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ABSTRACT 
 

 

ANALYSIS OF GRAIN BURNBACK  

AND INTERNAL FLOW IN SOLID PROPELLANT  

ROCKET MOTORS IN 3-DIMENSIONS 

 

 

YILDIRIM, Cengizhan 

Ph. D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Haluk AKSEL 

 

 

March 2007, 206 pages 

 

 

First part of the design process of the rocket is the determination of the flight-

mission requirements. After that, thrust-time curve is prepared according to these 

requirements. At this point, internal ballistic calculations are performed to estimate 

chamber pressure of the rocket motor. Composition of the propellant, grain geometry 

and nozzle geometry are so adjusted that desired chamber pressure of the motor is 

achieved. However, these parameters depend on chamber pressure itself. Therefore, 

an iterative procedure is applied.  

As explained above, grain geometry should be known to simulate pressure-

time history of the rocket motor, because, burning area of the grain depends on grain 

geometry of the propellant. Grain geometry changes as solid propellant burns. This 

change causes a change in burning area of the solid propellant. For this reason, 

burning area of the solid grain should be known at each burning steps to predict 



v 

pressure-time history of the rocket motor. The analysis for determination of the 

burning area is called “grain burnback analysis”.  

In this thesis, Initial Value Problem of Level-Set Method is applied to solid 

propellant combustion to find the grain burnback. Initial Level-Set values for each 

node of the elements are computed by using an algorithm developed in this study. 

Level-Set method is used numerically by using upwinding numerical scheme and the 

Eikonal type equations are solved for the domain which consists of cube type 

elements. By using this method, not only 1-D or 2-D conventional grains, but also 

unconventional 3-D grains are analyzed and a universal grain burnback code for all 

kinds of solid propellant grain is developed.  

For the performance prediction of the rocket motor, 0-D, 1-D and 3-D pre-

developed flow models are used depending on types of the grain configuration. For 

3-D internal flow of the solid propellant rocket motor, cube elements at the boundary 

of the interface are cut according to Exact Cut-Cell Method and tetrahedral grids are 

generated by using a free-downloadable software. 
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ÖZ 
 

 

KATI YAKITLI ROKET MOTORLARINDA 3-BOYUTLU  

YANMA GERİLEMESİ VE MOTOR İÇ AKIŞ İNCELEMESİ 

 

 

YILDIRIM, Cengizhan 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Haluk AKSEL 

 

Mart 2007, 206 sayfa 

 

 

 Roket tasarımının ilk adımı uçuş ile ilgili görev gereksinimlerinin 

belirlenmesi ile başlar. Görev gereksinimlerine göre motordan istenen itki-zaman 

ihtiyacı çıkartılır. Bu ihtiyacı karşılayacak uygun motor basıncının bulunması ile iç 

balistik incelemeleri bu noktada başlamış olur. Yakıt kompozisyonu, lüle geometrisi 

ve yakıt çekirdeği geometrisi, uygun motor basıncının bulunması için belirlenir. 

Ancak bu iş için de motor basıncı gerekli olduğu için, söz konusu belirleme deneme-

yanılma (iterasyon) yoluyla yapılır. 

 Yukarda belirtildiği gibi roket motorunun basıncının bulunabilmesi için yakıt 

çekirdeği geometrisinin belirlenmesi gerekmektedir, çünkü motor iç basıncı yakıt 

çekirdeğinin yanma alanına bağlıdır. Katı yakıt yandıkça şekli değişir, dolayısıyla 

yanma alanı da değişir. Bu nedenle motor basınç-zaman tahmininnin yapılabilmesi 

için yanma alanının her bir yanma adımı için bilinmesi gerekmektedir. Her bir yanma 

adımına karşılık gelen yanma alanının bulunması için yapılan incelemeye “yanma 

gerilemesi incelemesi” denir. 
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 Bu tezde “Initial Value Problem of Level-Set Method” yanma gerilemesi için 

katı yakıt yanmasına uygulanmıştır. İlk Level-Set değerleri bu çalışmada geliştirilen 

bir yöntemle hesaplanmıştır. Level-Set yönteminde “upwinding” sayısal yöntem 

kullanılmış ve küp elemanlardan oluşan çözüm ağı için “Eikonal” tip denklemler 

çözülmüştür. Bu yöntem ile sadece 1-Boyutlu veya 2-Boyutlu geleneksel yakıt 

çekirdek geometrileri değil, aynı zamanda 3-Boyutlu geleneksel olmayan yakıt 

çekirdek geometrileri de incelenmiş ve her tür yakıt çekirdek geometri incelemsi için 

genel bir bilgisayar programı geliştirilmiştir. 

Roket motoru başarım benzetimleri için, yakıt çekirdeği tipine göre, önceden 

geliştirilmiş 0-Boyutlu, 1-Boyutlu ve 3-Boyutlu motor iç akış modelleri 

kullanılmıştır. Üç boyutlu motor iç akışı için sınırdaki küp elemanlar Exact Cut-Cell 

yöntemi ile kesilmiş, tetrahedralardan oluşan çözüm ağı ücretsiz yüklenebilen bir 

yazılımla oluşturulmuştur. 

 

 

 

Anahtar Kelimeler: Katı Yakıt, Yakıt Çekirdeği, Yanma Gerilemesi Analizi, İç 

Balistik, Level-Set Yöntemi, Hiperbolik Korunum Kuralı 
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NOMENCLATURE 
 

 

 

a  Linear burning rate coefficient, m / s 

Ap  Port area, m2 

Sb, Ab  Burning area, m2 

A’b  Propellant burning area upstream of the cross section, m2 

Ae  Nozzle exit area, m2 

Af  Sliver area, m2 

Amotor  Motor cross sectional area, m2 

At  Nozzle throat area, m2 

c*  Characteristic velocity, m / s 

CD  Discharge coefficient, s / m 

CF  Thrust coefficient 

dw  Constant burnback distance, m 

F  Thrust, N; Burnback speed (m/s) 

g  Gravitational acceleration, m/s2 

Isp  Specific impulse, s 

J  Throat area to port area ratio 

K  Burning area to throat area ratio 

Kp  Burning area upstream of the cross section to downstream area ratio 

L  Length of the motor, m 

m&   Mass flow rate, kg / s 

md  Mass discharge flow rate from the motor, kg / s 

mg  Generated mass flow rate in the motor, kg / s 

mp  Propellant mass, kg 

n  Burning rate pressure exponent 

P  Pressure, Pa 



xxi 

Pc  Chamber pressure, Pa 

Pe  Pressure at the nozzle exit, Pa 

Pr  Prandtl number 

r& , 0r&   Linear burning rate, m / s 

rb  Erosive burning rate, m / s 

R  Gas constant of the combustion products, J / kg K 

Ru  Universal gas constant, J / Kg K 

Pb  Burning perimeter of the grain, m 

Sf  Sliver fraction 

t  Time, s 

tb  Burning time, s 

T  Temperature, K 

Tc  Chamber temperature, K 

Vc  Chamber volume, m3 

Vl  Volumetric loading 

Vp  Propellant volume, m3 

wf  Web fraction 

 

 

Greek Letters 

 

α  Erosive burning proportionality factor 

β  Erosive burning proportionality factor 

γ  Specific heat ratio 

σp  Temperature sensitivity of burning rate, % ° K-1 

πK  Temperature sensitivity of pressure, % ° K-1 

ρ  Density, kg / m3 

ρp  Propellant density, kg / m3 

µ  Gas viscosity, Pa s 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

1.1. General 

 

The main function of a rocket motor is to impart a desired velocity to a munition 

and usually to impart this velocity within a specified action time. Artillery rockets 

are pure reaction systems, in which the propulsive effort or thrust is obtained by 

variation of the momentum of the system itself. They do not depend on the oxidizer.  

A rocket motor is a typical energy transfer system. High pressure and high 

temperature gasses are generated in the system due to combustion process and these 

combustion products are expanded through a nozzle. This process converts the 

energy of the gas to the kinetic energy. The differences in pressures and velocities at 

the chamber and nozzle exit result in a thrust in the system [1], [2], [3]. This is the 

working principle of the rocket motor as shown in Figure 1. 1 [4]. 

 

 

Figure 1. 1 Energy Transfer Mechanism of the Solid Propellant Rocket Motor 
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The energy source most useful to rocket propulsion is the chemical combustion. 

As explained before, solid propellant rockets are pure reaction systems in which 

forces are produced by ejection of propellant causing pressure distribution in the 

motor. This pressure distribution produces a thrust force due to the momentum 

change resulting from the ejection of gaseous products from the rocket motor. 

 Rocket motors are classified in many ways. One of them is the classification 

of the rocket motor according to the types of propellant [3]. These are as follows: 

a) Solid Propellant Motors: As its name implies, the propellant of the motor is in 

the solid state. The propellant is contained and stored directly in the combustion 

chamber. In comparison to liquid propellant rockets, solid propellant rockets are 

usually relatively simple, are easy to apply and require little servicing 

b) Liquid Propellant Motors: In the liquid propellant motors, fuel and oxidizer are 

injected into the chamber by using the fuel and oxidizer manifolds. In the chamber, 

they are mixed and burned to form hot gaseous products. A typical rocket chamber 

assembly consists of a nozzle, a combustion chamber, an injector, a mounting 

provision and an ignition system. In some cases, the chamber assembly also includes 

integrally mounted propellant valves and controls. Very long burning times, up to 

several minutes, can be achieved with slow burning propellants. 

c) Hybrid Motors: The hybrid rocket, in which fuel is a solid phase while the 

oxidizer is in liquid phase, operates at a fairly low mixture ratio.  

 

 

1.2. Solid Propellant Rocket Motors: 

 

 

Solid propellant rocket motors are the most commonly used rocket motors. They 

consist of a motor case, a solid propellant grain, an igniter, a nozzle, an insulation 

and a liner. For double base rocket motors, insulation and liner generally are not 

present. The schematic diagram of a solid propellant rocket motor is shown in Figure 

1. 2. 
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Figure 1. 2. Solid Propellant Rocket Motor Parts 

 
 
As shown in the figure above, solid propellant rocket motor consists of a motor case, 

an igniter, a nozzle, an insulation-liner and a solid propellant. 

a) Motor Case: Generally motor case is a steel cover containing the solid 

propellant, igniter and insulator. The combustion usually takes place in the steel case; 

therefore, sometimes it is referred to as combustion chamber. The combustion 

chamber is almost a cylindrical thin-walled pressure vessel whose thickness can be 

calculated by using the thin-walled pressure vessel assumption. In addition to the 

stresses due to the pressure in the chamber, thermal stresses may sometimes be 

critical and, when the case also serves as missile body, bending loads and inertial 

forces also play an important role in calculating the thickness of this case. Generally, 

the motor case is produced from heat treated or normalized steel alloy of 4XXX 

series [5]. The motor case is also produced from fiberglass or carbon fiber-reinforced 

plastic resin. The structure of a fiberglass-reinforced plastic consists of fiberglass 

filaments matted together, with the interstices filled in by a plastic resin. Production 

can be made by winding the filaments around a rotating mandrel and by 

impregnating the matrix with the resin. 

b) Igniter: Solid propellant ignition consists of a series of complex rapid 

events, which start with the receipt of a signal. These events include heat generation, 

transfer of the heat from the igniter to the motor grain surface, spreading of the flame 
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over the entire burning surface area of the grain and filling the chamber free volume 

with gas. Conventionally, the ignition process is divided into three phases; ignition 

time lag is the first phase. It is the period between the moment that the igniter 

receives a signal and the moment that the first bit of grain surface burns. It takes 

approximately 10 ms to 0.5 s depending on the propellant composition, propellant 

loading, temperature of the propellant and igniter. Flame-spreading interval is the 

second phase. It is the time from the first ignition of the grain surface until the 

complete grain burning area has been ignited. This interval takes approximately 10 

ms to 200 ms depending on the propellant composition, propellant loading, 

temperature of the propellant and igniter. Chamber-filling interval is the third phase. 

It is the time required for completing the chamber-filling process and reaching 

equilibrium flow. It takes generally 5 ms to 100 ms. depending on the propellant 

composition, propellant loading, temperature of the propellant and igniter. 

Conventional heat releasing compounds are usually pyrotechnic materials, such as 

black powder, metal-oxidant formulations and conventional solid rocket propellant. 

Pyrotechnic igniters are either in the powder form or squeezed into small pellets and 

placed either at the head end or at the nozzle end. A wide variety of designs are 

available and generally potassium perchlorate, boron and binder are the constituents 

of the igniter charge [5]. There is a safe and arm device in the igniter. Normally, the 

device is positioned to safe level to prevent an ignition of the igniter. When the 

igniter is mounted on the motor, the device is positioned to arm level to make it 

ready for operation. 

c) Insulation and liner: The main function of the insulation is to protect the 

motor case in areas of sustained thermal environment. It also provides a shear layer 

between the case and propellant to relieve case bond stresses. The areas with early 

burn out must be insulated. Aft end insulators must also accommodate conduction 

and ablation. Grain geometry and burn back analysis establishes exposure time. 

Typical insulator materials are EPDM (Ethylene Propylene Diene Monomer). Fillers 

are silica powder, kevlar fibers and asbestos [6]. The thickness and placement of the 

insulator are determined by thermal environment, grain design and structural 

requirements. Depending on these parameters, insulation thickness generally varies 1 

mm to 50 mm in solid propellant rocket motors. Insulation is always installed into 
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the motor casing prior to the liner. Insulation is sometimes installed into composite 

motor casing as an integral part of the winding process or it can separately be 

bonded. The insulated case can then be stored for extended periods if there is a need 

for interruption of the process. The primary function of the liner is to provide bond 

compatibility between the propellant and case. Other materials such as primer and 

barrier materials may be added to the liner. The liner serves as a moisture barrier and 

sealer for composite cases. Liner is usually applied to the motor casing immediately 

prior to propellant casting. The liner is usually brushed or sprayed over the exposed 

case insulation. 

d) Nozzle: In a rocket motor the nozzle performs two essential functions. One 

of them is to restrict the rate of escape of gas from the reaction chamber, and 

maintain the pressure within the chamber at a value suitable for the reaction of the 

propellant. The other is to convert the internal energy of the propellant to the kinetic 

energy of motion. Nozzles are usually classified according to their structural features, 

for example, movable nozzle, fixed nozzle and submerged nozzle. The most 

commonly used nozzle type is the convergent-divergent de-Laval Nozzle. The study 

of the high temperature gas flow in the nozzle has led to the definition of a certain 

number of parameters, which are the characteristics of a propellant-motor 

combination. The selection and application of the proper material is the key for the 

successful design of a solid rocket nozzle. The high temperature exhaust of solid 

rockets presents an unusually severe environment for the nozzle materials, especially 

when metalized propellants are employed. The high temperature, high velocity 

exhaust products are erosive both mechanically and chemically. Nozzle throat 

erosion causes the throat diameter to enlarge during operation. It is one of the most 

critical problems encountered in the nozzle design. Usually, a throat area increase 

larger than 5 % is considered unacceptable for most solid rocket applications [7]. 

Generally, the nozzle case is steel and phenolic basis materials are pressed inside this 

steel case. To prevent erosion at the throat, some grade of graphite, refractory metal 

or reinforced plastic is inserted to the throat of the nozzle. 
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1.3 Related Parameters of the Solid Propellant Motor: 
 

 

 The prime objective of the internal ballisticians is to provide the rocket motor 

consistent with the thrust-time schedule of the mission requirements. The mission 

requirements are the requirements that are directly or indirectly given to the designer 

as inputs. These requirements are generally the desired range, the desired mass, 

desired diameter and sometimes flight time of the rocket motor, as shown in Table 

1.1. Thrust-time history of the rocket motor is determined by considering these 

requirements by the designer related with the flight mechanics. Therefore, inputs 

given to the internal ballisticians are the thrust-time history, diameter, mass, time and 

sometimes the length of the rocket motor. 

 

 

Table 1.1 Parameters Related with Mission Requirements 

Requirements Range [km] Diameter [mm] Mass [kg] Time [s] 

 

 

Ballistic parameters in order to obtain thrust-time performance of a rocket 

motor fall into two different categories. These are the dependent and independent 

parameters, as shown in Table 1. 2. Recognition of this distinction prevents 

conflicting requirements and provides the designer with the maximum degree of 

freedom permitted by the design problem. For example, average pressure, which is a 

dependent parameter, can not be established without considering the maximum 

expected operating pressure and propellant temperature sensitivity, both of which are 

independent parameters [8]. Since the design methods and constrains of the solid 

propellant are very complicated, they are provided by the project group.  

Some of the parameters, given in Table 1. 2, are explained in the following 

headings. 
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Table 1. 2 Dependent and Independent Parameters of the Rocket Motor 

DEPENDENT PARAMETERS INDEPENDENT PARAMETERS 

Pressure (p) Thrust (F) 

Thrust coefficient (CF) Duration (t) 

Throat area (At) Impulse (I) 

Volumetric loading (Vl) Specific impulse (Isp) 

Web fraction (Wf) Burning rate (r) 

Port to throat area ratio (Ap/At) Temperature sensitivity (πK) 

Length to diameter ratio (L/D) Density (ρp) 

 Ratio of specific heat (γ) 

 Envelope 

 Max. expected operating pressure (MEOP) 

 Temperature range (T) 

 Ambient pressure (Pa) 

 

 

 

1.3.1 Burning Rate: 
 
 

Propellant grain burns in a direction perpendicular to the grain surface. The rate, at 

which a propellant burns, usually described by a reference value at a specific 

pressure. Such value is called burning rate and its unit is meters per second. As an 

independent parameter, the burning rate is one of the propellant properties. 

Therefore, if a propellant is fixed, the burning rate coefficient and pressure exponent 

are fixed. The burning rate coefficient and pressure exponent are described by Saint 

Robert's burn rate law. 

 

 

r& = a Pc n                        (1. 1) 



8 

where r&  is the burning rate, Pc is the chamber pressure, a is the burning rate 

coefficient or coefficient of pressure and n is the pressure exponent. This empirical 

expression defines the burning rate of the propellant; values a and n usually derived 

from a strand burner test or small sub scale motor firing by using different pressure 

settings.  

 If a logarithmic graph of the chamber pressure versus the burning rate is 

plotted, a straight line is obtained. The slope of this line gives the pressure exponent. 

However, some propellants have burning rate characteristics that require more than 

one straight-line segment; these propellants are called plateau-and-mesa-burning 

propellants. Although, burning rate coefficient is constant for a defined propellant, it 

is effected by the temperature change. This phenomenon will be explained in the 

next section In order to increase the burning rate of the propellant during the 

production stage, there are three possibilities. Increasing the amount of Amonium 

Perchlorate, AP, decreasing the size of AP particles and adding some additives may 

result in increase of the burning rate of the defined propellant [9], [10].  

The increase in the burning rate produced by combustion products flowing 

parallel to the burning surface of a propellant has been termed as erosive burning. 

This effect is due to the increased heat transfer from the flame to the burning surface. 

In this case, burning rate is explained as [11]; 

 

 

erorr +=              (1. 2) 

 

 

where r0 is the linear burning rate and re is the burning rate augmentation which is 

defined as 

 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝
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=

G
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where α and β are erosive burning constant, G is the mass flux, LX is the axial 

distance of the motor, ρP is the density of the propellant and r is the linear burning 

rate. As an erosive burning indicator, a factor, J, is introduced. It is defined as [12]; 

 

K
KJ P=            (1. 4) 

 

 

where      
b

b
p A

A
K

′
=             (1. 5) 

 

 

t

b

A
AK =             (1. 6) 

 

 

After calculating the erosive burning indicator, one can refer to Table 1.3 [12], if 

erosive burning is important or not. 
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Table 1.3 Errosive Burning Check Table 

 

1.3.2. Temperature Sensitivity: 
 

 

Motor burning rate and operating pressure are dependent on the conditioned 

temperature of the propellant grain, Ti. These dependencies are formulated as follows 

[13]: 

 

 

P
P T

lnrσ ⎥⎦
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K
K T

lnPπ ⎥⎦
⎤

⎢⎣
⎡
∂
∂

=             (1. 8) 
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where σP is known as the temperature sensitivity of burning rate expressed in percent 

change in burning rate per degree change in propellant temperature at a particular 

value of chamber pressure and πK is known as the temperature sensitivity of pressure 

expressed in percent change of chamber pressure per degree change in propellant 

temperature at a particular value of K which is the ratio of the burning surface area to 

the throat area.  

