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ABSTRACT

RADAR TARGET DETECTION IN NON-GAUSSIAN CLUTTER

Doyuran, Ulkii
Ph. D, Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. Yal¢cin TANIK

September 2007, 137 pages

In this study, novel methods for high-resolution radar target detection in non-
Gaussian clutter environment are proposed. In solution of the problem, two
approaches are used: Non-coherent detection that operates on the envelope-detected
signal for thresholding and coherent detection that performs clutter suppression,
Doppler processing and thresholding at the same time. The proposed non-coherent
detectors, which are designed to operate in non-Gaussian and range-heterogeneous
clutter, yield higher performance than the conventional methods that were designed
either for Gaussian clutter or heterogeneous clutter. The proposed coherent detector
exploits the information in all the range cells and pulses and performs the clutter
reduction and thresholding simultaneously. The design is performed for uncorrelated,
partially correlated and fully correlated clutter among range cells. The performance
analysis indicates the superiority of the designed methods over the classical ones, in

fully correlated and partially correlated situations. In addition, by design of detectors

v



for multiple targets and making corrections to the conventional methods, the target-

masking problem of the classical detectors is alleviated.

Keywords: Radar Target Detection, Non-Gaussian Clutter, Heterogeneous Clutter,
Constant False Alarm Rate (CFAR).



0z

GAUSSIAN OLMAYAN KARGASA ALTINDA RADAR HEDEF TESPITI

Doyuran, Ulkii
Doktora, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Yal¢in Tanik

Eyliil 2007, 137 sayfa

Bu calismada, yiiksek c¢oziiniirliiklii radarlarda, Gaussian olmayan ve degisken
kargasa altinda hedef tespit yontemleri Onerilmektedir. Problemin ¢6ziimiinde iki
ayr1 yaklasim benimsenmistir: Islenmis sinyalin genlik degeri iizerinde calisan
esikleme yontemi ve kargasa bastirma, Doppler isleme, esikleme islemlerini birlikte
gerceklestiren uyumlu filtreleme yontemi. Degisken ve Gaussian-olmayan kargasa
altinda calismak {izere tasarlanan yontemler, Gaussian kargasali veya heterojen
ortamda calismak iizere tasarlanmis klasik yOntemlere gore iistiin basari
saglamaktadir. Onerilen uyumlu detektor ise kargasa bastirma ve esiklemeyi bir
arada yapmakta ve tiim darbe ve menzil hiicrelerinden yararlanmaktadir. Calismada,
farkli ilinti degerlerindeki kargasaya sahip komsu hiicreler kullanilmis ve GLRT-
detektorleri tasarlanmistir. Yontemin, klasik metotlara gore {istiinliigii basarim

analizi ile gosterilmistir. Ayrica, ¢ok sayida hedef icin detektor tasarlanarak ve klasik

vi



yontemde diizeltme yaparak, klasik yOntemlerin c¢oklu-hedef durumundaki

maskeleme problemi engellenmistir.

Anahtar Kelimeler: Radar Hedef Tespiti, Gaussian Olmayan Kargasa, Degisken
Kargasa, Sabit Yanlis Alarm Oran1 (SYAO)
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CHAPTER 1

INTRODUCTION

The detection of target signals in a background of unwanted echoes, called clutter,
which stem from the sea, land or weather, is one of the most important problems of
radar systems. Solution of the problem necessitates the understanding of the statistics

of the clutter, such as its distribution and correlation properties.

In classical radar systems, the clutter signal is assumed to have Gaussian distribution,
which enables the use of the simple and conventional detection algorithms. However,
in modern high-resolution radars and especially at low grazing angles, the clutter
exhibits a spiky characteristic and the Gaussian assumption is no longer valid [6],
[37], [62]. Classical algorithms, designed for Gaussian clutter, yield many orders of
higher false alarm rates when operated in non-Gaussian cluttered environment.
Hence, the spiky characteristic should necessarily be considered in design of the
detector and the statistical model of the clutter should be formulated. In modeling the
high-resolution clutter distribution, beside the scale or power of the distribution,
another parameter, called shape or order parameter, which defines the spikiness, is
introduced [1], [6], [41], [61]. The most common distributions that are used for non-
Gaussian clutter envelope are Weibull and K-distribution. In representing the multi-
pulse coherent non-Gaussian clutter, compound Gaussian model is used [5], [12],

[13], [24], [45], [53], [60].



Another problem in detection of targets is a change in clutter statistics, in time or
space. Usually, radar systems use adaptive algorithms in order to follow the changes
in the statistics. However, abrupt changes degrade the performance of the adaptive
detection algorithms, which make use of the spatially or temporally neighboring cells
in estimation of the clutter characteristics and determination of the threshold [23],
[47]. There are many methods designed to operate under non-Gaussian clutter [26],
[36], [46] or range-heterogeneity [9], [25]. However, none of the methods is suitable
for the dual problem.

The detection schemes can be categorized into two main groups: Noncoherent and
coherent detection techniques. In the first one, a classical clutter suppression and
Doppler processing method is followed by envelope detection. The real signal
obtained by this way is analyzed non-coherently to set the appropriate threshold. This
operation can also be applied to radar signals that do not retain coherency, such as
frequency-agile signals. Examples are given in [1], [23], [29], [46], [50] and [63]. In
the second group, a detector is designed to perform the clutter suppression, Doppler
processing and thresholding operations simultaneously by operating on the pulses

coherently [26], [28], [34], [42], [49], [51].

In this thesis, both noncoherent and coherent detection methods to operate in non-
Gaussian clutter environment are designed. In many of the works in the literature, the
shape parameter of the clutter is assumed to be known. In this study, both of the

parameters are assumed to be unknown and they are estimated.

Three non-coherent techniques, namely, Goodness-of-fit, Expectation-maximization
and Clutter-map CFAR, are designed and analyzed. In the first two techniques,
heterogeneity of the window that is used in estimation of the clutter parameters is
tested and the parameters of the dissimilar regions are determined. With this
information, a threshold is set according to the desired false alarm probability. These
techniques are novel in that they operate under clutter which is non-Gaussian and

heterogeneous. Besides, it is believed that using a Goodness-of-fit test in



heterogeneity detection in CFAR operation is original. In clutter map CFAR method,
the parameter estimation is updated at every scan of the radar and the threshold is set
using the estimates. Clutter map method is not affected from the range-heterogeneity
problem as the spatial-neighbors are not used in estimation of the characteristic. This
method is also new, in that the two parameters of the distribution are assumed to be
unknown and they are estimated and updated, forming the clutter map. In the

literature survey, a two-parameter clutter map CFAR method was not encountered.

In coherent detection, all of the range cells and pulses are utilized as input to the
detector. The likelihood-ratio-test is considered as the optimal detection scheme [14],
[34], [52], [59]. Since the detector is dependent on the clutter and the target
parameters, they are estimated, using maximum likelihood and maximum-a-
posteriori estimation techniques to form the generalized likelihood-ratio test. In the
study, three cases of texture correlation among range cells are considered: No-
correlation, partial-correlation and full-correlation. The estimators and detectors are
derived for all of the cases. The well known detectors that use the same approach do
not operate on all of the range cells and are shown to experience performance loss in
fully and partially-correlated cases. The main contribution of this study is to design a

general detector that uses all the available information in neighboring range cells.

It is shown that in multiple target scenarios, the detectors that operate on a single
range cell [26], [28], [34], [42], [49], [51], have significant performance degradation
and cause even the masking of the target. The reason of this is that the only
information that is used in estimation of the clutter is on that range cell, which is
corrupted by an interfering target. In this study, a detector is proposed to alleviate the
interfering-target masking problem. Also, another method is proposed to succeed the
classical detector to make it operate in multiple-target case, which is believed to be

novel.

The thesis is organized as follows: In Chapter 2, basic radar principles, information

on clutter signal properties and detection schemes are given. In Chapter 3, some



important noncoherent clutter estimation techniques, which estimate the distribution
parameters of the non-Gaussian clutter envelope, are described. In Chapter 4, the
noncoherent thresholding techniques that operate on Weibull distributed clutter are
explained. The coherent estimation techniques that use all the information in the
range-cells and pulses to estimate the power of the compound-Gaussian signal for
full-correlation, no-correlation and partial correlation cases using ML and MAP
approaches are explained in Chapter 5. The estimators derived in Chapter 5 are
exploited in design of the GLRT detectors for compound-Gaussian clutter, which are

presented in Chapter 6. Concluding remarks are stated in Chapter 7.



CHAPTER 2

RADAR PRINCIPLES

The basic principle of a radar system is transmission of electromagnetic waves and
processing of the echo signal in order to extract the necessary information. The
information to be obtained varies with the type of the radar. For example, search
radars process the echo signal in order to detect targets, obtain their positions and
velocities, while tracking radars track the detected targets and obtain the trajectory of
them. Imaging radars generate an image of the ground and perform operations such
as detection of the targets and classification. There exist many functions and
algorithms that perform the cited operations for various types of radars [17], [43],

[47], [54], [56].

In the following sections, basic radar principles, detection and interference models

are reviewed.

2.1 Basic Principles

The main problem in radar detection is determining whether the received echo signal
contains the signal reflected from a target or only interference. Detection is
performed by means of cancellation of the clutter and comparing the amplitude of the
output to a threshold which is usually computed adaptively using the echo signal. In
analyzing the performance of detection, probability of detection and probability of

false alarm are the most important criteria. Keeping the other parameters fixed,



increasing or decreasing one of the parameters increases or decreases the other as
well. The relation between these parameters is a function of the Signal to

Interference Ratio (SIR).

The range information of a target can be extracted from the time delay between the
transmission of a pulse and the reception of the echo. Since the time required for a
pulse to be reflected from an object at a distance R is 2R/c, where c is the speed of

light, then the target distance for a time delay of ¢, can be found using
R=ct,/2. (2.1)

In modern radars, signals are processed digitally. The received signal is filtered,
demodulated and sampled appropriately to obtain the signal to be processed. The

samples form the range bins, each of which has the size

AR=c1,/2, (2.2)

where 7 is the sampling period.

Resolution is the ability to detect multiple targets, which are close, as separate
targets. Resolution cell size may be different from the range cell size. Range
resolution depends on the width of the transmitted pulse, while range cell size is

determined by the sampling period.

Radial velocity, v, of an object can be measured using the Doppler frequency shift of

the echoes by means of the formula

C
<t

=3 7 (2.3)

where f, is the Doppler shift and f, is the radar operation frequency.



Doppler frequency of a target can be measured by means of spectrum estimation

techniques such as Fourier transforms or other types of filter banks.

Multiple measurements of position and radial velocity can be used to determine the

motion of the target in three dimensions.

Radar receives many forms of interference that makes the detection and information
extraction process difficult. These interfering signals can be so high that they can
mask the desired echoes. The most important kind of interference is clutter, which is
defined as the unwanted echoes from the environment. If the desired signal is the
airborne target echoes, then the echoes from sea, land, weather form the clutter.
Detailed information on clutter signal is given in the subsection. The other kind of
interference is the thermal and external noise. The electromagnetic interference
(EMI) and electronic countermeasures (ECM) are the other two types of interference

that a radar system must deal with.

The relation between the received echo power and transmitted power in a radar

system is given by the radar equation, which is

PG G Xo
P :—t( 47;)3rR4 - (2.4)

Here, P, and P. denote the transmitted and received powers; G, and G, show the

transmitter and receiver antenna gains, respectively. A is the wavelength and o is
the radar cross section (RCS) of the target. R represents the target range and L is
the total loss (Systems losses and atmospheric attenuation). The equation given
above is valid for a point scatterer. Other forms of this equation can be found in [47]

and [54].



2.2 Radar Signals

Received radar signal consists of echoes from targets, clutter, thermal noise and other
types of interference. Modeling these signals appropriately is vital in successful
design of a radar system. In this section, information on target, clutter and noise

signal models are given.

2.2.1 Target Signal

The return from a target has a power directly proportional to the radar cross section
(RCS) of the target. The radar cross section is defined as an equivalent area that
relates the incident power density to the reflected one from the target. RCS of a
target varies with respect to the angle, frequency and polarization and it may
experience a fluctuation. The most common models that are used in target RCS
fluctuation are Swerling models [47], [54]. Swerling 1 and Swerling 3 cases
correspond to decorrelation from scan-to-scan, while Swerling 2 and Swerling 4
cases correspond to pulse-to-pulse decorrelation. For Swerling 1 and 2 cases, the
probability density function of the RCS is Rayleigh and for Swerling 3 and 4 cases, it
is Chi-squared with degrees of freedom 4. Swerling O refers to a stationary target

return.

2.2.2 Clutter Signal

Radar clutter modeling is a complicated task, especially when the clutter is received
with a high-resolution radar at a low grazing angle. As a random process, clutter can
be defined by means of its spatial and temporal statistical characteristics. Spatial
characteristics definition is composed of amplitude statistics and correlation
distances. Similarly, temporal variation is defined by amplitude statistics and

correlation times.



Spatial and Temporal Characteristics

The earlier assumption on spatial amplitude distribution of the clutter signal was
Rayleigh, which is a single parameter distribution. However, recent studies and
experimental analysis indicate deviation from Rayleigh PDF, especially in high-
resolution radars and at low grazing angles. The reason is that in high-resolution
radars, as the number of scattering components is finite or fluctuating in a cell,
central limit theorem is no longer valid and Gaussian assumption does not hold. The
most common models to represent this type of radar clutter are Weibull, lognormal
and K, which are two-parameter distributions. Lognormal distribution, which is
sometimes used in sea clutter modeling, is not as widely adopted as the other
distributions [13], [24]. Unlike log-normal PDF, K and Weibull distributions cover

Rayleigh distribution as a special case.

In a recent paper, characteristic of real clutter data was analyzed [5]. It was validated
that first order amplitude statistics fits to Weibull or K-distribution. The in-phase and
quadrature components were found to be identically distributed; have symmetric

PDF and are non-Gaussian.

In another work, a convenient model to represent non-Gaussian radar clutter was
explained [13], [60]. This model represents the clutter as a Gaussian speckle, x,

modulated by a slowly varying texture parameter, 7 :

r=+7x (2.5)

Texture component determines the PDF and the speckle component determines the
correlation properties. In order to define the higher order PDF, it is assumed that the
texture parameter remains constant and SIRP (Spherically Invariant Random

Process) model can be used. Short durations are necessary for this model to be valid.



Another model that was employed in non-Gaussian modeling is alpha-stable
distribution [40]. In this model, noise is impulsive, i.e., it exhibits more spikes and
occasional bursts than Gaussian distribution. It is a generalization of the Gaussian
distribution. It has four parameters: Characteristic exponent, scale parameter
(dispersion), symmetry and location. Unfortunately, stable random variables do not
have a closed-form PDF expression but, on the other hand, they have power series
expansions. However, in a study, it was found that K-distribution fits the sea clutter

characteristics better than alpha-stable distribution [30].

Correlation distance is a measure of the sampling point change, for the clutter
amplitude to change significantly. It is known that land clutter changes significantly
from cell to cell, especially at low angles. Thus, samples from different range cells
may be assumed to be independent. On the other hand, it is reported that increased
correlation is observed from cell to cell, at high angles over uniform forest or at sea

clutter [6].

It is known that the time and space characteristics of radar clutter are different [23].
Experimental results show that temporal distribution was found to be Rayleigh,
Ricean or Weibull [6]. Rayleigh distribution was shown to be valid when the signal
is reflected from wind-blown foliage. It is claimed that Ricean distribution results

when there are fixed discretes embedded in foliage, such as trees.

Spectral definition of radar clutter gives an idea on how long it takes for the clutter
amplitude of a given cell to change significantly. This information can be extracted
from the power spectrum of the clutter. When the clutter results from rocky
mountains, its correlation time is so long that it can be assumed to be constant.
However, when the clutter results from wind-blown trees, rain or sea, the internal

motion of the clutter causes decorrelation in time [5], [24].
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Amplitude Distributions

The Weibull distribution accurately represents the clutter distribution over a wide
range of conditions. By adjusting its parameters, it can be made either Rayleigh, or

approach to lognormal distribution. The Weibull PDF is defined below:

p-1
fW(x)zﬁ[iJ expl- (v JU (x) . (2.6)
a\o

Here, @ and [ are the scale and shape parameters, respectively.

The distribution function is

Fy (0 =1-expl-(v/a)'}. 2.7)

It can be seen in Figure 2.1 and Figure 2.2 that this distribution may have very
different forms depending on the parameters. =2 corresponds to the Rayleigh
distribution. The smaller the shape parameter gets, the spikier the clutter signal

becomes.

Figure 2.1 Weibull probability density functions for various shape parameters

o=1
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Figure 2.2 Weibull probability density functions for various scale parameters

B=2.

