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ABSTRACT 
 
 

ON THE ANALYSIS and DESIGN of A NEW TYPE of PARTIALLY 

COMPLIANT MECHANISM 

 
 
 

Tanık, Engin 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Eres Söylemez 

May 2007, 120 pages 
 
 

 

In this study analysis and design procedures of partially compliant mechanisms using 

two degree of freedom mechanism model are developed. The flexible segments are 

modeled as revolute joints with torsional springs. While one freedom is controlled by 

the input to the mechanism, the motion of the parts are governed both by the 

kinematics and the force balance. The procedure developed for the analysis of such 

mechanisms is shown on two different mechanisms: a five link mechanism with 

crank input and slider output (five-bar mechanism); a five link mechanism with 

crank input and rocker output. Design charts are prepared according to output-link 

oscillation and dimensionless design parameters.   
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ÖZ 
 
 

YENİ BİR TİP KISMI ESNEK MEKANİZMANIN ANALİZİ VE TASARIMI  
 
 
 
 

Tanık, Engin 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Eres Söylemez 

Mayıs 2007, 120 Sayfa 
 
 

 
 

Bu çalışmada yeni bir tip kısmı-esnek mekanizma için analiz ve dizayn prosedürü 

geliştirilmiştir. Esnek kısımlar döner masfalla ve burulma yayı ile modellenmiştir. 

Bir serbestlik giriş uzvu ile kontrol edilirken, uzuvların hareketi kinematik ve kuvvet 

dengesi ile sağlanmaktadır. Bu tip mekanizmaların analizi için geliştirilen prosedür 

iki farklı mekanizma ile gösterilmiştir: krank girişli kızak çıkışlı beş uzuvlu bir 

mekanizma; krank girişli sarkaç çıkışlı beş uzuvlu bir mekanizma. Çıkış uzvu 

salınımlarına göre boyutsuz tasarım parametleri ile  tasarım abakları hazırlanmaştır      

 
 
 
Anahtar Kelimeler: Esnek Mekanizmalar, Kısıtsız, Çok Serbestlik Derecesi 
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CHAPTER I 

 

 

INTRODUCTION 
 

 

The main disadvantage of single degree-of-freedom mechanisms containing rigid 

links and rigid joints is that they are inherently inflexible. They cannot be adjusted or 

controlled readily for varying load conditions and requirements. Multi degree-of-

freedom mechanisms with several inputs (as used in robots) are one possible solution 

to introduce flexibility. However, such mechanisms are expensive and slow in 

operation when compared with the classical mechanisms. In order to obtain some 

flexibility while keeping the advantages of classical mechanisms a multi-degree-of-

freedom mechanism structure can be made to operate under the action of a single 

input. Such an application can be seen in car differentials in which a two degree-of-

freedom mechanism operates in two different modes depending on the torque 

applied at the output wheels. This can be generalized to any multi degree-of-freedom 

unconstrained mechanism in which there are springs to store and release energy at 

the joints where we have an oscillating motion.  A revolute joint with a spring can be 

realized by a flexible element in between the two rigid links. Such a system is known 

as “pseudo compliant joint”. Compliant mechanisms and pseudo-compliant (Figure 

1.1) modeling of these mechanisms are being investigated by several researchers 

because such mechanisms are flexible, cheaper, lighter and easy to manufacture. 

However, the main disadvantage of the compliant mechanisms is the difficulty of 

analyzing and designing them. To simplify the analysis of the compliant 

mechanisms, single degree-of-freedom “pseudo-rigid-body” modeling technique is 

used in the literature. This technique is also used for analysis of the compliant 

mechanism with small-flexural pivots. 
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However, in the literature, analysis of the compliant mechanisms using “multi” 

degree-of-freedom pseudo-rigid-body modeling is not available. This approach 

makes a mechanism unconstrained (the number of inputs of the system is less than 

the degree-of-freedom of a system. Therefore, in this study an attempt for analysis 

and design of the unconstrained multi degree-of-freedom mechanisms is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Compliant Crimping Mechanism and its Rigid-Body Counterpart [1] 

 

To investigate the behavior of a multi degree-of-freedom unconstrained mechanism, 

two different mechanisms are considered. Firstly, a five-link in-line slider-crank 

mechanism (Figure 1.2) (called variable stroke mechanism in this study) is taken into 

consideration (Chapter 4). This mechanism is a two degree-of-freedom mechanism 

with one input at the crank. An analysis technique which considers both kinematics 

and forces simultaneously is introduced. After performing the kinematic and force 

analysis of the mechanism, a two-dimensional design chart according to the output-

link oscillations using dimensionless parameters is produced.  
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Figure 1.2 Partially Compliant Variable Stroke Mechanism 

 

In the second part of the study, another multi degree-of-freedom mechanism, a “five-

bar mechanism” (Figure 1.3) is investigated (Chapter 5). This is also a two degree-

of-freedom mechanism with one input. An analysis technique similar to the one 

applied for the variable stroke mechanism is used. Similarly, using dimensionless 

parameters, three-dimensional design charts are developed for the five-bar 

mechanism which relates output-link oscillation, link proportions and spring 

parameters.  

flexible segments

rigid segment

input output

revolute joint

 
 

Figure 1.3 Partially Compliant Five-Bar Mechanism 

 

 

flexible segments

rigid segment output

input

revolute joint
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Kinematics of the unconstrained mechanisms is also related to their loading 

conditions. Generally, before applying load and performing analysis, defining exact 

direction change position of the output-link is not possible. Therefore, a method 

which estimates direction change of output-link (dead centers) is required to obtain a 

function which can change output-load’s direction according to work or return 

stroke.  A method is presented in Chapter 5 Section 6 for the estimation of 

approximate dead centers of the five bar mechanism. This approach may also be 

useful for analysis of different types of such unconstrained mechanisms. 

 

Analysis of unconstrained multi degree-of-freedom mechanisms is not as simple as 

that of single degree-of-freedom mechanisms. For such mechanisms, kinematic 

analysis must be performed together with force analysis. For simplicity, low-speed 

analysis is taken into consideration. Therefore, static equilibrium is assumed for the 

analyses. 

 

The maximum value of the output-load during the work stroke is assumed to be five 

times of the return stroke’s maximum value, for all of the following analyses and the 

design charts. The direction of these loads is assumed to be always resistive to the 

motion of the output-link. 

Revolute Joint

Torsion spring

Rigid link

Rigid link

Flexible element

 
 

Figure 1.4 A Flexible Segment and its Pseudo-Rigid Body Model [1] 
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CHAPTER II 

 

 

SURVEY of the RELATED LITERATURE 
 

 

In this study, partially compliant unconstrained multi degree-of-freedom 

mechanisms are taken into consideration. Therefore, this chapter presents a survey of 

the related literature for compliant and unconstrained mechanisms. 

 

Compliant mechanisms are flexible mechanisms, which gain some or all of their 

motion through the deflection of flexible members. These mechanisms can be fully 

compliant and partially compliant. A fully compliant mechanism such as in Figure 

1.1 is one that has no rigid body joints. A partially compliant mechanism such as in 

Figure 1.2 is one that has some compliant members and some non-compliant joints.  

 

An advantage of compliant mechanisms is the reduction in the total number of parts 

required to accomplish a certain task. This reduces manufacturing and assembly time 

and cost. Some mechanisms may even be constructed of one piece. This kind of 

design has been given a new name recently, “Design for no assembly”. 

 

Generally compliant mechanisms are lighter than rigid link mechanisms synthesized 

for the same purpose. Another advantage of compliant mechanisms is the ease with 

which they are miniaturized. Compliant mechanisms also have a smaller number of 

movable joints, such as pin (revolute) and sliding joints. This results in reduced wear 

and need for lubrication. These are desirable characteristics for applications where 

the mechanism is not easily accessible, or for operation in harsh environments that 

may adversely affect joints. The reduction of the number of joints can also increase 

mechanism precision since backlash may be reduced or eliminated. This fact has 
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often been used in the design of instrumentation. Vibration and noise caused by the 

turning and sliding joints of rigid-body mechanisms may also be reduced in some 

applications by using compliant mechanisms. 

 

The main disadvantage of compliant mechanisms is the difficulty in their analyzes 

and design. It is necessary to understand the interactions between “mechanism 

theory” and “strength of materials”, in a complex situation.  

 

Fatigue life is another issue. Some compliant segments are often critically loaded 

cyclically; those members must be designed to have sufficient fatigue life to perform 

their prescribed functions. 

 

Energy storage of the flexible members can be (an advantage for some cases) 

disadvantage for some mechanisms. Because all of the input is not transmitted as 

output; some is stored in the mechanism.  

 

The motion from the deflection of compliant links is also limited by the strength of 

the deflecting members. Furthermore, a compliant link can not produce a continuous 

rotational motion such as is possible with a pin joint. Compliant links that remain 

under stress for long periods of time or at high temperatures may experience stress 

relaxation or creep. 
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2.1 Pseudo-Rigid-Body Model 

 

The pseudo-rigid-body model [1] is used to simplify the analysis and design of 

compliant mechanisms. It is used to unify compliant mechanism and rigid-body 

mechanism theory by providing a method of modeling the nonlinear deflection of 

flexible beams. This method of modeling allows well-known rigid-body analysis 

methods to be used in the analysis of compliant mechanisms.  

 

Salamon [2] introduced a methodology for compliant mechanism design that used a 

pseudo-rigid-body model of the compliant mechanism with compliance modeled as 

torsional and linear springs. These models are much easier to analyze than idealized 

models which require finite element or elliptic integral solutions. The most important 

attribute of the pseudo-rigid-body model is that it significantly simplifies the design 

process.  

 

Howell and Midha [3], [4] used closed-form elliptic-integral solutions to develop 

deflection approximations for an initially straight, flexible segment with linear 

material properties. Figure 2.1 shows such a member and its pseudo- rigid-body 

model. The model consists of two rigid links, connected by a "characteristic pivot" to 

represent the displacement, and a torsional spring to model the beam stiffness or 

resistance to the applied force. This model predicts the deflection path of the beam 

end for a given end load, to within 0.5% of the closed-form elliptic integral solutions 

for quite large deflections. The location of the characteristic pivot is expressed in 

terms of the "characteristic radius factor", gamma, which represents the fraction of 

the beam length at which the pivot is located. Once gamma is determined, the 

deflection path may be parameterized in terms of theta, the "pseudo-rigid-body 

angle."  
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Figure 2.1 A Flexible Segment and its Pseudo-Rigid-Body Model [1] 

 

Pseudo-rigid-body models for individual flexible segments offer a simplified method 

of determining the deflections of large-deflection members. The availability of such 

a method for individual segments suggests its use to model more complex systems 

which include flexible segments. This pseudo-rigid-body model concept proves to be 

very useful in simplifying the analysis and synthesis of compliant mechanisms. Its 

advantage lies in its ability to develop a pseudo-rigid-body model of a compliant 

mechanism, and then use the large body of knowledge available in the field of rigid-

body mechanism analysis and design. In this way, the pseudo-rigid-body model 

concept acts to unify compliant and rigid-body mechanism theories. Figure 2.2 

shows another example of a compliant mechanism and its pseudo-rigid-body model.  
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Figure 2.2 A Compliant Slider-Crank Mechanism and Pseudo-Rigid-Body Model [1]   

 

Howell and Midha [3], [5] analyzed compliant mechanisms with small-length 

flexural pivots. Since the lengths of the flexural members are small relative to the 

lengths of the rigid segments, the flexural pivots are modeled as kinematic joints at 

the center of the flexible segment. Torsional springs are used to represent the 

member stiffness. The accuracy of this method decreases as the relative length of the 

flexural member increases, and a different approach is required for compliant 

mechanisms containing longer flexural pivots. This model will be taken into 

consideration in next part of this study. 
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Figure 2.3 A Cantilever Beam (a) and its Pseudo-Rigid Body Model (b) [3] 

 

In Figure 2.3, the cantilever beam has two segments, one is short and flexible and the 

other is longer and rigid. If the smaller segment is significantly shorter and more 

flexible then the longer segment, that is  L>>l  and (EI)L >> (EI)l . 
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The short segment is called a small-length flexural pivot. (Figure 2.3 shows l with an 

exaggerated length. Usually L is 10 or more times longer than l.)  

 

Since the flexible section is much shorter than the rigid section, the motion of the 

system may be modeled as consisting of two rigid sections; the motion of the system 

may be modeled as two rigid links joined at a pin joint, called characteristic pivot. 

The characteristic pivot is assumed to be located at the center of the flexural pivot, as 

shown in Figure 2.3(b).This is an accurate assumption because the deflection occurs 

at the flexible segment and it is small compared to the length of the rigid segment. 