 After calculating these temperature sensitivity coefficients, burning rate 

coefficient and chamber pressure can be modified according to the following 

equations [8],[13]. 

 

 

amod = a exp[σP(Ti-Ti
0)]           (1. 9) 

 

 

Pmod = P exp[πK(Ti-T0)]         (1. 10) 

 
 
where amod is the modified burning rate coefficient at conditioned propellant 

temperature Ti and a is the burning rate coefficient at initial temperature Ti
0. 

Similarly, Pmod is the modified chamber pressure at conditioned propellant 

temperature and P is the reference chamber pressure at reference chamber 

temperature T0.  

 

 

1.3.3. Specific Impulse: 
 
 
Specific impulse, ISP, is a measure of the impulse or momentum change that can be 

produced per unit mass of the propellant consumed. Specific impulse, on the other 

hand, can be described as the ratio of the motor thrust to mass flow rate and hence its 

value is very important in the determination of the propellant weight necessary to 
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meet the ballistic requirements. Motor efficiency is also controlled by this value. 

Specific impulse can be formulated as follows [13]: 
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where R is the gas constant, Mw is the molecular weight and γ is the specific heat 

ratio of the combustion products. Specific impulse can also be defined as; 

 

 

gm
F

spI
&

=                                                  (1. 12) 

 
 
where F is the thrust of the rocket motor, m& , is the mass flow rate of the combustion 

gases and g is the gravitational acceleration. 

 

 

1.3.4 Thrust Coefficient: 
 

 

Thrust coefficient, CF, is defined as the ratio of the thrust to the product of the 

chamber pressure and the throat area. As far as its physical meaning is concerned, it 

is a dimensionless measure of the thrust of a rocket motor. It can be expressed as [13] 
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tC
F AP

FC =            (1 13) 

 

 

where F is the thrust. CF can be given [13] as in terms of specific heat, ambient 

pressure, exit pressure, chamber pressure and exit to throat nozzle area as [10] 
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 The maximum thrust is obtained when exit pressure is exactly equal to 

ambient pressure 

 

 

1.3.5 Nozzle Discharge Coefficient: 
 
 
As far as the mass balance in the rocket motor is concerned, time rate of change of 

the mass in the chamber is equal to difference between the mass flow rate generated 

in the chamber and the mass flow rate discharged through the nozzle. The rate of 

mass discharged through the nozzle is [14]: 

 

 

CtDd PACm =&          (1. 15) 

 

 

where CD is the nozzle discharge coefficient. It is dependent on thermodynamic 

properties of the combustion gasses. Theoretically, CD is given as [14]. 
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where γ is the specific heat ratio of the combustion gases, TC is the temperature of 

the combustion gases, MW is the molecular weight and RU is the universal gas 

constant. 

 

 

1.3.6. Characteristic Velocity: 
 

 

Characteristic velocity is the one of the important parameters in solid propellant 

rocket motor analysis. It is defined as the ratio of the product of the chamber pressure 

and the throat area to nozzle mass flow rate and can be formulated as [14] 
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 The characteristic velocity can also be expressed in terms of combustion 

temperature, molecular weight and gas constant as 
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 Therefore, that c* depends only on the characteristics of the reaction used, 

particularly on its combustion temperature TC and its molecular weight MW through 

R. It is a fundamental parameter indicating the energy available after combustion and 

it can be used to compare different reactions independent of chamber pressure. 

 

 

1.3.7. Volumetric Loading: 
 

 

Volumetric loading fraction, Vl, is defined as the ratio of the propellant 

volume to the available chamber volume. It can be expressed equally well in terms of 

performance and propellant requirements. Thus; 
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where Vp is the propellant volume, Va is the available chamber volume, Itot is the 

total impulse, Ispd is the delivered specific impulse, ρp is the propellant density and 

mp is the mass of the propellant. 

 

 

1.3.8 Web Fraction: 
 

 

Web fraction, Wf, is the ratio of web to grain outer diameter as shown in Figure 1. 3. 

It is one of the most significant parameters influencing the selection of configuration 

type and it is the primary factor affecting the burning time. 
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Figure 1. 3 Demonstration of the Web Fraction 

 

 

1.3.9 Sliver Fraction: 

 

 

Sliver fraction, Sf, is defined as the ratio of the initial volume of the propellant to the 

volume remaining as shown; 

 

Figure 1. 4 Demonstration of the Sliver Area 
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1.3.10 Nozzle Expansion Ratio: 

 

 

Nozzle expansion ratio is defined as the ratio of the throat area to the exit area of the 

nozzle as given below [4]: 
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The expansion ratio for the optimum expansion can be calculated by using the 

isentropic formula given the equation above. 

 

 

1.3.11 Thrust  

 

 

Thrust of a rocket motor can be calculated by using the Figure 1. 5. In this figure, P0 

stands for the ambient pressure. 
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Figure 1. 5 Rocket Thrust Calculation 

 

 

By using the momentum equation, thrust of a rocket engine can be obtained below: 

 

 

e0e A)pp(VmF −+= &           (1. 21) 

 

 

1.4 Typical Grain Configurations: 
 

 

Since the grain burnback analysis is a geometrical phenomenon and depends only on 

the initial geometry of the grain, a grain designer should know the possible grain 

configurations.. 

The grain configurations can be divided many categories according to: 

 

 i) the shape of the grain, ( cylindrical, spherical or any other unconventional 

shape) 

 ii) the propellant used, (single propellant grain, dual propellant grain) 

 iii) the dimensional analysis (two-dimensional grain, three-dimensional grain)

 iv) the grain geometry. (Star, circular, wagon, etc.) 
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The widely used grain configurations are given in Figure 1. 6. 

 

 

 

Figure 1. 6 Typical Grain Configurations 

 

 

In this study, almost all of the grain configurations, shown in Figure 1. 6, are 

analyzed for different purposes, such as, the verification of burnback, the illustration 

of surface propagation, the comparison of the performance of the rocket motor, etc. 

Not only solid propellant grains, but also some hypothetical shapes are applied to 

burnback process to check the validity of the burnback. 
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1.5. Literature Survey: 

 

 

Grain burnback analysis is performed by using the following 3 steps; 

• Initial construction of the boundary either 2-D or 3-D, 

• Boundary propagation or movement with respect to its unit normal vector, 

• Reconstruction of the new boundary to calculate motor parameters, such as; 

burning area, port area, sliver fraction, ..etc. 

 

Two methods of approach are used in grain burnback anlysis; which are 

 

• analytical methods, and 

• numerical methods. 

 

The most difficult part of the grain burnback steps is the construction of the initial or 

propagated boundary. To cope with this difficulty, rather than numerical, analytical 

methods were used in grain burnback analysis in the past. However, numerical 

approach is used today. 

 

 

1.5.1 Analytical Methods: 
 

 

In analytical methods, the interface was constructed analytically. In this case, 

initial port geometry was defined through the use of a series of bounding surfaces 

composed of primitive shapes, such as; cylinders, cones, prisms or spheres. This 

methodology has been employed in the industry standard solid propellant rocket 

motor performance computer program, SPP[15]. The main advantage of this 

approach has lied in the accuracy of the formulation, because spherical surfaces were 

represented exactly by specifying the origin and radius of the sphere. However, this 
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technique was less adaptable to surfaces of non-conic shape. This methodology is 

also applied well known commercial solid model program, Auto-CAD, today. 

 In Direct Line Intersection method [16], boundary is established by 

connecting the lines, and these lines are moved according to an equation of a line. 

Initially coordinates of all points, which create the lines, are known and equations of 

all lines connecting these points can be calculated. Since the equation of a line can be 

represented by 

 

 

     y = m x + b          (1. 22) 

 

 

where m is the slope of a line and b is the constant. The equation of the first line 

using the corresponding x and y values is written as 
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Inserting b, the equation of the first line is 
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Similarly, the equation of the second line is obtained as 
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When the line segments are shifted perpendicular to their normal direction by an 

amount of dw, and the angle between the first line and horizontal direction is 

represented by β, then the horizontal movement of the first line becomes dw/ Sinβ, 

as shown in Figure 1. 7. 

 

 

 

Figure 1. 7 Analytic Representation of Line Shifting 

 

 

After applying the line-shifting procedure, the general equation of the first line is; 
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The new location of a point was the point of intersection of these two lines. 

Therefore, x-coordinate of the moved point can be obtained as; 
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After calculating the x coordinates of this point, y coordinate of the same point is 

simply determined. After shifting all points on the boundary, boundary movement 

procedure is completed. The direct line intersection procedure is a simple procedure 

and derivative discontinuity does not affect the direct line intersection method. 

Therefore, a boundary or interface consisting of sharp corners can be handled by 

using the direct line intersection method. However, if two lines are perpendicular to 

each other, it does not work. In addition to this, some unrealistic grain shapes may be 

obtained in some cases during movement of points. Therefore, some refinements are 

necessary. Hence, this procedure can not be generalized for all kinds of grain 

geometry for making a burnback analysis. 

 

 

1.5.2 Numerical Methods: 
 

 

 Propagating interfaces occur in a wide variety of settings and include ocean 

waves, burning flames, crystal growth and material boundaries. Propagating the 

interfaces by moving the points at the interface of a surface can be handled by a 

method called Marker-String [17]. Such techniques are extremely accurate. Such a 

study was first performed by Osher. However, it was not documented since, several 

problems have occurred for large and complex motion. In this method, a boundary, s, 

can be represented by a set of points, shown in Figure 1. 8, where n was the outward 

normal vector at any point on the boundary. In Figure 1. 8, x and y coordinates of a 
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point is defined. When a surface moved in the direction of its normal vector, the new 

locations of the points representing the boundary can be calculated, and the new 

surface boundary will be located. Therefore, variation of x and y coordinates of these 

points with respect to time should be found. 

 

 

 

Figure 1. 8 A Curved-Shape Boundary, S 

 

 

Letting F be the scalar speed of a point, then 
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Since n is the unit normal vector, and if the scalar speed F is taken as unity for 

simplicity, then the following form [17] can be obtained. 
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where x(s,t) and y(s,t) indicate the location of any point on the boundary at any time, 

x(s,t=0) and y(s,t=0) indicate the initial location of any point on the boundary and t is 

the time. By choosing a suitable difference method for the derivatives, the new 

locations of these points is found. Marker-String method is a useful tool for moving 

the surface interface and can be applied for solid propellant burning. However, when 

the derivatives are not continuous and when the solid propellant is divided into many 

parts during the combustion (discontinuous burning), this method fails. Apart from 

such disadvantages, some extra refinements are necessary to prevent unrealistic 

shape. Therefore, Marker-String method is not applicable to all kinds of grain 

geometry for making grain burnback analysis. 

 Such problems have been handled by Sethian[18] by smoothing the curve and 

changing the curvature of the interface.  

 Hejl and Heister [19] were used Marker-Cell method to capture the interface 

of the boundary. The method made a adaptive grid refinement for the zone in which 

discontinuity of the derivative was present. Therefore, this method is suitable if 

boundary has a sharp corner. 

 The volume of fluid method is much easier to use and less computation 

intensive. The basic idea is as follows: Fixed square cells are exposed to the 

computational domain. Therefore, each cell has a value depending on the material in 
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which the cell contains. Given a closed curve, a value of unity is assigned to those 

cells which are completely outside this curve. A value of zero is assigned to those 

cells which are completely inside this curve and fraction between 0 to 1 is assigned 

to cells that are located on the boundary, as shown in Figure 1. 9. 

 

 

 

Figure 1. 9. Illustration of the Volume of Fluid Method 

 

 

 The idea is, then, to rely solely on these cell fractions to characterize location 

of the interface. Two major problems rise when the interface is represented by a 

fractional volume parameter. These are 

 

 i) identification of the exact surface location, and 

 ii) advection of the surface. 

 

 To characterize the interface location or reconstruct the front from cell 

fractions, approximation techniques are used. An algorithm, known as Slic (Simple 

Line Interface Calculation), reconstructes the front either as a vertical or a horizontal 

line. In this technique, rather than tracking the boundary of the propagating front by 

using marker particle, the motion of the interior region is traced. This significantly 

different approach was first introduced by Noh and Woodward [20]. In this 

algorithm, the interior is discretized, usually by employing a grid on the domain and 

assigning a volume fraction to each cell. These fractions can be calculated by 

considering the amount of fluid located in each cell. An advantage of this technique 
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is that no new computational elements are required as the calculation progresses and 

complicated topological boundaries are easily handled. This technique is based on 

describing a surface orientation and then moving the surface with a velocity normal 

to that orientation. It means that all the surfaces are considered to be vertical for flux 

calculations in the x-direction and horizontal for flux calculations in the y-direction. 

Recalling Figure 1. 9, a section of that figure is taken to illustrate the surface 

reconstruction and advection according to Slic algorithm as indicates in Figure 1. 10 

and Figure 1. 11. 

 

 

Figure 1. 10 Surface Orientation According to Cell Fraction in Slic Algorithm 

 

 

In the figure above, the surface is assumed to be horizontal and new cell fraction 

values can be calculated according to velocity in the y-direction. 

After the new cell fraction values were found, the same exact procedure was applied 

to find the mass flux in the horizontal direction. In case, all the surfaces were 

assumed to be vertical and was advected by using horizontal velocity to find the 

mass flux in the horizontal direction. Horizontal and vertical advection and surface 

reconstruction procedure were continuously reapplied until certain criteria were 

satisfied. In solid propellant combustion, the procedure is obviously completed when 

all the propellant burns out. 
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Figure 1. 11. New Cell Fractions and Surface Reconstruction 

 

Since the Slic algorithm is an old algorithm, its accuracy is very low and its surface 

advection procedure gives unsatisfactory results. For simple types of grain geometry, 

such as circular slotted, it is considered to be an acceptable and easy procedure. 

However, it is not recommended as the complexity of the grain shape increases. If 

the actual surface given in Figure 1. 9 is compared with the constructed surface by 

using Slic algorithm in Figure 1. 10, it is quite clear that this algorithm is an 

inaccurate one. 

 Since its introduction, many elaborate reconstruction techniques have been 

developed over the years. Simple Line Interface Calculation technique was first 

applied to flame propagation and combustion calculations by Chorin[21]. This 

technique is based on describing a surface orientation and the moving the surface 

with the velocity normal to that orientation. The cell boundaries are assumed to be 

either horizontal or vertical for construction and advection of the surface 

 Similar to the Slic algorithm, the conventional cell volume fraction approach, 

was first employed for tracing the interfaces by DeBer[22] and Youngs[23]. In this 

technique, sloped-line segments in each cell are used rather than horizontal and 

vertical ones as is employed for the Simple Line Interface Calculations. The interface 

slope in each cell is obtained by inspecting the volume fractions of the neighboring 

cells. The sloped interface is then convected by the local velocities at the cell. 

Unfortunately, the details of this technique for calculating the surface slope has not 

been reported.  

 One of the recent effective interface reconstruction and advection model, 

Flux Line Segment Model for Advection and Interface Reconstruction, by using the 
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volume of fluid techniques have been developed by Ashgriz and Poo[24]. Boundary 

construction and surface advection of this technique resembles to other volume of 

fluid techniques with slight improvement in its accuracy. In this technique, the line 

segments are drawn at the cell boundaries. When moving the interface, the fluid 

underneath the interface is moved with the velocity of the cell boundary. By using 

these surface velocities, mass flux in and out of each cell is obtained. As in the 

conventional volume of fluid methods, cell volume or mass fractions are updated to 

reconstruct the new boundaries. For both advection and reconstruction of a cell, the 

neighboring cells of a cell under consideration are used. Therefore, fixed grid was 

again imposed and the cell fractions are calculated by using the same method that is 

used in Slic algorithm. However, surface advection and reconstruction techniques are 

different and more accurate than Slic algorithm A criterion is developed for 

identifying the line-segment orientation by inspecting the cell volume fraction. The 

new cell volume fraction field is obtained by integrating the advected area 

underneath the interface line segment. Considering a cell and its neighboring cell, 

one of the conditions, shown in Figure 1. 12, can be identified. For instance, if the 

volume fraction in cell on the left is denoted by fa, and on the right by fb, case one 

corresponds to 0<fa<1 and fb=0, case two corresponds to fa=0 and 0<fb<1 and goes 

on up to the case nine which corresponds to 0<fa<1 and 0<fb<1. The interface slope 

in each cell is obtained by inspecting the volume fractions of the neighboring cells. 

The sloped interface is then convected by the local velocities at the cell. 

Unfortunately, the details of this technique for calculating the surface slope have not 

been reported. 
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Figure 1. 12. Existing Relations for Two Neighboring Cell 

 

 

Flair algorithm is more accurate than the Slic algorithm and is used for complex 

shapes. Since only two neighboring cells are considered, its surface orientation and 

reconstruction procedure is perfect except for some special cases. Advection 

procedure of the Flair algorithm is more realistic than the Slic algorithm. However, it 

requires detecting lots of cases and corresponding sub-cases which require lots of 

time-consuming calculations. 

 This effective model for surface construction and advection has been 

modified to handle the burning of solid propellant grains with an arbitrary geometry 

by Mashayek and Ashgriz[25]. The surface velocities for each surface cell obtained 

by Euler equation are replaced horizontal and vertical components of burning rate. 

To find the direction of the normal vector of the burning surface, a criterion is added. 

The remaining algorithms are the same as the model developed by Ashgriz and Poo. 

 McAmis and Le [26] analyzed Minuteman third stage motor internal ballistic, 

by using a computer subroutine called Recess and Volfil. Volfil is used for 

determining the motor pressure by using 0-D internal flow (lumped) assumption. 

Recess is the finite element grain burnback code and able to perform constant grain 

burnback. The results of Recess are given to Volfil for performance predictions. The 

burnback subroutine and flow solver is not coupled at that moment. Initial grain 

geometry is established by using one of the most famous mesh generator, Ansys. 



31 

Then burning surface is cut to simulate the grain burnback. However, this cutting 

process is not clearly explained. 

 Huygen [18], [27], weakly solved boundary discontinuity by establishing a 

Huygen principle of construction, shown in Figure 1. 13. The solution is developed 

by imagining wave fronts emanating with unit speed from each point of the boundary 

data and the envelope of these wave fronts always corresponded to the first arrivals. 

Therefore, Huygen is constructed the boundary by weakly considering the minimum 

distances. 

 

 

 

Figure 1. 13 Demonstration of a Huygen Principle of Construction 

 

 

 A greatest invention in boundary propagation was made by Osher and Sethian 

[28]. The discontinuity of the interface is eliminated by using Hamilton-Jacobi type 

equations. Sethian [17], [18], improves this study and “Level-Set” method containing 

both “Initial Value Problem” and “Boundary Value Problem” are introduced to 

literature. Level-Set Method will be explained in the next chapter. This method is 

applied to many applications such as crack propagation, image processing, 

combustion [18], unsteady free surface flow[29], inviscid compressible flow[30], 

curvature flow[31], etc.  
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 A fast Level-Set algorithm for propagating interface, which is called “Fast 

Marching Method” was introduced first Sethian and Adalsteinsson [32]. The method 

is introduced to decrease the computational labor of the standard Level-Set method 

for propagating the interface. The fast approach used only points, rather than whole 

domain, close to the curve at every time step. Efficiency and accuracy of the method 

are compared to the classical method. This fast Level-Set algorithm will be described 

in the next chapter. 

 Toker [33] was used the Level-Set method for solid propellant burnback 

simulation. “Fast Marching Method” is implemented to the problem of grain 

burnback. The method uses an upwinding scheme and solves the Eikonal type 

equations for boundary propagation on tetrahedron meshes. Burnback is coupled 

with the 3-D Euler solver so that burnback distance is determined by the information 

of the flow variables. 

 Willcox, Brewster, Tang and Stewart [34] were performed solid propellant 

grain burnback simulation using minimum distance function which will be explained 

in the next chapter. Three dimensional propellant grain is developed using distance 

function and resulting code, Rocgrain, allowes motor grain design by user friendly 

commercial computer aided design programs. Rocgrain code is coupled from zero 

dimensional flow solver for simplicity. 

 

 

1.6. Present Study 

 

 

 The purpose of this study is to develop a method which uses Initial Value 

Problem of the Level-Set equations so that a connection is established between 

mathematical point of view and industrial application as the design of a solid 

propellant rocket motor. Level-Set Method is aimed to use for solid propellant 

burnback. 

