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Yıldız, Erdinç Nuri 
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Supervisor : Prof. Dr. Bülent E. Platin 

Co-Supervisor : Dr. Mutlu D. Cömert 

 

July 2007, 224 pages 

 
 
 
 
Flutter analyses and tests are the major items in flight certification efforts required 

when a new air vehicle is developed or when a new external store is developed for an 

existing aircraft. The flight envelope of a new aircraft as well as the influence of 

aircraft modifications on an existing flight envelope can be safely determined only 

by flutter tests. In such tests, the aircraft is instrumented by accelerometers and 

exciters. Vibrations of the aircraft at specific dynamic pressures are measured and 

transmitted to a ground station via telemetry systems during flutter tests. These 

vibration data are analyzed online by using a flutter test software with various 

methods implemented in order to predict the safety margin with respect to flutter. 

Tests are performed at incrementally increasing dynamic pressures and safety 

regions of the flight envelope are determined step by step. Since flutter is a very 

destructive instability, tests are performed without getting too close to the flutter 

speed and estimations are performed by extrapolation.  



 

v 

In this study, pretest analyses and flutter prediction methods that can be used in 

various flight conditions are investigated. Existing methods are improved and their 

applications are demonstrated with experiments. A novel method to predict limit 

cycle oscillations that are encountered in some modern fighter aircraft is developed. 

The prediction method developed in this study can effectively be used in cases where 

the nonlinearities in aircraft dynamics and air flow reduce the applicability of the 

classical prediction methods. Some further methods to reduce the adverse effects of 

these nonlinearities on the predictions are also developed. 

 
 
 
 
Keywords: Flutter, Flutter Test, Flutter Flight Test, Aeroelasticity, Limit Cycle 

Oscillation. 
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ÇIRPINTI UÇUŞ TESTİ VERİLERİNİ KULLANARAK AEROELASTİK 
KARARLILIK KESTİRİMİ 
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Yeni bir hava aracı geliştirilmesi ya da mevcut bir uçağa yeni harici yükler takılması 

durumunda yapılması gereken, uçuşa uygunluk çalışmalarının önemli bir maddesini 

çırpıntı analiz ve testleri oluşturmaktadır. Yeni bir hava aracının uçuş zarfının 

belirlenmesi yanında mevcut bir hava aracında yapılacak değişikliklerin uçuş zarfına 

olan etkilerinin belirlenmesi ancak çırpıntı uçuş testleri ile güvenilir bir şekilde 

gerçekleştirilebilmektedir. Çırpıntı uçuş testlerinde uçak ivmeölçerler ve sarsıcılar ile 

donatılmaktadır. Uçağın belirli bir dinamik basınç değerlerindeki titreşimleri 

ölçülmekte ve yer istasyonuna telemetre ile aktarılmaktadır. Bu titreşim verileri bir 

çırpıntı testi yazılımında bulunan çeşitli yöntemler kullanılarak gerçek zamanda 

işlenmekte ve çırpıntı emniyet payı uçuş sırasında anında hesaplanmaktadır. Dinamik 

basınç değeri adım adım arttırılarak bu testler yinelenmekte ve bu şekilde uçuş 

zarfının güvenli olduğu bölgeler adım adım belirlenmektedir. Çırpıntı olayı son 
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derece yıkıcı bir karasızlık olduğu için, çırpıntı hızına belirli bir paydan fazla 

yaklaşılmamakta ve çırpıntı hızı kestirimi ekstrapolasyon ile yapılmaktadır.  

 

Bu çalışmada, uçuş testleri öncesi yapılması gereken ön analizler ve uçuş testlerinde 

çırpıntı hızının kestirilmesi için çeşitli uçuş koşullarında kullanılabilecek yöntemler 

incelenmiştir. Mevcut yöntemler iyileştirilmiş ve uygulamaları deneylerle 

gösterilmiştir. Bunun yanı sıra bazı modern savaş uçaklarında görülen limitli döngü 

titreşimlerinin kestirilmesi için özgün bir yöntem geliştirilmiştir. Uçak dinamiğinde 

ve hava akışındaki doğrusalsızlıkların bulunduğu durumlarda birçok klasik kestirim 

yönteminin uygulanması kısıtlanırken, bu çalışmada geliştirilen yöntem etkin bir 

şekilde uygulanabilmektedir. Ayrıca, bu doğrusalsızlıkların çırpıntı kestirimine 

olumsuz etkilerini azaltacak yöntemler de geliştirilmiştir. 

 
 
 
 
Anahtar Kelimeler: Çırpıntı, Çırpıntı Testi, Çırpıntı Uçuş Testi, Aeroelastisite, 

Limitli Döngü Titreşimi. 
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MR : Lower residue. 

KR : Higher residue. 

 

(.) : Differentiation with respect to time. 

(') : Differentiation with respect to s. 



 

xxi 

(~) : Laplace transform. 

 

AIC : Akaike’s information criterion. 

ARMA: Auto Regressive Moving Average. 

ATS : Aeroservoelastic Test Setup of TÜBİTAK-SAGE. 

DOF : Degree of Freedom. 

FFT : Fast Fourier Transform. 

FM : Flutter Margin. 

FRF : Frequency Response Function. 

LCO : Limit Cycle Oscillation.  

LMI : Linear Matrix Inequality. 

LTI : Linear Time Invariant. 

MIMO : Multi Input Multi Output. 

ODP : Optimum Driving Point. 

SAGE : Defense Industries Research and Development Institute. 

SISO : Single Input Single Output. 

SVD : Singular Value Decomposition.  

TÜBİTAK : The Scientific and Technological Research Council of Turkey. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1 General 

Designing a flying machine is still one of the most difficult engineering problems, 

because expectations from an aircraft increase with the increasing engineering 

knowledge in both civil and military applications. Although many engineering 

problems are well understood and satisfactory analysis tools are developed for design 

phase, every new design and modification should be carefully tested and certified in 

real conditions to avoid unexpected failures of these expensive machines. The flight 

envelope of a new or modified aircraft is always determined by flight tests after 

engineering analyses. Military aircraft are subject to strict rules for any modification 

that is not already certified, involving many integrity tests, aeroelastic analyses, and 

flight tests. Military handbook MIL-HDBK-1763 “Aircraft/Stores Compatibility: 

Systems Engineering Data Requirements and Test Procedures” is one of the main 

guides that describes how to perform these tests when new external stores, such as 

fuel tanks or munitions, are to be certified on a certain aircraft.  

 

One of the first engineering problems in aeronautics was the aeroelastic instabilities 

that were not realized until the flight tests. In order to reduce the weight, the elastic 

stiffnesses of the early aircraft structures were so low that they were not able to 

overcome the aerodynamic forces and stabilize at a deformed shape, resulting in a 

phenomenon called divergence. The divergence is one of the simplest aeroelastic 

instabilities because it is a static phenomenon like control system reversal. Engineers 

soon solved static aeroelastic instability problems with new structure designs that had 
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higher stiffnesses. As the airspeeds increased, new and complicated aeroelastic 

instabilities were encountered such as flutter and buffeting which are much more 

difficult to overcome. Since these instabilities occur because of the coupling of 

structural dynamics and unsteady aerodynamic forces, they are called dynamic 

aeroelastic instabilities. Presently, the advances in embedding of computational fluid 

dynamics tools into structural finite element analysis tools, allow to perform flutter 

analyses which are often verified by wind tunnel flutter models and ground vibration 

tests.  

 

 

Figure 1. Comparison of critical speeds [1]. 

 

Figure 1 shows the typical instability behaviors as the speed and wing sweep angle 

changes. Sweep forward wings have a great advantage of lifting forces when they are 

rigid. However, this advantage introduces drawbacks in low divergence speeds. High 

performance aircraft that have sweep forward wings, like Russian Su-47, can only be 

operated with active divergence compensation control systems that are built in the 

flight control system of the aircraft. As the speed requirements of aircraft increased, 

wing configurations were changed to sweep back to increase the divergence speed. 

However, in the sweep back configuration, speed limits of the aircraft are determined 

by flutter. There are various ways to increase the flutter speed by passive methods 

such as mass balancing and stiffness improvements besides the use of active control 

systems. Aileron reversal, also named as control system reversal is the condition in 
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which the intended effects of displacing a given component of the control system are 

completely nullified by elastic deformations of the structure. In fact, the aileron 

reversal is not an instability; but should be considered in flight control system to 

compensate the lift lost.  

 

Among all aeroelastic instabilities, flutter is the most dangerous instability not only 

for the aircraft but also for civil structures like bridges. Flutter may occur in any 

flexible structure that has an interaction with fluids, like pumps. The severity of 

flutter can be observed in Figure 2, which illustrates the typical flutter mechanism in 

relation to frequency and airspeed.  

 

 

Figure 2. Typical frequency response of a two DOF, structurally damped airfoil 

at various airspeeds [2]. 

 

The unsteady aerodynamic forces introduce a damping effect on the response of the 

structure at low speeds. As the speed increases the aerodynamic damping 

contribution increases. At a critical speed, some of the elastic modes of the structure 
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are coupled by the aerodynamic forces such that the energy is transferred from the 

airflow to the structure, causing increasing oscillations. With a very little further 

speed increment, oscillations increase so rapidly that pilots usually do not have 

enough time to decrease the speed before a structural failure occurs. At this point, the 

equivalent damping of at least one mode becomes negative, causing a dynamic 

instability.  

 

1.2 Scope of the Study 

This study investigates the pretest and analysis tools used in flutter flight testing. The 

flutter flight testing involves many engineering disciplines to study on, such as modal 

analysis, instrumentation, data acquisition, signal processing, telemetry, system 

identification, and flutter prediction. The flutter prediction is the most critical item, 

which still needs a considerable human intervention and experience. The application 

of other items is relatively straightforward, but needs an adaptation to the flutter 

testing. This study mainly focuses on the flutter prediction methods for linear and 

nonlinear systems. Some classical and modern methods are evaluated and improved 

with new tools developed in this study. The results are demonstrated by means of 

simulations and wind tunnel experiments. 

 

1.3 Flutter Flight Test 

Today’s aircraft designs undergo sophisticated aeroelastic analyses to ensure that the 

design is free of flutter within the flight envelope. The mathematical models used in 

the analysis are often verified by wind tunnel flutter models and ground vibration 

tests. The flutter flight testing provides the final verification of the analytical 

predictions throughout the flight envelope [3].  

 

After analytical verifications, an aircraft is instrumented with accelerometers and/or 

strain gauges to measure the response of the structure to excitations, which are 

usually produced by exciters located at proper locations of the structure during flight. 
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Successive measurements at different altitudes and speeds are used to estimate the 

critical flutter speeds by the help of flutter estimation methods. A flutter flight test 

has three main aspects; excitation, measurement, and prediction. Critical flutter 

speeds or higher speeds are never tested, so predictions are always realized by 

extrapolations. A reliable extrapolation is usually difficult to achieve due to low 

signal to noise ratios and nonlinear behavior of the damping. Damping is the main 

indicator of the flutter margin for most of the methods. The flutter prediction is still a 

developing research area. Next to very old data based techniques; new, model based, 

robust, and limit cycle detectable techniques are still in progress.  

 

Usually it is preferred to make predictions during testing to reduce the test time and 

also to decide on the next safe test point. The evaluation of the test data is usually 

performed in a ground station, so a telemetry system is commonly used in a modern 

test practice. Figure 3 shows a typical modern flutter flight test process.  

 

Early test engineers were faced with inadequate instrumentation, excitation methods, 

and stability determination techniques. Since then, considerable improvements were 

made in flutter flight test techniques, instrumentation, and response data analysis. 

The flutter testing, however, is still a hazardous test for several reasons. First, one 

still must fly close to the actual flutter speeds before imminent instabilities can be 

detected. Second, subcritical damping trends can not be accurately extrapolated to 

predict the stability at higher airspeeds. Third, the aeroelastic stability may change 

abruptly from a stable condition to the one that is unstable with only a few knots’ 

change in airspeed [3].   

 

1.4 Historical Overview 

A brief historical overview of the flutter flight testing is given in reference [3]. In the 

early years of aviation, there was no formal flutter testing procedure. The aircraft was 

forced to fly within the speed and altitude limits to demonstrate the aeroelastic 

stability of the vehicle. The first formal flutter test was carried out by Von Schlippe 
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in 1935 in Germany, although the first recorded flutter incident was on a Handley 

Page O/400 twin engine biplane bomber in 1916 in Britain. The flutter mechanism in 

this test consisted of a coupling of the fuselage torsion mode with an antisymmetric 

elevator rotation mode. The elevators on this airplane were independently actuated. 

The solution brought to the flutter problem was to interconnect the elevators with a 

torque tube. 

 

 
Figure 3. Typical modern flutter flight test process [3]. 

  

On the other hand, Von Schlippe’s approach was to vibrate the aircraft at its resonant 

frequencies at progressively higher speeds and to plot the amplitude as a function of 

airspeed, as in Figure 2. A raise in amplitude would suggest a reduced damping with 

the flutter occurring at the asymptote of the theoretical infinite amplitude as shown in 

Figure 4. This idea was applied successfully to several German aircraft until a Junker 

JU90 fluttered and crashed during flight tests in 1938. An inadequate structural 
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excitation equipment, unsatisfactory response measurement, and insufficient 

recording equipment were identified as probable causes for this accident. In these 

tests, Von Schlippe was using a rotating unbalance for excitation.  

 

In late 1950’s, excitation systems consisted of inertia shakers, manual control surface 

pulses, and thrusters. The instrumentation was improved and the response signals 

were telemetered to the ground for display and analysis. Many experimenters 

realized the importance of adequate structural excitation for obtaining a high signal 

to noise ratio. The use of oscillating vanes to excite the structure was considered 

during this time. 

 

 

Figure 4. Von Schlippe’s flutter flight test method [3]. 

 

From the 1950’s until the 1970’s, many aircraft were equipped with excitation 

systems. Frequency sweeps were employed to identify resonances. These sweeps 

were often followed by a frequency dwell quick stop at each resonant frequency. The 

flight analysis was usually limited to log the decrement analysis of accelerometer 

decay rates on strip charts to determine the damping. 

 

Since 1970’s, digital computers have significantly affected flutter flight testing 

techniques. The use of computers allowed the rapid calculation of fast Fourier 
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transform of the measured response. Computers fostered the development of more 

sophisticated data processing algorithms that were useful for the analysis of response 

data to either steady state or transient excitations. The frequency and damping are 

now estimated with parameter identification techniques. Such analysis is 

accomplished online in a near real time manner. Frequency and damping trends are 

established as a function of airspeed or Mach number. These trends are extrapolated 

to determine the stability at the next higher airspeed test point. As computer speeds 

increased, the time required to conduct flutter flight testing per test point decreased.  

 

Although flutter flight test techniques advanced considerably, today’s techniques are 

still based upon the same three components as back in Von Schlippe’s method: 

structural excitation, response measurement, and data analysis for stability [3]. 

 

1.5 Literature Survey 

There are some survey papers as excellent sources for other important references [3-

6]. Through these invaluable survey papers, it is possible to observe the progress in 

this field, shortcomings, evolution, and comparison of methods. It is seen that as in 

many engineering fields, there exits no perfect method that is suitable for all cases, 

and there are still serious problems in this field. Furthermore, the aeroelastic testing 

community suffers from the lack of knowledge sharing because the results are 

usually kept confidential and not published.  

 

In the early days of flutter flight testing, the only way to estimate the flutter speed 

was to analyze the time domain signals and calculate the logarithmic decrement of 

signals. The damping was then estimated from this logarithmic decrement 

information. However, this method was prone to human errors and close modes were 

hard to analyze. To find the antisymmetric and symmetric modes, time signals were 

added and subtracted to improve the signals associated with symmetric and 

antisymmetric modes. With the implementation of fast Fourier transform (FFT) on 

computers, the test engineers began to use frequency domain data to estimate the 
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frequency response functions (FRF) of the system. The estimation methods were 

adopted from the classical modal analysis techniques starting from the simple single-

DOF curve fitting and processing to some sophisticated multi-DOF curve fitting 

techniques in years. As the computer speeds increased, parallel to the development of 

modal analysis techniques, the time domain analysis techniques reappeared. 

However, instead of using raw time domain signals directly, Inverse Fourier 

transform (IFT) of frequency response functions were utilized. Since IFT of FRF is 

the ideal impulse response of a system, time domain curve fittings can be used to 

estimate the modal parameters of the system. Nowadays, some sophisticated modal 

analysis techniques, such as polyreference, use both frequency and time domain data 

to accurately estimate the modal parameters with filters being employed in each 

domain. However, these powerful modal analysis techniques can not be used in 

flutter flight testing since the test quality in a ground testing can not be achieved in 

flutter flight testing.  

 

In parallel to the development in damping estimation techniques, some other 

techniques that were unfamiliar to modal test engineers were developed. These 

methods use different stability criteria developed by control engineers. Since the 

main aim was to measure the stability of the aircraft, which was a major field of 

study in control engineering, the stability criteria that were developed by control 

engineers were adapted to the flutter flight testing.  

 

Several comparisons of methods with both simulated and real data are available in 

the literature. Cooper [4] summarized the advantages and defects of old and newly 

developed methods. Despite the advances in this field; the estimation with close 

modes and high noise, prediction of error bounds on estimated parameters, 

application of phase resonance method, online estimation, and nonlinear estimation 

methods were listed as topics that require research on. Cooper et al. [7] compared the 

curve fitting algorithms using simulated data and showed the variation of estimates 

with noise. Dimitriadis et al. [8] compared the classic methods using simulated data 

and found that sometimes the simplest methods gave more reliable results than the 
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complex ones. It was stated that “there is no specific method that works with every 

aeroelastic model”. Kehoe [9] performed some real flight tests and approved the 

conclusion reached by Dimitriadis. Ramsay [10] described the test setup for 

Eurofighter 2000 flutter test and listed results of complex time and frequency domain 

methods without giving any conclusions. An overview of the flight tests performed 

by NASA Dryden is given in reference [5]. The modern methods like robust flutter 

margin and wavelet analysis were also investigated and were found promising. Lind 

et al. [11] compared a robust flutter margin method, which was named as the 

“flutterometer”, with classical methods and demonstrated that the flutterometer is a 

reliable method even at low speeds.  

 

A detailed literature survey for each method investigated in this study is given in its 

associated section. 

 

1.6 Objectives of the Thesis 

The main objective of the thesis is to gain knowledge on major aspects of the flutter 

flight test. A safe and efficient execution of the flutter flight test requires an 

experience on the aeroelasticity, instrumentation, test planning, telemetry, and flutter 

prediction. It is not possible to investigate all components of the flutter flight test in 

detail with a single study. However, the flutter prediction is the most critical phase of 

the flutter flight test. The aim of the study is mainly to investigate the flutter 

prediction methods. The study aims to  

• guide the test engineer to instrument the test object properly, 

• implement some commonly used flutter prediction methods on computer, 

• investigate the effectiveness of the flutter prediction methods, 

• improve the effectiveness of the flutter prediction methods, 

• investigate the applicability of some auxiliary tools, such as modal filters and 

singular value decomposition in flutter prediction algorithms, 

• investigate the effect of structural nonlinearities on flutter prediction, 

• develop tools to decrease the effect of nonlinearities, 
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• develop tools to predict limit cycle oscillations, 

•  demonstrate the investigated flutter prediction methods and the developed 

tools on a wind tunnel setup. 

 

1.7 Outline of the Thesis 

This brief introduction chapter is followed by a detailed chapter, Chapter 2 about 

flutter flight testing. In that chapter, some pretest studies such as excitation and 

measurement location selection methods and flutter prediction methods are 

investigated. The application of measurement and excitation location selection, and 

flutter prediction methods are demonstrated with the simulated data in the next 

chapter, Chapter 3. These demonstrations are performed with realistic simulation 

models. In Chapter 4, some methods that can be used for nonlinear aeroelastic 

systems are investigated. The performance of flutter prediction methods on nonlinear 

systems are examined. Wavelet analysis and Volterra series are introduced to 

improve flutter prediction methods and limit cycle oscillation prediction. The results 

of wind tunnel experiments are given in Chapter 5. Finally, in Chapter 6, some 

concluded remarks, observations, and contributions to the literature are stated.  
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CHAPTER 2 
 
 

FLUTTER FLIGHT TEST 
 
 
 

2.1 Test Techniques 

2.1.1 Excitation 

A structural excitation is the necessary part of a flutter flight testing methodology. 

The detection of impending aeroelastic instabilities cannot be made without any 

adequate excitation. An adequate excitation provides the energy needed to excite all 

of the selected vibration modes, usually up to 60 Hz in aircraft flutter test 

applications, with sufficiently large magnitudes to accurately assess the stability from 

the response data. Low excitation levels tend to give a large scatter in the damping 

values estimated from the response data. In addition, the estimated values suggest 

lower aerodynamic damping values than actually existing levels [3].  

 

An excitation system must not only provide adequate force levels but must also 

provide an adequate excitation over the desired frequency range of interest. In 

aerospace applications, it should also be light weight so as not to affect the modal 

characteristics of the airplane used in tests and have power requirements that this 

airplane can meet. It is difficult for any one system to meet all these requirements 

simultaneously. Over the years, several types of excitation techniques were tried with 

varying degrees of success.  

 

Manual control surface pulses were the first means of excitation. Depending on the 

type of the control system, modes up to about 10 Hz can be excited by this way. Two 
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benefits of this type of excitation are that no special excitation equipment is required 

and that the transient response signature of the structure is easy to analyze for 

stability. The test duration is short, so many pulses can be applied at each test point. 

However, there exist several drawbacks of this method. First, it is difficult to get 

repeatable pulses, and thus the degree of excitation is inconsistent. Second, either the 

pilot cannot provide a sharp enough input or the control system is unable to provide a 

sharp enough disturbance. Most modern fly by wire flight control systems have low 

pass filters in the stick input path. In such cases the flight control system should be 

reprogrammed to allow sharp control surface pulses. Reprogramming of the flight 

control system of an aircraft introduces a considerable preparation period and 

workmanship. Flight control surface pulses are still used today as an excitation 

techniques for flutter flight testing [3]. 

 

Oscillating control surfaces, commanded from an external signal were also used in 

the early days. The primary advantage of this type of system is that no additional 

hardware is required except for an excitation control box located in the cockpit. A 

disadvantage of this type of system is the frequency response limitations of the 

control surface actuators. Often, some special actuators are required to excite the 

critical high frequency modes. 

 

Thrusters, sometimes known as bonkers, ballistic exciters or impulse generators, are 

early devices circa 1940 used for structural excitation. Thrusters are simple, 

lightweight, small, single shot, calibrated solid propellant rocket devices that 

generally do not affect the modal characteristics of the airplane. A single shot usage 

is the biggest drawback of these devices [3].  

 

Inertial exciters, rotating unbalance exciters, and inertia shakers were also tried as 

structural excitation systems. Since the rotating unbalance produces a force 

proportional to the square of rotation speed, the excitation capability is limited at 

lower frequencies and excessive at higher frequencies. Often weight and size 

requirements preclude the use of such inertial exciters. However, inertia shakers, 



 

14 

which are usually hydraulically powered and electrically controlled, are in acceptable 

size and weight [3].  

 

Another way to produce the excitation force is to use aerodynamic force itself. 

Aerodynamic vanes consist of a small airfoil that is usually mounted on the tip of 

wing or stabilizer. The vane is generally mounted on a shaft, driven either electrically 

or hydraulically, and oscillates about some mean angle. The advantage of this type 

system is that it can excite low frequencies well. The main disadvantage is that the 

maximum force produced varies with the square of the equivalent airspeed. Other 

disadvantages are the addition of mass to the wing structure, disturbance of the 

normal airflow around the wingtip, and large power requirements. 

 

The random atmospheric turbulence was used for structural excitation in many flutter 

flight test programs. The greatest attraction to this type of excitation is that no special 

onboard exciter hardware is required. The atmospheric turbulence excites all surfaces 

simultaneously, which causes both symmetrical and antisymmetric modes excited at 

the same time. This method eliminates the need to perform symmetric or 

antisymmetric sweeps. Although this method was used with some success over the 

years, it has several disadvantages. The turbulence is often not intense enough to 

produce a sufficient excitation, which causes scattered and lower damping estimates. 

The turbulence usually excites only lower frequency modes for most airplanes. Long 

data records are required to obtain results with a sufficiently high statistical 

confidence level. The signal to noise ratio of the response data is often low [3]. 

 

2.1.2 Instrumentation 

The instrumentation used to record the structural response of an airplane to an 

excitation is another critical component of the flutter flight testing methodology. The 

response data must be measured at enough number of locations and be of high 

enough quality that the flight can be conducted safely. The most commonly used 

transducers to measure the excited response of a structure were accelerometers and 
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strain gage bridges. Today, the more commonly used device is the accelerometer, 

since accelerometers are more compact than they were and exhibit practically 

invariant behavior under operational temperature changes [3].  

 

Regarding the transfer of measured signals to the ground station, the pulse code 

modulation (PCM) or digital telemetry was initiated in the 1960’s, although FM/FM 

telemetry was still widely used for flutter testing because of the frequency bandwidth 

required. In FM/FM transmission, the analog signals are modulated with frequencies 

that are in FM band and transmitted to the ground antenna. However, in PCM 

telemetry, the signals are first digitized and then transmitted to the ground. The PCM 

telemetry significantly increases the number of parameters that can be transmitted to 

the ground but requires a filter to prevent frequency aliasing of the analog response 

signal during its digital sampling. The frequency bandwidth of PCM systems 

increased significantly by the 1980’s. A frequency bandwidth of 200 Hz is easily 

attainable nowadays and sufficient for most flutter applications. As a result, PCM 

telemetry is now usually preferred for most flutter flight testing [3]. 

