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Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Zafer Nurlu

Head of Department, Mathematics

Prof. Dr. Mahmut Kuzucuoğlu
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abstract

BARELY TRANSITIVE GROUPS

Betin, Cansu

PhD, Department of Mathematics

Supervisor: Prof. Dr. Mahmut Kuzucuoğlu

July 2007, 38 pages

A group G is called a barely transitive group if it acts transitively and faith-

fully on an infinite set and every orbit of every proper subgroup is finite.

A subgroup H of a group G is called a permutable subgroup, if H commutes

with every subgroup of G. We showed that if an infinitely generated barely

transitive group G has a permutable point stabilizer, then G is locally finite.

We proved that if a barely transitive group G has an abelian point stabilizer

H, then G is isomorphic to one of the followings:

(i) G is a metabelian locally finite p-group,

(ii) G is a finitely generated quasi-finite group (in particular H is finite),

(iii) G is a finitely generated group with a maximal normal subgroup N where

N is a locally finite metabelian group. In particular, G/N is a quasi-finite simple

group.

In all of the three cases, G is periodic.

Keywords: Barely transitive groups, Permutable subgroups.
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öz

YALIN GEÇİŞKEN GRUPLAR

Betin, Cansu

Doktora, Matematik

Tez Yöneticisi : Prof. Dr. Mahmut Kuzucuoğlu

Haziran 2007, 38 sayfa

Sonsuz bir küme üzerine, geçişken ve sadık etki eden ve her özalt grubunun

yörüngesi sonlu olan gruba yalın geçişken grup denir.

Sonlu eleman tarafından üretilemeyen yalın geçişken bir G grubunun değişili

(permutable) nokta stabilizörü varsa, G grubunun lokal-sonlu bir grup olduğunu

gösterdik.

Eğer yalın geçişken bir G grubunun değişmeli bir nokta stabilizörü varsa, bu

grubun aşağıdaki gruplardan biriyle eş yapılı olduğunu ispatladık.

(i) G sonsuz metabeliyan lokal sonlu bir p-gruptur,

(ii) G sonlu sayıda eleman tarafından üretilen somlumsu (quasi-finite) bir

gruptur,

(iii) G sonlu sayıda eleman tarafindan üretilen bir gruptur. G’nin lokal-sonlu

metabeliyan maksimal normal bir alt grubu, N, vardır ve G/N sonlumsu basit

gruptur.

Her üç durumda da G grubu periyodiktir.

Anahtar Sözcükler: Yalın geçişken gruplar, Değişili (Permutable) altgruplar.
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chapter 1

introduction

In 1947, Kurosh and Chernikov asked the following question; “Is a group sat-

isfying normalizer condition hypercentral?” The negative answer to this question

was given by Heineken and Muhammed in 1968 [12]. For each prime p, they

constructed a group G with the following properties:

i) G is a locally finite p-group;

ii) G/G′ ∼= Cp∞ ;

iii) every proper subgroup is subnormal and nilpotent;

iv) Z(G) = 1;

v) G′ is an elementary abelian p-group;

vi) the set of all normal subgroups of G contained in G′ is linearly ordered by

inclusion;

vii) for any proper subgroup K of G, the subgroup KG′ is proper in G;

Properties (iii) and (iv) give that these groups satisfy the normalizer condition

but they are not hypercentral.

In 1973, Hartley gave another example satisfying (i)-(v) as subgroups of

Cp o Cp∞ [9]. In 1974, he constructed for each natural number n, a group Gn,

satisfying the properties (i)-(iv) and G′
n is an abelian group of exponent pn [10].

In particular, the exponent of the commutator subgroup of locally finite groups

constructed by Hartley could be arbitrarily large. Through these groups, Hartley

introduced the concept of bare transitivitiy: a group G has a barely transitive
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representation if G acts on an infinite set faithfully and transitively and every

orbit of every proper subgroup is finite.

The groups Hartley constructed have barely transitive representation. An

abstract group is called a barely transitive group, if it has a barely transitive

representation. Equivalently, an infinite group G is barely transitive if and only

if G has a core-free subgroup H such that for every proper subgroup K of G, the

index |K : K ∩ H| is finite [18]. In 1997, Belyaev and M. Kuzucuoğlu showed

that Heineken-Muhammed groups are also barely transitive [4].

In this dissertation, we investigate the abstract properties of barely transitive

groups.

Recall that an infinite group G is called quasi-finite (or Schmidt) group if

all of its proper subgroups are finite. An infinite group G is barely transitive

in its regular permutation representation if and only if G is quasi-finite [18].

So, the quasi-cyclic group Cp∞ is an abelian barely transitive group in its regular

permutation representation. There are also non-abelian quasi-finite (hence barely

transitive) groups. The first examples of non-abelian quasi-finite groups were

given by Ol’sanskii ([24], Theorem 2).

He constructed two generated simple quasi-finite groups. Therefore, there

exists periodic simple non-locally finite barely transitive groups. In 1997, it was

shown that there exists no simple locally finite barely transitive group [11]. In

Proposition 1 of [21] it was shown that every proper normal subgroup of a barely

transitive group is locally finite. Then by [21], if there exists a torsion-free barely

transitive group G, then it is simple. This is also observed in [1]. But the question

“Does there exist a torsion-free barely transitive group ?”, raised by Hartley, is

still open [10, 17].

A group G is called locally graded if every finitely generated subgroup has

a subgroup of finite index. Clearly every locally finite group is a locally graded

group. The concept of locally finite barely transitive groups (LFBT-groups) with

G 6= G′ is well understood [4, 19, 20]. We showed that two properties of LFBT-

groups can be generalized to locally graded barely transitive groups (LGBT-

groups). The first one is the following; any two proper subgroup of a LGBT-

group generate a proper subgroup (Lemma 5.7). Secondly, a LGBT-group G can
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be generated by an infinite subset M and every infinite subset of M generates G

(Lemma 5.8). In addition to these two properties, we have proved a useful lemma

on LGBT-groups: A barely transitive group is locally graded if and only if it is

infinitely generated (Lemma 5.9).

In general, the class of locally graded groups is not closed under taking ho-

momorphic images (see example 5.5). In Lemma 5.10, we showed that if G is a

LGBT-group with a maximal normal subgroup M , then the quotient group G/M

is a LGBT-group. It is known that a LFBT-group is a union of an increasing

sequence of its proper normal subgroups [21]. Therefore, putting the restriction

having a maximal normal subgroup, guarantees that the LGBT-group G above is

not locally finite. Under this restriction we have also Lemma 5.14. Namely, if G

is a LGBT-group with a maximal normal subgroup M and a point stabilizer H,

then the FC-center of H is contained in M . In particular, H is not an FC-group.

Another concept that distinguish LGBT-groups from LFBT-groups is simplicity.

Recall that a LFBT-group can not be simple [11]. In Lemma 5.20 we showed that

if G is a simple LGBT-group with a point stabilizer H, then the Hirsh-Plotkin

radical of H is trivial. Note that there is a strong connection between the struc-

tural property of a barely transitive group and those of its point stabilizer. So,

it is natural to ask that which property should be satisfied by a point stabilizer

H so that a LGBT-group G is locally-finite. We show in Lemma 5.11 that a

LGBT-group with a point stabilizer of finite exponent is locally finite. Also, if

a LGBT-group G has a locally nilpotent-by-solvable point stabilizer, then G is

locally finite (Lemma 5.24).

A subgroup H of a group G is called permutable if for any subgroup K of G,

the equality HK = KH is satisfied. Let G be LGBT-group with a permutable

point stabilizer H. Then G is locally finite (Lemma 5.33).

Another condition for a LGBT-group to be a LFBT-group is to have a splitting

automorphism. Let p be a prime number. An automorphism Φ of a group G is

called a splitting automorphism of order p if Φp = 1 and ggΦgΦ2
. . . gΦp−1

= 1 for

all g in G. In Lemma 5.27, it is shown that if a LGBT-group G has a splitting

automorphism of order p, then G is locally nilpotent. In particular, it is locally

finite.

3



The main theorem of this dissertation is on relations of structural properties of

barely transitive groups and their point stabilizers. We prove, without restricting

to the class of locally graded groups, if a barely transitive group G has an abelian

point stabilizer, then G is either an infinite metabelian locally finite p-group, or a

finitely generated quasi-finite group, or a finitely generated group with a maximal

normal subgroup M where M is a locally finite metabelian group and G/M is

quasi-finite (Theorem 5.35).

