. Moreover clutter due to rain, ground and jamming causes target signal to noise 

ratio to decrease; hence, the false alarm rate of the radar increases. Therefore clutter effects 

should also be analyzed and included in the performance calculations.  

 

(iii) Target types and properties: Target Radar Cross-Section (RCS) fluctuations, 

dimensions, material properties, swerling case number, etc. all affect the target interception 

capability of radar.  

 

The propagation of a radio wave through propagation path is affected by various 

mechanisms which degrades the originality of the received signal. Accurate prediction of 

these effects is essential in the design and development of a radar system. These effects can 

include reflection, shadowing and diffraction caused by obstacles along the propagation 

path, such as hills or mountains in a rural area, or buildings in a more urban environment. 

Reflections off obstacles or the ground cause multi-path effects and the radio signal can be 

significantly attenuated by various environmental factors such as ionospheric effects, 

propagation through vegetation, such as in a forest environment, or reflection from an 

impedance transition such as a river or land/sea interface. When line-of-sight (LOS) 

propagation is not present, these environmental mechanisms have the dominate effect on the 

originality of the received signal through dispersive effects, fading, and signal attenuation. 

 

Accurate prediction of these propagation effects allow the system engineer to address the 

trade-off between radiated power and signal processing by developing an optimum system 

configuration in terms of modulation schemes, coding and bandwidth, antenna design, and 

power. Current techniques commonly applied to characterizing the communications channel 

are highly heuristic in nature and not generally applicable. It is the intent of this work to 

define a new method for the accurate and general prediction of radio wave propagation by 

application of ray theory, and within this framework to develop electromagnetic models of 

convex and concave surface which represent various scattering and diffraction mechanisms 

in the propagation environment.  
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1.2 Scope and Objective 

 

The basic motivating factor behind this work is the need for development of an accurate and 

general propagation model. In order to predict a radar system performance, all these 

considerations should be suitably modeled and formulated. The propagation model should 

predict the path propagation losses performance.Consequently the method should be simple, 

accurate and very fast.  

 

Numerous methods for predicting field strength at high frequencies over irregular terrain 

have been presented in the literature . Evaluating radar performance at a given site requires 

estimation of the path propagation factor for the specific propagation path due to the 

combined effects of reflection and diffraction.  

 

The most widely used propagation model  based on ray optics is that  known as  SEKE [4] . 

It is a site-specific propagation model for general terrain, makes use of the original Lincoln 

Laboratory geometrical optics models for rough reflecting terrain, low altitude spherical 

earth propagation for level terrain, and low altitude  multiple knife edge diffraction for hilly 

non-reflecting terrain. 

 

Another propagation model RADCAL [1,2] is a simulation program of a radar system that is 

comprised of radar, propagation environment, and target. This simulation program models 

the propagation medium (land, sea, rain, atmosphere, hills, etc.), radar transmitter-receiver 

characteristics, clutter, and target. The propagation model used in RADCAL concerns the 

round earth and slant plateau reflections combined with hill diffractions. It considers 

contributions of specular reflections from flat (round earth) and slant plateaus between 

diffracting hills and nondiffracting depressions. It checks obstructions of incident, reflected 

and diffracted rays by flat plateaus and considers Knife-edge diffraction from rounded 

hilltops at oblique incidence. RADCAL also concerns, clutter backscattering from ground 

(land or sea); properties of land and sea; bending of radar rays due to tropospheric refraction 

and earth's curvature. The five-ray propagation model for reflection and diffraction can be 

used to find the path propagation factor. This model includes knife-edge diffraction and 

ground reflection simultaneously. In the new version of   RADCAL, terrain will be modeled 

as convex and concave plateaus together with flat slant plateaus joining hills and 

depressions. (See Figure 1-1) 
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Figure 1-1 Geometry describing new RADCAL terrain Model 
 

There is also full wave integral equation formulations for the propagation factor which are 

suitable for HF and VHF [7]. Another propagation model is the parabolic equation model 

which is also suitable for HF and VHF [8]. For microwave frequencies GO is more 

appropriate due to its simplicity and fast calculation. It reflects the specular reflection and 

hill diffraction effects which are dominant in the microwave propagation over irregular 

terrain. This type of fast algorithms in microwave radar propagation are very valuable as 

they can be embedded into real time simulation programs.  

 

Efficient and accurate high frequency diffraction analysis techniques have been of interest 

for many years. One of the techniques that have been widely used in the propagation model 

is ray optics. One of the techniques capable of predicting the far zone field is the Keller’s 

Geometrical theory of diffraction (GTD) [9]. When its deficiencies at shadow and reflection 

boundaries were removed by the uniform geometrical theory of diffraction [10] and the 

uniform asymptotic theory [11], GTD has become an even more effective tool because of its 

accuracy and simplicity. In this thesis GO (ray optic) is used to find the Divergence Factor 

(well known) and Convergence Factor (defined here). However, the singularities of GTD at 

caustics still exist.  

 

GO method is the best candidate for this purpose previous method exist and in this thesis we 

improve GO techniques suitable for a complicated irregular terrain. The GO model used 

here consists of modeling the terrain by round earth plateaus, slant flat plateaus, convex and 

concave plateaus between  hills and depression. Multiple hill top diffraction combined with 

reflections from plateaus are considered.  
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1.3 Relevant Assumptions & Definitions 

 

In this section relevant assumptions, definitions, and conventions are given. Unless 

otherwise indicated they are valid throughout the thesis. 

 

In this thesis, in all derivation and calculation we assume that radius of convex or concave 

slant plateaus ( ), the distance from the source of the incident or reflected ray to the 

reflection point ( ) and the distance from reflection point to observation point ( ) are 

much greater than the wavelength (

0R

1R 2R

λ ).  

 

                            λ>>0R     and λ>>1R  and λ>>2R             (1.1) 

 

Therefore we can accept that the area of reflection is smooth.  Since we assume that radius 

of convex or concave slant plateaus are very high ( ), we shall consider this 

surface as a circle.   

210 RRR >>

 

Also we assume that the distance from reflection point to observation point ( ) is less then 

the distance from reflection point to caustic point ( ). 

2R

CAUSTICR

 

CAUSTICRR <2              (1.2) 

 

For concave plateaus for low grazing angles the reflected rays form caustic surface is quite 

close to the specular point then divergences again. The Convergent Factor is valid if the field 

point is sufficiently away (roughly more than 10λ ) from the caustic surface. 

Finally the height of the source point and the observation point from the surface of the earth 

must be much greater than the wavelength (λ ): 

 

     λ>>1h   and  λ>>2h              (1.3) 

 

otherwise Whispering Gallery(Surface wave) Mode may occur and our derivation is not 

valid. 
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1.4 Outline  

 

In the chapters that follow the development of the new propagation model including the 

results and applications are presented.  

 

Evaluating radar performance at a given site requires estimation of the path propagation 

factor for the specific propagation path due to the combined effects of reflection and 

diffraction. The propagation models for predicting field strength at high frequencies over 

irregular terrain have been presented in Chapter II. 

 

Another problem of significant interest is the propagation of radio waves over convex or 

concave obstacles encountered in the propagation environment such as hills, mountains, or 

wiley. Current methods applied to this problem include knife-edge diffraction and GTD 

methods for both wedge and convex surfaces.  

 

In Chapter 3, a model is presented which calculates the reflection from a convex or a 

concave surface. A study concerning the effects of fine details of terrain is also studied. This 

work reveals the significant features of a terrain and suggest ways of smoothing a very 

detailed tarrain profile. 

  

In Chapter 4, numerical and geometrical verification of the present method are given. 

 

In Chapter 5 this thesis work is summarized and conclusions are drawn as well as 

suggestions for future work. 
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Equation Chapter 2 Section 1 
CHAPTER 2 

 
 

2 RADIO WAVE PROPAGATION MODELS 
 

 
2.1 Introduction 
 
Maxwell’s equations formulated in 1873 define EM phenomena. Although it had been more 

than a century since its establishment, people try to found more efficient and powerfull 

numeric or analytical solutions for specific problems. Now engineers and researchers 

worldwide use analytical or numeric methods to obtain solutions for EM wave propagation, 

radiation, guiding and scattering. In this chapter, we present a brief history of propagation 

models. Then, we present detailed information about RADCAL in which the present model 

is implemented. 

 

 
2.1 Propagation Models   

 

Many models currently exist that use a combination of spherical earth diffraction, multiple 

knife-edge diffraction, wedge diffraction, and geometrical optics to arrive at a solution for 

the field for a given transmitter/receiver geometry and a specified terrain path. 

 

Commonly used methods of propagation models  can be broken down into two areas, 

empirical models, which are highly heuristic in nature, and simplified analytic models.  

 

The empirical models are constructed from measured data and are not directly connected to 

the theory of the physical processes involved. This limits them to very specific enviromental 

conditions at the time the measurements were made as well as measurement system 

attributes (frequency, bandwidth, and polarization). An example of a commonly used 

empirical model for urban environments is the Okumura model [2]. This model uses simple 

algebraic equations to calculate mean path-loss for fixed frequency, observation distance, 

and transmitter/receiver height. It does not account for coherence bandwidth, fading, or 

depolarization effects. In addition it fails if the antenna heights or orientations are changed.  
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Analytic models, while attempting to account for the interaction of the various mechanisms 

which effect propagation, are simplified to a degree as to make them fast for most practical 

applications. An example of this is the Longley-Rice irregular terrain model [3]. It uses 

Geometrical Optics (GO) and ray-tracing to account for reflected fields and knife-edge or 

Kirchhoff diffraction to account for path obstacles.  

 

There are also full wave integral equation formulations for the propagation factor which are 

suitable for HF and VHF [7]. Another propagation model is the parabolic equation model 

which is also suitable for HF and VHF [8]. For microwave frequencies GO is more 

appropriate due to its simplicity and fast calculation. It reflects the specular reflection and 

hill diffraction effects which are dominant in the microwave propagation over irregular 

terrain. This type of fast algorithms in microwave radar propagation are very valuable as 

they can be embedded into real time simulation programs.  