The other amplitude distribution that is widely used is K-distribution, which is

described by the following probability density function:

2b bx_,
fK(x)—m(T) K, (bx)U(x), v>0 (2.8)

Here, I'(+) is the Gamma function, K, (:) is the modified Bessel function of the second

kind. Parameter b is a positive constant. The functions are defined as

r(z)i j {meﬂ a , (2.9)

1 d
WTd+)(22)"

COoSt
Kd (Z):

dt
\/; ! (t2+Z2)d+l/2

(2.10)

12



The shape parameter v is the measure of the spikiness. The density approaches

Rayleigh as the parameter tends to infinity.

The K-distribution function is

Fo=1-———"% k ooy U@, v>0

I'v) 2

(2.11)

The change of the distribution functions with the parameters is shown in the Figures

2.3 and 2.4.

00
i
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vV=1.5

Figure 2.3 K-distribution probability density functions for various shape parameters

b=1.
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Figure 2.4 K-distribution probability density functions for various scale parameters

v=3.

Multi-pulse Representation

The modeling of the echoes obtained from multiple pulses with desired distribution
function and correlation properties is a difficult task. In order to solve this problem,

Compound Gaussian Clutter Model is proposed by Ward [60].

In compound Gaussian (product) model, complex clutter can be written as given in
Equation (2.5). The speckle component accounts for the local scattering and is a fast-
changing component. It is assumed to have complex Gaussian distribution with unit
power. The texture component represents the variation of the local power. It is

modeled as a real and nonnegative random process [64].
The compound-Gaussian model widely characterizes heavy-tailed distributions,

which is a property of high-resolution radar clutter. It also has a physical justification

for sea clutter [37].
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Compound-Gaussian model belongs to the class of spherically invariant random

processes [12].

In compound Gaussian model, the probability density function of the clutter is
determined by the distribution of the texture component. The correlation properties
are determined by the correlation of the elements that form the speckle component.
Compound-Gaussian is a convenient model due to its ease of mathematical analysis
and the fact that it can represent a wide class of radar clutter types. The model has
received great attention in literature. Similar to Weibull distribution, K-distribution

can represent the earlier assumed Rayleigh distribution as a special case (V—0).

Let the intensity, y, of the clutter signal be K-distributed [60]:

2 b,
Py(y)—%(zy) K, .(y), (2.12)

where v is the shape parameter and b is a scale parameter. Then the texture parameter

is gamma distributed:

1 vY bol v
pT(r)—W(ZJ 7 exp( ﬂr), (2.13)

where Vvis the order parameter and u is the mean (mean of the clutter intensity).

Hence, the relation between the scale parameter of K-distribution and the mean and

order parameter of the Gamma distribution can be given by

b=2 |—. (2.14)
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2.3 Radar Detection

In radar systems, detection of targets in clutter is an important problem. The classical
detection process is composed of three main steps. The clutter suppression, Doppler
processing and then thresholding. In some cases, clutter suppression is performed
separately as in the case of MTI (Moving Target Indication), or it is performed
jointly with Doppler processing. In some cases, just the Doppler processing is
sufficient to discriminate the desired echoes from the clutter signal in Doppler
frequency. After suppression of the clutter and noise signals, the amplitude of the
signal is obtained and a noncoherent operation is performed in order to set the

threshold for detection.

A modern signal processing technique is to perform all of the interference

suppression, Doppler processing and thresholding operations simultaneously.

Detailed information on these issues is given in the following sections.

2.3.1 Clutter Suppression and Doppler Processing

Clutter suppression and Doppler processing are spectral analysis methods that
operate on the pulses received from a specified range bin. The operation is performed
on each range bin. Doppler processing notation consisting of N pulses and M range
bins are shown in Figure 2.5. The entries in each column correspond to pulse

samples, which are separated by a Pulse Repetition Interval (PRI).

Classical clutter suppression methods are simple. They are also called pulse-
cancellers. The simplest one is the two-pulse MTI canceller that subtracts echoes
from successive pulses. The filtering simply forms a notch at DC and cancels out the
stationary clutter component. However, this method performs poorly especially at

low-radial velocity targets. Details of the operation can be found in [47] and [54].
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Classical spectral analysis and Doppler frequency extraction is performed by means
of Fourier transformation, i.e. Fast-Fourier Transformation (FFT). However, this
operation corresponds to filtering that has high sidelobes in frequency. This fact
causes contamination of target signals by the other targets at neighboring Doppler
frequencies. In order to suppress the high side lobes and alleviate the contamination
problem, commonly, a data window to weight the slow-time samples is used. On the
other hand, the windowing operation, in turn, causes an increase in main lobe width

and a decrease in peak amplitude and SNR.

Range bin (fast time) 1,2,..., M—

, N—

Pulse number (slow time)

1,2, ..

L’ Doppler filtering

Figure 2.5 Two-dimensional matrix for Doppler filtering

A more effective canceller is the matched filter mentioned in [47], which is derived

in the following part:

Let the input signal to the Doppler processing unit be

17



r(k)=s(k)+i(k) k=12,---,N

A (2.15)
r={r(1) r(2)--- r(N)]
Here, s and i represent the target and interference signals, respectively.
The optimal weights are obtained as
w=M," p. (2.16)

The vector p represents the desired target signal or Doppler steering vector and is

given by
A ~ : T
p=i ¢® . e 2.17)

M, is the covariance matrix of the interference, which is usually the sum of the

covariance matrices of the clutter and noise. £2is the Doppler frequency.

A
Then, the output, z=[z(1) z(2) --- z(N)], is obtained as follows:

z=w'r. (2.18)
This filter is also equivalent to MMSE or Wiener filter, which minimizes the mean
squared error between its output and the target return. When the desired signal vector
is deterministic, then the max-SIR or eigen-filter, which maximizes the signal to

interference power ratio at its output, is also equivalent to this filter [16].

After the filtering operation, the amplitude or power of the signal is obtained.

18



2.3.2 Thresholding and CFAR

In classical systems, a target is declared if the signal power, obtained at the output of
the Doppler processing unit, exceeds the threshold. The method is non-coherent as

the operation is performed on the magnitude of the signal.

In modern radar systems, the threshold is determined adaptively. It is set in order to
keep the false alarm rate constant by means of estimating the interference power.
This operation is named as the Constant False Alarm Rate (CFAR) method [23],
[47]. In order to keep the false alarm rate constant, the threshold is set according to

the following relations for Rayleigh and Weibull clutters, respectively [1], [18], [47]:

P, =exp(-T/o), (2.19)

P, =exp(—(T/a)"). (2.20)

Adaptive thresholding can be classified as spatial and temporal. In spatial methods,
the threshold is determined by using the neighboring range cells. In temporal
methods, the information gathered from the previous scans of the cell under test is

used in determination of the threshold.

The performance is measured with probability of false alarm and probability of
detection. Since the parameters are estimated using finite number of samples, a
higher threshold is used and this causes a decrease in detection probability. This

phenomenon is named as CFAR Loss.
Spatial Methods
In spatial methods, echoes from the adjacent range cells surrounding the cell under

test are used. Assuming that these cells contain interference that has the same

distribution and characteristics with the one in the cell under test, the distribution
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parameters of the interference are estimated and the threshold is set according to

Equation (2.19) and (2.20).

Performance of a spatial CFAR algorithm is measured according to the following

criteria:

e Performance under homogeneous clutter condition
e Performance under non-homogeneous clutter condition
e Performance with interfering targets

¢ Computational complexity

The most common spatial CFAR methods for Rayleigh clutter are Cell-Averaging
CFAR (CA-CFAR) and Ordered-Statistics CFAR (OS-CFAR). CA-CFAR method
averages the amplitudes of the adjacent cells and uses this mean value, where OS-
CFAR method performs ranking and chooses the k™ ordered sample in determination
of the threshold. CA-CFAR is the optimum method for operation in homogeneous
Rayleigh clutter. OS-CFAR is appropriate when there are multiple targets and
outliers [50].

The variants of the cell-averaging method, Greater of CA (GO-CA) and Smaller of
CA (SO-CA) algorithms use the greater and smaller of the mean values of the
samples in the leading and lagging sub-windows. These algorithms are appropriate

for operation with clutter edges and multiple targets, respectively.

In non-Rayleigh clutter conditions, the above-mentioned methods designed for
Rayleigh clutter are not successful in keeping the false alarm constant. Thus, some
other methods are proposed. These are maximum-likelihood CFAR [46], variability-
index CFAR [55], ordered-statistics for Weibull [63], [35] and log-t detector [29].
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Temporal Methods

Temporal methods are also named as clutter-map CFAR methods. In these methods,
clutter-maps are employed in order to store and update the clutter information such
as distribution parameters, e.g. the power in Rayleigh clutter. These techniques are
advantageous in that they can operate in any non-homogeneous clutter condition
such as clutter edges. The performance of a temporal CFAR algorithm is measured

according to:

e Settling time
¢ Probability of detection and false alarm
e Self masking of the targets

¢ Computational complexity

Some of the temporal CFAR methods are proposed in [38].

There are other methods that combine the clutter suppression, Doppler processing

and thresholding operations simultaneously [34], [49], [27]. These are optimal

detectors and in this thesis, special emphasis is given on this type of detection.

21



CHAPTER 3

NONCOHERENT CLUTTER ESTIMATION

Estimation of the clutter statistical distribution parameters is an essential part of the
detection problem. Besides, clutter distribution parameter estimates can be used in
classification and discrimination in Synthetic Aperture Radar and other radar

imagery systems.

It is known that Weibull distribution and K-distribution provide a good description of
clutter amplitude in high-resolution radars. In this chapter, some important

estimation methods for Weibull and K-distribution parameters are considered.

3.1 Weibull Parameter Estimation

The Weibull distribution accurately represents the clutter distribution over a wide

range of conditions. The Weibull PDF is defined as below:

X

p-1
Jw () =§[;) eXP{— (x/a)ﬁ} Ux), a.pB>0 (3.1

where @ and [ are the scale and shape parameters, respectively. U(-) is the unit-

step function.

The distribution function is

F, (x)=1-expl-(v/a)' }. 3.2)
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There exist many methods for estimation of Weibull shape and scale parameters.
Generally, estimation of the Weibull PDF parameters is a difficult task, since they
require plotting, iteration or sorting. The most important estimation methods are
method of moments and maximum-likelihood method, which are explained in the

following subsections.
3.1.1 Method of Moments

In this method, moments of the distribution that are defined as a function of the
distribution parameters are equated to the sample moments, and the parameter
estimates are obtained by solving these equations. This method and its derivatives

can also be found in [65] and the references therein.

For Weibull distribution, the following equations show the first and second raw

moments:

Elx]=T0+18)., Ex*1=T01+2/p). (3.3)

The sample moments are obtained from

1 n
U, = ;Z“xf : (3.4)
i=1

Equating the sample moments to analytical moments,

nYx? .
w_ &Y rasd/p 45)

s [Z‘ XI (r(1+1/ ,?3))2 |

is obtained, where n is the number of samples, x;’s are the received signal

amplitudes. Here, I'(-) represents the Gamma Function.
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The shape parameter, £, can be found iteratively using the expression given by (3.5).

Having obtained this estimate, & can be calculated using the equation given below:

n
DI
i=1

azm. (3.6)

Similar operations can be performed to obtain the parameter estimates, using the

central moments instead of the raw ones.

It can be seen that these operations are computationally costly. Some simplifications
may be performed by means of modifying the estimation method. It is known that
logarithm of a Weibull distributed variable has a location-scale type distribution.
This distribution is named as Gumbel distribution and is a special case of the
Extreme-Value or Fisher-Tippett distribution. Using this property, the following

estimates are found [11], [53]:

A N A
o= exp{%zm x,+0.5772 /5-1}, (3.7)

i=1

p= {ﬂ N 1{ Z( [%ilnxijz}}m. (3.8)

These estimators are rather simple and do not require iteration. However, they are

suboptimal.
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3.1.2 Maximum-Likelihood Estimation

It is known that the maximum likelihood estimates [33], [59] are the ones, which

satisfy
6 = arg max p(x|0) , 3.9)
4

where 8=[ar p] .

Maximizing the likelihood function given by (3.9) is equivalent to maximizing its

logarithm, which is given as
Inf,(x)=InB-pBlna+(B-Dnx)-x"a”. (3.10)

A
For independent n samples, x={x,}., , this function is

In £, (%) :ilnfw(xi) :nlnﬁ—n,ﬁlna+(,ﬁ—l)zn:lnx[ —ixf”a-ﬁ. (3.11)

The partial derivatives of the function, which will be equated to zero in order to

obtain the estimates, are found as

9 __ sl BN LB

v = n/)’a+,6’a ;xi : (3.12)
9 =" nina+Ynx, —i(ﬁjﬁln(ﬁ). (3.13)
op " b i=1 1 a

Equating these expressions to zero, the estimates are obtained as given below. These

results were also derived in [46].
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o =;Z“xf, (3.14)
i=1
n A -1
. Zx;glnxl |
p=|E———=>Inx | . (3.15)
x,B nl=1

Having obtained the estimate [, @ can be obtained easily using Equation (3.14).

However, solution of Equation (3.15) is not trivial. At this point, some iterative

methods should be utilized.
3.2 K-Distribution Parameter Estimation
K-distribution is described by the following probability density function:

2b  bx_,
fK(x)_m(?) K, ,(bx)U(x), v>0, (3.16)

where I'(+) is the Gamma function, K, (-) is the modified Bessel function of order v

and b is a positive constant as defined before.

The distribution function is

2 bx,,
FK(x)—l—m(?) K, (bx) U (x), v>0. (3.17)

The next two subsections describe the method of moments and maximum likelihood

estimation methods. There are some other methods that can be found in [7] and [44].
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3.2.1 Method of Moments

The moments of the K-distribution are expressed as follows [32]:

E[x"]: I'0.5k+1) I'(v +0.5k) (E)k' (3.18)
rw) b
The sample moments are obtained from
1S
4, =;le. : (3.19)
i=1

The mean and the variance of the distribution are

E[x]= I'(1.5ICv+05)2

T'o) b (3.20)

E[xz]zbizv

Finding the parameters using Equations (3.20) requires solution of nonlinear
equations. It is stated that for spiky radar clutter, higher order moments can be used

[32]:

V= 2 (3.21)
My _
I
After this, using the first order moment, the parameter b can be obtained using
poVTLW+05) (3.22)

T (V)

27



3.2.2 Maximum-Likelihood Estimation

The maximum likelihood estimates can be obtained by maximizing the log-

likelihood function defined by

In f (x)= iln P (x)=nln( FZZ"/ ))+v2":1n(%)+z":1n[1<v_l(b x)]. (3.23)

Taking the derivative with respect to the unknown parameters,

9 o
3 ab v (bx;)
= —In f,(x)= (1+v) ZE K Gw) (3.24)
E 2 Ko m)
5o fie (@) =-n {m(—) + ‘P(v)} + Zln(x ) +zv—(b) (3.25)

are obtained, where W(-)is the digamma function given by

I'(u)
T(u)

ww——ﬂrmL (3.26)

The solution of the equations, obtained after equating these expressions to zero,
requires nonlinear methods. In their work, Iskander et al [31] obtained the following

estimate for the parameter b:

l?z(ze a\e) ;P(V)+ S In(x ))j (3.27)

ni=1

where, 7, is the Euler constant.
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CHAPTER 4

NONCOHERENT THRESHOLDING

In classical radar detection, after clutter suppression and Doppler processing, the
signal is envelope or square-law detected. Following this, a noncoherent CFAR
operation is performed to set the threshold in order to keep the false alarm rate

constant.

One of the most important problems that a thresholding operation must deal with is
heterogeneity in interference characteristics. Many CFAR detectors for Weibull
clutter [46], [53], [63] or range-heterogeneous Rayleigh clutter [9], [23], [25], [47]
have been suggested before. However, both of the problems are not handled
simultaneously. In this part of the study, three CFAR methods that are suitable for

non-Rayleigh and range-heterogeneous clutter are designed.

The first method, Goodness-of-Fit (GoF) CFAR, firstly, determines the heterogeneity
using a goodness-of-fit test. If it is decided to be heterogeneous, it estimates the
position of the transition point and the distribution parameters of the clutter in the
cell under test. The second method, Expectation-Maximization (EM) CFAR, uses
Expectation-Maximization algorithm to identify the heterogeneous segments and
determine their distribution parameters. The final method, named as Clutter-Map
(CM) CFAR forms a map to store the distribution parameters and by this way, uses
the information obtained from the previous radar scans. The final method is well
suited to land-based radars, where the clutter parameters do not change significantly

in time. In all of the methods, clutter distribution is assumed to be Weibull. The scale
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and shape parameters of the distribution are assumed to be unknown, thus exact

information on the shape parameter is not required.

