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ABSTRACT 

 

 

CASCADE MODELING OF NONLINEAR SYSTEMS 

 

 

 

Şenalp, Erdem Türker 

PhD., Department of Electrical and Electronics Engineering 

        Supervisor     : Prof. Dr. Ersin Tulunay 

 

August 2007, 188 pages 

 

 

Modeling of nonlinear systems based on special Hammerstein forms has been 

considered. In Hammerstein system modeling a static nonlinearity is connected 

to a dynamic linearity in cascade form.  

 

Fundamental contributions of this work are: 1) Introduction of Bezier curve 

nonlinearity representations; 2) Introduction of B-Spline curve nonlinearity 

representations instead of polynomials in cascade modeling. As a result, local 

control in nonlinear system modeling is achieved. Thus, unexpected variations 

of the output can be modeled more closely. 

 

As an important demonstration case, a model is developed and named as 

Middle East Technical University Neural Networks and Cascade Model 

(METU-NN-C). 



 

 v

Application examples are chosen by considering the Near-Earth space 

processes, which are important for navigation, telecommunication and many 

other technical applications. It is demonstrated that the models developed 

based on the contributions of this work are especially more accurate under 

disturbed conditions, which are quantified by considering Space Weather 

parameters. 

 

Examples include forecasting of Total Electron Content (TEC), and mapping; 

estimation of joint angle of simple forced pendulum; estimation of joint angles 

of spring loaded inverted double pendulum with forced table; identification of 

Van der Pol oscillator; and identification of speakers. 

 

The operation performance results of the International Reference Ionosphere 

(IRI-2001), METU Neural Networks (METU-NN) and METU-NN-C models 

are compared qualitatively and quantitatively. As a numerical example, in 

forecasting the TEC by using the METU-NN-C having Bezier curves in 

nonlinearity representation, the average absolute error is 1.11 TECu. 

 

The new cascade models are shown to be promising for system designers and 

operators. 

 

 

Keywords: Cascade modeling, Hammerstein system modeling, Neural 

Networks, Near-Earth space processes, telecommunication. 
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ÖZ 

 

 

DOĞRUSAL OLMAYAN DİZGELERİN ARDIŞIK MODELLENMESİ 

 

 

 

Şenalp, Erdem Türker 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi       : Prof. Dr. Ersin Tulunay 

 

Ağustos 2007, 188 sayfa 

 

 

Doğrusal olmayan dizgelerin özel Hammerstein biçimlerine dayanan 

modellenmesi dikkate alınmıştır. Hammerstein dizge modellemesinde bir dural 

doğrusalsızlık bir devingen doğrusallığa ardışık şekilde bağlanır. 

 

Bu çalışmanın temel katkıları: 1) Ardışık modellemede polinomlar yerine 

Bezier eğri doğrusalsızlık gösterimlerinin tanıtımı; 2) B-Spline eğri 

doğrusalsızlık gösterimlerinin tanıtımıdır. Sonuç olarak, doğrusal olmayan 

dizge modellemesinde yerel denetim elde edilir. Böylece, çıktıdaki 

beklenmeyen değişmeler daha yakın olarak modellenebilir.  

 

Önemli bir gösterme durumu olarak bir model geliştirilir ve Orta Doğu Teknik 

Üniversitesi Sinirsel Ağlar ve Ardışık Modeli (METU-NN-C) olarak 

adlandırılır. 



 

 vii

Uygulama örnekleri sefer, iletişim ve diğer birçok teknik uygulamalar için 

önemli olan Yer’e yakın uzay süreçleri dikkate alınarak seçilir. Bu çalışmanın 

katkılarına dayanarak geliştirilen modellerin Uzay Havası değiştirgenleri 

dikkate alınarak nicelenen bozuculu koşullar altında özellikle daha doğru 

olduğu gösterilir. 

 

Örnekler Toplam Elektron Miktarı (TEC) öngörümünü ve haritalamasını; basit 

kuvvet etkili sarkacın eklem açısının kestirimini; üzerine kuvvet uygulanan 

masa üzerinde yaylı ters çift sarkacın eklem açılarının kestirimini; Van der Pol 

salınım yapıcısının tanınmasını ve konuşmacıların tanınmasını içerir.  

 

Uluslararası Referans İyonosfer (IRI-2001), ODTÜ Sinirsel Ağlar (METU-

NN) ve METU-NN-C modellerinin uygulama başarım sonuçları niteliksel ve 

niceliksel karşılaştırılır. Sayısal bir örnek olarak, doğrusalsızlığı göstermede 

Bezier eğrilerine sahip METU-NN-C kullanılarak TEC öngörülerinde 

bulunmada ortalama mutlak yanılgı 1.11 TECu’dur. 

 

Yeni ardışık modellerin dizge tasarımcıları ve uygulayıcıları için umut verici 

olduğu gösterilir. 

 

 

Anahtar Sözcükler: Ardışık modelleme, Hammerstein dizge modellemesi, 

Sinirsel Ağlar, Yer’e yakın uzay süreçleri, haberleşme. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Objective 

The forecasting of the Earth and near-Earth space processes by using the 

structural methodologies of the Neural Networks techniques have been 

developed and implemented since 1990’s in Middle East Technical University 

(METU), Ankara [Tulunay E., 1991] [Altinay, 1996] [Altinay et al., 1997] 

[Kumluca, 1997] [Ozkaptan, 1999] [Senalp, 2001] [Tulunay Y. et al., 2001a] 

[Tulunay Y. et al., 2001b] [Senalp et al., 2002b] [Senalp et al., 2002c] 

[Tulunay E. et al., 2002b] [Tulunay Y. et al., 2002a] [Tulunay Y. et al., 2002b] 

[Tulunay E. et al., 2003] [Tulunay Y. et al., 2003a] [Tulunay Y. et al., 2003b] 

[Senalp et al., 2004] [Tulunay E. et al., 2004a] [Tulunay E. et al., 2004b] 

[Tulunay E. et al., 2004c] [Tulunay Y. et al., 2004a] [Tulunay Y. et al., 2004b] 

[Tulunay Y. et al., 2004c] [Tulunay Y. et al., 2004d] [Tulunay Y. et al., 2005a] 

[Tulunay Y. et al., 2005b] [Altuntas et al., 2006] [Tulunay E. et al., 2006a] 

[Tulunay E. et al., 2006b] [Tulunay E. et al., 2006f] [Altuntas et al., 2007] 

[Tulunay Y. et al., 2007a] [Tulunay Y. et al., 2007b] [Tulunay Y. et al., 2007c]. 

Experimental and measurement works on Near-Earth space processes were 

performed as well [Ertac et al., 1979] [Tulunay E. et al., 2002a] [Tulunay E. et 

al., 2006c] [Tulunay E. et al., 2006d] [Tulunay E. et al., 2006e]. The works 

have also been presented in European Union (EU), European Cooperation in 

the field of Scientific and Technical Research (COST) Actions: COST 238, 
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COST 251, COST 271, COST 296 and COST 724 [COST 238, 1999] [COST 

251, 1999] [COST 271, 2004] [COST 296, 2007] [COST 724, 2007]. 

 

With such a background, in this current work, some design techniques of 

parametric identification by cascade modeling of the nonlinear processes are 

developed. The models designed and their performances in case studies are 

presented in national and international scientific conferences, meetings and 

international scientific journals [Senalp et al., 2005] [Senalp et al., 2006a] 

[Senalp et al., 2006b] [Senalp et al., 2006c] [Senalp et al., 2006d] [Senalp et 

al., 2006e] [Tulunay et al., 2006a] [Senalp et al., 2007b] [Senalp et al., 2007d]. 

EU COST 296 and EU COST 724 Actions provided scientific international 

platform in presenting the case studies [COST 296, 2007] [COST 724, 2007]. 

 

Modeling dynamic linear systems is relatively well developed [Ikonen and 

Najim, 1999]. Linear modeling techniques approximate only the behavior of 

the system around a fixed operating point. However, in reality, most of the 

dynamical systems are nonlinear. Nonlinear system modeling is more 

complicated due to the lack of general mathematical tools and also lack of 

information on properties of those systems. However, most of the dynamical 

systems can be represented by nonlinear modeling techniques. Nonlinear 

modeling is capable of describing the global system behavior for the overall 

operating range [Ikonen and Najim, 1999]. 

 

As the real processes present nonlinear characteristics, it is inevitable to have 

some degree of approximation in linear modeling. This approach can be 

satisfactory for few real applications [Ikonen and Najim, 1999]. Applying 

nonlinear model identification is inevitable for most of the real complex 

nonlinear processes including the near-Earth space processes. 
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In modeling of complex nonlinear processes, cascade modeling provides better 

understanding of the monitoring of the system of interest. For example, the 

system can be an industrial plant and in this case cascade modeling can be 

employed in plant optimization. Interaction of the user with the model and 

transparency are to be taken into account for real world modeling of complex 

processes [Ikonen and Najim, 1999]. In such cases there are some other 

methods. For example, techniques based on Artificial Intelligence (AI) are 

popular. In most of those techniques, black box modeling of the overall process 

is the characteristics of the method, whereas in the cascade models the static 

and dynamic components of the process are considered individually. Thus, 

cascade modeling provides transparency to the internal variables [Ikonen and 

Najim, 1999]. 

 

For many nonlinear dynamic processes it is required to express nonlinearities 

in the gain of the processes and provide dynamics in a linear block [Narendra 

and Gallman, 1966]. This can be achieved by cascade modeling. For many 

nonlinear dynamic processes, cascade models based on Hammerstein system 

modeling provide sufficient approximation [Ikonen and Najim, 1999]. In 

Hammerstein system modeling, a nonlinear static block is cascaded to a linear 

dynamic block as shown in Figure 1.1 [Narendra and Gallman, 1966]. 

 

 

 

 

 

 

Figure 1.1. Cascade modeling based on Hammerstein system modeling 
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In Wiener systems, the order of the blocks is reversed, i.e. for Wiener systems 

the nonlinear static part follows the linear dynamic part [Zhu, 2002]. 

 

These types of dynamic nonlinear process modeling provide some important 

features. Since the process identification task is simplified by modeling the 

dynamic part in the linear block, data collection, computation of parameters 

and dynamic system analysis are simplified [Ikonen and Najim, 1999]. Also, to 

present nonlinearity in only the static gain decreases the degrees of freedom in 

the nonlinear system identification and the cascade models based on 

Hammerstein system modeling have got accurate and robust approximations 

for a large class of real complex processes [Ikonen and Najim, 1999]. 

 

The objective of this work is to develop some special forms of nonlinearities 

for cascade models based on Hammerstein system modeling and then to 

calculate the parameters of the static nonlinear block and dynamic linear block 

in cascade modeling by using some intelligent techniques so that high accuracy 

and high sensitivity in process identification is to be attained.  

 

Near-Earth space processes such as Total Electron Content (TEC) variations 

are complex and nonlinear real processes to identify for various navigation and 

telecommunication applications. TEC is the number of electrons in a column of 

one meter-squared cross-section along a path through the ionosphere 

[Chilbolton Weather Web, 2004]. The unit of TEC is TECu (1 TECu = 1016 el / 

m2 ). In the case studies, real processes are used to test the performance of the 

models developed herewith. For example, TEC values and TEC maps are 

forecast by using the models developed.  
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The International Reference Ionosphere (IRI) is an international project 

sponsored by the Committee on Space Research (COSPAR) and the 

International Union of Radio Science (URSI) [Bilitza, 2001] [IRI, 2007]. The 

aim of this project is to develop and improve the international IRI standards for 

the specification of ionospheric densities and temperatures [Bilitza, 2001]. In 

one of the case studies within the Thesis, the TEC forecasting results of the 

models developed herewith are compared with the TEC outputs of the IRI-

2001 Model during the Space Weather events of April 2002. 

 

In order to further show the generalization capability of the modelling 

technique, cascade models are also developed herewith for other nonlinear 

dynamic processes including simple forced pendulum, spring loaded inverted 

double pendulum with forced table, Van der Pol oscillator, and identification of 

speakers. 

 

Some advantages of the cascade modeling techniques employed in this work 

can be summarized as follows: 

i. The static nonlinearity in cascade modeling can also present 

hysteresis or discontinuities [Alonge et al., 2003]. There is no 

restriction in the cascade models developed herewith. 

ii. In practice, the process identification tasks are problems of 

parameter estimation under constraints [Ikonen and Najim, 1999]. A 

cascade modeling technique, which has got intelligent optimization 

algorithms for the appropriate cost functions and constraints of 

complex nonlinear processes, is geared to be successful. 

iii. Instead of having to deal with a single black box unit, cascade 

modeling technique based on Hammerstein system modeling has 

got the advantage of separability into a nonlinear static block and a 
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linear dynamic block in design of control systems [Ikonen and 

Najim, 1999]. 

iv. In contrast to the black box modeling of the nonlinear dynamic 

systems, cascade models based on Hammerstein system modeling 

have operational advantage of transparency of the internal stage 

parameters for operators [Ikonen and Najim, 1999]. 

v. Some of the iterative optimization methods were constructed based 

on the values of the cross-correlation coefficients. However, it is 

difficult to have convergence in such methods [Westwick and 

Kearney, 2000]. Cascade modeling with gradient-based parametric 

optimization methods, as employed in this work, has got advantages 

over the cross-correlation based ones. They serve both for 

sensitivity and accuracy of optimization. 

 

The main disadvantage of Hammerstein system modeling is that the 

mathematical model obtained is still an approximation, as in all nonlinear 

system identification approaches, and in some cases strictly accurate steady 

state models can be difficult to obtain [Ikonen and Najim, 1999]. However, in 

general, this is of minor importance when the advantages are considered. 

 

1.2 Review of Previous Applications 

In modeling the nonlinear part of the Hammerstein systems, polynomials, 

sigmoid neural networks, fuzzy models and semi-physical models have been 

used [Duwaish et al., 1997]. 

 

Finite Impulse Response (FIR) and Auto-Regressive with eXogenous input 

(ARX) type of models have been considered for the linear dynamic part in 

most of the previous studies [Ikonen and Najim, 1999]. In many cases, simple 
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linear dynamics are sufficient for control design or fault diagnosis purposes 

and they provide simple and powerful techniques [Ikonen and Najim, 1999]. 

However, it is anticipated that modeling the nonlinear block is complicated. 

Most of the Hammerstein system models reported in literature have got a no-

memory nonlinear gain of a polynomial form followed by a linear dynamic 

system [Narendra and Gallman, 1966] [Fruzzetti et al., 1997] [Marchi et al., 

1999] [Bai and Fu, 2002] [Westwick and Kearney, 2000]. If the input is u(t) for 

the nonlinear block of these models, the output of the nonlinear element is then 

given by a series of (m+1) terms as given as, 

[ ] )(....)(.)(.)(.)()( 2
2

1
10

0

tututututuftx m
m

i
m

i
i γγγγγ ++++=== ∑

=
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where γi are coefficients to be determined. 

 

Thus, for this case, the internal variable x(t) is represented as a power series of 

the input variable u(t) as given in Equation 1.1. This representation is a special 

case of a general form, which is given as, 
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The dynamical behavior of the system is represented by a linear dynamic 

element as given as, 

∑
=

−=
n

j

jkxjhky
0

)().()( ,  where ( ))()( kufkx =   (1.3) 

 

The number n in Equation 1.3 represents the past history of the stored internal 

variables in memory. For the linear dynamic block, the impulse response h(j), 

j=0,…,n, and for the polynomial representation of the nonlinear static block, 

the parameters γi , i=1,…,m, should be determined. 
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For many industrial processes, the input/output models prove to be crucial in 

process control applications [Fruzzetti et al., 1997]. Structured nonlinear 

models can deal with stability, robustness and algorithmic efficiency problems. 

Cascade modeling techniques, i.e. Wiener and Hammerstein system models, 

have special architecture, which facilitates the nonlinear process analysis. They 

also have potential for control design [Fruzzetti et al., 1997]. 

 

Most of the nonlinear industrial and chemical processes, i.e. distillation 

columns, reactors, furnaces, heat exchangers, pH neutralization, and 

electromechanical systems can be modeled by a static nonlinearity cascaded to 

a dynamic linearity [Fruzzetti et al., 1997] [Kapoor et al., 1986] [Eskinat et al., 

1991]. 

 

Cascade modeling on signal processing and communications was reported long 

time ago [Stapleton and Bass, 1985]. 

 

Biology is another science of real life. It possesses many nonlinear processes. 

Modeling the stretch reflex EMG using Hammerstein system modeling is also 

applicable in this area [Westwick and Kearney, 2000]. In identification of 

muscular response Hammerstein system model was used to find a suitable 

approach for Functional Electric Stimulation [Schultheiss and Re, 1998]. The 

nature of the process is strongly nonlinear, time varying and has many 

parameters. The combination of nonlinearities and time varying parameters 

makes the use of standard and / or adaptive methods extremely dangerous, 

because it is rarely possible to have convergence under poor excitation that is 

allowable within the tests with patients [Schultheiss and Re, 1998]. 
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Most of the previous Hammerstein system models have employed power series 

representation in the nonlinear block [Narendra and Gallman, 1966] [Fruzzetti 

et al., 1997] [Marchi et al., 1999] [Bai and Fu, 2002] [Westwick and Kearney, 

2000]. Very few of them mentioned about the applicability of cubic splines in 

representing the nonlinearities, e.g. [Dempsey and Westwick, 2004] [Guarnieri 

et al., 1999] [Zhu, 2002]. 

 

Generally, cubic splines are well suited for representing sharp and smooth 

curves [Rogers and Adams, 1990]. But the order is limited and it is three. Thus, 

it has got both advantages and disadvantages compared to polynomial 

representations. In polynomial representations, curves with sharp turnings are 

difficult to be modeled. However, higher order polynomials are applicable. 

 

On the other hand, the Voltera series employed in modeling the nonlinearity 

limits cascade modeling to relatively low order systems, i.e. second order 

nonlinearities [Westwick and Kearney, 2000]. 

 

Near-Earth space processes are important for navigation, telecommunication 

and many other technical application system planners, developers and 

operators. The forecasting of the Earth and near-Earth space processes by using 

Neural Network models have been taking place since 1990’s in METU. 

[Tulunay E., 1991] [Altinay, 1996] [Altinay et al., 1997] [Kumluca, 1997] 

[Ozkaptan, 1999] [Senalp, 2001] [Tulunay Y. et al., 2001a] [Tulunay Y. et al., 

2001b] [Senalp et al., 2002b] [Senalp et al., 2002c] [Tulunay E. et al., 2002b] 

[Tulunay Y. et al., 2002a] [Tulunay Y. et al., 2002b] [Tulunay E. et al., 2003] 

[Tulunay Y. et al., 2003a] [Tulunay Y. et al., 2003b] [Senalp et al., 2004] 

[Tulunay E. et al., 2004a] [Tulunay E. et al., 2004b] [Tulunay E. et al., 2004c] 

[Tulunay Y. et al., 2004a] [Tulunay Y. et al., 2004b] [Tulunay Y. et al., 2004c] 
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[Tulunay Y. et al., 2004d] [Tulunay Y. et al., 2005a] [Tulunay Y. et al., 2005b] 

[Altuntas et al., 2006] [Tulunay E. et al., 2006a] [Tulunay E. et al., 2006b] 

[Tulunay E. et al., 2006f] [Altuntas et al., 2007] [Tulunay Y. et al., 2007a] 

[Tulunay Y. et al., 2007b] [Tulunay Y. et al., 2007c].  

 

In order to increase the performance of the Neural Network models, new 

techniques in Cascade Models based on Hammerstein system modeling have 

been achieved herewith. These have also enabled the author to check the 

performance of the Hammerstein system modeling which is an interesting 

approach. 

 

1.3 Models 

Referring to the cascade modeling based on Hammerstein system modeling of 

the static nonlinearity and the dynamic linearity as illustrated in Figure 1.1, 

first of all, the internal variables, x(k), which are the outputs of the static 

nonlinear block and the inputs of the dynamic linear block, are obtained by an 

estimator. Then, using the information of the inputs, u(k), and the internal 

variables, x(k), the static nonlinearity is estimated. And then, using the internal 

variables at present time and history of the internal variables, x(k),…,x(k-n), as 

inputs to the dynamic linear block and using the outputs, y(k), the dynamic 

linearity is estimated. It is to be noted that the memory takes place at the 

second block, which is in the linear dynamic block only. 

 

Let a general continuous dynamic linear block be represented by a state-space 

equation as, 

)(.)(.)( txbtqAtq +=
•

 (1.4) 
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)(.)( tqcty =  (1.5) 

where q(t) is the state vector of size qs; x(t) is a single input; y(t) is a single 

output; A is a square matrix of size qs by qs; b and cT are vectors of size qs. 

The general equivalent discrete time equation with a given sampling time, T, is 

depicted as, 

[ ] [ ] [ ]kTxLkTqKTkq ..)1( +=+  (1.6) 

[ ] [ ]kTqckTy .=  (1.7) 

 

A general discrete transfer function, G(z), from x(k) to y(k) can be expressed 

as, 
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)().()( zXzGzY =  (1.9) 

 

It is to be noted that different processes with the same inputs could produce 

similar outputs at the sampling instants, kT, in discrete time system 

identification. To avoid such a problem, fast sampling at the output can be 

performed and blind identification with the output measurements can be done 

[Bai and Fu, 2002]. 

 

When the internal variables are obtained by an estimator with the given inputs 

and output of the overall system, the static nonlinearity and the dynamic 

linearity can be obtained. Also the inverse transfer function of the general 
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dynamic linearity block can be obtained as follows from the point of system 

analysis [Bai and Fu, 2002], 

)().()( 1 zYzGzX −=  (1.10) 
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1

1

1
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(1.11) 

 

In order to identify the results of the cascade form in static and steady state 

models, the static nonlinear block is used. The linear dynamic block behaves as 

a filter. A steady state model can be achieved from the overall dynamical 

considerations of the system. In practice, a far better understanding and 

experience of the steady state performance do exist as in all nonlinear system 

identification approaches. This is evident if we consider the validation and 

initialization of nonlinear dynamic systems [Ikonen and Najim, 1999]. The 

important goal, however, is to satisfy the requirement of determining the model 

coefficients and the order of the model without a priori information on the 

process. Also for Multi Input Single Output (MISO) or Multi Input Multi 

Output (MIMO) systems it should be noted that the inputs are commonly 

parameterized. Each output may be a function of all the inputs and the past 

values of the internal variables [Fruzzetti et al., 1997]. This general form 

requires smart and complex techniques in determination of the input 

parameters. The order of the model can be determined by some expert systems 

or trial and error methods with the advantage of high-speed computer 

capabilities. 
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Even though the time required in optimizations for process identification with 

cascade modeling seems long from the practical point of view, it can be 

shortened by employing some parallel architectures inside the blocks. 

 

Ad hoc experiments need to be performed for system identification [Alonge et 

al., 2003]. The experimental input/output data should represent the overall 

process in such cases. If this is not possible, more than one model can be 

developed for different operating regions of the process. 