 

Efficient and accurate high frequency diffraction analysis techniques have been of interest 

for many years. One of the techniques that have been widely used in the propagation model 

is ray optics. One of the techniques capable of predicting the far zone field is the Keller’s 

Geometrical theory of diffraction (GTD) [9]. When its deficiencies at shadow and reflection 

boundaries were removed by the uniform geometrical theory of diffraction [10] and the 

uniform asymptotic theory [11], GTD has become an even more effective tool because of its 

accuracy and simplicity. In this thesis, GO (ray optic) is used to find the Divergence Factor 

to account for  ray spread from a convex surface during reflection and the Convergence 

Factor to account ray collimation from concave surface during reflection. However, the 

singularities of GTD at caustics still exist.  

 

In the following section we present other propagation models (SEKE, FBSA,TPEM) and 

detailed information about RADCAL in which present model is included. 

 

 

2.2 SEKE: A Computer Model For Low Altitude Radar  Propagation Over  

Irregular Terrain 

 

SEKE (Spherical Earth Knife Edge) [4] is a computer model for low altitude radar 

propagation over irregular terrain. It is a new site-specific propagation model for general 

terrain, makes use of the original Lincoln Laboratory models geometrical optics (GOPT) for 
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rough reflecting terrain, low altitude propagation spherical earth (LAPSE) for level terrain, 

and low altitude propagation knife edges (LAPKE) for hilly non-reflecting terrain to 

compute multipath, spherical earth diffraction, and multiple knife-edge diffraction losses. 

The proper algorithm is selected based on terrain geometry, antenna and target heights, and 

frequency:  

 

SEKE predicts the one-way propagation factor over composite terrain by selecting, based on 

terrain geometry, one algorithm or combinations of the algorithms designed to compute 

specular reflection, spherical earth diffraction, and multiple knife-edge diffraction losses. It 

makes use of the Lincoln Laboratory models GOPT or GEOSE (the part of LAPSE that 

computes specular reflection loss) for multipath, SPH35 (the part of LAPSE that computes 

spherical earth diffraction loss) for spherical earth diffraction, and KEDEY (a new modified 

version of LAPKE) for multiple knife-edge diffraction loss computations. 

 

The model SEKE is based on the assumption that the propagation loss over any path at the 

microwave frequencies of interest (VHF to X-band) can be approximated by one of the 

multipath, multiple knife-edge diffraction, or spherical earth diffraction losses alone or a 

weighted average of these three basic losses. The model uses as subroutines the algorithms 

that have been developed previously at Lincoln Laboratory for smooth sphere reflections 

(GEOSE), multispecular reflections (GOPT), multiple knife-edge diffraction (KEDEY), and 

spherical earth diffraction (SPH35). The proper algorithm is selected based on the terrain 

elevation data for the propagation path, the altitude and range of the target, and the radar 

frequency. Figure 2-1 summarizes the guidelines of the model. 

 

SEKE was discussed for four categories of terrain:  

• Level reflective terrain,  

• Intermediate rolling farmland,  

• Rough reflective terrain,  

• Rough forested terrain. 
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Figure 2-1 : Guidelines of the SEKE propagation model 

 

An example of the output plot of the program SEKE for the Intermediate rolling farmland is 

shown in Figure 2-2 below. 

 

 
Figure 2-2 : One-way propagation loss as a function of receiver altitude 
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The model was tested at VHF frequencies through X band over many paths for which 

propagation data were available. For all the paths considered, the proper algorithm was 

selected by the program, and good agreement with the measurements was generally 

achieved. 

 

SEKE model was compared with two other general site-specific models, Longley-Rice [3] 

and terrain integrated rough earth model (TIREM) [4], which was also work directly on 

digital terrain elevation data, in terms of their expected performance. It was found that the 

SEKE models generally performed better. Also, the model was tested over many types of 

terrain at frequencies ranging from X-band to VHF, and the results were generally in good 

correlation with the measurements. 

 

 

2.3 Spectrally Accelerated Forward Backward  Model 

 

Spectrally Accelerated Forward Backward  (FBSA) [46] is a fast integral equation solution. 

FBSA results are obtained for propagation over large scale terrain profiles and compared 

with measurements to assess the accuracy of FBSA. 

 

Most of the automated propagation prediction tools for coverage analysis over geometrical 

databases use empirical models with or without semi-empirical multiple knife-edge 

diffraction (MD) losses in order to predict field strengths over terrain profiles. These 

empirical models which are described by equations or curves derived from statistical 

analysis of a large number of measured data, are simple and do not require details of the 

terrain. Therefore, they are easy and fast to apply. However, they cannot provide a very 

accurate estimation of the scattered field or the path loss for an arbitrary environment.  

 

Furthermore, the good agreement between the FBSA and measured results confirm the 

consistency of the method to be used for a section of the three-dimensional (3-D) 

environment, though the FBSA is based on the two-dimensional (2-D) Green’s function. Use 

of other 2-D Green’s function based integral equations for 3-D environments has been 

presented in the literature before [47]–[54]. They have chosen the FBSA among these 

methods, because of its O(N) computational cost, to examine the propagation models over 

electrically large terrain profiles. 
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In the following paragraphs first the integral equation (IE) formulation and its solution using 

the FBSA is briefly discussed. Then numerical results are presented.  

 

The scattered field over an electrically large rough terrain profile which is illuminated by an 

incident electromagnetic field { ( ) ( ){ }( )zzxxppHpE incinc ˆˆ, +=  is computed using an IE 

based method to be used as a reference solution. Figure 2-3 illustrates such a rough surface 

that is characterized with the curve C defined by ( )xfz = , along the x -axis.  

 

 
 

Figure 2-3 : Generic terrain profile. 
 

Considering the terrain as an imperfect conductor ( ) ( )( )pp rr µε ,  and using the Impedance 

boundary conditions (IBC) [55], an electric field integral equation (EFIE) for a transverse 

magnetic ( ) polarization can be written in terms of the equivalent electric current 

density  on the surface and a magnetic field integral equation (MFIE) for the transverse 

electric ( ) polarization case can be obtained in terms of the tangential induced current 

 [46]. 

yTM

yJ

yTE

tJ

 

Instead of the direct solution of the system, which requires ( )3NO  operations, the FBSA 

( ) is used in order to find the unknown current coefficients for electrically very large 

terrains.  

( )NO

 

In order to assess the accuracy of the FBSA as well as to demonstrate its consistency with 
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measurements, comparisons of FBSA results with measurements are shown in Figures 2-4 

and Figures 2-5. The terrain profiles are from Denmark with lengths up to 8 km. The height 

variations are of the order 20–50 m. Measured data were obtained byHviid et al. [47] using a 

dipole with a transmitted power of 10 W and a gain of 8 dBi. The transmitter height is 10.4 

m. The receiver antenna is 4/λ  monopole on top of a van with a height of 2.4 m. Having 

no exact information abou  electrical properties of terrains, the surface 

impedances are taken as 

t the vegetation and

Ω+= 1.82.20 jsη   in order to handle some small forests and 

other land cover data along the profiles [14]. Also shown in the figures are the computations 

of Hviid et al. [14] with a different terrain based integral equation method. This method 

neglects the backscattering, has a computational cost of ( )2NO , assumes perfect magnetic 

conductor terrain, and it can only handle the TM po y have taken the 

ent length 10/

la case. The

segm

rization 

λ , and the strong region length, ( ) 4/minmax zzLs −= , is calculated as 

λ13  and λ6 , respectively, for the terrain profiles in Figure 2- re 2-5(a). 

 

4(a) and Figu
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Figure 2-4 : Path loss over Hadsund terrain profile. (a) Profile geometry.(b) TM polarization 

at 435 MHz. λλ 13,117,115275,1.0,7950tan ====∆= qNNxmceDis sL . 
 

 

 

In Figure 2-4(b), the results are presented over Hadsund terrain profile at 435 MHz operating 

frequency, while the comparisons over Jerslev profile for 970 MHz are shown in Figure 2-

4(b). Both figures show the very good agreement of the FBSA results with the 

measurements and the other IE method. 
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Figure 2-5 : Path loss over Jerslev terrain profile. (a) Profile geometry. (b) TM polarization 

at 970 MHz. λλ 6,124,185066,1.0,5600tan ====∆= qNNxmceDis sL 6 . 
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2.4 Terrain Parabolic Equation Model 

 

For many years now, the parabolic equation (PE)[60] method has been used to model 

radiowave propagation in the troposphere for over-ocean paths . The biggest advantage to 

use the PE method is that it gives a full-wave solution for the field in the presence of range-

dependent environments. Two methods may be used to solve the PE. One uses finite-

difference techniques, and the other uses the split-step Fourier algorithm.  

 

Terrain Parabolic Equation Model (TPEM)  is based on a modification to the smooth earth 

Parabolic Equation (PE) and uses the split-step Fourier algorithm.This is a numerically 

efficient model because of the use of fast Fourier transforms (FFTS) in its implementation. 

Since only a minor modification to the smooth earth PE is required to include terrain effects, 

a brief description of the derivation and implementation will be given in following 

paragraph. 

 

In the following formulation, the atmosphere is assumed to vary in range and height only, 

making the field equations independent of azimuth. Also, there is an assumed time 

dependence of  in the field components. They begin with the parabolic wave equation  

for a flat earth. 

iwte−

 

The field from either a horizontal or vertical electrical dipole source satisfies the same 

parabolic differential equation. The type of source one wants to model determines the 

boundary condition that is applied at the earth's surface. For the present, only horizontal 

polarization will be addressed. 

 

A transformation is made according to the method first presented by Beilis and Tappert [58], 

in which they used this technique to model rough surface scattering for underwater acoustic 

fields. The original coordinate system is transformed such that a simpler boundary condition 

is obtained in the new coordinate system and a new PE is derived. 