For small-length flexural pivots, the pseudo-rigid-body angle is equal to the beam 

end angle. (θ = θ 0) 

 

The beam’s resistance to deflection is modeled using a torsional spring with spring 

constant K. The torque required to deflect the torsional spring through an angle of θ 

is given in Eq. 2.1 

 

T = K θ                  (2.1) 

 

The spring constant, K, may be found from elementary beam theory. The end angle 

for a beam with a moment is given in Eq. 2.2 as 

 

θ 0 = Ml/(EI)l                 (2.2) 

 

Since M = T and θ 0 = θ , the spring constant can be found as 

 

K = (EI)l/l                (2.3) 

 

This model is accurate if bending is the dominant loading in the flexural pivot. If 

transverse and axial loads are significantly high, a greater error will be introduced 

into the model. 
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The nature of small-length flexural pivots ensures that the assumption that bending is 

the predominant loading is accurate in most applications. 

 

In analysis, the kinematic motion, input requirements, and the component stresses 

may be determined quickly and efficiently by means of the pseudo-rigid-body 

model. The greatest benefit of the pseudo-rigid-body model concept is realized in 

compliant mechanism design. In the early design stages, the pseudo-rigid-body 

model may serve as a fast and efficient method of evaluating many different trial 

designs to meet the specific design objectives. It also allows the design of systems to 

perform more complex tasks than would otherwise be possible. If a designer relies 

solely on prototyping or full numerical analysis, an initial design must be obtained 

before it can be modeled or built. The pseudo-rigid-body model, on the other hand, 

may be used to obtain a preliminary design which may then be optimized. Once a 

design which meets the specified design objectives is obtained, it may be further 

refined using methods such as nonlinear finite element analysis, and it may then be 

prototyped and tested. 

 

Brian P. Trease [6] investigated the drawbacks of typical flexure connectors and 

presented several new designs for highly effective, kinematically well-behaved 

compliant joints.  
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2.2 Unconstrained Mechanisms 

 

The mechanisms that are investigated in the next sections are unconstrained. Their 

degree-of-freedom is at least two. The number of the inputs is one.  

 

Conventional differential of a car is a common example for an unconstrained 

mechanism. It is a two degree-of-freedom mechanism with one input. For static 

equilibrium, torque on the output shafts must be exactly the same due to the idler 

gear in its construction. In Figure 2.4, the tangential forces acting on gears of a 

differential are shown. Since there is no torque on the shaft of the idler gear, the 

tangential forces on both sides of the idler gear must be the same. Consequently, the 

tangential forces and the torques on the output shaft gears must also be the same for 

static equilibrium.    

FF

T T

idler gear

F F

 
Figure 2.4 The Differential  

 

The output shafts can rotate with different angular velocities according to curvature 

of the road. As an extreme case, when one side of a road is ice covered, the wheel on 

the slippery side of the road spins and other wheel stalls.  

 

Assuming that a car has enough power to cause a spin at either a wheel or the car is 

obstructed to move. If the two traction wheels are on surfaces with different 

coefficient of friction, only one wheel spins and the other one will be motionless. 

This is the general characteristic of unconstrained mechanisms. 
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Thierry Laliberte and Clement M. Gosselin [7] carried out a study on simulation and 

design of under actuated mechanical hands. The taxonomy of the grasps is first 

reviewed in their study. Then, the principle of under actuation which leads to shape 

adaptation of the hand is introduced and a review of the existing under actuated 

mechanical hands is provided. Architectures of two-degree-of-freedom under 

actuated fingers are then proposed and a simulation tool is designed to analyze their 

behavior. It is shown that under actuation is a very promising avenue when only 

grasping is required (no manipulation). An under actuated finger is selected and this 

finger is used in the design of a three fingered hand. Grasps-chosen from the 

taxonomy which can be performed with this hand are then illustrated [7].  

 

 
 

Figure 2.5 Examples of Under-Actuated Two Degree-of-Freedom Mechanisms [7] 

 

A mechanical logic element, multi-port lever, investigated by Söylemez and 

Freudenstein [8] is shown in Figure 2.6. This is a multi degree-of-freedom multi-

port-lever configuration involves a link, the planar displacement of which is a 

rotation about one of several parallel axes or ports. Connecting rods connect the 

ports to sliders on both sides of each port and the sliders are loaded by compression 

springs. At point O the lever is actuated by an initially horizontal force, P, called 

control force.  
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If the magnitude of the control force increases slowly from zero, a force level will be 

reached at which the lever will just begin to move. The motion of the lever will be 

rotation about one of the ports, which is a function the force exerted by the springs. 

Figure 2.6 Multi-Port Lever [8] 

 

Strap tool (Figure 2.7) is an application of two-port lever which tightens and 

automatically cuts off a plastic strap about a bundle of wires 

 

 
 

Figure 2.7 Strap Tightening and Cutting Tool [8] 

1

2

control force
O

connecting rod slider

P

compression 
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E. Tanık and E. Söylemez [9] derived a synthesis procedure for a variable structure 

using two different types of seven-link unconstrained mechanisms. These 

mechanisms run as six-link mechanisms for different positions of the control-link to 

achieve different (but specified) output link oscillation. The change in the structure 

occurs when the output load condition exceeds a certain threshold value. One of the 

mechanisms synthesized (Figure 2.8) is analyzed in detail considering the static 

forces which also includes the motion during the switching. The switching action is 

limited to certain crank positions during the motion. Such variable structure 

applications provide a cheap and reliable mechanical logic system which can be used 

for different applications 

 

Figure 2.8 A Seven-Link Variable Structure Mechanism for 500 and 250 Swing 

Angles [9] 

 

Lionel Birglen and Clément M. Gosselin [10] established a fundamental basis for the 

analysis of underactuated fingers with a general approach. A new method to obtain 

the force capabilities of any underactuated fingers is presented [10]. Force capability 

is defined as the ability to generate an external wrench onto a fixed object with a 

given set of phalanges.  A general -DOF, 1-degree-of-actuation (DOA) finger with 

four-bar linkages is considered for analysis Figure 2.9. 

 

 

b2b

2
3

3 aa
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Figure 2.9 Model of Underactuated n-DOF Finger [10] 

 

Kireçci, Dülger and Gültekin [11] used a seven-link, two degree-of-freedom 

mechanism (This is an example of variable structure, however it is a constrained 

mechanism), (Figure 2.10) for variable oscillation at its output. The input is at link 2 

and the translational adjustment at link 5 provides the variable oscillation. However, 

since the adjustment control system is mounted on link 4, which is driven by a 

servomotor, the inertia of link 4 increases. Consequently, at high-speed operations 

the forces become larger.  

 

Figure 2.10 A Variable Oscillation Mechanism with a Translational Adjustment [11] 
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CHAPTER III 

 

 

UNCONSTRAINED MULTI-DEGREE-OF-FREEDOM 

MECHANISMS  

 

 

3.1 Introduction  

 

In this chapter, general characteristics of unconstrained (underactuated) compliant 

multi-degree-of-freedom mechanisms with small-length flexural pivots are 

considered. The motion characteristics of such mechanisms are very similar to the 

conventional differential mechanism (Section 2.2) in which the two degree-of-

freedom motion is constrained by the kinematics and the force equilibrium 

conditions.  

 

 

An example of a compliant multi-degree of freedom mechanism and its pseudo-

rigid-body model are shown in Figure 3.1. Basically, this mechanism is formed by 

three members; the fixed link, link 2 (crank) and links 3, 4, 5, 6 (Links 3, 4, 5, 6 are 

the parts of a simple link having some thin segments). Link 2 is connected to link 3 

by a revolute joint.  
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Figure 3.1 (a) Six-link Multi DOF Compliant Mechanism and (b) its Pseudo-Rigid-

Body Model  

 

 

There are small-length flexural pivots between links 3 and 4, links 4 and 5, and links 

5 and 6. Since the lengths of the flexural members are assumed to be small in 

comparison with the length of the rigid segments, the flexural pivots are modeled as 

revolute joints at the center of the flexible segment (Figure 3.1b). The torsional 

springs are used to represent the member stiffness. So this technique is called 

pseudo-rigid-body model [2]. This concept proves to be very useful in simplifying 

analysis and synthesis of the compliant mechanisms as explained in detail Chapter II. 

In the following sections of the study, “pseudo-rigid-body model” is used a base for 

the study.  
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Consequently, from now on, kinematics of the mechanism will be investigated with 

the help of the pseudo-rigid-model shown in Figure 3.1b.  

 

Assuming that the links are dimensioned properly, the crank (link 2) can make a 

complete rotation. Link 2 is the input; link 6 is the output of this three-degree-of-

freedom mechanism (Fig. 3.2b). Therefore, with one input and three degree-of-

freedom the mechanism is unconstrained.  

 

Kinematics of this mechanism depends on the spring constants, the initial tensions, 

positions and input-output forces. When the static force equilibrium is considered, 

the relative motion of the links occurs in a sequence similar to that of the car 

differential example given in Section 2.2. Therefore, the mechanism will behave as if 

it is a single degree-of-freedom mechanism. Furthermore, if the output-link load 

changes, different configurations can be encountered within the same cycle. 

Appropriate spring rates and initial positions may change force characteristics and 

the stroke of the mechanism for various tasks.  

 

 

In order to visualize how such mechanism behaves, the following modeling approach 

can be helpful. For a multi-degree of freedom unconstrained mechanism, the 

possible different structures that may occur in a cycle are shown in Figures 3.2, 3.3 

and 3.4.  

 

 

If the relative motion starts between links 3 and 4 at the position shown, the structure 

will behave as a four-bar mechanism as shown in Figure 3.2. And at this position 

there is no relative motion between links 4, 5 and links 5, 6. 
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Figure 3.2 First Situation for the Six-Link Mechanism 

 

 

If the relative motion starts between links 4 and 5 at the position shown, the structure 

will behave as a four-bar mechanism as shown in Figure 3.3. And at the position 

there is no relative motion between links 3, 4 and links 5, 6. 

 

 

54

2
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6

 
Figure 3.3 Second Situation for the Six-Link Mechanism 

 

 

If the relative motion starts between links 5 and 6 at the position shown, the structure 

will behave as a four-bar mechanism as shown in Figure 3.4. And at the position 

there is no relative motion between links 3, 4 and links 4, 5. 
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Figure 3.4 Third Situation for the Six-Link Mechanism 

 

 

The three different possible structures which can be formed by the six-link 

mechanism are shown in the above figures. But the proportions of the structure may 

differ according to the position at which these structural changes occur. Shifting 

position from one structure to another may be during a small or a large rotation of 

the crank. Variation in the output-link load may change the structure considerably. 

Also the stiffness and the initial positions of the spring can affect the characteristics 

of the mechanism. 

 

 

To the best of our knowledge, investigations on multi degree-of-freedom 

mechanisms with small-length flexural pivots are not available in literature. 

Therefore, this study is unique from that side of view. In the following sections, 

some analysis and design techniques for two multi-degree-of-freedom mechanisms 

are introduced.   
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3.2 Analysis of Unconstrained Multi Degree-of-Freedom Mechanisms 

 

Analysis of multi degree-of-freedom mechanisms is not as simple as single degree-

of-freedom mechanisms. For such mechanisms, kinematic relations must be treated 

together with force analysis. 

 

For the analysis of the mechanisms the method of virtual work is used. This method 

has great advantage to formulate the required equations of static equilibrium without 

having to consider the mutual reactions exerted upon one another by the bodies of 

the system. 

 

The principle [12] is simply stated, however each word in the statement must be 

clearly explained: 

 

• Virtual displacements: A set of infinitesimal displacements which 

are consistent with the constraints 

• Virtual work: Work done by specified forces on virtual 

displacements 

• Active(External) forces: All forces which do non-zero virtual work 

• Ideal mechanical system: System where constraints do no work 

• Generalized forces: Terms which multiply the virtual generalized 

displacements in the expression for virtual work of active forces. 

• Equilibrium: A state where the resultant force on each particle of 

the system vanishes 

• Generalized Equilibrium: A state where all the generalized forces of 

a system vanish; equivalent to equilibrium for systems “at rest” 
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With the above definitions, the principle of virtual work may be formulated in the 

following two-part statement: 

 

1- If an ideal mechanical system is in equilibrium, the net virtual work of all 

the active forces vanishes for every set of virtual displacements. 

 

2- If the net virtual work of all the active forces vanishes, for every set of 

virtual displacements, an ideal mechanical system is in a state of generalized 

equilibrium. 