 Since grain burnback analysis is one of the most important part of the solid 

rocket motor design, it is aimed to develop a universal computer code which is able 
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to perform grain burnback analysis for all kinds of propellant grain in 3-D. This 

eliminates case-dependent burnback analysis. Propellant regression is also aimed to 

coupled with the internal flow solver, this leads that burnback distance is determined 

by the flow parameters, such as pressure of the rocket motor.  

 

 

1.7 Review of the Study: 
 

 

In Chapter 2, a general perspective about the subject is explained and a transition 

from this perspective to the subject of this thesis is made by considering the Initial 

Value Level Set formulations in detail. In Chapter 3, work performed about the grain 

burnback simulations is given. In Chapter 4, work performed about flow simulations 

and cut-cell operation for mesh is explained. In Chapter 5, results and comments 

about these results are demonstrated. In Chapter 6, suggestions and recommendations 

for future work applications are presented. 
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CHAPTER 2 
 

 

A GENERAL PERSPECTIVE OF AN INTERFACE 
 

 

2.1 Introduction 
 

 

An interface is described as the one which separates gases and solid phases as 

shown in Figure 2. 1. 

 

 

 

Figure 2. 1 Representation of an Interface 

 

 

As shown in the figure, interface separates solid propellant which is on the 

solid phase and gap which will be on the gas phase when solid propellant burns. In 
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this 2-D figure, interface is shown as a closed curve. Interface is a surface in 3-D 

domain. The purpose of this chapter is to model the interface movement. However, 

this movement is not considered to be a simple motion, such as towards to x or y 

direction. It is aimed to model the movement of the interface towards its unit normal 

vector for all directions and for all the time.  

 

 

2.2 Theory of Curve or Surface Evolution: 
 

 

One of the general review of the whole perspective, suggested by Sethian [18], about 

theory of curve or surface evolution is given in Figure 2. 2. 

 

 

 

Figure 2. 2. Curve or Surface Evolution by Sethian[18] 
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Although Boundary Value Problem[18], and its fast algorithm, called Fast Marching 

Method [18], [33], is not the method adapted to propellant burnback in this study, it 

is demonstrated in detail. Initial Value Level Set Method [17] is the subject of this 

study. Narrow band method [35], which is nothing but the fast method of Initial 

Value Level Set Method is not presented. Recall that in this study, Initial Value 

Problem on Cartesian Grid by using Upwinding Level-Set scheme is solved. In 

Figure 2. 2, both approach (Initial Value and Boundary Value) are shown. These 

approaches are different approaches because the equation that can be solved are 

different. Both approaches have the fast algorithms (Fast Marching for Boundary 

Value Problem, Narrow Band for Initial Value Problem) Those methods have a 

different type of versions so that they can be used unstructured or structured grids 

with the option of a mesh refinement as Figure 2. 2 suggested. 

 

 

2.2.1 Parameterization of a Curve: 
 

 

Let F be a scalar speed of a curve moving along its unit normal vector, N is unit 

normal vector, S is the coordinate of a curve as shown in Figure 2. 3 [17]. 

 

 

 

Figure 2. 3. Parameterized View of Propagating Curve  
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Then the change of a position of a point on the curve with respect to time, when the 

curve moves along its unit normal vector for all points on the curve, is given as [17]: 
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where subscripts denote the partial derivatives, i.e. XS is the partial derivative of x 

with respect to x, XSS is the second partial derivative of x with respect to s. 

Both of the formulas contain a term of 
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parameterized expression, κ. 

 

 

If the points on the cosine curve, given in Figure 2. 4, are moved by using Equations 

(2. 3) and (2. 4), then one can observed that the front develops a sharp corner in finite 

time. Once this corner develops, the normal is ambiguously defined and it is not clear 

how to continue the evolution. Because, there is a discontinuity in the derivatives. It 

does not satisfy the definition of differentiability. This phenomenon is called 

“swallowtail”[18]. To prevent the swallowtail, so-called “entropy condition” is 

introduced.  
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Figure 2. 4. Formation of a Swallowtail  

 

 

2.2.2 Curve Smoothing (Entropy Condition) 
 

 

As the curve moves, discontinuity in derivatives generally exists in finite time. At 

this point, if the solution is continued it will end up with the wrong solution as shown 

in Figure 2. 4. To eliminate this problem, “entropy condition” is applied to the 

problem. This name was given by Sethian[35] and is not related with the entropy in 

Thermodynamics. Entropy condition, roughly speaking, is to make the curve 

smoothened. Weak solution (not entropy condition) is achieved by adding artificial 

viscosity term to speed, F as shown Figure 2. 5 [35]. In the figure, although, 

derivative discontinuity is prevented, the original curve is not preserved. This can not 

be suitable for grain burnback process. Because, propellant regression does not 

depend on curvature parameterized expression, κ. Therefore, one can aimed both to 

preserve the original curve when it moves and to eliminate the discontinuity of 

derivatives. This can be obtained by entropy condition. As it is realized, the entropy 

condition dictates to find the correct limiting viscosity so that one can guarantee that 

the direction of the correct information is always taken. Therefore entropy condition 
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is a condition such that the derivatives are continues at all the time during the 

curvature movement as shown in Figure 2. 6 [35]. 

Level Set Method of Initial Value Problem, which is the study of this thesis, satisfies 

the entropy condition thanks to its numerical scheme.  

 

 

 

Figure 2. 5. Weak Solution of Cosine Curve 
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Figure 2. 6. Entropy Condition of Cosine Curve 

2.2.3 Boundary Value Formulation: 
 

 

Both the Boundary Value Formulation and Initial Value Formulation are the viscous 

solution (entropy condition is satisfied in both of the cases) of the front propagation. 

Imagine a closed curve ⎡ in the plane propagating normal to itself with speed F. 

Furthermore, assume that speed of the curve is positive, hence the front always 

moves outwards. One way to characterize the position of this expanding front is to 

compute arrival time T(x,y) of the front as it crosses each point (x,y) as shown in 

Figure 2. 7 [35]. 
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Figure 2. 7. Transformation of Front Motion into Boundary Value Problem 

 

 

Since distance equal to the multiplication of speed and time, one can write; 

 

 

( )dTFdx =             (2. 5) 

 

and hence 

 

    1
dx
dTF =                (2. 6) 

 

In multi-dimensions, the spatial derivative of the solution surface T becomes the 

gradient. Hence; 

 

1TF =∇    T=0 on ⎡          (2. 7) 
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where F is the speed of an interface, T is the time at which interface arrives at each 

point in space, ⎡ is the initial location of the interface. 

 

 

2.2.4.1 Fast Algorithm of the Boundary Value Formulation (Fast Marching Method) 
 

 

 The boundary value formulation can also be made fast. The central idea 

behind the Fast Marching Method [18], [35], [36], is to systematically construct the 

solution in a “downwind” fashion to produce the solution of time, T. The idea is to 

sweep the front ahead in an upwind fashion by considering a set of points in narrow 

band around the existing front and to march this narrow band forward, freezing the 

values of existing points and bringing the new ones into the narrow band structure. 

The key is in the selection of which grid point in the narrow band to update. Nodes 

on the solution domain are classified into 3 groups;  

 

• Alive: Alive grid points are the points whose values are known. The interface 

moves opposite direction of the alive nodes. 

• Narrow band: Narrow band points are the points located one grid point away 

from the interface. 

• Far: Far points are the points located downwind of the interface. 

 

 

By keeping these definitions in mind, one can prepared a demonstrative figure for 

Fast Marching Method as shown in Figure 2. 8 [36]. 
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Figure 2. 8. Demonstration of Fast Marching Method 

 

 

Procedure of this method is summarized below: 

• Begin Loop : Let Trial point (point under consideration) be the point in Narrow 

Band with smallest T value, 

• Move Trial point from Narrow Band to Alive, 

• Move all neighbors of Trial to Narrow Band, 

• Recompute the values of T at all neighbors of Trial, 

• Return to Loop. 

 

 

2.2.4 Initial Value Formulation: 
 

 

Unlike to be done in previous methodology, initial position of the front is embedded 

as the zero level-set (distance function) of a function, φ. The evolution of this 

function with the propagation of the front itself through a time-dependent initial 

value problem is identified. At any time, the front is given by the zero level-set of the 

time dependent level set function, φ, as shown in Figure 2. 9 [35]. Since one can 
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required that zero level set of the evolving function φ always match the propagating 

surface,  

 

( )( ) 0t,tx =φ             (2. 8) 

 

 

Differentiating with respect to time and using chain rule, one can obtained; 

t∂
φ∂ + ∇ φ(x(t),t) ( )

dt
tdx = 0            (2. 9) 

 

Since F is the speed in the outward normal direction, and n is the unit normal vector; 

 

 

( )
dt

tdx .n = F            (2. 10) 

 

where      
φ∇
φ∇

=n           (2. 11) 

 

Substituting (2. 10) and (2. 11) into (2.9), Initial Value Formulation can obtained; 

 

       
t∂
φ∂ + F |φ∇| = 0      given φ(x,t=0)          (2. 12) 
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Figure 2. 9. Transformation of a Front Motion into Initial Value Problem 

 

 

2.2.4.1 Fast Algorithm of the Initial Value Formulation (Narrow Band Method) 
 

 

 Considerable computational speedup in the Level-Set Method comes from the 

use of the Narrow Band Level Set Method. It is clear that performing calculations 

over the entire computational domain is wasteful. Instead, an efficient modification is 

to perform work only in a neighborhood of the zero level-set. This method was firs 

introduced in Chopp [31].  

Figure 2. 10 ,[35], shows the placement of a narrow band around the initial front. The 

entire 2-D grid of data is stored in a square array. The front is tracked such that only 

grids inside the user defined width are considered. This performs by checking the 

distance values of the grids. Large positive or large negative values are not 

considered. Therefore, only the values of points within the narrow band are updated. 

Points located on the boundary of the narrow band are frozen. When the front moves 

near the edges of the boundary of the narrow band, calculation is stopped and new 

narrow band is established. The procedure of the Narrow Band Method is 

summarized below: 
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• Tag “Alive” points in narrow band. 

• Build the edges of the band. 

• Initialize “Far Away” points outside or inside narrow band with large positive or 

negative values respectively. 

• Solve the Equation given as (2. 12). 

• When the front moves up to the edge of the narrow band, rebuild new band and 

loop. 

 

 

 

Figure 2. 10. Demonstration of Narrow Band Method 

 

 

2.2.5 Comparison of the Initial Value Formulation and Boundary Value Formulation: 
 

 

• In Boundary Value Formulation it is focused on the time as the front propagates; 

however, the distances are considered in Initial Value Formulation. 

• Initial Value Formulation can be used for any speed of interface; whereas, speed 

of the front should be positive in Boundary Value Formulation. 
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• CFL condition, which will be discussed later, should be obeyed in Initial Value 

Formulation; however Boundary Value Formulation has no CFL requirement. 

• Fast algorithm of the Boundary Value Formulation (Fast Marching Method) is 

faster than that (Narrow Band Method) of the Initial Value Formulation. 

• Boundary Value Formulation is more accurate than Initial Value Formulation. 

• Variable speed burnback can be performed in Initial Value Formulation however 

in Boundary Value Formulation it can not be done such an analysis. 

• Algorithms, numerical methods and computer coding of the Initial Value 

Formulation are easier then that of the Boundary Value Formulation. 

• Boundary Value Formulation can be applied to triangulated domain; however, 

the governing numerical equations are more complex than structured domain. 

• Initial Value Formulation is easier than Boundary Value Formulation in order to 

be understood and handled. 

 

 

Initial Value Formulation   Boundary Value Formulation 

        
t∂
φ∂ + F |φ∇| = 0             1TF =∇  

         Front = ⎡(t) ={(x, y) φ(x,y,t)=0}      Front = ⎡(t) ={(x, y) T(x,y)=t} 
               Applies for arbitrary F                     Requires F>0 
 

 

2.3 Numerical Scheme of the Initial Value Problem of the Level-Set Method: 
 

 

Our purpose is to find the numerical scheme of the Initial Value Problem. This 

shame should satisfy the limit of the viscosity solution called entropy condition. The 

most general form of the Hamilton-Jacobi equation is given as: 

 

 

αUt+H(Ux, Uy, Uz, x, y, z) = 0         (2. 13) 
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where α is the coefficient, H is called Hamiltonian and U is the flow variable. 

Subscripts t, x and y represent the partial derivatives, i.e, Ut= t
U
∂
∂  

For α=1 and 1-D, Hamilton-Jacobi equation for hyperbolic conservation law can be 

written as;[18]  

 

 

Ut+[H(U)]x = 0          (2. 14) 

 

 

At this point, 1-D non-linear wave equation is remembered as; 

 

 

Ut+[U2]x = 0           (2. 15) 

 

 

The numerical solution of the flux function of the 1-D non-linear wave equation is 

given as; 

 

 

           g(U1, U2) = (max(U1, 0)2 + min(U2,0)2)        (2. 16) 

 

 

This numerical solution satisfies the entropy condition. Therefore, the purpose is to 

make an analogy between Equations (2. 12) and (2. 15) so that numerical scheme of 

the Initial Value Problem guarantees the entropy condition as well . Recalling Initial 

Value Formulation, one can write for F=1; 

 

 

φt + φx = 0            (2. 17) 
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Equation (2. 15) resembles to (2. 12) if  

 

  φ = U           (2. 18) 

 

and  

H (u) = 2U             (2. 19) 

 

 

Substituting (2. 18) and (2. 19) into (2. 16) and using Upwinding numerical method 

for 3 space dimension, the numerical scheme of the Initial Value Problem is obtained 

as [17], [18]; 

 

 

( ) ( )( )−++ ∇+∇∆−φ=φ k,j,ik,j,i
n

k,j,i
1n

k,j,i F,0minF,0maxt       (2. 20) 
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and 
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Note that shorthand notation used in these equations is Di +x , which means D+x φi
n.  

Note also that 1−
− −= i

nn
i

n
i

x uuuD      and   similarly     i
nn

i
n

i
x uuuD −= +

+
1 . 

 

 

2.3.1 Upwind Scheme: 
 

 

Equation (2. 20) is an upwind scheme. It chooses grid points in the 

approximation in terms of the direction of the flow information. Intuitively, upwind 

means that if a wave progresses from left to right, then one should use a difference 

scheme which reaches upwind to the left in order to get information to construct the 

solution downwind to the right.  

 One can consider propagating “V” front, at the symmetric point, the 

symmetry of the scheme is changed and non-zero value is chosen. Therefore, by 

using upwind scheme, one can guarantee that no discontinuity in derivatives occurs 

when the front propagates. This satisfies the entropy condition explained Sec.2.2.2. 

 

 

2.3.2 Higher Order Numerical Scheme 
 

 

Although the higher order numerical scheme of the Level-Set Method is not studied 

in this thesis, it is given in Figure 2. 11. In this case Equation (2. 20) remains the 

same, whereas ∇+ and ∇- change as given[18]: 
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Figure 2. 11 Higher Order Level-Set Numerical Scheme 

 

 

2.4 Distance Function: 
 

 

 Distance function or Level-set function, φ, is defined as the minimum 

distance between the grid point under consideration and the interface. Interface can 

be closed or opened-curve in 2-D space, and the surface in 3-D space. Therefore, 

each grid point has a distance value determined according to the closeness of the 

boundary. The rules in finding the distance function are given below: 

 

• If the grid point is located inside of the boundary, minimum distance value is 

multiplied by -1. 
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• If the grid point is located outside of the boundary, minimum distance value is 

remained as it is. 

• If the grid point is located exactly on the boundary, minimum distance is 

computed as zero. Then it is remained as it is. 

 

These 3 rules are the key in determining the distance function. One example in 2-D 

space is given in Figure 2. 12. 

 

 

 

Figure 2. 12 Example of Distance Value, φ, for a 2-D Closed Boundary 

 

 

Although the solution domain consists of square elements in 2-D space or 

cube elements in 3-D space, which will be discussed later, distance values are found 

node-based fashion, rather than element-based as shown Figure 2. 12. 

 The answer of the question “why distance value should be determined for 

each grid point?” is given in Equation (2. 20). In this equation, distance value for 

each grid point should be known at time, t=0, so that update procedure can apply. 
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2.4.1 Determination of Distance Function in 2-D Space 
 

 

 Assuming the boundary is the closed circle. Since the equation of the circle is 

well known as 222 ryx =+ , and coordinate of the grid points are known as well, 

then the distance values for each grid points can easily be computed. However, the 

equation of the boundary given in Figure 2. 12 is not known. The boundary may be a 

more complex shape for different problems even arbitrary. In 3-D, the problem 

become more complicate, because 2-D curves becomes 3-D surfaces and the 

equation of the surface in some cases may not be obtained. Therefore, a method is 

developed to determine the distance values of each grid point. The illustrative 

example is given in Figure 2. 13. 

 

 

 

Figure 2. 13. Illustrative Example of Determination Distances in 2-D Space 
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In the figure, an anchor type slot of the solid propellant grain is shown. This slot 

represents the gas phase. Therefore, only slot or gap of the solid propellant is 

considered. Inside the slot, triangular, unstructured 2-D meshes are generated by 

using any commercial mesh generator. In this case, commercial software, ANSYS, as 

a mesh generator is used. Since the coordinates of corners of each triangle are known 

via the mesh generator, minimum distance between the grid point under 

consideration and anchor slot can be computed by checking the whole corners of the 

unstructured points on the 2-D slot. The mesh generator creates triangular 2-D 

meshes and an output file that contains x, y coordinate of the nodes of the triangles 

and their connectivity information. This output file is used as an input for main code. 

The method explained here is summarized below: 

 

• Loop, stated as Loop-1, for all structured grid point, (in Figure 2. 13 the point 

under consideration is point 2, 8 so φ2, 8 is intended to compute.) 

• Loop, stated as Loop-2, for all unstructured nodes, (all nodes of the triangle 

generated in Figure 2. 13) 

• Compute the distance between them by using simple distance formula given 

below: 

 

 

Distance = ( ) ( )2unstrucstruc
2

unstrucstruc YYXXL −+−=        (2. 23) 

 

 

where Xstruc is the x coordinate of the structured (squares in Figure 2. 13) grid, 

Xunstruct
 is the x coordinate of the unstructured (triangular meshes in Figure 2. 13) 

grid.  

• Set this distance as the minimum distance. If it is the first time, go to next item. If 

newly computed distance is smaller than minimum distance then set newly 

computed distance to minimum distance 

• Go to Loop-2 ,until finished, to compute new distance by using Equation (2. 23) 

with the same structured point but different unstructured point. 
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• Go to Loop-1, until finished, to calculate new distance value of the structured 

point. 

 

By using the procedure explained above, all distance values of the corresponding 

structured nodes are calculated. However, it has not been determined which 

structured points are located inside of the slot yet. In Figure 2. 13, the point 2, 8 is 

located outside of the slot. This can be easily seen by eyes, however computer code 

has no eyes so this can be learned to code by using a procedure described in the next 

section. 

 

 

2.4.1.1 Determination of Inside-Outside Location in 2-D Space 
 

 

A procedure is developed to determine if the structured-grid point is located 

inside of the closed boundary or not. Cross product feature is used in the procedure. 

One can recall that if it is inside, the value of distance function in grid point is 

multiplied by -1, otherwise it is remained as it is. Consider one of the triangles of the 

triangulated meshes shown in Figure 2. 13. This triangle consists of 3 nodes; 1, 2 and 

3. A point, P, is located on the squared grid as shown in Figure 2. 14. In this figure, 6 

conditions are given by using cross product feature. Then; 

 

• Point P is outside of the boundary if all of the six vector cross product conditions 

are satisfied.  

• Otherwise, point P is inside of the boundary and the value of distance function on 

point P is multiplied by -1. 

 

Six conditions described in Figure 2. 14 are satisfied for point P, then this point is out 

of the triangulated slot. Therefore, distance value is positive. 
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Figure 2. 14. Example for the Determination of Outside-Inside Job in 2-D Space 

 

 

Note that, in the figure above, ⎟2P⎟, ⎟P2⎟, ⎟32⎟…etc are all vectors and conditions are 

said to be satisfied if k components of the results of the cross products are larger or 

equal to zero. 