 

With this simpler boundary condition the problem becomes easier to solve and, in fact, can 

be solved by the same split-step PE algorithm. For the implementation of the smooth earth 

PE and further details on the TPEM, the reader is referred to [59]. 
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In order to assess the accuracy of the TPEM all measurement and prediction results will be 

displayed as height vs. one-way propagation factor (field strength relative to free space) in 

dB. 

 

Propagation measurements were made over several sites in Canada by Lincoln Laboratory 

[4]. Comparisons will be presented for one site in particular, the Beiseker area in Alberta, 

Canada. The terrain is considered to be intermediate rolling farmland with negligible 

vegetation. A standard atmosphere of 118 M-unitsh for TPEM was used and a 4/3 earth 

radius factor was used for SEKE. Figure 2-6 shows the 55 km north terrain profile (Beiseker 

N55) along with the height-gain plot comparing SEKE, TPEM, and the propagation 

measurements. The frequency is 435 MHz, the transmitter height is 18.3 m above the 

ground, and the receiver range is 54.5 km. For this case TPEM and SEKE agree fairly well 

with the measured data. Figure 2-7 shows the same comparison for a frequency of 167 MHz 

along the 35 km west path (Beiseker W35). Here, both TPEM and SEKE agree well with the 

data, however, TPEM is also able to capture the multipath pattern at the higher altitudes.  
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Figure 2-6 : Terrain profile for north (55 h) Beiseker path with height-gain plot showing 

TPEM, SEKE, and measured signal.  
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Figure 2-7 : Terrain profile for west (35 h) Beiseker path with height-gain plot 

showing TPEM, SEKE,and measured signal. 
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2.5 RADCAL  

 

RADCAL is a simulation program of a complete radar system that is comprised of radar, 

propagation environment and target. This simulation program models the propagation 

medium (land, sea, rain, atmosphere, hills, etc.), radar transmitter-receiver characteristics 

and target, and evaluates all the related mathematical formulation. As an output of these 

processes, performance of the radar against the target is examined. This algorithmic work is 

also supplemented with a suitable user-interface and display capabilities in both Borland 

Pascal and Visual C++. 

 

RADCAL propagation model concerns the round earth and slant plateau reflection combined 

with hill diffraction. It considers contributions of specular reflections from flat and slant 

plateaus between diffracting hills. It checks obstructions of incident and reflected rays by 

flat plateaus and considers Knife-edge diffraction from rounded hilltops at oblique 

incidence. RADCAL also concerns attenuation of radar waves due to atmospheric 

conditions; attenuation caused by meteorological effects, like rain, snow, hail; reflection 

from ground (land or sea); properties of land and sea; bending of radar rays due to 

tropospheric refraction and earth's curvature. 

 

RADCAL calculates the path propagation factor which is defined as the ratio of the realized 

signal strength, at the target position conditions to that which would exist in free space. It 

expresses the effects of the interaction of the direct wave with the underlying surface of the 

earth and the atmospheric refraction. These effects include any reflected wave reaching the 

target from the surface, and the diffraction of the wave as it passes close to the surface. The 

five-ray propagation model for reflection and diffraction can be used to find the path 

propagation factor. This model includes knife-edge diffraction and ground reflection 

simultaneously.   

 

The overall "path propagation factor" is obtained by complex addition of the five ray 

propagation factors. That is: 

 

              54321 FFFFFFt ++++=                                        (2.1) 

 

Each propagation factor can be calculated as follows: 
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2.5.1 RAY-1 

 
This is the direct ray between the radar and the target. It takes into account the knife-edge 

diffraction, antenna field pattern function along the direct path, atmospheric lens effect loss, 

one way atmospheric attenuation, rain attenuation and diffraction zone path-gain-factor. It is 

described in Figure 2.8 and expressed by (2.2). 

Radar
Target

2h

ph1

1h
ph2

R

2HD
D

 

Figure 2.8 : Geometry Describing RAY-1. 
 

 
                    ( ) fdzAttATlKE ARLLfFF ⋅⋅⋅⋅⋅= 1111 θ                                      (2.2) 
 
where  

: Knife-Edge diffraction factor. (See Appendix A.1) 1KEF  

( )1θf   : Antenna field pattern function along the direct path. (See Appendix A.2) 

      : Atmospheric lens effect loss for Ray-1. (See Appendix A.3) 

    : One way atmospheric attenuation from  to  along (See Appendix A.3)  

  : Rain attenuation factor and is contributed to the Ray as , the rain length for the 

path radar to t

r. (See Appendix A.4) 

  

 is calculated by using the procedure.  

lL

ATL  1H 2H R . 

1AttR  rL

arget. (See Appendix A.8) 

A    : Diffraction zone path-gain-factofdz

The value of 1F (...)_ RayDirect
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.5.2 RAY-2 

his is the complex summation of the rays which emanate from radar and reflect from a flat 

 

2

 
T

or slant plateau and reach the target. It takes the knife-edge diffraction, antenna field pattern 

function along the direction of incidence, atmospheric lens effect loss, one way atmospheric 

attenuation, rain attenuation, divergence factor, available area for reflection, reflection 

coefficients, specular reflection and pulse extension into account. It is described in Figure 

2.9 and expressed by (2.3). 

Figure 2.9 : Geometry Describing RAY-2. 
 
 

( ) 22211l222211 AttATlATKEKE RLLLLfFFF ⋅⋅⋅⋅⋅⋅⋅= θ  

                         (2.3) 

where; 

: Knife-Edge diffraction factor from radar to specular reflection points. (See 

Appendix A.

rom specular reflection points to target. (See Appendix 

A.1) 

βρρρ j
vsrarv eWWD ⋅⋅⋅⋅⋅⋅⋅⋅ Reflect  

21KEF  

1) 

F  : Knife-Edge diffraction f22KE

( )2θf  : Antenna field pattern function along the specular reflection path. (See Appendix 

A.2) 

: Atmospheric lens effect loss from radar to specular reflection points. (See 

Appendix A.3) 

 atmospheric attenuation from  to specular reflection points. (See 

Appendix A.

Radar
Target

2h

ph1

1h

ph2

2HD
D

Q0P

1lL  

1ATL  : One way  1H

3) 
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spheric lens effect loss from specular reflection points to target. (See 

App d

ay atmospheric attenuation from specular reflection points to . (See 

Appe

ttenuation factor and is contributed to the Ray as , the summation of rain 

lengt  

ctor due to the divergence of incident rays after reflection from 

 e

2lL  : Atmo

en ix A.3) 

2ATL  : One w 2H

ndix A.3) 

2AttR  : Rain a rL

hs for the path radar to specular reflection points and specular reflection points to 

target. (See Appendix A.8) 

vD  : The divergence fa

round arth. The value of vD  is calculated in ( )Specular  procedure. (See Appendix G.34) 

rW  : Ratio of lateral 1st Fresnel zone rad ction to the radius of the availableius for refle  

pla  at

or reflection to the radius of the 

ava bl

 not. (See  

             

coefficient of the ground pertinent to the polarization of the 

trans

in  the specular reflection point. (See Appendix A.5) 

raW  : Ratio of longitudinal 1st Fresnel zone radius f

ila e plain at the specular reflection point. (See Appendix A.5) 

Reflect : The parameters which checks specular reflection occurs or

Appendix G.34) 
βρ je  : The reflection 

mitting antenna. (See Appendix A.6)  

sρ  : Rough surface specular reflection coefficient. (See Appendix A.6) 

vρ  : Vegetation reflection coefficient. (See Appendix A.6) 

 

he value of  is calculated by using the  procedure. This 

ys from to the refle

T  2F (...)eflectionSpecular_R

procedure also checks obstruction of incident ra ction point Q  by 

convex masks or flat plateaus. It also checks obstruction of reflected rays from reflection 

point Q  by convex masks or flat plateaus. (See Appendix A.7) 

 

 1H  
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.5.3 RAY-3 

his ray is the complex summation of rays, which emanate from radar and diffract from a 

 

he complex summation of RAY-1 and RAY-2 path propagation factors gives RAY-3 path 

                   (2.4) 

 

he value of  is calculated by using the   procedure.  

inc=1

inc=0

2

 
T

hill and then reflect from flat or slant plateau and reach the target. RAY-3 can be expressed 

in terms of RAY-1 and RAY-2. It is described in Figure 2.10 and expressed by (2.4). 

 

Radar
Target

2h

ph1

1h

ph2

2HD

DmiD

mih

} }
RAY-1 RAY-2

Figure 2.10 : Geometry Describing RAY-3. 

T

propagation factor, iF3 , for any hill selected for diffraction. A phase correction term for 

RAY-3 should be added to the phase summation of rays. (See Appendix A.7) The procedure 

described here should be repeated for all the masks and the results should be added for 

calculating RAY-3: 

 

∑
=

=
mN

i
iFF

1
33

T  3F )...(5_4_3_Rays
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.5.4 RAY-4 

his ray is the complex summation of rays which emanate from radar and reflect from a flat 

 

Figure 2.11 : Geometry Describing RAY-4. 

 

he complex summation of RAY-2 and RAY-1 path propagation factors gives RAY-4 path 

4

                  (2.5) 

 

he value of  is calculated by using the  procedure.  

2

 
T

or slant plateau and then diffract from a hill and reach the target. RAY-4 can be expressed in 

terms of RAY-1 and RAY-2. It is described in Figure 2.11 and expressed by (2.5). 

 

inc=1

inc=0

Radar
Target

2h

ph1

1h
ph2

2HD

D
miD

mih

} }
RAY-1RAY-2

T

propagation factor, F , for any hill selected for diffraction. A phase correction term for 

RAY-4 should be added to the phase summation of rays. (See Appendix A.7) The procedure 

described here should be repeated for all the masks and the results should be added for 

calculating RAY-4: 

 

i

∑
=

=
mN

i
iFF

1
44

T  4F (...)5_4_3_Rays
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.5.5 RAY-5 

his ray is the summation of rays, which emanate from radar and reflect from a flat or slant 

 

Figure 2.12 : Geometry Describing RAY-5. 

