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ABSTRACT

ANALYSIS OF GRAIN BURNBACK
AND INTERNAL FLOW IN SOLID PROPELLANT
ROCKET MOTORS IN 3-DIMENSIONS

YILDIRIM, Cengizhan
Ph. D., Department of Mechanical Engineering
Supervisor: Prof. Dr. Haluk AKSEL

March 2007, 206 pages

First part of the design process of the rocket is the determination of the flight-
mission requirements. After that, thrust-time curve is prepared according to these
requirements. At this point, internal ballistic calculations are performed to estimate
chamber pressure of the rocket motor. Composition of the propellant, grain geometry
and nozzle geometry are so adjusted that desired chamber pressure of the motor is
achieved. However, these parameters depend on chamber pressure itself. Therefore,
an iterative procedure is applied.

As explained above, grain geometry should be known to simulate pressure-
time history of the rocket motor, because, burning area of the grain depends on grain
geometry of the propellant. Grain geometry changes as solid propellant burns. This
change causes a change in burning area of the solid propellant. For this reason,

burning area of the solid grain should be known at each burning steps to predict

v



pressure-time history of the rocket motor. The analysis for determination of the
burning area is called “grain burnback analysis”.

In this thesis, Initial Value Problem of Level-Set Method is applied to solid
propellant combustion to find the grain burnback. Initial Level-Set values for each
node of the elements are computed by using an algorithm developed in this study.
Level-Set method is used numerically by using upwinding numerical scheme and the
Eikonal type equations are solved for the domain which consists of cube type
elements. By using this method, not only 1-D or 2-D conventional grains, but also
unconventional 3-D grains are analyzed and a universal grain burnback code for all
kinds of solid propellant grain is developed.

For the performance prediction of the rocket motor, 0-D, 1-D and 3-D pre-
developed flow models are used depending on types of the grain configuration. For
3-D internal flow of the solid propellant rocket motor, cube elements at the boundary
of the interface are cut according to Exact Cut-Cell Method and tetrahedral grids are

generated by using a free-downloadable software.

Keywords: Solid Propellant, Grain, Grain Burnback Analysis, Internal Ballistic,
Level-Set Method, Hyperbolic Conservation Law



Oz

KATI YAKITLI ROKET MOTORLARINDA 3-BOYUTLU
YANMA GERILEMESI VE MOTOR iC AKIS INCELEMESI

YILDIRIM, Cengizhan
Doktora, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Haluk AKSEL

Mart 2007, 206 sayfa

Roket tasarirmmin ilk adimi ugus ile ilgili gorev gereksinimlerinin
belirlenmesi ile baglar. Gorev gereksinimlerine gére motordan istenen itki-zaman
ihtiyaci ¢ikartilir. Bu ihtiyaci karsilayacak uygun motor basincinin bulunmasi ile i¢
balistik incelemeleri bu noktada baglamis olur. Yakit kompozisyonu, liille geometrisi
ve yakit c¢ekirdegi geometrisi, uygun motor basincinin bulunmasi i¢in belirlenir.
Ancak bu is i¢cin de motor basinct gerekli oldugu icin, s6z konusu belirleme deneme-
yanilma (iterasyon) yoluyla yapilir.

Yukarda belirtildigi gibi roket motorunun basincinin bulunabilmesi i¢in yakit
cekirdegi geometrisinin belirlenmesi gerekmektedir, ¢ilinkii motor i¢ basinci yakit
cekirdeginin yanma alanina baghdir. Kati1 yakit yandik¢a sekli degisir, dolayisiyla
yanma alan1 da degisir. Bu nedenle motor basing-zaman tahmininnin yapilabilmesi
i¢in yanma alaninin her bir yanma adimu i¢in bilinmesi gerekmektedir. Her bir yanma
adimina karsilik gelen yanma alaninin bulunmasi i¢in yapilan incelemeye “yanma

gerilemesi incelemesi” denir.
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Bu tezde “Initial Value Problem of Level-Set Method” yanma gerilemesi i¢in
kat1 yakit yanmasina uygulanmustir. Ik Level-Set degerleri bu galismada gelistirilen
bir yontemle hesaplanmistir. Level-Set yonteminde “upwinding” sayisal yontem
kullanilmis ve kiip elemanlardan olusan ¢6ziim ag1 i¢in “Eikonal” tip denklemler
¢Oziilmiistiir. Bu yontem ile sadece 1-Boyutlu veya 2-Boyutlu geleneksel yakit
cekirdek geometrileri degil, aynt zamanda 3-Boyutlu geleneksel olmayan yakit
cekirdek geometrileri de incelenmis ve her tiir yakit ¢ekirdek geometri incelemsi i¢in
genel bir bilgisayar programi gelistirilmistir.

Roket motoru bagarim benzetimleri igin, yakit ¢ekirdegi tipine gore, dnceden
gelistirilmis  0-Boyutlu, 1-Boyutlu ve 3-Boyutlu motor i¢ akis modelleri
kullanilmistir. Ug boyutlu motor i¢ akisi icin smirdaki kiip elemanlar Exact Cut-Cell
yontemi ile kesilmisg, tetrahedralardan olusan ¢6ziim agi ticretsiz yiiklenebilen bir

yazilimla olusturulmustur.

Anahtar Kelimeler: Kati Yakit, Yakit Cekirdegi, Yanma Gerilemesi Analizi, I¢
Balistik, Level-Set Yontemi, Hiperbolik Korunum Kurali
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CHAPTER 1

INTRODUCTION

1.1.  General

The main function of a rocket motor is to impart a desired velocity to a munition
and usually to impart this velocity within a specified action time. Artillery rockets
are pure reaction systems, in which the propulsive effort or thrust is obtained by
variation of the momentum of the system itself. They do not depend on the oxidizer.

A rocket motor is a typical energy transfer system. High pressure and high
temperature gasses are generated in the system due to combustion process and these
combustion products are expanded through a nozzle. This process converts the
energy of the gas to the kinetic energy. The differences in pressures and velocities at
the chamber and nozzle exit result in a thrust in the system [1], [2], [3]. This is the

working principle of the rocket motor as shown in Figure 1. 1 [4].

Energy of Heat => Movement of Gases => Energy of Motion

Figure 1. 1 Energy Transfer Mechanism of the Solid Propellant Rocket Motor



The energy source most useful to rocket propulsion is the chemical combustion.
As explained before, solid propellant rockets are pure reaction systems in which
forces are produced by ejection of propellant causing pressure distribution in the
motor. This pressure distribution produces a thrust force due to the momentum
change resulting from the ejection of gaseous products from the rocket motor.

Rocket motors are classified in many ways. One of them is the classification
of the rocket motor according to the types of propellant [3]. These are as follows:

a) Solid Propellant Motors: As its name implies, the propellant of the motor is in
the solid state. The propellant is contained and stored directly in the combustion
chamber. In comparison to liquid propellant rockets, solid propellant rockets are
usually relatively simple, are easy to apply and require little servicing

b) Liquid Propellant Motors: In the liquid propellant motors, fuel and oxidizer are
injected into the chamber by using the fuel and oxidizer manifolds. In the chamber,
they are mixed and burned to form hot gaseous products. A typical rocket chamber
assembly consists of a nozzle, a combustion chamber, an injector, a mounting
provision and an ignition system. In some cases, the chamber assembly also includes
integrally mounted propellant valves and controls. Very long burning times, up to
several minutes, can be achieved with slow burning propellants.

c¢) Hybrid Motors: The hybrid rocket, in which fuel is a solid phase while the

oxidizer is in liquid phase, operates at a fairly low mixture ratio.

1.2.  Solid Propellant Rocket Motors:

Solid propellant rocket motors are the most commonly used rocket motors. They
consist of a motor case, a solid propellant grain, an igniter, a nozzle, an insulation
and a liner. For double base rocket motors, insulation and liner generally are not
present. The schematic diagram of a solid propellant rocket motor is shown in Figure

1.2.
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Figure 1. 2. Solid Propellant Rocket Motor Parts

As shown in the figure above, solid propellant rocket motor consists of a motor case,
an igniter, a nozzle, an insulation-liner and a solid propellant.

a) Motor Case: Generally motor case is a steel cover containing the solid
propellant, igniter and insulator. The combustion usually takes place in the steel case;
therefore, sometimes it is referred to as combustion chamber. The combustion
chamber is almost a cylindrical thin-walled pressure vessel whose thickness can be
calculated by using the thin-walled pressure vessel assumption. In addition to the
stresses due to the pressure in the chamber, thermal stresses may sometimes be
critical and, when the case also serves as missile body, bending loads and inertial
forces also play an important role in calculating the thickness of this case. Generally,
the motor case is produced from heat treated or normalized steel alloy of 4XXX
series [5]. The motor case is also produced from fiberglass or carbon fiber-reinforced
plastic resin. The structure of a fiberglass-reinforced plastic consists of fiberglass
filaments matted together, with the interstices filled in by a plastic resin. Production
can be made by winding the filaments around a rotating mandrel and by
impregnating the matrix with the resin.

b) Igniter: Solid propellant ignition consists of a series of complex rapid
events, which start with the receipt of a signal. These events include heat generation,

transfer of the heat from the igniter to the motor grain surface, spreading of the flame



over the entire burning surface area of the grain and filling the chamber free volume
with gas. Conventionally, the ignition process is divided into three phases; ignition
time lag is the first phase. It is the period between the moment that the igniter
receives a signal and the moment that the first bit of grain surface burns. It takes
approximately 10 ms to 0.5 s depending on the propellant composition, propellant
loading, temperature of the propellant and igniter. Flame-spreading interval is the
second phase. It is the time from the first ignition of the grain surface until the
complete grain burning area has been ignited. This interval takes approximately 10
ms to 200 ms depending on the propellant composition, propellant loading,
temperature of the propellant and igniter. Chamber-filling interval is the third phase.
It is the time required for completing the chamber-filling process and reaching
equilibrium flow. It takes generally 5 ms to 100 ms. depending on the propellant
composition, propellant loading, temperature of the propellant and igniter.
Conventional heat releasing compounds are usually pyrotechnic materials, such as
black powder, metal-oxidant formulations and conventional solid rocket propellant.
Pyrotechnic igniters are either in the powder form or squeezed into small pellets and
placed either at the head end or at the nozzle end. A wide variety of designs are
available and generally potassium perchlorate, boron and binder are the constituents
of the igniter charge [5]. There is a safe and arm device in the igniter. Normally, the
device is positioned to safe level to prevent an ignition of the igniter. When the
igniter is mounted on the motor, the device is positioned to arm level to make it
ready for operation.

¢) Insulation and liner: The main function of the insulation is to protect the
motor case in areas of sustained thermal environment. It also provides a shear layer
between the case and propellant to relieve case bond stresses. The areas with early
burn out must be insulated. Aft end insulators must also accommodate conduction
and ablation. Grain geometry and burn back analysis establishes exposure time.
Typical insulator materials are EPDM (Ethylene Propylene Diene Monomer). Fillers
are silica powder, kevlar fibers and asbestos [6]. The thickness and placement of the
insulator are determined by thermal environment, grain design and structural
requirements. Depending on these parameters, insulation thickness generally varies 1

mm to 50 mm in solid propellant rocket motors. Insulation is always installed into



the motor casing prior to the liner. Insulation is sometimes installed into composite
motor casing as an integral part of the winding process or it can separately be
bonded. The insulated case can then be stored for extended periods if there is a need
for interruption of the process. The primary function of the liner is to provide bond
compatibility between the propellant and case. Other materials such as primer and
barrier materials may be added to the liner. The liner serves as a moisture barrier and
sealer for composite cases. Liner is usually applied to the motor casing immediately
prior to propellant casting. The liner is usually brushed or sprayed over the exposed
case insulation.

d) Nozzle: In a rocket motor the nozzle performs two essential functions. One
of them is to restrict the rate of escape of gas from the reaction chamber, and
maintain the pressure within the chamber at a value suitable for the reaction of the
propellant. The other is to convert the internal energy of the propellant to the kinetic
energy of motion. Nozzles are usually classified according to their structural features,
for example, movable nozzle, fixed nozzle and submerged nozzle. The most
commonly used nozzle type is the convergent-divergent de-Laval Nozzle. The study
of the high temperature gas flow in the nozzle has led to the definition of a certain
number of parameters, which are the characteristics of a propellant-motor
combination. The selection and application of the proper material is the key for the
successful design of a solid rocket nozzle. The high temperature exhaust of solid
rockets presents an unusually severe environment for the nozzle materials, especially
when metalized propellants are employed. The high temperature, high velocity
exhaust products are erosive both mechanically and chemically. Nozzle throat
erosion causes the throat diameter to enlarge during operation. It is one of the most
critical problems encountered in the nozzle design. Usually, a throat area increase
larger than 5 % is considered unacceptable for most solid rocket applications [7].
Generally, the nozzle case is steel and phenolic basis materials are pressed inside this
steel case. To prevent erosion at the throat, some grade of graphite, refractory metal

or reinforced plastic is inserted to the throat of the nozzle.



1.3 Related Parameters of the Solid Propellant Motor:

The prime objective of the internal ballisticians is to provide the rocket motor
consistent with the thrust-time schedule of the mission requirements. The mission
requirements are the requirements that are directly or indirectly given to the designer
as inputs. These requirements are generally the desired range, the desired mass,
desired diameter and sometimes flight time of the rocket motor, as shown in Table
1.1. Thrust-time history of the rocket motor is determined by considering these
requirements by the designer related with the flight mechanics. Therefore, inputs
given to the internal ballisticians are the thrust-time history, diameter, mass, time and

sometimes the length of the rocket motor.

Table 1.1 Parameters Related with Mission Requirements

Requirements Range [km] | Diameter [mm] | Mass [kg] | Time [s]

Ballistic parameters in order to obtain thrust-time performance of a rocket
motor fall into two different categories. These are the dependent and independent
parameters, as shown in Table 1. 2. Recognition of this distinction prevents
conflicting requirements and provides the designer with the maximum degree of
freedom permitted by the design problem. For example, average pressure, which is a
dependent parameter, can not be established without considering the maximum
expected operating pressure and propellant temperature sensitivity, both of which are
independent parameters [8]. Since the design methods and constrains of the solid
propellant are very complicated, they are provided by the project group.

Some of the parameters, given in Table 1. 2, are explained in the following

headings.



Table 1. 2 Dependent and Independent Parameters of the Rocket Motor

DEPENDENT PARAMETERS

INDEPENDENT PARAMETERS

Pressure (p)

Thrust (F)

Thrust coefficient (Cy) Duration (t)
Throat area (Ay) Impulse (1)
Volumetric loading (V) Specific impulse (Igp)
Web fraction (Wy) Burning rate (r)

Port to throat area ratio (Ay/A,)

Temperature sensitivity (1)

Length to diameter ratio (L/D)

Density (pp)

Ratio of specific heat (y)

Envelope

Max. expected operating pressure (MEOP)

Temperature range (T)

Ambient pressure (P,)

1.3.1 Burning Rate:

Propellant grain burns in a direction perpendicular to the grain surface. The rate, at

which a propellant burns, usually described by a reference value at a specific

pressure. Such value is called burning rate and its unit is meters per second. As an

independent parameter, the burning rate is one of the propellant properties.

Therefore, if a propellant is fixed, the burning rate coefficient and pressure exponent

are fixed. The burning rate coefficient and pressure exponent are described by Saint

Robert's burn rate law.

r=aP."

(1. 1)




where t is the burning rate, P, is the chamber pressure, a is the burning rate
coefficient or coefficient of pressure and n is the pressure exponent. This empirical
expression defines the burning rate of the propellant; values a and n usually derived
from a strand burner test or small sub scale motor firing by using different pressure
settings.

If a logarithmic graph of the chamber pressure versus the burning rate is
plotted, a straight line is obtained. The slope of this line gives the pressure exponent.
However, some propellants have burning rate characteristics that require more than
one straight-line segment; these propellants are called plateau-and-mesa-burning
propellants. Although, burning rate coefficient is constant for a defined propellant, it
is effected by the temperature change. This phenomenon will be explained in the
next section In order to increase the burning rate of the propellant during the
production stage, there are three possibilities. Increasing the amount of Amonium
Perchlorate, AP, decreasing the size of AP particles and adding some additives may
result in increase of the burning rate of the defined propellant [9], [10].

The increase in the burning rate produced by combustion products flowing
parallel to the burning surface of a propellant has been termed as erosive burning.
This effect is due to the increased heat transfer from the flame to the burning surface.

In this case, burning rate is explained as [11];

r=rqg +rg (1.2)

where 1y is the linear burning rate and r. is the burning rate augmentation which is

defined as

0.8 (~Bppr
fe =0 G exp[ P J (1.3)



where o and 3 are erosive burning constant, G is the mass flux, Lx is the axial
distance of the motor, pp is the density of the propellant and r is the linear burning

rate. As an erosive burning indicator, a factor, J, is introduced. It is defined as [12];

K
J:f (1. 4)
Al
where K, =— (1.5)
Ab
A
K:A—b (1. 6)

After calculating the erosive burning indicator, one can refer to Table 1.3 [12], if

erosive burning is important or not.



Table 1.3 Errosive Burning Check Table

J Kp Erosive burning Pressure drop
=50 No
50100 Yes when r < 10 mm/s
<0.2 10150 Yes when r < 20 mm/s Low < 5% p forward end
=150 Yes, very important when
r = 10 mmis
<50 No :
0.2 S0-100 Yes when r < 10 mumis Approximately 10% p forward
to 10H0-150 Yes when r = 20 mm/s end when J = 0.3
0.35 =150 Yes, very imponam when
r < 10 mm/s
<50 Yes when r < 10 mmvs
0.35
o 50-150 Yes when r = 20 mmfs Approximately 10% p forward
0.5 =150 ¥es, very important when end when J = 0.4
r< 1) mm/s
<50 Yes very impaortant
0.5 and 3‘ T
to 50-150 when r < 20 mm/s 140% of p forward may be
0.8 =150 Yes, very important when | observed '
r = 10 mm/s s e
1 Any value  Yes, very important when  Pressure in the sonic

r =< 20 mm/s
Low when r < 39 mmy/s

section is p = 0.56p forward

1.3.2. Temperature Sensitivity:

Motor burning rate and operating pressure are dependent on the conditioned

temperature of the propellant grain, T;. These dependencies are formulated as follows

[13]:

Olnr
° =5

{GlnP}
Ty =|—
K

oT

10

)

(1.7)

(1.8)



where op is known as the temperature sensitivity of burning rate expressed in percent
change in burning rate per degree change in propellant temperature at a particular
value of chamber pressure and 7k is known as the temperature sensitivity of pressure
expressed in percent change of chamber pressure per degree change in propellant
temperature at a particular value of K which is the ratio of the burning surface area to
the throat area.

After calculating these temperature sensitivity coefficients, burning rate
coefficient and chamber pressure can be modified according to the following

equations [8],[13].

Amod= a exp[Gp(Ti—TiO)] (1.9)

Pmod = P exp[nk(Ti-To)] (1. 10)

where a4 i1s the modified burning rate coefficient at conditioned propellant
temperature Ti and a is the burning rate coefficient at initial temperature Ty .
Similarly, Pyod 1s the modified chamber pressure at conditioned propellant
temperature and P is the reference chamber pressure at reference chamber

temperature T.

1.3.3. Specific Impulse:

Specific impulse, Isp, is a measure of the impulse or momentum change that can be
produced per unit mass of the propellant consumed. Specific impulse, on the other
hand, can be described as the ratio of the motor thrust to mass flow rate and hence its

value is very important in the determination of the propellant weight necessary to

11



meet the ballistic requirements. Motor efficiency is also controlled by this value.

Specific impulse can be formulated as follows [13]:

I, - 2y o Te || [P K2 [yl [ RT | P—P, A,
A, (1.11)

t

where R is the gas constant, M,, is the molecular weight and v is the specific heat

ratio of the combustion products. Specific impulse can also be defined as;

F

where F is the thrust of the rocket motor, m, is the mass flow rate of the combustion

gases and g is the gravitational acceleration.

1.3.4 Thrust Coefficient:

Thrust coefficient, Cg, is defined as the ratio of the thrust to the product of the
chamber pressure and the throat area. As far as its physical meaning is concerned, it

is a dimensionless measure of the thrust of a rocket motor. It can be expressed as [13]

12



C, = (113)

where F is the thrust. Cy can be given [13] as in terms of specific heat, ambient

pressure, exit pressure, chamber pressure and exit to throat nozzle area as [10]

1+ -l

2 -1 P|v| P-P A
CF: 2’Y 2 v 1_ € ! + € a €
y—1ly+1 P. P. A (1. 14)

The maximum thrust is obtained when exit pressure is exactly equal to

ambient pressure

1.3.5 Nozzle Discharge Coefficient:

As far as the mass balance in the rocket motor is concerned, time rate of change of
the mass in the chamber is equal to difference between the mass flow rate generated
in the chamber and the mass flow rate discharged through the nozzle. The rate of

mass discharged through the nozzle is [14]:

my = CpA,Pc (1. 15)

where Cp is the nozzle discharge coefficient. It is dependent on thermodynamic

properties of the combustion gasses. Theoretically, Cp is given as [14].

13



v+1

2 11 M
C,=qly| —— | — 2w (1. 16)
vy+1] Ry Tg

where 7 is the specific heat ratio of the combustion gases, T is the temperature of

the combustion gases, My is the molecular weight and Ry is the universal gas

constant.

1.3.6. Characteristic Velocity:

Characteristic velocity is the one of the important parameters in solid propellant
rocket motor analysis. It is defined as the ratio of the product of the chamber pressure

and the throat area to nozzle mass flow rate and can be formulated as [14]

' PC,At— ! (1.17)

The characteristic velocity can also be expressed in terms of combustion

temperature, molecular weight and gas constant as

v+1

. RT, -
¢ = c {Y_HT(V ) (1. 18)
YMy, L 2
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Therefore, that ¢~ depends only on the characteristics of the reaction used,
particularly on its combustion temperature T¢ and its molecular weight My through
R. It is a fundamental parameter indicating the energy available after combustion and

it can be used to compare different reactions independent of chamber pressure.