 

2.1.3 Flutter Prediction 

There are various commercial companies that provide necessary equipment 

customized to specific needs of a flutter flight test. The selection of an appropriate 

excitation method and associated instrumentation depends on the aircraft type under 

test, which is usually straightforward, and on the flutter prediction method to be 

used. Once the response data is acquired, it has to be analyzed very carefully to 

achieve the final goal. Several methods were developed with the goal of predicting 

flutter speeds and improving flight testing [12]. These methods include approaches 

based on extrapolating damping trends [1], envelope function [13], the Zimmerman-

Weissenburger flutter margin [14], discrete time autoregressive moving average 

model [15], and the flutterometer [12, 16-20]. These methods were all demonstrated 

on simple test cases and flight tests. However, each method has certain strengths and 

weaknesses, and still needs further improvements.  
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The prediction methods can be classified as data based and model based methods 

according to the way that they use the measured data. Some methods rely entirely on 

flight data or models derived from flight data. Some others use both flight data and 

theoretical models. 

 

2.2 Selection of Best Excitation Points 

One of the most severe problems in flutter testing is the low signal to noise ratio. 

This occurs because the structure of the airplane may not be excited such that the 

response is not obtained at sufficiently large levels in the various modes of interest. 

In order to ensure that a required mode is excited, it is necessary to ensure that the 

excitation point is not at or close to a nodal line of that mode. An optimum driving 

point (ODP) function can be defined as 

 

( ) rj
r

ODP j = Φ∏  (2-1)

 

where [Φ] is the mode shape matrix, r denotes the modes considered and j is the 

specific degree of freedom. This function is a measure of the cumulative 

observability of all modes in interest. The degrees of freedom that have high ODP 

values are the best excitation points [21]. 

 

Since most of the time it is not possible to excite the structure with a rotary exciter, a 

new set of translational coordinates can be defined. The original eigenvector matrix 

can be transformed according to the new set of coordinates with additional dependent 

coordinates at different locations of the airfoil. Thereafter, the most suitable 

excitation point can be selected according to the ODP values. In the selection of the 

exciter locations, both ODP and practical installation constraints should be 

considered. 
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2.3 Selection of Best Measurement Points 

In the selection of measurement locations there are a number of considerations; but 

two major ones are as follows. 

• points at which measurements are taken so as to present a visually 

informative display of the resulting mode shapes, and 

• DOFs which are necessary to measure in order to ensure an unambiguous 

correlation between the test and analysis models. 

The former consideration essentially calls for a fairly uniform distribution of points 

with a sufficiently fine mesh that the essential features of the various mode shapes 

can be seen without aliasing effects. However, the second consideration is more 

critical. Since a limited number of sensors are used in a flutter testing, it is very 

crucial to sense the contribution of each mode in every sensor so as to accurately 

resolve the modes and their parameters. A number of different algorithms were 

proposed to select the best measurement points. However the most popular one is the 

“effective independence technique” [21] which is briefly explained below.  

 

If there are m number of modes that are in interest, then each mode shape must be 

defined at a minimum m DOF, otherwise, the submatrix of eigenvectors will 

necessarily be singular. Since it is not possible to measure all critical DOF, because 

of difficulties in accessing and measuring rotary DOF, it is prudent to define each 

mode shape at more than this minimum number. Thus it is necessary to develop a 

procedure that can rank the various DOF in a descending order of importance. A 

predictor matrix, [Ap]mxm, and its associate, [E]NxN, are computed for the incomplete 

set of m mode shapes as below. 

 

[ ] [ ] [ ]Nxm
T
mxNmxmpA ΦΦ=  (2-2)

 

[ ] [ ] [ ] [ ]TmxNmxmpNxmNxN AE ΦΦ= −1  (2-3)
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The matrix [E] is then used to eliminate successively those DOF from the full set of 

N which contribute least to the rank of [E]. By simply sorting the diagonal elements 

of [E], the most important DOF, which cause highest values in the diagonal can be 

selected. By discarding the least important DOF and the DOF that are unavailable for 

measurement, a new iteration can be performed to sort the remaining DOF. This 

iteration can be repeated until the rank of [E] get close to the desired number of 

sensors. Distribution of the sensors that is determined by this method may not 

present a visually informative display for the animation of mode shapes. However, 

the measurements from these locations will not result in rank deficient FRF matrices 

during modal parameter extraction. The measurements from these locations would 

result in useful FRFs. 

 

2.4 Flutter Prediction Methods 

2.4.1 Damping Extrapolation 

The flutter speed prediction from the damping trend is one of the most popular 

methods used by the aeroelastic testing community. This method can be considered 

as a data based method because it relies entirely on analysis of flight data with no 

consideration of theoretical models of the specific system being tested. This 

approach is actually straightforward to understand conceptually. Simply stated, the 

damping of at least one mode becomes zero at the onset of flutter. The flutter 

prediction method consists of noting the variations in modal damping with airspeed 

and extrapolating those variations to an airspeed at which damping should become 

zero. This resulting airspeed is considered as the predicted flutter speed. The 

principle behind this method is quite sound; however, there are often some 

difficulties in practice. One area of difficulty is the extraction of modal damping. 

Aeroelastic flight data often have low signal to noise ratios, and so sophisticated 

techniques may be required for processing. Another area of difficulty is the 

extrapolation method. The damping can be a highly nonlinear function of airspeed so 

that the extrapolation must be carefully performed to ensure that it accurately 
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accounts for any high order nonlinearity. For highly coupled systems, the damping of 

the modes decreases all of a sudden although it is measured in a monotonically 

increasing trend up to that speed. So it may not be possible to measure this reversal 

trend of the damping until speeds get very close to the flutter speed, which is not an 

acceptable condition. Such a flutter phenomenon is called as the “explosive flutter”. 

In addition, highly coupled systems usually have lower flutter speeds than loosely 

coupled systems. Aeroelastic systems are designed with an optimum mass and 

stiffness distribution to have higher flutter speeds with mild behavior.  

 

There are several methods developed by modal test engineers to extract modal 

damping and the other modal properties of the system from the response data, which 

can be divided into two main categories; namely, frequency and time domain 

methods. In all frequency and some time domain methods, the frequency response 

function of the system should be determined first. Since the calculated FRF is itself 

an estimation, the reliability of damping calculations from these estimated FRFs 

depends on their quality. Thus, adverse effects like noise and poor excitation will 

cause a scattered damping estimation [22]. Another drawback of a modal test is that, 

all modal analysis methods require a human intervention hence are open to human 

errors, which precludes the development of a robust and automated code. Because of 

time considerations during flight test, the analysis tool should require a minimum 

human intervention to calculate the damping.  

 

2.4.1.1 Literature Survey 

Although aeroelastic tests had been performed long before Koenig [22], Koenig was 

the first to emphasize the problems on damping estimation. The computational 

power, measurement quality, and modal analysis methods of that time were 

insufficient to predict the flutter speed. Since FRF calculations were not reliable due 

to the noise problems, it was not possible to establish FRFs without using any filter. 

Koenig used flight vibration test results of Airbus A310 aircraft and estimated the 

modal damping by fitting curves to the measured FRF. He also sent the time and 
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frequency domain data to seven different experts in four European countries for 

modal data analysis. The results were disappointing with some large scatters up to 

5% in the mean frequency and up to 43% in the mean damping. Since the flutter 

estimation depends on the damping estimation, such a high variation in damping 

forced Koenig to conclude that, the state of the art of flight vibration analysis is poor 

and insufficient. The earlier studies on aeroelastic testing can be found in reference 

[23] which is a conference proceeding, published in 1975 by NASA. Bennett and 

Abel [24] were the first that encountered the failure of flutter prediction in real life. 

They used the impulse response function and performed a least squares curve fit in 

time domain. The instrumented drone was lost because of flutter despite the online 

flutter monitoring. The analysis tools did not even indicate the onset of flutter.  

 

The least squares curve fit of time domain data was commonly used in early days 

despite its limitations such as the excessive computer time required and accuracy loss 

for systems that have more than three modes. These limitations were eliminated by 

the study of Smith [25]. However, nowadays computers allow the implementation of 

nonlinear least squares curve fit algorithms for the modal parameter estimation in 

both time and frequency domain.  

 

Cooper [4] summarized the important points in using time and frequency domain 

methods. It was stated that, “In the modal analysis community it is considered to 

perform a global curve fit, simultaneously using data from a number (often large) of 

shakers and transducers (MIMO approach). Such an approach is not recommended 

for flight testing, as there is a likelihood of there being a wide scatter of damping, 

and even frequency, estimates between individual transducers”. It was recommended 

to use SISO formulations if there were no need to use any mode shape information 

for analysis. Although there were advanced FRF estimation methods such as Hc 

(three channel FRF estimator / instrumental variable FRF estimator), it was 

recommended to use traditional H1 estimate.  
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2.4.1.2 Frequency Domain Methods 

When using parameter estimation methods, an engineer has the choice of whether to 

use a simple single-DOF method or some more sophisticated multi-DOF methods. 

For a multi-DOF system with well separated modes, the parameters of each mode on 

the FRF can be found by examining each circle on the Nyquist plot, or each peak on 

the Bode plot, individually. Such approaches are called as single-DOF methods. It is 

common to assume that the damping is small enough so that the damped natural 

frequency is the same as the undamped natural frequency. The damping values can 

be found from either the half power points, or a number of points around the circle 

(or peak), or by curve-fitting. The problems with using such methods is that the 

mathematical model becomes invalid if the modes are sufficiently close to each other 

(usually defined by overlapping the half-power bandwidths) resulting in some poor 

damping estimates. In the extreme case, one mode will dominate another mode to 

such an extent that only the parameters of the dominant mode are estimated. 

However, the use of such methods is still very commonplace for flutter flight testing, 

particularly for military aircraft, due to their ease of use. In civilian aircraft however, 

where there is a much greater likelihood of close modes due to engines mounted on 

the wings, the use of such methods is not so common. Often a number of 

transformations between the time and frequency domains are required in order to 

isolate all the modes [4].  

 

In multi-DOF methods, the FRF is modeled as some form of rational fraction 

expansion that includes contributions from all the modes. Therefore, no problem 

arises when close modes are analyzed. As well as the contribution of individual 

modes including complex amplitude terms, the upper and lower residuals should also 

be included in order to take into account the modal behavior outside the frequency 

range of interest. The majority of techniques in this category employ an iterative 

nonlinear least squares curve-fit to the FRF model over the frequency range of 

interest. These methods require initial frequency and damping estimates for the 

iterative process and the convergence speed can be very sensitive to these initial 
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estimates. The alternative approach is to produce a linearized model and to find the 

estimates using a direct procedure. Such methods include the rational fraction 

polynomial method. 

 

The method developed by Nissim and Gilyard [26] uses a model that directly 

estimates the physical mass, stiffness, and damping matrices. A maximum likelihood 

approach was developed [27] including both input and measurement noise models. 

Theoretically, such an approach should provide the best statistical estimates of the 

parameters. However, there can be convergence problems when using such 

sophisticated methods on systems with low damping and high modal densities.  

 

The non-linear iterative curve-fit approach is the most popular method used in the 

aerospace industry [4]. This methods requires an initial analysis to decrease the 

computational time during flight tests. However, such an analysis are usually 

conducted in practice before the flight tests.  

 

2.4.1.3 Time Domain Methods 

The time domain parameter identification became feasible with the development of 

the digital computers. Such methods are based upon a time series representation of a 

system model, which can be related to the state space model, often used in the 

control field. Although it is possible to develop methods based upon a model relating 

inputs and outputs, the modal analysis community has tended to use methods that 

curve-fit the impulse response function. The impulse response function of a system 

can be calculated from the inverse Fourier transform of the FRF and the time 

response to an impulse. It is also possible to generate the impulse response function 

from the response to an unknown random input. A large number of mathematically 

rigorous time domain techniques exist in the signal processing field. However, the 

direct application of such methods to modal analysis or flutter flight testing is very 

difficult due to high modal densities and low damping values.  

 



 

23 

One inherent problem with the use of time domain methods is their incapability to 

model the residual effects directly. Such effects result in some leakage errors due to 

filtering modes outside the frequency range of interest, which can cause problems. 

 

Multi-DOF curve fitting methods model the impulse response as a summation of 

exponentially damped sinusoids. Often, a least squares minimization of a difference 

equation representation relating the structural response at different time instants is 

used. This difference equation formulation gives rise to some biased estimates when 

the data is corrupted. The most common remedy is to increase the number of modes 

in the fitted model. Although such an approach removes most of the bias, the user 

then has to distinguish between the system modes and the spurious modes. In real 

structures such as aircraft, this differentiation can be difficult, and a fair amount of 

user interpretation is required in order to get the best out of the methods [4]. 

 

2.4.1.4 Implementation of Nonlinear Least Squares Fit 

In this study, the method of multi-DOF nonlinear least squared fit (NLSF) in 

frequency domain is used for damping extrapolation, since close modes case is 

usually encountered in practice and NLSF has been around for a long time. In order 

to improve the fit, low and high residual modes will be included in the FRF 

expression. The mathematical model of an FRF can be expressed as 
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Here index j stands for the response DOF, k for the excitation DOF and r for the 

mode number. MR and KR represent the low and high residues, respectively. 

Boundaries m1 and m2 define the number of modes that will be included in the fit. 

Finally, rA, ωr, and ηr represent the modal constant, natural frequency, and modal 

damping of the rth mode, respectively. The error function can be defined as 
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( ) ( )∑∑ −=
k j

ijkijkmeasuredi HHe ωω  (2-5)

 

The norm minimization of vector {e} with respect to the modal parameters and 

frequencies that are in interest would result in an optimum curve fit. The modal 

parameters are directly obtained without performing other operations on the curve. 

Matlab software is used for solving this optimization problem.  

 

It is possible to fit multiple FRF simultaneously. For a single excitation point, the 

error expression (2-5) can be rewritten such that it is compatible to the Matlab’s 

“lsqnonlin” function as follows. 
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where ω1 and ωp define the frequency range of interest.  

 

Necessary Matlab codes are prepared to calculate the FRF from time signals and to 

fit an analytical FRF. Once the modal dampings are estimated, a polynomial fit to 

damping versus flight speed can be used to predict zero damping speed by 

extrapolation.  

 

2.4.1.5 FRF Improvement 

The measured FRF can be improved by orthogonality checks and elimination of 

weak signals. Modal filters and singular value decomposition can be used for such 
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improvements. Such approaches are suggested in the literature but not studied in 

detail. In this study, the application of modal filtering and SVD decomposition to 

flight testing is investigated. 

 

2.4.1.5.1 Modal Filter 

A modal filter is simply a coordinate transformation from the physical to modal 

coordinates. The concept of modal filter was developed by the control community in 

order to deal with the problem of control spillover. The vibration suppression of 

large structures, such as space structures, is usually achieved by means of active 

control. Since actuators have limited bandwidths, the out-of-range modes can not be 

controlled, but may be excited accidentally. So it is crucial to filter the contribution 

of the controllable modes from the overall response data. Once the responses of the 

particular modes are extracted, appropriate control signals can be generated that 

affect only the particular modes of interest. Modal filters can be used to subtract FRF 

of individual modes from measured FRF. Then, by using simple single degree of 

freedom methods, the modal parameters can be extracted quite easily. In addition, 

any spatially uncorrelated measurement noise can be generally reduced by the spatial 

averaging that is inherent in the modal filter calculation [28].  

 

A modal filter is a matrix whose columns are a set of reciprocal modal vectors. By 

definition, these reciprocal modal vectors are orthogonal to the modal vectors in a 

given frequency range. There are several ways to calculate the modal filters. A 

straightforward solution for a modal filter is merely the generalized inverse of the 

modal matrix with rows corresponding to the sensor locations. Another method is the 

reciprocal modal vector method which calculates the modal filter from a measured 

FRF matrix and modal parameters estimated from the FRF matrix [28]. So, the 

modal properties of the structure must be known to calculate the modal filter during 

flight. Usually, a ground vibration test is carried out on the structure before the flight 

test, so the mode shape matrix of the structure is known at the zero flow speed. Since 

modal filters are spatial filters, they are not affected from the natural frequency or 
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damping changes as long as the mode shapes do not change. So it will be assumed 

that mode shapes of the structure do not change severely with changing flight speed.  

 

The modal filter, [ψ] can be calculated by the inverse of mode shape matrix, [Φ] as 

 

[ ] [ ] 1ψ −= Φ  (2-7) 

 

Usually it is not possible to obtain the full mode shape matrix. It is also possible to 

calculate the modal filter from the truncated mode shape matrix by pseudo inverse 

operation.  

The modal coordinate responses, {η}, can be calculated from the vector of physical 

response measurements, {x}, as 

 

{ } [ ] { }T xη ψ=  (2-8) 

 

The decoupled FRF matrix, [Hdecoupled], can be calculated from the FRF matrix, [H], 

as 

 

[ ][ ]TdecopuledH H ψ⎡ ⎤ =⎣ ⎦  (2-9)

 

The effectiveness of the method will be investigated in Chapter 3. 

 

2.4.1.5.2 Singular Value Decomposition 

The singular value decomposition (SVD) is another tool that can be used to improve 

the measured FRF. Furthermore, SVD provides an information about the number of 

independent FRF and the number of modes within the analyzed frequency range. 

Finding the number of modes from FRF may become very difficult in the presence of 

repeated or close modes and measurement noise. So, SVD also provides a way to 

automate the curve fitting algorithms.  
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The augmented FRF matrix,  

 

[ ] ( ){ } ( ){ }[ ]
1111 LxnpLxLxnp HHH ωω L=  (2-10)

 

can be decomposed by SVD as follows. 

 

[ ] [ ] [ ] [ ]TnpxnpLxnpLxLLxnp VUH Σ=  (2-11)

 

Then the decomposed matrix [Σ], whose diagonal elements are the singular values, 

gives the amplitude information of modes. The matrix [U] gives the frequency 

distribution of the amplitudes and the matrix [V] gives the spatial distribution of the 

amplitudes. The number of nonzero singular values defines the number of modes 

within the analyzed frequency range. Singular values below a specified threshold 

should be treated as zero. Once the number of nonzero singular values is determined, 

the decomposed matrices can be reconstructed and combined back to obtain the new 

FRF matrix as follows. 
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The noise reduction and mode number estimation capability of SVD will be 

investigated in Chapter 3. 

 

2.4.2 Envelope Function 

Flutter speeds can be predicted using a method based on an envelope function, 

namely, the “envelope function” method [13]. This method, like the damping 

extrapolation approach, is a data based approach that predicts the onset of flutter 

based entirely on the analysis of flight data. The data used by this method are simply 
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the time domain measurements from sensors in response to an impulse excitation. 

The fundamental nature of this method is somewhat similar to the method based on 

damping extrapolation. However, this method does not directly use the estimates of 

modal damping. Instead, it notes that the envelope bounding the impulse response 

gets larger as the damping decreases. Thus, the size and shape of the response 

envelope can be used to indicate a loss of damping and, consequently, the onset of 

flutter. An envelope function that bounds an impulse response can be computed in 

several ways. The current formulation considers an approach based on the Hilbert 

transform. A signal y(t) is related to its Hilbert transform yH(t) as being similar in 

magnitude but differing in phase by 90°. An envelope function that bounds the 

impulse response is easy to compute by using the phase difference between y(t) and 

yH(t) as follows. 

 

( ) ( ) ( )22 tytytenv H+=  (2-13)

 

This envelope will clearly increase in size as the data indicate impulse responses of a 

system with decreasing modal damping. Unfortunately, the amplitude of this 

envelope can be also affected by the size and shape of the impulse given to the 

system. Thus, the time centroid is needed as a further indication of the stability of a 

system. This centroid, t , is computed with respect to a maximum length of time 

window, tmax, within which the data lie as 
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A shape parameter is used for the actual prediction of flutter. This parameter S is 

simply the inverse of the time centroid such that tS 1= . This shape parameter is 

then assumed to be a polynomial function of airspeed as 

 

...2
210 +++= VSVSSS  (2-15)

 

The prediction of the flutter speed is accomplished by noting that S=2/tmax when the 

system has the critical damping at the onset of flutter. The flutter speed is, thus, 

predicted by noting the value of the polynomial at which this condition is satisfied. 

However, this condition is valid only for single-DOF systems. For multi-DOF 

systems, the shape parameter, S, will reduce rapidly with decreasing damping but not 

to a value of 2/tmax, because of the effect of the other damped modes. However, it is 

known that as the speed approaches the critical flutter speed, the flutter mode shape 

dominates on the response of the structure. So, it is possible to estimate the flutter 

speed by using the envelope function for multi-DOF systems with critical condition 

S=2/tmax. The envelope function is a useful and fast method in monitoring the overall 

damping during flight. It can be used as a quick check tool which may indicate 

whether the damping has changed significantly since the last test.  

 

An estimate for t , and therefore S, may be obtained very quickly from the raw time 

data without any transformation by using the following approximation of Equation 2-

14 [13]. 
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2.4.2.1 Implementation of Envelope Function 

The impulse response of the aeroelastic structure, which is necessary to calculate the 

shape parameter, S, can be obtained in two ways. One way is the direct measurement 

of the aircraft’s response to an impulsive excitation obtained by a control stick jerk 

or by using a pyrotechnic thruster. The other method is by taking the inverse Fourier 

transform of FRF, which can be obtained by any kind of excitation. In practice, it is 

usually not possible to produce a perfect impulsive excitation by a stick jerk. 

However exciters such as thrusters are designed to produce some appropriate 

impulsive loads that can excite all modes within the frequency range of interest. The 

use of FRF data allows averaging and windowing so that the effect of noise can be 

reduced. The impulse responses can be exponentially weighted to improve the signal 

to noise ratio.  

 

The acceleration, velocity or displacement impulse responses can be used to 

calculate the shape parameter. Since the acceleration data is the only data for most 

cases, the velocity and displacement impulse responses must be calculated by the 

inverse Fourier transform of the velocity and displacement FRF, which can be 

calculated by dividing the acceleration FRF by iω and –ω2, respectively. Since the 

high frequency content is inherently filtered in the velocity and displacement 

response, the contribution of responses that belong to the low frequency modes to the 

shape parameter can be increased by using either velocity or displacement impulse 

response. However, when using displacement impulse response, care must be taken 

with rigid body responses. The effects of rigid body modes must be filtered by high-

pass filters. If the flutter frequency is high, the acceleration data must be used. The 

acceleration data can also be filtered to eliminate the effect of higher modes that are 

out of the frequency range of interest.  

 

2.4.3 Zimmerman-Weissenburger Flutter Margin 

Another method developed to predict the onset of flutter uses the concept of flutter 

margin [14]. This method is also a data based method in the sense that it only uses 
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the information obtained directly from the flight data. In this case, the flutter margin 

makes use of the information about the poles of the transfer function obtained from 

the data. The flutter margin, as originally formulated by this approach, is an indicator 

of the distance to flutter in terms of dynamic pressure. The development of this 

method is based on the equations of motion for a classical aeroelastic system with 

bending and torsion modes. The method was formulated for a two mode flutter 

mechanism but has since been extended to consider one mode or three mode 

instabilities [29, 30]. The essence of the method is to consider the characteristic 

polynomial that describes the continuous time aeroelastic system. The stability of 

this system can be evaluated by applying the Routh stability criterion. In this way, 

both damping and frequency properties of the system are used to estimate the 

instability. It is very difficult to measure damping from test data especially in the 

presence of measurement noise. However, the damping estimation is the core of the 

most classical flutter prediction methods. With this approach, a control engineering 

point of view is used in the modal analysis field.  

 

2.4.3.1 Implementation of Flutter Margin 

Assume that the system is indeed a two mode system with two complex conjugate 

pairs of distinct poles given by 2,1λ  and 4,3λ  with parameters to represent the real 

and imaginary parts of these poles such that 112,1 ωβλ j±=  and 224,3 ωβλ j±= . 

Then the characteristic equation becomes 

 

( )( )( )( ) 04321 =−−−− λλλλ ssss  (2-17)

 

The flutter margin (FM) is formulated by applying the Routh stability criterion to the 

two mode system. This criterion results in a parameter that must be positive if the 

corresponding system is stable. Recall that for a fourth order system such as that 

given in Equation 2-18, the Routh stability criteria can be constructed as in condition 

2-19. 
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By comparing Equations 2-17 and 2-18, the stability parameter, F, can be written in 

terms of the system poles as 
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The flutter margin is obviously zero if either 01 =β  or 02 =β . This parameter is, 

thus, an indicative of the stability of a system; however, that does not necessarily 

make it valuable for predicting the onset of flutter. The nature of a flutter margin 

arises by noting, subject to some assumptions, that the parameter F varies with the 

dynamic pressure, q. Some studies noted that this variation may be considered linear. 

The proposed formulation assumes that this variation is quadratic; that is 

 
2

210 qfqffF ++=  (2-21)
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The dynamic pressure associated with flutter is predicted by computing F from data 

taken at test points with different values of dynamic pressure. The roots of this 

equation for F give the dynamic pressure at which the onset of flutter is predicted to 

occur. 

 

The main advantage of this method is that the flutter margin is insensitive to the 

damping scatter. However, it is sensitive to the fundamental frequencies, which can 

be determined more precisely than damping. Another advantage is that, the stability 

plots are expected to be monotonic contrary to the damping plots. So this method is 

also useful for the detection of moderate and explosive flutter. Although the method 

is limited to 2 or 3-DOF systems, it was also successfully used with multi-DOF 

systems with acceptable accuracy [31].  