 

he complex summation of two RAY-2 path propagation factors gives the RAY-5 path 

5

he value of  is calculated by using the  procedure.  

 

                       (2.6) 

 

y introducing the "path propagation factor" in Eqn.(2.6) to the radar equation, then 

2

 
T

plateau, then diffract from a hill and then again reflect from a flat or slant plateau and reach 

the target. RAY-5 can be expressed in terms of RAY-2. It is described in Figure 2.12 and 

expressed by (2.6). 

inc=0
inc=0

Radar
Target

ph1

1h

2HD
DmiD

mih

} }
RAY-2

2h

ph2

RAY-2

T

propagation factor, F , for any hill selected for diffraction. A phase correction term for 

RAY-5 should be added to the phase summation of rays. (See Appendix A.7) The procedure 

described here should be repeated for all the masks and the results should be added for 

calculating RAY-5: 

 

i

 5F (...)5_4_3_RaysT

∑
=

=
mN

i
iFF

1
55  

B

equation takes the form below. 

                      

 

 



4

0
tF

N
S

∝                                                (2.7) 

 

where     is the field path propagation factor.   tF

 

This equation is going to be taken as general radar SNR equation from now on. 

 

RADCAL calculates effective signal-to-noise ratio  as a function of the geodesic 

distance " " of the target from the location of the radar and detectability factor

effSNR

d ( )nDx . 

Comparing to the detectability factor effSNR ( )nDx  gives the performance of the radar for a 

given : probability of detection and : probability of false alarm and other parameters. 

When is greater than

dP faP

effSNR ( )nDx , the performance is better than specified in terms of  

and . 

dP

faP

 

For further details on the RADCAL, the reader is referred to [1],[2] and [3]. 

 

A typical example of geometry describing the terrain profile defined in RADCAL and the 

output plot of the program in Borland Pascal version of the RADCAL program are shown 

Figure 2-13 and Figure 2-14 respectively. 

 

ph1

1h
2h

ph2
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2mD
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3mD 4mD=

5mD

1

2 3

4

5

Radar

Target

Figure 2-13 : An example Geometry Describing the Profile 
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Figure 2-14 : The Output of Jerslev Terrain Profile Example 

 

In the new version of RADCAL, terrain will be modeled by convex and concave Plateaus 

together with flat slant plateaus joining hills and depressions. (See Figure 2-15) 

 

 
Figure 2-15 : Geometry describing new RADCAL terrain Model 
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Equation Chapter 3 Section 1 

CHAPTER 3 
 
 

3 GEOMETRICAL OPTICS FORMULATION OF REFLECTIONS 
 
 
 
3.1 Introduction 
 
In a rural or semi-rural propagation environment, natural obstacles such as hills, mountains, 

or ridge lines can have a significant effect on the propagating radio wave. Many natural 

terrain features exhibit curved ridge lines in mountainous areas exhibit the features of a long 

curved cylinder which is essentially infinite in one dimension at high-frequencies. These 

lines may be the result of the natural formation of the mountain chain or a feature of erosion. 

Geologically recent mountain chains, while exhibiting sharp edged features, still have 

electrically large radii of curvature even at HF bands. This indicates that the radius of 

curvature must be accounted for, in diffraction calculations. In this chapter, we present a 

developed irregular terrain propagation model based on ray optics. The model consists of 

modeling the terrain by round earth plateaus, slant flat plateaus,  convex and concave 

plateaus between  hills and depression.  

 

 

3.2 New Propagation Model 

 

Rigourous high frequency approaches to problem of scattering from wedge type diffracting 

obstacles with curved surfaces involve infinite series and integrals[41] to [44]. And special 

functions [45][46]. Such techniques are not suitable in a real time propagation model and 

they require long computation time. However, the accuracy obtained is not justified as the 

terrain is irregular and cannot be modeled in fine detail. The proposed method use ray optics 

based on the Geometrical Theory of Reflection from the convex and concave surfaces to 

calculate Divergence Factor (well known) and Convergence Factor  (defined here) from 

convex and concave surface respectively.   
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3.3 Divergence Factor  
 

The classical Divergence Factor D is the quantity that represents the spherical shape of the 

earth in the weakening energy reflected from the surface in the interference region. Kerr 

D.E. [7] had derived the formula for D both by field strength formulas and by purely 

geometrical consideration. The geometrical derivation of the Divergence Factor D also 

suggested by that of Van der Pol and Bremmer [40], who derived the same result as part of 

an elaborate analysis of diffraction of the waves by a conducting sphere. 

 

Using the same analogy and geometrical theory of diffraction we derive the Divergence 

Factor for a convex surface as follows; 

 

Figure-3 shows a convex surface and an isotropic source at height  from the centre of 

convex circle. It is desired to compare the density of the rays in a small cone reflected from 

the convex surface near the principal point of reflection with the density of the rays of the 

same cone would have if they were reflected from a plane reflector at the same point. The 

field strength is proportional to the square root of the ray density. More specifically, D is the 

square root of the ratio of cross section of the cone after reflection by a plane to reflection 

from convex surface. 

1r
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Figure 3-1 : Reflection from a Convex Surface 
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The cross section of the bundle of the rays leaving the source is  where φττ ddSinR ... 11
2 φ  

measured perpendicular to the plane of the paper is  is slant range. After reflection from a  R

plane its cross section would be ( ) φττ ddSinRR .. 11
2

21 + , as the rays appear to have traveled a 

distance  from the image of the source below the plane tangent at the point of 

reflection. (See Figure 3-2) 

21 RR +
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Figure 3-2 : Reflection from a Plane Surface 

 

After reflection from the convex surface the cross section is  of the Figure 3-2:. It is also 

equal to the

1A

32 . τCosA , where φθθ ddSinrA ...22 = . The divergence factor is then given 

by  

 

        ( )
φθτθ
φττ

ddCosSinr
ddSinRRD

....
...

3
2

2

11
2

21 +=  

 

        

1
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1

2
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θτθ

τ

d
dCosSin

Sin
r

RR
D

+
=                                      (3.1) 
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In order to obtain 1/ τθ dd , we require several relations that can be obtained from 

inspection of Figure 3-2: 

 

321120 ... τττ SinrSinrSinR ==                            (3.2) 

       1011 .. θτ SinRSinR =     2032 .. θτ SinRSinR =                           (3.3)       

20111 .. ττ CosRCosrR −=                             (3.4) 

                                                    20322 .. ττ CosRCosrR −=                          (3.5) 

                                     (3.6) 110
2

1
2
0

2
1 ...2 θCosrRrRR −+=

                                     (3.7) 220
2

2
2
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2
2 ...2 θCosrRrRR −+=

 

By manipulating of (3.2) to (3.7) it is easy to show θ  can be expressed in terms of 

 and )&(,, 2121 zzrra 1τ . As 1τ  is the only variable quantity, we can then write  
1

1

τ
τ
θθ dd
∂
∂

=  

where 
1τ
θ

∂
∂  can be evaluated by differentiation of (3.6) and (3.7) wrt. 1τ  and use (3.3) yields 
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Then 
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θ

∂
∂ becomes 
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From (3.2) to (3.5) one can obtain 
1

1

τ∂
∂R  and 

2

2

τ∂
∂R   

     211
2

2

1

1 .. τ
τ
τ

τ
TanRR

Cos
SinR

==
∂
∂

                       (3.11) 

 

     3212
1

2 ... τττ
τ

TanTanCotR
R

=
∂
∂

                       (3.12) 

 

Combination of (3.11) and (3.12) into (3.10) then 
1τ
θ

∂
∂ becomes 

 

   
3220

121312

1 ...
....
ττ

ττ
τ
θ

CosCosrR
CosRrCosRr +

=
∂
∂

            (3.13) 

 

With the aid of (3.13) the expression Divergence Factor can be calculated as; 

 

( ) [ ]20212121

22
210 .).(..2...

.
..

τθ
ττ

CosRRRRRSinrr
CosSin

RRRD
++

+=          (3.14) 

 

 

Kerr’s Approximation! 

 

The angle 2τ  is the complement of the grazing angle 2ψ , which is always very small in the 

region where Divergence Factor has an appreciable effect. Hence we write 

  and . Then if we make some simplification in (3.14) and 

assuming ranges are so small that 

122 ≈= ψτ CosSin 22 ψτ SinCos =

2100 .. RRRSinR +== θθ  Divergence Factor becomes; 
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+
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τSinRRR
RR
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3.4 Convergence Factor  
 

The Convergence Factor C is the quantity that in the interference region represents the 

concave parts of the earth in strengthening the energy reflected from the surface. It is 

meaningful to derive the formula for C from purely geometrical consideration like the 

Divergence Factor.  For concave surfaces, the reflected rays converge and intersect. Such an 

intersection point is called a caustic point, and the locus of such points are called the caustic 

surface of the ray system. The amplitude in GO is infinite at caustic points (See Figure 3-3). 

 
Figure 3-3 : Caustic Condition Geometry 

 

The intensity of the light is increased near a caustic. Caustics can be produced by reflection, 

as here, or by refraction, in a variety of ways (See Figure 3-4). 

     
Figure 3-4 : Caustic Condition Geometry 

Figure 3-5 shows cross section of the earth with a concave surface on it and an isotropic 
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source at height  from the centre of the concave circle. It is desired to compare the density 

of a   small cone reflected from the concave surface near the principal point of reflection 

with the density of the rays of the same cone would have if they were reflected from a plane 

reflector at  the same point. The field strength is proportional to the square root of the ray 

density. More specifically, Convergent factor is the square root of the ratio of cross section 

of the cone after reflection by a plane to reflection from concave surface. 

