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ABSTRACT 
 
 

DESIGN AND IMPLEMENTATION OF  
A CURRENT SOURCE CONVERTER BASED STATCOM 

 FOR REACTIVE POWER COMPENSATION 
 
 
 

BİLGİN, Hazım Faruk 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor:  Prof. Dr. Muammer ERMİŞ 

 

 

April 2007, 255 pages 
 
 
 
This research work is devoted to the analysis, design and development of the first 

medium power Current-Source Converter (CSC) based distribution-type Static 

Synchronous Compensator (D-STATCOM) with simplest converter topology and 

coupling transformer connection. The developed CSC-D-STATCOM includes a +/-

750kVAr full-bridge CSC employing Selective Harmonic Elimination Method 

(SHEM), a 250kVAr low-pass input filter at 1kV voltage level, and a Δ/Y connected 

coupling transformer for connection to medium-voltage load bus. The power stage 

of CSC is composed of series connection of natural air-cooled high-voltage IGCT 

switched at 500 Hz for the elimination of four lowest current harmonic components 

(5th, 7th, 11th, 13th), and optimized fast recovery high voltage diode in each leg. 

Reactive power control is achieved by applying the phase shift angle control at fixed 

modulation index, which is implemented digitally on a DSP microcontroller. 

 

The developed system has been implemented for compensation of rapidly varying 

reactive power demand of coal mining excavators in Turkish Coal Enterprises. The 

field test results have shown that the proposed CSC D-STATCOM serves as a 



 v

technologically new full substitute of conventional Voltage-Source Converter based 

D-STATCOM having complex transformer connections in view of relatively fast 

response in reactive power compensation, very low total demand distortion factors, 

complying with the IEEE Std. 519-1992 even for the weakest power systems, and 

acceptable efficacy figures.  
 
 
 
 
Keywords:  power quality, reactive power compensation, current source converter, 

STATCOM, harmonic elimination 
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ÖZ 
 
 

REAKTİF GÜÇ KOMPANZASYONU İÇİN  
AKIM KAYNAKLI ÇEVİRGECE DAYALI STATKOM  

TASARIMI VE UYGULAMASI 
 
 
 

BİLGİN, Hazım Faruk 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi:  Prof. Dr. Muammer ERMİŞ 

 

 

Nisan 2007, 255 sayfa 
 
 

 
Bu çalışma, orta güç seviyesinde basit çevirgeç yapısına ve transformatör 

bağlantısına sahip ilk Akım Kaynaklı Çevirgece (AKÇ) dayalı dağıtım tipi Statik 

Senkron Kompanzatörünün (D-STATKOM) analizi, tasarımı ve geliştirilmesine 

hasredilmektedir. Geliştirilen AKÇ-D-STATKOM, 1kV gerilim seviyesinde Seçici 

Harmonik Eliminasyon Metodunu (SHEM) kullanan +/-750kVAr gücündeki 

AKÇ’yi, 250kVAr gücündeki düşük geçirgen giriş filtresini ve orta gerilim yük 

barasına bağlantı için Δ/Y bağlı kuplaj transformatörünü içermektedir. AKÇ’nin güç 

devresi, en düşük dört akım harmonik bileşenin (5.,7.,11.,13.) eliminasyonu 

amacıyla 500Hz’de anahtarlanan doğal hava soğutmalı yüksek gerilim IGCT ile en 

uygun, hızlı yüksek gerilim diyodunun her çevirgeç bacağında seri bağlanmasından 

oluşmaktadır. DSP mikrodenetleyicisinde dijital olarak uygulanan, sabit kipleme 

endeksindeki faz kayma açması kontrolü ile reaktif güç kontrolü elde edilmektedir. 

 

Geliştirilen sistem, Türkiye Kömür İşletmelerindeki elektrikli kömür kazı 

makinalarının hızlı değişen reaktif güç taleplerinin kompanzasyonu için 

uygulanmıştır. Reaktif güç kompanzasyonundaki hızlı tepkisi, IEEE 519-1992 
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standardındaki en zayıf güç sistemleri için bile uyumlu düşük toplam talep bozulum 

değeri ve kabul edilebilir verimlilik rakamlarından dolayı önerilen AKÇ D-

STATKOM’un, karmaşık trafo bağlantılarına sahip geleneksel Gerilim Kaynaklı 

Çevirgece dayalı D-STATKOM yerine kullanılabilecek yeni teknolojik bir alternatif 

olduğunu saha test kayıtları göstermektedir. 