A subset ∆ of a G-set Ω is called a block for G if for any element g of G,

∆g = ∆ or ∆g ∩∆ = ∅. For a transitive group (G, Ω), if Ω has no non-trivial G-

block, then G is called primitive; otherwise it is called imprimitive. By definition,

a barely transitive group is a group of permutations acting transitively on an

infinite set. So, it is natural to investigate the primitivity of a barely transitive

group. One can see that Olshanskii groups (of exponent p, for a fixed prime p)

given in [26] are primitive barely transitive groups. These Olshanskii groups are

simple. Indeed, any primitive barely transitive group is simple (Lemma 3.9). In

Lemma 3.17 we showed that if a barely transitive group has a proper block then

it is finite.

An imprimitive group is called totally imprimitive if it has no maximal proper

block. It is known that a LFBT-group can not be primitive [19]. In fact, any

LGBT-group (equivalently; any infinitely generated barely transitive group) is

totally imprimitive (Lemma 3.20) and also for a totally imprimitive barely tran-

sitive group (G, Ω) we have Ω =
⋃∞

i=1 ∆i and G =
⋃

G{∆i} where ∆i are proper

blocks and G{∆i} are the set stabilizers (Lemma 3.17).

It is well known that if a group G has a local system of simple subgroups, then

it is simple (see Theorem 4.4 of [15] or Lemma 3.1 of [11]). On the other hand,

there are non-simple groups which are union of their proper non-abelian simple

subgroups (see [7], Theorem C). Let S be the class of groups which are union of

their non-abelian simple subgroups. So, “What type of S-groups are simple ?”

is a natural question. We showed that any barely transitive S-group is simple

(Lemma 4.2).

A group with an infinite derived subgroup in which every proper subgroup

has finite derived subgroup is called a Miller-Moreno group or group of Miller-

4



Moreno type. Olshanskii groups can be given as examples of barely transitive

Miller-Moreno group. Recall that Olshanskii groups are two-generated quasi-

finite groups. Indeed, in Lemma 4.6 we have shown that every barely transitive

group of Miller-Moreno type is a finitely generated quasi-finite group.

We also show that every barely transitive group is countable (Lemma 2.5).

The rest of this dissertation is organized as follows. Chapter 1 is the intro-

duction of the thesis. Chapter 2 is the preliminary. In this chapter, we give some

examples and basic properties of barely transitive groups. Also, this chapter con-

tains a brief summary of locally finite barely transitive groups and gives some

knowledge about torsion free barely transitive groups. In chapter 3, we focus on

barely transitive groups as permutation groups. Here we elaborate their primitiv-

ity. In chapter 4, we characterize barely transitive S-groups and barely transitive

groups of Miller-Moreno type. In chapter 5, we investigate the similarities and

distinctions of locally graded barely transitive groups and locally finite barely

transitive groups. Also, we show the effect of a permutable point stabilizer of a

barely transitive group. Finally, we give the main theorem of this dissertation in

the same chapter.

5



chapter 2

preliminaries

In this chapter we give the basic definitions and primary results that play an

important role through other chapters.

Definition 2.1. A group G is called a barely transitive group if it acts transitively

and faithfully on an infinite set Ω and every orbit of every proper subgroup is

finite.

Lemma 2.2. [18] An infinite group (G, Ω) is a barely transitive group if and only

if G possesses a subgroup H such that
⋂

x∈G Hx = 1 and |K : K ∩H| < ∞ for

every proper subgroup K < G.

Note that in the above lemma, H is a stabilizer of a point.

Example 2.3. The quasi-cyclic group Cp∞ for any prime p is a barely transitive

group.

Definition 2.4. A group G is called quasi-finite if G is an infinite group all of

whose proper subgroups are finite.

Olshanskii has shown that,

• for every prime p > 1075, there is an infinite finitely generated p-group in

which every proper subgroup has order p [26]. These groups are infinite

2-generator groups all of whose proper subgroups are cyclic of prime order.

(non-abelian simple barely transitive groups with finite exponent p.)

• there exists an infinite 2-generator group all of whose proper subgroups are

cyclic of prime order where the set of primes occurring as orders is infinite

[25]. (non-abelian simple barely transitive groups with infinite exponent.)
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These groups, constructed by Olshanskii, are examples of quasi-finite groups.

By lemma 2.2, a quasi-finite group is a barely transitive group in its regular

permutation representation.

A group G is called locally finite if every finitely generated subgroup of G is

finite. Hartley [9, 10] has given examples of non-perfect locally finite barely tran-

sitive groups. These examples are locally finite p-groups satisfying the normalizer

condition with trivial center and every proper subgroup of them are subnormal

and nilpotent.

Let G be a Heineken-Mohammed group. Then G
′
is a countable elementary

abelian group and the set of normal subgroups of G contained in G
′
is linearly

ordered. Theorem 1 of [4] says that if A be a countable elementary abelian normal

subgroup of a group G and if the set of normal subgroups which are contained in

A is linearly ordered, then there exists B ≤ A such that ∩g∈GBg = 1 and |A : B|
is finite. As a corollary, the Heineken-Mohammed groups are barely transitive

[4].

The first four of the following properties of barely transitive groups are well

known for locally finite case. But the proofs work in general without any change.

For convenience of reader we give the proofs of these four properties.

Let G be a barely transitive group and H be a point stabilizer of G.

Then,

1. Every proper subgroup of G is residually finite ([18], Lemma 2.13).

Proof. Let K be a proper subgroup of G. Then |Kx−1
: Kx−1 ∩ H| < ∞

for all x in G. So, |K : K ∩Hx| < ∞ for all x in G. As
⋂

x∈G(K ∩Hx) ≤
K

⋂
(∩x∈GHx) = 1, for all k ∈ K, there exists K ∩ Hy ≤ K such that

k /∈ K ∩Hy and |K : K ∩Hy| < ∞. Hence we can find a normal subgroup

Nk of K such that |K : Nk| < ∞ and Nk ≤ K ∩Hy as required.

7



2. G does not have a proper subgroup of finite index ([18], Lemma 2.2).

Proof. Let K be a proper subgroup of G of finite index. Then |G : H| ≤
|G : K||K : K ∩H| < ∞ which is impossible.

3. If N is a finite normal subgroup of G, then N ≤ Z(G) ([18], Lemma 2.2).

Proof. Let N be a finite normal subgroup of G. Then G acts on N by

conjugation. That is there is a homomorphism

ϕ : G −→ Aut(N)

g −→ ϕg

where ϕg : N → N

n → ng

and

Kerϕ = {g ∈ G : ng = n for all n ∈ N} = CG(N).

So, G/CG(N) ≤ Aut(N). As N is finite, Aut(N) is finite. By property 2,

G does not have a proper subgroup of finite index. So, CG(N) = G. Hence,

N ≤ Z(G).

4. For any proper subgroup K of G, the set KH is a proper subset of G ([18],

Lemma 2.2).

Proof. Assume that K < G and KH = G.

Then |G : H| = |KH : H| = |K : K ∩H| < ∞ which is a contradiction.

5. If G is a simple and if CG(x) is infinite for some x in G, then H * CG(x)

[21].

6. G is a union of an increasing sequence of proper normal subgroups of G if

and only if G is locally finite [21].

7. If G is not perfect, then G is locally finite [5].

8. If G is abelian, then G ∼= Cp∞ for some prime p [19].

8



Lemma 2.5. Let (G, Ω) be a barely transitive group. Then G is countable.

Proof. Let (G, Ω) be a barely transitive group. Take an infinite countable subset

Σ = {α1, α2, . . .} of Ω. As G is transitive on Ω, there exists gi ∈ G such that

αigi = αi+1. Set Ki = 〈g1, g2, . . . , gi〉. Then we have a chain K1 ≤ K2 ≤ . . .

of countable subgroups of G. If this chain terminates after finitely many steps,

say Kn, then Kn is transitive on Σ. As every proper subgroup of G has finite

orbits, Kn = G. Now, assume that we have an infinite chain. Put K =
⋃∞

i=1 Ki.

Then K is transitive on Σ and so G = K which is countable as it is countably

generated.

In locally finite case, we have the following:

1. There exists no simple LFBT (Locally Finite Barely Transitive) group [11].

2. Every LFBT-group is a p-group for some prime p [5].

3. Let G be a LFBT-group and let H be its point stabilizer. If G contains an

element of order p for some prime p and H satisfies min-p, then G ∼= Cp∞

[20]. But note that the groups constructed by Olshanskii are not locally

finite. Therefore there exists non-locally-finite barely transitive groups sat-

isfying min-p.

4. If G is a LFBT-group and the point stabilizer H is solvable, then G is

solvable [5].

