A HYBRID-STRESS NONUNIFORM TIMOSHENKO BEAM FINITE
ELEMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

UMUT DEMIRHISAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
MECHANICAL ENGINEERING

NOVEMBER 2007



Approval of the thesis:

A HYBRID-STRESS NONUNIFORM TIMOSHENKO BEAM FINITE ELEMENT

submitted by UMUT DEMIRHISAR in partial fulfillment of the requirements for the
degree of Master of Science in Mechanical Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Ozgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Kemal Ider

Head of Department, Mechanical Engineering

Prof. Dr. Siiha Oral

Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Biilent Doyum
Mechanical Engineering Dept., METU

Prof. Dr. Siitha Oral

Mechanical Engineering Dept., METU

Prof. Dr. Kemal Ider

Mechanical Engineering Dept., METU

Prof. Dr. Haluk Darendeliler

Mechanical Engineering Dept., METU

Assoc. Prof. Ugur Polat

Civil Engineering Dept., METU

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Last name: Umut Demirhisar

Signature:

111



ABSTRACT

A HYBRID-STRESS NONUNIFORM TIMOSHENKO BEAM FINITE ELEMENT

Demirhisar, Umut
M.S., Department of Mechanical Engineering
Supervisor  : Prof. Dr. Siiha Oral

November 2007, 70 pages

In this thesis, a hybrid-stress finite element is developed for nonuniform Timoshenko
beams. The element stiffness matrix is obtained by assuming a stress field only.
Since element boundaries are simply the element nodes, a displacement assumption
is not necessary. Geometric and mass stiffness matrices are obtained via equilibrium
and kinematics of deformation equations which are derived in the beam arbitrary
cross-section. Utilizing this method eliminates the displacement assumption for the
geometric and mass stiffness matrices. The element has six degrees of freedom at
each node. Axial, flexural and torsional effects are considered. The torsional and
distortional warping effects are omitted. Deformations due to shear is also taken into

account.
Finally, some sample problems are solved with the element and results are compared
with the solutions in the literature and commercial finite element programs (i.e.

MSC/NASTRAN®).

Keywords: Finite Elemet Method, hybrid-stress, Timoshenko beam, buckling,

vibration

v



0z

HIBRIT-GERILIM DEGISKEN KESITLI TIMOSHENKO KiRiSI SONLU
ELEMANI

Demirhisar, Umut
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez YOneticisi : Prof. Dr. Siiha Oral

Kasim 2007, 70 sayfa

Bu tezde degisken kesitli Timoshenko kirisi i¢in hibrit-gerilim sonlu elemani
gelistirilmigstir. Eleman direngenlik matrisi sadece gerilim alan1 varsayimi yapilarak
elde edilmistir. Eleman sinirlar1 basitce eleman diigiim noktalari ile ortlistiigii i¢in yer
degistirme varsayimi yapmaya gerek yoktur. Geometrik ve kiitle direngenlik
matrisleri kirisin herhangi bir kesitinden ¢ikarilan denge ve deformasyon kinematik
denklemeleri kullanilarak elde edilmistir. Bu metodun uygulanmasi, geometrik ve
kiitle direngenlik matrislerini elde ederken yer degistirme varsayimi yapma ihtiyacini
ortadan kaldirmaktadir. Elemanin her diiglim noktasinda alti serbestlik derecesi
vardir. Eksenel, bilkkme ve burulma etkileri dikkate alinirken burulma ve bozulma
burkulma etkileri ihmal edilmistir. Kesme etkilerinden kaynaklanan bozulmalar ise

g0z online almmustir.

Gelistirilen eleman kullanilarak bazi 6rnek problemler ¢oziilmiis ve sonuglar
literatiirden ve yaygm sonlu eleman ¢oziiciilerinden (MSC/NASTRAN®™ gibi) elde

edilen sonugclarla karsilastirilmistir.

Anahtar kelimeler: Sonlu Eleman Metodu, hibrit gerilim, Timoshenko kirisi,

burkulma, titresim
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CHAPTER 1

INTRODUCTION

Nonuniform beams are used in many structural applications to achieve a better
distribution of strength and weight and sometimes to satisfy architectural and
functional requirements. In most of the engineering structures consisting of tapered
beams, the width of the cross-section remains constant, while the height varies
linearly or parabolicaly with length. The study deals with static, dynamic and
stability analysis of linear elastic plane structures composed of beams with linearly

variable height and constant width.

1.1 Objective and Scope of the Study

The objective of this study is to develop a hybrid stress nonuniform Timoshenko

beam finite element with geometric and mass stiffness matrices.

During the course of work, axial, flexural and torsional effects are considered
however the torsional and distorsional warping effects are omitted since the scope of

the thesis does not covers the corresponding topics.

The variable section properties of nonuniform beam are defined with respect to beam
length direction. Then a hybrid stress formulation is carried out to form element
stiffness matrix by assuming a stress field to satisfy homogenous equilibrium

equations.



The geometric and mass stiffness matrices are developed consistently via equilibrium
and kinematics of deformation equations. This approach eliminates the necessity of
displacement field assumption which is used in most of the finite element

formulations for dynamic and stability analyses.

Before proceeding on the analysis of nonuniform Timoshenko beams, the element
formulation is carried out for a simple case which is a uniform straight beam to
ensure a level of confidence for finite element formulation of consistent mass and
geometric stiffness matrices. The uniform element performance is cross-checked

with solutions of elements obtained by anisoparametric interpolation approach.

In order to analyze nonuniform Timoshenko beams, a program is generated in the
Fortran Power Station environment which solves the finite element formulation. By
the use of the generated computer program, static, dynamic and stability analyses are
performed. All the results are compared with the results in the literature or with

conventional finite element program MSC/NASTRAN®.

1.2 Literature Survey

A detailed literature survey has been performed to get into structural analysis of
both uniform and nonuniform beams. First hybrid stress finite element approach
has been investigated to get basic knowledge about beam finite element
applications. Then research has moved into nonuniform beam studies which have

been carried out in the past.

There is continuing research on the development of elements that combine the
accuracy of higher-order elements with the simple nodal configuration of lower

order elements.



In 1981 an effective method has been introduced by Tessler and Dong [1] for
Timoshenko beams. The methodology in which displacements and rotations are
expressed by different order polynomials was later called “anisoparametric

interpolation” by Tessler and Hughes [2].

However as the number of nodes is minimized, a deflection matching analysis
becomes necessary to improve the stiffness of the element. In 1981 through this
analysis a new shear correction factor that incorporates both the classical shear

correction and the element properties are determined by Tessler and Hughes [3].