 
 
 
 
Anahtar Kelimeler:  güç kalitesi, reaktif güç kompanzasyonu, akım kaynaklı 

çevirgeç, STATKOM, harmonik eliminasyonu 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

Power systems are complicated networks with hundreds of generating stations 

and load centers being interconnected through power transmission lines. An electric 

power system can be separated into four stages: i) generation, ii) transmission iii) 

distribution and iv) utilization. The basic structure of a power system is as shown in 

Fig.1.1. It is composed of generating plants, a transmission system and distribution 

system. These subsystems are interconnected through transformers T1, T2 and T3.  

 
 
 

 
 

Figure 1.1  Typical power system  

 
 
 

1.1 Power Quality Concept 
 

Even a few years back, the main concern of consumers in power system was 

the reliability of supply which is defined as the continuity of electricity. It is 
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however not only the reliability that consumers want these days, quality of 

electricity supply is also very important for consumers. The term, electric power 

quality, broadly refers to maintaining a nearly sinusoidal bus voltage at rated 

magnitude and frequency in an uninterrupted manner from the reliability point of 

view. For a well-designed generating plant which generates voltages almost 

perfectly sinusoidal at rated magnitude and frequency, power quality problems start 

with transmission system and stay valid until end users in distribution system. In 

[1,2], the terms, characterizing the power quality in the power system have been 

defined and are summarized as follows: 

− Transients: are defined as the change in a system variable that 

dissappears during transition from one steady-state operating condition 

to another and can be classified as impulsive transients and oscillatory 

transients. Impulse transients are mainly caused by the impact of 

lightining srikes to the power system. The typical causes of oscillatory 

transients are capacitor or transformer energization and converter 

switching. While impulsive transient is a sudden and has non-power 

frequency change in voltage and current with a fast rise and decaying 

time, oscillatory transient has one or more sinusoidal components with 

frequencies in the range from power frequency to 500kHz and decays 

in time. 

− Short Duration Voltage Variations: are defined as the variations in 

the supply voltage for durations not exceeding one minute and caused 

by faults, energization of large loads that having large inrush currents 

or rapidly varying large reactive power demands of the loads. These are 

further classified as voltage sags, voltage swells and interruption. 

− Long Duration Voltage Variations: are defined as the rms variations 

in the supply voltage at fundamental frequency for exceeding one 

minute, such as overvoltage, undervoltage and sustained interruption. 

The causes of overvoltage (or undervoltage)may be the switching off 

(or on) of a large load having poor power factor, or the energization of 

a large capacitor bank or reactors.  
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− Voltage Unbalance: is the condition in which three phase voltages of 

the supply are not equal in magnitude and may not be equally displaced 

in time. The primary cause is the single phase loads. 

− Waveform Distortion: is defined as steady-state deviation in the 

voltage or current waveform from an ideal sinewave. These distortions 

are classified as dc-offset, harmonics and notching. The causes of dc-

offsets in power systems are geomagnetic disturbances, especially at 

higher altitudes and half-wave rectifications. These may increase the 

peak value of the flux in the transformer, pushing it into saturation and 

resulting in heating in the transformer. Power electronics like UPS, 

adjustable speed drives cause harmonics in the power systems. 

Notching is a periodic voltage distortion due to the operation of power 

converters when current commutates from one phase to another.  

− Voltage Fluctuations: are defined as the rapid, systematic and random 

variations in the supply voltage. These are known as “Voltage Flicker”. 

These are caused by rapid and large variations in current magnitude of 

loads having poor power factor such as arcfurnaces. These large 

variations in load current causes severe dips in the supply voltage 

unless the supply bus is very stiff.  

− Power Frequency Variations: are the variations that are caused by 

rapid changes in the load connected to the system, such as the operation 

of draglines connected to a comperatively low inertia system. Since the 

frequency is directly related to rotational speeds of the generators, large 

variations in power frequency may reduce the life span of turbine 

blades on the shaft connected to the generator. 

Although these terms, above, are not new, customer awareness on power 

quality has increased. In recent times, power quality issues and custom solutions 

have generated tremendous amount of interest among power system authorities and 

engineers. International Electrotechnical Commission (IEC) and Institute of 
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Electrical and Electronics Engineers (IEEE) have proposed various standards on 

power quality [65, 93, 94]. This led to more stringent regulations and limits imposed  

by electricity authorities although they differ from one country to another in a 

limited extend. As an example, the progress in both reactive energy limits and 

distortion limits for the near future is recently imposed by the Energy Market 

Regulatory Authority of Turkey, as summarized in Table 1.1 and Table 1.2 for the 

customers directly connected to transmission system such as large industrial plants, 

electricity distribution companies, etc. 

Although terms of power quality are valid for both transmission and 

distribution systems, their approach to power quality has different concerns. An 

engineer of transmission system deals with the control of active and reactive power 

flow in order to maximize both the loading capability and stability limits of the 

transmission system. On the other hand, an engineer of distribution system deals 

with load compensation (by means of individual or group compensation) in order to 

maintain power quality for each load in the distribution system, for example 

achieving nearly sinusoidal bus voltage at rated magnitude for every load. These 

interests on power quality have also brought the solution by utilizing power 

electronic based power conditioning devices. 