Although the concept of LFBT-groups with G 6= G′ is well understood, not

much known about the structure of arbitrary barely transitive groups. The ques-

tion “Does there exist a torsion-free barely transitive group ?”, raised by Hartley

[10, 17], is still open.

Proposition 2.6. ([19], Proposition 1) If a group G is barely transitive, then

every proper normal subgroup of G is locally finite.

Note that Proposition 2.6 gives the simplicity of torsion-free barely transitive

groups (TFBT-groups).

Remark 2.7. If G is a TFBT-group, then Z(G) = 1

9



Kuzucuoğlu showed that if G is a TFBT-group and if there exists x in G such

that |H : CH(x)| < ∞, where H is the point stabilizer, then G is not simple [21].

So, a TFBT-group can not have a nilpotent point stabilizer.

Let G be a barely transitive group and let H be stabilizer of a point. If

H = 1, then for any element x in G, |〈x〉| = |〈x〉 : 〈x〉 ∩ H| < ∞. So, we have

the following remark.

Remark 2.8. In a TFBT-group a point stabilizer H can not be identity. So,

TFBT-groups are not regular groups.

Theorem 2.9. ([27], Theorem 28.3) There is a simple torsion-free group G with

generators a1 and a2 in which every proper subgroup is infinite cyclic. The extrac-

tion of roots in G is unique, that is, it follows from Xk = Y k, k 6= 0, that X = Y

for any X, Y in G; moreover, it follows from Xk = Y l (k, l 6= 0) that X and Y

are elements of the same cyclic subgroup, whence any two maximal subgroups in

G have trivial intersection.

Remark 2.10. In Theorem 2.9, the torsion-free group G constructed by Olshan-

skii has only infinite cyclic proper subgroups. If G is a barely transitive group

with a point stabilizer H, then H = 1 or H is an infinite cyclic group . By above

remark, H is non-trivial. Then, H is an abelian torsion-free group. This gives a

contradiction with property 5 (see page 8). So, G is not barely transitive.

10



chapter 3

blocks of barely transitive

groups

Primitivity is a fundamental topic in permutation group theory. In this chap-

ter, we inquire the blocks and consequently the primitivity of barely transitive

groups.

3.1 Primitive Groups

Definition 3.1. Let G be a group and Ω be a G-set. Let ∆ be a non-empty subset

of Ω.

• ∆ is called a block (more explicitly a G-block) of Ω, if for every g ∈ G either

∆ = ∆g or ∆ ∩∆g = ∅.

• If the action of G on Ω is transitive and the only G-blocks are one element

subsets of Ω and Ω itself, then G is called primitive (or primitive on Ω)

Remark 3.2. ([8], page 12) If Ω is a G-set and ∆ ⊆ Ω is a block for G, then for

any g in G, ∆g is also a block for G. Furthermore, if G is transitive on Ω, the

distinct sets ∆g (g ∈ G) form a partition of Ω.

Let us give some properties on primitive groups.

Proposition 3.3. ([6], Theorem 4.7) Suppose that |Ω| > 1 and G is transitive

on Ω. Then G is primitive on Ω if and only if Gα is a maximal subgroup of G

for every α ∈ Ω.

Proposition 3.4. ([6], page 37) If G is 2-transitive on Ω, then it is primitive on

Ω.
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Proposition 3.5. ([6], Theorem 3.13) Let n > 1, α ∈ Ω. Then G is n-transitive

on Ω if and only if G is transitive on Ω and Gα is (n− 1)-transitive on Ω\{α}.

Example 3.6. Symmetric groups of order n, where n is a natural number, is a

primitive group. Because it is n-transitive.

Proposition 3.7. ([6], Theorem 4.2 and Theorem 4.4) Suppose that G is tran-

sitive on Ω and let N ¢ G. Then every N-orbit of Ω is a G-block. In particular,

if G is faithful and primitive and N 6= 1, then N is transitive.

Question: “Are there any primitive barely transitive group?”

The answer is yes. The following is an example to primitive barely transitive

groups.

Example 3.8. Let G be an Olshanskii group ([26]) which is 2-generated, infinite,

simple p-group for some prime p and every proper subgroup has order p. We

already know that G is barely transitive (see Lemma 2.2). So, it is enough to

show that G is primitive. The corresponding action is the action of G on Ω =

{Kx|x ∈ G} by conjugation where K is any proper subgroup of G. As G is simple

and every proper subgroup has prime order, NG(K) = K. Take any Kx ∈ Ω and

let y ∈ StabG(Kx). Then

Kxy = Kx ⇒ yx−1 ∈ NG(K) = K ⇒ y ∈ Kx ⇒ StabG(Kx) = Kx.

Thus, as every proper subgroup of G is maximal, StabG(Kx) is a maximal sub-

group of G. So, by Proposition 3.3, G is primitive.

Properties of primitive barely transitive groups:

Lemma 3.9. Every primitive barely transitive group is simple.

Proof. Let (G, Ω) be a primitive barely transitive group. Then, by definition, G

acts transitively and faithfully on Ω and every orbit of every proper subgroup

is finite. Assume that G has a non-trivial normal subgroup say N . Then, by

Proposition 3.7, N is transitive on Ω. Since a proper subgroup of G can not have

an infinite orbit, N = G.
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Proposition 3.10. ([19], Lemma 2.8 and Lemma 2.9) There exists no primitive

LFBT-group. In particular, there exists no 2-transitive LFBT-group.

Proposition 3.10 can be generalized to locally graded groups. A group G is

called locally graded if every finitely generated subgroup has a proper subgroup of

finite index. Locally graded barely transitive groups (LGBT-groups) are studied

in Chapter 5 in detail. It is known that in a LGBT-group, no point stabilizer

contained in a maximal subgroup (see Proposition 5.6). As every point stabilizer

of a primitive group is maximal, above proposition can be extended as in the

following remark.

Remark 3.11. There exists no primitive (in particular 2-transitive) LGBT-

group.

Lemma 3.12. There exists no 2-transitive barely transitive group.

Proof. Assume that (G, Ω) is a 2-transitive barely transitive group. Take any

element α in Ω. By Proposition 3.5, Gα is transitive on Ω\{α}. Then for any

point β of Ω\{α}, Gα orbit of β is Ω\{α} which contradicts with the finiteness

of orbits of proper subgroups..

Lemma 3.13. If G is a primitive barely transitive group, then for any non-trivial

element g in G, |supp g| is infinite.

Proof. Let G be a primitive barely transitive group and 1 6= g ∈ G such that

|supp g| is finite. Since G is barely transitive,
⋂

α∈Ω Gα = 1. So, there exists

α ∈ Ω such that g is not in Gα. As G is primitive, by Proposition 3.3, Gα is

maximal. Thus, 〈Gα, g〉 = G. Let Ω1, . . . , Ωn be Gα orbits of Ω meeting non-

trivially with supp g.

Then supp g(= supp g−1) j Ω1∪ . . .∪Ωn. So, Ω1∪ . . .∪Ωn is invariant under

〈Gα, g〉 = G. But G is transitive on Ω. Hence Ω = Ω1 ∪ . . . ∪ Ωn. Since G is

barely transitive, each Ωi is finite but this gives a contradiction as Ω is infinite.

Definition 3.14. Let G be a group acting on a set Ω and let S be a subset of G.

Then the subset of Ω consisting of points fixed by S is called the fixed points of S

and denoted by Fix(S).
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Lemma 3.15. Let (G, Ω) be a barely transitive group with a point stabilizer Gα.

Then, Fix(Gα) is a block for G.

Proof. Let G be a barely transitive group on a set Ω. Set Fix(Gα) = {β ∈ Ω|βx =

β, ∀x ∈ Gα}. Let x ∈ NG(Gα). Then we have Gα = Gx
α = Gαx which means that

αx ∈ Fix(Gα). Define Φ : {Gαx|x ∈ NG(Gα)} 7→ Fix(Gα) such that Φ(Gαx) =

αx. Suppose that Gαx = Gαy for some x, y ∈ NG(Gα). Then, y = gx for some

g ∈ Gα which gives us Φ(Gαy) = αy = αgx = αx = Φ(Gαx). Hence, Φ is a

well-defined map. Let Φ(Gαx) = Φ(Gαy). Then, we have αx = αy from which we

obtain α(xy−1) = α that is xy−1 ∈ Gα. Now, Gαxy−1 = Gα leads to Gαx = Gαy

which shows that Φ is a one-to-one map. Let β ∈ Fix(Gα). As G is transitive,

there exists g ∈ G such that β = αg. Since βGα = β, we have αgGα = αg. Thus,

αgGαg−1 = α which means Gg−1

α ≤ Gα. So, Gg−i−1

α ≤ Gg−i

α ≤ · · · ≤ Gα for all

i ∈ N . Since G is barely transitive, |〈g〉 : 〈g〉 ∩Gα| = n for some natural number

n and so g−n ∈ Gα. Thus we obtain Gα = Gg−n

α ≤ Gg−n+1

α ≤ · · · ≤ Gg−1

α ≤ Gα

which gives us Gα = Gg−1

α . That is g ∈ NG(Gα) and hence Φ is onto. Therefore

we have |Fix(Gα)| = |NG(Gα) : Gα|.
Set ∆ = Fix(Gα). Assume that ∆∩∆g 6= ∅ for some g in G. Then, there exists

x ∈ G such that αx ∈ ∆ ∩∆g. So, αx = αtg for some αt ∈ ∆. Thus, as shown

in the above paragraph, t ∈ NG(Gα). Now, as αtg ∈ ∆, αtgGα = αtg. Then

we get Gg−1

α ≤ Gαt = Gt
α = Gα. By the same argument in the above paragraph,

Gg−1

α = Gα. Now, ∆ = ∆Gα = ∆Gg−1

α = ∆gGαg−1 and so ∆gGα = ∆g.