 

2.4.4 Discrete-Time ARMA Modeling 

Since measurements are available at sampled time intervals, the discrete time 

identification techniques can be used to describe the aeroelastic system. Then, the 

stability analysis of discrete systems can be used to predict the flutter speed. The 

discrete time autoregressive moving average (ARMA) modeling [32] is such a 

technique that is adapted to flutter estimation. This method is a data based approach; 

however, the type of data used by this method is different from the data used by the 

previous methods. The discrete time approach relies on time domain measurements 

from the system in response to a random excitation. This type of data is usually 

provided by sensor measurements that record the response to atmospheric turbulence. 

The analysis of turbulence data have both advantages and disadvantages compared to 

other methods. The method does not require any onboard excitation system, but uses 

turbulence as the input to the system. However, it is often difficult to get the response 

levels in which all modes are sufficiently observed with the turbulence. The system 

is assumed to be represented accurately by an ARMA model. This type of model 

uses autoregressive measurements and a moving average of white noise input to 

describe the dynamics. This is because the method requires data measured in 
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response to turbulence which is known to be almost random. The coefficients 

associated with the autoregressive measurements are associated with the stability 

characteristics.  

 

2.4.4.1 Implementation of the ARMA Modeling Method 

The measured response, y(t), of a wing excited by air turbulence, e(t), which is 

assumed to be pure white noise, during steady flow conditions can be written as a 

discrete time series with weighting coefficients α and β as 

 

( ) ( ) ( ) ( ) ( ) ( )mkekekenkykyky mn −++−+=−++−+ ββαα KK 11 11  (2-22)

 

This ARMA model can be expressed in short notation as 

 

( ) ( ) ( ) ( )kezkyz 11 −− = βα  (2-23)
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The coefficients α and β describe the AR and MA parts of the ARMA model, 

respectively. The coefficients α and β, orders n and m, and variance of the noise 

should be determined to identify the system. These unknowns can be determined by 

any suitable search algorithm such as the maximum likelihood estimation. The 

optimum order of the system can be determined by the help of Akaike’s information 

criterion (AIC), which is developed by Hirotsugu Akaike in 1971 and it is a measure 

of the goodness of the fit of an estimated statistical model using the concept of 

entropy. The combination of n and m that gives the minimum AIC is the optimum 
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order of the ARMA model. As in flutter margin method, ARMA method assumes 

interaction of two dominant modes. So AR order, n, should be set as n=4. The order 

of the noise, m, can be set to n-1 if it is not possible to perform a pre-analysis with 

AIC.  

 

The characteristics polynomial, G(z), of the system that is defined in Equation 2-22 

as a function of the discrete time variable z can be defined as 
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This form for the characteristic polynomial assumes that the dynamics are described 

by two modes. There are four poles in the dynamics, but they are restricted to be 

complex conjugate pairs. The stability of the system can be computed by applying 

the Jury determinant method. This method guarantees the stability of discrete time 

systems if a certain set of conditions are satisfied. A discrete system is stable if all of 

the following Jury’s stability parameters are positive. 
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where 
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The conditions can be also written in terms of the poles, zi. There are many 

conditions to be satisfied, however, the condition defined as ( )3−F  for the fourth 

order system is of particular interest. 

 

( ) [ ] [ ]( ) ( )( )( )( )22 2 2*
3 3 1 2 1 2 1 23 det 1 1 1 1F X Y z z z z z z− = − = − − − −  

 

[ ]
1 2

3 1

1
0 1
0 0 1

X
α α

α
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, [ ]
2 3 4

3 3 4

4

0
0 0

Y
α α α
α α
α

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

(2-28)

 

The stability of a discrete time system is ensured if all poles have magnitudes less 

than unity. This result implies that a stable system will always have ( ) 03 >−F . 

Furthermore, the value of ( )3−F  goes to zero as the system approaches instability. 

Thus, ( )3−F  was used as the stability predictor whose trend toward zero indicates the 

onset of flutter [32-34]. Unfortunately, ( )3−F  was noted to have some potentially 

adverse behaviors with the dynamic pressure; therefore, the behavior of a similar 

parameter, ( )1−F , was considered. 

 

( ) ( )2
2

2
14 111 zzF −=−=− α  (2-29)

 

The behavior of ( )3−F  is somewhat improved by associating it with ( )1−F . This 

forms the basis for the discrete time ARMA flutter margin, Fz [35, 36, and 15] as 
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( ) ( )213 −−= FFFz  (2-30)

 

The flutter margin is used to predict the onset of flutter by expressing Fz as a 

function of flight conditions. Specifically, a standard approach is to express Fz as a 

quadratic function of dynamic pressure, q, as 

 
2

210 qfqffFz ++=  (2-31)

 

The dynamic pressure associated with the flutter is predicted by computing Fz at 

several different flight conditions. The coefficients in Equation 2-31 are calculated 

by applying a curve fit to the results. The flutter is expected at the dynamic pressure 

at which Fz becomes zero.  

 

Note that this method has some similarities to the Zimmerman–Weissenburger flutter 

margin approach. In fact they are mathematically equivalent. 

 

2.4.5 Flutterometer 

The studies in the literature showed that the classical methods discussed above are 

able to estimate the critical flutter speed but the reliability of these methods depends 

on the test points. Estimations were only reliable when the processed measurements 

were acquired close to critical flutter speed, which is an undesired condition. The 

estimations were based on only the measured data without knowing the behavior of 

the system. In case of explosive flutter instability, the extrapolated estimation of the 

system behavior may result in some catastrophic failures. Although air vehicles are 

designed to be free of such instabilities, it is not possible to prove without real tests 

that this is indeed the case. Classical methods depend on the parameters, such as 

natural frequency and damping, estimated from the measurements. Although there 

are very efficient system identification techniques, the quality of the estimation 

depends on the quality of the measured data. In contrast to ground testing, the quality 
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of the flight testing measurements are very poor because of the unmeasured 

disturbances and insufficient excitation. Although the natural frequencies can be 

estimated very accurately, the damping which is the most important parameter for 

these methods, can not be estimated that accurately. An accurate damping estimation 

problem is not specific to the flight testing but is also encountered in the ground 

testing.  

 

In this section, a recent and promising technique called flutterometer is investigated. 

In contrast to the classical methods, this method uses both experimental 

measurements and an assumed system behavior. Having an idea for the system 

behavior greatly improves the reliability of the estimations. In order to use this 

method, a mathematical representation of the test item is required. Since the ground 

vibration tests are always performed before a flight test, a very accurate structural 

model can be constructed with the ground test data. Sometimes some aerodynamic 

experiments are also performed which can be used to model the aerodynamic 

behavior. However, the aerodynamic model is often derived from approximate 

aerodynamic theories. Panel methods are extensively used in aerodynamic modeling. 

Once the flight data is incorporated to the mathematical model, the critical flutter 

speed can be estimated by the stability margin calculations that are used by control 

engineers. The predictions derived from stability margins would be more reliable 

than the predictions derived from damping. A robust stability measure which is 

called µ norm is used as the stability margin measure. 

 

The flutterometer was developed in NASA Dryden Flight Research Center. 

Basically, the flutterometer uses both flight data and theoretical models to predict the 

onset of flutter. The flight data under consideration are frequency domain transfer 

functions which are derived from flight test results. The model to be analyzed is the 

corresponding theoretical transfer function with some estimated uncertainty 

descriptions. The flutter speed is, thus, computed as the largest increase in airspeed 

for which the theoretical model remains robustly stable with respect to the 

uncertainty. The initial step is to compute an uncertainty description for the model at 
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a specific flight condition. This step is performed by noting the differences between 

the theoretical and measured transfer functions. The uncertainty is introduced to the 

model as variations such that the resulting range of theoretical transfer functions 

bound the measured transfer function. The next step is to compute the robust flutter 

speed. This step is performed by a straightforward application of µ method analysis 

on the theoretical model that contains the uncertainty variations. In this way, the 

flutterometer predicts a realistic and reliable flutter speed. The flutterometer can also 

be used as pre flutter analysis tool, when the uncertainties except the dynamic 

pressure are neglected. 

 

2.4.5.1 Literature Survey 

The flutterometer method was first presented by Lind and Brenner in 1997 [37-40]. 

The method was demonstrated with an F/A-18 SRA (Systems Research Aircraft) 

flutter flight test data that was recorded between 1994 and 1995 [37-39]. These 

offline demonstrations showed that the flutterometer can estimate the flutter speeds 

accurately. The details of the method were published in 1998 [18, 19]. The 

performance of the method with simulated flight conditions was demonstrated in 

2000 [16]. The longest computation time among different test points was 2.5 minutes 

with some powerful computers of that time. Afterwards, some specific flight tests 

were performed to test the method and to compare the performance of the new 

method with the data based classical prediction methods. A set of experiments were 

conducted with a separate wing that was mounted on an F-15 body called 

Aerostructures Test Wing (ATW). The comparison of results showed that the 

flutterometer is capable of predicting flutter speed with a reasonable conservatism 

[11, 17, 31, and 41]. However, the conservatism was not reduced even at speeds 

close to the critical flutter speed where the accuracy of classical methods increases 

inherently.  

 

The flutterometer requires an accurate mathematical model of the test item. Although 

it is not possible to model the aerodynamics accurately even with a wind tunnel 
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testing, the structural parameters and the associated uncertainties can be modeled 

accurately with the help of ground vibration test data. Potter and Lind [42] 

demonstrated such a use of ground vibration test data and observed that analyzing the 

data using an ∞-norm approach generates a model with less uncertainty than the 

corresponding 1-norm or 2-norm approaches. Smaller uncertainty definitions are 

useful for flight tests because the associated robust flutter speeds can be computed 

with less conservatism. The Aerostructures Test Wing was used to demonstrate the 

procedure. 

 

2.4.5.2 Nominal Aeroelastic Analysis 

The first step in the flutterometer method is to construct a mathematical model of the 

structure with an unsteady aerodynamic coupling. The aerodynamic equations are 

usually derived from unsteady panel codes such as MSC.Nastran Aeroelasticity 

modules. Thus a general formulation will be given here such that the outputs of the 

unsteady aeroelastic codes are compatible with the formulation. However, the typical 

section, which will be used as a case study, has a specific formulation and it will be 

shown that a nondimensional time formulation is more suitable to use with this 

method.  

 

Consider the generalized equation of motion for the structural response, {η}, of the 

aircraft by considering it as a system with n modes as 

 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } { }( ) 0M C K q Q sη η η η+ + + =&& &  (2-32)

 

where [M] ∈ Rnxn is the mass matrix, [C] ∈ Rnxn is the viscous damping matrix, [K] 

∈ Rnxn is the stiffness matrix, q ∈ R is a scalar representing the dynamic pressure, 

[Q(s)] ∈ Cnxn as the matrix of unsteady aerodynamic forces, and s is the Laplace 

variable. This equation is valid for a particular Mach number, since [Q(s)] changes 

with Mach number. The frequency dependent values of [Q(s)] can be derived using 
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finite element structural models of the aircraft and panel methods for unsteady 

aerodynamic force calculations. Unsteady aerodynamic forces can be approximated 

with lag terms as Padé approximation or finite dimensional state space systems as 

Karpel’s method, [43]. Assume [Q(s)] in state space form to be similar to Karpel’s 

form as shown below. 

 

[ ] [ ] 1( ) ( )
Q Q

Q Q Q Q
Q Q

A B
Q s D C s I A B

C D
−

⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2-33)

 

Given the number of generalized states, n, and the number of aerodynamic states, 

{nQ}, define [AQ] ∈ R
QQ nn  x 

, [BQ] ∈ R
nnQ  x 

, [CQ] ∈ R
Qnn x 

, [DQ] ∈ R
nn x 
 as the 

elements of the state space system approximation. Consider the force vector, {y}, 

generated by the state vector, {η}. Define {x} ∈ R
Qn

 as the vector of aerodynamic 

states. 

 

{ } ( ) { }y Q s η⎡ ⎤= ⎣ ⎦  ⇔ 
{ }
{ }

{ }
{ }
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&
 (2-34)

 

Then the equation of motion becomes 
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where  
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{ } { } { }Q Qx A x B η⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦& . (2-36)

 

So the state space representations of the system including the aerodynamic states can 

be formed as 
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 (2-37)

 

The flutter occurs when the system becomes unstable at a particular dynamic 

pressure and Mach number. This stability problem can be solved by the robust 

stability concept by introducing a perturbation to the dynamic pressure as an additive 

uncertainty, δq ∈ R, on the nominal dynamic pressure, q0, as 

 

qqq δ+= 0  (2-38)

 

Substituting the new dynamic pressure term in the equation of motion and separating 

the terms that involve δq, one obtains 
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The term [ ] { } [ ] { }1 1
Q QM D M C xη− −⎡ ⎤⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦⎣ ⎦  is a linear combination of states and 

can be treated as an output, {z}, of the plant which will be fed to the uncertainty 

block. Define, {w} related to {z} such that 

 

{ } { }qw zδ= . (2-40)

 

Then the system equation becomes 
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which can be represented in state space form as 
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The perturbation, δq, is not an explicit parameter in the state space model because δq 

only affects the plant through a feedback relationship{ } { }qw zδ= . Define the 

transfer function matrix [P(s)] such that {z}=[P(s)]{w} and the stability problem can 

be expressed in µ framework as in Figure 5. 

 

 



 

44 

 

Figure 5. LFT system for nominal stability analysis in the μ framework. 

 

The question now becomes “What is the largest perturbation to dynamic pressure for 

which the nominal aeroelastic dynamics remains stable?” Using robust stability 

analysis tools and small gain theorem, this largest perturbation to dynamic pressure 

for which the nominal aeroelastic system is still stable can be found. For a stable 

system with [ ]( ) 1Pμ α< , αδ =
∞q  is the largest perturbation to dynamic pressure 

for which the nominal aeroelastic system is stable. Instead of calculating the µ norm, 

a pole tracking of the closed system with various perturbation levels would also give 

the critical flutter speed with less mathematical calculations. 

 

2.4.5.3 Robust Aeroelastic Analysis 

Analytical model of an aeroelastic system is prone to many uncertainties such as 

stiffness, damping, and aerodynamic force uncertainties. These uncertainties must be 

estimated or measured by some ground tests. Overestimated uncertainties will result 

in too conservative flutter margins. On the other hand, underestimated uncertainties 

will result in a less robust flutter estimation. However, in either case, the estimated 

flutter boundary will be more conservative than the estimation obtained from P-K 

method or nominal aeroelastic model.  

 

Figure 6 shows the stability formulation in μ framework with an additional structured 

uncertainty block, which represents the structural and aerodynamic uncertainties 

 

[P] 

 

qδ  

{w} {z}



 

45 

such that [ ] 1
∞

Δ ≤ . The uncertainties associated with the structure can be 

represented by stiffness and damping matrix variations in the form of additive or 

multiplicative uncertainties and/or by a dynamic uncertainty in the input or output. 

Aerodynamic uncertainties can be represented by pole location uncertainty or 

aerodynamic matrix uncertainty in the form of additive or multiplicative 

uncertainties.  

 

 

Figure 6. LFT system for robust stability analysis in the μ framework. 

 

Imposing the norm bound for δq operators as 1≤
∞qδ  may seem overly restrictive 

because the units of δq are the same as the units of q in the model. This condition 

implies that the total uncertainty block considers the range of flight conditions          

q = q0 ± 1 Pa for plants formulated by dynamic pressure in units of Pa. Such small 

range of flight conditions is not useful for a stability analysis unless q0 is extremely 

close to the flutter pressure. This limitation is avoided by introducing a weighting 

function, Wq, to the computation of q. 

 

qqWqq δ+= 0  (2-43)

 

A Wq >1 allows a large range of flight conditions to be considered despite the unity 

norm bound constraint on δq. This weighting is incorporated into the stability 

analysis by scaling the feedback signals between the δq operator and the plant [P] to 

form the scaled plant, P⎡ ⎤⎣ ⎦ . 

[ ]
0

0
qδ⎡

⎢ Δ⎣

 

[ ]P  



 

46 

 

[ ] [ ] [ ]
[ ] [ ]
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I
⎡ ⎤
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 (2-44)

 

A robust flutter margin is computed by analyzing µ( P⎡ ⎤⎣ ⎦ ) with respect to 

uncertainties. The robust flutter pressure is determined by iterating over scales of Wq 

until the smallest pressure q=q0+Wq is found for which the P⎡ ⎤⎣ ⎦  is just robustly 

stable. 

 

The uncertainty description can contain structural, aerodynamic, unmodeled 

dynamic, and measurement uncertainties. Although it is possible to model the 

structure accurately with high quality ground vibration test data, the flight test item 

will be slightly different than the ground test item. Each aircraft would have a 

different set of structural parameters because of manufacturing processes and wear. 

Some parameters would also change during flight tests because of the fuel 

consumption which will cause changes in the mass distribution, because of 

differences in hydraulic pressure, and because of temperature variations. But the 

changes in structural parameters are expected to be the least changing parameters 

compared to other uncertainties. The stiffness and damping matrices are modeled 

with additive or multiplicative uncertainty descriptions. The uncertainty descriptions 

on inverted parameters such as mass matrix, which is inverted to get the state space 

equations of motion, can result in an ill conditioning. On the other hand, the 

aerodynamic parameters are the most difficult parameters to estimate. Thus 

uncertainties on the aerodynamic parameters usually show high variations. The 

effects of higher structural modes that are not included in the model and inaccurate 

mode shapes can be described by dynamic uncertainties with less conservatism 

compared to the parametric uncertainties. These dynamic uncertainties are typically 

complex in order to represent the errors in both magnitude and phase. If the data 

acquisition system that is used to collect measurements have serious reliability 

problems with some known error bounds, or the excitation signal is not measured but 
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assumed, or the flight conditions are known to be variable during the acquisition, 

then a frequency varying uncertainty can be added to the output signals to describe 

all these problems. These uncertainties are not because of the mathematical modeling 

but because of the test setup and test conditions. The modeled uncertainties 

associated with the test setup and test conditions will further increase the 

conservatism on flutter predictions.  

 

The most appropriate type of the uncertainty description is completely problem 

dependent. Each uncertainty description will increase the conservatism on flutter 

prediction and unrealistic uncertainties will cause unrealistic results rather then 

robust results. So each uncertainty description and type should be selected carefully. 

The selection of an uncertainty as parametric, complex, frequency varying, additive 

or multiplicative requires some extensive pre-analysis studies supported with 

experiments.  

 

The mathematical modeling for robust flutter analysis can be performed in a similar 

way as that presented on nominal flutter analysis, which is given through Equations 

2-7 to 2-10. 

 

2.4.5.4 Incorporating Flight Data 

Generating a model by analyzing flight data is essential for a reliable stability 

analysis. A nominal model generated purely from the analytical equations of the 

predicted aircraft dynamics may not accurately describe the true aircraft. A model 

must be generated that accounts for the flight data to ensure the predicted dynamics 

represent the true dynamics. 

  

The most direct method of generating a model from the flight data is to identify a 

system model entirely from the data measurements. Several such system 

identification algorithms exist that have become standard tools for systems and 

control engineers. The direct application of these methods to aeroelastic systems 
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rarely produces an accurate model that accounts for the dynamics of the aircraft. The 

aeroelastic response data is typically of poor quality relative to the ground vibration 

test data because of its low signal to noise ratio. The noise and unobserved dynamics 

in flight test may drastically lower the effectiveness of the system identification 

algorithms. An alternative method is to use the nominal aircraft dynamical model as 

an initial estimate to model the true aircraft. The flight data are then used to update 

the elements of this model.  

 

Two basic methods are proposed to update the full structural model using 

comparisons between experimental and predicted data. One method updates the mass 

and stiffness matrices of the finite element model [44]. This method suffers from the 

lack of physical interpretation of the matrix updates and possible numerical ill 

conditioning. Another approach is to update some specific parameters in the model. 

This approach is usually accurate for small systems but may require an excessive 

computational cost for large systems. 

 

The approach used by the flutterometer method is to update only the uncertainty 

operators of the robust aeroelastic model by using the flight data, and leave the 

nominal dynamics model unchanged. Figure 7 shows the flow of information 

through the µ method. 

 

To update the uncertainty operators, the system must be converted to a LFT system 

as given in Figure 8, with forcing and response signals. The uncertainty should be 

scaled until Fu([P],[Δ]) could generate the set of observed data y with input u. 

 

The input-output relation in the vicinity of uncertainties can be used with the 

measured signals to decide on the scaling of uncertainties. The upper LFT would 

give the input-output relation 

 

{ } [ ] [ ]( ){ },uy F P u= Δ  (2-45)
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Figure 7. Flowchart to generate plant and uncertainty operators from a system 

model and flight data with the µ method [18]. 

 

 

Figure 8. LFT system for robust stability analysis and model validation. 

 

The plant, [P], is partitioned to be used in LFT framework as 
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 (2-46)

 

Then the upper LFT can be expressed as 

 

[P] 

 

[Δ] 

{w} 

{y} {u} 

{z}
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[ ] [ ]( ) [ ] [ ][ ] [ ] [ ][ ]( ) [ ]1
22 21 11 12,uF P P P I P P

−
Δ = + Δ − Δ  (2-47)

 

By inserting Equation 2-47 into 2-45, the input-output relation can be found as in 

Equation 2-48. 

 

[ ] [ ][ ] [ ] [ ][ ]( ) [ ]1
22 21 11 12y P u P I P P u

−
= + Δ − Δ  (2-48)

 

The time domain signals u and y can be converted into frequency domain to combine 

them with the plant dynamics. Converting the signals and plant models into 

frequency domain and extracting the output signal from Equation 2-48 results in a 

useful expression as 

 

 

[ ] [ ] ( ) ( ) [ ][ ] [ ] [ ][ ]( ) [ ] ( )1
22 21 11 120 P u j y j P I P P u jω ω ω

−
⎡ ⎤ ⎡ ⎤= − + Δ − Δ⎣ ⎦ ⎣ ⎦  

 (2-49)

 

which can be used for uncertainty updating. 

 

Using the definitions 
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Equation 2-49 becomes 

 

[ ] [ ][ ] [ ] [ ][ ]( ) 1
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Note that Equation 2-51 is in LFT form; so if there exists a [ ] 1Δ ≤  that makes this 

LFT zero, then the postulated model can produce the output from the input data. 

Kumar and Balas [45] showed that the system [P] with associated uncertainty [Δ] is 

not invalidated if Equation 2-52 is satisfied. In this respect, the model validation test 

is actually an inverted robust stability test. 

 

[ ] [ ]( )1

11 12 22 21 1P P P Pμ
−

⎡ ⎤ ⎡ ⎤− >⎣ ⎦ ⎣ ⎦  (2-52)

 

The scaling of [Δ] is equivalent to the scaling of [P11], so a model validation can be 

performed by scaling [P11] until Equation 2-52 is just satisfied. In fact, it is not 

possible to say that the model is certainly validated, because it is only guaranteed that 

the model is not invalidated with the selected uncertainty description and used 

measured signals. After deciding on the uncertainty scaling, the critical flutter speed 

can be calculated from the robust aeroelastic analysis as mentioned in the previous 

section.  

 

2.5 Summary 

In this chapter, three basic steps of flight flutter testing are investigated. These basic 

steps are test setup design with reference to excitation and measurement 

arrangements, and , and flutter prediction.  

The excitation setup design depends on the available sources of excitation 

mechanisms. Onboard excitation systems such as inertial shakers, thrusters, 

aerodynamic vanes, and aircraft control surfaces can be used as excitation sources. In 

such cases, the excitation can be measured and controlled directly. The air turbulence 

can also be used as an excitation source alone. Since it is not possible to measure the 

turbulence excitation, some special flutter estimation methods that do not require any 

excitation information should be used with turbulence excitation. Advantages and 

disadvantages of the excitation mechanisms are discussed. Another important point 

in excitation system design is the selection of the excitation location. The excitation 
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location should be selected such that sufficient energy is transferred to the structure 

within the frequency range of interest to obtain useful FRFs. An optimum driving 

point selection algorithm is given. 

 

The instrumentation setup design includes sensor selection and sensor location 

selection. Nowadays, accelerometers are commonly used to measure the response of 

the structure, since modern accelerometers are light, small, accurate, and easy to 

install. Measurement locations should be selected such that all modes of interest are 

observed. An optimum measurement location selection algorithm is given. 

 

Once the aircraft is instrumented with exciters, accelerometers, and telemetry system, 

the actual flutter speeds of the aircraft can be predicted with the flight test data using 

special prediction methods. There exist several data based classical and model based 

modern flutter estimation methods. Commonly used methods are discussed and their 

mathematical implementations are given. 
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CHAPTER 3 
 
 

SIMULATION STUDIES WITH A LINEAR 
AEROELASTIC MODEL 

 
 
 

3.1 Aeroelastic Model 

To simulate the experimental data, a mathematical model representing an aeroelastic 

2-DOF typical section in subsonic flow is utilized in this section. This model is also 

used to represent the dynamics involved in the Aeroservoelastic Test Setup (ATS), 

which has been produced for aeroelastic and aeroservoelastic experiments in 

TÜBİTAK-SAGE. The details of the ATS is presented in Chapter 5.  

 

The typical section was first devised during the 1930's by aeroelastic pioneers such 

as Theodorsen and Garrick, seeking a system suitable for the elementary examination 

of flutter and divergence problems. They suggested that the dynamics of an actual 

wing might be simulated by choosing the properties of the typical section to match 

those at a station 70-75% of the distance from root to tip. The subsequent experience 

confirmed their judgment in situations where the aspect ratio is large, the sweep is 

small, and the sectional characteristics vary smoothly across span. The typical 

section is not only suitable for cantilever wing simulation but also for control surface 

simulations.  