1.3.7. Volumetric Loading:

Volumetric loading fraction, V), is defined as the ratio of the propellant
volume to the available chamber volume. It can be expressed equally well in terms of

performance and propellant requirements. Thus;

I I v
Vl — tot tot — p :V_p (1 19)

where V), is the propellant volume, V, is the available chamber volume, I is the
total impulse, Iy,q is the delivered specific impulse, p;, is the propellant density and

m, is the mass of the propellant.

1.3.8 Web Fraction:

Web fraction, Wy, is the ratio of web to grain outer diameter as shown in Figure 1. 3.
It is one of the most significant parameters influencing the selection of configuration

type and it is the primary factor affecting the burning time.
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FROFELLANT

Figure 1. 3 Demonstration of the Web Fraction

1.3.9 Sliver Fraction:

Sliver fraction, Sy, is defined as the ratio of the initial volume of the propellant to the

volume remaining as shown;

INITIAL
GRAIN
SHAPE

ILIVER
AREA

Figure 1. 4 Demonstration of the Sliver Area
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1.3.10 Nozzle Expansion Ratio:

Nozzle expansion ratio is defined as the ratio of the throat area to the exit area of the

nozzle as given below [4]:

Al _[y#L[ Pyl (P (1. 20)
A, L2 |p | vy=1] |P

The expansion ratio for the optimum expansion can be calculated by using the

isentropic formula given the equation above.

1.3.11 Thrust

Thrust of a rocket motor can be calculated by using the Figure 1. 5. In this figure, Py

stands for the ambient pressure.
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Rocket Body Nozzle

m = mass flow rate
p = pressure

V = Velocity

A= Area

Figure 1. 5 Rocket Thrust Calculation

By using the momentum equation, thrust of a rocket engine can be obtained below:

F =1V, +(p—py)A, (1.21)

1.4 Typical Grain Configurations:

Since the grain burnback analysis is a geometrical phenomenon and depends only on
the initial geometry of the grain, a grain designer should know the possible grain
configurations..

The grain configurations can be divided many categories according to:

1) the shape of the grain, ( cylindrical, spherical or any other unconventional
shape)

i1) the propellant used, (single propellant grain, dual propellant grain)

1i1) the dimensional analysis (two-dimensional grain, three-dimensional grain)

1v) the grain geometry. (Star, circular, wagon, etc.)

18



The widely used grain configurations are given in Figure 1. 6.

EHD LIRCULAR
EURNING SLOTTED

weiaim ML IFERFORATCO DEMDREITE

wHEEL
FINCCYLE
COMOCYLE

Figure 1. 6 Typical Grain Configurations

In this study, almost all of the grain configurations, shown in Figure 1. 6, are
analyzed for different purposes, such as, the verification of burnback, the illustration
of surface propagation, the comparison of the performance of the rocket motor, etc.
Not only solid propellant grains, but also some hypothetical shapes are applied to

burnback process to check the validity of the burnback.
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1.5.  Literature Survey:

Grain burnback analysis is performed by using the following 3 steps;

¢ Initial construction of the boundary either 2-D or 3-D,

e Boundary propagation or movement with respect to its unit normal vector,

e Reconstruction of the new boundary to calculate motor parameters, such as;

burning area, port area, sliver fraction, ..etc.

Two methods of approach are used in grain burnback anlysis; which are

e analytical methods, and

e numerical methods.

The most difficult part of the grain burnback steps is the construction of the initial or
propagated boundary. To cope with this difficulty, rather than numerical, analytical
methods were used in grain burnback analysis in the past. However, numerical

approach is used today.

1.5.1 Analytical Methods:

In analytical methods, the interface was constructed analytically. In this case,
initial port geometry was defined through the use of a series of bounding surfaces
composed of primitive shapes, such as; cylinders, cones, prisms or spheres. This
methodology has been employed in the industry standard solid propellant rocket
motor performance computer program, SPP[15]. The main advantage of this
approach has lied in the accuracy of the formulation, because spherical surfaces were

represented exactly by specifying the origin and radius of the sphere. However, this
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technique was less adaptable to surfaces of non-conic shape. This methodology is

also applied well known commercial solid model program, Auto-CAD, today.

In Direct Line Intersection method [16], boundary is established by

connecting the lines, and these lines are moved according to an equation of a line.

Initially coordinates of all points, which create the lines, are known and equations of

all lines connecting these points can be calculated. Since the equation of a line can be

represented by

y=mx+b

(1.22)

where m is the slope of a line and b is the constant. The equation of the first line

using the corresponding x and y values is written as

v, = i~ Yo X, +b
X=X
and therefore; b=y, —ux0
X=Xy

Inserting b, the equation of the first line is

Yi— Yo i Yo
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Similarly, the equation of the second line is obtained as

y:—yZ_Y1X+yl_—y2_YI X4 (126)

X, =X X, =X

When the line segments are shifted perpendicular to their normal direction by an
amount of dw, and the angle between the first line and horizontal direction is
represented by 3, then the horizontal movement of the first line becomes dw/ Sinf3,

as shown in Figure 1. 7.

Line 2

Line 1

Figure 1. 7 Analytic Representation of Line Shifting

After applying the line-shifting procedure, the general equation of the first line is;

yzyl_yOX+y0_ux0+dW/SinB (1.27)

X=Xy X —Xp
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The new location of a point was the point of intersection of these two lines.

Therefore, x-coordinate of the moved point can be obtained as;

- dw - dw
(Y1 Yo ) X+ ]_(YO Y1 Yo Xy + j
X, =X, Sina X, — X, Sinf3

X = 1.28
Yim™Yo Y27 Y ( )

X=Xy X;7X

After calculating the x coordinates of this point, y coordinate of the same point is
simply determined. After shifting all points on the boundary, boundary movement
procedure is completed. The direct line intersection procedure is a simple procedure
and derivative discontinuity does not affect the direct line intersection method.
Therefore, a boundary or interface consisting of sharp corners can be handled by
using the direct line intersection method. However, if two lines are perpendicular to
each other, it does not work. In addition to this, some unrealistic grain shapes may be
obtained in some cases during movement of points. Therefore, some refinements are
necessary. Hence, this procedure can not be generalized for all kinds of grain

geometry for making a burnback analysis.

1.5.2 Numerical Methods:

Propagating interfaces occur in a wide variety of settings and include ocean
waves, burning flames, crystal growth and material boundaries. Propagating the
interfaces by moving the points at the interface of a surface can be handled by a
method called Marker-String [17]. Such techniques are extremely accurate. Such a
study was first performed by Osher. However, it was not documented since, several
problems have occurred for large and complex motion. In this method, a boundary, s,
can be represented by a set of points, shown in Figure 1. 8, where n was the outward

normal vector at any point on the boundary. In Figure 1. 8, x and y coordinates of a
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point is defined. When a surface moved in the direction of its normal vector, the new
locations of the points representing the boundary can be calculated, and the new

surface boundary will be located. Therefore, variation of x and y coordinates of these

points with respect to time should be found.

s{at=0)y(a,1=0)

Figure 1. 8 A Curved-Shape Boundary, S

Letting F be the scalar speed of a point, then

(a_x,@] = Fi (1.29)
ot ot

Since n is the unit normal vector, and if the scalar speed F is taken as unity for

simplicity, then the following form [17] can be obtained.
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Oy/0s t+x(s,t = 0) (1. 30)

2)+(2)

X(s,t) =

0x/0s
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y(s,t) = — t+y(s,t =0) (1.31)

where x(s,t) and y(s,t) indicate the location of any point on the boundary at any time,
x(s,t=0) and y(s,t=0) indicate the initial location of any point on the boundary and t is
the time. By choosing a suitable difference method for the derivatives, the new
locations of these points is found. Marker-String method is a useful tool for moving
the surface interface and can be applied for solid propellant burning. However, when
the derivatives are not continuous and when the solid propellant is divided into many
parts during the combustion (discontinuous burning), this method fails. Apart from
such disadvantages, some extra refinements are necessary to prevent unrealistic
shape. Therefore, Marker-String method is not applicable to all kinds of grain
geometry for making grain burnback analysis.

Such problems have been handled by Sethian[18] by smoothing the curve and
changing the curvature of the interface.

Hejl and Heister [19] were used Marker-Cell method to capture the interface
of the boundary. The method made a adaptive grid refinement for the zone in which
discontinuity of the derivative was present. Therefore, this method is suitable if
boundary has a sharp corner.

The volume of fluid method is much easier to use and less computation
intensive. The basic idea is as follows: Fixed square cells are exposed to the

computational domain. Therefore, each cell has a value depending on the material in
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which the cell contains. Given a closed curve, a value of unity is assigned to those
cells which are completely outside this curve. A value of zero is assigned to those
cells which are completely inside this curve and fraction between 0 to 1 is assigned

to cells that are located on the boundary, as shown in Figure 1. 9.

0.97 | 0.56 | 0.77 | 1.00
// 0.80 | 0.00 | 0.47 | 1.00

1.00 | 0.85 | 0.55 | 0.76

Figure 1. 9. Illustration of the Volume of Fluid Method

The idea is, then, to rely solely on these cell fractions to characterize location
of the interface. Two major problems rise when the interface is represented by a

fractional volume parameter. These are

1) identification of the exact surface location, and

i1) advection of the surface.

To characterize the interface location or reconstruct the front from cell
fractions, approximation techniques are used. An algorithm, known as Slic (Simple
Line Interface Calculation), reconstructes the front either as a vertical or a horizontal
line. In this technique, rather than tracking the boundary of the propagating front by
using marker particle, the motion of the interior region is traced. This significantly
different approach was first introduced by Noh and Woodward [20]. In this
algorithm, the interior is discretized, usually by employing a grid on the domain and
assigning a volume fraction to each cell. These fractions can be calculated by

considering the amount of fluid located in each cell. An advantage of this technique

26



is that no new computational elements are required as the calculation progresses and
complicated topological boundaries are easily handled. This technique is based on
describing a surface orientation and then moving the surface with a velocity normal
to that orientation. It means that all the surfaces are considered to be vertical for flux
calculations in the x-direction and horizontal for flux calculations in the y-direction.
Recalling Figure 1. 9, a section of that figure is taken to illustrate the surface
reconstruction and advection according to Slic algorithm as indicates in Figure 1. 10

and Figure 1. 11.

0.60 | 0.00 | 0.27

0.73 ] 0.00 | 0.00

1.00 | 0.58 | 0.33

Figure 1. 10 Surface Orientation According to Cell Fraction in Slic Algorithm

In the figure above, the surface is assumed to be horizontal and new cell fraction
values can be calculated according to velocity in the y-direction.

After the new cell fraction values were found, the same exact procedure was applied
to find the mass flux in the horizontal direction. In case, all the surfaces were
assumed to be vertical and was advected by using horizontal velocity to find the
mass flux in the horizontal direction. Horizontal and vertical advection and surface
reconstruction procedure were continuously reapplied until certain criteria were
satisfied. In solid propellant combustion, the procedure is obviously completed when

all the propellant burns out.
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0.40 | 0.00 | 0.07

0.53 | 0.00 | 0.00

1.00 0.38 | 0.13

Figure 1. 11. New Cell Fractions and Surface Reconstruction

Since the Slic algorithm is an old algorithm, its accuracy is very low and its surface
advection procedure gives unsatisfactory results. For simple types of grain geometry,
such as circular slotted, it is considered to be an acceptable and easy procedure.
However, it is not recommended as the complexity of the grain shape increases. If
the actual surface given in Figure 1. 9 is compared with the constructed surface by
using Slic algorithm in Figure 1. 10, it is quite clear that this algorithm is an
inaccurate one.

Since its introduction, many elaborate reconstruction techniques have been
developed over the years. Simple Line Interface Calculation technique was first
applied to flame propagation and combustion calculations by Chorin[21]. This
technique is based on describing a surface orientation and the moving the surface
with the velocity normal to that orientation. The cell boundaries are assumed to be
either horizontal or vertical for construction and advection of the surface

Similar to the Slic algorithm, the conventional cell volume fraction approach,
was first employed for tracing the interfaces by DeBer[22] and Youngs[23]. In this
technique, sloped-line segments in each cell are used rather than horizontal and
vertical ones as is employed for the Simple Line Interface Calculations. The interface
slope in each cell is obtained by inspecting the volume fractions of the neighboring
cells. The sloped interface is then convected by the local velocities at the cell.
Unfortunately, the details of this technique for calculating the surface slope has not
been reported.

One of the recent effective interface reconstruction and advection model,

Flux Line Segment Model for Advection and Interface Reconstruction, by using the
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volume of fluid techniques have been developed by Ashgriz and Poo[24]. Boundary
construction and surface advection of this technique resembles to other volume of
fluid techniques with slight improvement in its accuracy. In this technique, the line
segments are drawn at the cell boundaries. When moving the interface, the fluid
underneath the interface is moved with the velocity of the cell boundary. By using
these surface velocities, mass flux in and out of each cell is obtained. As in the
conventional volume of fluid methods, cell volume or mass fractions are updated to
reconstruct the new boundaries. For both advection and reconstruction of a cell, the
neighboring cells of a cell under consideration are used. Therefore, fixed grid was
again imposed and the cell fractions are calculated by using the same method that is
used in Slic algorithm. However, surface advection and reconstruction techniques are
different and more accurate than Slic algorithm A criterion is developed for
identifying the line-segment orientation by inspecting the cell volume fraction. The
new cell volume fraction field is obtained by integrating the advected area
underneath the interface line segment. Considering a cell and its neighboring cell,
one of the conditions, shown in Figure 1. 12, can be identified. For instance, if the
volume fraction in cell on the left is denoted by f,, and on the right by f;, case one
corresponds to 0<f,<Il and f,=0, case two corresponds to f,=0 and 0<f,<I1 and goes
on up to the case nine which corresponds to 0<f,<1 and 0<f,<1. The interface slope
in each cell is obtained by inspecting the volume fractions of the neighboring cells.
The sloped interface is then convected by the local velocities at the cell.
Unfortunately, the details of this technique for calculating the surface slope have not

been reported.
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Case 1 Case 2 Case 3

Case 7 Case 8 Case 9

Figure 1. 12. Existing Relations for Two Neighboring Cell

Flair algorithm is more accurate than the Slic algorithm and is used for complex
shapes. Since only two neighboring cells are considered, its surface orientation and
reconstruction procedure is perfect except for some special cases. Advection
procedure of the Flair algorithm is more realistic than the Slic algorithm. However, it
requires detecting lots of cases and corresponding sub-cases which require lots of
time-consuming calculations.

This effective model for surface construction and advection has been
modified to handle the burning of solid propellant grains with an arbitrary geometry
by Mashayek and Ashgriz[25]. The surface velocities for each surface cell obtained
by Euler equation are replaced horizontal and vertical components of burning rate.
To find the direction of the normal vector of the burning surface, a criterion is added.
The remaining algorithms are the same as the model developed by Ashgriz and Poo.

McAmis and Le [26] analyzed Minuteman third stage motor internal ballistic,
by using a computer subroutine called Recess and Volfil. Volfil is used for
determining the motor pressure by using 0-D internal flow (lumped) assumption.
Recess is the finite element grain burnback code and able to perform constant grain
burnback. The results of Recess are given to Volfil for performance predictions. The
burnback subroutine and flow solver is not coupled at that moment. Initial grain

geometry is established by using one of the most famous mesh generator, Ansys.
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Then burning surface is cut to simulate the grain burnback. However, this cutting
process is not clearly explained.

Huygen [18], [27], weakly solved boundary discontinuity by establishing a
Huygen principle of construction, shown in Figure 1. 13. The solution is developed
by imagining wave fronts emanating with unit speed from each point of the boundary
data and the envelope of these wave fronts always corresponded to the first arrivals.
Therefore, Huygen is constructed the boundary by weakly considering the minimum

distances.

Figure 1. 13 Demonstration of a Huygen Principle of Construction

A greatest invention in boundary propagation was made by Osher and Sethian
[28]. The discontinuity of the interface is eliminated by using Hamilton-Jacobi type
equations. Sethian [17], [18], improves this study and “Level-Set” method containing
both “Initial Value Problem” and “Boundary Value Problem” are introduced to
literature. Level-Set Method will be explained in the next chapter. This method is
applied to many applications such as crack propagation, image processing,
combustion [18], unsteady free surface flow[29], inviscid compressible flow[30],

curvature flow[31], etc.
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A fast Level-Set algorithm for propagating interface, which is called “Fast
Marching Method” was introduced first Sethian and Adalsteinsson [32]. The method
is introduced to decrease the computational labor of the standard Level-Set method
for propagating the interface. The fast approach used only points, rather than whole
domain, close to the curve at every time step. Efficiency and accuracy of the method
are compared to the classical method. This fast Level-Set algorithm will be described
in the next chapter.

Toker [33] was used the Level-Set method for solid propellant burnback
simulation. “Fast Marching Method” is implemented to the problem of grain
burnback. The method uses an upwinding scheme and solves the Eikonal type
equations for boundary propagation on tetrahedron meshes. Burnback is coupled
with the 3-D Euler solver so that burnback distance is determined by the information
of the flow variables.

Willcox, Brewster, Tang and Stewart [34] were performed solid propellant
grain burnback simulation using minimum distance function which will be explained
in the next chapter. Three dimensional propellant grain is developed using distance
function and resulting code, Rocgrain, allowes motor grain design by user friendly
commercial computer aided design programs. Rocgrain code is coupled from zero

dimensional flow solver for simplicity.

1.6.  Present Study

The purpose of this study is to develop a method which uses Initial Value
Problem of the Level-Set equations so that a connection is established between
mathematical point of view and industrial application as the design of a solid
propellant rocket motor. Level-Set Method is aimed to use for solid propellant
burnback.

Since grain burnback analysis is one of the most important part of the solid

rocket motor design, it is aimed to develop a universal computer code which is able
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to perform grain burnback analysis for all kinds of propellant grain in 3-D. This
eliminates case-dependent burnback analysis. Propellant regression is also aimed to
coupled with the internal flow solver, this leads that burnback distance is determined

by the flow parameters, such as pressure of the rocket motor.

1.7 Review of the Study:

In Chapter 2, a general perspective about the subject is explained and a transition
from this perspective to the subject of this thesis is made by considering the Initial
Value Level Set formulations in detail. In Chapter 3, work performed about the grain
burnback simulations is given. In Chapter 4, work performed about flow simulations
and cut-cell operation for mesh is explained. In Chapter 5, results and comments
about these results are demonstrated. In Chapter 6, suggestions and recommendations

for future work applications are presented.
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CHAPTER 2

A GENERAL PERSPECTIVE OF AN INTERFACE

2.1 Introduction

An interface is described as the one which separates gases and solid phases as

shown in Figure 2. 1.

=olid Fropellant

Sas Phaza Interface

Figure 2. 1 Representation of an Interface

As shown in the figure, interface separates solid propellant which is on the

solid phase and gap which will be on the gas phase when solid propellant burns. In
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this 2-D figure, interface is shown as a closed curve. Interface is a surface in 3-D
domain. The purpose of this chapter is to model the interface movement. However,
this movement is not considered to be a simple motion, such as towards to x or y
direction. It is aimed to model the movement of the interface towards its unit normal

vector for all directions and for all the time.

2.2 Theory of Curve or Surface Evolution:

One of the general review of the whole perspective, suggested by Sethian [18], about

theory of curve or surface evolution is given in Figure 2. 2.

Theory of Curse and Suxface Evolution

Wse of Hyperbolic CFD Schwones to Track Evolsring Fronts

Initial ¥alue Level Set Method| |[Boundary Valoe Stationary Wiew
y

I'T.&RREIWBI.&HD FAST MARCHING
LEWEL SET METHOD METHOD

Extensions:
Tostrwctured Meshes  Coupling to General Phorsics Adaptisdity

Applications:
Serniconductors Geornetry Medical Inaging Geodesics Seisooolopy
Eobotics Materials Cormbustion Graphics Cad/Carn Fluwids Meshes

Figure 2. 2. Curve or Surface Evolution by Sethian[18]
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Although Boundary Value Problem[18], and its fast algorithm, called Fast Marching
Method [18], [33], is not the method adapted to propellant burnback in this study, it
is demonstrated in detail. Initial Value Level Set Method [17] is the subject of this
study. Narrow band method [35], which is nothing but the fast method of Initial
Value Level Set Method is not presented. Recall that in this study, Initial Value
Problem on Cartesian Grid by using Upwinding Level-Set scheme is solved. In
Figure 2. 2, both approach (Initial Value and Boundary Value) are shown. These
approaches are different approaches because the equation that can be solved are
different. Both approaches have the fast algorithms (Fast Marching for Boundary
Value Problem, Narrow Band for Initial Value Problem) Those methods have a
different type of versions so that they can be used unstructured or structured grids

with the option of a mesh refinement as Figure 2. 2 suggested.

2.2.1 Parameterization of a Curve:

Let F be a scalar speed of a curve moving along its unit normal vector, N is unit

normal vector, S is the coordinate of a curve as shown in Figure 2. 3 [17].

Figure 2. 3. Parameterized View of Propagating Curve
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Then the change of a position of a point on the curve with respect to time, when the

curve moves along its unit normal vector for all points on the curve, is given as [17]:

F YssXs ~Xss¥s Ys Q.1

Xt ==
/2 /2
2 2 2 2
(Xs +Ys )3 (Xs TYs )l

_ pl YssXs T XssYs Xg
yt =—F > L5/ ; V2 (2.2)
Xs TYs Xg TYs

where subscripts denote the partial derivatives, i.e. Xs is the partial derivative of x

with respect to x, Xgs is the second partial derivative of x with respect to s.

£ YssXs ~Xss¥s

. This term is called a
(Xs TYs )3

Both of the formulas contain a term o

parameterized expression, K.