4.1 Clutter Model

In this study, the range heterogeneity of the Weibull clutter is modeled as a sharp
transition from one region to another with a different PDF scale and/or shape
parameter. This model is general and suitable for clutter interfaces such as land to
sea. Similar to the one made in similar works, the clutter is assumed to be dominant

and the effect of thermal noise is neglected.

The heterogeneity scenario is illustrated in Figure 4.1. The transition represents a
change in distribution parameters. Here, x is the observation vector, fx(x, oy, B) is
the probability density function of the first clutter region and fx(x, o, B>) is the one
of the second one. Parameters @, f; and @, £, represent the distribution parameters
of region 1 and 2, respectively. The horizontal axis shows the range, through which

the samples that form the observation vector, X, are obtained.

fu(x | oy, B1) fu(x, | 02, B2)

Figure 4.1 Clutter heterogeneity, PDF transition from fy(x, o, 1) to fx(x, 0, B2)

4.2 Goodness-of-Fit CFAR

Goodness-of-Fit CFAR method, firstly tests the heterogeneity of the window under
test. If the window is found to be heterogeneous, the position of the transition point

and the distribution parameters of the regions are estimated. Having determined the
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transition point and the parameters, the threshold is set so as to yield the desired false

alarm rate.

It is known that some methods designed for range-heterogeneous clutter may
perform poorly when the clutter is homogeneous. This algorithm does not have this
problem, as the test homogeneity situation is tested. If the data stemming from the

clutter range is found to be homogeneous, threshold setting is done accordingly.

Assuming that the window is homogeneous, the shape and the scale parameters of
the distribution are estimated using the method mentioned in [53]. This method is
easy to implement and its performance is close to the Maximum Likelihood
estimation, which requires iteration in Weibull case. Let the sample vector that will
be used in estimation, obtained after discarding the cell under test and the guard

cells, bex = [x1 X, ---xN]. Then, the shape, B and scale, ¢ parameters are estimated

using the samples that form the CFAR window, using the formulas below:

(e N1 - 2

b= exp{% Slnx, +0.5772 3~ } . 4.2)
i=1

Having obtained the estimates, a Weibull PDF goodness-of-fit test is performed.
Anderson-Darling Goodness-of-fit test [3] for Weibull distribution is chosen here, as
it is claimed to be more sensitive than the classical methods in the tail of the

distribution. The test is defined as follows [22]:

AP =N —%i(% ~D[In(w,) +In(1 - w, )], (4.3)
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where

w, = F(g,)=1- exp(—(%)ﬁ ). (4.4)

Here, g;’s are the ordered samples obtained by sorting x;’s in ascending order.

The test statistic is compared to a predetermined critical value given in [22], for
various levels of significance. The level of significance is defined as the probability
of committing a Type 1 error. In other words, for this case, it is the probability of
deciding that the observation set is heterogeneous, while actually it is homogeneous.
If the test statistic is smaller than the critical value, then it is decided that the

distribution fits Weibull and the observations are from a homogeneous set.

4.5)

crit *

A* > A?
<

Ho

Critical values change with the number of samples used. The values used here which
are given in Table 4.1 are valid for number of observation samples greater than 50. In

this study, the significance level is chosen to be 0.01.

Table 4.1 Anderson-Darling Goodness-of-Fit Test Critical Values

Significance | 0.1 0.05 [0.025 [0.01
A% 0.637 |0.757 | 0.877 |1.038
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If the observation set is found to be heterogeneous, the transition position should be
estimated in order to identify the different homogeneous regions. In estimation of the

transition position, maximume-likelihood approach is used.

Using the independence of the Weibull distributed samples in the observation vector,

the likelihood of the transition point to be at the m th position, is obtained as

m_ 3 A1 A
L, (x, al’ﬁl’a2’ﬁ2 :Hg(iJ eXp{‘(xi/dl)ﬁl} X
- , (4.6)

where &, f,and &,, 3, are the estimates obtained from the two observation vectors

(vectors that are formed by the samples to the left and right of m), respectively.

These estimates can be found using Equations (4.1) and (4.2) for each value of m.

The transition point, M, is declared to be the position m that maximizes the

likelihood function:

M =argmax L (x,&,,5,.,4,.5,). 4.7)

m

If the parameters of the distribution are known exactly, then the detection threshold,

T, can be easily set as
T=a(-np,)” (4.8)

However, the parameters that are used in the test are not exactly known but they are
estimated using a limited number of samples making the actual false alarm rate

different from the desired one. As the estimates are random variables, so is the false
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alarm probability. Due to this fact, the threshold can be set to make the expected

value of this false alarm probability equal to the desired one:

E(P,,'}= E{exp[~(T'/a)’1} = P,, . (4.9)

.. . A A X
Next, a coefficient g is found to set the threshold as 7'=4"#& , with the purpose of

simplifying the operation. Unfortunately, when the shape parameter of Weibull
distribution is not known but estimated, a closed form expression for the distribution
of Pr4 cannot be obtained. Thus, the parameter ¢ can be found using Monte-Carlo
simulations to yield the desired false alarm probability. Since the desired values are
small, it is necessary to perform a large number of simulations. In our case, a closed
form expression for Pg,, in terms of the estimated parameters, exists and simulation
is required only to find the parameter estimates. After the simulation performed to
find the estimates, Pp4 can be calculated analytically. This greatly reduces the

sufficient number of simulations.

In this work, for Prs=1 0'5, the coefficients are found for various number of samples.
The threshold values for different number of samples are given in Figure 4.2. It is
verified that as the number of samples increases, the value approaches to —In Ppa.
Figure 4.3 shows the change of the threshold parameter with false alarm probability
and number of samples used in estimation. Threshold parameters are determined by
this method and are tabulated. Then these parameters are used in setting the threshold

to yield the desired value of the mean probability of false alarm.

34



finite number | |
of samples
infinite number | |
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Figure 4.2 Threshold parameter for Weibull distribution versus different number of
samples, Prs = 107

Figure 4.3 Probability of false alarm versus threshold parameter for Weibull
distribution for different number of samples
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A target is declared if the signal amplitude in the Cell Under Test (CUT) is greater
than the threshold:

CUT =y, ,,, >T (4.10)

In order to determine the threshold parameter, 7, the region of the cell under test is
identified. It is decided that the target is in the first region if the transition point index
is smaller than N / 2. Otherwise the threshold is set according to the second region

I/ﬁl A

distribution parameters. For the first region, the threshold is T'=¢,, " &,; and for

the second one, itis T=q,_,," " &,.

Next, performance of the Goodness-of-Fit CFAR 1is presented. Performance
evaluation is done using Monte Carlo simulations. The simulations are executed at

50000 points and then averaging is performed.

The first result, presented in Table 4.2, is on the capability of the goodness-of-fit test
in homogeneous/heterogeneous region identification. The whole observation vector
is divided into 8 segments each of which are composed of 100 samples. The
transition occurs in the 4™ segment, for which a high test-statistics is found by using
the goodness-of-fit test. This high-statistics exceeds the critical value and that

segment is declared to be heterogeneous.

Next, performance of transition point estimation using Equation (4.7) is presented.
Figure 4.4 shows the performance of finding the correct position of the transition.
The two segments differ in scale parameters, i.e. SCR (Signal-to-Clutter power
Ratio) values and shape parameters. Here, the signal (target) is kept at unit power
and the clutter power is determined accordingly. The target experiences a Swerling-1
type fluctuation. As it can be seen in the figure, the estimation performance is poor
when the transition point is close to the beginning of the range. The reason for this is
that the parameter estimation degrades at that point, since the number of samples to

the left of the window is not sufficient. Performance degradation at the end of the
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range is not that much, in view of the fact that the clutter is less spiky and the
estimator performance is better at the second region. A remedy for the estimation in
end points is using a sliding window and work on the range samples within this
window. By this way, each range sample will be covered and the parameter of each

sample will be estimated successfully.

Table 4.2 Anderson-Darling GoF Test performance in heterogeneity identification
o changes from 5 to 1, B changes from 1.5 to 2

Segment Pa{'ameter Test .
. estimates . . Fit
index a B statistics

4.92 1.54 |0.35 1
5.27 1.39 0.48 1
4.92 1.46 0.35 1
1.93 1.29 14.58 0
1
1
1
1

0.99 1.88 0.21
0.98 2.01 0.30
0.95 2.11 0.26
1.01 2.01 0.27

RN N [A (W[ —

Enlimaind tramsiten paint

a0 i |
1] 20 k1] 40 50 &0 T 0 &0
Actual transition point

Figure 4.4 GoF-CFAR, performance of transition point estimation

SCR; =20dB, SCR; = 30dB; B,=1, =2

37



Figure 4.5 shows the detection probability versus signal to clutter power ratio for
different shape parameter values, in homogeneous clutter. The dotted lines show the
performance that can be obtained by the exact knowledge of parameters. Difference
between the solid and dotted curves shows the CFAR loss. Due to the quality of
estimation obtained with 800 samples, the loss is negligible. As expected, the
performance deteriorates with decreasing shape parameter (£), which means more
spikiness. Spiky clutter causes an increase in the threshold, which, in turn, causes a

reduction in false alarm probability.

0
10 15 20 25 30 35 40
SCR (dB)

Figure 4.5 GoF-CFAR, probability of detection versus SCR in homogeneous clutter
for various shape parameters.

Pra = 107, Range-heterogeneous CFAR (solid curves), ideal thresholding (dotted
curves)

It is known that when conventional CFAR methods are operated in Weibull clutter,

false alarm rate increases due to clutter spikes. Together with this effect, the
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performance under range-heterogeneous clutter is analyzed. Two of the classical
methods, Greatest-of-Cell-Averaging (GO-CA) and Ordered-Statistics (OS) CFAR
methods, which are known to be suitable for heterogeneous Rayleigh clutter are
compared with the proposed method in a heterogeneous Weibull clutter environment.
The number of samples used in estimation is 100. The result is illustrated in Figure
4.6. The two methods are unable to perform well in this situation, since the clutter
distribution deviates from Rayleigh and becomes spikier in the second region. GoF-
CFAR does not suffer from false alarms and yields a threshold close to the ideal

threshold at the transition point.

Performance of the proposed method is also compared with ML algorithm for
Weibull clutter. This method calculates the Maximum-Likelihood parameter
estimates to set the threshold. In spite of its computational complexity, this method
has good performance in a homogeneous Weibull clutter environment. However, in a
heterogeneous environment, the existence of the transition region causes erroneous
estimation and the method yields target masking at the low-power clutter region. The
performance analysis result is shown by Figure 4.7. At the homogeneous parts, the
ML method performs well. The conventional methods experience either target
masking or excessive false alarms at the clutter edge. As it can be seen, GoF-CFAR
enables the detection of the target, which is very close to the clutter edge. At the
second region, where the shape parameter is 2 and the Weibull PDF is identical to
Rayleigh PDF, all of the methods generate almost the same threshold and perform

similarly.
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Figure 4.6 GoF-CFAR, signal variation in range-heterogeneous clutter and threshold
levels for various CFAR methods — no target

Prs =107, no target, 3;=2, B,=1.2, 20 simulations

GO-CA
signal

1 1 1 1 1 1 1 1 1 1
400 420 440 460 450 500 520 540 560 5BO

Figure 4.7 Amplitude variation with range of range-heterogeneous clutter and
threshold levels for various CFAR methods - target

Pra = 107, SCR, = 3dB, SCR, = 20dB; Bi=1.5, B,=2, 20 simulations
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The detection probabilities in heterogeneous clutter, obtained with various methods
are given in Table 4.3 through Table 4.5 The results are obtained via Monte-Carlo
simulations. In the analysis, there exists 100 samples (range cells) and transition
occurs at the 40" range cell. The target is located at the 50" range cell. The number
of simulations is 20000. The thresholds are set so as to keep the false alarm rate at
10°. Table 4.3 shows the probability of detection in homogeneous clutter. The
algorithms designed for range-heterogeneous clutter may cause some performance
loss in homogeneous clutter environment. As it can be seen, when that shape
parameter is 2, the clutter becomes Rayleigh distributed and the CA-CFAR algorithm
is optimum. The ML algorithm also determines the parameters correctly and
performs very well. In this case, as expected, OS algorithm performs well, too. When
the shape parameter decreases, which means more spikiness, CA-CFAR has a drastic
performance loss, especially in low SCR case. In this case, the loss of OS-CFAR is
smaller. GoF CFAR performs close to the ML algorithm in high SCR scenario.
However, some loss is observed when the SCR is low. This loss is due to the errors

of detecting transitions while the environment is homogeneous.

Table 4.3 GoF-CFAR, probability of detection in homogeneous case

SCR(dB) B Ideal | GoF | ML CA OS
40 2 0.99 | 099 | 099 | 0.99 | 0.99
40 1 099 | 099 | 099 | 098 | 0.98
30 1 093 | 0.86 | 093 | 0.88 | 0.92
20 1 053 | 032 | 0.52 | 0.30 | 0.43
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Table 4.4 shows the probability of detection in heterogeneous clutter, where the
shape parameter changes. In this case, CA and OS-CFAR algorithms have a drastic
loss in detection probability. The ML algorithm still performs well in this case,
where the SCR is kept constant. GoF algorithm performs better than the ML

algorithm when the SCR is high; however it performs worse in low SCR case.

Detection performance, when both the SCR and shape parameter change, is shown in
Table 4.5. GoF CFAR performance is the one that is closest to the ideal performance.
The loss of the ML algorithm is higher when the SCR gets lower. OS and CA
algorithms yield lower detection probabilities when the shape parameter and/or the

SCR decrease.

Table 4.4 GoF-CFAR, probability of detection in non-homogeneous case- Same
SCR, different shape parameters

SCR;—>SCR; | B1—B2 | Ideal | GoF | ML | CA | OS
4040 2515 099 | 099 | 099 | 0.98 | 0.98
4040 12 | 099 [ 099 | 098 | 098 | 0.98
4040 1->1.5] 099 | 099 | 098 | 098 | 0.98
3030 215 097 | 096 | 098 | 0.84 | 0.88
3030 12 | 098 | 094 | 097 | 0.85 | 0.89
3030 1->1.5] 097 | 093 | 096 | 0.85 | 0.89
2020 215 080 | 075 | 0.84 | 0.18 | 0.30
2020 1-2 | 089 | 0.66 | 0.76 | 0.19 | 0.33
2020 1->15] 081 | 052 | 0.70 | 0.22 | 0.36
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Table 4.5 GoF-CFAR, probability of detection in non-homogeneous case- Different
SCR, different shape parameters

SCR,—SCR; | Bi—P. | Ideal | GoF | ML | CA | OS
40-30 |2—15] 097 | 096 | 097 | 091 | 0.94
4030 12 | 099 | 092 [ 0.96 | 0.89 | 0.94
40-30 | 1->15] 097 | 0.89 | 0.95 | 0.90 | 0.94
40-20 |2—15] 081 | 0.62 | 055 | 041 | 0.62

40—20 1-2 | 089 | 0.78 | 032 | 0.32 | 0.59

40—20 1-1.5| 081 | 038 | 031 | 042 | 0.63

20—30 2—1.5| 097 | 0.84 | 0.82 | 0.50 | 0.63

20—30 1-2 | 099 | 096 | 0.81 | 0.72 | 0.70

20—30 1-1.5]| 097 | 087 | 0.76 | 0.70 | 0.71

Part of this work was presented in [17].

Due to its disadvantages in Weibull and heterogeneous clutter environment, the OS-
CFAR method is not recommended. On the other hand, it is known that it has some
advantages such as decreasing masking effect in multiple-target situation. Using the
approach of OS that eliminates the outliers, an improvement can be obtained in the

proposed method in multiple-target case.

4.3 Expectation-Maximization CFAR

The second method that is proposed for range-heterogeneous Weibull clutter uses the
Expectation-Maximization algorithm [39] in determination of the differing regions

and estimation of the distribution parameters of clutter in these regions.
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This method assumes that the sample vector under test is formed by a mixture of
signals with different distribution parameters. Adopting this model, the problem can
be viewed as the problem of finite mixture distributions [58)]. Here, the aim is to
estimate the occurrence probability of each distribution and the parameters of them.
The algorithm starts with initial values for the distribution parameters and the a-
priori PDF of each distribution. Then, using the observation signal, a-posteriori
probabilities of each sample having each distribution is calculated. By choosing the
maximum of these probabilities, the distribution estimate of each sample is obtained.
Then, using this information, distribution parameters are re-estimated. These steps
are performed iteratively to obtain the final decision on distributions of each sample
and the distribution parameters. This information is then used in determination of
transition and the detection threshold. Using this approach, Streit, et al., have
performed the transient signal detection for exponential distributed random signals
[57]. Following this, Chen, et al., employed this method in radar CFAR analysis [9].
However, as mentioned above, these studies were performed on exponential
distribution, which was the classical assumption for the distribution of magnitude
squared Gaussian signal. In this study, the method is extended to non-Gaussian,

Weibull-amplitude signal.