Therefore ∆g ≤ ∆. Similarly, since ∆ ∩∆g 6= ∅ we have ∆g−1 ∩∆ 6= ∅. By the

same argument, we get ∆g−1 ≤ ∆ which means ∆ ≤ ∆g. Thus ∆g = ∆. Hence,

Fix(Gα) is a block for G.

Lemma 3.16. Let G be a primitive barely transitive group on Ω. Then any

non-trivial point stabilizer Gα fix only α.

Proof. Let G be a primitive barely transitive group acting on Ω. Then by above

paragraph, Fix(Gα) is a block for G. As G is primitive, Fix(Gα) is equal to Ω

or a single element. Since G is a barely transitive group its action is faithfull, i.e.

the only element fixing every point of Ω is 1. Therefore, if Gα is non-trivial, then

Fix(Gα) is a single element set. By definition of Gα, α is in Fix(Gα). Thus,

Fix(Gα) = {α}.
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Lemma 3.17. Let G be a barely transitive group which acts on Ω and has a chain

of proper blocks ∆1 < ∆2 < . . .. Then each proper block ∆i is finite. If this chain

is infinite, then Ω =
⋃∞

i=1 ∆i and G =
⋃∞

i=1 G{∆i}.

Proof. Let α be a fixed element in ∆1. Then α ∈ ∆i for all ∆i in the given chain

and so Gα ≤ G{∆i}. Since ∆i 6= Ω and G is transitive on Ω, G{∆i} � G. Then

|G{∆i} : Gα| < ∞ by bare transitivity.

Let α, β ∈ ∆i. Then, since G is transitive on Ω, there exists g in G such that

α.g = β. Then β ∈ ∆i ∩∆i.g. Since ∆i is a block, we have ∆i = ∆i.g. Hence,

g ∈ G{∆i}. So, G{∆i} acts transitively on ∆i. Thus, |∆i| = |G{∆i} : Gα| < ∞.

If this chain is infinite, then
⋃∞

i=1 ∆i is an infinite block for G. Since each

proper block is finite,
⋃∞

i=1 ∆i = Ω. Take α, β ∈ Ω. Then there exists a natural

number k such that α, β ∈ ∆k. So, there exists g ∈ G{∆k} such that α.g = β.

Hence
⋃∞

i=1 G{∆i} is transitive on Ω. But, by definition of barely transitive groups,

every proper subgroup of G has finite orbits. Hence, G =
⋃∞

i=1 G{∆i}.

Definition 3.18. Let G be a group acting transitively on a set Ω. If G has a

proper block (i.e. G is not primitive) then G is called imprimitive.

As described by Neumann in [23] there are two types of imprimitive groups.

Definition 3.19. Let G be an imprimitive group. Then

• If G has a maximal proper block, then G is called almost primitive.

• If G has no maximal proper block, then G is called totally imprimitive.

Lemma 3.20. Let G be a barely transitive group acting on Ω. Then, G is locally

graded if and only if G is totally imprimitive.

Proof. Assume that G is a totally imprimitive barely transitive group. Then, by

Lemma 3.17, G =
⋃∞

i=1 G{∆i} where ∆1 < ∆2 < . . . is a chain of blocks for G

and the proper subgroup G{∆i} is the set stabilizer corresponding to ∆i. Assume

that G is finitely generated. Say G = 〈x1, x2, . . . , xn〉 for some xi ∈ G. As

G =
⋃∞

i=1 G{∆i}, each xi is contained in G{∆ki
} for some natural number ki. Say

kj = max{k1, k2, . . . , kn}. Then, G = 〈x1, x2, . . . , xn〉 ≤ G{∆kj
} � G. Thus G is

infinitely generated and, by Lemma 5.9, G is locally graded.
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Conversely, suppose that G is a LGBT-group. If G is locally finite, then

G =
⋃∞

i=1 Ni where Ni £G (see property 6, page 8). Take α ∈ Ω. By Proposition

3.7, αNi is a block for G. If αNi = αNj for all j ≥ i, then Ω = αG = αNi which

is not possible as every proper subgroup has finite orbits. Hence G has a strictly

increasing infinite chain of blocks for G, i.e. G is totally imprimitive.

Assume that G is not locally finite. By Remark 3.11, we know that G can not

be primitive. Suppose that G is almost primitive. So, G has a finite chain of blocks

∆1 < ∆2 < . . . < ∆n−1 < ∆n = Ω such that ∆i+1 is the minimal block containing

∆i for all i in {1, 2, . . . , n − 1}. By Lemma 3.17, each proper block ∆i is finite.

Set ∆ = ∆n−1 and construct Σ1 = {∆g|g ∈ G}. As ∆ is finite and Ω is infinite,

Σ1 is an infinite set. Since G acts on Ω transitively, so does on Σ1. Every proper

subgroup of G has finite orbits on Ω implies that every proper subgroup of G has

finite orbits on Σ1. If G is simple, then
⋂

x∈G Gx
{∆} = 1 and so the action of G

on Σ1 is faithfull. It follows that (G, Σ1) is a LGBT-group. Suppose that (G, Σ1)

has a proper block say Γ. Without loss of generality, we may assume ∆ ∈ Γ

(see Remark 3.2). By Lemma 3.17, Γ is finite; say Γ = {∆, ∆g1, . . . , ∆gk} for

some natural number k. Then the set ∆
⋃

(∪k
i=1∆gi) is a proper block for (G, Ω)

which contradicts with the maximality of ∆. Hence (G, Σ1) is a primitive LGBT-

group which is not possible by Remark 3.11. Hence (G, Ω) is a LGBT-group

which is neither locally finite nor simple. So, G has a non-trivial maximal normal

subgroup say M . Let α ∈ ∆1. As M ¢ G, αM is a block for G which contains

α. Since G is almost primitive, we have a finite chain of blocks (containing α)

for G say ∆1 < ∆2 < . . . < ∆m−1 < ∆m = Ω such that ∆i = αM for some

i ≤ m − 1. Then, M ≤ ⋂
x∈G Gx

{∆m−1} ¢ G. Since M is a maximal normal

subgroup, M =
⋂

x∈G Gx
{∆m−1}. Set Σ2 = {∆m−1x|x ∈ G}. Now, (G/M, Σ2) is a

primitive LGBT-group which is not possible by Remark 3.11. Thus, G is totally

imprimitive.
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chapter 4

further results

4.1 S-Groups

Definition 4.1. Set S be the class of groups that are the set theoretic union

of their non-abelian simple subgroups. If a group G in S, then G is called an

S-group.

We know that if a group G has a local system of simple subgroups, then it is

simple (see Theorem 4.4 of [15] or Lemma 3.1 of [11]). On the other hand, there

are non-simple S-groups (see [7], Theorem C). Then the following question is in

order.

Question: “What type of S-groups are simple?”

Lemma 4.2. Every Barely Transitive S-group(BTS-group) is simple.

Proof. Assume that G is a BTS-group which is not simple. Then G has a non-

trivial normal subgroup N and G = ∪S∈ΣS where Σ is a set of non-abelian simple

subgroups of G. Take any S ∈ Σ. As G is not simple, S is a proper subgroup

and so residually finite. A residually finite group is simple only if it is finite. So,

S is finite and hence G is periodic.

If N is finite, then N ≤ Z(G) (see page 8, property 3). Take any x in N . Then

there exists S in Σ such that x ∈ S. So, N ∩ S is a non-trivial normal subgroup

of S. As S is simple, S = S ∩N but this is not possible as S is non-abelian.