 

For optimization of the parameters of the cascade models some cost functions 

and constraints are used in optimization algorithms. It is to be noted that some 

approximation errors occurred can prevent convergence of the parameters. In 

such cases, the problems arisen can be controlled by using random 

initialization and smart optimization technique. For example, the Levenberg-

Marquardt optimization algorithm for optimizing the mean square error of the 

cost function of the parameters in the cascaded blocks is one such method. 

 

In an Artificial Intelligent optimization algorithm such as the Backpropagation 

Algorithm, it may be possible to converge to several local optima instead of 

global optimum. Backpropagation Algorithm has two major drawbacks. It may 

lead suboptimal approximations because of the probable existing local 

optimums as mentioned. In addition to this, the convergence of the 

Backpropagation Algorithm is slow and it is inadequate for online operations. 

The drawbacks can be removed by using Levenberg-Marquardt optimization 

method and by introducing validation stops [Senalp, 2001] [Tulunay Y. et al., 

2001a] [Tulunay Y. et al., 2004a] [Tulunay Y. et al., 2004b] [Tulunay Y. et al., 

2005a]. It is possible to use this optimization method in near real time 

applications by the support of the high-speed computers of today, provided that 
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an efficient implementation of the algorithm and representative determination 

of the inputs to the nonlinear block of the possible cascade model are available. 

 

Cascade modeling based on Hammerstein system modeling is used for the 

forecast of the ionospheric-plasmaspheric processes in the selected case studies 

of this work. As a case study, the most common nonlinearity representation in 

Hammerstein system model literature, the polynomial representation, is 

employed in cascade modeling. 

 

In this work, two new techniques are presented for building the nonlinear block 

of the cascade modeling. In the first new technique the static nonlinearity is 

modeled by using Bezier curves in the input representations. In the second new 

technique, B-Spline curves in the input representations are used to model the 

nonlinearity. 

 

Both of these techniques have local control in contrast to the previous works. 

Neither polynomials nor cubic splines have local control. However for Bezier 

curves and B-Spline curves the more defining polygon vertices you introduce, 

the more local control you obtain.  

 

In addition to this, B-Splines have more elasticity. Multiple points may be put 

for the common vertices of the defining polygons in B-Splines. 

 

Those advantages of Bezier curves and B-Splines are introduced into the 

nonlinear static block of the cascade modeling with the intelligent parameter 

optimization methods. 
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The background and the theory of the models developed are given herewith in 

Chapter 1. 

 

Forecasting the TEC values and maps are vital near-Earth space processes for 

various navigation and telecommunication applications via ionosphere. In 

Chapters 2 to 7, the case studies on forecasting TEC values and TEC maps by 

using the models developed herewith are given.  

 

Models are also developed for other nonlinear dynamic processes including 

simple forced pendulum, spring loaded inverted double pendulum with forced 

table, Van der Pol oscillator, and identification of speakers. Those case studies 

are given in Chapter 8. 

 

In the performance results of the case studies, Absolute Errors (AE), 

Normalized Errors (NE), Root Mean Square Errors (RMSE), and Cross 

Correlation Coefficients (rfo) of the observed and forecast values of process 

parameters of interest are calculated by using the well-known definitions as, 
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where i is the forecast time order, fi is the forecast value at time i, oi is the 

observed value at time i, N is the total number of forecast or observed instants, 

and C is the covariance function. 

 

A general conclusion and some comments on the thesis are given in Chapter 9. 

 

1.3.1 Middle East Technical University Neural Networks and Cascade 

Models (METU-NN-C) 

Middle East Technical University Neural Networks and Cascade Models 

(METU-NN-C) are developed herewith. First of all, the METU-NN model is 

used to estimate the internal variables of the METU-C models. Then, the block 

parameters of the METU-C models are obtained [Senalp et al., 2005] [Senalp 

et al., 2006b] [Senalp et al., 2006c] [Senalp et al., 2006d] [Senalp et al., 2006e] 

[Senalp, 2007a] [Senalp et al., 2007b] [Senalp et al., 2007d]. Figure 1.2 

illustrates the development modes of the METU-NN-C model blocks, which 

will be discussed in this and in the next sections, i.e. Sections 1.3.1 to 1.3.4. 

Later, in the operation mode, the METU-C models are ready to be used in 

operation.  
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Figure 1.2. Development of the METU-NN-C Models 

 

 

 

In the METU-NN model, Feedforward Neural Network architecture with 

neurons in one hidden layer is used. The basic architecture of the METU-NN 

model is demonstrated in Figure 1.3. 
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Figure 1.3. Architecture of the Neural Network Model 

 

 
 
 

The activation functions in the hidden layer are hyperbolic tangent sigmoid 

functions and the activation function in the output layer is a linear function, so 

that the hidden layer outputs, x(k), can represent the static part of the state-like 

internal variables in cascade modeling. Hyperbolic tangent sigmoid functions, 

‘Tansig’, and linear transfer functions, ‘Purelin’, are as follows, 

1
1

2
)(

.2
−

+
=

− ne
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nanPurelin .)( =  (1.17) 

 

Levenberg-Marquardt Backpropagation algorithm is used during training 

[Hagan and Menhaj, 1994] [Haykin, 1999]. Levenberg-Marquardt algorithm is 

an approximation to Newton’s method [Hagan and Menhaj, 1994] [Haykin, 
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1999]. Instead of the basic backpropagation algorithm the Levenberg-

Marquardt Backpropagation algorithm using the approximation to Newton’s 

method is faster in terms of computation time and more accurate near an error 

minimum. The Newton’s method modification to the steepest descent 

algorithm, and random initialisations of the model parameters provide the 

model parameters to reach near global optimum values in the training.  

 

The METU-NN is used to estimate the internal variables. The outputs of the 

hidden layer in METU-NN are the internal variables for the METU-C. 

 

1.3.2 Representing Nonlinearity by Polynomials 

Representing the nonlinearity by polynomials is the most common nonlinearity 

representation in Hammerstein system modeling [Narendra and Gallman, 

1966] [Fruzzetti et al., 1997] [Marchi et al., 1999] [Bai and Fu, 2002] 

[Westwick and Kearney, 2000]. Figure 1.1 illustrates the architecture of the 

special Hammerstein form, the Middle East Technical University Cascade 

Model (METU-C). 

 

The polynomial representations of the inputs are considered to model the static 

nonlinearity [Senalp et al., 2005] [Senalp et al., 2006c]. Let the inputs be 

denoted as up(k), then the outputs of the nonlinear element, i.e. the internal 

variables xq(k), may be expressed as, 
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where R is the number of inputs, m+1 is the length of the series, and γpi are 

coefficients to be determined. 
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The output y(k) is represented by using a dynamic linearity which is obtained 

by optimizing a linear relationship for the internal variables xq(k) and their past 

values xq(k-j), as, 

∑∑
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where S is the number of the static internal variables and n is the number 

representing the history of the stored internal variables in memory. Thus, the 

product S(n+1) gives the number of dynamic internal variables. The 

coefficients of the linearity in Equation 1.19, i.e. hq(j), are also determined in 

the development mode. 

 

1.3.3 Representing Nonlinearity by Bezier Curves 

Cubic splines, Bezier curves, and B-splines are space curves used in computer 

graphics applications, i.e. skin of vehicles, platforms, fuselage of aircrafts, 

wings, hull of ships, engine manifolds, mechanical and structural parts etc 

[Rogers and Adams, 1990]. In cubic spline technique the curves pass through 

the existing data points. Practical usage of cubic spline curves suffers the 

necessity of specifying precise, non-intuitive mathematical information such as 

position, tangent and twist vectors [Rogers and Adams, 1990]. These 

difficulties are overcome by using Bezier curves. In contrast to the cubic spline 

representation of nonlinearities, Bezier curves satisfy functional requirements. 

The mathematical basis of this alternate method of shape description for design 

of free form curves and surfaces was derived from geometrical considerations 

by Pierre Bézier [Rogers and Adams, 1990] [Bézier, P.E., 1972]. Bézier also 

named them as Unisurf curves. 

  

Bezier curves are determined by defining polygons. Defining polygon points 

may also be called local control points. In practice, it is possible to have more 
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local control on the results by introducing more defining polygon points. Thus, 

representing nonlinearities by using Bezier curves is promising and provides 

some advantages [Rogers and Adams, 1990]. By local control we mean to be 

able to include variations in a small segment of interest around a local control 

point without interfering other localities in the whole curve, which are spatially 

distant to the local segment of interest [Tulunay E. et al., 2006a]. Bezier curves 

provide more local control in contrast to the polynomial representations. 

 

The Bezier basis is also the Bernstein basis. The basis functions of Bezier 

curves are real. The curves generally follow the shape of the defining polygons. 

Their start and end points are coincident with the start and end points of the 

defining polygons. The tangent vectors at the ends have the same direction as 

the spans of the first and the last polygons. The curves take place in the convex 

hulls of the defining polygons, and they are invariant under affine 

transformations [Rogers and Adams, 1990]. Formulation of the Bezier curves 

is as follows, 
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where 

(m+1) is the number of defining polygon points, 

u  is the normalized variable, 

iB  are the defining polygon points, 

{ }uJ im,  are the Bernstein Basis Functions as, 
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The number (m-1) represents the degree of the defining polygon. The first 

three defining polygon points define the curvature at the beginning, and the last 
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three define the curvature at the end of the Bezier curve. If high flexibility is 

required, the degree of the defining polygon can be increased by increasing the 

number of defining polygon points [Rogers and Adams, 1990]. Thus, more 

defining polygon points mean more local control on the shape of the Bezier 

curve.  

 

Additional flexibility can also be achieved by dividing a Bezier curve into two 

Bezier curves. When those two curves are combined the resultant curve is 

identical with the original curve [Rogers and Adams, 1990]. 

It is evident that since { } 100, =mJ  only the first defining polygon point, i.e. 0B , 

is defining the start point on Bezier curve, i.e. )0(P . Similarly, since 

{ } 11, =mmJ  only the last defining polygon point, i.e. mB , is defining the end 

point on Bezier curve, i.e. )1(P . 

 

To visualize Bezier curves and their defining polygons on Cartesian space, 

Figure 1.4 shows graphical output examples obtained by Computer Graphics 

software developed by the author within a graduate course in his department, 

i.e. METU – EE642 Computer Graphics. 
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Figure 1.4. Examples of Bezier curves and their defining polygons on 

Cartesian space 

 

 

To the best knowledge of the author, in this work, static nonlinear block of a 

cascade model, METU-C, based on Hammerstein system modeling is 

represented by Bezier curves for the first time [Senalp et al., 2006b]. The 

internal variables of the METU-C model, i.e. )(kxq , may be formulated as 

follows, 
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where 

R  is the number of inputs, 

( 1+m ) is the number of defining polygon points, 
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)(ku p are the normalized input variables. 

piB  are the coefficients to be determined, 
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Thus, the product )1( +mR  gives the number of static block coefficients, 

i.e. piB , to be determined. 

 

The output )(ky  is represented as 
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where S  is the number of the static internal variables, n  is the number 

representing the history of the stored internal variables in memory. 

 

In Equation 1.24, the output )(ky  is represented by using a dynamic linearity 

and by optimizing a linear relationship for the internal variables )(kxq  and 

their past values )( jkxq −  which constitute their history. Thus, the product 

)1( +nS  gives the number of dynamic internal variables. The coefficients of 

the linearity in Equation 1.24, i.e. )( jhq , are also to be determined in the 

development stage. 

 

1.3.4 Representing Nonlinearity by B-Splines 

A curve generated by defining polygon vertices is dependent on the 

approximation to form a relationship between the curve and the polygon by 

choosing the basis function. For Bezier curves the basis function is the 

Bernstein function [Rogers and Adams, 1990]. 
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In Bezier curves, the number of defining polygon vertices determines the order 

of the curve representation. Also in Bezier curves, the Bernstein basis function 

is nonzero and representing local changes on the curve is limited [Rogers and 

Adams, 1990]. 

 

Schoenberg suggested the B-Spline curves [Schoenberg, 1946] [Rogers and 

Adams, 1990]. In B-Spline curves, B-Spline bases (Basis splines) are used. B-

Spline basis is nonglobal, because each vertex has its correspondent unique 

basis function and affects the curve where the correspondent basis function is 

nonzero. The degree of the B-Spline curve or the order of the basis function is 

not dependent on the number of the defining polygon vertices, which is not the 

case in Bezier curves [Rogers and Adams, 1990]. However, formation of a B-

Spline curve has more computations than formation of a Bezier curve, which 

can be a drawback for complex systems. 

 

To visualize B-Spline curves and their defining polygons on Cartesian space, 

Figure 1.5 shows graphical output examples obtained by the Computer 

Graphics software mentioned in the Section 1.3.3. 
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Figure 1.5. Examples of B-Spline curves and their defining polygons on 

Cartesian space 

 

 

 

Formulation of the B-Spline curves is as follows, 

{ }∑
=

=
m

i
sii uNBuP

0
,.)(  (1.25) 

where 

(m+1) is the number of defining polygon points, 

u  is the normalized variable between 0 and umax, 

umax is the maximum value of u, i.e. 

2max +−= smu  (1.26) 
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s is the order of the correspondent basis function; s-1 is the degree, 

i is vertex number of the defining polygon, 

iB  are the defining polygon points, 

{ }uN si,  are the normalized B-Spline basis functions, 
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z is the knot vector, 
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Similar to the Bezier curves, B-Spine curves lie within the convex hull of their 

defining polygons. All points of a B-Spline curve lie in convex hull defined by 

taking defining polygon vertices following each other [Rogers and Adams, 

1990]. 

 

To the best knowledge of the author, in this work, static nonlinear block of a 

cascade model is represented by B-Spline curves for the first time [Senalp et 

al., 2006d]. The internal variables of the METU-C model, i.e. )(kxq , may be 

formulated as follows, 
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where 

R  is the number of inputs, 

(m+1) is the number of defining polygon points, 
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)(ku p are the normalized input variables between 0 and umax, 

umax is the maximum value of u as in Equation 1.26, 

s is the order of the correspondent basis function; s-1 is the degree, 

i is vertex number of the defining polygon, 

piB  are the coefficients to be determined, 

{ })(, kuN psi  are the normalized B-Spline basis functions, 
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z is the knot vector as in Equation 1.29. 

 

Thus, the product )1( +mR  gives the number of static block coefficients, 

i.e. piB , to be determined. 

 

The output )(ky  is represented as, 
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where S  is the number of the static internal variables, n  is the number 

representing the history of the stored internal variables in memory. The output 

)(ky  is represented by using a dynamic linearity and by optimizing a linear 

relationship for the internal variables )(kxq  and their past values )( jkxq −  

which constitute their history. Thus, the product )1( +nS  gives the number of 

dynamic internal variables. The coefficients of the linearity in Equation 1.33, 

i.e. )( jhq , are also to be determined in the development stage. 
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CHAPTER 2 

 

 

FORECASTING THE GPS TOTAL ELECTRON CONTENT 

VALUES BY A CASCADE MODELING TECHNIQUE WITH 

POLYNOMIAL NONLINEARITY REPRESENTATION 

 

 

 

2.1 Introduction 

Unpredictable variability of the ionospheric parameters due to disturbances 

limits the efficiency of communications, radar and navigation systems, which 

employ especially HF radio waves propagating via ionosphere. It also limits 

other frequency bands, i.e. the communication bands with the satellites. The 

Total Electron Content (TEC) is the number of electrons in a column of one 

meter-squared cross-section along a path through the ionosphere [Chilbolton 

Weather Web, 2004]. Forecasting TEC is crucial for satellite based navigation 

systems especially in the stormy space weather conditions. 

 

The use of the Middle East Technical University Neural Network and Cascade 

Modeling (METU-NN-C) technique to forecast the 10 minutes values of the 

TEC, one hour ahead, during high solar activity in the solar cycle have been 

examined [Senalp et al., 2005] [Senalp et al., 2006c]. The model is designed to 

forecast TEC data evaluated from GPS measurements. The performance results 

of the cascade modeling of the near-Earth space processes are discussed in 

terms of system identification. 
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Applying nonlinear model identification is inevitable for most of the real 

complex nonlinear processes including the near-Earth space processes. The 

author has studies on structural methodologies, i.e. Neural Network based 

approaches, in modeling of the ionospheric processes [Senalp, 2001], [Tulunay 

E. et al., 2000], [Tulunay Y. et al., 2000], [Tulunay E. et al., 2001], [Tulunay 

Y. et al., 2001a], [Senalp et al., 2002a], [Tulunay Y. et al., 2004b], [Tulunay E. 

et al., 2004a] [Tulunay Y. et al., 2005a] [Tulunay E. et al., 2006a]. Those 

studies have provided insight on the system identification of the near-Earth 

space processes. In these previous studies, the processes were modeled in black 

box forms. 

 

In this work, to the best knowledge of the author, it is the first time special 

models based on Hammerstein system modeling have been developed for near-

Earth space processes [Senalp et al., 2005] [Senalp et al., 2006c]. 

  

The internal variables of the METU-C model have memory. They store the 

internal values of the present, one hour past, and two hours past. In the 

development mode, first of all, the internal variables of the METU-C model are 

estimated by using the METU-NN model [Tulunay Y. et al., 2004a] [Tulunay 

Y. et al., 2004b]. Then the estimated internal variables, and inputs and outputs 

of the METU-C model in development mode are used to optimize the 

parameters of the METU-C.  

 

The METU-C model based on Hammerstein system modeling is designed and 

trained with significant inputs. In our approach, the basic inputs for the METU-

C are temporal inputs and the polynomial representation of the present TEC 

value. In addition, the model also contains intrinsic information about the solar 

activity.  
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The development of the METU-NN-C models is demonstrated in Figure 1.2 in 

Chapter 1. The METU-C architecture has one static nonlinear block and one 

dynamic linear block cascaded as shown in Figure 1.1 in Chapter 1. 

Levenberg-Marquardt optimization algorithm is used in optimizing the 

nonlinear and linear block parameters. Then such trained model is used to 

forecast the TEC values 1 hour in advance. 

 

This chapter outlines the TEC forecasting problem and preparation of data, 

explains the METU-C models based on Hammerstein system modeling as a 

system identification approach for forecasting ionospheric processes, gives the 

results with error tables, cross correlation coefficients and scatter diagrams, and 

discusses the generalized and fast learning and operation of the METU-C 

Models. 

 

2.2 Preparation of Data 

GPS TEC data for Chilbolton (51.8˚ N; 1.26˚ W) and Hailsham (50.9˚ N; 0.3˚ 

E) are used [COST271 WG 4 STSM, 2002]. For the training, test and 

validation within the development modes of the METU Neural Network and 

Cascade Models, TEC data evaluated from GPS measurements from 2000 to 

2001 at Chilbolton receiving station are used. Operation has been performed on 

another validation data set by producing the forecast TEC values at Hailsham 

GPS receiving station for selected months in 2002. Table 2.1 summarizes 

selected training, validation within development and validation within 

operation time intervals.  
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Table 2.1. The time periods for the input data 

 Year Month 

Train 2000 April and May 

Test and validation in the development procedure 2001 April and May 

Validation in the operational use 2002 April and May 

 

 

 

The chosen years correspond to the similar solar activity. This is the basic 

criterion in the selection of the train, test and validation years. The current high 

solar activity time periods, i.e. years with high sunspot number values, are 

selected in the time intervals. 

 

2.3 Construction of the Neural Network Model 

The basic architecture of the METU-NN model is demonstrated in Figure 1.3 

in Chapter 1. In METU-NN, for the current process, Feedforward Neural 

Network architecture with six neurons in one hidden layer is used. 

 

The activation functions in the hidden layer are hyperbolic tangent sigmoid 

functions and the activation function in the output layer is a linear function, so 

that the hidden layer outputs represent the static part of the state-like internal 

variables in cascade modeling. Levenberg-Marquardt Backpropagation 

algorithm is used during training [Hagan and Menhaj, 1994] [Haykin, 1999]. 

The METU-NN is used to estimate the internal variables. The 5 inputs used for 

the METU-NN are as follows, 

1. The present value of the TEC: 

)(1 ku = f(k) (2.1) 
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2. Cosine component of the minute, m, of the day: 

)(2 ku = Cm = –Cos(2.π.m / 1440) (2.2) 

3. Sine component of the minute of the day: 

)(3 ku = Sm = Sin(2.π.m / 1440) (2.3) 

4. Cosine component of the day, d, of the year: 

)(4 ku = Cd = –Cos(2.π.d / 366) (2.4) 

5. Sine component of the day of the year: 

)(5 ku = Sd = Sin(2.π.d / 366) (2.5) 

 

The output layer of the METU-NN hosts the value of the TEC being observed 

60 minutes later than the present time. The outputs of the hidden layer in 

METU-NN are six of the internal variables for the METU-C. 

 

2.4 Construction of the Cascade Model 

In the development mode, the construction work of the METU-C model is 

carried out. It is composed of “training phase” and “test phase” as in the Neural 

Network approach [Tulunay Y. et al., 2004a]. In the training phase the 

parameters of the cascaded static nonlinear block and dynamic linear block are 

optimized. For training and validation within development procedure, data sets 

of same month but different year are used as shown on Table 2.1 to take the 

seasonal dependency into account. 

 

The “Levenberg-Marquardt” optimization algorithm is used within training for 

fast learning of the process with input data of very large size. If training data 

were used alone during training then the training error would go to zero 
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corresponding to the memorization. Memorization means the loss of the 

generalization capability in system identification. For preventing the 

memorization, independent validation data are used. The decrease in the 

validation error is noted during the development. When the gradient of the 

error in the validation within development becomes near zero, a “stop training” 

signal is produced, and thus the training is terminated. The optimized 

parameters of the cascade model are saved. The model is then ready for its use 

in the operation mode for forecasting of the TEC values. In the operation mode 

another validation data set is used for calculating the errors, point by point, to 

measure the performance of the model. 

 

For considering the first, second and third order terms in the polynomial 

representation, i.e. the Equation 1.18, m is selected to be 3 for the TEC input. 

Thus, m=3 for p=1 in the model. For the temporal inputs m is selected to be 1, 

i.e. m=1 for p>1 in the model. The value of the TEC at the time instant k is 

designated by  f(k). The 7 inputs used for the METU Cascade Model are as 

follows, 

 

1. i. The present value of the TEC: )(1 ku = f(k), 

1. ii. Second Power:   )(2
1 ku = f 2(k), 

1.iii. Third Power: )(3
1 ku = f 3(k), 

2. Cosine component of minute, m, of the day: )(2 ku =Cm= –Cos(2π.m / 1440), 

3. Sine component of the minute of the day: )(3 ku =Sm= Sin(2π.m / 1440), 

4. Cosine component of day, d, of the year: )(4 ku =Cd= –Cos(2π.d / 366), 

5. Sine component of the day of the year: )(5 ku =Sd= Sin(2π.d / 366), 

 



 

 35

The outputs of the first stage, i.e. 6 outputs for the static nonlinear block 

designated by x1(k),…, x6(k), and their one hour past and two hours past values 

are stored as internal variables so that S=6 and n=2 in Equation 1.19. These 

internal variables are the inputs to the second stage of the cascade model, i.e. 

