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ABSTRACT 

 

 

SIMULTANEOUS LOCALIZATON AND MAPPING FOR A 

MOBILE ROBOT OPERATING IN OUTDOOR ENVIRONMENTS 

 

Sezginalp, Emre 

 M.S., Department of Mechanical Engineering 

 Supervisor      : Assist. Prof. Dr. İlhan Konukseven 

 Co-Supervisor: Assist. Prof. Dr. Buğra Koku 

 

December 2007, 75 pages 
 

In this thesis, a method to the solution of autonomous navigation problem of a robot 

working in an outdoor application is sought. The robot will operate in unknown 

terrain where there is no a priori map present, and the robot must localize itself while 

simultaneously mapping the environment. This is known as Simultaneous 

Localization and Mapping (SLAM) problem in the literature. The SLAM problem is 

attempted to be solved by using the correlation between range data acquired at 

different poses of the robot. A robot operating outdoors will traverse unstructured 

terrain, therefore for localization, pitch, yaw and roll angles must also be taken into 

account along with the (x,y,z) coordinates of the robot. The Iterative Closest Points 

(ICP) algorithm is used to find this transformation between different poses of the 

robot and find its location. In order to collect the range data, a system composing of a 

laser range finder and an angular positioning system is used. During localization and 

mapping, odometry data is fused with range data. 

 

Keywords: Robot Localization, 3D Mapping, Map Registration 
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ÖZ 

 

DIŞ ORTAMLARDA ÇALIŞAN BİR HAREKETLİ ROBOTUN EŞ 

ZAMANLI KONUMLANDIRMA VE HARİTALAMASI 

 

Sezginalp, Emre 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi          : Yrd. Doç. Dr. İlhan Konukseven 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Buğra Koku 

 

Aralık 2007, 75 Sayfa 

 
Bu tezde, dış ortamda çalışan bir robotun eş zamanlı konumlandırma ve haritalama 

problemine bir çözüm yöntemi aranmaktadır. Robot önceden bilinmeyen, haritası 

verilmemiş bir ortamda çalışacağından, konumlandırma sırasında etrafın haritasını da 

oluşturması gerekmektedir. Bu problem, literatüre Eş Zamanlı Konumlandırma ve 

Haritalama (EZKH) problemi olarak geçmiştir. EZKH problemi, robotun değişik 

konumlarda aldığı uzaklık verileri arasındaki bağlantı kullanılarak çözülmektedir. 

Robot, engebeli bir arazide ilerleyecektir. Bu nedenle konumlandırma için (x,y,z) 

koordinatlarının yanında,  yunuslama, dönme ve yuvarlanma açılarının da hesaba 

katılması gerekir. Robotun değişik konumlar arasındaki hareketini hesaplamak ve 

robotu konumlandırmak için “Döngülü En Yakın Noktalar” (DEYN) algoritması 

kullanılmaktadır. Uzaklık verisini toplamak için bir adet lazer mesafe tarayıcı ve bir 

adet açısal konumlandırma sisteminden oluşan veri toplama sistemi kullanılmaktadır. 

Konumlandırma ve haritalama işlemleri yapılırken, odometre verisi mesafe verisi ile 

birleştirilmektedir.  

 

Anahtar kelimeler: Robot konumlandırma, 3 Boyutlu Haritalama, Harita Hizalama 
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CHAPTER 1 

 

INTRODUCTION 

 

 

In recent years, there has been a significant amount of  progress in mobile robot 

technologies, due to the vast amount of resources devoted to this area. This effort is 

not in vein, since mobile robots can be used in a wide variety of applications like 

planetary exploration, military applications, surveillance, explosive material disposal, 

search and rescue, hazardous material disposal, etc. 

 

The most important goal of robotic community is making robots fully autonomous, 

so that no human intervention is needed for the robots to accomplish their tasks. For 

this goal to be reached, the navigation of the mobile robot must be fully autonomous, 

with no need for an a priori map of its environment or direction commands from an 

operator. In the past years, autonomous navigation problems for the applications in 

human made, indoor environments are mostly solved. However, these solutions are 

mostly not applicable to outdoor applications. In this dissertation, a solution method 

to the autonomous navigation problem in outdoor is searched. 

 

1.1 Scope of the Thesis 
 

This thesis is devoted to the solution of the problem of simultaneous localization and 

mapping for a mobile robot, in a previously unknown, unstructured environment. 

This is achieved by using range information of the environment, collected by a 

LIDAR system. The thesis can be partitioned into three main steps. First step is the 
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design of a 3D data collection system. Second is relatively localizing the robot by 

using correlation between two consecutive range data taken from the environment. 

The last is the building of a 3D map of the environment by using the outputs of the 

previous step. 

 

1.2 Outline of the Thesis 
 

The structure of the thesis can be presented as follows: 

 

In Chapter 2, a survey of work previously done in mapping and localization of 

mobile robots is presented. 

 

The system designed for collecting 3D range data from the environment is presented 

in Chapter 3. The specifications and the operating principle of the system are given. 

  

Chapter 4 presents the point matching algorithm used for finding the relative motion 

between different robot poses. A brief survey of  point matching algorithms is 

presented first. Then, the applied algorithm is presented along with the filters 

developed for filtering the raw range data. 

 

Chapter 5 gives the details of robot localization by presenting some results  and 

illustrations. 

 

Chapter 6 presents the algorithm used for diffusing the error between registrations to 

the global map. First, previous work in the literature is presented, then the algorithm 

used is given, along with some results. 

 

Finally, Chapter 7 summarizes the current work and discusses the work done, along 

with the possible future work 
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CHAPTER 2 
 

LITERATURE SURVEY 

 

 
A mobile robot needs successful localization and a good representation of its 

environment to accomplish its mission. Knowledge of pose, and the locations of 

other places of interest in the environment are the basic foundations on which all 

high level navigation operations are built [1]. This knowledge enables path planning 

for various tasks such as goal reaching, region coverage, exploration and obstacle 

avoidance, and enables the robot to follow these planned paths. 

 

2.1 Localization  
 

Among many localization techniques, dead-reckoning is the lowest cost, most 

primitive and the most used form of localization technique applied in mobile robot 

navigation. The idea behind dead-reckoning is integration of the motion information 

over time, therefore, achieving a relative position estimation due to the starting 

position of the robot. The sources of this motion information are encoders and 

inertial navigation systems (INS). Encoders give the relative motion by counting the 

number of turns of the robot wheels, while INS’s measure the angular accelerations 

in the three principle axis and robot pose is found by integrating these values twice. 

The main problem with the odometry is error accumulation. Because of the 

integration process, there is an accumulating error and this error becomes so large in 

time that the position data becomes useless for localization. There are systematic 

(unequal wheel diameters, wrong estimation of system parameters like wheel-base or 

wheel-diameters, finite encoder resolution) and non-systematic errors (travelling on 
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uneven terrain or unexpected objects, wheel slippage) associated with the encoder 

data. The systematic errors accumulate constantly and can be overcome by using 

different techniques such as [2], [53]. However, operating in unstructured terrain, 

mobile robot applications in outdoor dominantly suffer from non-systematic errors. 

The problem with the INS is the same, since a small error in measuring the 

acceleration can easily cause an unboundedly growing position error in time, because 

of the integration process. Because of these error sources, dead-reckoning cannot be 

used as  the only source for localization. Despite all these limitations, researchers 

agree that odometry is an important part of the mobile robot navigation, and is used 

in most of the robots, due to the following facts stated in [2]: 

 

• Odometry data can be fused with absolute position measurements to provide 

better and more reliable position estimation. 

• Odometry can be used in between absolute position updates with landmarks. 

Given a required positioning accuracy, increased accuracy in odometry 

allows for less frequent absolute position updates. As a result, fewer 

landmarks are needed for a given travel distance. 

• Many mapping and landmark matching algorithms assume that robot can 

maintain its position well enough to allow the robot to look for landmarks in 

a limited area and to match features in that limited area to achieve short 

processing time and to improve matching correctness. 