So, N is infinite. Assume that N is a proper subgroup of G. Then N is

residually finite. In particular, N is locally graded. As every normal subgroup

of an S-group is an S-group [7], N is a periodic locally graded S-group. So, N is

simple (see [7], Theorem A). But this is not possible as N is an infinite residually

finite group. Thus N = G.
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Lemma 4.3. Let G be a LGBT-group with a point stabilizer H. If H is an S-

group, then G is locally finite. In particular, if a LGBT-group G is an S-group,

then its point stabilizer H can not be an S-group.

Proof. Assume that G is a LGBT-group with a point stabilizer H. Suppose that

H is an S-group. Then H = ∪S∈ΣS where Σ is the set of non-abelian simple

subgroups of H. As every element in Σ is a proper subgroup of G, each S ∈ Σ

is a residually finite simple group. Therefore each S ∈ Σ is finite. Hence, H is

periodic. As every periodic, locally graded S-group is simple ([7], Theorem A), H

is simple. But H is residually finite. Hence, H is finite and so, by Lemma 5.11,

G is locally finite.

If G is an S-group, by Lemma 4.2, G is simple. But there exists no simple

LFBT-group (see page 9).
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4.2 Miller-Moreno Groups

Definition 4.4. A group with an infinite derived subgroup in which every proper

subgroup has finite derived subgroup is called a Miller-Moreno group or group of

Miller-Moreno type.

The groups given by Olshanskii in [26] and [25] are quasi-finite simple groups.

Therefore they can be given as examples of barely transitive Miller-Moreno

groups.

In the following lemma we use the below proposition.

Proposition 4.5. ( [2], Theorem 1 ) Let G be a perfect minimal-non-FC-group.

Then, we have only three cases:

1. G = 〈a, b〉 and G/Z(G) is simple;

2. G/Z(G) is an infinite non-abelian quasi-finite group;

3. G is a locally finite group.

Lemma 4.6. Every barely transitive group of Miller-Moreno type is a finitely

generated quasi-finite group.

Proof. Let G be a barely transitive group of Miller-Moreno type. Then, by defi-

nition, G
′
is infinite and every proper subgroup of G has finite derived subgroup.

Since a group with a finite derived subgroup is an FC-group (see Theorem 1.1 of

[30] or 14.5.11 of [28]), either G is an FC-group or it is a minimal-non-FC-group.

Assume that G is an FC-group. Then the centralizer of any element of G has

finite index in G. But a barely transitive group can not have a proper subgroup

of finite index (see page 8, property 2); therefore G is an FC-group if and only if

G is abelian. But derived subgroup of an abelian group is the trivial subgroup.

Therefore an abelian group can not be a Miller-Moreno group. Hence G is a

minimal-non-FC-group.

Let H be a point stabilizer of G. Since H ∩ Z(G) ≤ ⋂
x∈G Hx = 1 we get

|Z(G)| = |Z(G) : 1| = |Z(G) : H ∩ Z(G)| < ∞.
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Assume that G is locally finite. Then, by property 6 of barely transitive groups

(see page 8), G =
⋃∞

i=1 Ni where Ni is a proper normal subgroup of G. Since G

is a Miller-Moreno group, each N
′
i is finite. So, by property 3 of barely transitive

groups, N
′
i ≤ Z(G) for all i in natural numbers. Then, G

′
=

⋃∞
i=1 N

′
i ≤ Z(G) and

so |G′| ≤ |Z(G)| < ∞ which is a contradiction. Hence G can not be locally finite.

So by property 7 of barely transitive groups, G is perfect. Now, by proposition

4.5, either G is two generated such that G/Z(G) simple or G/Z(G) is an infinite

non-abelian quasi-finite group.

Assume that G is a two generated group such that G/Z(G) is simple. We need

to say that G is quasi-finite. As G/Z(G) is simple, Z(G) is the maximal normal

subgroup of G. Then, by Lemma 2.5 of [19], G/Z(G) is a barely transitive group

with a point stabilizer HZ(G)/Z(G). Then, HZ(G)/Z(G) is either finite or has

trivial FC-radical (see Corollary 5.16). Since H is an FC-group, HZ(G)/Z(G) is

an FC-group too. So, the first case namely HZ(G)/Z(G) is finite remains. Thus,

|H| = |H : 1| = |H : H ∩ Z(G)| = |HZ(G) : Z(G)| is finite. Now let K be any

proper subgroup of G. Then, K ∩H and |K : K ∩H| are finite and so K is finite

as required.

Consider the last case that G/Z(G) is quasi-finite. We want to show that G

is quasi-finite and finitely generated. As G/Z(G) is quasi-finite, HZ(G)/Z(G) is

finite. So, |H| = |H : 1| = |H : H ∩ Z(G)| = |HZ(G) : Z(G)| is finite. Hence, as

H has finite index in any proper subgroup of G, G is quasi finite. Assume that

G is infinitely generated. Then, by Lemma 5.9, G is locally graded and so, by

Lemma 5.11, G is locally finite. But this is not possible as shown above.
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chapter 5

locally graded barely

transitive groups

In this chapter we investigate the locally graded barely transitive groups

(LGBT-groups). The question ”How far are the LGBT-groups from the LFBT-

groups ? ” is the motivation of this chapter. We see the close relation of structural

properties of barely transitive groups and those of its point stabilizers.

5.1 Locally Graded Groups

Definition 5.1. A group G is called locally graded if every finitely generated

subgroup has a proper subgroup of finite index.

Example 5.2. Here are some examples to locally graded groups.

• Cp∞ for any prime p.

• Locally finite groups. In particular, take G = ∪∞n=5An where An is the

alternating group of degree n. Then G is a simple locally graded group.

• Residually finite groups. In particular, the additive group of the set of inte-

gers Z is a residually finite and so locally graded. Note that Z is not locally

finite.

• Locally solvable groups.

Lemma 5.3. [29] The class of locally graded groups are closed under taking sub-

groups, extensions and cartesian products.
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Proof. Let G be a locally graded group and H be a subgroup of G. Take any

finitely generated subgroup K of H. As K is also a subgroup of G it has a proper

subgroup of finite index. So, H is also locally graded.

Let G/N and N be locally graded groups. Assume that K is a finitely gen-

erated subgroup of G. If K ≤ N then, as N is locally graded, K has a proper

subgroup of finite index. Hence, we may take K � N . As K is finitely generated

and K/(K ∩N) ∼= KN/N , KN/N is a finitely generated subgroup of G/N . So,

KN/N has a proper subgroup M/N of finite index. Then, |KN : M | < ∞ and

KN 6= M and so |K : K ∩M | = |KN ∩K : K ∩M | < ∞. If K ∩M = K, then

K ≤ M . But this is not possible as N ≤ M and M < KN . So, K ∩ M is a

proper subgroup of K of finite index.

Let {Gi|i ∈ I} be a set of locally graded groups. Set G = Cri∈IGi and let

K be a finitely generated subgroup of G. Say K = 〈k1, . . . , kn〉 for some non-

trivial element kj ∈ K. Denote kj as (gj
i )i∈I where gj

i ∈ Gi . As k1 6= 1, there

exists i in I such that g1
i 6= 1. Let H = 〈gj

i |1 ≤ j ≤ n〉. Then H is a finitely

generated subgroup of Gi. As Gi is locally graded, H has a proper subgroup M

such that |H : M | is finite. Note that, as H is generated by ith components of

the generators of K, we have K ≤ H × Crt∈I−{i}Gt and (M × Crt∈I−{i}Gt) ∩K

is a proper subgroup of K. Since |H ×Crt∈I−{i}Gt : M ×Crt∈I−{i}Gt| = |H : M |
is finite, |K : (M × Crt∈I−{i}Gt) ∩K| is finite. Hence G is locally graded.

Remark 5.4. An image of a locally graded group need not to be locally graded.

The following is an example of a locally graded group with a non-locally graded

homomorphic image.

Example 5.5. Let G be the two generated quasi-finite infinite simple group which

is constructed by Olshanskii. Then, G is not-locally graded. As every group is a

homomorphic image of a free group (see 14.1.5 of [14]), there exists a free group

F such that F/N = G for some normal subgroup N of F . But every free group

is a residually finite group (see 6.1.9 of [28] or 14.2.2 of [14]). So, F is locally

graded and G is a non-locally graded homomorphic image of F .
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Proposition 5.6. ([1], Lemma 2.1) Let G be a LGBT ( Locally Graded Barely

Transitive) group and let H be a point stabilizer of G. Then there exists no

maximal subgroup containing H.

The following lemma use the same technic of Lemma 2.10 of [19].