18 inputs for the dynamic linear block of the METU-C model, which are 

designated by x1(k),…, x6(k), x1(k-1),…, x6(k-1), x1(k-2),…, x6(k-2) in 

Equation 1.19. However, since the unit of the time instant k is minutes instead 

of hours, the internal variables are designated by x1(k),…, x6(k), x1(k-60),…, 

x6(k-60), x1(k-120),…, x6(k-120). 

 

The output of the cascade model is designated by y(k) = f(k+60) which is the 

value of the TEC to be observed 60 minutes later than the present time. 

 

2.5 Results 

The operation mode performance analyses and results of the TEC forecast 

cover the time interval between April and May 2002 for the Hailsham 

receiving station. Forecast of the TEC values one hour in advance is performed 

for the validation data set in 10 minutes interval. Then the cross correlation 

coefficients between the observed GPS TEC and forecast TEC are calculated. 

The root mean square, normalized and absolute error values are also calculated. 

Table 2.2 is the error table displaying the results. Figure 2.1 is the scatter 

diagram of the forecast and observed TEC values for Hailsham GPS receiving 

station for April and May 2002. Forecast and observed TEC values versus the 

order of data points in April and May 2002 for Hailsham GPS receiving station 

are plotted in Figure 2.2 where 1 hour in advance forecast values of the TEC 

are plotted with the solid line. 
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Table 2.2. Error Table 

Absolute Error (TECu) 1.17 

Normalized Error (%) 6.39 

Root Mean Square Error (TECu) 1.79 

Cross Correlation Coefficient (x10-2) 98.63 

 

 

 

 

 

Figure 2.1. One hour ahead Forecast TEC versus Observed GPS TEC values 
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Figure 2.2. Observed GPS TEC (dotted) and 1 hour ahead Forecast (solid) TEC 

values for the whole time of validation period: April-May 2002 for Halisham. 

 

 

 

In the scatter diagram in Figure 2.1, the fitted line has a slope close to one, i.e. 

it has ~ 45° of angle with respect to the observed TEC axis, and it passes 

through the origin. Therefore the forecasting errors are small. This fact is the 

indication of the system reaching the correct operating point within the system 

identification. In other terminology, the system is prevented to reach local 

minima and it is succeeded to reach the global minimum of the error cost 

function. The correlation coefficients are very close to unity, which means that 
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the METU-C model learned the shape of the inherent nonlinearities. Therefore, 

the deviations from straight line are small in the scatter diagram.  

 

The daily solar-terrestrial indices for the geomagnetically quiet, 5-7 April 

2002, and disturbed, 18-21 April 2002, periods of interest are summarized on 

Table 2.3 [Tulunay E. et al., 2004a]. 

 

 

Table 2.3 Solar-terrestrial indices for the considered validation periods 

Date RC 10CM Ak BKG M X 

05 Apr 2002 213 217 004 C1.3 0 0 

06 Apr 2002 249 206 004 C1.1 0 0 

07 Apr 2002 211 208 010 C1.5 0 0 

18 Apr 2002 155 188 043 C1.3 0 0 

19 Apr 2002 147 180 045 B8.6 0 0 

20 Apr 2002 224 177 056 C1.0 0 0 

21 Apr 2002 142 173 006 C1.3 0 1 

 

 

 

The Solar-terrestrial indices in Table 2.3 are as follows: 

RC: Sunspot index from Catania Observatory (Italy), 

10cm: 10.7 cm  radioflux (DRAO, Canada) 

Ak: Ak Index Wingst (Germany) 

BKG: Background GOES X-ray level (NOAA, USA) 

M,X: Number of X-ray flares in M and X class, (NOAA, USA)  
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Figure 2.3 and 2.4 are the enlarged portions of some data points of Figure 2.2, 

i.e. the diurnal variations of the observed, and forecast TEC values during 18-

22 April 2002 and 5-7 April 2002, respectively. That is, the horizontal axes are 

expanded. 

 

 

 

 

 

Figure 2.3. Observed GPS TEC values for disturbed solar-terrestrial conditions 

(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion 

of the time of validation period: 18-22 April 2002. 
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Figure 2.4. Observed GPS TEC values for quiet solar-terrestrial conditions 

(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion 

of the time of validation period: 5-7 April 2002. 

 

 

 

It can be concluded that the model gives accurate forecasts before, during and 

after the disturbed solar-terrestrial conditions. 

 

2.6 Conclusions 

Forecasting of the TEC values, especially in the stormy space weather 

conditions, is crucial for communication, radar and navigation systems 
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employing HF radio waves to cope with the effects of unpredictable variability 

of the ionospheric parameters. 

 

In this work, to the best knowledge of the author, cascade modeling based on 

Hammerstein system modeling has been used first time for the forecast of an 

ionospheric-plasmaspheric process, namely the TEC variation 1 hour in 

advance [Senalp et al., 2005] [Senalp et al., 2006c]. The model learned the 

shape of the inherent nonlinearities and the system reached the correct 

operating point. The cascade modeling of the process is also capable of 

forecasting the TEC values for disturbed solar-terrestrial conditions. 

 

It is demonstrated that the identification of the complex nonlinear processes, 

such as the TEC variation, can be achieved by cascading a static nonlinear 

block and a linear dynamic block as in the Hammerstein system modeling.  

 

Summary of the main contributions of this work may be given as follows: 

 

1) Organization of representable data for learning complex processes,  

2) Cascade modeling of a highly complex nonlinear process such as the TEC 

variation, and  

3) General demonstration of learning capability by calculating cross 

correlations and general demonstration of reaching a proper operating point 

by calculating errors. 
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CHAPTER 3 

 

 

FORECASTING THE GPS TOTAL ELECTRON CONTENT 

VALUES BY A CASCADE MODELING TECHNIQUE WITH 

BEZIER CURVE NONLINEARITY REPRESENTATION 

 

 

 

3.1 Introduction 

The use of the Middle East Technical University Neural Networks and Cascade 

Modeling (METU-NN-C) technique to forecast the 10 minutes values of the 

total electron content (TEC), one hour ahead, during high solar activity in the 

solar cycle have been examined with the emphasis on Bezier curves in 

repsesenting the nonlinearities. To the best knowledge of the author, static 

nonlinear block of a cascade model, METU-C, based on Hammerstein system 

modeling is represented by Bezier curves for the first time [Senalp et al., 

2006b] [Senalp et al., 2006d].  

 

In this approach, the basic inputs for the model are the Bezier curve 

representation of the temporal inputs and the Bezier curve representation of the 

present TEC value. The internal variables store the internal values of the 

present, one hour past, and two hours past. They are estimated by METU-NN. 

Using the inputs, outputs, and estimated internal variables, Levenberg-

Marquardt optimization algorithm is employed in optimizing the nonlinear and 

linear block parameters of the METU-C model in development mode. The 
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development of the METU-NN-C models is demonstrated in Figure 1.2 in 

Chapter 1. Then such trained model is used in operation mode to forecast the 

TEC values 1 hour in advance. 

 

This chapter explains the METU-C model based on Hammerstein system 

modeling with Bezier curves as a system identification approach for 

forecasting ionospheric processes, gives the results with error tables, cross 

correlation coefficients and scatter diagrams, and discusses the generalized and 

fast learning and operation of the METU-C Models. 

 

3.2 Preparation of Data 

As in Chapter 2, for the training, test and validation within the development 

mode of the METU-NN-C, TEC data evaluated from GPS measurements in 1 

April – 31 May 2000 and 2001 at Chilbolton (51.8º N; 1.26º W) receiving 

station are used. Operation has been performed on another data set by 

producing the forecast TEC values at Hailsham (50.9º N; 0.3º E) GPS receiving 

station for selected months in 2002. 

 

In the model, again intrinsic information about the solar activity is achieved by 

choosing the time periods for input data with the similar solar activity. Also the 

seasonal dependency is again taken into account. Table 2.1 in Chapter 2 

summarizes selected training, validation within development and validation 

within operation time intervals. 

 

3.3 Construction of the Neural Network Based Model 

The METU-NN model explained in Chapter 2 is used to estimate the internal 

variables of the METU-C model herewith. For more details refer Chapter 2. 
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3.4 Construction of the Cascade Model 

The 5 inputs used for the METU-C are as follows, 

1. The present value of the TEC: see Equation 2.1 in Chapter 2 

2. Cosine component of minute, m, of the day: see Equation 2.2 in Chapter 2 

3. Sine component of the minute of the day: see Equation 2.3 in Chapter 2 

4. Cosine component of day, d, of the year: see Equation 2.4 in Chapter 2 

5. Sine component of the day of the year: see Equation 2.5 in Chapter 2 

 

The inputs are normalized so that they can be used in Bezier curve 

representation of the static nonlinearity in the METU-C model as in Equations 

1.22 and 1.23 in Chapter 1. The output of the METU-C hosts the value of the 

TEC being observed 60 minutes later than the present time. 

 

In this work, the internal variables of the METU-C model, i.e. )(kxq , are 

formulated as in Equation 1.22, in Chapter 1. In Equation 1.22, 5=R  is the 

number of inputs, 4131 =+=+m  is the number of defining polygon points. 

Thus, the product 20)13(5)1( =+=+mR  gives the number of static block 

coefficients, i.e. piB , to be determined. 

 

The output )(ky  is represented as shown in Equation 1.24 in Chapter 1. It is 

represented by using a dynamic linearity obtained by optimizing a linear 

relationship for the internal variables, )(kxq , and their past values, )( jkxq − . 

In the Equation 1.24, 6=S  is the number of the static internal variables, 2=n  

is the number representing the history of the stored internal variables in 

memory. Thus, the product 18)12(6)1( =+=+nS  gives the number of 

dynamic internal variables. The coefficients of the linearity in Equation 1.24, 

i.e. )( jhq , are also determined in the development mode. 
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In the development mode, the parameters of the METU-C are determined using 

the internal variable estimates of the METU-C obtained by the METU-NN, and 

the inputs and outputs of the METU-C. Levenberg-Marquardt optimization 

method is used in training. 

 

3.5 Results 

As in Chapter 2, the operation mode performance analyses and results of the 

TEC forecast cover the time interval between April and May 2002 for the 

Hailsham receiving station. Forecast of the TEC values one hour in advance is 

performed for the validation data set in 10 minutes interval. Then the cross 

correlation coefficients between the observed GPS TEC and forecast TEC are 

calculated. The root mean square, normalized and absolute error values are also 

calculated. Table 3.1 is the error table displaying the results. 

 

 

Table 3.1. Error Table 

Absolute Error (TECu) 1.11 

Normalized Error (%) 5.51 

Root Mean Square Error (TECu) 1.75 

Cross Correlation Coefficient (x10-2) 98.69 

 

 

 

It is to be noted that the error values in this work are smaller than the ones in 

Chapter 2. Also the cross-correlation coefficient is larger than the one in 

Chapter 2. Thus, modeling the nonlinearity by using Bezier curves provide 

remarkable increase in the operation performance with higher accuracy and 
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higher sensitivity when compared with the operation results of the METU-C 

model with polynomial nonlinearity representation discussed in Chapter 2. 

 

Figure 3.1 is the scatter diagram of the forecast and observed TEC values for 

Hailsham GPS receiving station for April and May 2002. Forecast and 

observed TEC values versus the order of data points in April and May 2002 for 

Hailsham GPS receiving station are plotted in Figure 3.2 where 1 hour in 

advance forecast values of the TEC are plotted with the solid line. 

 

 

 

 

 

Figure 3.1. One hour ahead Forecast TEC versus Observed GPS TEC values 
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Figure 3.2. Observed GPS TEC (dotted) and 1 hour ahead Forecast (solid) TEC 

values for the whole time of validation period: April-May 2002 for Halisham. 

 

 

 

The system reached the correct operating point within the system 

identification. Thus the fitted line in the scatter diagram in Figure 3.1 has a 

slope close to one, passes through the origin, and the forecasting errors are 

small. Also the METU-C model learned the shape of the inherent 

nonlinearities. Thus the deviations from straight line are small in the scatter 

diagram, and the correlation coefficients are very close to unity. 
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The daily solar-terrestrial indices for the geomagnetically quiet, 5-7 April 

2002, and disturbed, 18-21 April 2002, periods of interest are summarized on 

Table 2.3 in Chapter 2. Figures 3.3 and 3.4 are the enlarged portions of some 

data points of Figure 3.2, i.e. the diurnal variations of the observed, and 

forecast TEC values during 18-22 April 2002 and 5-7 April 2002, respectively.  

 

 

 

 

 

Figure 3.3. Observed GPS TEC values for disturbed solar-terrestrial conditions 

(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion 

of the time of validation period: 18-22 April 2002. 
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Figure 3.4. Observed GPS TEC values for quiet solar-terrestrial conditions 

(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion 

of the time of validation period: 5-7 April 2002. 

 

 

 

The model gives accurate forecasts before, during and after the disturbed solar-

terrestrial conditions. 

 

3.6 Conclusions 

In this work, to the best knowledge of the author, static nonlinear block of a 

cascade model, METU-C, based on Hammerstein system modeling is 
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represented by Bezier curves for the first time [Senalp et al., 2006b] [Senalp et 

al., 2006d]. The forecast of the ionospheric-plasmaspheric process, namely the 

TEC variation 1 hour in advance is performed. The model learned the shape of 

the inherent nonlinearities and the system reached the correct operating point. 

The cascade modeling of the process is also capable of forecasting the TEC 

values for disturbed solar-terrestrial conditions. 

 

It is demonstrated that the identification of the complex nonlinear processes, 

such as the TEC variation, can be achieved by cascading a static nonlinear 

block of Bezier curve representations and a linear dynamic block. 
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CHAPTER 4 

 

 

FORECASTING THE GPS TOTAL ELECTRON CONTENT 

VALUES BY A CASCADE MODELING TECHNIQUE WITH 

B-SPLINE CURVE NONLINEARITY REPRESENTATION 

 

 

 

4.1 Introduction 

The use of the Middle East Technical University Neural Networks and Cascade 

Modeling (METU-NN-C) technique to forecast the 10 minutes values of the 

total electron content (TEC), one hour ahead, during high solar activity in the 

solar cycle have been examined with the emphasis on B-Spline curves in 

repsesenting the nonlinearities. To the best knowledge of the author, static 

nonlinear block of a cascade model, METU-C, based on Hammerstein system 

modeling is represented by B-Spline curves for the first time [Senalp et al., 

2006d].  

 

In this approach, the basic inputs for the model are the B-Spline curve 

representation of the temporal inputs and the B-Spline curve representation of 

the present TEC value. The internal variables store the internal values of the 

present, one hour past, and two hours past. They are estimated by METU-NN. 

Using the inputs, outputs, and estimated internal variables, Levenberg-

Marquardt optimization algorithm is employed in optimizing the nonlinear and 

linear block parameters of the METU-C model in development mode. The 
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development of the METU-NN-C models is demonstrated in Figure 1.2 in 

Chapter 1. Then such trained model is used in operation mode to forecast the 

TEC values 1 hour in advance. This chapter explains the METU-C model 

based on Hammerstein system modeling with B-Spline curves as a system 

identification approach for forecasting ionospheric processes, gives the results 

with error tables, cross correlation coefficients and scatter diagrams, and 

discusses the generalized and fast learning and operation of the METU-C 

Models. 

 

4.2 Preparation of Data 

As in Chapter 2, for the training and validation within development mode of 

the METU-NN-C, TEC data evaluated from GPS measurements at Chilbolton 

(51.8º N; 1.26º W) receiving station in 1 April – 31 May 2000 and 2001 are 

used, respectively. Operation has been performed on another data set by 

producing the forecast TEC values at Hailsham (50.9º N; 0.3º E) GPS receiving 

station for selected months in 2002. 

 

In the model, again intrinsic information about the solar activity is achieved by 

choosing the time periods for input data with the similar solar activity. Also the 

seasonal dependency is again taken into account. Table 2.1 in Chapter 2 

summarizes selected training, validation within development and validation 

within operation time intervals. 

 

4.3 Construction of the Neural Network Based Model 

The METU-NN model explained in Chapter 2 is used to estimate the internal 

variables of the METU-C model. For more details refer Chapter 2. 
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4.4 Construction of the Cascade Model 

The 5 inputs used for the METU-C are as follows, 

1. The present value of the TEC: see Equation 2.1 in Chapter 2 

2. Cosine component of minute, m, of the day: see Equation 2.2 in Chapter 2 

3. Sine component of the minute of the day: see Equation 2.3 in Chapter 2 

4. Cosine component of day, d, of the year: see Equation 2.4 in Chapter 2 

5. Sine component of the day of the year: see Equation 2.5 in Chapter 2 

 

The inputs are normalized so that they can be used in B-Spline curve 

representation of the static nonlinearity in the METU-C model as in Equations 

1.30, 1.31 and 1.32 in Chapter 1. The output of the METU-C hosts the value of 

the TEC being observed 60 minutes later than the present time. 

 

In this work, the internal variables of the METU-C model, i.e. )(kxq , are 

formulated as in Equation 1.30, in Chapter 1. In Equation 1.30, s = 4 is the 

order of the correspondent basis function, s-1 = 3 is the degree, 5=R  is the 

number of inputs, 4131 =+=+m  is the number of defining polygon points. 

Thus, the product 20)13(5)1( =+=+mR  gives the number of static block 

coefficients, i.e. piB , to be determined. 

 

The output )(ky  is represented as shown in Equation 1.33 in Chapter 1. It is 

represented using a dynamic linearity which is obtained by optimizing a linear 

relationship for the internal variables, )(kxq , and their past values, )( jkxq − . 

In the Equation 1.33, 6=S  is the number of the static internal variables, 2=n  

is the number representing the history of the stored internal variables in 

memory. Thus, the product 18)12(6)1( =+=+nS  gives the number of 
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dynamic internal variables. The coefficients of the linearity in Equation 1.33, 

i.e. )( jhq , are also determined in the development mode. 

 

In the development mode, the parameters of the METU-C are determined using 

the internal variable estimates of the METU-C obtained by the METU-NN, and 

the inputs and outputs of the METU-C model. Levenberg-Marquardt 

optimization method is used in training. 

 

4.5 Results 

As in Chapter 2, the operation mode performance analyses and results of the 

TEC forecast cover the time interval between April and May 2002 for the 

Hailsham receiving station. Forecast of the TEC values one hour in advance is 

performed for the validation data set in 10 minutes interval. Then the cross 

correlation coefficients between the observed GPS TEC and forecast TEC are 

calculated. The root mean square, normalized and absolute error values are also 

calculated. Table 4.1 is the error table displaying the results. 

 

 

Table 4.1. Error Table 

Absolute Error (TECu) 1.10 

Normalized Error (%) 5.5 

Root Mean Square Error (TECu) 1.75 

Cross Correlation Coefficient (x10-2) 99 
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It is to be noted that the error values in this work are smaller than the ones in 

Chapter 2. Also the cross-correlation coefficient is larger than the one in 

Chapter 2. Thus, modeling the nonlinearity by using B-Spline curves provide 

remarkable increase in the operation performance with higher accuracy and 

higher sensitivity when compared with the operation results of the METU-C 

model with polynomial nonlinearity representation discussed in Chapter 2. 

When the results of the model using B-Spline curves are compared with the 

results of the model using Bezier curves in Chapter 3, it is noted that two 

models have similar performance. However, the METU-C model with B-

Spline curve nonlinearity representations has higher number of calculations 

than the model using Bezier curves because of the high complexity in the 

formulations of the B-Spline curves and their basis functions. It can be a 

drawback for very complex processes. 

 

Figure 4.1 is the scatter diagram of the forecast and observed TEC values for 

Hailsham GPS receiving station for April and May 2002. 
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Figure 4.1. One hour ahead Forecast TEC versus Observed GPS TEC values 

 

 

 

Forecast and observed TEC values versus the order of data points in April and 

May 2002 for Hailsham GPS receiving station are plotted in Figure 4.2 where 1 

hour in advance forecast values of the TEC are plotted with the solid line. 

 

In METU-C modeling with B-Spline curve nonlinearity representations, the 

system reached the correct operating point within the system identification and 

the METU-C model learned the shape of the inherent nonlinearities, as well. 
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Figure 4.2. Observed GPS TEC (dotted) and 1 hour ahead Forecast (solid) TEC 

values for the whole time of validation period: April-May 2002 for Halisham. 

 

 

 

The daily solar-terrestrial indices for the geomagnetically quiet, 5-7 April 

2002, and disturbed, 18-21 April 2002, periods of interest are summarized on 

Table 2.3 in Chapter 2. 

 

Figures 4.3 and 4.4 are the enlarged portions of some data points of Figure 4.2, 

i.e. the diurnal variations of the observed, and forecast TEC values during 18-

22 April 2002 and 5-7 April 2002, respectively. It can again be concluded that 



 

 58

the model gives accurate forecasts before, during and after the disturbed solar-

terrestrial conditions. 

 

 

 

 

 

Figure 4.3. Observed GPS TEC values for disturbed solar-terrestrial conditions 

(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion 

of the time of validation period: 18-22 April 2002. 
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Figure 4.4. Observed GPS TEC values for quiet solar-terrestrial conditions 

(dotted), and 1 hour ahead Forecast TEC values (solid) for the enlarged portion 

of the time of validation period: 5-7 April 2002. 

 

 

 

4.6 Conclusions 

In this work, to the best knowledge of the author, static nonlinear block of a 

cascade model, METU-C, based on Hammerstein system modeling is 

represented by B-Spline curves for the first time [Senalp et al., 2006d]. The 

forecast of the ionospheric-plasmaspheric process, namely the TEC variation 1 

hour in advance is performed. The model learned the shape of the inherent 
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nonlinearities and the system reached the correct operating point. The cascade 

modeling of the process is capable of forecasting the TEC values for disturbed 

conditions, as well. 

 

It is demonstrated that the identification of the complex nonlinear processes, 

such as the TEC variation, can be achieved by cascading a static nonlinear 

block of B-Spline curve representations and a linear dynamic block. 
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CHAPTER 5 

 

 

ERROR COMPARISON AND ANALYSIS FOR THE 

MODELS: METU-NN, METU-C WITH POLYNOMIAL, 

BEZIER AND B-SPLINE CURVE NONLINEARITY 

REPRESENTATIONS 

 

 

 

5.1 Introduction 

The use of the Middle East Technical University Neural Networks (METU-

NN) technique and Middle East Technical University Neural Networks and 

Cascade Modeling (METU-NN-C) techniques to forecast the 10 minutes 

values of the total electron content (TEC), one hour ahead, during high solar 

activity in the solar cycle have been examined with the emphasis on 

Polynomials, Bezier curves and B-Spline curves in repsesenting the 

nonlinearities.  

 

International Reference Ionosphere (IRI) is an important international project 

sponsored by the Committee on Space Research (COSPAR) and the 

International Union of Radio Science (URSI) [Bilitza, 2001] [IRI, 2007]. The 

aim of the project is to develop and improve the international IRI standards for 

the specification of ionospheric densities and temperatures [Bilitza, 2001]. The 

Center for Atmospheric Research in the University of Massachusetts Lowell 

(UMLCAR) adapted the IRI-2001 model to be used in MS-Windows platform 
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[UMLCAR, 2007]. In order to show the capabilities of the models, the results 

of the METU-C models have been compared with the UMLCAR edition of the 

IRI-2001 model results for the time period of interest during well-known Space 

Weather events of April 2002 [Senalp et al., 2007d]. The results have also been 

compared with the results of the METU-NN model. 

