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ABSTRACT 
 
 

A HYBRID-STRESS NONUNIFORM TIMOSHENKO BEAM FINITE ELEMENT  
 
 
 

Demirhisar, Umut 

M.S., Department of Mechanical Engineering 

Supervisor      : Prof. Dr. Süha Oral 

 

November 2007, 70 pages 
 

 

 

In this thesis, a hybrid-stress finite element is developed for nonuniform Timoshenko 

beams. The element stiffness matrix is obtained by assuming a stress field only. 

Since element boundaries are simply the element nodes, a displacement assumption 

is not necessary. Geometric and mass stiffness matrices are obtained via equilibrium 

and kinematics of deformation equations which are derived in the beam arbitrary 

cross-section. Utilizing this method eliminates the displacement assumption for the 

geometric and mass stiffness matrices. The element has six degrees of freedom at 

each node. Axial, flexural and torsional effects are considered. The torsional and 

distortional warping effects are omitted. Deformations due to shear is also taken into 

account. 

 

Finally, some sample problems are solved with the element and results are compared 

with the solutions in the literature and commercial finite element programs (i.e. 

MSC/NASTRAN®). 

 

Keywords: Finite Elemet Method, hybrid-stress, Timoshenko beam, buckling, 

vibration 
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ÖZ 
 
 

HİBRİT-GERİLİM DEĞİŞKEN KESİTLİ TIMOSHENKO KİRİŞİ SONLU 
ELEMANI  

 
 

 
Demirhisar, Umut 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Dr. Süha Oral 

 
Kasım 2007,  70  sayfa 

 
 

 

Bu tezde değişken kesitli Timoshenko kirişi için hibrit-gerilim sonlu elemanı 

geliştirilmiştir. Eleman direngenlik matrisi sadece gerilim alanı varsayımı yapılarak 

elde edilmiştir. Eleman sınırları basitçe eleman düğüm noktaları ile örtüştüğü için yer 

değiştirme varsayımı yapmaya gerek yoktur. Geometrik ve kütle direngenlik 

matrisleri kirişin herhangi bir kesitinden çıkarılan denge ve deformasyon kinematik 

denklemeleri kullanılarak elde edilmiştir. Bu metodun uygulanması, geometrik ve 

kütle direngenlik matrislerini elde ederken yer değiştirme varsayımı yapma ihtiyacını 

ortadan kaldırmaktadır. Elemanın her düğüm noktasında altı serbestlik derecesi 

vardır. Eksenel, bükme ve burulma etkileri dikkate alınırken burulma ve bozulma 

burkulma etkileri ihmal edilmiştir. Kesme etkilerinden kaynaklanan bozulmalar ise 

göz önüne alınmıştır. 

 

Geliştirilen eleman kullanılarak bazı örnek problemler çözülmüş ve sonuçlar 

literatürden ve yaygın sonlu eleman çözücülerinden (MSC/NASTRAN® gibi) elde 

edilen sonuçlarla karşılaştırılmıştır. 

 

Anahtar kelimeler: Sonlu Eleman Metodu, hibrit gerilim, Timoshenko kirişi, 

burkulma, titreşim 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
Nonuniform beams are used in many structural applications to achieve a better 

distribution of strength and weight and sometimes to satisfy architectural and 

functional requirements. In most of the engineering structures consisting of tapered 

beams, the width of the cross-section remains constant, while the height varies 

linearly or parabolicaly with length. The study deals with static, dynamic and 

stability analysis of linear elastic plane structures composed of beams with linearly 

variable height and constant width. 

 

1.1 Objective and Scope of the Study 
 
The objective of this study is to develop a hybrid stress nonuniform Timoshenko 

beam finite element with geometric and mass stiffness matrices. 

 

During the course of work, axial, flexural and torsional effects are considered 

however the torsional and distorsional warping effects are omitted since the scope of 

the thesis does not covers the corresponding topics. 

 

The variable section properties of nonuniform beam are defined with respect to beam 

length direction. Then a hybrid stress formulation is carried out to form element 

stiffness matrix by assuming a stress field to satisfy homogenous equilibrium 

equations. 
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The geometric and mass stiffness matrices are developed consistently via equilibrium 

and kinematics of deformation equations. This approach eliminates the necessity of 

displacement field assumption which is used in most of the finite element 

formulations for dynamic and stability analyses. 

 

Before proceeding on the analysis of nonuniform Timoshenko beams, the element 

formulation is carried out for a simple case which is a uniform straight beam to 

ensure a level of confidence for finite element formulation of consistent mass and 

geometric stiffness matrices. The uniform element performance is cross-checked 

with solutions of elements obtained by anisoparametric interpolation approach. 

 

In order to analyze nonuniform Timoshenko beams, a program is generated in the 

Fortran Power Station environment which solves the finite element formulation. By 

the use of the generated computer program, static, dynamic and stability analyses are 

performed. All the results are compared with the results in the literature or with 

conventional finite element program MSC/NASTRAN®. 

 

1.2 Literature Survey 
 

A detailed literature survey has been performed to get into structural analysis of 

both uniform and nonuniform beams. First hybrid stress finite element approach 

has been investigated to get basic knowledge about beam finite element 

applications. Then research has moved into nonuniform beam studies which have 

been carried out in the past. 

 

There is continuing research on the development of elements that combine the 

accuracy of higher-order elements with the simple nodal configuration of lower 

order elements. 
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In 1981 an effective method has been introduced by Tessler and Dong [1] for 

Timoshenko beams. The methodology in which displacements and rotations are 

expressed by different order polynomials was later called “anisoparametric 

interpolation” by Tessler and Hughes [2]. 

 

However as the number of nodes is minimized, a deflection matching analysis 

becomes necessary to improve the stiffness of the element. In 1981 through this 

analysis a new shear correction factor that incorporates both the classical shear 

correction and the element properties are determined by Tessler and Hughes [3]. 

 

It is possible to formulate a two-node element in which the correct displacements 

and moments can be computed at any section of the element by the standard hybrid 

stress method [4] where only the boundary displacements are required. However, 

the derivation of the element mass and the geometric stiffness matrices requires a 

displacement assumption over the entire element. 

 

In 1991 Oral [5] incorporated the anisoparametric displacement assumptions with a 

modified form of the hybrid stress functional to obtain the element – stiffness and 

consistent mass matrices for a two node Timoshenko beam element. A deflection 

matching analysis was not necessary and the use of classical shear correction was 

sufficient. 

 

Non – uniform beams such as beams with cross-section varying along their lengths 

are used in many structural applications in an effort to achieve a better distribution 

of strength and weight. In 1943, Newmark developed an approximate method for 

determining static deflections and moments in beam structures consisting of 

uniform or nonuniform members [6]. 
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In 1963, Lindberg constructed consistent mass and stiffness matrices for linearly 

tapered beam elements of rectangular, circular and triangular section utilizing a 

cubic displacement function [8]. 

 

A number of exact solutions to the elastic stability problem of simple nonuniform 

beams together with some tables and graphs can be found in Timoshenko and Gere 

[11].Stability analysis of frameworks with nonuniform members by the 

conventional finite element method was first done by Wang [12]. 

 

In 1970, Galagher and Lee introduced a general nonuniform beam element which 

can be considered as generalization of Linderberg’s element by computing its 

flexural and geometric stiffness matrices on the basis of a cubic displacement 

function and were able to obtain very accurate results with just a few elements [9].. 