Lemma 5.7. Let G be a LGBT-group. Then G has a tower of subgroups H <

H1 < H2 < . . . such that G =
⋃∞

i=1 Hi. Moreover, for any proper subgroup K of

G, there exists a natural number n such that K ≤ Hn. In particular, any two

proper subgroup generate a proper subgroup.

Proof. By Proposition 5.6, H is not maximal. Then, there exists x1 ∈ G\H such

that H � 〈H, x1〉 � G. Set H1 = 〈H, x1〉. Similarly, as H is not contained in

a maximal, there exists x2 ∈ G\H1 such that H1 � 〈H1, x2〉 � G. Define Hi

inductively. So, for all i, H � Hi � G and |Hi : H| = |Hi : Hi ∩H| is finite. So,

G has a tower H < H1 < H2 < . . . such that |Hi+1 : Hi| is finite. As |G : H| is

infinite, this chain does not terminate. Thus, G =
⋃∞

i=1 Hi.

Let K be a proper subgroup of G. Then |K : K ∩H| is finite. Let X be the

set of right transversals of K ∩H in K. As X is finite, there exists n ∈ N such

that X ∈ Hn. Thus, K 5 〈X,H〉 5 Hn. Now, let K, L � G. Then |K : K ∩H|
and |L : L ∩ H| are finite. So, X ∪ Y is finite where X and Y are transversal

sets of K and L respectively. Thus, there exists n ∈ N such that X ∪ Y j Hn.

Hence, 〈K, L〉 5 〈X ∪ Y, H〉 5 Hn � G.

The following lemma appeared in [19] for locally finite groups. The same proof

works for locally graded groups. For the convenience of the reader we give the

proof here.

Lemma 5.8. Let G be a LGBT-group. Then G has an infinite subset M which

generates G and every infinite subset of M generates G.

Proof. We know that |G : H| is infinite. Let M be a transversal of H in G. Then,

G = 〈H,M〉. By Lemma 5.7, G = 〈M〉. Let B be any infinite subset of M . As

|〈H, B〉 : H| is infinite, G = 〈H,B〉 and so, by Lemma 5.7, G = 〈B〉.
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Lemma 5.9. A barely transitive group is locally graded if and only if it is infinitely

generated.

Proof. Let G be an infinitely generated barely transitive group. Then every

finitely generated subgroup is residually finite. Thus G is locally graded.

Let G be a LGBT-group generated by finitely many elements. Then by defi-

nition of locally gradedness, G has a proper subgroup of finite index but this is a

contradiction with property 2 (see page 8). Hence G is infinitely generated.

Lemma 5.10. If G is a LGBT-group with a point stabilizer H and M is a

maximal normal subgroup of G, then G/M is a LGBT-group with a point stabilizer

HM/M .

Proof. Let G be a LGBT-group and M be a maximal normal subgroup of G.

Then by Lemma 2.5 [19], G/M is a barely transitive group with a point stabilizer

HM/M . Now, by Lemma 5.9, it is enough to show that G/M is infinitely gen-

erated. Suppose that G/M = 〈x1M, . . . , xnM〉, then G = 〈x1, . . . , xn,M〉. By

Lemma 5.7, G = 〈x1, . . . , xn〉 but this contradicts with Lemma 5.9. Hence G/M

is infinitely generated.

Lemma 5.11. Let G be a LGBT-group and let H be a point stabilizer of G.

(i) If H is locally finite, then G is locally finite.

(ii) If H has a finite exponent, then G is locally finite.

Proof. Let G be a LGBT-group with a point stabilizer H.

(i) Assume that H is locally finite. Take any a finitely generated subgroup K

of G. Then by Lemma 5.9, K is a proper subgroup of G. So, |K : K ∩H|
is finite and hence K ∩H is a finitely generated locally finite group. Thus,

K ∩H is finite and so is K. Hence G is locally finite.

(ii) Suppose that H has a finite exponent. Since H is a proper subgroup of G, H

is residually finite (see property 1, page 7). So, as every finitely generated

residually finite group of finite exponent is finite (the celebrated result of

Zelmanov [32, 31]), H is locally finite. Thus, by part (i), G is locally finite.
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Remark 5.12. A LFBT-group can not be simple (see [11]). So above lemma

gives that a point stabilizer of a simple LGBT-group has infinite exponent.

Lemma 5.13. ([3], Corollary 4.7) Every inert subgroup in a finitely generated

simple group either is finite or has trivial FC-radical.

Lemma 5.14. Let G be a LGBT-group with a maximal normal subgroup N .

Then the FC-center of H is contained in N. In particular, H is not an FC-group.

Proof. Let G be a LGBT-group and N be a maximal normal subgroup of

G. Then, by property 6 (see page 8), G is not locally finite. If H has no

FC-element, then we are done. Assume that FC-center of H is non-trivial. Let

M = {g ∈ G||H : CH(g)| < ∞}. Then, by assumption, M 6= 1. Let x, y ∈ M .

Then CH(xy) = CH(x) ∩ CH(y)

⇒ |H : CH(xy)| 5 |H : CH(x) ∩ CH(y)| < ∞
⇒ xy ∈ M.

Trivially x−1 ∈ M . So, M 5 G. Let x ∈ M and t ∈ G. Then, |H : CH(x)| < ∞
⇒ |H t : CHt(xt)| < ∞
⇒ |H t ∩H : CHt(xt) ∩H| < ∞
⇒ |H t ∩H : CHt∩H(xt)| < ∞
⇒ |H : CH∩Ht(xt)| = |H : H ∩H t||H ∩H t : CH∩Ht(xt)| < ∞
⇒ |H : CH(xt)| < ∞
⇒ M £ G.

Suppose that M = G.

Claim: G is a minimal-non-FC group.

As every proper subgroup of G has infinite index, G is not an FC-group. Let

K be a proper subgroup of G. Take any element t in K. As M = G, we have

|H : CH(t)| < ∞
⇒ |H ∩K : CH(t) ∩K| < ∞
⇒ |H ∩K : CK(t) ∩H| < ∞
⇒ |K : CK(t)| < ∞.

So, G is a locally graded minimal-non-FC group. By [30] Lemma 8.14, G is

locally finite which is a contradiction.
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Thus, M 6= G. Then, by Lemma 5.7, 〈M, N〉 is a proper normal subgroup of G.

Hence M 5 N . So, FC-center of H is contained in N . If H is an FC-group, then

H = H ∩M 5 N . As N is locally finite, H is locally finite. Then, by Lemma

5.11, G is locally finite which is a contradiction.

Corollary 5.15. Let G be a simple LGBT-group and let H be its point stabilizer.

Then the FC-center of H is trivial.

Proof. Assume that G is a simple LGBT-group. Then the maximal normal sub-

group of G is 1. By above lemma, FC-center of H is trivial.

Corollary 5.16. Let G be a simple barely transitive group and let H be its point

stabilizer. Then either H is finite or FC-center of H is trivial.

Proof. If G is finitely generated, then the result follows from Lemma 5.13. If G

is infinitely generated, then by Lemma 5.9, G is a LGBT-group and the results

follows from Lemma 5.14.

Lemma 5.17. Let G be a non-locally finite LGBT-group which is not simple.

Then G has a maximal normal subgroup M and for all x in G\M , 〈x〉G = G.

Proof. Assume that G is a LGBT-group which is not simple and G has no maxi-

mal normal subgroup. Let Σ be the set of all proper normal subgroups of G and

let N1 � N2 � N3 � . . . be a chain of proper normal subgroups of G. If this chain

stops after finitely many steps, then the last term of the chain is an upper bound

of the chain contained in Σ. Assume that the chain is infinite. Set N =
⋃∞

i=1 Ni.

Then, N is a normal subgroup of G. If G = N , then G is locally finite (see

property 6 at page 8). So, N is an element of Σ. Then, by Zorn‘s lemma, G has

a maximal normal subgroup say M . Take x ∈ G\M . Assume that 〈x〉G be a

proper subgroup of G. Then 〈x〉GM is a normal subgroup of G. By Lemma 5.7,

〈x〉GM is proper. So, 〈x〉 ∈ M which is a contradiction. Hence, 〈x〉G = G.

Proposition 5.18. ([3], Theorem 1.4) Let H be an inert subgroup in a simple

group G and let the locally nilpotent radical F (H) of H be distinct from 1. Then

26



1. H/F (H) is an FC-group;

2. if H is not an FC-group then either F (H) is a torsion-free group or the

periodic radical of F (H) is a p-group for some prime p.

Proposition 5.19. [1] Let G be a non-periodic, simple, LGBT-group with a point

stabilizer H. Then H has no non-trivial periodic normal subgroup and Hirsch-

Plotkin radical of H is trivial.