If the points on the cosine curve, given in Figure 2. 4, are moved by using Equations
(2. 3) and (2. 4), then one can observed that the front develops a sharp corner in finite
time. Once this corner develops, the normal is ambiguously defined and it is not clear
how to continue the evolution. Because, there is a discontinuity in the derivatives. It
does not satisfy the definition of differentiability. This phenomenon is called
“swallowtail”’[18]. To prevent the swallowtail, so-called “entropy condition” is

introduced.
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Figure 2. 4. Formation of a Swallowtail

2.2.2 Curve Smoothing (Entropy Condition)

As the curve moves, discontinuity in derivatives generally exists in finite time. At
this point, if the solution is continued it will end up with the wrong solution as shown
in Figure 2. 4. To eliminate this problem, “entropy condition” is applied to the
problem. This name was given by Sethian[35] and is not related with the entropy in
Thermodynamics. Entropy condition, roughly speaking, is to make the curve
smoothened. Weak solution (not entropy condition) is achieved by adding artificial
viscosity term to speed, F as shown Figure 2. 5 [35]. In the figure, although,
derivative discontinuity is prevented, the original curve is not preserved. This can not
be suitable for grain burnback process. Because, propellant regression does not
depend on curvature parameterized expression, k. Therefore, one can aimed both to
preserve the original curve when it moves and to eliminate the discontinuity of
derivatives. This can be obtained by entropy condition. As it is realized, the entropy
condition dictates to find the correct limiting viscosity so that one can guarantee that

the direction of the correct information is always taken. Therefore entropy condition
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is a condition such that the derivatives are continues at all the time during the
curvature movement as shown in Figure 2. 6 [35].
Level Set Method of Initial Value Problem, which is the study of this thesis, satisfies

the entropy condition thanks to its numerical scheme.

Figure 2. 5. Weak Solution of Cosine Curve
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Figure 2. 6. Entropy Condition of Cosine Curve

2.2.3 Boundary Value Formulation:

Both the Boundary Value Formulation and Initial Value Formulation are the viscous
solution (entropy condition is satisfied in both of the cases) of the front propagation.
Imagine a closed curve [ in the plane propagating normal to itself with speed F.
Furthermore, assume that speed of the curve is positive, hence the front always
moves outwards. One way to characterize the position of this expanding front is to
compute arrival time T(x,y) of the front as it crosses each point (x,y) as shown in

Figure 2. 7 [35].
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Figure 2. 7. Transformation of Front Motion into Boundary Value Problem

Since distance equal to the multiplication of speed and time, one can write;

dx = F(dT) (2.5)
and hence
Fd—T =1 (2.6)
dx

In multi-dimensions, the spatial derivative of the solution surface T becomes the

gradient. Hence;

FVT|=1  T=0on[ 2.7)
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where F is the speed of an interface, T is the time at which interface arrives at each

point in space, [ is the initial location of the interface.

2.2.4.1 Fast Algorithm of the Boundary Value Formulation (Fast Marching Method)

The boundary value formulation can also be made fast. The central idea
behind the Fast Marching Method [18], [35], [36], is to systematically construct the
solution in a “downwind” fashion to produce the solution of time, T. The idea is to
sweep the front ahead in an upwind fashion by considering a set of points in narrow
band around the existing front and to march this narrow band forward, freezing the
values of existing points and bringing the new ones into the narrow band structure.
The key is in the selection of which grid point in the narrow band to update. Nodes

on the solution domain are classified into 3 groups;

e Alive: Alive grid points are the points whose values are known. The interface
moves opposite direction of the alive nodes.

e Narrow band: Narrow band points are the points located one grid point away
from the interface.

e Far: Far points are the points located downwind of the interface.

By keeping these definitions in mind, one can prepared a demonstrative figure for

Fast Marching Method as shown in Figure 2. 8 [36].
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Figure 2. 8. Demonstration of Fast Marching Method

Procedure of this method is summarized below:

e Begin Loop : Let Trial point (point under consideration) be the point in Narrow
Band with smallest T value,

e Move Trial point from Narrow Band to Alive,

e Move all neighbors of Trial to Narrow Band,

e Recompute the values of T at all neighbors of Trial,

e Return to Loop.

2.2.4 Initial Value Formulation:

Unlike to be done in previous methodology, initial position of the front is embedded
as the zero level-set (distance function) of a function, ¢. The evolution of this
function with the propagation of the front itself through a time-dependent initial
value problem is identified. At any time, the front is given by the zero level-set of the

time dependent level set function, ¢, as shown in Figure 2. 9 [35]. Since one can
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required that zero level set of the evolving function ¢ always match the propagating

surface,

o(x(t).t)=0 (2.8)

Differentiating with respect to time and using chain rule, one can obtained;

o9

D49 bx0.0 (1)

dt

=0 (2.9)

Since F is the speed in the outward normal direction, and n is the unit normal vector;

dx(t) _
” n=F (2.10)
where n= % (2. 11)

Substituting (2. 10) and (2. 11) into (2.9), Initial Value Formulation can obtained;

% +F|opV|=0  given ¢(x,t=0) (2.12)
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Figure 2. 9. Transformation of a Front Motion into Initial Value Problem

2.2.4.1 Fast Algorithm of the Initial Value Formulation (Narrow Band Method)

Considerable computational speedup in the Level-Set Method comes from the
use of the Narrow Band Level Set Method. It is clear that performing calculations
over the entire computational domain is wasteful. Instead, an efficient modification is
to perform work only in a neighborhood of the zero level-set. This method was firs
introduced in Chopp [31].

Figure 2. 10 ,[35], shows the placement of a narrow band around the initial front. The
entire 2-D grid of data is stored in a square array. The front is tracked such that only
grids inside the user defined width are considered. This performs by checking the
distance values of the grids. Large positive or large negative values are not
considered. Therefore, only the values of points within the narrow band are updated.
Points located on the boundary of the narrow band are frozen. When the front moves
near the edges of the boundary of the narrow band, calculation is stopped and new
narrow band is established. The procedure of the Narrow Band Method is

summarized below:
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e Tag “Alive” points in narrow band.

¢ Build the edges of the band.

e Initialize “Far Away” points outside or inside narrow band with large positive or
negative values respectively.

e Solve the Equation given as (2. 12).

e  When the front moves up to the edge of the narrow band, rebuild new band and

loop.

Figure 2. 10. Demonstration of Narrow Band Method

2.2.5 Comparison of the Initial Value Formulation and Boundary Value Formulation:

e In Boundary Value Formulation it is focused on the time as the front propagates;

however, the distances are considered in Initial Value Formulation.
e Initial Value Formulation can be used for any speed of interface; whereas, speed

of the front should be positive in Boundary Value Formulation.
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e CFL condition, which will be discussed later, should be obeyed in Initial Value
Formulation; however Boundary Value Formulation has no CFL requirement.

e Fast algorithm of the Boundary Value Formulation (Fast Marching Method) is
faster than that (Narrow Band Method) of the Initial Value Formulation.

¢ Boundary Value Formulation is more accurate than Initial Value Formulation.

e Variable speed burnback can be performed in Initial Value Formulation however
in Boundary Value Formulation it can not be done such an analysis.

e Algorithms, numerical methods and computer coding of the Initial Value
Formulation are easier then that of the Boundary Value Formulation.

e Boundary Value Formulation can be applied to triangulated domain; however,
the governing numerical equations are more complex than structured domain.

e Initial Value Formulation is easier than Boundary Value Formulation in order to

be understood and handled.

Initial Value Formulation Boundary Value Formulation
%ﬂr\w:o FVT| =1
Front =1 (t) ={(x, y) ¢(x.y,)=0} Front =[ (t) ={(x, y) T(x.y)=t}
Applies for arbitrary F Requires F>0

2.3 Numerical Scheme of the Initial Value Problem of the Level-Set Method:

Our purpose is to find the numerical scheme of the Initial Value Problem. This
shame should satisfy the limit of the viscosity solution called entropy condition. The

most general form of the Hamilton-Jacobi equation is given as:

aUrtH(Uy, Uy, U, X, y,2) = 0 2.13)
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where o is the coefficient, H is called Hamiltonian and U is the flow variable.

. . o . ou
Subscripts t, x and y represent the partial derivatives, i.e, UFE

For a=1 and 1-D, Hamilton-Jacobi equation for hyperbolic conservation law can be

written as;[ 18]

UAH(U)], =0 2. 14)

At this point, 1-D non-linear wave equation is remembered as;

UtHUx =0 (2. 15)

The numerical solution of the flux function of the 1-D non-linear wave equation is

given as;

g(U,, Uy) = (max(U,, 0)* + min(Us,0)%) (2. 16)

This numerical solution satisfies the entropy condition. Therefore, the purpose is to
make an analogy between Equations (2. 12) and (2. 15) so that numerical scheme of
the Initial Value Problem guarantees the entropy condition as well . Recalling Initial

Value Formulation, one can write for F=1;

Ot dx=0 (2.17)
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Equation (2. 15) resembles to (2. 12) if

¢=U (2. 18)

and

H ()= JU? (2. 19)

Substituting (2. 18) and (2. 19) into (2. 16) and using Upwinding numerical method
for 3 space dimension, the numerical scheme of the Initial Value Problem is obtained

as [17], [18];

b1k = i - At(max(O,Fi, iV +min(0,F; j’k)V_) 2. 20)

where
_ L
max(Di’j’k_X,O)2 + min(Di’j’kJrX,O)2 +|2
V= max(Di’ J-,k‘y,o)2 + min(Di’ J-,k+y,0)2 + (2.21)
max(Di’j’k_Z,O)z + min(Di’j’kJrZ,O)z
and
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max(Di’j’kJrX ,0)2 + mil’l(Di’j,k_X ,0)2 +
V = maX(Di’j’ker,O)z + min(Di,j’k_y,O)l + (2.22)

max(Di’j’kJrZ,O)z + Il’lil’l(Di,j,k_Z,O)2

Note that shorthand notation used in these equations is D; ™ which means D™ di

Note also that D™ u," =u," —u"ii  and similarly D"u," =u,," —u".

i+1

2.3.1 Upwind Scheme:

Equation (2. 20) is an upwind scheme. It chooses grid points in the
approximation in terms of the direction of the flow information. Intuitively, upwind
means that if a wave progresses from left to right, then one should use a difference
scheme which reaches upwind to the left in order to get information to construct the
solution downwind to the right.

One can consider propagating “V” front, at the symmetric point, the
symmetry of the scheme is changed and non-zero value is chosen. Therefore, by
using upwind scheme, one can guarantee that no discontinuity in derivatives occurs

when the front propagates. This satisfies the entropy condition explained Sec.2.2.2.

2.3.2 Higher Order Numerical Scheme

Although the higher order numerical scheme of the Level-Set Method is not studied
in this thesis, it is given in Figure 2. 11. In this case Equation (2. 20) remains the

same, whereas V' and V' change as given[18]:
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Figure 2. 11 Higher Order Level-Set Numerical Scheme

2.4 Distance Function:

Distance function or Level-set function, ¢, is defined as the minimum
distance between the grid point under consideration and the interface. Interface can
be closed or opened-curve in 2-D space, and the surface in 3-D space. Therefore,
each grid point has a distance value determined according to the closeness of the

boundary. The rules in finding the distance function are given below:

e If the grid point is located inside of the boundary, minimum distance value is

multiplied by -1.
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e [f the grid point is located outside of the boundary, minimum distance value is
remained as it is.
e If the grid point is located exactly on the boundary, minimum distance is

computed as zero. Then it is remained as it is.

These 3 rules are the key in determining the distance function. One example in 2-D

space is given in Figure 2. 12.

Figure 2. 12 Example of Distance Value, ¢, for a 2-D Closed Boundary

Although the solution domain consists of square elements in 2-D space or
cube elements in 3-D space, which will be discussed later, distance values are found
node-based fashion, rather than element-based as shown Figure 2. 12.

The answer of the question “why distance value should be determined for
each grid point?” is given in Equation (2. 20). In this equation, distance value for

each grid point should be known at time, t=0, so that update procedure can apply.
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2.4.1 Determination of Distance Function in 2-D Space

Assuming the boundary is the closed circle. Since the equation of the circle is

2 2

well known as x“ + y2 =1, and coordinate of the grid points are known as well,
then the distance values for each grid points can easily be computed. However, the
equation of the boundary given in Figure 2. 12 is not known. The boundary may be a
more complex shape for different problems even arbitrary. In 3-D, the problem
become more complicate, because 2-D curves becomes 3-D surfaces and the
equation of the surface in some cases may not be obtained. Therefore, a method is
developed to determine the distance values of each grid point. The illustrative

example is given in Figure 2. 13.

Figure 2. 13. Illustrative Example of Determination Distances in 2-D Space
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In the figure, an anchor type slot of the solid propellant grain is shown. This slot
represents the gas phase. Therefore, only slot or gap of the solid propellant is
considered. Inside the slot, triangular, unstructured 2-D meshes are generated by
using any commercial mesh generator. In this case, commercial software, ANSYS, as
a mesh generator is used. Since the coordinates of corners of each triangle are known
via the mesh generator, minimum distance between the grid point under
consideration and anchor slot can be computed by checking the whole corners of the
unstructured points on the 2-D slot. The mesh generator creates triangular 2-D
meshes and an output file that contains x, y coordinate of the nodes of the triangles
and their connectivity information. This output file is used as an input for main code.

The method explained here is summarized below:

e Loop, stated as Loop-1, for all structured grid point, (in Figure 2. 13 the point
under consideration is point 2, 8 so ¢, g is intended to compute.)

e Loop, stated as Loop-2, for all unstructured nodes, (all nodes of the triangle
generated in Figure 2. 13)

e Compute the distance between them by using simple distance formula given

below:

Distance =L = \/(Xstruc — X unstruc )2 + (Ystruc ~ Yunstruc )2 (2.23)

where X 18 the X coordinate of the structured (squares in Figure 2. 13) grid,

Xunstruet 18 the x coordinate of the unstructured (triangular meshes in Figure 2. 13)

grid.

e Set this distance as the minimum distance. If it is the first time, go to next item. If
newly computed distance is smaller than minimum distance then set newly
computed distance to minimum distance

e Go to Loop-2 ,until finished, to compute new distance by using Equation (2. 23)

with the same structured point but different unstructured point.
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e Go to Loop-1, until finished, to calculate new distance value of the structured

point.

By using the procedure explained above, all distance values of the corresponding
structured nodes are calculated. However, it has not been determined which
structured points are located inside of the slot yet. In Figure 2. 13, the point 2, 8 is
located outside of the slot. This can be easily seen by eyes, however computer code
has no eyes so this can be learned to code by using a procedure described in the next

section.

2.4.1.1 Determination of Inside-Outside Location in 2-D Space

A procedure is developed to determine if the structured-grid point is located
inside of the closed boundary or not. Cross product feature is used in the procedure.
One can recall that if it is inside, the value of distance function in grid point is
multiplied by -1, otherwise it is remained as it is. Consider one of the triangles of the
triangulated meshes shown in Figure 2. 13. This triangle consists of 3 nodes; 1, 2 and
3. A point, P, is located on the squared grid as shown in Figure 2. 14. In this figure, 6

conditions are given by using cross product feature. Then;

e Point P is outside of the boundary if all of the six vector cross product conditions

are satisfied.
e Otherwise, point P is inside of the boundary and the value of distance function on

point P is multiplied by -1.

Six conditions described in Figure 2. 14 are satisfied for point P, then this point is out

of the triangulated slot. Therefore, distance value is positive.
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Figure 2. 14. Example for the Determination of Outside-Inside Job in 2-D Space

Note that, in the figure above, [2P |, [P2 ], [32]...etc are all vectors and conditions are

Py

said to be satisfied if k components of the results of the cross products are larger or

equal to zero.

2.4.2 Determination of Distance Function in 3-D Space:

In order to determine the distance function in 3-D space, same method,
described in the Section 2.4.1, is used. In this case, 2-D slot or gaps become 3-D
object. The same commercial mesh generator, ANSYS, is used for 3-D case. The
elements generated are tetrahedrons rather than triangles.

Recall that in 2-D case, an anchor type grain gap was used for illustrative

purpose, however in this case a different propellant grain is used. This grain
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geometry provides nearly constant burn area so that it uses the quality control of the
propellant burning rate. The slot of the grain is modeled by using commercial solid
modeling software, AutoCAD. The tetrahedron meshed-model is shown in Figure 2.

15:

Figure 2. 15. Tetrahedron-Meshed Model

Structured grids, actually cubes, are generated for the solution domain by the main
program. The purpose is to find the distance values for each node of the cubes. A
data file containing X, y, z-coordinates of tetrahedrons and their connectivity
information are created by the mesh generator as an output file. This file is used by
the main program as an input. Then the minimum distance determination process is
started. The same method, used in 2-D space, is used as well. The demonstrative
example is given in Figure 2. 16. In the figure, the determination of distance value of
Point P is demonstrated. All the distances between point P and nodes of the
tetrahedron elements are computed and the smallest one becomes the distance value
of point P. This work is performed for all points of the solution domain. In the figure,
5 attempts to find the minimum distance of point P and the model are shown. As it is
realized, this procedure takes a lot of time. To reduce the computational time, a fast

method is also introduced described in Section 2.4.2.2.
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Figure 2. 16. Determination of Distances in 3-D Space

2.4.2.1 Determination of Inside-Outside Location in 3-D Space

Right hand rule of the cross product feature is also used here. In addition to that, dot
product is also introduced. The procedure is schematically shown in Figure 2. 17. In
the figure, a tetrahedron and a point, P, is present. The purpose is to find whether
point P is located inside of the tetrahedron or not. To determine this, 4 terms, given
in the figure, are calculated. For example, for the Term 1, first cross product is
applied to vectors 21 |and [32]. Then dot product is applied to resulting vector and a
vector of [P2 | After finding all 4 terms, it is determined that whether point P is

located inside of the tetrahedron or not according to procedure given below:
o If all the Terms (Term 1, Term 2, Term 3, Term 4) have the same sign (all are

positive or all are negative) or zero then point P is inside of the tetrahedron.

e Otherwise, even one of terms has a different sign, it is outside of the tetrahedron.
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2 Tem1=[p1jxp2|elp2
Term 2 = [[31)p3] o P3|
Term 3 = [[34]z[23] o P3|

4 Term 4 = [41]z[24] [P 4|

Figure 2. 17. Example for the Determination of Outside-Inside Job in 3-D Space

For a solution point, each tetrahedron is checked to determine if it is inside of the
tetrahedron or not. If the solution point is out of the each tetrahedron, then one can
say that the point is outside of the model. If the solution point is inside of the one of
the tetrahedrons, then one can say that the point is inside of the model and distance

value is multiplied by -1.

2.4.2.2. Modifications for Fast Determination of Distance Function in 3-D Space:

In the determination of distance values, each structured grid is given a distance value.
Therefore, for each grid, all unstructured grid are checked to determine both the
minimum distance value and inside-outside location. This is a really time consuming

job. In order to reduce the computational time, two modifications are done;

e Total number of tetrahedrons is decreased without sacrifying the accuracy.
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e In the determination of distance value for a grid point, only tetrahedrons locating
in the zone which is formed by the user defined width along the z-direction are

considered.

For an accurate solution, the size of the tetrahedron generated on the slot of the
propellant should be kept as small as possible. However, this leads to long
computational time. Therefore, one can focus on the reason why tetrahedrons are
generated. Tetrahedrons are first used for the determination of minimum distances. In
this process, nodes of the tetrahedrons are checked. For the minimum distance,
corresponding node of the tetrahedron should locate on the surface or near-surface of
the solid model representing the slot of the solid propellant grain. Therefore, fine
mesh can be generated near the surface of the model, whereas, coarse mesh can be
generated inside of the model as shown in Figure 2. 18. This coarse mesh does not
affect the job of the determination inside-outside location described in Section

24.2.1.

Figure 2. 18. Mesh Refinement for the Fast Determination of Distance Values
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The other modification for the fast determination of distance values is to use the
bounded model. One can consider Figure 2. 16. All tetrahedrons are checked for the
determination of the distance value of point, P. However, it is obvious that the
minimum distance is the distance between point P and a node of the tetrahedrons
located at the same z-coordinate with a user defined variations. This modification is
shown in Figure 2. 19. One can compare Figure 2. 16 with the Figure 2. 19, the
method of this modification is understood.

The modifications described in this section cause a considerable decrease in
computational time. That is why the fast algorithm of the Initial Value Level-Set

Method (Narrow Band Method) is not used in this study.

Figure 2. 19. Bounded Model for the Fast Determination of Distance Values

2.5 Propagation of Interface:

After the determination of the distance value for all structured grid points, one can
ready to make a burnback. Assuming a circular boundary, when a contour plot of

distance values is drawn, the distance value of zeros represents the initial boundary.
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After the distance values for each grid is updated according to Equation (2. 20), the
distance value of zeros, in this case, represents the first propagation of the boundary

as shown in Figure 2. 20.

B

[=]

NS
()
N~

[=]

L L L L L 1
=0 100

Figure 2. 20. Initial and First Propagation of an Anchor Type Slot

Therefore, there is no need to know the coordinates of points on the boundary or the

equation of curve to perform boundary propagation by using Level-Set method.

2.6 Determination of Burning Area and Surface Reconstruction of a Grain:

The primary objective of the grain burnback analysis is to determine the port area
and the burning area of a grain under consideration. There are two methods of

approach, introduced as Method-1 and Method-2.

e In Method-1, burn area is computed without knowing the coordinates of the

intersection of boundary with cells.
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e In Method-2, burn area is computed directly from lines (in 2-D space) or surfaces
(in 3-D space) formed by the intersection between the boundary and cells (in 2-D

space) or cubes (in 3-D space).

The first method, Method-1, is a very easy method. Because an assumption is
made in the determination of port are, which will be explained in the next section,
and burn area is computed by using the port area information. Therefore, even if the
coordinates of the intersection of boundary with cells is not known, it will be
possible to calculate the burn area. However, it is observed that no matter how
accurately the port area is computed, the burn area is calculated with a large error
due to small oscillations in port area values. This situation is explained more clearly
in Chapter 4.

The second method, Method-2, leads to a difficult task which is called cut-
cell. However, it gives more accurate results than the first method. In this method,
intersection of boundary with cells is determined and the burning perimeter or burn

area is computed by using these intersected lines or surfaces.