 

 

2.4.2 Determination of Distance Function in 3-D Space: 
 

 

In order to determine the distance function in 3-D space, same method, 

described in the Section 2.4.1, is used. In this case, 2-D slot or gaps become 3-D 

object. The same commercial mesh generator, ANSYS, is used for 3-D case. The 

elements generated are tetrahedrons rather than triangles.  

Recall that in 2-D case, an anchor type grain gap was used for illustrative 

purpose, however in this case a different propellant grain is used. This grain 
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geometry provides nearly constant burn area so that it uses the quality control of the 

propellant burning rate. The slot of the grain is modeled by using commercial solid 

modeling software, AutoCAD. The tetrahedron meshed-model is shown in Figure 2. 

15 : 

 

 

 

Figure 2. 15. Tetrahedron-Meshed Model 

 

 

Structured grids, actually cubes, are generated for the solution domain by the main 

program. The purpose is to find the distance values for each node of the cubes. A 

data file containing x, y, z-coordinates of tetrahedrons and their connectivity 

information are created by the mesh generator as an output file. This file is used by 

the main program as an input. Then the minimum distance determination process is 

started. The same method, used in 2-D space, is used as well. The demonstrative 

example is given in Figure 2. 16. In the figure, the determination of distance value of 

Point P is demonstrated. All the distances between point P and nodes of the 

tetrahedron elements are computed and the smallest one becomes the distance value 

of point P. This work is performed for all points of the solution domain. In the figure, 

5 attempts to find the minimum distance of point P and the model are shown. As it is 

realized, this procedure takes a lot of time. To reduce the computational time, a fast 

method is also introduced described in Section 2.4.2.2. 
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Figure 2. 16. Determination of Distances in 3-D Space 

 

 

2.4.2.1 Determination of Inside-Outside Location in 3-D Space 
 

 

Right hand rule of the cross product feature is also used here. In addition to that, dot 

product is also introduced. The procedure is schematically shown in Figure 2. 17. In 

the figure, a tetrahedron and a point, P, is present. The purpose is to find whether 

point P is located inside of the tetrahedron or not. To determine this, 4 terms, given 

in the figure, are calculated. For example, for the Term 1, first cross product is 

applied to vectors ⎟21⎟ and ⎟32⎟. Then dot product is applied to resulting vector and a 

vector of ⎟P2⎟. After finding all 4 terms, it is determined that whether point P is 

located inside of the tetrahedron or not according to procedure given below: 

 

• If all the Terms (Term 1, Term 2, Term 3, Term 4) have the same sign (all are 

positive or all are negative) or zero then point P is inside of the tetrahedron. 

• Otherwise, even one of terms has a different sign, it is outside of the tetrahedron. 
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Figure 2. 17. Example for the Determination of Outside-Inside Job in 3-D Space 

 

 

For a solution point, each tetrahedron is checked to determine if it is inside of the 

tetrahedron or not. If the solution point is out of the each tetrahedron, then one can 

say that the point is outside of the model. If the solution point is inside of the one of 

the tetrahedrons, then one can say that the point is inside of the model and distance 

value is multiplied by -1. 

 

 

2.4.2.2. Modifications for Fast Determination of Distance Function in 3-D Space: 
 

 

In the determination of distance values, each structured grid is given a distance value. 

Therefore, for each grid, all unstructured grid are checked to determine both the 

minimum distance value and inside-outside location. This is a really time consuming 

job. In order to reduce the computational time, two modifications are done; 

 

• Total number of tetrahedrons is decreased without sacrifying the accuracy. 
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• In the determination of distance value for a grid point, only tetrahedrons locating 

in the zone which is formed by the user defined width along the z-direction are 

considered. 

 

For an accurate solution, the size of the tetrahedron generated on the slot of the 

propellant should be kept as small as possible. However, this leads to long 

computational time. Therefore, one can focus on the reason why tetrahedrons are 

generated. Tetrahedrons are first used for the determination of minimum distances. In 

this process, nodes of the tetrahedrons are checked. For the minimum distance, 

corresponding node of the tetrahedron should locate on the surface or near-surface of 

the solid model representing the slot of the solid propellant grain. Therefore, fine 

mesh can be generated near the surface of the model, whereas, coarse mesh can be 

generated inside of the model as shown in Figure 2. 18. This coarse mesh does not 

affect the job of the determination inside-outside location described in Section 

2.4.2.1. 

 

 

 

Figure 2. 18. Mesh Refinement for the Fast Determination of Distance Values 
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The other modification for the fast determination of distance values is to use the 

bounded model. One can consider Figure 2. 16. All tetrahedrons are checked for the 

determination of the distance value of point, P. However, it is obvious that the 

minimum distance is the distance between point P and a node of the tetrahedrons 

located at the same z-coordinate with a user defined variations. This modification is 

shown in Figure 2. 19. One can compare Figure 2. 16 with the Figure 2. 19, the 

method of this modification is understood.  

The modifications described in this section cause a considerable decrease in 

computational time. That is why the fast algorithm of the Initial Value Level-Set 

Method (Narrow Band Method) is not used in this study. 

 

 

 

Figure 2. 19. Bounded Model for the Fast Determination of Distance Values 

 

 

2.5 Propagation of Interface: 
 

 

After the determination of the distance value for all structured grid points, one can 

ready to make a burnback. Assuming a circular boundary, when a contour plot of 

distance values is drawn, the distance value of zeros represents the initial boundary. 
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After the distance values for each grid is updated according to Equation (2. 20), the 

distance value of zeros, in this case, represents the first propagation of the boundary 

as shown in Figure 2. 20. 

 

 

 

Figure 2. 20. Initial and First Propagation of an Anchor Type Slot 

 

 

Therefore, there is no need to know the coordinates of points on the boundary or the 

equation of curve to perform boundary propagation by using Level-Set method. 

 

 

2.6 Determination of Burning Area and Surface Reconstruction of a Grain: 
 

 

The primary objective of the grain burnback analysis is to determine the port area 

and the burning area of a grain under consideration. There are two methods of 

approach, introduced as Method-1 and Method-2. 

 

• In Method-1, burn area is computed without knowing the coordinates of the 

intersection of boundary with cells. 
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• In Method-2, burn area is computed directly from lines (in 2-D space) or surfaces 

(in 3-D space) formed by the intersection between the boundary and cells (in 2-D 

space) or cubes (in 3-D space). 

 

The first method, Method-1, is a very easy method. Because an assumption is 

made in the determination of port are, which will be explained in the next section, 

and burn area is computed by using the port area information. Therefore, even if the 

coordinates of the intersection of boundary with cells is not known, it will be 

possible to calculate the burn area. However, it is observed that no matter how 

accurately the port area is computed, the burn area is calculated with a large error 

due to small oscillations in port area values. This situation is explained more clearly 

in Chapter 4. 

 The second method, Method-2, leads to a difficult task which is called cut-

cell. However, it gives more accurate results than the first method. In this method, 

intersection of boundary with cells is determined and the burning perimeter or burn 

area is computed by using these intersected lines or surfaces. 

 

 

2.6.1 Method-1: 
 

 

Method-1 is the first method that was used to determine the burn area. After it is 

observed that the method is not accurate one, it is no more used in the analysis of 

grain burnback performed in this study. The procedure of this method is given 

below: 

 

• For each node, check the negative distance values; (φn
i,j,k < 0) where n is the 

arbitrary burnback step. 

• Compute the total number of nodes satisfying the inequality given 

above;( ( )∑ <φ 0k,j,i
n ) 
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• Compute the port area, Ap, (in 2-D space) or port volume, Vp, (in 3-D space) by 

using Equation (2. 24) or Equation (2. 25), respectively. 

 

 

           Ap= ( )( )( )yx0k,j,i
n ∆∆<φ∑           (2. 24) 

 

 

   Vp= ( )( )( )( )zyx0k,j,i
n ∆∆∆<φ∑           (2. 25) 

 

 

where ∆x, ∆y and ∆z are the grid size in x, y and z direction, respectively. Actually 

they are equal since element type of the solution domain is square or cube. 

 

• Find the burning perimeter (in 2-D space) or burning area (in 3-D space) by using 

Equation (2. 26) or Equation (2. 27), respectively. 
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       ( )tF
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           (2. 27) 

 

 

where n+1 is the situation after one burnback step later of the arbitrary burnback 

step, n. Since ∆t stands for the time step, F∆t represents burnback distance. 

Equations (2. 26) and (2. 27) are obtained by making an average of the port area or 

port volume for corresponding two burnback steps. This is, actually, an assumption 

that the grain geometry is not changed considerably between two burnback intervals. 
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This assumption is valid if there is no sudden change in grain geometry during the 

propagations and if burnback distance is kept very small. Illustration of the physical 

meaning of the Equations (2. 26) and (2. 27) are shown in Figure 2. 21. The burning 

perimeter is obtained by averaging of burning perimeter of the boundary,Pb1 and the 

burning perimeter of the boundary after 1 burnback step later, Pb2. 

 

 

 

Figure 2. 21. Calculation of Burning Perimeter in Method-1 

 

 

2.6.2 Method-2: 
 

 

In Method-2, the burning perimeter or burning area is directly obtained from 

the lines or surfaces formed by the intersection of boundary with the square or cube 

elements. Therefore these elements should be cut to obtained boundary or surface of 

the burning perimeter or burning area. This methodology is called Cut-Cell. This 

methodology is used not only to determine the burning area of a grain, but also to 

generate boundary elements for 3-D flow solver. Both 2-D and 3-D spaces, Cut-Cell 

methodology is investigated. 
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2.6.2.1 Cut-Cell Methodology in 2-D Space: 
 

 

The goal is to find the burning perimeter of a grain. Hence, the length of all the lines 

passing through the square cells should be computed. However, there is no any 

information about the coordinates of cutting points yet. Therefore, coordinates of the 

cutting points should be computed. Consider a single cell through which an interface 

is passing as shown in Figure 2. 22. 

 

 

 

Figure 2. 22. Single Cell and an Interface 

 

 

The problem is simply stated as the determination of coordinates of points, A and B, 

by knowing the distance values at nodes, numbered as 1, 2, 3 and 4. The coordinates 

of points, A and B, are desired to determine in order to calculate the length of the 

interface. The burning perimeter can then be calculated by adding the lengths of the 

interfaces passing through boundary cells. At this point, two assumptions are made; 

 

• The arc, AB, is assumed to be a line, 

• The arc, AB, intersects the cell at least two different edges. 
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If these assumptions were not made, infinitely many interface shapes and intersection 

styles would be considered. Examples of some irregular interfaces are shown in 

Figure 2. 23. All of the interfaces intersect the square in one edge only. Therefore 

these interfaces contradict the second assumption and can not be considered. As far 

as the validity of the assumptions is concerned, they are applicable for small grid 

size. 

 

 

 

Figure 2. 23. Irregular Interfaces 

 

 

If there is an intersection points on the edge of the square, then there will be a sign 

change in distance values of points corresponding this edge. If there is a sign change, 

then the multiplication distance values of the corresponding points are less than zero. 

This is the key point in the determination of the location of the interface points. 

There are 6 intersection style in 2-D space given in Figure 2. 24. 

 

 

 

Figure 2. 24. Intersection Styles in 2-D Space 
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Case 1: The first square in Figure 2. 24 is obtained if  (φ1φ3) < 0  and  (φ2φ4) < 0. The 

coordinates of the intersection points, A and B, can be found by; 

 

 

( )xXX
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2A ∆

φ+φ

φ
+≈            (2. 28) 

 

 

( )xXX
31

1
1B ∆

φ+φ

φ
+≈            (2. 29) 

 

 

2A YY =           (2. 30) 

 

1B YY =            (2. 31) 

 

 

Case 2: The second square in Figure 2. 24 is obtained if  (φ1φ2) < 0  and  (φ2φ4) < 0 

The coordinates of the intersection points, A and B, can be found by; 

 

 

( )xXX
42

2
2A ∆

φ+φ

φ
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       2B XX =           (2. 33) 

 

        2A YY =            (2. 34) 
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Case 3: The third square in Figure 2. 24 is obtained if  (φ3φ4) < 0  and  (φ2φ4) < 0. 

The coordinates of the intersection points, A and B, can be found by 

 

 

( )xXX
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4B XX =            (2. 37) 
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Case 4: The fourth square in Figure 2. 24 is obtained if  (φ1φ2) < 0  and  (φ3φ4) < 0. 

The coordinates of the intersection points, A and B, can be found by; 

 

 

2A XX =            (2. 40) 

 

4B XX =            (2. 41) 
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Case 5: The fifth square in Figure 2. 24 is obtained if  (φ1φ2) < 0  and  (φ1φ3) < 0. The 

coordinates of the intersection points, A and B, can be found by; 

 

2A XX =            (2. 44) 
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1B YY =            (2. 47) 

 

Case 6: The sixth square in Figure 2. 24 is obtained if  (φ1φ3) < 0  and  (φ3φ4) < 0. 

The coordinates of the intersection points, A and B, can be found by; 

 

4A XX =           (2. 48) 

 



71 

( )xXX
31

1
1B ∆

φ+φ

φ
+≈          (2. 49) 

 

 

( )yYY
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1B YY =            (2. 51) 

 

 

Note that 4φ  represents the absolute value of the distance value of node 4. 

∆x or ∆y is the grid size in x and y direction, respectively. Since the element is 

square, both are equal to each other. One can also note that some equations contain 

“equality” sign, but some of them “nearly equal” sign are used. Because, in this 

equations, proportionality feature, which is an approximation, is used.  

After x and y coordinates of points, A and B, are determined, the length of an 

arc can be found by the equation (2. 52). 

 

 

( ) ( )2BA
2

BA YYXXAB −+−≈          (2. 52) 

 

 

This procedure is applied to all squares so that burning perimeter can be obtained. 

 

Although the procedure is given for 2-D space, it can be used for 3-D space. If 3-D 

model (slot) is divided into equally spaced sub-planes in z-direction, the burning 

surface area of 3-D model will be obtained by considering the burning perimeters for 

each sub-plane as shown in Figure 2. 25. 
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Figure 2. 25. Determination Burning Surface Area of 3-D Model by Using 2-D 
Approach 

 

 

In the figure above, 4 arms star shaped grain is shown. By using the procedure 

explained in this section, burning perimeter, Pb1, of the star-shaped grain at z = 0 

plane can be calculated. The burning perimeter, Pb2, can also be calculated at z = 

delta plane. Then the burning area of 3-D slot can be calculated by Equation (2. 53). 

 

 

delta
2

PPS 2b1b
b

+
≈            (2. 53) 

 

 

2.6.2.2 Cut-Cell Methodology in 3-D Space (Aproximate Method): 
 

 

In 3-D space, rather than squares, cubes are the element under consideration. To find 

the cutting interface of a cube, same method, used for 2-D space, is used here as 
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well. Six cutting interfaces are analyzed in 2-D space, however, 10 cases are 

considered in 3-D space. Actually, there are more than 10 cases. Some cases are not 

considered by making some assumptions. The assumptions made are as follows; 

 

• The edges of the cutting surfaces are assumed to be lines, 

• The cutting surface has 4 cutting points. Therefore triangle shape cutting surfaces 

are not considered.  

• The cutting points are located on the edges of the cube. 

 

These assumptions prevents from the formation of irregular cutting surfaces as 

shown in Figure 2. 26. If these assumptions were not made, infinitely many irregular 

cutting surfaces would form. These assumptions are valid if small grid size is used. 

 

 

 

Figure 2. 26. Irregular Shapes in 3-D Cut-Cell 

 

 

In Figure 2. 26, two irregular cutting surfaces are shown. Triangle surface contradicts 

the second assumption, trapezoidal surface contradicts third assumption. Therefore, 

these surfaces are irregular surfaces and they are not considered as the cutting 

surfaces. 

The 10 possible cases to be considered for the determination of cutting surface are 

shown in Figure 2. 27. 
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Figure 2. 27. The possible cases of Cutting Surfaces in 3-D Space 

 

 

These cases are obtained according to φ values at the corners of the cube. The signs 

of the distance values will be changed if there is an interface intersecting the edge of 

the two nodes. According to this information, the properties of cases are obtained as 

follows; 

 

Case 1:  

Cutting surface, shown in Case-1, is obtained if    

 ( ) 031 <φφ  ;  ( ) 087 <φφ  ;  ( ) 043 <φφ  ;  ( ) 067 <φφ  
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Case 2:  

Cutting surface, shown in Case-2, is obtained if    

 ( ) 031 <φφ  ;  ( ) 087 <φφ  ;  ( ) 042 <φφ  ;  ( ) 065 <φφ  

 

Case 3:  

Cutting surface, shown in Case-3, is obtained if    

( ) 031 <φφ  ;  ( ) 087 <φφ  ;  ( ) 012 <φφ  ;  ( ) 085 <φφ  

 

Case 4:  

Cutting surface, shown in Case-4, is obtained if    

( ) 034 <φφ  ;  ( ) 067 <φφ  ;  ( ) 042 <φφ  ;  ( ) 065 <φφ  

 

Case 5:  

Cutting surface, shown in Case-5, is obtained if    

( ) 021 <φφ  ;  ( ) 058 <φφ  ;  ( ) 042 <φφ  ;  ( ) 065 <φφ  

 

Case 6:  

Cutting surface, shown in Case-6, is obtained if    

( ) 037 <φφ  ;  ( ) 064 <φφ  ;  ( ) 087 <φφ  ;  ( ) 065 <φφ  

 

Case 7:  

Cutting surface, shown in Case-7, is obtained if    

( ) 081 <φφ  ;  ( ) 052 <φφ  ;  ( ) 087 <φφ  ;  ( ) 065 <φφ  

 

Case 8:  

Cutting surface, shown in Case-8, is obtained if    

( ) 031 <φφ  ;  ( ) 024 <φφ  ;  ( ) 037 <φφ  ;  ( ) 064 <φφ  
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Case 9:  

Cutting surface, shown in Case-9, is obtained if    

( ) 031 <φφ  ;  ( ) 024 <φφ  ;  ( ) 081 <φφ  ;  ( ) 052 <φφ  

 

Case 10:  

Cutting surface, shown in Case-10, is obtained if    

( ) 081 <φφ  ;  ( ) 052 <φφ  ;  ( ) 037 <φφ  ;  ( ) 064 <φφ  

 

 

In order to compute the cutting surface area, the coordinates of the intersection points 

should be known. For this purpose, similar method used in the previous section is 

used as well. The proportionality feature is used in this method. As an example, only 

coordinates of the intersection points, A, B, C and D, for Case-1 are demonstrated in 

Figure 2. 28. The same methodology can be used for the remaining cases. 

 

 

 

Figure 2. 28. Cutting Surface of Case-1 
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1A XX =            (2. 54) 

 

1B XX =           (2. 55) 
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3C YY =           (2. 60) 

 

7D YY =            (2. 61) 

 

1A ZZ =            (2. 62) 

 

8B ZZ =            (2. 63) 

 

3C ZZ =            (2. 64) 
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7D ZZ =             (2. 65) 

 

 

Note that all coordinates and φ values are initially known at the corners of the cube. 

 

At this point, two illustrative examples are given. The first example is about the 

irregular cutting surface, the second example is about the regular one. 

 

Illustrative Example-1: Consider a cube whose distance value at nodes are given in 

Figure 2. 29. The cube corners are labeled as A, B, C, D, E, F and G. The purpose is 

to find the cutting surface. Since there is a negative sign at node F. This means that a 

boundary intersects the cube. Note that if all were positive, the cube would 

completely be at the propellant side. If all were negative, the cube would completely 

be at the gas side. The procedure is to search for the sign changes. There are sign 

changes between points A to F, G to F and C to F. Therefore, there should be 3 

cutting points. Since it has 3 cutting points only, it is an irregular cutting surface 

similar to the surface given in Figure 2. 26. Since it is irregular, it can not be 

considered when burn areas are calculated. 

 

 

 

Figure 2. 29. Illustrative Example-1 
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Illustrative Example 2: Consider a cube, whose distance values are given in Figure 2. 

30.  

 

 

Figure 2. 30. Illustrative Example-2 

 

 

When the sign change is searched for, one can realize that at point B and E have the 

negative signs. Therefore, there are intersection points between A and B, E and H, B 

and C, E and D. This means that there are 4 intersection points. Therefore, the cutting 

surface is regular and it is similar to Case-3 in Figure 2. 27. 

 

 

After the coordinates of the cutting surface points are determined, it is time to 

compute the cutting surface areas. To compute a cutting surface area, it is best to 

divide it into triangles as shown in Figure 2. 31. 