• In some cases, odometry is the only navigation information available; for 

example; when no external reference is available, when circumstances 

preclude the placing or selection of landmarks in the environment, or when 

another sensor subsystem fails to provide usable data. 

 

The localization technique alternative to dead-reckoning (Relative Localization) is 

Absolute Localization. Localization by using active beacons, natural landmarks, GPS 

are examples of absolute localization.   

 

Among these instruments, using active beacons are more suitable for indoor 

localization, where the environment can be engineered and beacons can be placed in 



 5

most efficient locations. This technique can be used in industrial and office 

applications, however for localization in outdoor it is not useful. One of the main 

reasons is the need for placing beacons in the environment, which cannot always be 

performed in outdoor environments. A second reason is that the beacons must always 

be “seen” by the robot, however, this is not always possible due to the highly 

unstructured characteristics of the typical outdoor environment. For an extended 

survey on active beacons, one may be referred to [2]. 

 

Using Global Positioning System (GPS), is an absolute localization  technique based 

on trilateration. The 24 satellites around earth, in groups of four, each group orbiting 

on planes inclined 55° with respect to earth’s equator [2]. Knowing the distance 

between the GPS receiver and three of the satellites enables calculating the latitude, 

altitude and longitude of the GPS receiver. GPS can be useful in some cases to solve 

the localization problem, but generally one is more interested in relative locations. 

For instance, knowing the relative position to a big rock or a hole is more important 

than knowing the exact latitude and longitude of the robot. There are some other 

problems associated with GPS positioning, like time synchronization between the 

satellites and the receiver and sufficient signal-to-noise ratio in the presence of an 

interference or possible jamming. Moreover, satellite signal may not be available in 

some applications like mine exploration applications [3], or in urban applications [4].  

 

Landmark navigation is another localization technique used in literature. Artificial 

landmarks and natural landmarks are the two types of landmarks being used for 

landmark navigation. Artificial landmarks are easily detectable objects placed on 

certain positions in the environment. They suffer from the same problem with the 

active beacons that the environment that the robot will navigate through, must be 

prepared for navigation beforehand. Bearing in mind that the environment cannot 

always be prepared prior to mission, and the GPS data may not always be available, 

one may think of using the natural characteristics of the environment. For indoor 

navigation, structured objects like windows or door frames can be used as landmarks. 

However, in outdoor, extracting structured landmarks is a rather tedious task [5]. As 

opposed to natural landmarks in indoor environments, the ones in outdoor may not 
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be composed of definitive geometric primitives [6]. For navigation with absolute 

positioning by using natural landmarks, the robot must have a representation of the 

environment and the positions of the landmarks. However, this a priori knowledge of 

the environment may not be always present. 

 

For a mobile robot to navigate in unknown, unstructured environments, a map must 

be incrementally constructed, and localization must be made simultaneously while 

constructing the map. This problem is known as Simultaneous Localization and 

Mapping (SLAM) problem. The previous work on SLAM in the literature will be 

presented in Section 2.3. First, literature on the mapping methods will be reviewed. 

 

2.2 Mapping 
 

For successful navigation and efficient path planning, mobile robots need some kind 

of a representation of their working environment, that is, a map. A brief summary of 

mapping methods will be presented here. An extensive survey on robotic mapping 

techniques was conducted by Thrun and presented in [7]. 

 

Two paradigms on robotic mapping exist: Topological Models and Geometrical 

Models. Among these models, geometrical models give metric information like (x, y, 

z) coordinates of the objects, or distances of the objects to the robot, while 

topological models give connectivity information. Topological maps are 

representation of the world similar to that of the humans use when giving directions 

(e.g. “turn first left and go straight until you see a building”). On the contrary, 

distance metrics are used in geometrical models (giving an analogous example to the 

example above; go 100m straight, turn 90° ccw, go 200m straight). However, the 

difference between topological maps and geometrical maps are somewhat blur, since 

almost all topological representations also make use of some metric information [7]. 

 

Using occupancy grids is an example of geometric mapping, where the environment 

is decomposed into grids, each grid, in probabilistic manner, indicating a presence of 

an obstacle. In reasonably small environments, as an a priori map, occupancy grids 
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are an effective localization method. Occupancy grids offer an explicit representation 

of both the free space and the occupied space, which is useful for path planning. The 

most significant difficulty with occupancy grids when used as a priori maps in large 

environments, is the tradeoff between grid resolution and computational complexity. 

The grid size must be small enough for capturing every important detail in the 

environment. However, for feasible computation, larger grid size is necessary [1]. 

 

Another geometric map representation technique is, representing the environment by 

the global locations of distinguishable parametric features, like points, lines or 

circles. This map representation is called feature map. Localization is performed by 

extracting features from sensed data and associating these data to the features in the 

map. Unlike occupancy grids, feature maps form a sparse representation of the 

landmarks only [1]. Free space is not represented and does not take place in any of 

the localization process. Hence, feature maps do not facilitate path-planning or 

obstacle avoidance. These processes must be performed as separate operations. 

Another problem of feature maps is that they are suitable only to environments where 

the observed objects can be represented by geometric primitives. However, mostly, 

this is not the case in unstructured outdoor environments. 

 

Topological maps consist of nodes and edges, and contain connectivity information. 

Nodes in the maps define way-points and the graph edges define procedural 

information for travelling between nodes. Topological maps are very useful as a 

priori references, since they have compact representation and logical organization for 

path planning. Main weakness of the topological maps is the place recognition. If the 

place is not recognized, or it is mistaken with another position, the graph is broken 

and the robot gets lost [1]. Another disadvantage of topological maps is that using 

purely qualitative trajectory information can work in indoor environments (like wall 

following [8],[9],[10]) but it is insufficient for highly unstructured environments. 

Moreover, robots using topological maps must use the way-points for navigation. 

This means constraining the robot to trajectories formed by the topological graph. 

This is not desirable for most of the cases. Table 2.1 gives a comparison of two 

mapping paradigms. 
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For using advantages of both mapping techniques, a hybrid approach was introduced 

in [11] and [12]. Topological maps are generated on top of the grid based maps, by 

partitioning the latter into coherent regions. This approach gains the best of both 

worlds: accuracy/consistency and efficiency [12]. 

 

 
Table 2.1: Advantages and disadvantages of the two mapping paradigms [7]. 
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2.3 SIMULTANEOUS LOCALIZATION AND MAPPING  

 

Mapping the environment when true pose of the robot is always known, and 

conversely, finding the coordinates and the orientation of the robot, given the a priori 

map of the environment, are solved problems in the robotic community. However, 

what makes a mobile robot truly autonomous, is the ability to localize itself and form 

a map of the environment, with unknown location in an unknown environment. This 

ability can be achieved by solving the well known “Simultaneous Localization and 

Mapping” (SLAM) problem (also known as Concurrent Mapping and Localization 

(CML) problem). The word “simultaneous” reflects the fact that the robot needs a 

map for localization, and for a map, the robot’s true pose must be known. Thus, these 

two tasks must be handled in a simultaneous manner. The solution of the SLAM 

problem would eliminate the need for artificial infrastructures for navigation, along 

with the need for a priori map knowledge [13]. 

 

2.3.1 SLAM Algorithms 
 

The SLAM problem has been approached and solved in different forms. Three main 

different philosophies trying to solve the SLAM problem include; probabilistic 

approaches, qualitative approaches and numerical approaches. 

 

Probabilistic methods model the world such that the robot has probabilistic motion 

and the positions of the landmarks in the environment has uncertainties associated 

with them. By integrating these two distributions, and using a Bayes filter (a Kalman 

filter or a particle filter), the robot is localized. Mapping is considered as an 

extension to the localization process. The most popular approach in this category is 

the Kalman-filter (KF) approach due to the fact that it provides a recursive solution 

to the navigation problem, and using statistical models, it enables computing of 

consistent estimates of the uncertainties in both the robot pose and the landmark 

locations. In [13], existence of the solution to the SLAM problem by using an 

Extended Kalman Filter is proved, and an implementation of the algorithm is 
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presented. The KF solution [14], involves a recursive update procedure that 

comprises prediction, observation, and update steps. Statistical models are used in 

this procedure to estimate the uncertainty in the robot and landmark locations, along 

with their intercorrelations. Although these models enable a thorough investigation 

into various SLAM properties, such as the convergence to a solution and the 

evolution of positional uncertainties, they are also the source of practical 

vulnerabilities. These vulnerabilities emerge from the fact that the statistical models 

are based on several underlying assumptions, which are not valid for every case [7]. 