 

Figure 9 shows the conventions used for positive lift, moment, vertical and angular 

displacement, and some important geometric properties of a typical section. 
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Figure 9. The typical section [1]. 

 

This convention configuration is called Theodorsen's notation, which is perfectly 

general. The general dynamic equations of motion for the typical section with linear 

structural parameters, which are commonly used in the literature for harmonic 

analysis, are given as follows.  

 

( ) ext
h FLhKiShm +−=+++ ηαα 1&&&&  (3-1)

 

( ) ext
y MMKiIhS +=+++ αηα ααα 1&&&&   (3-2)

 

where 

 

αα mbxS =  (3-3)

 

The parameter Sα is sometimes called as the “static unbalance” or “static mass 

moment” of the typical section about its elastic axis located at x=ba. It is positive 
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when the center of mass is aft of the elastic axis. Iα is the mass moment of inertia 

about the elastic axis. Although no viscous damping is included in the equations, 

which is physically convenient, necessary terms can be added to the equations if 

needed. 

 

Lift and moment predictions for typical sections are available for both compressible 

and incompressible flows for steady and unsteady cases. Calculating steady 

aerodynamic forces is rather simpler than calculating unsteady aerodynamic forces. 

This is because while calculating the dynamic response of an aerodynamic body, 

often steady forces are used. However, this approximation can not be used for the 

flutter analysis of airfoils, which are designed to obtain considerable lift. Unsteady 

aerodynamic forces should be used in the analysis of lifting surfaces because steady 

flow expressions do not contain the phase difference information, which is an 

important parameter in flutter calculations. With unsteady aerodynamic forces, it is 

also possible to observe the divergence since the asymptotic values of unsteady 

forces converge to steady forces as the frequency reaches zero. 

 

Lift and moment expressions for steady flow, harmonic motion and arbitrary motion 

are given in Appendix A.  

 

3.2 Numerical Study for Mild Flutter 

The first numerical study is about a system that has a mild flutter behavior. The term 

“mild flutter” is used for cases where damping trends are smooth and do not change 

abruptly. The ATS is designed to have a low flutter speed. This is achieved by highly 

coupling the DOF via a large static unbalance. However a large static unbalance 

results in explosive type flutter, where damping decreases rapidly with flow speed. 

That case is studied as a separate case. 

 

The parameters of the first system analyzed are derived from the parameters of ATS, 

but are modified to get a mild flutter at relatively high speeds. The resulting system 
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has natural frequencies similar to a real fighter aircraft. The parameters for the first 

system are selected as follows. 

 

m = 12.4 kg  : Total mass of moving parts of the system. 

Iα = 0.065 kg.m2 : Moment of inertia of rotating parts. 

Kh = 28,444 N/m : Flexural stiffness of the airfoil. 

Kα = 70.5 N.m/rad : Torsional stiffness of the airfoil. 

a = -0.5 : Normalized distance between the elastic axis and midchord. 

b = 0.135 m : Semichord length of the airfoil. 

l = 0.54 m : Span of the airfoil. 

xα = 0.03 : Normalized distance between the elastic axis and mass center. 

 

This airfoil has a critical flutter speed of 86.47 m/s (~0.256 Mach) at 1.1341 kg/m3 

air density (corresponding to ~800 m altitude), which is found by plotting the roots 

of the system versus the flight speed. The uncoupled natural frequencies are 5.24 Hz 

for torsion and 7.63 Hz for plunge modes.  

 

A Matlab Simulink model is prepared for simulation studies. The details of the 

Simulink model are given in Appendix B. The response of the system to a half-sine 

pulse of 400 N peak value and 10 ms duration at the leading edge for speeds 10 m/s 

below and above of the critical speed are given in Figure 11 and Figure 12, 

respectively.  

 

The mode shapes of the selected typical section are given in Table 1 and Figure 10. 

The natural frequencies of the system are 5.23 Hz and 7.65 Hz. Note that these 

natural frequencies are close to the uncoupled natural frequencies, which is an 

indication of very weak coupling.  
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Table 1. Mode shapes of the selected typical section. 

 Mode 1 (5.23 Hz) Mode 2 (7.65 Hz) 

h -0.0141 -0.2842 

α -3.9066 0.4136 
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Figure 10. Mode shapes of the selected typical section. 
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Figure 11. Pulse response of the selected typical section below the critical 

speed. 
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Figure 12. Pulse response of the selected typical section above the critical 

speed. 
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3.2.1 Best Measurement Points 

Assume that five equally spaced locations are suitable for the measurements as 

shown in Figure 10. The new mode shape matrix can be constructed from the 

original matrix by a simple transformation in the following manner. 

 

[ ] [ ]5 2 2 25 2

new
x xx

T⎡ ⎤Φ = Φ⎣ ⎦  (3-4)

 

where 

[ ]

1 0.5
1 0
1 0.5
1
1 1.5

b

T b
b

b

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= − −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 

(3-5)

The resulting new mode shape matrix is given in Table 2. In fact, the new mode 

shape matrix is not an eigenvector matrix in the modal sense, since only two of the 

five degrees of freedom are independent. In real cases, instead of this artificial 

expansion, the real mode shape matrix should be used to find the best measurement 

and excitation points.  

 

Table 2. Expanded mode shape matrix. 

Node Description Mode 1 Mode 2 

1 Vertical displacement at x=–b/2 chord point (leading 
edge) -0.2496 0.3121 

2 Vertical displacement at origin x=0 0.0141 0.2842 

3 Vertical displacement at x=b/2 chord point 0.2778 0.2563 

4 Vertical displacement at x=b chord point 0.5415 0.2284 

5 Vertical displacement at x= 3/2b chord point (trailing 
edge) 0.8052 0.2005 
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Equations 2-2 and 2-3 can be used to find the best locations for measurement. The 

result is given in Figure 13. As seen from the figure, the best measurement locations 

are around the leading and trailing edges. Since the model is a 2-DOF system and 

both modes are of interest, at least two measurement locations should be chosen. In 

real cases, it is not possible to know the number of modes within the frequency range 

of interest without performing some modal tests. However, all five measurement 

locations are used to investigate the mode extraction performance of some methods.  

 

chord

Best measurement locations for the selected typical section

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6  

Figure 13. Best measurement points for the model (higher is better). 

 

3.2.2 Best Excitation Points 

Assume that the same measurement locations are available for excitation in the 

vertical direction. The ODP value of each point can be calculated by Equation 2-1. 

The result is given in Figure 14. As seen from the figure, the best excitation point is 

the trailing edge of the typical section. The number of excitation points in real cases 

is very limited due to the geometric and structural difficulties. Thus, in the 

simulations, only single excitation at the trailing edge are used. 
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Best excitation locations for the selected typical section
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Figure 14. Best excitation points for the model (higher is better). 

 

3.2.3 Flutter Prediction with Damping Extrapolation 

The prepared Simulink model is run with different air speeds. The forcing and 

measurement signals are saved for an offline processing. Forcing and measurement 

signals are saved for airspeeds of 20, 30, 40, 50, 60, 70, 80, and 85 m/s. Here, it 

should be noted that the last airspeed is very close to the flutter speed. Some FRF 

estimations obtained by the “tfestimate” command of Matlab are given in Figure 15, 

Figure 16 and Figure 17. It can be seen from these figures that the best estimates 

belong to the leading edge (H1) and trailing edge (H5) measurement points. The 

qualities of the FRF agree with the best measurement point ranking.  

 

The two distinct modes can be easily seen at low air speeds. As the speed increases, 

the damping of second mode first increases and then decreases. Meanwhile, the 

second natural frequency shifts to some lower values and the frequency of the first 

mode increases. This flutter mechanism can be observed from the FRF plots in 

Figure 18.  

 

The convergence of the nonlinear least squares fit method used for fitting analytical 

curves to the experimental FRF’s depends on the initial guess. The method can 

converge to a different local minimum if a proper initial guess is not used. The 
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coupled natural frequencies of the system can be used to construct the required initial 

guess. However, a pre-study is required to establish a good initial guess for the 

lowest speed. Once the curve fit converges, the determined parameters can be used as 

initial guess for the next speed. 

 

The curve fit is performed for a frequency range of 2 to 11 Hz, which covers both 

modes. The fit results for all air speeds are given in figures Figure 19 to Figure 26. 

As seen from the figures, the curve fits performed are successful. The damping value 

for a nearly unstable speed, 85 m/s, is estimated to be positive near zero. The V-g 

plots are given in Figure 27 and Figure 28. 
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Figure 15. FRF estimates for 20 m/s. 
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Figure 16. FRF estimates for 50 m/s. 
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Figure 17. FRF estimates for 80 m/s. 
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Figure 18. Change of H1 with air speed. 
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Figure 19. Fit results for 20 m/s. 
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Figure 20. Fit results for 30 m/s. 
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Figure 21. Fit results for 40 m/s. 
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Figure 22. Fit results for 50 m/s. 
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Figure 23. Fit results for 60 m/s. 
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Figure 24. Fit results for 70 m/s. 
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Figure 25. Fit results for 80 m/s. 
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Figure 26. Fit results for 85 m/s. 
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Figure 27. Damping versus speed graph. 
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Figure 28. Natural frequency versus speed graph. 

 

Table 3. Summary of modal extraction. 

U [m/s] 20 30 40 50 60 70 80 85 

η1 0.0454 0.0678 0.0907 0.1145 0.1413 0.1725 0.2147 0.2500 

η2 0.0095 0.0166 0.0238 0.0286 0.0345 0.0348 0.0230 0.0066 

ω1 [Hz] 5.2441 5.2719 5.3166 5.3764 5.4578 5.5697 5.7131 5.7874 

ω2 [Hz] 7.6228 7.5856 7.5244 7.4385 7.3220 7.1687 6.9664 6.8531 

 

After all these calculations, the damping extrapolation can be performed. Although 

there are eight flight conditions, only the low speed results can be used in real 

situations. Since the flutter speed is not known during real tests, it is not possible to 

extend the test up to 80 or 85 m/s. Before extrapolation, the order of the polynomial 

fit should be determined. This usually requires a preliminary study with the 
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aeroelastic model of the system. Usually, orders between 3 and 6 are used for 

extrapolation. However, high order fits such as 6th order should be used with care if 

damping estimates have some scatter. It is possible to fit up to 5th order polynomial 

with six flight conditions. However, in this case 3rd and 4th fits are investigated. The 

damping extrapolations with 3rd and 4th order polynomials are given in Figure 29. 

The extrapolation with a 3rd order polynomial results in flutter speed of 106.2 m/s, 

whereas the extrapolation with a 4th order polynomial results in 90.42 m/s. Both 

estimates are over the true flutter speed, 86.47 m/s. During real tests, the 

conservative estimate should be used. So, the flutter speed estimation by damping 

extrapolation is concluded to be 90.42 m/s, which is 4.6% higher than the real value. 
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Figure 29. Damping extrapolation result. 
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3.2.3.1 Modal Filtering 

The decoupled FRF plots calculated by using the method given in Section 2.4.1.5.1 

are given in Figure 30 through Figure 37. The expanded mode shape matrix at zero 

air speed is used to calculate the modal filter. 

 

[ ] 1newψ
−

⎡ ⎤= Φ⎣ ⎦  (3-6) 

 

As can be seen from these figures, the decoupling performance of the proposed 

method decreases with increasing velocity. The main reason is the change of phase 

relation between the mode shapes with increasing velocity, which is the main 

mechanism of flutter. Therefore, in order to use modal filters efficiently, the modal 

filters must be also calculated and updated during flight. This can only be done if the 

modal parameters at that flight condition are known. So, the modal parameters must 

be estimated first. Afterwards, the modal filters can be calculated. In such conditions, 

the pseudo inverse method is not recommended since complete and accurate 

estimates of all modal vectors in the frequency range of interest are required, which 

is difficult to obtain during flight. An incomplete model or errors in the estimate of 

any modal vector can propagate to all calculated modal filter vectors. However, the 

reciprocal or modified reciprocal modal vector method requires a least squares 

solution for the calculation of modal filters. Furthermore, the updating procedure 

requires some additional iterations to calculate the updated modal filters.  

 

Once the modal parameters are estimated, the flutter calculations can be performed 

without modal filters. Thus modal filters in this case can be used as an additional 

post processing tool but their use is not practical for an online analysis. Because of 

these facts, modal filter calculations will not be carried out as further analysis in this 

study. 
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Figure 30. Decoupled FRF at U=20 m/s. 
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Figure 31. Decoupled FRF at U=30 m/s. 
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Figure 32. Decoupled FRF at U=40 m/s. 
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Figure 33. Decoupled FRF at U=50 m/s. 
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Figure 34. Decoupled FRF at U=60 m/s. 
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Figure 35. Decoupled FRF at U=70 m/s. 
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Figure 36. Decoupled FRF at U=80 m/s. 
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Figure 37. Decoupled FRF at U=85 m/s. 
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3.2.3.2 Singular Value Decomposition Filtering 

Figure 38 shows the singular values of the FRF matrix at airflow speed 20 m/s. The 

number of modes can be easily identified from this figure. Results of SVD filtering 

are given in Figure 39 and Figure 40. Figure 39 shows that the filtering the best 

measurement point’s FRF did not improve the FRF much because of the inherent 

high signal to noise ratio. The improvement on the worst measurement point (Figure 

40) is more significant at frequencies at which response level is low. 

 

The modal parameters are recalculated using filtered FRF data. The results are given 

in Table 4 with a subscript f next to previous values given in Table 3. Since there is 

no significant change in modal parameters, the predicted flutter speeds remain the 

same. Although, the SVD improves the FRF, these improvements are at frequencies 

far away from the natural frequencies. The signal to noise ratio at natural frequencies 

are high in this case. Since the error around natural frequencies dominates the error 

function used in curve fitting, the improvements around distant frequencies have no 

effect on the results. 
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Figure 38. Singular values of the FRF matrix. 
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Figure 39. SVD filtering result on H1. 
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Figure 40. SVD filtering result on H3. 
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Table 4. Results of filtered FRF. 

U [m/s] 20 30 40 50 60 70 80 85 

η1 0.0454 0.0678 0.0907 0.1145 0.1413 0.1725 0.2147 0.2500

η1f 0.0455 0.0681 0.0913 0.1158 0.1417 0.1727 0.2166 0.2496

η2 0.0095 0.0166 0.0238 0.0286 0.0345 0.0348 0.0230 0.0066

η2f 0.0095 0.0166 0.0238 0.0292 0.0346 0.0348 0.0229 0.0066

ω1 [Hz] 5.2441 5.2719 5.3166 5.3764 5.4578 5.5697 5.7131 5.7874

ω1f [Hz] 5.2442 5.2726 5.3143 5.3740 5.4592 5.5710 5.7194 5.7908

ω2 [Hz] 7.6228 7.5856 7.5244 7.4385 7.3220 7.1687 6.9664 6.8531

ω2f [Hz] 7.6228 7.5856 7.5239 7.4331 7.3234 7.1687 6.9668 6.8532

 

3.2.4 Flutter Prediction with Envelope Function 

In order to represent the thruster exciters, half sine pulses are used with the 

simulation model. Thus, the acceleration response of the typical section model to this 

nearly impulse excitation can be used to calculate the shape parameter at different 

speeds. The acceleration measurements are filtered with a cut-off frequency of 60 Hz 

to eliminate the high frequency content. A Matlab code is prepared to calculate the 

time centroid defined in Equation 2-16 and to accomplish the further processing in 

order to estimate the flutter speed of the model. 

 

The envelope functions of the leading edge acceleration obtained for various air 

speeds are given in Figure 41. As seen from the figure, the envelope functions are not 

pure exponential decays at low air speeds because of the multi-DOF response. As the 

speed approaches the critical flutter speed, the envelopes increase in magnitude 

which indicates a serious decrease in damping.  
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To calculate the time centroid, a time limit must be chosen. The calculated shape 

parameter changes are given in Figure 43, Figure 44, and Figure 45 with various time 

limits. As seen from these figures, the damping trends change drastically with the 

chosen time limits. Although, the damping of the mode of interest at air speeds 60 

and 70 m/s are almost the same as shown in Table 4, the shape parameter graphs with 

shorter time limits show a drastic change in damping, which seems to be very useful 

in flutter estimation. However, the main reason of the drastic shape parameter change 

can be understood from Figure 42, where the calculated envelope functions for the 

leading edge accelerometer are shown in more detail up to 1.2 s. It can be seen that 

the impulse response behavior of the system changes with the air speed. This 

behavior dominates the shape parameter change for short time limits. As the air 

speed increases, the coupled response after the impulsive excitation increases first 

and then decays. If this is a universal rule, then a new approach can be developed 

regarding this phenomenon. The validity of the rule must be checked with higher 

order models. Once proved, it is obvious that the envelope function would be a 

perfect indicator of stability even in the cases where damping changes are small. 

 

Besides choosing the time limit, a proper sensor should be chosen to estimate the 

flutter speed. As seen from the figures, the leading edge sensor outputs are more 

suitable for extrapolation. Although, the trailing edge sensor has a similar rank, the 

large time limit graph, Figure 43, shows a flat response up to the speeds that are very 

close to the flutter. This is the usual behavior for this method which is observed in 

literature, [8]. Hence, usually it is not possible to predict flutter speed at low speeds, 

but some reliable estimates can be made with the high speed data. The shape 

parameter variation for the leading edge sensor in Figure 43 shows a similar behavior 

of modal damping. 
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Figure 41. Envelope functions for leading edge accelerometer. 
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Figure 42. Envelope functions for leading edge accelerometer, zoomed. 
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Figure 43. Variation of shape parameters with speed, tmax=10s. 
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Figure 44. Variation of shape parameters with speed, tmax=5s. 
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Figure 45. Variation of shape parameters with speed, tmax=2s. 

 

It is assumed that the data at speeds 80 and 85 m/s are not available as is the case in 

the damping extrapolation method. The curve fit results are given in Figure 46 and 

Figure 47 for different time limits. The solution with time limit of 2 s is not presented 

here since 2 s is not long enough to describe the decay of the response. The 

estimation results are given in Table 5. As seen from this table, it is not possible to 

perform a reliable estimation with full span time data. On the other hand, estimations 

with lower time limit yield better and even conservative estimations. 

 

The selection of the order of the polynomial fit is another problem as in damping 

extrapolation. The best polynomial order changes with the time limit and speed 

range. Orders up to six are used in the literature. Such high orders are necessary 

when the speed range that will be processed is large. 
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Table 5. Envelope function results. 

tmax [s] Fit order Flutter speed estimate [m/s] Error [%] 

10 2 135.04 56 

10 3 107.18 24 

5 2 95.12 10 

5 3 76.93 -11 
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Figure 46. Envelope function result, tmax=10s. 
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Figure 47. Envelope function result, tmax=5s. 

 

3.2.5 Flutter Prediction with Flutter Margin 

The flutter margin calculations and curve fit results using the approach presented in 

Section 2.4.3 are given in Figure 48, Figure 49, and Figure 50 using different number 

of data points for fit. The flutter estimates are given in Table 6. As seen from these 

figures and the table, the second order fit gives conservative and close estimates in 

every case considered. Using the data obtained at higher speeds is observed to 

improve the estimates. The results are completely as expected and compatible with 

the literature, since the method best works with 2-DOF systems. The almost linear 

behavior should be noted. 
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Figure 48. Flutter Margin fit for 6 data points. 
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Figure 49. Flutter Margin fit for 5 data points. 
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Figure 50. Flutter Margin fit for 4 data points. 

 

Table 6. Flutter Margin results. 

Fit order Used velocities [m/s] Flutter speed estimate [m/s] Error [%] 

1 20, 30, 40, 50, 60, 70 91.73 6.1 

2 20, 30, 40, 50, 60, 70 80.52 -6.9 

1 30, 40, 50, 60, 70 88.30 2.1 

2 30, 40, 50, 60, 70 82.95 -4.1 

1 40, 50, 60, 70 86.81 0.4 

2 40, 50, 60, 70 84.97 -1.7 
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3.2.6 Flutter Prediction with ARMA Modeling 

The Simulink model is modified to excite the system with a normal distribution noise 

that has a variance value of 100 N. The response to random noise is used to find the 

ARMA coefficients by using the method explained in Section 2.4.4. ARMA fits are 

performed with different noise orders to select a suitable noise order. Table 7 

summarizes the pre-analysis results. As seen from the table AIC values are close to 

each other, which means any noise order is suitable for modeling. Order of the 

system is 4. So, the order of the noise model can be selected as 3 as a general rule. 

The estimation is performed with an ARMA(4,3) model.  

 

Table 7. AIC table for various noise order and speed. 

U 20 m/s 30 m/s 40 m/s 50 m/s 60 m/s 70 m/s 80 m/s 85 m/s 

m=1 4.7086 4.7139 4.6622 4.6064 4.7793 4.8164 4.8068 4.7911 

m=2 4.7136 4.8871 4.6624 4.8943 4.8297 4.8368 4.9101 4.9192 

m=3 4.7215 4.7147 4.8672 4.9105 4.8871 4.924 4.9044 4.8001 

 

Since a turbulence excitation is always present in the structure, practically more test 

points can be defined for the test. Measurements are collected for 14 speed points 

ranging from 20 to 85 m/s with 5 m/s steps. The stability variations for leading and 

trailing edge measurement points are given in Figure 51. As seen from the figure, the 

variations are not monotonic for both optimum sensor locations. The trailing edge 

measurements for air speeds greater than 50 m/s (dynamic pressure of 1,418 Pa) are 

used to perform the extrapolation. Although the method seems to work for low 

speeds, it is obvious that no useful data can be extracted from the low speed data. 

There is no need to perform a second order curve fitting for the high speeds since a 

second order fit would never cross the zero axis. The upper limit for the speed is 

taken as 70 m/s as in all previously studied methods. The estimation results are given 

in Figure 52 and Table 8.  
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Figure 51. Variation of ARMA Fz with dynamic pressure without filtering. 
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Figure 52. ARMA Modeling fit for 5 points without filtering. 
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Table 8. ARMA Modeling results without filtering. 

Fit order Used velocities [m/s] Flutter speed estimate [m/s] Error [%] 

1 50, 55, 60, 65, 70 94.08 8.8 

1 50, 55, 60, 65 89.4 3.4 

1 55, 60, 65, 70 98.12 13.5 

 

Clearly, the estimation process turns out to be neither robust nor reliable compared to 

the studies reported in the literature. After investigating the estimated models, it is 

found that the poles of the estimated models are not complex conjugate pairs. 

Although the structural part has two pairs of oscillatory poles, the unsteady 

aerodynamics introduces two additional real poles to the complete aeroelastic 

system. It is found that the ARMA procedure always converges to one pair of 

complex pole and two distinct real poles, which violates the fundamental assumption 

of the method. Since the method assumes interaction of two modes, signals that are 

not associated with these modes should be filtered out before estimating the ARMA 

model. The importance of filtering is also stated in the literature [15, 36]. To resolve 

this problem the measurements are pre-filtered by a sixth order Butterworth filter 

with a cutoff frequency of 30 Hz. The new poles are checked and verified that they 

are formed as complex conjugate pairs. The variations of the stability parameter Fz 

with the dynamic pressure are considerably different at all measurement locations as 

seen in Figure 53. However, the stability margin calculated from the trailing edge, 

Sensor 5, shows a flat variation for low speeds. So, only a second order curve fit is 

enough to give accurate results. However, without using high speed data, it is still not 

possible to perform a meaningful second order curve fit. The monotonic decrease 

behavior is observed in the leading edge measurement, which is more suitable for a 

first order curve fit. The results of the curve fit for the leading edge measurement 

with different number of data points are given in Figure 54 and Figure 55. If some 

high speed data were available for curve fitting, a third order fit might give very 

accurate results. However, such high order curve fits are never recommended in the 
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literature. In fact, the stability variation is expected to be linear as in flutter margin 

method. 

 

The results of the discrete time ARMA Modeling method are given in Table 9. As 

seen from the table, a second order fit does not give any result, which is usually the 

case for this method because of scatter. 
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Figure 53. Variation of ARMA Fz with dynamic pressure with filtering. 
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Figure 54. ARMA Modeling fit for 11 points with filtering. 
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Figure 55. ARMA Modeling fit for 4 points with filtering. 
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Table 9. ARMA Modeling results with filtering. 

Fit order Used velocities [m/s] Flutter speed estimate [m/s] Error [%] 

1 20 to 70 by 5 68.17 -21.17 

2 20 to 70 by 5 ----- ----- 

1 55 to 70 by 5 74.73 -13.6 

2 55 to 70 by 5 ----- ----- 

 

3.2.7 Flutter Prediction with Flutterometer 

3.2.7.1 State Space Formulation 

The equations of motion of the typical section, which are presented in Appendix B, 

are based on Laplace transformation in order to deal more easily with the complex 

aerodynamic terms. However, a state-space formulation is more suitable for robust 

analysis. For this reason, the equations of motion are derived in the state space form. 

Recall that basic equations for two degrees of freedom typical section are as in 

Equations 3-7 and 3-8.  

 
ext

hmh S K h L Fαα+ + = − +&& &&  

 
(3-7)

ext
yS h I K M Mα α αα α+ + = +&& &&  (3-8)

where 

αα mbxS =  (3-9)

 

Unsteady aerodynamic lift and moment expressions are given below. 