 
 
 

Table 1.1  Reactive energy limits recently imposed by Energy Market Regulatory                 
Authority of Turkey 

 
Energy Demand / Month 

Reactive, % 
Validity of the 

regulations Active, % 
Inductive Capacitive 

currently in use 100 ≤ 33 ≤ 20 

by the end of 2007 100 ≤ 20 ≤ 15 

 
 



 5

Table 1.2  Current limits for distribution and transmission systems imposed by Energy Market 
Regulatory Authority of Turkey 

 
Ih: Harmonic component of load current at point of common coupling (3 sec avarage value) 

Ik: Maximum short circuit current at point of common coupling 
Il: Fundamental component of maximum load current at point of common coupling  

(15 min avarage value) 
(even harmonics are limited to 0.25 times the following odd harmonics) 

 

Voltage Level Medium Voltage            
1<Un<34.5  

High Voltage                    
34.5<Un<154 

Ik/Il Ik/Il 
Harmonic No 

<20 20-  
50 

50-  
100

100-  
1000

>     
1000 <20 20-

50 
50-
100 

100-
1000 

> 
1000 

3≤h≤9 4 7 10 12 15 2 3.5 5 6 7.5 

11≤h≤15 2 3.5 4.5 5.5 7 1 1.8 2.3 2.8 3.5 

17≤h≤21 1.5 2.5 4 5 6 0.8 1.25 2 2.5 3 

23≤h≤33 0.6 1 1.5 2 2.5 0.3 0.5 0.75 1 1.25 

O
dd

  h
ar

m
on

ic
s 

(I
h/I

1) 
(%

) 

h>33 0.3 0.5 0.7 1 1.4 0.15 0.25 0.35 0.5 0.7 

TDD  (%) 5 8 12 15 20 2.5 4 6 7.5 10 

 
 
 
 
 

1.2 FACTS Controllers 
 

The IEEE Power Engineering Society (PES) Task Force of the FACTS 

Working Group has defined FACTS and FACTS Controller as given below [3]. 

Flexible AC Transmission System (FACTS): Alternating current transmission 

systems incorporating power electronic-based and other static controllers to 

enhance controllability and increase power transfer capability 

FACTS Controller A power electronic-based system and other static 

equipment that provide control of one or more AC transmission system parameters 

The general symbol for FACTS Controller is shown in Fig.1.2a. FACTS 

Controllers are divided into four categories [3]: i) Series FACTS Controllers,           

ii) Shunt FACTS Controllers, iii) Combined Series-Series FACTS Controllers, iv) 

Combined Series-Shunt FACTS Controllers. 
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i) Series FACTS Controllers: These FACTS Controllers could be a variable 

impedance such as capacitor, reactor or a power electronic based 

variable source, which in principle injects voltage in series with the 

line as illustrated in Fig.1.2b. 

ii) Shunt FACTS Controllers: may be variable impedance such as capacitor, 

reactor or power electronic based variable source, which are shunt 

connected to the line in order to inject variable current, as shown in 

Fig.1.2c. 

iii) Combined Series-Series FACTS Controllers: are the combination of 

seperate Series FACTS Controllers, which are controlled in a co-

ordinated manner in a multiline transmission system, as illustrated in 

Fig.1.2d. This configuration provides independent series reactive 

power compensation for each line but also transfers real power among 

the lines via power link. The presence of power link between series 

controllers name this configuration as “Unified Series-Series 

Controller”.  

iv) Combined Series-Shunt FACTS Controllers: are combination of seperate 

shunt and series controller, which are controlled in a co-ordinated 

manner (Fig.1.2e) or a Unified Power Flow Controller with series and 

shunt elements (Fig.1.2f). When the Shunt and Series FACTS 

Controllers are unified, there can be a real power exchange between 

the series and shunt controllers via power link. 

Although Series FACTS Controllers for a given MVA size is several times 

more powerful than Shunt FACTS Controllers, they have to be designed to ride 

through contingency and dynamic overloads, and ride through or by-pass short 

circuit currents [3]. Therefore, Shunt FACTS Controllers are more popular in order 

to control voltage at and around the point of connection through injection of reactive 

current (lagging or leading) or a combination of active and reactive current for a 

more effective voltage control and damping of voltage oscillations. 
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Figure 1.2 Basic types of FACTS Controllers [3]: (a) general symbol for FACTS Controller,         
(b) series FACTS Controller,  (c) shunt FACTS Controller,  (d) unified series-series 

FACTS Controller, (e) coordinted series and shunt Controller,  (f) unified series-shunt 
Controller,  (g) unified Controller for multiple lines 
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Due to the same reasons, Shunt connected FACTS Controllers have also found 

wide applications in the distribution systems for many years since they present 

simple, cost effective solutions in load compensation. The common Shunt connected 

FACTS Controllers are static shunt compensators: SVC and STATCOM. 