 

The virtual work for a system with F degree-of-freedom [12] can be expressed in 

generalized coordinates as; 

 

Fqqq δδδδ F2211 Q...QQW +++=                       (3.1) 

 

Where Qi represents generalized forces and qi represents virtual displacements. 

 

Hence, the principle of virtual work states that a necessary and sufficient condition 

for generalized equilibrium is that each of the generalized forces Qi must vanish. 

 

  0Q , ,...0Q    ,0Q F21 ===               (3.2) 

 

Generalized equilibrium is assumed for the mechanisms analyzed for all positions of 

the given crank angle as the input of the mechanisms.  

 

For all the mechanisms analyzed, low-speed operation is assumed. Masses of links 

are assumed to be negligible in comparison with the applied loads. Therefore, all 

inertia and gravity forces of the links are neglected.  
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CHAPTER IV 

 

 

VARIABLE STROKE MECHANISM 

 

 

 

4.1 Introduction 

 

Initially, for simplicity of the equations a two degree-of-freedom unconstrained 

mechanism is analyzed. This mechanism is shown Figure 4.1 

 

It is a two degree-of-freedom in-line slider-crank. Two torsional springs (k34, k45) are 

mounted in between links 3 and 4, link 4 and the slider. The input is at the crank 

(link 2) and the output is at the slider.  

 

Since the output-link stroke of the mechanism may change with the variation of the 

output load, this mechanism is called as variable stroke mechanism in this study. 
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Figure 4.1 Variable Stroke Mechanism 
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This mechanism is one of the simplest multi degree-of-freedom mechanisms because 

one parameter (eccentricity) is eliminated in the analysis and design procedures. The 

absence of the eccentricity has one more benefit for the easiness of the analysis and 

design (It is mentioned at the end of Section 3 in detail) 

 

The variable stroke mechanism is analyzed in detail in Section 4.2 by the method of 

virtual work mentioned in Section 3.2. 

 

The link proportions are selected such that the crank can make full-rotation. The 

output-load is assumed to be resistive to the motion of the output link, the direction 

of rotation of the crank is assumed to be counter clock-wise. 

 

A generalization procedure is introduced in Section 4.8 to obtain design charts 

relating the output force and spring constants to the output stroke. The design charts 

are given in Example 4.9. 

. 
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4.2 Analysis of the Variable Stroke Mechanism 

 

In this section, analysis of the mechanism is done according to the method and the 

assumptions mentioned in Section 3.2 

 

The virtual work of the active loads is; 

 

sFT δδδθδ 15212121 W   ,W −=−=                                                                  (4.1) 

4

2

 T12 θ12 θ14 F15

3
θ13

5

δθ12
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δθ14
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F34

F45

F45

T34

T45

S15

 
Figure 4.2 The Variable Stroke Mechanism with Spring Forces shown 

Active 

 

Springs may always be removed from a system provided that equal, opposite forces 

(torques) which they exert upon their points of attachments are taken into 

consideration. 

 

Therefore, the virtual works of the springs are (Figure 4.2); 

 

 

   
(4.3)                                              )c(-kT  ),c-(kT         

here,         w

(4.2)                                                        ,         

451445453414133434

14454143413343

+=+=

=+−=

θθθ

δθδδθδθδ TWTTW
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In the above equations, “kij” represents the linear spring stiffness and “cij” is the 

spring initial position constant between ith and jth links. ai represents the length of the 

ith link. 

 

Then, the virtual work of all the active forces is  

  

 4321 WWWWW δδδδδ +++=              (4.4) 

 

Or, 

 

 144514133415151212 )( δθδθδθδδθδ TTsFTW ++−+−−=                           (4.5) 

 

In generalized coordinates, the virtual work of a system with two degree-of-freedom 

(The degree-of-freedom of the variable stroke mechanism is two) can be expressed 

as; 

 

2211 QQW qq δδδ +=                                                                              (4.6) 

 

Where Qi represents generalized forces and qi represents virtual displacements. 

 

Therefore, the four infinitesimal displacements in Equation 4.5 must be reduced to 

two virtual displacements.   

 

The loop closure equations of the mechanism are 

  

15144133122 coscoscos saaa =−+ θθθ                                                     (4.7) 

 

0sinsinsin 144133122 =−+ θθθ aaa                                                          (4.8) 

 

By taking differentials across of Equations 4.7 and 4.8 yields 
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15141441313312122 sinsinsin saaa δδθθδθθδθθ =+−−                              (4.9) 

 

0coscoscos 141441313312122 =−+ δθθδθθδθθ aaa                                (4.10) 

 

From Equations 4.9 and 4.10, δθ13  and δθ14  can be determined as 

 

)sin(
)cos()sin(

13143

15141214122
13 θθ

δθδθθθ
δθ

−
+−

=
a

sa
                                           (4.11) 

 

)sin(
)cos()sin(

13144

15131213122
14 θθ

δθδθθθ
δθ

−
+−

=
a

sa
                                (4.12) 

 

Substituting Equations 4.11 and 4.12 into Equation 4.5, yields the form below: 

 

215112 QsQW ⋅+⋅= δδθδ                                                                           (4.13) 

 

The principle of virtual work tells that a necessary and sufficient condition for 

generalized equilibrium is that each of the generalized forces Qi must vanish. 

 

0Q    ,0Q 21 ==                                                                                        (4.14) 

 

According to the above procedure, after performing necessary manipulations the two 

equilibrium equations can be obtained as: 
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The kinematic and the force analysis of the mechanism can be performed by solving 

Equations 4.7, 4.8, 4.15, 4.16 simultaneously. 

 

To obtain the appropriate link proportions, if four of the five position variables are 

known F15 and T12 can be determined in a closed-form. But generally this is not the 

required case. If the output force (F15) and the crank angle (θ12) are known (that is 

the most common case), Eqs 4.7, 4.8, 4.15, 4.16 become highly non-linear for the 

rest unknown parameters. These parameters are; θ13, θ14, stroke s15 and input torque 

T12.  

 

Analytical solution of these non-linear equations (Equations 4.7, 4.8, 4.15, 4.16) may 

not be possible. Therefore, these equations can be solved numerically to determine 

the required parameters.  

 

Since, the kinematics of multi degree-of-freedom unconstrained mechanisms is 

uncertain before the loads are applied; generally working zone of output-link is also 

uncertain. Moreover, magnitude of the output load is a parameter that directly affects 

the output-link’s oscillation interval. But the case is different for the variable stroke 

mechanism; from many examples it is observed that, for resistive output loads, when 

θ12 = 0 or θ12 = π the mechanism is “approximately” at the dead centers. In other 

words, as in the conventional in-line slider-crank mechanism, the crank position is 

the major parameter that defines working and return strokes. Then, it can be assumed 

that the output-link load is simply a function of the crank’s position for the “inline” 

variable stroke mechanism. In the case of extreme conditions (such as sudden change 

in the direction of motion of the output-force and exaggerated link proportions) this 

assumption may not be valid.  

 



 31

In this study, these non-linear equations are solved numerically via Matlab (by using 

the “fsolve” function which finds a root (zero) of a system of nonlinear equations). 

All the equations of the mechanisms investigated in following examples are solved 

for full-rotation of crank with one degree increments. Many trials show that feasible 

solutions of these non-linear equations require close initial guesses. For instance, a 

set of initial guess for zero degree of crank angle may not be appropriate for the 

same mechanism at 1800. Therefore, in order to obtain a proper solution quickly, the 

code used for the solution is modified so that initial guesses are obtained from the 

previous cycle’s set of solutions. 

 

 

4.3 An Intuitive Design Procedure for the Variable Stroke Mechanism 

 

The equations of motion of the variable stroke mechanism are obtained in Section 

4.2. However, at this step, appropriate link proportions, spring constants and initial 

spring positions are not known. The highly-non linear equations (Equations 4.7, 4.8, 

4.15, 4.16) are to be solved numerically for the complete cycle. Most probably, 

randomly selected set of parameters will not yield rational solutions. Therefore, as a 

starting point, a design approach is required to obtain feasible set of parameters. In 

the next example, an intuitive method is introduced to obtain appropriate link 

proportions and spring parameters. After the first design, with parametric 

optimization methods, better design can be achieved. In Example 4.4, an intuitive 

design procedure for a variable stroke mechanism is shown. 
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4.4 Example 

 

In this example, a variable stroke mechanism for the following output load is 

designed. The output load is defined as a function of the position of the crank as 

explained on page 30.  

 

185°
-40

5°

200

175°

355° θ12

F15 (N)

80

 
Figure 4.3 Output-Load Function 

 

For the mechanism shown in Figure 4.1, initially, appropriate link lengths can be 

estimated. Generally, for the mechanisms whose crank can make full rotations, crank 

is the shortest link. Therefore, for full-rotation of the crank, a2 can be selected one 

fourth of sum of the length of a3 and a4. 

 

In order to compare kinematic characteristics of the variable stroke mechanism with 

that of a conventional in-line slider-crank mechanism, a relatively short link length 

for link 4 can be chosen. Therefore, let a2 = a4 = 1 unit. So, a3 will be 3-unit which 

makes the crank one-fourth of the sum of a3 and a4.  

 

Next, the spring constants and initial spring positions can be estimated. If the springs 

are too stiff with respect to the output force, high internal forces may occur. Also 

flexibility of the mechanism for variable output-load conditions will decrease. In 

contrary, if the springs are too soft, the mechanism may collapse suddenly when the 

output force is applied. The spring constants must be selected so that mechanism 

should behave in between these two cases.  
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An appropriate situation that may occur after loading the mechanism is shown in 

Figure 4.4. Referring to below condition (which seems to be a feasible mechanism 

intuitionally), estimation for the spring constants can be done as follows:  

s15

 k45
F15

0.9s15

 T12

4

k34

2

3

 

Figure 4.4 The Variable Stroke Mechanism without (left) and with the Output-Force 

 

Before the output load is applied (as it is seen from the left figure), s15 is 

approximately 80% of the sum of the link lengths. So, let s15 be 0.8(1+4+1) = 4. 

After the load is applied (Let F15 is increased from 0 to 200N gradually), assuming 

10% reduction in s15 and 400 rotation for the torsional springs; spring constants can 

be estimated with the following work-energy equation: 

 

 )1.0()
2
1(2 2 sFk avg=θ             (4.17) 

 

Substituting the related data, spring constant k can be determined as; 

 

 
radNunitk

k

/82

)41.0)(
2
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180
40( 2

=

⋅
+

=
π

           (4.18) 

  

So one can take each spring constant as k34 = k45 = k= 100Nunit/rad. (The spring 

constants are assumed to be identical) 
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Finally, free position of the springs can be determined. From Figure 4.3, it is 

assumed that the springs are unstretched at the unloaded position. A spring is 

unloaded when the applied torque to the related link is zero: 

 

   0 )c(-kT  0, )c-(kT 451445s4534141334s34 =+==+= θθθ         (4.19) 

  

From Figure 4.3, it is observed that, approximate values of the link angles are θ13 = 

100
, θ14 = 1300. Substituting these variables into above equations; 

 

130   ,130c

   0 )c130(-  0, )c140-10(

4534

4534

==

=+=+

c
          (4.20) 

   

Rounding the above data, one can select c34 = c45 = 1500.  
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4.5 Examples 

 

4.5.1 Example  

 

For full-rotation of the crank, position analysis of the mechanism designed 

intuitively in Example 4.4 is required for the loading below: 

185°
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175°

355° θ12

F15 (N)

80

 
Figure 4.5 Output-Load Function 

 

Link lengths: a2 = a4 = 1 unit and a3 = 3 units. 

Spring variables: k34 = k45 = k= 100 Nunit/rad and c34 = c45 = 2.618 rad 

θ13, θ14 and T12 can be determined by solving Non-linear Equations 4.7, 4.8, 4.15, 

4.16 numerically (By using the codes given in Appendices A and B) for one degree 

crank angle increments,. In Figure 4.6a-b θ13, θ14 and s15 vs. θ12 are shown. 

              
  Figure 4.6a θ13, θ14 vs. θ12 for k34 = k45 = 100Nunit/rad 
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Figure 4.6b s15 vs. θ12 for k34 = k45 = 100Nunit/rad 

 

From Figure 4.6a it can be observed that link 4 remains approximately at the same 

angle during the reverse and forward strokes. During the work stroke θ14 = 1150 and 

is almost constant. After solving the equations, input torque T12 can also be 

determined. The below figure shows the variation of input torque with the crank 

angle. 