It is possible to formulate a two-node element in which the correct displacements
and moments can be computed at any section of the element by the standard hybrid
stress method [4] where only the boundary displacements are required. However,
the derivation of the element mass and the geometric stiffness matrices requires a

displacement assumption over the entire element.

In 1991 Oral [5] incorporated the anisoparametric displacement assumptions with a
modified form of the hybrid stress functional to obtain the element — stiffness and
consistent mass matrices for a two node Timoshenko beam element. A deflection
matching analysis was not necessary and the use of classical shear correction was

sufficient.

Non — uniform beams such as beams with cross-section varying along their lengths
are used in many structural applications in an effort to achieve a better distribution
of strength and weight. In 1943, Newmark developed an approximate method for
determining static deflections and moments in beam structures consisting of

uniform or nonuniform members [6].



In 1963, Lindberg constructed consistent mass and stiffness matrices for linearly
tapered beam elements of rectangular, circular and triangular section utilizing a

cubic displacement function [8].

A number of exact solutions to the elastic stability problem of simple nonuniform
beams together with some tables and graphs can be found in Timoshenko and Gere
[11].Stability analysis of frameworks with nonuniform members by the

conventional finite element method was first done by Wang [12].

In 1970, Galagher and Lee introduced a general nonuniform beam element which
can be considered as generalization of Linderberg’s element by computing its
flexural and geometric stiffness matrices on the basis of a cubic displacement

function and were able to obtain very accurate results with just a few elements [9]..

In 1977, Just developed the exact stiffness matrices for linearly tapered beams of

rectangular, box and I section [7].

In 1979, To gave explicit expressions for the element mass and stiffness matrices of
linearly tapered beam finite element including shear deformation and rotary inertia.
The element cross-section rotation was assumed to be a sum of the slope of the

transverse displacement and shear [17].

In 1983, Rutledge and Beskos developed stiffness and consistent mass matrices for
a linearly tapered beam of rectangular section and constant width which give

results slightly better than those of Galagher and Lee [10].

In 1983, Karabalis and Beskos proposed a finite element methodology for static,
free vibration and stability analyses of linear elastic plane structures consisting of

tapered beams [13].The method was based on the development of flexural stiffness,



axial stiffness’, geometric stiffness and consistent mass matrices for a beam
element of constant width and linearly varying depth. The element flexural and
axial stiffness matrices were derived on the basis of displacement functions which
are the exact solutions of the governing equations. The element geometric stiffness
matrix was constructed on the basis of shape functions corresponding to the exact
static displacement function of the tapered element. The element consistent mass
matrix was constructed on the basis of shape functions corresponding to the cubic

displacement function of a uniform beam.

In 1985, Gupta derived stiffness and consistent mass matrices for linearly tapered
beam element of any cross-sectional shape in explicit form. Exact expression for
the required displacement functions were used in the derivation of matrices.
Variation of area and moment of inertia of the cross section along the axis of the

element is exactly represented by simple functions involving shape factors [18].

In 1988, Cleghorn and Tabarrok developed a finite element model for free
vibration analysis of linearly tapered Timoshenko beams via obtaining the shape
functions from the homogenous solutions of the governing equations for static

deflections [19].

In 1991, Lee and Kuo gave the exact static deflection of a nonuniform Timoshenko
beam with typical kinds of boundary condition in closed form and expressed the
static deflection in terms of the four fundamental solutions of the governing

differential equation [14].

In 1992 , Friedman and Kosmatka developed the exact bending stiffness matrix for
an arbitrary non uniform beam including shear deformation based on Timoshenko

beam theory [15].In the paper, numerical examples were presented to asses the



interaction of taper rate and shear deformation on the behavior of short beams.

In 1995, Romano presented closed form solutions for bending beams with linearly
and parabolically varying depth and for bending beams with linearly varying width
along the beams length by taking into account the shear deformation of the beam.
The solutions were achieved by transforming the fourth order differential equations
with variable coefficients into fourth order differential equations with constant

coefficients [16].

In 1995, De Rosa and Franciosi used Timoshenko quotient for stability analysis of
rectangular beams with linearly varying height. An iterative procedure was

suggested which leads to closer approximations to the true results [20].

In 2004, Aucellio and Ercolano proposed a dynamic investigation method for the
analysis of Timoshenko beams which takes into account the shear deformations and
rotating inertia. The solution of the problem was obtained through the iterative
variational Rayleigh — Ritz method and assuming as test functions an appropriate

class of orthogonal polynomials which respect the essential conditions only [21].



CHAPTER 2

TIMOSHENKO BEAM THEORY

2.1 Kinematics of Deformation

The basic assumption in beam bending analysis excluding shear deformations is
that a normal to the mid-surface (neutral axis) of the beam remains straight during
deformation and that its angular rotation is equal to the slope of the beam mid-

surface. This kinematic assumption corresponds to the Bernoulli beam theory.

Considering beam bending analysis with the effect of shear deformations, the
assumption that a plane section originally normal to the neutral axis remains plane
is retained, but because of shear deformations this section does not remain normal
to the neutral axis. This kinematic assumption corresponds to Timoshenko beam

theory.

XY Bending of a Symmetric Timoshenko Beam:

Consider beam deformations in two steps. In the first step consider bending only.

AB & CD will remain normal to each other and go through a rotationy ,, .



Figure — 2.1 Deformed and undeformed shape of a symmetric beam in xy plane

For the deformation,

u(x,y,z) ==yy(x)

V(X,Y,2) =V(X) (2.1)
w(X,y,2)=0

o, =2Ge&,, =0

o, =2Ge, =G(v,-v) (2.2)
o, =2Gg,, =0

o,, 1s almost zero since there is no loading on the sides of the beam. Furthermore
o, can be assumed to be negligible with respect to o,, because there is zero

surface load on the bottom surface.



o, = (2.3)

Shear stress at section x is free from the z direction by introducing a shear

correction factor k.

o, =kG (V,X —l//) (2.4)

By integrating the stresses over the cross-sectional area A to obtain the stress

resultants,
Q, =kGA(v, —v) (2.5)
M, =—Ey, [ y’dA (2.6)

Iysz 1s the second moments of inertia on y axis: |, .

Then equation 2.6 can be written as,

M, =—Ely, (2.7)



Figure 2.2 shows deformations in 3D space for a Timoshenko beam.

Figure — 2.2 Deformations and rotations of 3D Timoshenko beam

The axial action of the beam can be represented by deformation U .

Bending in xy plane can be represented by deformation v and rotation y .