 

1.3 Static Shunt Compensators: SVC AND STATCOM  

 

Although static shunt compensators in both transmission systems and 

distribution systems have the same structure, their objectives are differents due to 

their concerns on the power quality issues.  

The primary objectives of a shunt compensator in a distribution system are as 

follows: 

− compensation of poor load power factor so that the current drawn from 

the source will have a nearly unity power factor 

− suppression of harmonics in loads so that the current drawn from 

source is nearly sinusoidal 

− voltage regulation for the loads that cause fluctuations in the supply 

voltage 

− cancelation of the effect of unbalance loads so that the current drawn 

from the source is balanced (load balancing) 

All of these objectives are not necessarily met for a typical shunt compensator. 

The required shunt compensator should be designed in view of the needs of load to 

be compensated since each of these functions has a certain cost to the compensator.  

On the other hand, the objectives of these shunt compensator in a transmission 

system are as given below in order to increase the transmitted power in the 

transmission lines. 

− Midpoint voltage regulation for Line Segmentation in order to increase 

transmittable power in the transmission system 
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− End of line voltage support to prevent voltage instability requires the 

compensation of load having poor factor. This increases the maximum 

power transmission capability of the transmission line while improving 

the voltage instability limits. 

− Improvement of transient stability margin by increasing the maximum 

transmittable power in the transmission line. 

− Power oscillation damping by exhanging active (real) power with 

power system so that oscillations in the machine angle due to any 

minor disturbance can be damped out rapidly. 

 

1.3.1 Static VAr Compensators  

 

According to definition of IEEE PES Task Force of FACTS Working Group: 

Static VAr Compensator (SVC): A shunt-connected static var generator or 

absorber whose output is adjusted to exchange capacitive or inductive current so as 

to maintain or control specific parameters of the electrical power system (typically 

bus voltage) 

This is a general term for a Thyristor Controlled Reactor (TCR) or Thyristor 

Switched Reactor (TCR) and/or Thyristor Switched Capacitor (TSC) (Fig.1.3). The 

term, “SVC” has been used for shunt connected compensators, which are based on 

thyristors without gate turn-off capability. 

In a TSC, a capacitor is connected in series with two back-to-back connected 

thyristors. The control of TSC is obtained by cycle selection principle such that 

capacitor is totally connected to line by firing thyristors or disconnected by blocking 

thyristors. An important issue in TSC is to achieve transient free switching. This can 

only be achieved firing thyristors if the voltage across the capacitor is in either 

possitive peak or negative peak of the supply voltage. 
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Figure 1.3  Static VAr Compensators: Thyristor Controlled Reactor (TCR) or Thyristor Switched 
Reactor (TSR), Thyristor Switched Capacitor (TSC), Passive Filter 

 
 
 
In a TCR, a reactor is connected in series with back-to-back connected 

thyristors. By controlling the delay angle, which is defined as the angle between the 

zero-crossing of line voltage and firing signal of thyristors, it absorbs variable 

reactive (inductive) power.  

For shunt compensation in both transmission and distribution systems, the 

SVC system can be realized by one of the following combinations: 

i) Fixed Capacitor and TCR (FC-TCR): In order to achieve variable 

capacitance and variable inductance, FC-TCR is generally used. The 

typical operating V-I area of FC-TCR is as given in Fig.1.4a. The fixed 

capacitor in practive is usually substituted fully or partially by a filter 

network that has the necessary capacitive impedance at the fundamental 

frequency to generate the reactive power. Not only this filter network 

filters out the characteristic low order harmonics of TCR but also the 

selected low order harmonics injected by the load [5].  
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ii) A combination of TCR and TSC: Typical loss versus VAr output 

characteristics of FC-TCR is given in Fig.1.4b. In order to decrease the 

losses in inductive operating region of FC-TCR and achieve increased 

operating flexibility, a combination of TCR-TSC with multiple TSC units 

can be used at the expense of decrease in dynamic response in capacitive 

region. Then typical operating V-I area and loss versus VAr output 

characteristics can be improved as shown in Fig.1.5.  

 
 
 

 
 
 (a) (b) 
 

Figure 1.4  For FC-TCR:  (a) operating V-I area  (b) loss vs. output VAr characteristic [3] 

 
 
 

 
 
 (a) (b) 
 

Figure 1.5  For TSC-TCR:  (a) operating V-I area  (b) loss vs. output VAr characteristic [3] 



 12

 

1.3.2 STATCOM   

 
According to definition of IEEE PES Task Force of FACTS Working Group: 

Static Synchronous Compensator (STATCOM): A Static synchronous 

generator operates as a shunt-connected static var compensator whose capacitive or 

inductive output current can be controlled independent of the ac system voltage. 

