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ABSTRACT 
 
 

RADAR TARGET DETECTION IN NON-GAUSSIAN CLUTTER 
 
 

 
Doyuran, Ülkü 

Ph. D, Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Yalçın TANIK 

 

 

September 2007, 137 pages 
 
 
 
In this study, novel methods for high-resolution radar target detection in non-

Gaussian clutter environment are proposed. In solution of the problem, two 

approaches are used: Non-coherent detection that operates on the envelope-detected 

signal for thresholding and coherent detection that performs clutter suppression, 

Doppler processing and thresholding at the same time. The proposed non-coherent 

detectors, which are designed to operate in non-Gaussian and range-heterogeneous 

clutter, yield higher performance than the conventional methods that were designed 

either for Gaussian clutter or heterogeneous clutter. The proposed coherent detector 

exploits the information in all the range cells and pulses and performs the clutter 

reduction and thresholding simultaneously. The design is performed for uncorrelated, 

partially correlated and fully correlated clutter among range cells. The performance 

analysis indicates the superiority of the designed methods over the classical ones, in 

fully correlated and partially correlated situations. In addition, by design of detectors 
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for multiple targets and making corrections to the conventional methods, the target-

masking problem of the classical detectors is alleviated.  

 
 
 
 
Keywords: Radar Target Detection, Non-Gaussian Clutter, Heterogeneous Clutter, 
Constant False Alarm Rate (CFAR). 
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ÖZ 

 
 

GAUSSIAN OLMAYAN KARGA�A ALTINDA RADAR HEDEF TESP�T� 

 
 
 

Doyuran, Ülkü 

Doktora, Elektrik ve Elektronik Mühendisli�i Bölümü 

Tez Yöneticisi: Prof. Dr. Yalçın Tanık 

 

 

Eylül 2007, 137 sayfa 

 

 

 

Bu çalı�mada, yüksek çözünürlüklü radarlarda, Gaussian olmayan ve de�i�ken 

karga�a altında hedef tespit yöntemleri önerilmektedir. Problemin çözümünde iki 

ayrı yakla�ım benimsenmi�tir: ��lenmi� sinyalin genlik de�eri üzerinde çalı�an 

e�ikleme yöntemi ve karga�a bastırma, Doppler i�leme, e�ikleme i�lemlerini birlikte 

gerçekle�tiren uyumlu filtreleme yöntemi. De�i�ken ve Gaussian-olmayan karga�a 

altında çalı�mak üzere tasarlanan yöntemler, Gaussian karga�alı veya heterojen 

ortamda çalı�mak üzere tasarlanmı� klasik yöntemlere göre üstün ba�arı 

sa�lamaktadır. Önerilen uyumlu detektör ise karga�a bastırma ve e�iklemeyi bir 

arada yapmakta ve tüm darbe ve menzil hücrelerinden yararlanmaktadır. Çalı�mada, 

farklı ilinti de�erlerindeki karga�aya sahip kom�u hücreler kullanılmı� ve GLRT-

detektörleri tasarlanmı�tır. Yöntemin, klasik metotlara göre üstünlü�ü ba�arım 

analizi ile gösterilmi�tir. Ayrıca, çok sayıda hedef için detektör tasarlanarak ve klasik 



 vii

yöntemde düzeltme yaparak, klasik yöntemlerin çoklu-hedef durumundaki 

maskeleme problemi engellenmi�tir.  

 
 
 
 
Anahtar Kelimeler: Radar Hedef Tespiti, Gaussian Olmayan Karga�a, De�i�ken 

Karga�a, Sabit Yanlı� Alarm Oranı (SYAO) 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

The detection of target signals in a background of unwanted echoes, called clutter, 

which stem from the sea, land or weather, is one of the most important problems of 

radar systems. Solution of the problem necessitates the understanding of the statistics 

of the clutter, such as its distribution and correlation properties.  

 

In classical radar systems, the clutter signal is assumed to have Gaussian distribution, 

which enables the use of the simple and conventional detection algorithms. However, 

in modern high-resolution radars and especially at low grazing angles, the clutter 

exhibits a spiky characteristic and the Gaussian assumption is no longer valid [6], 

[37], [62]. Classical algorithms, designed for Gaussian clutter, yield many orders of 

higher false alarm rates when operated in non-Gaussian cluttered environment. 

Hence, the spiky characteristic should necessarily be considered in design of the 

detector and the statistical model of the clutter should be formulated. In modeling the 

high-resolution clutter distribution, beside the scale or power of the distribution, 

another parameter, called shape or order parameter, which defines the spikiness, is 

introduced [1], [6], [41], [61]. The most common distributions that are used for non-

Gaussian clutter envelope are Weibull and K-distribution. In representing the multi-

pulse coherent non-Gaussian clutter, compound Gaussian model is used [5], [12], 

[13], [24], [45], [53], [60].  
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Another problem in detection of targets is a change in clutter statistics, in time or 

space. Usually, radar systems use adaptive algorithms in order to follow the changes 

in the statistics. However, abrupt changes degrade the performance of the adaptive 

detection algorithms, which make use of the spatially or temporally neighboring cells 

in estimation of the clutter characteristics and determination of the threshold [23], 

[47]. There are many methods designed to operate under non-Gaussian clutter [26], 

[36], [46] or range-heterogeneity [9], [25]. However, none of the methods is suitable 

for the dual problem. 

 

The detection schemes can be categorized into two main groups: Noncoherent and 

coherent detection techniques. In the first one, a classical clutter suppression and 

Doppler processing method is followed by envelope detection. The real signal 

obtained by this way is analyzed non-coherently to set the appropriate threshold. This 

operation can also be applied to radar signals that do not retain coherency, such as 

frequency-agile signals. Examples are given in [1], [23], [29], [46], [50] and [63]. In 

the second group, a detector is designed to perform the clutter suppression, Doppler 

processing and thresholding operations simultaneously by operating on the pulses 

coherently [26], [28], [34], [42], [49], [51].  

 

In this thesis, both noncoherent and coherent detection methods to operate in non-

Gaussian clutter environment are designed. In many of the works in the literature, the 

shape parameter of the clutter is assumed to be known. In this study, both of the 

parameters are assumed to be unknown and they are estimated. 

 

Three non-coherent techniques, namely, Goodness-of-fit, Expectation-maximization 

and Clutter-map CFAR, are designed and analyzed. In the first two techniques, 

heterogeneity of the window that is used in estimation of the clutter parameters is 

tested and the parameters of the dissimilar regions are determined. With this 

information, a threshold is set according to the desired false alarm probability. These 

techniques are novel in that they operate under clutter which is non-Gaussian and 

heterogeneous. Besides, it is believed that using a Goodness-of-fit test in 
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heterogeneity detection in CFAR operation is original. In clutter map CFAR method, 

the parameter estimation is updated at every scan of the radar and the threshold is set 

using the estimates. Clutter map method is not affected from the range-heterogeneity 

problem as the spatial-neighbors are not used in estimation of the characteristic. This 

method is also new, in that the two parameters of the distribution are assumed to be 

unknown and they are estimated and updated, forming the clutter map. In the 

literature survey, a two-parameter clutter map CFAR method was not encountered. 

 

In coherent detection, all of the range cells and pulses are utilized as input to the 

detector. The likelihood-ratio-test is considered as the optimal detection scheme [14], 

[34], [52], [59]. Since the detector is dependent on the clutter and the target 

parameters, they are estimated, using maximum likelihood and maximum-a-

posteriori estimation techniques to form the generalized likelihood-ratio test. In the 

study, three cases of texture correlation among range cells are considered: No-

correlation, partial-correlation and full-correlation. The estimators and detectors are 

derived for all of the cases. The well known detectors that use the same approach do 

not operate on all of the range cells and are shown to experience performance loss in 

fully and partially-correlated cases. The main contribution of this study is to design a 

general detector that uses all the available information in neighboring range cells. 

 

It is shown that in multiple target scenarios, the detectors that operate on a single 

range cell [26], [28], [34], [42], [49], [51], have significant performance degradation 

and cause even the masking of the target. The reason of this is that the only 

information that is used in estimation of the clutter is on that range cell, which is 

corrupted by an interfering target. In this study, a detector is proposed to alleviate the 

interfering-target masking problem. Also, another method is proposed to succeed the 

classical detector to make it operate in multiple-target case, which is believed to be 

novel. 

 

The thesis is organized as follows: In Chapter 2, basic radar principles, information 

on clutter signal properties and detection schemes are given. In Chapter 3, some 
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important noncoherent clutter estimation techniques, which estimate the distribution 

parameters of the non-Gaussian clutter envelope, are described. In Chapter 4, the 

noncoherent thresholding techniques that operate on Weibull distributed clutter are 

explained. The coherent estimation techniques that use all the information in the 

range-cells and pulses to estimate the power of the compound-Gaussian signal for 

full-correlation, no-correlation and partial correlation cases using ML and MAP 

approaches are explained in Chapter 5. The estimators derived in Chapter 5 are 

exploited in design of the GLRT detectors for compound-Gaussian clutter, which are 

presented in Chapter 6. Concluding remarks are stated in Chapter 7. 
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CHAPTER 2 

 

 

RADAR PRINCIPLES 
 

 

 

The basic principle of a radar system is transmission of electromagnetic waves and 

processing of the echo signal in order to extract the necessary information. The 

information to be obtained varies with the type of the radar. For example, search 

radars process the echo signal in order to detect targets, obtain their positions and 

velocities, while tracking radars track the detected targets and obtain the trajectory of 

them. Imaging radars generate an image of the ground and perform operations such 

as detection of the targets and classification. There exist many functions and 

algorithms that perform the cited operations for various types of radars [17], [43], 

[47], [54], [56]. 

 

In the following sections, basic radar principles, detection and interference models 

are reviewed. 

 

2.1   Basic Principles 

 

The main problem in radar detection is determining whether the received echo signal 

contains the signal reflected from a target or only interference. Detection is 

performed by means of cancellation of the clutter and comparing the amplitude of the 

output to a threshold which is usually computed adaptively using the echo signal. In 

analyzing the performance of detection, probability of detection and probability of 

false alarm are the most important criteria. Keeping the other parameters fixed, 
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increasing or decreasing one of the parameters increases or decreases the other as 

well. The relation between these parameters is a function of the Signal to 

Interference Ratio (SIR).  

 

The range information of a target can be extracted from the time delay between the 

transmission of a pulse and the reception of the echo. Since the time required for a 

pulse to be reflected from an object at a distance R is 2R/c, where c is the speed of 

light, then the target distance for a time delay of tD can be found using 

 

 2DtcR = . (2.1) 

 

In modern radars, signals are processed digitally. The received signal is filtered, 

demodulated and sampled appropriately to obtain the signal to be processed. The 

samples form the range bins, each of which has the size 

 

 2StcR =∆ , (2.2) 

where St  is the sampling period.  

 

Resolution is the ability to detect multiple targets, which are close, as separate 

targets. Resolution cell size may be different from the range cell size. Range 

resolution depends on the width of the transmitted pulse, while range cell size is 

determined by the sampling period. 

 

Radial velocity, v, of an object can be measured using the Doppler frequency shift of 

the echoes by means of the formula 

 

 
02 f

fc
v D= , (2.3) 

 

where Df  is the Doppler shift and 0f  is the radar operation frequency. 
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Doppler frequency of a target can be measured by means of spectrum estimation 

techniques such as Fourier transforms or other types of filter banks. 

 

Multiple measurements of position and radial velocity can be used to determine the 

motion of the target in three dimensions. 

 

Radar receives many forms of interference that makes the detection and information 

extraction process difficult. These interfering signals can be so high that they can 

mask the desired echoes. The most important kind of interference is clutter, which is 

defined as the unwanted echoes from the environment. If the desired signal is the 

airborne target echoes, then the echoes from sea, land, weather form the clutter. 

Detailed information on clutter signal is given in the subsection. The other kind of 

interference is the thermal and external noise. The electromagnetic interference 

(EMI) and electronic countermeasures (ECM) are the other two types of interference 

that a radar system must deal with.  

 

The relation between the received echo power and transmitted power in a radar 

system is given by the radar equation, which is 

 

 
LR

GGP
P rtt

r 43

2

)4( π
σλ

= . (2.4) 

 

Here, tP  and rP  denote the transmitted and received powers; tG  and rG  show the 

transmitter and receiver antenna gains, respectively. λ  is the wavelength and σ  is 

the radar cross section (RCS) of the target. R  represents the target range and L  is 

the total loss (Systems losses and atmospheric attenuation). The equation given 

above is valid for a point scatterer. Other forms of this equation can be found in [47] 

and [54]. 
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2.2   Radar Signals  

 

Received radar signal consists of echoes from targets, clutter, thermal noise and other 

types of interference. Modeling these signals appropriately is vital in successful 

design of a radar system. In this section, information on target, clutter and noise 

signal models are given. 

 

2.2.1   Target Signal 

 

The return from a target has a power directly proportional to the radar cross section 

(RCS) of the target. The radar cross section is defined as an equivalent area that 

relates the incident power density to the reflected one from the target. RCS of a 

target varies with respect to the angle, frequency and polarization and it may 

experience a fluctuation. The most common models that are used in target RCS 

fluctuation are Swerling models [47], [54]. Swerling 1 and Swerling 3 cases 

correspond to decorrelation from scan-to-scan, while Swerling 2 and Swerling 4 

cases correspond to pulse-to-pulse decorrelation. For Swerling 1 and 2 cases, the 

probability density function of the RCS is Rayleigh and for Swerling 3 and 4 cases, it 

is Chi-squared with degrees of freedom 4. Swerling 0 refers to a stationary target 

return. 

 

2.2.2   Clutter Signal 

 

Radar clutter modeling is a complicated task, especially when the clutter is received 

with a high-resolution radar at a low grazing angle. As a random process, clutter can 

be defined by means of its spatial and temporal statistical characteristics. Spatial 

characteristics definition is composed of amplitude statistics and correlation 

distances. Similarly, temporal variation is defined by amplitude statistics and 

correlation times. 
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Spatial and Temporal Characteristics 

 

The earlier assumption on spatial amplitude distribution of the clutter signal was 

Rayleigh, which is a single parameter distribution. However, recent studies and 

experimental analysis indicate deviation from Rayleigh PDF, especially in high-

resolution radars and at low grazing angles. The reason is that in high-resolution 

radars, as the number of scattering components is finite or fluctuating in a cell, 

central limit theorem is no longer valid and Gaussian assumption does not hold. The 

most common models to represent this type of radar clutter are Weibull, lognormal 

and K, which are two-parameter distributions. Lognormal distribution, which is 

sometimes used in sea clutter modeling, is not as widely adopted as the other 

distributions [13], [24]. Unlike log-normal PDF, K and Weibull distributions cover 

Rayleigh distribution as a special case. 

 

In a recent paper, characteristic of real clutter data was analyzed [5]. It was validated 

that first order amplitude statistics fits to Weibull or K-distribution. The in-phase and 

quadrature components were found to be identically distributed; have symmetric 

PDF and are non-Gaussian. 