Bending in xz plane can be represented by deformation W and rotation ¢

The torsional action of the beam can be represented by rotation 0,

10



The displacement of an arbitrary point in the beam can be expressed as:

U(X,y,2) =u(X)+z¢(x) - yy (X) (2.8)
V(X,Y,2) =V(X)—26(X) (2.9)
W(X,Y,2)=w(X)+ YO(X) (2.10)

Differentiation of the equations above gives the strain fields,

Ex =Uy+20, — YW, (2.11)
Vg =V =Y — 20, (2.12)
Vo =Wy +9+Y0, (2.13)
Ey=6,=7y, =0 (2.14)

Then stresses can be expressed as,

o, =E(u,+2¢,-yy,) (2.15)
o, =G(v,—w—-10,) (2.16)
0, =G (W, +¢+Yy0,) (2.17)
c,=0,=0,=0 (2.18)

11



The stress resultants can be obtained by integrating stresses over the cross-section

as,
F = '/[axdi = EA(X)U, (2.19)
F, = ;[O'XydA =kGAX)(V, —v) (2.20)
F,= J;JXZdA= KGA(X) (W, +9¢) (2.21)
M, = { (yo, —z0,,)dA=GI ()0, (2.22)
M, = jA 26, dA=~EL,(X)y, + El (X)¢, (2.23)
M, = [ yo,dA=—El (0, +EL, (v, (2.24)

A
where J‘ ydA = '[ zdA=0 and k is shear correction factor.
Solving for ¢, and y, from equations 2.23 and 2.24,

¢ _ Mylzz(x)+Mz|yz(X)
*E(1, (01,(0-1,(x)7)

(2.25)

5= M1, (X)+M,1,(X)
*E(1, (001,(0-1,(x)7)

(2.26)

12



It can be recognized that all the cross-sectional properties are expressed as
functions of x. For simple geometries such as rectangular beams the variation of
cross-sectional properties can be represented by exact functions without any cause

of complexity in kinematic equations.

For tapered beams which have linearly varying depth and constant width, Gupta [2]
represent variation of area and inertia by approximate functions involving shape
factors. This method shall be used for complex geometries such as I beam to
simplify the equations of kinematics which are utilized in hybrid stress

formulations.

Tapered beam geometry is given in Figure 2.3,

Figure — 2.3 Geometry of tapered beam

13



The smaller end of the beam is denoted as end A and larger end as B. The depth of

the cross section at ends A and B are d, and d,, respectively. The length of the

element is L.

For most of the beam shapes the variation of cross-sectional properties shall be

represented as,

AX)= A, [1+ r%)m (2.27)

L,00=1,, (1 " rﬁjn (2.28)
L

L, (X) =1, (1+ rijp (2.29)
L

1,0 =1, (1+ rﬁj (2.30)
L

J(x):Ja(HrEj 2.31)

where,

r :d—b—l

d

and shape factors m, n, p, s, t are,

14
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2.2 Equilibrium Equations

Consider an infinitesimally small section of a beam element in Figure 2.4.

Figure — 2.4 Equilibrium of forces in a small beam element

The following homogenous equations are derived,

SE-0 -FARAR=0 5 F, =0 (2.32)
° ,
dF,

ZFYZ _Fy+Fy+WdXZO g Fy,XZO (233)

16



> F,=0

> M, =0

dM, =0

DM, =0

dF,
dx

-F+F +

M,

-M,+M +
dx

d
-M, -Fdx+M +

-M,-Fdx+M, +

y
dx

M,
dx

dx=0 — F,, =0

dx=0 — M, =0

dx=0 — M, ,-F =0

z

dx=0 —» M,,-F =0

17
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(2.36)

(2.37)



CHAPTER 3

FINITE ELEMENT FORMULATION

3.1 Hybrid Stress Formulation

Hybrid stress formulation consists of the variation of two-field complementary
energy function. Two independent fields necessitate two independent assumptions

for displacement field, u and stress field, c.

Choose a stress field o = P-B such that,

0;;=0 (3.1)
Choose a displacement field such that

d=N-q (3.2)

Then the strain field becomes ¢ = B-( and potential can be written as,

H=J.(,BTPTBq—l,BTPTSP,6’]dV—IqTNTTds (3.3)
\Y 2 ST

Then the terms can be defined as,

G-= j PTBdV (3.4)
\Y

18



H :jPTSPTdv (3.5)
\%

F= j NTTPTds (3.6)

ST

By employing expressions 3.4, 3.5 and 3.6 to equation 3.3,

H=ﬂTGq—%,BTHﬂ—qTF (3.7)
IT is minimized by @ =0 and @ =0. Then g can be found as,
£ =H"Gq (3.8)

and the equation 3.7 reduces to,

H:%qTGTH-IGq—qTF (3.9)
Define k=G'H'G (3.10)
[1 becomes []= %qT kq—q'F

By @ =0, the well known equation “kq = F ” can be obtained.
a T

Assume stress field to satisfy equilibrium equations stated in Section 2.2:

19



Fo=5 T=5
Fy:ﬂZ My=ﬂ5+ﬂ3x

F, =5 M, = B, - B,X (3.11)

Then ¢ =P and in open form,

F)Y (1 0 000 0
F,{{o 1 0000
F|llo o 1000
T 100 0 0100
M,| [0 0 x 010
M) o -x 0 0 0 1

Force displacement relations in the matrix form can be written from the force-

displacement relations derived in the section 2.1 as:

r=Se¢
F, EA(X) 0 0 0 0 0 U,
F, 0 kGA(X) 0 0 0 0 vV, -y
F, 0 0 kKGA(X) 0 0 0 W, +¢
T || 0 0 0 GJ(X 0 0 0,
M, 0 0 0 0 El,(x) -El,(% P,
M, 0 0 0 0 -El,(x)  EL(X v,
The strain energy in terms of stress resultant is:
M=24"Hp (3.12)

20



The boundary traction can be expressed as,

FX

"l (-1 0 0 0 0 o0

By 0 -1 0 0 0 0

Pl 1o o -1 0 0 0

T, 0 0 0 -1 0 0]|(A
M,, 0 0 0 0 -1 0||g
M, 0 0 0 0 0 -1]|8
F. | |1 0o 0 o o ol|g
F, 0 1 0 0 0 0]|g
F, 0o 0 1 0 0 0]z
T 0 0 0 1 0 0
M, | |0 0 L 0 1o
N 0 -L 0 0 0 I

N
)

The 12*6 matrix in above denotes G matrix in equation 3.10.
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3.2 Element Mass and Geometric Stiffness Matrices