The possibility of generating controllable reactive power directly, without the 

use of ac capacitors or reactors by various switching power converters was disclosed 

by Gyugi in 1976 [3]. Functionality, from the standpoint of reactive power 

generation, their operation is similar to that of an ideal synchronous machine whose 

reactive power output is varied by excitation control (Fig.1.6a). Like the 

mechanically powered machine these converters can also exchange real power with 

the ac system if supplied from an appropriate, usually dc energy source (Fig.1.6b). 

Because of these similarities with a rotating synchronous generator, they are termed 

Static Synchronous Generator (SSG). When SSG is operated without an energy 

source and with appropriate controls to function as shunt-connected reactive 

compensator, it is termed, analogously to the rotating synchronous compensator 

(condenser) a Static Synchronous Compensator (STATCOM) or Static Synchronous 

Condenser (STATCON). 

Rotating synchronous condensers (Fig.1.6a) have been used in both 

distribution and transmission systems for 50 years. However, they are rarely used 

today because of their following drawbacks: i) require substantial foundations and a 

significant amount of starting and protective equipment, ii) contribute to the short 

circuit current, iii) can not be controlled fast enough to compensate for rapid load 

changes due to the large time constant of their field circuit, iv) have much higher 

losses as compared with STATCOM [90]. 
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 (a) (b) 
 

Figure 1.6  Reactive power generation by   (a) a rotating synchronous compensator,                         
(b) voltage source converter based Static Synchronous Compensator (STATCOM) 

 
 
 
For the generation of controllable reactive power by the converter can be a 

voltage source type (VSC) (Fig.1.7a) or a current source type (CSC) (1.7b). 

However, converters presently employed in FACTS Controllers are based on 

voltage source converter [3]. The major reasons for this preference are as follows: 

i) Current source converters require power semiconductors with bi-

directional voltage blocking capability. The available high power 

semiconductors with gate turn-off capability (GTOs, IGBTs) either can 

not block reverse voltage at all or can only do it with detrimental effort 

on other parameters (e.g., increased conduction losses) 

ii) Dc-link reactor of CSC is practically more lossy than complementary 

dc-link capacitor of VSC. 

iii) The CSC requires capacitors at its ac terminals while VSC requires 

reactors, which may be naturally provided by the leakage inductance of 

the coupling transformer. 
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Although they have the same structure, STATCOM systems are classified as 

Transmission STATCOM and Distribution STATCOM (DSTATCOM). While 

Transmission STATCOM having a larger MVAr rating is intended to inject a set of 

three balanced quasi-sinusoidal voltages for controlling reactive power flow in 

transmission system, DSTATCOM performs load compensation, i.e, power factor 

correction, harmonic filtering, load balancing in the distribution system. Therefore, 

DSTATCOM must be able to inject an unbalanced and harmonically distorted 

current to eliminate unbalance or distortions in the load current or the supply voltage 

[1,7]. 

 
 
 
 

 
 

 (a) (b) 
 

Figure 1.7  STATCOM based on (a) Current Source Converter (CSC)                                            
and (b) Voltage Source Converter (VSC) 
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The single line diagram of basic VSC based STATCOM is shown in Fig.1.6b. 

From a dc-voltage provided by dc-link capacitor, C, the converter produces a set of 

controllable three-phase output voltage with the frequency of ac power system. Each 

output voltage is in phase with and coupled to the corresponding phase of ac system 

via coupling reactor (including reactance of the coupling transformer). Then, 

reactive power per phase produced by the converter can be expressed as follows [3],  

2
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If the amplitude of output voltage (V0) is increased above that of ac system 

voltage (V) the converter generates reactive (capacitive) power. If the amplitude of 

V0 is reduced to a level below that of ac system voltage (V), then the converter 

absorbs the reactive (inductive) power. 

All of the practical converters so far employed in actual STATCOM 

applications are composed of a number of elementary converters, shown in Fig.1.8. 

In transmission STATCOM systems, fully controllable power semiconductors such 

as GTO, GCT which are switched at supply frequency have been used. Then, 

harmonics produced by VSC have been eliminated by complex coupling transformer 

connections and multiphase converter topologies. With the advents in high voltage 

IGBT technology, DSTATCOMs have been applied to medium voltage distribution 

systems for harmonic filtering and load balancing in addition to reactive power 

compensation. These features of DSTATCOM make necessary generation of 

harmonic components superimposed on the fundamental voltage component at the 

ac side of VSC by turning on and off IGBTs at frequencies much higher than the 

supply frequency overlapping with switching frequencies, operation, and control 

strategies of low voltage shunt active power filters.  