 
Figure 4.7 T12 vs. θ12 for k34 = k45 = 100Nunit/rad 
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Magnitude of the input to the T12 increases for 1800 < θ12 < 3600 since this interval 

corresponds to the work-zone. Also negative sign of the input torque nearly for 

whole cycle is intuitively expected when the model is investigated (Equation 4.5 and 

Figure 4.1). 

 

In order to visualize the motion of the variable stroke mechanism, the animation of 

the structure for every 450 crank angles is shown in Figure 4.8.   

 

a2
a3 a4

  
 

Figure 4.8a The Variable Stroke Mechanism in Different Positions 
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Figure 4.8b The Variable Stroke Mechanism in Different Positions 

 

As it is mentioned in the last paragraph of Section 4.2, the set of non-linear equations 

is solved via Matlab. The results of the solution at each step are used as the initial 

guess for the next step. Rational solutions may be obtained in this manner. If the 

guesses are radically different, appropriate solutions can not be obtained. 
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4.5.2 Example 

 

Perform the analysis of the five-bar in Example 4.5.1 with same data except a 

different spring constants; k34 = k45 = 50 N.unit/rad 

 

Link lengths: a2 = a4 = 1 unit and a3 = 3 units. 

Spring variables: c34 = c45 = 2.618 

  

θ13, θ14 and input torque can be determined by solving Non-linear Equations 4.7, 4.8, 

4.15, 4.16 numerically (By using the codes given in Appendices A and B) for one 

degree crank angle increments. In Figure 4.9a-b θ13, θ14 and s15 vs. θ12 are shown: 

 

 
 

Figure 4.9a θ13, θ14 vs. θ12 for k34 = k45 = 50 N.unit/rad 
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Figure 4.9b s15 vs. θ12 for k34 = k45 = 50 N.unit/rad 

 
Figure 4.10 T12 vs. θ12 for k34 = k45 = 50 N.unit/rad 
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4.5.3 Example  

 

Perform the analysis of the five-bar in Example 4.5.1 with same data except a 

different initial spring constants; c34 = c45 = 1.5. 

 

  

θ13, θ14 and input torque can be determined by solving Non-linear Equations 4.7, 4.8, 

4.15, 4.16 numerically (By using the codes given in Appendices A and B) for one 

degree crank angle increment. In Figure 4.11a-b θ13, θ14 and s15 vs. θ12 are shown: 

 

 

 
Figure 4.11a θ13, θ14 vs. θ12 for c34 = c45 = 1.5 
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Figure 4.11b s15 vs. θ12 for c34 = c45 = 1.5 

 

 
Figure 4.12 T12 vs. θ12 for c34 = c45 = 1.5 
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 In examples 4.5.1- 2 and 3, for all the three cases the input torque is almost the 

same. But the kinematics of the mechanisms varies with spring parameters. 

Therefore, effect of various spring parameters can be investigated to obtain 

flexibility. Also it can be seen from Examples 4.5-1-2-3 (Figures 4.6a, 4.9b, 4.11b) 

that the direction changes of the output-link (dead centers) occur approximately 

around θ12 = 0 or θ12 = π according to the loading given in Figure 4.5 (Note that 

these examples do not guarantee that the dead centers always occur when θ12 = 0 or 

θ12 = π, for all type of loading conditions) In the next section, effects of different 

initial spring positions are investigated 
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4.6 Effects of Different Initial Spring Position Constants on the Output Stroke 

 

In this study, compliant multi-degree-of-freedom mechanisms are taken into 

consideration by using their pseudo rigid body model. This method is mentioned in 

Section 3.1. As an exception in the following examples (4.7), it is assumed that there 

is a “real” mechanism formed by torsional springs and rigid links as in Figure 3.1b. 

By using the same structure, output-link stroke variations can be analyzed with only 

changing the initial positions of the springs. For the following example, the code in 

Matlab is modified to determine maximum and minimum values of the s15 for a 

complete rotation of the crank. Before analyzing the effects of initial spring 

positions, it will be useful to sketch physical meaning of cij (spring initial position 

constant). In Figure 4.11 assuming that the springs are unstretched at the position. 

The springs are unloaded when the applied torque to the related links is zero: 

 

   0 )c(-kT  0, )c-(kT 451445s4534141334s34 =+==+= θθθ          (4.21) 

  

And, 

 

     c         1445141334 θθθ =+−=c            (4.22) 

  

Then the initial spring positions can be illustrated as angles shown as shown in 

Figure 4.13. 
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Figure 4.13 Position of the Five-Bar Mechanism When the Springs are Unloaded 
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4.7 Examples 

 

4.7.1-Example  

 

By changing the initial position of the second spring (c45), determine stroke 

variations for the same loading for the mechanism analyzed in the Example 4.5.1. 

Assume c45 varies between -100 and 1500.   

 

Similarly by solving non-linear Equations 4.7, 4.8, 4.15, 4.16 numerically (By using 

the codes given in Appendices A and B), the stroke of the mechanism is obtained as 

follows (Figure 4.14): 

 
Figure 4.14 The Output-Link Stroke Variations for Different Values of c45 

 

In Figure 4.14, s15max indicates the maximum value of s15, s15min indicates the 

minimum value of s15 in a cycle. ∆s15 indicates the difference of these two functions 

which is the stroke of the mechanism. From the graph it can be clearly seen that, as 

c45 is changed working region of the output-link changes significantly, but the 

change in the total stroke is slight.  
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4.7.2 Example  

 

By changing the initial position of the first spring, determine the stroke variations for 

the same loading for the mechanism analyzed in the Example 4.5.1. Assume c34 

varies between -100 and 1500.   

 

By solving non-linear Equations 4.7, 4.8, 4.15, 4.16 numerically (By using the codes 

given in Appendices A and B), the stroke of the mechanism is obtained as follows 

(Figure 4.15). 

 

 
Figure 4.15 The Output-Link Stroke Variations for Different Values of c34 

 

 

 

In this example, as c34 is changed, working zone of the output-link also shifts. 

However, change in the stroke is larger when compared with the effect of c45.  
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4.8 Generalization of the Variable Stroke Mechanism 

 

Synthesis of this type of multi degree-of-freedom mechanisms with springs mounted 

between some links is uncertain. But at least, a chart relating the output force and 

spring constants and stroke of the mechanism is essential.  

 

 

In Equations 4.7, 4.8, 4.15, 4.16 there are seven free design parameters (a2 a3 a4 k34 

k45 c34 c45 ) for the structure. For every combination of these parameters a different 

output-stroke (∆s15) may be obtained. Also output-force “F15” is a free parameter. 

Since this is an unconstrained mechanism, all these eight parameters are functions of 

the kinematics of the mechanism. To obtain a simple-two dimensional chart, these 

parameters must be manipulated.  

 

Firstly, all the related equations (4.7, 4.8, 4.15, 4.16) can be divided or multiplied 

with a2. So link proportions can be considered as a3/a2, a4/a2 and s15/a2.  

 

Successive trials showed that, the spring initial position constants “cij” don’t have a 

major effect on the stroke of the mechanism. At this moment, this parameter can be 

kept constant with a suitable value. As found in Section 4.3,   c34 = c45 = c can be 

taken as 2.75 rad. Several trials showed that this intuitive approach for the initial 

spring position constants is appropriate. 

 

Next, force and spring constants can be simplified; in Equations 4.15, 4.16 it is seen 

that input torque T12 and output force F15 are linearly proportional with the spring 

constant k. Therefore, increasing or decreasing both spring constants and output 

force magnitude linearly yields exactly the same kinematics. Then spring constant 

and output force can be considered as a single design parameter. Therefore dividing 

the equations by k34, a more useful F15 a2/k34 ratio is introduced. 
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Let the maximum value of output-force F15 be F in the work stroke (1800<θ12<3600) 

and one-fifth of this value in the return stroke (F15 = -F/5) (both are resistive forces 

to the motion of the slider). In this design procedure, trapezoidal output-force is 

assumed. The output-link force is given below as a function of the crank angle in 

graphical form (The criteria to form such kind of loading is mentioned in detail in 

Section 4.2, Page 30) 

 

185°
-F/5

5°

F

175°

355° θ12

F15

2F/5

    
Figure 4.16 Output-Load Function 

 

The kinematic and force equations are rearranged according to above procedure as 

follows:  

 

Dividing Equation 4.7 by a2, 4.23 can be obtained. 

 

2

15
14

2

4
13

2

3
12 coscoscos

a
s

a
a

a
a

=−+ θθθ                                     (4.23) 

 

Dividing Equation 4.8 by a2, 4.24 can be obtained: 
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2
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2
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a
a

                                                  (4.24) 

 

Dividing Equation 4.15 by k34, Equation 4.25 can be obtained: 
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Multiplying Equation 4.16 by a2/k34, 4.26 can be obtained: 
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Now, in equations 4.23-24-25-26, there are four free parameters: three design 

parameters (a3/a2, a4/a2, k45/k34) and a force-spring ratio Fa2/k34. For all combination 

of these parameters, different output strokes can be achieved. In order to generalize 

the approach, unit length can be taken into consideration. Therefore, the unit of 

spring constants becomes Nunit/rad. 

 

By using Matlab, for a constant a3/a2 and k45/k34 ratio, increasing a4/a2
 with small 

increments for a set of  different values of Fa2/k34,  equations 4.23-24-25-26can be 

solved numerically for whole crank rotation. After full-rotation of the crank, 

maximum and minimum value of the s15/a2 (which yields to the stroke) can be 

determined. For the interval of the pre-determined design parameters, this procedure 

can be repeated. Finally, by interpolating results data, a design chart can be obtained. 
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4.9 Example  

 

Determine design charts for Fa2/k34 = {1, 1.5, 2, 3, 10}, a4/a2 = {0.1, 0.2,.., 0.9,1} , 

a3/a2 = {5/2} and k45/k34 = {0.7, 1, 1.3}according to the procedure mentioned in 

Section 4.8. Also check the maximum spring deflections from their corresponding 

un-deflected positions for each chart.   

 

By solving equations 4.23, 4.24, 4.25 and 4.26 numerically (By using the codes 

given in Appendices A and C) and using “cubic spline interpolation” for the related 

data, the design charts below are obtained:  

 

The maximum spring deflection chart indicates the absolute value of the greater 

deflection of the two springs from their un-deflected position that occurs after the 

full-rotation of the crank.  
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Figure 4.17a The Design Chart and the corresponding Spring Deflection of the 

Variable Stroke Mechanism for k45/k34 = 0.7 and a3/a2 = 2.5 
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Figure 4.17b The Design Chart and the corresponding Spring Deflection of the 

Variable Stroke Mechanism for k45/k34 = 1 and a3/a2 = 2.5 
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Figure 4.17c The Design Chart and the corresponding Spring Deflection of the 

Variable Stroke Mechanism for k45/k34 = 1.3 and a3/a2 = 2.5 
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4.10 Example  

 

Determine design charts for Fa2/k34 = {1, 1.5, 2, 3, 10}, a4/a2 = {0.1, 0.2,.., 0.9,1} , 

a3/a2 = {7/2} and k45/k34 = {0.7, 1, 1.3}according to the procedure mentioned in 

Section 4.8. Also check the maximum spring deflections from their corresponding 

un-deflected positions for each chart.   

 

 

By solving equations 4.23, 4.24, 4.25 and 4.26 numerically (By using the codes 

given in Appendices A and C) and using “cubic spline interpolation” for the related 

data, the design charts below are obtained: 

 

 

The maximum spring deflection chart indicates the absolute value of the greater 

deflection of the two springs from their un-deflected position that occurs after the 

full-rotation of the crank.  
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Figure 4.18a The Design Chart and the corresponding Spring Deflection of the 

Variable Stroke Mechanism for k45/k34 = 0.7 and a3/a2 = 4 
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Figure 4.18b The Design Chart and the corresponding Spring Deflection of the 

Variable Stroke Mechanism for k45/k34 = 1 and a3/a2 = 4 
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Figure 4.18c The Design Chart and the corresponding Spring Deflection of the 

Variable Stroke Mechanism for k45/k34 = 1.3 and a3/a2 = 4 
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From many trials it is concluded (which are not shown here) that link 3 (a3/a2) does 

not have a major effect on the stroke of the mechanism. Also from the charts given 

in Figure 4.17 and 4.18, it is seen a3/a2 does not affect the results significantly. 

 

For a required output-force and stroke there are infinite set of solutions. Designer is 

free to synthesize various mechanisms. In the next example, according to the charts 

above, a mechanism is synthesized. 

 

4.11 Example  

 

Design a variable stroke mechanism for maximum output-link force F = 100N and 

an output stroke of 100mm. Assume variation of F15 as it is in Figure 4.16. Take 

a3/a2 = 2.5, a4/a2 = 0.5 and k45/k34 = 1. The maximum allowable spring deflection is 

required to be 1000. 