 

In 1977, Just developed the exact stiffness matrices for linearly tapered beams of 

rectangular, box and I section [7]. 

 

In 1979, To gave explicit expressions for the element mass and stiffness matrices of 

linearly tapered beam finite element including shear deformation and rotary inertia. 

The element cross-section rotation was assumed to be a sum of the slope of the 

transverse displacement and shear [17]. 

 

In 1983, Rutledge and Beskos developed stiffness and consistent mass matrices for 

a linearly tapered beam of rectangular section and constant width which give 

results slightly better than those of Galagher and Lee [10]. 

 

In 1983, Karabalis and Beskos proposed a finite element methodology for static, 

free vibration and stability analyses of linear elastic plane structures consisting of 

tapered beams [13].The method was based on the development of flexural stiffness,  
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axial stiffness’, geometric stiffness and consistent mass matrices for a beam 

element of constant width and linearly varying depth. The element flexural and 

axial stiffness matrices were derived on the basis of displacement functions which 

are the exact solutions of the governing equations. The element geometric stiffness 

matrix was constructed on the basis of shape functions corresponding to the exact 

static displacement function of the tapered element. The element consistent mass 

matrix was constructed on the basis of shape functions corresponding to the cubic 

displacement function of a uniform beam. 

 

In 1985, Gupta derived stiffness and consistent mass matrices for linearly tapered 

beam element of any cross-sectional shape in explicit form. Exact expression for 

the required displacement functions were used in the derivation of matrices. 

Variation of area and moment of inertia of the cross section along the axis of the 

element is exactly represented by simple functions involving shape factors [18]. 

 

In 1988, Cleghorn and Tabarrok developed a finite element model for free 

vibration analysis of linearly tapered Timoshenko beams via obtaining the shape 

functions from the homogenous solutions of the governing equations for static 

deflections [19]. 

 

In 1991, Lee and Kuo gave the exact static deflection of a nonuniform Timoshenko 

beam with typical kinds of boundary condition in closed form and expressed the 

static deflection in terms of the four fundamental solutions of the governing 

differential equation [14]. 

 

In 1992 , Friedman and Kosmatka developed the exact bending stiffness matrix for 

an arbitrary non uniform beam including shear deformation based on Timoshenko 

beam theory [15].In the paper, numerical examples were presented to asses the  
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interaction of taper rate and shear deformation on the behavior of short beams. 

 

In 1995, Romano presented closed form solutions for bending beams with linearly 

and parabolically varying depth and for bending beams with linearly varying width 

along the beams length by taking into account the shear deformation of the beam. 

The solutions were achieved by transforming the fourth order differential equations 

with variable coefficients into fourth order differential equations with constant 

coefficients [16]. 

 

In 1995, De Rosa and Franciosi used Timoshenko quotient for stability analysis of 

rectangular beams with linearly varying height. An iterative procedure was 

suggested which leads to closer approximations to the true results [20]. 

 

In 2004, Aucellio and Ercolano proposed a dynamic investigation method for the 

analysis of Timoshenko beams which takes into account the shear deformations and 

rotating inertia. The solution of the problem was obtained through the iterative 

variational Rayleigh – Ritz method and assuming as test functions an appropriate 

class of orthogonal polynomials which respect the essential conditions only [21]. 
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CHAPTER 2 
 
 

TIMOSHENKO BEAM THEORY 
 
 
 

2.1 Kinematics of Deformation 
 
The basic assumption in beam bending analysis excluding shear deformations is 

that a normal to the mid-surface (neutral axis) of the beam remains straight during 

deformation and that its angular rotation is equal to the slope of the beam mid-

surface. This kinematic assumption corresponds to the Bernoulli beam theory. 

 

Considering beam bending analysis with the effect of shear deformations, the 

assumption that a plane section originally normal to the neutral axis remains plane 

is retained, but because of shear deformations this section does not remain normal 

to the neutral axis. This kinematic assumption corresponds to Timoshenko beam 

theory. 

 
XY Bending of a Symmetric Timoshenko Beam: 
 
Consider beam deformations in two steps. In the first step consider bending only. 

AB & CD will remain normal to each other and go through a rotation ( )xψ . 
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Figure – 2.1 Deformed and undeformed shape of a symmetric beam in xy plane 

 
 
 
For the deformation, 

 

( , , ) ( )
( , , ) ( )
( , , ) 0

u x y z y x
v x y z v x
w x y z

ψ= −
=
=

        (2.1) 

 

( ),

2 0

2

2 0

xy xy

yz yz x

xz xz

G

G G v

G

σ ε

σ ε ψ

σ ε

= =

= = −

= =

       (2.2) 

 
zzσ  is almost zero since there is no loading on the sides of the beam. Furthermore 

yyσ  can be assumed to be negligible with respect to xxσ  because there is zero 

surface load on the bottom surface. 
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Then, 

 

,2xx xx xE Ezσ ε ψ= = −  
0yyσ =          (2.3) 
0zzσ =  

 

Shear stress at section x is free from the z direction by introducing a shear 

correction factor k. 

 

( ),yx xkG vσ ψ= −         (2.4) 
 
By integrating the stresses over the cross-sectional area A to obtain the stress 

resultants, 

 

( ),y xQ kGA v ψ= −         (2.5) 
 

2
,y xM E y dAψ= − ∫         (2.6) 

 
2y dA∫  is the second moments of inertia on y axis: zzI . 

 

Then equation 2.6 can be written as, 

 

,z zz xM EI ψ= −         (2.7) 
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Figure 2.2 shows deformations in 3D space for a Timoshenko beam. 

 

 

 

 
 

Figure – 2.2 Deformations and rotations of 3D Timoshenko beam 

 

 

 

The axial action of the beam can be represented by deformation u . 

 

Bending in xy plane can be represented by deformation v  and rotation ψ . 

 

Bending in xz plane can be represented by deformation w  and rotation φ . 

 

The torsional action of the beam can be represented by rotation θ . 
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The displacement of an arbitrary point in the beam can be expressed as: 

 

( , , ) ( ) ( ) ( )U x y z u x z x y xφ ψ= + −       (2.8) 

 

( , , ) ( ) ( )V x y z v x z xθ= −        (2.9) 

 

( , , ) ( ) ( )W x y z w x y xθ= +        (2.10) 

 

Differentiation of the equations above gives the strain fields, 

 

, , ,xx x x xu z yε φ ψ= + −         (2.11) 

 

, ,xy x xv zγ ψ θ= − −         (2.12) 

 

, ,zx x xw yγ φ θ= + +         (2.13) 

 

0yy zz yzε ε γ= = =         (2.14) 

 

Then stresses can be expressed as, 

 

( ), , ,xx x x xE u z yσ φ ψ= + −        (2.15) 

 

( ), ,xy x xG v zσ ψ θ= − −        (2.16) 

 

( ), ,zx x xG w yσ φ θ= + +        (2.17) 

 

0yy zz yzσ σ σ= = =         (2.18) 
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The stress resultants can be obtained by integrating stresses over the cross-section 

as, 

 

,( )x xx x
A

F dA EA x uσ= =∫        (2.19) 

 

( ),( )y xy x
A

F dA kGA x vσ ψ= = −∫       (2.20) 

 

( ),( )z xz x
A

F dA kGA x wσ φ= = +∫       (2.21) 

 

( ) ,( )x xz xy x
A

M y z dA GJ xσ σ θ= − =∫       (2.22) 

 

, ,( ) ( )y xx yz x yy x
A

M z dA EI x EI xσ ψ φ= = − +∫      (2.23) 

 

, ,( ) ( )z xx yz x zz x
A

M y dA EI x EI xσ φ ψ= = − +∫      (2.24) 

 

where 0ydA zdA= =∫ ∫  and k  is shear correction factor. 