 

 

Figure 2. 31 Division of a Cutting surface Area 
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The area of the first triangle, A1, can be found by the equations given below; 

 

 

( ) ( ) ( )221
2

21
2

211 ZZYYXXS −+−+−=          (2. 66) 

 

 

( ) ( ) ( )231
2

1
2

312 ZZ3YYXXS −+−+−=          (2. 67) 

 

 

( ) ( ) ( )232
2

2
2

323 ZZ3YYXXS −+−+−=         (2. 68) 

 

 

)SSS(*5.0S 3214 ++=          (2. 69) 

 

 

)SS(*)SS(*)SS(*SArea 34241441A −−−=        (2. 70) 

 

 

where X, Y and Z is the corresponding x, y, z coordinate of a triangle given in Figure 

2. 31. The area of the second triangle, A2, is found by the similar fashion. The 

summations of A1 and A2 give the area of the cutting surface. By adding the all 

cutting surfaces, one can obtain the burning area of the model. 

 

Note that the cut-cell operation for the grid generation will also be analyzed in 

Chapter 4. 
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2.6.2.3 Cut-Cell Methodology in 3-D Space (Exact Method): 
 

 

Given one grid cell defined by its vertices and scalar values at each vertex, it is 

necessary to create a planar facets that represents the surface through the grid cell. 

The surface may not be passed through the grid cell, it may cut off any one of the 

vertices, or it may pass through more complicated ways. In Figure 2. 27, 10 possible 

cases are to be considered. However, since a cube has 8 corners, and one can classify 

each corner as either being below or above the surface, total number of possibilities 

of intersection, therefore, are 28=256. This means, there are 256 possible intersected 

configurations. This makes the exact solution difficult and time consuming job 

because there are the large numbers (256) of possible combinations and consistent 

facet combination for each solution need to be derived. This difficult and time 

consuming job; however, has been achieved[45] for medical purpose. A data table 

considering all 256 cases was established and an algorithm was developed for this 

job. In this study, this algorithm was used to guarantee the determination of cutting 

surface of a cube. 

 

Step-1 

Algorithm starts by indexing for the convention for vertices and edges of a cube 

shown in Fig 

 

 

Figure 2. 32 The indexing convention for vertices and edges 
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Step-2 

Then algorithm checks the distance values of vertices. If any negative value is 

determined, then a variable called “cube_index” is increased by a number which is 

given below: 

 

o If φ0 < 0  then cube index = 1 

o If φ1 < 0  then cube index = 2 

o φ2 < 0  then cube index = 4 

o φ3 < 0  then cube index = 8 

o φ4 < 0  then cube index = 16 

o φ5 < 0  then cube index = 32 

o φ6 < 0  then cube index = 64 

o φ7 < 0  then cube index = 128 

 

Step-3 

Total value of “cube_index” is calculated depending on number of vertices which 

have negative distance value. 

 

Step-4 

Go to the “Triangle Table” and a row number of n. Here, n is nothing but the 

cube_index value. Note that first row of this table is counted as 0. 

 

Step-5 

Related entry of “Triangle Table” is read in order to find the intersected edges of a 

cube. The format of a Triangle Table is shown in Figure 2. 33. 
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Step-6 

Find the coordinates of cutting points by using algorithm described in the previous 

section. 

 

 

 

Figure 2. 33. A Part of the Triangle Table 

 

 

The Triangle Table is actually the heart of the algorithm. The table has 256 rows, 

which represent 256 possible cases of intersection between a surface and a cube. This 

table has also 16 columns which represent total number of both intersected and non 

intersected edges of a cube. Each positive number in this table represents the edges 

of a cube given in Figure 2. 32. Negative values represents that there is no any 

intersection between cube edges and a surface and this edges located in propellant 

side. By using this algorithm, a cutting surface is established by triangles. Therefore, 

non-planar surface problem is solved by the planar triangles; even they are non-

planer to each other. 
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Illustrative Example-1: 

Consider a case, given in Figure 2. 34. All the vertices have a positive value except 

Vertex 3. 

 

 

Figure 2. 34. Illustrative Example-1 

 

 

Vertex 3 has a negative distance value, then  

φ3 < 0 ⇒ Cube Index = 8 

Since the first row of the Triangle Table is counted as zero, go to 9th row of the table 

shown in Figure 2. 33.  

The 9th row is     TAB(9,:)=(/3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1/) 

This means, there is an intersected triangle which intersects the edges 3, 11 and 2. 

The configuration is given in Figure 2. 35. 
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Figure 2. 35. Determination of Intersected Edges of a Cube 

 

 

Illustrative Example-2 

Consider a case shown in Figure 2. 36. Assume that there is a propellant side above 

the surface. Therefore, vertices of 0, 1, 2 and 3 are at the gas side and their distance 

values are negative. 

 

 

 

Figure 2. 36 Illustrative Example-2 
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Since φ0 < 0  then cube index = 1 

Since φ1 < 0  then cube index = 2 

Since φ2 < 0  then cube index = 4 

Since φ3 < 0  then cube index = 8 

 

If one can add all cube_index values, 1+2+4+8=15 

Then, 16th row (because first row of the table is considered to be 0) of the table, 

given in Figure 2. 33, is read as; 

TAB(16,:)=(/9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1/) 

This means, surface of intersection is composed of two triangles. The vertices of the 

first triangle are on the edges of 9, 8 and 10 of the cube. The vertices of the second 

triangle are on the edges of 10, 8 and 11 of the cube. These triangles are shown in 

Figure 2. 37. 

 

 

 

Figure 2. 37. Intersected Surface Triangles in Illustrated Example-2 
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In this thesis, this method for the construction of the cutting surface of a cube is used 

and Trinagle Table data is inserted into the burnback code. This method is generally 

used in modeling the neuron in medicine. 

 

 

2.7 Geometrical Consideration of Solid Propellant Burning: 
 

 

During propellant combustion, the burning perimeter at each point recedes in a 

direction normal to the surface at that point. This generalization is identified as Saint 

Robert’s Law. As an example of the effect of this law on the burning characteristics 

of a grain, one can consider the cusp in Figure 2. 38. A cusp convex toward the gas 

phase remains as a cusp and that a cusp initially concave toward the gas phase 

becomes an arc of a circle with its center being at the original cusp [1]. 

 

 

 

Figure 2. 38. Geometrical Consideration of Burning 

 

 

Since the methodologies used in this thesis for the boundary propagation are matched 

to solid propellant burning rules, they are applied to solid propellant for burnback 

simulations. 
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2.8 Summary : 
 

 

The summary of the procedures and methods developed in this chapter and 

numerical algorithms used are summarized in this section step by step: 

 

Step-1: A grain geometry which will be analyzed is chosen as shown in Figure 2. 39. 

 

 

 

Figure 2. 39 Cylindrical Grain to control the Burning Rate of the Propellant 

 

 

Step-2: A solid model of the gap or perforation of the grain chosen is established. 

 

 

 

Figure 2. 40. The Solid Model of the Grain 
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Step 3: Tetrahedron mesh elements are generated on this model by using any 

commercial mesh generator as shown in Figure 2. 15 

 

Step 4: An equally spaced structured grid are generated by the main program. For 

each structured grid, the minimum distances between the grid and the model is 

calculated as shown in Figure 2. 16. Unstructured grid is used to catch up with the 

coordinate information of the model. The procedure is given in Section 2.4.2. 

 

Step-5: For each structured grid, one can determine if it is located inside of the model 

or outside. Because, for inside grid, the minimum distance value of that grid is 

multiplied by -1. The procedure is given in section 2.4.2.1. 

 

Step-6: After the determination of distance values for each structured grid, burnback 

is performed by updating the distance values according to Equation (2. 20).  

 

Step-7: By knowing the updated distance values, new boundary is constructed by 

using Exact Cut-Cell method explained in Section 2.6.2.3 Cut-Cell Methodology in 

3-D Space (Exact Method):. The burning area of the new boundary is computed by 

the method explained in the Section 2.6.2.2 Cut-Cell Methodology in 3-D Space 

(Aproximate Method): 
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CHAPTER 3 
 

 

PERFORMANCE PREDICTION OF SOLID PROPELLANT 
ROCKET MOTORS AND GRID GENERATION 

 

 

3.1. Introduction: 

 

 

 The performance prediction of the solid propellant rocket motor is simply the 

prediction of pressure or thrust of a motor. The aim of the grain burnback analysis is 

to determine the burning surface area of the solid propellant grain. The pressure is 

determined by using this burning surface area. Therefore, some internal flow models 

are used to determine the pressure and burning area values are embedded into these 

models. 

 

As far as types of the models for internal flow of the solid propellant rocket motor 

are concerned, they are divided into 3 main categories: 

 

 Lumped model 

 Quasi-steady model 

 Unsteady model. 

 

As far as the dimensions of the internal flow models are concerned, they are divided 

into 3 main categories as well: 
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 0-dimensional model 

 1-dimensional model 

 3-dimensional model 

 

In this study, both 1-dimensional quasi-steady flow solver and 3-D quasi-steady flow 

solver are used for the prediction of pressure. 1-D solver which was previously 

developed is called “Simp(x)”. The name of the 3-D solver is called Set-3D. In 

Simp(x), burning area obtained by the burnback code is partially coupled with the 

solver. Why the term of “partially” is explained in this chapter later on.  

 

 

3.2 Flow Models for Solid Propellant Rocket Motors: 
 

 

3.2.1 Lumped Model: 
 

 Lumped model is the simplest model because it is zero-dimensional model. 

This model does not allow any changes in chamber variables. In other words, 

pressure and thrust predictions utilize the equilibrium pressure equation. The 

chamber pressure is assumed to be constant all over the propellant burning surface or 

motor. This assumption is valid for a motor such that its length to diameter ratio is 

very small [37]. In this model, pressure is only changes with time. The governing 

equation of this model is obtained by equating the mass flow rate of the propellant 

burned to the mass flow rate discharged through the nozzle shown in Figure 3. 1. 
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Figure 3. 1. Illustration of 0-D Lumped Model for a Rocket Motor 

 

 

 

The mass flow rate of the propellant burned is obtained by the multiplications of the 

burning rate, r& , propellant density, ρp, and propellant burning area, Sb. Mass 

discharge rate through the nozzle was given in Equation (1. 16). Therefore; 

 

 

∗=ρ⇒= cAPrSmm thcpbeargdischpropelant &&&             (3. 1) 

 

 

Since burning rate is related with the pressure, given in Equation (1. 1), then one can 

obtain; 

 

 

∗=ρ cAPPaS thc
n

c0pb              (3. 2) 
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In equation above, only burning surface area and pressure are changed with time. 

The pressure for lumped model is obtained as; 

 

n1
1

th

0pb
c A

caS
P

−∗

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ρ
=              (3. 3) 

 

 

3.2.2 Unsteady 1-D Model: 
 

 

Ignition transient and tail-off transient of the rocket motor are both the transient 

phenomenon and it is impossible to handle them by using lumped or quasi-steady 

internal flow models. Ignition transient and tail-off transient part of the pressure-time 

history of the rocket motor is shown in Figure 3. 2 [37]. 

 

 

 

Figure 3. 2. Ignition Transient and Tail-Off Transient of the Rocket Motor 

 

 

A useful thrust or pressure has already been spent at the beginning of tail-off 

transient part. At this point, propellant grain is in “sliver” case. Therefore, tail-off 
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transient modeling is not as important as the modeling of the ignition transition part 

of the solid propellant rocket motor. For 1-D transient model, chamber pressure can 

not be considered uniform throughout the motor and model can not be considered 

quasi-steady manner. The basic assumptions made for this model are as follows; 

 

• Internal flow is 1-dimensional and adiabatic. 

• Gases are considered to be perfect. 

• Mass addition occurs instantaneous process with no velocity component parallel 

to motor axis 

• Isentropic flow exists throughout the nozzle. 

 

The control volume for this model is shown in Figure 3. 3 [37]. 

 

 

Figure 3. 3 Control Volume for 1-D Unsteady Model 

 

 

For rocket motors, these two relations are valid; 
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By using these two equations, conservation of mass, conservation of momentum and 

conservation of energy equations can be written as follows [38]; 
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where ρ, u is the gas density and velocity respectively, ρp is the propellant density. 
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where p is the pressure. To prevent contradiction, recall that Pb is the burning 

perimeter of the grain, Pw is the wetted perimeter. τw is the shear stress on the port 

wall. 
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where, E is the total stored energy of the propellant, ql is the rate of convective heat 

loss, hf is the total energy flux transferred from the burning surface to the control 

volume. 

A complete model should also contain the flame spreading data of the combustion. A 

detailed understanding of ignition and flame spreading mechanism is essential for 

accurate prediction of the ignition transient. Flame spreading data should be obtained 

from the experimental studies. 

 

 

3.2.3 Quasi-Steady 1-D Model: 
 

 

For a quasi-steady state process, the flow in the chamber is assumed to be frozen and 

the variation of flow parameters with time may be neglected. For simplicity, shear 

stress and heat loss are not considered in many cases. Assuming perfect gas law, 

conservation equations are as follows [38]; 
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Since a frozen flow throughout the chamber is assumed, time variations of flow 

parameters, p, ρ and u, are zero. Mach number is introduced as; M=u / a where a is 

the sonic velocity. After rearranging the equations, one can obtain [38]; 
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In order to solve these equations, the motor is divided into many slices as shown in 

Figure 3. 4. 

 

 

 

Figure 3. 4. Slices of the Motor 



98 

The boundary conditions are obtained by the knowing the flow properties at x=0, in 

such a way that Mach number at the nozzle inlet has to be satisfied. Note that Mach 

number at the nozzle inlet can be calculated by knowing the Mach number at the 

nozzle throat is unity.  

 

At x=x0                 u=0, dP/dx =0          (3. 15) 
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The control volume of the first slice of the slices, shown in Figure 3. 4, is shown in 

Figure 3. 5 [38]. 

 

 

 

Figure 3. 5 Control Volume of the First Slice 
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After determining the flow properties at x=x0, the equations (3.12), (3.13) and (3.14) 

are used to determine the slice properties throughout the motor. Starting from x=x0, 

flow properties are computed at every slice by marching in space as given in 

equations below: 
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where subscript I is the space index, n is the iteration index. 

After marching all the way to x=xN, if MN is equal to the value obtained from 

Equation (3. 16), then assumed flow variables, p and ρ, at x=x0 will be correct and 

the next time step will be proceeded. 

 

 

3.3 Simp(x) Code: 
 

 

Simp(x) is the computer code used for the prediction of the performance of the solid 

propellant rocket motor. The code was developed and modified by Uçar[38] and 
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Ak[39] in TÜBİTAK-SAGE. In this thesis, for the prediction of the performance of 

the rocket motor, this previously developed code is used. The code uses 1-D quasi 

steady state internal flow model described in the previous section. The burning area, 

Sb, and port area, Ap terms in Equations (3.12), (3.13) and (3.14) are given to code as 

an initial input.  

Without knowing the internal pressure of the motor, burnback can not be performed. 

Simp(x) is a “partially coupled” with the burnbacks. Now, it is time to explain the 

term of “partially coupled”. The illustrative figure is shown in Figure 3. 6.  

 

 

 

Figure 3. 6 The Illustration of Burnback Handling of Simp(x) 

 

 

Both port area and burning area of the propellant obtained by the burnback steps, 

stated as 1 and 2 in Figure 3. 6, are given to Simp(x) as an initial input. Simp(x) uses 

these values to determine the pressure of the rocket motor. Then the burning rate is 

obtained by the pressure value calculated previously. Since the time is known, then 

propellant burning distance is calculated. Consider the propellant location, given in 

Figure 3. 6. Since the propellant location does not match the locations of burnbacks, 

1 and 2, the port area and burning area of the propellant are different from those 

obtained by Burnback-1 and Burnback-2. To correct these, Simp(x) makes an 

interpolation to find the real burn area and port area values by using Burnback-1 and 

Burnback-2 data. That is why Simp(x) is said to be “partially coupled” with 

burnback data, although it is not “fully coupled”.  
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As far as input file given to Simp(x) and output file generated by it are considered, 

Simp(x) needs followings; 

 

• Grain geometry parameters: Grain geometry geometrical parameters for 

conventional grains, such as, circular, star-shaped or wagon wheel, are given as 

an input. However, for unconventional grains, such as, finocyl, conocyl, axar-

typed..etc, it reads a data file containing port area and burn area of the grain 

considered. 

• Erosive burning parameters: For an erosive burning option, erosive burning 

constants, α and β, are given directly or there is an option for the determination 

of these parameters by heat transfer methods. 

• Initial values of flow parameters: Initial assumed pressure and density are given 

as the initial iteration. 

• Propellant and thermo-chemical properties : Burning rate constants, enthalpy of 

formation of the propellant, propellant density, specific heat ratio, adiabatic flame 

temperature, temperature sensitivity of the propellant, temperature of the 

propellant are given to code. 

• Motor dimensions: The length and diameter of the motor are given. 

• Parameters for flow models: Dimension of the model, ie, 0-D or 1-D, option for 

nozzle throat erosion, time stepping and convergence error band of the numerical 

model are given as the initial inputs. 

 

 Simp(x) generates an output file containing the changes of motor pressure, thrust, 

specific impulse, and mass flow rate with time. Motor pressure change along the 

motor length is also generated as an output. 

 

 

3.4 Set-3D: 
 

Set 3-D is a parallel, Navier-Stoke’s external flow solver developed in the project of 

SAM in TÜBİTAK-SAGE. In this thesis, Euler solver part for motor internal 
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ballistic analysis of this already-developed-code was used with a minor modification. 

Therefore, no any considerable implementation of 3-D internal flow solver code was 

performed in this study. Flowchart and data file of the Set-3D is shown in Appendix. 

 

There are 3 types of grid; structured, unstructured and hybrid. In this study 

unstructured grid is used and grid elements are tetrahedrons.  

 

There are basically 3 discretization techniques for the numerical solution of 

conservation laws; finite differences approach, finite volume approach and finite 

element approach. Set-3D uses finite volume approach. For the approximation of 

mass, momentum, energy fluxes over the surface of the control volumes in 

computational domain, a cell centered scheme is used. In cell centered formulation, 

the flow properties are directly computed at the center of the cell. Code uses explicit 

time stepping by using 4th order Runge-Kutta Method. Fluxes are computed using 

Roe[43] flux difference splitting scheme across each cell face of cell centered control 

volume. Left hand side of the cell face (downstream flow) is denoted by L, and right 

hand side of the cell face is denoted by R (upstream flow). Then the flux across each 

cell face is computed according to Roe’s formulation as; 

 

 

( ) ( )( ) ( )LRRLface UUA
2
1UFUF

2
1F −−+=          (3.20) 

 

 

where F(UL) and F(UR) are the conservative variables at the left and right of the cell 

face and A is the Jacobian matrix ( U/F ∂∂ ), which is evaluated using so called Roe 

averaged flow variables as shown; 

 

RLface ρρρ =           (3.21) 
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where H is the specific enthalpy, a is the speed of sound. U, v and w is the x, y and z 

component of the velocity V 

 

A cell-averaged data is distributed to the triangular faces for flux computation as 

follows; 

 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+++= 4node3node2node1nodecenter)3,2,1(face U~U~U~U~

3
1

4
1U~U~    (3.27) 

where 

[ ]TPwvuρU~ =           (3.28) 

 

 

Boundary conditions for wall, propellant gap-propellant and nozzle outlet at the 

initial step can be written as follows; 
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Wall BC: All the left fluxes are equal to the right fluxes, except LR UρUρ −=  

 

Propellant-propellant gap BC:  

     qr(1)= ρg               (3.29) 

 

 

           qr(2)= - ρp rdat           (3.30) 

 

 

     qr(3)=0           (3.31) 

 

 

     qr(4)=0           (3.32) 

 

 

                qr(5)=ein            (3.33) 

 

 

where q denotes the conservative variables, ρg is the gas density, ρp is the density of 

the propellant. Ein is given as 

 

 

    ein=ρg R/(ϒ-1) Tf           (3.34) 

 

 

where R is the gas constant, ϒ is the specific heat constant and Tf is the combustion 

temperature of the solid propellant, which is approximately 3300 K. 
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Nozzle outlet BC: All left fluxes are equal to right fluxes. qr(1,2,3,4,5)= ρl(1,2,3,4,5) 

 

 

The code, Set-3D, has two executables, Master and Worker. Mater works as the main 

processor and performs the followings; 

o reads the necessary input data, 

o reads the size of the computational mesh and computational mesh itself, 

o calculates the neighbors of each computational cell according to boundary 

conditions given, 

o calls the domain decomposition program to partition the computational mesh 

to the given number of processors, 

o spawns the computing nodes and sends the necessary input data to computing 

nodes, 

o sends the local grid information to each partition, 

o receives the information of conservative variables from each partition, 

o calculates the residual and check it to stop the program. 