1r

 

1τ
3τ

1θ 2θ θd

2τ2τ

1P

2P

io

0R
1r 2r

1R 2R

o

2A
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Figure 3-5 : Reflection from a Concave Surface 

 
 

The cross section of the bundle of the rays leaving the source is  where φττ ddSinR ... 11
2

φ  measured perpendicular to the plane of the paper is and  is slant range. After reflection 

from a plane its cross section would be 

R

( ) φττ ddSinRR ... 11
2

21 + ,  as the rays appear to have 

traveled a distance  from the image of the source below the plane tangent at the 

point of reflection  (See Figure 3-6). 

21 RR +
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Figure 3-6 :. Reflection from a Plane Surface 

 

After reflection from the concave surface the cross section is   of the Figure 3-5. It is also 

equal to the

1A

32 . τCosA , where φθθ ddSinrA ...22 = . The convergence factor is then given 

by  
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φθτθ
φττ
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ddSinRRC

....
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3
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11
2

21 +=  

 

   

1
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1

2

21

..
τ
θτθ

τ

d
dCosSin

Sin
r

RR
C

+
=                          (3.16) 

 

In order to obtain 1/ τθ dd , we require several relations that can be obtained from 

inspection of Figure 3-6: 

 

321120 ... τττ SinrSinrSinR ==                        (3.17) 

1011 .. θτ SinRSinR =     2032 .. θτ SinRSinR =                           (3.18)       

20111 .. ττ CosRCosrR +=                           (3.19) 

20322 .. ττ CosRCosrR +=            (3.20) 

36 

 

 



                       (3.21) 110
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                      (3.22) 220
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By manipulation of (3.17) to (3.22) it is easy to show θ  can be expressed in terms of 

 and )&(,, 2121 zzrra 1τ . As 1τ  is the only variable quantity, we can write  
1

1

τ
τ
θθ dd

∂
∂

=   

where 
1τ
θ

∂
∂  can be evaluated by differentiation of (3.21) and (3.22) wrt. 1τ and use (3.18) 
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Then 
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θ

∂
∂ becomes 
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From (3.17) to (3.22) one can obtain 
1

1

τ∂
∂R  and 

2

2

τ∂
∂R   
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     3212
1
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             (3.26) 

 

Combination of (3.25) and (3.26) into (3.24) then 
1τ
θ

∂
∂ becomes 
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With the aid of (15) the expression Convergence Factor can be calculated as; 

 

     ( ) [ ]20212121

22
210 .).(..2...

.
..

τθ
ττ

CosRRRRRSinrr
CosSin

RRRC
+−

+=          (3.28) 

 

 

Kerr’s Approximation! 

Same as above the angle 2τ  is the complement of the grazing angle 2ψ , which is always 

very small in the region where Convergence Factor has an appreciable effect. Hence we 

write   and . Then if we make some simplification in (3.28) 

and assuming ranges are so small that 

122 ≈= ψτ CosSin 22 ψτ SinCos =

2100 .. RRRSinR +== θθ  Convergence Factor becomes; 

 

1
)..(

..2
1

2210

21 −
+

≈

τSinRRR
RR

C             (3.29) 

 

Comparing equation (3.28) and (3.9) with Equation (3.14) and (3.15), we notice the sign 

change as only the diffrences between the Divergence and Convergence Factor. 

 

When the radius   is large and the source point is sufficiently away from the surface the 

caustic occurs very close to the surface and rays diverge again, similar to convex surface. 
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Figure-3.7 : Reflection from Convex Surface 
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3.5 Reflection from Convex Slant Plateau 
 

We must find the specular reflection points Q 's between radar and target and their first order 

contributions to calculate reflection coefficient, which is required to calculate the path 

propagation factor. For convex plateaus it is difficult to calculate the specular reflection 

points Q 's directly due to the complexity of equation. We use Bisection Method and 

geometrical optics principle for finding the specular reflection points on convex surface.  

 

Derivation of algorithms by using Figure 3.8 are as follows; 

 

βiθ

1α 2iα
2α 1iα

1+iθ

ea ea eaea

D

1+mid
mid

1+miθ
miθ

dθ

1P 2P

mo

o

cmR

1Rom

1ir

2Rom

2ir

1h 2h

1r 2r

1M 2M
1+mih

mih

21PP

cmR

omH

 

Figure-3.8 : Reflection from Convex Surface 
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In this figure, radius of the convex surface  is input parameter,  is effective earth 

radius,   

cmR ea

omθ  (  angle) and the distance   ( mOOP ˆ
1 omH mOO  ) are calculated in the program. 
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By similar process  from triangle  1ir 11OMP
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At triangle   
∆
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After this derivation we calculates 1α  and 2α  along the convex surface arc. If we can find 

any point where 1α  and 2α  are equal then this point is our specular reflection point Q. 
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3.6 Reflection from Concave Surface 
 

We must find the specular reflection points Q 's between radar and target and their first order 

contributions to calculate reflection coefficient which is required to calculate the path 

propagation factor. For concave plateaus it is difficult to calculate the specular reflection 

points Q 's directly due to the complexity of equation. We use Bisection Method and 

geometrical optics principle for finding the specular reflection points on concave surface. 

 

Derivation of algorithms by using Figure 3.9 are as follows; 
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Figure-3.9 : Reflection from Concave Surface 
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In this figure, radius of the concave surface  is input parameter,  is effective earth 

radius, 

cmR ea

omθ  (  angle) and the distance   ( mOOP ˆ
1 omH mOO  ) are calculated in the program. 
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By similar process  from triangle  1ir 11OMP
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At triangle   
∆
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As you can see we derive same algorithms in reflection from convex surface. After this 

derivation we calculate 1α  and 2α  along the concave surface arc. If we can find any point 

where 1α  and 2α  are equal then this point is our specular reflection point Q. 
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Equation Chapter 4 Section 1 
CHAPTER 4 

 
 

4 VERIFICATION OF PRESENT METHOD 
 
 

4.1 Introduction 
 
In chapter 3, we have presented an irregular terrain propagation model based on ray optics. 

In this chapter, numerical and geometrical verification of the present method is given. 

 
 
 
4.2 Geometrical Verification of Methods 
 

4.2.1 Divergence Factor  

 

Divergence Factor derived in this paper is in exact agreement with the results of Keller’s 

formula [5] which is based upon GO expansion of the exact solution of the Kerr. Keller 

applied a cylindrical wave to smooth conducting convex surface. When the medium is 

homogeneous, the incident rays are straight lines emanating from the source P of the 

incident cylindrical wave. Each incident ray which hits the cylinder gives rise to a reflected 

ray according to the law of reflection.  

 

He used the optical form of the principle of conservation of energy which states that the flux 

of energy is proportional to the square of the field amplitude multiplied by the cross-

sectional area of the tube in a steady-state condition. The field associated with an incident 

ray at a point with co-ordinate p is, 

 

jkp
inc e

p
A

u 0≈                                                          (4.1) 

 

In order to determine the field associated with a reflected ray, it is necessary to know the 

field on the incident ray and the conditions to be satisfied at the reflecting surface. We must 

now impose the boundary condition that the field vanishes at the surface. Then at the 

surface, the reflected field is the negative of the incident field. Therefore, at the surface the 

amplitudes of the reflected and incident fields are the same. However, the phase of the 
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reflected field differs from that of the incident field by π . The amplitude of the reflected 

field  at a distance ( )sA s  from the surface along a reflected ray can be found as (See Figure 

4-1) 

 

a
b

 
Figure 4-1 : The Reflected Rays from Convex Surface 

 

 

( ) 2/11

'

0 )1( −−+= sa
p

AsA                             (4.2) 

 

In (4.2)  is the distance from the source to the point of reflection and  denotes the 

amplitude on the ray at unit distance from the source,  is radius of curvature of the 

cylinder at reflection point. 

'p 0A

b

 

Before (4.2) can be used, the distance  must be determined. To find  we note that 

neighboring normal to the reflecting surface meet at a distance  from the surface, and  is 

called the radius of curvature of the surface at the point under consideration. For an incident 

plane wave any two neighboring incident rays are parallel. If they make the angle 

a a

b b

φ  with 

the two neighbouring normal, then φCosba
2

=  (See Figure 4-2). This value of ‘ ’ is the 

focal length of the reflector for the particular point and angle of incidence considered. Now 

for an incident cylindrical wave we have from the mirror law of optics [37]. 

a

      

 φbCospa
211

' +=                           (4.3) 
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The reflected field can now be obtained as; 

 

( )spjk
ref e

p
s

b
s

p

A
u +−++≈

'2/1
''

0 )
cos.
21(

φ
             (4.4) 

 

where φ  is the angle of incident on the cylinder. Then by using the same analogy in Section 

3.3, the Divergence factor can be expressed as;  

 

        
ref
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SurfaceFlat  from Field Reflected

==            (4.5) 

 

where the reflected field from flat surface can be expressed as  
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Finally Divergence Factor D is  
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4.2.2 Convergence Factor  

 

From the symmetry of the Divergence Factor found by Keller for convex surface we can 

define a Convergent Factor for concave surface as follows(See Figure 4-2); 

 

'p

b
a

 
Figure 4-2 : The Reflected Rays from Concave Surface 

 

 

ref

flatref

U
U

C /

Surface Concave from FieldReflected
Surface Flat from Field Reflected

==            (4.8) 

 

The amplitude of the reflected field at reflection point by using the energy principle  

 

          ( ) 2/11

'

0 )1( −−+= sa
p

A
sA              (4.9) 

 

We know that the Law of Optics for the convex surface is; 

 

 distance image the
 of reciprocal The

 =  +   

    

 distanceobject  the
 of reciprocal The

length   focal the
 of reciprocal The

or   

        
fpa
111

' +=     where   φCosbf
2

=            (4.10) 

 

The focal length and object must be in the same plane so we multiply 
2
b

 by φCos . 
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In spherical surface, focal length is equal to the half of the radius of the curvature. Moreover, 

focal length and image length are negative for convex surface. 