 

The case study of METU-NN-C Model with Polynomial representation in 

nonlinearity was presented in Chapter 2. The case studies of METU-NN-C 

Models with Bezier Curve representation and B-Spline Curve representation in 

nonlinearity were presented in Chapter 3 and 4, respectively. 

 

The construction work of the METU-NN and METU-NN-C models are carried 

out in the development mode. It is composed of “training phase or learning 

phase” and “test phase” [Tulunay Y. et al., 2004a]. METU-NN model for 

forecasting TEC and a case study using the model were presented [Tulunay E. 

et al., 2004a].  

 

As in Chapter 2, 3 and 4, for the training and validation within the development 

mode of the METU-NN model, TEC data evaluated from GPS measurements 

in 1 April – 31 May 2000 and 2001 at Chilbolton (51.8º N; 1.26º W) receiving 

station have been used. Operation has been performed on another data set by 

producing the forecast TEC values at Hailsham (50.9º N; 0.3º E) GPS receiving 

station for selected months in 2002. The intrinsic information about the solar 

activity is again achieved by choosing the time periods for input data with the 

similar solar activity. Also the seasonal dependency is again taken into 

account. Table 2.1 in Chapter 2 summarizes selected training, validation within 

development and validation within operation time intervals.  
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The value of the TEC at the time instant k is designated by  f(k). The output is 

f(k+60). It is the value of the TEC to be observed 60 minutes later than the 

present time. There are eight inputs fed into the METU-NN model. The eight 

input parameters are explained as follows, 

 

1. The present value of the TEC, f(k): see Equation 2.1 in Chapter 2 

2. First Difference, 

∆1(k) =  f(k) - f(k-60) (5.1) 

3. Second Difference, 

∆2(k)=∆1(k) - ∆1 (k-60) (5.2) 

4. Relative Difference, 

R∆(k) = ∆1(k) / f(k) (5.3) 

5. Cosine component of minute, m, of the day: see Equation 2.2 in Chapter 2 

6. Sine component of the minute of the day: see Equation 2.3 in Chapter 2 

7. Cosine component of day, d, of the year: see Equation 2.4 in Chapter 2 

8. Sine component of the day of the year: see Equation 2.5 in Chapter 2 

 

Among the various Neural Network structures the best configuration is found 

to be the one with one hidden layer. In the previous study [Tulunay E. et al., 

2004a] 8 neurons were used in the hidden layer. In this study 6 hidden neurons 

were tried. No significant increases in the errors were observed. Therefore, in 

this work, the structure with 6 hidden neurons is preferred for the METU-NN 

instead of 8 for the sake of similar architecture as in the METU-NN-C models. 

There are eight inputs, six hidden neurons and 1 output in the feed-forward 

structure. Figure 1.3 in Chapter 1 shows the architecture of the Neural Network 

model. Here, the activation functions in the hidden layer are hyperbolic tangent 

sigmoid transfer functions and the activation function in the output layer is 



 

 64

pure linear transfer function. Levenberg-Marquardt Backpropagation algorithm 

is used in training. 

 

In this chapter, the results of the models have been compared. 

 

5.2 Test of Hypothesis 

It is useful to make assumptions about the populations involved in order to 

reach statistical decisions on error values [Spiegel et al., 2000]. Such 

assumptions are called “statistical hypotheses”. A “null hypothesis” denoted by 

H0 occures when there is no difference between two decisions, i.e. any 

observed difference is due to fluctuations in sampling from the same 

population. Any hypothesis different from H0 is called an “alternative 

hypothesis” and denoted by H1. For example, if the null hypothesis is H0: 

population mean: µ = 0.01, then one possible alternative hypothesis may be H1: 

µ ≠ 0.01 [Spiegel et al., 2000].  

 

Procedures that help us to decide whether to accept or reject null hypothesis are 

called “tests of hypotheses” [Spiegel et al., 2000]. In testing a null hypothesis, 

the maximum probability with which we can risk an error is named as “level of 

significance” of the test. For example, α = 0.05 level of significance means 

95% confidence. [Spiegel et al., 2000]. 

 

One of the “tests of hypotheses” is “t-test” [MATLAB, 2002]. One tailed or 

two tailed t-tests can be used. Depending on the number of tails and the level of 

significance, critical values or z scores on the distribution plots can be found in 

lookup tables. As an example, Table 5.1 gives some of the critical values of z 

[Spiegel et al., 2000]. 
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Table 5.1. Critical Values of z [Spiegel et al., 2000] 

Level of 

Significance, α 
0.10 0.05 0.01 0.005 0.002 

Critical values of z 

for one-tailed tests 

-1.28 

or 1.28 

-1.645 

and 1.645 

-2.33 

or 2.33 

-2.58 

or 2.58 

-2.88 

or 2.88 

Critical values of z 

for two-tailed tests 

-1.645 

and 1.645 

-1.96 

and 1.96 

-2.58 

and 2.58 

-2.81 

and 2.81 

-3.08 

and 3.08 

 

 

 

To determine whether a sample from a normal distribution (x: i.e. errors) could 

have mean µ, t-test can be used [MATLAB, 2002]. In t-test, the test statistic is 

chosen to be as follows [Spiegel et al., 2000], 

n
x

z
σ

µ−
=  (5.4) 

where µ is the population mean, x  is the sample mean, σ is the sample 

standard deviation, i.e. square root of varience, and n is the sample size. 

 

As an example, if the level of significance, α, is 0.05, and two-tailed test is to 

be performed, then by using the Table 5.1 and the Equation 5.4, the interval of 

z can be obtained as, 

96.196.1 ≤
−

≤− n
x

σ

µ
 (5.5) 

If z is not in the interval, then the result, h, is 1 and you can reject the null 

hypothesis that a sample from a normal distribution (x: errors) could have 

mean µ, at the significance level α. If h is 0, then you can not reject the null 

hypothesis at the α level of significance [MATLAB, 2002]. 
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5.3 Error Distributions for METU-NN and METU-C Models 

The error values, i.e. the difference of observed and forecast TEC values, are 

used in observing the distributions for the results of the four of the models. The 

models are METU-NN, METU-C with Polynomial nonlinearity, METU-C with 

Bezier nonlinearity, and METU-C with B-Spline nonlinearity. 

 

The error histograms for four of the model results are plotted. In addition to 

those, the histograms of random samples from normal distributions with the 

same means and same standard deviations are plotted for four of the cases. 

Figures 5.1, 5.3, 5.5 and 5.7 are the error histograms for METU-NN, METU-C 

with polynomial nonlinearity, METU-C with Bezier curve nonlinearity, and 

METU-C with B-Spline curve nonlinearity model results, respectively. Figures 

5.2, 5.4, 5.6 and 5.8 are the histograms of random samples from normal 

distributions with the same means and same standard deviations for four of the 

cases in Figures 5.1, 5.3, 5.5 and 5.7, respectively. 

 

 

 

 

 

Figure 5.1. The error histogram for METU-NN model results. 
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Figure 5.2. The histogram of a random sample from a normal distribution with 

the same mean and same standard deviation for the case in Figure 5.1. 

 

 

 

 

 

Figure 5.3. The error histogram for METU-C with Polynomial nonlinearity 

representation model results. 
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Figure 5.4. The histogram of a random sample from a normal distribution with 

the same mean and same standard deviation for the case in Figure 5.3. 

 

 

 

 

 

Figure 5.5. The error histogram for METU-C with Bezier curve nonlinearity 

representation model results. 
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Figure 5.6. The histogram of a random sample from a normal distribution with 

the same mean and same standard deviation for the case in Figure 5.5. 

 

 

 

 

 

Figure 5.7. The error histogram for METU-C with B-Spline curve nonlinearity 

representation model results. 
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Figure 5.8. The histogram of a random sample from a normal distribution with 

the same mean and same standard deviation for the case in Figure 5.7. 

 

 

 

The empirical cumulative distribution function (CDF) plots have qualitative 

visual values. In addition to those, they are useful for general-purpose 

goodness-of-fit hypothesis testing, such as the Kolmogorov-Smirnov tests.  In 

those tests the test statistic is the largest deviation of the empirical CDF from a 

hypothesized theoretical CDF [MATLAB, 2002]. For each of the model, 

empirical cumulative distribution function (CDF) of the error values in the data 

sample is plotted. Superimposeed to this, the CDF of a random sample from a 

normal distribution with the same mean and same standard deviation is plotted 

for each case. Figures 5.9, 5.10, 5.11, and 5.12 have the empirical CDF plots 

(in solid) for METU-NN, METU-C with polynomial nonlinearity, METU-C 

with Bezier curve nonlinearity, and METU-C with B-Spline curve nonlinearity 

model results, respectively. Superimposed to those, the empirical CDF plots (in 

dashed) for random samples from normal distributions with the same means 

and same standard deviations for four of the cases. 
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Figure 5.9. The empirical CDF plots for METU-NN model results (solid), and 

for random sample from a normal distr. with the same µ and same σ (dashed). 
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Figure 5.10. The empirical CDF plots for METU-C with Polynomial 

nonlinearity representation model results (solid), and for random sample from a 

normal distr. with the same µ and same σ (dashed) for the case. 
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Figure 5.11. The empirical CDF plots for METU-C with Bezier curve 

nonlinearity representation model results (solid), and for random sample from a 

normal distr. with the same µ and same σ (dashed) for the case. 
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Figure 5.12. The empirical CDF plots for METU-C with B-Spline curve 

nonlinearity representation model results (solid), and for random sample from a 

normal distr. with the same µ and same σ (dashed) for the case. 

 

 

 

When the empirical CDF are plotted, it is observed that the error distributions 

for the model results do not exactly fit to corresponding normal distributions, 

but a rough assumption that they fit to the normal distributions can be made. 

 

In order to observe the deviations, each cumulative distribution can be plotted 

on the same x axis but this time on specially scaled y axis so that the normal 

distributions will fit to a line. Thus, when the plot is linear, it indicates that the 

sample can be modeled by a normal distribution. The plot is named as normal 

probability plot [MATLAB, 2002]. Each plot has the error statistic of the 
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corresponding model displayed with the symbol '+'. Superimposed is a robust 

linear fit of the sample order statistics [MATLAB, 2002]. To sum up, the 

purpose of a normal probability plot is to graphically decide whether the data 

in x could come from a normal distribution. If the data are normal the plot will 

be linear, otherwise there will be curvatures in the plot [MATLAB, 2002]. 

 

Figures 5.13, 5.14, 5.15, and 5.16 have the normal probability plots (in +) for 

METU-NN, METU-C with polynomial nonlinearity, METU-C with Bezier 

curve nonlinearity, and METU-C with B-Spline curve nonlinearity model 

results, respectively. Superimposed to those, linear fits (in dashed) are plotted. 

 

 

 

 

 

Figure 5.13. The normal probability plot (in +) for METU-NN model results, 

and the linear fit (in dashed) 
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Figure 5.14. The normal probability plot (in +) for METU-C with polynomial 

nonlinearity model results, and the linear fit (in dashed) 
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Figure 5.15. The normal probability plot (in +) for METU-C with Bezier curve 

nonlinearity model results, and the linear fit (in dashed) 
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Figure 5.16. The normal probability plot (in +) for METU-C with B-Spline 

curve nonlinearity model results, and the linear fit (in dashed) 

 

 

 

When the normal probability plots are plotted, it is observed that the error 

distributions for the model results have curvatures and do not exactly fit to the 

superimposed lines. Thus, they do not exactly fit to corresponding normal 

distributions, but a rough assumption that they fit to the normal distributions 

can be made, as it has been made in observing the empirical CDF plots.  

 

In Figures 5.15 and 5.16, for the METU-C models with Bezier and B-Spline 

nonlinearity representations, the distributions of the error statistic values are 

more condansed in small absolute error regions when compared with the ones 

in Figures 5.13 and 5.14 which are for the METU-NN model and METU-C 

model with Polynomial nonlinearity representation, respectively. Thus, the 
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METU-C model results with Bezier and B-Spline nonlinearity representations 

are successful. 

 

5.4 Test of Hypothesis for METU-NN and METU-C Models 

In the error comparison and analysis, the error values, i.e. the differences of 

observed and forecast values, are used in t-tests for four of the models. The 

models are METU-NN, METU-C with Polynomial nonlinearity, METU-C with 

Bezier nonlinearity, and METU-C with B-Spline nonlinearity. First of all, the 

population mean is assumed to be zero, i.e. µ = 0. The sample sizes are n = 

7942 for four of the model results. The sample means and standard deviations 

are calculated. Then, using the Equation 5.4, the intervals of hypotheses are 

calculated.  

 

In the t-test, let the null hypothesis be H0: µ = 0.  

 

We have assumed that the error distributions were normal. With this 

assumption, according to the t-tests applied when the result, h is 1 and you can 

reject the null hypothesis at the significance level α. When h is 0, then you 

cannot reject the null hypothesis at the α level of significance [MATLAB, 

2002]. 

 

Table 5.2 gives the t-test results of the models for α = 10-10. Similarly, Table 

5.3 gives the error statistics when α = 0.05. Also, upper and lower bounds of 

the hypotheses are given.  
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Table 5.2. Error Statistics Table for α = 10-10 

 

METU-

NN 

Forecast 

METU-C with 

(Polynomial 

n.l.) Forecast 

METU-C with 

(Bezier C. n.l.) 

Forecast 

METU-C with 

(B-Spline C. 

n.l.) Forecast 

t-test result 

(boolean) 
h=1 h=0 h=0 h=0 

Upper bound 

of hyp.(TECu) 
-0.072 0.092 0.253 0.235 

Lower bound 

of hyp.(TECu) 
-0.337 -0.168 -0.002 -0.019 

 

 

Table 5.3. Error Statistics Table for α = 0.05 

 

METU-

NN 

Forecast 

METU-C with 

(Polynomial 

n.l.) Forecast 

METU-C with 

(Bezier C. n.l.) 

Forecast 

METU-C with 

(B-Spline C. 

n.l.) Forecast 

t-test result 

(boolean) 
h=1 h=0 h=1 h=1 

Upper bound 

of hyp.(TECu) 
-0.164 0.002 0.164 0.146 

Lower bound 

of hyp.(TECu) 
-0.245 -0.077 0.087 0.069 

 

 

 

When the t-test results for α = 0.05 are computed, it is observed that only the 

hypothesis for METU-C with polynomial nonlinearity representation model 
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results can not be rejected. Thus, when the confidence is decreased, i.e. when α 

is increased, it is observed that the null hypotheses tend to be rejected. It can be 

due to the fact that the distributions are not exactly normal. 

 

5.5 Upper and Lower Bounds of the Cross Correlation Coefficients 

Confidence limits of the cross correlation coefficient can be calculated for 

normal distributions [Spiegel et al., 2000]. Let n be the sample size, r be the 

cross correlation coefficient, Z be a statistic, Zcr be the positive critical value of 

Z for two-tailed tests. With a rough approximation, the Z statistic is normally 

distributed with mean, µz, and standard deviation, σz [Spiegel et al., 2000]. The 

confidence limits for µz are as follows [Spiegel et al., 2000], 
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The confidence limits for upper and lower bounds of cross correlation 

coefficient, ρ, are as follows [Spiegel et al., 2000], 
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Thus, the upper and lower bounds for cross correlation coefficients can be 

computed. In our case studies, n = 7942. Let Zcr = 1.96 which is the positive 

critical value of Z for two-tailed tests for 95% confidence. Then, using the 

cross correlation coefficients, i.e. r values, and Equations 5.6 to 5.8, the upper 
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and lower bounds of the cross correlation coefficients for four of the case 

studies are calculated. 

 

Error table for comparison of the METU-NN model operation performance 

with the METU-C models is given on Table 5.4. The lower and upper bounds 

of cross correlation coefficients at the 95% confidence limits, i.e. the level of 

significance is α=0.05 [Spiegel et al., 2000], are also given. 

 

 

Table 5.4. Error Table 

 

METU-

NN 

Forecast 

METU-C with 

(Polynomial 

n.l.) Forecast 

METU-C with 

(Bezier C. n.l.) 

Forecast 

METU-C with 

(B-Spline C. 

n.l.) Forecast 

Absolute Error 

(TECu) 
1.22 1.17 1.11 1.10 

Normalized Error 

(%) 
6.95 6.39 5.51 5.51 

RMS Error 

(TECu) 
1.84 1.79 1.75 1.75 

Cross Correlation 

Coeff. (x10-2) 
98.6 98.6 98.7 98.7 

upper bound when 

α=0.05(x10-2) 
98.6 98.7 98.8 98.8 

lower bound when 

α=0.05(x10-2) 
98.5 98.6 98.6 98.6 
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At the significance level of α=0.05, the cross correlation coefficients are 

significant. METU-C models with Bezier and B-Spline curve nonlinearity 

representations have higher performance results with smaller error values 

[Senalp et al., 2006d]. For example, the absolute error value for the METU-C 

model with B-Spline nonlinearity representation is 10% smaller than the 

absolute error value for the METU-NN model performance. 

 

5.6 Performance Comparison of METU-NN and METU-C Models 

A performance table is prepared and given in Table 5.5 in order to compare the 

METU-NN model with METU-C models in qualitative and quantitative 

manner. The absolute error values and the cross-correlation coefficients 

between one hour ahead forecast and observed TEC values in April-May 2002 

at Hailsham as the quantitative performance values, the improvements of the 

results of the METU-C models with respect to the METU-NN model results, 

and the qualitative advantages of the models are given in the table. 
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Table 5.5. Performance Table 

 
METU-

NN 
METU-C 

 

 

METU-

NN 

 

 

Forecast 

 

METU-C 

with 

(Polynomial 

n.l.) 

Forecast Im
pr

ov
em

en
t 

w
rt

 N
N

  

METU-C 

with 

(Bezier C. 

n.l.) 

Forecast Im
pr

ov
em

en
t 

w
rt

 N
N

  

METU-C 

with 

(B-Spline 

C. n.l.) 

Forecast Im
pr

ov
em

en
t 

w
rt

 N
N

 

Absolute Error 

(TECu) 
1.22 1.17 4% 1.11 9% 1.10 10% 

Normalized 

Error (%) 
6.95 6.39 8% 5.51 21% 5.51 21% 

Cross Corr. 

Coeff. (x10-2) 
98.6 98.6 .0% 98.7 .1% 98.7 .1% 

Need for past 

input data 
YES NO + NO + NO + 

Transparency of 

internal var. 
NO YES + YES + YES + 

Computation 

time in operation 

A < B < C < D 

D A + B + C + 

 

 

 

When the performance table is examined, after qualitative and quantitative 

performance comparisons are made it can easily be concluded that METU-C 

models are superior to the METU-NN model, which is also successful. Among 
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the models presented the optimum one is the METU-C model with Bezier 

curve nonlinearity representations. It has advantages. The results of it have 

small error values and large cross-correlation coefficient.  It has simple inputs 

because it does not need past inputs. It has transparent internal variables, which 

can be observed and used by the system designers or operators. It is fast in 

terms of the computation time in operation. 

 

5.7 Comparison of IRI-2001, METU-NN and METU-C Models 

International Reference Ionosphere (IRI) is an international project sponsored 

by the COSPAR and URSI [Bilitza, 2001] [IRI, 2007]. UMLCAR adapted the 

IRI-2001 model to be used in MS-Windows platform [UMLCAR, 2007]. The 

results of the METU-C models have been compared with the UMLCAR 

edition of the IRI-2001 model results for the time period of interest during 

well-known Space Weather events of April 2002 [Senalp et al., 2007d]. The 

results have also been compared with the results of the METU-NN model. 

 

The program of the IRI-2001 model gives a single TEC value of a location of 

interest at a time of interest at a run. The usable locations cover the whole 

geographic regions of the Earth in 0.1-degree intervals of latititudes and 

longitudes. The usable time is of 15-minute intervals in terms of Universal 

Time (UT) or Local Time (LT).  

 

The use of the METU-NN-C technique to forecast the 10 minutes values of the 

TEC at 5th, 15th, 25th, 35th, 45th and 55th minutes of the hours, one hour 

ahead, during high solar activity in the solar cycle were examined and the 

results were presented in Chapters 2, 3, 4, and 5.  
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In order to use the common location and common time instants within the 

comparison of the IRI-2001, METU-NN and METU-C model results, the 15th 

and 45th minutes of hours during 18-19 April 2002 at the location of Hailsham 

(50.9˚ N; 0.3˚ E) GPS receiving station are selected. 

 

The observed TEC data was provided by RAL, UK [COST271 WG 4 STSM, 

2002]. One hour in advance forecast TEC values were obtained by using 

METU-NN model [Tulunay E. et al., 2004a] [Senalp et al., 2006d].  One hour 

in advance forecast TEC values were also obtained by using METU-C models 

and the results were presented in Chapters 2, 3, 4 and 5. The TEC values of the 

time and location of interest are obtained by using the IRI-2001 model as well.  

 

Table 5.6 gives the absolute error values and the cross correlation coefficients 

between the observed and forecast TEC values at Hailsham in 18-19 April 

2002.  

 

 

Table 5.6. Error Table 

 

IRI-

2001 

Output 

METU-

NN 

Forecast 

METU-C with 

(Polynomial 

n.l.) Forecast 

METU-C with 

(Bezier C. n.l.) 

 Forecast 

METU-C with 

(B-Spline C. 

 n.l.) Forecast 

Absolute 

Error (TECu) 
15.04 2.09 1.95 1.61 1.62 

Cross Corr. 

Coeff.(x10-2) 
83.8 98.6 98.8 98.4 98.4 

 

 



 

 87

When the absolute error values are compared, it is seen that the results of the 

METU models have smaller error values than the IRI-2001 model results. Also 

the cross-correlation coefficients of the observed and forecast TEC values by 

METU models are higher than the result obtained by IRI-2001 model. The 

optimum model is the METU-C model with Bezier curve nonlinearity 

representation. 

 

Figure 5.17 gives the superimposed variations of the observed TEC values at 

Hailsham in 18-19 April 2002, TEC outputs of the IRI-2001, forecast TEC 

values by METU-NN and forecast TEC values by METU-C with Bezier curve 

nonlinearity representation.  
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Figure 5.17. Observed GPS TEC values for disturbed solar-terrestrial 

conditions (solid), IRI-2001 TEC outputs (dash-dotted) 1 hour ahead Forecast 

TEC values by METU-NN (large dotted) and 1 hour ahead Forecast TEC 

values by METU-C with Bezier curve nonlinearity representations (small 

dotted) for the enlarged portion of the time of validation period: 18-19 April 

2002 at Hailsham. 

 

 

When the superimposed TEC variations are compared, it is seen that the 

variation of one hour in advance forecast TEC values by METU-C with Bezier 

curve nonlinearity representation follows the observed TEC variation with 

small error values. 
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Figure 5.18 gives the scatter diagram for the observed TEC values and IRI-

2001 outputs with best-fit line. Figure 5.19 gives the scatter diagram and best-

fit line for the observed and forecast TEC values by METU-C with Bezier 

curve nonlinearity representations. 