 

The other executable, Worker, performs the followings; 

o receives the necessary inputs from Master, 

o calculates surface normals, surface areas, cell volumes and direction cosine of 

the cell faces, 

o sends and receives interface boundary conditions to the partitions, 

o calculates time step of each iteration, 

o distributes the cell centered values of conservative variables to the cell nodes, 

o starts 4th order Runge-Kutta time steping algorithm, 

o calculates velocity gradients at the cell center, 

o evaluates conservative variable at the cell faces, 

o introduces boundary conditions to the right state of the cell, 

o computes flux differences for each cell face so that computes the flux passing 

through these faces. 

o Sums up all fluxes passing through four faces of the tetrahedron, 

o calculates pressure values from conservative variables, 
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o sends the conservative variables to master, 

o repeat these steps until stop command coming from the Master. 

 

 

3.4 Grid Generation for 3-D Flow Solver: 
 

 

In this study, 3-D grid by using Cut-Cell method described in Section 2.6.2.2 was 

first generated. However, the method leads two major problems; 

 

• since the method only covers the 10 possible cutting configurations, it was 

faced with some cases which are not included in these cases. These non-

considered cases cause some discontinuity in the domain which is not 

acceptable for 3-D flow solver.  

• other problem is that burnback code needs very dense solution domain. 

Cutting this large number of cubes causes large number of elements for 3-D 

solver and this situation makes the flow solver very slow and even impossible 

to be run.  

 

Therefore, Cut Cell method described in Section 2.6.2.3 Cut-Cell Methodology in 3-

D Space (Exact Method): was used in this study to generate surface mesh and then a 

commercial grid generator called Tetgen was used for the generation of tetrahedrons. 

However, in this section both method are described in detail. 

 

 

3.4.1 Grid Generation by Using Approximate Cut-Cell Methodology 
 

 

The types of the elements generated are classified as; 

 

• Interior elements, 
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• Exterior elements, 

• Boundary elements. 

 

 

Interior Elements: Interior elements are the elements located completely inside of the 

boundary. Therefore, these elements are on the gas side or on the perforation of the 

solid propellant. Since there is no any intersection between these elements and the 

boundary, elements preserve their original shapes. They are cubes. 

The distance values at the corners of the interior element are shown in Figure 3. 7. 

 

 

 

Figure 3. 7 Distance Values of an Interior Element 

 

 

One can realize that all distance values at the corners of the cube are negative. 

Therefore; 

 

 

 If all 8 distance values at the corners of a cube element are negative, then this 

element is said to be an interior element. 
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Exterior Elements: Exterior elements are the elements located completely outside of 

the boundary. Therefore, these elements are on the propellant side. Since there is no 

any intersection between these elements and the boundary, elements preserve their 

original shapes like interior elements. 

The distance values at the corners of the exterior element are shown in Figure 3. 8. 

One can observe that the distance values at the corner of the cube are positive. 

Therefore; 

 

 If all 8 distance values at the corners of a cube element are positive, then this 

element is said to be an exterior element. 

 

Figure 3. 8 Distance Values of an Exterior Element 

 

 

Boundary Elements: Boundary elements are the elements located on the boundary of 

the perforation of the solid propellant. Some part of the elements is on the gas side, 

some part of it is on the propellant side. Since there is an intersection between 

elements and boundary, boundary elements do not preserve their original shapes, that 

means, these elements are no more cubes.  

Distance values of the corner of a boundary element are shown in Figure 3. 9. One 

can easily observed from the figure that the boundary elements have both negative 
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and positive distance values. If a cube has a one negative distance value, then it is 

counted as an irregular shape and it can not be considered as an element. This 

situation was explained in Figure 2. 26. Therefore; 

 

  If at least two but not all the distance values at the corners of a cube element 

are negative, then this element is said to be a boundary element.  

 

 

 

Figure 3. 9. Distance Values of a Boundary Element 

 

 

There are 3 types of boundary elements as far as the shape of the element is 

considered; 

 

Boundary element-1: The first boundary element is shown in Figure 3. 10. 
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Figure 3. 10. Boundary Element-1 

 

 

This element is obtained when the cutting surface forms like Case 2 and Case10 

given in Figure 2. 27. The element has 8 corners, 6 faces and 12 edges. 

 

 

Boundary element-2: The second boundary element is given in Figure 3. 11. 

 

 

 

Figure 3. 11 Boundary Element-2 
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This element is obtained when the cutting surface forms like all cases except Case 2 

and Case10 depending the gas side or propellant side given in Figure 2. 27. The 

element has 10 corners, 7 faces and 15 edges. 

 

 

Boundary element-3: This element is obtained when the cutting surface forms like all 

cases except Case 2 and Case10 depending the gas side or propellant side given in 

Figure 2. 27. The element has 6 corners, 4 faces and 9 edges. Third boundary 

element is shown in Figure 3. 12. 

 

 

 

Figure 3. 12 Boundary Element-3 

 

 

The properties of the all elements generated by the Cut-Cell method are tabulated in 

Table 3. 1. 
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Table 3. 1. Properties of Grid Elements 

Type of the 

element 

Distance 

values 

Number of 

corners of an 

element 

Number of 

faces of an 

element 

Number of 

edges of an 

element 

Interior All negative 8 6 12 

Exterior All positive 8 6 12 

Boundary-1 

At least 2, but 

not all, 

negative 

8 6 12 

Boundary-2 

At least 2, but 

not all, 

negative 

10 7 15 

Boundary-3 

At least 2, but 

not all, 

negative 

6 4 9 

 

 

 

3.4.2 Grid Generation by Using Exact Cut-Cell Methodology 
 

 

In this case, a surface mesh containing triangles are generated. These triangles are 

obtained by Cut-Cell described in Section 2.6.2.3 Cut-Cell Methodology in 3-D 

Space (Exact Method):. Then this closed surface mesh data are given to commercial 

grid generator to generate 3-D tetrahedral elements. The surface mesh is shown in 

Figure 3. 13. In this figure, both propellant and nozzle are meshed by using the Exact 

Cut-Cell method. The leading edge (propellant tip) and the trailing edge (nozzle 

outlet) are still open, it means that surface is not a closed surface as shown in Figure 

3. 14. For the generation of 3-D elements, surface should be closed. For this reason, a 

point at the center of the nozzle outlet is generated and this point is connected all the 
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nodes at the nozzle outlet as shown in Figure 3. 15. Same procedure is applied at the 

tip of the propellant. So a closed surface is obtained. 

 

 

 

Figure 3. 13. Surface Mesh Obtained by Exact Cut-Cell Method 

 

 

 

Figure 3. 14. Surface Mesh of the Nozzle Outlet (Not Closed) 
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Figure 3. 15. Surface Mesh of the Nozzle Outlet (Closed) 

 

 

3.4.2.1 Tetgen 
 

 

Tetgen is the abbreviation of Quality Tetrahedral Mesh Generator and 3-D Delaunay 

Triangulator [44]. For a 3-D domain, defined by its boundary (like a surface mesh), 

Tetgen generates the boundary constrained (Delaunay) tetrahedralization, 

conforming Delaunay tetrahedralization and quality Delaunay mesh. This software is 

written in C++ computer language and can be compiled into an executable program 

or library. In this study, this free-downloaded software was to generate tetrahedrons 

for 3-D flow solver. A closed surface mesh is given to this software as an input, and 

program generates tetrahedrons and writes the necessary geometrical information. As 

far as the boundary conditions are concerned, 3 types of boundary condition were 

used in this study; 
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o wall boundary condition, marked as -2. 

o propellant boundary condition, marked as -4 

o nozzle outlet (supersonic) boundary condition, marked as 0. 

 

In Figure 3. 16, tetrahedrons and their boundary flags are shown. 

 

 

 

Figure 3. 16 Tetgen Output 

 

 

In Figure 3. 16, the red domain consists of tetrahedrons in the propellant-gas 

boundary side. Therefore this domain changes when the propellant begins to burn. 

The yellow domain is the wall side. Therefore it remains as it is during the 

propagation of burnback. The blue domain represents the nozzle outlet. There is no 
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flag for the interior (gas side) or exterior (propellant side) elements. Cross sectional 

views of the model are shown in Figure 3. 17. 

 

 

 

Figure 3. 17 Equal Volume Tetrahedron Grids 

 

 

In addition to this equal volume tetrahedrons, it can also be generated non-equal 

volume tetrahedrons shown in Figure 3. 18. 
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Figure 3. 18. Non-Equal Volume Tetrahedron Grids 

 

 

Since the nozzle and propellant are generated by sharp edge tetrahedron, a smoothing 

operation was first tried to perform as shown in Figure 3. 19. Smoothing is actually 

nothing but the take an average of the values of the neighboring node coordinates. 

Sharp edges shown at the left part of the Figure 3. 19 is smoothened shown in the 

right part of this figure. However, one can realize that smoothing operation changes 

the coordinate of the nodes considerably, it is forsaken to use in this study. 

The switch list of Tetgen can be found in Appendix. 
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Figure 3. 19. Smoothing of Computational Mesh 

 

 

3.4.2.1.1 Stored Information  
 

 

The geometrical information of tetrahedrons obtained by Tetgen is as follows;  

 

• filename.1.node: This file contains the information of total number of nodes, x-y-

z coordinates of the nodes. 

• filename.1.ele: This file contains the information of total number of tetrahedral 

elements and node numbers of each element.  

• filename.1.face: This file contains the information of total number of face of the 

tetrahedral elements and face numbers of each element. 

• filename.1.neigh: This file contains the information of neighboring elements of 

each element. If a neighboring element of an element does not exist, a boundary 

flag is written. 

 

Filename is the filename given to Tetgen as an input and Tetgen gives the files 

described above as the same name, ie., if the filename of the closed surface mesh 
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given to Tetgen is “sage.mesh”, then the name of the node information file obtained 

by Tetgen becomes “sage.1.node”.  

 

By using the information of the files described above, 3 input files for Set-3D are 

generated by the burnback code. The properties of these files are as follows; 

 

o mesh.dat: This file contains the information of coordinate points of nodes and 

their connectivity data. This file is similar to “filename.1.node” file. 

o element.dat: This file contains the information of total number of tetrahedral 

elements and node numbers of each element. This file is almost the same with 

the “filename.1.ele” file. 

o komsu.dat: This file contains the information of neighboring elements of each 

element. If a neighboring element of an element does not exist, a boundary 

flag is written. This file is almost the same with the “filename.1.neigh” file. 

However, format of the boundary flags are different to each other. 

 

The file formats of these files can be found in Appendix. 

 

 

3.4.3 Boundary of Burnback 
 

 

Since the geometries of both the nozzle and the propellant gap of the rocket motor 

are obtained Exact Cut-Cell method described in Section 2.6.2.3 Cut-Cell 

Methodology in 3-D Space (Exact Method):, propagation of the propellant gap 

causes the propagation of nozzle as well. In order to avoid this case, a boundary of 

the burnback is introduced as shown in Figure 3. 20.  

• Longitidunal Boundary: Up to the distance of L1, burnback is updated for 

each burnback step. Distance values of the nodes located longer than L1 is 

not updated so that they remain as they are. Therefore, the nozzle geometry is 

not changed as the burnback propagates. The other boundary is the leading 
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edge of the propellant. If the coordinate of a node is less than zero, distance 

value is not updated as well. Therefore, propellant does not move towards the 

leading edges. 

• Radial Boundary: If the distance between a node and the centerline of the 

motor is larger than motor radius, then distance value of this node is not 

updated. Therefore, the propellant gap is not allowed to move to a distance 

larger than motor radius. In this case, propellant boundary condition is 

changed to a wall boundary condition. 

 

 

 

Figure 3. 20. Boundary of the Burnback 
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CHAPTER 4 
 

 

RESULTS AND DISCUSSION 
 

 

4.1. Introduction: 
 

 

The outputs of this study are simply divided into two main groups; 

 

o Geometrical properties of the grain, 

o Performance properties of the solid propellant rocket motor. 

 

As the geometrical properties of the grain, one can consider the location of the 

boundary during propagations, burning surface area of the grain, port area of the 

grain, etc. Rocket motor pressure and thrust are the most common performance 

properties of the solid propellant rocket motor. Geometrical properties of the grain 

are determined by using burnback code, while the performance properties are 

computed by using flow solvers. 

 

As far as the verifications of the results are considered, results obtained by the 

burnback analyses and performance predictions are generally verified by; 

 

 

• Simple analytical calculations. 

• Simple, especially 2-D, commercial Computer Aided Design (CAD) models. 
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• Complicated, especially 3-D, CAD models 

• Real time ultrasonic inspection or X-ray [40]. 

• Static test results. 

 

 

 In this study, simple analytical calculations, simple CAD models and static 

test results are used to verify the results obtained by burnback and flow analyses. 

 

 Lots of grain geometries are analyzed by using the developed grain burnback 

codes. Some of the analyses are performed in 2-D space; while some of them are 3-D 

in space. In some analyses, verifications of the results are not made. Since, these 

analyses are made in order to illustrate the properties of the grain. Burnbacks of 

simple geometry grains, such as circular geometry, are verified by using simple 

analytical calculations. In 2-D analyses, commercial Computer Aided Design (CAD) 

software like Auto-CAD[41], are used for the verification of the results. In some 3-D 

analyses, pressure or thrust of the motor is calculated by using 1-D quasi-steady 

internal flow solver, Simp(x). Results are compared with the static test data of the 

rocket motors. 

 

 

4.2 Results of the Analysis in 2-D Burnbacks: 
 

 

4.2.1 Circular Grain: (Test Case-1) 
 

 

The first grain configuration to verify the methodology used is the circular perforated 

grain. It is the simplest grain type so that grain parameters can be calculated 

analytically. The port area and burning area of the grain are simply calculated by 

considering the perimeter and area of the circle as: 
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4
DA

2
p

π
=               (4. 1) 

 

 

DLSb π=              (4. 2) 

 

 

The propagation of the circle is given in Figure 4. 1. In this figure, 100x100 square 

grids are used. The initial diameter of the circle is 26 mm. The burning perimeter is 

multiplied by an htypotatical length of 0.78 m to obtain the burning surface area. The 

propagation distance is chosen as 0.6 mm. The grid size used in this analysis, that is 

size of the cell edge, is 1.3 mm.  

 

Analytically calculated results are compared with the results obtained by the 

burnback code to verify the code. This comparison is tabulated in Table 4. 1. 
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Figure 4. 1. Burnbacks of the Circular Slotted Grain 

 

 

Table 4. 1 Results for Test Case-1 

 
 



125 

 

In Table Table 4. 1, one can observe that the maximum error in the port area 

determination is less than 1 percent. In the determination of the burning area values, 

maximum error is almost 1 percent. Therefore, one can easily said that burnback of 

the circular perforation has acceptable accuracy. 

 

 

4.2.2 Star Shaped Grain-1: (Test Case-2) 
 

 

The second test case is the star-shaped grain. In this analysis, 4 arms star shaped 

grain is used for verification purpose of the code. Star grain is one of the 

conventional grains and analytical solution for the determination of the burning area 

of the grain is available. However, analytical solution is not applicable to all kinds of 

star-shaped grains. Therefore, simple 2-D CAD model is used to determine the exact 

burning area or port area of the grain. CAD model is established by using the Auto-

CAD solid modeling software. Star-shaped grain burnback is shown in Figure 4. 2 
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Figure 4. 2 Star Shaped Grain Burnback 
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In this analysis, 100x100 square cells are used. The burning area of the grain is 

obtained by the differentiation of the port area values between two successive 

burnback steps. This method uses the formula given in Equations (2. 26) or (2.27) of 

Section 2.6.1. 

The results for 100x100 grid are tabulated in Table 4. 2. 

 

 

Table 4. 2 Results by the Differentiation of Port Area Values (100x100 grid) 

 
 

 

From Table 4. 2, one can observe that the maximum error in port areas is less than 2 

percent. However, error in the burning areas is at the unacceptable limit. Therefore, it 

has to be determined whether this error is due to the usage of insufficient number of 

grid.  

The problem is resolved by using denser grid which contains 400 x400 nodes. The 

results obtained by this analysis are given in Table 4. 3. From this table, it is realized 

that the error in port area values decreases to less than 1 percent. However, the error 

in burning area values is still unchanged.  

The last attempt is to use a grid containing 1000x1000 nodes. The results obtained by 

this solution are given in Table 4. 4. 
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Table 4. 3. Results by the Differentiation of Port Area Values (400x400 grid) 

 
 

 

 

Table 4. 4 Results by the Differentiation of Port Area Values (1000x1000 grid) 

 
 

 

From Table 4. 4, one can observe that although there is an improvement in the error 

band for port area values, there is no decrease in the error for the burning surface 

area values. Therefore, one can conclude that; 
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 No matter how denser is the grid used, the determination of the burning 

surface area from the differentiation of the port areas obtained by the 

successive two burnback steps is not suitable. Therefore, Equations (2. 26) or 

(2.27) described in the section, Method-1, is not applicable for this study due 

to the oscillatory behavior of the port area. This oscillatory behavior is shown 

in 3-D cylindrical grain analysis. That is why the Cut-Cell method, described 

as Method-2, is developed. 

 

 

Same problem is solved by using the Cut-Cell method, explained in Section 2.6.2. In 

this case, 200x200 nodes are used. The results are shown in Table 4. 5 

 

 

Table 4. 5. Results of Test Case-2 by Cut-Cell Method 

 
 

 

Results obtained by the Cut-Cell method is found to be satisfactory. Since, the error 

in the port area values is less than 1 percent. While error exists in the burning surface 

area values is less than 2 percent. If denser grid is used, errors in both port area and 

burning surface area values will decrease. 

Exact area and calculated burning surface areas are shown in the graph of Figure 4. 

3. 
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Figure 4. 3. Comparison of Burning Surface Areas of Test Case-2 

 

 

4.2.3 Star-Shaped Grain-2 (Test Case-3) 
 

 

A similar grain to the grain explained in the previous section is used in this case. The 

differences between these two star-shaped grains are the circular portion located at 

the center of the grain. Star-Shaped Grain-1 has the largest circular portion than the 

Star-Shaped Grain-2. The burnback of the grain under consideration is given in 

Figure 4. 4.  

 

The results obtained by the burnback code are given in Table 4. 6. Port area values 

are found to be satisfactory. Since, the maximum error of the port areas is less than 1 

percent. While the maximum error is less than 2 percent in the burning area values of 

this grain. 
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Figure 4. 4. Burnback of the Test Case-3 

 

 

 

Table 4. 6 Results of Test Case-3 
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4.2.4 Multi-Perforated Circular Grain (Test Case-4) 
 

 

Multi-perforated circular grain is the grain chosen as the forth test case. The reason 

why this grain is chosen is that it is aimed to determine what happens when the 

circles collide. Although it is a 2-D problem, it is the one of the most difficult 

problems as far as interface regression is concerned. The circles are expanded 

towards each other. If the burnback method is not robust, the boundary will not be 

logical when the circles intersect. Therefore, this problem is a good test case for the 

verification of the burnback method. Neither port area values nor burning areas 

values are computed for this test case. Since, the verification of this test case is 

performed to check the interface during the collusion of the circles. The burnback 

simulation of this test case is shown in Figure 4.5. 

 

 

 

Figure 4.5 Burnback Simulation of Test Case-4. 
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From Figure 4.5, it can be observed that the boundary of intersection is said to be 

logical. No undesired or illogical formation of boundary occurs during the 

propagation of the circles. One important observation is that when the propellant is 

divided into two parts, small part continues to burn. Many burnback codes can not 

handle this situation. 

 

 

4.2.5 Ellipse Type Perforated Grain: (Test Case-5) 
 

 

Another test case is the ellipse type perforated grain. In this analysis, it is aimed to 

determine the effects of the number of grids used and the burnback distances. For 

this purpose, only port area values are computed. In the problem, 100x100, 250x250 

and 500x500 grids are used and the maximum error in port area values is determined 

for each case.  