 

According to requirements, the design chart given in Figure 4.17 is suitable. Let 

Fa2/k as 2. Then from 4.17b ∆s15/a2 will be 2.1 and corresponding maximum spring 

deflection is 640. 

 

Since the stroke is required to be ∆s15 =100mm, 100/a2 = 2.1 then a2 = 47.62mm. 

Since a3/a2 = 2.5 then a3 will be 119.04mm. Also a4/a2 = 0.5 therefore a4 = 

23.81mm.Since F = 100 and a2 = 47.62 mm then (Fa2/k = 2) k is 2.381Nm/rad. 

 

 

4.12 Example  

   

For the mechanism designed in Example 4.11, determine new stroke if the maximum 

output-load is increased to 3/2 of its initial value. 

 

 For the second loading Fa2/k will be 3. According to Figure 4.17b, for a3/a2 = 5/2, 

a4/a2 = 0.5, Fa2/k = 3 ∆s15/a2 is 2.25. Since a2 = 47.62mm ∆s15 is 107.145mm. The 

corresponding maximum spring deflection is 940. 
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CHAPTER V 

 

 

 

FIVE-BAR MECHANISM 
 

 

 

 

5.1 Introduction 

 

Initially, for simplicity of the equations a two degree-of-freedom, five-link in-line 

slider-crank mechanism (Figure 4.1) is taken into the consideration in chapter IV. In 

this part a more complicated unconstrained two degree-of-freedom mechanism is 

considered. It is a five-bar mechanism as shown in Figure 5.1: 

 

k34

 T12

2

3

T15

5

4

k45

θ12

θ13
θ14

θ15

 
Figure 5.1 Five-Bar Variable Structure Mechanism 
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The two torsional springs (k34, k45) are mounted between links 3 and 4 and links 4 

and 5. The input is at crank (link 2) and the output is at link 5. The link proportions 

are assumed to be selected such that the crank can make full-rotations and the output 

link oscillates. The output-load is assumed to be resistive to the motion of the output 

link of the mechanism. The direction of rotation of the crank is assumed to be 

counter clock-wise. 

 

 

This mechanism is analyzed with the method of virtual work similar to the variable 

stroke mechanism. The analysis procedure is explained in detail in Section 5.2. 

 

 Unlike in the case of variable stroke mechanism, defining the output-link load 

according to the crank position is not possible for the five bar mechanism. The major 

problem in the analysis of the five-bar mechanism is the uncertainty of the position 

of direction change of the output-link prior to kinematic analysis. (This problem is 

clearly stated in Section 5.3) Therefore, a technique for approximate estimation of 

the dead centers of the unconstrained multi degree-of- freedom mechanisms is 

introduced by the author in Section 5.6. 

 

Finally, a generalization procedure is introduced in Section 5.8 to obtain design 

charts relating the output torque and spring constants and output stroke of the 

mechanism. The design charts are given in Example 5.9. 
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5.2 Analysis of the Five-Bar Mechanism 

 

In this part, the analysis of the mechanism using the method and the assumptions 

given in Section 3.2 is presented. 

    

The virtual work of the active loads is (Figure 5.2): 

 

1515212121 W   ,W δθδδθδ TT ==                (5.1) 

 T12 θ12
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3
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T15
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4
θ13

θ14
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δθ15

F34

F34

δθ13

 
 

Figure 5.2 The Five-Bar Mechanism with the Spring Forces shown Active 

 

The virtual works of the springs are (Figure 5.2); 

 

 

   (5.3)                                    )c-(kT  ),c-(kT

where,

(5.2)                                     ,

45151445453414133434

154514454143413343

+=+=

−=+−=

θθθθ

δθδθδδθδθδ TTWTTW

 

 

“kij” represents linear spring stiffness, “cij” is the spring initial position constant 

between ith and jth links . Also ai represents length of the ith link. 



 62

 

Then, the virtual work of all the active forces is  

  

 4321 WWWWW δδδδδ +++=               (5.4) 

   

Or, 

 

)()( 14154514133415151212 δθδθδθδθδθδθδ +−++−++= ss TTTTW          (5.5) 

 

Since the five-bar mechanism is a two degree-of-freedom mechanism, the virtual 

work for a system with two degree-of-freedom can be expressed in generalized 

coordinates as; 

 

2211 QQW qq δδδ +=               (5.6) 

  

Where Qi represents generalized forces and qi represents virtual displacements. 

 

Therefore, the four infinitesimal displacements in Equation 5.5 must be reduced to 

two virtual displacements. 

 

The loop closure equations of the mechanism are 

  

1155144133122 coscoscoscos aaaaa =−−+ θθθθ                                  (5.7) 

 

0sinsinsinsin 155144133122 =−−+ θθθθ aaaa                                         (5.8) 

 

 

By taking the differentials across of Equations 5.7 and 5.8 yields, 

 

0sinsinsinsin 15155141441313312122 =++−− δθθδθθδθθδθθ aaaa            (5.9) 
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 0coscoscoscos 14144141441313312122 =−−+ δθθδθθδθθδθθ aaaa          (5.10) 

 

From Equations 5.9 and 5.10, virtual displacements can be determined as; 
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Substituting Equations 5.11 and 5.12 into Equation 5.5, yields the form below: 

 

215112 QQW ⋅+⋅= δθδθδ            (5.13) 

 

The principle of virtual work tells that a necessary and sufficient condition for 

generalized equilibrium is that each of the generalized forces Qi must vanish. 

 

 0Q    ,0Q 21 ==             (5.14) 

 

According to above procedure, after some manipulations, two equilibrium equations 

can be obtained as: 
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Kinematic and force analysis of the mechanism can be performed by solving 

Equations 5.7, 5.8, 5.15, 5.16 simultaneously. 

 

If four of the five position variables are known, T15 and T12 can be determined in 

closed-form. But generally this is not the required case. 

 

If the output force (T15) and the crank angle (θ12) are known (this is the most 

common case), Equations 5.7, 5.8, 5.15, 5.16  become highly non-linear for the rest 

unknown parameters. These parameters are; θ13, θ14, stroke θ15, input torque T12.  

 

Analytical solution of these non-linear equations may not be possible. Therefore, a 

numerical solution method can be performed.  

 

These non-linear equations are solved numerically via Matlab (by using the “fsolve” 

function which finds a root (zero) of a system of nonlinear equations). All the 

equations of the mechanisms investigated in following examples are solved for full-

rotation of crank with one degree of increment. Many trials show that feasible 

solutions of these non-linear equations require close initial guesses. For instance, a 

set of initial guess for zero degree of crank angle may not be appropriate for the 

same mechanism at 1800. Therefore, in order to find quick and good solution, the 

code used for solution is modified so that initial guesses are obtained from the 

previous cycle’s set of solutions. 
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5.3 Definition of the Output-Link’s Torque Function with Differential Method 

 

In this study, during the analyses of all the mechanisms, it is assumed that the 

output-load varies in between a maximum value in work stroke and one-fifth of its 

work-stroke value in return stroke. Also both forces are assumed to be resistive to 

the motion of the output-link. According to this output loading criteria, for the in-line 

variable-crank mechanism analyzed in the previous parts, defining the output-load 

function is easy. Because (as explained in Section 4.2 in detail) for the in-line 

variable stroke mechanism for resistive output loads, when θ12 = 0 or θ12 = π the 

mechanism is “approximately” at the dead centers.  Therefore, according the position 

of crank, the load at the output-link can be easily defined as required. But the case is 

different when five-bar mechanism is taken into consideration. Because, there is no 

direct relation between position of the crank and the dead centers of the mechanism 

as in the case of the variable stroke mechanism 

 

Since kinematics of multi degree-of-freedom unconstrained mechanisms is unknown 

before the loads are applied; in general working range of output-link is also 

uncertain. Moreover, magnitude of the output load is a major parameter that directly 

affects the output-link’s oscillation interval. Without knowing working zone of 

output-link before kinematic analysis, defining an “exact” output-link load function 

which changes its direction at the dead centers is impossible.  

 

Since the equations of the motion of the five-bar mechanism are solved numerically, 

one of the simplest methods is to relate output-torque with difference of the output-

link angle for each step of the numerical solution.  

 

In the next example, the direction of the output-link is determined by taking 

differential of θ15 in each step. If direction of rotation of θ15 is negative, the 

mechanism is in work stroke or vice-versa (Figure 5.1). The output link torque (T15) 

is defined as h1 or –h1/5 according to work or return stroke respectively.  
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5.4 Example 

 

Perform the analysis of a five-bar mechanism with the following link lengths and 

spring constant by the method mention in Section 5.2: a1 = 2.5 unit, a2 = 0.7, a3 = 

1.7, a4 = 1.7, a5 = 1.5, k34 = k45 = 5 N.unit/rad. Take h1 = 0.5. From the procedure 

mentioned in Section 5.5, initial spring constants can be taken as c34 = 2.5 and c45 = -

0.5. The output-loading is as follows: 
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According to the above loading, by solving Non-linear Equations 5.7, 5.8, 5.15, 5.16 

numerically, θ13, θ14, θ15 and T12 can be determined. In Figure 5.3 θ13, θ14 and θ15 vs. 

θ12 are shown:  
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Figure 5.3 θ13, θ14, θ15 vs. θ12 

 
Figure 5.4 T15 vs. θ12 
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From Figure 5.4 it is seen that, both sign and magnitude of the output-link torque 

fluctuates between 0.5 and -0.1 continuously. Therefore, motion of the links is 

hesitant for whole cycle (Figure 5.3).  

 

In order to get rid of this characteristic, one may obtain a function that decreases 

magnitude of the output link torque around dead centers of the mechanism: 

  

According to Equation 5.22 output torque can be related with increments of the 

output-link. Around dead centers of the mechanism, this equation minimizes the 

magnitude of the output-torque, since difference of an output-link angle of a 

mechanism decreases when the mechanism is at or close to its dead centers. 

Therefore, in theory smooth changes can be obtained at dead centers 

 

)( 11515115 −−⋅∝ iii hT θθ                                                                               (5.22)   

 

However, many trials show that, this torque definition also causes undesired 

oscillations of the output-link near dead centers of the mechanism. In the next 

example this phenomenon is shown. In the following example the same mechanism 

in Example 5.4 is analyzed with the output-loading defined as in Equation 5.22. 
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5.5 Example 

 

Perform the analysis of five-bar mechanism with the following link lengths and 

spring constant, by the method mention in Section 5.2 a1 = 2.5 unit, a2 = 0.7, a3 = 

1.7, a4 = 1.7, a5 = 1.5, k34 = k45 = 5 N.unit/rad. Take h1 = 8. From the procedure 

mentioned in Section 5.7, initial spring constants can be taken as c34 = 2.5 and c45 = -

0.5. The output-loading is as follows (Equation 5.22 is taken into consideration): 
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By solving non-linear Equations 5.7, 5.8, 5.15, 5.16 numerically; θ13, θ14 and θ15 and 

T12 can be determined. In Figure 5.5 θ13, θ14, θ15 vs. θ12 are shown:  
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Figure 5.5 θ13, θ14, θ15 vs. θ12 

   

5

T15

x y

θ15

 
 

Figure 5.6 Oscillatory Regions for the Output-Link 

 

In Figure 5.5 it is shown that, at the regions indicated (x, y) (Figure 5.6), the output-

link starts to hesitate (Equation 5.22) Because, just after folded and extended 

positions of the mechanism, direction of rotation of the output-link changes. 
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Therefore, in the next step sign of the output torque (Equation 5.22) also changes. 

After one more step due to direction change of the torque (in most cases) the output-

link moves back to a position further than its folded position (or extended) before the 

direction change. Then since direction of the motion of the output-link angle is 

changed again, the next step will be affected due to Equation 5.22. In order to obtain 

smooth torque variation at the output-link, the output-link angle increments are 

required to increase or decrease monotonically in between desired values.  

  

Many trials showed that, unless having too small output-load (with respect to the 

stiffness of the springs), these undesired oscillations take place around the dead 

centers of the mechanism. 

 

Using variable step sizes depending on position of the output-link or some complex 

algorithms did not yield a convenient solution to the output link torque for all 

mechanisms. Therefore, another, rather simple and convenient method is required to 

obtain smoothly increasing and decreasing torque at the output-link. 
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5.6 An Approximate Estimation Technique of Dead Centers of the Five-Bar 

Mechanism 

 

As it is mentioned in Section 5.3, for unconstrained multi-degree of freedom 

mechanisms, dead center positions can not be determined before applying the loads. 