For elostodynamic problems with initial stress, hybrid stress functional can be

represented as:

t
H=I|: [ﬂTPTBq_%IBTPTSPﬂ%qu NT Nq_i_%qTATUOAquV _ J‘ qT NTTdS}dt
v ST

&
Using equations 3.4, 3.5, 3.6, 3.8, 3.10 and defining,

Mass matrix:

m=ijTNdv (3.13)
\%

Geometric stiffness matrix:

ke = [ AT, AdV (3.14)
\

The functional can be represented as:

H:T(qukq—ququrquk q—qTFjdt (3.15)
1.2 2 27 °° '

This functional is dependent on time thus using Lagrange equation:

dfoll)_oIl_,
dt\ oaq ) oq
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Well known formulation for dynamic and stability analysis has been found:

ma+(k+ks)g=F (3.16)

By solving the linear eigenvalue problem of equation 3.16 critical buckling loads and

lateral free vibration modes for an elastic body can be obtained.
Functions for displacement and rotation:

Displacement and rotation functions can be determined exactly from the equilibrium

equations and kinematic of deformations which are obtained in sections 2.1 and 2.2.

xy bending

From equations 2.20 and 3.11

vy P (3.17)
Y ZIGAN)  KGA®X) '

o= leyy(X) N Mylyz(x)
E(L,001,00-1,007)  E(1,,001,,00-1,(07) -
v, = (:BS+IB3X)IW(X) n (,36—,82X)|yZ(X) .

*E(1, 0L, 0-1,(07) E(1,(01,00-1,()?)
Differentiate equation 3.17 once,

y 9B
Y y/’x_ax(kGA(x)j G.19)
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By putting equation 3.18 into equation 3.19, one can obtain Vv

XX

(ﬂs +IB3X) Iyy(x) + (ﬂé _ﬂzx) Iyz(x) +£( ﬂl j(320)
E(1,001,00-1,(x7)  E(1,(01,(0-1,(x)) x| KGAX)

Integrating equation 3.21 twice gives the function of transverse displacement in y

direction,

_H P+ 301,00 + (o= )1, () +6(_ﬂ ]dx+cx+c
(1 (x)lzz(x)—lyz(x)) E(1,001,,(0-1,(07) x| kGA(X)

Define,

J'J' 185+ﬁ3 (X) (ﬂ6_ﬂ2x)|yz(x) a ( ﬁz j

— + +—| ——=— | dx
(x)lzz(x)—lyz(x)) E(1,, (001, (0)-1,(x)7) x| kGA(X)

(3.21)

For x=0

v(0)=v,=c,+A(0) = c, =V, —A(0)

For x=L

v, =V, +A(L)-A(0)
L

v(L)=v,=cL+v,-A(0)+A(L) = ¢ =

Beta values can be expressed in terms of degrees of freedom at two nodes of the

element using equation 3.8;
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ul
Vl
Wl
e/ 6
ﬂZ ¢l
Al_(we) | (3.22)
ﬂ4 6x12 u2
P v,
By w,
02
9,
¥,

If beta expressions in equation 3.22 are substituted in transverse displacement

function with ¢, andc,constants, transverse displacementv through out the beam

element can be obtained in terms of degrees of freedom and variable x.

In general form,

v= " 00V + FL00W + F5004 + F1,000, + Y50V, + 00w, + 7 ()8, + T (X,
(3.23)

Back to equation 3.17,

__ b _ Ji
“eax VY

V J— —
L * T YGA®X)

Substituting 3.23 into above equation gives the rotation y in terms of nodal degrees

of freedom and variable x.
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w="1"(Xv,+ f7,00w + £7,(X)g + 7,0, + T75(X)v, + £, (0w, + F¥,(X)é, + T, (X,

(3.24)

xz bending:

From equations 2.21 and 3.11

kK B
Witd= KGA(X) KGA(X) (3.25)

¢ - _ lezz(x) _ Mylyz(x)

E(L,001L,00-1,007)  E(1,001,00-1,00%) 526
¢ - (/B()_/Bzx)lyy(x) . (ﬂ5+ﬂ3x)|yz(x) .

T E(L,001,00=1,007)  E(1,001,,00-1,(07)
Differentiate equation 3.26 once,

_ o P

W ¥ = 8x(kGA(x)j (3.27)

By putting equation 3.26 into equation 3.27, w,, can be obtained:
(ﬂa _ﬂzx) Iyy(X) (185 +183X) Iyz(X) 0 ( ﬂ3 ]
= - +—| —5[(3.28)
’ E(1, 001, (0-1,(x7) E(1,(01,(0-1,(x))  x{kGA(X)

Integrating equation 3.28 twice gives the function of transverse displacement in z

direction,
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Iyy(x)lzz(x)—lyz(x)) E(1,,001,(0-1,(7) x| kGA(X)

_”( )I %0 - (ﬂs +ﬂ3x) e () +— 0 (—ﬁ j}dx+d X+d,

As in xy bending define,

J'J' ) (X) (ﬁ5+ﬂ3x)|yz(x) 0 [ ﬂZ j

= - +—| —=2—| X
| (x)IZZ(x)—IyZ(x) ) E(1,001,(0-1,(x)) x| kGA(x)

(3.29)

For x=0

w0)=w, =d,+A0) = d, =w, —A(0)

For x=L

W, —w, +A(L)—A(0)
L

w(L)=w, =d,L+w,-A0)+A(L) = d, =

If beta expressions in equation 3.22 are substituted in transverse displacement

function with d, andd, constants, transverse displacementw through out the beam

element can be obtained in terms of degrees of freedom and variable x.

In general form,

W= le(X)Vl + fwz OIw; + fws(x)ﬂ + fW4(X)‘//1 + fws (X, + fwé(x)wz + fW7(X)¢2 + fws Xy,
(3.30)

Back to equation 3.25
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__ kK B
" KGA(X)  kGA(X)

W, +¢

Substituting 3.29 into above equation gives the y in terms of nodal degrees of

freedom and variable x.

p=f ¢1(X)V1 +f ¢2(X)W1 +f ¢3(X)¢1 + f¢4(x)1//1 +f ¢5 (X)V, + f¢6(X)W2 +f ¢7 ()¢, + f ¢8(X)‘//2
(3.31)

Axial displacement and torsional rotation:

Axial displacement U and torsion rotation € can be obtained via nodal degrees of

freedom and variable x through out the beam element just as in Xy and xz bending.