 

In another work, a convenient model to represent non-Gaussian radar clutter was 

explained [13], [60]. This model represents the clutter as a Gaussian speckle, x, 

modulated by a slowly varying texture parameter, τ : 

 

 xr τ=   (2.5) 

 

Texture component determines the PDF and the speckle component determines the 

correlation properties. In order to define the higher order PDF, it is assumed that the 

texture parameter remains constant and SIRP (Spherically Invariant Random 

Process) model can be used. Short durations are necessary for this model to be valid. 
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Another model that was employed in non-Gaussian modeling is alpha-stable 

distribution [40]. In this model, noise is impulsive, i.e., it exhibits more spikes and 

occasional bursts than Gaussian distribution. It is a generalization of the Gaussian 

distribution. It has four parameters: Characteristic exponent, scale parameter 

(dispersion), symmetry and location. Unfortunately, stable random variables do not 

have a closed-form PDF expression but, on the other hand, they have power series 

expansions. However, in a study, it was found that K-distribution fits the sea clutter 

characteristics better than alpha-stable distribution [30]. 

 

Correlation distance is a measure of the sampling point change, for the clutter 

amplitude to change significantly. It is known that land clutter changes significantly 

from cell to cell, especially at low angles. Thus, samples from different range cells 

may be assumed to be independent. On the other hand, it is reported that increased 

correlation is observed from cell to cell, at high angles over uniform forest or at sea 

clutter [6]. 

 

It is known that the time and space characteristics of radar clutter are different [23]. 

Experimental results show that temporal distribution was found to be Rayleigh, 

Ricean or Weibull [6]. Rayleigh distribution was shown to be valid when the signal 

is reflected from wind-blown foliage. It is claimed that Ricean distribution results 

when there are fixed discretes embedded in foliage, such as trees. 

 

Spectral definition of radar clutter gives an idea on how long it takes for the clutter 

amplitude of a given cell to change significantly. This information can be extracted 

from the power spectrum of the clutter. When the clutter results from rocky 

mountains, its correlation time is so long that it can be assumed to be constant. 

However, when the clutter results from wind-blown trees, rain or sea, the internal 

motion of the clutter causes decorrelation in time [5], [24]. 

 

 

 



 11 

Amplitude Distributions 

 
The Weibull distribution accurately represents the clutter distribution over a wide 

range of conditions. By adjusting its parameters, it can be made either Rayleigh, or 

approach to lognormal distribution. The Weibull PDF is defined below: 

 

 ( ){ } )(exp)(
1

xUx
x

xfW
β

β

α
αα

β −�
�

�
�
�

�=
−

. (2.6) 

Here, α  and β  are the scale and shape parameters, respectively.  

 
The distribution function is 

 
 ( ){ }βαxxFW −−= exp1)( .  (2.7) 
 

It can be seen in Figure 2.1 and Figure 2.2 that this distribution may have very 

different forms depending on the parameters. β=2 corresponds to the Rayleigh 

distribution. The smaller the shape parameter gets, the spikier the clutter signal 

becomes. 

 
 
 

 

Figure 2.1  Weibull probability density functions for various shape parameters  

α=1 
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Figure 2.2  Weibull probability density functions for various scale parameters  

β=2. 
 
 

 
 
The other amplitude distribution that is widely used is K-distribution, which is 

described by the following probability density function: 

 

 0),()()
2

(
)(

2
)( 1 >

Γ
= − ν

ν ν
ν xUxbK

xbb
xfK  (2.8) 

 

Here, Γ(⋅) is the Gamma function, Kν (⋅) is the modified Bessel function of the second 

kind. Parameter b is a positive constant. The functions are defined as 
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The shape parameter ν is the measure of the spikiness. The density approaches 

Rayleigh as the parameter tends to infinity. 

 

The K-distribution function is 

 

 0),()()
2

(
)(

2
1)( >

Γ
−= ν

ν ν
ν xUxbK

xb
xFK  (2.11) 

 

The change of the distribution functions with the parameters is shown in the Figures 

2.3 and 2.4. 

 

 

 

 

 
 

Figure 2.3  K-distribution probability density functions for various shape parameters 

b = 1. 
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Figure 2.4  K-distribution probability density functions for various scale parameters 

ν = 3. 
 

 
 
 

 
Multi-pulse Representation 

 

The modeling of the echoes obtained from multiple pulses with desired distribution 

function and correlation properties is a difficult task. In order to solve this problem, 

Compound Gaussian Clutter Model is proposed by Ward [60]. 

 

In compound Gaussian (product) model, complex clutter can be written as given in 

Equation (2.5). The speckle component accounts for the local scattering and is a fast-

changing component. It is assumed to have complex Gaussian distribution with unit 

power. The texture component represents the variation of the local power. It is 

modeled as a real and nonnegative random process [64]. 

 

The compound-Gaussian model widely characterizes heavy-tailed distributions, 

which is a property of high-resolution radar clutter. It also has a physical justification 

for sea clutter [37]. 
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Compound-Gaussian model belongs to the class of spherically invariant random 

processes [12]. 

 

In compound Gaussian model, the probability density function of the clutter is 

determined by the distribution of the texture component. The correlation properties 

are determined by the correlation of the elements that form the speckle component.  

 

Compound-Gaussian is a convenient model due to its ease of mathematical analysis 

and the fact that it can represent a wide class of radar clutter types. The model has 

received great attention in literature. Similar to Weibull distribution, K-distribution 

can represent the earlier assumed Rayleigh distribution as a special case (ν→∞). 

 

Let the intensity, y, of the clutter signal be K-distributed [60]: 
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2
)( 1 ybKy

bb
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v
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 , (2.12) 

 

where v is the shape parameter and b is a scale parameter. Then the texture parameter 

is gamma distributed: 
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where ν is the order parameter and µ is the mean (mean of the clutter intensity). 

 

Hence, the relation between the scale parameter of K-distribution and the mean and 

order parameter of the Gamma distribution can be given by 

 

 
µ
ν

2
∆
=b .  (2.14) 
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2.3   Radar Detection 

 

In radar systems, detection of targets in clutter is an important problem. The classical 

detection process is composed of three main steps. The clutter suppression, Doppler 

processing and then thresholding. In some cases, clutter suppression is performed 

separately as in the case of MTI (Moving Target Indication), or it is performed 

jointly with Doppler processing. In some cases, just the Doppler processing is 

sufficient to discriminate the desired echoes from the clutter signal in Doppler 

frequency. After suppression of the clutter and noise signals, the amplitude of the 

signal is obtained and a noncoherent operation is performed in order to set the 

threshold for detection.  

 

A modern signal processing technique is to perform all of the interference 

suppression, Doppler processing and thresholding operations simultaneously. 

 

Detailed information on these issues is given in the following sections. 

 

2.3.1   Clutter Suppression and Doppler Processing 

 

Clutter suppression and Doppler processing are spectral analysis methods that 

operate on the pulses received from a specified range bin. The operation is performed 

on each range bin. Doppler processing notation consisting of N pulses and M range 

bins are shown in Figure 2.5. The entries in each column correspond to pulse 

samples, which are separated by a Pulse Repetition Interval (PRI). 

 

Classical clutter suppression methods are simple. They are also called pulse-

cancellers. The simplest one is the two-pulse MTI canceller that subtracts echoes 

from successive pulses. The filtering simply forms a notch at DC and cancels out the 

stationary clutter component. However, this method performs poorly especially at 

low-radial velocity targets. Details of the operation can be found in [47] and [54]. 
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Classical spectral analysis and Doppler frequency extraction is performed by means 

of Fourier transformation, i.e. Fast-Fourier Transformation (FFT). However, this 

operation corresponds to filtering that has high sidelobes in frequency. This fact 

causes contamination of target signals by the other targets at neighboring Doppler 

frequencies. In order to suppress the high side lobes and alleviate the contamination 

problem, commonly, a data window to weight the slow-time samples is used. On the 

other hand, the windowing operation, in turn, causes an increase in main lobe width 

and a decrease in peak amplitude and SNR. 
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Figure 2.5  Two-dimensional matrix for Doppler filtering 

 
 
 
 
A more effective canceller is the matched filter mentioned in [47], which is derived 

in the following part: 

 

Let the input signal to the Doppler processing unit be 

 

Doppler filtering 
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Here, s and i represent the target and interference signals, respectively.  

 

The optimal weights are obtained as 

 

 pMw 1
i
−= . (2.16) 

 

The vector p represents the desired target signal or Doppler steering vector and is 

given by 

 

 [ ]TNjj ee )1(1 −ΩΩ
∆
= �p . (2.17) 

 

iM is the covariance matrix of the interference, which is usually the sum of the 

covariance matrices of the clutter and noise. Ω is the Doppler frequency. 

 

Then, the output, )]()2()1([ Nzzz �
∆
=z , is obtained as follows: 

 

 rwz H= . (2.18) 

 

This filter is also equivalent to MMSE or Wiener filter, which minimizes the mean 

squared error between its output and the target return. When the desired signal vector 

is deterministic, then the max-SIR or eigen-filter, which maximizes the signal to 

interference power ratio at its output, is also equivalent to this filter [16]. 

 

After the filtering operation, the amplitude or power of the signal is obtained.  
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2.3.2   Thresholding and CFAR 

 

In classical systems, a target is declared if the signal power, obtained at the output of 

the Doppler processing unit, exceeds the threshold. The method is non-coherent as 

the operation is performed on the magnitude of the signal. 

 

In modern radar systems, the threshold is determined adaptively. It is set in order to 

keep the false alarm rate constant by means of estimating the interference power. 

This operation is named as the Constant False Alarm Rate (CFAR) method [23], 

[47]. In order to keep the false alarm rate constant, the threshold is set according to 

the following relations for Rayleigh and Weibull clutters, respectively [1], [18], [47]: 

 

 )exp( σTPFA −= , (2.19) 

 ))(exp( βαTPFA −= . (2.20) 

 

Adaptive thresholding can be classified as spatial and temporal. In spatial methods, 

the threshold is determined by using the neighboring range cells. In temporal 

methods, the information gathered from the previous scans of the cell under test is 

used in determination of the threshold.  

 

The performance is measured with probability of false alarm and probability of 

detection. Since the parameters are estimated using finite number of samples, a 

higher threshold is used and this causes a decrease in detection probability. This 

phenomenon is named as CFAR Loss. 

 

Spatial Methods 

 

In spatial methods, echoes from the adjacent range cells surrounding the cell under 

test are used. Assuming that these cells contain interference that has the same 

distribution and characteristics with the one in the cell under test, the distribution 
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parameters of the interference are estimated and the threshold is set according to 

Equation (2.19) and (2.20). 

 

Performance of a spatial CFAR algorithm is measured according to the following 

criteria: 

 

• Performance under homogeneous clutter condition 

• Performance under non-homogeneous clutter condition 

• Performance with interfering targets 

• Computational complexity 

 

The most common spatial CFAR methods for Rayleigh clutter are Cell-Averaging 

CFAR (CA-CFAR) and Ordered-Statistics CFAR (OS-CFAR). CA-CFAR method 

averages the amplitudes of the adjacent cells and uses this mean value, where OS-

CFAR method performs ranking and chooses the kth ordered sample in determination 

of the threshold. CA-CFAR is the optimum method for operation in homogeneous 

Rayleigh clutter. OS-CFAR is appropriate when there are multiple targets and 

outliers [50]. 

 

The variants of the cell-averaging method, Greater of CA (GO-CA) and Smaller of 

CA (SO-CA) algorithms use the greater and smaller of the mean values of the 

samples in the leading and lagging sub-windows. These algorithms are appropriate 

for operation with clutter edges and multiple targets, respectively. 

 

In non-Rayleigh clutter conditions, the above-mentioned methods designed for 

Rayleigh clutter are not successful in keeping the false alarm constant. Thus, some 

other methods are proposed. These are maximum-likelihood CFAR [46], variability-

index CFAR [55], ordered-statistics for Weibull [63], [35] and log-t detector [29]. 
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Temporal Methods 

 

Temporal methods are also named as clutter-map CFAR methods. In these methods, 

clutter-maps are employed in order to store and update the clutter information such 

as distribution parameters, e.g. the power in Rayleigh clutter. These techniques are 

advantageous in that they can operate in any non-homogeneous clutter condition 

such as clutter edges. The performance of a temporal CFAR algorithm is measured 

according to: 

 

• Settling time 

• Probability of detection and false alarm 

• Self masking of the targets 

• Computational complexity 

 

Some of the temporal CFAR methods are proposed in [38].  

 

There are other methods that combine the clutter suppression, Doppler processing 

and thresholding operations simultaneously [34], [49], [27]. These are optimal 

detectors and in this thesis, special emphasis is given on this type of detection. 
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CHAPTER 3 
 

 
NONCOHERENT CLUTTER ESTIMATION 

 

 

 

Estimation of the clutter statistical distribution parameters is an essential part of the 

detection problem. Besides, clutter distribution parameter estimates can be used in 

classification and discrimination in Synthetic Aperture Radar and other radar 

imagery systems. 

 

It is known that Weibull distribution and K-distribution provide a good description of 

clutter amplitude in high-resolution radars. In this chapter, some important 

estimation methods for Weibull and K-distribution parameters are considered.  

 

3.1   Weibull Parameter Estimation 

 
The Weibull distribution accurately represents the clutter distribution over a wide 

range of conditions. The Weibull PDF is defined as below: 
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where α  and β  are the scale and shape parameters, respectively. U(⋅) is the unit-

step function. 

 

The distribution function is 

 ( ){ }βαxxFW −−= exp1)( .  (3.2) 
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There exist many methods for estimation of Weibull shape and scale parameters. 

Generally, estimation of the Weibull PDF parameters is a difficult task, since they 

require plotting, iteration or sorting. The most important estimation methods are 

method of moments and maximum-likelihood method, which are explained in the 

following subsections. 

 

3.1.1   Method of Moments 

 

In this method, moments of the distribution that are defined as a function of the 

distribution parameters are equated to the sample moments, and the parameter 

estimates are obtained by solving these equations. This method and its derivatives 

can also be found in [65] and the references therein. 

 

For Weibull distribution, the following equations show the first and second raw 

moments: 

 
 [ ] ( ) ( )ββ 21][,11 2 +Γ=+Γ= xExE . (3.3) 
 

The sample moments are obtained from 

 �
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Equating the sample moments to analytical moments,  
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is obtained, where n is the number of samples, xi’s are the received signal 

amplitudes. Here, )(⋅Γ  represents the Gamma Function. 
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The shape parameter, β , can be found iteratively using the expression given by (3.5). 

Having obtained this estimate, α  can be calculated using the equation given below:  
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Similar operations can be performed to obtain the parameter estimates, using the 

central moments instead of the raw ones. 

 

It can be seen that these operations are computationally costly. Some simplifications 

may be performed by means of modifying the estimation method. It is known that 

logarithm of a Weibull distributed variable has a location-scale type distribution. 