But, the author introduced an approximate estimation technique for dead centers for 

unconstrained five-bar mechanism without using to the difference of the output-link 

angle for each step of the numerical solution.  

 

From many examples, it is observed that for resistive output-loads, the five-bar 

mechanism behaves like an imaginary four-bar mechanism formed with the 

imaginary coupler-link (dashed line), links 2 and 3 that are shown in Figure 5.7. This 

imaginary line (variable length) connects the input and output-link of the 

mechanism. 

3

2
θ12

θ14

θ15

φ16
5

4

θ13

 
Figure 5.7 The Imaginary Coupler-Link for The Five-Bar Mechanism 

 

Mathematically speaking, if the output load is resistive to the motion of the output-

link or the output-load is zero, it is observed that; 

For 0 ≤ θ12 ≤ 2π and 12θ > 0;            (5.28)

 Approximately; 

• If  0 < θ12 - φ16 < π, then 15θ  > 0,                                                        (5.29) 

• If  π   < θ12 - φ16 < 2π, then 15θ < 0.                     (5.30)   
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Therefore, it can be concluded that if θ12 = φ16, the mechanism is at or very close to 

its extended position and if θ12 = φ16 + π, the mechanism is at or very close to its 

folded position. 

 

Since, a function satisfying below conditions is required; then, it is clear that a 

function is essential whose magnitude is approximately zero when θ12 - φ16 = 0 and 

π. Sine function is one of the appropriate solutions for the requirements above. Also 

it will have a peak when θ12 - φ16 = π/2, 3π/2. And also in between these values, sine 

function smoothly increases and decreases.  

 

• Around the dead centers of the mechanism the output-link torque must be too 

small (nearly zero) to obtain a smooth change of direction of the load. 

 

• In between the maximum and minimum values the change of the output-

torque must be smooth. 

 

 

One of the possible output-torque relations considering the imaginary coupler-link 

can be defined as: 

 

For 0 ≤ θ12 ≤ 2π;             (5.31) 
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  (5.33)               stroke)-(work        ,)sin(T                     ,        

(5.32)           stroke)-reverse(     ,)sin(
5

T      ,0 

16121 15

1612
1

 151612

φθ

φθπφθ

−⋅=

−⋅
−

=<−≤

hElse

hIf

              

In the next example, analysis of the five-bar mechanism investigated in previous 

examples is performed with this torque function (5.31-32-33).   
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5.7 Examples  

 

5.7.1 Example 

 

Perform the analysis of a five-bar mechanism with the following link lengths and 

spring constant, by the method mention in Section 5.2 a1 = 2.5 unit, a2 = 0.7, a3 = 

1.7, a4 = 1.7, a5 = 1.5, k34 = k45 = 3 N.unit/rad. Maximum torque (h1, Equation 5.31-

32-33) during the work stroke is h1 = 1Nunit.  From the procedure mentioned in 

Section 5.8, initial spring constants can be taken as c34 = 2.5 and c45 = -0.5 

 

θ13, θ14, θ15 and T12 can be determined by solving Non-linear Equations 5.7, 5.8, 

5.15, 5.16 numerically (By using the codes given in Appendices D and E);. In Figure 

5.8 θ13, θ14, θ15 vs. θ12 are shown: 

 

 

 

 
Figure 5.8 θ13, θ14, θ15 vs. θ12 for k34 = k45 = 3 N.unit/rad 

 



 75

5.7.2 Example 

 

Perform the analysis of the five-bar in the Example 5.7.1 with same data except 

different initial spring constants; k34 = k45 = 5 N.unit/rad 

  

By solving Non-linear Equations 5.7, 5.8, 5.15, 5.16 numerically (By using the codes 

given in Appendices D and E); θ13 and θ14 and T12 can be determined. In Figure 5.9 

θ13, θ14, θ15 and vs. θ12 are shown:  

 
Figure 5.9a θ13, θ14, θ15 vs. θ12 k34 = k45 = 5 N.unit/rad 
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Figure 5.9b T15 vs. θ12 k34 = k45 = 5 N.unit/rad 
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5.7.3 Example  

 

Perform the analysis of the five-bar in Example 5.7.1 with same data, except a 

different initial spring constants c34 = 1.5 and c45 = -0.5 

 

By solving Non-linear Equations 5.7, 5.8, 5.15, 5.16 numerically (By using the codes 

given in Appendices D and E); θ13, θ14, θ15 and T12 can be determined. In Figure 5.10 

θ13, θ14, θ15 vs. θ12 are shown:  

 

 
Figure 5.10 θ13, θ14, θ15 vs. θ12 for c34 = 1.5 and c45 = -0.5 

 

Both these examples and many other examples (not shown) indicate that motion of 

the links is smooth for whole cycle with Equations 5.31-32-33. There are no sharp 

and sudden changes in motion of the links. 

 

In Example 5.7.2, stiffness of the springs is increased 5/3 times. But from the plots it 

is seen that, kinematics of the mechanism is nearly the same in Examples 5.7.1 and 
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5.7.2. When the initial spring constant is changed, as in Example 5.7.3, kinematics of 

the mechanism is radically changed. These examples indicate that when the 

appropriate parameter is changed, the mechanism can be adaptable for different 

tasks. From Examples 5.7-1-2-3 it is seen that the motion of the links (Figures 5.8a, 

5.9, 5.10) smoothly changes for the whole cycle according to the loading given in 

Equation 5.31-32-33. It is seen from Figure 5.9a that the dead centers of the 

mechanism occur at θ12 = 450 and θ12 = 2400. From Figure 5.9b it is also seen that 

the output-link torque changes its direction when θ12 = 300 and θ12 = 2200. From 

many examples, approximately this amount of error (up to 250) in torque function’s 

direction change position is observed. Therefore, the method of approximate 

estimation of dead centers can be assumed feasible 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 79

5.7.4 Example 

 

Display the mechanism for every 450 crank angle of a five bar mechanism for the 

following data: a1 = 1 unit, a2 = 0.3, a3 = 0.7, a4 = 0.7, a5 = 0.5, k34 = k45 = 3 

N.unit/rad. The maximum torque (h1, Eq. 5.31-32-33) during the work stroke is h1 = 

1 Nunit.  From the procedure mentioned in Section 5.8, initial spring constants can 

be taken as c34 = 2.5 and c45 = -0.5 

 

 

By solving Non-linear Equations 5.7, 5.8, 5.15, 5.16 numerically and using Matlab 

the animation can be performed. The animation of the structure for every 450 crank 

angles is shown in the following figures.  

 

 

 

 
Figure 5.11a Sketch of a Five-Bar Mechanism 
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Figure 5.11b Sketch of a Five-Bar Mechanism 
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Figure 5.11c Sketch of a Five-Bar Mechanism 
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Figure 5.11d Sketch of a Five-Bar Mechanism 
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Figure 5.11e Sketch of a Five-Bar Mechanism 
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5.7.5 Example  

 

Sketch input and output link torque of a five-bar mechanism with the following link 

lengths, by the method mention in Section 5.2 a1 = 2.5 unit, a2 = 0.7, a3 = 1.7, a4 = 

1.7, a5 = 1.5 for k34 = k45 = 3 N.unit/rad, 5 N.unit/rad and 3 N.unit/rad(c34 = 1.5 and 

c45 = -0.5) respectively. The maximum torque (h1, Eqs. 5.31-32-33) during the work 

stroke is h1 = 1 Nunit.  From the procedure mentioned in Section 5.7, initial spring 

constants can be taken as c34 = 2.5 and c45 = -0.5 

  

By solving Non-linear Equations 5.7, 5.8, 5.15, 5.16 numerically (By using the codes 

given in Appendices D and E); the output and input torque can be determined for the 

required data. The results are shown in Figures 5.12-13-14 respectively.  

 

 
Figure 5.12 T12, T15 vs. θ12 for k34 = k45 = 3 N.unit/rad 
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Figure 5.13 T12, T15 vs. θ12 for k34 = k45 = 5 N.unit/rad 

 
Figure 5.14 T12, T15 vs. θ12 for k34 = k45 = 3 N.unit/rad and c34 = 1.5 and c45 = -0.5 
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From Figure 5.12 it is seen that, when k34 and k45 are equal to 3 N.unit/rad, 

magnitude of the output-link torque (T15) is approximately 0.7 times of the input 

torque (T12) during the work-stroke. But, when k34 and k45 are equal to 5 N.unit/rad, 

magnitude of the output-link torque is roughly half of the input torque during the 

work-stroke.  From the Figure 5.8-9 it is seen that, kinematics of the mechanism is 

nearly the same. However, it is observed that spring constants have a major effect on 

magnitude of the input-torque (T12).  Energy storage of the mechanism may increase 

and decrease according to the stiffness of the spring. If appropriately optimized, this 

characteristic may become advantage for some cases.   
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5.8 Generalization of the Five-Bar Mechanism 

 

Similar to the variable stroke mechanism, synthesis of the five-bar mechanism is 

uncertain. But at least, a chart relating the output force and spring constants and 

output stroke of the mechanism is essential.   

 

 

In equations 5.7, 5.8, 5.15, 5.16  there are ten free design parameters (a1 a2 a3 a4 a5 a4 

k34 k45 c34 c45) for the structure. For every combination of these parameters a different 

output-stroke (∆θ15) may be obtained. Also output-torque “T15” is a free parameter. 

Since this is an unconstrained mechanism, all these eleven parameters are functions 

of the kinematics of the mechanism. So a simple-two dimensional chart will be 

possible by fixing a lot of parameters. Therefore a three-dimensional chart will be 

more powerful for a design chart. Nevertheless, there are still too many parameters, 

so a simplification is required. 

 

Firstly, all the related equations (5.7, 5.8, 5.15, 5.16) can be divided by a1. So, link 

proportions can be considered as a5/a1 a4/a1, a3/a1 and a2/a1.  

 

 

Successive trials showed that, the spring initial position constant “cij” does not have 

a major effect on the stroke of the mechanism. At this moment, this parameter can be 

kept constant with a suitable value. Therefore, appropriate values for c34 and c45 must 

be determined for a combination of parameters. An initial guess is required at this 

step. In Figure 5.15 one of the possible compliant five-bar mechanisms is shown. 

Assuming that link proportions of the mechanism shown in figure is roughly in 

averages that will be analyzed in next steps, estimation can be done according to this 

mechanism 

 



 88

k34

 θ12
2

3

θ15

5

4

θ13

θ14

k45

C

D
150°

150°

 
 

Figure 5.15 The Five-Bar Variable Structure Mechanism 

 

At this position assuming that the two springs applies exactly no torque to the links, 

the spring initial position constants can be determined as follows: 

 

Torque applied to 3rd and 4th links is: 

 

   0  )c-(kT 34141334s34 =+= θθ            (5.34) 

 

From Figure 15 considering the angles at joint C:     

  

     
180

150- 0
0

1413 ππθπθ =++            (5.35) 

 

From Eq 5.34 and 5.35 c34 can be found as 2.618 

 

 

Torque applied to 4th and 5th links is: 

 

  0 )c-(kT 45151445s45 =+= θθ            (5.36) 
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From Figure 5.15, considering the angles at joint D:     

  

    2 
180

150 0
0

1415 ππθθπ =++−            (5.37) 

 

From Eq 5.36 and 5.37 c45 can be found as -0.523. 

 

 

So one take c34 = 2.5 and c45 = -0.5. Several trials showed that this intuitive approach 

for the initial spring position constants is appropriate. 

 

 

Next, torque and spring constants can be simplified; in equations 5.15, 5.16, it is 

seen that; input torque T12 and output torque T15 are linearly proportional with the 

spring constant k. Therefore, increasing both spring constant and output torque 

magnitude linearly yields exactly the same kinematics. Then spring constant and 

output torque can be considered as a single design parameter. Therefore dividing 

both of these equations by k, a more useful T15/k ratio is introduced. 

 

 

Referring to Section 5.6 output loading can be determined. From Equation 5.31-32-

33 below equation can be derived for the general case. Let the maximum value of the 

output-force T15, is T during the work stroke (1800<θ12<3600) and one-fifth of this 

value during the return stroke (T15 = -T/5): 
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For 0≤θ12<2π and 12θ > 0;            (5.38) 

 

   

   
torque.-output  theof  valuemaximum  theis T where

(5.40)                     stroke)-(work        ,)sin(T                     ,        

(5.39)                    stroke)-reverse(     ,)sin(
5

T   ,0 

1612 15

1612 151612

φθ

φθπφθ

−⋅=

−⋅
−

=<−≤

TElse

TIf

            

Rearranging the kinematic and force equations (5.8, 5.9, 5.15, 5.16) according to 

above procedure;  

 

Dividing Equation 5.7 by a1, 5.41 can be obtained: 
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                                (5.41) 

 

Dividing Equation 5.8 by a1, 5.42 can be obtained: 
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Dividing Equation 5.15 by k34, 5.43 can be obtained: 
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Multiplying Equation 5.16 by, 1/k34, 5.44 can be obtained: 
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         (5.44) 

 

 

Now there are six free parameters: five design parameters (a5/a1, a4/a1, a3/a1, a2/a1 

and k45/k34) and a torque to spring ratio T/k34. For all combination of these 

parameters, different output swing can be achieved. In order to generalize the 

approach, unit length can be taken into consideration. So, the spring constants 

becomes Nunit/rad.  