 

 [ ] ( ) ( )[ ]ααπρααπρ &&&&&&& abUhkUblCbaUhlbL −+++−+= 2
12 2  (3-10)
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where 

U
bk ω

=  (3-12)

 

is the nondimensional frequency called as the “reduced frequency”. The circulatory 

part of the aerodynamic forces depend on the Theodorsen’s function C(k). A useful 

approximation for Theodorsen’s function is given in Equation 3-13 and 3-14. It is 

possible to derive aerodynamic state equations with these equations.  

 

 

k
i

k
i

kC 3.01

335.0
0455.01

165.01)(
−
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−

−=  for k<0.5 
(3-13)

 

k
i

k
i

kC 32.01

335.0
041.01

165.01)(
−

−
−

−=  for k≥0.5 
(3-14)

 

In order to describe the dynamic pressure uncertainty, the density and square of air 

speed parameters should be collected to form the dynamic pressure. However, 

Equations 3-10 and 3-11 clearly show that it is not possible to separate the dynamic 

pressure terms without leaving individual density and speed terms in the equations of 

motion. To overcome this difficulty, a nondimensional time scaling s defined as 

 

b
Uts =  (3-15)

 

is used to derive the equations of motion. It is shown that the switching to the 

nondimensional time scale eliminates all speed terms from the equations and it is 

possible to have a proper state equation that is valid at a specific altitude.  
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The differentiation with respect to time can be replaced with the differentiation with 

respect to nondimensional time as in Equations 3-16 and 3-17. 

 

ds
d

b
U

ds
d

dt
ds

dt
d
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⎞
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⎛==  

 

(3-16)

2

22

2

2

ds
d

b
U
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d

⎟
⎠
⎞

⎜
⎝
⎛=  (3-17)

 

Laplace representation of Theodorsen’s function with respect to reduced frequency 

can be expressed as 
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 (3-18)

where 

 

c1=0.1080075, c2=0.006825, c3=0.3455, c4=0.01365 for 0.5k ≤  
 

c1=0.113965, c2=0.00656, c3=0.361, c4=0.01312 for 0.5k >  
(3-19)

 

So, the equations of motion in nondimensional time become 
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( )2 2 1
23 4a a ax c x c x bh b b aα α′′ ′ ′ ′+ + = + + −  (3-22)

 

where xa in Equation 3-22 defines the extra aerodynamic states introduced by the 

denominator of the Theodorsen’s function. Here, it should be noted that the 

equations of motion do not involve the speed term explicitly. The equations can be 

expressed in matrix notation as in Equation 3-23.  
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(3-24) 

 

Finally, the state space representation of the typical section can be formed as shown 

below.  
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(3-25) 

3.2.7.2 Nominal Flutter Analysis 

The LFT form of the system can be derived by applying a perturbation to the 

dynamic pressure term in Equation 3-23 such as 

0 q qq q W δ= +  (3-26)

 

Collecting the perturbation terms after the substitution of Equation 3-26 into the 

equation of motion results in Equation 3-27. 
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Define the perturbation term as 

 

{ } [ ] [ ]{ } [ ] [ ]{ } [ ] [ ]{ }( ) { } { }1 1 1
0a qM C M K M D x W q q z q wη η η δ δ− − −′′ + + + = =  

 (3-28)

 

Note that {z} contains { }η′′  term, so another substitution is necessary to eliminate 

this term. By substituting Equation 3-29, which is derived from Equation 3-27 and 

the definition 3-28, into 3-28, the definition of the perturbation equation is obtained 

as follows. 
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 (3-29)

 

{ } [ ] [ ] { } { } [ ] { }1 12 2
0 0 0q q qz M K W q W q w M W q fη− −= − − +  (3-30)

 

Forcing input and measurement output is not necessary in nominal flutter analysis. 

The state space equation for nominal flutter analysis is given in Equation 3-31. 
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 (3-31)
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Figure 56 shows the variation of the real part of the pole that is related to the flutter 

with different dynamic pressure perturbations. The point where the real part becomes 

positive is marked on the figure. The calculated flutter speed, 88.6 m/s, is almost the 

same with the previously calculated value, 86.5 m/s, which was obtained from the 

equations of motion derived by Laplace transform. Since other system poles are 

always stable, they are not given in the figure. 
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Figure 56. Nominal flutter analysis of the typical section. 

3.2.7.3 Robust Flutter Analysis 

It is convenient to model the uncertainties of the stiffness, damping, and 

aerodynamic parameters of the systems that have limited number of DOFs with 

parametric uncertainties. Since no structural damping is included in the typical 

section model, a complex parametric uncertainty would cover both stiffness and 

aerodynamic damping uncertainties. Thin airfoils are usually in good agreement with 

steady aerodynamic theories. However, unsteady aerodynamic coefficients are 

usually calculated with a curve fitting. Thus, the unsteady aerodynamic parameters 
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can be modeled with a complex or scalar parametric uncertainty. For parametric 

uncertainties, multiplicative and additive descriptions are equivalent to each other. 

Thus, it will be convenient to use an additive uncertainty for the aerodynamic 

coefficients and the structural stiffness matrix. The structural stiffness matrix and 

aerodynamic coefficients with perturbation can be defined as below. 

 

[ ] [ ] [ ]

0

0

,  for 1..4
i i

K K

i i c c

K K W

c c W i

δ

δ

= +

= + =
 (3-32)

 

Since stiffness matrix, [K], is explicitly available in the state space equations, 

rewriting these equations with a defined uncertainty is straightforward. However, the 

aerodynamic coefficients are embedded in the system matrices and a decomposition 

of the related matrices is necessary. The aerodynamic coefficients are used in the 

system matrices [D] and [F]. Consider the matrix [D] 
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The coefficient matrix in Equation 3-33 can be decomposed as follows. 
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 (3-34)

 

So the matrix [D] can be expressed as 
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Similarly, the matrix [F] can be decomposed as 
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 (3-36)

 

Substituting uncertainty descriptions given by Equations 3-32 (stiffness), 3-35, and 

3-36 into Equation 3-23 results in the following set of new equations of motion with 

some dynamic pressure, stiffness, and aerodynamic uncertainties. 

 

{ } [ ] [ ] [ ]( ){ } [ ] [ ]{ } [ ] [ ]{ }
{ } { } { } { } [ ] { }

{ } [ ]{ } [ ]{ } [ ]{ } { } { }

{ } [ ] [ ]{ } { }

{ } [ ] [ ]{ } { }

{ } [ ] [ ]{ } { }

{ } [ ]{ } { }

{ } [ ]{ } { }

{ } [ ] [ ]{ } { } { } [ ] { }( )

2 1

4 3

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1 1 1
0 0 0

1
0

2 1 0

1
0

1
3

1
2

2

1

1 12 2
0 0 0 0 0

a

K c c

c c

K K K K K

c c c c

c c c c

c c c c

c c c c

q K q q

M K q K M C M D x

w w w w M q f

x E E F x w w

w M q W z

w M D x z

w M D x z

w F x z

w F x z

w M q K W q w W q w M W q f

η η η

η η

η δ δ

δ δ

δ δ

δ δ

δ δ

η

− − −

−

−

−

−

− −

′′ ′= − + − −

− − − − +

′ ′= + + + +

= =

= =

= =

= =

= =

= − − − +

{ }
q

qz

δ

δ=
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The state space representation of the system without any forcing input and 

measurement output is given as 
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 (3-38) 

A Matlab script code is prepared for the robust flutter analysis of the typical section 

using the given formulation. The μ norm is calculated with the “mussv” function of 

the “Robust Control Toolbox” of Matlab. 

 

Figure 57 shows a case study with a 1% complex stiffness uncertainty and 1% real 

parametric uncertainty for each aerodynamic coefficient. Here, the nominal speed is 

60 m/s and an initial perturbation of 25 m/s is applied. The μ norm indicates that the 

dynamic pressure perturbation should be 1/1.122 of the predicted value for stability, 

which corresponds to 22 m/s perturbation in speed. Figure 58 shows the new μ norm 

for 21 m/s perturbation, and the norm is now close to unity. Hence, the robust flutter 

speed for this typical section is estimated to be 82 m/s, which is less than the nominal 

flutter speed (85.5 m/s) as expected. However, both figures show that there is a 

convergence problem in μ norm calculation. Its upper and lower bounds should 

converge for a reliable answer. The upper bounds are calculated with the greatest 

accuracy, which is denoted by parameter=’a’ in the title of figures. This parameter 

invokes the linear matrix inequality (LMI) solver with an automatic prescaling and 

increases the computation time seriously. The computation time depends on the 

number of uncertainty descriptions and on the type of the uncertainty. A pure real 

uncertainty description decreases the convergence speed of the norm computations. 

This is actually why it is always advised to include some complex uncertainty to 
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increase the convergence speed. The speed of norm calculation with default 

parameters is much higher than the LMI solution. Nevertheless, the default solver 

has a serious accuracy problem. Figure 59 shows the same solution as in Figure 57 

obtained using the default solver. When these figures are investigated, it is seen that 

neither the norm value nor the destabilizing frequency is correct. The robust flutter 

calculation based on Figure 59 converges to a flutter speed of 71 m/s, which is given 

in Figure 60. Actually, such a mathematical conservatism will increase the actual 

flutter test time which contradicts with the aim of the method. 
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Figure 57. Robust flutter analysis for 1% uncertainty, parameters=’a’. 
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Figure 58. Robust flutter analysis for 1% uncertainty, parameters=’a’. 
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Figure 59. Robust flutter analysis for 1% uncertainty, parameter=default. 
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Figure 60. Robust flutter analysis for 1% uncertainty, parameters=default. 

 

Another case is solved with uncertainty descriptions increased to 10%. Since the 

structural stiffness is modeled with a complex uncertainty, an artificial damping is 

introduced to the model, which might be expected to increase the flutter speed. 

However, the method also considers the other case where the damping decreases 

because of the symmetry of the uncertainty. The method considers the worst case and 

it is seen that the μ norm never decreases to unity even at very low speeds. Such a 

high conservatism can be eliminated by changing the complex stiffness uncertainty 

to a real uncertainty. Figure 61 shows the converged result when the structural 

stiffness is modeled with a real parametric uncertainty. The robust flutter speed is 

calculated as 77 m/s, which has less conservatism. This case demonstrates the 

importance of uncertainty modeling. The uncertainty levels and types should be 

selected carefully, preferably depending on experimental results.  
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Figure 61. Robust flutter analysis for 10% real uncertainty, parameter=’a’. 

 

Another important point is the selection of nominal and perturbation speeds. Since 

Matlab’s “mussv” function always assumes a symmetrical deviation from the 

nominal value, negative dynamic pressures occur when the perturbation is bigger 

than the nominal value. Although a negative dynamic pressure is mathematically 

possible, solutions in such cases are not physically meaningful. Therefore, a nominal 

pressure just below the assumed flutter pressure should be selected with a small 

perturbation compared to nominal pressure. In aeroservoelastic cases, not only the 

upper pressure bound should be checked but the stability at and beyond the lower 

bound should also be checked. In other cases, only the upper pressure bound is 

important. So a new μ norm function can be developed regarding only the upper 

bound for dynamic pressure. This would also decrease the computational time. 
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3.2.7.4 Flutter Prediction 

The structural states of a typical section can be measured easily in an experiment. 

However, in real flutter tests, it is usually not possible to measure structural 

displacements or speeds directly. Strain gauges would give measurements 

proportional to the relative displacement, but it is difficult to calibrate the sensor and 

to mathematically model the input-output relation. Accelerometers are the main 

sensors used in flutter flight testing. So, the state space model of the typical section 

should output vertical accelerations. Recall that the trailing edge of the typical 

section is found as the best measurement point. The vertical acceleration of the 

trailing edge in terms of state variables can be found by the following simple 

transformation. 

 

[ ] [ ]{ }3 3
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 (3-39)

 

The forcing on the typical section is simply a impulsive force acting on the trailing 

edge, which also creates a moment proportional to the moment arm of 3
2 b . 
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Accelerations can be calculated with the first expression of Equation 3-37.  
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Equation 3-37 with the output 3-41 can be represented in state space form as given in 

Equation 3-42. 
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 (3-42) 

 

A Matlab script code is prepared to find the appropriate scale of the initial 

uncertainty definition. As stated in the method, the dynamic pressure uncertainty is 

not taken into account during updating. After updating the uncertainty definition, a 

robust flutter analysis is performed to estimate the critical flutter speed. Input and 

output time signals are converted into discrete frequency domain functions by 

Fourier transformation. The initial uncertainty scale is estimated to be 1% for all 

parameters. The structural stiffness is modeled with a complex uncertainty and all 

other parameters are modeled with a real parametric uncertainty. Figure 62 shows the 

validation norm. This norm should be just greater than unity to ensure that model is 

not invalidated. As seen from this figure, the norm is much higher than unity, which 

means that 1/192 of the uncertainty description is sufficient for validation. 1/192 of 

1% is almost negligible but such a low value was expected because simulations are 

already performed with the exact parameters. The original mathematical model is so 

accurate that no uncertainty description is necessary. In real life, there will be errors 

in the mathematical model of the test item. Thus, the parameters of the typical 

section are perturbed artificially as in Table 10 for a meaningful analysis. 

 

Table 10. Physical parameter changes. 

Parameter Kh Kα c1 c2 c3 c4 

Change 5% -5% 10% -10% -10% 10% 
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The result with the perturbed parameters is given in Figure 63. As seen from the 

figure, the norm is reduced significantly. The validation algorithm indicates that 

1/1.286 of the initial uncertainty description is enough for validation. So, the 

perturbation will be selected as 1/1.286*1%=0.78% for the related speed. Figure 64 

shows the result of the flutterometer method. The perturbation on the dynamic 

pressure should be slightly lowered to get unity norm. The estimated flutter speed 

can be calculated as shown below. 

 
( )0
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new q

f new

q q W P

V q

μ

ρ

= +

=
 (3-43)

 
Various flight speeds and dynamic pressure perturbation levels are used to 

demonstrate the method. Results are given in Table 11. The comparison of the 

method with other methods is given in Table 13. Although flutterometer is said to be 

always conservative, the estimations at high speeds show that the estimated flutter 

speeds can be higher than the actual values. The conservatism seems to decrease with 

increasing speed. 
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Figure 62. Validation norm, uncertainty=1%, U=60m/s. 
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Figure 63. Validation norm with changed parameters, uncertainty=1%, 
U=60m/s. 
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Figure 64. Flutterometer result for U=60 m/s. 

 

Table 11. Results for flutterometer. 

Test 
Flight 
Speed 
[m/s] 

Uncertainty 
[%] 

Speed 
Perturbation 

[m/s] 

Estimated Flutter 
Speed [m/s] Error [%] 

1 50 0.18 40 70.6 -18.4 

2 50 0.18 20 70.5 -18.5 

3 60 0.78 25 83.3 -3.7 

4 60 0.78 23 83 -4 

5 70 0.6 20 97.3 12.5 

6 70 0.6 10 95 9.9 
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3.3 Numerical Study for the ATS 

The original aeroservoelastic test setup was a highly nonlinear system because of the 

high friction levels on the linear guides. The flutter speed of the original setup was 

much higher than the theoretical value because of the high damping introduced by 

this friction. The setup improved by replacing linear guides with better ones. The 

linear springs are also replaced to have a higher preload to avoid backlash in plunge 

motion. The actual parameters of the ATS are as follows. 

 

m = 38 kg : Total mass of moving parts of the system (airfoil and base). 

mairfoil = 11 kg : Mass of the rotating parts (airfoil). 

Iα = 0.1 kg.m2 : Mass moment of inertia of the rotating parts. 

Kh = 19,200 N/m : Flexural stiffness of the airfoil. 

Kα = 44.6 N.m/rad : Torsional stiffness of the airfoil. 

a = -0.6 : Normalized distance between the elastic axis and midchord. 

b = 0.15 m : Semichord length of the airfoil. 

l = 0.6 m : Span of the airfoil. 

xα = 0.409 : Normalized distance between the elastic axis and mass center of 

airfoil. 

 

This system has a theoretical flutter speed of 25.7 m/s with 1.1341 kg/m3 air density 

(corresponding to ~800 m altitude), which is found by plotting the roots of the 

system versus the flight speed. The uncoupled natural frequencies are 3.36 Hz for 

torsion and 3.58 Hz for plunge. The natural frequencies of the system are 2.98 Hz 

and 4.3 Hz. Recall that uncoupled and coupled natural frequencies of the mild flutter 

case are close to each other. However ATS has considerably different coupled and 

uncoupled natural frequencies. This is an indication of high coupling and is because 

of the high value of xα. The mass unbalance is one of the most important parameters 

that effects the flutter speed. A high mass unbalance is not only reduces the flutter 

speed but also changes the behavior of the flutter mechanism. Usually an explosive 

type flutter occurs in such systems. The term “explosive flutter” is used for cases 
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where the damping of the system decreases rapidly at speeds close to the flutter 

speed.  

 

The ATS is excited by a servo system mounted on the torsional degree of freedom of 

the system. The base of the torsional spring is displaced by a desired angle with this 

stiff servo system. Recall that the excitation for mild flutter case is an impulsive 

force. An angular base excitation is added to the previously prepared Simulink 

model. Note that the parameter a, which defines the location of the elastic axis is also 

different. The elastic axis is at the quarter chord for mild flutter case. The center of 

pressure for thin airfoils at subsonic speeds is at the quarter chord, a=-0.5, of the 

airfoil. However, the elastic axis of the ATS is slightly ahead of the quarter chord, 

a=-0.6, to have an equilibrium at the zero angle attack. The transformation given in 

Equation 3-6, which converts the angular and flexural motions of the typical section 

to vertical motions of the typical section at various measurement points must be 

redefined because of this shift in the elastic axis. The new transformation matrix is 

given in Equation 3-44. The locations of leading and trailing edge accelerometers are 

corrected, but the locations of intermediate accelerometers are not changed. The best 

measurement location for ATS is found to be the trailing edge, which is denoted as 

sensor 5.  
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The simulations are re-run with the typical section parameters given above. The 

simulation results are analyzed with the same tools used in the mild flutter case. 
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3.3.1 Flutter Prediction with Damping Extrapolation 

The Simulink model developed is run with air speeds of 10, 12.5, 15, 17.5, 20, 22.5, 

and 25 m/s. A shifted half cosine is used for excitation. The excitation has a peak of 

5° and 62.5 ms of duration, which corresponds to 8 Hz. Some FRF estimations 

obtained by the “tfestimate” command of Matlab are given in Figure 65, Figure 66 

and Figure 67. The variation of FRF at the trailing edge with speed is given in Figure 

68.  

 

A curve fit is performed for a frequency range of 2 to 6 Hz, which covers both 

modes. The fit results for all air speeds are given in Figure 69 through Figure 75, and 

in Table 12. The V-g plots are given in Figure 76 and Figure 77. 

 

Damping extrapolations with 3rd and 4th order fit are given in Figure 78 and Figure 

79 with various data pairs used. The extrapolation with the first 6 data pairs results in 

a flutter speed of 41.3 m/s for the 3rd order fit and 26.8 m/s for the 4th order fit. The 

4th order fit result is very close to the true value, 25.7 m/s. Extrapolation with the first 

5 data pairs results in a flutter speed of 24 m/s only with the 4th order fit. 
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Figure 65. FRF estimates for 10 m/s. 
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Figure 66. FRF estimates for 17.5 m/s. 



 

115 

1 2 3 4 5 6 7 8
10

−3

10
−2

10
−1

10
0

10
1

Frequency [Hz]

R
es

po
ns

e 
[g

/°
]

FRF Estimates for speed 25 m/s

 

 
H1
H2
H3
H4
H5

 

Figure 67. FRF estimates for 25 m/s. 
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Figure 68. Change of H5 with air speed. 
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Figure 69. Fit results for 10 m/s. 
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Figure 70. Fit results for 12.5 m/s. 
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Figure 71. Fit results for 15 m/s. 
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Figure 72. Fit results for 17.5 m/s. 
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Figure 73. Fit results for 20 m/s. 
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Figure 74. Fit results for 22.5 m/s. 
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Figure 75. Fit results for 25 m/s. 
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Figure 76. Damping versus speed graph. 
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Figure 77. Natural frequency versus speed graph. 
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Figure 78. Damping extrapolation result with 6 data. 
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Figure 79. Damping extrapolation result with 5 data. 

 

Table 12. Summary of modal extraction. 

U [m/s] 10 12.5 15 17.5 20 22.5 25 

η1 0.0294 0.0356 0.0365 0.0395 0.0409 0.0395 0.0258 

η2 0.0154 0.0185 0.0232 0.0288 0.0358 0.0453 0.0673 

ω1 [Hz] 3.0277 3.0604 3.1068 3.1657 3.2433 3.3459 3.5153 

ω2 [Hz] 4.2587 4.232 4.1971 4.1496 4.0869 3.9964 3.8406 

 

Although the change in damping is steep, the extrapolation with 4th order fit gives 

very reliable estimates. Higher order fits are expected to give more conservative 

estimates provided that these fits are concave down in the speed range of interest. 

The most conservative value, 24 m/s, is selected to be the result of the damping 

extrapolation method. 
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3.3.2 Flutter Prediction with Envelope Function 

The response of the ATS to nearly impulsive angular base input is directly used to 

calculate the shape parameters at each speed. The results of the mild flutter case are 

very satisfying. However, the results for ATS are disappointing. The calculated 

envelope functions for the trailing edge sensor are given in Figure 80 and Figure 81. 

Some highly coupled modes result in oscillatory envelopes at low speeds as in the 

mild flutter case. However, the envelopes for all sensors are found to be decreasing 

with increasing speed. The method becomes useless in such cases. Recall that in the 

mild flutter case, the envelopes just after the impact are increasing with increasing 

speed, Figure 42. That phenomenon becomes very useful if it can be generalized. 

However, it is not observed in ATS case, Figure 81. There seems to be an increase in 

the envelope just after the impact as speed increases, but increase is not significant 

compared to mild flutter case even at 25 m/s speed. The special case observed in 

mild flutter case affects the shape parameter change as the time limit is changed. 

However, the shape parameter change in ATS is found to be not affected by the time 

limit. The shape parameter change with 10 s of time limit is given in Figure 82. As 

seen from the figure, the shape parameters do not converge. All shape parameters, 

except the one related with sensor 2, monotonically increases as the air speed 

increases. Sensor 2 is very close to the elastic axis and thus measures mainly the 

plunge motion. This is because, the envelopes of sensor 2 are always much smaller 

than the other sensor’s envelopes, and the sensor does not represent the overall 

system.  

 

It can be concluded that the envelope function method is not working with the ATS. 

This might be the case for all explosive type flutter systems. But the generality of 

this statement must be further investigated.  
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Figure 80. Envelope functions for the trailing edge accelerometer. 
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Figure 81. Envelope functions for the trailing edge accelerometer, zoomed. 
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Figure 82. Variation of shape parameters with speed, tmax=10s. 

 

3.3.3 Flutter Prediction with Flutter Margin 

The flutter margin method is expected to work with explosive type flutter systems. 

Since ATS is a 2-DOF system, the method should give perfect results. The modal 

parameters, which are necessary to apply the method, are given in Table 12. The 

result is given in Figure 83 and Figure 84 with different number of data pairs used. 

The variation of Flutter Margin is almost linear as expected. There is no need to 

discard low speed data as in the mild flutter case. The 1st order fit with 6 data pairs 

results in a flutter speed of 26.7 m/s. The 2nd order fit with 6 data pairs results in a 

flutter speed of 25.4. When the first 5 data pairs are used, the flutter speed is 

estimated to be 27.4 m/s with the 1st order fit and 25.4 m/s with the 2nd order fit. All 

results, especially the results of the 2nd order fits, are very close to the actual value, 

25.7 m/s.  
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Figure 83. Flutter Margin fit for 6 data points. 
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Figure 84. Flutter Margin fit for 5 data points. 
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The most conservative value, 25.4 m/s, is selected to be the result of the Flutter 

Margin method. 

 

3.3.4 Flutter Prediction with ARMA Modeling 

The discrete time ARMA modeling requires a random excitation. The ATS model is 

excited with random angular base inputs ranging from -5° to 5° at various speeds. 

Since the excitation is assumed to be always present on the structure in this method, 

more test points can be defined. The response of the ATS at speeds 10, 11.25, 12.5, 

13.75, 15, 16.25, 17.5, 18.75, 20, 21.25, 22.5, 23.75, and 25 m/s are recorded for 

processing. The response of the ATS at speed 25.7 m/s, which is the critical flutter 

speed and at speeds 26 m/s and 27 m/s, which are above the critical flutter speed, are 

also recorded. The ARMA models of system order 4 and noise order 3 are used to fit 

the models as in the mild flutter case. Calculated stability indices, Fz, for each sensor 

at various speeds are given in Figure 85. As seen from the figure, the stability curves 

are almost flat up to the flutter speed. The stability curves rapidly decrease beyond 

the flutter speed. Obviously it is not possible to perform an extrapolation procedure 

to estimate the flutter speed with the data presented. It can be concluded that the 

method is not working with the ATS model as the envelope function method. It is 

known that flutter mode dominates the response at speeds close to the flutter speed. 

However the FRF plots of the ATS show that both modes of the structure are still 

dominant even at 25 m/s speed. This is because of the high coupling of the structural 

modes. The flutter mode dominates the response only at speeds very close to the 

flutter speed. This seems to be the reason for the failure of the envelope function and 

ARMA methods. 

 



 

127 

0 50 100 150 200 250 300 350 400 450
−1

0

1

2

3

4

5
x 10

−4 ARMA Modeling

Dynamic Pressure [Pa]

F
z

 

 

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5

U=25.7 m/s

 

Figure 85. Variation of ARMA Fz with dynamic pressure. 