 

        
'

111
paf

+−=−   then 
'

111
pfa

+=             (4.11) 

 

Keller used this equation for smooth convex surface. However, for concave surface both 

focal length and image distance are positive then (4.10) becomes  

 

'

111
paf
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'

111
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−=    where  φCosbf
2

=           (4.12)  

 

 

The amplitude of the reflected field at point  becomes s
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So that reflected field from concave surface is  

 

     
( )spjk

ref e
p
s

b
s

p
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φ
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Finally, Convergent Factor is  

 

2/1
''

'

)
cos.
21(

p
s

b
s

sp

p
C −+

+
=

φ
           (4.15) 

 

For the present application we generalize the Keller techniques for the imperfect ground by 

weighting the reflected field from a perfect conductor by the Fresnel coefficient for an 

imperfect conductor. 
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4.3 Numerical Verification of Methods 
 

We put the numerical values for parameter in the equation of Divergent Factor and 

Convergent Factor both in sections 4.2.1 and 4.2.2  with in section 3.3 and 3.4. We compare 

the results. They are nearly equal to each other. 

 

In order to verify the formulation, we have inserted the Divergence Factor and Convergence 

Factor into the RADCAL program. We choose terrains which have convex or concave 

plateaus in them. Then we compared the output of the RADCAL with measured values and 

another propagation program spectrally accelerated forward-backward (FBSA). 

 

In order to assess the accuracy of the RADCAL as well as to demonstrate its consistency 

with measurements, comparisons of RADCAL results with measurements are shown in 

Figures 4.3 to 4.12. The terrain profiles are from Denmark with lengths up to 8 km. The 

height variations are of the order 20–50 m. Measured data were obtained by Hviid et al. [46] 

using a dipole with a transmitted power of 10 W and a gain of 8 dBi. The transmitter height 

is 10.4 m. The receiver antenna is 4/λ a monopole on top of a van with a height of 2.4 m. 

Having no exact information about the vegetation and electrical properties of terrains, the 

surface impedances are taken as Ω+= 1.82.20 jsη  in order to handle some small forests 

and other land cover data along the profiles [46]. This method neglects the backscattering for 

the terrain profiles in Figures. 4.3 and 4.8. A study concerning the effects of fine details of 

terrain is also studied. This work reveals the significant features of a terrain and suggest 

ways of smoothing a very detailed terrain profile.Smoothed Hadsund and Jerslev terrain 

profiles are in Figure 4.4 and Figure 4.9 respectively.  

 

In Figure 4.5, the results for 435 MHz operating frequency are presented over Hadsund 

terrain profile, while the comparisons over Jerslev profile for 970 MHz are shown in Figure 

4.10. Both figures show the very good agreement of the RADCAL results with the 

measurements. Therefore, the RADCAL can safely be used as a reference solution to test the 

accuracy of the prediction of various propagation models.  

 

In these examples we don’t know the structure of the reflection surface exactly. So we 

predict  rough surface coefficient and vegetation coefficient for these terrain profile roughly 

and use them in our calculation. Consequently, in some examples RADCAL results are at 

most 5 dB higher then the measured values. We explain this shift by our overestimate of the 
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Fresnel Reflection Ceofficient and the hill-top diffraction coefficient for the real terrain.  So 

we make normalization to compare the RADCAL results with other. In RADCAL we use 

Ament’s Formula to calculate the reflection coefficient and we also consider the vegetation 

effect. Rough surface scattering and diffraction formulas overestimate the actual values and 

consequently they provide rather optimistic path loss values. They shold be lower by 

empirical formulas for various terrain surfaces. 

 

Then the RADCAL results have compared with another propagation program (IE method) 

which use the spectrally accelerated forward-backward (FBSA) method as a benchmark 

solution[45]. FBSA results are obtained from C. A. Tunç, A. Altintaş and V.B. Ertürk from 

Bilkent University. Propagation over large scale terrain profiles (Jerslev and Hudsand 

Terrain Profiles) are investigated and the results are compared in Figure 4.6 to Figure 4.9   

and Figure 4.11 to Figure 4.12.  

 

0 1000 2000 3000 4000 5000 6000
10

15

20

25

30

35

Distance (m)

S
ur

fa
ce

 H
ei

gh
t (

m
)

Jerslev Terrain Profile

 
Figure 4-3 : Jerslev Terrain Profile 
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Figure 4-4 : Smoothed Jerslev Terrain Profile 
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Figure 4-5 : Comparasion of RADCAL Result and Measurement Data 
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Figure 4-6 : Comparasion of RADCAL and FBSA Results 
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Figure 4.7 : Comparasion of RADCAL, FBSA Results and Measurement Data 
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Figure 4.8 : Hadsund Terrain Profile 

 

 

 
Figure 4-9 : Smoothed Jerslev Terrain Profile 
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Figure 4.10 : Comparasion of RADCAL Result and Measurement Data 
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Figure 4.11 : Comparasion of RADCAL and FBSA Results 
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Figure 4.12 : Comparasion of RADCAL, FBSA Results and Measurement Data 

 

 

RADCAL is based on GTD so it is meaningfull to compare the RADCAL results with 

another GTD based propagation model. For this purpose SEKE propagation model’s results 

was used [4].  SEKE model has been used to compute path loss for different types of terrain 

as a function of receiving antenna height over a range of 12 m, and for diffraction paths over 

700 m range of antenna heights. Its results have excellent agreement with measurements. For 

Actual Beiseker Terrain profile given in Figure 4.13 the results of RADCAL, SEKE results 

and measurements are demonstrated in Figure 4.14 to Figure 4.16 for the frequencies of 

167MHz(VHF), 435MHz(UHF), and 1230 MHz(L Band). 
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             Figure 4.13 : Actual Beiseker W35 Terrain Profile 

 

 

 
 

Figure 4.14 : Path loss in excess of free space versus receiver altitude for Beiseker  
W35 Terrain Profile for VHF. 
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Figure 4.15 : Path loss in excess of free space versus receiver altitude for Beiseker  
W35 Terrain Profile for UHF 

 
 
 

 
Figure 4.16 : Path loss in excess of free space versus receiver altitude for Beiseker  

W35 Terrain Profile for L-Band. 
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R. J LUEBBERS developed another GTD based propagation model [61]. Similar to SEKE 

model, LUEBBERS has been used to compute path loss for different types of terrain as a 

function of receiving antenna height. For actual Magrath NE54 terrain profile given in 

Figure 4.17 the results of RADCAL, LUEBBERS results and measurements are 

demonstrated in Figure 4.18. 

 

 

 
Figure 4.17 : Actual Magrath NE54 terrain profile (corrected for 4/3 earth curvature) and 

piecewise linear approximation used bt the GTD model. The transmitting antenna is located 
at 0 km and elevated at 18.3 m. The receiving antenna located at 54 km from the 

transmitting antenna. 
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Figure 4.18 : Terrain profile for Actual Magrath NE54 path with height-gain plot showing 

LUEBBERS, RADCAL and measured signal at 1230 MHz. 
 
 

For Actual Magrath NE54 terrain profile plateaus and hills extracted from the graph and 

given in Table 4.1.  

 
Table 4.1: Distance and Height Values for Actual Magrath NE54 terrain profile 

 

ID Dmi 
(km) 

Hmi 
(m) 

1 2 1030 
2 2.6 1000 
3 8 968 
4 10 970 
5 15.5 930 
6 18 890 
7 21 910 
8 35.5 860 
9 50 725 

10 52 690 
11 52.5 710 
12 53 670 
13 54 690 
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The plot of the RAYS for this terrain is given in Figure 4.19 and Path propagation Factors 
for each RAY is given in Table 4.2. 
 

 

   
Figure 4.19 : RAYS for Actual Magrath NE54 terrain profile (a is RAY_1(Black dashed 
Line), b is RAY_2 (Red Lines), c is RAY_3 (Black Lines) and d is RAY_4 (Blue Lines)) 

 
 

Table 4.2 : RAYS Propagation Factors for Actual Magrath NE54 terrain profile 
 
Direct Ray ( Ray-1 )     
Amplitude= 0.9354  Phase = 4.7123 
 
Reflected Ray ( Ray-2 )  
Amplitude= 0.6522  Phase = -39.9496 ( Reflect from plateau 0 ) 
Amplitude= 0.7005  Phase = -80.7527 ( Reflect from plateau 2 ) 
  Complex Summmation is Amplitude= 0.05453  Phase = 1.3952 
 
Diffracted-Reflected  ( Ray-3 )  
Amplitude= 0.2741  Phase = -1.5945 ( Diffracted from Hill 4 and Reflected from plateau 7) 
Amplitude= 0.4547  Phase =  1.6539 ( Diffracted from Hill 5 and Reflected from plateau 7) 
  Complex Summmation is Amplitude= 0.1844  Phase = 1.8131 
 
Reflected-Diffracted  (Ray-4)  
Amplitude= 0.8363  Phase = -1.2318 (Reflected from plateau 0 and Diffracted from Hill 4 ) 
Amplitude= 0.8267  Phase =  1.1880 (Reflected from plateau 0 and Diffracted from Hill 5 ) 
Amplitude= 0.7980  Phase = -1.7215 (Reflected from plateau 0 and Diffracted from Hill 7 ) 
Amplitude= 0.6227  Phase =  1.8314 (Reflected from plateau 0 and Diffracted from Hill 8 ) 
  Complex Summmation is Amplitude= 0.3673  Phase = -0.5898 
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Another model is the Terrain Parabolic Equation Model (TPEM) [14], based on the split-

step Fourier algorithm to solve the parabolic wave equation, which has been shown to be 

numerically efficient. Comparisons of RADCAL, TPEM, and SEKE are given below. 

 

 

 
 

Figure 4.20 : Terrain profile for west (35 h) Beiseker path with height-gain plot showing 
TPEM, SEKE, RADCAL and measured signal. 