Note that the grid considered for all of these cases in this study is a structured grid. 

This grid composed of squares in 2-D space and should not be confused with the 

unstructured grid generated by the CAD software. 

 

 

The unstructured grid generated for an ellipse is shown in Figure 4. 6. This work is 

performed by a commercial grid generator called ANSYS[42]. The type of the 

element generated is called “tria-3 nodes”. This means nothing but the triangle 

containing 3 nodes. 

Propagation of an ellipse is shown in Figure 4. 7. The results for the solution 

domains of 100x100 grid and burnback distance of 1.21 mm, 250x250 grid and 

burnback distance of 0.48 mm, 500x500 grid and burnback distance of 0.24 mm are 

tabulated in Table 4. 7 to Table 4.9. 
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Figure 4. 6 Unstructured Grid Generated for an Ellipse 

 

 

 

 

Figure 4. 7 Burnback Simulation of Test Case-5 
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Table 4. 7 Results of Test Case-5 (100x100 grid, dw=1.21 mm) 

 
 

 

 

Table 4. 8 Results of Test Case-5 (250x250 grid, dw=0.48 mm) 
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Table 4.9 Results of Test Case-5 (500x500 grid, dw=0.24 mm) 

 
 

 

The maximum and averaged percentage errors for these cases are shown in  

Figure 4.8. 

 

 

 

Figure 4.8. Error Percentage Among Different Grids for an Ellipse 
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From Figure 4.8, one can observe that both average and maximum errors decrease by 

using denser grids and small burnback distances. However, this decrease is larger 

from 100x100 grid to 250x250 grid than 250x250 grid to 500x500 grid. This shows 

that there is an optimum point beyond which an improvement of error is not 

observed any more.  

 

 

4.2.6 Diamond Type Perforated Grain: (Test Case-6) 
 

 

Same work, which was performed for the previous test case, is performed for the 

grain perforated diamond type. 100x100 and 500x500 are the grids generated for the 

solution domain. Same burnback distances are used with the previous test case. The 

burnback of diamond perforation for 100x100 grids and 500x500 grids are shown in 

Figure 4.9 and Figure 4.10, respectively. 

 

 

 

Figure 4.9 Burnback of Test Case 6 (100x100 grids) 
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Figure 4.10 Burnback of Test Case 6 (500x500 grids) 

 

 

It is observed that when denser grid is used, the shape of the diamond becomes more 

accurate. It is aimed to determine if the same is true or not for the value of port area. 

These values are tabulated in Table 4. 10 and Table 4. 11. 

 

 

From the tables, it is obvious that there is an improvement in the values of the port 

area. This improvement is due to the usage of denser grid and small burnback 

distance. Therefore, the same situation with the previous test case is observed. 

 

The maximum and average error percentage are given in Figure 4. 11. The maximum 

error in port area values decreases from 1.2 % to 0.34 %. Same is observed in 

average error values such that they decrease from 0.7 % to 0.2 %. 
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Table 4. 10 Results of Test Case-6 (100x100 grids) 

 
 

 

 

Table 4. 11 Results of Test Case-6 (500x500 grids) 
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Figure 4. 11 Error Percentage Among Different Grids for a Diamond 

 

 

4.2.7 Other Grain Geometries in 2-D Space: 
 

 

There are many conventional or customized grain shapes. In the previous section, 

some conventional grain shapes were analyzed for verification purposes. 

Verifications were performed by comparing the port area and/or burning area values 

of the grains with the exact solution obtained by a CAD program, or by checking 

whether the shape is logical or not.  

 

In this section, some other conventional grains are analyzed just for the illustration of 

burnback of these grain geometries. Therefore, these burnbacks are not considered as 

test cases for the verification of the code. 

In this section, burnback of dogbone, anchor and dendrite grains are given in Figure 

4. 12 to Figure 4. 14. 
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Figure 4. 12 Burnback of a Dogbone Type Grain 
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Figure 4. 13 Burnback of an Anchor Type Grain 
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Figure 4. 14 Burnback of a Dendrite Type Grain 

 

 

4.3 Results of the Analysis in 3-D Burnbacks: 
 

 

4.3.1 Cylindrical Grain (Test Case-7) 
 

 

As observed in 2-D space case, it is desired to find whether the determination of 

burning area from the volume information of the model is suitable or not. Note that 

in 2-D case, the determination of burning perimeter from the port area information is 

observed not to be suitable due to the oscillatory behavior of the results.  

In other words, in this analysis one can determine which method is suitable for 

finding the burn areas of the grain. Method-1, described in Section 2.6.1 or Method-

2, described in Section 2.6.2. 
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A cylindrical grain, shown in Figure 4. 15, is chosen for this purpose. The results of 

volume and burn area changes are compared with the exact one obtained analytically 

as indicated in Table 4. 12.  

 

 

 

Figure 4. 15. Cylindrical Grain for Test-Case 7 

 

 

Table 4. 12 Results of Test Case-7 (40x40x50 grids, CFL=0.75) 
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Error exceeds the acceptable limits both in the values of volume and burning area of 

the model. As performed in 2-D case, problem is resolved by using denser grid. CFL 

value, which is F∆t / ∆x, is remained the same. 

 

 

Table 4. 13. Results of Test Case-7 (160x160x200 grids, CFL=0.75) 

 
 

 

The results of burning area values are still unacceptable although error in volumes 

decreases to the acceptable limits, as indicated in Table 4. 13. One can focus on the 

last column of Table 4. 13. There is a term, “% error if fitted”, which implies a 

process of curve fitting to prevent from the oscillatory behavior of the values. The 

results of this column show that maximum error will be less than 1 percent if curve 

fitting is applied to the values. This phenomenon is shown in Figure 4. 16. 
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Figure 4. 16 Results of Burning Areas After Curve Fitting Process 

 

 

Figure 4. 16 shows the oscillatory behavior of the burning area. However, even if a 

second order curve fitting is applied, actual values and fitted values are almost the 

same with a negligible error.  

 

 

Although curve fitting process gives better results, one can easily notice that it is not 

practical, since it is difficult to decide which types of curve fitting (quadratic, cubic, 

logarithmic, etc) should be applied without knowing the exact behaviors of the 

burning area values. Therefore, another alternative is used. In this alternative a higher 

order Level-Set equation, given in Section 2.3.2, is used. 

The problem is resolved by using higher order Level-Set equation. The result is 

given in Figure 4. 17. 
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Figure 4. 17 Result of Second Order Level-Set Equation 

 

 

In the figure, “Ab second” represents the second order Level-Set, whereas, “Ab first” 

is the first order Level-Set. As seen in the figure, there is no decrease in error and 

there is no decrease in oscillations when second order Level-Set equation is used. 

Therefore, it is concluded that; 

 

  The Second order Level-Set equation has no any advantage over the first 

order. Because of this, it is used here only once and will not be used any 

more. 

 

 

Another alternative to solve the problem is to use different CFL values. Therefore, 

problem is resolved by using CFL values of 0.25, 0.5 and 0.95. Exact values and the 

values obtained by the code are shown in Figure 4. 18 to Figure 4. 20. Note that in 

Figure 4. 18, exact values are represented by series-1, whereas values obtained by 

code is represented by series-2. 
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Figure 4. 18 Results of Burning Area Values with CFL=0.25 
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Figure 4. 19 Results of Burning Area Values with CFL=0.5 
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Figure 4. 20 Results of Burning Area Values with CFL=0.95 

 

 

Surprisingly, higher CFL values resulted in lower oscillations. However, even a high 

CFL value of 0.95 does not give enough satisfaction to catch the exact solution. 

 

Like 2-D cases, differentiation of volume data for successive burnbacks is not the 

correct way for the determination of burning area values. The only solution of this 

problem is to determine the boundary by the Cut-Cell method, as described in 

Section 2.6.2.2.  

For a cylindrical grain of a radius of 10 mm, and length of 100 mm, the results 

obtained by the Cut-Cell method are tabulated in Table 4. 14. Note that this grain is 

different from the one under consideration as far as the dimensions are concerned. 

But both of them are cylindrical in shape.  

 

The burning area values obtained by code are compared with the exact solution 

obtained analytically in Figure 4. 21. The cylinder, originally given in Figure 4. 15, is 

shown in after the propagation of 7 burnback steps.  
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Table 4. 14 Results of Test Case-7 Obtained by Cut-Cell Method 
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Figure 4. 21. Comparison of Burning Surface Areas of Test Case-7 

 

 

 

Figure 4. 22. Cylindrical Grain, 7 Burnback Steps Later 
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From Table 4. 14, one can observe that the maximum error for burning area values is 

less than 2 percent. This situation is also observed from Figure 4. 21. Therefore, 

results are said to be satisfactory when the Cut-Cell method is used. 

 

 

4.3.2 Multi Shapes Grain (Test Case-8): 
 

 

Multi shapes grain is actually a hypothetical grain and used here to determine if the 

intersections of boundaries are logical or not. This analysis is similar to the analysis 

performed for Test Case-4 in 2-D space. It is assumed that this grain is perforated to 

form 3 circular gaps and a star gap as shown in Figure 4. 23. The first and the sixth 

burnbacks of the grain are shown in Figure 4. 24 and Figure 4. 25, respectively.  

 

 

 

Figure 4. 23 Solid Model of Test Case-8 
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Figure 4. 24 The first burnback of Test Case-8 

 

 

 

Figure 4. 25 The sixth burnback of Test Case-8 

 



151 

From the sixth burnback of the multi shapes grain, no problem is observed during the 

intersections of boundaries. No any illogical shapes are formed during the transition 

of the boundaries when they collide. It is also eye-witnessed that no any undesired 

shape forms when propellant divided during the propagations. 

Therefore, therefore burnback code is said to be able to handle this hypothetical grain 

burnback. 

 

 

4.3.3 Finocyle Grain (Test Case-9) 
 

 

The finocyle is an abbreviation for fin in a cylinder. As its name implies, a star 

shaped fin exists in the cylindrical slot, as shown in Figure 1. 6. The finocyle grain 

burns radially along the circular slot and star-shaped grain. As well as radial burning, 

an axial movement of the star fins occurs during the combustion of the grain. 

Therefore, finocyle grain is considered to be a real 3-D grian. Since finocyle has 

many parameters which define the geometry, boost-sustained and neutral burning can 

be obtained by changing these parameters. That is why finocyle grain is so popular 

today and widely used. 

 

 

As a first attempt, it is aimed to determine the burning area change of this grain by 

using Equation (2.27) of Method-1, described in Section 2.6.1. Recall that this 

equation leads to determination of the burning surface area by using the change of 

volume between successive burnback steps. Note that in 2-D space, it was observed 

that this equation was not suitable for the determination of burning perimeters or 

areas. In 3-D case, it is also shown that it may only be useful if curve fitting process 

is applied to values. As the last test of this equation, finocyl grain is chosen. 

 

In the solution domain, 50x50x75 grids are used with a CFL of 0.5. The results are 

tabulated in Table 4. 15 and shown in Figure 4. 26. 
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Table 4. 15 Results, Obtained by Differentiation Method, of Test Case-9 
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Figure 4. 26. Results of Burning Areas of Finocyle After Curve Fitting Process 

 

 

In the figure, “Poly (Ab code)” represents cubic curve fit to the burning area values 

obtained by the code. Exact burning area values are obtained by the CAD model. 

This is achieved by preparing CAD models for each burnback step of the grain. 
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Therefore, it is a time consuming job and that is why a burnback code should be 

developed in general. 

From Figure 4. 26, even curve-fittings are not accurate. At this point, it is concluded 

that; 

 

 As observed 2-D cases, the method for the determination of burning area 

values from volume data does not give the satisfactory results in 3-D space as 

well. Therefore, it will not be used any more. 

 

Burning area values obtained by Cut-Cell method are tabulated in Table 4. 16. 

 

 

Table 4. 16 Results, Obtained by Cut-Cell Method, of Test Case-9 

 
 

 

From Table 4. 16, it can be easily seen that the maximum error in burning area 

values is less than 2 percent. Therefore results obtained by the Cut-Cell method are 

satisfactory. An initial finocyl geometry and geometries after certain burnback steps 

are shown in Figure 4. 27 to Figure 4. 29. 
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Figure 4. 27 Initial Finocyle Geometry 

 

 

 

Figure 4. 28 Finocyle Geometry (5 Burnback Steps Later) 
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Figure 4. 29 Finocyle Geometry (10 Burnback Steps Later) 

 

 

4.3.4 Conocyle Grian: 
 

 

Like finocyle, conocyle is an abbreviation of “cone in a cylinder”. Conocyle is 

formed by the combination of circular perforation and cone type perforation located 

at the end of the circular perforation. This grain is also used when boost-sustain type 

thrust is required. When the cone perforation reaches the motor case, there is a 

decrease in the burning area. Therefore, boost-sustain burning area requirement is 
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obtained. Conocyle burnback analysis is performed just to illustrate the capability of 

the code. Therefore, it should not be considered as a test case. That is why the 

burning areas or volumes are not computed. 

ANSYS model of the conocyle grain, the initial burnback step and the geometry of 

Conocyle grain after 5 burnback steps later are shown in Figure 4. 30 to Figure 4. 32, 

respectively. 

 

 

 

Figure 4. 30 ANSYS Model of Conocyle Grian 

 

 

 

Figure 4. 31 Initial Burnback Step of Conocyle 
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Figure 4. 32 Geometry of Conocyle 5 Burnback Steps Later 

 

 

4.3.5 Variable Speed Burnback: 
 

 

Since the pressure along the z-axis of the motor varies, the burning rate of the 

propellant changes along the grain length. In order to simulate this fact, a cylindrical 

grain, shown in Figure 4. 33, is chosen in order to understand whether code can 

handle the variable speed burnback. In Figure 4. 33, the burning rate of the gray part 

of the propellant is assumed to be different from that of the red part of the propellant. 

Therefore, a difference in diameters of the propellants should be observed when 

propellants burn radially. Since the work is performed just to understand capability 

of the code, it is not considered as a test case. The geometry of the circular cylinder 

after 5 burnback steps is shown in Figure 4. 34. 
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Figure 4. 33 Cylindrical Grain for Variable Speed Burnback 

 

 

 

 

Figure 4. 34 Geometry of the Cylindrical Grain 5 Burnback Steps Later 
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From Figure 4. 34, one can easily observe that one part of the propellant propagates 

faster than the other part. Therefore, code can handle variable speed burnback. 

 

 

4.4 Results for the Prediction of the Performance of the Rocket Motors 
 

 

In Section 4.4, results obtained by 3-D grain burnback were given. However, no 

pressure or thrust calculations are made to verify the code. In this section, the code is 

verified by comparing the results obtained by 0-D flow solver or 1-D quasi-steady 

internal flow solver and 3-D Euler solver with the static test of the solid propellant 

rocket motors. Static test results are obtained in the Ground Test Facility of 

TÜBİTAK-SAGE. 

 

 

4.4.1 Results obtained by 0-D or 1-D Flow Solver 

 

4.4.1.1 Ballistic Research Motor with Cylindrical Grain: (Test Case-10) 
 

 

Ballistic Research Motor, Balistik Araştırma Motoru in Turkish (BAM), is used for 

the control of the burning rate of the propellant. Burning area change of the BAM 

grain is nearly constant. Therefore, constant pressure is obtained in this motor. The 

grain geometry of BAM was given in Figure 2. 39. The tapered portion of the grain 

decreases the progressive behavior of the circular perforation when propellant burns. 

That is why nearly neutral burning surface area is obtained by this grain. 

 

Since the pressure along the motor axis does not to change, 0-D flow model, which 

leads to Equation (3. 3), is used to determine the pressure inside the rocket motor. 

Corresponding time is calculated by dw/ r& . Pressure-time history and surface 

propagations of BAM are shown in Figure 4. 35 to Figure 4. 37. 
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Figure 4. 35 Pressure-Time History of Test Case-10 

 

 

From Figure 4. 35, it can be observed that the ignition transition and tail-off parts of 

the graph are observed not to be simulated well. This is an expected situation. 

Because, steady flow solvers are not able to simulate unsteady phenomenon, such as, 

ignition transition of the motor. However, it is known that only steady portion of the 

graph is considered in quality control process of the burning rate of the solid 

propellant. Therefore, one can focus on the steady-state pressure of the Ballistic 

Research Motor. As far as steady portion of pressure-time history of the motor is 

considered, it is observed that the simulation gives satisfactory results.  
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Figure 4. 36 First Burnback of Ballistic Research Motor Grain 

 

 

 

Figure 4. 37 Geometry of Ballistic Research Motor Grain 5 Burnback Steps Later 

 

 

4.4.1.2 Ballistic Research Motor with Finocyle Grain: (Test Case-11) 
 

 

In order to understand whether grin burnback of finocyle grain is modeled accurately 

or not, rather than cylindrical grain, finocyle grian is used in Ballistic Research 

Motor as shown in Figure 4. 38 

 



162 

 

Figure 4. 38 Ballistic Research Motor with Finocyle Grain 

 

 

Since only the perforation of the grain is considered, a solid model of the perforation 

of the grain is prepared by using a CAD software, Autocad- AMD. This solid model 

is shown in Figure 4. 39. 

 

 

 

Figure 4. 39 The Solid Model of Test Case-11 

 

 

Figure 4. 39, the perforation of finocyl grain of the Ballistic Research Test Motor is 

shown. This grain burns in both aft end and head end as well. To simulate the aft end 

and head end burning, the plate-like shapes are added to the model. The model 
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consists of a cylinder, having a diameter of 24 mm, and 8 star-shaped fins. BAM has 

a diameter of approximately 70 mm and length of 150 mm. 

 

Since the pressure along the motor axis does not change, lumped flow model (0-D 

model) is used to determine the pressure inside the rocket motor. Pressure time 

history of the rocket motor and finocyle grain burnback steps are shown in  

Figure 4. 40 and Figure 4. 41. 
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Figure 4. 40 Pressure-Time History of Test Case-11 

 

 

 

Figure 4. 41 Burnback Steps of Ballistic Research Test Motor with Finocyle Grain 
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From the Figure 4. 40, one can observe that tail-off transition is not as accurate as the 

remaining parts of the pressure-time graph of the Ballistic Research Test Motor. 

Since the aim is not the simulation of the tail-off transition part, it can be thought that 

satisfactory results are obtained from the analysis of this motor. 

 

 

4.4.1.3 Illumination Rocket with End Burning Grain: (Test Case-12) 
 

 

A special type of an end burning grain was designed as the propellant of an 

illumination rocket in TÜBİTAK-SAGE. The grain geometry was chosen to show a 

boost-sustain burning characteristic. Since the end burning grains generally give the 

constant pressure or thrust during the combustion, circular grooves were perforated 

on the grain to provide a boost-sustain burning characteristic. The exact dimensions 

of the illumination rocket and its propellant are confidential. For this reason, the 

grain configuration is shown in Figure 4. 42 without dimensions. 

 

 

 

Figure 4. 42 Illumination Rocket 

 

 

Since the grain is an end burning grain with grooves, an extra plate-like shape is 

added to the model to simulate the head end burning of the propellant. Since length 
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to diameter ratio of the grain is so small, lumped flow model can be applied to 

determine the pressure of the motor. Thrust of the motor is calculated by using 

Equation (1 13), knowing the thrust coefficient, nozzle throat area and pressure of the 

motor. The solid model of the grain of this motor is given in Figure 4. 43 

 

 

 

Figure 4. 43 The Solid Model of Test Case-12 

 

 

The pressure and thrust values obtained by the simulation is tabulated in Table 4. 17. 

Note that the pressure values are not compared with the test data, since no pressure 

data was taken in the static test. 
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Table 4. 17. Simulation Results for Test Case-11 

 
 

 

Pressure time history and grain propagations are shown in Figure 4. 44 and Figure 4. 

45. When Figure 4. 44 is examined, the trend of the thrust values are said to be 

captured by the simulation. However, as a whole, some improvement are necessary 

for the simulations, especially for the simulation of the sustain part of the pressure-

time graph. The deviation of the simulation from the test data in this region may be 

due to the change of the burning rate of the propellant, the erosion of the nozzle 

throat and the assumption of 0-D flow. 
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Figure 4. 44 Pressure Time History of Test Case-11 
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Figure 4. 45 Burnback of the Illumination Rocket Grain 

 

 

4.4.1.4 Motor X (Test Case-12) 
 

 

Motor-X is a classified rocket motor, which the development phase is still 

continuing. Not only dimensions of the motor but also fields of usage are 

confidential. That is the reason why the motor is classified as Motor X. 