 

3.3.5 Flutter Prediction with Flutterometer 

The nominal flutter analysis of the ATS with the μ method results in a flutter speed 

of 25.7 m/s, which is the true flutter speed. The real part of the associated pole with 

respect to speed is given in Figure 86. The comparison of Figure 86 with Figure 56 

explains the difference between the mild and explosive flutter.  
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Figure 86. Nominal flutter analysis of the ATS. 

 

Since the parameter “a” for ATS is different than the previous model, the 

acceleration of the trailing edge must be redefined as follows. 

 

[ ] [ ]{ }11.6 1 1.6
h

y h b b Tα η
α
′′⎧ ⎫′′ ′′ ′′= − − = − − =⎨ ⎬′′⎩ ⎭

 (3-45)

 

The forcing is also different than the previous model. It is an impulsive force on the 

trailing edge affecting both directions. However, in the ATS, the forcing is an 

angular base displacement in pitch direction. The new forcing expression is given in 

Equation 3-46. 
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 (3-46)
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where xe is the external pitch input in radians. The equation of motion of ATS in 

state space form for robust flutter analysis is given in Equation 3-47. 
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(3-47) 

 

A set of flutterometer solutions are obtained at speeds of 15 m/s and 20 m/s. The 

parameters of the ATS are perturbed as in the mild flutter case according to Table 10. 

The uncertainty description is defined to be complex for the stiffness matrix and real 

for the aerodynamic coefficients. The initial uncertainty is defined as 1% as in the 

mild flutter case. The validation norm for 15 m/s speed and 1% uncertainty is given 

in Figure 87. The validation norm is approximately 0.5, which means that the 

uncertainty description must be doubled in order not to invalidate the mathematical 

model. So, the uncertainty is scaled accordingly and a robust flutter analysis is 

performed. The results for 15 m/s speed are given in Figure 88. The flutter speed is 

calculated according to Equation 3-43, as 19.7 m/s. The solution at 20 m/s is given in 

Figure 89. The flutter estimation with the flutterometer method at 20 m/s speed is 

calculated as 24 m/s. Both estimates are below the true value, 25.7 m/s, as expected. 
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Figure 87. Validation norm, uncertainty=1%, U=15 m/s. 
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Figure 88. Flutterometer result for U=15 m/s. 
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Figure 89. Flutterometer result for U=20 m/s. 

 

3.4 Comparison of Results and Summary 

The simulation results show that there is no best method for flutter estimation. 

Therefore, multiple results obtained from different methods should be monitored 

simultaneously during a flight testing. Despite the advantages of the flutterometer, an 

extensive modeling work is necessary to get a meaningful result. As stated in the 

literature, the flutterometer seems to be the most reliable method for low speeds in 

the beginning of the flight testing. Classical methods are useless for low speeds 

because of extrapolation involved in them. The flutterometer can be easily applied to 

more complex structures where the degree of freedom of the structure is high. 

However, classical methods such as flutter margin and ARMA are based on two 

degrees of freedom models, which may not work properly with higher order systems. 

Further demonstrations with complex structures might show the actual effectiveness 

levels of these methods. The envelope function and ARMA methods seem to have a 

problem with explosive type flutter systems. However, a good aeroelastic and 
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aeroservoelastic design should never experience an explosive type flutter. Although, 

the flutterometer method seems to be promising, it is seen that there are still some 

points to work on. One of these points is about the model validation algorithm. The 

method scales the entire uncertainty description. However, there might be different 

combinations of scales that better validate the model with less conservatism. Each 

uncertainty description can be scaled independently. Recent studies [68, 69] about 

flutterometer indicate that different scales in uncertainty descriptions and model 

updating can be used to reduce the conservatism of the method. Another point to be 

studied is the μ norm calculation. A new aeroelastic problem specific implementation 

of μ norm calculation can be developed to replace Matlab’s standard functions to 

ignore the lower dynamic pressure bound in aeroelastic analysis, if the lower 

dynamic pressure bound appears to be negative at low speeds. In aeroservoelastic 

cases the lower bound of dynamic pressure should be checked, but not for negative 

valued dynamic pressures. 

 

Table 13. Comparison of methods for the mild flutter case. 

Method Best estimate [m/s] Flight Conditions [m/s] Error [%] 

Damping 
Extrapolation 90.42 20, 30, 40, 50, 60, 70 4.6 

Envelope Function 95.12 20, 30, 40, 50, 60, 70 10.0 

Flutter Margin 86.81 40, 50, 60, 70 0.4 

ARMA 89.40 50, 55, 60, 65 3.4 

Flutterometer 83.30 60 -3.7 
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Table 14. Comparison of methods for the ATS case. 

Method Best estimate [m/s] Flight Conditions [m/s] Error [%] 

Damping 
Extrapolation 26.8 10, 12.5, 15, 17.5, 20, 22.5 4.3 

Envelope Function No solution -- -- 

Flutter Margin 25.4 10, 12.5, 15, 17.5, 20 -0.05 

ARMA No solution -- -- 

Flutterometer 24 20 -6.6 
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CHAPTER 4 
 
 

NONLINEAR AEROELASTIC SYSTEMS 
 
 
 

4.1 Introduction 

In the previous chapter, an investigation of various flutter prediction methods for 

linear systems is presented. However, it is known that some fighter aircraft with 

certain external store configurations encounter limit cycle oscillation (LCO) 

problems which are only possible in nonlinear systems [46]. Fighter aircraft usually 

encounter LCOs because of aerodynamic nonlinearities. The shock induced by 

moving aerodynamic loads and trailing edge separation plays a dominant role in the 

development of these LCOs. The LCO phenomenon in aeroelastic systems is related 

to the buffeting but has characteristics similar to the classical flutter. As in flutter 

case, the LCO usually occurs at a single frequency. LCO is not a severe problem as 

long as the amplitude and frequency of oscillations do not interfere with the 

subsystems of the aircraft. From an operational point of view, an LCO results in an 

undesirable airframe vibration that limits the pilot’s functional abilities and causes an 

extreme discomfort and anxiety; more importantly, the targeting accuracy is 

degraded. The F-16 fighter aircraft, which is also used by Turkish Air Forces, has a 

LCO problem with asymmetric external store configurations [47].  

 

In this chapter, the influence of nonlinearities on the performances of the flutter 

prediction methods is investigated. A nonlinear typical section model with backlash 

is developed for data generation. It is seen that this type of nonlinearity greatly 

decreases the performance of data based prediction methods. An LCO prediction tool 

is developed based on wavelet analysis and its use is demonstrated on simulated 
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measurements. To increase the performance of the flutter prediction methods, a 

Volterra series representation of measurements is utilized. It is seen that the effect of 

nonlinearity can be decreased with the use of identified first order Volterra kernels.  

 

4.2 Analysis of Nonlinear Aeroelastic Systems 

The analysis of nonlinear systems is not as straightforward as for the linear case. 

There are various nonstandard methods to analyze nonlinear system outputs like 

Hilbert transform, but these are not applicable to all systems. A review of the 

nonlinear system identification methods used in structural dynamics can be found in 

reference [48]. The analysis of nonlinear aeroelastic systems is not much studied in 

the literature since linear methods still need some improvements. It is possible to fit a 

linear model on measurements and use a data based flutter prediction method. 

However, it is not possible to predict LCOs with such an approach. Unlike data 

based methods, the model based methods like flutterometer can be directly used with 

nonlinear systems, since the nonlinearity is handled in the uncertainty description. 

However, this approach will further increase the conservatism of the method. To 

predict LCOs and flutter, a high order spectral analysis or nonlinear modeling is 

required. Such analyses are computationally very expensive and it is usually not 

possible to utilize them online. On the other hand, there are some tools that are used 

in the literature to predict LCOs and flutter.  

 

The wavelet analysis is one of the most popular recent tools for both linear and 

nonlinear signal analysis. Wavelets are used for signal denoising, tracking the 

frequency content change with time, compressing signals and image processing. In 

the field of aeroelasticity, wavelets are used for identification and LCO prediction. 

Flight test measurements usually contain highly transient signals, higher order 

nonlinear dynamics, and noise. By wavelet filtering, the unwanted features are 

removed from the signal. Although Fourier methods are the most commonly used 

signal analysis tools, wavelets have some advantages due to the inherently transient 

nature of inflight aeroelastic dynamics. The infinite and at least locally periodic 
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waveform assumption in Fourier analysis can not adequately describe the 

intermittency, modulation (amplitude, phase, or frequency), non-periodicity, non-

stationary behavior, time variance, or nonlinearity in the measurements. By wavelet 

transform, a signal can be investigated in time and frequency domain, 

simultaneously. Brenner [49] demonstrated the use of Morlet wavelets on improving 

the input and output signals obtained from F/A-18 Systems Research Aircraft during 

flight tests. The measurement signals were cleaned with the help of wavelets. The 

cleaned signals were used to identify the transfer functions of the aircraft. Brenner 

[50] also used wavelets with SVD to estimate the instantaneous modal parameters of 

the NASA DAST (Drone for Aerodynamic and Structural Testing) vehicle and F-18 

aircraft with inflight measurements. In his work, standard SVD and transformed 

SVD are used to identify the dominant scales of the wavelet coefficients for filtering. 

A wavelet filtering is used to reduce the conservatism of flutterometer by Brenner 

and Lind [51, 52]. The filtered signals are used to update the uncertainty model. 

Freudinger et al. [53] and Johnson et al. [54] used the wavelet transform with 

correlation filtering to identify the modal properties during flight test. Both used the 

Laplace wavelet which is a complex, analytical, and damped exponential, similar to 

the response of a damped structure. A set of natural frequencies and damping values 

are correlated to the measured data and best correlated values are marked as modal 

parameters of the system.  

 

The application of wavelet transform for LCO prediction was first introduced by 

Lind et al. [55, 56]. The response of the system to an impulse input was decomposed 

into wavelet coefficients and the behavior of the dominant scales was observed. The 

derivative of the dominant scale change was used to construct a prediction function. 

The method was successfully demonstrated on a nonlinear testbed which has 

continuous nonlinear springs. The method was used with pitch angle measurements. 

However, it is not always possible to measure the displacements directly during 

flight test. In this study, the method of Lind is applied to the acceleration 

measurements with discontinuous nonlinearities such as backlash.  
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In addition to the LCO prediction, the flutter speed of the nonlinear system should 

also be predicted for a safe testing. The Fourier analysis, which is the main tool for 

transfer function estimation, yields very poor transfer function estimates so that the 

classical flutter prediction methods generally fail to predict the flutter speed. 

Separating the linear part of the signal and predicting the flutter from this linear part 

constitutes another approach for flutter prediction. The separation of the linear part 

can be performed by representing the system’s output by Volterra series. First order 

Volterra kernels can be used to represent the system’s first order dynamics, which is 

expected to be the linear part of the output. While Volterra theory has a strong 

foundation in both the biological and electrical engineering fields, it has received 

little attention in the field of aeroelasticity. Prazenica et al. [57, 58] used Volterra 

approach to identify the linear output. In his work, the calculated linear output of the 

system was used to update the uncertainty modeling in the flutterometer. If the 

dynamics of the system is known, a Volterra based structural model can be 

constructed for analytical flutter predictions [59-62]. The Volterra series 

representation of a nonlinear system can be obtained in the frequency domain as 

well. To identify the frequency domain kernels, a set of sinusoidal signals can be 

used [63]. A standard method called harmonic probing is commonly used in the 

identification of higher order frequency domain kernels [64]. However, such an 

approach requires a large number of test points, which is not possible during flight 

testing. There exist truncated approaches [65], but the identification in frequency 

domain is not a feasible method for flight testing because of its computational costs. 

Complete technical details on Volterra approach can be found in reference [66]. In 

this study, a time series approach is used to identify the Volterra kernels. The linear 

parts of measurements are extracted by the help of these kernels and used in the 

flutterometer method. The nonlinear measurements are also used to predict the flutter 

speed for comparison. 
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4.3 Nonlinear Typical Section Model 

The mathematical model used to generate the measurements is modified to reflect the 

effect of backlash in pitch degree of freedom. The ATS is actuated by a stiff 

servomotor in pitch direction. Thus, the external forcing is only in the pitch direction 

as an angular base displacement. The equation of motion of the linear system is the 

same as the previous mathematical model used in this thesis. The only difference is 

in the forcing terms. 

 

For the computer simulations, considering the nonlinear model, the typical section 

parameters are changed to get distinct natural frequencies and limit cycle 

oscillations. The selected parameters are listed below. 

 

m = 28 kg : Total mass of moving parts of the system (airfoil and base). 

mairfoil =11 kg : Mass of the rotating parts (airfoil). 

Iα = 0.05 kg.m2 : Moment of inertia of rotating parts. 

Kh = 10,000 N/m : Flexural stiffness of the airfoil. 

Kα = 55 N.m/rad : Torsional stiffness of the airfoil. 

a = -0.6 : Normalized distance between the elastic axis and midchord. 

b = 0.15 m : Semichord length of the airfoil. 

l = 0.6 m : Span of the airfoil. 

xα = 0.5 : Normalized distance between the elastic axis and mass center of 

airfoil. 

 

The new system has a linear flutter speed of 32.2 m/s. The new natural frequencies 

are 2.79 and 7.43 Hz. The acceleration of the trailing edge for a = -0.6 is given in 

Equation 3-45 and repeated here as follows. 

 

[ ] [ ]{ }11.6 1 1.6
h

y h b b Tα η
α
′′⎧ ⎫′′ ′′ ′′= − − = − − =⎨ ⎬′′⎩ ⎭

 (4-1)
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The forcing term for the angular base displacement is given in Equation 3-46 and 

repeated here as follows. 

 

{ } [ ]2

0 e ef x T x
Kα

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

 (4-2)

 

where xe is the external pitch input in radians. The linear equations of motion for the 

ATS to be used with robust flutter analysis is given Equation 3-47 and repeated here 

as follows. 
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(4-3) 

 

The Simulink model, which is used to generate the experimental data with transfer 

functions, is adapted such that the effect of backlash is modeled as another external 

forcing that depends on the pitch displacement of the system. A special care must be 

taken while calculating the nonlinear forces for backlash type nonlinearities, since 

this kind of nonlinearities do not have a linear component that can be included in the 

equations as a linear stiffness. The nonlinear torsional spring force with a backlash 

amountδ , spring deflection α, and input xe can be expressed as follows. 
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As seen from Equation 4-4, there is no common linear term that can be treated as a 

linear stiffness. The nonlinear force can be rewritten by adding and subtracting linear 

terms as follows 

 

( ) ( ) ( ) ( ), ,e e e eT x K x T x K xα α α αα α α α= − + − −  (4-5)

 

The first term in Equation 4-5 is a linear term and it is already used in the simulation 

model. The remaining two terms can be kept at the right rand side of the equation of 

motion as an external force. So, the correction term for backlash as an external force 

becomes 

 

( ) ( ), e en T x K xα α αα α= − −  (4-6)

 

The Simulink model given in Appendix B is modified accordingly. The correction 

force given in Equation 4-6 is applied to the transfer functions G12 (transfer function 

from pitch input to plunge output) and G22 (transfer function from pitch input to pitch 

output) in addition to the external input. Since there is no external forcing or no 

nonlinearity correction on plunge direction, the transfer functions G11 (transfer 

function from plunge input to plunge output) and G21 (transfer function from plunge 

input to pitch output) can be omitted. The new Simulink model is given in Figure 90. 

The details of the nonlinearity block are given in Figure 91. 

 

The amount of backlash in pitch direction is selected as ±1°. With this backlash, the 

system produces LCOs at a flow speed of 23.3 m/s. The flutter speed of the nonlinear 

system is 32 m/s, which is very close to the flutter speed of the linear part of the 

system (32.2 m/s). Since the effect of backlash decreases with increasing oscillation 

amplitude, the nonlinear flutter speed remains almost the same. Figure 92 shows the 

simulation results for a flow speed of 25 m/s. The input to the system is a 10 Hz 

pulse shaped as a shifted half cosine function. The LCO has a frequency of 3.1 Hz.  



 

141 

h/b_dd

alpha_dd

alpha

xe

alpha
Out

nonlinearity on
 alpha

xe

input

1

s  2

double integrator

G12

Tx->h/b_dd

G22

Tx->alpha_dd

h_dd

alpha_dd

Out

Transducers

Kalpha

Kalpha

b

Gain

Force Sum

acc_rec

Acceleration record

 

Figure 90. Nonlinear aeroelastic Simulink model. 
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Figure 91. Nonlinear correction force block. 
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Figure 92. Nonlinear simulation results for U=25 m/s. 

 

4.4 LCO Prediction with Wavelet Analysis 

A wavelet is a waveform of effectively limited duration that has an average value of 

zero. The wavelet analysis is simply an expression of a signal in terms of summed 

wavelets with different scales and time shifts. The wavelet analysis is similar to 

Fourier analysis, but has more advantages. Sinusoids, which are the basis of Fourier 

analysis, do not have limited duration. Sinusoids are smooth and predictable, 

whereas wavelets tend to be irregular and asymmetric. A Fourier analysis consists of 

breaking up a signal into sine waves of various frequencies. Similarly, a wavelet 

analysis is the breaking up of a signal into shifted and scaled versions of the original 

(or mother) wavelet. Signals with sharp changes might be better analyzed with an 

irregular wavelet than with a smooth sinusoid. Local features can be described better 
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with wavelets than sinusoids. Actually, it is possible to analyze a signal locally by 

short time Fourier transforms. However, the drawback is that once a particular size 

for the time window is chosen, that window is the same for all frequencies. Many 

signals require a more flexible approach where the window size can be varied to 

determine both the local and wide components in the signal.  

 

Figure 93 shows a commonly used mother wavelet, called Morlet wavelet. A wavelet 

is a function of scale (stretching), a, time shift (position), τ, and time. The scale acts 

like stretching of the wavelet. The Morlet wavelet shown in Figure 93 has a 

dominant sinusoid component with a period of 1.2 s. When this wavelet is stretched 

such that a=2, its period becomes 2.4 s. Thus, the scale is related to the periodicity 

and inversely proportional to the sinusoidal frequency. The expression of the mother 

Morlet Wavelet is given in Equation 4-7. 
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Figure 93. Real Morlet Wavelet for a=1 and τ=0. 

 

( ) ( )2(1/ 2) cos 5tt e tψ −=  (4-7)
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The wavelet elements can be explicitly written in terms of the mother wavelet as 

follows. 

 ( ),
1

a
tt

aaτ
τψ ψ −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (4-8)

 

The wavelet transform is the correlation of wavelet elements to the signal, x(t), 

through the mapping given by 

 

( ) ( ) ( ),, aW a x t t dtττ ψ
∞

−∞
= ∫  (4-9)

 

The work of Lind [55, 56] showed that wavelet transforms can be used to predict 

LCOs for continuous structural nonlinearities. Lind used the pitch angle 

measurements to analyze his system with the wavelet transform. However, it is not 

always possible to measure the displacements directly. Recall that the main sensors 

for a flight test are the accelerometers. An accelerometer data can show some steep 

changes in the presence of discontinuous nonlinearities although the displacement 

data may seem to be smooth. The nonlinearities originating from aerodynamics may 

be continuous and smooth in nature, but the structural nonlinearities can be very 

severe and discontinuous as in the case of backlash. The applicability of the method 

developed by Lind et al. to general nonlinear systems is not known and left as a 

future work. In this study, the applicability of this method to backlash type 

nonlinearity using acceleration data is investigated and an appropriate prediction 

function is derived. 

 

A set of simulations are performed with various flow speeds. The pulse response of 

the system is recorded and the acceleration data of the trailing edge is used to 

perform the wavelet transform. Figure 94, Figure 95, and Figure 96 show the results 

of wavelet transforms for increasing flow speeds. The transition to LCO is clearly 

observed. The dominant scales shift upwards with increasing slopes as the flow 

speed increases. Finally, scales reach the LCO frequency beyond the critical speed.  



 

145 

time [s]

S
ca

le
s

Wavelet Transform of Acceleration U=5

1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

time [s]

S
ca

le
s

Wavelet Transform of Acceleration U=10

1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

 

Figure 94. Wavelet transforms, left U=5 m/s, right U=10 m/s. 
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Figure 95. Wavelet transforms, left U=15 m/s, right U=20 m/s. 
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Figure 96. Wavelet transforms, left U=25 m/s, right U=30 m/s. 
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Lind used the maximum slope of the dominant scales and corresponding time to 

construct the prediction function. Figure 97 shows the magnitudes of the dominant 

scales. As seen from the figure, the dominant scales are oscillatory. Thus, the 

envelope of the dominant scales should be determined. 
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Figure 97. Magnitude of dominant scales for U=5 m/s. 

 

Lind manually constructed the envelope of the dominant scales. However, this 

process can be automatically performed by means of Hilbert transform. Recall that 

the Hilbert transform is used in the envelope function method for flutter prediction. 

However, the magnitude plot is not suitable for Hilbert transform since there are 

many discontinuities. Instead of the magnitude of the dominant scales, numerical 

values of the dominant scales can be used. Figure 98 shows the numerical values of 

the dominant scales. In fact, Figure 97 is obtained by taking the magnitude of the 

Figure 98. Figure 98 is more suitable for the application of Hilbert transform. The 

Hilbert transform introduces an additional 90° shift to the original signal, converting 

it to a complex valued signal. The amplitude of this complex valued signal should 
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describe the envelope of the original signal. The left plot of Figure 99 shows the 

result of the Hilbert transform. The right plot of Figure 99 shows the polynomial 

curve of order 12 that is fitted to the Hilbert transform data. Clearly, the slope of the 

dominant scales can be derived from curve fit results. 
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Figure 98. Dominant scales for U=5 m/s. 
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Figure 99. Envelope of the dominant scales for U=5 m/s, left: pure Hilbert, 
right: curve fit. 
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Figure 100 shows the dominant scales and their derivatives for all speeds. As seen 

from the figure, as the speed increases, the negative slope also increases and the 

instant when the maximum negative slope occurs decreases. Hence, a prediction 

function can be derived with these values. Figure 101 indicates the maximum slope 

and maximum slope instant with respect to speed. 
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Figure 100. Left: Envelope of dominant scales. Right: Derivative of dominant 
scales. 
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Figure 101. Maximum slope and maximum slope time results. 

 

A prediction function can be derived from Figure 101 such that 

 

( ) max slope time
max slope

Uφ =  (4-10)
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Lind used the inverse of the prediction function derived here since the behavior of 

Lind’s system was different than the system under consideration here. Lind used 

softening springs. Figure 102 shows the values of prediction function for speeds 

below the critical LCO speed. It is seen that the shape of the prediction function 

deviates from linearity as the LCO speed is attained. A similar behavior was also 

observed by Lind [55]. 

 

5 10 15 20 25
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01
LCO Prediction Function

Speed [m/s]

φ

 

 

Used Data
1. Order

U
LCO

=24.2 m/s

 

Figure 102. LCO prediction function. 

 

A first order fit to the prediction function using the speeds 5, 7.5, 10, 12.5, 15, 17.5, 

and 20 m/s results in prediction function given in Equation 4-11. 

 

( ) -2 -35.057x10 2.093x10 UUφ = − +  (4-11)

 



 

150 

The prediction function 4-11 predicts LCO at a speed of 24.2 m/s. The true value is 

23.3 m/s. If the speed data at 20 m/s is discarded from the first order fit, the LCO 

speed is predicted as 21.7 m/s. Results are sufficiently close to the true value. 

 

4.5 Volterra Series 

The nonlinear Volterra theory was developed in the 1880’s by Vito Volterra. The 

theory quickly received a great deal of attention in the field of electrical engineering, 

and later in the biological field, as a powerful approach to the modeling of nonlinear 

system behavior. The Volterra theory is a generalization of the linear convolution 

integral approach often applied to LTI systems. The theory states that any time-

invariant nonlinear system can be modeled as an infinite sum of multidimensional 

convolution integrals of increasing order. This is represented symbolically by the 

series of integrals, 

 

0 1 1 1 1 2 1 2 1 2 1 20 0 0
( ) ( ) ( ) ( , ) ( ) ( ) ......y t h h u t d h u t u t d dτ τ τ τ τ τ τ τ τ

∞ ∞ ∞
= + − + − − +∫ ∫ ∫  

(4-12)

 

which is known as the Volterra series. Here, u(t) represents the system input while 

y(t) represents the system response. Each of the convolution integral terms contains a 

“kernel”, either linear (h1) or nonlinear (h2,..,hn), which corresponds to the impulse 

response of the system. Once these kernels are identified, then the response to any 

arbitrary input can be calculated. The first integral term of the series represents the 

linear convolution integral. Weakly nonlinear systems are well represented by the 

first, second, or third order Volterra series. All higher-order terms usually tend to 

vanish quickly, and are therefore negligible in most system representations. A 

discrete time version of continuous Volterra series with memory length of M is given 

as 
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The kernel hj(k1...ki) is symmetric if the indices can be interchanged without affecting 

its value. It is obvious that x(n-k1)x(n-k2) is the same as x(n-k2)x(n-k1), so the 

associated kernels h2(k1,k2) and h2(k2,k1) are the same. For symmetric kernels of 

memory M, the second order Volterra kernel requires the determination of M(M+1)/2 

coefficients, while the third order kernel needs M(M+1)(M+2)/6 coefficients. The 

second order Volterra kernel is a symmetric (M×M) matrix. The third order kernel is 

composed of M symmetric matrices having the dimension (M×M).  