Part of this work was presented in [19].

This work consists of two parts: Design of the two level and multi-level algorithms.
In the design of the former algorithm, existence of two different distributions is
assumed. In the latter one, the multi-level algorithm, the derivations for two-level
algorithm are generalized to cover more than two distributions. The motivation in the
design of the second method is simplifying the operation by means of eliminating the

need for estimation of the shape parameter of the Weibull distribution.
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4.3.1 Two-Level Algorithm

Similar to the symbolic illustration used in the previous section, range heterogeneity
is modeled as shown in Figure 4.8. Here, X is the observation vector, fx(x, 0, B1) is
the probability density function of the first clutter region and fyx(x, 0, B,) is the one
of the second region. Hidden random variables, Z;, are introduced here, which

associate each of the range samples x; with one of the two distributions.

fu(x | oy, Bu), Z=1 fu(x, | o, Bo), Z=2

Figure 4.8 Clutter heterogeneity, PDF transition from fy(x, o, B1) to fx(x, 0, B2)

The a-priori probabilities of a sample having the distributions 1 and 2, i.e. Z=1 and 2

are given by

Plz=1]=1-q, Plz=2]=g4. (4.11)

Since, it is assumed that there are two distributions, Z has a binomial distribution.

Seeing that the observations depend on a hidden random variable, they are not
complete and without the knowledge of Z;’s, i.e. the transition point, the maximum-
likelihood estimates of the distribution parameters can not be performed. In this case,
the Expectation Maximization algorithm can be employed. It is known that EM
algorithm is an efficient computational procedure for maximum-likelihood

estimation, where observations are incomplete.
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EM algorithm is performed by iteration of two steps, E and M:

E-Step: Form the expectation

Let the test parameters and the initial (guessed) parameters at the beginning

of the iteration be represented by O=[o, B a, B,q] and
A

0=[a,'B'a,' B, q . respectively. @, (c,x,,0")=P(Z, = c|0',x,.) is the a-

posterior probability of Z being ¢ for the i" range cell given the observation

x; and the assumed distribution parameters 0'.

Then the expectation function is

2
Q(x,B,B')zZlnpx(xZ,B) P,(Z|x,0'"). (4.12)
Z=1
M-Step: Maximize the expectation
0" =argmax 0(x,0,0"). (4.13)
0

At the end of each iteration, & is replaced by g. The algorithm is known to be

convergent at least to a local maximum of the likelihood function px‘e(x|0), if it is

bounded [9]. The stopping criterion for the iterations can be a predefined small

difference between the estimates of consecutive iterations.
For Weibull distribution, the algorithm can be derived as follows:

The expectation function can be written as

0(x,0,0)=>"1np,, ,(xZ,0)P(Z|x,0") (4.14)

=Inp,,, (x|Z=1,0)P(Z =1

x,0)+Inp,,, (x|Z =2,0)P(Z =2

X,0'")
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Noting that for N range samples, which are statistically independent,
N
Inpy,,(x|Z=c.0)= Inp (x|Z,=c0) , (4.15)
i=1

the expectation function can be written as

N
X,0,0')=)> Inp (x|Z. =1,0) ®(Z, =1,x,,0")
o : 12:1: P | . (4.16)

+1n p,(x,|Z,=2,0) ©.(Z, =2,x,,0")

For the Weibull density function, the cost function becomes

0(x,0,0') = ﬁ:[ln(l_Q)"'lnA —fIna, + (B, —Dlinx, _(xi/al)ﬁl] w(1,x;,8") 4.17)
i=1 G S

+[In(g)+In B, — B, Ina, + (B, -DInx, —(x, /e, ) 1 0,2, x,,0")

The a-posterior probabilities are written as

P(Z,=1) P(x,,0'Z, =1)
P(x,,0")
_ (1-g18'a" " x" " expl (/@) }
A-g"5'e i xiﬁl B exp{— (x; /e, ')ﬂl'}"' qpb'a, e xiﬁz B exp{— (x;/a, ')/32'}
(4.18)

o (1,x,,0") = P(Z, =1x,,0" =

P(Z,=2) P(x,,0'|Z,=2)
P(x,,0")
q'ﬁz'az'_ﬁZI xiﬁZI_l exp{— (xi/az ')ﬁzv}
(I- q')ﬂl'a’/l'_ﬁl xiﬁl - exp{— (xi/al ')ﬁl }+ q'ﬁz'az'_ﬁz xiﬁz - exp{— (xi/az ')ﬁz }
(4.19)

@,(2,x,,0)=P(Z, =2|x,,0") =

Here, it should be noted that @,(L, x,,0) =1-@,(2,x,,0) .
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The expectation function is maximized in order to obtain the parameter estimates, by

equating the gradient to zero:

V, 0(x,0,0')=0.

(4.20)

Performing the operations, the estimates of a-priori probabilities and distribution

parameters are found as follows.

The a-priori probability estimate of the second distribution is

A 1 N
=— > 0(2,x,0").
q NZ;, 1 ( )

The estimates of the scale parameters of the two distributions are

1 1
i(xi)ﬁla)i(l’xi’el) A] ) i(xi)ﬁza)i(z’xi’ﬁv) Afz
i=1 i=1

alz L N azz

ia)i(l,xi,ﬂ') ﬁ:a)i(Z,xi,G')
i=1 i=1

The shape parameter estimates are obtained by solution of the equations,
N N A

Zln(ﬁj@(l, x,0") = ﬁlz(ﬁj 1n(ﬁj@(1, x,0")

i al i=1 al al

N

N b
Zln( X Jw,(z, x,.8)= &Z(ﬂ h{ﬂ@(z x,,0")

«, =1\ & )
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Equations (4.23) cannot be solved easily and they require iteration. However, when
these estimates are obtained, posterior probabilities and the scale parameters can be

calculated easily.

In summary, the algorithm is,

1. Initialize 0'= {0{1', BLa' B, '} to some moderate values,

2. Compute @ (1,x;,0")using 0' and find @,(2,x,,0')=1-w (1, x,,0") for each

Xis
3. Update 6= {d’l, ,31, a,, /Ai’z,c}} using Equations (4.21) to (4.23),
4. Replace 0'=1{a,', B'.a,', B,'.q'} by the new estimates 0= {d’l, ,31,0?2, ,[Ai’z,c}},

5. Check the stopping criterion, i.e. the smallness of the magnitude of the
difference between the previous and current estimates. If the magnitude of the

difference is smaller than a predefined value, stop, otherwise, return to step 2.

Performance

In this subsection, some performance results are shown. Due to the fact that the
closed form expressions for the shape parameter estimates can not be found, here, the
shape parameters are assumed to be known and the performance under scale
parameter changes is searched. A simulation result is shown in Figure 4.9. In this
simulation, the outputs of 500 simulation runs are averaged. The first plot shows the
change of the scale parameter with range. The second plot shows the a-posteriori

probability of distribution 2.
The posterior probabilities have an important role in the EM-CFAR algorithm, since

they determine the probability of each sample’s distribution. The distribution with

higher probability is selected as the distribution of the range cell under investigation.
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It can be seen from the simulation output that by putting a threshold at 0.5, the

differing regions can be successfully determined.

The estimation output for scale parameters and the priori probability of PDF 2 is
shown in Table 4.6. It is observed that the scale parameter estimates, 0.48, 4.98 are
very close to the actual ones, 0.5 and 5. The probability of PDF 2 is 0.6, which is
estimated as 0.61. It can be concluded that the algorithm can identify the regions and

estimate their parameters successfully.
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Figure 4.9 Posterior-probability estimate of EM-CFAR algorithm.
;=0.5, =5, B;==2, q=0.6, average of 500 simulations

Table 4.6 EM estimator outputs for scale parameters of two levels and a prior

probability of PDF 2
O o q
0.48 4.98 0.61
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In the derivation of the algorithm, it is assumed that there exists two differing
distributions that the observation samples have. However, it is probable that the
observation consist of homogeneous samples. As an improvement, the existence of
two distributions, i.e. the transition, can be detected initially. In homogeneous case,
because there is no hidden quantity, the EM algorithm is not needed and the
estimates can be obtained by means of an appropriate algorithm, such as the one
given by Equations (4.1) and (4.2). The homogeneity can be tested by means of an

algorithm such as the Goodness of Fit test described above.

After determination of the distribution of the clutter in the cell under test and its
distribution parameter estimates, the threshold can be set in order to yield the desired
false alarm probability. The distribution of the clutter in the cell under test can be

estimated by performing a majority check in the neighboring cell distributions.

4.3.2 Multi-Level Algorithm

The complexity of the Equations (4.23) makes the implementation of the algorithm
explained in the previous section difficult, in unknown-shape parameter case. Thus,
in this subsection, an algorithm is proposed to eliminate the need to estimate the

shape parameter.

If the shape parameters are known or can be obtained from a clutter map, as it is
assumed in some studies in the literature, the two-level algorithm can be easily
extended for known shape parameter values and cover many transitions between

multiple parameter levels.
The shape parameter of the Weibull radar clutter has a limited range determined by

some parameters such as the depression angle, terrain type, radar resolution and

wavelength. So, a set of shape parameter values can be assumed that covers the
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probable terrain types. Using these assumed shape parameters, a set of PDF’s, with

single parameter, the scale parameter, is obtained.
Multi-distribution form of the method described above is derived as shown below.

The expression for the k™ PDF is Zi=c)(c=1, 2, ... M)
fo )= a? X exp(=(x/a, V). (4.24)
Here, B refers to the assumed shape parameter of the ™ distribution.

Carrying out similar operations that were performed in the previous section, the

estimate of the occurrence probability of ¢™ distribution is obtained as

M-1
P[Zi = c] =q,, ch =1 (4.25)

k=0

A-posterior probability of Z; being c is

w,(c,x,,0")=P(Z, =o', x,) :M (4.26)

1

ZQI £ (x)

Performing the operations, we obtain expressions for parameter estimates that are

similar to the ones derived before:

A N
q. :%Z(oi(c,xi,ﬂ'), 4.27)
i=1
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1
N A (f“
. inﬁ" w(c,x,,0") /H
a, =| = (4.28)
> o (c,x,,0")
i=1

The question to be answered next is the selection of the shape parameter or the PDF

set.

It is well known that the variance of the estimation error is bounded by the Cramer-
Rao Lower Bound. Any estimator yields an estimation error variance greater than
this value. Thus, it is not meaningful to work on parameter values that are close to
each other more than the value determined by the bound. Thus, the Cramer-Rao
lower bound is utilized in determination of the values in the assumed shape

parameter set.

The CRB bounds for Weibull distribution shape and scale parameters estimation

errors are derived as follows.

The error variance is denoted by O'S,i2 . Then the CRB for this variance is [59]
o, =Varl,x)-6]21". (4.29)

where J" is the i i™ element of the inverse of the Fisher Information matrix (FIM), J.

The FIM is defined as

J= —E{Ve{ve InP, ‘0(x|9)}’ } (4.30)

The logarithm of the PDF can be written as
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lan‘o(x|9):Nln,B—,BNlna'+(,6—1);1nx Nz (x./a) 4.31)

i=0
where the parameter vector is 0 = [0{ Jii ]T . The gradient of the function is

,_.

N-1
-BN— +ﬁa‘ﬁ )
Vo lan\e(X|9)— N- 1 = ) (4.32)
?—Nlna+21nx —z x,/a) In(x, | @)
i=0

i=0

Taking the partial derivatives again, the matrix becomes

%—a_ﬁ_zﬂ(l+ﬂ)§xiﬁ a+leﬁ P11+ BInx, - flna)

——+2xﬁ P11+ flnx, — flna) N

___Z(ﬁ)ﬁ ln(ﬁj 2 . (4.33)
- 21

Evaluating the expectation of the matrix, the FIM is obtained as

m
Z , (4.34)
B
where
A A 7[2
=y, —1,and k=1+7/e(7/€—2)+?. (4.35)

Here, y, is the Euler constant which is approximately, 0.5772

The inverse matrix is
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ka? ma

L (k—m*)B* (m*—k)

J=— 4.36
N e 5 (4.36)
(m*—k) (k—-m?)
Hence, the variances for the scale and shape parameter estimation errors are,
2 2
G;Zi#, O'EZL’B—Z (4.37)
N (k-m")p N (k—m~)
Substituting the constants, the error variances for scale and shape parameters,
2 2
o, zi“—2(1.1086) and o SN - (4.38)
N N (1.6449)

are found.

As an example, if the shape parameter is assumed to have values from the
set fe [0.1, 2], for N=20 range samples, the standard deviations of the errors are

found to be

0;20.017 for B=0.1; 0, 20.122  for B=07; 0, 20246 for B=1;

0, 20.348 for f=2.

In CFAR operation, the difference between the estimated shape parameter and the
actual one effects the detection and false alarm probabilities. The actual false alarm
probability, in terms of the desired (design) false alarm probability, assumed shape

parameter and the actual shape parameter, is given by the following formula:

B
)/ﬁasswnfd ) (4.39)

PFA,acmal = eXp(—(ln
FA,design
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Figure 4.10 shows the change of the false alarm probability versus the ratio of the
actual and designed shape parameters. It is observed that the false alarm probability
is very sensitive to the ratio between the actual and assumed parameters. In
thresholding operation, it is important to keep the false alarm rate at the desired
value. Any probability that is smaller than this value also decreases the detection

probability.

It can be seen from Equation (4.37) that the standard deviation of the shape
parameter estimation error is directly proportional to the actual value of it. Thus, the
steps of the assumed parameters should be non-uniform. The step size should

increase with increasing shape parameter.

: _4n6
Desired F'FA—1U

BIp assumed

Figure 4.10 Change of probability of false alarm with the ratio of actual and
estimated shape parameters
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The standard deviation of the error is given by

o2t (4.40)

=

o . th . .
Hence, the minimum value of the n™ step size is

A +
Aﬂn :ﬂnﬂ_ﬂn 2G}'H—l—i_o-n :ﬂ"*’l—ﬂ” (441)
VNY
Introducing a new parameter
Aoy Ny + (4.42)

and representing the minimum shape parameter by S, n™ shape parameter value in

the set will be

B, =B1. (4.43)

The maximum value of the shape parameter is limited at 2, which corresponds to the

Rayleigh distribution.

Figure 4.11 shows a parameter set when the number of range samples is 40. The
starting parameter is set to 0.3. The elements of the set are placed non-uniformly and

are 0.30, 0.38, 0.49, 0.63, 0.80, 1.03, 1.32, 1.70, 2.17 and 2.00.

0.2 04 06 0.8 1 12 14 16 18 2 2.2

Figure 4.11 Designed shape parameter set for the multi-level EM-CFAR algorithm
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Defining a set with more elements is not necessary, as no estimation method can

yield better results and generate estimates closer to the actual values.
Performance
In performance analysis, the a-priori probabilities and assumed shape parameters are

chosen as shown in Table 4.7. The four assumed parameters form four different

distributions.

Table 4.7 EM-CFAR test scenario 1, assumed shape parameters and a priori

probabilities
PDF, PDF, PDF; PDF,
Assumed shape parameter, 3 0.5 0.75 1.4 2
A priori probability, q 0 0 0.6 0.4

The actual scenario is as shown in Table 4.8. The first 20 range samples are land

echoes, next 60 samples are echoes from river and the last 20 samples are again from

land.

The simulation results of the multi-level algorithm are shown in Figure 4.12. The
four plots show the a-posterior probabilities of the four distributions at each sample.

The results are obtained as a result of 500 trials.
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Table 4.8 EM-CFAR test scenario 1, actual distribution parameters

20 samples 60 samples 20 samples
(Land) (River) (Land)
o 2 7 2
B 2 (PDFy) 1.4 (PDF3) 2 (PDFy)

Figure 4.12 EM-CFA, a posteriori probabilities of the assumed distributions

By choosing the maximum-of the a-posteriori probabilities at each range sample, the
most likely distribution of each sample can be found. Hence, the distributions are
obtained for each range sample, as shown by Table 4.9. Apparently, the actual

probabilities are found correctly.

Table 4.9 EM-CFAR, estimated distributions

20 samples

60 samples

20 samples

PDF

PDF,

PDF;

PDF,
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The scale parameter and a-priori PDF estimates are obtained as by-products of the
algorithm and they are shown in Table 4.10. The scale parameters of the 3 and 4"
distributions are estimated successfully. However, as there are no samples from the
1" and 2™ distributions in the range, the parameter estimates for these distributions
are not useful. The occurrence probabilities of the distributions are also estimated

correctly.