Moreover, KF approach tries to solve the problem in state space, with states being 

the position of the robot and the positions of the features in the environment. 

However, as the robot moves through the environment and observes new landmarks, 

the size of the state vector grows as the number of landmarks increases, and this 

increases the computation  time and complexity. An alternative to Kalman Filtering 

is the Expectation Maximization algorithms. Thrun et.al [15] approach the SLAM 

problem as a constrained, probabilistic maximum likelihood estimation problem. 

With this approach, they can map large-scale cyclic environments with size up to 

80m by 25m. Expectation maximization (EM) algorithms have been found to 

generate consistent maps of large-cyclic environments, even in the presence of 

similar features [7]. However, EM algorithms cannot build a map incrementally since 

they have to process the data multiple times. The particle filtering method [16] is 

another important alternative to the Extended Kalman Filter. In particle filtering, 

continuous distributions are approximated by discrete random measures, which are 

composed of weighted particles, where the particles are samples of the unknown 

states from the state space, and the particle weights are “probability masses” 

computed by using Bayes theory. The basic Monte-Carlo Localization algorithm 

[16], [17], [18] is an example that applies particle filtering to maintain robot pose 

estimates. Compared with Kalman filter, particle filters have the advantage of being 

able to represent multi-modal distributions (that is, the robot may be in more than 

one place at a time). Given a sufficiently large particle set, the particle filter will 

always converge to the correct robot pose [27]. However, particle filtering methods 

for the solution of SLAM problems work well in flat and structured 2D environments 
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but an extension to the third dimension is missing since the algorithm do not scale 

with additional dimensions [40]. 

 

Qualitative methods do not need absolute pose estimates as probabilistic methods do. 

Notable work using qualitative approaches include [8],[9]. In these works, instead of 

using pose estimates, the relational knowledge of the relative position of the robot 

and the landmarks is used. 

 

Implementing SLAM in 3D is more difficult than implementation in 2D. In 3D 

navigation, the problem involves added complexity due to added degrees of freedom 

added to the robot motion model, and more importantly; greatly increased sensing 

and feature modeling complexity. This complexity arises from the absence of the 

manmade structured  landmarks in most of the outdoor environments, where 3D 

SLAM is needed. Moreover, for SLAM in large, unbounded areas, the state vector 

unboundedly grows due to newly discovered landmarks, which makes using KF 

technique nearly impossible to use. One technique used by [19] and [20] is to use 2D 

SLAM with additional mapping capabilities in the third dimension. However, this 

restricts the robot motion to one plane. Another approach is direct extension of the 

2D SLAM solution to 3D, however, for this technique, identifiable landmarks must 

be extracted from sensor data, which is not always possible in unstructured 

environments. A third technique is, acquiring a 3D scan of the environment at each 

pose of the robot, and aligning the pose estimates by correlating these scans. The 

previous work in 3D mapping will be presented in the following section. 

 

2.3.2 SLAM in 3D 
 

Thrun et al. [19] used two 2D laser range finders for acquiring data and building 3D 

maps of indoor environments. One laser scanner is mounted horizontally and one is 

mounted vertically. The vertically mounted laser scanner grabs a vertical scan line. 

This scan line is then transformed into 3D points using the current robot pose. Their 

approach combines ideas form incremental mapping (such as maximum likelihood 

and incremental map construction) with ideas of non-incremental approaches like 
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Markov Localization. However, their map building and localization algorithm apply 

only to indoor (or planar terrain) environments. 

 

Another work on 3D scanning and mapping for SLAM of mobile robots is by 

Nüchter et al [21]. Since outdoor terrain is generally challenging by having uneven 

ground and unstructured, irregular shapes in the surrounding, this work takes all 6 

degrees of freedom into account (x, y, z positions and the roll, pitch, yaw angles) 

while dealing with the SLAM problem. To test their algorithms, Nüchter et. al use 

the Kurt3D mobile robot platform, which is equipped with a 3D scanner constructed 

by using a 2D commercial laser scanner [21], [22], [23].  

 

Brenneke, Wulf and Wagner also use  3D range data for the solution of the SLAM 

problem in outdoor terrain. Their work is original in the sense that they use 3D data 

for obstacle detection purposes and create a 2D occupancy map of the environment 

from the 3D data for the motion planning purposes [24]. The 2D map is called the 

“leveled range scan”. After acquiring the 3D point cloud, points are categorized as 

“overhang points”, ”obstacle points” and “floor points” by the obstacle detection 

algorithm. Overhang points are the points which are not directly connected to the 

ground, therefore not forming an obstacle for the robot. The obstacle points are used 

to form the 2D “leveled scan” so that an occupancy map in a plane is formed. The 

floor points are used to generate the traversable terrain in the map. Obstacle points 

are also used as natural landmarks for matching the different scans. Since Wulf et al. 

scan the environment in a continuous fashion, (i.e. not in a stop-scan-go fashion, like 

Nüchter et. al [25])  good synchronization between odometry, scanner and INS must 

be provided. Wulf et. al address a solution to this problem in [26]. 

 

Another work using laser scanners for 6D SLAM is by Howard, Wolf and Sukhatme 

[27]. They use two fixed 2D scanners mounted on a Segway RMP robot. One of the 

sensors is mounted horizontally, and one of them is mounted vertically, like the 

sensor configuration used in the work of Thrun et. al [19]. The work uses the sensors 

for mapping of urban environments. Other than the laser range finders, the robot uses 

GPS and IMU sensors. Their “fine localization” algorithm  uses only the data from 
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the laser scanners and the IMU. Further correction on a global scale on the pose 

estimate is done by using the data from GPS sensors and using Monte-Carlo 

Localization. Since the point cloud map formed after these processes is memory 

inefficient (a lot of space is used to store the data), a  planar segmentation algorithm 

is used [28]. 

 

Pfaff and Burgard use 2 ½  dimensional elevation maps to represent the environment. 

Elevation maps are problematic due to the fact that overhang points are represented 

as obstacles in elevation maps. However, their algorithm classifies overhang points 

and overcome this problem [29]. They also use an ICP algorithm to match the 

consecutive scans. In [30], Burgard, Hahnel and Schulz represent a solution for 

filtering out the moving obstacles (e.g. humans) from the 3D map. 

 

In [31], large scale, high resolution terrain models are formed by using range images 

obtained from one ground-based and one aerial sensor. Although this work 

concentrates on map building applications, the algorithm applies to localization as 

well. Localization may be achieved by computing the relative motion between the 

registered scans taken from different locations. This work does not use initial 

estimates of the pose changes as an initial approximation of the transform between 

two consecutive range image scans. Instead, a feature-based concept “spin-images” 

[32] is used. Despite being a feature-based registration algorithm, the algorithm does 

not need extraction of explicit features in the environment, as it relies on local shape 

signatures over the entire sensed surface. 

 

The study presented in this dissertation tries to solve the SLAM problem in outdoor 

by using a method very similar to Nüchter’s [21] method. The system designed for 

data collection and the method followed are presented in the following chapters. 
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CHAPTER 3 

 

THE SENSORY SYSTEM 

 

 

In the current study, the SLAM will be done mainly by using 3D terrain data. The 

data is collected by a system composing of a laser range finder and an angular 

positioning system (Figures 3.3 and 3.4). In the following sections, some of the 

specifications of the sensory system will be presented. 

 

3.1 Laser Range Finder 
 

For collecting range data from the environment, an off-the-shelf product, SICK 

LMS-291-S05 [33] is used. 