 

Five design parameters and a torque-spring ratio make two-dimensional chart 

insufficient in this case. In Section 4.8 there were four parameters, therefore two-

dimensional chart with keeping two parameters constant was sufficient to obtain a 

design chart. To use one more parameter in design charts three-dimensional charts 

must be taken into consideration. Generally three-dimensional charts are hard to read 

but in this case it is obligatory to use design three-dimensional charts.   

 

On a three-dimensional chart, on one axis output swing angle can be shown, on the 

other two axes two of the five design parameters (a5/a1, a4/a1, a3/a1, a2/a1 and k45/k34) 

can be shown.  Then three design parameters must be kept constant for the same 

chart. Generally, variations of length of the input (crank) and output-link affects 

output-link swing more than coupler link(s). Therefore while preparing the charts; 

the rest two-axis can be used for crank and output-link  
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By using Matlab, for the constant a3/a1 = a4/a1 and k45/k34 ratio, increasing a2/a1 and 

a5/a1 bit by bit for a set of T/k34 equations 5.41, 5.42, 5.43 5.44 can be solved 

numerically for whole crank rotation. After full-rotation of the crank, maximum and 

minimum value of the θ15 can be determined. Then, stroke of the mechanism can be 

determined. For the interval of the pre-determined design parameters, this procedure 

can be repeated. Interpolating the data a design chart can be obtained.  

 

 

The data obtained from the result of the above is plotted with the function “grid 

data” in Matlab for the following examples. Grid data fits a surface of the form z = f 

(x, y) to the data in the (usually) non-uniformly spaced vectors (x,y,z). The surface 

always passes through the data points. Triangle-based cubic interpolation method is 

used. The grid-data command uses the method documented in [14] and [15]. 
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5.9 Examples  

 

5.9.1 Example 

 

Determine three dimensional design charts to obtain output-link swing for each 

k45/k34 = {0.7, 1, 1.3}. Take the rest of the variables as: 

   

• a2/a1 = {0.2, 0.3,.., 0.5} 

•  a5/a1 = {0.6, 0.7,.., 1}  

• T/k34 = {0.1, 1.2} 

 

Where the fixed parameters are: 

 

c34 = 2.5 and c45 = -0.5,   a3/a1 = a4/a1 = 0.7.  

 

Also check the maximum spring deflections from their corresponding un-deflected 

positions for each chart 

 

 

By solving equations 5.41, 5.42, 5.43 5.44 numerically (using the codes given in 

Appendices D and F) and using “cubic spline interpolation” for the related data, the 

below charts are obtained. 

 

The maximum spring deflection chart indicates the absolute value of the greater 

deflection of the two springs from their un-deflected position that occurs after the 

full-rotation of the crank.  
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Figure 5.16a The Design Chart and the corresponding Spring Deflection of the Five-

Bar Mechanism for k45/k34 = 0.7 and a3/a1 = a4/a1 = 0.7 
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Figure 5.16b The Design Chart and the corresponding Spring Deflection of the Five-

Bar Mechanism for k45/k34 = 1 and a3/a1 = a4/a1 = 0.7 
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Figure 5.16c The Design Chart and the corresponding Spring Deflection of the Five-

Bar Mechanism for k45/k34 = 1.3 and a3/a1 = a4/a1 = 0.7 
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5.9.2 Example 

 

Determine three dimensional design charts to obtain output-link swing for each 

k45/k34 = {0.7, 1, 1.3}. Take the rest of the variables as: 

   

• a2/a1 = {0.2, 0.3,.., 0.5} 

•  a5/a1 = {0.6, 0.7,.., 1}  

• T/k34 = {0.1, 0.8} 

 

Where the fixed parameters are: 

 

c34 = 2.5 and c45 = -0.5,   a3/a1 = a4/a1 = 1.2.  

 

Also check the maximum spring deflections from their corresponding un-deflected 

positions for each chart. 

 

 

By solving equations 5.41, 5.42, 5.43 5.44 numerically (using the codes given in 

Appendices D and F) and using “cubic spline interpolation” for the related data, the 

below charts are obtained. 

 

The maximum spring deflection chart indicates the absolute value of the greater 

deflection of the two springs from their un-deflected position that occurs after the 

full-rotation of the crank.  
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Figure 5.17a The Design Chart and the corresponding Spring Deflection of the Five-

Bar Mechanism for k45/k34 = 0.7 and a3/a1 = a4/a1 = 1.2 
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Figure 5.17b The Design Chart and the corresponding Spring Deflection of the Five-

Bar Mechanism for k45/k34 = 1 and a3/a1 = a4/a1 = 1.2 
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Figure 5.17c The Design Chart and the corresponding Spring Deflection of the Five-

Bar Mechanism for k45/k34 = 1.3 and a3/a1 = a4/a1 = 1.2 
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One can easily determine link proportions from the design charts shown in Figure 

5.16, 5.17, 5.18 according to the required loading and output torque conditions. 

 

Examples 5.9-1 and 2also show that if five-bar mechanism is appropriately designed, 

it has flexibility according to the varying output torque. All these three examples 

show that when T/k34 ratio changes output-link swing also changes significantly.  
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CHAPTER VI 

 

 

CONCLUSIONS and RECOMMENDATIONS 

 
 

 

 

 

In this study, analysis and design procedures are developed for unconstrained multi 

degree-of-freedom partially compliant mechanisms. The approaches are shown with 

two different mechanisms. Initially, a five-link in-line slider-crank mechanism 

(variable stroke mechanism) is analyzed (Section 4.2).  The kinematic and force 

analysis of the mechanism is performed simultaneously. Then, a two-dimensional 

design chart according to output-link oscillation using dimensionless parameters is 

produced. In the second part of the study, “five-bar mechanism” (Section 5.2) is 

investigated. Similar analysis and design approaches are used. Also an original 

method (Section 5.6) to estimate dead centers of the five-bar mechanism is 

developed. 

 

 

 



 103

After the study, it is concluded that the kinematic and force analysis of multi degree-

of-freedom unconstrained mechanisms can be performed by using the method of 

virtual work (Section 3.2) and numerical solution methods (by using the codes given 

in appendices). The codes (Appendices) are modified so that initial guesses are 

obtained from the previous cycle’s set of solutions to obtain accurate solutions 

quickly.  

 

In this study, during the analyses of all the mechanisms, it is assumed that the 

output-load varies between a maximum value in the work stroke and one-fifth of its 

work-stroke value in return stroke. Also both the loads are assumed to be resistive to 

the motion of the output link. Since kinematics of multi degree-of-freedom 

unconstrained mechanisms is uncertain before the loads are applied, the working 

zone of the output-link is also uncertain. Before the kinematic analysis, without 

knowing working zone of the output-link defining an “exact” output-link load 

function which changes its direction at the dead centers is not possible. Therefore, a 

procedure is required to determine the output-link torque function. But the variable 

stroke mechanism is an exception to this case. 

 

In the given examples it is observed that, for the in-line variable stroke mechanism 

(Figure 4.1) with resistive output loads, the mechanism is “approximately” at its 

dead centers when θ12 = 0 or θ12 = π. In other words, as in the case of the 

conventional in-line slider-crank mechanism the position of crank is the major 

parameter that defines working and return strokes. Then, the output-link load can be 

simply a function of the crank’s position for the “inline” variable stroke mechanism. 

In fact, as it is shown in Examples 4.5-1-2-3 (Figures 4.6a, 4.9b, 4.11b), the direction 

changes of the output-link (dead centers) occur approximately around θ12 = 0 or θ12 

= π according to the loading given by Equation 4.23 (Note that these examples do 

not guarantee that the dead centers always occur when θ12 = 0 or θ12 = π for all types 

of loadings)  

 

However, the case is different when the five-bar mechanism is considered. Because, 

there is no direct relationship between the position of the crank and the dead centers 
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of the mechanism as in the case of the variable stroke mechanism. Since the 

equations of the motion of the five-bar mechanism are solved numerically, one of the 

simplest methods is to relate output-torque with difference of the output-link angle 

for each step of the numerical solution. However, many trials show that this 

approach (Section 5.3) causes the output-link to hesitate as it is shown in Examples 

4.4 and 4.5. Therefore, using variable step sizes depending on position of the output-

link or some complex algorithms did not yield a convenient solution for the output 

link torque for all mechanisms. Therefore, another, rather simple and convenient 

method is required to obtain a smoothly increasing and decreasing torque at the 

output-link. 

 

According to this requirement, an original estimation technique (Section 5.6) for the 

dead centers of the unconstrained five-bar mechanism which does not use the 

difference of the output-link angle for each step of the numerical solution is 

introduced.  

 

From the given examples, it is observed that for resistive output-loads the five-bar 

mechanism behaves like an imaginary four-bar mechanism formed with the 

imaginary coupler-link (dashed line), links 2 and 3 which are shown in Figure 5.7. 

Therefore, it is concluded that, according to this imaginary line, if θ12 = φ16, the 

mechanism is at or very close to its extended position and if θ12 = φ16 + π, the 

mechanism is at or very close to its folded position. By using this approach an 

output-loading function (Equations 5.31-32-33) is formed. Also, it is observed that 

this torque function perfectly suits for various mechanism and loading conditions. 

Actually, from Examples 5.7-1-2-3 it is observed that the motion of the links 

(Figures 5.8a, 5.9, 5.10) smoothly changes for the whole cycle according to the 

loading given in Equations 5.31-32-33. In Example 5.7.2 after the analysis, from 

Figure 5.9a it is seen that the dead centers of the mechanism occur at θ12 = 450 and 

θ12 = 2400. From Figure 5.9b it is also seen that the output-link torque changes its 

direction when θ12 = 300 and θ12 = 2200. From many examples, approximately 00 to 

250 amount of error in direction change position of torque function is observed. 



 105

Therefore, the method of approximate estimation of dead centers can be assumed 

feasible. 

 

When the two different types of output-load functions for the variable stroke and the 

five-bar mechanism are compared, it can be clearly observed that with the one 

depending on the approximate dead center estimation technique the motion of the 

linkages around dead centers yields a smoother motion of the links. This comparison 

can be done from the position analyses of the output-links from Examples 5.7 and 

4.5. Also the approach used to estimate dead centers of the five-bar may be useful 

for different types of unconstrained mechanisms.  

 

It is also concluded that for some tasks, the input torque characteristics of both the 

variable stroke and five-bar mechanism may radically differ from rigid link 

mechanisms performing similar tasks. Examples 4.5.1-2-3 indicate that the input 

torque (Figure 4.7, 4.10, 4.10) of the mechanisms with different design parameters 

do not change significantly. However, when the five-bar mechanism is taken into 

consideration the situation is completely different. In Example 5.7.5, it is observed 

that the input torque (Figure 5.12-13-14) of the same five-bar mechanism with 

different spring constants and initial positions affects the input torque significantly 

for similar output-loadings. Therefore, it can be stated that in some cases, the spring 

parameters may significantly affect the kinematics and input torque loading of the 

mechanisms. Also, if a mechanism is properly optimized for a given task or, in other 

words, if the internal energy can be increased during the return stroke and released 

during the work stroke, an actuator with smaller torque capacity can be used to drive 

the mechanism. 

 

The design charts obtained through the parametric analyses of the variable stroke and 

five-bar mechanisms indicate that, for such mechanisms, variations in the output-link 

torque affects output-link stroke.  In Figures 4.17-18 and 5.6-17, variation of the 

output-link stroke with respect to output-link loads is clearly indicated. Therefore, 

these design charts indicate that, when appropriately designed, these mechanisms can 

be used for the tasks where variable oscillation according to the loading is required. 
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In the literature, it is stated that in order to simply analysis and design of compliant 

mechanisms “pseudo-rigid-body” modeling (Section 2.1) technique is also used for 

the compliant mechanism “without” small flexural pivots members.  
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Figure 6.1 (a) Compliant Slider-Crank Mechanism in a Deflected Position, and its 

(b) single (c) two degree-of-freedom Pseudo-Rigid-Body Model 

 

In Figure 6.1, a compliant slider-mechanism and its pseudo-rigid-body model is 

shown. This mechanism can be designed for a specified task by employing its 

pseudo-rigid-body model. After the design an equivalent flexible member [2] can be 

determined. However, with this approach, the kinematics of the real mechanism and 

its pseudo rigid-body-model may not be exactly the same. In other words, the 

pseudo-rigid-body modeling technique yields some error (depending on the size and 

stiffness properties of the linkage) in a design procedure.  