Table 4.10 EM-CFAR, estimated distribution parameters and a priori probabilities.

PDF, PDF, PDF; PDFE,

Scale parameter estimate : 2{ 2.98 3.80 7.05 2.01
Actual scale parameter 1 1 7 2

A-priori probability estimate : 21 0.00 0.01 0.59 0.40

In some of the cases, scale parameters that are estimated using the probabilistic
mixture defined above, are not very close to the actual values. As an improvement,
the estimation can be performed among the members of the specific PDF. This data
is referred to as training data. This may be viewed as a conversion to the
deterministic mixture. Having determined the training data for a given PDF and
assuming it has the shape parameter assumed previously, the ML estimate of the
scale parameter can be found using Equation (3.14) instead of the estimate obtained

by the algorithm:

| B
a, = (_ zxffj (4.44)
n

iedistc
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The estimates, obtained using the training data and the ML estimation method, are
given in Table 4.11. As it can be seen, the estimates using ML method performed
over the training data are better. The improvement is more apparent in severe

conditions.

Table 4.11 Parameter estimation using EM-CFAR algorithm and improved
algorithm which uses ML estimation

PDF, PDF,; PDF, PDF;

Classical algorithm estimate :2{ 2.98 3.80 7.05 2.01

Training data and ML estimate - - 7.02 2.00
Actual scale parameter 1 1 7 2

The next analysis shows the performance in a situation where, again, both of the
scale and shape parameters change. In the first region, SCR is 25dB and in the
second one, it is 10dB. This corresponds to the case where the scale parameter
changes from 0.03 to 0.26, while the target signal has unit power. Shape parameters
are set to 0.8 and 1.2, respectively. This is shown in Table 4.12. A target is located at
the 21" range bin.

Table 4.12 EM-CFAR test scenario 2, actual distribution parameters

40 samples 40 samples
o 0.03 0.26
B 0.8 1.2
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Figure 4.13 shows the scale parameter estimates of the two regions obtained at each
of the 200 simulation points. The estimated values are very close to the actual ones at

most of the simulations.

0 0 40 60 80 100 120 140 160 180 200

L |I|
i,
lil

0 100 120 140 160 180 200

Simulation index

Figure 4.13 EM-CFAR, scale parameter estimates for each simulation point

(a) First distribution, (b) Second distribution

After determination of the parameters, the threshold is set easily using Equation
(4.8). For the example given above, the amplitude of the observation and the
threshold generated by the algorithm is shown in Figure 4.14. The first figure shows
a single run and the second one shows the average of the 200 simulations. It can be
seen that the threshold follows the signal successfully and the target can be detected
while alleviating the false alarms. The threshold obtained with homogeneous

Rayleigh clutter assumption yields many false alarms.

62



90

0 10 20 30 40 50 60 70 80 90
Range bin

Figure 4.14 Amplitude of the signal and the threshold values obtained with EM-
CFAR algorithm

(a) Single simulation, (b) Average of the simulations, dashed: EM-CFAR threshold,
dotted: Threshold obtained with homogeneous Rayleigh amplitude assumption, solid:
Signal amplitude, SCR=25dB

4.4 Clutter-Map CFAR

The methods explained above are designed with the assumption that the clutter
changes significantly in time so that a clutter map can not be formed, that is the
previous clutter information can not be exploited in estimation of the current one.
However, when the environment does not change significantly, as in the case of land-
based radars, a map can be formed that stores the previous clutter information and
enables its use in current estimation. Clutter map is regularly updated in order to

track the mild changes in clutter state.
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In the clutter environment under consideration, the map stores the shape and scale
parameters of the Weibull clutter and updates this information at each new data

arrival.

It is known that the methods for estimation of Weibull distribution parameters
require the entire observation data. However, in most of the radar applications, it is
desired to obtain the estimate without waiting the arrival of the whole data set.
Moreover, in radar applications, the previous observations form a huge amount of
data and storage requirement is enormous. Therefore, in this study, a recursive
estimation method, which updates the estimates with each new observation and does
not require the previous data, is designed. The method is very advantageous due to

the following reasons:

® The estimation does not require the whole observation data in update of the

clutter map,

e The method is computationally efficient when compared to the other

methods, so it is suitable for radar applications,

e The method can adapt to the changing clutter environment, which may occur,

for instance, in changing wind conditions.

Two estimation algorithms, namely the method of scoring and the recursive least

squares estimation are considered.

4.4.1 Method of Scoring

In this method, the recursions in estimation maximize the relative entropy at each
iteration step. It is declared that the resulting estimates often share some of the
desirable properties of ML estimates [10]. Therefore, this method seems to meet the

needs.
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In a recent work, this method was implemented for K-distribution [10]. However,

Weibull distribution case was not encountered in the literature survey.

The method can be summarized as follows:

Let {xl,x2,~--}be the observation samples and 0 = [af ,b’]T be the parameter vector to

be estimated. The update equation that uses the new arriving sample and previous

estimate is

9n+1 = 9n + gn Fn Y(xn+19 Bn)’ n= 0919 e (445)

where 0, is the estimate obtained after n observations, F, is a gain matrix and &, is

the step size. The score vector represented by y(x,,0,)1s

Y(xn ’en) = V() ln(p('xn

0))j00, - (4.46)

The form of the gain matrix affects the convergence property of the recursion. The

inverse of the information matrix, I(8,), of the observed data is a common choice:

F =1"®,). (4.47)

10,) = E{y(x,.0,)(x,.0,) | (4.48)

For Weibull case, the derivations are done to yield the elements of the information

matrix

16,) = E{n(x,,60,)7(x,.6,)" } (4.49)

as
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1,(6,) = E{(— B, ai +B,a, " j } = <%>2, (4.50)

ﬂ)l
1,0)=El - —ina, +inx | 2| )| —p L ga Py s
’ B o o

! " % " . (451)
C—l+y,  —0.4228
a, a,
1,,6,)=1,,(,), (4.52)
and
| g | osctey e 18237
1,,8)=E||—-Ina +Inx —| 22| In(2)| = ve) _ 1857
’ ﬁl‘l an a]‘l 6ﬁn ﬁn
(4.53)

8, T
}/('xn-%—l > en ) = (_ ﬁn i + ﬂnan_ﬂ”_lxrwlﬁ'x j {L - ln an + ln 'xVH—l - (Mj IH(M)J
Q, B o a

n n n

(4.54)

A common choice for step parameter is

e =an’,where a>0, 0.5<b<l. (4.55)

n

Actually, these recursions converge to the estimates that maximize the likelihood
function and at the same time make the score vector zero. The Newton-Raphson
method can also be employed in solution of the equation. In Newton-Raphson

iteration, the general update expression is
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L'p,)
=+, ) (4.56)
Ora =0T 4 g

The denominator may be viewed as the Hessian of the likelihood function for
multivariable case. In Fisher’s method of scoring, this Hessian is replaced with its

expected value.

L'(p,)
1(¢,)

The performance of estimation using Method of Scoring is shown next. Figure 4.15
shows the histogram of the estimates when the scale parameter is 1 and the shape
parameter is 1.5. The algorithm starts with the initial values of ay=1.5, Bo=2. It is

seen that the estimator performs well.

i
0.94 0.96 093 1 1.02 1.04 1.06
scale parameter

1.4 1.45 14 155 16 1.65
shape parameter

Figure 4.15 Histograms of estimates obtained with method of scoring

Actual values: a=1, B=1.5; initial values: op=1.5, Bp=2, 1000 simulations
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However, a problem with this method is that in about 1% of the trials (rate is
dependent on the Weibull parameters), divergence occurs. As a remedy to this
problem, censoring is performed. It is known that for radar clutter, Weibull shape

parameter has a limited range.

With the aim of simplifying the expressions obtained above and eliminating the
divergence problems, estimation for Gumbel distribution (log-weibull) is also
considered. However, exactly the same expressions were obtained for this

distribution. So, no simplifications could be performed.

This work was presented in [17].

4.4.2 RLS Estimation

It is expected that the estimation method derived in the previous section can be
improved by employing Recursive Least Squares (RLS) algorithm.

As observed from the update equation, when “&, F, ¥(x,,,, 8, )" expression equates

n+l?
to zero, which is equivalent to maximizing the likelihood, the convergence is

obtained:

9n+l = 9n + gn Fn }/('x 9 ) n= 071" ot (4.58)

n+l°> “n

In RLS algorithm, the cost function to be minimized is defined as

Joy=3 27 e} (4.59)

i=1

Here, A is the forgetting factor. Referring to the previous section, the cost function

may be written as
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2

Jm=Y 2" Jr(x,.9,) (4.60)

However, in multi-parameter case, one of the parameters may be emphasized over

the other. Hence, the following cost function is proposed:

2

J(n)= Zn: A

Fn }/('xi 4 en)

(4.61)

Since the gain matrix, F, normalizes the powers of the two variables, decoupling of
the two parameters is satisfied and in this case, no emphasis on one of the parameters
is expected. When the distribution has one parameter, there is no such problem in
estimation.

Gaussian RLS Estimation

Firstly, the derivation is performed for Gaussian PDF case. The Gaussian PDF is

et (4.62)

1
P0)= e

Here, the estimated parameter is 0. The score vector is obtained as
0 I,
y(x,0)=—Inp (x,0)=—(x"-0). (4.63)
06 o

Thus, the cost function is

J(n)= zn:/i"—" %(xf -0, (4.64)
i=1

n
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Taking the derivative with respect to the parameter to be estimated and equating to

Z€T10,

iJ(n) = Zn:ﬂ"-"z(xf ~0,)20,=0

06 i=1
(o, #0)

is obtained, which can be written as

n

St =3 10,
i=1

i=1

Solving for o ,

< )
n—i
2 AT,
2 _ =l
n n

z ﬂ/n—i

i=1

o

is found.

With A=1, the estimate becomes

which is the expected result, the ML estimate of the power.

In this case, the recursion has the following form:

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

This result is similar to the well-known clutter map update for Rayleigh envelope,

also named as the exponential filtering, with time varying coefficients.
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Weibull RLS Estimation

The derivations are repeated for Weibull case. In this case, the multivariable update

form is used. The cost function is

Ty =Y 2" n(x.0,) - (4.70)
i=1
The error vector is found to be
A2+ - E + un(D))]
x(x.0,)=F,y(x0,)=| 7 N @ P x“ 4.71)
B+ =D(=u~ BIn()]
o o
Taking the derivatives with respect to scale and shape parameters,
0 S | : . ,
) =Y A [~ Qa—p+ () =Dp+(EH” =1 fuinE)
o124 P Ji] o o o 4.72)

(u—Bu+p+Bu ln(%)+(%)ﬁ(—,0+,5(ﬂ+/))+(1—,5),5ﬂ1n(%)))] =0
and

0 L | X. X. X
—J) =D V7 [ QA (—p+ (D) =D p+ (D’ -1 Suln(=L))
B zl B B 4.73)

U+ p+ L) (—p+ BInCE)(p+ BuIn(L)))))] =0
a a a

are obtained.

Unfortunately, the update equations shown above cannot be solved explicitly. The

results are computationally costly and are not appropriate for implementation.
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Performance

Firstly, the performance of parameter estimation and change in detection probability
with changing number of scans (or clutter map update rate) is investigated. When the
shape parameter f=1.5, SCR=20dB and the desired false alarm probability is
Pra=107, the detection probability reaches 0.8 at 100™ scan and approximates 0.9 at
150™ scan, which is the value that can be obtained when the parameters are exactly

known.

Change of detection probability with signal to clutter ratio is shown in Figure 4.16.
The dotted and the solid curves show the performance obtained with the proposed
method and with the exact knowledge of the parameters, respectively. There is a 2-
3dB SCR loss when compared to the performance obtained with the knowledge of
the parameters. Some performance degradation occurs when the clutter becomes

spikier.

The next result shows the performance under a time-varying condition. In this
scenario, the shape parameter is 2 at the beginning and starts decreasing linearly at
the 400" scan and reaches the value of 1 at the 700th, after which it remains constant.
The detection and false alarm probabilities obtained in this case are shown in Figure
4.17 and Figure 4.18. The dotted curves show the performance when the correct
threshold is used. As expected, when the shape parameter gets smaller (after 400™
scan), the difference between the detection probabilities obtained with the proposed
method and the ideal one increases. The proposed method performs well in keeping
the false alarm rate constant, as can be seen in Figure 4.18. In this scenario, the

classical one-parameter clutter-map method yields a false alarm rate of 10™.
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Figure 4.16 CM-CFAR, change of detection probability with SCR for different
shape parameter values
N=100, 10* simulations, desired Prpa=10"
0:B=1.5, A:B=1, ...: Exact knowledge of the parameters

098
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Figure 4.17 CM-CFAR, probability of detection in the time-varying scenario
SCR=25dB, 10" simulations
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Figure 4.18 CM-CFAR, probability of false alarm in the time-varying scenario

10* simulations, desired Ppa=10"
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CHAPTER 5

COHERENT CLUTTER ESTIMATION

In this chapter, coherent clutter estimators are derived which are used in coherent
detection of signals in non-Gaussian interference environment. The estimation can
also be used in threshold determination for CFAR operation or segmentation and

classification in SAR images.

As explained in Section 2.2.2, Compound Gaussian Clutter can be represented as the
product of two independent random variables, the speckle and the texture. The
texture component is a slowly varying parameter and is a measure of the clutter
power. In this study, it is assumed that the speckle covariance matrix is exactly
known and the texture component is estimated. For instance, for land-based radars,
speckle covariance matrix can be formulated as a function of the radar system

parameters such as antenna rotation period, beamwidth and beamshape.

The texture component may have different correlation characteristics, depending on
the clutter nature. It may be identical or independent in all of the range cells under
consideration. The partial correlation case, which is an intermediate case between
full and no-correlation cases, is also considered. For each of the scenarios, both ML

and MAP estimators are derived.

75



5.1 Compound-Gaussian Clutter Notation

In this section, the notation for compound Gaussian model for multiple range cells is
given. The notation can also be extended to represent the signal received from

multiple antennas as in the case of STAP.

Let the observation signal, which is composed of samples from N pulses of M range

cells, be

A

T T T T
r=[r, r, -

.rM]

:[\/?1()611 X xuv) \/T_z(xn Xy xzzv) """ \/a(xm Xy " ‘XMN)]T

Here, 7 is the texture parameter. The texture components may be correlated,
uncorrelated or partially correlated from range cell to range cell. Distribution of the
texture component determines the distribution of the clutter. x;’s are speckle
parameters and have zero-mean complex Gaussian distribution. They are correlated

within the same range cell, and are uncorrelated among different range cells.
Speckle component of i'th range cell can be denoted by
A T
X; :[xil Xip Xz xiN] . (5.2)

The PDF of x; can be written as given below:

exp[-x," M, 'x,]. (5.3)

X

1
PO
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Here, M, =E{XXH} is the covariance matrix of the elements of the speckle

component of the signal from a range cell. The elements in the speckle component

are highly correlated.

The PDF of r, conditioned on the texture parameter vector, T = [Tl T, - Ty I,
is

1 -
pr‘T (r|T) = W eXp[—rHMr r] , (54)

r

where M, is the covariance matrix.

The marginal PDF of the texture component was given before but is repeated here
for the sake of completeness. For K-distributed clutter, the texture has a Gamma

distribution:

pf(r)=L(1] 7 exp(-- 7). (5.5)
I'(v)\ u u

Next, the PDF for partially-correlated texture components of range cells will be
given. The joint PDF of the complex clutter can be written in terms of the texture

component as [8§]

M
— H;N exp(—rirnHM;lrn) dr,---dt, . (5.6)
n=l1

n n

T 1
p(rl,rz,..-rM):-([-..v([pT(T) ENM|MS

Correlation structure of the texture component is inherent in py(T) . The expressions

for a general correlation structure are found to be too complex, so to simplify the

analysis, a first-order Markov structure is assumed [36]:
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Pr(D)=p, . @y |0y P Foa|u) Py (E]7), (5.7)

v-1

4 1 Ty
v g 5.8
pr,\ro ( m| m_1) P p;v—l)/Z (1 _ pT) (Tm_l ) ( )

H (1_101')

where p, is the one-lag correlation coefficient.

When the order parameter v can be written as v = (k+1)/ 2, k=0,1,2, the gamma
distribution reduces to the chi-square distribution which can be written as the sum of

squares of 2v zero-mean independent Gaussian processes, g;.. In generation of the

correlated gamma distributed signal, correlated Gaussian processes can be used [3]:
2v 5
t,=>.8, . Jj=L2 (5.9)
i=1

Thus, each of the texture components has chi-squared distribution with 2v degrees

of freedom. Given g;;, gi» can be generated using

8r =P, 8u+il-p, . (5.10)

where z; 1s a zero-mean Gaussian random variable with unit variance.