 

Volterra kernels are the backbone of any Volterra series. Volterra kernels, both linear 

and nonlinear, are input dependent. As an example to this, consider the case where 

the response of a linear system to an arbitrary input is desired. Here, the unit impulse 

response of the system to that type of input must first be defined. The first order 

kernel, h1, represents the linear unit impulse response of the system. This term is 

comparable to the basic frequency response function (FRF) of a linear system, 

transformed into the time domain. However, the kernel h1 gives a more accurate 

representation of a system’s linear response than does the FRF. This is because h1 

exists with the knowledge of higher-order, nonlinear terms while the FRF assumes a 

completely linear response. The second order kernel, h2, is a two-dimensional 

function of time. It represents the response of the system to two separate unit 

impulses applied at two varying instants in time. Therefore the kernel is a function of 

both time and time lag. Similarly, h3 is a three-dimensional function of time, 

representing the response of the system to three separate unit impulses applied at 

three varying instants in time. Here, the kernel is a function of time and two distinct 
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time lags. It is through these time lags that nonlinear kernels represent the effect of a 

previous response as it is carried through time in the system.  

 

The identification of the kernels is generally an ill-conditioned inverse problem. For 

large memory lengths, the number of third order kernels increases so much that it is 

almost impossible to store the solution. Table 15 shows some examples for the 

number of kernels that must be determined for different memory lengths. Clearly, the 

number of third order kernels increases geometrically for large memory lengths. For 

this reason, usually only second order approximations are used in practice. However, 

for impulsive inputs, the solution matrix becomes very sparse, since most of the input 

multiplications vanish. In such cases, higher order kernels can be also determined.  

 

Table 15. Number of kernels to be identified for sample memory lengths. 

M Number of 1st 
order kernels 

Number of 
2nd order 
kernels 

Number of 
3rd order 
kernels 

Total for 1st 
to 3rd 

Total for 1st 
to 2nd 

10 10 55 220 286 66 

50 50 1,275 22,100 23,426 1,326 

100 100 5,050 171,700 176,851 5,151 

150 150 11,325 573,800 585,276 11,476 

200 200 20,100 1,353,400 1,373,701 20,301 

300 300 45,150 4,545,100 4,590,551 45,451 

 

The memory length corresponds to the number of samples that describes the impulse 

response until the response vanishes sufficiently. The memory length should be kept 

as small as possible for computational reasons. The only way to decrease the 

necessary memory length is to decrease the sampling frequency. The measured data 

should be down-sampled to a frequency such that the frequency range of interest is 
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still covered. The highest natural frequency of the system studied in this Chapter is 

7.4 Hz, so a sampling frequency of at least 15 Hz is necessary according to the 

Nyquist criterion. However, a down sampling to that level would decrease the 

resolution of kernels, thus the resolution of the estimated transfer functions, beyond 

any practical use. The simulated measurements are sampled at 600 Hz, so a down-

sampling of ratio 10 is used corresponding to a 60 Hz sampling. Because of the odd 

nonlinearity, it is expected to have a response at the third harmonic of the natural 

frequency which is 22.2 Hz (3x7.4 Hz). This value would certainly change with the 

flow speed but it would decrease with speed. Thus, a sampling frequency of 60 Hz 

would at least cover the first odd higher harmonic. Figure 103 shows the original and 

down-sampled data of the pitch motion for the defined pulse input. The memory 

length of the system is chosen as 2.5 s, which corresponds to 150 discrete data points 

and is sufficiently long to represent the system.  
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Figure 103. Pitch response U=20 m/s. 
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Kernels are determined by the solution of an underdetermined problem since there 

are usually not enough data points. The solution is obtained in a least squares sense. 

To formulate the problem in matrix form, the matrix of delayed inputs and higher 

order inputs must be constructed. Let the array of first order inputs be defined as 

follows 

 

{ } { }1 1 1n n n MX x x x− − += L  (4-14)

 

So the second order input array can be constructed from the upper triangular of 

matrix as 

 

[ ] { } { }2 1 1
TX X X=  (4-15)

 

Considering the symmetry conditions, third order input arrays can be further 

constructed by using the upper triangular parts of the matrices defined as 
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 (4-16)

 

Then, for each output, y(n), an equation can be written in form of 

 

( ) ( ){ }{ }y n X n H=  (4-17)

 

where 
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( ){ } { }

{ } { }0 1 0,0 0,1 0,0,0 1, 1, 1

2 3 2 3
1 1 1 1
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H h h h h h h h
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− − − − +=

=

L L L

L L L

 (4-18)

 

Consider a memory length of 3. Then input arrays can be defined according to 

Equations 4-14 to 4-16 as follows. 

 

{ } { }1 1 2n n nX x x x− −=  (4-19)
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 (4-21)

 

The empty entries in the equations above correspond to symmetric terms and are not 

included in the solution. Then, {X(n)} is the collection of terms in Equations 4-19, 4-

20, and 4-21. If there exists a zero order term h0, which corresponds to a bias, then 

the constant “1” should be included in the {X(n)} array. The equations can be 

collected in matrix form as 



 

156 

{ }

( )
( )

( )

{ } [ ]{ }

1

2

1
2

X

n

y X
y X

Y H A H

y X n

⎡ ⎤⎧ ⎫
⎢ ⎥⎪ ⎪

⎪ ⎪ ⎢ ⎥= = =⎨ ⎬ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎩ ⎭ ⎣ ⎦

M M
 (4-22)

 

The column size of the delayed input matrix, [AX], is the total number of kernels. The 

row size is the number total data points. Note that {X(1)} requires past data, which 

can be set to zero.  

 

Equation 4-22 can be solved by various ways. In this study, an iterative least squared 

method is used. Although there are no constraints, the solution of Equation 4-22 

requires a considerable computation time with direct methods. For impulse inputs, 

the input matrix [AX] is very sparse and the solution should converge very rapidly 

with iterative methods. So, the problem reduces to the minimization of the 2-norm of 

the error defined by 

 

{ }
[ ]{ } { } 2

2

1min
2 XH

A H Y−  (4-23)

 

Matlab functions are prepared to construct the input matrix with a desired memory 

length and Volterra order. It is not possible to obtain all kernels with impulsive 

inputs, since cross products of inputs vanish for most of the terms. Therefore, a sine 

sweep signal is used to test the algorithms. Results are given for a flow speed of 25 

m/s. It is known from Figure 92 that there exists an LCO for this speed with a 

frequency of 3.1 Hz. Figure 104 shows the identified first order kernel. This first 

order kernel is also the ideal impulse response. The last index 150, which is the 

memory length, corresponds to 2.5 s.  

 

Figure 105 shows the estimated FRF using the first order kernel data given in Figure 

104 and actual measurements. Note that the FRF derived from nonlinear data 

estimates a peak at 3.1 Hz. Both LCO and the linear mode close to that frequency 
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contribute to the amplitude. However the Volterra estimation truncates the peak, 

removing the effect of LCO. 

 

Figure 106 shows the identified second order kernel. Note that numerical values are 

comparable to first order kernel. This is an indication of a strong nonlinearity. 
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Figure 104. Identified first order kernel, U=25 m/s. 
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Figure 105. Derived FRF, U=25 m/s. 

 

 
Figure 106. Identified second order kernel, U=25 m/s. 
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4.6 Nonlinear Flutter Prediction 

A series of flutter predictions are performed with direct and processed 

measurements. The processed measurements are simply the identified first order 

Volterra kernels. Figure 107 shows the estimated transfer functions for various 

speeds directly using the measured data. As seen from the figure, the qualities of 

FRFs are not comparable to the linear cases; for instance, those obtained in Section 

3.3.1. The high speed FRFs seem to be much better than the low speed ones. 

However, the distinct peaks at high speeds are due to the LCOs.  
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Figure 107. FRF estimates for all speeds. 

 

The damping estimations with these FRF are not supposed to be reliable. Figure 108 

shows one of the curve fit results. It is not even possible to fit an appropriate curve to 

the FRF in the case of LCO. So, the results of speeds 25, 27.5, and 30 m/s are not 

included in the damping extrapolation solution. Figure 109 shows the estimated 

damping with respect to the flow speed.  
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Obviously, it is not possible to predict flutter with the curves given in Figure 109. 

Recall that the flutter margin method is very successful in case of damping scatter. 

Figure 110 shows the flutter margin solution. It is hard to say that a trend exists. 
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Figure 108. Curve fit result for damping extrapolation, U=20 m/s. 
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Figure 109. Estimated damping variation. 
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Figure 110. Flutter margin solution. 
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It is observed that Volterra processing of nonlinear data does not increase the 

reliability of the data based methods. Despite the failure of data based methods, the 

flutterometer method should be able to provide an answer even with the nonlinear 

data. Note that the deviation from linear response is handled by an uncertainty 

modeling in the flutterometer method. Thus, the success of the method directly 

depends on this uncertainty modeling. To test the capability of the flutterometer 

method to handle the nonlinear data successfully, a case study is performed. The 

initial uncertainty description is kept the same as in previous studies. Parameter 

variations that are used for robust flutter analysis are given in Table 10. An 

uncertainty validation is performed with both nonlinear and processed data. 

Flutterometer solutions are given in Table 16. 

 

Table 16. Flutterometer solutions. 

 1/uncertainty scaling Predicted flutter speed [m/s] 

U [m/s] Volterra Nonlinear Volterra Nonlinear 

12.5 0.978 0.269 16.97 15.05 

15 0.703 0.443 19.78 19.4 

17.5 1.351 0.487 24.16 22.61 

20 0.279 0.269 23.14 23.04 

22.5 0.519 0.483 27.86 27.52 

25 0.569 0.386 30.03 28.55 

27.5 1.048 0.402 33.39 29.9 

30 0.904 0.524 32.45 32.41 

 

As seen from Table 16, a Volterra processing results in a smaller scaling, thus 

decreasing the conservatism. The effect of Volterra processing is more effectively 
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seen at speeds where an LCO exists. Since the LCO signal is filtered from the 

measurement, the uncertainty description becomes less conservative. Recall that the 

true flutter speed is 32 m/s. Despite the conservatism of the method, some 

predictions are above the true value, not only with the Volterra processing but also 

with the direct measurements. 

 

4.7 Summary 

In this chapter, the effect of nonlinearity on flutter prediction is investigated. It is 

seen that the backlash type severe nonlinearity distorts the estimated FRF seriously 

not only in the case of LCO but also at low speeds where no LCO occurs. The 

Fourier analysis is the main tool for classical flutter prediction methods. Thus, the 

failure in Fourier transform operation degrades the performance of these methods. It 

is not possible to predict flutter speed or LCO with data based methods. This clearly 

implies that more attention must be given to model based methods. It is possible to 

observe the onset of LCO with the help of wavelet analysis, even in the case of 

severe nonlinearities. 

 

The nonlinear signals in the response of the system can be identified by the 

application of Volterra series approach. The accuracy of the extracted linear part of 

the signal depends on the order of kernels used in the series. The quadratic type 

nonlinearities can be clearly observed by the second order kernels. The odd type 

nonlinearities such as backlash and cubic stiffness can be observed with third or even 

higher order kernels. However, the implementation of the third and higher order 

kernels increases the computational cost of the solution beyond the practical use in a 

flight test with the current computational power. On the other hand, the second order 

kernels can be used with such nonlinearities, but the truncation of higher order 

kernels introduces some errors in both second and first order kernels. The FRFs that 

are estimated directly from the response of the nonlinear systems usually can not be 

used with the most of the flutter estimation methods. However, the linear part of the 

system response can be extracted from the nonlinear response by using the Volterra 
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kernels. The FRFs that are estimated from the linear part of the system response can 

be used for more accurate and less conservative flutter estimation. The success of 

Volterra filtering directly affects the performance of the classical data based flutter 

estimation methods. However, the flutterometer method is able to predict a flutter 

speed even in the case of severe nonlinearity. It is shown that the conservatism of the 

method can be decreased by using the FRF obtained from the first order Volterra 

kernels.  
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CHAPTER 5 
 
 

EXPERIMENTAL STUDIES 
 
 
 

5.1 The Aeroservoelastic Test Setup (ATS) 

The ATS was designed and produced for the aeroelastic and aeroservoelastic 

experiment requirements of TÜBİTAK-SAGE [67]. The setup was designed to fit 

into the test room of Ankara Wind Tunnel. The setup consists of a rigid airfoil, a 

base that holds the airfoil, linear guides for plunge degree of freedom, a servomotor 

with backlash-free gear head, and a frame. The base provides two degrees of freedom 

to the airfoil. The torsional DOF of the airfoil is guided with a couple of ball bearings 

installed in the base. The servo system is also installed on the base and the torsional 

DOF of the airfoil is connected to the servo system via a torsional spring. The whole 

base subsystem, including the airfoil and the servo system, is installed on the 

structure via linear guides, which permits the plunge DOF. Two linear springs are 

placed between the base subsystem and the frame.  

 

The ATS is instrumented with a resolver, a position transducer, and four 

accelerometers. The resolver is used to measure the angular displacement of the 

airfoil about the pitch axis located vertically. The servomotor also includes a 

resolver, which is used for commutation of the servomotor and control feedback. The 

position transducer is used to measure the plunge motion of the airfoil perpendicular 

the direction of airflow. The accelerometers are placed close to the four corners of 

the airfoil. The sensors of the ATS monitor all the motions of the system. The 

accelerometers are redundant sensors. They are used to generate data similar to the 

ones that are obtained in real flight tests. Acceleration data is usually the only data 

available during flight tests.  
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The servomotor of the system is controlled by a PC, that is running Matlab’s real 

time xPC Target operating system. The PC is equipped with necessary PCI 

input/output cards that are compatible with Matlab xPC Target. The servomotor 

position is measured from the driver of the servomotor and fed to the controller. The 

controller calculates the necessary current to track the position command in real time. 

The calculated current is commanded to the servomotor driver through a digital to 

analog card. The xPC Target system is also used for data acquisition from the sensors 

of the ATS.  

 

Components of the ATS are shown in Figure 111, Figure 112 and Figure 113. The 

view of the ATS as installed into the test room is given in Figure 114.  

 

 

 

Figure 111. Uninstalled ATS. 
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Figure 112. View of ATS from test room. 

 

 

Figure 113. View of ATS below the test room. 
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Figure 114. Installed ATS. 

 

The original linear guides of the ATS were preloaded re-circulating ball type heavy 

duty guides. The guides had serious stick slip friction problem under light loads. 

Because of that high dry friction, it was not possible to observe any flutter within the 

operation range of the wind tunnel. However, it was possible to observe some limit 

cycle oscillations when large disturbances were applied to the setup. In order to 

enhance the behavior of the system (i.e., to convert the system more flutter-prone), 

the linear guides are replaced with low friction guides. Linear springs are also 

replaced by new ones to increase the preload on them. So the linear springs never 

separate from the base during motion. Despite all these enhancements, FRF 

measurements of the setup showed that there is still some dry friction on the setup.  
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5.2 Experiment 

The servo system installed on the ATS allows to excite the system in pitch DOF in 

any form. A set of pulse and sinesweep excitations are performed at various air 

speeds. The measurements are recorded at each air speed for post processing. The 

experiment is started with a wind tunnel speed of 10 m/s. The air speed in the wind 

tunnel is increased gradually and the data is recorded at speeds of 15, 19.9, 24.8, 

29.9, 34.9, and 37.6 m/s. The system is observed to be stable at these speeds. The 

flutter is observed at 40.1 m/s. Tests are repeated around 40 m/s to accurately 

determine the critical flutter speed. As a coincidence, it is seen that the flutter speed 

for the ATS is very close to 40.1 m/s. Recall that the theoretical flutter speed is 25.7 

m/s. The theoretical calculations assume that the airfoil thickness is zero and the 

nondimensional lift slope is 2π, which is the theoretical maximum for infinite span. 

Any deviation from these assumptions is expected to cause the lift to decrease. The 

lift for finite span wings is known to decrease, especially if the aspect ratio is small. 

The setup has still a slight stick slip friction problem which also introduces a weak 

nonlinear damping to the setup. Additional damping shifts the damping versus speed 

graph upwards, thus increasing the flutter speed. The aim of the experiment is not to 

validate or update the theoretical flutter calculations, but to estimate the flutter speed 

from the real test data. So the real flutter speed of the ATS is determined to be just 

below 40.1 m/s. The response plots of the system at 15 m/s to the pulse excitation 

described in Figure 115 are given in Figure 116, Figure 117, Figure 118, and Figure 

119. As seen from the acceleration graphs, noise levels are comparable to the 

response. The filtered acceleration data with 20 Hz cutoff 2nd order Butterworth filter 

is given in Figure 120. As seen from the figure, noise can be filtered considerably. 

The performance of the servo system is observed to be successful as seen from 

Figure 115. The figure implies that the base of the torsional spring does not move 

after the command is set to zero, even during the oscillations of the system. 

Otherwise, a coupling between the aeroelastic system and servo system would occur 

and this interaction of the control system with the elastic system would affect the 

flutter speed.  
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Figure 115. Excitation at 15 m/s. 
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Figure 116. Torsional response at 15 m/s. 
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Figure 117. Plunge response at 15 m/s. 
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Figure 118. Leading edge accelerometer data at 15 m/s. 
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Figure 119. Trailing edge accelerometer data at 15 m/s. 
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Figure 120. Filtered accelerometer data at 15 m/s. 
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The response of the system just before the flutter speed is given in Figure 121 and 

Figure 122. As seen from the figures, this response is similar to the response of a 

single-DOF system, which is expected at speeds close to the flutter speed. However, 

there is no clear indication about the decrease in damping when the response is 

compared with the response at 15 m/s air speed. The response of the system at just 

above the flutter speed is given in Figure 123 and Figure 124. The exponential 

divergence of the response can be clearly observed.  

 

The experiment process is concluded to be successful with the observation of flutter 

within the operation speed range of the wind tunnel.  
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Figure 121. Torsional response at 37.6 m/s. 
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Figure 122. Plunge response at 37.6 m/s. 
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Figure 123. Torsional response at 40 m/s. 
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Figure 124. Plunge response at 40 m/s. 

 

5.3 Flutter Estimation 

The first step in flutter estimation is to determine the FRF of the system. Both 

impulse and sinesweep excitations are applied during the tests. The FRF estimations 

with impulsive input are given in Figure 125 and Figure 126. As seen from the 

figures, the FRFs are completely useless. Even the peaks of the system are not 

distinguishable. Although the friction problem of the ATS is greatly solved, the 

remaining slight dry friction disturbs the FRFs significantly. It is not possible to 

perform modal fits to these FRFs, but they can be directly used with the flutterometer 

method. However, some successful modal fits are necessary for damping 

extrapolation and flutter margin methods. Sinesweep excitation is a useful excitation 

type in case of weak nonlinearities. If the input energy can be concentrated in a 

single frequency for a sufficient duration, very successful output measurements can 

be obtained. The frequency range of interest can be swept with discrete frequency 

lines. Such excitations are called as the “stepped sine testing”. However, the 
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acquisition time for a stepped sine input testing is longer than the other types of 

inputs. Instead of a stepped sine input, a continuously but slowly varying sinesweep 

is used as input. The speed of the sweep determines the accuracy of the peak of the 

response, which is directly related to the accuracy of the damping estimation. Slower 

sweeps always result in better accuracies. Figure 127 and Figure 128 show the 

estimated FRF with a sinesweep excitation. The performed sweeps start at 1 Hz and 

end at 6 Hz within 200 s. This sweep rate is sufficiently small and appropriateness of 

this rate is verified by using various sweep rate tests. As seen from the figures, the 

FRF estimates are much better than the ones that obtained with the impulsive inputs. 

It is possible to perform successful modal fits to these FRFs.  
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Figure 125. FRF estimations for leading edge with impulsive input. 
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Figure 126. FRF estimations for trailing edge with impulsive input. 
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Figure 127. FRF estimations for leading edge with sinesweep input. 
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Figure 128. FRF estimations for trailing edge with sinesweep input. 

 

5.3.1 Flutter Prediction with Damping Extrapolation 

The modal fit results are given in Figure 129 to Figure 135 at each wind tunnel 

speed. As seen from the figures, these fits are successful. A summary of modal 

extraction is given in Table 17. The V-g plots are given in Figure 136 and Figure 

137. The damping variation of the ATS, which is given in Figure 136, is one of the 

most difficult type to interpret. If the true flutter speed were not known, the estimate 

would cause some catastrophic results. Because the damping of the 1st mode seems 

to increase enormously at the speed just before the flutter. In an actual flight test, the 

test engineer may consider such a variation as a scatter. Since the damping trends for 

both modes seem to increase exponentially, the test engineer would probably 

consider a large speed increment for the next test point. Clearly, it is not possible to 

perform a concave down curve fit to the damping graphs if the first 6 data pairs are 

used. If the first 5 data pairs are used in Figure 138, it is possible to estimate a flutter 

speed of 36.7 m/s for 3rd order fit and 34.7 m/s for 4th order fit. 
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Figure 129. Fit results for 10 m/s. 

 

2.5 3 3.5 4 4.5 5
10

−2

10
−1

10
0

Experimental and fitted FRF for leading edge, U=15.01 m/s

R
es

po
ns

e 
[g

/°
]

 

 
Fit
Exp

2.5 3 3.5 4 4.5 5
10

−2

10
−1

10
0

Experimental and fitted FRF for trailing edge, U=15.01 m/s

Frequency [Hz]

R
es

po
ns

e 
[g

/°
]

 

 

Fit
Exp

 

Figure 130. Fit results for 15 m/s. 
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Figure 131. Fit results for 19.9 m/s. 
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Figure 132. Fit results for 24.8 m/s. 
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Figure 133. Fit results for 29.9 m/s. 
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Figure 134. Fit results for 34.9 m/s. 
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Figure 135. Fit results for 37.6 m/s. 

 

 

Table 17. Summary of modal extraction. 

U [m/s] 10 15 19.9 24.8 29.9 34.9 37.6 

η1 0.0495 0.0695 0.0966 0.1224 0.1096 0.1766 0.0388 

η2 0.0362 0.0354 0.0376 0.0419 0.0509 0.0763 0.0501 

ω1 [Hz] 3.0595 3.0756 3.1129 3.2334 3.3669 3.6757 3.7717 

ω2 [Hz] 4.332 4.3171 4.2889 4.2473 4.1495 4.0411 3.9784 
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Figure 136. Damping versus speed graph. 
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Figure 137. Natural frequency versus speed graph. 
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Figure 138. Damping extrapolation result with 5 data pairs. 

 
The solution presented in Figure 138 is not acceptable, since further speed 

increments may mislead the test engineer. Thus, the damping extrapolation method is 

concluded to fail with the real ATS.  

 

5.3.2 Flutter Prediction with Envelope Function 

The response of the ATS to nearly impulsive excitations are available at each test 

point. The calculated envelopes are given in Figure 139. When the envelopes are 

compared with the simulated ATS’s envelopes, which are given in Figure 80, the real 

decay rate of the system is observed to be much higher than the decay rate observed 

in the simulation results. This is an indication of higher damping. However, the 

behavior of the system is similar to the simulated one. The envelope at just below the 

flutter speed is still highly damped. The time limit is selected as 3 s, since envelopes 

vanish considerably in 3 s. The resulting shape parameter variations are given in 

Figure 140. 
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Figure 139. Envelope functions for trailing edge accelerometer. 
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Figure 140. Variation of shape parameter with speed, tmax=3s. 
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It is not possible to estimate the flutter speed of real ATS with the envelope function 

method, similar to the simulated ATS case. The variation of the shape parameter is 

not smooth enough to perform curve fits. So the envelope function is concluded to 

fail with the real ATS. 

 

5.3.3 Flutter Prediction with Flutter Margin 

The flutter margin method is expected to be very successful with the real ATS 

results, similarly to the simulated ATS case. The extracted modal parameters given 

in Table 17 are used to calculate the flutter margin. The result is given in Figure 141. 

The damping scatter seen in damping extrapolation method is not observed with the 

flutter margin method as expected. The solution of the flutter speed with the first 5 

data pairs results in a flutter speed of 36.1 m/s. This result is obtained by 

extrapolating the 1st order fit.  
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Figure 141. Flutter Margin fit for 5 data points. 
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When the data corresponding to 35 m/s air speed (6th data pair) is also used in the 

estimation procedure, the accuracy of the estimation improves further, as expected. 

The solution obtained when the first 6 data pairs are used is given in Figure 142. The 

flutter estimation is extrapolated as 36.7 m/s with the 1st order fit and 38.1 m/s with 

the 2nd order fit.  
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Figure 142. Flutter Margin fit for 6 data points. 

 

The flutter speed estimation of the real ATS with the flutter margin method is 

selected as 36.1 m/s, which is obtained from the first 5 data point fit.  

 

5.3.4 Flutter Prediction with ARMA Modeling 

The discrete time ARMA modeling method assumes a random aerodynamic 

excitation on the aeroelastic structure. However, the flow in the wind tunnel’s test 

room is always a high quality flow, that is nearly laminar flow. The friction also 

precludes the motion of the airfoil when forcing is small. The airfoil is observed to 
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remain stationary under flow when base excitation is not present. Therefore, it is not 

possible to perform a flutter estimation with the real ATS. However, the method is 

not expected to work with the real ATS as in simulated ATS case, because of the 

explosive flutter behavior.  

 

5.3.5 Flutter Prediction with Flutterometer 

The accelerometers of the ATS are mounted 50 mm inside the edges of the airfoil, 

because of geometrical limitations. Accelerometers are located inside blind holes 

drilled on the surface of the airfoil and covered with paste. The external contour of 

the airfoil is thus kept smooth. The thickness of the airfoil is sufficient at the 

accelerometer locations to permit such mounting. Thus, the trailing edge 

accelerometer is located 190 mm aft of the elastic axis. So, the acceleration of the 

trailing edge must be redefined as follows. 