This distribution is named as Gumbel distribution and is a special case of the 

Extreme-Value or Fisher-Tippett distribution. Using this property, the following 

estimates are found [11], [53]:  
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These estimators are rather simple and do not require iteration. However, they are 

suboptimal. 
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3.1.2   Maximum-Likelihood Estimation 

 

It is known that the maximum likelihood estimates [33], [59] are the ones, which 

satisfy 

 )(maxarg θθ
θ

xp= ,  (3.9) 

where [ ]Tβαθ = . 

 

Maximizing the likelihood function given by (3.9) is equivalent to maximizing its 

logarithm, which is given as 
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The partial derivatives of the function, which will be equated to zero in order to 

obtain the estimates, are found as  
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Equating these expressions to zero, the estimates are obtained as given below. These 

results were also derived in [46]. 
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Having obtained the estimate 
∧
β , 

∧
α  can be obtained easily using Equation (3.14). 

However, solution of Equation (3.15) is not trivial. At this point, some iterative 

methods should be utilized.  

 

3.2   K-Distribution Parameter Estimation 

 

K-distribution is described by the following probability density function: 
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where Γ(⋅) is the Gamma function, Kν (⋅) is the modified Bessel function of order ν 

and b is a positive constant as defined before.  

 
The distribution function is 
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The next two subsections describe the method of moments and maximum likelihood 

estimation methods. There are some other methods that can be found in [7] and [44]. 
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3.2.1   Method of Moments 

 
The moments of the K-distribution are expressed as follows [32]: 

 

 [ ] kk

b
kk

xE )
2

(
)(

)5.0()15.0(
ν

ν
Γ

+Γ+Γ= . (3.18) 

 
The sample moments are obtained from 
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The mean and the variance of the distribution are  
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Finding the parameters using Equations (3.20) requires solution of nonlinear 

equations. It is stated that for spiky radar clutter, higher order moments can be used 

[32]: 
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After this, using the first order moment, the parameter b can be obtained using 
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3.2.2   Maximum-Likelihood Estimation 

 

The maximum likelihood estimates can be obtained by maximizing the log-

likelihood function defined by 
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Taking the derivative with respect to the unknown parameters, 
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are obtained, where )(⋅Ψ is the digamma function given by 
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The solution of the equations, obtained after equating these expressions to zero, 

requires nonlinear methods. In their work, Iskander et al [31] obtained the following 

estimate for the parameter b: 

 

 
1

1
))ln(

1
2

)ˆ(
(exp

2
1ˆ

−

=
�
�

�
�
�

�
�+Ψ−=
n

i
i

e x
n

b
νγ

, (3.27) 

 

where, eγ  is the Euler constant. 
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CHAPTER 4 
 

 

NONCOHERENT THRESHOLDING 
 

 

 

In classical radar detection, after clutter suppression and Doppler processing, the 

signal is envelope or square-law detected. Following this, a noncoherent CFAR 

operation is performed to set the threshold in order to keep the false alarm rate 

constant. 

 

One of the most important problems that a thresholding operation must deal with is 

heterogeneity in interference characteristics. Many CFAR detectors for Weibull 

clutter [46], [53], [63] or range-heterogeneous Rayleigh clutter [9], [23], [25], [47] 

have been suggested before. However, both of the problems are not handled 

simultaneously. In this part of the study, three CFAR methods that are suitable for 

non-Rayleigh and range-heterogeneous clutter are designed. 

 

The first method, Goodness-of-Fit (GoF) CFAR, firstly, determines the heterogeneity 

using a goodness-of-fit test. If it is decided to be heterogeneous, it estimates the 

position of the transition point and the distribution parameters of the clutter in the 

cell under test. The second method, Expectation-Maximization (EM) CFAR, uses 

Expectation-Maximization algorithm to identify the heterogeneous segments and 

determine their distribution parameters. The final method, named as Clutter-Map 

(CM) CFAR forms a map to store the distribution parameters and by this way, uses 

the information obtained from the previous radar scans. The final method is well 

suited to land-based radars, where the clutter parameters do not change significantly 

in time. In all of the methods, clutter distribution is assumed to be Weibull. The scale 
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and shape parameters of the distribution are assumed to be unknown, thus exact 

information on the shape parameter is not required. 

 

4.1   Clutter Model 

 
In this study, the range heterogeneity of the Weibull clutter is modeled as a sharp 

transition from one region to another with a different PDF scale and/or shape 

parameter. This model is general and suitable for clutter interfaces such as land to 

sea. Similar to the one made in similar works, the clutter is assumed to be dominant 

and the effect of thermal noise is neglected.  

 

The heterogeneity scenario is illustrated in Figure 4.1. The transition represents a 

change in distribution parameters. Here, x is the observation vector, fx(x, α1, β1) is 

the probability density function of the first clutter region and fx(x, α2, β2) is the one 

of the second one. Parameters α1, β1 and α2, β2 represent the distribution parameters 

of region 1 and 2, respectively. The horizontal axis shows the range, through which 

the samples that form the observation vector, x, are obtained. 

 

 

 

 
 

Figure 4.1 Clutter heterogeneity, PDF transition from fx(x, α1, β1) to fx(x, α2, β2) 

 
 
 
4.2   Goodness-of-Fit CFAR 
 

Goodness-of-Fit CFAR method, firstly tests the heterogeneity of the window under 

test. If the window is found to be heterogeneous, the position of the transition point 

and the distribution parameters of the regions are estimated. Having determined the 

fx(xα1, β1) fx(x,α2, β2) 
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transition point and the parameters, the threshold is set so as to yield the desired false 

alarm rate.  

 

It is known that some methods designed for range-heterogeneous clutter may 

perform poorly when the clutter is homogeneous. This algorithm does not have this 

problem, as the test homogeneity situation is tested. If the data stemming from the 

clutter range is found to be homogeneous, threshold setting is done accordingly.  

 

Assuming that the window is homogeneous, the shape and the scale parameters of 

the distribution are estimated using the method mentioned in [53]. This method is 

easy to implement and its performance is close to the Maximum Likelihood 

estimation, which requires iteration in Weibull case. Let the sample vector that will 

be used in estimation, obtained after discarding the cell under test and the guard 

cells, be [ ]Nxxx �21=x . Then, the shape, β, and scale, α, parameters are estimated 

using the samples that form the CFAR window, using the formulas below: 
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Having obtained the estimates, a Weibull PDF goodness-of-fit test is performed. 

Anderson-Darling Goodness-of-fit test [3] for Weibull distribution is chosen here, as 

it is claimed to be more sensitive than the classical methods in the tail of the 

distribution. The test is defined as follows [22]:  
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where 
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Here, qi’s are the ordered samples obtained by sorting xi’s in ascending order. 

 

The test statistic is compared to a predetermined critical value given in [22], for 

various levels of significance. The level of significance is defined as the probability 

of committing a Type 1 error. In other words, for this case, it is the probability of 

deciding that the observation set is heterogeneous, while actually it is homogeneous. 

If the test statistic is smaller than the critical value, then it is decided that the 

distribution fits Weibull and the observations are from a homogeneous set. 
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1

critAA
H

H

<
> .  (4.5) 

 

Critical values change with the number of samples used. The values used here which 

are given in Table 4.1 are valid for number of observation samples greater than 50. In 

this study, the significance level is chosen to be 0.01. 

 

 

 

Table 4.1  Anderson-Darling Goodness-of-Fit Test Critical Values 

 
Significance  0.1 0.05 0.025 0.01 

A2
crit 0.637 0.757 0.877 1.038 
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If the observation set is found to be heterogeneous, the transition position should be 

estimated in order to identify the different homogeneous regions. In estimation of the 

transition position, maximum-likelihood approach is used.  

 

Using the independence of the Weibull distributed samples in the observation vector, 

the likelihood of the transition point to be at the m th position, is obtained as 
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where 1α̂ , 1β̂ and 2α̂ , 2β̂ are the estimates obtained from the two observation vectors 

(vectors that are formed by the samples to the left and right of m), respectively. 

These estimates can be found using Equations (4.1) and (4.2) for each value of m. 

 

The transition point, M, is declared to be the position m that maximizes the 

likelihood function: 

 

 )ˆ,ˆ,ˆ,ˆ,(maxarg 2211 βαβαxm
m

LM = . (4.7) 

 
If the parameters of the distribution are known exactly, then the detection threshold, 

T, can be easily set as 

 

 ( ) βα 1ln FAPT −=  (4.8) 

 

However, the parameters that are used in the test are not exactly known but they are 

estimated using a limited number of samples making the actual false alarm rate 

different from the desired one. As the estimates are random variables, so is the false 



 34 

alarm probability. Due to this fact, the threshold can be set to make the expected 

value of this false alarm probability equal to the desired one: 

 

 FAFA PTEPE =−= }])'(exp[{}'{ βα . (4.9) 

 

Next, a coefficient q is found to set the threshold as αβ ˆ'
ˆ/1qT

∆
= , with the purpose of 

simplifying the operation. Unfortunately, when the shape parameter of Weibull 

distribution is not known but estimated, a closed form expression for the distribution 

of PFA cannot be obtained. Thus, the parameter q can be found using Monte-Carlo 

simulations to yield the desired false alarm probability. Since the desired values are 

small, it is necessary to perform a large number of simulations. In our case, a closed 

form expression for PFA, in terms of the estimated parameters, exists and simulation 

is required only to find the parameter estimates. After the simulation performed to 

find the estimates, PFA can be calculated analytically. This greatly reduces the 

sufficient number of simulations.  

 

In this work, for PFA=10-5, the coefficients are found for various number of samples. 

The threshold values for different number of samples are given in Figure 4.2. It is 

verified that as the number of samples increases, the value approaches to –ln PFA. 

Figure 4.3 shows the change of the threshold parameter with false alarm probability 

and number of samples used in estimation. Threshold parameters are determined by 

this method and are tabulated. Then these parameters are used in setting the threshold 

to yield the desired value of the mean probability of false alarm. 
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Figure 4.2  Threshold parameter for Weibull distribution versus different number of 
samples, PFA = 10-5 

 

 

 

 

Figure 4.3  Probability of false alarm versus threshold parameter for Weibull 
distribution for different number of samples  

 
 
 



 36 

A target is declared if the signal amplitude in the Cell Under Test (CUT) is greater 

than the threshold: 

 
 TyCUT N >= +12/  (4.10) 
 
In order to determine the threshold parameter, T, the region of the cell under test is 

identified. It is decided that the target is in the first region if the transition point index 

is smaller than N / 2. Otherwise the threshold is set according to the second region 

distribution parameters. For the first region, the threshold is 1

ˆ/1 ˆ1αβ
MqT = ; and for 

the second one, it is 2

ˆ/1 ˆ2 αβ
MNqT −= . 

 

Next, performance of the Goodness-of-Fit CFAR is presented. Performance 

evaluation is done using Monte Carlo simulations. The simulations are executed at 

50000 points and then averaging is performed. 

 

The first result, presented in Table 4.2, is on the capability of the goodness-of-fit test 

in homogeneous/heterogeneous region identification. The whole observation vector 

is divided into 8 segments each of which are composed of 100 samples. The 

transition occurs in the 4th segment, for which a high test-statistics is found by using 

the goodness-of-fit test. This high-statistics exceeds the critical value and that 

segment is declared to be heterogeneous.  

 

Next, performance of transition point estimation using Equation (4.7) is presented. 

Figure 4.4 shows the performance of finding the correct position of the transition. 

The two segments differ in scale parameters, i.e. SCR (Signal-to-Clutter power 

Ratio) values and shape parameters. Here, the signal (target) is kept at unit power 

and the clutter power is determined accordingly. The target experiences a Swerling-1 

type fluctuation. As it can be seen in the figure, the estimation performance is poor 

when the transition point is close to the beginning of the range. The reason for this is 

that the parameter estimation degrades at that point, since the number of samples to 

the left of the window is not sufficient. Performance degradation at the end of the 
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range is not that much, in view of the fact that the clutter is less spiky and the 

estimator performance is better at the second region. A remedy for the estimation in 

end points is using a sliding window and work on the range samples within this 

window. By this way, each range sample will be covered and the parameter of each 

sample will be estimated successfully. 

 
 
 

Table 4.2  Anderson-Darling GoF Test performance in heterogeneity identification  
α changes from 5 to 1, β  changes from 1.5 to 2 

 
Parameter 
estimates Segment 

index 
� � 

Test 
statistics Fit 

1 4.92 1.54 0.35 1 
2 5.27 1.39 0.48 1 
3 4.92 1.46 0.35 1 
4 1.93 1.29 14.58 0 
5 0.99 1.88 0.21 1 
6 0.98 2.01 0.30 1 
7 0.95 2.11 0.26 1 
8 1.01 2.01 0.27 1 

 
 

 
Figure 4.4  GoF-CFAR, performance of transition point estimation 

SCR1 = 20dB, SCR2 = 30dB; β1=1, β2=2 
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Figure 4.5 shows the detection probability versus signal to clutter power ratio for 

different shape parameter values, in homogeneous clutter. The dotted lines show the 

performance that can be obtained by the exact knowledge of parameters. Difference 

between the solid and dotted curves shows the CFAR loss. Due to the quality of 

estimation obtained with 800 samples, the loss is negligible. As expected, the 

performance deteriorates with decreasing shape parameter (β), which means more 

spikiness. Spiky clutter causes an increase in the threshold, which, in turn, causes a 

reduction in false alarm probability. 

 

 

 

 

Figure 4.5  GoF-CFAR, probability of detection versus SCR in homogeneous clutter 
for various shape parameters.  

PFA = 10-5. Range-heterogeneous CFAR (solid curves), ideal thresholding (dotted 
curves) 

 
 

 

It is known that when conventional CFAR methods are operated in Weibull clutter, 

false alarm rate increases due to clutter spikes. Together with this effect, the 
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performance under range-heterogeneous clutter is analyzed. Two of the classical 

methods, Greatest-of-Cell-Averaging (GO-CA) and Ordered-Statistics (OS) CFAR 

methods, which are known to be suitable for heterogeneous Rayleigh clutter are 

compared with the proposed method in a heterogeneous Weibull clutter environment. 

The number of samples used in estimation is 100. The result is illustrated in Figure 

4.6. The two methods are unable to perform well in this situation, since the clutter 

distribution deviates from Rayleigh and becomes spikier in the second region. GoF-

CFAR does not suffer from false alarms and yields a threshold close to the ideal 

threshold at the transition point. 