From equilibrium equations and kinematic of deformations in sections 2.1 and 2.2,

UX: FX = ﬂl (332)
* T EAX)  EA(X)

o - ___Pi (3.33)
*TBI0 GIX)

By integrating once:
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and employing the boundary conditions at x=0

e, =Uu,—A(0)
f,=6,—A(0)
where,

J‘L for u
EA(X)
A= (3.34)
j P tore
GJ(x)

By substituting beta values (equation 3.22) to axial displacement and torsional

rotation functions with e and f constants, axial displacement u and torsional

rotation & can be obtained in terms of degrees of freedom and variable x:

u=f"0ou, + ' (xu, (3.35)

0=1°(x)06,+ f,(x)06, (3.36)

Remember the displacement relations from section 2.1:

U(X,Y,2) = u(X)+2¢(X) = yy (x)

V(X Y,2) =V(X)—26(X)

W(X,Y,2)=w(X)+ YyO(X) (3.37)
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From equation 3.2, displacement field:
d=N-q

By substituting terms U,Vv,W, 8,9, in equation 3.37 by equations 3-23, 24, 30, 31,

35, 36; the matrix [N] can be obtained.

Mass matrix is

m :IpNTNdV (3.38)
\%

Geometric stiffness matrix is

ke = [ ATo, AdV (3.39)
\

where matrix [A] is derivative of matrix [N]
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CHAPTER 4

STRUCTURE OF THE COMPUTER CODE

A code is generated in the Fortran Power Station environment to solve the finite
element formulation derived at the previous sections. This code solves the nodal
displacements and rotations, eigenvalues for buckling loads, eigenvalues for natural

frequencies of free lateral vibration problem.

Structure matrices (element stiffness, geometric stiffness and mass matrices) are
stored in vector form rather than in the square of bonded matrix form to save storage

space by paper addressing of matrix elements which is known as skyline technique.

The code consists of one main code and five subroutines:

e MAIN.for

e PREP.for

e STFMAT.for

e ONEDIM.for
e ASMBLY .for
e (COLSOL.for

4.1 Main.for

The analysis process is controlled by the main code by the following steps:

= Reads and stores the input data.
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» Defines boundary conditions and creates necessary arrays which are used for
implementation of the skyline technique by calling subroutine prep.for.

» Develops element stiffness, geometric stiffness and mass matrices by calling
subroutine stfmat.for

= Stores the structure matrices in vector form to save storage space and
assemble the global stiffness matrices by calling onedim.for and asmbly.for.

* Solves the static problem for displacements by calling colsol.for.

* For the stability and dynamic problems, finds the critical buckling loads and
the natural frequencies by utilizing a linear eigenvalue solution algorithm.

=  Qutputs the requested results.

4.2 Prep.for

Subroutine prep.for defines the initial state of DOF’s (degrees of freedom) at each
node and creates necessary arrays which are used for implementation of the skyline

technique.

4.3 Stfmat.for

Subroutine stfmat.for develops the element stiffness, geometric stiffness and mass
matrices from the finite element formulations given in sections 3.1 and 3.2.The
variation of the beam cross-sectional properties along the beam span and nodal
displacement-rotation functions of equations given in section 3.2 are defined in this

subroutine. The subroutine uses function numint for the numerical integration.
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4.4 Onedim.for

Subroutine onedim.for stores the structure matrices in vector form to save storage

space.

4.5  Assmbly.for

This subroutine assembles the global element, geometric stiffness and mass matrices

of the entire beam structure.

4.6 Colsol.for

Subroutine colsol.for solves the linear systems of equations kq=F by

decomposition and backward substitution technique for the displacements of static

problem.

Figures 4.1 and 4.2 show the solution algorithm of the finite element code and

inverse iteration algorithm utilized for the linear eigenvalue solution respectively:
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colsol.for «——

MAIN.for

\ 4
Impose
boundary
conditions

—p» prep.for

h J

A4

Define variation of
cross-sectional
properties along

beam span

Define nodal
displacement/
rotation functions

Y

A4

Convert structural
matrices to vector
form

A4

Assemble the
global structural
matrices

Solve static
problem:
F=[K{a}

Static or
dynamic/stability
analysis

Y

A

element,geometric

Obtain

and mass stifness
matrices

— stfmat.for

—» onedim.for

—

asmbly.for

Solve eigenvalue
problem:

output.dat

k]~ 2lks]=0
[k]- f2[m]=0

Figure — 4.1 Solution algorithm of the code
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Inverse lteration Algorithm for Linear Eigenvalue Solution

A 4

Assume starting
iteration vector {X1}

l

Calculate

{Yl}:[KG]{Xl}

No

Calculate

{Y_k+l} :[KG]{XHI}

/

Calculate
{Xea) {0
(K (%)

ﬂ'lkﬂ = p()zkﬂ)

P(Xku) =

Check

A

ilkﬂ _ ﬂ.k
ﬂ.‘kﬂ

< tol

21 — ﬂ‘lk+1

Yes

Figure — 4.2 Inverse iteration algorithm for linear eigenvalue solution
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CHAPTER 5

CASE STUDIES

The element developed in this thesis is applied to number of test cases and problems.
The test cases are to chosen to compare the elements results with the previously

solved problems in the literature.

5.1 Rectangular Uniform Beam

In this analysis; a uniform beam with rectangular cross-sectional shape is

investigated for:

1) Vertical displacement when subjected to unit transverse load.

2) Natural frequencies for free lateral vibration

3) Critical buckling load

The geometry and boundary conditions of the beam is given in Figure 5.1
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25.4 mm

1) Cantilever Beam

y L
25.4

mm

A
v

365.76 mm

y
‘ 2) Simply Supported Beam

v

365.76 mm

Figure — 5.1 The geometry and boundary conditions of uniform rectangular beam

Cross sectional properties of the beam in Figure 5.1 is given in Table 5.1:

Table 5.1 — Rectangular Beam Cross Sectional Properties

E (Mpa) 206840
G (Mpa) 77565
k 0.667
p (kg/m’) 7757
Area (mm”) 645.16
I,y (mm?) 34686
I, (mm?) 34686
I,, (mm"*) 0.
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Tip-Loaded Cantilever Beam

A uniform cantilever beam of length L (365.76 mm) is fixed at x=0 and subjected to

a transverse point force F (1 N) at x=L. The exact tip deflection and rotation is:

L L

v, =F-. +—)=2.284-10"° mm
® (3EIZZ kGA)
FL2
= — -9323-10°rad
o 2El,

Results with single element solution for the present element at the tip:

Vi, =2.284-10" mm
d, =9.323-10° rad

Present formulation with single element solution yields exact tip deflection and

rotation.