 

Solving for ,xφ  and ,xψ  from equations 2.23 and 2.24, 

 

( ), 2

( ) ( )
( ) ( ) ( )

y zz z yz
x

yy zz yz

M I x M I x
E I x I x I x

φ
+

=
−

      (2.25) 

 

( ), 2

( ) ( )
( ) ( ) ( )

y yz z yy
x

yy zz yz

M I x M I x
E I x I x I x

φ
+

=
−

      (2.26) 
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It can be recognized that all the cross-sectional properties are expressed as 

functions of x. For simple geometries such as rectangular beams the variation of 

cross-sectional properties can be represented by exact functions without any cause 

of complexity in kinematic equations. 

 

For tapered beams which have linearly varying depth and constant width, Gupta [2] 

represent variation of area and inertia by approximate functions involving shape 

factors. This method shall be used for complex geometries such as I beam to 

simplify the equations of kinematics which are utilized in hybrid stress 

formulations. 

 

Tapered beam geometry is given in Figure 2.3, 

 

 

 

 

Figure – 2.3 Geometry of tapered beam 
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The smaller end of the beam is denoted as end A and larger end as B. The depth of 

the cross section at ends A and B are ad  and bd , respectively. The length of the 

element is L. 

 

For most of the beam shapes the variation of cross-sectional properties shall be 

represented as, 

 

( ) 1
m

a
xA x A r
L

⎛ ⎞= +⎜ ⎟
⎝ ⎠

        (2.27) 

 

( ) 1
n

yy yya
xI x I r
L

⎛ ⎞= +⎜ ⎟
⎝ ⎠

       (2.28) 

( ) 1
p

zz zza
xI x I r
L

⎛ ⎞= +⎜ ⎟
⎝ ⎠

       (2.29) 

 

( ) 1
s

yz yza
xI x I r
L

⎛ ⎞= +⎜ ⎟
⎝ ⎠

       (2.30) 

 

( ) 1
t

a
xJ x J r
L

⎛ ⎞= +⎜ ⎟
⎝ ⎠

        (2.31) 

 

where, 

 

1b

a

dr
d

= −  

 

and shape factors m, n, p, s, t are, 
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log
1

og

b

a

b

a

A
A

m
dl
d

⎛ ⎞
⎜ ⎟
⎝ ⎠= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

   
log

1
og

yyb

yya

b

a

I
I

n
dl
d

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

log
1

og

zzb

zza

b

a

I
I

p
dl
d

⎛ ⎞
⎜ ⎟
⎝ ⎠= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

   
log

1
og

yzb

yza

b

a

I
I

s
dl
d

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

log
1

og

b

a

b

a

J
J

t
dl
d

⎛ ⎞
⎜ ⎟
⎝ ⎠= −
⎛ ⎞
⎜ ⎟
⎝ ⎠
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2.2 Equilibrium Equations  
 

Consider an infinitesimally small section of a beam element in Figure 2.4. 

 

 

 

 
 

Figure – 2.4 Equilibrium of forces in a small beam element 

 

The following homogenous equations are derived, 

 

,0 0 0x
x x x x x

dFF F F dx F
dx

= − + + = → =∑     (2.32) 

 

,0 0 0y
y y y y x

dF
F F F dx F

dx
= − + + = → =∑     (2.33) 
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,0 0 0z
z z z z x

dFF F F dx F
dx

= − + + = → =∑     (2.34) 

 

,0 0 0x
x x x x x

dMM M M dx M
dx

= − + + = → =∑    (2.35) 

 

,0 0 0y
y y z y y x z

dM
M M F dx M dx M F

dx
= − − + + = → − =∑  (2.36) 

 

,0 0 0z
z z y z z x y

dMM M F dx M dx M F
dx

= − − + + = → − =∑  (2.37) 
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CHAPTER 3 
 
 

FINITE ELEMENT FORMULATION 
 
 
 

3.1 Hybrid Stress Formulation 
 

Hybrid stress formulation consists of the variation of two-field complementary 

energy function. Two independent fields necessitate two independent assumptions 

for displacement field, u and stress field, σ. 

 

Choose a stress field P Bσ = ⋅  such that, 

 

, 0ij jσ =          (3.1) 

 

Choose a displacement field such that 

 

d N q= ⋅          (3.2) 

 

Then the strain field becomes B qε = ⋅  and potential can be written as, 

 

1
2

T T T T T T

V ST

P Bq P SP dV q N Tdsβ β β⎛ ⎞∏ = − −⎜ ⎟
⎝ ⎠∫ ∫     (3.3) 

 

Then the terms can be defined as, 

 
T

V

G P BdV= ∫          (3.4) 
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T T

V

H P SP dV= ∫         (3.5) 

 
T T

ST

F N TP ds= ∫         (3.6) 

 

By employing expressions 3.4, 3.5 and 3.6 to equation 3.3, 

 

1
2

T T TGq H q Fβ β β∏ = − −        (3.7) 

 

∏  is minimized by 0
β

∂∏
=

∂
 and 0

q
∂∏

=
∂

. Then β  can be found as, 

 
1H Gqβ −=          (3.8) 

 

and the equation 3.7 reduces to, 

 

11
2

T T Tq G H Gq q F−∏ = −         (3.9) 

 

Define 1Tk G H G−=         (3.10) 

 

∏  becomes 1
2

T Tq kq q F∏ = −  

 

By 0Tq
∂∏

=
∂

, the well known equation “ kq F= ” can be obtained. 

 

Assume stress field to satisfy equilibrium equations stated in Section 2.2: 
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1xF β=    4T β=  

2yF β=    5 3yM xβ β= +  

3zF β=    6 2zM xβ β= −     (3.11) 

 

Then ' Pσ β=  and in open form,  

 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

x

y

z

y

z

F
F
F
T

M x
M x

β

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

 

 

Force displacement relations in the matrix form can be written from the force-

displacement relations derived in the section 2.1 as: 

 

r Sε=  

 

,

,

,

,

,

,

( ) 0 0 0 0 0
0 ( ) 0 0 0 0
0 0 ( ) 0 0 0
0 0 0 ( ) 0 0
0 0 0 0 ( ) ( )
0 0 0 0 ( ) ( )

xx

xy

xz

x

y yz xy

yz z xz

EA x uF
kGA x vF

kGA x wF
GJ xT

EI x EI xM
EI x EI xM

ψ
φ

θ
φ
ψ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ −⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ +

= ⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ −
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

The strain energy in terms of stress resultant is: 

 

1
2

T Hβ β∏ =          (3.12) 
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The boundary traction can be expressed as, 

 

 