2.6.1 Method-1:

Method-1 is the first method that was used to determine the burn area. After it is
observed that the method is not accurate one, it is no more used in the analysis of
grain burnback performed in this study. The procedure of this method is given

below:

e For each node, check the negative distance values; (¢"ijx < 0) where n is the
arbitrary burnback step.

e Compute the total number of nodes satisfying the inequality given

above;( Z(d)ni,j,k < 0))
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e Compute the port area, A, (in 2-D space) or port volume, V,, (in 3-D space) by
using Equation (2. 24) or Equation (2. 25), respectively.

Ap=z(¢ni, ik < OXAX)(Ay) (2.24)

VPZZ(d’ni,j,k < OXAXXAy)(AZ) 2.25)
where Ax, Ay and Az are the grid size in X, y and z direction, respectively. Actually

they are equal since element type of the solution domain is square or cube.

¢ Find the burning perimeter (in 2-D space) or burning area (in 3-D space) by using

Equation (2. 26) or Equation (2. 27), respectively.

n+l n
P, _u (2. 26)
F(At)
\V, n+l _y.n
Sp=———— 2.27
b F(At) ( )

where n+1 is the situation after one burnback step later of the arbitrary burnback
step, n. Since At stands for the time step, FAt represents burnback distance.

Equations (2. 26) and (2. 27) are obtained by making an average of the port area or
port volume for corresponding two burnback steps. This is, actually, an assumption

that the grain geometry is not changed considerably between two burnback intervals.
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This assumption is valid if there is no sudden change in grain geometry during the
propagations and if burnback distance is kept very small. Illustration of the physical
meaning of the Equations (2. 26) and (2. 27) are shown in Figure 2. 21. The burning
perimeter is obtained by averaging of burning perimeter of the boundary,Py,; and the

burning perimeter of the boundary after 1 burnback step later, Py,.

Figure 2. 21. Calculation of Burning Perimeter in Method-1

2.6.2 Method-2:

In Method-2, the burning perimeter or burning area is directly obtained from
the lines or surfaces formed by the intersection of boundary with the square or cube
elements. Therefore these elements should be cut to obtained boundary or surface of
the burning perimeter or burning area. This methodology is called Cut-Cell. This
methodology is used not only to determine the burning area of a grain, but also to
generate boundary elements for 3-D flow solver. Both 2-D and 3-D spaces, Cut-Cell

methodology is investigated.
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2.6.2.1 Cut-Cell Methodology in 2-D Space:

The goal is to find the burning perimeter of a grain. Hence, the length of all the lines
passing through the square cells should be computed. However, there is no any
information about the coordinates of cutting points yet. Therefore, coordinates of the
cutting points should be computed. Consider a single cell through which an interface

is passing as shown in Figure 2. 22.

|® 3

=
.A @4

Figure 2. 22. Single Cell and an Interface

The problem is simply stated as the determination of coordinates of points, A and B,
by knowing the distance values at nodes, numbered as 1, 2, 3 and 4. The coordinates
of points, A and B, are desired to determine in order to calculate the length of the
interface. The burning perimeter can then be calculated by adding the lengths of the

interfaces passing through boundary cells. At this point, two assumptions are made;

e The arc, AB, is assumed to be a line,

e The arc, AB, intersects the cell at least two different edges.
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If these assumptions were not made, infinitely many interface shapes and intersection
styles would be considered. Examples of some irregular interfaces are shown in
Figure 2. 23. All of the interfaces intersect the square in one edge only. Therefore
these interfaces contradict the second assumption and can not be considered. As far
as the validity of the assumptions is concerned, they are applicable for small grid

size.

1.AB¢«B e

i\l @ <

Bl B

Figure 2. 23. Irregular Interfaces

If there is an intersection points on the edge of the square, then there will be a sign
change in distance values of points corresponding this edge. If there is a sign change,
then the multiplication distance values of the corresponding points are less than zero.
This is the key point in the determination of the location of the interface points.

There are 6 intersection style in 2-D space given in Figure 2. 24.

1 Pe: 1 31 2 14 2 1 LN
E A A
y b
2 4 oe—t + oe—f o8 4 2 4 2

3

4

Figure 2. 24. Intersection Styles in 2-D Space
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Case 1: The first square in Figure 2. 24 is obtained if (¢;¢3) <0 and (¢rd4) <O0. The

coordinates of the intersection points, A and B, can be found by;

Ypo =Y

YB :Yl

(2.28)

(2.29)

(2.30)

2.31)

Case 2: The second square in Figure 2. 24 is obtained if (¢1¢9,) <0 and (drds) <O

The coordinates of the intersection points, A and B, can be found by;

XB :X2

Yao=Y>
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92
Y~ Yy +— 2 (A (2. 35)
B 2+|¢2|+|¢3|( Y)

Case 3: The third square in Figure 2. 24 is obtained if (¢3d4) <0 and (dods) <O.

The coordinates of the intersection points, A and B, can be found by

92]
XA Xy +—22 (A 2.36
A 2+|¢2|+|¢4|( X) ( )
Xp =Xy (2.37)
Yo=Y, (2. 38)
Yg =Yy +M(Ay) (2.39)
[04]+[3]

Case 4: The fourth square in Figure 2. 24 is obtained if (¢;¢2) <0 and (¢3d4) <O.

The coordinates of the intersection points, A and B, can be found by;

Xa =X, (2. 40)

Xg =X, (2.41)
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Yo=Y, +&(Ay) (2.42)

Yg =Yy +M(Ay) (2. 43)

Case 5: The fifth square in Figure 2. 24 is obtained if (¢1¢,) <0 and (¢;193) <O0. The

coordinates of the intersection points, A and B, can be found by;

X, =X, (2. 44)

Xp ~ X4 +ﬂ(Ax) (2. 45)
1] +[3]

YA =Y, +ﬂ(Ay) (2. 46)
[02]+]o1]

Yg =Y (2. 47)

Case 6: The sixth square in Figure 2. 24 is obtained if (¢;¢3) <0 and (d3d4) <O.

The coordinates of the intersection points, A and B, can be found by;

X, =Xy (2. 48)
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Xp ~ X +L(Ax) (2. 49)

Yo =Yy +M(Ay) (2. 50)

YB =Y1 (2 51)

Note that |¢4| represents the absolute value of the distance value of node 4.

Ax or Ay is the grid size in x and y direction, respectively. Since the element is
square, both are equal to each other. One can also note that some equations contain
“equality” sign, but some of them “nearly equal” sign are used. Because, in this
equations, proportionality feature, which is an approximation, is used.

After x and y coordinates of points, A and B, are determined, the length of an

arc can be found by the equation (2. 52).

[AB|=/(X ~Xp )2 +(Ya - Yp)? 2.52)

This procedure is applied to all squares so that burning perimeter can be obtained.

Although the procedure is given for 2-D space, it can be used for 3-D space. If 3-D
model (slot) is divided into equally spaced sub-planes in z-direction, the burning
surface area of 3-D model will be obtained by considering the burning perimeters for

each sub-plane as shown in Figure 2. 25.
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Figure 2. 25. Determination Burning Surface Area of 3-D Model by Using 2-D
Approach

In the figure above, 4 arms star shaped grain is shown. By using the procedure
explained in this section, burning perimeter, Py, of the star-shaped grain at z = 0
plane can be calculated. The burning perimeter, Py, can also be calculated at z =

delta plane. Then the burning area of 3-D slot can be calculated by Equation (2. 53).

Sy, ~ @delm 2. 53)

2.6.2.2 Cut-Cell Methodology in 3-D Space (Aproximate Method):

In 3-D space, rather than squares, cubes are the element under consideration. To find

the cutting interface of a cube, same method, used for 2-D space, is used here as
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well. Six cutting interfaces are analyzed in 2-D space, however, 10 cases are
considered in 3-D space. Actually, there are more than 10 cases. Some cases are not

considered by making some assumptions. The assumptions made are as follows;

e The edges of the cutting surfaces are assumed to be lines,
e The cutting surface has 4 cutting points. Therefore triangle shape cutting surfaces
are not considered.

e The cutting points are located on the edges of the cube.

These assumptions prevents from the formation of irregular cutting surfaces as
shown in Figure 2. 26. If these assumptions were not made, infinitely many irregular

cutting surfaces would form. These assumptions are valid if small grid size is used.

Figure 2. 26. Irregular Shapes in 3-D Cut-Cell

In Figure 2. 26, two irregular cutting surfaces are shown. Triangle surface contradicts
the second assumption, trapezoidal surface contradicts third assumption. Therefore,
these surfaces are irregular surfaces and they are not considered as the cutting
surfaces.

The 10 possible cases to be considered for the determination of cutting surface are

shown in Figure 2. 27.
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Figure 2. 27. The possible cases of Cutting Surfaces in 3-D Space

These cases are obtained according to ¢ values at the corners of the cube. The signs
of the distance values will be changed if there is an interface intersecting the edge of
the two nodes. According to this information, the properties of cases are obtained as

follows;

Case 1:

Cutting surface, shown in Case-1, is obtained if

> (0103)<0: (9705)<0 ;5 (9304)<0 ; (9796)<0

74




Case 2:

Cutting surface, shown in Case-2, is obtained if

> ($193)<0 5 (9708)<0: (0204)<0; (psdg)<0

Case 3:

Cutting surface, shown in Case-3, is obtained if

(0103)<0 5 (0705)<0 5 (d201)<0; (psdg)<0

Case 4:

Cutting surface, shown in Case-4, is obtained if

(0493)<0 5 (9706)<0; (0204)<0; (ds5g)<0

Case 5:

Cutting surface, shown in Case-5, is obtained if

(0102)<0 5 (0g05)<0; (0204)<0; (0506)<0

Case 6:

Cutting surface, shown in Case-6, is obtained if

(0703)<0 5 (9406)<0; (0705)<0 ;5 (ds5g)<0

Case 7:

Cutting surface, shown in Case-7, is obtained if

(0108)<0 ; (0205)<0 ;5 (d705)<0 5 (9546)<0

Case 8:

Cutting surface, shown in Case-8, is obtained if

(0103)<0 5 (0402)<0 ;5 (d703)<0 ;5 ($406)<0
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Case 9:

Cutting surface, shown in Case-9, is obtained if

(0103)<0 5 (0402)<0; (0108)<0; (9205)<0

Case 10:

Cutting surface, shown in Case-10, is obtained if

(0108)<0 5 (6205)<0 5 (9703)<0 ;5 ($406)<0

In order to compute the cutting surface area, the coordinates of the intersection points
should be known. For this purpose, similar method used in the previous section is
used as well. The proportionality feature is used in this method. As an example, only
coordinates of the intersection points, A, B, C and D, for Case-1 are demonstrated in

Figure 2. 28. The same methodology can be used for the remaining cases.

Figure 2. 28. Cutting Surface of Case-1
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Zp =24 (2. 65)

Note that all coordinates and ¢ values are initially known at the corners of the cube.

At this point, two illustrative examples are given. The first example is about the

irregular cutting surface, the second example is about the regular one.

Ilustrative Example-1: Consider a cube whose distance value at nodes are given in

Figure 2. 29. The cube corners are labeled as A, B, C, D, E, F and G. The purpose is

to find the cutting surface. Since there is a negative sign at node F. This means that a
boundary intersects the cube. Note that if all were positive, the cube would
completely be at the propellant side. If all were negative, the cube would completely
be at the gas side. The procedure is to search for the sign changes. There are sign
changes between points A to F, G to F and C to F. Therefore, there should be 3
cutting points. Since it has 3 cutting points only, it is an irregular cutting surface
similar to the surface given in Figure 2. 26. Since it is irregular, it can not be

considered when burn areas are calculated.

ke 0.90
&mf/ﬁ_mﬁ/i
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Figure 2. 29. Illustrative Example-1
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[lustrative Example 2: Consider a cube, whose distance values are given in Figure 2.

30.
0,78 i s
&m(/%LW?/}
&

— 1 — 180,74

Figure 2. 30. Illustrative Example-2

When the sign change is searched for, one can realize that at point B and E have the
negative signs. Therefore, there are intersection points between A and B, E and H, B
and C, E and D. This means that there are 4 intersection points. Therefore, the cutting

surface is regular and it is similar to Case-3 in Figure 2. 27.

After the coordinates of the cutting surface points are determined, it is time to
compute the cutting surface areas. To compute a cutting surface area, it is best to

divide it into triangles as shown in Figure 2. 31.

=

Figure 2. 31 Division of a Cutting surface Area
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The area of the first triangle, A1, can be found by the equations given below;

S, :J(X1 “X )P+ (Y=Y, )P +(2, -2, ) (2. 66)
S, = \/(X1 ~X;3 P+ (Y, = Y3P +(Z,-25) (2. 67)
S; = \/(X2 X3 +(Yy - Y3)? +(Z, - 75 (2. 68)

S4 =0.5%(S; +S, +S3) (2. 69)
Areap; =S4 *(S4 —S1)*(S4—S2)*(S4 —S3) (2. 70)

where X, Y and Z is the corresponding X, y, z coordinate of a triangle given in Figure
2. 31. The area of the second triangle, A2, is found by the similar fashion. The
summations of Al and A2 give the area of the cutting surface. By adding the all

cutting surfaces, one can obtain the burning area of the model.

Note that the cut-cell operation for the grid generation will also be analyzed in

Chapter 4.
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2.6.2.3 Cut-Cell Methodology in 3-D Space (Exact Method):

Given one grid cell defined by its vertices and scalar values at each vertex, it is
necessary to create a planar facets that represents the surface through the grid cell.
The surface may not be passed through the grid cell, it may cut off any one of the
vertices, or it may pass through more complicated ways. In Figure 2. 27, 10 possible
cases are to be considered. However, since a cube has 8 corners, and one can classify
each corner as either being below or above the surface, total number of possibilities
of intersection, therefore, are 28=256. This means, there are 256 possible intersected
configurations. This makes the exact solution difficult and time consuming job
because there are the large numbers (256) of possible combinations and consistent
facet combination for each solution need to be derived. This difficult and time
consuming job; however, has been achieved[45] for medical purpose. A data table
considering all 256 cases was established and an algorithm was developed for this
job. In this study, this algorithm was used to guarantee the determination of cutting

surface of a cube.

Step-1
Algorithm starts by indexing for the convention for vertices and edges of a cube

shown in Fig

4 4 5
/ 5
vi = 5
g 3
11 10
0 0
3 1
1
2 e e

Figure 2. 32 The indexing convention for vertices and edges
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Step-2

Then algorithm checks the distance values of vertices. If any negative value is
determined, then a variable called “cube index” is increased by a number which is

given below:

0 If¢do<0 then cube index =1
0 If¢; <O then cube index =2
0 ¢ <0 then cube index =4

O ¢3 <0 then cube index =8

O ¢4<0 then cube index = 16
O ¢s5<0 then cube index =32
0 ¢ <0 then cube index = 64

O ¢7<0 then cube index = 128

Step-3

Total value of “cube_index” is calculated depending on number of vertices which

have negative distance value.

Step-4

Go to the “Triangle Table” and a row number of n. Here, n is nothing but the

cube index value. Note that first row of this table is counted as 0.

Step-5

Related entry of “Triangle Table” is read in order to find the intersected edges of a

cube. The format of a Triangle Table is shown in Figure 2. 33.
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Step-6

Find the coordinates of cutting points by using algorithm described in the previous

section.
17232 0 Wt e IO I T = W= = D= T W = D= W= T~ D= T =
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Figure 2. 33. A Part of the Triangle Table

The Triangle Table is actually the heart of the algorithm. The table has 256 rows,
which represent 256 possible cases of intersection between a surface and a cube. This
table has also 16 columns which represent total number of both intersected and non
intersected edges of a cube. Each positive number in this table represents the edges
of a cube given in Figure 2. 32. Negative values represents that there is no any
intersection between cube edges and a surface and this edges located in propellant
side. By using this algorithm, a cutting surface is established by triangles. Therefore,
non-planar surface problem is solved by the planar triangles; even they are non-

planer to each other.
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[llustrative Example-1:

Consider a case, given in Figure 2. 34. All the vertices have a positive value except

Vertex 3.
WERTE X AMND DISTANCE WaLUES
EDGE MUMBERS 4.6 &2
23 | 23"
. ‘
il
(] T

; il Ve

3 & e 1.8 2.0

Figure 2. 34. Illustrative Example-1

Vertex 3 has a negative distance value, then

¢3 <0 = Cube Index =8

Since the first row of the Triangle Table is counted as zero, go to 9™ row of the table
shown in Figure 2. 33.

The 9" rowis TAB(9,)=(/3, 11,2, -1,-1,-1,-1,-1,-1,-1, -1, -1, -1, -1, -1, -1/)
This means, there is an intersected triangle which intersects the edges 3, 11 and 2.

The configuration is given in Figure 2. 35.
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> P B

Figure 2. 35. Determination of Intersected Edges of a Cube

[lustrative Example-2

Consider a case shown in Figure 2. 36. Assume that there is a propellant side above
the surface. Therefore, vertices of 0, 1, 2 and 3 are at the gas side and their distance

values are negative.

\ N
n

Figure 2. 36 Illustrative Example-2
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Since ¢p <0 then cube index = 1
Since ¢; <0 then cube index = 2
Since ¢, <0 then cube index =4

Since ¢3 <0 then cube index = 8

If one can add all cube index values, 1+2+4+8=15

Then, 16" row (because first row of the table is considered to be 0) of the table,
given in Figure 2. 33, is read as;

TAB(16,:)=(/9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1/)

This means, surface of intersection is composed of two triangles. The vertices of the
first triangle are on the edges of 9, 8 and 10 of the cube. The vertices of the second
triangle are on the edges of 10, 8 and 11 of the cube. These triangles are shown in

Figure 2. 37.

CLEE

EDGE

3
CLIBE CURE
EDiGE EDGE
11 9

CUEBE
EDGE
10

Figure 2. 37. Intersected Surface Triangles in Illustrated Example-2
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In this thesis, this method for the construction of the cutting surface of a cube is used
and Trinagle Table data is inserted into the burnback code. This method is generally

used in modeling the neuron in medicine.

2.7 Geometrical Consideration of Solid Propellant Burning:

During propellant combustion, the burning perimeter at each point recedes in a
direction normal to the surface at that point. This generalization is identified as Saint
Robert’s Law. As an example of the effect of this law on the burning characteristics
of a grain, one can consider the cusp in Figure 2. 38. A cusp convex toward the gas
phase remains as a cusp and that a cusp initially concave toward the gas phase

becomes an arc of a circle with its center being at the original cusp [1].

& ",

/ s0L1D*

A "

CONYE = CUSP CONCAVE CUSP

Figure 2. 38. Geometrical Consideration of Burning

Since the methodologies used in this thesis for the boundary propagation are matched
to solid propellant burning rules, they are applied to solid propellant for burnback

simulations.
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2.8 Summary :

The summary of the procedures and methods developed in this chapter and

numerical algorithms used are summarized in this section step by step:

Step-1: A grain geometry which will be analyzed is chosen as shown in Figure 2. 39.

PEOPELLAMNT ZASE

-
o
e CYLINCRCAL CRald
.;’f I

PPy PP PP PPy

Figure 2. 39 Cylindrical Grain to control the Burning Rate of the Propellant

Step-2: A solid model of the gap or perforation of the grain chosen is established.

Figure 2. 40. The Solid Model of the Grain
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Step 3: Tetrahedron mesh elements are generated on this model by using any

commercial mesh generator as shown in Figure 2. 15

Step 4: An equally spaced structured grid are generated by the main program. For
each structured grid, the minimum distances between the grid and the model is
calculated as shown in Figure 2. 16. Unstructured grid is used to catch up with the

coordinate information of the model. The procedure is given in Section 2.4.2.

Step-5: For each structured grid, one can determine if it is located inside of the model
or outside. Because, for inside grid, the minimum distance value of that grid is

multiplied by -1. The procedure is given in section 2.4.2.1.

Step-6: After the determination of distance values for each structured grid, burnback

is performed by updating the distance values according to Equation (2. 20).

Step-7: By knowing the updated distance values, new boundary is constructed by
using Exact Cut-Cell method explained in Section 2.6.2.3 Cut-Cell Methodology in
3-D Space (Exact Method):. The burning area of the new boundary is computed by
the method explained in the Section 2.6.2.2 Cut-Cell Methodology in 3-D Space
(Aproximate Method):
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CHAPTER 3

PERFORMANCE PREDICTION OF SOLID PROPELLANT
ROCKET MOTORS AND GRID GENERATION

3.1. Introduction:

The performance prediction of the solid propellant rocket motor is simply the
prediction of pressure or thrust of a motor. The aim of the grain burnback analysis is
to determine the burning surface area of the solid propellant grain. The pressure is
determined by using this burning surface area. Therefore, some internal flow models
are used to determine the pressure and burning area values are embedded into these

models.

As far as types of the models for internal flow of the solid propellant rocket motor

are concerned, they are divided into 3 main categories:
* Lumped model
* Quasi-steady model

» Unsteady model.

As far as the dimensions of the internal flow models are concerned, they are divided

into 3 main categories as well:

90



= ()-dimensional model
= ]-dimensional model

=  3.dimensional model

In this study, both 1-dimensional quasi-steady flow solver and 3-D quasi-steady flow
solver are used for the prediction of pressure. 1-D solver which was previously
developed is called “Simp(x)”. The name of the 3-D solver is called Set-3D. In
Simp(x), burning area obtained by the burnback code is partially coupled with the

solver. Why the term of “partially” is explained in this chapter later on.

3.2 Flow Models for Solid Propellant Rocket Motors:

3.2.1 Lumped Model:

Lumped model is the simplest model because it is zero-dimensional model.
This model does not allow any changes in chamber variables. In other words,
pressure and thrust predictions utilize the equilibrium pressure equation. The
chamber pressure is assumed to be constant all over the propellant burning surface or
motor. This assumption is valid for a motor such that its length to diameter ratio is
very small [37]. In this model, pressure is only changes with time. The governing
equation of this model is obtained by equating the mass flow rate of the propellant

burned to the mass flow rate discharged through the nozzle shown in Figure 3. 1.
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Figure 3. 1. [llustration of 0-D Lumped Model for a Rocket Motor

The mass flow rate of the propellant burned is obtained by the multiplications of the
burning rate, 1, propellant density, p,, and propellant burning area, S,. Mass

discharge rate through the nozzle was given in Equation (1. 16). Therefore;

. . . *
Mpropelant = Mdischarge = ShPpl = PeAhC (3.1

Since burning rate is related with the pressure, given in Equation (1. 1), then one can

obtain;

SpPpagPc” = PcAgc” (3.2)
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In equation above, only burning surface area and pressure are changed with time.