Free Vibration of Cantilever Beam

The lowest frequency of the cantilever beam with the properties given in Table 5.2
and Figure 5.1 are calculated. Table 5.1 shows the analytical solution, finite element

solutions of Oral’s (5) element and present element. In finite element computations a

16 element mesh is used.
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Table 5.2 — Lowest Frequency (Hz) of cantilever beam (16 elements)

Analytical Oral Present
977 991 991

Present solution gives same results with Oral’s anisoparametric hybrid element

solution.
Free Vibration of Simply Supported Beam

The lowest natural frequency of a simply supported beam with properties given in
Figure 5.1 and Table 5.1 are calculated using 20 elements. The results are presented

in Table 5.3.

W

n

JEL, / pAL*

Table 5.3 — Nondimensional Frequency ( ) for first mode of cantilever

beam (20 elements)

Analytical Oral Present
9.890 9.7843 | 9.7736

The result of the present solution is in good agreement with Oral’s solution.
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Stability of Simply Supported Beam

The critical load for simply supported beam with properties given in Figure 5.1 and

Table 5.1 are calculated using 12 elements. The results are presented in Table 5.4.

L =50 where r = % (radius of gyration)
[

Table 5.4 — Critical Load (N) for simply supported beam (12 elements)

Analytical Oral Present
521026 518942 | 519085

The results for Oral and present solution slightly differs from Timoshenko’s exact
solution because of the fact that these two solutions include the effect of bending on

axial deformation (rotary inertia).
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5.2 Tip Deflection of Nonuniform Rectangular Beam

In this analysis, transverse tip deflection of the nonuniform rectangular cantilever
beam with linearly varying height is analyzed. The beam is subjected to unit
transverse load at the free edge of the beam. The geometry of the beam is shown in

Figure 5.2

10 mm z

&+ Py
-+ L

100 mm

10 mm
L
20 mm TorT
X
ZL.
b

Figure — 5.2 The geometry of nonuniform rectangular beam of example 5.2

Material and cross-sectional properties are given below:

E =206000 MPa

G =79231MPa
v=0.3
k =0.833
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Table 5.5 gives result for vertical deflection at the tip for present single element
solution, Friedman and Kosmatka (15) single Timoshenko beam element solution

and exact Euler beam solution.

Table 5.5 — Tip deflection of nonuniform rectangular beam

Exact Euler Beam (15) Timoshenko Beam (15) Present

3.97-107* mm 4.07-10* mm 4.10-10* mm

Figure 5.3 shows the deflection along the beam span of the example 5.2 for the

present solution.

w (mm) Vertical Deflection Along Beam Span
0.00045

0.0004 4
0.00035

0.0003 /
0.00025

0.0002 -/
0.00015

0.0001 /
0.00005 /'/
0 J//

a 20 40 B0 80 100
X (mm)

Figure — 5.3 Deflection of the nonuniform cantilever beam along the span
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5.3  Tip Deflection of Nonuniform Circular Beam

The transverse tip deflection of the nonuniform circular cantilever beam with linearly
varying diameter is analyzed. The beam is subjected to unit transverse load at the

free edge of the beam. The geometry of the beam is shown in Figure 5.4

[

0y =10mm
X
z L.

y 100 mm

Dp=20 mm

Figure — 5.4 The geometry of nonuniform circular beam

Material and cross-sectional properties are given below:

E =206000 MPa

G =79231MPa
v=0.3
k=0.9
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Table 5.6 gives result for vertical deflection at the tip for present element solution,

Friedman and Kosmatka (15) Timoshenko beam element solution and exact Euler

beam solution.

Table 5.6 — Tip deflection of nonuniform circular beam

Exact Euler Beam (15)

Timoshenko Beam (15)

Present

1.65-107° mm

1.68-107° mm

1.66-107 mm

Present beam element solution is in good agreement with the Friedman and

Kosmatka’s beam element solution.
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5.4  Free Vibration of Nonuniform Rectangular Beam - Example 1

In this analysis, natural frequencies for nonuniform rectangular Timoshenko beam
are investigated. An example is solved to employ the element presented in the
previous sections and results are compared with the results of Cleghorn & Tabarrok’s
(19) Timoshenko beam element solution. Beam has constant width and linearly

varying height with clamped - clamped boundary condition as shown in Figure 5.5.

254 mm z

—
254 mm
R e EE—
254 mm
. 127 mm
z L
y 254 mm

Figure — 5.5 Geometry and boundary conditions of nonuniform rectangular beam,

free vibration example 1

Material properties are given below:

E =210000 MPa

G =80000 MPa
v=0.3
k =0.667

p=7825kg/m’
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Results are compared with the results of Cleghorn & Tabarrok (19) Timoshenko

beam finite element solutions in Table 5.7.

Table 5.7 — First natural modes (Hertz) of clamped-clamped nonuniform
Timoshenko beam of rectangular cross-section

Number of | Cleghorn&Tabarrok Present
elements (Hertz) (Hertz)
2 9385.6 7767.3
3 9233.2 8233.4
4 9197.2 8521.4
5 9184.5 8680.1
6 9178.8 8770.5
7 9175.8 8824.7
8 9170.4 8858.5
9 9172.8 8880.1
10 9172 8894.5
11 9174.2 8904.3
12 9171 8911.1
13 9170.7 8915.9

Present solution gives poor results for small number of elements but has fast
convergence while increasing number of elements and has closed results with
Cleghorn & Tabarrok for 13 element solution. Convergence performance of

Cleghorn & Tabbarrok solution and present solution is plotted in Figure 5.6.
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first mode (Hertz)

9500 —— Glegharn&Tabarrok

—=— present

9000

8500

3000

7500

0 2 4 6 g 10 12 14
number of elements

Figure — 5.6 Clamped — clamped nonuniform rectangular Timoshenko beam first

mode as a function of number of elements
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5.5  Free Vibration of Nonuniform Rectangular Beam - Example 2

In this analysis, natural frequencies for nonuniform rectangular Timoshenko beam
are investigated for different boundary conditions and taper ratios. Beam has

constant width and linearly varying height.