 

3.1.1 Operating Principle 
 

The LMS-291 operate according to the time-of-flight principle. A light pulse emitted 

for a defined length of time is reflected off a target object and it is received back via 

the some path along which it was sent (Figure 3.1). A counter starts as soon as the 

light pulse is transmitted and stops when the signal is received back [34]. Using the 

counter value, the distance is calculated (The time between the transmission and 

reception of the signal is directly proportional to the distance between the object and 

the sensor). The basic operating principle for the system is initial pulse evaluation. 

That is, the first return pulse triggers the distance measurement, and the remaining 
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pulses on the path are ignored. This eliminates spurious data coming from 

reflections. The emitted pulse is diverted by a rotating mirror in the scanner. Since 

the time-of-flight measurement runs at the speed of light, the rotation of the mirror 

for an individual pulse measurement is not relevant [33]. 

 

 

 
Figure 3.1 Time of flight principle for range measurement.[34] 

 

 

3.1.2 Technical Specifications 
 

The laser range finder needs 24V DC with a maximum power consumption of 20W. 

The power is provided by using a serial connection of two 12V-7AH Lead-Acid 

batteries in the current system. 

 

The scanned area of the scanner can be selected as 100° /180°, however, for the 

current application, a maximum scanning angle is needed to detect as many features 

of the environment as possible, so 180° option is used during the data collection. 

There are two possibilities for the linear resolution of the scanner: 1 cm and 1 mm. 

Using the 1 mm distance resolution, the scanner can measure distances up to 8m, and 
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with the 1 cm resolution, the scanner can measure distances up to 80m. For enabling 

the robot to map wider areas, 1 cm resolution is the appropriate choice. The angular 

resolution options of the scanner are 0.25°, 0.50° and 1°. However, for using 0.25° 

resolution, a high-speed data transfer card is needed. To capture more features in a 

scan, the highest resolution available without using the high-speed data transfer card, 

that is 0.50° angular resolution, is used.  

 

The LMS-291 can transfer data at transmission rates of 9600, 19200, 38400 and 

500000 Bd. For the latter one, a high-speed data transfer card is needed. For other 

specifications of the scanner, like systematic error, measurement accuracy, etc., one 

may referred to [33] and [34]. 

 

For the current work, 1cm linear resolution, 0.50° angular resolution and the highest 

data transmission rate achievable without the high-speed data transmission card, 

38400Bd is used. With 500KBd transmission rate, data from one turn of the sensor 

mirror is received in 13ms. However, for 0.50° angular resolution, two turns of the 

mirror is needed. Using 38400Bd data transmission rate, the time needed to get the 

361 distance values from one scan becomes approximately 339ms. 

 

3.2 Angular Positioning System 
 

The LMS-291 collects distance data from only the plane perpendicular to the rotation 

axis of its rotating mirror. However, for capturing the important features of uneven 

outdoor terrain, planer range data is not sufficient.  For the robot to collect 3D data 

from the environment, an angular positioning system is designed. 
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Figure 3.2 The scanner collects planar range data. To capture 3D features from the environment, 
scanner is given a pitching motion. 

 

 

The SICK LMS-291 range finder collects range data with a 180° field of vision, 

restricted to a plane. Figure 3.2 (Left) shows a representation of the top view of the 

scanning process, while the square represents the range finder and all laser beams 

shown lie on the x-y plane in the figure. In order to collect 3D range data, the LMS is 

given a pitching motion, so that the orientation of the plane of data collection is 

changed (Figure 3.2, Right). The pitching motion is achieved by using a Maxon 

RE35 DC motor &  Maxon GP32C planetary gearhead assembly. The gear ratio for 

the gearhead is 1526:1. For measuring the angular position of the motor, a Maxon 

MR digital encoder is attached to the assembly. The resolution of the encoder is 512 

counts per turn. This high resolution of the encoder (2048qc per revolution), 

combined with the high gear ratio, allows the system to control the change of the 

angular position by minute angular differences. The motor has 48V nominal input 

voltage, however 24V input is used during the experiments due to battery weight 

considerations. The position control is achieved by using Maxon MIP50-E 

positioning controller. The batteries to supply power to the motor and the controller 

are two serially connected 12V-7AH Lead-Acid batteries. For communication 

between data collection software on the PC side and the controller, a transmission 

rate of 57600Bd is used. 
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Figure 3.3 The assembly for the angular positioning system.  

 

 

 

Figure 3.4 The data collection system 

 

 

The vertical scanning angle for the resulting system is 80°. This is achieved by 

incrementing the motor position 100 times by intervals of 0.8°. Thus, we get a 3D 
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view of 180° (horizontal)x 80° (vertical) representing the environment of the robot. 

As explained in the previous section, one planar scan is received in approximately 

339ms. Thus, a complete 3D scan consisting of 101 such scan planes is collected in 

approximately 34s. 
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CHAPTER 4 

 

RANGE IMAGE REGISTRATION 

 

 

In order to localize the robot and map form a 3D map of the environment, the 

correlation between consecutive scans will be used. This technique, also used in [3], 

[31], [19], [23] is based on the idea of Besl [35], Zhang [36] and Chen and Mendioni 

[37]. 

 

4.1 Iterative Closest Point Algorithm 
 

The solution to the optimization problem involving registration of 3D free form 

shapes was independently addressed by Chen and Mendioni [37] in 1991, Besl and 

McKay [35] in 1992 and Zhang [36] in 1994. having some differences in their 

algorithms, they all used a similar idea for registration. The idea is simple: Given that 

the motion between two successive frames (for the purpose of this thesis, scans) is 

“small”, the geometric feature (surface, curve or point) representing the shape on the 

first scan is close to the one belonging to the second scan. So, assuming that the 

closest features (from here on the word “points” will be used instead of “features”) 

correspond to each other, these points are matched. After the matching process, the 

motion that brings the two scans closer is computed by using one of the methods 

discussed in [38]. A fine transformation is obtained by iteratively applying this 

procedure to corresponding scan pairs.  
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Despite the fact that they use the same idea, the three works concentrating on this 

problem has some differences. For example, Chen’s work finds the minimum 

distance between the point on the data set and the tangent planes on the model set. 

This value is then used for the point matching step. However, in Besl’s work, point-

to-point distance is used, whereas in Zhang’s work, two constraints are used for point 

matching. The first of these constraints is point-to-point distance, and the second one 

is the angles between tangent directions. Moreover, Besl uses all the points (or 

features) in the data and model set , whereas Zhang applies a statistical elimination 

process for the points to be matched. This makes Zhang’s method more robust, since 

Besl assumes that data set is a subset of the model set. 

 

What ICP algorithm does is to find the optimum transformation ( , )R t  such that the 

following cost function is minimized [35], [36]: 

 

 

2

,
1 1

( , ) (( ) )
QP NN

i j i j
i j

E R t R p t qω
= =

= ⋅ + −∑∑                        (4.1.1) 

 

 

Where ip  is a point on the data set, jq  is a point on the model set and , 1i jω =  if  ip  

and jq  are corresponding points and , 0i jω =  if they are not. The transformation 

( , )R t , consisting of the rotation matrix R  and the translation t , is the rigid 

transformation that transforms representation of the data set P (consisting of PN  

points) into model set Q (consisting of QN  points). An overview of the procedure 

that the ICP algorithm follows is as follows: 

 

1. Compute the closest points on the model set those correspond to that of the 

data set. 

2. Compute the registration, i.e., compute the transformation ( , )R t  (a thorough 

discussion on the most common methods used in computing this 

transformation by using the matching points can be found in [38]).  



 22

3. Apply the registration to the data set. 

4. Repeat the steps above until the termination condition occurs. 

 

The last step is applied in different ways in the different works mentioned above. 

Besl uses a threshold for the least squares error, ( , )E R t  and terminates the iteration 

when the error falls below this preset threshold. Zhang uses the change in the motion 

estimate between two successive iterations. The proof of convergence of the ICP 

algorithm to a minimum can be found in [35]. 