1

1

1

1

1

2

2

2

2

2

1 1

2

1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

x

y

z

y

z

x

y

z

y

z

F

F

F

T
M

M

F

F

F

T
LM

L
M

β
β
β

⎛ ⎞
−⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ −
⎜ ⎟⎜ ⎟ −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ −
⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟ = ⋅⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ −⎝ ⎠⎜ ⎟

⎝ ⎠

3

4

5

6

β
β
β

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

The 12*6 matrix in above denotes G matrix in equation 3.10.  
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3.2 Element Mass and Geometric Stiffness Matrices 
 

For elostodynamic problems with initial stress, hybrid stress functional can be 

represented as: 

 
2

1

0
1 1 1
2 2 2

t
T T T T T T T T T T

t V ST

P Bq P SP q N Nq q A Aq dV q N TdS dtβ β β ρ σ
⎡ ⎤⎛ ⎞∏ = − + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ ∫ ∫& &  

 

Using equations 3.4, 3.5, 3.6, 3.8, 3.10 and defining, 

 

Mass matrix: 

 
T

V

m N NdVρ= ∫         (3.13) 

 

Geometric stiffness matrix: 

 

0
T

G
V

k A AdVσ= ∫         (3.14) 

 

The functional can be represented as: 

 
2

1

1 1 1
2 2 2

t
T T T T

G
t

q kq q mq q k q q F dt⎛ ⎞∏ = − + −⎜ ⎟
⎝ ⎠∫ & &     (3.15) 

 

This functional is dependent on time thus using Lagrange equation: 

 

0d
dt q q
⎛ ⎞∂∏ ∂∏

− =⎜ ⎟∂ ∂⎝ ⎠&
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Well known formulation for dynamic and stability analysis has been found: 

 

( )Gmq k k q F+ + =&&         (3.16) 

 

By solving the linear eigenvalue problem of equation 3.16 critical buckling loads and 

lateral free vibration modes for an elastic body can be obtained. 

 

Functions for displacement and rotation: 

 

Displacement and rotation functions can be determined exactly from the equilibrium 

equations and kinematic of deformations which are obtained in sections 2.1 and 2.2. 

 

xy bending 

 

From equations 2.20 and 3.11 

 

2
, ( ) ( )

y
x

F
v

kGA x kGA x
βψ− = =        (3.17) 

 

( ) ( )
( )

( )
( )

( )

, 2 2

5 3 6 2
, 2 2

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

z yy y yz
x

yy zz yz yy zz yz

yy yz
x

yy zz yz yy zz yz

M I x M I x
E I x I x I x E I x I x I x

x I x x I x
E I x I x I x E I x I x I x

ψ

β β β β
ψ

= +
− −

+ −
= +

− −

   (3.18) 

 

Differentiate equation 3.17 once, 

 

2
, , ( )xx xv

x kGA x
βψ

⎛ ⎞∂
− = ⎜ ⎟∂ ⎝ ⎠

       (3.19) 
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By putting equation 3.18 into equation 3.19, one can obtain ,xxv : 

 

( )
( )

( )
( )

5 3 6 2 1
, 2 2

( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )

yy yz
xx

yy zz yz yy zz yz

x I x x I x
v

x kGA xE I x I x I x E I x I x I x
β β β β β+ − ⎛ ⎞∂

= + + ⎜ ⎟∂− − ⎝ ⎠
(3.20) 

 

Integrating equation 3.21 twice gives the function of transverse displacement in y 

direction, 

 

( )
( )

( )
( )

5 3 6 2 2
1 22 2

( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )

yy yz

yy zz yz yy zz yz

x I x x I x
v dx c x c

x kGA xE I x I x I x E I x I x I x
β β β β β⎛ ⎞+ − ⎛ ⎞∂⎜ ⎟= + + + +⎜ ⎟⎜ ⎟∂− − ⎝ ⎠⎝ ⎠

∫∫  

Define, 

 

( )
( )

( )
( )

5 3 6 2 2
2 2

( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )

yy yz

yy zz yz yy zz yz

x I x x I x
dx

x kGA xE I x I x I x E I x I x I x
β β β β β⎛ ⎞+ − ⎛ ⎞∂⎜ ⎟Δ = + + ⎜ ⎟⎜ ⎟∂− − ⎝ ⎠⎝ ⎠

∫∫  

(3.21) 

 

For x=0 

 

1 2 2 1(0) (0) (0)v v c c v= = + Δ ⇒ = −Δ  

 

For x=L 

 

2 1
2 1 1 1

( ) (0)( ) (0) ( ) v v Lv L v c L v L c
L

− + Δ −Δ
= = + −Δ + Δ ⇒ =  

 

Beta values can be expressed in terms of degrees of freedom at two nodes of the 

element using equation 3.8; 
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( )

1

1

1

1 1

2 1

3 11

6 12
4 2

5 2

6 2

2

2

2

u
v
w

H G
u
v
w

β θ
β φ
β ψ
β
β
β

θ
φ
ψ

−

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

       (3.22) 

 

If beta expressions in equation 3.22 are substituted in transverse displacement 

function with 1c and 2c constants, transverse displacement v  through out the beam 

element can be obtained in terms of degrees of freedom and variable x. 

 

In general form, 

 

21 1 2 1 3 1 4 1 5 2 6 2 7 2 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v v v v v v v vv f x v f x w f x f x f x v f x w f x f x ψφ ψ φ= + + + + + + +
(3.23) 

 

Back to equation 3.17, 

 

2 2
, ,( ) ( )x xv v

kGA x kGA x
β βψ ψ− = ⇒ = −  

 

Substituting 3.23 into above equation gives the rotation ψ  in terms of nodal degrees 

of freedom and variable x. 
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21 1 2 1 3 1 4 1 5 2 6 2 7 2 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x v f x w f x f x f x v f x w f x f xψ ψ ψ ψ ψ ψ ψ ψ ψψ φ ψ φ= + + + + + + +  

(3.24) 

 

xz bending: 

 

From equations 2.21 and 3.11 

 

3
, ( ) ( )

z
x

Fw
kGA x kGA x

βφ+ = =        (3.25) 

 

( ) ( )
( )

( )
( )

( )

, 2 2

6 2 5 3
, 2 2

( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

y yzz zz
x

yy zz yz yy zz yz

yy yz
x

yy zz yz yy zz yz

M I xM I x
E I x I x I x E I x I x I x

x I x x I x
E I x I x I x E I x I x I x

φ

β β β β
φ

= − −
− −

− +
= − −

− −

  (3.26) 

 

Differentiate equation 3.26 once, 

 

3
, , ( )xx xw

x kGA x
βφ

⎛ ⎞∂
+ = ⎜ ⎟∂ ⎝ ⎠

       (3.27) 

 

By putting equation 3.26 into equation 3.27, ,xxw  can be obtained: 

 

( )
( )

( )
( )

6 2 5 3 3
, 2 2

( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )

yy yz
xx

yy zz yz yy zz yz

x I x x I x
w

x kGA xE I x I x I x E I x I x I x
β β β β β− + ⎛ ⎞∂

= − − + ⎜ ⎟∂− − ⎝ ⎠
(3.28) 

 

Integrating equation 3.28 twice gives the function of transverse displacement in z 

direction, 
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( )
( )

( )
( )