 

 

 

 

 

Figure 5.18. Scatter diagram with best-fit line for observed TEC values and 

IRI-2001 TEC outputs in 18-19 April 2002 at Hailsham. 
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Figure 5.19. Scatter diagram with best-fit line for observed TEC values and one 

hour ahead forecast TEC values by METU-C with Bezier curve nonlinearity 

representations in 18-19 April 2002 at Hailsham. 

 

 

 

When the scatter diagrams are compared it is seen that the deviations of the 

scatter points are small for the results of METU-C with Bezier curve 

nonlinearity. Also, the best-fit line in the scatter diagram for the results of the 

METU-C has a slope near 45˚ and passes through the origin. Thus, the system 

reached the correct operating point within the system identification by METU 

models and the forecasting errors are small. Also the METU-C model learned 

the shape of the inherent nonlinearities. Thus the deviations from straight line 
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are small in the scatter diagram, and the correlation coefficients are very close 

to unity. 

 

To sum up, the METU-C models in the case studies are competitive and they 

have high performance results when compared with the internationally popular 

ionospheric model, IRI-2001. The results provide important achievements of 

the METU-C models. Among the models presented, METU-C with Bezier 

curve nonlinearity representation is outstanding. 
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CHAPTER 6 

 

 

FORECASTING TEC MAPS BY USING METU-NN AND 

BEZIER SURFACE PATCHES 

 

 

 

6.1 Introduction 

The model developed is called the Middle East Technical University Neural 

Network (METU-NN) Model. In order to understand more about the complex 

response of the magnetosphere and ionosphere to extreme solar events, this 

time the series of space weather events in November 2003 are chosen. Total 

Electron Content (TEC) values of the ionosphere are forecast during these 

space weather events. In order to facilitate an easier interpretation of the 

forecast TEC values, maps of TEC are produced by using the Bezier surface 

fitting technique [Tulunay E. et al., 2006a] [Senalp et al., 2006a]. 

 

It is most desirable to drive mathematical ionospheric forecasting and mapping 

models based on physics to incorporate them in ionospheric services and 

activities. However, this is a very complex and prohibitively difficult task.  

 

In general, mapping of an ionospheric quantity such as ionospheric critical 

frequency (foF2) or TEC means that a surface fitting is performed based on 

known values of that quantity on specified points of a surface. Mapping carried 

out by using a certain method, extrapolates the known discrete values 
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continuously to the whole surface. There are various widely used ionospheric 

mapping techniques using both the ionosonde-derived TEC and the GPS-TEC 

[Samardjiev et al., 1993] [Cander, 2003] [Jakowski et al., 2004] [Stamper et 

al., 2004] [Zolesi et al., 2004]. Samardjiev et al. (1993) used contouring 

techniques for ionospheric mapping including Kriging technique, which 

performs best when compared with inverse distance squared technique and 

minimum curvature technique. Cander (2003) discussed the findings of the EU 

Action COST 251 and plans for the COST 271 on TEC forecast and mapping. 

Jakowski et al. (2004) and Stamper et al. (2004) presented near real time and 

real time TEC mappings over Europe. Zolesi et al. (2004) presented a method 

based on a regional model of the standard vertical incidence monthly median 

ionospheric characteristics, which was updated with real-time ionospheric 

observations for mapping of ionospheric conditions over Europe. It is suitable 

to be used in real time for operational applications. These studies did not report 

mapping based on forecasts. 

 

In this work, a method has been developed to perform TEC forecast mapping 

by using METU-NN and Bezier surfaces for the first time [Tulunay E. et al., 

2006a]. The METU-NN model [Tulunay Y. et al., 2004a] is used to produce 

TEC forecast maps over Europe using Bezier surfaces which are being used for 

surface generation in computer graphics [Rogers and Adams, 1990]. Brief 

information concerning mapping and Bezier surfaces is presented in section 

6.4. In this work, one hour in advance forecast of the 10 minute TEC maps 

over Europe during November 2003 space weather events has been introduced 

and the results are presented. 

 

Neural Network models are designed and trained with significant inputs. In this 

approach, the basic inputs for the model are the past TEC values and the 
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temporal inputs as explained in section 6.3. The forecast results are promising 

for system operators. This work leads availability of TEC forecast mapping 

results by METU-NN for making comparisons with the results by METU-NN-

C in Chapter 7. The Neural Network architecture of METU-NN is modular. 

Due to modularity, the model and its input parameters are open to new 

developments depending on future requirements. The sub blocks in the METU-

NN have got one input layer, one hidden layer with the neurons and one output 

layer. The Neural Network is trained and used to forecast the TEC values for 

the grids located over Europe. Using these forecast TEC values of the grids, 

TEC maps as Bezier surfaces are presented. 

 

The main contributions of this work are organization of data for teaching 

complex processes, Neural Network based modeling of a highly complex 

nonlinear process such as the TEC forecast mapping, and general 

demonstration of learning capability and reaching a proper operating point by 

calculating cross correlations and errors, respectively. 

 

6.2 Preparation of Data for the METU-NN 

Ten minute vertical TEC data were evaluated from the GPS measurements that 

took place between 1st of November and the 11th of December 2003 over 

Europe centered over Italy based on slant TEC data [Ciraolo, 2004] [Radicella, 

2004]. The geographic coverage of the TEC data is between latitudes of (35.5º 

N; 47.5º N) and longitudes of (5.5º E; 19.5º E). The data belong to the 104 grid 

locations spaced every 2º longitude by 1º latitude intervals in space. These data 

consist of the training, test and validation subsets during the development and 

operation modes of the modeling process. 

 

Table 6.1 illustrates how the data were assigned to be employed by the METU-

NN model during the ‘training’, ‘test’, and ‘validation’ modes.  
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Table 6.1. Selection of the time periods for the input data 

PHASE YEAR DAYS 

Train 2003 1–15 Nov. 

Test 2003 30 Nov. – 11 Dec. 

Validation 2003 16–29 Nov. 

 

 

 

In particular, the period of major space weather events were chosen for the 

‘validation’ mode. That is, the solar active region, the sunspot group 484 (or 

near the sunspot group 501) was the seat of a major coronal mass ejection 

(CME) on 18th of November 2003. This CME triggered a geomagnetic storm 

on 20th of November 2003 at around 08:00 UT. This storm was qualified by 

the three-hour planetary magnetic index of Kp as 8+ [SpaceWeather, 2007] 

[NGDC, 2007]. However, in principle all the data subsets were chosen from 

periods of similar Zurich sunspot numbers. The models contain intrinsic 

information about the solar activity. 

 

6.3 Construction of the Neural Network Based Model 

The construction work of the Neural Network based model is carried out in the 

development mode. It is composed of “training phase or learning phase” and 

“test phase” [Y. Tulunay et al., 2004a]. Training and test phases are best 

performed with independent but statistically similar data sets. It is natural that 

the nonlinear inherent processes are to be learned by the model during the 

learning phase as fast as possible. The Levenberg-Marquardt Backpropagation 

algorithm is chosen to be the most convenient one during the training for this 

work.  
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The model parameters are optimized and fixed at the end of the construction 

procedure. In the operation mode the validation data are used for calculating 

the errors, point by point, to measure the performance of the model. 

 

The value of the TEC at the time instant k is designated by  f(k). The output is 

f(k+60) in 60 minutes in advance forecast. It is the value of the TEC to be 

observed 1 hour later than the present time for this work. There are 419 inputs 

fed into the METU-NN model. 3 of the inputs are the temporal inputs; i.e. dnd, 

Cm, and Sm. The rest of the input parameters are the inputs related to the 

history of the TEC values for the grids over Europe, i.e. 104 f(k) values, 104 

∆1(k) values, 104 ∆2(k) values, and 104 R∆(k) values. Inputs for each METU-

NN module are as follows, 

 

1. The present value of the TEC, f(k): see Equation 2.1 in Chapter 2 

2. First Difference of the TEC, ∆1(k): see Equation 5.1 in Chapter 5 

3. Second Difference of the TEC, ∆2(k): see Equation 5.2 in Chapter 5 

4. Relative Difference of the TEC, R∆(k): see Equation 5.3 in Chapter 5 

5. Serial date number difference, dnd, 

dnd = Present date number – The first d.n. of the data of interest (6.1) 

6. Cosine component of minute of the day, Cm: see Equation 2.2 in Chapter 2 

7. Sine component of the minute of the day, Sm: see Equation 2.3 in Chapter 2 

 

Date numbers start with 1st Jan. of year 0, as date number 1. By calculating the 

serial date number difference the start value is shifted to the first date of the 

data of interest. In this study, the first date of the data of interest is 1 Nov. 

2003, 00:05 UT. 
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Figure 1.3 in Chapter 1 shows the architecture of each of the Neural Network 

module. The modular structure of the METU-NN provides the development 

and operation modes to be fast and robust. In this work, the METU-NN model 

has got 104 modules of Neural Networks. The number of modules corresponds 

to the number of grids for the region of interest. The inputs of the modules are 

the present TEC values (#:104) and the first differences (#:104) for each grid; 

first, second and the relative differences (#:3) for the grid of interest; the 

present date number difference (#:1) and the present trigonometric components 

(#:2) of minute of the day. Thus, for each module there are 214 inputs. When 

common inputs of the modules are not counted, the overall number of the 

inputs for the METU-NN model is 419. During training the parameters, i.e. the 

weights, of the METU-NN modules are determined for each grid. METU-NN 

model has 104 outputs corresponding to 104 modules. The output of each 

module is the forecast value of TEC for the grid of interest. For the modules, 

among the various Neural Network structures the best configurations are found 

to be the ones with one hidden layer. 6 neurons are used in the hidden layer of 

the modules. 

 

6.4 Brief Information Concerning Mapping and Bezier Surfaces 

Mapping covers a portion of land. As an example consider a portion of 

European area which is bounded by the latitudes (35.5º N; 47.5º N) and 

longitudes (5.5º E; 19.5º E). This area is partitioned by using a grid structure. 

Grid points or local control points are thus defined. 

 

In practice, the number of control points can be increased by increasing the 

number of defining polygon vertices. Local control provides the capability of 

including possible variations around a local control point without interfering 

other distant localities of the mapping area. 
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Bezier surfaces, which are used in such mapping for the first time, have some 

advantages [Rogers and Adams, 1990]. The availability of the GPS data to be 

used for TEC evaluation provides larger number of polygon vertices for Bezier 

surfaces. Thus, better surface fit is achieved. 

 

TEC values are forecast by using METU-NN model. Mapping is performed 

over the area of interest by using Bezier surface. Bezier surface is 

advantageous since it can provide more control points to increase the quality of 

fit as compared with other surface patches such as bilinear, ruled, linear Coons, 

and Coons bicubic surface patches. Coons bicubic surface needs the 

specification of precise, nonintuitive mathematical information such as 

position, tangent and twist vectors as in the cubic spline curves [Rogers and 

Adams, 1990]. Therefore there are difficulties limiting its use in practice. 

These difficulties are overcome by using Bezier surfaces. 

 

In this work, 104 grid locations corresponding to 104 defining polygon vertices 

are used to obtain sufficient control in mapping. The TEC forecast value at any 

location on the Bezier surface can be calculated as, 
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B matrix values correspond to the METU-NN outputs for the grids, 

n+1 = 8 is the number of longitude grids for each latitude, 

m+1 = 13 is the number of latitude grids for each longitude, 
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u is the normalized longitude variable in the region of interest, 

w is the normalized latitude variable in the region of interest. 

 

6.5 Results 

The TEC trained METU-NN model is used for forecasting TEC values 1 hour 

in advance during 16-29 November 2003. The time period includes the major 

November 2003 space weather event. Then, maps of TEC are constructed by 

using the Bezier surface mapping technique. Observed TEC values are used 

only for the grid locations. METU-NN is trained with the observed TEC data to 

give the outputs, the forecast TEC values, for the grid locations. The TEC 

mapping is not performed during training because the observed TEC values for 

the whole region are not a priori except the grid locations. After the forecast 

operation TEC mapping is performed. Figure 6.1a illustrates the variations of 

both the 1 hour in advance forecast and observed TEC values for the grid 

location: (13.5˚ E; 41.5˚ N), during 16-29 November 2003. Figure 6.1b, 

covering the period 19-21 November 2003, is a subset of Figure 6.1a. The 

diurnal minute long variation of the TEC values is shown in the vertical axis 

and the horizontal axis is the days of the November 2003 in minute intervals. 

To a first approximation the forecast and observed GPS TEC values are in very 

good agreement on visual inspection. In 20 November 2003, the three hour 

planetary magnetic indices of Kp = 6+ during 09:00 – 12:00 UT, Kp = 8- 

during 12:00 – 15:00 UT, Kp = 9- during 15:00 – 18:00 UT, Kp = 9- during 

18:00 – 21:00 UT, and Kp = 8 during 21:00 – 24:00 UT indicate effects of the 

extreme events [SpaceWeather, 2007] [NGDC, 2007]. Thus, the forecast and 

observed TEC values are daytime high TEC values during the daytime of 20 

November 2003. The forecast TEC values during the afternoon of 20 

November 2003 are afternoon-time high TEC values as expected, but the 

observed TEC values for the period are not afternoon-time high TEC values. 
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This may be due to lack of actual data in calculation of the observed GPS-TEC 

values due to communication cut offs during the extreme events. 

 

 

 

 
 

Figure 6.1a. Observed (dotted) and 1 hour ahead forecast (solid) TEC during 

16 Nov.2003 01:10UT-29 Nov.2003 24:00UT for the grid point (13.5˚E; 

41.5˚N) 
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Figure 6.1b. Observed (dotted) and 1 hour ahead forecast (solid) TEC during 

19 Nov.2003 00:00UT-21 Nov.2003 24:00UT for the grid point (13.5˚E; 

41.5˚N)  

 

 

 

Figure 6.2 illustrates the variations of the observed TEC values and 1 hour in 

advance forecast TEC maps for the big geomagnetic storms of 20th November 

2003, at 09:30, 13:40, 15:30, and 17:20 UT, respectively. 
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Figure 6.2. Observed TEC values and 1 hour ahead forecast TEC Map 

examples during 20 Nov. 2003 
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Figure 6.3a presents the scatter diagram of the 1 hour in advance forecast and 

observed TEC data for whole of the 104 grid locations during 16-29 November 

2003. Figures 6.3b, 6.3c, and 6.3d present the scatter diagrams of the forecast 

and the observed TEC data at the grid locations: (11.5˚ E; 38.5˚ N); (13.5˚ E; 

41.5˚ N); and (15.5˚ E; 44.5˚ N) respectively during 16 November to 29 

November 2003. 

 

 

 

 

 

Figure 6.3a. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour 

ahead Forecast mapping and Observed TEC values for all grid points for the 

validation time 16-29 November 2003. 
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Figure 6.3b. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour 

ahead Forecast mapping and Observed TEC values for the single grid point 

(11.5˚ E; 38.5˚ N) for the validation time 16-29 November 2003. 
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Figure 6.3c. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour 

ahead Forecast mapping and Observed TEC values for the single grid point 

(13.5˚ E; 41.5˚ N) for the validation time 16-29 November 2003. 
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Figure 6.3d. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour 

ahead Forecast mapping and Observed TEC values for the single grid point 

(15.5˚ E; 44.5˚ N) for the validation time 16-29 November 2003. 

 

 

 

Best-fit lines of near to 45° slopes, almost passing through the origins in the 

Figures 6.3a to 6.3d, indicate small forecasting errors. 

 

In order to examine the performance of the METU-NN during the geomagnetic 

storm on 20 November 2003, reference can be made to Figures 6.4a and 6.4b. 

Figure 6.4a illustrates the scatter diagram of the 1 hour in advance forecast and 

observed TEC data for whole of the 104 grid locations during 20 November 

2003. Figure 6.4b presents the scatter diagram of the forecast and the observed 

TEC data at the grid location: (13.5˚ E; 41.5˚ N) during 20 November 2003. 
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Figure 6.4a. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour 

ahead Forecast mapping and Observed TEC values for all grid points for the 

day 20 November 2003. 
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Figure 6.4b. Scatter Diagram (dots) with best-fit line (solid) for the 1 hour 

ahead Forecast mapping and Observed TEC values for the single grid point 

(13.5˚ E; 41.5˚ N) for the day 20 Nov. 2003. 

 

 

 

Summarizing the results, the METU-NN model with Bezier surface TEC 

mapping learned the shape of the inherent nonlinearities during the severe 

space weather conditions of the November 2003 period. In other words, the 

system reached the global error minimum by reaching the correct operating 

point. 

 

The overall Absolute TEC error map for 1 hour in advance forecasts is plotted 

in the Figure 6.5. The quantified performance of the model can be studied in 

terms of the values of errors presented in Tables 6.2 and 6.3. 



 

 109

 

 

Figure 6.5. Absolute Error Map of observed and 1 hour ahead forecast TEC for 

16-29 Nov. 2003. 

 

 

 

It is interesting to note that forecasts inside the region of interest exhibit a 

better match with the observed data leading smaller error values in the inner 

grids when compared with the corner grids. The reason is that the presence of 

the neighbor grids increases the learning performance of the model for 

forecasting. Selecting a wider area in training than the area in operation can be 

proposed. This may be achieved by discarding the outermost grids of the area 

of interest during operation and performance analysis. In the current work none 

of the grids are discarded and the overall performance of the model is 

presented for discussion. 
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Table 6.2. Error Table for 1 h in advance forecasts for 16-29 Nov. 2003 

Location 
11.5˚E 

38.5˚N 

13.5˚E 

41.5˚N 

15.5˚E 

44.5˚N 

Overall 

TEC Map 

Absolute Error 

(TECu) 
1.58 1.49 1.52 1.65 

Normalized Error 

(%) 
14.29 15.22 16.30 15.63 

Root Mean Square 

Error (TECu) 
2.16 2.05 2.14 2.30 

Cross Correlation 

Coefficient (x10-2) 
97.75 97.46 96.96 96.99 

 

 

Table 6.3. Error Table for 1 h in advance forecasts for the day: 20 Nov. 2003 

Location 
11.5˚E 

38.5˚N 

13.5˚E 

41.5˚N 

15.5˚E 

44.5˚N 

Overall 

TEC Map 

Absolute Error 

(TECu) 
2.90 3.29 3.15 3.26 

Normalized Error 

(%) 
19.45 27.32 26.84 29.98 

Root Mean Square 

Error (TECu) 
4.07 4.39 4.34 4.50 

Cross Correlation 

Coefficient (x10-2) 
97.64 96.94 96.45 96.40 
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Tables 6.2 and 6.3 present the average error values for 1 hour in advance 

forecasts during 16 to 29 November 2003, and during 20 November 2003, 

respectively. The first three columns of the tables present the error values for 

the grid locations: (11.5˚ E; 38.5˚ N), (13.5˚ E; 41.5˚ N), and (15.5˚ E; 44.5˚ N) 

respectively. For the overall TEC forecast mapping, error values in the fourth 

columns of Tables 6.2 and 6.3 are presented. They are small. The average 

absolute error, for example, in Table 6.2 for the 1 hour in advance forecast, is 

less than 2 TEC units (TECu), which is important for practical applications. 

The forecast mapping error values are within operational tolerance [Radicella, 

2004]. The cross correlation coefficients between the computed and observed 

TEC values are high as noted in Tables 6.2 and 6.3. 

 

6.6 Conclusions 

Characteristics of near-Earth space play vital roles in the ionospheric and trans-

ionospheric propagation of radio waves. These parameters are subject to drastic 

variations depending on the space weather conditions. Thus the reliable 

operations of radio communication as well as navigation systems and 

spacecraft control systems largely depend on the reliable information 

concerning the ionospheric parameters such as TEC. Especially forecast of 

TEC values are essential in high frequency (HF) and other type of 

telecommunication system planning. 

 

Space weather conditions also affect Earth bound systems, such as pipelines 

and electric power networks. By receiving alerts and warnings, pipeline 

managers can provide efficient systems decreasing the resultant corrosion rate 

on the pipes, and power companies can minimize resultant power damages. 
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Mapping is required in telecommunication planning as it involves the whole 

land, such as Europe in this case. 

 

In this work, a data driven, Neural Network model forecasting the TEC values 

on the grids is offered, and then Bezier surfaces are used in obtaining the 

forecast TEC maps over Europe, which is very important for 

telecommunication and navigation especially during disturbed ionospheric 

conditions [Tulunay E. et al., 2006a]. 

 

Forecasts of an ionospheric process, the TEC variation, using Neural Network 

based METU-NN model was employed in order to forecast the TEC values 1 

hour in advance. The model learned the shape of the inherent nonlinearities and 

the system reached the correct operating point in the operation time period of 

16-29 November 2003. Forecasting errors are small. This fact is the indication 

of the system reaching the correct operating point within training. In other 

terminology, the system is prevented to reach local minima and it is succeeded 

to reach the global minimum of the error cost function. The correlation 

coefficients are very close to unity, which means that the METU-NN model 

learned the shape of the inherent nonlinearities. Therefore, the deviations from 

straight line are small in the scatter diagrams. In other words, it is shown that 

METU-NN modules, trained and tested with properly organized data are 

promising in modeling the complex nonlinear processes, such as the 

unpredictable variability of the ionospheric TEC values. 

 

Briefly, it is the first time that METU-NN modules and Bezier surfaces are 

used to forecast and map TEC values over Europe [Tulunay E. et al., 2006a]. 



 

 113

 

CHAPTER 7 

 

 

FORECASTING TEC MAPS BY USING METU-NN-C AND 

BEZIER SURFACE PATCHES 

 

 

 

7.1 Introduction 

Middle East Technical University Neural Network and Cascade Modeling 

(METU-NN-C) technique by using polynomial, Bezier curve and B-Spline 

curve nonlinearity representations to forecast Total Electron Content (TEC) 

values for single station were presented in Chapters 2, 3 and 4. In Chapter 6, 

forecasting TEC maps by METU-NN model was presented. In this chapter, the 

use of METU-NN-C technique based on Hammerstein system modeling with 

Bezier curve nonlinearity representation in system identification to forecast 

complex nonlinear processes, TEC grid values; and the use of the Bezier 

surface in mapping of the METU-NN-C outputs, i.e. mapping of the forecast 

grid data values, are presented [Senalp et al., 2006b]. In order to compare the 

METU-NN-C results with the METU-NN results presented in Chapter 6, the 

series of space weather events in November 2003 are chosen again. 1 hour 

ahead forecast mapping of the TEC values during disturbances is performed. 

 

This chapter also outlines preparation of data, gives the results with error 

tables, cross correlation coefficients and scatter diagrams. It discusses the 

generalized and fast learning and operation of the METU-NN-C models with 
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Bezier curve nonlinearities, and mapping by using Bezier surfaces [Rogers and 

Adams, 1990]. 

 

In our approach, the basic inputs for the model are the Bezier curve 

representation of the present TEC values on the grids and the temporal inputs. 

The state-like internal variables are estimated by METU-NN. The static 

nonlinearity of METU-C represented by Bezier curves, and the dynamic 

linearity of METU-C are estimated by using the cascade modeling technique. 