 

 

An irregular terrain propagation model based on ray optics is developed. The model consist 

of modeling the terrain by round earth plateaus, slant flat plateaus,  convex and concave 

plateaus between  hills and depression. To show the effect of including convex and concave 

slant plateaus into the model, so that the calculation of a simple example is given below. 

 

When the plateaus after 10th hill in Hadsund Terrain Profile is modeled by convex plateaus 

(See Figure 4.21) instead of the slant flat plateaus; the results of the RADCAL approaches 

the measurement results better (See Figure 4.22 and Figure 4.23).  
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Figure 4-21 : Smoothed Hadsund Terrain Profile 
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Figure 4.22 : Comparison of RADCAL Results when radius of curvature of the plateaus 

after 10 th hill is taken as slant flat plateaus (Red) and convex plateaus (Blue)  
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Figure 4.23 : Comparison of RADCAL Results when radius of curvature of the plateaus 

after 10 th hill is taken as slant flat plateaus (Red) and convex plateaus (Blue) with 
Measurements (Black) 

 

 

When the plateaus after 9th hill in Jerslev Terrain Profile is modeled by convcave plateaus 

(See Figure 4.24) instead of the slant flat plateaus; the results of the RADCAL approaches 

the measurement results better (See Figure 4.25 and Figure 4.26).  
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Figure 4-24 : Smoothed Jerslev Terrain Profile 

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-180

-170

-160

-150

-140

-130

-120

-110

Distance (km)

P
at

h 
Lo

ss
 (d

B
)

Jerslev Terrain Profile

RADCAL1

RADCAL2

 
Figure 4.25 : Comparison of RADCAL Results when radius of curvature of the plateaus 

after 9 th hill is taken as slant flat plateaus (Blue) and concave plateaus (Red)  
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Figure 4.26 : Comparison of RADCAL Results when radius of curvature of the plateaus 

after 9 th hill is taken as slant flat plateaus (Blue) and concave plateaus (Red) with 
Measurements (Black) 
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Equation Chapter 5 Section 1 
CHAPTER 5 

 
 
5                                                        CONCLUSION 
 
 
 
5.1 Introduction 
 
As previously discussed, the ability to predict the propagation of radio waves are essential in 

the performance analysis and optimal design of a radar system. Without a propagation 

model, system issues such as coherency, field variations, multipath, and path delay effects 

cannot be properly addressed. With that in mind it was decided that the concentration of this 

work would be on predicting propagation in an irregular terrain, in the frequency range of 

UHF and above.  

 

Propagation aspects of low altitude radar performance have been modeled using geometrical 

optics. Both the path propagation factor and the radar clutter have been modeled. In the 

proposed model we have considered an extension to RADCAL’s terrain model to include 

convex and concave slant plateaus between hills and depressions (troughs). This propagation 

model uses a reflection model based on the Geometrical Theory of Reflection for the convex 

and concave surfaces. The effects of the features of the terrain profile on the path 

propagation factor have been investigated. A real terrain data have been smoothed on the 

basis of the above study. In this chapter this work will be summarized as well as a discussion 

of future work presented. 

 

 

5.2 Conclusion 
 
A robust technique for the prediction of field strengths over irregular terrain profiles must be 

polarization and frequency dependent, and must take electrical properties, and details of the 

terrain profile into account. 

 

An efficient method has been presented to model groundwave propagation over irregular 

terrain in the presence of range-dependent nonstandard environmental conditions. The 

results from this model were compared against measured data and other existing models and 

were shown to give predominantly excellent agreement. The final objective in model were 

shown to give good agreement. The final objective in model development is to produce a 
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real-time capability for predicting signal levels for operational assessment, whether it be for 

military or civilian requirements. 

 

We have presented a ray optics based method to estimate the path propagation factor of an 

irregular terrain. Explicit expressions are obtained for the Divergence and Convergence 

factors for the convex and concave spherically shaped slant plateaus joining the hills and 

depression. The algorithm developed is very fast and provides good estimates of the 

propagation factor. Numerical predictions are compared with other full wave  and GO 

methods and also measurements.   

 

It is observed that very fine terraiın features have insignificant effect on the path propagation 

factor for most terrain in VHF to microwave frequency. In order to verify the formulation, 

the Divergence and Convergence Factors associated with the convex and concave plateaus, 

respectively are inserted into the RADCAL program. The chosen terrains have convex or 

concave plateaus in the model. The output of the RADCAL is compared with measured 

values and other propagation algorithms such as Forward-Backward Spectrally Accelerated 

(FBSA) and Parabolic Equation Method. Moreover, as the RADCAL Propagation model is 

based on the ray optics, the results are also compared with another ray optics based 

propagation model. For this purpose the results of SEKE [Lincoln Lab.] propagation model 

are used. SEKE model has been used to compute path loss for different types of terrain as a 

function of receiving antenna height at a fixed distance between transmit and receive 

antennas. For Beiseker W35 Terrain profile, the results of RADCAL, SEKE and 

measurements are compared. All results are found to be in good agreement with those 

obtained by RADCAL.   

 

 

5.3 Future Work 
 

There are several issues  that still need to be addressed in further development of the model 

described in this thesis and that will be discussed in the sections that follow.  

 

During this thesis a new version of RADCAL is developed. This new version primarily 

modifies the terrain propagation model. It considers contributions of specular reflections 

from flat and slant plateaus  between diffracting hills. Obstructions of incident and reflected 

rays by flat plateaus are checked. Knife-edge diffraction from rounded hilltops at oblique 
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incidence is considered. Effects of convex slant plateaus are twofold. First it may curve 

reflections, second it may cause incident and diffracted field obstructions.  

 
 

As stated in the previous section, the structure of the program is open to improvements. Also 

the documentation of the RADCAL program is completed. All functions in the program are 

documented in Appendix E and all procedures in program are documented in Appendix G. 

The document   "Notes on RADCAL Radar Calculation Software" written by A.Hızal and 

O.Sengul completes the documentation of program.  

 
• Some of the input parameters can be extracted from database as a function of the radar, 

target and terrain geometry. These are surface reflectivity, terrain profile, surface 

roughness and electrical parameters of the surface. 

• Geometry can be extended to 3 dimensional (3D) geometry. As the radar beams scans 

the 3D space, the geometry thus the relevant position, terrain, rain and target parameters 

change. The required input data can be extracted from the database as a function of time. 

• The input parameters concerning the radar and the target can be provided graphically by 

assigning a specific radar and a specific target to scenario based, time-variable positions. 

• The output can be displayed in a 3D to 2D projection format, the time being a parameter. 

The projection can be displaced as a simulated radar screen by intensity modulation of 

the screen by noise, clutter and the signal. Alternatively, contours of equal probability of 

detection can be calculated and a 3D-coverage surface can be displayed. 
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6 APPENDIX A 

 
7 PATH PROPAGATION FACTOR 

 
 

A.1 Knife Edge Diffraction (Fresnel Diffraction) 

 
If the LOS propagation path has its First Fresnel zone free of any obstacles such as hills 

and ridges, the field in the receiving site can be approximately calculated as if LOS path 

is in free space. However if a hill or ridge enters into the First Fresnel zone ellipsoids, it 

is necessary to account for the signal loss or gain due to obstruction. Also, due to the 

diffraction, a field exists in the geometrical shadow region, which makes radio 

communication and radar target detection possible within these zones. 

 

Hills and ridges obstructing the propagation path can be modeled by knife edges if their 

widths perpendicular to the plane of incidence is greater than the width of the first 

Fresnel zone; i.e. , where  is the radius of the first Fresnel Zone and can be 

calculated from the equation of the radius of the Fresnel zones, given in Eqn.(A.1). The 

effect of rounded hilltops can also be taken into account. 

12bw > 1b

 

  n
dd

ddbn
21

21

+
=

λ
                        ,....2,1=n           wavelength=λ                     (A.1) 

 

In practice knife-edges [16,17] in UHF and microwave frequencies can approximate 

most hills and ridges. The knife edge diffraction problem was first solved by 

Sommerfeld in 1896,  

 

 
Figure A.1. Illustration of Cases in Knife-Edge Diffraction Phenomena 
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Referring to Fig.A.1., if a wave of unit amplitude is incident along TR  path, the total 

field for either polarization should be multiplied by: 
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π

  (A.2) 

 

where is for the field strength. KEF ( )vC  and ( )vS  are the Cosine and Sine type Fresnel 

integrals defined by, 

 

( ) dxxvC
v

⋅= ∫
0

2

2
cosπ  ,                   ( ) dxxvS

v

⋅= ∫
0

2

2
sin π                              (A.3) 
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⋅=v            where               
21
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10 dd

ddb
+

==∆
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                             (A.4) 

 

∆  is the Fresnel clearance and 0∆ is the first Fresnel zone radius at the position of mask. 

The limits of above expressions are: 

 

 

:∞→∆         →v ( )∞   ( )
2
1

== vSC        v 1=KEF ockage(no hill)          (A.5) 

 

     no bl

              ( ) ( )
2
1

−=−=− vCvC                

                                                    :−∞→∆ 0=KEF      complete blockage              (A.6) 

                      ( ) ( )
2
1

−=−=− vSvS  

 
2

KEF

by 

 should be used for power calculations. The radar equation should be multiplied 

4
KEF  then there is a single knife edge obstruction on the propagation path. The 

power comes from the twice traverse of the radar waves between the radar and target. 

th4  
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A.1.1 

 
ome 

ss 

t

Round Edged Obstructions 

In s cases roundness of the hills and ridges should be taken into account. For this 

purpose the results of Dougherty and Moloney [14] may be used. A dimensionle

parame er ρ  is defined to characterize the effect of the finite radius of curvature of the 

illtops: h
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where  is the radius of curvature of the cylindrical hilltop as shown in Fig.A.2. 