 

Performance of the proposed method is also compared with ML algorithm for 

Weibull clutter. This method calculates the Maximum-Likelihood parameter 

estimates to set the threshold. In spite of its computational complexity, this method 

has good performance in a homogeneous Weibull clutter environment. However, in a 

heterogeneous environment, the existence of the transition region causes erroneous 

estimation and the method yields target masking at the low-power clutter region. The 

performance analysis result is shown by Figure 4.7. At the homogeneous parts, the 

ML method performs well. The conventional methods experience either target 

masking or excessive false alarms at the clutter edge. As it can be seen, GoF-CFAR 

enables the detection of the target, which is very close to the clutter edge. At the 

second region, where the shape parameter is 2 and the Weibull PDF is identical to 

Rayleigh PDF, all of the methods generate almost the same threshold and perform 

similarly.  
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Figure 4.6  GoF-CFAR, signal variation in range-heterogeneous clutter and threshold 

levels for various CFAR methods – no target  

PFA = 10-5, no target, β1=2, β2=1.2, 20 simulations 
 

 

 
 

Figure 4.7  Amplitude variation with range of range-heterogeneous clutter and 
threshold levels for various CFAR methods - target   

PFA = 10-5, SCR1 = 3dB, SCR2 = 20dB; β1=1.5, β2=2, 20 simulations 
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The detection probabilities in heterogeneous clutter, obtained with various methods 

are given in Table 4.3 through Table 4.5 The results are obtained via Monte-Carlo 

simulations. In the analysis, there exists 100 samples (range cells) and transition 

occurs at the 40th range cell. The target is located at the 50th range cell. The number 

of simulations is 20000. The thresholds are set so as to keep the false alarm rate at 

10-5. Table 4.3 shows the probability of detection in homogeneous clutter. The 

algorithms designed for range-heterogeneous clutter may cause some performance 

loss in homogeneous clutter environment. As it can be seen, when that shape 

parameter is 2, the clutter becomes Rayleigh distributed and the CA-CFAR algorithm 

is optimum. The ML algorithm also determines the parameters correctly and 

performs very well. In this case, as expected, OS algorithm performs well, too. When 

the shape parameter decreases, which means more spikiness, CA-CFAR has a drastic 

performance loss, especially in low SCR case. In this case, the loss of OS-CFAR is 

smaller. GoF CFAR performs close to the ML algorithm in high SCR scenario. 

However, some loss is observed when the SCR is low. This loss is due to the errors 

of detecting transitions while the environment is homogeneous. 

 

 

Table 4.3  GoF-CFAR, probability of detection in homogeneous case 

 

SCR(dB) β Ideal GoF ML CA OS 

40 2 0.99 0.99 0.99 0.99 0.99 

40 1 0.99 0.99 0.99 0.98 0.98 

30 1 0.93 0.86 0.93 0.88 0.92 

20 1 0.53 0.32 0.52 0.30 0.43 
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Table 4.4 shows the probability of detection in heterogeneous clutter, where the 

shape parameter changes. In this case, CA and OS-CFAR algorithms have a drastic 

loss in detection probability. The ML algorithm still performs well in this case, 

where the SCR is kept constant. GoF algorithm performs better than the ML 

algorithm when the SCR is high; however it performs worse in low SCR case.  

 
Detection performance, when both the SCR and shape parameter change, is shown in 

Table 4.5. GoF CFAR performance is the one that is closest to the ideal performance. 

The loss of the ML algorithm is higher when the SCR gets lower. OS and CA 

algorithms yield lower detection probabilities when the shape parameter and/or the 

SCR decrease. 

 

 

 

Table 4.4  GoF-CFAR, probability of detection in non-homogeneous case- Same 
SCR, different shape parameters 

 
SCR1→SCR2 β1→β2 Ideal GoF ML CA OS 

40→40 2→1.5 0.99 0.99 0.99 0.98 0.98 

40→40 1→2 0.99 0.99 0.98 0.98 0.98 

40→40 1→1.5 0.99 0.99 0.98 0.98 0.98 

30→30 2→1.5 0.97 0.96 0.98 0.84 0.88 

30→30 1→2 0.98 0.94 0.97 0.85 0.89 

30→30 1→1.5 0.97 0.93 0.96 0.85 0.89 

20→20 2→1.5 0.80 0.75 0.84 0.18 0.30 

20→20 1→2 0.89 0.66 0.76 0.19 0.33 

20→20 1→1.5 0.81 0.52 0.70 0.22 0.36 
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Table 4.5 GoF-CFAR, probability of detection in non-homogeneous case- Different 
SCR, different shape parameters 

 
SCR1→SCR2 β1→β2 Ideal GoF ML CA OS 

40→30 2→1.5 0.97 0.96 0.97 0.91 0.94 

40→30 1→2 0.99 0.92 0.96 0.89 0.94 

40→30 1→1.5 0.97 0.89 0.95 0.90 0.94 

40→20 2→1.5 0.81 0.62 0.55 0.41 0.62 

40→20 1→2 0.89 0.78 0.32 0.32 0.59 

40→20 1→1.5 0.81 0.38 0.31 0.42 0.63 

20→30 2→1.5 0.97 0.84 0.82 0.50 0.63 

20→30 1→2 0.99 0.96 0.81 0.72 0.70 

20→30 1→1.5 0.97 0.87 0.76 0.70 0.71 

 

 

 

Part of this work was presented in [17]. 

 

Due to its disadvantages in Weibull and heterogeneous clutter environment, the OS-

CFAR method is not recommended. On the other hand, it is known that it has some 

advantages such as decreasing masking effect in multiple-target situation. Using the 

approach of OS that eliminates the outliers, an improvement can be obtained in the 

proposed method in multiple-target case. 

 

 

4.3   Expectation-Maximization CFAR 

 
The second method that is proposed for range-heterogeneous Weibull clutter uses the 

Expectation-Maximization algorithm [39] in determination of the differing regions 

and estimation of the distribution parameters of clutter in these regions. 
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This method assumes that the sample vector under test is formed by a mixture of 

signals with different distribution parameters. Adopting this model, the problem can 

be viewed as the problem of finite mixture distributions [58]. Here, the aim is to 

estimate the occurrence probability of each distribution and the parameters of them. 

The algorithm starts with initial values for the distribution parameters and the a-

priori PDF of each distribution. Then, using the observation signal, a-posteriori 

probabilities of each sample having each distribution is calculated. By choosing the 

maximum of these probabilities, the distribution estimate of each sample is obtained. 

Then, using this information, distribution parameters are re-estimated. These steps 

are performed iteratively to obtain the final decision on distributions of each sample 

and the distribution parameters. This information is then used in determination of 

transition and the detection threshold. Using this approach, Streit, et al., have 

performed the transient signal detection for exponential distributed random signals 

[57]. Following this, Chen, et al., employed this method in radar CFAR analysis [9]. 

However, as mentioned above, these studies were performed on exponential 

distribution, which was the classical assumption for the distribution of magnitude 

squared Gaussian signal. In this study, the method is extended to non-Gaussian, 

Weibull-amplitude signal.  

 

Part of this work was presented in [19]. 

 

This work consists of two parts: Design of the two level and multi-level algorithms. 

In the design of the former algorithm, existence of two different distributions is 

assumed. In the latter one, the multi-level algorithm, the derivations for two-level 

algorithm are generalized to cover more than two distributions. The motivation in the 

design of the second method is simplifying the operation by means of eliminating the 

need for estimation of the shape parameter of the Weibull distribution. 
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4.3.1   Two-Level Algorithm 

 
Similar to the symbolic illustration used in the previous section, range heterogeneity 

is modeled as shown in Figure 4.8. Here, x is the observation vector, fx(x, α1, β1) is 

the probability density function of the first clutter region and fx(x, α2, β2) is the one 

of the second region. Hidden random variables, Zi, are introduced here, which 

associate each of the range samples xi with one of the two distributions.  

 

 

 

 

 
Figure 4.8  Clutter heterogeneity, PDF transition from fx(x, α1, β1) to fx(x, α2, β2) 

 

 

 

The a-priori probabilities of a sample having the distributions 1 and 2, i.e. Zi=1 and 2 

are given by 

 

 [ ] [ ] qZPqZP ==−== 2,11 . (4.11) 

 

Since, it is assumed that there are two distributions, Z has a binomial distribution.  

 

Seeing that the observations depend on a hidden random variable, they are not 

complete and without the knowledge of Zi’s, i.e. the transition point, the maximum-

likelihood estimates of the distribution parameters can not be performed. In this case, 

the Expectation Maximization algorithm can be employed. It is known that EM 

algorithm is an efficient computational procedure for maximum-likelihood 

estimation, where observations are incomplete.  

fx(xα1, β1), Z=1 fx(x,α2, β2), Z=2 
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EM algorithm is performed by iteration of two steps, E and M: 

 
E-Step:  Form the expectation 
 

Let the test parameters and the initial (guessed) parameters at the beginning 

of the iteration be represented by [ ]Tq2211 βαβα=�  and 

[ ]Tq'''''' 2211 βαβα=� , respectively. ),(),,( iiii xcZPxc �'�' ==
∆

ω  is the a-

posterior probability of Z being c for the ith range cell given the observation 

xi and the assumed distribution parameters �' .  

 
Then the expectation function is 

 

 �
=

=
2

1

),(),(ln),(
Z

Z ZPZpQ �'x�x�'�,x x . (4.12) 

 

M-Step:  Maximize the expectation 
 

 ),(maxarg �'�,x�
�

* Q= . (4.13) 

 

 

At the end of each iteration, θθθθ’ is replaced by θθθθ*. The algorithm is known to be 

convergent at least to a local maximum of the likelihood function )( �x
�xp , if it is 

bounded [9]. The stopping criterion for the iterations can be a predefined small 

difference between the estimates of consecutive iterations. 

 

For Weibull distribution, the algorithm can be derived as follows:  

 

The expectation function can be written as  

 

�=
Z

Z ZPZpQ ),(),(ln),( , �'x�x�'�,x
�x  (4.14) 

 ),2(),2(ln),1(),1(ln ,, �'x�x�'x�x
�x�x ==+=== ZPZpZPZp ZZ  
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Noting that for N range samples, which are statistically independent, 
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the expectation function can be written as 
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For the Weibull density function, the cost function becomes 
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The a-posterior probabilities are written as 
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Here, it should be noted that ),,2(1),,1( �� iiii xx ωω −= . 
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The expectation function is maximized in order to obtain the parameter estimates, by 

equating the gradient to zero: 

 

 0�'�,x� =∇ ),(Q . (4.20) 

 

Performing the operations, the estimates of a-priori probabilities and distribution 

parameters are found as follows. 

 

The a-priori probability estimate of the second distribution is 
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The estimates of the scale parameters of the two distributions are 
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The shape parameter estimates are obtained by solution of the equations, 
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Equations (4.23) cannot be solved easily and they require iteration. However, when 

these estimates are obtained, posterior probabilities and the scale parameters can be 

calculated easily. 

 

 

In summary, the algorithm is, 

 
1. Initialize { }',',',',' 2211 qβαβα=�'  to some moderate values, 

2. Compute ),,1( �'ii xω using '�  and find ),,1(1),,2( �'�' iiii xx ωω −= for each 

xi, 

3. Update { }q̂,ˆ,ˆ,ˆ,ˆˆ
2211 βαβα=�  using Equations (4.21) to (4.23), 

4. Replace { }',',',',' 2211 qβαβα=�'  by the new estimates { }q̂,ˆ,ˆ,ˆ,ˆˆ
2211 βαβα=� , 

5. Check the stopping criterion, i.e. the smallness of the magnitude of the 

difference between the previous and current estimates. If the magnitude of the 

difference is smaller than a predefined value, stop, otherwise, return to step 2. 

 

Performance 

 

In this subsection, some performance results are shown. Due to the fact that the 

closed form expressions for the shape parameter estimates can not be found, here, the 

shape parameters are assumed to be known and the performance under scale 

parameter changes is searched. A simulation result is shown in Figure 4.9. In this 

simulation, the outputs of 500 simulation runs are averaged. The first plot shows the 

change of the scale parameter with range. The second plot shows the a-posteriori 

probability of distribution 2.  

 

The posterior probabilities have an important role in the EM-CFAR algorithm, since 

they determine the probability of each sample’s distribution. The distribution with 

higher probability is selected as the distribution of the range cell under investigation. 
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It can be seen from the simulation output that by putting a threshold at 0.5, the 

differing regions can be successfully determined.  

 

The estimation output for scale parameters and the priori probability of PDF 2 is 

shown in Table 4.6. It is observed that the scale parameter estimates, 0.48, 4.98 are 

very close to the actual ones, 0.5 and 5. The probability of PDF 2 is 0.6, which is 

estimated as 0.61. It can be concluded that the algorithm can identify the regions and 

estimate their parameters successfully. 

 

 

 

 

Figure 4.9  Posterior-probability estimate of EM-CFAR algorithm.  

α1=0.5, α2=5, β1=β2=2, q=0.6, average of 500 simulations 
 

 

 

Table 4.6  EM estimator outputs for scale parameters of two levels and a prior 
probability of PDF 2 

 
α0 α1 q 

0.48 4.98 0.61 
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In the derivation of the algorithm, it is assumed that there exists two differing 

distributions that the observation samples have. However, it is probable that the 

observation consist of homogeneous samples. As an improvement, the existence of 

two distributions, i.e. the transition, can be detected initially. In homogeneous case, 

because there is no hidden quantity, the EM algorithm is not needed and the 

estimates can be obtained by means of an appropriate algorithm, such as the one 

given by Equations (4.1) and (4.2). The homogeneity can be tested by means of an 

algorithm such as the Goodness of Fit test described above. 

 

After determination of the distribution of the clutter in the cell under test and its 

distribution parameter estimates, the threshold can be set in order to yield the desired 

false alarm probability. The distribution of the clutter in the cell under test can be 

estimated by performing a majority check in the neighboring cell distributions. 

 

4.3.2   Multi-Level Algorithm 

 

The complexity of the Equations (4.23) makes the implementation of the algorithm 

explained in the previous section difficult, in unknown-shape parameter case. Thus, 

in this subsection, an algorithm is proposed to eliminate the need to estimate the 

shape parameter.  

 

If the shape parameters are known or can be obtained from a clutter map, as it is 

assumed in some studies in the literature, the two-level algorithm can be easily 

extended for known shape parameter values and cover many transitions between 

multiple parameter levels.  

 

The shape parameter of the Weibull radar clutter has a limited range determined by 

some parameters such as the depression angle, terrain type, radar resolution and 

wavelength. So, a set of shape parameter values can be assumed that covers the 
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probable terrain types. Using these assumed shape parameters, a set of PDF’s, with 

single parameter, the scale parameter, is obtained.  

 

Multi-distribution form of the method described above is derived as shown below. 

 

The expression for the kth PDF is (Zi=c) (c=1, 2, …, M) 
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Here, A
cβ  refers to the assumed shape parameter of the cth distribution. 

 

Carrying out similar operations that were performed in the previous section, the 

estimate of the occurrence probability of cth distribution is obtained as 
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A-posterior probability of Zi being c is 
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Performing the operations, we obtain expressions for parameter estimates that are 

similar to the ones derived before: 
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The question to be answered next is the selection of the shape parameter or the PDF 

set.  