The outputs are 1 hour in advance forecast TEC grid values. Then, those values 

are used to obtain TEC forecast maps by employing Bezier surfaces. 

 

7.2 Preparation of Data for the METU-NN 

As in Chapter 6, ten-minute vertical TEC data, which were evaluated from the 

GPS measurements of the time interval, 1 November - 11 December 2003, over 

a portion of the European area centered over Italy, based on slant TEC data 

were used herewith [Ciraolo, 2004] [Radicella, 2004]. Again the data belong to 

the 104 grid locations spaced every 2º longitude by 1º latitude intervals in 

space between latitudes of (35.5ºN; 47.5ºN) and longitudes of (5.5ºE; 19.5ºE). 

  

Table 6.1 in Chapter 6 illustrates how the data were assigned to be employed 

by the METU-NN and METU-NN-C models during the training, test and 

validation within development and within operation.  

 

In this chapter, the period of major space weather events in November 2003 

were chosen for the ‘validation’ mode again. In principle all the data subsets 

were chosen from periods of similar Zurich sunspot numbers. Thus, the models 

contain intrinsic information about the solar activity. 
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7.3 Construction of the METU-NN 

The METU-NN-C model has 104 METU-C modules. Each module has its 

state-like variable estimator module, the METU-NN module. For the process of 

interest, Feedforward Neural Network architecture with four neurons in one 

hidden layer is used in each of the METU-NN module. The description 

continues by considering any one of the 104 METU-NN modules. Hyperbolic 

tangent sigmoids in the hidden layer and a linear function in the output layer 

are the activation functions. The hidden layer outputs of each of the METU-

NN module can represent the static part of the state-like internal variables in 

cascade modeling. During training Levenberg-Marquardt Backpropagation 

algorithm is used [Hagan and Menhaj, 1994] [Haykin, 1999]. Each METU-NN 

module is used to estimate the internal variables of its corresponding METU-C 

module with Bezier curve nonlinearity. The 107 inputs used for each METU-

NN module are as follows, 

 

1 - 104. The present grid values of the TEC, f(k): see Equation 2.1 in Chapter 2 

105. Cosine component of minute, m, of the day: see Equation 2.2 in Chapter 2 

106. Sine component of the minute of the day: see Equation 2.3 in Chapter 2 

107. Serial date number difference, dnd: see Equation 6.1 in Chapter 6 

 

While the output layer of each METU-NN hosts the TEC value being observed 

60 minutes later than the present time in a grid location, the outputs of the 

hidden layer in each METU-NN are four of the internal variables for each 

METU-C. 

 

7.4 Construction of the METU- C 

The METU-NN-C model has 104 METU-C modules. In the development 

mode, the construction work of each METU-C module is carried out in 
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“training phase” and “test phase” as in the Neural Network approach [Tulunay 

Y. et al., 2004a]. The parameters of the cascaded static nonlinear block and 

dynamic linear block in each METU-C module are optimized in the training 

phase. The description continues by considering any one of the 104 METU-C 

modules. In each METU-C, the inputs, up(k), are normalized in order to use 

them in Bezier curve representation of the nonlinearity. The outputs of the 

nonlinear element in each METU-C, i.e. the internal variables xq(k), can be 

expressed as Bezier curves as in Equation 1.22 in Chapter 1. In the equation, R 

= 107 is the number of inputs, m+1 = 3+1 = 4 is the number of defining 

polygon points. Thus, the product R(m+1) = 428  gives the number of static 

block coefficients, Bpi, to be determined. The defining polygon points are the 

local control points [Rogers and Adams, 1990]. 

 

The output y1(k) is represented as in Equation 1.24 in Chapter 1 by using a 

dynamic linearity relationship for the internal variables xq(k) and their past 

values xq(k-j). For the equation, the product S.(n+1) gives the number of 

dynamic internal variables. The coefficients of the linearity, i.e. hq(j), are also 

determined. 

 

The outputs of the first stage, i.e. 4 outputs of the static nonlinear block, xq(k), 

and their one hour and two hours past values are stored as internal variables so 

that S=4 and n=2 in Equation 1.24 in Chapter 1. These internal variables are 

the inputs to the second stage of the cascade model, i.e. 12 inputs for the 

dynamic linear block of the METU-C model. 

 

For fast learning of the process with large sized input data the “Levenberg-

Marquardt” optimization algorithm has been used within training again. 

Memorization is prevented by using independent validation data and by 
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terminating training when the gradient of the validation within development 

error becomes near zero. In the operation mode another data set is used for 

calculating the errors, point by point, to measure the performance of the model. 

 

The output of each METU-C module is the value of the TEC to be observed 60 

minutes later than the present time in one of the 104 grid locations. Then with 

the 104 outputs of the METU-NN-C model, 1 hour ahead TEC forecast maps 

over Europe are obtained by using Bezier surfaces [Rogers and Adams, 1990]. 

 

TEC forecast value at any location on the map can be computed by using 

Bezier surfaces as in Equation 6.2 in Chapter 6. In the equation, B matrix 

values correspond to the METU-NN-C outputs for the grids. 

 

7.5 Results 

Operation has been performed on validation data set by producing the forecast 

TEC maps over Europe for 16-29 November 2003. The cross correlation 

coefficients between the observed TEC and forecast TEC at 104 grid locations 

have been calculated. The root mean square, normalized and absolute error 

values have also been calculated. Tables 7.1 and 7.2 are the error tables 

displaying the results for three grid locations and for the overall TEC map. The 

time period includes the major November 2003 space weather (SW) event, 

which caused disturbance on TEC variation on 20 November 2003 

[SpaceWeather, 2007]. 
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Table 7.1. Error Table for 1 h in advance TEC forecasts on 16-29 Nov. 2003 

Location 
11.5˚E 

38.5˚N 

13.5˚E 

41.5˚N 

15.5˚E 

44.5˚N 

Overall 

TEC Map 

Absolute Error 

(TECu) 
1.42 1.32 1.38 1.50 

Normalized Error 

(%) 
13.09 13.88 15.27 14.75 

Root Mean Square 

Error (TECu) 
2.03 1.89 1.95 2.14 

Cross Correlation 

Coefficient (x10-2) 
97.74 97.56 97.27 97.08 

 

 

Table 7.2. Error Table for 1 h in advance TEC forecasts on 19-21 Nov. 2003 

Location 
11.5˚E 

38.5˚N 

13.5˚E 

41.5˚N 

15.5˚E 

44.5˚N 

Overall 

TEC Map 

Absolute Error 

(TECu) 
1.89 1.98 1.99 2.12 

Normalized Error 

(%) 
15.72 18.25 18.67 20.29 

Root Mean Square 

Error (TECu) 
2.90 2.91 2.94 3.16 

Cross Correlation 

Coefficient (x10-2) 
97.56 97.20 97.03 96.71 
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Figure 7.1 shows the observed and forecast TEC variation at the location: 

13.5˚E, 41.5˚N for 16-29 Nov. 2003. Figure 7.2 shows the scatter diagram for 

the same location and for 16-29 Nov. 2003. Figure 7.3 gives the variations of 

the observed TEC values and 1 hour in advance forecast TEC maps for the SW 

event of 20th Nov. 2003, at 13:00, 15:30 and 17:20 UT, respectively. 

 

In the scatter diagram in Figure 7.2, the fitted line has a slope close to one and 

the forecasting errors are small for system operators. Thus, the system reached 

the correct operating point or the global minimum of the error cost function in 

system identification. Deviations from straight line are small in the scatter 

diagram and the correlation coefficients are very close to unity. Thus, the 

METU-NN-C model learned the shape of the inherent nonlinearities. The 

model gives accurate TEC forecast values and maps before, during and after 

the disturbed conditions as in Figures 7.1 and 7.3. 
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Figure 7.1. Location: 13.5˚E, 41.5˚N: Observed (dotted) and 1 hour in advance 

forecast (solid) TEC variation for 16-29 Nov. 2003. 
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Figure 7.2. Location: 13.5˚E, 41.5˚N: Scatter diagram for 16-29 Nov. 2003 
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Figure 7.3. Observed TEC values and 1 hour ahead forecast TEC Map 

examples for 20 Nov. 2003. 
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The overall Absolute TEC error map is plotted in the Figure 7.4. The 

occurrence of the neighbor grids increases the learning performance of the 

model for forecasting. 

 

 

 

 

 

Figure 7.4. Absolute error map for observed and 1 h. ahead forecast TEC 

during 16-29 Nov. 2003 

 

 

 

7.6 Conclusions 

Since the reliable operations of radio communication as well as navigation 

systems and spacecraft control systems largely depend on the reliable 
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information concerning the ionospheric parameters such as TEC, developing 

new techniques to identify those processes with higher accuracy is the basic 

requirement, and forecast mapping of TEC values are essential in high 

frequency (HF) telecommunication system planning as it involves the whole 

land, such as Europe in this and previous cases. 

 

In this work, Hammerstein system modeling based METU-NN-C to forecast 

the TEC values on the grids is offered, and then Bezier surfaces are used in 

obtaining the forecast TEC maps over Europe. This is very important for 

telecommunication and navigation especially during disturbed ionospheric 

conditions. 

 

In this work, the developed METU-NN-C model has 104 METU-NN and 104 

METU-C modules for the process of interest. The METU-NN modules 

estimated the state-like variables of the METU-C modules. The METU-NN-C 

learned the shape of the inherent nonlinearities and reached the correct 

operating points even in the disturbed Space Weather conditions. It can be 

concluded that the identification of the complex nonlinear processes, such as 

the TEC forecast mapping, can be achieved by Hammerstein forms in which a 

static nonlinear block and a linear dynamic block are cascaded. The inner 

locations on the forecast maps gave higher performance results because those 

have more neighbor grids increasing the learning performance. 

 

The METU-NN-C model results are compared with the METU-NN model 

results being presented in Chapter 6. 

 

Considering the error tables and scatter diagrams in Chapter 6 and 7, it is 

concluded that METU-NN-C models are successful in process identification. 
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Error values in Table 7.1 are smaller than the ones in Table 6.2, and cross 

correlation coefficients in Table 7.1 are higher. For the overall TEC forecast 

mapping, error values in the fourth columns of Tables 7.1 and 7.2 are small. 

The forecast mapping error values are within operational tolerance [Radicella, 

2004]. 

 

Briefly, it is the first time that METU-NN-C modules and Bezier surfaces are 

used to forecast and map TEC values over Europe. 
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CHAPTER 8 

 

 

THE USE OF METU-NN-C FOR KNOWN NONLINEAR 

DYNAMIC PROCESSES 

 

 

 

8.1 Introduction 

Middle East Technical University Neural Network and Cascade Modeling 

(METU-NN-C) technique with Bezier curve nonlinearity is used to identify a 

simple forced pendulum; a spring loaded inverted double pendulum with a 

forced table; two speakers; and a Van der Pol oscillator in order to further show 

generalized usage of METU-NN-C [Senalp et al., 2006e] [Senalp et al., 2007b] 

[Senalp, 2007a] [Senalp, 2007c].  

 

8.2 Simple Forced Pendulum 

The simple forced pendulum in Figure 8.1 is a well-known nonlinear problem, 

whose state equations are known as follows [Franklin et al., 1990], 

inT
ml

b
2

2 1
sin +Ω−−= ϑωω&  (8.1) 

ωϑ =&  (8.2) 
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where Tin is the input torque generated by a buffeting wind, θ is the output 

angular position, b is the coefficient of drag, and l
g

=Ω  is the oscillation 

frequency for small initial conditions, small angles [Franklin et al., 1990]. 

 

 

 

 

 

 

 

 

 

Figure 8.1. Schematic of a simple pendulum [Franklin et al., 1990] 

 

 

 

8.2.1 Data for METU-NN-C 

The response of the simple forced pendulum angle to a complex input torque 

generated by a buffeting wind was obtained [Franklin et al, 1990]. Figure 8.2 

shows the input representing random wind force acting on the pendulum, 

whereas Figure 8.3 shows the response of the pendulum angle [Franklin et al, 

1990]. 

 

 

 

Tin 

θ 
m 

l 
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Figure 8.2. Torque generated by a buffeting wind [Franklin et al., 1990] 

 

 

 

 

 

Figure 8.3. Response of the pendulum angle to the torque given in Figure 8.2. 
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Those input and response data are used to identify the process by METU-NN-C 

model. The sampling time is selected as 0.05 sec. By giving the initial 

conditions, the 0.05 sec in advance values of the response of the pendulum are 

to be obtained by using the METU-NN-C model [Senalp et al., 2007b]. 

 

8.2.2 Construction of the METU-NN 

The METU-NN-C model has one METU-C module. The module has its state-

like variable estimator module, the METU-NN module. The 2 inputs used for 

the METU-NN module are the initial angle and the present torque. For the 

process of interest, Feedforward Neural Network architecture with two neurons 

in one hidden layer is used in the METU-NN module. Hyperbolic tangent 

sigmoids in the hidden layer and a linear function in the output layer are the 

activation functions. The hidden layer outputs of the METU-NN module can 

represent the static part of the state-like internal variables in cascade modeling. 

During training Levenberg-Marquardt Backpropagation algorithm has been 

used [Hagan and Menhaj, 1994] [Haykin, 1999].  

 

The METU-NN module is used to estimate the internal variables of the METU-

C module with Bezier curve nonlinearity. While the output layer of the METU-

NN hosts the response of the pendulum angle value being observed 0.05 sec 

later than the initial time, the outputs of the hidden layer in the METU-NN are 

two of the internal variables for the METU-C. 

 
8.2.3 Construction of the METU-C 

The METU-NN-C model has one METU-C module. The parameters of the 

cascaded static nonlinear block and dynamic linear block in the METU-C 

module are optimized in the training phase. The inputs are normalized in order 

to use them in Bezier curve representation of the static nonlinearity. The 

outputs of the nonlinear element in each METU-C, i.e. the internal variables 
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xq(k), can be expressed as Bezier curves as in Equation 1.22 in Chapter 1. In 

the equation, R = 2 is the number of inputs, m+1 = 3+1 = 4 is the number of 

defining polygon points. Thus, the product R(m+1) = 8  gives the number of 

static block coefficients, Bpi, to be determined.  

 

The output y(k) is represented as in Equation 1.24 in Chapter 1. The 

coefficients of the linearity, i.e. hq(j), are also determined. 

 

The outputs of the first stage, i.e. 2 outputs of the static nonlinear block, xq(k), 

and their one step and two step past values are stored as internal variables so 

that S=2 and n=2 in Equation 1.24 in Chapter 1. These internal variables are 

the inputs to the second stage of the cascade model, i.e. S.(n+1) = 6 inputs for 

the dynamic linear block of the METU-C model. 

 

The “Levenberg-Marquardt” optimization algorithm has been used within 

training again.  

 

The output of the METU-C module is the value of the response of the 

pendulum angle to be observed 0.05 sec later than the initial time. In the 

operation mode the data set is used for calculating the errors, point by point, to 

measure the performance of the model. 

 

8.2.4 Results 

The root mean square, normalized and absolute error values; the cross 

correlation coefficients between the observed angles and estimated angles have 

been calculated [Senalp et al., 2007b]. Table 8.1 is the error table displaying 

the results. Figure 8.4 shows the observed and estimated angle variation. Figure 

8.5 shows the scatter diagram. 
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Table 8.1. Error Table for estimating the response of the pendulum angle 

Absolute Error (rad) 0.0007 

Normalized Error (%) 9.45 

Root Mean Square Error (rad) 0.0009 

Cross Corr. Coeff. (x10-2) 98.12 

 

 

 

 
 

Figure 8.4. Estimated (solid), and observed angle variation (dotted). 
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Figure 8.5. Scatter diagram for the estimated and observed angle values 

 

 

 

In the scatter diagram the fitted line has a slope close to one and the forecasting 

errors are small. Thus, the system reached the correct operating point. METU-

NN-C model learned the shape of the inherent nonlinearities because 

deviations from straight line are small in the scatter diagram and the correlation 

coefficients are very close to unity. 

 

8.3 Spring Loaded Inverted Double Pendulum with a Forced Table 

The inverted double pendulum is an important example for model developers 

[Aristoff et al., 2003]. In this section, the joint angles of a spring loaded 

inverted double pendulum with a forced table are estimated by using METU-

NN-C with Bezier nonlinearity representations [Senalp et al., 2006e] [Senalp et 
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al., 2007b]. In Figure 8.6, spring loaded inverted double pendulum with a 

forced table is shown schematically.  

 

 

 

 

 

 

 

 

Figure 8.6. Inverted double pendulum 

 

 

 

The positions of gravity centers of the pendulum rods, s1 and s2, in terms of the 

base table position, sm, and pendulum joint angles, Θ1 and Θ2, are as follows, 
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The torques, T1 and T2, generated by the springs in the system are as follows, 

)(.)( kKkT ii Θ=  (8.5) 

where K is the spring constant. 
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8.3.1 Data for METU-NN-C 

By using MATLAB SimMechanics simulations of inverted double pendulums 

are performed [MATLAB, 2002]. Performing those simulations creates input 

data and observed data for inverted pendulum systems to be used in 

development and operation of the METU-NN-C model.  

 

As a first input data set, pendulum joint angle values, Θ1 and Θ2; generated 

torques of the springs at the pendulum joints, T1 and T2; and the external force 

values applied to the base table in the system, Fin, are observed after 10-second 

simulations with 0.02 seconds sampling time. For the time interval of 0.1 and 

0.15 seconds, Fin is adjusted to 160N in x direction; for the time interval of 5 

and 5.05 seconds, Fin is adjusted to 320N in the –x direction. 

 

To obtain a second input data set, the same simulation procedure is performed 

after changing the external force values to be applied on the base table of the 

system. For the time interval of 0.1 and 0.15 seconds, Fin is adjusted to 80N in 

x direction; for the time interval of 5 and 5.05 seconds, Fin is adjusted to 160N 

in the –x direction. 

 

In the simulations, two of the thin pendulum rod (B1, B2) masses, m1 and m2, 

are chosen to be 1 kg.; two of the thin pendulum rod lengths, l1 and l2, are 

chosen to be 1 m.; and the base table (B0) mass, m, is chosen to be 5 kg. The 

spring constants, K, of the springs at the pendulum joints are chosen to be –0.9. 

The damper constants at the pendulum joints are chosen to be zero. The 

simulation blocks are given in Figure 8.7 [MATLAB, 2002]. 
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Figure 8.7. Construction of the spring loaded inverted double pendulum with a 

forced table by using “Matlab, SimMechanics” simulation tool. 

 

 

 



 

 136

8.3.2 Construction of the METU-NN 

The METU-NN-C model has one METU-C module. The module has its state-

like variable estimator module, the METU-NN module. The 5 inputs used for 

the METU-NN module are 2 initial angle values, Θ1 and Θ2, for two joints, 2 

present torque values, T1 and T2, for the joints, and 1 external force value, Fin, 

applied on the base table. For the process of interest, Feedforward Neural 

Network architecture with six neurons in one hidden layer is used in the 

METU-NN module. Hyperbolic tangent sigmoids in the hidden layer and a 

linear function in the output layer are the activation functions. The hidden layer 

outputs of the METU-NN module can represent the static part of the state-like 

internal variables in cascade modeling. During training Levenberg-Marquardt 

Backpropagation algorithm has been used [Hagan and Menhaj, 1994] [Haykin, 

1999].  

 

The METU-NN module is used to estimate the internal variables of the METU-

C module with Bezier curve nonlinearity. While the output layer of the METU-

NN hosts the response of the pendulum angle values being observed 0.02 sec 

later than the initial time, the outputs of the hidden layer in the METU-NN are 

six of the internal variables for the METU-C. 

 
8.3.3 Construction of the METU-C 

The METU-NN-C model has one METU-C module. The parameters of the 

cascaded static nonlinear block and dynamic linear block in the METU-C 

module are optimized in the training phase. The inputs are normalized in order 

to use them in Bezier curve representation of the static nonlinearity. The 

outputs of the nonlinear element in each METU-C, i.e. the internal variables 

xq(k), can be expressed as Bezier curves as in Equation 1.22 in Chapter 1. In 

the equation, R = 5 is the number of inputs, m+1 = 3+1 = 4 is the number of 
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defining polygon points. Thus, the product R(m+1) = 20  gives the number of 

static block coefficients, Bpi, to be determined.  

 

The output y(k) is represented as in Equation 1.24 in Chapter 1. The 

coefficients of the linearity, i.e. hq(j), are also determined. 

 

The outputs of the first stage, i.e. 6 outputs of the static nonlinear block, xq(k), 

and their one step and two step past values are stored as internal variables so 

that S=6 and n=2 in Equation 1.24 in Chapter 1. These internal variables are 

the inputs to the second stage of the cascade model, i.e. S.(n+1) = 18 inputs for 

the dynamic linear block of the METU-C model. 

 

The “Levenberg-Marquardt” optimization algorithm has been used within 

training again.  

 

In the operation mode the data set is used for calculating the errors, point by 

point, to measure the performance of the model. The output of the METU-C 

module is the value of the response of the pendulum angle to be observed 0.02 

sec later than the initial time. 

 

8.3.4 Results 

For the performance analysis, the METU-C model is operated with the second 

data set. Also another METU-NN model with additional inputs, i.e. first and 

second differences of the present inputs, is developed and operated for 

performance analysis. The cross correlation coefficients between the observed 

angles and estimated angles have been calculated. The root mean square, 

normalized and absolute error values have also been calculated [Senalp et al., 

2006e]. Tables 8.2 and 8.3 are the error tables displaying the results for joints 1 
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and 2, respectively. Figures 8.8 and 8.9 show the observed and estimated angle 

variations by METU-NN for the two joints. Figures 8.10 and 8.11 show the 

observed and estimated angle variations by METU-NN-C for the two joints. 

Scatter diagrams for the same cases are given in Figures 8.12, 8.13, 8.14, and 

8.15. 

 

 

Table 8.2. Error Table for estimating the response of the pendulum angle, Θ1 

 

 
METU-NN 

METU-C 

(Bezier) 

Absolute Error (°) 0.296 0.038 

Root Mean Square Error (°) 0.493 0.103 

Cross Corr. Coeff. (x10-2) 99.7 99.9 

 

 

Table 8.3. Error Table for estimating the response of the pendulum angle, Θ2 

 

 
METU-NN 

METU-C 

(Bezier) 

Absolute Error (°) 0.327 0.103 

Root Mean Square Error (°) 0.534 0.226 

Cross Corr. Coeff. (x10-2) 99.2 99.8 
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Figure 8.8. For Θ1, observed (dotted) and estimated angle variations (solid) by 

METU-NN 
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Figure 8.9. For Θ2, observed (dotted) and estimated angle variations (solid) by 

METU-NN 
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Figure 8.10. For Θ1, observed (dotted) and estimated angle variations (solid) by 

METU-C. 
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Figure 8.11. For Θ2, observed (dotted) and estimated angle variations (solid) by 

METU-C. 
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Figure 8.12. For Θ1, Scatter diagram with best fit line for the estimated and 

observed angle values by METU-NN 

 

 

 

 

 

Figure 8.13. For Θ2, Scatter diagram with best fit line for the estimated and 

observed angle values by METU-NN 
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Figure 8.14. For Θ1, Scatter diagram with best fit line for the estimated and 

observed angle values by METU-NN-C 

 

 

 

 

 

Figure 8.15. For Θ2, Scatter diagram with best fit line for the estimated and 

observed angle values by METU-NN-C. 
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In the scatter diagrams the fitted lines have slope close to one and the 

forecasting errors are small. Thus, the systems reached the correct operating 

points. Deviations from straight line are small in the scatter diagrams and the 

correlation coefficients are very close to unity. Thus, the models learned the 

shape of the inherent nonlinearities. When the performance results of METU-

NN and METU-NN-C models are compared it is observed that the error values 

for the METU-NN-C model are smaller, thus the scatter diagrams for the 

METU-NN-C model have slopes closer to one. Also, the cross-correlation 

coefficients for the METU-NN-C performance results are higher and the 

deviations of the scatter points for the METU-NN-C performance results are 

smaller when they are compared with the METU-NN performance results. 