The pressure for lumped model is obtained as;

1

Spp.apc |1-n
Pc = bpp—O (3.3)
Ah

3.2.2 Unsteady 1-D Model:

Ignition transient and tail-off transient of the rocket motor are both the transient
phenomenon and it is impossible to handle them by using lumped or quasi-steady
internal flow models. Ignition transient and tail-off transient part of the pressure-time

history of the rocket motor is shown in Figure 3. 2 [37].
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Figure 3. 2. Ignition Transient and Tail-Off Transient of the Rocket Motor

A useful thrust or pressure has already been spent at the beginning of tail-off

transient part. At this point, propellant grain is in “sliver” case. Therefore, tail-off
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transient modeling is not as important as the modeling of the ignition transition part
of the solid propellant rocket motor. For 1-D transient model, chamber pressure can
not be considered uniform throughout the motor and model can not be considered

quasi-steady manner. The basic assumptions made for this model are as follows;

e Internal flow is 1-dimensional and adiabatic.

e QGases are considered to be perfect.

e Mass addition occurs instantaneous process with no velocity component parallel
to motor axis

e [sentropic flow exists throughout the nozzle.

The control volume for this model is shown in Figure 3. 3 [37].

Ty
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Ay — ﬁp“‘ﬁ“ﬁx
-;_T--_‘_-w i
Ax

Figure 3. 3 Control Volume for 1-D Unsteady Model

For rocket motors, these two relations are valid;
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Bo _p, 3. 4)
Ox

Ay _ iP, (3. 5)
ot

By using these two equations, conservation of mass, conservation of momentum and

conservation of energy equations can be written as follows [38];

OA i
@+6(pu)+pu+ p_ Py (3.6)

ot 15).4 Ap 0x Ap

where p, u is the gas density and velocity respectively, p, is the propellant density.

2 2 A
a(pu)+a(pu )+pu PPy P TwPw (3.7)

ot Ox Ap Ox Ap Ox Ap

where p is the pressure. To prevent contradiction, recall that P, is the burning

perimeter of the grain, Py, is the wetted perimeter. t,, is the shear stress on the port

wall.

OlpA,E) O\pA,uE| OlpA
(Patp )+ (pgi)u ): (paxpu)"'fpbhfchpwpp (3.8)
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where, E is the total stored energy of the propellant, q; is the rate of convective heat
loss, hr is the total energy flux transferred from the burning surface to the control
volume.

A complete model should also contain the flame spreading data of the combustion. A
detailed understanding of ignition and flame spreading mechanism is essential for
accurate prediction of the ignition transient. Flame spreading data should be obtained

from the experimental studies.

3.2.3 Quasi-Steady 1-D Model:

For a quasi-steady state process, the flow in the chamber is assumed to be frozen and
the variation of flow parameters with time may be neglected. For simplicity, shear
stress and heat loss are not considered in many cases. Assuming perfect gas law,

conservation equations are as follows [38];

o . o(pu) ~ pu FAp iP,

— +
ot Ox Ap Ox Ap

Py (3.9)

u
Ou, Ou, 10p_ Ppt Sy

(3. 10)
ot Ox pOox App Ox

_ oA
PPy B Pr iy (y—l)hf+u2u—i JPUTR 3000
ot [0 ox A, 2 Pp
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Since a frozen flow throughout the chamber is assumed, time variations of flow
parameters, p, p and u, are zero. Mach number is introduced as; M=u / a where a is

the sonic velocity. After rearranging the equations, one can obtain [38];

dA P
dpu) _ pu dAp iRy . G.12)

dx Ap dx Ap

p dA
du 1 Pp 1Py (y_l)h_erV_“MZ_ P |_ 4 P (3. 13)
2 2
a2 2 wy) (1-M2Ja, dx

u _ _ dA

P _ UPp 147 1M2+(v21)h S:IN VR

x A, "1-M a 1Pp Apll-M?) dx
3. 14)

In order to solve these equations, the motor is divided into many slices as shown in

Figure 3. 4.

Figure 3. 4. Slices of the Motor

97



The boundary conditions are obtained by the knowing the flow properties at x=0, in
such a way that Mach number at the nozzle inlet has to be satisfied. Note that Mach

number at the nozzle inlet can be calculated by knowing the Mach number at the

nozzle throat is unity.

At x=x¢ u=0, dP/dx =0 (3.15)
Y-l 2
AN 1 1+ ) MN
At x=xyn = (3. 16)
Ath M, y+1
2

The control volume of the first slice of the slices, shown in Figure 3. 4, is shown in

Figure 3. 5 [38].
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Figure 3. 5 Control Volume of the First Slice
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After determining the flow properties at x=xo, the equations (3.12), (3.13) and (3.14)
are used to determine the slice properties throughout the motor. Starting from x=x,
flow properties are computed at every slice by marching in space as given in

equations below:

piH“(t):pi“(t){j—pj (xi —xi_1) (3.17)
X
n n du )"
up " (0 = y; (t)+(d—j (xi —xi_1) (3. 18)
X
n n dp t
pir1" (t) =p; (t)+(d—j (xi —xi_1) (3.19)
X

where subscript I is the space index, n is the iteration index.
After marching all the way to x=xy, if My is equal to the value obtained from
Equation (3. 16), then assumed flow variables, p and p, at x=x¢ will be correct and

the next time step will be proceeded.

3.3 Simp(x) Code:

Simp(x) is the computer code used for the prediction of the performance of the solid

propellant rocket motor. The code was developed and modified by Ucar[38] and
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Ak[39] in TUBITAK-SAGE. In this thesis, for the prediction of the performance of
the rocket motor, this previously developed code is used. The code uses 1-D quasi
steady state internal flow model described in the previous section. The burning area,
Sy, and port area, A, terms in Equations (3.12), (3.13) and (3.14) are given to code as
an initial input.

Without knowing the internal pressure of the motor, burnback can not be performed.
Simp(x) is a “partially coupled” with the burnbacks. Now, it is time to explain the

term of “partially coupled”. The illustrative figure is shown in Figure 3. 6.

/_\/ EURMBACKE 2

— B S0
FROPELLAMT LOCATIOMN
e G el

//\’/ BURNBACK 1

Figure 3. 6 The Illustration of Burnback Handling of Simp(x)

Both port area and burning area of the propellant obtained by the burnback steps,
stated as 1 and 2 in Figure 3. 6, are given to Simp(x) as an initial input. Simp(x) uses
these values to determine the pressure of the rocket motor. Then the burning rate is
obtained by the pressure value calculated previously. Since the time is known, then
propellant burning distance is calculated. Consider the propellant location, given in
Figure 3. 6. Since the propellant location does not match the locations of burnbacks,
1 and 2, the port area and burning area of the propellant are different from those

obtained by Burnback-1 and Burnback-2. To correct these, Simp(x) makes an

interpolation to find the real burn area and port area values by using Burnback-1 and

Burnback-2 data. That is why Simp(x) is said to be “partially coupled” with
burnback data, although it is not “fully coupled”.
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As far as input file given to Simp(x) and output file generated by it are considered,

Simp(x) needs followings;

e Grain geometry parameters: Grain geometry geometrical parameters for

conventional grains, such as, circular, star-shaped or wagon wheel, are given as
an input. However, for unconventional grains, such as, finocyl, conocyl, axar-
typed..etc, it reads a data file containing port area and burn area of the grain
considered.

e FErosive burning parameters: For an erosive burning option, erosive burning

constants, o and 3, are given directly or there is an option for the determination
of these parameters by heat transfer methods.

o Initial values of flow parameters: Initial assumed pressure and density are given

as the initial iteration.

e Propellant and thermo-chemical properties : Burning rate constants, enthalpy of

formation of the propellant, propellant density, specific heat ratio, adiabatic flame
temperature, temperature sensitivity of the propellant, temperature of the
propellant are given to code.

e Motor dimensions: The length and diameter of the motor are given.

e Parameters for flow models: Dimension of the model, ie, 0-D or 1-D, option for

nozzle throat erosion, time stepping and convergence error band of the numerical

model are given as the initial inputs.
* Simp(x) generates an output file containing the changes of motor pressure, thrust,

specific impulse, and mass flow rate with time. Motor pressure change along the

motor length is also generated as an output.

3.4 Set-3D:

Set 3-D is a parallel, Navier-Stoke’s external flow solver developed in the project of

SAM in TUBITAK-SAGE. In this thesis, Euler solver part for motor internal
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ballistic analysis of this already-developed-code was used with a minor modification.
Therefore, no any considerable implementation of 3-D internal flow solver code was

performed in this study. Flowchart and data file of the Set-3D is shown in Appendix.

There are 3 types of grid; structured, unstructured and hybrid. In this study

unstructured grid is used and grid elements are tetrahedrons.

There are basically 3 discretization techniques for the numerical solution of
conservation laws; finite differences approach, finite volume approach and finite
element approach. Set-3D uses finite volume approach. For the approximation of
mass, momentum, energy fluxes over the surface of the control volumes in
computational domain, a cell centered scheme is used. In cell centered formulation,
the flow properties are directly computed at the center of the cell. Code uses explicit
time stepping by using 4™ order Runge-Kutta Method. Fluxes are computed using
Roe[43] flux difference splitting scheme across each cell face of cell centered control
volume. Left hand side of the cell face (downstream flow) is denoted by L, and right
hand side of the cell face is denoted by R (upstream flow). Then the flux across each

cell face is computed according to Roe’s formulation as;

Fuee =5 (F(UL)+ F(U )= /AUy - Uy) (3.20)

where F(Up) and F(Ug) are the conservative variables at the left and right of the cell
face and A is the Jacobian matrix ( 0F/0U ), which is evaluated using so called Roe

averaged flow variables as shown;

pface :‘\/prR (321)
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_A/PLUL T+/PrUR

i = =S (3.22)
Vince = pLJ;—; \/piRRVR (3.23)
W frce = pLVJ;—:\/p—TWR (3.24)
Hpeo = pLj;—:\/pi;HR (3.25)
e = (v 1)(Hface —%(uzface Ve + W e )j (3.26)

where H is the specific enthalpy, a is the speed of sound. U, v and w is the x, y and z

component of the velocity V

A cell-averaged data is distributed to the triangular faces for flux computation as

follows;

~

~ ~ 171 ~ ~ ~
Uface(1,2,3) = Ucenter + Z(g (Unodel + UnodeZ + UnodeS )_ Unode4j (327)

where

U=pp u v w P (3.28)

Boundary conditions for wall, propellant gap-propellant and nozzle outlet at the

initial step can be written as follows;
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Wall BC: All the left fluxes are equal to the right fluxes, except pU, =—pU_

Propellant-propellant gap BC:

qr(1)= pg (3.29)
qr(2)= - py rdat (3.30)
qr(3)=0 (3.31)
qr(4)=0 (3.32)
qr(5)=ein (3.33)

where q denotes the conservative variables, p, is the gas density, p, is the density of

the propellant. E;, is given as

en=pg R/(Y-1) Ty (3.34)

where R is the gas constant, Y is the specific heat constant and T is the combustion

temperature of the solid propellant, which is approximately 3300 K.
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Nozzle outlet BC: All left fluxes are equal to right fluxes. qr(1,2,3,4,5)= pl(1,2,3,4,5)

The code, Set-3D, has two executables, Master and Worker. Mater works as the main

processor and performs the followings;

(0]

0]

0]

reads the necessary input data,

reads the size of the computational mesh and computational mesh itself,
calculates the neighbors of each computational cell according to boundary
conditions given,

calls the domain decomposition program to partition the computational mesh
to the given number of processors,

spawns the computing nodes and sends the necessary input data to computing
nodes,

sends the local grid information to each partition,

receives the information of conservative variables from each partition,

calculates the residual and check it to stop the program.

The other executable, Worker, performs the followings;

(0]

0]

O O 0O O o O o o

o

receives the necessary inputs from Master,

calculates surface normals, surface areas, cell volumes and direction cosine of
the cell faces,

sends and receives interface boundary conditions to the partitions,

calculates time step of each iteration,

distributes the cell centered values of conservative variables to the cell nodes,

starts 4™ order Runge-Kutta time steping algorithm,

calculates velocity gradients at the cell center,

evaluates conservative variable at the cell faces,

introduces boundary conditions to the right state of the cell,

computes flux differences for each cell face so that computes the flux passing
through these faces.

Sums up all fluxes passing through four faces of the tetrahedron,

calculates pressure values from conservative variables,
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O sends the conservative variables to master,

O repeat these steps until stop command coming from the Master.

3.4 Grid Generation for 3-D Flow Solver:

In this study, 3-D grid by using Cut-Cell method described in Section 2.6.2.2 was

first generated. However, the method leads two major problems;

e since the method only covers the 10 possible cutting configurations, it was
faced with some cases which are not included in these cases. These non-
considered cases cause some discontinuity in the domain which is not
acceptable for 3-D flow solver.

e other problem is that burnback code needs very dense solution domain.
Cutting this large number of cubes causes large number of elements for 3-D
solver and this situation makes the flow solver very slow and even impossible

to be run.
Therefore, Cut Cell method described in Section 2.6.2.3 Cut-Cell Methodology in 3-
D Space (Exact Method): was used in this study to generate surface mesh and then a

commercial grid generator called Tetgen was used for the generation of tetrahedrons.

However, in this section both method are described in detail.

3.4.1 Grid Generation by Using Approximate Cut-Cell Methodology

The types of the elements generated are classified as;

e Interior elements,
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e Exterior elements,

e Boundary elements.

Interior Elements: Interior elements are the elements located completely inside of the

boundary. Therefore, these elements are on the gas side or on the perforation of the
solid propellant. Since there is no any intersection between these elements and the
boundary, elements preserve their original shapes. They are cubes.

The distance values at the corners of the interior element are shown in Figure 3. 7.

————e-0.74

-1.23 -0.86

Figure 3. 7 Distance Values of an Interior Element

One can realize that all distance values at the corners of the cube are negative.

Therefore;

s If all 8 distance values at the corners of a cube element are negative, then this

element is said to be an interior element.
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Exterior Elements: Exterior elements are the elements located completely outside of

the boundary. Therefore, these elements are on the propellant side. Since there is no
any intersection between these elements and the boundary, elements preserve their
original shapes like interior elements.

The distance values at the corners of the exterior element are shown in Figure 3. 8.
One can observe that the distance values at the corner of the cube are positive.

Therefore;

¢ Ifall 8 distance values at the corners of a cube element are positive, then this

element is said to be an exterior element.

0,78
Umv/Tl%?/)

|
|
L.ic

1.78

— 80,74

1.3 U.86

Figure 3. 8 Distance Values of an Exterior Element

Boundary Elements: Boundary elements are the elements located on the boundary of

the perforation of the solid propellant. Some part of the elements is on the gas side,
some part of it is on the propellant side. Since there is an intersection between
elements and boundary, boundary elements do not preserve their original shapes, that
means, these elements are no more cubes.

Distance values of the corner of a boundary element are shown in Figure 3. 9. One

can easily observed from the figure that the boundary elements have both negative
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and positive distance values. If a cube has a one negative distance value, then it is
counted as an irregular shape and it can not be considered as an element. This

situation was explained in Figure 2. 26. Therefore;

« If at least two but not all the distance values at the corners of a cube element

are negative, then this element is said to be a boundary element.

-0./8 178

{N?/4L%?/)
|

1.1e

— 1 ——#0.74

1.23 0.66

Figure 3. 9. Distance Values of a Boundary Element

There are 3 types of boundary elements as far as the shape of the element is

considered;

Boundary element-1: The first boundary element is shown in Figure 3. 10.
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Figure 3. 10. Boundary Element-1

This element is obtained when the cutting surface forms like Case 2 and Casel0

given in Figure 2. 27. The element has 8 corners, 6 faces and 12 edges.

Boundary element-2: The second boundary element is given in Figure 3. 11.

Figure 3. 11 Boundary Element-2
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This element is obtained when the cutting surface forms like all cases except Case 2
and Casel0 depending the gas side or propellant side given in Figure 2. 27. The

element has 10 corners, 7 faces and 15 edges.

Boundary element-3: This element is obtained when the cutting surface forms like all

cases except Case 2 and Casel0 depending the gas side or propellant side given in
Figure 2. 27. The element has 6 corners, 4 faces and 9 edges. Third boundary

element is shown in Figure 3. 12.

Figure 3. 12 Boundary Element-3

The properties of the all elements generated by the Cut-Cell method are tabulated in
Table 3. 1.
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Table 3. 1. Properties of Grid Elements

_ Number of Number of Number of
Type of the Distance
corners of an faces of an edges of an
element values
element element element
Interior All negative 8 6 12
Exterior All positive 8 6 12
At least 2, but
Boundary-1 not all, 8 6 12
negative
At least 2, but
Boundary-2 not all, 10 7 15
negative
At least 2, but
Boundary-3 not all, 6 4 9
negative

3.4.2 Grid Generation by Using Exact Cut-Cell Methodology

In this case, a surface mesh containing triangles are generated. These triangles are
obtained by Cut-Cell described in Section 2.6.2.3 Cut-Cell Methodology in 3-D
Space (Exact Method):. Then this closed surface mesh data are given to commercial
grid generator to generate 3-D tetrahedral elements. The surface mesh is shown in
Figure 3. 13. In this figure, both propellant and nozzle are meshed by using the Exact
Cut-Cell method. The leading edge (propellant tip) and the trailing edge (nozzle
outlet) are still open, it means that surface is not a closed surface as shown in Figure
3. 14. For the generation of 3-D elements, surface should be closed. For this reason, a

point at the center of the nozzle outlet is generated and this point is connected all the
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nodes at the nozzle outlet as shown in Figure 3. 15. Same procedure is applied at the

tip of the propellant. So a closed surface is obtained.

Figure 3. 14. Surface Mesh of the Nozzle Outlet (Not Closed)
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Figure 3. 15. Surface Mesh of the Nozzle Outlet (Closed)

3.4.2.1 Tetgen

Tetgen is the abbreviation of Quality Tetrahedral Mesh Generator and 3-D Delaunay
Triangulator [44]. For a 3-D domain, defined by its boundary (like a surface mesh),
Tetgen generates the boundary constrained (Delaunay) tetrahedralization,
conforming Delaunay tetrahedralization and quality Delaunay mesh. This software is
written in C++ computer language and can be compiled into an executable program
or library. In this study, this free-downloaded software was to generate tetrahedrons
for 3-D flow solver. A closed surface mesh is given to this software as an input, and
program generates tetrahedrons and writes the necessary geometrical information. As
far as the boundary conditions are concerned, 3 types of boundary condition were

used in this study;
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0 wall boundary condition, marked as -2.
0 propellant boundary condition, marked as -4

0 nozzle outlet (supersonic) boundary condition, marked as 0.

In Figure 3. 16, tetrahedrons and their boundary flags are shown.

3 boundary markers

A

L=

f

Figure 3. 16 Tetgen Output

In Figure 3. 16, the red domain consists of tetrahedrons in the propellant-gas
boundary side. Therefore this domain changes when the propellant begins to burn.
The yellow domain is the wall side. Therefore it remains as it is during the

propagation of burnback. The blue domain represents the nozzle outlet. There is no
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flag for the interior (gas side) or exterior (propellant side) elements. Cross sectional

views of the model are shown in Figure 3. 17.

Figure 3. 17 Equal Volume Tetrahedron Grids

In addition to this equal volume tetrahedrons, it can also be generated non-equal

volume tetrahedrons shown in Figure 3. 18.
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Figure 3. 18. Non-Equal Volume Tetrahedron Grids

Since the nozzle and propellant are generated by sharp edge tetrahedron, a smoothing
operation was first tried to perform as shown in Figure 3. 19. Smoothing is actually
nothing but the take an average of the values of the neighboring node coordinates.
Sharp edges shown at the left part of the Figure 3. 19 is smoothened shown in the
right part of this figure. However, one can realize that smoothing operation changes
the coordinate of the nodes considerably, it is forsaken to use in this study.

The switch list of Tetgen can be found in Appendix.
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Figure 3. 19. Smoothing of Computational Mesh

3.4.2.1.1 Stored Information

The geometrical information of tetrahedrons obtained by Tetgen is as follows;

e filename.l.node: This file contains the information of total number of nodes, x-y-
z coordinates of the nodes.

o filename.l.ele: This file contains the information of total number of tetrahedral
elements and node numbers of each element.

o filename.l.face: This file contains the information of total number of face of the
tetrahedral elements and face numbers of each element.

e filename.l.neigh: This file contains the information of neighboring elements of
each element. If a neighboring element of an element does not exist, a boundary

flag is written.

Filename is the filename given to Tetgen as an input and Tetgen gives the files

described above as the same name, ie., if the filename of the closed surface mesh
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given to Tetgen is “sage.mesh”, then the name of the node information file obtained

by Tetgen becomes “sage.1.node”.

By using the information of the files described above, 3 input files for Set-3D are

generated by the burnback code. The properties of these files are as follows;

0 mesh.dat: This file contains the information of coordinate points of nodes and
their connectivity data. This file is similar to “filename.1.node” file.

O clement.dat: This file contains the information of total number of tetrahedral
elements and node numbers of each element. This file is almost the same with
the “filename.1.ele” file.

0 komsu.dat: This file contains the information of neighboring elements of each
element. If a neighboring element of an element does not exist, a boundary
flag is written. This file is almost the same with the “filename.1.neigh” file.

However, format of the boundary flags are different to each other.

The file formats of these files can be found in Appendix.