6 2 5 3 2
1 22 2

( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )

yy yz

yy zz yz yy zz yz

x I x x I x
w dx d x d

x kGA xE I x I x I x E I x I x I x
β β β β β⎛ ⎞− + ⎛ ⎞∂⎜ ⎟= − − + + +⎜ ⎟⎜ ⎟∂− − ⎝ ⎠⎝ ⎠

∫∫  

As in xy bending define, 

 

( )
( )

( )
( )

6 2 5 3 2
2 2

( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )

yy yz

yy zz yz yy zz yz

x I x x I x
dx

x kGA xE I x I x I x E I x I x I x
β β β β β⎛ ⎞− + ⎛ ⎞∂⎜ ⎟Δ = − − + ⎜ ⎟⎜ ⎟∂− − ⎝ ⎠⎝ ⎠

∫∫  

(3.29) 

 

For x=0 

 

1 2 2 1(0) (0) (0)w w d d w= = + Δ ⇒ = −Δ  

 

For x=L 

 

2 1
2 1 1 1

( ) (0)( ) (0) ( ) w w Lw L w d L w L d
L

− + Δ −Δ
= = + −Δ + Δ ⇒ =  

 

If beta expressions in equation 3.22 are substituted in transverse displacement 

function with 1d and 2d constants, transverse displacement w  through out the beam 

element can be obtained in terms of degrees of freedom and variable x. 

 

In general form, 

 

21 1 2 1 3 1 4 1 5 2 6 2 7 2 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )w w w w w w w ww f x v f x w f x f x f x v f x w f x f xψφ ψ φ= + + + + + + +  

(3.30) 

 

Back to equation 3.25 
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3
, ( ) ( )

z
x

Fw
kGA x kGA x

βφ+ = =  

 

Substituting 3.29 into above equation gives the ψ  in terms of nodal degrees of 

freedom and variable x. 

 

25 71 1 2 1 3 1 4 1 2 6 2 2 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x x x x x x x xf v f w f f f v f w f fφ φ φ φ φ φ φ φ ψφ φ ψ φ= + + + + + + +  

(3.31) 

 

Axial displacement and torsional rotation: 

 

Axial displacement u  and torsion rotation θ  can be obtained via nodal degrees of 

freedom and variable x through out the beam element just as in xy and xz bending. 

 

From equilibrium equations and kinematic of deformations in sections 2.1 and 2.2, 

 

1
, ( ) ( )

x
x

Fu
EA x EA x

β
= =         (3.32) 

 

4
, ( ) ( )x

T
GJ x GJ x

βθ = =         (3.33) 

 

By integrating once: 

1
1( )

u e
EA x
β

= +∫  

 

4
1( )

f
GJ x
βθ = +∫  
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and employing the boundary conditions at x=0 

 

1 1 (0)e u= −Δ  

 

1 1 (0)f θ= −Δ  

 

where, 

 

1

4

( )

( )

for u
EA x

for
GJ x

β

β θ

Δ =

∫

∫

      (3.34) 

 

By substituting beta values (equation 3.22) to axial displacement and torsional 

rotation functions with 1e and 1f constants, axial displacement u  and torsional 

rotation θ  can be obtained in terms of degrees of freedom and variable x: 

 

1 1 2 2( ) ( )u uu f x u f x u= +        (3.35) 

1 1 2 2( ) ( )f x f xθ θθ θ θ= +        (3.36) 

 

Remember the displacement relations from section 2.1: 

 

( , , ) ( ) ( ) ( )U x y z u x z x y xφ ψ= + −  

 

( , , ) ( ) ( )V x y z v x z xθ= −  

 

( , , ) ( ) ( )W x y z w x y xθ= +        (3.37) 
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From equation 3.2, displacement field: 

 

d N q= ⋅  

 

By substituting terms , , , , ,u v w θ φ ψ  in equation 3.37 by equations 3-23, 24, 30, 31, 

35, 36; the matrix [N] can be obtained. 

 

Mass matrix is  

 
T

V

m N NdVρ= ∫         (3.38) 

 

Geometric stiffness matrix is  

 

0
T

G
V

k A AdVσ= ∫         (3.39) 

 

where matrix [A] is derivative of matrix [N] 
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CHAPTER 4 
 
 

STRUCTURE OF THE COMPUTER CODE 
 
 
 
A code is generated in the Fortran Power Station environment to solve the finite 

element formulation derived at the previous sections. This code solves the nodal 

displacements and rotations, eigenvalues for buckling loads, eigenvalues for natural 

frequencies of free lateral vibration problem. 

 

Structure matrices (element stiffness, geometric stiffness and mass matrices) are 

stored in vector form rather than in the square of bonded matrix form to save storage 

space by paper addressing of matrix elements which is known as skyline technique. 

 

The code consists of one main code and five subroutines: 

 

• MAIN.for 

• PREP.for 

• STFMAT.for 

• ONEDIM.for 

• ASMBLY.for 

• COLSOL.for 

 

4.1  Main.for 
 

The analysis process is controlled by the main code by the following steps: 

 

 Reads and stores the input data. 
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 Defines boundary conditions and creates necessary arrays which are used for 

implementation of the skyline technique by calling subroutine prep.for. 

 Develops element stiffness, geometric stiffness and mass matrices by calling 

subroutine stfmat.for 

 Stores the structure matrices in vector form to save storage space and 

assemble the global stiffness matrices by calling onedim.for and asmbly.for. 

 Solves the static problem for displacements by calling colsol.for. 

 For the stability and dynamic problems, finds the critical buckling loads and 

the natural frequencies by utilizing a linear eigenvalue solution algorithm. 

 Outputs the requested results. 

 

4.2  Prep.for 
 

Subroutine prep.for defines the initial state of DOF’s (degrees of freedom) at each 

node and creates necessary arrays which are used for implementation of the skyline 

technique. 

 

4.3  Stfmat.for 
 

Subroutine stfmat.for develops the element stiffness, geometric stiffness and mass 

matrices from the finite element formulations given in sections 3.1 and 3.2.The 

variation of the beam cross-sectional properties along the beam span and nodal 

displacement-rotation functions of equations given in section 3.2 are defined in this 

subroutine. The subroutine uses function numint for the numerical integration. 
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4.4  Onedim.for 
 

Subroutine onedim.for stores the structure matrices in vector form to save storage 

space. 

 

4.5  Assmbly.for 
 

This subroutine assembles the global element, geometric stiffness and mass matrices 

of the entire beam structure. 

 

4.6  Colsol.for 
 

Subroutine colsol.for solves the linear systems of equations kq F=  by 

decomposition and backward substitution technique for the displacements of static 

problem. 

 

Figures 4.1 and 4.2 show the solution algorithm of the finite element code and 

inverse iteration algorithm utilized for the linear eigenvalue solution respectively: 
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Figure – 4.1 Solution algorithm of the code 
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Figure – 4.2 Inverse iteration algorithm for linear eigenvalue solution 
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CHAPTER 5 
 
 

CASE STUDIES 
 
 
 

The element developed in this thesis is applied to number of test cases and problems. 

The test cases are to chosen to compare the elements results with the previously 

solved problems in the literature. 

 

5.1  Rectangular Uniform Beam 
 

In this analysis; a uniform beam with rectangular cross-sectional shape is 

investigated for: 

 

1) Vertical displacement when subjected to unit transverse load. 