W
+—»
W
L E—
F4 L.

y L

Figure — 5.7 Geometry of the nonuniform rectangular beam, free vibration example 2

Material properties are given below:

E =200000 MPa

G =76923 MPa
v=0.3
k =0.833

o =0.000007997kg -s*/cm*
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Results for different geometric parameters (¢ and r,) are obtained with present six

element solution and compared with Rossi & Laura’s (22) Timoshenko beam ten

element solution.

where;

a=i—l and r, =
0

Table 5.8 — Nondimensional natural modes Lida - | of rectangular beam for
0

different boundary conditions and geometric parameters

I I
£ =0.05 £=0.1
L L
a=0.1 a=0.2 a=0.3 a=0.1 a=02 a=0.3
Rossi Rossi Rossi Rossi Rossi Rossi
Present & Present & Present & Present & Present & Present &

Laura Laura Laura Laura Laura Laura
C-F 3.295 3.396 3.259 3.361 3.225 3.330 | 3.082 | 3.184 3.041 3.145 3.005 3.109
F-C 3.700 3.806 4.063 4.177 4.426 4549 | 3.433 | 3.543 3.735 3.852 4.029 4.154
SS-SS 9.542 9.829 9.928 10.228 | 10.294 |10.610| 8.416 | 8.683 8.680 8.954 8.923 9.205
C-SS 13.715 | 14.232 14.045 14,587 | 14.350 |14.920| 10.866 |11.245| 11.001 |11.387 | 11.119 |11.511
SS-C 14.063 | 14.570 14.728 15.251 | 15.361 |15.899 | 11.098 |11.471| 11.449 |11.825| 11.769 |12.148
Cc-C 18.680 | 19.486 19.266 20.094 | 19.814 |20.665| 13.614 | 14.089 | 13.840 |14.316 | 14.042 |14.518
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Results of present Timoshenko beam element is in good agreement with Rosa and

Laura’s Timoshenko beam element.

Figure 5.8 shows convergence performance of present beam element for geometric

parameters: rro =0.05, @ =0.1 and boundary condition: clamped - free.

3.45
—— present

—— Haossi & Laura (10 element)

34

3.35

3.3

3.25

32

] 2 4 5 a 10 12 14 16
number of elements

Figure — 5.8 Cantilever nonuniform rectangular beam first mode as a function of

number of elements
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5.6  Buckling of Nonuniform Rectangular Beam - Example 1

In this analysis critical buckling loads for nonuniform rectangular Timoshenko beam
are examined for various boundary conditions. The results are compared with the

results which are obtained from MSC/NASTRAN quad element solution.

Beam has constant width and varying height as shown in Figure 5.9.

Fa [ t=3 mm
1000 mm

Y

L 3

F 3

Figure — 5.9 Geometry of nonuniform rectangular beam, buckling example 1

Material properties are given below:

E =210000 MPa

G =80000 MPa
v=0.3
k =0.833
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Results of present 4 element solution are compared with the MSC/NASTRAN 30*10

quad element solution in Table 5.9.

Figure — 5.10 NASTRAN 30*10 quad element nonuniform beam model

i

Table 5.9 —Critical buckling loads for nonuniform rectangular cross-section beam of

example 1.
BC Nastran 30*10 element Present 4 element
solution (N) solution (N)
Simply Supported-
Simply Supported 892.28 &73.30
Clamped- 272.44 264.26
Free
Clamped-Clamped 3578.30 3423.38
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Results of present solution are in good agreement with the MSC NASTRAN

solutions.

Figure 5.11 shows the present element convergence for simply supported beam
problem. From the figure it is clear that after four elements critical buckling load

values converges to that of MSC/NASTRAN solution.

Per (N)
1100 =
—e— present
1050 1\ —— MASTRAN 30*10 QUAD
1000

850 \\
=00

8420

BDD = T T T T T T T

0 2 4 5] g 10 12 14 16
Number of elements

Figure — 5.10 Simply Supported nonuniform rectangular beam buckling loads as a

function of number of elements, buckling example 1.
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5.7  Buckling of Nonuniform Rectangular Beam - Example 2

In this example, critical buckling loads for nonuniform rectangular Timoshenko
beam are examined for various boundary conditions. The results are compared with

the results of Auciello & Ercolano’s (21) Timoshenko beam Rayleigh - Ritz solution.

W
————»
W
-— >
Z L‘

y L

+

Figure — 5.11 Geometry of nonuniform rectangular beam, buckling example 2

Material and geometric properties are given below:

E =210000 MPa

G =80000 MPa
v=0.3
k =0.833

r:\/Ezo.l
A
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Nondimensional critical buckling loads (P, ) of present eight element solution are

compared with Auciello & Ercolano’s Rayleigh - Ritz solution (21) for various

boundary conditions and « values.

Where:
2 H /H, -1
Pt:PcrL and az(l 0 )
E-I, L

Table 5.10 -Nondimensional critical buckling loads for nonuniform rectangular
beam of example 2.

SSIirrnan))I?t/ gﬂsggrrttgg i Clamped - Free Clamped - Clamped

Auciello & Auciello & Auciello &

a Present (N) | Ercolano | Present (N) | Ercolano | Present (N) | Ercolano
(N) (N) (N)

-0.4 3.7406 3.9245 1.4395 1.4653 9.7538 10.4961
-0.2 5.3801 5.6787 1.8460 1.8839 13.1081 14.2016
0.1 7.9816 8.5079 2.4321 2.4913 17.8001 19.3318
0.2 8.8649 9.4822 2.6225 2.6898 19.2577 20.9015
0.3 9.7500 10.4645 2.8114 2.8867 20.6514 22.3954
0.4 10.6320 11.4504 2.9981 3.0823 21.9870 23.7648
0.6 12.3752 13.4180 3.3676 3.4691 24.4468 26.2751
0.8 14.0741 15.3584 3.7310 3.8529 26.6208 28.3972
1.0 15.7123 17.2468 4.0894 4.2327 28.4333 30.1126

Figure 5.12 shows present element convergence performance for simply supported

beam with o =1.

55



28.0

—— present
—— Auciello & Ercolano

24.0

200

16.0

12.0

10 12
number of elements

Figure — 5.12 Simply Supported nonuniform rectangular beam buckling loads as a

function of number of elements, buckling example 2.

Results of present solution are in good agreement with the Auciello & Ercolano’s
solutions. From Table 5.9, it can be recognized that relative difference between two

solutions can vary with the taper ratio « .
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5.8  Buckling of Nonuniform Rectangular Beam - Example 3

In this example, critical buckling loads for nonuniform rectangular Euler — Bernoulli

beam are examined.

Geometry and material properties are same as the one in the nonuniform rectangular

beam, buckling example 2.

The results of present eight element solution are compared with the results of Rosa &

Franciosi’s (20) Euler beam exact solution in terms of Bessel functions.