 

 

Fig.A.3. belo a 

nction of

 

cr

cr

Figure A.2. Rounded Hill-Top Representation 

w shows the path propagation factor (here it is the diffraction loss) as 

 0∆∆ with various values of ρ . The value 0=ρfu  corresponds to that in for 

the knife edge diffraction. For example at MHzf 300= ( m1=λ ), and for a hill with 

mrc 500= , kmdd 521 == , we find that 131.0=ρ . For 

dB14.00 −=−=∆∆ . However for the pure knife edge model FKE5 dBFKE 12−= . 



 
Figure A.3. Diffraction Loss For the rounded Hill-Tops 

 
 
 

A.1.2 Multiple Knife Edge Diffraction 

 
Radio waves propagating near the surface of earth may encounter more than one hill or 

ridge. Millington [16] had studied the problem for double knife-edges. For multiple 

knife-edges the method suggested by Deygout [17], which is based on successive 

application of Millington's technique for double knife-edges, is widely used. Deygout 

method is described below with the aid of Fig.A.4. for three hills or ridges simply called 

masks. 

 

 
 

Figure A.4. Deygout Method For Three Hills 
 

The principle mask is determined by dividing the clearance ∆  of each by its first Fresnel 

zone Clearance  for the path TR and by selecting the most negative Fresnel clearance 0∆

0∆∆ . In Fig.A.3.  is the principle mask. Next we draw the paths to the top of the 2M
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principle mask, and and record 2TM RM 2 2∆ as the clearance for the principle mask. 

Finally we draw the paths ,  and paths . Appropriate clearances for 

path is and for path is 

1TM 21MM RM 3

2TM 1∆ RM 2 3∆ . The corresponding diffraction losses for the 

three paths are calculated using Eqn.(A.2) and multiplied to obtain the resultant . 

The parameters , , and 

KEF

1d 2d ∆  for  defined in Eqn.(A.2) are given in table below. KEF

 

 

Table A.1. Calculated ∆  values in for Three Hills KEF

 

Parameters 
1M  2M  3M  

1d  
a  ba +  c  

2d  b  dc +  d  

∆  1∆  2∆  3∆  
 

Then the total is given by: KEF

 

    ( ) ( ) ( )321 ,,,,,, ∆⋅∆++⋅∆= dcFdcbaFbaFF KEKEKEKE             (A.8) 

 

 

For five masks as shown in Fig.A.5., we have the parameters listed in Table A.2.. 

 
 

Figure A.5. Deygout Method For Five Hills 
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3M  : Main mask between T and : Main (T , ) R R

1M  : Main mask between T and : Main (T , ) 3M 3M

2M  : Main mask between and : Main ( , ) 1M 3M 1M 3M

4M  : Main mask between and : Main ( , ) 3M R 3M R

5M  : Main mask between and : Main ( , ) 4M R 4M R

 

Table A.2. Calculated ∆ values in  for Five Hills KEF

 

Parameters 
1M  2M  3M  4M  5M  

1d  
a  b  cba ++  d  e  

2d  cb +  c  fed ++  fe +  f  

∆  1∆  2∆  3∆  4∆  5∆  
 

The total is given by:  KEF

 

( ) ( ) ( )321 ,,,,,, ∆++++⋅∆⋅∆+= fedcbaFcbFcbaFF KEKEKEKE   
        

               ( ) ( )54 ,,,, ∆⋅∆+⋅ feFfedF KEKE                                                     (A.9) 

 

Experimental observations and theoretical verifications show that, Deygout method 

rapidly looses its accuracy when the number of hills exceeds 5. The value of knife-edge 

diffraction factor is calculated by using the procedure 

),,,,,,,,,,,,( 21 PfkAfkNEARHDDHHXKnifedge mmmmmmref λ . 

 
 
 
 
 
 
 
 
 
 
 

 79 



A.2 The Width of the Specular Reflection Point 
 
In order that the ground reflection to take place on a terrain of earth, sufficiently large 

area should exist in the vicinity of the specular reflection point. The size of the area 

required is determined by the Fresnel ellipsoid constructed as shown in Fig.A.9. 

 
 

Figure A.6 : Geometry for Determining the Area Available in Specular Reflection 
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Substituting these values in Eqn.(A.42) we obtain, 
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PlainRadius
MNZnr
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=                                                       (A.14) 
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                 (A.15) 

 

where  is existing longitudinal reflection area and value of it is 

calculated in  procedure. Then the Ratio of lateral extension of the specular 

reflection point to the radius plain length is expressed as: 

PlainRadius _

( )Specular
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and the ratio of longitudinal extension of the specular reflection point to the  

radius plain length is expressed as: 
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A.3 Calculation of Reflection Coefficient 
 
• Reflection coefficient at the specular reflection point is expressed as and 

can be calculated from the following formulas: 

θρ je=Γ

For vertical polarization: 
 

θρ
ψεψε

ψεψε j

cc

cc
v e=

−+

−−
=Γ

2

2

cossin

cossin
                             (A.18) 

 
For horizontal polarization: 

 

θρ
ψεψ

ψεψ j

c

c
h e=

−+

−−
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2

cossin

cossin
                                  (A.19) 

 
The complex relative dielectric constant cε  is defined by 
 

GHz

mmho
c f

jj /1860 σεσλεε −=−=                                    (A.20) 

 
where  ε  is the relative dielectric constant, σ is the conductivity in  (or mmhos /

mSiemens/ ) and  λ   is the wavelength in meters. 

 

When the incident wave is circularly polarized having an E field 

 

ii vjhE ˆˆ −=
v

    (L.H.C.P.)                                                  (A.21) 

 

as shown in Fig.A.10., the reflected wave can be expressed by: 

 

rvhr vjhE ˆˆ Γ−Γ=
v

  elliptically polarized                            (A.22) 
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What we need for circular polarization is: 

 

( )
( ) ( )vh

i

r
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                                      (A.24) 

 

 

 
Figure A.10. Circularly Polarized E-Field Reflection 

 

 

• Rough surface specular reflection coefficient sρ  should be taken into account if 

there is diffusion of the specularly reflected wave due to the surface roughness. For 

example rough sea surface or rough ground causes the reflected wave to be decreased 

due to the scattering effects. A surface is optically rough if the height of the surface 

roughness is comparable with wavelength. This is expressed in so-called Rayleigh’s 

criteria. Referring to Fig.A.11., the rays I and II will be out of phase by the amount 

 

ψ
λ
πψ

λ
π

λ
πϕ sin4sin222 hhBAC ===∆                               (A.25) 

 
 

 
 

Figure A.11. Obtaining the Rayleigh's Criteria for Specular Reflection 
 

 83 



If 2πϕ <∆ , then the reflection may be considered specular, otherwise diffuse. In other 

words, the sum of the fields of rays I and II will tend to cancel for 2πϕ >∆ . Thus, a 

surface may be considered as smooth if 

 

2sin4 πψ
λ
π

<
h

                                                  (A.26) 

 

The above equation can be expressed in a more meaningful way as: 

 

ψ
λ

sin8
=> Rhh                                                   (A.27) 

which is the Rayleigh's criteria. Rayleigh's criteria ignores the polarization of waves, 

although experimental data show that the type of polarization effects the diffuse pattern 

of the reflection. 

 

Assuming a Gaussian height distribution, which is valid in most cases, the specular 

reflection coefficient p should be multiplied by sρ . 

 
θθ ρρρ j

s
j ee ⋅⋅→=Γ                                        (A.28) 

sρ  takes account the surface roughness. 
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where ψ  is the grazing angle at the reflection point for a smooth surface of mean height 

h ; and hσ  is the standard deviation of  from h h .  

 

Vegetation reflection coefficient, vρ , should be considered when surface of the ground 

is covered by vegetation. It can be expressed by Eqn.A.30. 

 

⎟
⎠
⎞

⎜
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λ
ψρ sin_exp cVegv                     (A.30) 

 

where  is vegetation reflection coefficient and cVeg _ ψ  is the grazing angle. 
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A.4 Phase Correction Terms 

 

• Phase Correction for RAY-3 

 

T
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Figure A.12 Geometry for Phase Correction of  RAY-3 
 

 

From the Fig.A.12 path phase of RAY-4 with respect to direct ray path is 

 

( )TRQRMQTMk −++−     (A.31) 

 

and specular reflection path phase is considered as  

 

   ( )MRQRMQk −+−                 (A.32) 

Thus we need to add a phase correlation 

 

( ) ( )TRMRTMkMRkTRTMk −+−=−−−=Φ 3   (A.33) 

 

   ( )RRRk mm −+−=Φ 213     (A.34) 
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• Phase Correction for RAY-4 
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Figure A.13 Geometry for Phase Correction of  RAY-4 
 

From the Fig.A.13 path phase of RAY-4 with respect to direct ray path is 

 

( )TRMRQMTQk −++−       (A.35) 

 

and specular reflection path phase is considered as  

 

  ( )TMQMTQk −+−      (A.36) 

 

Thus we need to add a phase correlation 

 

( ) ( )TRTMMRkTMkTRMRk −+−=−−−=Φ 4   (A.37) 

 

( )RRRk mm −+−=Φ 214     (A.38) 
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• Phase Correction for RAY-5 
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Figure A.14 Geometry for Phase Correction of  RAY-5 
 

From the Fig.A.14 path phase of RAY-5 with respect to direct ray path is 

 

( )TRRQMQMQTQk −+++− 2211     (A.39) 

 

and specular reflection path phase is considered as  

 

     ( )MRRQMQTMMQTQk −++−+− 2211     (A.40) 

 

Thus we need to add a phase correlation 

 

( ) ( )TRRMTMkMRkTMkTRk −+−=−−−−=Φ 5   (A.41) 

 

      ( )RRRk mm −+−=Φ 215         (A.42) 

 

As a result phase correction term for RAY-3, RAY-4 and RAY-5 are same and can be 

expressed as follow.  
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