 

4.2 Current Study 
 

In this thesis, an approach very similar to Zhang’s approach [36] will be used while 

matching two consecutive scans. As stated in Chapter 3, each 3D scan consists of 

101 planar scans consisting of 361 data points taken at different angles to the 

horizontal plane. The matching process can be done by matching the whole 3D point 

data set or by extracting a horizontal plane of fixed height from both scans and 

matching these two horizontal planes and then applying the registration to whole 3D 

point set [3]. The latter one can be useful if the robot moves on a planar path, since it 

decreases the computational cost. However, it cannot be applied to a robot moving in 

non-planar terrain. Moreover, using the whole 3D data set has the advantage of 

reflecting a larger set of attributes [3]. The following sections present the procedure 

used for scan registration. 

 

4.2.1  The Scan Matching Algorithm  
 

The algorithm used can be summarized as follows: 

 

1. A preprocessing step is applied to the two consecutive scans (Filtering, data 

reducing, computing the normals at each data point). 

2. A kD-tree structure of the second scan for fast nearest-neighbor searching is 

formed. 
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3. The initial transformation guess coming from the odometry data is applied to 

all the points in the first scan. 

4. For sampled data points in the first scan, the corresponding point in the 

second scan is found. 

5. Corresponding point pairs are updated according to the statistical approach 

given in [36]. 

6. A rigid transformation is obtained by using the corresponding point pair set 

obtained in the previous step. 

7. The rigid transformation found in step 6 is applied to all the points in the first 

scan. 

8. Steps 3 to 7 are repeated until the change in error ( , )E R t  between 

consecutive iteration steps is below the preset threshold. 

 

4.2.2 Preprocessing of the Data 
 

Since the scans will contain some erroneous points, using all the points in 

consecutive 3D scans in their raw form for the matching process would result in 

erroneous registration of the scans.  

 

 

 
Figure 4.1 The “edge strike” [34] 
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The erroneous points may occur due to three reasons. The first reason is simply 

Gaussian noise due to the sensor characteristics. The second one is the “salt and 

pepper” noise, which can occur when the laser spot hits just the edge of an obstacle 

(Figure 4.1) . When an edge strike occurs, the measured distance using the beam 

falling on the edge is a combination of the foreground object and the background 

object, i.e. the range measurement falls in between the background and foreground 

objects [39]. An example is shown in Figure 4.2. 

 

The third erroneous data source is that when an area is scanned, if there is no 

obstacle within the range of the scanner for a certain area, the data collection 

program gives the information that there is an object at distance 81.89m at the 

corresponding point. These spurious points must be also eliminated before 

proceeding to scan matching.  

 

 

 

Figure 4.2 The spurious points a1 and a2 occur due to the edge strike [39]  
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In this study, the “salt and pepper” noise is eliminated by using a simple median 

filter. For lowering the Gaussian noise, a point reduction algorithm presented in [3] is 

used. After filtering the outlier points and reducing the data, the spurious points at 

81.89m distance to the origin of the scan are deleted from the point cloud. 

 

4.2.2.1 Median Filter 
 

Each scan must be smoothed by getting rid of the outlier points. This is done by 

using a simple median filter,  very similar to the filter used in [3] and [40]. In these 

studies mentioned, the median filter uses the fact that data from the scanner outputs 

the measured points consecutively, that is, first data point is taken at 0°, the second is 

at 0.5°, and so on. The median filter takes a planar scan, and removes a point if and 

only if the difference between distance of the point to the origin and the median 

value of distances of surrounding points is larger than some threshold. The 

surrounding points are found by using their place within the scan. The value of the 

distance of the removed point is changed with the median of its 7 surrounding points 

[3]. The effect of the filter can be observed in Figures 4.3 , 4.4 and 4.5 
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Figure 4.3 The “salt and pepper” noise. Noisy points are marked with black circles. 

 

 

The marked big arc remaining on the top side of Figure 4.4 is composed of points 

with maximum value (d=81.89m) returned from the sensor. This indicates that there 

are no obstacles ahead. These points can be deleted after point reducing. Connecting 

the dots and representing both scans in the same graph may give a better idea of the 

benefit of the median filter (Figure 4.5). 
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Figure 4.4 The erroneous points in Figure 4.3 are filtered. 

 

 

 

Figure 4.5 The difference between the scan filtered by the method in [3] and unfiltered scan. 
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In this study, instead of using the distance values of neighboring points in a planar 

scan like Thrun et al. [3], neighboring points in adjacent planar scans are also used 

while applying the median filter. Taking distance measurements coming from the 

scanner as a 101 x 361 dot matrix, a 3x3 window is moved around the matrix and the 

center point of the window is filtered by using the median of the distance values in 

this 3x3 window. That is, if the center point’s distance value is larger than the 

median of the distances in the window by a fixed threshold, the distance value of the 

center point is changed with the median value. 

 

Using filtered data obtained by using the method in [3] resulted in more erroneous 

results during pairwise scan registration than the above mentioned method . This is 

due to the fact that using only neighbors in the planar scans during median filtering 

resulted in some false-positives, and the method of moving a 3x3 window around the 

dot matrix of distances resulted better rejection of the outlier points most of the time. 

 

The data in Figure 4.6 was obtained in the METU Mechanical Engineering parking 

area. Figure 4.6 represents a full scan acquired at a single point, with gray scale 

values representing the depth values where pure white pixels represents data at 

distance d>80m and pure black pixels represent data at d=0m. The threshold for the 

median filter was set as 2m. That is, if the difference of the distance of the point in 

question and the median of the distances in its eight-neighborhood is more than 2m, 

the value of the distance of the point is changed and set to the median value. One can 

see that outliers in the marked area in Figure 4.6 are smoothed better if points in the 

adjacent planar scans are also used. The data in Figure 4.7 was taken after a straight 

ahead movement of approximately 8m. Formation of the false positives when a 

median filter is applied to planar scans separately is observed in the right side of the 

figure. 
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Figure 4.6 Top: Raw Data, Middle: The current filter is applied Bottom: Filter in [3] is applied. 
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Figure 4.7 Top: Raw data, Middle: The current filter is applied, Bottom: Filter in [3] is applied 
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4.2.2.2 Calculation of Normals 
 
During registration step, for each sampled point in the data scan, the corresponding 

points in the model scan are searched. The two correspondence criteria are the 

distance between possible point mates and the angle between the normals of the 

surfaces that the candidate points belong. These normals are calculated exploiting the 

fact that the data is in the form of a 101 x 361 dot matrix. Each point in Figure 4.8 

represents the location of a data point in the dot matrix. The locations of points in the 

4-neighborhood of the point in question are used to set the normal of the surface at 

that point (Figure 4.8). The normal is approximated as a unit vector in the direction 

of cross products of vectors formed by using the neighboring points in the vertical 

and horizontal directions.  

 

 

 
Figure 4. 8 Calculation of the normals   

 

 

Let ,i jx  be the point of interest and ,i jn  be the normal of the surface at ,i jx . The 

index i is an integer between 1 and 101 indicating to which planar scan the point 
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belongs to, and the index j is an integer between 1 and 361 indicating the place of the 

point in i’th planar scan. Then, the unit vector ,i jn is calculated as follows: 

 

, 1, 1, , 1 , 1 1, 1, , 1 , 1(( ) ( )) / ( ) ( )i j i j i j i j i j i j i j i j i jn x x x x x x x x− + − + − + − += − × − − × −         (4.2.1) 

 

Despite the fact that this vector does not reflect the true normal of the surface, it is a 

good approximation to be used in the search for the correspondence. Figure 4.9 

presents an example of the normals calculated in a sample 3D scan. It is observed 

that in surfaces of man-made structures like buildings, normals point in the same 

direction, which indicates that calculation conducted is a good approximation of the 

normals. During the matching trials, it is found out that using these normals as 

matching criteria always gave better results than a registration process solely 

depending on closest point matching. 
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4.2.2.3 Point Reduction 
 

Based on the idea in [3], a point reduction procedure is followed after filtering out 

the pepper and salt noise. According to [3], reducing points which are close to each 

other to one point decreases the Gaussian noise. The algorithm works as follows: 

Starting from the first point in a scan slice, the distance between the data point and its 

neighbor is calculated. If they are closer than a certain threshold, the two data points 

are replaced by their midpoint. The threshold is selected as 0.5m, empirically. 