 

It is well known that the variance of the estimation error is bounded by the Cramer-

Rao Lower Bound. Any estimator yields an estimation error variance greater than 

this value. Thus, it is not meaningful to work on parameter values that are close to 

each other more than the value determined by the bound. Thus, the Cramer-Rao 

lower bound is utilized in determination of the values in the assumed shape 

parameter set. 

 

The CRB bounds for Weibull distribution shape and scale parameters estimation 

errors are derived as follows. 

 

The error variance is denoted by 2
,iεσ . Then the CRB for this variance is [59] 

 

 [ ] ii
iii JVar ≥−= θθσ ε )(ˆ2

, x , (4.29) 

 

where Jii is the i,ith element of the inverse of the Fisher Information matrix (FIM), J. 

The FIM is defined as 
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The logarithm of the PDF can be written as 
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where the parameter vector is [ ]Tβα=� . The gradient of the function is 
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Taking the partial derivatives again, the matrix becomes  
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Evaluating the expectation of the matrix, the FIM is obtained as 
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where  
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Here, eγ  is the Euler constant which is approximately, 0.5772. 

 

The inverse matrix is 
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Hence, the variances for the scale and shape parameter estimation errors are, 
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Substituting the constants, the error variances for scale and shape parameters, 
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are found.  

 

As an example, if the shape parameter is assumed to have values from the 

set [ ]2,1.0∈β , for N=20 range samples, the standard deviations of the errors are 

found to be 

 

017.0≥βσ  for 1.0=β ; 122.0≥βσ  for 7.0=β ; 246.0≥βσ  for 1=β ; 

348.0≥βσ  for 2=β . 

 

In CFAR operation, the difference between the estimated shape parameter and the 

actual one effects the detection and false alarm probabilities. The actual false alarm 

probability, in terms of the desired (design) false alarm probability, assumed shape 

parameter and the actual shape parameter, is given by the following formula: 
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Figure 4.10 shows the change of the false alarm probability versus the ratio of the 

actual and designed shape parameters. It is observed that the false alarm probability 

is very sensitive to the ratio between the actual and assumed parameters. In 

thresholding operation, it is important to keep the false alarm rate at the desired 

value. Any probability that is smaller than this value also decreases the detection 

probability.  

 
It can be seen from Equation (4.37) that the standard deviation of the shape 

parameter estimation error is directly proportional to the actual value of it. Thus, the 

steps of the assumed parameters should be non-uniform. The step size should 

increase with increasing shape parameter.  

 
 
 
 

 
Figure 4.10  Change of probability of false alarm with the ratio of actual and 

estimated shape parameters 
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The standard deviation of the error is given by 
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Hence, the minimum value of the nth step size is 
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Introducing a new parameter 
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and representing the minimum shape parameter by β0, nth shape parameter value in 

the set will be 

 

 n
n λββ 0= . (4.43) 

 

The maximum value of the shape parameter is limited at 2, which corresponds to the 

Rayleigh distribution. 

 

Figure 4.11 shows a parameter set when the number of range samples is 40. The 

starting parameter is set to 0.3. The elements of the set are placed non-uniformly and 

are 0.30, 0.38, 0.49, 0.63, 0.80, 1.03, 1.32, 1.70, 2.17 and 2.00. 

 
 
 

 
Figure 4.11  Designed shape parameter set for the multi-level EM-CFAR algorithm 
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Defining a set with more elements is not necessary, as no estimation method can 

yield better results and generate estimates closer to the actual values. 

 

Performance 

 

In performance analysis, the a-priori probabilities and assumed shape parameters are 

chosen as shown in Table 4.7. The four assumed parameters form four different 

distributions. 

 
 
 

Table 4.7  EM-CFAR test scenario 1, assumed shape parameters and a priori 
probabilities 

 
 PDF1 PDF2 PDF3 PDF4 
Assumed shape parameter, β 0.5 0.75 1.4 2 
A priori probability, q 0 0 0.6 0.4 

 

 

 

The actual scenario is as shown in Table 4.8. The first 20 range samples are land 

echoes, next 60 samples are echoes from river and the last 20 samples are again from 

land.  

 

The simulation results of the multi-level algorithm are shown in Figure 4.12. The 

four plots show the a-posterior probabilities of the four distributions at each sample. 

The results are obtained as a result of 500 trials. 
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Table 4.8  EM-CFAR test scenario 1, actual distribution parameters 

 
 20 samples 

(Land) 
60 samples 

(River) 
20 samples 

(Land) 
α 2 7 2 
β 2 (PDF4) 1.4 (PDF3) 2 (PDF4) 

 
 

 

 
Figure 4.12  EM-CFA, a posteriori probabilities of the assumed distributions 

 
 
 
By choosing the maximum-of the a-posteriori probabilities at each range sample, the 

most likely distribution of each sample can be found. Hence, the distributions are 

obtained for each range sample, as shown by Table 4.9. Apparently, the actual 

probabilities are found correctly.  

 
 
 

Table 4.9  EM-CFAR, estimated distributions 

 
 20 samples 60 samples 20 samples 
PDF PDF4 PDF3 PDF4  



 60 

 
 
The scale parameter and a-priori PDF estimates are obtained as by-products of the 

algorithm and they are shown in Table 4.10. The scale parameters of the 3rd and 4th 

distributions are estimated successfully. However, as there are no samples from the 

1st and 2nd distributions in the range, the parameter estimates for these distributions 

are not useful. The occurrence probabilities of the distributions are also estimated 

correctly. 

 

 

 

Table 4.10  EM-CFAR, estimated distribution parameters and a priori probabilities. 

 
 PDF1 PDF2 PDF3 PDF4 

Scale parameter estimate :
∧
α  2.98 3.80 7.05 2.01 

Actual scale parameter 1 1 7 2 

A-priori probability estimate :
∧
q  0.00 0.01 0.59 0.40 

 

 

 

In some of the cases, scale parameters that are estimated using the probabilistic 

mixture defined above, are not very close to the actual values. As an improvement, 

the estimation can be performed among the members of the specific PDF. This data 

is referred to as training data. This may be viewed as a conversion to the 

deterministic mixture. Having determined the training data for a given PDF and 

assuming it has the shape parameter assumed previously, the ML estimate of the 

scale parameter can be found using Equation (3.14) instead of the estimate obtained 

by the algorithm: 
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The estimates, obtained using the training data and the ML estimation method, are 

given in Table 4.11. As it can be seen, the estimates using ML method performed 

over the training data are better. The improvement is more apparent in severe 

conditions. 

 

 

 

Table 4.11  Parameter estimation using EM-CFAR algorithm and improved 
algorithm which uses ML estimation 

 
 PDF0 PDF1 PDF2 PDF3 

Classical algorithm estimate :
∧
α  2.98 3.80 7.05 2.01 

Training data and ML estimate - - 7.02 2.00 
Actual scale parameter 1 1 7 2 

 

 

 

The next analysis shows the performance in a situation where, again, both of the 

scale and shape parameters change. In the first region, SCR is 25dB and in the 

second one, it is 10dB. This corresponds to the case where the scale parameter 

changes from 0.03 to 0.26, while the target signal has unit power. Shape parameters 

are set to 0.8 and 1.2, respectively. This is shown in Table 4.12. A target is located at 

the 21st range bin.  

 

 

 

Table 4.12  EM-CFAR test scenario 2, actual distribution parameters 

 
 40 samples 40 samples 
α 0.03 0.26 
β 0.8 1.2 
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Figure 4.13 shows the scale parameter estimates of the two regions obtained at each 

of the 200 simulation points. The estimated values are very close to the actual ones at 

most of the simulations. 

 

 

 

 

Figure 4.13  EM-CFAR, scale parameter estimates for each simulation point 

(a) First distribution, (b) Second distribution 
 
 
 
After determination of the parameters, the threshold is set easily using Equation 

(4.8). For the example given above, the amplitude of the observation and the 

threshold generated by the algorithm is shown in Figure 4.14. The first figure shows 

a single run and the second one shows the average of the 200 simulations. It can be 

seen that the threshold follows the signal successfully and the target can be detected 

while alleviating the false alarms. The threshold obtained with homogeneous 

Rayleigh clutter assumption yields many false alarms. 
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Figure 4.14  Amplitude of the signal and the threshold values obtained with EM-
CFAR algorithm  

(a) Single simulation, (b) Average of the simulations, dashed: EM-CFAR threshold, 
dotted: Threshold obtained with homogeneous Rayleigh amplitude assumption, solid: 

Signal amplitude, SCR=25dB 
 
 

 

 

4.4   Clutter-Map CFAR 

 

The methods explained above are designed with the assumption that the clutter 

changes significantly in time so that a clutter map can not be formed, that is the 

previous clutter information can not be exploited in estimation of the current one. 

However, when the environment does not change significantly, as in the case of land-

based radars, a map can be formed that stores the previous clutter information and 

enables its use in current estimation. Clutter map is regularly updated in order to 

track the mild changes in clutter state.  
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In the clutter environment under consideration, the map stores the shape and scale 

parameters of the Weibull clutter and updates this information at each new data 

arrival. 

 
It is known that the methods for estimation of Weibull distribution parameters 

require the entire observation data. However, in most of the radar applications, it is 

desired to obtain the estimate without waiting the arrival of the whole data set. 

Moreover, in radar applications, the previous observations form a huge amount of 

data and storage requirement is enormous. Therefore, in this study, a recursive 

estimation method, which updates the estimates with each new observation and does 

not require the previous data, is designed. The method is very advantageous due to 

the following reasons: 

 

• The estimation does not require the whole observation data in update of the 

clutter map, 

• The method is computationally efficient when compared to the other 

methods, so it is suitable for radar applications, 

• The method can adapt to the changing clutter environment, which may occur, 

for instance, in changing wind conditions. 

 

Two estimation algorithms, namely the method of scoring and the recursive least 

squares estimation are considered. 

 

4.4.1   Method of Scoring  

 

In this method, the recursions in estimation maximize the relative entropy at each 

iteration step. It is declared that the resulting estimates often share some of the 

desirable properties of ML estimates [10]. Therefore, this method seems to meet the 

needs. 
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In a recent work, this method was implemented for K-distribution [10]. However, 

Weibull distribution case was not encountered in the literature survey. 

 

The method can be summarized as follows: 

 

Let { }�,, 21 xx be the observation samples and [ ]Tβα=� be the parameter vector to 

be estimated. The update equation that uses the new arriving sample and previous 

estimate is  

 

 �,1,0),,( 11 =+= ++ nx nnnnnn ��F�� ε  (4.45) 

 

where θθθθn is the estimate obtained after n observations, Fn is a gain matrix and εn is 

the step size. The score vector represented by ),( nnx �� is 

 
 

n��� ��� =∇= ))(ln(),( nnn xpx . (4.46) 

 

The form of the gain matrix affects the convergence property of the recursion. The 

inverse of the information matrix, I(θθθθn), of the observed data is a common choice: 

 
 )(1

nn �IF −= . (4.47) 

 { }T
nnnnn xxE ),(),()( �����I =  (4.48) 

 

For Weibull case, the derivations are done to yield the elements of the information 

matrix  

 

 { }T
nnnnn xxEI ),(),()( θγθγθ =  (4.49) 

 
as 

 



 66 

2

2
1

1,1 )(
1

)(
n

n
nnn

n
nn

nn xEI
α
βαβ

α
βθ ββ =

��

�
�
�

��

�
�
�

��
�

�
��
�

�
+−= −− , (4.50) 

 

nn

e

nnn
n

n
n

n

n

n
nn

n
n

nn

n

x
xx

xEI

αα
γ

αβ
α

β
αα

α
β

θ ββ
β

4228.01

1
)ln(lnln

1
)( 1

2,1

−=+−=

��

�
�
�

��

�
�
�

��
�

�
��
�

�
+−

�
�

�

�

�
�

�

�

��
�

�
��
�

�
−+−= −−

,  (4.51) 

 

 )()( 2,11,2 nn II θθ = , (4.52) 

and 

22

22
2

2,2
8237.1

6
)1(6

)ln(lnln
1

)(
nn

e

n

n

n

n
nn

n
n

xx
xEI

n

ββ
πγ

αα
α

β
θ

β

=++−=
��

�
�

�

��

�
�

�

�
�

�

�

�
�

�

�

��
�

�
��
�

�
−+−=  . 

  (4.53) 

 
T

n

n

n

n
nn

n
nnn

n
nnn

xx
xxx

n

nn

�
�

	




�
�

�



�
�

�

�

�
�

�

�

��
�

�
��
�

�
−+−��

�

�
��
�

�
+−= ++

++
−−

+ )ln(lnln
11

),( 11
11

1
1 αα

α
β

αβ
α

βθγ
β

ββ   

  (4.54) 

 

A common choice for step parameter is  

 
b

n an−=ε , where  15.0,0 ≤<> ba .  (4.55) 

 

Actually, these recursions converge to the estimates that maximize the likelihood 

function and at the same time make the score vector zero. The Newton-Raphson 

method can also be employed in solution of the equation. In Newton-Raphson 

iteration, the general update expression is 
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The denominator may be viewed as the Hessian of the likelihood function for 

multivariable case. In Fisher’s method of scoring, this Hessian is replaced with its 

expected value.  
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The performance of estimation using Method of Scoring is shown next. Figure 4.15 

shows the histogram of the estimates when the scale parameter is 1 and the shape 

parameter is 1.5. The algorithm starts with the initial values of α0=1.5, β0=2. It is 

seen that the estimator performs well. 

 

 
 

 
Figure 4.15  Histograms of estimates obtained with method of scoring 

Actual values: α=1, β=1.5; initial values: α0=1.5, β0=2, 1000 simulations 
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However, a problem with this method is that in about 1% of the trials (rate is 

dependent on the Weibull parameters), divergence occurs. As a remedy to this 

problem, censoring is performed. It is known that for radar clutter, Weibull shape 

parameter has a limited range. 

 

With the aim of simplifying the expressions obtained above and eliminating the 

divergence problems, estimation for Gumbel distribution (log-weibull) is also 

considered. However, exactly the same expressions were obtained for this 

distribution. So, no simplifications could be performed. 

 
This work was presented in [17]. 
 

 

4.4.2   RLS Estimation 

 
It is expected that the estimation method derived in the previous section can be 

improved by employing Recursive Least Squares (RLS) algorithm.  

 

As observed from the update equation, when “ ),( 1 nnnn xF θγε + ” expression equates 

to zero, which is equivalent to maximizing the likelihood, the convergence is 

obtained: 

 

 �,1,0).,( 11 =+= ++ nx nnnnnn �F�� γε  (4.58) 

 

In RLS algorithm, the cost function to be minimized is defined as 
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Here, λ is the forgetting factor. Referring to the previous section, the cost function 

may be written as 
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However, in multi-parameter case, one of the parameters may be emphasized over 

the other. Hence, the following cost function is proposed: 
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Since the gain matrix, Fn normalizes the powers of the two variables, decoupling of 

the two parameters is satisfied and in this case, no emphasis on one of the parameters 

is expected. When the distribution has one parameter, there is no such problem in 

estimation.  