The operating V-I area of STATCOM is limited only by the maximum voltage 

and current ratings of the converter and system components as illustrated in 

Fig.1.9a. Typical loss versus VAr output characteristics of an actual 100MVA, 48-

pulse VSC based STATCOM is shown in Fig.1.9b. [3,6]  
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Figure 1.8  Basic converter schemes used for STATCOM [3] 
(a) Single phase two-level H-converter 
(b) Three-phase two-level 6-pulse converter 
(c) Three-phase, three-level 12-pulse converter 
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Figure 1.9  For STATCOM  (a) operating V-I area  (b) loss vs. output VAr characteristic [3] 
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A brief comparison between SVC and STATCOM can be made in terms of 

their operational and performance characteristics with the corresponding application 

benefits: 

1) V-I Characteristics: Comparison of Fig.1.9a with Fig.1.7a shows that 

STATCOM can inject its full reactive current even at very low, typically 

about 0.2 pu system voltage level. This makes STATCOM superior to 

SVC in providing voltage support under large system disturbances. The 

capability of providing maximum compensating current at reduced 

system voltage enables STATCOM to perform the same dynamic 

compensation as an SVC of considerably higher rating. STATCOM may 

have an increased transient rating in both capacitive and inductive region 

while SVC has no mean to increase the VAr generation since the 

maximum current it can draw is strictly determined by the size of 

capacitor and inductors and the magnitude of system voltage.  

2) Transient Stability: The ability of STATCOM to maintain full capacitive 

reactive current at low system voltage makes it more effective than SVC 

in improving the transient stability of transmission system. 

3) Response Time: Attainable response time and bandwidth of the closed 

loop of STATCOM are also significantly better than those of SVC. This 

is due to the availability of fully controllable power semiconductors in 

STATCOM. The practical importance of wide frequency bandwidth can 

not be overstated for applications requiring fast response, but even in 

typical transmission STATCOMs which have fully controllable power 

semiconductor switches with a switching frequency at supply frequency 

can provide stable operation with respectable response over a much wide 

variation of the transmission network impedance than is possible with 

SVC. 

4) Capability to Exchange Real Power: For applications requiring active 

(real) power compensation it is clear that the STATCOM in contrast to 

the SVC, can interface a suitable energy storage (large capacitor, battery  
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or super conducting magnetic storage, etc) with the ac system for real 

power exchange. This potential capability of STATCOM with the control 

of active and reactive power independently improves the stability limits 

and efficiency of the power system, enchances dynamic compensation 

and potentially prevents power outages.  

5) Operation in Load Compensation: Although SVC systems have been 

successfully used in load compensation for harmonic filtering, 

unbalanced currents, bus voltage regulation, STATCOM having 

appropriate structure (i.e., by using single phase H bridge for each phase) 

and power semiconductor switches (such as IGBTs) with pulse width 

modulation presents more flexible, efficient load compensation. While 

typical SVC comprises harmonic filters generating reactive (capacitive) 

reactive power for filtering harmonic of load and its TCR part, 

STATCOM, namely DSTATCOM can cancel out the load harmonics 

without the need for bulky filters. Due to its better response time, 

STATCOM can also perform load balancing or voltage regulation for 

voltage flicker problem more rapidly. 

6) Loss versus VAr output characteristics: Although loss contribution of 

power semiconductors and their related components, such as snubbers is 

higher for STATCOM than for SVC, on the avarage overall loss of 

STATCOM is comparable with that of SVC due to large inductors (i.e, 

reactors) of SVC.  

7) Physical Size and Installation: Since the converter of STATCOM 

produces both controllable capacitive and inductive reactive power with a 

relatively small energy storage in the dc-link, the large capacitor and 

reactor banks with their associated switchgear and protection used in 

SVC are not needed. This results in a significant reduction in overall size 

(reported as 30-40% in [3]) as well as in installation labor and cost, 

furthermore improves the relocability of the system. 
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1.4 Current Source Converter   
 

Although the possible use of CSCs for reactive power compensation has been 

known over a quarter of a century [3, 56], it has not been realized for many years 

due to reasons given in perivious section. In fact, the basic topology of current 

source converter has been known since the first application of line commutated 

rectifiers. Line commutated rectifiers have similar the topology as in Fig.1.7b except 

the ac capacitors since they do not need capacitors at their ac terminal due to their 

line commutated thyristors. In fundamental topology of CSC given in Fig.1.7b the 

converter is build up of forced commutated power semiconductors and hence the 

capacitors at ac terminal provide not only commutation path for the currents of 

power semiconductors but also low impedance for the high order harmonics injected 

by the converter. 