Therefore, there is at least 0.5m distance between each point in a scan slice (a planar 

scan). 

 

This procedure is applied to all the points in a scan. This reducing procedure reduces 

the number of points in a scan, without the loss of features (Figure 4.10). Since there 

are less points in the final point cloud, this reducing procedure also reduces the 

computation time needed for scan matching. 

  

After the points are reduced according to the distance to their neighbors, finally, the 

points having the distance 81.89m to the origin are deleted from the scan cloud, 

since, as mentioned before, this distance value means that there are no corresponding 

objects in the scanning range (Figure 4.10). Not deleting these points causes false 

pairwise registration of two consecutive scans.  

 

A scan slice consists of 361 distance values before and after the median filter is 

applied. In Figure 4.10, it is observed that although the reduced scan has 124 data 

points, the shape of the scan is preserved. Using this ability to present the same shape 

with less points, a great deal of computational time is gained during point matching. 

The overall effect of the point-reducer on the 3D point cloud can be observed in 

Figures 4.11 and 4.12. 
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Figure 4.10 Despite reducing the number of points, the general structure of the scan is preserved. 

 

 

 
Figure 4.11  3D point cloud collected from car park of Mechanical Engineering, G building. Median 

filter is applied, but points are not reduced and the point cloud has 36461 data points. 
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Figure 4.12 The same point data in Figure 4.11 is reduced. With much fewer points (8439), the same 

structures are represented. 

 

 

4.2.3 Search for Nearest Neighbors 
 

The most time-consuming, computationally expensive step of ICP algorithm is 

finding the corresponding points between the points of the data set and the model set 

[35], [36], [37], [41]. Although the point number is reduced in the preprocessing 

step, there is still a need for a fast search algorithm, instead of brute-force searching, 

which is computationally very costly. In brute-force searching, a corresponding point 

for each sampled point in the data set is found by comparing their distance to every 

point in the model set. This results in a computational complexity in the order 

( )D MO N N , where DN  is the number of sampled points from the data set and MN  is 

the number of points in the model set. 

 

In this study, the well-known kD-tree structure, which was first introduced in [42], is 

used for closest point searching. The kD-tree is a data structure formed by splitting 

the search space by planes orthogonal to each of the coordinate axes. The splitting 

planes are originated from nodes of the structure, which are, in fact, data points in the 

search space. The splitting is continued until each bucket contains 10 or less points. 

The bucket size of 10 is the most efficient size for the kD-Tree search, as [3] 

suggests. An example of a kD-tree formed in 3D space is presented in Figure 4.13.  
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Figure 4.13 An example of an 3 dimensional kD-tree. First, the cube is split by the red plane at the 
root node. Second, corresponding left-child and the right-child are split into two volumes by the green 
planes. Third, all the corresponding children are split by blue planes. This process goes on until no 
splitting node is available(that is the bucket size is 1). [43] 

 

 

Before starting the ICP iteration, a kD-tree structure for the model set is formed. The 

pseudo code for forming the kD-tree is given in Figure 4.14. The idea behind 

splitting the search space into regions is simple:  if the splitting coordinate value of 

the point at hand is greater than the splitting coordinate value of the node at the 

splitting axis, there is no need to search the points in the other side of the splitting 

axis (or vice versa). The search algorithm is adapted from [52] and the pseudo-code 

is given in Figure 4.15. For the details of this algorithm, one may refer to [52]. 
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Figure 4.14 Pseudo-code for constructing the kD-tree 

 

 

 
 

 

Figure 4.15 Pseudo-code for nearest-neighbor search algorithm. 

Function  node kDTree (pointList, depth) 

 

if pointList.Size<maxBucketSize 

 node is leaf 

return 

else 

axis=depth mod space-dimension 

sort pointList according to (axis)-coordinate values 

selectedpoint=select midpoint from sorted list 

node.axis=axis  //the splitting axis 

node.location=selectedpoint(x,y,z) 

node.leftchild=kDTree(points in pointList |  point(axis)<node.location(axis)) 

node.rightchild=kDTree(points in pointList |  point(axis)=>node.location(axis)) 

end 

global  nndist=infinity 
global neighbor=searchtree.rootnode.location 
 
Function  (neighbor,nndist)= searchNN(searchtree, point, nndist, neighbor) 
 
if (searchtree is not leaf) 

value=searchtree.location(searchtree.axis) 
pointx=point(searchtree.axis) 
if pointx<value 
 (neighbor,nndist)=searchNN(searchtree.leftchild ,point ,nndist ,neighbor) 
 if (pointx+nndist>value) 
  (neighbor,nndist)=searchNN(searchtree.rightchild ,point ,nndist ,neighbor)  
 end 
else 
 (neighbor,nndist)=searchNN(searchtree.rightchild,point,nndist,neighbor) 
 if (pointx-nndist<val) 
  (neighbor,nndist)=searchNN(searchtree.leftchild,point,nndist,neighbor) 
 end 
end 

else 
 foreach (point x in node) 
  dist=distance(x , point) 
  if (dist<nndist) 
   nndist=dist 
   neighbor=x 
   val=searchtree.location(searchtree.axis) 
  end 
 end 
end 
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4.2.4 Point Matching 
 

In order to compute the transformation between two successive 3D point-clouds 

returned by the sensory system, one must find the matching points between two point 

clouds. This matching procedure is the heart of the ICP algorithm, and there are 

many different techniques in the literature, each using different constraints, for 

finding matching pairs. Among these are the point-to-point distance [35], [36], 

normal-shooting [37], comparing angles between tangents or normals [36], 

comparing colors [44] or intensity values [45] of the data points. 

 

In this study point-to-point distance and the angle between normals of surfaces at 

matching points are used as constraints. Calculation of these normals is explained in 

Section 4.2.2.2. 

 

During point matching, a corresponding point in the model set is found for each 

“sampled point” in the data set. These corresponding points are found by using the 

kD-tree of the model set. First, from the kD-tree structure of the model set, the 

bucket which includes the closest point to the query point in the data set is found. 

Then, for each point in this bucket, the distance to the query point, and the angles 

between the normals at these points are calculated. Among these points in the model 

set, the candidate with the best normal is selected as the matching point to the query 

point. By “best normal” it is understood that the angle between normals of matching 

points is less than those of all the other candidates. It can be easily shown that the 

angle between normals at the matching points must not exceed the angle between 

axes of two successive frames. So, let M
ix  be the i’th point in the model set and D

jx  

be the j’th point in the data set. Then, these points are “corresponding points” only if 

the following conditions are satisfied: 

 

• M
ix  lies in the same bucket of the kD-tee with the closest point to D

jx  
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• max
D M
j ix x− < Δ  , where maxΔ  is the predefined maximum allowed distance 

between corresponding points. For selection of the parameter  maxΔ , one may 

refer to [36]. 

• The angle between M
in  and D

jn  is less than the angle between the axes of the 

two frames and it is less than those of all the other candidates in the bucket.  

 

After a set of matching point pairs are formed using the above constraints, this set is 

updated by comparing the average distance between matching pairs with a preset 

threshold. For details of this analysis, one may refer to [36]. 

 

While searching for correspondences, not all the points in the data set are used. In 

order to speed up the iteration process, a sample set of points are selected from the 

data set. The methods of selection of the points are discussed in [41]. Among these 

methods are using all available points [35], uniform sampling [46], random sampling 

[47], sampling according to distribution of normals [41]. In the current study, 

uniform sampling strategy is used.  

 

4.2.5 Computing the Motion 
 

Using the updated matching pair set, one may find the motion bringing two 

successive point sets closer. There are four known efficient methods to compute this 

motion, each of which is the solution of the optimization problem trying to find the 

rigid transformation that minimizes the cost function in (4.1.1). These four methods 

are using Singular Value Decomposition (SVD) [48] , using Orthonormal 

Matrices(OM) [49], using Unit Quaternions (UQ) [50], using Dual Quaternions 

(DQ) [51] . 