3.4.3 Boundary of Burnback

Since the geometries of both the nozzle and the propellant gap of the rocket motor
are obtained Exact Cut-Cell method described in Section 2.6.2.3 Cut-Cell
Methodology in 3-D Space (Exact Method):, propagation of the propellant gap
causes the propagation of nozzle as well. In order to avoid this case, a boundary of
the burnback is introduced as shown in Figure 3. 20.
e Longitidunal Boundary: Up to the distance of L1, burnback is updated for
each burnback step. Distance values of the nodes located longer than L1 is
not updated so that they remain as they are. Therefore, the nozzle geometry is

not changed as the burnback propagates. The other boundary is the leading
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edge of the propellant. If the coordinate of a node is less than zero, distance
value is not updated as well. Therefore, propellant does not move towards the
leading edges.

e Radial Boundary: If the distance between a node and the centerline of the
motor is larger than motor radius, then distance value of this node is not
updated. Therefore, the propellant gap is not allowed to move to a distance
larger than motor radius. In this case, propellant boundary condition is

changed to a wall boundary condition.

NOZZLE PROFPELLAMNT GAF

D case

PROPELLAMNT

Lz Lz

Figure 3. 20. Boundary of the Burnback
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CHAPTER 4

RESULTS AND DISCUSSION

4.1. Introduction:

The outputs of this study are simply divided into two main groups;

0 Geometrical properties of the grain,

0 Performance properties of the solid propellant rocket motor.

As the geometrical properties of the grain, one can consider the location of the
boundary during propagations, burning surface area of the grain, port area of the
grain, etc. Rocket motor pressure and thrust are the most common performance
properties of the solid propellant rocket motor. Geometrical properties of the grain
are determined by using burnback code, while the performance properties are

computed by using flow solvers.

As far as the verifications of the results are considered, results obtained by the

burnback analyses and performance predictions are generally verified by;

e Simple analytical calculations.

e Simple, especially 2-D, commercial Computer Aided Design (CAD) models.
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e Complicated, especially 3-D, CAD models
e Real time ultrasonic inspection or X-ray [40].

e Static test results.

In this study, simple analytical calculations, simple CAD models and static

test results are used to verify the results obtained by burnback and flow analyses.

Lots of grain geometries are analyzed by using the developed grain burnback
codes. Some of the analyses are performed in 2-D space; while some of them are 3-D
in space. In some analyses, verifications of the results are not made. Since, these
analyses are made in order to illustrate the properties of the grain. Burnbacks of
simple geometry grains, such as circular geometry, are verified by using simple
analytical calculations. In 2-D analyses, commercial Computer Aided Design (CAD)
software like Auto-CAD[41], are used for the verification of the results. In some 3-D
analyses, pressure or thrust of the motor is calculated by using 1-D quasi-steady
internal flow solver, Simp(x). Results are compared with the static test data of the

rocket motors.

4.2 Results of the Analysis in 2-D Burnbacks:

4.2.1 Circular Grain: (Test Case-1)

The first grain configuration to verify the methodology used is the circular perforated
grain. It is the simplest grain type so that grain parameters can be calculated
analytically. The port area and burning area of the grain are simply calculated by

considering the perimeter and area of the circle as:
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4.1)

S, =nDL (4.2)

The propagation of the circle is given in Figure 4. 1. In this figure, 100x100 square
grids are used. The initial diameter of the circle is 26 mm. The burning perimeter is
multiplied by an htypotatical length of 0.78 m to obtain the burning surface area. The
propagation distance is chosen as 0.6 mm. The grid size used in this analysis, that is

size of the cell edge, is 1.3 mm.

Analytically calculated results are compared with the results obtained by the

burnback code to verify the code. This comparison is tabulated in Table 4. 1.
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Figure 4. 1. Burnbacks of the Circular Slotted Grain

Table 4. 1 Results for Test Case-1
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In Table Table 4. 1, one can observe that the maximum error in the port area
determination is less than 1 percent. In the determination of the burning area values,
maximum error is almost 1 percent. Therefore, one can easily said that burnback of

the circular perforation has acceptable accuracy.

4.2.2 Star Shaped Grain-1: (Test Case-2)

The second test case is the star-shaped grain. In this analysis, 4 arms star shaped
grain is used for verification purpose of the code. Star grain is one of the
conventional grains and analytical solution for the determination of the burning area
of the grain is available. However, analytical solution is not applicable to all kinds of
star-shaped grains. Therefore, simple 2-D CAD model is used to determine the exact
burning area or port area of the grain. CAD model is established by using the Auto-

CAD solid modeling software. Star-shaped grain burnback is shown in Figure 4. 2

Figure 4. 2 Star Shaped Grain Burnback

125



In this analysis, 100x100 square cells are used. The burning area of the grain is
obtained by the differentiation of the port area values between two successive
burnback steps. This method uses the formula given in Equations (2. 26) or (2.27) of
Section 2.6.1.

The results for 100x100 grid are tabulated in Table 4. 2.

Table 4. 2 Results by the Differentiation of Port Area Values (100x100 grid)

From Table 4. 2, one can observe that the maximum error in port areas is less than 2
percent. However, error in the burning areas is at the unacceptable limit. Therefore, it
has to be determined whether this error is due to the usage of insufficient number of
grid.

The problem is resolved by using denser grid which contains 400 x400 nodes. The
results obtained by this analysis are given in Table 4. 3. From this table, it is realized
that the error in port area values decreases to less than 1 percent. However, the error
in burning area values is still unchanged.

The last attempt is to use a grid containing 1000x1000 nodes. The results obtained by

this solution are given in Table 4. 4.
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Table 4. 3. Results by the Differentiation of Port Area Values (400x400 grid)

Burning Exact | Portares
Exact perimeter port obtained
perimeter by code % (mm 2 fmm2) arror
() (i) errar
13485 1364 07z
2180 211.4 3.48
22712 2259 0.55
240.0 2453 218
3274 3260 0.40
261.0 218.4 16.33
4067 40486 0.26
1641 1808 a.14
4612 4605 014
10491 455 12.48
4939 4932 014
26 aTB 28.52

Table 4. 4 Results by the Differentiation of Port Area Values (1000x1000 grid)

Exact Elu.rnintg Exact | Fortarea
b i pfjt[lme ?jr port obtained
Eurirrr:]'gt%r Dh i::,ndee %, ares by code %
: \"f fmmZ) | mmd) Brror
{rmmy {rmm; Brror
2100 0.4 —— 1355 | 1354 | o8
240.0 2453 2.21 2272 | 2285 | 029
261.0 2183 | 16.30 3274 | 3267 | 020
1641 1503 T 40BT | 4062 | 0.1
1091 S 4612 | 4608 | 0.08
52,6 374 | 28550 4939 | 4936 | 0.04

From Table 4. 4, one can observe that although there is an improvement in the error
band for port area values, there is no decrease in the error for the burning surface

area values. Therefore, one can conclude that;
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+* No matter how denser is the grid used, the determination of the burning

surface area from the differentiation of the port areas obtained by the

successive two burnback steps is not suitable. Therefore, Equations (2. 26) or

(2.27) described in the section, Method-1, is not applicable for this study due

to the oscillatory behavior of the port area. This oscillatory behavior is shown

in 3-D cylindrical grain analysis. That is why the Cut-Cell method, described

as Method-2, is developed.

Same problem is solved by using the Cut-Cell method, explained in Section 2.6.2. In

this case, 200x200 nodes are used. The results are shown in Table 4. 5

Table 4. 5. Results of Test Case-2 by Cut-Cell Method

Elu.rning Exact | Partarea
fo Stk port obtained
biurning obtained
i area by code %
P | ey | emar | |02 | @rmay | emor
219.0 218.5 0.22 1355 | 1345 | 0.67
24010 291 7 032 2272 2240 0.95
261 .0 T s 008 3274 3276 0.08
164 1 162 4 1 0R 4067 4070 .09
109.1 108.2 0.84 4612 | 4586 | 0.33
57 F 51 7 180 4939 4913 051

Results obtained by the Cut-Cell method is found to be satisfactory. Since, the error
in the port area values is less than 1 percent. While error exists in the burning surface
area values is less than 2 percent. If denser grid is used, errors in both port area and
burning surface area values will decrease.

Exact area and calculated burning surface areas are shown in the graph of Figure 4.

3.
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Figure 4. 3. Comparison of Burning Surface Areas of Test Case-2

4.2.3 Star-Shaped Grain-2 (Test Case-3)

A similar grain to the grain explained in the previous section is used in this case. The
differences between these two star-shaped grains are the circular portion located at
the center of the grain. Star-Shaped Grain-1 has the largest circular portion than the
Star-Shaped Grain-2. The burnback of the grain under consideration is given in

Figure 4. 4.

The results obtained by the burnback code are given in Table 4. 6. Port area values
are found to be satisfactory. Since, the maximum error of the port areas is less than 1
percent. While the maximum error is less than 2 percent in the burning area values of

this grain.
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Figure 4. 4. Burnback of the Test Case-3

Table 4. 6 Results of Test Case-3
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4.2.4 Multi-Perforated Circular Grain (Test Case-4)

Multi-perforated circular grain is the grain chosen as the forth test case. The reason
why this grain is chosen is that it is aimed to determine what happens when the
circles collide. Although it is a 2-D problem, it is the one of the most difficult
problems as far as interface regression is concerned. The circles are expanded
towards each other. If the burnback method is not robust, the boundary will not be
logical when the circles intersect. Therefore, this problem is a good test case for the
verification of the burnback method. Neither port area values nor burning areas
values are computed for this test case. Since, the verification of this test case is
performed to check the interface during the collusion of the circles. The burnback

simulation of this test case is shown in Figure 4.5.
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Figure 4.5 Burnback Simulation of Test Case-4.
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From Figure 4.5, it can be observed that the boundary of intersection is said to be
logical. No undesired or illogical formation of boundary occurs during the
propagation of the circles. One important observation is that when the propellant is
divided into two parts, small part continues to burn. Many burnback codes can not

handle this situation.

4.2.5 Ellipse Type Perforated Grain: (Test Case-5)

Another test case is the ellipse type perforated grain. In this analysis, it is aimed to
determine the effects of the number of grids used and the burnback distances. For
this purpose, only port area values are computed. In the problem, 100x100, 250x250
and 500x500 grids are used and the maximum error in port area values is determined
for each case.

Note that the grid considered for all of these cases in this study is a structured grid.

This grid composed of squares in 2-D space and should not be confused with the

unstructured grid generated by the CAD software.

The unstructured grid generated for an ellipse is shown in Figure 4. 6. This work is
performed by a commercial grid generator called ANSYS[42]. The type of the
element generated is called “tria-3 nodes”. This means nothing but the triangle
containing 3 nodes.

Propagation of an ellipse is shown in Figure 4. 7. The results for the solution
domains of 100x100 grid and burnback distance of 1.21 mm, 250x250 grid and
burnback distance of 0.48 mm, 500x500 grid and burnback distance of 0.24 mm are
tabulated in Table 4. 7 to Table 4.9.
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Figure 4. 6 Unstructured Grid Generated for an Ellipse
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Figure 4. 7 Burnback Simulation of Test Case-5
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Table 4. 7 Results of Test Case-5 (100x100 grid, dw=1.21 mm)

FPort Area (mmZ) | Exact Pont Errar
obtained by code | Area (mm2) | Percentage
4722 48 4712.39 0.21
S046.34 5021.64 0.49
5359.78 5340.13 0.37
o694.11 o667.85 0.45
G049.34 500450 0.74
£373.23 5350.58 0.35
6718.01 6706.39 017
7115.03 7071.04 0.52
7491.15 7444.91 0.62
7835.94 7828.02 0.10
8253.85 8220.36 0.41
9661.32 89621.93 0.45
o047 .89 9032.73 017
9486.71 9452 78 0.35
990462 9552.02 0.23
10343.43 10320.52 022
10803.14 10768.25 0.32
11241.95 1122521 0.15
11691.21 11691.40 0.00
1219271 12166.52 0.21

Table 4. 8 Results of Test Case-5 (250x250 grid, dw=0.48 mm)

Part Area (mm) Exact Port Area Errar
obtained by code {mmz2) Percentage
4711.98 471238 0.01
484410 4834.24 020
4956.41 4957 55 0.02
5081.93 508232 0.01
5219.01 5203.55 0.2a
5339.58 5336.24 0.08
5463.45 546539 0.04
S603.583 559593 0.14
674752 5728.05 0.34
5864.73 5861.58 0.05
GO0 47 5996 57 0.2a
B152.16 §133.01 0.31
5290.59 5270.92 032
G421.37 641028 0.17
B574.96 5551.10 0.38
6717.00 6693.35 0.35
BBE2.34 G837 .13 037
7004.33 §952.33 032
7148.07 712888 027
7301.66 727710 0.34
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Table 4.9 Results of Test Case-5 (500x500 grid, dw=0.24 mm)

Port Area (mm2) | Exact Port Area Errar
obtained by code [mmz2] Percentage
4712.44 4712.39 0.00
4781.53 477313 0.18
4339.92 4834.24 012
4896.26 4895.71 0.1
4963.71 4957 55 012
502868 5019.75 018
o037.08 5082.32 0.09
5151.23 5145.25 012
221744 5208.55 0.17
5280.78 5272.21 0.16
5342 48 5336.24 012
2409.08 5400.63 0.16
547529 5455.39 0.1a
5540.658 5530.51 0.18
SE06.07 559550 0.1a
567392 5G6E1.84 0.21
574096 5728.06 0.23
5807 17 5794 64 022
087297 5861.59 0.19
594411 5928.50 0.26

The maximum and averaged percentage errors for these cases are shown in

Figure 4.8.
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Figure 4.8. Error Percentage Among Different Grids for an Ellipse
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From Figure 4.8, one can observe that both average and maximum errors decrease by
using denser grids and small burnback distances. However, this decrease is larger
from 100x100 grid to 250x250 grid than 250x250 grid to 500x500 grid. This shows
that there is an optimum point beyond which an improvement of error is not

observed any more.

4.2.6 Diamond Type Perforated Grain: (Test Case-6)

Same work, which was performed for the previous test case, is performed for the
grain perforated diamond type. 100x100 and 500x500 are the grids generated for the
solution domain. Same burnback distances are used with the previous test case. The
burnback of diamond perforation for 100x100 grids and 500x500 grids are shown in
Figure 4.9 and Figure 4.10, respectively.
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Figure 4.9 Burnback of Test Case 6 (100x100 grids)
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Figure 4.10 Burnback of Test Case 6 (500x500 grids)

It is observed that when denser grid is used, the shape of the diamond becomes more
accurate. It is aimed to determine if the same is true or not for the value of port area.

These values are tabulated in Table 4. 10 and Table 4. 11.

From the tables, it is obvious that there is an improvement in the values of the port
area. This improvement is due to the usage of denser grid and small burnback

distance. Therefore, the same situation with the previous test case is observed.
The maximum and average error percentage are given in Figure 4. 11. The maximum

error in port area values decreases from 1.2 % to 0.34 %. Same is observed in

average error values such that they decrease from 0.7 % to 0.2 %.

137



Table 4. 10 Results of Test Case-6 (100x100 grids)

Fart Area

obtained by code f}{act Fart 0Dy

(mm2) rea (mm2) | Percentage

4012.00 399817 0.40
431499 430E.59 0.20
461798 462624 0.18
493142 485513 0.45
527620 £293.25 0.32
563143 5640 60 0.16
5965 76 5337 18 0.52
£300.09 F362.99 0.99
BESE 67 B7358.04 0.76
707324 712231 0.69
747026 7515682 0.61
704635 79158.56 0.91
8923296 533053 1.17
BE7 177 8751.73 0.91
910013 215216 0.59
9515.05 8521.582 1.08
9953821 10070.72 0.82
10427 .02 10528.85 0.97
10876.28 1099621 1.09
1135688 1147280 1.01

Table 4. 11 Results of Test Case-6 (500x500 grids)

Part Area obtained Exact Port Errar
by code (mm2) Area (mm2) FPercentage
3995.93 3996.17 0.07
4061.03 4057 .14 0.10
4121.45 4118.458 0.07
4178.23 4180.18 0.05
4241.15 4242 28 0.03
4302.02 4304 53 0.06
4365.35 4367 .49 0.05
4427 45 4430 68 0.07
448667 4494 18 017
4550.00 4558.058 0.18
4514.97 462234 0.16
4577.89 4686.95 0.19
4741.22 4751.95 0.23
4507 .44 4317.30 0.20
48370.35 4833.02 0.26
4934 51 4949 11 0.30
5001.95 a015.55 0.27
5065.16 a3z .37 0.2a
5132.32 51459.54 0.33
5195.94 5217.08 0.35
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Figure 4. 11 Error Percentage Among Different Grids for a Diamond

4.2.7 Other Grain Geometries in 2-D Space:

There are many conventional or customized grain shapes. In the previous section,
some conventional grain shapes were analyzed for verification purposes.
Verifications were performed by comparing the port area and/or burning area values
of the grains with the exact solution obtained by a CAD program, or by checking

whether the shape is logical or not.

In this section, some other conventional grains are analyzed just for the illustration of
burnback of these grain geometries. Therefore, these burnbacks are not considered as
test cases for the verification of the code.

In this section, burnback of dogbone, anchor and dendrite grains are given in Figure

4. 12 to Figure 4. 14.
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Figure 4. 12 Burnback of a Dogbone Type Grain
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Figure 4. 13 Burnback of an Anchor Type Grain
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Figure 4. 14 Burnback of a Dendrite Type Grain

4.3 Results of the Analysis in 3-D Burnbacks:

4.3.1 Cylindrical Grain (Test Case-7)

As observed in 2-D space case, it is desired to find whether the determination of
burning area from the volume information of the model is suitable or not. Note that
in 2-D case, the determination of burning perimeter from the port area information is
observed not to be suitable due to the oscillatory behavior of the results.

In other words, in this analysis one can determine which method is suitable for
finding the burn areas of the grain. Method-1, described in Section 2.6.1 or Method-
2, described in Section 2.6.2.
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A cylindrical grain, shown in Figure 4. 15, is chosen for this purpose. The results of
volume and burn area changes are compared with the exact one obtained analytically

as indicated in Table 4. 12.

Figure 4. 15. Cylindrical Grain for Test-Case 7

Table 4. 12 Results of Test Case-7 (40x40x50 grids, CFL=0.75)

Ab code

Wexact [rm3] | Woode [m3] | %error | B exact fiml] [rrn] B error
15708 154648 0.91 342 o LE
18204 12110 0.5z Iz 347 1.02
203ES 207G 0.76 el iy 2596
23744 2i7TH 4.08 et 1o 4247 1.2z
ETAT el a1 273 410 4204 48
30024 20383 2.4 4344 4059 .54
BRI 330 316 4584 4304 fi.12
7046 el 268 4325 4695 Lt
4020 J02TT 2.0 S06S 5108 0.24
44708 43186 3.0 G305 Ly KR L
43051 L ] 330 ] 606G 16.94
3287 I 4.548 A7a6 3600 7oA
707 536146 7.5 GOZT 3310 36.74
G511 Sfda0 0.57 G2ET a6 47.57
G700 S0045 12.40 GE0E 1504 7551
Tidrz G265 16.84
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Error exceeds the acceptable limits both in the values of volume and burning area of
the model. As performed in 2-D case, problem is resolved by using denser grid. CFL

value, which is FAt / Ax, is remained the same.

Table 4. 13. Results of Test Case-7 (160x160x200 grids, CFL=0.75)

W ewact W code b exact b code B errorif
[rrn3] [rnrn3] B error [rma] [rnrniz] B error fitted
16708 157346 0.7 L 1366 .81 0.24
16305 16368 0.38 3201 3524 10.09 0.47
16214 17032 0.69 JEED T3 w2 0.54
17834 17474 0.31 23148 547 236 0.5
18165 12156 0.05 3378 3868 14.20 0.61
1aa07 18883 0.4 3438 34550 3 0.2
19460 104552 0.47 2447 g 14.75 0.61
20124 20114 0.05 3556 bl a7 ] 386 0.59
2000 20304 0.05 315 3405 .01 0.455
48 21545 0.7 TS 540 r.m 0.a0
rz1a4 21 0.7 AT 6a7 Doy 0.42
Traad 2mns 0.11 AT i 4.31 0.35
it b 23602 0.05 et on) 4020 4.38 0.26
24245 24350 0.06 2011 4017 | 0.5
a0aT 25116 0.1z 2970 367 gt 0.04
584 258448 0.0z 4028

The results of burning area values are still unacceptable although error in volumes
decreases to the acceptable limits, as indicated in Table 4. 13. One can focus on the
last column of Table 4. 13. There is a term, “% error if fitted”, which implies a
process of curve fitting to prevent from the oscillatory behavior of the values. The
results of this column show that maximum error will be less than 1 percent if curve

fitting is applied to the values. This phenomenon is shown in Figure 4. 16.
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Figure 4. 16 Results of Burning Areas After Curve Fitting Process

Figure 4. 16 shows the oscillatory behavior of the burning area. However, even if a
second order curve fitting is applied, actual values and fitted values are almost the

same with a negligible error.

Although curve fitting process gives better results, one can easily notice that it is not
practical, since it is difficult to decide which types of curve fitting (quadratic, cubic,
logarithmic, etc) should be applied without knowing the exact behaviors of the
burning area values. Therefore, another alternative is used. In this alternative a higher
order Level-Set equation, given in Section 2.3.2, is used.

The problem is resolved by using higher order Level-Set equation. The result is

given in Figure 4. 17.
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Figure 4. 17 Result of Second Order Level-Set Equation

In the figure, “Ab second” represents the second order Level-Set, whereas, “Ab first”
is the first order Level-Set. As seen in the figure, there is no decrease in error and
there is no decrease in oscillations when second order Level-Set equation is used.
Therefore, it is concluded that;
% The Second order Level-Set equation has no any advantage over the first
order. Because of this, it is used here only once and will not be used any

more.