Lemma 5.20. Let G be a simple LGBT-group and let H be its point stabilizer.

Then the Hirsh-Plotkin radical of H is trivial.

Proof. If G is non-periodic, then it is true by Proposition 5.19. So assume that

G is periodic. Let S be the Hirsh-Plotkin radical of H. Suppose that S is not

trivial. Then, by Proposition 5.18, H/S is an FC-group. As G is periodic, S is a

periodic locally nilpotent group and H/S is a periodic FC-group. Since periodic

locally solvable groups are locally finite (see [15], page 3) and periodic FC-groups

are locally finite (see 14.5.8 in [28]), both S and H/S are locally finite. So, H

is locally finite. Then, by Lemma 5.11, G is locally finite. But there exists no

simple LFBT-group (see page 9).

Lemma 5.21. Let G be a LGBT-group with a maximal normal subgroup M .

Then for any natural number n, the nth term of the derived series of H can not

be contained in M . In particular, H is not solvable.

Proof. Let G be a LGBT-group with a maximal normal subgroup M . By Propo-

sition 2.6, M is locally finite. If H ≤ M , then H is locally finite and therefore,

by Lemma 5.11, G is locally finite. But a LFBT-group can not have a maximal

normal subgroup (see property 6, page 8). Hence, H � M and we are done for

the case H ′ = H. Assume that H ′ < H.

By Lemma 5.10, G/M is a simple LGBT-group with a point stabilizer HM/M .

Therefore, by Lemma 5.20, Hirsch-Plotkin radical of HM/M is trivial. Use in-

duction on n:

(i) If H
′ ≤ M , then HM/M ∼= H/(H ∩M) is abelian. Since Hirsch-Plotkin

radical of HM/M is trivial, HM/M = M/M ⇒ HM = M ⇒ H ≤ M and

this is a contradiction.
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(ii) Assume H(n−1) �M . If H(n) = H(n−1), then we are done. So, suppose that

H(n−1) < H(n). If H(n) ≤ M , then H(n−1)M/M ∼= H(n−1)/(H(n−1) ∩M) is

an abelian normal subgroup of HM/M . So, H(n−1)M/M is contained in

the Hirsch-Plotkin radical of HM/M . As HM/M has trivial Hirsch-Plotkin

radical, H(n−1)M/M = M/M . Then, H(n−1) ≤ M which contradicts with

the assumption.

So, H(n) � M for all n in natural numbers. If H is solvable, then H(n) = 1 ∈ M

for some natural number n. Hence, H is not solvable.

Proposition 5.22. [1] Let G be a non-simple non-periodic barely transitive group

with a point stabilizer H. Let N be a maximal normal subgroup of G. If N is

infinite, then the periodic radical T (H) is contained in N and |N : T (H)| is finite.

Lemma 5.23. Let G be a non-periodic LGBT-group with a point stabilizer H

and an infinite maximal normal subgroup M . Then for any natural number n,

the nth term of the derived series of H is not periodic.

Proof. If H(n) is periodic, then it is contained in the periodic radical T (H) of H.

By Proposition 5.22, we have H(n) is contained in N and Lemma 5.21 gives that

this is not possible.

Lemma 5.24. Let G be a LGBT-group and let H be a point stabilizer of G. If

H is locally nilpotent-by-solvable, then G is locally finite.

Proof. Let G be a LGBT-group and H be a locally nilpotent-by-solvable point

stabilizer of G. Then, G is infinitely generated and H has a locally nilpotent

normal subgroup N such that H/N is solvable.

Suppose that G is not locally finite. Then either G is simple or G has a non-

trivial maximal normal subgroup (see property 6 at page 8). Assume that G is

simple. Then by Lemma 5.20, N = 1 and so H is solvable. Set d be the derived

length of H. Then H(d−1) is a non-trivial abelian normal subgroup of H which is

a contradiction to Lemma 5.20. So, G has a non-trivial maximal normal subgroup

say M . By Lemma 5.10, G/M is a simple LGBT-group and HM/M is a point

stabilizer of G/M . If HM/M = M/M , then H ≤ M . Then, by Proposition 2.6,
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H is locally finite and so, by Lemma 5.11, G is locally finite. Now, assume that

HM/M is a non-trivial subgroup of G/M . Suppose that N �M . Then, NM/M

is a nontrivial normal subgroup of HM/M and NM/M is locally nilpotent as

NM/M ∼= N/(N ∩ M). But this contradicts with Lemma 5.20. So, we may

assume N ≤ M . Then, HM/M ∼= H/(H ∩M) is solvable as N ≤ H ∩M and

H/N is solvable. Put t be the derived length of HM/M . Then (HM/M)(t−1)

is a non-trivial abelian normal subgroup of HM/M which is a contradiction due

Lemma 5.20.

Corollary 5.25. Let G be a LGBT-group and H be its point stabilizer.

(i) If H is locally (nilpotent-by-abelian), then G is locally finite.

(ii) If H is locally supersolvable, then G is locally finite.

Proof. Let G be a LGBT-group and H be its point stabilizer. Then by Lemma

5.8, G is countable.

(i) If H is finitely generated, it is nilpotent-by-abelian. Hence, by Lemma 5.24,

G is locally finite. Assume that H is infinitely generated. As G is countable,

we can write H = {h1, h2, h3 . . .}. Set Hi =< h1, . . . , hi >. Then each Hi

is nilpotent-by-abelian and H =
⋃∞

i=1 Hi. Then, H ′
i is nilpotent. As H ′

i ≤
H ′

i+1 we have H ′ = (
⋃∞

i=1 Hi)
′ =

⋃∞
i=1 H ′

i and so H ′ is locally nilpotent.

Thus, H is locally nilpotent-by-abelian. Hence, by Lemma 5.24, G is locally

finite.

(ii) Assume that H is locally supersolvable. Then H is locally (nilpotent-by-

abelian) (see [28], 5.4.10). Hence, by part (i), G is locally finite.

Definition 5.26. An automorphism Φ of a group G is called a splitting auto-

morphism of order p if Φp = 1 and ggΦgΦ2
. . . gΦp−1

= 1 for all g in G.

Lemma 5.27. Let G be a LGBT-group. If G has a splitting automorphism of

order p where p is a prime number, then G is locally nilpotent. In particular, G

is locally finite.
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Proof. Let Φ be a splitting automorphism of G of order p. Take a finitely gen-

erated subgroup K of G and set K1 = 〈K, KΦ, . . . , KΦp−1〉. Then, K1 is a Φ

invariant finitely generated subgroup of G. As G is an infinitely generated group,

K1 is proper in G and so K1 is residually finite (see property 1 at page 7). Take

any a in K1. Then, there exists Na E K1 such that a /∈ Na and |K1/Na| is finite.

Set Na1 = Na ∩ NΦ
a ∩ . . . ∩ NΦp−1

a . Then, Na1 is a Φ invariant normal subgroup

of K1 of finite index. Hence, K1/Na1 is a finite group which admits a splitting

automorphism of order p. Then K1/Na1 is nilpotent of nilpotency class depends

on the number of generators of K1/Na1 (consequently depends on the number of

generators of K1) and p (see Theorem 2 and Theorem 3 of [13], and 6.4.2 and

7.2.1 of [16]). Set Ψ : K1 ↪→ Cra∈K1K1/Na1 such that Ψ(k) = (kNa1)a∈K1 . Ψ is

a homomorphism and kernel of Ψ is equal to
⋂

a∈K Na1 = 1. Hence K1 can be

embedded in Cra∈K1K1/Na1 which is nilpotent as each factor is nilpotent with

nilpotency class depending on number of generators of K1 and p. As K ≤ K1, K

is nilpotent and so G is locally nilpotent. An infinite locally nilpotent group can

not be simple (see [28], 12.5.2). So, G has a non-trivial proper normal subgroup

say M1. As G is barely transitive, G/M1 is infinite. Hence G/M1 has a non-trivial

proper normal subgroup say M2/M1. Continue like this we have G =
⋃∞

i=1 Mi.

By property 6 (page 8), G is locally finite.
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5.2 Permutable Groups

Definition 5.28. Let H be a subgroup of a group G such that HK = KH for

any subgroup K of G. Then H is called a permutable subgroup of G and denoted

by HperG.

Example 5.29. Let G be a group. Any normal subgroup of G is permutable.

The following two lemma are very well known properties of permutation

groups (see [28], page 395).

Lemma 5.30. Let G be a group. If HperG and KperG, then HKperG.