However, if the number of the linkages in the pseudo-rigid-body model is increased, 

the error in the design procedure may be decreased. For example, if the five-link 

variable stroke mechanism (Figure 6.2c) (for which the analysis and design 

procedures are investigated in this study) is used for modeling the compliant slider-

crank mechanism (Figure 6.1a), smaller error can be achieved after the design 
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procedure (Figure 6.2). Therefore, this dissertation can also be applied to modeling 

compliant mechanisms more accurately.  

 

At the present time, for the tasks requiring flexibility, mechatronics system may 

become more advantageous than using complex structured. However, in some cases 

flexible mechanisms can be more advantageous than the mechatronics systems due 

to their lack of actuators, sensors and control system.  

 

Since the analysis and design of the multi degree-of-freedom unconstrained 

mechanisms is a new subject, there are several properties that must be investigated. 

Movability of the mechanisms and determination of the transmission characteristics 

are important issues that must be studied.  

 

With the optimization of the mechanisms, the major and minor parameters that affect 

the output-link stroke can be determined. 

 

In this study unconstrained mechanisms are investigated according to a given output-

link load. Similar mechanisms can be analyzed if the output load is applied from the 

coupler link(s).  

 

The author believes that this study can be useful for the analysis and design of both 

unconstrained multi-degree-of-freedom mechanisms and compliant mechanisms.   
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APPENDIX-A 
 

 
Function of the Variable Stroke Mechanism 
 
 
function f=mdof_vs_a(x,k,F,a2,a3,a4,c1,c2) 
k1=100; 
k2=100; 
teta2=k*pi/180; 
teta3=x(1); 
teta4=x(2); 
s=x(3); 
T=x(4); 
f(1)=-k1.*(teta3-teta4+c1).*((a2.*sin(teta2-teta4))/(a3.*sin(teta4-teta3)))-
T+k1.*(teta3-teta4+c1).*((a2.*sin(teta2-teta3))/(a4.*sin(teta4-teta3)))+k2.*(-
teta4+c2).*((a2.*sin(teta2-teta3))/(a4.*sin(teta4-teta3))); 
f(2)=k1.*(teta3-teta4+c1).*((cos(teta3))/(a4.*(sin(teta4-teta3))))-F-k1.*(teta3-
teta4+c1).*((cos(teta4))/(a3.*sin(teta4-teta3)))+k2.*(-
teta4+c2).*cos(teta3)/(a4.*sin(teta4-teta3)); 
f(3)=a2.*sin(teta2)+a3.*sin(teta3)-a4.*sin(teta4); 
f(4)=a2.*cos(teta2)+a3.*cos(teta3)-a4.*cos(teta4)-s; 
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APPENDIX-B 
 

 
Code for the Analysis of the Variable Stroke Mechanism 
 
 
clear 
a(1)=30*pi/180 
a(2)=170*pi/180 
a(3)=7 
a(4)=5 
c1=1.5; 
c2=1.5; 
F1=200; 
for k=1:1:361; 
    if k<=5 
       F=-0.12*F1*k+0.4*F1; 
    elseif k>5 & k<175   
       F=-F1/5; 
    elseif k>=175 & k<186 
       F=0.12*F1*k-21.2*F1; 
    elseif k>=186 & k<355  
       F=F1; 
    else 
       F=-0.12*F1*k+43.6*F1;  
    end 
    a2=1; 
    a3=3; 
    a4=1; 
    teta2(k)=k*pi/180; 
    a=fsolve(@(x) mdof_vs_a(x,k,F,a2,a3,a4,c1,c2),[a(1),a(2),a(3),a(4)]); 
    teta3(k)=a(1); 
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    teta4(k)=a(2); 
    s(k)=a(3); 
    T(k)=a(4); 
end 
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APPENDIX-C 
 
 
 
Code for the Design Chart of the Variable Stroke Mechanism 
 
 
clear 
clc 
a(1)=30*pi/180; 
a(2)=170*pi/180; 
a(3)=7; 
a(4)=20; 
c1=pi-0.4; 
c2=pi-0.4; 
for l=1:6; 
    F=[1 1.5 2 3 5 10]; 
    F1=F(l) 
    for m=1:10; 
        a4=m/10; 
        for k=1:1:361; 
            if k<=5; 
               F=-0.12*F1*k+0.4*F1; 
            elseif k>5 & k<175   
               F=-F1/5; 
            elseif k>=175 & k<186 
               F=0.12*F1*k-21.2*F1; 
            elseif k>=186 & k<355  
               F=F1; 
            else 
               F=-0.12*F1*k+43.6*F1;  
            end 
            a2=1; 
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            a3=3.5; 
            teta2(k)=k*pi/180; 
            a=fsolve(@(x) mdof_vs_a(x,k,F,a2,a3,a4,c1,c2),[a(1),a(2),a(3),a(4)]); 
            teta3(k)=a(1); 
            teta4(k)=a(2); 
            s(k)=a(3); 
            T(k)=a(4); 
        end 
        smax(l,m)=max(s); 
        smin(l,m)=min(s); 
        deltas(l,m)=smax(l,m)-smin(l,m) 
        a4p(l,m)=m/10 
    end 
x=2:0.001:3.8; 
y=interp1(deltas(l,:),a4p(l,:),x,'spline');     
plot(x,y) 
hold on 
grid on 
axis([2 3.8 0.1 1]) 
title('Stroke vs. Link Proportions for a3/a2 = 7/2') 
end 
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APPENDIX-D 
 
 
 
Function of the Five-Bar Mechanism 
 
 
function f=five_bar(x,k,T5,a1,a2,a3,a4,a5,c1,c2) 
k1=5; 
k2=5; 
teta2=k*pi/180; 
teta3=x(1); 
teta4=x(2); 
teta5=x(3); 
T2=x(4); 
f(1)=a2.*sin(teta2)+a3.*sin(teta3)-a4.*sin(teta4)-a5.*sin(teta5); 
f(2)=a2.*cos(teta2)+a3.*cos(teta3)-a4.*cos(teta4)-a5.*cos(teta5)-a1; 
f(3)=T2+k1.*(teta3-teta4+c1).*((a2.*sin(teta2-teta3))/(a4.*sin(teta4-teta3))-
(a2.*sin(teta2-teta4))/(a3.*sin(teta4-teta3)))-k2.*(teta4-teta5+c2).*((a2.*sin(teta2-
teta3))/(a4.*sin(teta4-teta3))); 
f(4)=T5+k1.*(teta3-teta4+c1).*((a5.*sin(teta3-teta5))/(a4.*sin(teta4-teta3))-
(a5.*sin(teta4-teta5))/(a3.*sin(teta4-teta3)))+k2.*(teta4-teta5+c2).*(1-(a5.*sin(teta3-
teta5))/(a4.*sin(teta4-teta3))); 
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APPENDIX-E 
 
 
Code for the Analysis of the Five-Bar Mechanism 
 
clear 
a(1)=50*pi/180; 
a(2)=150*pi/180; 
a(3)=80*pi/180; 
a(4)=0; 
c1=2.5; 
c2=-0.5; 
h1=1; 
T5=0.8.*h1; 
ini=1; 
for k=ini:1:360; 
    a1=2.5; 
    a2=0.7; 
    a3=1.7; 
    a4=1.7; 
    a5=1.5; 
    teta2(k)=k*pi/180; 
    a=fsolve(@(x) five_bar(x,k,T5,a1,a2,a3,a4,a5,c1,c2),[a(1),a(2),a(3),a(4)]); 
    teta3(k)=a(1); 
    teta4(k)=a(2); 
    teta5(k)=a(3); 
    T2(k)=a(4); 
    A=[0+0.*i a2.*exp(i.*(teta2(k)))]; 
    B=[a2.*exp(i.*(teta2(k))) a2.*exp(i.*(teta2(k)))+a3.*exp(i.*(teta3(k)))]; 
C=[a2.*exp(i.*(teta2(k)))+a3.*exp(i.*(teta3(k)))       
a2.*exp(i.*(teta2(k)))+a3.*exp(i.*(teta3(k)))-     a4.*exp(i.*(teta4(k)))]; 
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    D=[a2.*exp(i.*(teta2(k)))+a3.*exp(i.*(teta3(k)))-a4.*exp(i.*(teta4(k))) 
a2.*exp(i.*(teta2(k)))+a3.*exp(i.*(teta3(k)))-a4.*exp(i.*(teta4(k)))-
a5.*exp(i.*(teta5(k)))]; 
    teta6= angle(C(1,2)-A(1,2)); 
    T5p(k)=T5; 
    xx=(teta2(k)-teta6); 
    if k<ini+2 
       T5p(k)=T5; 
    else        
       if (teta2(k)-teta6)>0 & (teta2(k)-teta6)<1.00.*pi      
       T5p(k)=-h1/5.*abs(sin(teta2(k)-teta6)); 
       else 
       T5p(k)=h1.*abs(sin(teta2(k)-teta6)); 
       end 
    end 
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APPENDIX-F 
 
 
Code for the Design Chart of the Five-Bar Mechanism 
 
clear 
a(1)=50*pi/180; 
a(2)=150*pi/180; 
a(3)=80*pi/180; 
a(4)=0; 
c1=2.5; 
c2=-0.5; 
ini=1; 
a1=1.0; 
a3=1.5; 
a4=1.5; 
for l=1:2; 
    h1=[0.1 1 1]; 
    T5=0.7.*h1(l); 
    for m=1:6; 
        a5=m/(12.5)+0.52; 
        for p=1:6; 
            a2=p/(16.6)+0.14; 
            for k=ini:1:360; 
                teta2(k)=k*pi/180; 
                a=fsolve(@(x) five_bar(x,k,T5,a1,a2,a3,a4,a5,c1,c2),[a(1),a(2),a(3),a(4)]); 
                teta3(k)=a(1); 
                teta4(k)=a(2); 
                teta5(k)=a(3); 
                T2(k)=a(4); 
                A=[0+0.*i a2.*exp(i.*(teta2(k)))]; 
                B=[a2.*exp(i.*(teta2(k))) a2.*exp(i.*(teta2(k)))+a3.*exp(i.*(teta3(k)))]; 
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C=[a2.*exp(i.*(teta2(k)))+a3.*exp(i.*(teta3(k))) 
a2.*exp(i.*(teta2(k)))+a3.*exp(i.*(teta3(k)))-a4.*exp(i.*(teta4(k)))]; 
D=[a2.*exp(i.*(teta2(k)))+a3.*exp(i.*(teta3(k)))-a4.*exp(i.*(teta4(k))) 
a2.*exp(i.*(teta2(k)))+a3.*exp(i.*(teta3(k)))-a4.*exp(i.*(teta4(k)))-
a5.*exp(i.*(teta5(k)))]; 

                teta6= angle(C(1,2)-A(1,2)); 
                T5p(k)=T5; 
                xx=(teta2(k)-teta6); 
                if k<ini+2 
                    T5p(k)=T5; 
                else 
                   d1teta5 = (teta5(k)-teta5(k-1)); 
                   if (teta2(k)-teta6)>0 & (teta2(k)-teta6)<1.00.*pi      
                   T5p(k)=-h1(l)/5.*abs(sin(teta2(k)-teta6)); 
                   else 
                   T5p(k)=h1(l).*abs(sin(teta2(k)-teta6)); 
                   end 
                end 
                T5=T5p(k) 
            end     
            teta5max(m,p)=max(teta5).*180/pi; 
            teta5min(m,p)=min(teta5).*180/pi; 
            deltateta5(m,p)=(teta5max(m,p)-teta5min(m,p)) 
            a5p(m,p)=m/(12.5)+0.52; 
            a2p(m,p)=p/(16.6)+0.14; 
        end     
    end 
[a5pI,a2pI]=meshgrid(0:0.02:1); 
ZI=griddata(a5p(:,:),a2p(:,:),deltateta5(:,:),a5pI,a2pI,'cubic');     
surf(a5pI,a2pI,ZI) 
axis([0.6 1 0.2 0.5 30 130]) 
hold on 
grid on 
end 
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