Another alternative to solve the problem is to use different CFL values. Therefore,
problem is resolved by using CFL values of 0.25, 0.5 and 0.95. Exact values and the
values obtained by the code are shown in Figure 4. 18 to Figure 4. 20. Note that in
Figure 4. 18, exact values are represented by series-1, whereas values obtained by

code is represented by series-2.
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Figure 4. 18 Results of Burning Area Values with CFL=0.25
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Figure 4. 19 Results of Burning Area Values with CFL=0.5
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Figure 4. 20 Results of Burning Area Values with CFL=0.95

Surprisingly, higher CFL values resulted in lower oscillations. However, even a high

CFL value of 0.95 does not give enough satisfaction to catch the exact solution.

Like 2-D cases, differentiation of volume data for successive burnbacks is not the
correct way for the determination of burning area values. The only solution of this
problem is to determine the boundary by the Cut-Cell method, as described in
Section 2.6.2.2.

For a cylindrical grain of a radius of 10 mm, and length of 100 mm, the results
obtained by the Cut-Cell method are tabulated in Table 4. 14. Note that this grain is
different from the one under consideration as far as the dimensions are concerned.

But both of them are cylindrical in shape.
The burning area values obtained by code are compared with the exact solution

obtained analytically in Figure 4. 21. The cylinder, originally given in Figure 4. 15, is

shown in after the propagation of 7 burnback steps.
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Table 4. 14 Results of Test Case-7 Obtained by Cut-Cell Method

Fadius of the Exactburning area {(mm2) Burning area obtained by "
cylinder {mrm) code {mmz)

10 BIES G350 1.06
14 2196 8782 0.1é
18 11309 11300 n0.o8
22 13823 13816 0.oa
26 16336 16330 0.0z
28 17592 17550 0.24
20000

— 18000

£ 16000 -

E 14000 +

8 12000 4 —— Exact

5 10000 4

o 8000 - —Code

< 6000

5 4000

@ 2000

0 T T T T T
0 2 4 6 8 10 12
Burnback step
Figure 4. 21. Comparison of Burning Surface Areas of Test Case-7

Figure 4. 22. Cylindrical Grain, 7 Burnback Steps Later
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From Table 4. 14, one can observe that the maximum error for burning area values is
less than 2 percent. This situation is also observed from Figure 4. 21. Therefore,

results are said to be satisfactory when the Cut-Cell method is used.

4.3.2 Multi Shapes Grain (Test Case-8):

Multi shapes grain is actually a hypothetical grain and used here to determine if the
intersections of boundaries are logical or not. This analysis is similar to the analysis
performed for Test Case-4 in 2-D space. It is assumed that this grain is perforated to
form 3 circular gaps and a star gap as shown in Figure 4. 23. The first and the sixth

burnbacks of the grain are shown in Figure 4. 24 and Figure 4. 25, respectively.

..
Z

s

Figure 4. 23 Solid Model of Test Case-8
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An

Figure 4. 24 The first burnback of Test Case-8

Figure 4. 25 The sixth burnback of Test Case-8
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From the sixth burnback of the multi shapes grain, no problem is observed during the
intersections of boundaries. No any illogical shapes are formed during the transition
of the boundaries when they collide. It is also eye-witnessed that no any undesired
shape forms when propellant divided during the propagations.

Therefore, therefore burnback code is said to be able to handle this hypothetical grain
burnback.

4.3.3 Finocyle Grain (Test Case-9)

The finocyle is an abbreviation for fin in a cylinder. As its name implies, a star
shaped fin exists in the cylindrical slot, as shown in Figure 1. 6. The finocyle grain
burns radially along the circular slot and star-shaped grain. As well as radial burning,
an axial movement of the star fins occurs during the combustion of the grain.
Therefore, finocyle grain is considered to be a real 3-D grian. Since finocyle has
many parameters which define the geometry, boost-sustained and neutral burning can
be obtained by changing these parameters. That is why finocyle grain is so popular

today and widely used.

As a first attempt, it is aimed to determine the burning area change of this grain by
using Equation (2.27) of Method-1, described in Section 2.6.1. Recall that this
equation leads to determination of the burning surface area by using the change of
volume between successive burnback steps. Note that in 2-D space, it was observed
that this equation was not suitable for the determination of burning perimeters or
areas. In 3-D case, it is also shown that it may only be useful if curve fitting process

is applied to values. As the last test of this equation, finocyl grain is chosen.

In the solution domain, 50x50x75 grids are used with a CFL of 0.5. The results are
tabulated in Table 4. 15 and shown in Figure 4. 26.
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Table 4. 15 Results, Obtained by Differentiation Method, of Test Case-9

W mnodd W ooode og b model | Sh code B4 B4 deviztion
[rrn3] [mrm3] | dewiation [rrn2] [rrn) dewiation fitted
124169 136532 1.7 18128 10673 A2 0.og
151297 147206 36 10166 23550 T .60
171463 170756 0. 20208 17424 1378 1142
101671 122179 1.86 21244 17400 17 63 14.18
211916 20567 342 22285 R b 437 15.453
235200 226900 3.A6 i 23670 1.06 15.95
258523 250470 322 2362 18015 26.05 15.84
2onaad plitT ] 536 24558 24205 1.47 13.04
307542 292780 5.04 24001 24205 1.12 G.85
3543 HTOTSE 4 56 ey 10746 17.05 2.ro
05360 236330 540 23602 pracieLeh| 1.26 0.54
Aranst ORI 505 23554 2470g 529 285
A0G05 2BEEI0 .40 2AATE 21122 0.64 4.0
425031 06742 4.7 23145 24366 518 280
440125 431108 418 22851 26223 14.76 1.84
471976 457330 320 22480 1aved 16.49 2
404466 476112 384 22055 19518 11.50 a.81
516520 HA5630 4.1

30000
25000
20000 - —e— Ab code
15000 - —=— Ab model
10000 L Poly. (Ab code)
5000 -

O T T T
0 5 10 15 20

Burnback Step

Burning Area [mm?2]

Figure 4. 26. Results of Burning Areas of Finocyle After Curve Fitting Process

In the figure, “Poly (Ab code)” represents cubic curve fit to the burning area values
obtained by the code. Exact burning area values are obtained by the CAD model.
This is achieved by preparing CAD models for each burnback step of the grain.
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Therefore, it is a time consuming job and that is why a burnback code should be
developed in general.
From Figure 4. 26, even curve-fittings are not accurate. At this point, it is concluded

that;
% As observed 2-D cases, the method for the determination of burning area
values from volume data does not give the satisfactory results in 3-D space as

well. Therefore, it will not be used any more.

Burning area values obtained by Cut-Cell method are tabulated in Table 4. 16.

Table 4. 16 Results, Obtained by Cut-Cell Method, of Test Case-9

Ah
model
[mm2]
18128 18140 012
19166 19210 0.23
20208 20258 0.24
21244 214R1 1.02
22285 22294 0.04
23322 23485 070
24362 24377 0.05
24BA8 24757 0.40
24001 24058 023
23817 235845 01z
23592 23738 018
23554 23608 023
23376 23451 0.3z
23145 23260 048
22851 23034 0.80
22489 22778 1.27
22055 22081 01z

Ab code

[mm32] % error

From Table 4. 16, it can be easily seen that the maximum error in burning area
values is less than 2 percent. Therefore results obtained by the Cut-Cell method are
satisfactory. An initial finocyl geometry and geometries after certain burnback steps

are shown in Figure 4. 27 to Figure 4. 29.
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Figure 4. 27 Initial Finocyle Geometry

Figure 4. 28 Finocyle Geometry (5 Burnback Steps Later)
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Figure 4. 29 Finocyle Geometry (10 Burnback Steps Later)

4.3.4 Conocyle Grian:

Like finocyle, conocyle is an abbreviation of “cone in a cylinder”. Conocyle is
formed by the combination of circular perforation and cone type perforation located
at the end of the circular perforation. This grain is also used when boost-sustain type
thrust is required. When the cone perforation reaches the motor case, there is a

decrease in the burning area. Therefore, boost-sustain burning area requirement is
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obtained. Conocyle burnback analysis is performed just to illustrate the capability of
the code. Therefore, it should not be considered as a test case. That is why the
burning areas or volumes are not computed.

ANSYS model of the conocyle grain, the initial burnback step and the geometry of
Conocyle grain after 5 burnback steps later are shown in Figure 4. 30 to Figure 4. 32,

respectively.

Figure 4. 30 ANSYS Model of Conocyle Grian

Figure 4. 31 Initial Burnback Step of Conocyle
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Figure 4. 32 Geometry of Conocyle 5 Burnback Steps Later

4.3.5 Variable Speed Burnback:

Since the pressure along the z-axis of the motor varies, the burning rate of the
propellant changes along the grain length. In order to simulate this fact, a cylindrical
grain, shown in Figure 4. 33, is chosen in order to understand whether code can
handle the variable speed burnback. In Figure 4. 33, the burning rate of the gray part
of the propellant is assumed to be different from that of the red part of the propellant.
Therefore, a difference in diameters of the propellants should be observed when
propellants burn radially. Since the work is performed just to understand capability
of the code, it is not considered as a test case. The geometry of the circular cylinder

after 5 burnback steps is shown in Figure 4. 34.

157



Figure 4. 33 Cylindrical Grain for Variable Speed Burnback

Figure 4. 34 Geometry of the Cylindrical Grain 5 Burnback Steps Later
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From Figure 4. 34, one can easily observe that one part of the propellant propagates

faster than the other part. Therefore, code can handle variable speed burnback.

4.4 Results for the Prediction of the Performance of the Rocket Motors

In Section 4.4, results obtained by 3-D grain burnback were given. However, no
pressure or thrust calculations are made to verify the code. In this section, the code is
verified by comparing the results obtained by 0-D flow solver or 1-D quasi-steady
internal flow solver and 3-D Euler solver with the static test of the solid propellant
rocket motors. Static test results are obtained in the Ground Test Facility of

TUBITAK-SAGE.

4.4.1 Results obtained by 0-D or 1-D Flow Solver

4.4.1.1 Ballistic Research Motor with Cylindrical Grain: (Test Case-10)

Ballistic Research Motor, Balistik Arastirma Motoru in Turkish (BAM), is used for
the control of the burning rate of the propellant. Burning area change of the BAM
grain is nearly constant. Therefore, constant pressure is obtained in this motor. The
grain geometry of BAM was given in Figure 2. 39. The tapered portion of the grain
decreases the progressive behavior of the circular perforation when propellant burns.

That is why nearly neutral burning surface area is obtained by this grain.

Since the pressure along the motor axis does not to change, 0-D flow model, which
leads to Equation (3. 3), is used to determine the pressure inside the rocket motor.
Corresponding time is calculated by dw/r. Pressure-time history and surface

propagations of BAM are shown in Figure 4. 35 to Figure 4. 37.
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Figure 4. 35 Pressure-Time History of Test Case-10

From Figure 4. 35, it can be observed that the ignition transition and tail-off parts of
the graph are observed not to be simulated well. This is an expected situation.
Because, steady flow solvers are not able to simulate unsteady phenomenon, such as,
ignition transition of the motor. However, it is known that only steady portion of the
graph is considered in quality control process of the burning rate of the solid
propellant. Therefore, one can focus on the steady-state pressure of the Ballistic
Research Motor. As far as steady portion of pressure-time history of the motor is

considered, it is observed that the simulation gives satisfactory results.
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Figure 4. 36 First Burnback of Ballistic Research Motor Grain

Figure 4. 37 Geometry of Ballistic Research Motor Grain 5 Burnback Steps Later

4.4.1.2 Ballistic Research Motor with Finocyle Grain: (Test Case-11)

In order to understand whether grin burnback of finocyle grain is modeled accurately
or not, rather than cylindrical grain, finocyle grian is used in Ballistic Research

Motor as shown in Figure 4. 38
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Figure 4. 38 Ballistic Research Motor with Finocyle Grain

Since only the perforation of the grain is considered, a solid model of the perforation
of the grain is prepared by using a CAD software, Autocad- AMD. This solid model

is shown in Figure 4. 39.

Figure 4. 39 The Solid Model of Test Case-11

Figure 4. 39, the perforation of finocyl grain of the Ballistic Research Test Motor is
shown. This grain burns in both aft end and head end as well. To simulate the aft end

and head end burning, the plate-like shapes are added to the model. The model

162



consists of a cylinder, having a diameter of 24 mm, and 8 star-shaped fins. BAM has

a diameter of approximately 70 mm and length of 150 mm.

Since the pressure along the motor axis does not change, lumped flow model (0-D
model) is used to determine the pressure inside the rocket motor. Pressure time
history of the rocket motor and finocyle grain burnback steps are shown in

Figure 4. 40 and Figure 4. 41.
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Figure 4. 40 Pressure-Time History of Test Case-11

Figure 4. 41 Burnback Steps of Ballistic Research Test Motor with Finocyle Grain
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From the Figure 4. 40, one can observe that tail-off transition is not as accurate as the
remaining parts of the pressure-time graph of the Ballistic Research Test Motor.
Since the aim is not the simulation of the tail-off transition part, it can be thought that

satisfactory results are obtained from the analysis of this motor.

4.4.1.3 Illumination Rocket with End Burning Grain: (Test Case-12)

A special type of an end burning grain was designed as the propellant of an
illumination rocket in TUBITAK-SAGE. The grain geometry was chosen to show a
boost-sustain burning characteristic. Since the end burning grains generally give the
constant pressure or thrust during the combustion, circular grooves were perforated
on the grain to provide a boost-sustain burning characteristic. The exact dimensions
of the illumination rocket and its propellant are confidential. For this reason, the

grain configuration is shown in Figure 4. 42 without dimensions.
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Figure 4. 42 Illumination Rocket

Since the grain is an end burning grain with grooves, an extra plate-like shape is

added to the model to simulate the head end burning of the propellant. Since length
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to diameter ratio of the grain is so small, lumped flow model can be applied to
determine the pressure of the motor. Thrust of the motor is calculated by using
Equation (1 13), knowing the thrust coefficient, nozzle throat area and pressure of the

motor. The solid model of the grain of this motor is given in Figure 4. 43

Figure 4. 43 The Solid Model of Test Case-12

The pressure and thrust values obtained by the simulation is tabulated in Table 4. 17.
Note that the pressure values are not compared with the test data, since no pressure

data was taken in the static test.
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Table 4. 17. Simulation Results for Test Case-11

Burm aka Pressure Buming rate Unit time Tatal time Thrust

(mz] (bar] (mis) (=] (=] ]
0.0019 1174 0.00% 0.248 0.248 4G 195
0.0019 Iz 000 0.246 0494 471348
0.0015 0173 0.00% 0256 0.748 42 84
0.0016 15,627 0.007 0.283 1.033 331
00013 11.278 0006 0.324 1.356 23.954
D001z 10.095 0 .00 0.339 1.695 .
0001z 03TE 0 .00 0.349 2044 19.913
0.0009 G483 0.005 0.405 2448 13.771
0.0006 3306 0.004 04531 2880 7063
0.000% 0833 0.00% 0832 3oz 1.764
0.0000 0000 0.000 0.000 1oz 0000

Pressure time history and grain propagations are shown in Figure 4. 44 and Figure 4.
45. When Figure 4. 44 is examined, the trend of the thrust values are said to be
captured by the simulation. However, as a whole, some improvement are necessary
for the simulations, especially for the simulation of the sustain part of the pressure-
time graph. The deviation of the simulation from the test data in this region may be

due to the change of the burning rate of the propellant, the erosion of the nozzle

throat and the assumption of 0-D flow.
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Figure 4. 44 Pressure Time History of Test Case-11
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Figure 4. 45 Burnback of the Illumination Rocket Grain

4.4.1.4 Motor X (Test Case-12)

Motor-X is a classified rocket motor, which the development phase is still
continuing. Not only dimensions of the motor but also fields of usage are

confidential. That is the reason why the motor is classified as Motor X.

The grain geometry of Motor-X is the finocyle type as shown in Figure 4. 46. The
finocyle grain consists of a long circular perforation and 4 arms with star-shaped
slotted fins. The length of the fins is so adjusted that nearly constant burning surface

area is obtained, because of the declaration of the mission requirement.
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Figure 4. 46 Geometry of the Grain of Motor-X

During the design phase, many grain geometries are analyzed. One of these is shown
in Figure 4. 47. The difference between Figure 4. 46 and Figure 4. 47 is the transition
region from circular portion to the fin portion. In Figure 4. 47, a sharp transition from

the circular part to the fins is shown.
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Figure 4. 47 Tapered Geometry of Motor-X

The burning area of this grain is calculated by using two methods, which are
different in dimensional space. The first method is 3-D Cut-Cell method, described
in section 2.6.2.2; the second one is the 2-D Cut Cell method, described in Section
2.6.2.1. However, 2-D Cut-Cell method is extended for application to a 3-D model,
as shown in Figure 2. 25. Therefore, in 3-D approach, cubes are used, whereas, in 2-
D approach squares are used for each different z-plane.

A grid of 55x55x409 is used for the solution domain. The differences in burning area

values for these approaches are shown in Figure 4. 48.
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Figure 4. 48 Differences in Burning Areas Between Two Approaches

As shown in the figure, two approaches give almost similar results. However, this
does not mean that 2-D Cut-Cell approach is applicable for the study. Because, when
the burnback code will be coupled with the 3-D flow solver, grid generation for 3-D
flow solver can only be achieved by 3-D Cut-Cell method.

The pressure of the Motor-X is determined by using 1-D quasi-steady state internal
flow solver, Simp(x), whose details are given in Section 3.3. In order to optimise the
length of the tapered part, some analyses with different lengths of tapered part are
performed.

Differences in the burning area values, for sharp and tapered transitions are used, are
given in Figure 4. 49. From this figure, it is observed that the initial burning area
reduces, however when tapered part is used, while the maximum burning area
becomes larger than that of the sharp transition case.

The effect of the change of the length of the tapered part is presented in Figure 4. 50.
It is obvious to realize that the pressure increases rapidly when the length of the

tapered part is doubled.
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Figure 4. 49 Comparison of Sharp or Tapered Transition of the Motor-X Grain
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Figure 4. 50 Effects of Length Change of the Tapered Part of the Motor-X Grain
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Finally, the pressure simulation of Motor-X is compared with the static test data to

verify both burnback code and flow solver. This comparison is shown in

Figure 4. 51.
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Figure 4. 51. Comparison of Simulation with Static Test Data for Motor-X

The numerical simulation and static test data are observed to match each other
perfectly. Therefore, 3-D grain burnback code and 1-D quasi-steady state internal

flow solver of the rocket motor are both verified for the Motor-X.

4.4.2. Results obtained by 3-D Euler Flow Solver(Set-3D)

For 3-D motor internal flow, burnback code is loosely coupled with the flow solver.
All necessary inputs of flow solver are computed by the burnback code and the
pressure obtained by flow solver is send to the burnback code so that propagation

distance of the propellant is calculated for a certain time step.
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In order to verify the coupled codes, Ballistic Research Motor (Test Case 10) is used.
For every 0.15 seconds, Set-3D solves the internal flow in the motor for a different
configuration due to the burnback of the propellant. Total burnback number is
limited to 5 to save time.

Surface mesh is obtained by the Exact Cut-Cell Method described in Section 2.6.2.3.

Tetgen output of this surface mesh is given in Figure 4. 52.

Figure 4. 52 Computational Mesh of the Ballistic Research Motor

At time t=0, the flow solution, ie. Mach number, pressure, density and stream lines
are shown in Figure 4. 53 to Figure 4. 56. From the graphs, one can observe that
there is almost negligible pressure loss along the rocket motor.

Pressure contours at t=0.3 and t=0.45 s are also shown in Figure 4. 57 and Fig Figure
4. 58, respectively. From these figures, one can observe that the pressure of the
Ballistic Research Motor does not change both along the length of the motor and
with respect to time. This is an expected result, since the burn area of the motor does
not change during the burnbacks and the ratio of port area to throat area of the motor

is quite large.
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Figure 4. 53 Mach Contours of the Ballistic Research Motor (t=0 sec)
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Figure 4. 54. Pressure Contours of the Ballistic Research Motor (t=0 sec)
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Figure 4. 55. Density Contours of the Ballistic Research Motor (t=0 sec)
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Figure 4. 56. Streamlines of the Ballistic Research Motor (t=0 sec)
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Figure 4. 57. Pressure Contours of the Ballistic Research Motor (t=0.3 sec)
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Figure 4. 58. Pressure Contours of the Ballistic Research Motor (t=0.45 sec)
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Residual of the solution is presented as solution is progressed in Figure 4. 59.

Pressure values obtained from this analysis is compared with the static test data as

shown in Figure 4. 60.
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Figure 4. 59 Residual vs # of Iteration of the Ballistic Research Motor
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Figure 4. 60. Comparison of Static Test Data with 3-D Simulation
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Ballistic Research Motor is known to operate at approximately 80 bars. The increase
in the pressure value at the middle region of the pressure-time graph is called Hump
effect. It is related with the burning rate increase due to propellant binder and fuel
concentration. In 3-D simulation, approximately expected results are obtained for

each burnback step.

A table, which gives the computational information of the Ballistic Research Motor

analysis is given below;

Table 4. 18. 3-D Computational Information of Ballistic Research Motor

1* burnback Last burnback
# of elements (tetrahedrons) ~ 650,000 ~ 750,000
CPU type Xeon
# of domain partition for Xeon 2
CPU type Itenium
# of partition for Itenium 16
Computational time for Xeon ~ 6 hour ~ 8 hour
Computational time for Itenum ~ 20 minutes ~ 25 minutes
# of iteration used 5000

2.5
CFL
(For a CFL of 0.25 and 25, no convergence)

The other test case is the Motor X, given in Section 4.4.1.4. As mentioned in this
section, Motor-X is the one of the oldest configuration of the classified project which

is still progressing. The computational tetrahedral meshes are shown in Figure 4. 61.
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Figure 4. 61 Computational Mesh of Motor-X

The problem related to this configuration is that the diameter of the cylindrical part
of the grain is so small that combustion gasses inside the motor flow with a high
speed. Test case is based on if this phenomenon is observed or not. The Mach

number obtained from the 3-D analysis is shown in Figure 4. 62.
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Figure 4. 62. Mach Numbers along the Motor X (at time, t=0)
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From Figure 4. 62 one can observe that at the trailing edge of the circular slot, the
Mach number of 0.8-0.9 has been obtained. Then, due to the expansion of the flow at
the fin zones, the velocity of the flow decreases, and the flow enters the nozzle with a
Mach number of 0.6-0.8. The nozzle is chocked at the throat and the Mach number at
the nozzle outlet is approximately 2.8-3.0. Mach numbers at t=0.4 is shown in Figure

4. 63.
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Figure 4. 63. Mach Numbers along the Motor X (at time, t=0.4 second)

The diameter of the circular part of the finocyl increases, as the grain burns. This
increase causes the decrease of the Mach number at the circular portion of the grain.
This is the desired case, and, therefore, the new grain was designed such that the

diameter of the circular portion was increased with some other major changes.
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The pressure contours of the Motor X are shown in Figure 4. 64 to Figure 4. 65, at

times, t=0 and t=0.6 s, respectively.
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Figure 4. 65 Pressure Contours of Motor X (at t=0.6 second)
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The density contours of the Motor X are shown in Figure 4. 66-Figure 4. 67, at times,
t=0 and t=0.6 s, respectively.