Comparison of nondimensional critical buckling loads (P,) of present 8 element

solution with Rosa and Franciosi’s solution for clamped — simply supported

boundary and different « values are given in table 5.10.

where

a:i—l and P, =

0 'Io

R, -L

57



Table 5.11 —Nondimensional critical buckling loads for nonuniform rectangular
beam of example 3.

a Present De Ro;a &
Franciosi
-0.9 0.8842 0.8748
-0.8 2.1135 2.1189
-0.7 3.6149 3.6344
-0.6 5.3499 5.3884
-0.5 7.2986 7.3622
-0.4 9.4460 9.5434

-0.3 11.7823 11.923
-0.2 14.3017 14.494
-0.1 16.9960 17.252
0.1 22.8868 23.308
0.2 26.0717 26.6

0.3 29.4169 30.063
0.4 32.9113 33.697
0.5 36.5573 37.498
0.6 40.3509 41.465
0.7 44.2859 45.596
0.8 48.3602 49.889
0.9 52.5722 54.343

Figure 5.12 shows present element convergence performance for clamped — simply

supported beam with « =0.8.
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—— present

—— exact (Rosa&Franciosi)

10

12

14 16
number of elements

Figure — 5.13 Clamped - Free nonuniform rectangular beam buckling loads as a

function of number of elements, buckling example 3.
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5.9 Free Vibration of Nonuniform Thin Walled Circular Beam

In this analysis, natural frequencies for nonuniform circular thin walled cantilever

Timoshenko beam are investigated for taper ratios, £ =0.6 and 0.8.

where,

0]
T t

N
A
L

Figure — 5.14 Geometry of nonuniform thin walled circular beam

Material and geometric properties are given below:

E =200000MPa G =76923MPa v=0.3 k=05 p=7825kg/m’
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Results with present six element Timoshenko beam solution are compared with To’s

(17) ten element Timoshenko beam solution in Table 12.

Table 5.12 — Nondimensional natural modes ( f% @ LZJ of cantilever thin
0

walled circular beam.

Present (6 element) | To (10 element)
£ =0.6 3.6713 3.6819

p=0.8 3.5297 3.5511

Result of present six element solution is in good agreement with To’s ten element

solution. Figure 5.15 shows the convergence performance of present element.

ﬂ,m.}_’?
y &1,

36

-*
L 3
*
+*

!

35 fj#k_

—e— present

34 ——To {10 element) |
33 pi
32 T . T T T

0 2 4 G g 10 12

number of elements

Figure — 5.15 Cantilever nonuniform thin walled circular beam natural modes as a

function of number of elements.
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5.10 Free Vibration of Nonuniform I - Beam

In this analysis, natural frequency of nonuniform cantilever I-section Euler —
Bernoulli beam is analyzed. Beam has constant width, thickness and varying height
as shown in Figure 5.12.Result is compared with the Karabalis and Beskos (13) Euler

— Bernoulli beam finite element solution.

0.0g"

—» 10"

Figure — 5.16 Geometry and boundary conditions of nonuniform I beam, free

vibration problem

Material properties are given below:
E =1.00 psi

v=03
p=1.00lb-sec’/in*
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Results obtained by present 20 element yields w, = 0.0257 Hertz .

Karabalis and Beskos 15 element solution gives W, = 0.0262 Hertz .

Present element result is in good agreement with the Karabalis and Beskos’s result.

Figure 5.17 shows the present element convergence performance for the free

vibration of Euler — Bernoulli I beam problem.

w (Hertz)
0.0265 =

0.026

—e— present

—— Karabalis&Beskos(15 element)

0.025
/

0.0245 = T T T T T

o 5 10 158 20 239 a0
number of elements

Figure — 5.17 Cantilever nonuniform I beam natural modes as a function of number

of elements.

Necessity of high number of elements to convergence is originated from the use of
approximate functions in order to express the variation of the cross-sectional

properties.
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5.11 Buckling of Nonuniform I - Beam

Nonuniform cantilever Euler — Bernoulli I beam problem in Figure 5.18 is solved for
critical buckling load. Result is compared with the Karabalis and Beskos (13) Euler —

Bernoulli beam finite element solution.

508 mm 1016 mm

‘ ’ 254 mm

Figure — 5.18 Geometry and boundary conditions of nonuniform I beam, buckling

problem

Material properties are given below:

E =206850 MPa
G = 80000 MPa
v=0.3
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Results obtained by present 20 element yields P, =243.25kN .

Karabalis and Beskos (13) 5 element solution (13) gives P, =241.08kN .

Present element result is in good agreement with the Karabalis and Beskos’s result.

The convergence performance of present element is given in Figure 5.19.

Per (N}
2 50E+05

e —

240E+05

—e— present

2.530E+02
/ —— Karabalis&Beskos (5 element)
2 20E+05
2.10E+05 /
2.00E+0%5

1.90E+05 T T T T

0 ] 10 18 20 28
number of elements

Figure — 5.14 Cantilever nonuniform I beam buckling loads as a function of number

of elements.
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CHAPTER 6

SUMMARY DISCUSSION & CONCLUSION

This thesis aims to formulate a hybrid finite element for nonuniform Timoshenko
beams. For the stability and free vibration analysis, mass and geometric stiffness

matrices are also developed.

In the beginning of the study kinematics of deformations are investigated and the
displacements are determined in terms of kinematic terms with respect to centroidal

axis.

Shear deformations are taken into account via Timoshenko beam theory. Since the
study does not concentrated on warping, torsional and distortional warping effects

are omitted.

The stress resultants are assumed, so as to satisfy homogeneous equilibrium
equations. Boundary tractions are derived in terms of matrix stress resultant
coefficients in the matrix form. Then the stiffness matrix is derived from the hybrid

stress formulation.

Mass and geometric stiffness matrices are obtained by a new approach which uses
the exact displacements through out the beam element. Instead of using assumed
displacement fields as in the most of the formulations in the literature, the

displacements are obtained directly from homogeneous equations and kinematic
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relations. By the use of this method, the mass and geometric stiffness matrices are

obtained consistently.

Utilization of exact displacement fields results in better element convergence in

stability and dynamic problems.

Formulation of consistent mass and geometric stiffness matrices is a difficult task
since the exact displacement functions shall be composed of very complex
expressions which includes the variation of cross sectional properties as well as

Timoshenko beam constitutive relations.

Derivation of the displacements can be carried out by the help of symbolic
manipulation tools (i.e. Mapple 9.5). Even a symbolic manipulation tool may not be
sufficient for the beams with complex cross sections such as I beam or thin walled
cylinder. In these cases, an approximate representation of the cross sectional
properties shall be used, (18). However this method affects the convergence
performance of the element depending on how accurate the cross sectional properties

are represented with respect to the exact variation of the cross sectional properties.

A finite element solver is prepared using Fortran Power Station to solve the
formulation. In this thesis, Gauss elimination method is used with skyline storage
technique. Dynamic and stability problems are handled by linear eigenvalue solution

with an inverse iteration algorithm.

Present element is assessed by various static, dynamic and stability problems and the

results are in good agreement with the results in the literature.
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