 

Gaussian RLS Estimation 

 

Firstly, the derivation is performed for Gaussian PDF case. The Gaussian PDF is  
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Here, the estimated parameter θ is σ2. The score vector is obtained as 

 

 )(
1

),(ln),( 22
3 σ

σ
θ

θ
θγ −=

∂
∂= xxpx x .  (4.63) 
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Taking the derivative with respect to the parameter to be estimated and equating to 

zero, 
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is obtained, which can be written as 
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Solving for σ2,  
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is found. 

 

With λ=1, the estimate becomes 
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which is the expected result, the ML estimate of the power. 

 

In this case, the recursion has the following form: 
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This result is similar to the well-known clutter map update for Rayleigh envelope, 

also named as the exponential filtering, with time varying coefficients. 
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Weibull RLS Estimation 

 

The derivations are repeated for Weibull case. In this case, the multivariable update 

form is used. The cost function is 
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The error vector is found to be 
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Taking the derivatives with respect to scale and shape parameters, 
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are obtained. 

 

Unfortunately, the update equations shown above cannot be solved explicitly. The 

results are computationally costly and are not appropriate for implementation. 
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Performance 

 

Firstly, the performance of parameter estimation and change in detection probability 

with changing number of scans (or clutter map update rate) is investigated. When the 

shape parameter β=1.5, SCR=20dB and the desired false alarm probability is 

PFA=10-3, the detection probability reaches 0.8 at 100th scan and approximates 0.9 at 

150th scan, which is the value that can be obtained when the parameters are exactly 

known. 

 

Change of detection probability with signal to clutter ratio is shown in Figure 4.16. 

The dotted and the solid curves show the performance obtained with the proposed 

method and with the exact knowledge of the parameters, respectively. There is a 2-

3dB SCR loss when compared to the performance obtained with the knowledge of 

the parameters. Some performance degradation occurs when the clutter becomes 

spikier. 

 

The next result shows the performance under a time-varying condition. In this 

scenario, the shape parameter is 2 at the beginning and starts decreasing linearly at 

the 400th scan and reaches the value of 1 at the 700th, after which it remains constant. 

The detection and false alarm probabilities obtained in this case are shown in Figure 

4.17 and Figure 4.18. The dotted curves show the performance when the correct 

threshold is used. As expected, when the shape parameter gets smaller (after 400th 

scan), the difference between the detection probabilities obtained with the proposed 

method and the ideal one increases. The proposed method performs well in keeping 

the false alarm rate constant, as can be seen in Figure 4.18. In this scenario, the 

classical one-parameter clutter-map method yields a false alarm rate of 10-1.  
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Figure 4.16  CM-CFAR, change of detection probability with SCR for different 
shape parameter values 

N=100, 104 simulations, desired PFA=10-3 
ο:β=1.5,  �:β=1,  …: Exact knowledge of the parameters 

 
 
 
 
 

 
Figure 4.17  CM-CFAR, probability of detection in the time-varying scenario  

SCR=25dB, 104 simulations 
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Figure 4.18  CM-CFAR, probability of false alarm in the time-varying scenario 

104 simulations, desired PFA=10-3 
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CHAPTER 5 
 

 

COHERENT CLUTTER ESTIMATION 
 

 

 

In this chapter, coherent clutter estimators are derived which are used in coherent 

detection of signals in non-Gaussian interference environment. The estimation can 

also be used in threshold determination for CFAR operation or segmentation and 

classification in SAR images. 

 

As explained in Section 2.2.2, Compound Gaussian Clutter can be represented as the 

product of two independent random variables, the speckle and the texture. The 

texture component is a slowly varying parameter and is a measure of the clutter 

power. In this study, it is assumed that the speckle covariance matrix is exactly 

known and the texture component is estimated. For instance, for land-based radars, 

speckle covariance matrix can be formulated as a function of the radar system 

parameters such as antenna rotation period, beamwidth and beamshape. 

 

The texture component may have different correlation characteristics, depending on 

the clutter nature. It may be identical or independent in all of the range cells under 

consideration. The partial correlation case, which is an intermediate case between 

full and no-correlation cases, is also considered. For each of the scenarios, both ML 

and MAP estimators are derived.  
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5.1   Compound-Gaussian Clutter Notation 
 

In this section, the notation for compound Gaussian model for multiple range cells is 

given. The notation can also be extended to represent the signal received from 

multiple antennas as in the case of STAP. 

 

Let the observation signal, which is composed of samples from N pulses of M range 

cells, be 

 

( ) ( ) ( )[ ]TMNMMMNN

TTT

xxxxxxxxx �����

�

21222212112111

][

τττ=

=
∆

M21 rrrr
 (5.1) 

 

Here, τ  is the texture parameter. The texture components may be correlated, 

uncorrelated or partially correlated from range cell to range cell. Distribution of the 

texture component determines the distribution of the clutter. xij’s are speckle 

parameters and have zero-mean complex Gaussian distribution. They are correlated 

within the same range cell, and are uncorrelated among different range cells. 

 

Speckle component of i'th range cell can be denoted by 

 

 [ ]T
iNiii xxxx �321

∆
=ix .  (5.2) 

 

The PDF of xi can be written as given below: 
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Here, { }H
x xxM E=  is the covariance matrix of the elements of the speckle 

component of the signal from a range cell. The elements in the speckle component 

are highly correlated. 

 

The PDF of r , conditioned on the texture parameter vector, [ ]T
Mτττ �21=T , 

is 

 

 ]exp[
1

)( 1rMr
M

Tr r
r

Tr
−−= H

NMp
π

, (5.4) 

 

where Mr is the covariance matrix.  

 

The marginal PDF of the texture component was given before but is repeated here 

for the sake of completeness. For K-distributed clutter, the texture has a Gamma 

distribution: 
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Next, the PDF for partially-correlated texture components of range cells will be 

given. The joint PDF of the complex clutter can be written in terms of the texture 

component as [8] 
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Correlation structure of the texture component is inherent in )(TTp . The expressions 

for a general correlation structure are found to be too complex, so to simplify the 

analysis, a first-order Markov structure is assumed [36]: 
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where τρ  is the one-lag correlation coefficient. 

 

When the order parameter v  can be written as 2)1( += kv , k=0,1,2, the gamma 

distribution reduces to the chi-square distribution which can be written as the sum of 

squares of v2  zero-mean independent Gaussian processes, gi.. In generation of the 

correlated gamma distributed signal, correlated Gaussian processes can be used [3]: 

 

 �
=

=
ν

τ
2

1

2

i
ijj g ,        j=1,2.  (5.9) 

 

Thus, each of the texture components has chi-squared distribution with v2  degrees 

of freedom. Given gi1, gi2  can be generated using 

 

 2
12 1 giigi zgg ρρ −+= , (5.10) 

 

where zi is a zero-mean Gaussian random variable with unit variance. 

 

Correlation coefficient between the texture components is square of the one between 

the Gaussian components that generate them: 

 

 2
gρρτ =  (5.11) 
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The signal is generated as follows: Firstly, spatially partial-correlated texture 

components for each range cell are generated using the procedure defined above. 

Then, for each range cell, decorrelated from the other range cells, correlated speckle 

components are generated. The autocorrelation function of the elements of the 

speckle component is assumed to have an exponential structure with correlation 

coefficient ρs. Additive noise, with variance σ2, is also simulated. 

 

Waveform examples of the generated signal are given in Figure 5.1 through Figure 

5.3. The signal is simulated to stem from 20 range cells and 8 pulses. The first figure 

shows the magnitude of vector r shown in Equation (5.1). Vector r and the video 

signal have the same elements. The video signal consists of the samples ordered in 

time. That is, the samples that stem from each pulse are grouped together. However, 

in vector r, the samples from each range cell are grouped together. This can be seen 

by comparing Figure 5.1 and Figure 5.2. As shown in Figure 5.1, the first N=8 

samples are obtained from the first range cell, the following N samples are obtained 

from the second range cell, and so on. In Figure 5.3, a spikier clutter signal is shown. 

This corresponds to a lower order parameter, υ of the Gamma distribution. The 

elements of the speckle component are highly correlated and there is partial 

correlation between the texture components of different range cells.  
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Figure 5.1  Received vector illustration 

M = 20, N = 8, ν= 2, µ=1, ρs=0.99, ρt=0.8,σ2 = 0 

 

 

 

 
Figure 5.2  Video signal, moderate clutter 

M = 20, N = 8, ν= 2, µ=1, ρs=0.99, ρt=0.8,σ2 = 0 
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Figure 5.3  Video signal, spiky clutter 

M = 20, N = 8, ν= 0.5, µ=1, ρs=0.99, ρt=0.8,σ2 = 0 
 
 
 
 

5.2   ML Estimation 

 
In this section, Maximum Likelihood Estimator of the texture component is derived. 

ML estimate of the texture vector is the one that maximizes the conditional PDF: 

 

 )(lnmaxarg TrT r
T

ML p=   (5.12) 

 

Two ML estimators are derived. The first one assumes no-correlation and the second 

one assumes full-correlation between the texture components. 

 

To be used in evaluating the estimation performance, firstly the Cramer Rao Lower 

Bound for nonrandom texture parameter estimates is derived. 
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5.2.1   Cramer-Rao Lower Bound for Nonrandom Texture Parameters 

 
By deriving the Cramer Rao Lower Bound for nonrandom parameter case, 

performance of the ML estimator can be analyzed. 

 

For the uncorrelated case, the error variance is 
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where iiJ  is the ii th element in the matrix 1−J . 
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The partial derivatives are 
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Taking the expectation yields 

 

 

{ }

{ }

.

1
2

1
2

 
1

2
)(ln

2

22

32

1
322

2

k

kk

k
kk

x
H

kkk

N

N
N

E
N

E
Np

E

τ

ττ

τ
ττ

τττ

−=

−=

−=

−=
��

�
�
�

��

�
�
�

∂

∂

−

−

k
1

x
H

k

kk
Tr

xMx

rMr
Tr

  (5.16) 

Hence, the error variance is 
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For the full-correlated case, the bound is derived as follows: 

 

Taking the derivative and the expectation yields 
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Thus, the error variance is 

 
NM

2
2 τσ τ ≥    (5.19) 

It is expected and can be seen here that the error variance is smaller in fully-

correlated case as the number of useful observations increases. 

 

5.2.2   No Spatial Correlation 

 

The conditional PDF of the clutter is 
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If there exists no spatial correlation between the texture components and the 

correlation structure of the speckle components is identical from range cell-to-range 

cell, the autocovariance of the clutter is given by: 
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Determinant of the matrix is 
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The inverse of the autocovariance matrix is 
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Maximization of the PDF is equivalent to maximization of its logarithm, which is 

given by 
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Taking the gradient and equating to zero we get the equations given below: 
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Hence, the ML estimate can be found using 
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We can see that expected value of the ML estimate is equal to the actual value: 
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Hence, the estimate is unbiased. 

 

As it can be seen in Figure 5.4, ML estimator can successfully estimate the texture 

parameters. The first figure shows the ML estimates and the actual values, which are 

almost equal. The second figure shows the error variance and the CRB. The average 

value of the error variance is almost equal to the Cramer-Rao-Lower bound in 500 

simulations. The third figure shows all of the estimates in 500 simulations, the 

ensemble. The mean and standard deviation of the estimation is shown in the last 

figure. 
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Figure 5.4  Performance of texture parameter estimation 

(a) Actual values of texture parameters and their ML estimates, (b) Obtained error 
variance and CRLB, (c) Ensemble of the estimations, (d) Error mean and standard 

deviation 
M = 10, N = 10, MC = 500, ν = 2, µ = 5, σ2 = 0, ρs = 0.5 
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5.2.3   Full Spatial Correlation 

 

If the texture components are fully-correlated, i.e. they are identical; the expressions 

are obtained as follows: 

 

( ) ( ) ( )[ ]TMNMMNN xxxxxxxxx ����� 212222111211τ=r ,  (5.29) 
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When there the texture components and the correlation structure of the speckle 

components is identical from range cell-to-range cell, the autocovariance of the 

clutter is given by 
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Determinant of the matrix is 
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The inverse of the autocovariance matrix is 
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Taking the gradient and equating to zero we get the equations given below: 
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Hence, the ML estimate can be found using 
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This result is expected: It can be interpreted as first finding the power of each cell 

and then averaging it over all of the range cells. This is equivalent to Cell-Averaging 

CFAR, which is known to be optimal for homogeneous Rayleigh clutter, or fully 

correlated texture components. 

 

As expected, the estimate is unbiased: 
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5.2.4   ML Estimation in Additive Noise Case 

 
The clutter signal contaminated by additive white Gaussian noise can be written as 
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 iii nxr += iτ . (5.38) 

 

In this case, the ML estimator derived in Section 5.2.1, for independent texture 

components yields the expression given below: 
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The expected value is 
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where, 2σ is the variance of the additive white Gaussian noise.  

 

It can be seen that the estimate has a bias which is not a function of the estimated 

parameter. Also, assuming that the noise power and speckle covariance matrix are 

known, it can be calculated and subtracted from the estimate easily. 

 

The equation that is derived for finding the ML estimate for the noisy case is  
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where, ei is the ith eigenvalue of Mx. 
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As seen in Equation (5.41), the expressions are computationally rather complex. In 

the noisy case, using the ML estimate that was derived in Section 5.2.1, for noiseless 

case may be preferable since the estimator for noisy case is complex and the bias due 

to the noise can be subtracted easily from the estimate, as shown by Equation (5.40).  

 

5.3   MAP Estimation 

 
In this section, maximum-a-posteriori estimator of the texture component is derived. 

For this estimation, the probability density function of the texture process must be 

available. In the first part, assuming that there exists no spatial correlation between 

the components, the estimator is obtained. In the second part, full-correlation is 

assumed. The reason of performing these derivations is their simplicity. They will 

also be used in verification of the results obtained for partial-correlation, which 

covers these as special cases. 

 

The Cramer-Rao lower bound for random texture parameter is derived first, with aim 

of MAP estimator performance evaluation. 

 

5.3.1   Cramer-Rao Lower Bound for Random Texture Parameter 

 

When the estimated parameter is a random variable with known PDF, the mean-

square error satisfies the inequality below [59]. 
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where ii
TJ  is the iith diagonal of the inverse information matrix. The information 

matrix consists of two parts 
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where DJ  is the information matrix obtained from the data as given by Equation 

(5.14). The matrix PJ  represents the a-priori information given by the PDF. 