Figure 4. 66. Density Contours of Motor X (at t=0)
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Figure 4. 67. Density Contours of Motor X (at t=0.6 second)
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Since this analysis is performed without using erosive burning model, aft-end
pressure-time data obtained from the static test is taken rather than the head-end. One
should note that erosive burning effects are not observed at the aft-end of the motor.
This data is compared with the data obtained by 3-D burnback coupled flow analysis.
Burnback is performed at each 0.2 second interval. Ignition transition is assumed to
be completed at time, t=0.05 s. Propellant configuration at this time is constructed by
the burnback code and burnback distance at each time interval is computed by the

pressure data obtained from 3-D flow solver. The result is given in Figure 4. 68.
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Figure 4. 68. Pressure Time History Comparison of Motor X

From Figure 4. 68, one can observe that 3-D Flow Solver works properly. Time
interval can also be taken smaller than 0.2 second, (1-D code gives an output for each
0.001 second time interval) for a better result. However, this needs a large
computational power.

Computational information of the Motor-X is given in Table 4. 19.
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Table 4. 19. 3-D Computational Information of Motor-X

1* burnback Last burnback
# of elements (tetrahedrons) ~ 50,000 ~ 450,000
CPU type Itenium
# of partition 16
Computational time ~ 10 minutes ~ 50 minutes
# of iteration used 10000
CFL 2.5
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The grain burnback analysis and performance prediction of the rocket motor
are important steps in designing of a solid propellant rocket motor. In the thesis, the
attention focused on these subjects. The design concept of the nozzle, igniter,
insulator, etc, are taken apart.

In this thesis, Initial Value Problem of Level-Set Equation was solved for 2-D or 3-D
grains to simulate grain burnback of solid propellant rocket motors. Then inputs
obtained by grain burnback analyses were delivered to 0-D, 1-D and 3-D flow
solvers to predict the performance of the rocket motors. Results were compared with
the results which were obtained by analytic calculations, by simple CAD models or

from static motor tests.

5.1 Conclusions:

Conclusions obtained from this study are as follows;
e A mathematical model of Initial Value Level-Set Problem, which was developed
for the simulation of moving boundary, is observed to be appropriate for the

simulation of solid propellant grain burnback.
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A procedure, developed in this study in the determination of the “inside-outside
location of a point”, works accurately both for 2-D and 3-D spaces.

The accuracy of the results depends on the number of both structured and
unstructured grids generated. The more accurate results can be obtained by using
denser grids.

The method of differentiation of port areas or volumes to determine the burning
perimeter in 2-D space or the burning surface area in 3-D space does not give
satisfactory results. Because even a very small deviation in port areas or volumes
causes oscillatory results in burning areas. Even curve fitting process does not
able to decrease the error associated with this work. Therefore, it can be
concluded that burning perimeter or burning surface area has to be computed
directly by the Cut-Cell method.

Cut-Cell method, which is developed in this study, involves the cutting operation
of square grid in 2-D space or cubic grid in 3-D space to capture the boundary or
surface of the perforation of the grain. This method is observed to be acceptable
for interface capturing.

Cut-Cell method used for the determination burning area of the grain can also be
used for the generation of grid for a 3-D flow solver.

In the determination of burning surface area of 3-D grain, a 2-D grain burnback
method can be used by dividing the grain into many planes along its length. For
each plane, 2-D burnback is achieved and the burning perimeter obtained for
each plane is multiplied by the distance between the two successive planes. This
is an approximate method to compute the burning surface area. In this study, it is
observed that this approximation seems to be valid. However, when the burnback
code is coupled with a 3-D flow solver, Cut-Cell for 3-D space is needed, and
then this method does not work.

The benefit of the Second Order Level-Set Equation is not observed. Therefore
the First Order Equation is used throughout this study.

A fast algorithm for the Initial Value Level-Set problem, such as Narrow Band
Method, is not needed if more sophisticated methods are used to capture the

information of unstructured grid generated on the model.

186



0-D and 1-D Quasi-Steady Flow Solvers are not sufficient to simulate ignition
transition and tail-off transients. Even 3-D flow may not be practical to simulate
them due to the need of large computational power. Therefore, parallel
processing is an obligation.

Grain burnback and 1-D Quasi-Steady code are both verified by using 12
different test cases. Satisfactory results are obtained for these tests.

Approximate Cut-Cell Method does not always guarantee the proper
computational mesh for 3-D solver. Therefore, Exact Cut-Cell method can be
used for the generation of 3-D computational grid due its superiority.

Tetgen, free-downloadable software, can easily be used for the generation of
tetrahedrons, if a closed surface mesh has already been generated.

It is demonstrated that 3-D Euler Solver can give satisfactory results by using
Ballistic Research Test Motor and Motor-X test cases. More test cases, however,
is needed for reliability.

More computational power and a compiler which has a property of dynamic data
allocation are both needed if 3-D flow solver coupled with propellant burnback is

to be used.

5.2. Recommendation for Future Work

An unsteady flow solver should be developed to simulate the ignition transition
and tail of transients of the rocket motor.

Adaptive mesh for both structured and unstructured grids have to be developed.
Structural analysis has to be performed for the propellant of the rocket motor to
complete the grain design.

Insulation erosion, nozzle erosion and structural analysis of the motor case

should be added.

A compiler which has a capability of dynamic array allocation is needed.
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5.3 Contribution of This Work

A mathematical model of Initial Value Level-Set, which was previously
developed for the propagation of boundary, is adapted to solid propellant grain
burnback for the first time.

An algorithm to determine the distance values of grid points is developed in this
study.

An algorithm to determine the location of the points for “inside-outside job” is
developed in this work.

Exact Cut-Cell method to capture the interface by cutting the square elements in
2-D space or cubes in 3-D space is used for the simulation of propellant burnback
in this study.

Exact Cut-Cell method to determine the cutting surface of the cubic elements for
3-D grid generation is used for the simulation of propellant burnback in this
work.

1-D Quasi-Steady Flow Solver, which was previously developed, is modified to
handle the information given as the data file of the burnback parameters, such as
port area and burning surface area values.

Motor internal flow solution is coupled with solid propellant propellant

burnbacks in this thesis.
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APPENDIX

Data file of the 1-D internal flow solver of the solid propellant rocket motor is given

in Figure A. 1. Input parameters are explained in Figure A. 1.

il --» ISIMPX=0:0-D; 1:1-D

0 --» IERTHRO=0:Non-eroding throat; 1:Eroding throat
1 --» ILRCHECK =1:LR model, O:experimental data

2 --» NINIT

0 --» NPROFILE

3500. --» TC  =Combustion Temperature [K] (For SIMP)
101300 --» PAMBE =Ambient Pressure [N/m2] (For SIMP)

1 --> TERAT =1:Erosive; 0:Non-Erosive

0 --» IGRAIN =0:5tar; 1:vagon; 2:Finocyl

0.7 --» PRAN = Prandt1 Number

2189 --» SPEG = Specific Heat of Combustion Gases [1/kgk]
1200  --»> SPEP = Specific Heat of Solid Propellant [31/kgK]
B.6E-4 --> GMUGAS = Viscousity of Combustion Gases [kg/m.sec]
1 --» IBETAOP= Option for Erosion Constant. 0:for direct input; 1:for 400000/mass flux
0 --» TALFAOP= Option for Erosion Constant. O:for direct input; 1:for heat trans. calcul.
1.181 --» GAM  =Specific Heat Ratio

0.70% --> RBM  =Grain Len?th [m]

10. --> R0 =Density of Combustion Gases [kg/m3]
100E45 --> PO =Initial Chamber Pressure [N/m2?

6. S6E+6 --» EP  =Enthalpy of Combustion of Propellant [1/kg]
2. B3E-§ --» ALFA =Erosion Constant of Propellant

68 --» BETALST =Erosion Constant of Propellant

68 --» BETA2ST =Erosion Constant of Propellant
0.002816 --» BVA  =Burning Rate Constant of Propellant
0.3179 --» BYN  =Burning Rate Exponent of Propellant
0.15 --> SIGHAP=TemEerature sensitivity of propellant
0. --» TDIF =Tamb-20°C

0.001 --> DTIME =Time Step [sn]

1770 --> RP =Density of Propellant [kg/m3]

0.001 --> ERR  =Error Limit

0.0633 --» SLOPE =Tapered Angle [*]

0.0318 --> R =Radius of Grain [m]

300 --» N5 =Number of Slices

7 > N =Number of Arms of Grain

0.01175 --> THRAD =Nozzle Throat Radius {m]

0.06168 --> EXNOZD=Nozzle Exit Diameter [m]

0.002 --» Rl =Grain Geomtery Parameters [m]

0.001 --» Rz =Grain Geomtery Parameters [m]

0.0155 --» L1 =Grain Geomtery Parameters [m]

0.0108 --» L2 =Grain Geomtery Parameters [m]

0.0 --» XI  =Grain Geomtery Parameters [']

Figure A. 1. Data File of Simp(x)
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Table A. 1 Explanation of Input Parameters of Simp(x)

ISIMPX Dimension of the flow (0-D or 1-D)
IERTHRO Nozzle throat erosion is included, 1, or not, 0.
ILRCHECK Experimental erosive burning model, 0, or LR model, 1.
NINIT Number of cells to be considered as one big cell.
NPROFILE Pressure versus motor length graph is cerated,1, or not, 0.
TC Adiabatic flame temperature of the solid propellant. [K°]
PAMAP Ambient pressure [N/ m?]
IERAT Errosive burning is considered, 1, or not,0.
IGRAIN Type of the grain. Star; 0, or Wagon wheel; 1, or Finocyl, 2
PRAN Prandt] number
SPEG Specific heat of combustion gases [J/kg °K]
SPEP Specific heat of solid propellant [J/kg °K]
GMUGAS Viscosity of combustion gases [kg/m sec]
IBETAOP Option for erosive burning constant. Input directly, 0,:or experimentally obtained
constant, 1.
IALFAGP Option for erosive burning constant. Input directly, 0,:0r determined by heat transfer
calculation, 1.
GAM Specific heat ratio of the combustion gases
RM Grain length [m]
RO Density of the combustion gases [kg/m’]
PO Assumed initial chamber pressure [N/m?]
EP Enthalpy of combustion of propellant [J/kg]
ALFA LR model erosive burning constant-1
BETAIST LR model erosive burning constant-2
BETA2ST LR model erosive burning constant-3
BVA Burning rate constant of propellant
BVN Burning rate exponent of propellant
SIGMAP Temperature sensitivity of the propellant.
TDIF Temperature differences between referenced value, 20 °C, and motor conditioned value.
[°C]
DTIME Time step of the numerical scheme
RP Density of the propellant [kg/m’]
ERR Error limit for convergence.
SLOPE Tapered angle of the grain perforation along the length of the motor.
R Radius of the grain
NS Number of slices to which grain is divided for 1-D flow analysis.
N Number of arms of the grain if star or wagon wheel type grain is used.
THRAD Throat radius of the nozzle [m]
EXNOZD Exit diameter of the nozzle [m]
Grain geometry parameters [m]

RI1,R2,L1, L2, XI
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A data file which contains the information of both the coordinates of the nodes of the
unstructured elements and their connectivity knowledge are generated by commercial
finite element CAD software, called ANSYS. This data file is shown in Figure A. 2.
In this figure;

0 For the numbers above the line: First three columns represent x, y and z

coordinates of the nodes generated, respectively in millimeters. The last
column represents the location of the nodes. If it is an interior node, this value
is 1. For a boundary node, it is -2.

0 For the numbers below the line: All columns represent the connectivity

information of nodes.

5.091108604170000 -12.715736208500000 14 323240 1
4 567326943620000 -10.901228737700000 11.921080 1
3.871e34246820000 3.880362917770000 364 .691500 1
-3.525159051230000 5.755255340550000E-003 166.619100 1
-10.370824376700000 5.0109612327350000 22.690640 1
-5.076900430230000 -2.079722059540000 330.4243900 1
2.467457932400000 -4.885160100120000E-001 269424700 1
4 .830695838970000E-001 =2.321279472530000 157 855900 1
4.305094881550000 6.080382554260000 5.447247 1
1.459675858900000 8.626079173300000 34.083420 1
1.730546738780000E-001 -2.428679083430000 577.434100 1
1.471756759010000 -2.205356082%30000 574 .682300 1
-5.916692982330000 3.4755589559380000 38.629780 1
1. 8156442559260000 1.0105921010230000E-001 352.193100 1
7.223700494250000E-003 -3.475528575830000 350.391700 1
-1.343718759960000E-001 1.839B856627420000 280.278600 1
-5.516219518160000 -7.118390104550000E-001 Ee. 360980 1
-7.371999829680000E-001 7. 058378041600000 29.354230 1

63247 6348 £349 6350

6347 6351 £348 6352

6347 6348 6353 6352

6354 6355 3024 2924

6354 6356 E355 2924

6357 6358 £3589 6360

6358 6361 6360 0357

6362 6360 E363 6358

6364 6365 E366 6367

6368 6363 6362 0363

6370 1294 £371 967

6358 6372 E360 6363

6362 6363 6373 6358

6374 6375 E376 6377

6358 6360 E361 6362

600 6378 721 6379

63280 6381 1574 B382

Figure A. 2. ANSYS Data File
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The other data file for the representation of the interaction between burnback code
and flow solver. A data file containing burning surface area and port area of the grain
for the corresponding burnback step is given to flow solver as an initial input as
shown in Figure A. 3. In this figure, left column represents the burning area of the
grain at the corresponding slice. The right column is the port area of the grain at the
corresponding slices. At the top, the numbers, 0, 1, 2,..etc, represent the burnback

steps. This data file is generated by burnback code and it is given to flow solver.
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1

00038604 2 .001264506
00083311 00199258
.00056349 . 00124860
00022934 00100128
00022348 . 00096139
Zz

00000590 00304372
.00033708 00283230
.00064851 00203447
00043970 .00130246
.000243972 .001160483
3

. 00000000 . 00305968
00000000 . 00305968
00000834 00304572
. 00048987 . 00245931
00061542 . 00165550
4

00000000 . 00305968
00000000 . 00305968
. 00000000 . 00305968
00000044 00305768
00014740 .00239548

Figure A. 3 Port Area and Burning Surface Area Information Given to Flow Solver

The final input considered here is the input for the grain burnback code. Actually it is
possible to read these inputs from the data file created. Optionally, it is possible to

change these values inside of the source code. These inputs are tabulated in
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Table A. 2 Inputs for Burnback Code

R Radius of the domain (m)

LENGTH Length of the grain (m)

RMOT Radius of the grain

ANSLICE Number of slice to be divided for the fast determination of
distance values.

NUMGRIDZ Number of grid used in z-direction

BURNBACK Number of burnback steps used

FAt Burnback distance

"MESH.DAT" Data file to read for the information of unstructured

elements generated by ANSYS

"SORTBOUND.DAT" | Data file to read for the arrangement of unstructured

nodes.

The flowchart of the programs used in this study is shown in Figure A. 4.

SORT1.F30

SORT2.F80 “MODEL.SAT" AUTOCAD \

/ *SORTBOUND.DAT® / / “MESH.DAT" # ANSYS \

BURNBACK.F20

h

PERFORMANCE
“SLICE.DAT* vl PREDICTION OF THE
‘ ROCKET MOTOR

Figure A. 4 Flowchart of the Performance Prediction in 1-D
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f P
£ 7

SORT1 Fa0 SORTZ Fi0 ;"f "MODEL AT fa— AUTOCAD
Fg i
| i |1 '
Fi i
/ J y /
,fx “SORTEOUND.DAT r.f r_f MESH BURMLAT | ANSYS
/ y ; ;'
£ 1 i /
BURNBACK FoD PRESSURE
! mEsHoaT / SET 3O ~PERFORMANCE
/ - 7 ERFORMANCE ™\
/o ROMEU.OAT S RO SOLYER f———  PREDICTION OF THE |
/ ELemenT.oaT I w._ ROCKET MOTOR  /

Figure A. 5 Flowchart of the Performance Prediction in 3-D

Table A. 3 Inputs for Set-3D

0.3 —— infloy Mach number

aooo0ao. ——>» 1inflow pressure in Pascal

3300. ——3 inflow temperature in Kelwvin

100000, ——3» outflow pressure in Pascal

0.0,0. ——> alpha and Beta in degree= (always zero for internal flow)
0.0.0 ——3 Center of Mas=

111 ——3 i=zolwve nl:explicitsinplicit, n2:lst or 2nd order n3d:nflux 1:ROE
2.5 ——>» cfl

J000 ——3 number of time step

10 ——» HSres (print residual on secreen for every 10 iteration)
1.ell ——> magimumn physical time for run (for unsteady problems)

8. ——» order of magnitude for the residual to be reduced

100 ——3» frequence for the s=olution to be sawved

0 ——> input data file i= u=zed or not

2 ——3 NPAR (# of partition for parallel processing)
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Table A. 4 Command Switches of Tetgen

Tetrahedralizes a picecwise linear complex ( poly or smesh file).
Quality mesh generation. & minitmum radius-edge ratio may be specified (default 2.0,

Apples a masmum tetrahedron volume constraint.
Aesions attnbutes to 1dentify tetrabedra in certam regions.
Eeconstructs/Eefines a previously generated mesh.
suppresses boundary facets/zegments splitting,
Inserts a list of additional pomts into mesh.

Does not merge coplanar facets.

=et a tolerance for coplanar test (default 1e-8).
Detect intersections of FLC facets.

Mumbers all output items starting from zero.
Jettizon unuzed vertices from output node file
Generates second-order subparametric elements.
Outputs faces (including non-boundary faces) to face file.
Cutputs subsegments to  edge file.

Cutputs tetrahedra neighbors to neigh file.

Outputs mesh to mesh file for wiewing by Medit
Outputs mesh to msh file for viewing by Gid.
Outputs mesh to  off file for wiewing by Geomview.
Suppresses output of boundary information.
csuppresses output of node file,

Suppresses output of ele file.

Suppresses output of face fils.

Suppresses mesh tteration numbers.

iChecks the consistency of the final mesh.

Quiet: Mo terminal output except errors.
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Table A. 5 Input File of the Set-3D (mesh.dat)

25348 85142
-5.011342 -20.638850 1.551316
-5.383993 -20.525000 0.000000E+00
-5.011342 -20.6536850 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00
-5.369204 —20.525000 1.551316
-3.460526 -21.040230 1.551316
-3.460526 —-21.008410 0.000000E+00
-1.909211 —-21.302920 1.551316
-1.909211 —-21.334750 0.000000E+00
-3.578949E-01 -21.508310 1.551316
-3.578949E-01 -21.451810 0.000000E+00
1.193421 -21.5638010 1.551316
25348 25346 872 25347
24080 25348 25024 ga72
25345 8972 25343 25344
25344 25346 ga72 25341
25344 25346 25345 8372
8536 25348 24080 25347
24080 25348 ga72 25347
8536 25348 25023 24080
25347 25345 24080 8536
450 S66 447 24115
9972 25348 250304 8346
25023 25348 25024 24080
8536 25348 25347 25023
25033 1360 1376 21489
25033 1976 13549 21489

As given in the table, first line of “mesh.dat” file informs the total number of nodes
and elements on the solution domain. Then X,y,z coordinates of the nodes, and

connectivity data of the 4 nodes are given.
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Table A. 6 Input File of the Set-3D (element.dat)

85142
9081
2490
1014

565

13623
3237

13089
8876

17647
1172

195809
1418
2098

15441

10513

162584
8791
1942

10399

10547
5289
E631

11135

17253
24549
7156
2953

12471

4527
8994
1011
686
13654
3246
13094
4484
175804
1056
12890
1417
an9z
15718
10395
16285
7950
1771
10307
10428
24264
5085
11272
14215
21540
22208
3072
12557

4532
949§

14473
2123
13083
B8LE
17651
1174
19817
1415
2993
15727
10512
1292
8126
13823
10431
10421
5290
50649
11200
14216
2344
7155
2076
12441

21049
9483
1129
569
13624
3120
13200
8855
17486

198488

3053
15442
10511
16283

7951

1805
10421
10431
21966

6633
11155
17449

2464

7332

3070
12462

Table A. 7 Input File of the Set-3D (komsu.dat)

[ n s R m A p R PR

17999
15480
17828
EE7IE
13064
54302
18201
35842
50773
53542
2403
28640
20064
52322
20973
33142
—4
6408
36435
36435
73712
17758
45447

34404
41472
67467
7558
24825
44944
12196
76518
48615
46530
7426
6E07
374
33888
23414
2516
23723
4522
11092
11092
145804
6185
13218

67814
8787
28697
538
—4
1525
5074
27461
17596
53544
29533
55586
51740
55587
544760
=2
25632
47275
20490
7368
34742
17232
25865

42607
32769

7384
66797
50128
46533

2353
16535
483613
41258
16155
15256
41299
19165
23416
50812
25560
21449

4687
21623
81781
20630
15538
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In the first line of the “komsu.dat” file, total number of elements are given The
remaining lines represents the neighboring 4 elements of the element under

consideration Negative or zero values represent marked boundary.
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