Proof. Let H and K be permutable subgroups of G and let T be an arbitrary

subgroup of G. We need to say T (HK) = (HK)T . Take an arbitrary element thk

in T (HK). As H and K are permutable subgroups, we have thk = h1t1k = h1k1t2

for some h1 ∈ H, k1 ∈ K and t1, t2 ∈ T . So, T (HK) ≤ (HK)T . Similarly, one

can show T (HK) ≥ (HK)T .

Lemma 5.31. Let G be a group. If HperK ≤ G and α is a homomorphism of

G, then HαperKα.

Proof. Let HperK ≤ G and α is a homomorphism of G. Then for any subgroup

T of K, HT = TH. We need to say for any subgroup Sα of Kα, HαSα = SαHα.

The inverse image of Sα in G is of the form Skerα. Now, as kerα is a normal

subgroup of G and H permutes with S, we have SkerαH = SHkerα = HSkerα.

So, SαHα = (SkerαH)α = (HSkerα)α = HαSα.

Proposition 5.32. ([22], Theorem 7.1.12) A simple group cannot have a proper

non-trivial permutable subgroup.

Proposition 5.33. Let G be LGBT-group with a permutable point stabilizer H.

Then G is locally finite.

Proof. Let G be a LGBT-group. Assume that HG � G. Then H ≤ HG is locally

finite as every proper normal subgroup of G is locally finite (see Proposition 2.6).

So, by Lemma 5.11, G is locally finite.
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Suppose G = HG. As H is permutable, by Lemma 5.31 and Lemma 5.30,

for any finite set of elements {g1, . . . , gk} of G, the set Hg1Hg2 . . . Hgk is a per-

mutable subgroup of G. Recall that LGBT-group can not be generated by finitely

many proper subgroups (see Lemma 5.7). So, Hg1Hg2 . . . Hgk is always a proper

subgroup of G. Put K0 = H, then as K0 � G = HG there exists g1 ∈ G

such that Hg1 � K0. Now, set K1 = K0H
g1 . Then K1 is a proper permutable

subgroup of G. As HG = G and K1 is proper, there exists g2 ∈ G such that

Hg2 � K1. Similarly set K2 = K1H
g2 which is a proper permutable subgroup of

G. Continuing the process we obtain K1 � K2 � K3 � . . . an infinite chain of

proper permutable subgroups of G such that
⋃∞

i=1 Ki = G. By Proposition 5.32,

G can not be simple, and so there exists a non-trivial proper normal subgroup

N1 of G. Since
⋃∞

i=1 Ki = G 	 N1, there exists a natural number i1 such that

Ki1 � N1. By Lemma 5.31, Ki1N1/N1 is a non-trivial permutable subgroup of

G/N1. So, G/N1 has a non-trivial proper normal subgroup say N2/N1. Similar

to above, as N2/N1 is a proper subgroup, there exists a natural number i2 such

that Ki2 � N2 and Ki2N2/N2 is a non-trivial permutable subgroup of G/N2.

Continuing like this, we form a non-trivial strictly increasing sequence of normal

subgroups N1 � N2 � . . . . If we set N =
⋃∞

j=1 Nj, then N E G and G/N has

no proper permutable subgroup. Assume that N is a proper subgroup. Then,

there exists Kj such that Kj 
 N which implies that KjN/N is a non-trivial per-

mutable proper subgroup of G/N and this is a contradiction. Hence G =
⋃∞

j=1 Nj

is locally finite (see property 6, page 8).

5.3 The Main Theorem

There is a strong connection between the structural property of barely tran-

sitive groups and those of its point stabilizers. We have presented various prop-

erties by conditioning points stabilizers. In this section, we give the main result

obtained by a structure of point stabilizers.

First, we give a well-known lemma which will be used in the following theorem.

For the convenience of the reader we give the proof.

Lemma 5.34. Every abelian-by-finite FC-group is a central-by-finite group.
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Proof. Let G be an abelian-by-finite FC-group. Then there exists an abelian

subgroup A of G such that |G : A| < ∞. Let S be the set of left conjugates of A

in G. Then S = {x1A, . . . , xnA} for some n ∈ N and xi ∈ G , i ∈ {1, 2, . . . , n}.
Since G is an FC-group, |G : CG(xi)| < ∞ for all i. Set T =

⋂n
i=1 CG(xi).

Then |G : T | < ∞ and hence |G : A ∩ T | < ∞. Therefore, it is enough to

show that A ∩ T is central. Take z ∈ A ∩ T and g ∈ G. Since G =
⋃n

i=1 xiA,

g = xia for some a ∈ A and i ∈ {1, . . . , n}. Note that z ∈ T =
⋂n

i=1 CG(xi)

and also z, a ∈ A. Therefore, z commutes with both xi and a. Hence, we have

zg = zxia = xiza = xiaz = gz as required.

Theorem 5.35. Let G be a barely transitive group with abelian point stabilizer.

Then G is isomorphic to one of the followings:

i) G is a metabelian locally finite p-group,

ii) G is a finitely generated quasi-finite group (in particular H is finite),

iii) G is a finitely generated group with a maximal normal subgroup M where M

is a locally finite metabelian group. In particular, G is periodic and G/M

is a quasi-finite simple group.

Proof. Let G be a barely transitive group with an abelian point stabilizer H.

First assume that G is infinitely generated. Then by Lemma 5.9 and by Lemma

5.24, G is locally finite. So, by Proposition 1 of [11], G is a metabelian locally

finite p-group.

Now, assume that G is finitely generated. Set M = {x ∈ G||H : CH(x)| < ∞}.
Take any x and y in M . As |H : CH(x)| and |H : CH(y)| are finite,

|H : CH(xy)| ≤ |H : CH(x) ∩ CH(y)| is finite too and so, xy ∈ M . Also,

CH(x) = CH(x−1). Hence, M is a subgroup of G. For any g ∈ G and x ∈ M , we

have |H : CH(x)| < ∞ and |H : H ∩Hg| < ∞. Therefore, |Hg : CHg(xg)| < ∞
and also |H : CH(xg)| ≤ |H : CH∩Hg(xg)| = |H : H ∩ CHg(xg)| = |H :

H ∩ Hg||H ∩ Hg : H ∩ CHg(xg)| < ∞. Hence, M is a normal subgroup of G

containing H.
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Assume G = M and let g1, . . . , gn be elements of G such that G = 〈g1, . . . , gn〉.
Then |H| = |H : H ∩ Z(G)| = |H : H ∩⋂n

i=1 CG(gi)| = |H :
⋂n

i=1 CH(gi)| < ∞.

Let K be any proper subgroup of G. Then |K| = |K : K ∩H||K ∩H| is finite.

So, G is quasi-finite.

Suppose that M is a proper subgroup of G. Recall that a barely transitive

group is a union of its proper normal subgroups if and only if it is locally finite

(see property 6 page 8). Hence, as G is a finitely generated barely transitive

group, G has a maximal normal subgroup N containing M . Then, G/N is simple

and, as every proper normal subgroup of G is locally finite (see Proposition 2.6),

H ≤ M ≤ N is locally finite. For any element g of G, |〈g〉 : 〈g〉 ∩H| is finite and

H is periodic implies that G is periodic.

As H ≤ N and as H has finite index in any proper subgroup of G, any sub-

group K/N ≤ G/N is finite. So, G/N is quasi-finite. Since H is an abelian

subgroup of N , for any h in H we have |N : CN(h)| ≤ |N : H| < ∞ . Hence,

H ≤ FC(N) and |N : FC(N)| ≤ |N : H| < ∞. Since |FC(N) : H| < ∞
and H is an abelian group, FC(N) is an abelian-by-finite FC-group. So, by

Lemma 5.34, it is central-by-finite. As Z(FC(N)) char FC(N) char N E G,

we have Z(FC(N)) E G. Since N/FC(N) and FC(N)/Z(FC(N)) are finite,

N/Z(FC(N)) is a finite normal subgroup of G/N . Therefore, G/Z(FC(N))

acts on N/Z(FC(N)) by conjugation with kernel CG/Z(FC(N))(N/Z(FC(N))).

Hence, [G/Z(FC(N))]/[CG/Z(FC(N))(N/Z(FC(N)))] can be embedded to

Aut(N/Z(FC(N))) which is finite. But G can not have proper subgroup of

finite index. Hence, N/Z(FC(N)) is in the center of G/Z(FC(G)) and so,

[G,N ] ≤ Z(FC(N)). In particular, N ′ is abelian. Hence, N ′′ = 1.

————————————————————————
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[18] M. Kuzucuoğlu, Barely transitive permutation groups, Ph.D. thesis, Univer-

sity of Manchester, 1987.
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