 

2) Natural frequencies for free lateral vibration 

 

3) Critical buckling load 

 

The geometry and boundary conditions of the beam is given in Figure 5.1 
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Figure – 5.1 The geometry and boundary conditions of uniform rectangular beam 

 

 

 

Cross sectional properties of the beam in Figure 5.1 is given in Table 5.1: 

 

 

Table 5.1 – Rectangular Beam Cross Sectional Properties 
 
 

 

 

 

 

 

 

 

 

 

E (Mpa)  206840 

G (Mpa) 77565 

k 0.667 

ρ (kg/m3) 7757 

Area (mm2) 645.16 

Iyy (mm4) 34686 

Izz (mm4) 34686 

Iyz (mm4) 0. 

25.4 mm 

25.4 
mm 

365.76 mm 

365.76 mm 

1) Cantilever Beam 

2) Simply Supported Beam 

y 

z

y 

x

y 

x



38 38

Tip-Loaded Cantilever Beam 

 

A uniform cantilever beam of length L (365.76 mm) is fixed at x=0 and subjected to 

a transverse point force F (1 N) at x=L. The exact tip deflection and rotation is: 

 
3

3
( )

2
6

( )

( ) 2.284 10
3

9.323 10
2

L
zz

L
zz

L Lv F mm
EI kGA

FL rad
EI

φ

−

−

= ⋅ + = ⋅

= = ⋅
 

 

Results with single element solution for the present element at the tip: 

 
3

( )

6
( )

2.284 10

9.323 10
L

L

v mm

radφ

−

−

= ⋅

= ⋅
 

 

Present formulation with single element solution yields exact tip deflection and 

rotation. 

 

Free Vibration of Cantilever Beam 

 

The lowest frequency of the cantilever beam with the properties given in Table 5.2 

and Figure 5.1 are calculated. Table 5.1 shows the analytical solution, finite element 

solutions of Oral’s (5) element and present element. In finite element computations a 

16 element mesh is used. 
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Table 5.2 – Lowest Frequency (Hz) of cantilever beam (16 elements) 
 

Analytical Oral Present 

977 991 991 

 

 

 

Present solution gives same results with Oral’s anisoparametric hybrid element 

solution. 

 

Free Vibration of Simply Supported Beam 

 

The lowest natural frequency of a simply supported beam with properties given in 

Figure 5.1 and Table 5.1 are calculated using 20 elements. The results are presented 

in Table 5.3. 

 

 

 

Table 5.3 – Nondimensional Frequency (
4/

n

zz

w
EI ALρ

) for first mode of cantilever 

beam (20 elements) 
 

Analytical Oral Present 

9.890 9.7843 9.7736 

 

 

 

The result of the present solution is in good agreement with Oral’s solution. 
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Stability of Simply Supported Beam 

 

The critical load for simply supported beam with properties given in Figure 5.1 and 

Table 5.1 are calculated using 12 elements. The results are presented in Table 5.4. 

 

50L
r
=  where zzIr

A
=  (radius of gyration) 

 

 

 

Table 5.4 – Critical Load (N) for simply supported beam (12 elements) 
 

Analytical Oral Present 

521026 518942 519085 

 

 

 

The results for Oral and present solution slightly differs from Timoshenko’s exact 

solution because of the fact that these two solutions include the effect of bending on 

axial deformation (rotary inertia). 
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5.2  Tip Deflection of Nonuniform Rectangular Beam 
 

In this analysis, transverse tip deflection of the nonuniform rectangular cantilever 

beam with linearly varying height is analyzed. The beam is subjected to unit 

transverse load at the free edge of the beam. The geometry of the beam is shown in 

Figure 5.2 

 

 

 

 
 

Figure – 5.2 The geometry of nonuniform rectangular beam of example 5.2 

 

 

 

Material and cross-sectional properties are given below: 

 

206000
79231
0.3
0.833

E MPa
G MPa

k
ν

=
=
=
=
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Table 5.5 gives result for vertical deflection at the tip for present single element 

solution, Friedman and Kosmatka (15) single Timoshenko beam element solution 

and exact Euler beam solution. 

 

 

 

Table 5.5 – Tip deflection of nonuniform rectangular beam 
 

Exact Euler Beam (15) Timoshenko Beam (15) Present 
43.97 10 mm−⋅  44.07 10 mm−⋅  44.10 10 mm−⋅  

 

 

 

Figure 5.3 shows the deflection along the beam span of the example 5.2 for the 

present solution. 

 

 

 

Figure – 5.3 Deflection of the nonuniform cantilever beam along the span 
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5.3  Tip Deflection of Nonuniform Circular Beam 
 

The transverse tip deflection of the nonuniform circular cantilever beam with linearly 

varying diameter is analyzed. The beam is subjected to unit transverse load at the 

free edge of the beam. The geometry of the beam is shown in Figure 5.4 

 

 

 

 
 

Figure – 5.4 The geometry of nonuniform circular beam 

 

 

 

Material and cross-sectional properties are given below: 

 

206000
79231
0.3
0.9

E MPa
G MPa

k
ν

=
=
=
=
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Table 5.6 gives result for vertical deflection at the tip for present element solution, 

Friedman and Kosmatka (15) Timoshenko beam element solution and exact Euler 

beam solution. 

 

 

 

Table 5.6 – Tip deflection of nonuniform circular beam 
 

Exact Euler Beam (15) Timoshenko Beam (15) Present 
31.65 10 mm−⋅  31.68 10 mm−⋅  31.66 10 mm−⋅  

 

 

Present beam element solution is in good agreement with the Friedman and 

Kosmatka’s beam element solution. 
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5.4  Free Vibration of Nonuniform Rectangular Beam - Example 1 
 
In this analysis, natural frequencies for nonuniform rectangular Timoshenko beam 

are investigated. An example is solved to employ the element presented in the 

previous sections and results are compared with the results of Cleghorn & Tabarrok’s 

(19) Timoshenko beam element solution. Beam has constant width and linearly 

varying height with clamped - clamped boundary condition as shown in Figure 5.5. 

 
 
 

 
 

Figure – 5.5 Geometry and boundary conditions of nonuniform rectangular beam, 

free vibration example 1 

 

 
 
Material properties are given below: 

 

3

210000
80000
0.3
0.667
7825 /

E MPa
G MPa

k
kg m

ν

ρ

=
=
=
=

=
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Results are compared with the results of Cleghorn & Tabarrok (19) Timoshenko 

beam finite element solutions in Table 5.7. 

 

 

 

Table 5.7 – First natural modes (Hertz) of clamped-clamped nonuniform 
Timoshenko beam of rectangular cross-section 

 

Number of
elements 

Cleghorn&Tabarrok 
(Hertz) 

Present 
(Hertz) 

2 9385.6 7767.3 
3 9233.2 8233.4 
4 9197.2 8521.4 
5 9184.5 8680.1 
6 9178.8 8770.5 
7 9175.8 8824.7 
8 9170.4 8858.5 
9 9172.8 8880.1 

10 9172 8894.5 
11 9174.2 8904.3 
12 9171 8911.1 
13 9170.7 8915.9 

 

 

 

Present solution gives poor results for small number of elements but has fast 

convergence while increasing number of elements and has closed results with 

Cleghorn & Tabarrok for 13 element solution. Convergence performance of 

Cleghorn & Tabbarrok solution and present solution is plotted in Figure 5.6. 
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Figure – 5.6 Clamped – clamped nonuniform rectangular Timoshenko beam first 

mode as a function of number of elements 
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5.5  Free Vibration of Nonuniform Rectangular Beam - Example 2 
 

In this analysis, natural frequencies for nonuniform rectangular Timoshenko beam 

are investigated for different boundary conditions and taper ratios. Beam has 

constant width and linearly varying height. 