 

8.4 Identification of Speakers by METU-NN-C 

The objective of this section is to give the results of the first attempt on 

identification of speakers by using cascade modeling technique. In this work 

the METU-NN-C model is used to identify speakers by using some features 

related to speech of the speakers [Senalp, 2007a]. The speech features used are 

normalized Mel Frequency Cepstrum Coefficients (MFCC) and (Moving 

Picture Expert Group) MPEG frames of the speakers. 

 

8.4.1. Inputs and Outputs for METU-NN-C 

The raw input data have been organized by Dr. C. Ergun under supervision of 

Assoc. Prof. Dr. T. Ciloglu [Ciloglu and Ergun, 2007]. It consists of MFCC 

and MPEG frames of speakes. Each MFCC frame is of size 16 and each MPEG 

frame is of size 24. The harmonic components of one MPEG frame are of size 

8. The raw data consist of normalized MFCC frames of size 16 and normalized 

harmonic components of the MPEG frames of size 8. Thus, one total frame 

consists of 16+8=24 components [Ciloglu and Ergun, 2007].  



 

 146

By using the raw input data, the inputs and outputs for the METU-NN-C are 

organized by E.T. Senalp. Training data set of two speakers with 793 feature 

vectors, validation in training data set of two speakers with 428 feature vectors, 

and validation in operation data set of two speakers with 8555 feature vectors 

are prepared. 

 

The outputs of the METU-NN-C model are the identification codes for the 

speakers. The identification code targets for the Speakers A and B are 0 and 1, 

respectively. 

 

8.4.2. METU-NN-C Model for Speaker Identification 

A small group at the METU in Ankara has works on data driven generic 

modeling of near-Earth space processes since 1990’s. The Neural Network 

based model is the METU-NN model [Tulunay, 1991] [Altinay et al., 1997] 

[Tulunay Y. et al., 2004a] [Tulunay Y. et al., 2004b] [Tulunay E. et al., 2006a]. 

Cascade modeling of several natural, nonlinear, dynamic processes have been 

performed and presented in this Thesis and in national and international journal 

and conferences cited in the Thesis. The Hammerstein system modeling based 

cascade model, METU-NN-C, has been developed and employed [Senalp et 

al., 2006c]. METU-NN has been used as one of the important modules of the 

METU-NN-C to estimate the state-like interior variables of METU-C. The 

nonlinearities have been represented by using several representations including 

the Bezier curves [Senalp et al., 2006b] [Senalp et al., 2006d] [Senalp et al., 

2006e] [Senalp et al., 2007b]. 

 

In this work, METU-NN-C with Bezier curve nonlinearity representations are 

used to identify speakers. The model has 24 inputs, 12 interior variables and 

one output. First, the interior variables are estimated by using METU-NN. 
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METU-NN is a feed-forward NN having 24 inputs, 12 hidden neurons in one 

hidden layer and one output. Hyperbolic tangent sigmoid activation functions 

are used in the first layer and linear transfer function is used in the second 

layer. Levenberg-Marquardt Backpropagation algorithm is used within training 

of the METU-NN.  

 

Using the estimates of the interior variables of the METU-C, and using the 

Bezier curve nonlinearity representations of the inputs, the parameters of the 

nonlinear static block METU-C are identified by Levenberg-Marquardt 

optimization. The internal variables xq(k), are expressed by using the Bezier 

curve representations as in Equation 1.22 in Chapter 1. The number of defining 

polygon points is chosen to be 4 in the Bezier curves. 

 

Using the interior variables and training set outputs; the parameters of the 

linear block of the METU-C are identified by Levenberg-Marquardt 

optimization as well. Then, the METU-C is ready to be operated by using the 

validation in operation data set. 

 

8.4.3. Results 

The performance of the model is visualized by obtaining the observed and 

estimated outputs of the METU-C using the validation in operation data set 

[Senalp, 2007a]. The observed identification codes for the Speakers A and B 

are 0 and 1, respectively. 

 

Figure 8.16 gives the observed (targets, dashed) and estimated (METU-C 

outputs, solid) identification values for the frames of the speakers. Figure 8.17 

gives the observed (targets, dashed) and limited average values of the estimated 

(METU-C outputs, solid) identification values for the frames of the speakers. 
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Figure 8.16. Observed (targets, dashed) and estimated (METU-C outputs, 

solid) identification values for the frames of the speakers 
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Figure 8.17. Observed (targets (0, 1), dashed) and limited average values of the 

estimated (METU-C outputs, solid) identification values for the frames of the 

speakers 

 

 

 

The speakers are identified successfully. As a first attempt, the performance of 

the METU-NN-C model to identify the speakers is shown to be promising. 

 

8.5 Van der Pol Oscillator 

Van der Pol oscillator is an important basic example for unforced nonlinear 

second order systems having limit cycles in their solution space [MATLAB, 

2002] [Uraz, 2007]. In this section, the solution values of a Van der Pol 

oscillator are estimated by using METU-NN-C with Bezier nonlinearity 

representations [Senalp, 2007c]. 
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The equation of a Van der Pol oscillator is as follows, 

0)1.( 2 =+−− yyyy &&& µ  (8.6) 

where µ>0 is a scalar parameter.  The Van der Pol oscillator equation when µ = 

1 is given as follows, 

0)1( 11
2
11 =+−− yyyy &&&  (8.7) 

 

The system as first order differential equations is given as follows, 

21 yy =&  (8.8) 

2
2
112 )1( yyyy −+−=&  (8.9) 

 

8.5.1 Data for METU-NN-C 

By using MATLAB, simulations of Van der Pol oscillators with different 

initial conditions are performed [MATLAB, 2002]. Performing those 

simulations creates input data and observed data for Van der Pol oscillator 

systems to be used in development and operation of the METU-NN-C model.  

 

As a first input data set, solutions of the Van der Pol oscillators with initial 

conditions, ya1,2 (t = 0) = {-1, 1}; yb1,2 (t = 0) = {0, 1}; yc1,2 (t = 0) = {1, 1}; 

yd1,2 (t = 0) = {-1, -1}; ye1,2 (t = 0) = {0, -1}; and yf1,2 (t = 0) = {1, -1}, are 

simulated. Those data are used in ‘training’ phase. Then, as another input data 

set, solutions of the Van der Pol oscillators with initial condition, yg1,2 (t = 0) = 

{-0.5, 0}; and yh1,2 (t = 0) = {0.5, 0}, are simulated. Those data are used in 

‘validation within training’ and ‘validation within operation’ phases. 

 

Solutions are observed after 20-second simulations with 0.1 seconds sampling 

time [MATLAB, 2002]. 
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8.5.2 Construction of the METU-NN 

The METU-NN-C model has one METU-C module. The module has its state-

like variable estimator module, the METU-NN module. The 2 inputs used for 

the METU-NN module are 2 solution values, y1 and y2. For the process of 

interest, Feedforward Neural Network architecture with two neurons in one 

hidden layer is used in the METU-NN module. Hyperbolic tangent sigmoids in 

the hidden layer and a linear function in the output layer are the activation 

functions. The hidden layer outputs of the METU-NN module can represent the 

static part of the state-like internal variables in cascade modeling. During 

training Levenberg-Marquardt Backpropagation algorithm has been used 

[Hagan and Menhaj, 1994] [Haykin, 1999].  

 

The METU-NN module is used to estimate the internal variables of the METU-

C module with Bezier curve nonlinearity. While the output layer of the METU-

NN hosts the solutions of the Van der Pol oscillator, which are observed 0.1 

sec later than the initial time, the outputs of the hidden layer in the METU-NN 

are two of the internal variables for the METU-C. 

 
8.5.3 Construction of the METU-C 

The METU-NN-C model has one METU-C module. The parameters of the 

cascaded static nonlinear block and dynamic linear block in the METU-C 

module are optimized in the training phase. The inputs are normalized in order 

to use them in Bezier curve representation of the static nonlinearity. The 

outputs of the nonlinear element in each METU-C, i.e. the internal variables 

xq(k), can be expressed as Bezier curves as in Equation 1.22 in Chapter 1. In 

the equation, R = 2 is the number of inputs, m+1 = 2+1 = 3 is the number of 

defining polygon points. Thus, the product R(m+1) = 6  gives the number of 

static block coefficients, Bpi, to be determined.  
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The output y(k) is represented as in Equation 1.24 in Chapter 1. The 

coefficients of the linearity, i.e. hq(j), are also determined. 

 

The outputs of the first stage, i.e. 2 outputs of the static nonlinear block, xq(k), 

and their one step past values are stored as internal variables so that S=2 and 

n=1 in Equation 1.24 in Chapter 1. These internal variables are the inputs to the 

second stage of the cascade model, i.e. S.(n+1) = 6 inputs for the dynamic 

linear block of the METU-C model. 

 

The “Levenberg-Marquardt” optimization algorithm has been used within 

training again. 

 

The output of the METU-C module is the value of the response of the 

pendulum angle to be observed 0.1 sec later than the initial time. In the 

operation mode the data set is used for calculating the errors, point by point, to 

measure the performance of the model. 

 

8.5.4 Results 

For the performance analysis, the METU-C model is operated with the data set 

for operation. The cross correlation coefficients between the observed solutions 

and estimated solutions have been calculated. The absolute error values have 

also been calculated [Senalp, 2007c]. Table 8.4 is the error table displaying the 

results for the solutions y1 and y2. 
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Table 8.4. Error Table for estimating the solutions of the Van der Pol oscillator 

 y1 y2 

Absolute Error (unit) 0.006 0.044 

Cross Corr. Coeff. (x10-2) 100.0 99.9 

 

 

 

Figures 8.18 and 8.19 show the observed and estimated solution variations by 

METU-C for the two solutions. 

 

 

 

 

 

Figure 8.18. For y1, observed (dotted) and estimated solution variations (solid) 

by METU-C. 

 

 



 

 154

 

 

Figure 8.19. For y2, observed (dotted) and estimated solution variations (solid) 

by METU-C. 

 

 

 

Scatter diagrams with best-fit lines for the same cases are given in Figures 8.20 

and 8.21. Figure 8.22 shows the trajectories of the observed solutions and 

estimated solutions by METU-C. 
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Figure 8.20. For y1, Scatter diagram with best fit line for the estimated and 

observed solution values by METU-C. 

 

 

 

 

 

Figure 8.21. For y2, Scatter diagram with best fit line for the estimated and 

observed solution values by METU-C. 
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Figure 8.22. For y1 and y2, trajectories of the observed (dotted) and one step 

ahead forecast (solid) solution values by METU-C. 

 

 

 

In the scatter diagrams the fitted lines have slope close to one and the 

forecasting errors are small. Thus, the systems reached the correct operating 

points. Deviations from straight line are small in the scatter diagrams and the 

correlation coefficients are very close to unity. Thus, the models learned the 

shape of the inherent nonlinearities. It is to be noted that the trajectories of the 

observed solutions and the estimated solutions by METU-C are coherent. 

 

8.6 Conclusions 

In this work, Hammerstein system modeling based METU-NN-C to estimate 

the response of the angle values of the simple forced pendulum and spring 
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loaded inverted double pendulum with forced table, and to identify speakers 

and a Van der Pol oscillator are presented.  

 

The state equations of the simple forced pendulum process were known. So the 

observed angle values correspond to the computed ones through mathematical 

simulation [Franklin et al., 1990]. The estimated angle values correspond to the 

METU-C output values. 

 

For the inverted double pendulum, input data and target data are obtained by 

performing simulation on computer. 

 

For the identification of speakers, normalized MFCC and MPEG data as the 

speech features of speakers are used in raw inputs. 

 

The state equations of the Van der Pol oscillator process were known. The 

observed state values correspond to the computed ones through simulation 

[MATLAB, 2002]. The estimated state values correspond to the METU-C 

output values. 

 

The METU-NN modules estimated the state-like variables of the METU-C 

modules. The METU-NN-C learned the shape of the inherent nonlinearities. It 

can be concluded that the generalized usage of METU-NN-C has further been 

demonstrated. As a conclusion, identification of nonlinear dynamical processes 

can be achieved by using Hammerstein forms in which a static nonlinear block 

and a linear dynamic block are cascaded. It is also concluded that METU-NN-

C models are successful in mechanical process identification and speaker 

identification. Error values in Tables 8.1, 8.2, 8.3, and 8.4 are small, and cross 

correlation coefficients are high. 
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CHAPTER 9 

 

 

CONCLUSIONS 

 

 

 

Modeling of nonlinear systems has been studied with particular emphasis on 

Hammerstein system modeling. In Hammerstein system modelling, the inputs 

of the process of interest are connected to a static nonlinearity block. The static 

nonlinearity block outputs, which are the state-like interior variables, and their 

past values are connected to a dynamic linearity block to identify the nonlinear 

dynamic process. The ouput of the cascade form is the forecast or estimated 

process parameter of interest.  

 

In order to build and develop the Middle East Technical University (METU) 

Cascade Model (METU-C) for operation mode, the METU Neural Networks 

and Cascade Model (METU-NN-C) for development mode has been 

constructed. 

 

In Chapter 1, the objective of the thesis, the background, previous works and 

the models have been presented in details. As stated in the objective, some 

special forms of nonlinearities for cascade models based on Hammerstein 

system modeling have been developed and then the parameters of the static 

nonlinear block and dynamic linear block in cascade modeling have been 

calculated by using smart techniques so that high accuracy and high sensitivity 

have been attained in process identification. 
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In this study, in addition to polynomial representation, two new techniques for 

Hammerstein system modeling are using Bezier curves and using B-Spline 

curves in defining the static nonlinearity. As a result, local control in nonlinear 

system modeling is achieved. Thus, unexpected variations of the output can be 

modeled more closely. 

 

Several case studies have been given in the thesis. The case studies and the 

models developed have been presented in international scientific journals, 

national and international conference proceedings, workshops and meetings 

including EU COST 296 and EU COST 724 Actions cited in the thesis. The 

processes in case studies have been exposed to disturbances. The quantitative 

results have been given in terms of error values, cross correlation coefficients, 

scatter diagrams and observed and forecast or estimated variations of the 

process variables of interest.  

 

Forecasts of ionospheric parameters, i.e. Total Electron Content (TEC) values, 

are important for navigation, telecommunication and many other technical 

applications. 

 

METU-NN was developed and operated to forecast TEC values one hour in 

advance [Tulunay E. et al., 2004-a]. 

 

In Chapter 2, a case study on forecasting of TEC values one hour in advance by 

using METU-NN-C with polynomial nonlinearity representations has been 

presented. METU-NN-C was applied to a near-Earth space process for the first 

time and the results of the METU-C were promising for further research and 

development on the cascade models. 
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In Chapter 3, the case study on forecasting of TEC values one hour in advance 

by using METU-NN-C with Bezier curve nonlinearity representations has been 

presented. The performance of the METU-NN-C is superior; the results of the 

METU-C are outstanding. The forecast error values are within operational 

tolerance [Radicella, 2004]. 

 

In Chapter 4, the case study on forecasting of TEC values one hour in advance 

by using METU-NN-C with B-Spline curve nonlinearity representations has 

been presented. The results of the METU-C are outstanding again. As a 

numerical example, in forecasting the TEC one hour in advance by using the 

METU-C having B-Spline curves in nonlinearity representation for Hailsham 

in April and May 2002, the average absolute error is 1.10 TECu. In the case 

studies, it has been noted that METU-C with Bezier curve nonlinearity is faster 

than METU-C with B-Spline curve nonlinearity in terms of the computation 

time in operation because formulation of the B-Spline curve representations 

requires higher number of calculations. 

 

In Chapter 5, the METU-NN and METU-C models forecasting TEC values one 

hour in advance have been compared in terms of ‘performance’ criteria in 

details. It is known that it is useful to make assumptions about the populations 

involved in order to reach statistical decisions on error values [Spiegel et al., 

2000]. First of all, definitions on the statistical analysis and test of hypothesis 

were given [MATLAB, 2002] [Spiegel et al., 2000]. Then, error histograms, 

distributions, normal probability plots and test of hypothesis results, cross 

correlation coefficients and error values of the observed and forecast TEC 

values for METU-NN and METU-C models have been presented.  

 

When the empirical Cumulative Distribution Function (CDF) plots are 

examined, it is observed that the error distributions for the model results do not 
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exactly fit to corresponding normal distributions, but a rough assumption that 

they fit to the normal distributions can be made.  

 

When the normal probability plots are examined, it is observed that the error 

distributions for the model results have curvatures and do not exactly fit to the 

superimposed lines. Thus, they do not exactly fit to corresponding normal 

distributions, but a rough assumption that they fit to the normal distributions 

can again be made, as it has been made in observing the empirical CDF plots. 

For the METU-C models with Bezier and B-Spline nonlinearity 

representations, the distributions of the error statistic values are more 

condansed in small absolute error regions when compared with the ones that 

are for the METU-NN model and METU-C model with Polynomial 

nonlinearity representation. After the statistical quantitative analysis it can be 

concluded that the METU-C models with Bezier and B-Spline nonlinearity 

representations have been very successful. 

 

The performance comparisons of the models have been presented in 

quantititative and qualitative manner. Then, it can easily be concluded that 

METU-C models have been superior to the METU-NN model, which has also 

been successful. Among the models presented the optimum one has been the 

METU-C model with Bezier curve nonlinearity representations. It has 

advantages as the METU-C model with B-Spline curve nonlinearity 

representations have. The results of it have small error values and large cross-

correlation coefficient.  As a numerical example, in forecasting the TEC one 

hour in advance by using the METU-C having Bezier curves in nonlinearity 

representation for Hailsham in April and May 2002, the average absolute error 

is 1.11 TECu. It has simple inputs because it does not need past inputs. It has 

transparent internal variables, which can be observed and used by the system 
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designers or operators. It is also fast in terms of the computation time in 

operation when compared with the METU-NN and the METU-C with B-Spline 

curve nonlinearity representations. 

 

A detailed performance comparison of the International Reference Ionosphere 

model (IRI-2001), METU-NN model and METU-C models has also been 

presented. The METU-C models in the case studies are competitive and they 

have high performance when compared with the internationally popular 

ionospheric model, IRI-2001. The results provide important achievements of 

the METU-C models. Among the models presented, METU-C with Bezier 

curve nonlinearity representation is outstanding. 

 

In Chapter 6, a case study on forecasting TEC maps one hour in advance by 

using the METU-NN and Bezier surface patches has been presented. Brief 

information on mapping and Bezier surfaces has been given. TEC forecast 

maps over Europe have been obtained. Then, absolute error maps have been 

plotted. The results show that the model is very promising.  

 

In Chapter 7, the case study on forecasting TEC values one hour in advance by 

using the METU-NN-C with Bezier curve nonlinearity representations and 

mapping the forecast TEC values by using the Bezier surface patches has been 

presented. TEC forecast maps over Europe and the absolute error maps have 

been obtained. The results of the model are outstanding.  

 

The METU-C model results presented in Chapter 7 can be compared with the 

METU-NN model results presented in Chapter 6. Considering the error tables 

and scatter diagrams in Chapter 6 and 7, it can be concluded that METU-C 

model is very successful in process identification. Error values for METU-C 

results are smaller than the ones for METU-NN, and cross correlation 
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coefficients for METU-C results are higher. For the overall TEC forecast 

mapping, error values are small. The forecast mapping error values are within 

operational tolerance [Radicella, 2004]. Briefly, it is the first time that METU-

NN-C modules and Bezier surfaces are used to forecast and map TEC values 

over Europe. 

 

In Chapter 8, the use of METU-NN-C for known nonlinear dynamic processes 

has been discussed. METU-NN-C models with Bezier curve nonlinearity 

representations have been employed to estimate the response of the joint angle 

values of a simple forced pendulum and a spring loaded inverted double 

pendulum with a forced table. METU-NN-C models with Bezier curve 

nonlinearity representations have also been developed and implemented to 

identify two speakers, and to estimate the states of a Van der Pol oscillator. 

Thus, the generalized usage of METU-NN-C has further been shown. The state 

equations of the simple forced pendulum process were known. So the observed 

angle values correspond to the computed ones through mathematical 

simulation [Franklin et al., 1990]. The estimated angle values correspond to the 

METU-C output values. For the inverted double pendulum, input data and 

target data have been obtained by performing simulation on computer. The 

joint angles of the pendulums have been estimated accurately. For the 

identification of speakers, speech features of speakers have been used in raw 

inputs. The model developed identified the speakers successfully. The state 

equations of the Van der Pol oscillator process were known. So the observed 

state values correspond to the computed ones through mathematical simulation 

[MATLAB, 2002]. It has been shown that the process with limit cycles can 

also be modelled precisely. It is concluded that METU-NN-C models are 

successful in mechanical process identification and speaker identification. 
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METU-NN modules of the METU-NN-C estimated the state-like interior 

variables of the METU-C. METU-NN-C learned the shape of the inherent 

nonlinearities.  

 

When the overall performance results of the models are examined, it can be 

concluded that the METU-C models have small error values. The best-fit line 

in the scatter diagram for the results of the METU-C has a slope near 45˚ and 

passes through the origin. Thus, the system reached the correct operating point 

within the system identification by METU-C models. Also the cross-

correlation coefficients of the observed and forecast or estimated values by 

METU-C models are high. It is seen that the deviations of the scatter points 

from the best-fit line are small for the results of METU-C. Thus, the model 

learned the shape of the inherent nonlinearities. Among the models presented, 

the optimum model in quantitative and qualitatitive manner is the METU-C 

model with Bezier curve nonlinearity representation. 

 

The generalized usage of METU-NN-C has been demonstrated. Thus, it is 

concluded that identification of nonlinear dynamical processes can be achieved 

by cascade models based on Hammerstein system modelling in which a static 

nonlinear block and a linear dynamic block are cascaded. The static nonlinear 

block of the METU-NN-C can be modeled by employing the special 

nonlinearity representations, i.e. Polynomial, Bezier Curve, and B-Spline 

Curve representations, presented. 

 

As a future work, the use of the METU-NN-C models in controllers of 

nonlinear dynamic processes can be discussed. 
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PROFESSIONAL CAREER AS RESEARCH PERSONNEL IN: 

METU Dept. of Electrical and Electronics Eng., Ankara, Turkey, 

1999–2006, Research Assistant, Instructing Process Control 

Laboratory experiments on courses EE 407 “Process Control” and EE 

408 “Process Instrumentation and Control” and departmental work.  