The advents in power semiconductor and capacitor technology have made 

PWM voltage source converters popular in power electronics, leaving application of 

CSC as line commutated thyristorized front end rectifiers in DC drives, or load-

commutated thyristorized inverters in MV synchronous motor drives. With the 

introduction of GTOs and GCTs, PWM CSC has found wide application in MV AC 

drives due to their simple converter topology, motor friendly waveforms and reliable 

inherent short circuit protection [4, 22]. PWM CSC has also been used in MV drives 

as an active front end rectifier [14, 27,31,51] and dc motor drive [53] instead of line 

commutated thyristor rectifiers, thus eliminating their inherent properties such as 

poor power factor, distorted line currents. The application of single phase CSC as a 

resonant inverter in induction heating has also been reported in [78]. 

The research work on CSC are generally based on its use as a rectifier or 

inverter. Its control strategies and modulation techniques have been proposed 

accordingly [11-55]. However, there are limited research on CSC based STATCOM  

as compared to VSC based STATCOM [56-64]. Among these research work, only 

[64], which has been the part of this study presents the first application of CSC 

based STATCOM for load compensation.  
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A reactive power compensation system which employs a three-phase PWM 

current source converter which is modulated by optimized PWM patterns stored in 

an EPROM is presented in [56]. This work also includes the methods of reactive 

power current control for optimizing the system response, input filter and dc-link 

reactor design, specification of power semiconductor ratings, and a method of 

closing reactive power demand loop by using phase angle control. The proposed 

methods were verified on a 117V, 1.1kVA power circuit. However, filter 

components and dc-link reactor are not so realistic that the results can not prove 

viability of CSC based STATCOM.  

The research work in [57] is an experimental verification of CSC based 

STATCOM on a 120V, 500VA laboratory set-up by employing a different control 

approach: reactive power control by varying modulation index while maintaining 

constant dc-link current by phase shift angle control. However, the proposed control 

technique with Space Vector PWM (SVPWM) is not suitable for medium and high 

power applications. 

In order to minimize the switching losses in CSC, [58] proposed a soft-

switching scheme by integrating H-type soft switching module to three phase 

current source converter for static power compensation. By using trapezoidal PWM 

with a carrier frequency of 5kHz and only phase shift angle control for reactive 

power control, the proposed topology has been tested on a scaled prototype at 

120V/2kVA. The results shows that proposed topology improves higher efficiency 

at the expense of higher circuit and control complexity.  

The simultaneous control of modulation index and phase shift angle is 

proposed in [59] in order to eliminate oscillations due to poorly damped input filter 

while improving dynamic response of CSC based STATCOM. For this purpose, full 

state- feedback and integral controllers are employed by using the state space 

representation of CSC based STATCOM in dq frame. The proposed control method 

is compared with phase angle control employing conventional PI controller and the 

results are verified by 1kVA laboratory set-up.  

Due to the non-linearity in state space representation of CSC based 

STATCOM, there is a difficulty in controller design for CSC based STATCOM. A 
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new approach for the linearization of state space representation has been proposed in 

[60]. This approach allows the design of a decoupled state feedback controller. CSC 

based STATCOM with the proposed controller and SVPWM modulation has been 

simulated in [60] in order to illustate the excellent current and voltage waveforms as 

well as very short response time at a relatively low switching frequency of 900Hz.  

A comparison between VSC based STATCOM and CSC based STATCOM 

has been given in [61] in view of their device rating, dc-link energy storage 

requirement, ac-side waveform quality, start-up and cost. This comparison study 

shows that CSC based STATCOM has certain advantages over VSC based 

STATCOM in following points: CSC based STATCOM, i) does not need pre-

charging or inrush current limiting scheme ii) can present better ac current 

waveforms at relatively lower switching frequency iii) does not inject harmonics in 

the “idle” state. The theoretical results are partly verified by laboratory tests.  

The possible application of CSC based STATCOM for the compensation of 

induction generators has been presented in [62] in order to solve self-excitation and 

poor voltage regulation problems of induction generators used in renewable energy 

sources. The proposed application has been illustrated by simulation. 

In [63] develepment of Symmetrical Emitter Turn-off Thyristor (ETO) is 

presented  for possible use in CSC application. The novel multilevel CSC, named 

the parallel-cell multilevel CSC based STATCOM is also proposed in [63]. Its 

power stage design, modeling, control, and switching modulation scheme are 

analyzed and illustrated by simulations. 