 
 
 

 
 
Figure – 5.7 Geometry of the nonuniform rectangular beam, free vibration example 2 

 

 

 

Material properties are given below: 

 

2 4

200000
76923
0.3
0.833
0.000007997 /

E MPa
G MPa

k
kg s cm

ν

ρ

=
=
=
=

= ⋅
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Results for different geometric parameters (α  and 0r ) are obtained with present six 

element solution and compared with Rossi & Laura’s (22) Timoshenko beam ten 

element solution. 

 

where; 

 

1

0

1H
H

α = −  and 0
0

0

Ir
A

=  

 

 

 

Table 5.8 – Nondimensional natural modes 20

0

A L
EI
ρ ω

⎛ ⎞
⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 of rectangular beam for 

different boundary conditions and geometric parameters 
 

 

 

 0 0.05r
L
=  0 0.1r

L
=  

 0.1α =  0.2α =  0.3α =  0.1α =  0.2α =  0.3α =  

 Present
Rossi 

& 
Laura 

Present 
Rossi

& 
Laura 

Present
Rossi

& 
Laura 

Present
Rossi

& 
Laura 

Present 
Rossi 

& 
Laura 

Present 
Rossi

& 
Laura 

C-F 3.295 3.396 3.259 3.361 3.225 3.330 3.082 3.184 3.041 3.145 3.005 3.109 
F-C 3.700 3.806 4.063 4.177 4.426 4.549 3.433 3.543 3.735 3.852 4.029 4.154 

SS-SS 9.542 9.829 9.928 10.228 10.294 10.610 8.416 8.683 8.680 8.954 8.923 9.205 
C-SS 13.715 14.232 14.045 14.587 14.350 14.920 10.866 11.245 11.001 11.387 11.119 11.511
SS-C 14.063 14.570 14.728 15.251 15.361 15.899 11.098 11.471 11.449 11.825 11.769 12.148
C-C 18.680 19.486 19.266 20.094 19.814 20.665 13.614 14.089 13.840 14.316 14.042 14.518
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Results of present Timoshenko beam element is in good agreement with Rosa and 

Laura’s Timoshenko beam element. 

 

Figure 5.8 shows convergence performance of present beam element for geometric 

parameters: 0 0.05r
L
= , 0.1α =  and boundary condition: clamped - free. 

 

 

 

 
 

Figure – 5.8 Cantilever nonuniform rectangular beam first mode as a function of 

number of elements 
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5.6  Buckling of Nonuniform Rectangular Beam - Example 1 
 
In this analysis critical buckling loads for nonuniform rectangular Timoshenko beam 

are examined for various boundary conditions. The results are compared with the 

results which are obtained from MSC/NASTRAN quad element solution. 

 

Beam has constant width and varying height as shown in Figure 5.9. 

 

 

 

 
 

Figure – 5.9 Geometry of nonuniform rectangular beam, buckling example 1 

 

 

 

Material properties are given below: 

 

210000
80000
0.3
0.833

E MPa
G MPa

k
ν

=
=
=
=
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Results of present 4 element solution are compared with the MSC/NASTRAN 30*10 

quad element solution in Table 5.9. 

 

 

 

 
 

Figure – 5.10 NASTRAN 30*10 quad element nonuniform beam model 

 

 

 

Table 5.9 –Critical buckling loads for nonuniform rectangular cross-section beam of 
example 1. 
 

BC Nastran 30*10 element 
solution (N) 

Present 4 element 
solution (N) 

Simply Supported-
Simply Supported 892.28 873.30 

Clamped- 
Free 272.44 264.26 

Clamped-Clamped 3578.30 3423.38 
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Results of present solution are in good agreement with the MSC NASTRAN 

solutions. 

 

Figure 5.11 shows the present element convergence for simply supported beam 

problem. From the figure it is clear that after four elements critical buckling load 

values converges to that of MSC/NASTRAN solution. 

 

 

 

 
 

Figure – 5.10 Simply Supported nonuniform rectangular beam buckling loads as a 

function of number of elements, buckling example 1. 
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5.7  Buckling of Nonuniform Rectangular Beam - Example 2 
 

In this example, critical buckling loads for nonuniform rectangular Timoshenko 

beam are examined for various boundary conditions. The results are compared with 

the results of Auciello & Ercolano’s (21) Timoshenko beam Rayleigh - Ritz solution. 

 
 
 

 
 

Figure – 5.11 Geometry of nonuniform rectangular beam, buckling example 2 

 

 

 

Material and geometric properties are given below: 

 

0

0

210000
80000
0.3
0.833

0.1

E MPa
G MPa

k

Ir
A

ν

=
=
=
=

= =
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Nondimensional critical buckling loads ( tP ) of present eight element solution are 

compared with Auciello & Ercolano’s Rayleigh - Ritz solution (21) for various 

boundary conditions and α  values. 

 

Where: 

 
2

0

cr
t

P LP
E I
⋅

=
⋅

 and ( )1 0/ 1H H
L

α
−

=  

 

 

 

Table 5.10 –Nondimensional critical buckling loads for nonuniform rectangular 
beam of example 2. 
 

 
  Simply Supported - 

Simplt Supported Clamped - Free Clamped - Clamped 

α  Present (N) 
Auciello & 
Ercolano 

(N) 
Present (N) 

Auciello & 
Ercolano 

(N) 
Present (N) 

Auciello & 
Ercolano 

(N) 
-0.4 3.7406 3.9245 1.4395 1.4653 9.7538 10.4961 
-0.2 5.3801 5.6787 1.8460 1.8839 13.1081 14.2016 
0.1 7.9816 8.5079 2.4321 2.4913 17.8001 19.3318 
0.2 8.8649 9.4822 2.6225 2.6898 19.2577 20.9015 
0.3 9.7500 10.4645 2.8114 2.8867 20.6514 22.3954 
0.4 10.6320 11.4504 2.9981 3.0823 21.9870 23.7648 
0.6 12.3752 13.4180 3.3676 3.4691 24.4468 26.2751 
0.8 14.0741 15.3584 3.7310 3.8529 26.6208 28.3972 
1.0 15.7123 17.2468 4.0894 4.2327 28.4333 30.1126 

 

 

 

Figure 5.12 shows present element convergence performance for simply supported 

beam with 1α = . 
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Figure – 5.12 Simply Supported nonuniform rectangular beam buckling loads as a 

function of number of elements, buckling example 2. 

 

 

 

Results of present solution are in good agreement with the Auciello & Ercolano’s 

solutions. From Table 5.9, it can be recognized that relative difference between two 

solutions can vary with the taper ratio α . 
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5.8  Buckling of Nonuniform Rectangular Beam - Example 3 
 

In this example, critical buckling loads for nonuniform rectangular Euler – Bernoulli 

beam are examined. 

 

Geometry and material properties are same as the one in the nonuniform rectangular 

beam, buckling example 2. 