 

The grain geometry of Motor-X is the finocyle type as shown in Figure 4. 46. The 

finocyle grain consists of a long circular perforation and 4 arms with star-shaped 

slotted fins. The length of the fins is so adjusted that nearly constant burning surface 

area is obtained, because of the declaration of the mission requirement. 
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Figure 4. 46 Geometry of the Grain of Motor-X 

 

 

During the design phase, many grain geometries are analyzed. One of these is shown 

in Figure 4. 47. The difference between Figure 4. 46 and Figure 4. 47 is the transition 

region from circular portion to the fin portion. In Figure 4. 47, a sharp transition from 

the circular part to the fins is shown.  
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Figure 4. 47 Tapered Geometry of Motor-X 

 

 

The burning area of this grain is calculated by using two methods, which are 

different in dimensional space. The first method is 3-D Cut-Cell method, described 

in section 2.6.2.2; the second one is the 2-D Cut Cell method, described in Section 

2.6.2.1. However, 2-D Cut-Cell method is extended for application to a 3-D model, 

as shown in Figure 2. 25. Therefore, in 3-D approach, cubes are used, whereas, in 2-

D approach squares are used for each different z-plane. 

A grid of 55x55x409 is used for the solution domain. The differences in burning area 

values for these approaches are shown in Figure 4. 48. 
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Figure 4. 48 Differences in Burning Areas Between Two Approaches 

 

 

As shown in the figure, two approaches give almost similar results. However, this 

does not mean that 2-D Cut-Cell approach is applicable for the study. Because, when 

the burnback code will be coupled with the 3-D flow solver, grid generation for 3-D 

flow solver can only be achieved by 3-D Cut-Cell method. 

 

The pressure of the Motor-X is determined by using 1-D quasi-steady state internal 

flow solver, Simp(x), whose details are given in Section 3.3. In order to optimise the 

length of the tapered part, some analyses with different lengths of tapered part are 

performed.  

Differences in the burning area values, for sharp and tapered transitions are used, are 

given in Figure 4. 49. From this figure, it is observed that the initial burning area 

reduces, however when tapered part is used, while the maximum burning area 

becomes larger than that of the sharp transition case. 

The effect of the change of the length of the tapered part is presented in Figure 4. 50. 

It is obvious to realize that the pressure increases rapidly when the length of the 

tapered part is doubled. 
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Figure 4. 49 Comparison of Sharp or Tapered Transition of the Motor-X Grain 
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Figure 4. 50 Effects of Length Change of the Tapered Part of the Motor-X Grain 
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Finally, the pressure simulation of Motor-X is compared with the static test data to 

verify both burnback code and flow solver. This comparison is shown in  

Figure 4. 51. 
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Figure 4. 51. Comparison of Simulation with Static Test Data for Motor-X 

 

 

The numerical simulation and static test data are observed to match each other 

perfectly. Therefore, 3-D grain burnback code and 1-D quasi-steady state internal 

flow solver of the rocket motor are both verified for the Motor-X. 

 

 

4.4.2. Results obtained by 3-D Euler Flow Solver(Set-3D) 
 

 

For 3-D motor internal flow, burnback code is loosely coupled with the flow solver. 

All necessary inputs of flow solver are computed by the burnback code and the 

pressure obtained by flow solver is send to the burnback code so that propagation 

distance of the propellant is calculated for a certain time step. 
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In order to verify the coupled codes, Ballistic Research Motor (Test Case 10) is used. 

For every 0.15 seconds, Set-3D solves the internal flow in the motor for a different 

configuration due to the burnback of the propellant. Total burnback number is 

limited to 5 to save time. 

Surface mesh is obtained by the Exact Cut-Cell Method described in Section 2.6.2.3. 

Tetgen output of this surface mesh is given in Figure 4. 52. 

 

 

 

Figure 4. 52 Computational Mesh of the Ballistic Research Motor 

 

 

At time t=0, the flow solution, ie. Mach number, pressure, density and stream lines 

are shown in Figure 4. 53 to Figure 4. 56. From the graphs, one can observe that 

there is almost negligible pressure loss along the rocket motor.  

Pressure contours at t=0.3 and t=0.45 s are also shown in Figure 4. 57 and Fig Figure 

4. 58, respectively. From these figures, one can observe that the pressure of the 

Ballistic Research Motor does not change both along the length of the motor and 

with respect to time. This is an expected result, since the burn area of the motor does 

not change during the burnbacks and the ratio of port area to throat area of the motor 

is quite large. 
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Figure 4. 53 Mach Contours of the Ballistic Research Motor (t=0 sec) 

 

 

 

 

Figure 4. 54. Pressure Contours of the Ballistic Research Motor (t=0 sec) 
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Figure 4. 55. Density Contours of the Ballistic Research Motor (t=0 sec) 

 

 

 

 

Figure 4. 56. Streamlines of the Ballistic Research Motor (t=0 sec) 
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Figure 4. 57. Pressure Contours of the Ballistic Research Motor (t=0.3 sec) 

 

 

 

 

Figure 4. 58. Pressure Contours of the Ballistic Research Motor (t=0.45 sec) 
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Residual of the solution is presented as solution is progressed in Figure 4. 59. 

Pressure values obtained from this analysis is compared with the static test data as 

shown in Figure 4. 60.  
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Figure 4. 59 Residual vs # of Iteration of the Ballistic Research Motor 
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Figure 4. 60. Comparison of Static Test Data with 3-D Simulation 
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Ballistic Research Motor is known to operate at approximately 80 bars. The increase 

in the pressure value at the middle region of the pressure-time graph is called Hump 

effect. It is related with the burning rate increase due to propellant binder and fuel 

concentration. In 3-D simulation, approximately expected results are obtained for 

each burnback step. 

 

A table, which gives the computational information of the Ballistic Research Motor 

analysis is given below; 

 

 

Table 4. 18. 3-D Computational Information of Ballistic Research Motor 

 1st burnback Last burnback 

# of elements (tetrahedrons) ≈ 650,000 ≈ 750,000 

CPU type Xeon 

# of domain partition for Xeon 2 

CPU type Itenium 

# of partition for Itenium 16 

Computational time for Xeon ≈ 6 hour ≈ 8 hour 

Computational time for Itenum ≈ 20 minutes ≈ 25 minutes 

# of iteration used 5000 

CFL 
2.5 

(For a CFL of 0.25 and 25, no convergence) 

 

 

The other test case is the Motor X, given in Section 4.4.1.4. As mentioned in this 

section, Motor-X is the one of the oldest configuration of the classified project which 

is still progressing. The computational tetrahedral meshes are shown in Figure 4. 61. 
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Figure 4. 61 Computational Mesh of Motor-X 

 

 

The problem related to this configuration is that the diameter of the cylindrical part 

of the grain is so small that combustion gasses inside the motor flow with a high 

speed. Test case is based on if this phenomenon is observed or not. The Mach 

number obtained from the 3-D analysis is shown in Figure 4. 62. 

 

 

 

Figure 4. 62. Mach Numbers along the Motor X (at time, t=0) 
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From Figure 4. 62 one can observe that at the trailing edge of the circular slot, the 

Mach number of 0.8-0.9 has been obtained. Then, due to the expansion of the flow at 

the fin zones, the velocity of the flow decreases, and the flow enters the nozzle with a 

Mach number of 0.6-0.8. The nozzle is chocked at the throat and the Mach number at 

the nozzle outlet is approximately 2.8-3.0. Mach numbers at t=0.4 is shown in Figure 

4. 63. 

 

 

 

Figure 4. 63. Mach Numbers along the Motor X (at time, t=0.4 second) 

 

 

The diameter of the circular part of the finocyl increases, as the grain burns. This 

increase causes the decrease of the Mach number at the circular portion of the grain. 

This is the desired case, and, therefore, the new grain was designed such that the 

diameter of the circular portion was increased with some other major changes. 



181 

The pressure contours of the Motor X are shown in Figure 4. 64 to Figure 4. 65, at 

times, t=0 and t=0.6 s, respectively. 

 

 

 

Figure 4. 64. Pressure Contours of Motor X (at t=0) 

 

 

 

Figure 4. 65 Pressure Contours of Motor X (at t=0.6 second) 
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The density contours of the Motor X are shown in Figure 4. 66-Figure 4. 67, at times, 

t=0 and t=0.6 s, respectively. 

 

 

 

Figure 4. 66. Density Contours of Motor X (at t=0) 

 

 

 

Figure 4. 67. Density Contours of Motor X (at t=0.6 second) 
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Since this analysis is performed without using erosive burning model, aft-end 

pressure-time data obtained from the static test is taken rather than the head-end. One 

should note that erosive burning effects are not observed at the aft-end of the motor. 

This data is compared with the data obtained by 3-D burnback coupled flow analysis. 

Burnback is performed at each 0.2 second interval. Ignition transition is assumed to 

be completed at time, t=0.05 s. Propellant configuration at this time is constructed by 

the burnback code and burnback distance at each time interval is computed by the 

pressure data obtained from 3-D flow solver. The result is given in Figure 4. 68. 
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Figure 4. 68. Pressure Time History Comparison of Motor X 

 

 

From Figure 4. 68, one can observe that 3-D Flow Solver works properly. Time 

interval can also be taken smaller than 0.2 second, (1-D code gives an output for each 

0.001 second time interval) for a better result. However, this needs a large 

computational power. 

Computational information of the Motor-X is given in Table 4. 19. 
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Table 4. 19. 3-D Computational Information of Motor-X 

 
 1st burnback Last burnback 

# of elements (tetrahedrons)  ≈ 50,000 ≈ 450,000 

CPU type Itenium 

# of partition  16 

Computational time  ≈ 10 minutes ≈ 50 minutes 

# of iteration used 10000 

CFL 2.5 
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CHAPTER 5 
 

CONCLUSIONS AND FUTURE WORK 
 

 

 

 

 The grain burnback analysis and performance prediction of the rocket motor 

are important steps in designing of a solid propellant rocket motor. In the thesis, the 

attention focused on these subjects. The design concept of the nozzle, igniter, 

insulator, etc, are taken apart. 

In this thesis, Initial Value Problem of Level-Set Equation was solved for 2-D or 3-D 

grains to simulate grain burnback of solid propellant rocket motors. Then inputs 

obtained by grain burnback analyses were delivered to 0-D, 1-D and 3-D flow 

solvers to predict the performance of the rocket motors. Results were compared with 

the results which were obtained by analytic calculations, by simple CAD models or 

from static motor tests. 

 

 

5.1 Conclusions: 
 

 

Conclusions obtained from this study are as follows; 

• A mathematical model of Initial Value Level-Set Problem, which was developed 

for the simulation of moving boundary, is observed to be appropriate for the 

simulation of solid propellant grain burnback. 
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• A procedure, developed in this study in the determination of the “inside-outside 

location of a point”, works accurately both for 2-D and 3-D spaces. 

• The accuracy of the results depends on the number of both structured and 

unstructured grids generated. The more accurate results can be obtained by using 

denser grids. 

• The method of differentiation of port areas or volumes to determine the burning 

perimeter in 2-D space or the burning surface area in 3-D space does not give 

satisfactory results. Because even a very small deviation in port areas or volumes 

causes oscillatory results in burning areas. Even curve fitting process does not 

able to decrease the error associated with this work. Therefore, it can be 

concluded that burning perimeter or burning surface area has to be computed 

directly by the Cut-Cell method. 

• Cut-Cell method, which is developed in this study, involves the cutting operation 

of square grid in 2-D space or cubic grid in 3-D space to capture the boundary or 

surface of the perforation of the grain. This method is observed to be acceptable 

for interface capturing. 

• Cut-Cell method used for the determination burning area of the grain can also be 

used for the generation of grid for a 3-D flow solver. 

• In the determination of burning surface area of 3-D grain, a 2-D grain burnback 

method can be used by dividing the grain into many planes along its length. For 

each plane, 2-D burnback is achieved and the burning perimeter obtained for 

each plane is multiplied by the distance between the two successive planes. This 

is an approximate method to compute the burning surface area. In this study, it is 

observed that this approximation seems to be valid. However, when the burnback 

code is coupled with a 3-D flow solver, Cut-Cell for 3-D space is needed, and 

then this method does not work. 

• The benefit of the Second Order Level-Set Equation is not observed. Therefore 

the First Order Equation is used throughout this study. 

• A fast algorithm for the Initial Value Level-Set problem, such as Narrow Band 

Method, is not needed if more sophisticated methods are used to capture the 

information of unstructured grid generated on the model. 
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• 0-D and 1-D Quasi-Steady Flow Solvers are not sufficient to simulate ignition 

transition and tail-off transients. Even 3-D flow may not be practical to simulate 

them due to the need of large computational power. Therefore, parallel 

processing is an obligation. 

• Grain burnback and 1-D Quasi-Steady code are both verified by using 12 

different test cases. Satisfactory results are obtained for these tests. 

• Approximate Cut-Cell Method does not always guarantee the proper 

computational mesh for 3-D solver. Therefore, Exact Cut-Cell method can be 

used for the generation of 3-D computational grid due its superiority. 

• Tetgen, free-downloadable software, can easily be used for the generation of 

tetrahedrons, if a closed surface mesh has already been generated. 

• It is demonstrated that 3-D Euler Solver can give satisfactory results by using 

Ballistic Research Test Motor and Motor-X test cases. More test cases, however, 

is needed for reliability. 

• More computational power and a compiler which has a property of dynamic data 

allocation are both needed if 3-D flow solver coupled with propellant burnback is 

to be used. 

 

 

5.2. Recommendation for Future Work 

 

 

• An unsteady flow solver should be developed to simulate the ignition transition 

and tail of transients of the rocket motor. 

• Adaptive mesh for both structured and unstructured grids have to be developed. 

• Structural analysis has to be performed for the propellant of the rocket motor to 

complete the grain design. 

• Insulation erosion, nozzle erosion and structural analysis of the motor case 

should be added. 

• A compiler which has a capability of dynamic array allocation is needed. 
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5.3 Contribution of This Work 
 

 

• A mathematical model of Initial Value Level-Set, which was previously 

developed for the propagation of boundary, is adapted to solid propellant grain 

burnback for the first time. 

• An algorithm to determine the distance values of grid points is developed in this 

study. 

• An algorithm to determine the location of the points for “inside-outside job” is 

developed in this work. 

• Exact Cut-Cell method to capture the interface by cutting the square elements in 

2-D space or cubes in 3-D space is used for the simulation of propellant burnback 

in this study. 

• Exact Cut-Cell method to determine the cutting surface of the cubic elements for 

3-D grid generation is used for the simulation of propellant burnback in this 

work. 

• 1-D Quasi-Steady Flow Solver, which was previously developed, is modified to 

handle the information given as the data file of the burnback parameters, such as 

port area and burning surface area values. 

• Motor internal flow solution is coupled with solid propellant propellant 

burnbacks in this thesis. 
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APPENDIX 
 

 

Data file of the 1-D internal flow solver of the solid propellant rocket motor is given 

in Figure A. 1. Input parameters are explained in Figure A. 1. 

 

 

 

Figure A. 1. Data File of Simp(x) 
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Table A. 1 Explanation of Input Parameters of Simp(x) 
ISIMPX Dimension of the flow (0-D or 1-D) 

IERTHRO Nozzle throat erosion is included, 1, or not, 0. 

ILRCHECK Experimental erosive burning model, 0, or LR model, 1. 

NINIT Number of cells to be considered as one big cell. 

NPROFILE Pressure versus motor length graph is cerated,1, or not, 0. 

TC Adiabatic flame temperature of the solid propellant. [K°] 

PAMAP Ambient pressure [N/ m2] 

IERAT Errosive burning is considered, 1, or not,0. 

IGRAIN Type of the grain. Star; 0, or Wagon wheel; 1, or Finocyl, 2 

PRAN Prandtl number 

SPEG Specific heat of combustion gases [J/kg °K] 

SPEP Specific heat of solid propellant [J/kg °K] 

GMUGAS Viscosity of combustion gases [kg/m sec] 

IBETAOP 
Option for erosive burning constant. Input directly, 0,:or experimentally obtained 

constant, 1. 

IALFAOP 
Option for erosive burning constant. Input directly, 0,:or determined by heat transfer 

calculation, 1. 

GAM Specific heat ratio of the combustion gases 

RM Grain length [m] 

RO Density of the combustion gases [kg/m3] 

PO Assumed initial chamber pressure [N/m2] 

EP Enthalpy of combustion of propellant [J/kg] 

ALFA LR model erosive burning constant-1 

BETA1ST LR model erosive burning constant-2 

BETA2ST LR model erosive burning constant-3 

BVA Burning rate constant of propellant 

BVN Burning rate exponent of propellant 

SIGMAP Temperature sensitivity of the propellant. 

TDIF 
Temperature differences between referenced value, 20 °C, and motor conditioned value. 

[°C] 

DTIME Time step of the numerical scheme 

RP Density of the propellant [kg/m3] 

ERR Error limit for convergence. 

SLOPE Tapered angle of the grain perforation along the length of the motor. 

R Radius of the grain 

NS Number of slices to which grain is divided for 1-D flow analysis. 

N Number of arms of the grain if star or wagon wheel type grain is used. 

THRAD Throat radius of the nozzle [m] 

EXNOZD Exit diameter of the nozzle [m] 

R1, R2, L1, L2, XI Grain geometry parameters [m] 
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A data file which contains the information of both the coordinates of the nodes of the 

unstructured elements and their connectivity knowledge are generated by commercial 

finite element CAD software, called ANSYS. This data file is shown in Figure A. 2. 

In this figure; 

 

o For the numbers above the line: First three columns represent x, y and z 

coordinates of the nodes generated, respectively in millimeters. The last 

column represents the location of the nodes. If it is an interior node, this value 

is 1. For a boundary node, it is -2.  

o For the numbers below the line: All columns represent the connectivity 

information of nodes. 

 

 

 

 

Figure A. 2. ANSYS Data File 
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The other data file for the representation of the interaction between burnback code 

and flow solver. A data file containing burning surface area and port area of the grain 

for the corresponding burnback step is given to flow solver as an initial input as 

shown in Figure A. 3. In this figure, left column represents the burning area of the 

grain at the corresponding slice. The right column is the port area of the grain at the 

corresponding slices. At the top, the numbers, 0, 1, 2,..etc, represent the burnback 

steps. This data file is generated by burnback code and it is given to flow solver. 
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Figure A. 3 Port Area and Burning Surface Area Information Given to Flow Solver 

 

 

 

The final input considered here is the input for the grain burnback code. Actually it is 

possible to read these inputs from the data file created. Optionally, it is possible to 

change these values inside of the source code. These inputs are tabulated in 
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Table A. 2 Inputs for Burnback Code 

 
R Radius of the domain (m) 
LENGTH Length of the grain (m) 
RMOT Radius of the grain 
ANSLICE Number of slice to be divided for the fast determination of 

distance values. 
NUMGRIDZ Number of grid used in z-direction 
BURNBACK Number of burnback steps used 
F∆t Burnback distance 
"MESH.DAT" Data file to read for the information of unstructured 

elements generated by ANSYS 
"SORTBOUND.DAT" Data file to read for the arrangement of unstructured 

nodes. 
 

 

The flowchart of the programs used in this study is shown in Figure A. 4. 

 

 

 

Figure A. 4 Flowchart of the Performance Prediction in 1-D 
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Figure A. 5 Flowchart of the Performance Prediction in 3-D 
 

 

Table A. 3 Inputs for Set-3D 
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Table A. 4 Command Switches of Tetgen 
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Table A. 5 Input File of the Set-3D (mesh.dat) 

 

 

 
 

 

As given in the table, first line of “mesh.dat” file informs the total number of nodes 

and elements on the solution domain. Then x,y,z coordinates of the nodes, and 

connectivity data of the 4 nodes are given. 

 

 

 

 

 

 

 

 

 



203 

 

Table A. 6 Input File of the Set-3D (element.dat) 

 

 

 
 

 

Table A. 7 Input File of the Set-3D (komsu.dat) 
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In the first line of the “komsu.dat” file, total number of elements are given The 

remaining lines represents the neighboring 4 elements of the element under 

consideration Negative or zero values represent marked boundary. 
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