In summary, few researchers has focused on the analysis and design of CSC 

based STATCOM systems [56-64]. However, with the advents in high voltage, high 

power semiconductor technology (in IGCT and HV-IGBT technologies) CSC based 

STATCOM systems employing different VAr control methods and PWM 

techniques can be increasingly used in the near future as a FACTS Controller in 

industrial applications. 
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1.5 Scope of the Thesis 

 

In this research work, it is aimed at developing the simplest CSC based 

STATCOM topology for medium voltage, medium power industrial applications. Its 

circuit diagram has already given in Fig.1.7b. It does not contain any complexity 

such as complex transformer connection, series or parallel connected 

semiconductors  and multilevel converter arrangements. The capabilities, 

drawbacks, limitations and advantages have been investigated by simulations, 

laboratory and field tests by considering present high voltage, high power 

semiconductor technology and expected progress in the near future. Phase shift 

angle control in order to control generated VAr by STATCOM and Selective 

Harmonic Elimination to comply with harmonic standards [65] have been exercised 

for simplest CSC based STATCOM topology. In view of theoretical findings a 

prototype system has been designed and implemented. To verify theoretical results, 

the prototype system has been applied to reactive power compensation problem of 

coal mining excavators and its performance has been tested in the field.  

The prototype STATCOM is composed of ±750kVAr CSC, +250kVAr low 

pass input filter developed at standard highest low voltage level of 1kV and 

31.5/1kV, 800kVA, delta-wye connected coupling transformer for connection to the 

medium voltage bus. The low pass filter of the prototype system is tuned to 200Hz. 

An air-core reactor is chosen as the magnetic storage element in the dc-link in order 

to eliminate magnetic saturation risk. A switching element with reverse blocking 

capability has been formed by combining an asymmetric IGCT and fast soft-

recovery high voltage diode. In order to avoid complexity in the control circuit, to 

minimize switching frequency of the power semiconductors and hence converter 

losses, phase shift angle control to vary generated reactive power and selective 

harmonic elimination method (SHEM) to comply with harmonic standards have 

been employed in the design and implementation. Elimination of only 5th, 7th, 11th 

and 13th harmonics by SHEM and minimization of higher order harmonics by low 

pass input filter are found quite satisfactory in complying with associated harmonic 

standards [65]. Although the simplest medium voltage, medium power CSC based 
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STATCOM topology has been used to improve reliability, the switching frequency 

of power semiconductors still remains at a relatively low value of 500Hz. 

This research work makes following original contributions to CSC based 

STATCOM area: 

• first design and development work of medium voltage, high power 

CSC based STATCOM in the world [64, 92], 

• first application of CSC based STATCOM to an industrial problem, 

such as load compensation of coal mining excavators [64], 

• presentation of qualititive design criteria based on analysis, simulation 

and experimental work for CSC based STATCOM, 

• verification of designed system by field test results, 

• first utilization of series connected asymmetric IGCT and fast recovery 

diode in CSC based STATCOM,  

• application of Selective Harmonic Elimination Technique for 

eliminating 5th, 7th, 11th and 13th harmonics in order to inject nearly 

sinusoidal reactive currents while controlling reactive power of CSC 

based STATCOM  

The outline of the thesis is given below: 

In Chapter 2, system description and operating principles of CSC based 

STATCOM is described. After presenting the basic circuit configuration, the 

principles of reactive power control in CSC are described. After comparing the 

applicable modulation techniques for CSC, selective harmonic elimination method, 

which has been applied in this study has been explained. Reactive power control 

methods for CSC based STATCOM are also discussed. The commutation types in 

CSC are described in detail 

In Chapter 3, the design principles of CSC based STATCOM are presented. 

First, design specifications of the prototype system are stated. Then, selection 

criteria for the right power semiconductor among the most candidate power 

semiconductors applicable to CSC based STATCOM, is given. At the same time, 

constraints on modulation techniques are discussed and parameters for the chosen 

modulation techniques are determined. Design criteria of input filter, dc-link reactor, 
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power stage layout and snubber circuits are also presented in view of simulation 

results. Protection circuits used in the implemented CSC based STATCOM is 

discussed. Design of control system including reactive power controller and 

electronic system are described. Factors increasing VAr generation capability of 

designed CSC based STATCOM has been discussed at the end of the chapter. 

In Chapter 4, field results obtained from the application of developed system 

for group compensation of coal mining excavators are presented.  

General conclusions are given in Chapter 5. Proposals for further work are also 

given in the same chapter. 

In Appendix A, the list of implemented Transmission STATCOM systems in 

the world is given. 

In Appendix B, the derivation of CSC based STATCOM model in dq 

stationary frame is presented. 

In Appendix C, simulation model of CSC based STATCOM in 

PSCAD/EMTDC is posted. 

Derating curves which are used in determination of switching frequency for 

IGCT is given in Appendix D. 

The method for theoretical calculation of power semiconductor losses in 

current source converter is explained in Appendix E. 

In Appendix F, simulation models for analysis of turn-off snubber in 

MATLAB/Simulink can be found. 

In Appendix G, flowchart of implemented software for the reactive power 

control system is given. 

 

 