 

Firstly, the bound is derived for no-spatial-correlation case: 

 

 
��

�
�
�

��

�
�
�

∂∂
∂−=

∆

ji
ijP

p
EJ

ττ
)(ln2

,
TT  (5.44) 

 

�
�

�
�

�
=

Γ
−Γ−

=
�
�

�
�

�
=

��

�
�
�

��

�
�
�

−−
=
∆

otherwise0

,
)(

)2(
)1(

otherwise0

,
1

)1(
2

2

2
,

jijiE
J

iijP ν
ν

µ
νν

τ
ν

 (5.45) 

 

Using Equation (5.43), the information matrix is obtained as 
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Hence, the bound is 
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Similarly, for the full-correlated case, the bound is derived to be: 
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5.3.2   No Spatial Correlation 

 
ML estimate of the texture vector is the one that maximizes the a-posteriori PDF 

[59]: 

 )(lnmaxarg rTT rT
T

MAP p=    (5.49) 

Logarithm of the a-posteriori PDF is 

 

 )(ln)(ln)(ln)(ln rTTrrT rTTrrT pppp −+= .  (5.50) 

 

The last term does not depend on the texture parameter, so it is neglected in 

maximization. 

 

The logarithm of the texture PDF is 
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derivative of which is 
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Hence, the partial derivative of the a-posteriori PDF is 
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By equating this expression to zero, 
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and solving the equation for the MAP estimate, 
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is obtained. 
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H  has a central chi-squared distribution with degree of freedom N. 

Then, the expected value of the MAP estimate is evaluated as 
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where 
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Here, )(⋅Γ is the Gamma function and )(11 ⋅F is the Hypergeometric function. 

 

5.3.3   Full Spatial Correlation 

 

In the fully-correlated case, logarithm of the a-posteriori PDF can be obtained as 

follows: 
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Equating this to zero, 
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and solving the equation, the MAP estimate is obtained as 
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5.3.4   Partial Spatial Correlation 

 
The PDF expressions of the received vector and the partially-correlated texture 

component, which were given by Equations (5.6), (5.7) and (5.8), are repeated here 

for convenience: 
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Correlation structure of the texture component is inherent in 
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In these expressions, τρ  is the one-lag correlation coefficient. 

 

Substituting equation (5.61) in (5.60), the following expression is obtained: 
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Logarithm of this expression is 
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Next the gradient of the expression is evaluated. Due to asymmetry of the 

expressions, derivatives with respect to τm, for m=1, m=M and the other intermediate 

components are taken separately: 
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for  m=2,3,…, M-1. 



 96 

 

Now, in order to maximize the a-posteriori PDF, the set of equations given below 

should be solved: 

 

 0)(ln
1

,
1

2
,,

=
∂

∂++− =
−

MAPmm
m

mx
H

m

MAPmMAPm

p
N

ττ
τττ

TrMr T    (5.67) 

 

for m=1,2,…,M. 

 

Solution of the above set of equations is not trivial. For this purpose, Newton’s 

Method [39] is utilized. In this method, the following iteration is carried out to find 

the MAP estimate of the texture vector, MAPT :  
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is the function roots of which are to be found. The matrix )('TF  is determined from 
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5.4   Performance Analysis 
 

In this section, performance analyses of the estimators are presented. The simulations 

are performed by generating NT texture vectors and NS speckle components for each 

texture vector. The parameter ρs is the correlation coefficient of the speckle and ρt is 

the correlation coefficient of the texture. 

 

Figure 5.5 shows the performance in a different scenario, where a large number of 

simulations are performed for the speckle and the texture generation. Here, 1dB 

average improvement is obtained by using MAP estimate. 

 

The next simulation shows the improvement of MAP over ML in fully correlated 

texture scenario. The result can be seen in Figure 5.6. The bounds on the estimation 

error variance are also given in the figure. As expected, the MAP yields better 

estimation than the ML estimate. The ML estimate is closer to the CRB derived for 

nonrandom parameters when compared to the MAP estimate, the error of which is 

rather higher than the CRB for random parameters. 

 
 
 

 
Figure 5.5  Mean squared estimation error (no correlation) 

M = 20, N = 8, NS = 1000, NT = 100, ν = 2, µ = 5, σ2  = 0, ρs = 0.5, ρt= 0 
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Figure 5.6  Mean squared estimation error (full correlation) 

M = 20, N = 8, NS = 1000, NT = 100, ν = 2, µ = 5, σ2  = 0, ρs = 0.5, ρt= 1 
 

 

 

Performance of the MAP estimator for partial spatial correlation developed in 

Section 5.3.4 was obtained through simulations. Improvement obtained by using 

MAP instead of ML in partial correlated texture scenario can be seen in Figure 5.7. 

On the other hand, in partial correlation case, in some cases, the estimator diverges. 

In order to avoid this behavior, some checks are performed during the estimation 

process. The first one is the check for the condition of the matrix in the Newton’s 

method. If it is found to be ill-conditioned, the estimation is equated to the ML 

estimate. The second check is on the magnitude of the estimates, if they are greater 

than a predetermined value; the estimation is equated to the ML estimate. 

Additionally, the initial point of the Newton’s iteration is ML estimates.  
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Figure 5.7  Mean squared estimation error (partial correlation) 

M = 20, N = 8, NS = 1000, NT = 100, ν = 2, µ = 1, σ2  = 0, ρs = 0.5, ρt= 0.5 
 
 
 



 100 

 

 

 

CHAPTER 6 

 

 

COHERENT DETECTION 
 

 

 

Coherent detection of targets in a correlated non-Gaussian clutter environment is an 

important problem that draws much attention of the radar community. This method 

makes use of the phase information and yields better results than the classical 

incoherent detection techniques. On the other hand, the main difficulties in design of 

a detector are modeling the disturbance and the mathematical tractability of the 

detector. 

 

In this chapter, adopting the compound Gaussian model and the notation given in 

Section 2.2.2, detectors are derived. The detectors use the samples from all of the 

range cells and perform clutter suppression, Doppler processing and CFAR 

operations simultaneously. The detectors are derived for no-spatial correlation, full-

spatial correlation and partial-correlation scenarios. The correlation structure of the 

speckle component is assumed to be known and the texture parameter is estimated 

using the methods derived in the previous chapter.  

 

In the design of the detectors, the clutter signal is assumed to be dominant and the 

thermal noise is neglected. This is a common assumption made in the works on 

detection in clutter. Although the effect of the noise may be important when the 

clutter and noise have comparable powers, since the signal that is input to the 

coherent detector contains unsuppressed clutter, this may still be a valid assumption. 

 



 101 

6.1 Detector 
 
Assuming that the radar transmits N pulses and the receiver demodulates and 

samples the echo signal forming M range cells, the received clutter vector will be: 

 

( ) ( ) ( )[ ]TMNMMMNN xxxxxxxxx ���� 21222212112111 τττ=r (6.1) 

 

Here, iτ  and xij’s are the texture and speckle parameters, respectively as defined in 

the previous chapter. 

 

Let the received signals under no target hypothesis (H0) and target existence 

hypothesis (H1) be represented as 

 

 H0:     iii xr τ=      . (6.2) 

 H1:     iiii sxr += τ     (6.3) 

 

The target signal is assumed to be located in one range cell, at the Lth range bin: 
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where α represents the complex return from the target and p represents the Doppler 

steering vector: 

 
[ ]

)2exp(

1210

Tfijp

pppp

Di

T
NN

π=

= −−

∆
�p

 (6.5) 

 

The likelihood-ratio test is [59] 
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The likelihood function (conditional PDF) of the received signal conditioned on H0 is  
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Here, Mr is the covariance matrix of the received signal. 

 

In the following subsections, the detectors for uncorrelated, partially-correlated and 

fully-correlated texture cases are derived. 

 

Although it changes depending on the detector, the threshold parameter is 

represented by the same symbol for convenience. 

 

6.1.1   No Spatial Correlation 

 

In spatially-independent texture case, the covariance matrix, Mr , its inverse and 

determinant are given by Equations (5.21) - (5.23). 

 

The log-likelihood functions under hypotheses H0 and H1 are 
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The Log-Likelihood Ratio Test is 
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If the texture component is known, the test becomes, 
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which is equivalent to 
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The left-hand-side of the above test is a whitening-matched filter and the right hand 

side is a fixed threshold. 

 

When the texture component is a random parameter with known density function, the 

LRT can be written as follows: 
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This LRT is usually difficult to evaluate and it is optimum only for the density 

function used in the design time, which is not suitable for signals with different 

density functions.  

 

However, if the texture component is assumed to be an unknown nonrandom 

parameter and is estimated using ML estimation, the test is called Generalized 

Likelihood Test (GLRT) [59]. This derivation is more general as the clutter may 

have a different distribution than the one assumed in the design time.  

 

For the fully-correlated texture case, the GLRT can be written as 
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The ML estimate of the texture parameter under H0 for independent texture case was 

derived in Section 5.2.1 and is written here for convenience: 
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Under H1, taking the gradient of the likelihood function and equating it to zero we 

get the equation 
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Hence, the ML estimate at H1 can be found as 

 

 
N

LLx
H

LL
MLL

)()( 1

1,,

srMsr −−=
−

τ .  (6.17) 

 

For the compound-Gaussian case, when the texture parameters are estimated the 

LRT given by Equation (6.10) yields the GLRT: 
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It is interesting to see that the ratio of the estimates under the hypothesis 0 and 1 is a 

sufficient statistics. Obviously, the estimates are not perfect and the ratio can 

discriminate between the two hypotheses, otherwise, the test would be useless. 

 

Substituting the estimates and simplifying, the following test is obtained: 
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Equation (6.19) is equivalent to 
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Assuming that the Doppler steering vector is known but the complex target return is 

unknown, ML estimate of the complex target return can be substituted to obtain the 

GLRT. Steering vector can be known in radar systems, since generally a bank of 

Doppler detectors is used. If this is not done, a suitable method must be used in order 
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to estimate the Doppler also. It should be noted that the estimation of the texture and 

target returns do not depend on each other and this estimation is equivalent to joint 

estimation of the parameters. 

 

Taking derivative with respect to the target return and equating to zero, 
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the ML estimate of the target return is found as 
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Substituting this estimate in the test given by Equation (6.20) yields 
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This detector is identical to the one derived before in [26] and [14] for a single-range 

cell. However, for multiple-range cells, the multiple-cell detector is general and 

advantageous. 

 

6.1.2   Full Spatial Correlation 

 

In this part, it is assumed that the texture component is identical (fully-correlated) in 

each range cell, that is ττττ
∆
==== M�21 . This is a valid assumption, for small range 

cell sizes. 
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In fully-correlated (identical) texture case, the covariance matrix, Mr , the inverse 

matrix and the determinant are given by Equations (5.31)-(5.33). 

 

The logarithms of the likelihood functions are 
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If the texture component is known, the Log-Likelihood Ratio Test (LRT) is 

 

 γ
0

1

11 )()(
H

H

r
H

r
H

<
>

+−−− −− rMrsrMsr .  (6.27) 

 

However, since the texture component is unknown, it should be estimated. The ML 

estimate of the texture component under H0 for fully-correlated case was derived in 

Section 5.2.2 and is repeated here for convenience: 
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Under H1, taking the gradient of the likelihood function and equating it to zero we 

get the equations given below: 

 

 0)()(
1

),(ln 1,1

1
21, =−−+−=

∂
∂

=
−

ML

H
H

MN
Hp τττ ττ

τ
τ

srMsrrr .  (6.29) 

 

Hence, the ML estimate under H1 can be found as 
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Hence, the GLRT is obtained as 
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This detector is equivalent to the one given by Equation (6.18) and uses the ratio of 

the estimates for the two hypotheses.  

 

Substituting the estimates, the following test is obtained: 
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which is equivalent to 
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The ML estimate of the complex target return was given in the previous section by 

Equation (6.23). When it is substituted in the detector given in Equation (6.33), the 

detector is obtained as 
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As expected, for a single range cell, M=1, the detector derived above is equivalent to 

the one in the independent-texture case: 
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The detectors are summarized in Table 6.1. It should be noted that in the listed 

detectors, the threshold parameters, γ’s, are not equal. 

 

The multiple-cell detector has an advantage over the single cell detector by since it 

averages the returns of all of the range cells and improves the estimation.  

 

Next, performance of the detector is analyzed. In the first part of the simulations, 

Swerling 0 target is considered. In the second part, Swerling 1 target case is 

simulated. The clutter is assumed to have K-distribution. Although the distribution is 

not exploited in derivation of the detector, it is used in generation of the simulation 

signals. 
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Table 6.1  Summary of detectors 
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The first simulation shows the performance improvement over the single-cell 

detector obtained by using neighboring range cells. As the clutter is assumed to be 

fully-correlated, exploitation of multiple range cells yields a significant 

improvement. As it can be seen in Figure 6.1, detection probability increases 

apparently when M=5 cells are used instead of a single range cell. The SCR gain is 

about 2 dB in this case. Increasing the number of secondary cells to M=15 causes an 

additional 0.2dB.  

 

The performance of the detector is significantly dependent on the speckle correlation 

coefficient. This effect is shown in Figure 6.2 for two different numbers of pulses 

used. Small number of pulses experiences more performance loss in low-correlated 

speckle condition. Detection performance versus Doppler frequency for different 

number of pulses is given in Figure 6.3. As expected, increasing the number of 

pulses increases the detection performance considerably and performance loss occurs 

at lower Doppler values, where the clutter is dominant and suppressed. 
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Figure 6.1  Detection performance versus SCR, various number of range cells 

PFA=10-3, N = 5, MC = 2000, ν = 2, µ = 5, σ2 = 0, ρs = 0.8, ρT = 1, fD/PRF =0.5 
 
 
 

 

Figure 6.2  Detection performance versus speckle correlation coefficient, various 
number of pulses  

PFA=10-3 , M = 15, MC = 2000, ν = 2, µ = 5, σ2  = 0, ρT = 1,  SCR=-5dB,  fD/PRF 
=0.5 
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Figure 6.3  Detection performance versus Doppler frequency, various number of 
pulses 

PFA=10-3 ,  M = 15, MC = 2000, ν = 2, µ = 5, σ2  = 0, ρs = 0.8, ρT = 1,  SCR=-5dB 
 

 

 

The remaining part of the simulations shows the performance for a Swerling 1 

fluctuating target. Similar performance improvement with using the information in 

all of the range cells can be seen in this situation also (Figure 6.4). Some loss is 

observed here since the target fluctuates. For smaller number of pulses, the 

simulation is repeated to obtain Figure 6.5. Reducing the number of pulses from 8 to 

4, a loss is incurred. Detection probability change with target Doppler frequency is 

shown in Figure 6.7. Due to the fact that the clutter signal is highly correlated and is 

a low-frequency signal, its suppression requires placing a notch at the low 

frequencies. This, in turn, causes a loss in detection probability at low Doppler 

frequencies. 
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Figure 6.4 Detection performance versus SCR, various number of range cells, large 
number of pulses 

PFA=10-3, N=8, ν=2, µ=5, ρs= 0.8, fD=0.5 PRF, 10000 trials. 
 

 
 
 
 

 
 

Figure 6.5 Detection performance, various number of range cells, small number of 
pulses 

PFA=10-3, N=4, ν=2, µ=5, ρs= 0.8, fD=0.5 PRF, 10000 trials. 
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Figure 6.6 Detection performance versus Doppler frequency, various number of 
range cells 

PFA=10-3, N=4, ν=2, µ=5, ρs=0.8, SCR=5dB, 10000 trials 
 

 

 

Part of this work will be presented in [20]. 