 

A good quantitative comparison of these four methods is presented by Lorusso et. al 

in [38]. It is stated in Lorusso’s work that in terms of accuracy, there is not a 

significant difference between using each of these methods. In terms of stability, 

SVD and UQ methods are stated to be more stable. It is concluded in Lorusso’s work 
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that SVD algorithm provides the best overall accuracy and stability, whereas it may 

not be as efficient as DQ for large data sets. 

 

Although the ICP algorithm used in this work is mostly based on Zhang’s [36] 

approach, which uses DQ while computing the motion, SVD approach will be used 

in this thesis. The following parts of this section explains the SVD method, proposed 

by Arun, Huang and Blostein [48]. 

 

Let ( , )D M
i ip p  be  corresponding point pairs, where (1, 2,....., )i n=  with n  being the 

number of corresponding point pairs, D
ip  is a point described in a coordinate frame 

before motion, and M
ip  is the corresponding point to D

ip , described in a coordinate 

frame after motion. 

 

The centroids of the correspondent points in their own frame are: 
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Centering corresponding points in a common coordinate frame: 

 
D D D
i ip p p= −%                               (4.2.4)  

M M M
i ip p p= −%                                   (4.2.5) 

 

The singular value decomposition of the cross-correlation matrix of the centered data 

is defined as: 
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Then, the rotation matrix representing the motion between the point pairs is 

estimated as : 

 

1 0 0
0 1 0
0 0 det( )

T

T

R V U
V U

⎡ ⎤
⎢ ⎥= ⋅ ⋅⎢ ⎥
⎢ ⎥⋅⎣ ⎦

   (4.2.7) 

 

Finally, by using this rotation matrix, the translation between the scans can be 

estimated as: 

 
D Mt p R p= − ⋅      (4.2.8) 

 

This transformation ( , )R t  is applied to all the points in the data set. This brings the 

two point clouds “closer”. Then, if the error defined in (4.1.1) is still above a 

predefined value the iteration continues until the terminating condition occurs.  

 

The iteration process for finding the motion between two robot poses is presented in 

this chapter. For an overview of the algorithm, see the flowchart presented in Figure 

4.18. A result of  a registration process is also shown in Figure 4.16 and Figure 4.17. 

Different colors in these figures represent data acquired from two different poses of 

the experimental setup. The graphical engine developed by Yarkınoğlu [54] is used 

to visualize the 3D data. 
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Figure 4.16 Two 3D scans, represented in the same coordinate frame before registration 

 

 

 

Figure 4.17 The 3D scans in Figure 4.13 are registered by using the ICP algorithm. 
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Figure 4.18 Flowchart for the registration process 
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CHAPTER 5 

 

ROBOT LOCALIZATION 

 

 
The 3D scans acquired at different positions of the robot are used to form the map of 

the environment. This is done by merging the scans into a global coordinate system. 

If the robot were precisely localized, this registration could be done by directly 

applying robot motion to the scans. However, due to the imprecise robot sensors, self 

localization is erroneous, so the geometric structure of overlapping 3D scans has to 

be considered for registration [23]. The details of this registration process were given 

in the previous chapter. This scan registration process not only results in forming a 

map of the environment, but the results of the registration process is also used for 

localizing the robot relative to the starting position. 

 

5.1 Calculation of the Robot Pose 

 
After the registration of two 3D point clouds, a transformation matrix , 1i iH + , 

representing the Affine Transformation transforming the points in the (i+1)th scan 

into the coordinates of i’th scan, is obtained. , 1i iH +  is given in equation (5.1.1), where 

, 1i iR +  is the 3 x 3 rotation matrix representing the rotation between i’th and (i+1)th 

coordinate frames, and , 1i it +  is the 3 x 1 translation matrix representing the translation 

between these two frames. 

 

, 1 , 1
, 1 0 0 0 1

i i i i
i i

R t
H + +

+

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

     (5.1.1) 
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For each scan pair, there is one such transformation matrix obtained. The poses of 

the robot can be obtained by using these transformation matrices. Let starting 

position of the robot be 0 (0,0,0)r =  and the unit normal vector representing the 

heading of the robot be 0 (0,1,0)h = . The relations between consecutive frames are 

represented in Figure 5.1. The robot poses can be calculated as: 

 
0

1 1 0,1 1r r H o= = ⋅      (5.1.2) 

1
2 1,2 2r H o= ⋅       (5.1.3) 

Then; 

 
0 1

2 2 0,1 2 0,1 1,2 2r r H r H H o= = ⋅ = ⋅ ⋅   (5.1.4) 

 

Where io  represent the origin of the i’th frame. That is, (0,0,0)io = . Then, i’th 

position of the robot is calculated as; 

 

0,1 1,2 2,3 1,............i i i ir H H H H o−= ⋅ ⋅ ⋅ ⋅ ⋅   (5.1.5) 

 

The heading of the robot at each pose can be calculated as; 

 
0 1

1 0,1 1h R h= ⋅       (5.1.6) 

1 2
2 1,2 2h R h= ⋅       (5.1.7) 
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Figure 5.1 Finding the relative motion between consecutive robot poses. 

 

 

0 1 2
2 0,1 2 0,1 1,2 2h R h R R h= ⋅ = ⋅ ⋅     (5.1.8) 

0
0,1 1,2 1,................. i

i i i ih R R R h−= ⋅ ⋅ ⋅   (5.1.9) 

 

Where j
ih  is the heading of the robot at i’th position, represented in the j’th 

coordinate frame, and 0 1 2
0 1 2 ........ (0,1,0)i

ih h h h= = = = = . 

 

 

5.2 Results 
 

 

While the experiments for testing the localization procedure were conducted, a real 

robot was not present, so the experiments were made by moving the range finder on 

a table to various positions and collecting range data. Because of the lack of the 



 48

robot, instead of using encoders, a tape measure was used to measure position 

changes between different poses of the scanner.  

 

During the localization process, the starting position is always taken as 0 (0,0,0)r =  

and the heading vector at starting position is always taken as 0 (0,1,0)h = . The 

measurements taken while conducting the first experiment is given in Table 5.1. The 

values under heading columns represent the x, y and z components of the unit vector 

in the heading direction of the robot.  

  

 

Table 5.1 Measurements obtained in the first experiment 

 
 

Position 
X 

Position 
Y 

Position 
Z 

Heading 
X 

Heading 
Y 

Heading 
Z 

0 0 0 0 0 1 0 
1 0 0 0 -0.707 0.707 0 
2 0 4 0 0 1 0 
3 0 6 0 0 1 0 
4 0 6 0 0.707 0.707 0 

 

 

The poses presented in Table 5.1 were obtained by using a tape measure, and these 

values are used as the odometry input to the registration process. Figure 5.2 presents 

the path followed while taking the data for this first experiment.  

 

Obviously, since poor measuring was performed during the collection of the data, the 

path and heading vectors presented in Figure 5.2 do not represent the true values. 

The values obtained from the outputs of the pairwise registrations for these 5 poses 

are given in Table 5.2 and Figure 5.3. 
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Figure 5.2 The measured path  in the first experiment. The red lines denote the path followed, black 
dots denote the poses where 3D data is acquired and the arrows are the heading angles. 

 

 

Table 5.2. Poses and headings calculated by using point cloud registration for the 

experiment given in Table 5.1 

Data # 
Position 
X 

Position 
Y 

Position 
Z 

Heading 
X 

Heading 
Y 

Heading 
Z 

0 0 0 0 0 1 0 

1 -0.15 -0.07 0 0.603065 0.796474 0.044066 

2 0.34 3.67 -0.14 0.018828 0.999814 0.004127 

3 0.48 6.05 -0.16 0.011945 0.999929 0.000166 

4 0.96 5.94 -0.22 0.668880 0.743350 0.005261 
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Figure 5.3 Localization obtained after using the outputs of the pairwise matchings. 

 

 

One may compare the reliability of these two pose data by comparing the maps 

formed by using robot poses in each localization data. Figure 5.4 presents the top 

view of the map formed if 3D scans were registered on one each other by only using 

the odometry data. In Figure 5.4, different colors represent range data acquired at 

different poses. One can easily observe that the map is inconsistent and not usable. 