Correlation coefficient between the texture components is square of the one between

the Gaussian components that generate them:

p.=p,’ (5.11)
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The signal is generated as follows: Firstly, spatially partial-correlated texture
components for each range cell are generated using the procedure defined above.
Then, for each range cell, decorrelated from the other range cells, correlated speckle
components are generated. The autocorrelation function of the elements of the
speckle component is assumed to have an exponential structure with correlation

coefficient p,. Additive noise, with variance o , 1s also simulated.

Waveform examples of the generated signal are given in Figure 5.1 through Figure
5.3. The signal is simulated to stem from 20 range cells and 8 pulses. The first figure
shows the magnitude of vector r shown in Equation (5.1). Vector r and the video
signal have the same elements. The video signal consists of the samples ordered in
time. That is, the samples that stem from each pulse are grouped together. However,
in vector r, the samples from each range cell are grouped together. This can be seen
by comparing Figure 5.1 and Figure 5.2. As shown in Figure 5.1, the first N=8
samples are obtained from the first range cell, the following N samples are obtained
from the second range cell, and so on. In Figure 5.3, a spikier clutter signal is shown.
This corresponds to a lower order parameter, v of the Gamma distribution. The
elements of the speckle component are highly correlated and there is partial

correlation between the texture components of different range cells.
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Figure 5.1 Received vector illustration

M=20,N=8,v=2, =1, p=0.99, p=0.8,0° = 0
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Figure 5.2 Video signal, moderate clutter

M=20,N=8,v=2, =1, p=0.99, p=0.8,0° = 0
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Figure 5.3 Video signal, spiky clutter
M =20,N=8,1=0.5, u=1, p=0.99, p=0.8,0° = 0

5.2 ML Estimation

In this section, Maximum Likelihood Estimator of the texture component is derived.

ML estimate of the texture vector is the one that maximizes the conditional PDF:

Ty, =argmax In p, (x|T) (5.12)
T

Two ML estimators are derived. The first one assumes no-correlation and the second

one assumes full-correlation between the texture components.

To be used in evaluating the estimation performance, firstly the Cramer Rao Lower

Bound for nonrandom texture parameter estimates is derived.
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5.2.1 Cramer-Rao Lower Bound for Nonrandom Texture Parameters

By deriving the Cramer Rao Lower Bound for nonrandom parameter case,

performance of the ML estimator can be analyzed.

For the uncorrelated case, the error variance is

A A ..
o =Var[2’i (r) —T,} > (5.13)
where J is the ii ™ element in the matrix J .
A 9 In Pur (r|T)
Jj=—E——————— (5.14)
d7,07
The partial derivatives are
iilnpru(dT)=i2—2%rkHMx_lrk if k=1
a7, 97, T, ; (5.15)
=0 otherwise
Taking the expectation yields
0°Inp . (xr]T)
p TN L )
a7, T, T,
= i2 - 2%TkE{XkHMx_1Xk }
T T (5.16)
N ol
Tk Tk
N
- 2
7’.k

Hence, the error variance is
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o, =2— (5.17)

For the full-correlated case, the bound is derived as follows:

Taking the derivative and the expectation yields

0% In p,. (r|T)
r‘T MN 1 —
E{ az_z = 2 _2_3E{rkHMx lrk}

T T
N 5 v Ef M s, ) (5.18)
T T
_ MN
-
Thus, the error variance is
2
.l >" (5.19)
NM

It is expected and can be seen here that the error variance is smaller in fully-

correlated case as the number of useful observations increases.
5.2.2 No Spatial Correlation

The conditional PDF of the clutter is

1 -
rT)=—————exp[-r"M, r] 5.20
Pyr () Ve (5.20)

If there exists no spatial correlation between the texture components and the
correlation structure of the speckle components is identical from range cell-to-range

cell, the autocovariance of the clutter is given by:
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0 M, . 0

M, = , . (5.21)
0 0o . 0
0 0 - 7,M,

Determinant of the matrix is

M
M, :(Hr,.N )|Mx " (5.22)
The inverse of the autocovariance matrix is

iMx‘l 0 0

!
o Im . o

M, = PR . (5.23)

0 0 0
0 0 iM;‘

L T J

Maximization of the PDF is equivalent to maximization of its logarithm, which is

given by
In p,p (©T)=—NM In7z —InM, | -r"M, 'r
M Mo (5.24)
=-NMInz-NY Inz, - MM, |-> —r" "M, T,
i=1 =
Taking the gradient and equating to zero we get the equations given below:
1 _
I pr‘T(r|T)=—ﬁ+—2rkHMx T, (5.25)
a7, T T,
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N +%rkHMx_lrk =0. (5.26)
7’.k,ML Tk,ML

Hence, the ML estimate can be found using

H -1
r, M T
T = % . (5.27)
We can see that expected value of the ML estimate is equal to the actual value:
Ex,"M, ', 7, Ey,"M "
E{Tk,ML}: {rk X rk }: k {xk X 'xk }: ,z.k . (528)

N N

Hence, the estimate is unbiased.

As it can be seen in Figure 5.4, ML estimator can successfully estimate the texture
parameters. The first figure shows the ML estimates and the actual values, which are
almost equal. The second figure shows the error variance and the CRB. The average
value of the error variance is almost equal to the Cramer-Rao-Lower bound in 500
simulations. The third figure shows all of the estimates in 500 simulations, the
ensemble. The mean and standard deviation of the estimation is shown in the last

figure.
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Figure 5.4 Performance of texture parameter estimation

(a) Actual values of texture parameters and their ML estimates, (b) Obtained error
variance and CRLB, (c¢) Ensemble of the estimations, (d) Error mean and standard
deviation
M=10,N=10,MC=500,v=2,u=506"=0,ps=0.5
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5.2.3 Full Spatial Correlation

If the texture components are fully-correlated, i.e. they are identical; the expressions

are obtained as follows:

r:\/;[(xn X xuv) (le Xy ot xzzv) """ (le Xppp 0t xMN)]T’ (5.29)

1 I
— exp[-rM.r]. 5.30
T pl ] (5.30)

When there the texture components and the correlation structure of the speckle
components is identical from range cell-to-range cell, the autocovariance of the

clutter is given by

M, O 0
0 M, 0
M =7 (5.31)
0 0 0
0 0 M,
Determinant of the matrix is
M, |=7" M |". (5.32)
The inverse of the autocovariance matrix is
M, 0 0
-1
M, == 0 M, 0 (5.33)
7| O 0 .0
0 0 - M,
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Inp

Tz

(r|1') =K-MNInt-M 1n|M| —%rHM_lr

Taking the gradient and equating to zero we get the equations given below:

i1n pr‘f(r|2') = —M+i2rHM-lr =0
or T T

Hence, the ML estimate can be found using

u H 1
Zrk M T
_k:l

Ty =

NM

(5.34)

(5.35)

(5.36)

This result is expected: It can be interpreted as first finding the power of each cell

and then averaging it over all of the range cells. This is equivalent to Cell-Averaging

CFAR, which is known to be optimal for homogeneous Rayleigh clutter, or fully

correlated texture components.

As expected, the estimate is unbiased:

iE{rkHMx_lrk} TiE{XkHMx_IXk}
E{TML } =4 =&
NM MN

N
. T MN
= =7

MN MN

M
T
k=

5.2.4 ML Estimation in Additive Noise Case

(5.37)

The clutter signal contaminated by additive white Gaussian noise can be written as
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=/ +n,. (5.38)

In this case, the ML estimator derived in Section 5.2.1, for independent texture

components yields the expression given below:

H -1 H H -1
r,, M rk_( T.X, +n )Mx (Z'kxk+nk)

X

Timr =

N N (5.39)
T (Xk M, x, )+ n, M, "n
N
The expected value is
TkE{XkHMx_IXk }+ E{nkHMx_lnk }
E{z.k,ML}: N

(5.40)

2
o -1
=T, +—N IrM, ),

where, o is the variance of the additive white Gaussian noise.
It can be seen that the estimate has a bias which is not a function of the estimated
parameter. Also, assuming that the noise power and speckle covariance matrix are

known, it can be calculated and subtracted from the estimate easily.

The equation that is derived for finding the ML estimate for the noisy case is

2 -1
_l[_%rkHMx_lrk + O-zrkH (Mx_l )zrk 2;[/{ +26 tr(MX—l) 2
201, [z, +o T, tr(M, )]

e (Iﬂl(fkei +07) + (7.6 + 52)(62(Iﬂ1(fkei +07)+(T.e, + 62)(63(ﬁ' )
e g =] (541
[[@e+0%)

i=1

=0 ,

. th -
where, ¢; is the i eigenvalue of My,
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As seen in Equation (5.41), the expressions are computationally rather complex. In
the noisy case, using the ML estimate that was derived in Section 5.2.1, for noiseless
case may be preferable since the estimator for noisy case is complex and the bias due

to the noise can be subtracted easily from the estimate, as shown by Equation (5.40).

5.3 MAP Estimation

In this section, maximum-a-posteriori estimator of the texture component is derived.
For this estimation, the probability density function of the texture process must be
available. In the first part, assuming that there exists no spatial correlation between
the components, the estimator is obtained. In the second part, full-correlation is
assumed. The reason of performing these derivations is their simplicity. They will
also be used in verification of the results obtained for partial-correlation, which

covers these as special cases.

The Cramer-Rao lower bound for random texture parameter is derived first, with aim

of MAP estimator performance evaluation.
5.3.1 Cramer-Rao Lower Bound for Random Texture Parameter

When the estimated parameter is a random variable with known PDF, the mean-

square error satisfies the inequality below [59].
Ellew -4 2 7 (5.42)

where JI is the ii" diagonal of the inverse information matrix. The information

matrix consists of two parts

Jo=Jy+J,, (5.43)
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where J, is the information matrix obtained from the data as given by Equation

(5.14). The matrix J, represents the a-priori information given by the PDF.

Firstly, the bound is derived for no-spatial-correlation case:

" 97,07,
2 —_—
A|l-E (1—1/)L2 i=j, (V_l)V_ZM i=J,
Jp ;= T, = u> ') (5.45)
0 otherwise (0 otherwise

Using Equation (5.43), the information matrix is obtained as

2 —
Jo= Ny T2 5.46)
" @ T
Hence, the bound is
. 1
E{jg, -7, J2 - (5.47)
v: T'(v-2)
St
7, 1 TW)
Similarly, for the full-correlated case, the bound is derived to be:
Eljtw) - |2 L : (5.48)
NM v I'(v-2)
V=D
T u ')

91



5.3.2 No Spatial Correlation

ML estimate of the texture vector is the one that maximizes the a-posteriori PDF
[59]:
Tyap = argmax In py, (TJr) (5.49)
T

Logarithm of the a-posteriori PDF is
In pai, (Tjr) = In pgr (1 T) +1n pr(T) —1n p, (r). (5.50)

The last term does not depend on the texture parameter, so it is neglected in

maximization.

The logarithm of the texture PDF is

In p,(r)=In| — (KJ +(v-1)imr-Yr, (5.51)
IF(v)\u u

derivative of which is

(v-1)

T

%ln p.(T)=

RIS

Hence, the partial derivative of the a-posteriori PDF is

i1n paye (Tje) = izrk”M;Irk +(v —1—N)i v (5.52)
J7; Tk T M
By equating this expression to zero,
LM+ -1-N)—— Y 0, (5.53)
Tk,MAP Tk,MAP lu

and solving the equation for the MAP estimate,
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X

Ty ap :%(V—N—l)+2—1v\/,u (LN +1-v)? +dvr, "M v, (5.54)

is obtained.

The term rkHMx_lrk has a central chi-squared distribution with degree of freedom N.

Then, the expected value of the MAP estimate is evaluated as
1T1=N A
2" 2 2B

) (5.55)

\/EF(N—”) F(-
N
2

)

E{Tk,MAP }=
I'(

L e A N_“ 3N A
&(2 JZ(B> [(-—), 1( o)

where
A=(u(N +1-v)),

A
B=4urv.
Here, I'(-) is the Gamma function and | F,(-) is the Hypergeometric function.

5.3.3 Full Spatial Correlation

In the fully-correlated case, logarithm of the a-posteriori PDF can be obtained as

follows:

ilnpf‘r(fh‘) Zrk Mt +-1-nm) Y (5.56)
0T T U

Equating this to zero,
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Zrk e v-1-nm)—— Y —o, (5.57)

TMAP k=1 Tuar M

and solving the equation, the MAP estimate is obtained as

T = (v NM—1)+i\/ﬂ(ﬂ(NM+1—v) +4erk M. 'r, .(5.58)

k=1

5.3.4 Partial Spatial Correlation

The PDF expressions of the received vector and the partially-correlated texture
component, which were given by Equations (5.6), (5.7) and (5.8), are repeated here

for convenience:

iexp(—zirn"M;‘rn) dr,---dt,, (5.59)
T

n

p(rprz" M) J. J-pT( )— -

Correlation structure of the texture component is inherent in

Pr(D=p, |, @) Py @uoiltu) Py (E]7)), (5.60)
where
v 1 r, !
pz'l\z'n (T |Z.Wl 1) (V —1)/2 ) 2
( +pf) Tt | . (5.6])
V T+ Pl 4
Xex p[ ————11,.[— N PTnTo ]
Lo 1-p, T a-p) 1

In these expressions, p, is the one-lag correlation coefficient.

Substituting equation (5.61) in (5.60), the following expression is obtained:
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pr(T)= A p M0 (L M) % expl- A 74

1 i=2

X Iv 1[A\/ PlyuTya Ix Iv—l [A\/ Ply Ty X% Iv—l [A P 0T ] (5.62)

x1 ¥ Yy expl-—1,]
r

I'v) u
where Aiz ! .
H (1_pr)

Logarithm of this expression is

Inp,(T)=K +—[lnfM ~Inz,]- AZ(T +0.7.,)

i=2

+ Zln 1,,[AJp, 77, ]+(v-DInz, ——
i=2

(5.63)

Next the gradient of the expression is evaluated. Due to asymmetry of the
expressions, derivatives with respect to 7,, for m=1, m=M and the other intermediate

components are taken separately:

ilnp (T)—V_I—Ap 4 Afzpr vl AN P Ty 1+ 1, [AN P T T, ] (5.64)
a7, ! 271 ’ ,U 4\ p.01T, 1,,[A\ P T1T, ] ’ .

ailn pr(T) = V-1 A+ ATy 1Py [ AN PO Tryo 1+ LIAN Ty T ] (5.65)

Tu 27Ty 4\/pTTM Ta-1 Iv—1[A\/prfM Ty ] ’

a 1 ml VZ[A prz.mel]-i_I [A prm ml]
L Inp,(T)=-A+p, +—Ap, V V
aTm 4 m ml IV I[AVpTTmel

+ m+1 V Z[A\Ip‘rz.mrmﬂ +I [A\lp‘rz.meH]
pTTanH—l I I[A V pTTanH—l ]

(5.66)

for m=2,3,..., M-1.
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Now, in order to maximize the a-posteriori PDF, the set of equations given below

should be solved:

N —r,"M, T, i Pr(Dle, =5 yap =0 (5.67)
Tm,MAP Tm’MAP a 7’.m
for m=1,2,...,.M.

Solution of the above set of equations is not trivial. For this purpose, Newton’s
Method [39] is utilized. In this method, the following iteration is carried out to find

the MAP estimate of the texture vector, Tp :

Tyar (ne1y = Traap,n) — [F'(TMAP,(n))]_lF(TMAP,(n)) , (5.68)
where
—ﬁ+i21rf’Mﬁr1 +iln pr(T)
Ti T . aTl A .]f‘l
F(T)= : 5 = (5.69)
—ﬁ+%rM"MglrM +——In pr(T) fu
Tm Tm aTM

is the function roots of which are to be found. The matrix F'(T) is determined from

ofi/dr, df,/dt, --- Ofj /0Ty
F(my=| %2107 /07 - of/9Ty | (5.70)

Uy 107, ¥ 197, -+ fy 19Ty
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5.4 Performance Analysis

In this section, performance analyses of the estimators are presented. The simulations
are performed by generating N texture vectors and Ns speckle components for each
texture vector. The parameter p; is the correlation coefficient of the speckle and p; is

the correlation coefficient of the texture.

Figure 5.5 shows the performance in a different scenario, where a large number of
simulations are performed for the speckle and the texture generation. Here, 1dB

average improvement is obtained by using MAP estimate.