 

The results of present eight element solution are compared with the results of Rosa & 

Franciosi’s (20) Euler beam exact solution in terms of Bessel functions. 

 

Comparison of nondimensional critical buckling loads ( tP ) of present 8 element 

solution with Rosa and Franciosi’s solution for clamped – simply supported 

boundary and different α  values are given in table 5.10. 

 

where 

 

1

0

1H
H

α = −  and 
2

0

cr
t

P LP
E I
⋅

=
⋅
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Table 5.11 –Nondimensional critical buckling loads for nonuniform rectangular 
beam of example 3. 
 

α  Present De Rosa & 
Franciosi 

-0.9 0.8842 0.8748 
-0.8 2.1135 2.1189 
-0.7 3.6149 3.6344 
-0.6 5.3499 5.3884 
-0.5 7.2986 7.3622 
-0.4 9.4460 9.5434 
-0.3 11.7823 11.923 
-0.2 14.3017 14.494 
-0.1 16.9960 17.252 
0.1 22.8868 23.308 
0.2 26.0717 26.6 
0.3 29.4169 30.063 
0.4 32.9113 33.697 
0.5 36.5573 37.498 
0.6 40.3509 41.465 
0.7 44.2859 45.596 
0.8 48.3602 49.889 
0.9 52.5722 54.343 

 

 

 

Figure 5.12 shows present element convergence performance for clamped – simply 

supported beam with 0.8α = . 
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Figure – 5.13 Clamped - Free nonuniform rectangular beam buckling loads as a 

function of number of elements, buckling example 3. 
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5.9  Free Vibration of Nonuniform Thin Walled Circular Beam 
 

In this analysis, natural frequencies for nonuniform circular thin walled cantilever 

Timoshenko beam are investigated for taper ratios, 0.6 0.8andβ = . 

 

where, 

 

1

0

D
D

β =  

 

 

 

 
 

Figure – 5.14 Geometry of nonuniform thin walled circular beam 

 

 

 

Material and geometric properties are given below: 

 
3200000 76923 0.3 0.5 7825 kg/mE MPa G MPa kν ρ= = = = =  
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Results with present six element Timoshenko beam solution are compared with To’s 

(17) ten element Timoshenko beam solution in Table 12. 

 

Table 5.12 – Nondimensional natural modes 20

0

A L
EI
ρ ω

⎛ ⎞
⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 of cantilever thin 

walled circular beam. 
 

 Present (6 element) To (10 element) 
0.6β =  3.6713 3.6819 
0.8β =  3.5297 3.5511 

 

 

Result of present six element solution is in good agreement with To’s ten element 

solution. Figure 5.15 shows the convergence performance of present element. 

 

 
 

Figure – 5.15 Cantilever nonuniform thin walled circular beam natural modes as a 

function of number of elements. 
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5.10  Free Vibration of Nonuniform I - Beam 
 
In this analysis, natural frequency of nonuniform cantilever I-section Euler – 

Bernoulli beam is analyzed. Beam has constant width, thickness and varying height 

as shown in Figure 5.12.Result is compared with the Karabalis and Beskos (13) Euler 

– Bernoulli beam finite element solution. 

 
 
 

 
 

Figure – 5.16 Geometry and boundary conditions of nonuniform I beam, free 

vibration problem 

 

 

 

Material properties are given below: 

 

2 4

1.00
0.3
1.00 sec /

E psi

lb in
ν

ρ

=
=

= ⋅
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Results obtained by present 20 element yields 1 0.0257w Hertz=  . 

 

Karabalis and Beskos 15 element solution gives 1 0.0262w Hertz= . 

 

Present element result is in good agreement with the Karabalis and Beskos’s result. 

 

Figure 5.17 shows the present element convergence performance for the free 

vibration of Euler – Bernoulli I beam problem. 

 

 

 

 
 

Figure – 5.17 Cantilever nonuniform I beam natural modes as a function of number 

of elements. 

Necessity of high number of elements to convergence is originated from the use of 

approximate functions in order to express the variation of the cross-sectional 

properties. 
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5.11  Buckling of Nonuniform I - Beam 
 
Nonuniform cantilever Euler – Bernoulli I beam problem in Figure 5.18 is solved for 

critical buckling load. Result is compared with the Karabalis and Beskos (13) Euler – 

Bernoulli beam finite element solution. 

 
 
 

 
 

Figure – 5.18 Geometry and boundary conditions of nonuniform I beam, buckling 

problem 

 

 

 

Material properties are given below: 

 

206850
80000

0.3

E MPa
G MPa
ν

=
=
=
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Results obtained by present 20 element yields 243.25crP kN=  . 

 

Karabalis and Beskos (13) 5 element solution (13) gives 241.08crP kN= . 

 

Present element result is in good agreement with the Karabalis and Beskos’s result. 

 

The convergence performance of present element is given in Figure 5.19. 

 

 

 

 
 

Figure – 5.14 Cantilever nonuniform I beam buckling loads as a function of number 

of elements. 
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CHAPTER 6 
 
 

SUMMARY DISCUSSION & CONCLUSION 
 

 

 

This thesis aims to formulate a hybrid finite element for nonuniform Timoshenko 

beams. For the stability and free vibration analysis, mass and geometric stiffness 

matrices are also developed. 

 

In the beginning of the study kinematics of deformations are investigated and the 

displacements are determined in terms of kinematic terms with respect to centroidal 

axis. 

 

Shear deformations are taken into account via Timoshenko beam theory. Since the 

study does not concentrated on warping, torsional and distortional warping effects 

are omitted. 

 

The stress resultants are assumed, so as to satisfy homogeneous equilibrium 

equations. Boundary tractions are derived in terms of matrix stress resultant 

coefficients in the matrix form. Then the stiffness matrix is derived from the hybrid 

stress formulation. 

 

Mass and geometric stiffness matrices are obtained by a new approach which uses 

the exact displacements through out the beam element. Instead of using assumed 

displacement fields as in the most of the formulations in the literature, the 

displacements are obtained directly from homogeneous equations and kinematic  
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relations. By the use of this method, the mass and geometric stiffness matrices are 

obtained consistently. 

 

Utilization of exact displacement fields results in better element convergence in 

stability and dynamic problems. 

 

Formulation of consistent mass and geometric stiffness matrices is a difficult task 

since the exact displacement functions shall be composed of very complex 

expressions which includes the variation of cross sectional properties as well as 

Timoshenko beam constitutive relations. 

 

Derivation of the displacements can be carried out by the help of symbolic 

manipulation tools (i.e. Mapple 9.5). Even a symbolic manipulation tool may not be 

sufficient for the beams with complex cross sections such as I beam or thin walled 

cylinder. In these cases, an approximate representation of the cross sectional 

properties shall be used, (18). However this method affects the convergence 

performance of the element depending on how accurate the cross sectional properties 

are represented with respect to the exact variation of the cross sectional properties. 

 

A finite element solver is prepared using Fortran Power Station to solve the 

formulation. In this thesis, Gauss elimination method is used with skyline storage 

technique. Dynamic and stability problems are handled by linear eigenvalue solution 

with an inverse iteration algorithm. 

 

Present element is assessed by various static, dynamic and stability problems and the 

results are in good agreement with the results in the literature. 
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