 

6.1.3   Partial Spatial Correlation 

 

When the spatial partial correlation coefficient of the texture component is known, 

this information can be used in the derivation of the detector, by means of using the 

estimation given in Section 5.3.4. However, this method is mathematically complex.  

 

In this section, the performance of the detector derived for fully-correlated texture is 

analyzed when there is partial spatial correlation among neighboring range-cells.  

 

Figure 6.7 shows the performance for various spatial correlation coefficients. As it 

can be seen, even if there is low correlation such as 0.4, it is advantageous to use the 

multiple range-cell detector when compared to the single-cell detector. 
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Figure 6.7 Detection performance versus SCR for various texture correlation 
coefficients 

PFA=10-3, N=4, ν=2, µ=5, ρs= 0.8, fD=0.5 PRF, 10000 trials. 
 

 

 

Based on this result, which is quite important, it is recommended to use the 

information in the neighboring cells by means of the detector derived for fully-

correlated texture, even though the correlation is low. This is an improvement over 

the approach of using the single cell detector in situations where the texture 

component differs among the range cells [14], [27]. 

 
6.1.4   GLRT-MAP Detector  

 
When a-priori information on the texture parameter distribution is available, instead 

of the ML estimate, the MAP estimate could be used. This approach is called the 

suboptimum MAP detector in [26], since the optimal but complex detector (Equation 

(6.13)) is not used despite the knowledge of the parameter distribution. For the fully-

correlated case, as derived in Section 5.3.3, under H0, the MAP estimate is 
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and under H1, it is 
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Substituting these estimates in the test given by Equation (6.10) and simplifying, the 

following expression is obtained: 
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  (6.38) 

 

The target return can be estimated using Equation (6.23) and hence sL can be formed. 

The existence of the target is tested by comparison of the ratio given by Equation 

(6.38) with a proper threshold. 

 

6.2   Detection in Multiple-Target Environment 

 

One of the most important problems in target detection is the existence of interfering 

targets. In a work done by Rickard et al., it was stated that for low false alarm 

probabilities the maximum achievable detection probability may be less than 0.5, 

even if the main target has a higher SCR [48]. 

 

It is shown here that in uncorrelated texture component case, even if they have 

different Doppler values, if there are two targets at the same resolution cell, the 

single cell GLRT detector cannot perform satisfactorily and target masking occurs. 
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In this study, firstly, a detector for two targets is designed. For this purpose, multiple 

hypotheses for existence of one target, two targets and no target cases are considered. 

However, due to unequal probabilities and the difficulty in cost assignment, the 

Bayes detector was seen to be unsuitable.  

 

For the purpose of simplicity, a single target signal is formed by addition of the two 

target signals. This refers to the existence of targets together. On the other hand, a 

target with zero amplitude corresponds to a single target case. The target returns are 

estimated in derivation of the detector.  

 

The detector derived before is extended to two-target case as follows. Let the total 

target signal be 

 

 2211 pps αα +=
∆

  (6.39) 

 

where, p1 and p2 are the Doppler steering vectors of the two targets. 

 

If the targets are at different range cells, the method derived above can be used. 

However, if they are at the same range cell, the ML estimators for the complex 

returns (α’s) are obtained by solution of the equations below: 
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Solving these equations, the estimates are found to be 
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Writing in a different way, the following expressions are obtained: 
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and denoting the whitening matched filtered signals as 
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the following equations are obtained: 
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The estimator for α1 for the single target case was 
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Hence, the detector for multiple targets is 
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However, this approach has a drawback: Detection of multiple targets tests the 

existence of targets at Doppler frequencies p1 and/or p2. Nevertheless, in detection 

case, it is not straightforward to extract the information on the powers of the targets. 

So, a better approach is to handle each range-Doppler cell separately and consider it 

as the cell under test while considering the existence probability of other interfering 

targets in neighboring cells. In this case, it is assumed that there exist targets at each 

range and Doppler frequency. At cells, where there is no target, the signal can be 

viewed as a return from a target with zero RCS.  

 

Let the signal at range i, consisting of returns from N Doppler frequencies be 

modeled as 
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Carrying out similar operations, for range L, the detector for the exactly-known-

signal case is derived to be 
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If the test succeeds, it is concluded that there is a target at the Lth range cell. The 

effect of interfering targets, if there exists any, is estimated and suppressed by the 

detector. 

 

For unknown target returns, the ML estimates for target returns are obtained as 

follows. Here it is assumed that the Doppler value is known. 

 

Taking the derivative of the likelihood function with respect to αix and equating to 

zero, the following is obtained: 
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Performing the same operations for the other Doppler frequencies and the range 

cells, N×M unknowns and N×M equations are obtained. The equations can be written 

in matrix form as given below: 
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where yxxxyp pMp 1H −
∆
= . 

 

Shortly, the estimates of the target returns are obtained using the following equation: 

 

 DPA 1−=  (6.53) 

 

If any range or Doppler cells are excluded, then these matrices can be scaled to 

exclude those cells. For example, if no interfering target is expected at some of the 
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range or Doppler cells, those cells can be excluded while forming the matrices A, P 

and D. 

 

In what follows, some performance results will be presented. In the simulations, 

number of Monte Carlo points is 105. Texture Gamma-distribution parameters are 

v=2 and µ=2. Noise power is 1 and speckle correlation coefficient is 0.8. PRF is set 

to 2. 

 

Detection probabilities of the detectors for 1 and 2 target cases are given in Table 

6.2. Fd1 and Fd2 denote the Doppler frequencies. M and N are the number of range 

cells and pulses respectively. The first detector is the one derived in this part. The 

second one is the multiple-range cell-multiple-pulse detector that was derived in 

Section 6.1. The third one shown in the last column is the GLRT detector that uses a 

single range cell [14]. The SCR=-∝, values are investigated in order to exhibit the 

false alarm rate performance. The false alarm probability is obtained as 10-3, which 

the desired value. It is apparent that using the single cell detector, the target can not 

be detected and is completely masked in multiple-target cases. Using the multiple 

range cells also yields high performance improvement. In multiple-range-cell 

detector, the loss is not as much as the one caused by the single cell detector, as the 

free range cells give additional information to the detector. When there is no 

available neighboring cell (M=1), the multiple-range-cell, single target detector is 

identical to the single cell detector and it can not detect the multiple targets, either. 

When there is only a single target, the multiple target detector experiences a loss at 

low SCR cases and especially when there is single range cell. 
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Table 6.2 Detection probabilities of the detectors for single and two target cases 
(Fd1=1, Fd2=0.6, N=8) 
 

SCR1 SCR2 M 
GLRT-multiple 

target @p1 
and/or p2 

GLRT-single 
target, 

multiple cell 
@p1 

GLRT-single 
cell @p1 

-∝ -∝ 10 1x10-3 1x10-3 1x10-3 
7 7 10 0.99 0.98 0.01 
7 -∝ 10 0.97 0.98 0.94 
5 5 10 0.98 0.96 0.01 
5 -∝ 10 0.95 0.96 0.88 
3 3 10 0.96 0.91 0.01 
3 -∝ 10 0.89 0.90 0.74 
1 -∝ 10 0.76 0.79 0.53 
      

-∝ -∝ 1 1x10-3 1x10-3 1x10-3 
15 15 1 0.99 0.00 0.00 
15 -∝ 1 0.99 0.99 0.99 
10 -∝ 1 0.97 0.98 0.98 
5 -∝ 1 0.80 0.88 0.88 
3 -∝ 1 0.61 0.74 0.74 
1 -∝ 1 0.37 0.53 0.53 

 
 
 
In conclusion, GLRT that uses a single cell, experiences drastic performance 

degradation in the multiple target scenario and cannot detect any of the targets. When 

multiple range cells are used, since the neighboring cells can be used in estimation of 

the texture parameter, performance loss is not so severe. However, the best detection 

performance is obtained with the multiple-target detector. This detector detects the 

targets at Doppler frequencies corresponding to p1 and/or p2.  

 

Once the targets are detected, the ML estimators of the returns at p1 and p2 can be 

used in estimation of the power of the target return. Following this, an appropriate 

threshold can be set to make detection at the two Doppler values separately. 

 

A better approach is to test the existence of a target in the cell under test, while 

considering the targets at the neighboring cells as interference. For this purpose, a 
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GLRT is derived. Here, the most problematic case, where the texture components of 

different range cells are independent, is considered. 

 

Let the Doppler cell under test be pm and let an interfering target exists at Doppler 

pi.(i=1,2,…, N). The main target return αm and the interfering target return αi are 

assumed to be unknown. Let the hypothesis (H0) show the case where there is an 

interfering target and hypothesis (H1) denote the case where there main and 

interfering targets exist together: 

 

 H0:     ,ii pxr ατ +=  (6.54) 

 H1:     .iimm ppxr αατ ++=     (6.55) 
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The log-likelihood functions are 
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The texture estimates for the two hypotheses, τML,0 and τ ML,1, are found, by taking 

the partial derivative of the likelihood function with respect to the texture parameter 

and equating to zero, as 
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The interfering target return estimate for the H0 hypothesis is 
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As given in Equation (6.53), the main and interfering target return estimates 1,,MLmα  

and 1,,MLiα for the H1 hypothesis are found using 
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where 
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This estimation is performed for each of the probable interfering Doppler values pi, 

i=1, …, N, except for the main Doppler bin under test. 
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Next, the Doppler bin of the interfering target, under H0 and H1 hypotheses, 0k  and 

1k , are estimated. For this purpose, the likelihood function under H0 is maximized 

over the Doppler values: 
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Hence the GLRT becomes 
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where )(,, qjMLiα  denotes the estimate of the interfering target return, under 

hypothesis Hj and taking its Doppler as q, when finding the estimate in Equation 

(6.62).  

 

Next, a performance analysis result is presented. In this simulation, the interfering 

signal-to-clutter power ratio is 15dB; the clutter texture distribution order parameter 

is 2, which corresponds to a spiky situation. Additive white Gaussian noise is 

simulated with an interfering signal-to-noise ratio of 20dB. The main and interfering 

targets are located at the 5th and 7th Doppler bins, where there are a total of 10 

Doppler bins (pulses). The detection probabilities of the double-target GLRT derived 

above and the classical single target detector are shown in Table 6.3.  
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Table 6.3  Detection probabilities of the double-target GLRT and single target GLRT 

 
Main /interfering 

target power ratio 

PD of double-

target detector 

PD of single-

target detector 

0.1 0.93 0.11 

0.5 0.99 0.55 

1 0.99 0.76 

2 0.99 0.89 

 

As it can be seen, the double-target detector has excellent performance in detecting 

the target, where the single target detector misses the main target when the 

interfering target has high power. It was verified that the algorithm detects the 

Doppler of the interfering target successfully. 

 

This work can be extended to cover number of interfering targets greater than two.  
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CHAPTER 7 

 

 

CONCLUSIONS 

 

 

 

In this thesis, radar detection of targets against correlated, non-Gaussian and 

heterogeneous clutter was studied. The designed detectors may be grouped as 

noncoherent and coherent detection methods. 

 

Three non-coherent techniques, Goodness-of-Fit (GoF), Expectation-Maximization 

(EM) and Clutter-map (CM) CFAR were designed and analyzed: 

 

The GoF-CFAR technique firstly determines the range-heterogeneity of the clutter 

samples using a goodness of fit test, which is an original approach. It was shown that 

the performance of the test in determination of heterogeneity is excellent. After 

determination of the heterogeneity, the transition point and the distribution 

parameters are estimated and the threshold is set accordingly. The method was 

shown to alleviate the masking and false alarm problems near the clutter edge. 

 

The EM-CFAR method uses the Expectation-Maximization algorithm in identifying 

the differing regions and estimating their distribution parameters. Using this 

information, the algorithm determines the threshold to yield the desired false alarm 

probability.  

 

GoF and EM-CFAR algorithms are novel in that they consider the range-

heterogeneity and non-Gaussian character of the clutter at the same time. The 
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algorithms were shown to perform significantly better when compared to the 

classical methods designed for homogeneous non-Gaussian clutter, which have false 

alarms or target masking problems near the clutter edge; and the ones designed for 

range-heterogeneous Rayleigh clutter, which yield excessive false alarms in spiky 

clutter.  

 

The CM-CFAR, developed in this work, does not suffer from any type of 

heterogeneity in range, since it uses a map that stores the clutter information of each 

range cell. In many of the works, the shape parameter of the clutter is assumed to be 

known and these algorithms suffer from performance loss when the designed 

parameter differs from the actual one. In this study, both of the parameters are 

estimated and updated in the clutter map, which is believed to be novel. The 

algorithm is computationally efficient and performs well even in severe clutter 

condition. 

 

In order to exploit all the information in range cells and coherent pulses, coherent 

detectors were designed: Since the detector structure is dependent on the clutter 

parameters, they were estimated, using both the Maximum Likelihood (ML) and 

Maximum-a-Posteriori (MAP) estimation techniques. Uncorrelated, partially-

correlated and fully-correlated texture cases were investigated and it was shown that 

the texture estimators perform very well in all of the clutter conditions. As expected, 

the estimation performance is higher with the MAP estimator, when the assumed 

texture distribution matches the actual one. On the other hand, the ML estimator is 

general and it can be used in cases whenever no assumption on the clutter amplitude 

distribution can be done.   

 

Besides being used in design of the coherent detectors, the texture parameter 

estimators that were derived in this work can be used in other applications such as 

classification and segmentation on radar images. 
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Using the estimates of the texture parameter and the target return, GLRT detectors 

were designed. In design of the detectors, the correlation structure of the speckle 

component was assumed to be known. It was shown that these detectors have 

significant improvements over the well known detectors, which do not use all the 

range cells, in fully and partially-correlated texture situations. The detectors become 

equivalent to the well-known single-cell detectors when the texture components are 

uncorrelated. 

 

It was shown that the detector that operates on a single range has significant 

performance degradation in the existence of an interfering target. The reason for this 

is that the only information used in estimation of the clutter is obtained from the 

range cell under consideration, which is corrupted by an interfering target. Hence, a 

detector was proposed to avoid the interfering target problem in the single-range cell 

detector. Also, another method was proposed to succeed the single-target detector to 

make it operate in multiple-target case, which is believed to be novel. It was shown 

that the method performs excellent in detection of the targets and thus alleviates the 

masking problem. 

 

Future works can be stated as follows: Firstly, the analytical derivation for the 

detection and the false alarm probabilities of the coherent detectors can be 

performed. Then, the derivations can be extended to cover various clutter 

distributions and correlation structures. In addition, the multiple target study can be 

extended to cover the effects of pulse compression range sidelobes on other targets. 

Because, an important difficulty in design of the detectors is the mathematical 

tractability, special emphasis should be given on effective modeling of various 

clutter types and simplifications of the detectors to obtain suboptimum but acceptable 

solutions.  
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