The next simulation shows the improvement of MAP over ML in fully correlated
texture scenario. The result can be seen in Figure 5.6. The bounds on the estimation
error variance are also given in the figure. As expected, the MAP yields better
estimation than the ML estimate. The ML estimate is closer to the CRB derived for
nonrandom parameters when compared to the MAP estimate, the error of which is

rather higher than the CRB for random parameters.

Texture parameter estimation
6 T T T T T T I I I
: : : : : {| —&— ML estimate
55 [ S N Loi. i —4— MAP estimate
' ' ' ' ' —— CRLEI nonrandom

: : : : : .
| RRR ARG zok.-SRECLL RCERET RERCRRE LY A SOV L S LR
o 1 1 | 1 1 1 .. | _

Mean squared error

0 2 4 6 8 10 12 14 16 18 20
Range

Figure 5.5 Mean squared estimation error (no correlation)

M =20, N =8, Ny = 1000, Ny=100,v=2,1=5,06> =0, p;=0.5, p=0
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Texture parameter estimation

02 B
*—+—*_+_*_+—*_+_*_+—*_+—*_+—*_+—*_+—*_I | | | | i | | i .
e YR SELSEE. FECE SRS SI-PE S-S S FE. CEOSE SH 8
D“lg ....... P, T [ Lommmmn dommmam [, [ Leaenn —]
5
R G R e -
i)
@
= : : ]
7 —4— ML estimate
fd D_17 ------- Te===== i Bl === Te=====" h | R =
= —a— MAP estimate
= : : : : : — — CRLB-nonrandom
(K[| SRS SRS RS- Y D CRLB-random |-
[y T tmnnns T A PERPPTS Amnnne fh S -
I i | | | I i | I
] 2 4 4] 8 10 12 14 16 18 20

Figure 5.6 Mean squared estimation error (full correlation)

M =20, N =8, Ny = 1000, Ny =100,v =2, 1 =5,06> =0, p;=0.5, p= 1

Performance of the MAP estimator for partial spatial correlation developed in
Section 5.3.4 was obtained through simulations. Improvement obtained by using
MAP instead of ML in partial correlated texture scenario can be seen in Figure 5.7.
On the other hand, in partial correlation case, in some cases, the estimator diverges.
In order to avoid this behavior, some checks are performed during the estimation
process. The first one is the check for the condition of the matrix in the Newton’s
method. If it is found to be ill-conditioned, the estimation is equated to the ML
estimate. The second check is on the magnitude of the estimates, if they are greater
than a predetermined value; the estimation is equated to the ML estimate.

Additionally, the initial point of the Newton’s iteration is ML estimates.
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Texture parameter estimation

0.2

0.18
0.16
0.14
0124

0.1

hean squared errar

0.058

0.08
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Sy
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0 ---
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o

Range

Figure 5.7 Mean squared estimation error (partial correlation)

M =20, N =8, Ns=1000, Nr=100,v=2,u=1,6> =0, p, = 0.5, p= 0.5
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CHAPTER 6

COHERENT DETECTION

Coherent detection of targets in a correlated non-Gaussian clutter environment is an
important problem that draws much attention of the radar community. This method
makes use of the phase information and yields better results than the classical
incoherent detection techniques. On the other hand, the main difficulties in design of
a detector are modeling the disturbance and the mathematical tractability of the

detector.

In this chapter, adopting the compound Gaussian model and the notation given in
Section 2.2.2, detectors are derived. The detectors use the samples from all of the
range cells and perform clutter suppression, Doppler processing and CFAR
operations simultaneously. The detectors are derived for no-spatial correlation, full-
spatial correlation and partial-correlation scenarios. The correlation structure of the
speckle component is assumed to be known and the texture parameter is estimated

using the methods derived in the previous chapter.

In the design of the detectors, the clutter signal is assumed to be dominant and the
thermal noise is neglected. This is a common assumption made in the works on
detection in clutter. Although the effect of the noise may be important when the
clutter and noise have comparable powers, since the signal that is input to the

coherent detector contains unsuppressed clutter, this may still be a valid assumption.
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6.1 Detector

Assuming that the radar transmits N pulses and the receiver demodulates and

samples the echo signal forming M range cells, the received clutter vector will be:

I‘Z[\/?l(x“ X xuv) \/T_z(xn Xyp o xzzv) \/a(xzm Ao xMN)]T(6'1)

Here, 7.

1

and x;’s are the texture and speckle parameters, respectively as defined in

the previous chapter.

Let the received signals under no target hypothesis (Hp) and target existence

hypothesis (H;) be represented as

Hy: r=\r,x 6.2)

H]: ri = \/?z Xi +Si (63)

The target signal is assumed to be located in one range cell, at the Lo range bin:

A (6.4)

where « represents the complex return from the target and p represents the Doppler

steering vector:

A T
p:[Po P " DPno PN—l]

pi=exp(j27i fT) (6.5)

The likelihood-ratio test is [59]
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Puju, @H,) < ' (6.6)

The likelihood function (conditional PDF) of the received signal conditioned on H is

1 o
Pejn, (r|H,) = W?«X]@)[—I'HMr r]. (6.7)

r

Here, M, is the covariance matrix of the received signal.

In the following subsections, the detectors for uncorrelated, partially-correlated and

fully-correlated texture cases are derived.

Although it changes depending on the detector, the threshold parameter is

represented by the same symbol for convenience.

6.1.1 No Spatial Correlation

In spatially-independent texture case, the covariance matrix, M, , its inverse and

determinant are given by Equations (5.21) - (5.23).

The log-likelihood functions under hypotheses Hy and H; are

T,H))=-NMInz-InM |-r“M 'r

In Prra, (r
(6.8)

M L T
:—NMIn?Z'—NZ]IlTi—M|MX —ZT—I’i M, r ,
i=1 i i

i=1

102



In Pur, (r

=-NM 1n;z—Ni1nq—M|Mx

i=1

Gl

_z_riHMx_lri _i(rL _SL)HMX_I (r,—s.)
i=l T

7’.i L
i#L

The Log-Likelihood Ratio Test is

Hl
>
In Pyrm, (r|T,H,))—In Pur.n, r\T,H,) § Y.
H,
If the texture component is known, the test becomes,
Hl
-1 H -1
—(r, _SL)HMr (r,—s,)+r, M, 1, z Y
H,
which is equivalent to
H,
. b _
ZRC{SLHMX 1rL}' sLHMX lsL +7.
<
H,

T,H)=-NM Inz—InM |- (r—s)"M ~'(r—s)
1 7 7

(6.9)

(6.10)

(6.11)

(6.12)

The left-hand-side of the above test is a whitening-matched filter and the right hand

side is a fixed threshold.

When the texture component is a random parameter with known density function, the

LRT can be written as follows:
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[ P () pe@) T,
v Q. (6.13)

0

P, (C|HY)

P (T1F) Tpr\m (x|Ho) p:(7) 7
0

A

This LRT is usually difficult to evaluate and it is optimum only for the density
function used in the design time, which is not suitable for signals with different

density functions.

However, if the texture component is assumed to be an unknown nonrandom
parameter and is estimated using ML estimation, the test is called Generalized
Likelihood Test (GLRT) [59]. This derivation is more general as the clutter may

have a different distribution than the one assumed in the design time.

For the fully-correlated texture case, the GLRT can be written as

max p,,. . (r|Tl,H1) H,

A, (r)=—1 > . 6.14
g( ) mrax pr‘TOYHO (I‘|’Z'0,H0) H< }/ ( )

The ML estimate of the texture parameter under Hy for independent texture case was

derived in Section 5.2.1 and is written here for convenience:

H -1
_, M 1

Tyoro = N (6.15)

Under H,, taking the gradient of the likelihood function and equating it to zero we

get the equation

0 MN 1 _
—Inp, , (tlz, . H)=———+—5@,-s)'M'(@x,-s,)|, . =0.(6.16)
or T, T, i
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Hence, the ML estimate at H; can be found as

(r, —sL)HMX_l(rL -s,)

N (6.17)

Tomeg =

For the compound-Gaussian case, when the texture parameters are estimated the

LRT given by Equation (6.10) yields the GLRT:

H,

“[NM Iz, 7)) (6.18)
<

Hy
It is interesting to see that the ratio of the estimates under the hypothesis 0 and 1 is a
sufficient statistics. Obviously, the estimates are not perfect and the ratio can

discriminate between the two hypotheses, otherwise, the test would be useless.

Substituting the estimates and simplifying, the following test is obtained:

Hl
H -1
>
rLHMx_lrL (6.19)
(I‘L _ap) Mx (rL - a'/p) Ij
Equation (6.19) is equivalent to
Hyp -1 %
M r . (6.20)

r,"M,'r, +|of p"M, 'p-2Reia p"M, r, | <

0

Assuming that the Doppler steering vector is known but the complex target return is
unknown, ML estimate of the complex target return can be substituted to obtain the
GLRT. Steering vector can be known in radar systems, since generally a bank of

Doppler detectors is used. If this is not done, a suitable method must be used in order
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to estimate the Doppler also. It should be noted that the estimation of the texture and
target returns do not depend on each other and this estimation is equivalent to joint

estimation of the parameters.

Taking derivative with respect to the target return and equating to zero,

0 _
S —ap™M @ —ap),, =0, 6.21)
_ (_rLHMX_lp + a*pHMx—lp)‘ dmay, = 0, (6.22)
the ML estimate of the target return is found as
H -1

pPM T
Q= (6.23)

"op"™M,p

Substituting this estimate in the test given by Equation (6.20) yields

‘pHMx_lrL >
r,"M,r) "M, ) <

(6.24)

This detector is identical to the one derived before in [26] and [14] for a single-range
cell. However, for multiple-range cells, the multiple-cell detector is general and

advantageous.

6.1.2 Full Spatial Correlation

In this part, it is assumed that the texture component is identical (fully-correlated) in

A
each range cell, thatis 7, =7, =---=7,,=7. This is a valid assumption, for small range

cell sizes.
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In fully-correlated (identical) texture case, the covariance matrix, M, , the inverse

matrix and the determinant are given by Equations (5.31)-(5.33).

The logarithms of the likelihood functions are

In p,, . (X7, Hy) ==MN Inz oM, [- "M, 'r, (6.25)

In py, , (|7, H) = =MN In 7~1n]M, |- (r =$)" M, (r =) . (6.26)

If the texture component is known, the Log-Likelihood Ratio Test (LRT) is

Hl
—(r—s)HM,‘l(r—s)ﬂHM;lrZ7. (6.27)
H,

However, since the texture component is unknown, it should be estimated. The ML
estimate of the texture component under H, for fully-correlated case was derived in

Section 5.2.2 and is repeated here for convenience:

M
zriHMx_lri
Tyro = MT . (628)

Under H,, taking the gradient of the likelihood function and equating it to zero we

get the equations given below:

d

MN 1
In pr\T,H] (l'
or

T,Hl):—7+?(r—s)HM_l(r—s)

=0. (6.29)

T=TML,1

Hence, the ML estimate under H; can be found as
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M
™M, + (@, —ap)'M, (r, —ap)

Typy =05 i : (6.30)

Hence, the GLRT is obtained as

H,

>
TML,O/TML,l < V- (6.31)

H,

This detector is equivalent to the one given by Equation (6.18) and uses the ratio of

the estimates for the two hypotheses.

Substituting the estimates, the following test is obtained:

ud H 1
zri Mx rl H,
i=1 >

M 77 (6.32)
ZriHMx_lri +(r, —ap)’M_(r, —ap) ;0

i=Li#L

which is equivalent to

o H 1
Zri M T H,
i=1 >

7. (6.33)

iriHMx_lri + |a|2pHMx_lp -2 Re{a* pHMX_lrL}IfO
i=1

The ML estimate of the complex target return was given in the previous section by
Equation (6.23). When it is substituted in the detector given in Equation (6.33), the

detector is obtained as
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H,

2
H -1
‘p Mx rL‘ >

— y. (6.34)
O r"™, )™M, 'p) 5,

i=1

As expected, for a single range cell, M=1, the detector derived above is equivalent to

the one in the independent-texture case:

2 H,

‘pHMx_lrL >
("M, 'p)(r, "M, ) <

(6.35)

The detectors are summarized in Table 6.1. It should be noted that in the listed

detectors, the threshold parameters, ¥’s, are not equal.

The multiple-cell detector has an advantage over the single cell detector by since it

averages the returns of all of the range cells and improves the estimation.

Next, performance of the detector is analyzed. In the first part of the simulations,
Swerling O target is considered. In the second part, Swerling 1 target case is
simulated. The clutter is assumed to have K-distribution. Although the distribution is
not exploited in derivation of the detector, it is used in generation of the simulation

signals.
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Table 6.1 Summary of detectors

Hl
o> .
Whitening matched filter ‘pH M, 1rL yxCA - CFAR power estimate
m
ML estimate of the target o - p"M. ',
return M pt M. p
i H 1
) 2> 1, M T,
GLRT-single cell e e
< p'M, p
H,
M
% zriHMx lrt
GLRT-multiple cell |a |2 y =l
ML H -1
< M. p

The first simulation shows the performance improvement over the single-cell
detector obtained by using neighboring range cells. As the clutter is assumed to be
fully-correlated, exploitation of multiple range cells yields a significant
improvement. As it can be seen in Figure 6.1, detection probability increases
apparently when M=5 cells are used instead of a single range cell. The SCR gain is

about 2 dB in this case. Increasing the number of secondary cells to M=15 causes an

additional 0.2dB.

The performance of the detector is significantly dependent on the speckle correlation
coefficient. This effect is shown in Figure 6.2 for two different numbers of pulses
used. Small number of pulses experiences more performance loss in low-correlated
speckle condition. Detection performance versus Doppler frequency for different
number of pulses is given in Figure 6.3. As expected, increasing the number of
pulses increases the detection performance considerably and performance loss occurs

at lower Doppler values, where the clutter is dominant and suppressed.
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Figure 6.1 Detection performance versus SCR, various number of range cells

Pra=10", N =5, MC =2000,v=2,u=56"=0,p,=0.8, pr= 1, fp/PRF =0.5
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Figure 6.2 Detection performance versus speckle correlation coefficient, various
number of pulses

Pra=10", M =15, MC =2000,v=2,u=5,0> =0, pr=1, SCR=-5dB, fp/PRF
=0.5
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Figure 6.3 Detection performance versus Doppler frequency, various number of
pulses

Pra=107, M=15MC=2000,v=2, =506 =0,p,=0.8, pr=1, SCR=-5dB

The remaining part of the simulations shows the performance for a Swerling 1
fluctuating target. Similar performance improvement with using the information in
all of the range cells can be seen in this situation also (Figure 6.4). Some loss is
observed here since the target fluctuates. For smaller number of pulses, the
simulation is repeated to obtain Figure 6.5. Reducing the number of pulses from 8 to
4, a loss is incurred. Detection probability change with target Doppler frequency is
shown in Figure 6.7. Due to the fact that the clutter signal is highly correlated and is
a low-frequency signal, its suppression requires placing a notch at the low
frequencies. This, in turn, causes a loss in detection probability at low Doppler

frequencies.
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SCR (dB)

Figure 6.4 Detection performance versus SCR, various number of range cells, large
number of pulses

Pra=107, N=8, v=2, u=5, p= 0.8, fp=0.5 PRF, 10000 trials.

SCR (dB)

Figure 6.5 Detection performance, various number of range cells, small number of
pulses

Pra=10", N=4, v=2, u=5, ps= 0.8, fp=0.5 PRF, 10000 trials.
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Figure 6.6 Detection performance versus Doppler frequency, various number of
range cells

Pra=107, N=4, v=2, =5, p,=0.8, SCR=5dB, 10000 trials

Part of this work will be presented in [20].

6.1.3 Partial Spatial Correlation

When the spatial partial correlation coefficient of the texture component is known,
this information can be used in the derivation of the detector, by means of using the

estimation given in Section 5.3.4. However, this method is mathematically complex.

In this section, the performance of the detector derived for fully-correlated texture is

analyzed when there is partial spatial correlation among neighboring range-cells.
Figure 6.7 shows the performance for various spatial correlation coefficients. As it

can be seen, even if there is low correlation such as 0.4, it is advantageous to use the

multiple range-cell detector when compared to the single-cell detector.
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Figure 6.7 Detection performance versus SCR for various texture correlation
coefficients

Ppa=107, N=4, v=2, u=5, ps= 0.8, fp=0.5 PRF, 10000 trials.