 

Turkish State Planning Organisation (DPT) Project: “Neuro Fuzzy 

Systems Based HF Channel Characterisation and Selection”, METU, 

EEE, Ankara, Turkey, 1999–2004, Researcher, Modeling and research 

activities, Project Head: Prof. Dr. Ersin Tulunay. 
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EU COST 271 Project: “Effects of the Upper Atmosphere on 

Terrestrial and Earth-Space Communications”, METU, Dept. of 

Aerospace Eng. and Dept. of Electrical and Electronics Eng., 

Ankara, Turkey, 1999–2004, Researcher, Modeling and research 

activities, National Representatives: Prof. Dr. Yurdanur Tulunay and 

Prof. Dr. Ersin Tulunay. 

 

EU COST 296 Project:“Mitigation of Ionospheric Effects on Radio 

Systems”, TUBITAK, METU, Dept. of Aerospace Eng. and Dept. of 

Electrical and Electronics Eng., Ankara, Turkey, 2004–2007, 

Researcher and Assistant Personel, Modeling and research activities, 

National Representatives: Prof. Dr. Yurdanur Tulunay and Prof. Dr. 

Ersin Tulunay. 

 

EU COST 724 Project: “Developing the Scientific Basis for 

Monitoring, Modelling and Predicting Space Weather”, TUBITAK, 

METU, Dept. of Aerospace Eng. and Dept. of Electrical and 

Electronics Eng., Ankara, Turkey, 2004–2007, Researcher, Modeling 

and research activities, National Representatives: Prof. Dr. Yurdanur 

Tulunay and Prof. Dr. Ersin Tulunay. 

 

PROFESSIONAL EXPERIENCES: 

Programming: MATLAB, Simulink, C++, Visual C++, 

Visual Java, Pascal, 

Computer applications: WEB design and programming, EWB, 

MSOffice, Project, EA, 
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AI Studies: Neural Network based modeling of the Near-

Earth Space processes, ionospheric modeling 

and variability studies for telecommunication 

applications. Neural Network based character 

recognition on WEB. Intelligent control, 

Industrial Automation Process Control, 

Cascade Modeling: Cascade Modeling of Nonlinear Systems. 

 

SCIENTIFIC MEMBERSHIPS AND JOINT WORKS: 

 Joint Work and Presentation: Forecasting Magnetopause Crossing 

Locations by Using Neural Networks, Applied Physics Laboratory, 

Johns Hopkins University, Laurel, USA; Center for Space Research, 

Massachusetts Institute of Technology, Boston, USA, 2-9 Dec. 2000. 

 

COST 271 Short-Term Scientific Mission: Working on the TEC data 

available at RAL and organizing the input data for the METU NN 

model under the supervision of Dr. Lj. Cander, Didcot, UK, 30 Jun. – 7 

Jul. 2002. 

 

TUBITAK-COST296 Short-Term Scientific Mission: Working on High 

Frequency (HF) Receiver System in the TUBITAK-MRC-ITI, Gebze, 

Kocaeli, Turkey, 10-13 Mar. 2006. 

 

TUBITAK-COST 296 Experiment: HF Channel Occupancy and 

Atmospheric Noise Measurements over the HF Band during the Solar 

Eclipse, Antalya, Turkey, 25-31 Mar. 2006. 
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AREAS OF INTEREST: 

 Sports: Basketball, swimming, 

 Books:  Reading novels and scientific publications, 

 Dance: Group dances. 

 Music:  Classical. 

 

 

SCIENTIFIC PUBLICATIONS: 

 

Thesis: 

1. 2001 Neural Network Based Forecasting For Telecommunications Via 
Ionosphere, MSc. Thesis, (Supervisor: E. Tulunay, Co-supervisor: 
Y. Tulunay), Middle East Technical University, Dept. of 
Electrical and Electronics Eng., Ankara, Turkey, August 2001. 
E.T. Şenalp 
 

2. 2007 Cascade Modeling of Nonlinear Systems, Ph-D Thesis, 
(Supervisor: E. Tulunay), Middle East Technical University, 
Dept. of Electrical and Electronics Eng., Ankara, Turkey, August 
2007. 
E.T. Şenalp 
 

Papers in Journals: 

1. 2001 An Attempt to Model the Influence of the Trough on HF 
Communication by Using Neural Networks, Radio Science, Vol. 
36, No. 5, pp. 1027-1041, Publisher: American Geophysical 
Union, Washington, Sep. – Oct. 2001. 
Y.Tulunay, E.Tulunay, E.T.Senalp 
 

2. 2002 Two Solar Eclipses Observations in Turkey, IL NUOVO 
CIMENTO, Nuovo Cimento Della Societa Italiana Di Fisica C-
Geophysics and Space Physics, 25 C, N.2, pp. 251-258, Publisher: 
Editrice Compositori Bologna, Siena, Mar. – Apr. 2002. 
E. Tulunay, Y. Tulunay, C. Özkaptan, E.T. Senalp, M. Aydogdu, 
O. Ozcan, E. Guzel, A. Yesil, I. Unal, M. Canyilmaz, E. 
Ipekcioglu. 
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3. 2004 The Neural Network Technique-1: A General Exposition, 
Advances in Space Research, Publisher: Elsevier, Vol 33/6 pp. 
983-987. 
Y. Tulunay, E. Tulunay, E.T. Senalp. 
 

4. 2004 The Neural Network Technique-2: An Ionospheric Example 
Illustrating Its Application, Advances in Space Research, 
Publisher: Elsevier, Vol 33/6 pp. 988-992. 
Y. Tulunay, E. Tulunay, E.T. Senalp. 
 

5. 2004 Karl Rawer’s Interest and Encouragement Regarding New 
Approaches to Ionospheric Modeling, Advances in Radio Science, 
Publisher: Copernicus G mbH, URSI, Vol. 2, pp. 281-282. 
Y. Tulunay, E. Tulunay, E.T. Senalp. 
 

6. 2004 Development of algorithms and software for forecasting, 
nowcasting and variability of TEC, Annals of Geophysics, Vol. 
47, N. 2/3, pp. 1201-1214. 
E.Tulunay, E.T. Senalp, Lj. R. Cander, Y. Tulunay, A.H. Bilge, E. 
Mizrahi, S.S. Kouris, N.Jakowski. 
 

7. 2004 Forecasting GPS TEC Using the Neural Network Technique “A 
Further Demonstration”, Bulgarian Geophysical Journal, 
Geophys. Institute, Bulgarian Academy of Sci., Vol. 30, 1-4, 
pp.53-61. 
E. Tulunay, Y. Tulunay, E.T. Senalp, Lj.R. Cander. 
 

8. 2005 Forecasting magnetopause crossing locations by using Neural 
Networks, Advances in Space Research, Publisher: Elsevier, Vol 
36/12 pp. 2378-2383. 
Y. Tulunay, D.G. Sibeck, E.T. Senalp, E. Tulunay 
 

9. 2006 Neural Networks and Cascade Modeling Technique in System 
Identification, Artificial Intelligence and Neural Networks,  14th 
Turkish Symposium, TAINN 2005, Izmir, Turkey, 16-17 Jun. 
2005, Revised Selected Papers, Series: LNCS, Subseries: Lecture 
Notes in Artificial Intelligence , Vol. 3949 / 2006, Savaci, F. Acar 
(Ed.), Publisher: Springer Berlin / Heidelberg, pp.84-91. 
E.T. Senalp, E. Tulunay, Y. Tulunay 
 

10. 2006 Forecasting Total Electron Content Maps by Neural Network 
Technique, Radio Science, Vol. 41, No. 4, RS4016, Publisher: 
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American Geophysical Union, Washington, 
http://dx.doi.org/10.1029/2005RS003285. 
E.Tulunay, E.T.Senalp, S.M.Radicella, Y.Tulunay 
 

11. 2007 A Case Study on the ELF Characterization of the Earth-
Ionosphere Cavity: Forecasting the Schumann Resonances, 
Journal of Atmos. and Solar-Terrestrial Physics (ISROSES-2006) 
(accepted). 
Y. Tulunay, E. Altuntas, C. Price, T. Ciloglu, E. Tulunay, Y. 
Bahadirlar, E.T. Senalp 
 

12. 2007 Total Electron Content (TEC) Forecasting by Cascade Modeling: 
A Possible Alternative to the IRI-2001, Radio Science, 
(submitted). 
E.T. Senalp, Y. Tulunay, E. Tulunay 
 

Papers in International Workshops and Conference Proceedings 

1. 2000 Neural Network Modeling of the Effect of the IMF Turning on the 
Variability of HF Propagation Medium, AP 2000; Millennium 
Conference on Antennas and Propagation, ICAP and JINA, p.132, 
9-14 Apr. 2000, Davos, Switzerland. 
Y. Tulunay, E. Tulunay, E.T. Senalp, C. Özkaptan 
 

2. 2000 An Attempt for the Modeling of Trough by Using Neural 
Networks, COSPAR, CD-ROM; 16-23 Jul., 2000, Warsaw, 
Poland 
Y.Tulunay, E. Tulunay, E.T. Senalp 
 

3. 2000 An Attempt For the Modeling of the  Mid-Latitude Electron 
Density Trough on the Ionospheric Critical Frequencies by Using 
Neural Network, Intercomparative Magnetosheath Studies, 4-8 
Sep. 2000, Antalya, Turkey. 
Y.Tulunay, E. Tulunay, E.T. Senalp 
 

4. 2000 Neural Network Based Approach to Forecast Ionospheric 
Parameters, SPECIAL Workshop, abstract in 
www.sgo.fi/SPECIAL/Contributions/abstracts2000.html, 8-11 
Nov. 2000, Lindau, Germany 
E. Tulunay, Y.Tulunay, E. T. Senalp 
 

5. 2001 Development of Neural Net Based Models for Some Non-Linear 
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Processes, The 4th Pacific Int. Conf. on Aerospace Science and 
Technology, PICAST 4, 21-23 May 2001, Kaohsiung, Taiwan. 
Y.Tulunay, E.Tulunay, A.T. Kutay, E.T.Senalp 
 

6. 2001 Forecasting the Total Electron Content by Neural Networks, 
COST 271 Workshop, Ionospheric Modeling and Variability 
Studies for Telecommunications Applications, Book of Abstracts, 
p.47, CD of Proceedings, WG4_P006, 25-27 Sep. 2001, Sopron, 
Hungary. 
E. Tulunay, E.T. Senalp, Y. Tulunay 
 

7. 2001 The Trough Based Neural Network Model of the foF2 Values, 
COST 271 Workshop, Ionospheric Modeling and Variability 
Studies for Telecommunications Applications, Book of Abstracts, 
p.8, CD proceedings of the 1st COST 271 Workshop, 25-27 Sep. 
2001, Sopron, Hungary. 
Y. Tulunay, E. Tulunay, E.T. Senalp 
 

8. 2002 The Trough Based Neural Network Model of the foF2 Values, 
SPECIAL II Workshop, 3-6 Jan. 2002, Cambridge, U.K. 
Y. Tulunay, E. Tulunay, E.T. Senalp 
 

9. 2002 Neural Network Based Approach to Forecast the Total Electron 
Content Values, EGS 2002 Conference, 27th General Assembly of 
the European Geophysical Society, CD of Abstracts, EGS02-A-
00867, 21-26 Apr. 2002, Nice, France. 
E.T. Senalp, E. Tulunay, Y. Tulunay. 
 

10. 2002 Forecasting GPS TEC During High Solar Activity by Neural 
Network Technique, COST Workshop, Products for ITU-R and 
other Radiocommunication Applications, 2nd COST271 Workshop 
Proceedings CD, 1-5 Oct. 2002, Univ. do Algarve, Faro, Portugal. 
E. Tulunay, E.T. Senalp, Lj. R. Cander, Y. Tulunay,  L.Ciraolo 
 

11. 2002 Neural Network Based Magnetopause Crossings Forecast, COST 
271Workshop, Products for ITU-R and other 
Radiocommunication Applications, Poster, 1-5 Oct. 2002, 
Universidade do Algarve, Faro, Portugal. 
E.T. Senalp, D.G. Sibeck, Y. Tulunay, E.Tulunay 
 

12. 2002 Neural Network Based Approach to Model Near Earth Space 
Processes, 34th COSPAR Scientific Assembly - The 2nd World 
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Space Congress, C4.3-0018-02, 10 - 19 Oct. 2002, Houston, 
Texas, USA. 
Y. Tulunay, E. Tulunay, E.T. Senalp 
 

13. 2002 Forecasting Magnetopause Crossing Locations by Using Neural 
Networks, 34th COSPAR Scientific Assembly – The 2nd World 
Space Congress, Poster, PSW1-C0.2-D0.1-E2.4-F0.1-PSRB2-
0113-02, 10 - 19 Oct. 2002, Houston, USA. 
E.T. Senalp, D.G. Sibeck, Y. Tulunay, E. Tulunay 
 

14. 2002 Development of Neural Network Based Models for Non-Linear 
Agro-Environment Systems, 3rd International Symposium on 
Sustainable Agro-Environmental Systems: New Technologies & 
Applications, 139, 26-29 Oct. 2002, Cairo, Egypt.  
E. Tulunay, T. Senalp, Y. Tulunay, Z. Aslan 
 

15. 2003 Forecasting Regional Cloudness and Cloud Top Temperature By 
Neural Networks, European Science Foundation Meeting: ESF 
Scientific Network on Space Weather and the Earth’s Weather 
and Climate, 20-23 February 2003, Frankfurt am Main, Germany, 
EGS-AGU-EUG Joint Assembly 2003, Poster: P0976, 06-11 Apr. 
2003, Nice, France, EAE03-A-13915, Geophysical Research 
Abstracts, Vol.5, 13915, 2003, EGS, Lindau, Germany. 
Y. Tulunay, S. Mentes, E. Tulunay, E.T. Senalp, E. Akcan 
 

16. 2003 Spatial Prediction of  foF2 In Modeling The Influence Of Trough 
on HF Communication By Using Neural Networks, COST 271 
Workshop: Significant results in COST271 Action: a review, 
Poster, 23-27 Sep. 2003, Spetses, Greece. 
Y. Tulunay, A. Karpacev, E. Tulunay, E.T. Senalp 
 

17. 2003 Forecasting the Total Electron Content Values by Using Neural 
Networks and MAC Index, COST 271 Workshop: Significant 
results in COST271 Action: a review, Poster, 23-27 Sep. 2003, 
Spetses, Greece. 
E. Tulunay, E.T. Senalp, P. Spalla, Y. Tulunay, G.D. Franceschi  
 

18. 2004 Forecasting GPS TEC upto 24 Hours in Advance by Neural 
Network Technique, EGU General Assembly 2004, ST14, Poster: 
EGU04-A-02260, 25 - 30 Apr. 2004, Nice, France, Geophysical 
Research Abstracts, Vol. 6, 02260, 2004. 
E. Tulunay, Y. Tulunay, E.T. Senalp, L. Cander. 
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19. 2004 Neural Network Based Forecasting with Adaptation Capability, 
13th Turkish Symposium on Artificial Intelligence and Neural 
Networks, TAINN 2004, pp. 585-592, 10-11 Jun. 2004, Foca, 
Izmir, Turkey. 
E.T. Senalp, E. Tulunay, Y. Tulunay. 
 

20. 2004 Neural Network Application on Agro-Environment Problems, 
Proceedings of the Workshop “Measuring and Computing 
Technologies on Agricultural Issue”, AGROENVIRON 2004 Role 
of Multi-purpose Agriculture in Sustaining Global Environment, 
pp. 27-36, Udine, Italy, 20-24 Oct. 2004. 
Y. Tulunay, E. Tulunay, E.T. Senalp, Z. Aslan 
 

21. 2005 Neural Networks and Cascade Modeling Technique in System 
Identification, 14th Turkish Symposium on Artificial Intelligence 
and Neural Networks, TAINN 2005, pp.286-293, 16-17 Jun. 2005, 
Cesme, Izmir, Turkey. 
E.T. Senalp, E. Tulunay, Y. Tulunay 
 

22. 2005 Neural Network Modeling in Forecasting the Near Earth Space 
Parameters: Forecasting of the Solar Radio Fluxes, COST 724 
Scientific Workshop, Proceedings CD, 10-14 Oct. 2005, Athens, 
Greece. 
Y. Tulunay, M. Messerotti, E.T. Senalp, E. Tulunay, M. Molinaro, 
Y.I. Ozkok, T. Yapici, E. Altuntas, N. Cavus 
  

23. 2006 Integration of METU-IFS Server to COST 724 Server (BIRA), 
COST 724 MCM and Scientific Workshop, Proceedings CD, 27-30 
Mar. 2006, Antalya, Turkey. 
E. Tulunay, D. Heynderickx, E.T. Senalp, M. Ozdemirci, Y.I. 
Ozkok, Y.Tulunay 
 

24. 2006 COST296 WG2.2 Activity Report : Radio Propagation 
Measurements During the 29 March 2006 Total Eclipse Week, 4th 
COST 296 MCM and WGM 27-29 Apr.2006, Neustrelitz, 
Germany 
E. Tulunay, E.M. Warrington, Y. Tulunay, Y. Bahadırlar, A.S. 
Türk, T. Yapıcı, E.T. Şenalp, E. Altuntaş, M.Ö. Sarı, O. 
Büyükpapuşcu 
 

25. 2006 Forecasting Total Electron Content (TEC) for Constructing Maps 
Especially During High Solar Activity Periods, Int. Adv. School 
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on Space Weather, CD, 2-19 May 2006, ICTP, Trieste, Italy. 
E.T. Senalp, E. Tulunay, S.M. Radicella, Y. Tulunay 
 

26. 2006 System Identification by using Cascade Modeling Technique with 
Bezier Curve Nonlinearity Representations, 15th Turkish 
Symposium on Artificial Intelligence and Neural Networks, 
TAINN 2006, pp.75-82, 21-23 Jun. 2006, Akyaka, Muğla, Turkey. 
E.T. Senalp, E. Tulunay, Y. Tulunay 
 

27. 2006 Propagation Related Measurements during Three Solar Eclipses in 
Turkey, IET 10th International Conference on Ionospheric Radio 
Systems & Techniques, IRST 2006, 18-21 Jul. 2006, London, UK. 
E. Tulunay, E. M. Warrington, Y. Tulunay, Y. Bahadırlar, A.S. 
Türk, R. Çaputçu, T. Yapıcı , E.T. Şenalp. 
 

28. 2006 The ELF Characterization of the Earth–Ionosphere Cavity: 
Forecasting the Schumann Resonances, Poster, International 
Symposium on Recent Observations and Simulations of the Sun-
Earth System (ISROSES) 2006, 17-22 Sep. 2006, Varna,  
Bulgaria. 
E. Altuntas, Y. Tulunay, Y. Bahadirlar, E. Tulunay, E.T. Senalp 
 

29. 2006 Recent COST 296 Propagation Related Measurements During the 
29th March 2006 Solar Total Eclipse in Antalya, Turkey, 2nd 
COST 296 Workshop and 5th MCM, Radio Systems and 
Ionospheric Effects, Univ. Of Rennes 1, 3-7 Oct. 2006, Rennes, 
France. 
E. Tulunay, Y. Tulunay, E.M. Warrington, Y. Bahadirlar, T. 
Yapici, E.T. Senalp, A.S. Turk 
 

30. 2006 Neural Network Forecasting Of Schumann Resonances In The 
Near Earth Space, Third European Space Weather Week 
(ESWW3), 13-17 Nov. 2006, Royal Library of Belgium, Brussels, 
Belgium. 
E. Tulunay, Y. Tulunay, E. Altuntas, E.T Senalp, Y. Bahadirlar 
 

31. 2007 International Heliophysical Year 2007 (IHY), Turkish National 
Activities, Poster, Official IHY Opening Ceremony, IHY Kick-off 
Event, 17-21 Feb. 2007, Vien, Austria 
Y. Tulunay, E. Tulunay, Z. Kocabas, E. Altuntas, T. Yapici, E.T. 
Senalp 
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32. 2007 Identification of Processes by Cascade Modeling Technique, The 
5th IFAC DECOM-TT 2007, pp. 117-122, 17-20 May 2007, 
Cesme, Izmir, Turkey 
E.T. Senalp, E. Tulunay, Y. Tulunay 
 

33. 2007 A Hybrid Approach In Fof2 Forecast Mapping Including 
Disturbed Conditons, The 5th IFAC DECOM-TT 2007, pp. 51-56, 
17-20 May 2007, Cesme, Izmir, Turkey 
E. Altuntas, T. Yapıcı,Y. Tulunay, E. Tulunay, Z. Kocabas, E.T. 
Senalp 
 

34. 2007 Forecasting Total Cloud Amount Maps and Cloud Top 
Temperature Maps by using Fuzzy Neural Networks and Bezier 
Surfaces, The 9th World Meteorological Organization  Scientific 
Conference on Weather Modification, 22-24 Oct. 2007, Antalya, 
Turkey (accepted) 
Y. Tulunay, E.T. Senalp, S. Oz, L.I. Dorman, E. Tulunay, S.S. 
Mentes, M.E. Akcan 
 

Papers in National Workshops and Conference Proceedings: 

1. 2002 Toplam Elektron Yoğunluğu Değerlerini Sinirsel Ağlar 
Kullanarak Öngörüde Bulunma, URSI-TÜRKİYE’2002 Bilimsel 
Kongresi, pp.407-410, ITÜ - İstanbul, 18-20 Sep. 2002. 
E.T. Senalp, E. Tulunay, Y. Tulunay 
 

2. 2002 Doğrusal Olmayan Bazı Süreçler İçin Sinirsel Ağ Tabanlı 
Yaklaşımlar, URSI-TÜRKİYE’2002 Bilimsel Kongresi, pp. 403-
406, ITÜ - İstanbul, 18-20 Sep. 2002. 
Y. Tulunay, E. Tulunay, A.T. Kutay, E.T. Senalp 
 

3. 2006 Toplam Elektron Niceliği Öngörümünde Ardışık Benzekleme 
Tekniği, 3. URSI-TÜRKİYE'2006 Bilimsel Kongresi, pp. 360-362, 
Hacettepe Üniversitesi, Ankara, 4-8 Sep. 2006. 
E.T. Şenalp, E. Tulunay, Y. Tulunay 
 

4. 2006 Yer İyonosfer Kovuk Değişimi’nin Schumann Rezonanslarına 
Dayalı İncelenmesi, 1. Ulusal Havacılık ve Uzay Konferansı, 
ODTÜ, Ankara, 21-23 Sep. 2006. 
E. Altuntaş, Y. Tulunay, E. Tulunay, E.T. Şenalp, Y. Bahadırlar 
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5. 2006 Ardışık Benzekleme Tekniğinin Kullanımı: Ters Çift Sarkaç, 
TOK’06 Otomatik Kontrol Ulusal Toplantısı, pp. 533-537, TOBB 
Ekonomi ve Teknoloji Üniversitesi, Ankara, 6-8 Nov. 2006. 
E.T. Şenalp, E. Tulunay, Y. Tulunay 
 

 