 

[ ] [ ]{ }10.19 1 0.19
h

y h Tα η
α
′′⎧ ⎫′′ ′′ ′′= − − = − − =⎨ ⎬′′⎩ ⎭

 (5-1)

 

The mathematical model used with the flutterometer, which is called as the “nominal 

plant”, is a simulated ATS model. The comparison of the results obtained by using 

the nominal plant with the experimental results at various speeds are given in Figure 

143 to Figure 146. As seen from the figures, the nominal plant represents the ATS 

well at low air speeds. As the air speed increases, the behavior of the nominal plant 

deviates from the actual dynamics of the ATS. Recall that in the flutterometer 

method this deviation is compensated by scaling the defined uncertainty description 

according to the experimental data. Each deviation from the nominal plant introduces 

a certain amount of conservatism to the method. For this reason, an accurate 

modeling is very important for this method as stated before.  
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Figure 143. Nominal plant and ATS FRF at 10 m/s. 
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Figure 144. Nominal plant and ATS FRF at 15 m/s. 



 

190 

0.1 0.12 0.14 0.16 0.18 0.2 0.22
10

−4

10
−2

10
0

Experimental and mathematical trailing edge response, U=19.86m/s

|F
R

F
| [

m
/s

2 /r
ad

]

 

 

Mathematical
Experimental

0.1 0.12 0.14 0.16 0.18 0.2 0.22

−150

−100

−50

0

50

Reduced frequency

P
ha

se
 [°

]

 

Figure 145. Nominal plant and ATS FRF at 19.9 m/s. 
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Figure 146. Nominal plant and ATS FRF at 24.8 m/s. 
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The uncertainties for the aerodynamic coefficients and for the stiffness matrix are 

defined as real parametric uncertainty. Flutter estimates are obtained at wind tunnel 

speeds of 10, 15, and 19.9 m/s. The necessary scaling of the uncertainty for 10 m/s is 

given in Figure 147. The validation norm, which is approximately 0.04 at 10 m/s 

wind tunnel speed, dictates that the uncertainty should be increased by a factor of 25. 

This corresponds to 25% uncertainty since base uncertainty is 1%. Recall that the 

uncertainty description for the ATS involves both aerodynamic coefficients and 

stiffness matrix. The stiffness properties of the ATS are determined experimentally. 

So, the increase in uncertainty is most probably due to aerodynamic coefficients. The 

predicted flutter speed at 10 m/s wind tunnel speed is 20.8 m/s. The robust flutter 

solution graph is given in Figure 148. Recall that the flutter speed is calculated by 

scaling down the dynamic pressure perturbation by the μ norm. If the μ norm is 

smaller than unity then the dynamic pressure perturbation is increased. Then the 

flutter speed is calculated from the corrected dynamic pressure. 

 

Figure 149 shows the validation norm for wind tunnel speed of 15 m/s. The required 

uncertainty scaling is similar to the one obtained for 10 m/s wind tunnel speed. The 

robust flutter solution at this speed is given in Figure 150, which corresponds to a 

flutter speed of 21.5 m/s. Solutions for the wind tunnel speed of 19.9 m/s are given in 

Figure 151 and Figure 152, which corresponds to a flutter speed of 25.9 m/s.  

 

Note that flutterometer estimates are all considerably below the flutter speed of the 

nominal plant. This is an expected result since each uncertainty and deviation from 

the nominal plant further decrease the flutter speed of the robust plant. For this 

reason, the conservatism of the method does not decrease as the speed approaches 

the flutter speed. A certain amount of conservatism is necessary for a safe flutter 

flight test, but the test time should also be minimized. In any case, an accurate 

mathematical model is required by the flutterometer method for an effective testing.  
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Figure 147. Validation norm, uncertainty=1%, U=10m/s. 
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Figure 148. Flutterometer result for U=10m/s. 
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Figure 149. Validation norm, uncertainty=1%, U=15m/s. 
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Figure 150. Flutterometer result for U=15m/s. 
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Figure 151. Validation norm, uncertainty=1%, U=19.9m/s. 
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Figure 152. Flutterometer result for U=19.9m/s. 
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5.4 Summary 

The experiments show that the data based methods, except the flutter margin method, 

are not effective when the test structure has an explosive type flutter instability. It is 

demonstrated that the flutter margin method accurately estimates the flutter speed 

despite the increasing damping trend prior to flutter. It is proven again that the 

damping alone is not a good indicator of stability for such systems. The 

flutterometer, as a model based method, is able to estimate a flutter speed, but the 

estimated speeds are extremely conservative. It is possible to model the unsteady 

aerodynamics more accurately with the doublet-lattice methods for finite wings. 

Such a modeling would decrease the conservatism of the method and estimations 

with less error could be performed. A summary of the results is presented in Table 

18.  

 

Table 18. Comparison of methods for the real ATS. 

Method Best estimate 
[m/s] 

Flight Conditions 
[m/s] Error [%] 

Damping 
Extrapolation No solution -- -- 

Envelope Function No solution -- -- 

Flutter Margin 36.1 10, 15, 19.9, 24.8, 29.9 -9.8 

ARMA Not applicable -- -- 

Flutterometer 25.9 19.9 -35.4 

 

The results may seem to be discouraging, since only two of the methods work 

properly. However, the real aeroelastic systems usually experience mild flutter and 

not explosive flutter. Recall that all methods successfully estimate the flutter speed in 

the simulated mild flutter case.  
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For aircraft structures with linear behavior, it is generally possible to generate 

accurate structural models with the ground vibration test data of the aircraft. 

Generally, doublet-lattice codes are used to generate the aerodynamic data for flutter 

analysis, but it is not easy to verify the aerodynamic data with the wind tunnel tests. 

The conservatism of flutterometer method would decrease considerably when 

accurate aeroelastic models are obtained. 
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CHAPTER 6 
 
 

SUMMARY AND CONCLUSIONS 
 
 
 

6.1 Summary 

There is an increasing demand on certifying new external stores or onboard 

equipment to aircraft. The flutter flight test is one of the most important certification 

tests. It has not only some serious safety issues but also it involves a huge amount of 

preliminary work that must be performed for an effective testing. The flutter flight 

test also requires some serious human intervention. The test engineer should have 

experience on system dynamics, system identification, aeroelasticity, modal testing, 

data acquisition, digital signal processing and mission critical programming.  

 

The aim of this study is to gain a theoretical and practical background on some of 

these engineering fields from the flutter flight test point of view. The study mainly 

focuses on the flutter estimation methods, which is the core for all flutter flight tests. 

An extensive literature survey on the flutter estimation methods is performed. Most 

commonly used methods are investigated in detail. The mathematical theory behind 

these methods are investigated and implemented on computer. The effectiveness of 

these methods are theoretically and practically studied. Some improvement issues 

that are pointed out by the aeroelasticity community such as modal filters and 

singular value decomposition are also investigated in the study.  

 

The methods are extended to nonlinear aeroelastic systems. Effect of nonlinearities 

on flutter estimation is investigated. Wavelet and Volterra series approaches are 

utilized in processing of measurement signals. Severe nonlinearity cases, which can 
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cause limit cycle oscillations are not well studied in literature. Some aircraft are 

known to exhibit limit cycle oscillations with some external store combinations. 

Wavelets are successfully utilized to predict speeds at which such limit cycle 

oscillations can occur. An automation procedure is developed for the prediction of 

LCOs. Volterra series approach is successfully utilized to filter out the nonlinear 

components of the response signals. The filtered responses are used to predict flutter 

speed with less conservatism. 

 

The methods presented in the study are first implemented, then demonstrated with 

simulations, and are further investigated by conducting some wind tunnel tests for 

practical demonstrations. 

 

6.2 Conclusions and Contributions 

The main conclusion derived from this study is that, there is no perfect method that 

can be used for flutter prediction with all kinds of aeroelastic systems. Each method 

has some advantages and drawbacks that must be considered during the planning of 

flight tests.  

 

The damping extrapolation method, as the oldest method, is still widely used in the 

aeroelasticity community. The method evolved from the logarithmic decrement 

calculations to some complex modal identification techniques as the computational 

resources developed. However, the method still depends on the most spectacular 

parameter of a structure, the damping, which is very difficult to measure accurately. 

The method does not have a standard modal extraction procedure. Any modal 

analysis tool can be used with the method. There exist very sophisticated modal 

analysis methods. However, it is not always possible to apply these methods on a 

flying aircraft because of the low signal to noise ratio of measurements, insufficient 

number of measurements and limited test time. A simple modal analysis method 

should be selected that requires a minimum human intervention. It is seen that the 
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method works well if the structure does not experience any explosive flutter and the 

scatter on damping is low.  

 

The envelope function method was originally proposed as an auxiliary tool. The 

method calculates the overall damping trend of the system extremely fast. However, 

effectiveness of this method depends on the same conditions that are stated for the 

damping extrapolation method. It is a very easy to implement envelope function tool, 

so it can be monitored in any test.  

 

The flutter margin is a valuable method, not only because of its easy implementation 

but also because of its approach to solve the problem. This method uses the roots of 

the system to monitor the overall stability of the system. The method considers both 

damping and natural frequencies of the system. Thus, in contrast to the damping 

extrapolation and envelope function methods, it is not affected by damping scatter. If 

the number of modes that are related to flutter mechanism is two, then the method 

results in very accurate flutter estimates even at low speeds. It is seen that the method 

is not affected by the type of flutter mechanism. The decrease in the overall stability 

of the system as speed increases can be monitored clearly even in the explosive 

flutter case. 

 

The discrete time ARMA modeling uses a similar approach to the flutter margin 

method, but it employs discrete time models. The applicability of the method 

depends on the existence of turbulence and the number of modes that interact. It is 

not always possible to obtain turbulent flow around the test area. The excitation due 

to turbulence should be high enough to distinguish response data from noise. It is 

seen that the method converges to improper roots if the measurement data is not 

filtered accordingly. The calculated roots of the system should be checked at each 

run to ensure that complex conjugate poles are obtained.  

 

The flutterometer is a recent method that utilizes the concept of robust control. The 

method uses both mathematical models and flight data. The effectiveness of the 
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method depends on the accuracy of the mathematical model. The method is able to 

predict a flutter speed even in the case of an inaccurate mathematical model or in the 

presence of nonlinearities. However, the conservatism of the method in that case may 

result in flutter speeds that are short of any practical use.  

 

Contributions to the Literature 

There are several contributions to the literature within the study. They are listed 

below. 

 

• Modal filters are proposed by senior aeroelasticians to improve the quality of 

modal extraction. However, their practical use in flight testing is not reported in 

the literature. The method is usually used in ground testing and control of elastic 

systems. The modal filters can be constructed with the modal parameters 

extracted in ground vibration tests. It is not feasible to construct modal filters 

during flight since modal data is required to construct the filters. Once the modal 

analysis is performed, a flutter prediction can be performed without the need of 

modal filters. However, if the modal filter is available, then the modal extraction 

procedure becomes very easy and damping can be estimated more accurately. If 

the mode shapes of the vehicle do not change considerably during flight, then the 

modal filter constructed from ground vibration data can be used to decouple the 

modes. However it is observed that mode shapes of the aeroelastic system change 

considerably as the speed changes. Aerodynamic damping affects the complex 

valued mode shapes of the structure, and the phase difference between the modes 

change as the speed changes. Modal filters constructed at zero speed fail to 

decouple the frequency response functions as speed increases. So the method is 

concluded to be useless with flutter flight test.  

 

• An important behavior of the envelope function method is observed, which is not 

stated in the literature. It is observed that at speeds close to the flutter speed, the 

envelopes show a characteristic change after the impulse input and this change 
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improves the estimate as the time limit is decreased. This behavior is not 

observed in explosive flutter cases up to speeds that are very close to the flutter 

speed. The behavior could not be generalized, but is considered to be likely to 

occur in mild flutter cases. In such cases, the envelope function becomes very 

useful. This behavior should be searched during flight tests, since very reliable 

flutter estimates can be performed with this simple method.  

 

• The flutterometer method is commonly used with dimensional time domain 

mathematical models. However, the unsteady aerodynamic coefficients are Mach 

and reduced frequency dependent. The original work by Lind converts the 

parameters defined in reduced frequency domain to dimensional frequency 

domain. This introduces some explicit speed terms in the equation of motion, 

besides the dynamic pressure terms. The perturbation to dynamic pressure is 

applied to search for stability. However, the speed is kept constant during this 

perturbation, which implies a change in the air density. When the density 

changes, the Mach number changes. A Mach number change requires updates in 

the aerodynamic coefficients. So an iterative procedure must be used with the 

original method increasing the computational load of the method, which is 

already high. In this study, a different equation of motion formulation based on 

nondimensional time and reduced frequency is developed. The resulting 

equations of motion for the typical section is such that the speed terms are all 

grouped in dynamic pressure terms, thus eliminating the need for an iterative 

solution.  

 

• Another contribution to the literature is the application of wavelet technique to 

the limit cycle prediction in the presence of backlash type nonlinearity. The 

technique is successfully utilized herein with severe backlash type nonlinearity. It 

is found that the prediction function derivation is problem dependent. Finally, the 

processing of wavelets are also automated in this study with the use of Hilbert 

transform.  
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6.3 Recommended Future Work 

Two future areas are pointed out in the study, which have the potential of improving 

the flutterometer method further. The first one is about the dynamic pressure 

perturbation used in the flutterometer method for stability search. Although a 

structure of the uncertainty matrix is considered in the μ analysis, the deviations are 

assumed to be symmetric. A symmetric deviation in the dynamic pressure is not 

required in the flutter prediction. Such symmetric deviations can cause some 

negative dynamic pressures at low speeds. If the system is unstable at these negative 

dynamic pressures, which is physically not meaningful but mathematically possible, 

the method inherently accounts for the physically meaningless instabilities. In case of 

aeroservoelastic analysis, the lower bound of the dynamic pressure should be 

checked. However, for aeroelastic cases, the lower bound of dynamic pressure is not 

important. It is known that the system is always stable below the critical flutter 

speed. A new μ calculation procedure can be implemented for aeroelastic cases, 

where the dynamic pressure is perturbed towards the upper bound. Another 

improvement area is in the scaling of the uncertainty matrix. The current 

implementation of the flutterometer method scales the entire uncertainty matrix. This 

increases the conservatism further. Each element of the uncertainty matrix can be 

scaled optimally such that the model is not invalidated by the measured data. An 

optimally scaled uncertainty would have less effect on the nominal model so that less 

conservative estimates can be obtained. However, the optimal scaling of the 

uncertainty matrix can be computationally very expensive. The computation time 

should also be considered if such a potential improvement is undertaken.  

 

There exists several sophisticated system identification methods such as 

“eigensystem realization algorithms” (ERA), the “eigensystem realization algorithm 

with data correlation” (ERA/DC), and the “instrumental variables output error 

method” (IV/OEM), which are also used in the aeroelasticity community to predict 

the flutter speed. The ERA methods use the time domain data, where as the IV/OEM 

uses the frequency domain data to identify the system. Application of these methods 
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to aeroelastic systems is demonstrated in the literature, but the application of these 

methods can be investigated and improved further for more accurate to flutter 

predictions.  

 

The “operational modal analysis” (OMA) is a developing area, which attract the 

attention of the modal analysis community. The methods developed for OMA can be 

used to identify the system where the excitation is not known, as in the ARMA 

method.  

 

The system identification methods that are recommended above and investigated in 

this study and are still used to predict the modal parameters of the system. Once the 

modal properties of the system are determined accurately the damping extrapolation 

method is used to predict the flutter speed. However it is seen that damping is not a 

proper indicator of stability. If it were possible to derive a single stability parameter 

from all modal parameters of the system, then that stability parameter would be the 

perfect indicator for the flutter prediction. The flutter margin and ARMA methods 

use such stability parameters but only by using the two modes of the system. The 

flutterometer method uses a single stability parameter considering all modes of the 

system but requires a nominal mathematical model. So an effort on deriving such a 

single stability parameter is strongly recommended  
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Appendix A 
 
 

Lift and Moment on A Typical Section for Incompressible 
Flow 

 
 
 

Incompressible flow is the simplest flow type to analyze among all flow regimes. It 

has been well studied for years and some closed form expressions are available for 

both steady and unsteady cases.  

 

A 1 Steady Flow 

Steady lift and moment for thin airfoils per unit span are given as [1] 

 

 απρ bUL 22=  (A-1)

 

 ( )bbaLM y 2
1+−=  (A-2)

 

These expressions are linear in angle of attack, α. When α becomes too large, the 

flow starts to separate from the airfoil and the lift decreases. These expressions can 

be safely used for angle of attack values within the range of ±15 degrees. 

 

Equation A-2 implies that the aerodynamic center (zero hinge moment) at steady 

state is at the quarter-chord point (a = - ½). 
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A 2 Unsteady Flow 

Calculating the unsteady forces on an oscillating airfoil is a difficult task. The 

complete motion of the airfoil must be known in every direction in order to be able to 

calculate the forces. Harmonically oscillating airfoils have a special advantage in 

calculating the unsteady forces. Since their motion is harmonic, their motion history 

is fully described. Position, velocity and acceleration information is available at any 

required time since the motion repeats itself continuously. By solving the potential 

flow equations with harmonically oscillating boundary conditions, the analytical 

expressions for lift and moment can be found for harmonically oscillating thin 

airfoils. These expressions will be in the frequency domain. To find the forces for an 

arbitrary motion, one can convert these frequency domain expressions to time 

domain expressions by inverse Fourier transformation. 

 

A 3 Harmonic Motion 

Unsteady force expressions contain the phase lag information. In the frequency 

domain, the phase lag is expressed by complex quantities. Therefore, lift and moment 

expressions become complex quantities. The complex lift and moment equations for 

an oscillating airfoil are given as follows [1].  
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C(k) terms in these equations are complex quantities. 
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These lift and moment expressions have both circulatory and noncirculatory parts. 

Here, the circulatory part is the terms in the second braces that cause the steady lift 

and moment, as k tends to zero. In these equations, the reduced frequency  defined as 

 

 
U

bk ω
=  (A-5)

 

is one of the most important nondimensional parameters. The function C(k) is called 

as the Theodorsen's function, which is complex itself, and is another important 

quantity. Its exact expression is given by [1] 
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where H is the Hänkel function. Hänkel function is a combination of Bessel 

functions of first and second kinds in the following manner 
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F(k) and G(k) represent the real and imaginary parts of the Theodorsen’s function, 

respectively. Usually, the flowing approximations for Theodorsen's function, C(k), 

are used [2] depending on the value of k as 
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The aerodynamic matrix of a typical section for harmonic motion in incompressible 

flow can be constructed in the following manner. The harmonic motion assumption 

implies that  

 

 tieqq ω=  , (A-10)

 

where 
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The linear aerodynamic model permits to represent the aerodynamic force vector as a 

multiplication of the complex displacement vector by the aerodynamic matrix as 
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Since the lift and moment equations involve first and second derivatives in addition 

to the displacements, the aerodynamic matrix can be written as the summation of the 

virtual mass, damping and stiffness matrices as follows. 
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These frequency domain expressions can be used to derive the analytical frequency 

response function of the aeroelastic system much faster than time domain 

simulations.  

 

A 4 Arbitrary Motion 

The simulation in the time domain requires that the lift and moment expressions 

should be known at each integration instant. However, the circulatory part of the 

harmonic lift and moment contains the frequency information, k. The term in the 

circulatory part of the harmonic lift and moment equations, which can be written as 
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is the instantaneous vertical velocity of the fluid particle in contact with the three-

quarter-chord point of the airfoil. Both the circulatory lift and moment can be 

expressed in terms of this quantity. The time domain expressions can be obtained by 

using inverse Fourier transform of the harmonic lift and moment expressions. To 

handle the integrals within the inverse Fourier transformation, Wagner defined a 

problem of the step change in angle of attack [1] 
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and calculated lift as 
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where  

 

b
Uts =  (A-20)

 

is the distance in semichords traveled by the airfoil after the sudden step. It is in fact 

a nondimensional time quantity used to simplify the expressions. Equation A-19 

gives the time history of the lift when the airfoil is subjected to a sudden change in 

angle of attack. The function, φ(s), is called as the Wagner function. Wagner 

computed φ(s) to be  
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Although φ(s) has a simple form, it is not expressible in terms of simple functions. 

Therefore, some approximations for φ(s) are often used. There are two kinds of 

approximations for the Wagner’s function as follows [2]. 
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Since the expression given by Equation A-22 has a simple Laplace transform, it is 

useful in solving the equations whereas the latter shows better asymptotic behavior. 

 

Wagner's function expresses the history of aerodynamic lift due to a sudden change 

of angle of attack; but it can also be used to calculate the lift due to arbitrary motions 

of the airfoil. Instead of calculating the Fourier integral, one can use the Wagner's 

function to calculate the circulatory lift and moment by the use of Duhamel or 
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superposition integral. Lift and moment for zero initial conditions are given by the 

following equations. 
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These expressions are easier to handle since they are Laplace transformable due to 

the convolution form of  the integral. 



 

217 

 
 
 

Appendix B 
 
 

Simulink Model 
 
 
 
The equations of motion (Equations 3-1 and 3-2) can be combined with the 

aerodynamic force expressions (Equations A-24 and A-25) to obtain the overall 

equations of motion of the aeroelastic system, (B-1 and B-2).  
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Since the damping in aeroelastic structures is very low and the aerodynamic damping 

is dominant, structural and viscous dampings are ignored in these equations. It is 

always safe to ignore the damping of structure during aeroelastic stability analysis.  

 

The integrations in Equations B-1 and B-2 are written with respect to 

nondimensional time, s. Since Wagner's function is also function of s, it is 

convenient to convert all derivatives to those with respect to s. Expression of s is 

given in Equation A-20 and conversion of derivative from t to s are as follows.  
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Replacing the first and second time derivatives with expressions given in Equations 

B-3 and B-4 respectively, one can obtain the equations of motion in s domain as 

 

( ) ( ) exts

h

FdsUaUh
b
UUbl

b
aU

b
Uh

b
UlbhK

b
USh

b
mU

=−⎥⎦
⎤

⎢⎣
⎡ ′′−+′+′′+

⎥
⎦

⎤
⎢
⎣

⎡
′′−′+′′++′′+′′

∫0 2
1

22

2

2
2

2

2

2

2

2 σσφααπρ

ααπραα

 (B-5)

 

 
( ) ( )

( ) ( ) ( ) exts
MdsUaUh

b
UalUb

UaaUh
b

aUlbK
b
UIh

b
US

=−⎥⎦
⎤

⎢⎣
⎡ ′′−+′+′′+−

⎥
⎦

⎤
⎢
⎣

⎡
′′+−′−−′′−+′′+′′

∫0 2
1

2
12

22
8
1

2
12

2
2

2

2

2

2

2 σσφααπρ

ααπραα α
αα

 (B-6)

 

Taking the Laplace transform of Equations B-5 and B-6 with respect to s using the 

Laplace variable, p and using q for dynamic pressure and S for wing area, one can 

obtain the following final forms of equations to construct the transfer function 

matrix. 
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The expression for Wagner’s function, ( )sφ , is given in Equation A-22. Its Laplace 

transform is. 
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The form of Equations B-7 and B-8 is chosen such that the coefficients of p and its 

polynomials are nondimensional. Definitions of these nondimensional parameters are 

as follows. 

 

• Mass ratio (density ratio): 

bS
m

πρ
μ 2
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• Ratio of uncoupled natural frequencies: 
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• Reduced rotational natural frequency: 

U
b

k α
α

ω
=  (B-14)

 

• Dimensionless static unbalance: 

mb
Sx α

α =  (B-15)

  

• Radius of gyration of typical section about elastic axis in semichords: 

2mb
I

r α
α =

 
(B-16) 

 

When these nondimensional parameters are substituted into Equations B-7 and B-8, 

one can construct the transfer function matrix, [G] in compact form as follows. 
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Once the transfer function of the system is found at a particular flow speed, one can 

solve the response of the system for any external excitation with a model such as the 

Simulink model given in Figure 153. 

 

The coefficients of transfer functions are calculated symbolically and expressed in 

terms of flight and nondimensional airfoil parameters. A Matlab code is prepared for 

this purpose. 
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Figure 153. Simulink model for a two DOF aeroelastic system. 
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Figure 154. Detail of the “Transducers” Simulink sub-block.  
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Figure 155. Detail of the “Noise and Antialias Filter” Simulink sub-block. 

 

Although the system is a two DOF system, the order of the resulting aeroelastic 

system is seven. The extra three states are the aerodynamic states, which represent 

the approximated Wagner’s function. Higher order aerodynamic approximations will 

result in higher order differential equations.  
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The “Transducers” block converts the physical displacements of the airfoil into the 

acceleration of several points including the estimated noise. Note that the solutions 

are in nondimensional time, s, domain. So the noise to be added should also be 

converted into s domain before polluting the acceleration data. Noise data is 

generated according to MIL-STD-810F. 

 

The sampling frequency should be calculated in terms of reduced frequency. Since 

the frequency range of interest is up to 60 Hz, sampling frequency is chosen as 600 

Hz. In order to filter the noise and to avoid antialiasing, an 11th order analog elliptic 

filter with 300 Hz pass-band is placed on each signal with 110dB stop-band 

attenuation. Such specifications are common in data acquisition systems. The forcing 

and measurement data are saved for further processing. 
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