Based on this result, which is quite important, it is recommended to use the
information in the neighboring cells by means of the detector derived for fully-
correlated texture, even though the correlation is low. This is an improvement over
the approach of using the single cell detector in situations where the texture

component differs among the range cells [14], [27].
6.1.4 GLRT-MAP Detector

When a-priori information on the texture parameter distribution is available, instead
of the ML estimate, the MAP estimate could be used. This approach is called the
suboptimum MAP detector in [26], since the optimal but complex detector (Equation
(6.13)) is not used despite the knowledge of the parameter distribution. For the fully-

correlated case, as derived in Section 5.3.3, under H,, the MAP estimate is
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X
k=1

M
Tompo zzﬁ(v—NM —1)+2i\/ﬂ(u(NM +H1=v)? +4v > "M, ' (6.36)
’ 1% 1%
and under H;, it is

Tonps = %(v ~NM -1)

(6.37)

k=1
k#L

M
+2i \/ﬂ(ﬂ(NM +1-v)’ +4v Q5 "M, 'R +(r, —s,)" M, (r, =s,))
14

Substituting these estimates in the test given by Equation (6.10) and simplifying, the

following expression is obtained:

T M M
MNlnM—L[ DE ™M+, —s,)" M, (s )]+ ! dr M, r, .

TMAP,I TMAP,I i=Li#L TMAP,O i=1

(6.38)

The target return can be estimated using Equation (6.23) and hence s;, can be formed.
The existence of the target is tested by comparison of the ratio given by Equation

(6.38) with a proper threshold.
6.2 Detection in Multiple-Target Environment

One of the most important problems in target detection is the existence of interfering
targets. In a work done by Rickard et al., it was stated that for low false alarm
probabilities the maximum achievable detection probability may be less than 0.5,

even if the main target has a higher SCR [48].
It is shown here that in uncorrelated texture component case, even if they have

different Doppler values, if there are two targets at the same resolution cell, the

single cell GLRT detector cannot perform satisfactorily and target masking occurs.
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In this study, firstly, a detector for two targets is designed. For this purpose, multiple
hypotheses for existence of one target, two targets and no target cases are considered.
However, due to unequal probabilities and the difficulty in cost assignment, the

Bayes detector was seen to be unsuitable.

For the purpose of simplicity, a single target signal is formed by addition of the two
target signals. This refers to the existence of targets together. On the other hand, a
target with zero amplitude corresponds to a single target case. The target returns are

estimated in derivation of the detector.
The detector derived before is extended to two-target case as follows. Let the total
target signal be

A

S=hp: + OzP: (6.39)

where, p; and p; are the Doppler steering vectors of the two targets.

If the targets are at different range cells, the method derived above can be used.

However, if they are at the same range cell, the ML estimators for the complex

returns (&s) are obtained by solution of the equations below:

ilnpr‘”,] (riz,a,a,,H,) =0, ilnpr‘,Hl (riz,a,,a,,H,)=0 (6.40)
20 ’ o, ’
_leMx_HK + o P1HMX_1P1 +a, P1HMX_1P2 =0, (6.41)
—p."M, e+ p. "M, ' pr+ i p. "M, 'p, =0. (6.42)

117



Solving these equations, the estimates are found to be

(P "M, p) (M, 1)~ (p, "M, py)(p," M, 'y )

G = Hyq -l Hyq -l Haq -1 |2 ’ (6.43)
(P M, p)(p. M, pz)—‘pl M, Pz‘
H -1 H -1 H -1 H -1
(P M, p)(p. M, pz)—‘pl M. pz‘
Writing in a different way, the following expressions are obtained:
Let,
A A
b, :p1HMx_lp1’ b, :szMx_lpz
s A ) (6.45)
b,=p, M, p,, a=b1b2—|b12|
and denoting the whitening matched filtered signals as
A Hyg -l A Hag -l
WME _(pl Mx rK )’ WMFZ _(pZ Mx rK) s (646)
the following equations are obtained:
&y = b—ZWMFl —%WMFZ
. (6.47)
bl b12
azyML :;‘/‘/]‘4}72 —TWME

The estimator for ¢; for the single target case was
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WMF,

o = 6.48
1,s,ML bl ( )
Hence, the detector for multiple targets is
M
Z r"M_ T, H,
i= >
TA— : — 27 (649
Zri M, 1+, =0 Py =% P2) " M, (X, =0y Py — 0 P,) o

i=Li#L

However, this approach has a drawback: Detection of multiple targets tests the
existence of targets at Doppler frequencies p; and/or p,. Nevertheless, in detection
case, it is not straightforward to extract the information on the powers of the targets.
So, a better approach is to handle each range-Doppler cell separately and consider it
as the cell under test while considering the existence probability of other interfering
targets in neighboring cells. In this case, it is assumed that there exist targets at each
range and Doppler frequency. At cells, where there is no target, the signal can be

viewed as a return from a target with zero RCS.

Let the signal at range i, consisting of returns from N Doppler frequencies be

modeled as
N
$; = zail P (6.50)
1=1

Carrying out similar operations, for range L, the detector for the exactly-known-

signal case is derived to be

M
2yRe(sy M. } 2 (7=DY (5 =) M (5 —s,)+ ysp M, 's, +(7—Dr'M'r, . (6.51)
i=1

i#L
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If the test succeeds, it is concluded that there is a target at the L range cell. The
effect of interfering targets, if there exists any, is estimated and suppressed by the

detector.

For unknown target returns, the ML estimates for target returns are obtained as

follows. Here it is assumed that the Doppler value is known.

Taking the derivative of the likelihood function with respect to ¢, and equating to

zero, the following is obtained:
N e
r"M'p, => @, pi'M.'p, (6.52)
=1

Performing the same operations for the other Doppler frequencies and the range
cells, NxM unknowns and NxM equations are obtained. The equations can be written

in matrix form as given below:

Hpyg-1 Hpyg-1
Pu Po o Pw || G Oy o Oy P Ms hooo Dy Ms "m
Py Pn v Doy || G Gy o By | : :
a a. o HM—l HM—l
Pyt Pn2 Pyy |L%iv oy mn ] | Py h DyM Ty
P A D
NxN NXM NxXM

A
where p =p/M'p,.
Shortly, the estimates of the target returns are obtained using the following equation:
A=P'D (6.53)

If any range or Doppler cells are excluded, then these matrices can be scaled to

exclude those cells. For example, if no interfering target is expected at some of the
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range or Doppler cells, those cells can be excluded while forming the matrices A, P

and D.

In what follows, some performance results will be presented. In the simulations,
number of Monte Carlo points is 10°. Texture Gamma-distribution parameters are
v=2 and u=2. Noise power is 1 and speckle correlation coefficient is 0.8. PRF is set

to 2.

Detection probabilities of the detectors for 1 and 2 target cases are given in Table
6.2. Fy; and F,; denote the Doppler frequencies. M and N are the number of range
cells and pulses respectively. The first detector is the one derived in this part. The
second one is the multiple-range cell-multiple-pulse detector that was derived in
Section 6.1. The third one shown in the last column is the GLRT detector that uses a
single range cell [14]. The SCR=-<, values are investigated in order to exhibit the
false alarm rate performance. The false alarm probability is obtained as 10, which
the desired value. It is apparent that using the single cell detector, the target can not
be detected and is completely masked in multiple-target cases. Using the multiple
range cells also yields high performance improvement. In multiple-range-cell
detector, the loss is not as much as the one caused by the single cell detector, as the
free range cells give additional information to the detector. When there is no
available neighboring cell (M=1), the multiple-range-cell, single target detector is
identical to the single cell detector and it can not detect the multiple targets, either.
When there is only a single target, the multiple target detector experiences a loss at

low SCR cases and especially when there is single range cell.
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Table 6.2 Detection probabilities of the detectors for single and two target cases

(Far=1, F=0.6, N=8)

GLRT-mulriple GLilZgSZIH ste GLRT-single
SCRI | SCR2 M target @pl .o
and/or p2 multiple cell cell @pl
@pl
o< o 10 1x107 1x107 1x107
7 7 10 0.99 0.98 0.01
7 o 10 0.97 0.98 0.94
5 5 10 0.98 0.96 0.01
5 o 10 0.95 0.96 0.88
3 3 10 0.96 0.91 0.01
3 o 10 0.89 0.90 0.74
1 o 10 0.76 0.79 0.53
o< o< 1 1x107 1x107 1x107
15 15 1 0.99 0.00 0.00
15 o< 1 0.99 0.99 0.99
10 o 1 0.97 0.98 0.98
5 o 1 0.80 0.88 0.88
3 o 1 0.61 0.74 0.74
1 o 1 0.37 0.53 0.53

In conclusion, GLRT that uses a single cell, experiences drastic performance
degradation in the multiple target scenario and cannot detect any of the targets. When
multiple range cells are used, since the neighboring cells can be used in estimation of
the texture parameter, performance loss is not so severe. However, the best detection

performance is obtained with the multiple-target detector. This detector detects the

targets at Doppler frequencies corresponding to py and/or p;.

Once the targets are detected, the ML estimators of the returns at p; and p2 can be

used in estimation of the power of the target return. Following this, an appropriate

threshold can be set to make detection at the two Doppler values separately.

A better approach is to test the existence of a target in the cell under test, while

considering the targets at the neighboring cells as interference. For this purpose, a
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GLRT is derived. Here, the most problematic case, where the texture components of

different range cells are independent, is considered.

Let the Doppler cell under test be pn,, and let an interfering target exists at Doppler
pi.(i=1,2,..., N). The main target return ¢, and the interfering target return ¢ are
assumed to be unknown. Let the hypothesis (Hp) show the case where there is an
interfering target and hypothesis (H;) denote the case where there main and

interfering targets exist together:

Hy r=+rx+ap, , (6.54)
H: r=vrx+ae,p,+ap, . (6.55)
The GLRT is
max p, , (Y|7,,.p, %P, H) il 656
A (r — DO O . .
g( ) max pr\T,Ho (rr’ai’pi’Ho) H< ! ( )

The log-likelihood functions are

In py, , 07,0, p;, H)) ==NInz—In[M, |~ (r—e; p))"M, " (r -, p,)
M
=—NInz-N) In7,—|M, (6.57)
i=1
e p)" M, - p)
Inp, ,(7ea,p,.%.p,.H)=-N In 7z —1n[M, (6.58)

-(r-a,p,-ap)'M, " r-a,p,-ap)

=—N1n7£—NilnTl. —[Mm,
i=1

_l(r_am pm _a’/i pi)HMx_l(r_a’/m pm _a’ll pl)
T
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The texture estimates for the two hypotheses, 7,0 and 7y, ;, are found, by taking
the partial derivative of the likelihood function with respect to the texture parameter

and equating to zero, as

_ (r_a[pi)HMx_l(r_a[pi)

Tyro = N ) (6.59)
H -1
Z.MLJ — (r am pm a[ pz) ]‘\]/[vx (r am pm ai pz) . (660)
The interfering target return estimate for the Hy hypothesis is
H -1
"M_r
&m0 = pp—lHM X_lp . (6.61)

As given in Equation (6.53), the main and interfering target return estimates @, ,, |

and «, ,, , for the H; hypothesis are found using

-1
|:am,ML,1:| — |: 1 plz/pllj| |:am,f:| (6 62)
;i pzl/pzz 1 & s

where
4 _x___ (6.63)

This estimation is performed for each of the probable interfering Doppler values py,

i=1, ..., N, except for the main Doppler bin under test.
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Next, the Doppler bin of the interfering target, under Hy and H; hypotheses, k, and

k,, are estimated. For this purpose, the likelihood function under Hy is maximized
over the Doppler values:
k,=argmin (r—a,p,)"M ~(r—a.p,), (6.64)

k= arg min  (r-@,,,,P,~&p)" M, (r- @y P = P;) . (6.65)

1

Hence the GLRT becomes

H,

r—«a 0 (ko)pio )ZMX: (=0 0 (ko)pio) > 7, (6.66)
(= 1 P = T kDP; ) M (0= 1 Py = gy (KD D) p

where «,,, ;(qg) denotes the estimate of the interfering target return, under

hypothesis H; and taking its Doppler as q, when finding the estimate in Equation
(6.62).

Next, a performance analysis result is presented. In this simulation, the interfering
signal-to-clutter power ratio is 15dB; the clutter texture distribution order parameter
is 2, which corresponds to a spiky situation. Additive white Gaussian noise is
simulated with an interfering signal-to-noise ratio of 20dB. The main and interfering
targets are located at the 5™ and 7" Doppler bins, where there are a total of 10
Doppler bins (pulses). The detection probabilities of the double-target GLRT derived

above and the classical single target detector are shown in Table 6.3.
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Table 6.3 Detection probabilities of the double-target GLRT and single target GLRT

Main /interfering Pp of double- Pp of single-
target power ratio target detector target detector
0.1 0.93 0.11
0.5 0.99 0.55
1 0.99 0.76
2 0.99 0.89

As it can be seen, the double-target detector has excellent performance in detecting
the target, where the single target detector misses the main target when the
interfering target has high power. It was verified that the algorithm detects the

Doppler of the interfering target successfully.

This work can be extended to cover number of interfering targets greater than two.
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CHAPTER 7

CONCLUSIONS

In this thesis, radar detection of targets against correlated, non-Gaussian and
heterogeneous clutter was studied. The designed detectors may be grouped as

noncoherent and coherent detection methods.

Three non-coherent techniques, Goodness-of-Fit (GoF), Expectation-Maximization

(EM) and Clutter-map (CM) CFAR were designed and analyzed:

The GoF-CFAR technique firstly determines the range-heterogeneity of the clutter
samples using a goodness of fit test, which is an original approach. It was shown that
the performance of the test in determination of heterogeneity is excellent. After
determination of the heterogeneity, the transition point and the distribution
parameters are estimated and the threshold is set accordingly. The method was

shown to alleviate the masking and false alarm problems near the clutter edge.

The EM-CFAR method uses the Expectation-Maximization algorithm in identifying
the differing regions and estimating their distribution parameters. Using this
information, the algorithm determines the threshold to yield the desired false alarm

probability.

GoF and EM-CFAR algorithms are novel in that they consider the range-

heterogeneity and non-Gaussian character of the clutter at the same time. The
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algorithms were shown to perform significantly better when compared to the
classical methods designed for homogeneous non-Gaussian clutter, which have false
alarms or target masking problems near the clutter edge; and the ones designed for
range-heterogeneous Rayleigh clutter, which yield excessive false alarms in spiky

clutter.

The CM-CFAR, developed in this work, does not suffer from any type of
heterogeneity in range, since it uses a map that stores the clutter information of each
range cell. In many of the works, the shape parameter of the clutter is assumed to be
known and these algorithms suffer from performance loss when the designed
parameter differs from the actual one. In this study, both of the parameters are
estimated and updated in the clutter map, which is believed to be novel. The
algorithm is computationally efficient and performs well even in severe clutter

condition.

In order to exploit all the information in range cells and coherent pulses, coherent
detectors were designed: Since the detector structure is dependent on the clutter
parameters, they were estimated, using both the Maximum Likelihood (ML) and
Maximum-a-Posteriori (MAP) estimation techniques. Uncorrelated, partially-
correlated and fully-correlated texture cases were investigated and it was shown that
the texture estimators perform very well in all of the clutter conditions. As expected,
the estimation performance is higher with the MAP estimator, when the assumed
texture distribution matches the actual one. On the other hand, the ML estimator is
general and it can be used in cases whenever no assumption on the clutter amplitude

distribution can be done.
Besides being used in design of the coherent detectors, the texture parameter

estimators that were derived in this work can be used in other applications such as

classification and segmentation on radar images.
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Using the estimates of the texture parameter and the target return, GLRT detectors
were designed. In design of the detectors, the correlation structure of the speckle
component was assumed to be known. It was shown that these detectors have
significant improvements over the well known detectors, which do not use all the
range cells, in fully and partially-correlated texture situations. The detectors become
equivalent to the well-known single-cell detectors when the texture components are

uncorrelated.

It was shown that the detector that operates on a single range has significant
performance degradation in the existence of an interfering target. The reason for this
is that the only information used in estimation of the clutter is obtained from the
range cell under consideration, which is corrupted by an interfering target. Hence, a
detector was proposed to avoid the interfering target problem in the single-range cell
detector. Also, another method was proposed to succeed the single-target detector to
make it operate in multiple-target case, which is believed to be novel. It was shown
that the method performs excellent in detection of the targets and thus alleviates the

masking problem.

Future works can be stated as follows: Firstly, the analytical derivation for the
detection and the false alarm probabilities of the coherent detectors can be
performed. Then, the derivations can be extended to cover various clutter
distributions and correlation structures. In addition, the multiple target study can be
extended to cover the effects of pulse compression range sidelobes on other targets.
Because, an important difficulty in design of the detectors is the mathematical
tractability, special emphasis should be given on effective modeling of various
clutter types and simplifications of the detectors to obtain suboptimum but acceptable

solutions.
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