The satellite image of the experiment area is given in Figure 5.5. 

 

For comparison purposes, the top view of the map formed by using range image 

registration is given in Figure 5.6. As observed in the figure, the map is consistent 

and represents the characteristics of the environment. 
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Figure 5.4 The map formed by using solely odometry data. 

 

 

It must be noted that even after the pairwise registration processes are finished and 

robot poses are found relative to the starting position, there will be small errors 

associated with the resulting map, and hence the robot localization. This errors rise 

from the fact that each pairwise registration’s precision is  limited, and the error 

accumulates when all the scans are registered one after another. The solution to this 

problem is using multi-view registration and will be discussed in Chapter 6. 
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Figure 5.5 The satellite image of the area that the range data is collected. Red arrow denotes the 

starting position for Experiment 1. 
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Figure 5. 6 Map formed by pairwise registration. 
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CHAPTER 6 

 

MULTIVIEW REGISTRATION 

 

 
After the pair-wise registrations are completed, all scans must be represented in a 

global coordinate frame in order to form the consistent digital map of the 

environment that the robot navigates through.  

 

6.1 Multiview Registration Algorithms 
 
 
One method to form the global map is directly using the outputs of the pair-wise 

registrations and directly connecting them one after another, since the 

transformations between consecutive scans are known. However, as stated in the 

previous chapter, there will still be some errors in the map formed and in the robot 

localization. These errors are due to the fact that not all pair-wise registrations are 

perfect. These errors accumulate and may lead to inconsistent maps when number of 

the scans increase. A similar approach to this technique was proposed by Chen and 

Mendioni [37],  for object modeling, where after each pair-wise registration step, 

registered data is merged into one “metascan”, which is a point cloud composed of 

all the previously registered scans and new data is registered on this metascan each 

time. These two methods are called “Sequential Registration” in the literature and 

they both suffer from error accumulation [3],[55]. 

 

The alternative to sequential registration is “Simultaneous Registration” (also known 

as “Global Registration” or “Multiview Registration”), which uses the fact that new 

data may have overlaps with the previously registered data end these overlaps may 
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be used to minimize the errors arouse during pair-wise registration. In [55], Nishino 

and Ikeuchi use an extension of the pair-wise ICP algorithm to handle multiple range 

images simultaneously. A data set is defined as the particular range image in interest 

and scene is defined as the one of the remaining range images in the range image set. 

Point correspondence search is performed between the data set and the scene. After 

finding point mates for all of the range images and calculating the corresponding 

transformations, all the transformations are applied simultaneously to corresponding 

range images. A similar approach was developed by Pulli [56]. The important 

difference of Pulli’s algorithm is, range images are added one at a time to a set of 

views, in order not to get stuck in a local minimum due to unfavorable initial 

configuration. That is, not all views are used for point correspondence search unlike 

[55]. An approach very similar to [56] was used for global map forming and 

localization in [3], [23] and [25]. In [57] genetic algorithms were used for object 

modeling by using multi view registration. A method of obtaining connectivity 

graphs between views was proposed by Matabosch et. al. [58] to use image 

registration for building object models. By using the connectivity graph, and 

assigning the registration errors obtained between range images as the costs of the 

graph, optimal registration is searched by using Dijkstra’s shortest path algorithm. Lu 

and Milios [59] form a network of relations between range scans and apply a 

procedure based on maximum likelihood to combine these relations and localize the 

robot in a planar environment. In [60], a network of views is constructed and the 

view with most links to other views is called the central view. This central view is 

not allowed to transform through the global registration. Then, to diffuse registration 

errors, each non-central view is registered onto the central view. 

 

6.2 Current Study 
 

In this study, an algorithm very similar to the approach followed in [56] is used for 

reducing the global error associated with the global 3D map of the environment. The 

difference is that in the current study, the first scan is always fixed and does not 

change its position during the registration process. This is due to the fact that the first 

scan sets the coordinate frame of the global map. 
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The reason for choosing Pulli’s method for global registration is that instead of using 

all neighboring views to correct a view’s position, the algorithm uses an active set 

into which a new neighboring scan is added after each position upgrade, instead of 

using all the scans for at once for global registration. This avoids the algorithm to be 

stuck in a local minimum of the error function and give wrong registrations, unlike 

other simultaneous matching algorithms do. 

 

The algorithm for global registration, adapted from [56], is presented in Figure 6.1 

and is applied as follows: After the pairwise registration step, scans are added to a 

static set. Then, neighboring scans for each scan in the set are calculated. Two scans 

are neighbors if they have more than 500 corresponding points. The point 

correspondences at this stage are calculated  by using only the distance constraint. 

Points in different scans are stated to be correspondents if the distance between them 

is equal to or less than 0.5m. After this stage, the scan with most links (i.e. with the 

most neighboring scans) is removed from the static set and added to the active set. 

Then views in static set which have the most links into the active set are removed 

from the static set and added to the active set one at a time. The names active and 

static arise from the fact that registration process only uses the scans in the active set. 

At each addition of a scan to the active set, a queue is initialized with this new scan, 

and the ICP algorithm is used to align this scan with a model point cloud consisting 

of its neighboring scans in the active set. After this aligning step, if the current scan 

changes its position more than an expectable threshold, its neighbors in the active set 

are added to the end of the queue. 

 

The function mostNeighbors in Figure 6.1 finds the scan from the first set which 

has the most number of neighbors in the second set. The function FindNeighbors 

returns the neighboring scans of the current scan in the active set. 

 
 



 57

 
Figure 6.1 Pseudocode for global registration algorithm. 

 

 

After the “active” neighbors to the current scan are found, they form a model set and 

the kD-Tree structure for this model set is formed before ICP iteration. The ICP 

iteration aligns the current scan with the model set formed by using its neighbors in 

the active set. The rotation and translation components of the motion of the current 

scan after this alignment is returned from the ICP function. If the size of one of these 

changes exceeds a predefined threshold, the current scan’s neighbors in the active set 

  
 Add all views to staticSet 

  

 foreach scan s in staticSet 

  findNeighbors(s, (staticSet-s)) 

 end 

 

 Current= mostNeighbors(staticSet,staticSet) 

 activeSet.Add(Current) 

 staticSet.Remove(Current) 

 

 while(staticSet.Count>0) 

  current= mostNeighbors (staticSet, activeSet) 

  activeSet.Add(current) 

  staticSet.Remove(current) 

  queue.Enqueue(current) 

  while(queue.count>0) 

   current=queue.Dequeue() 

   neigbors=FindNeighbors(current,activeSet) 

   build_kDtree(neighbors) 

   (anglechange,distancechange)=ICP(current,neighbors) 

   if (anglechange>thresA || distancechange>thresD) 

    foreach scan s in neighbors 

     if (s is not already in queue) 

      queue.Enqueue(s) 

    end 

   end 

  end 

 end  
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are added to the end of the queue if they are not already in the queue. Thresholds are 

defined as thresA=0.5° around the rotation axis and thresD=0.5m along the translation 

direction of the alignment. Notice that the kD-tree structure must be built all over 

again each time, since the scans are subject to transformations in each step of the 

inner while loop. 

 

6.3 Results 

 

In order to test the global registration algorithm, another experiment was conducted. 

In this experiment, 3D range data were acquired at 14 different poses. The satellite 

image of the test site is given in Figure 6.8. In order to compare the mapping and 

localization success after global registration, visual inspection is conducted between 

the maps formed after pair-wise registration and global registration. Figure 6.2 

presents the map formed by using only the measurement data in Table 6.1.  

 

 
Table 6.1 Measured position changes in Exp.2 

Data# Position X Position Y Position Z Heading X Heading Y Heading Z 
0 0 0 0 0 1 0 
1 1.4 2.8 0 0.7071 0.7071 0 
2 2.8 2.8 0 0.7071 0.7071 0 
3 4.2 4.2 0 1 0 0 
4 4.2 4.2 0 0.7071 0.7071 0 
5 7 7 0 0.7071 0.7071 0 
6 9.9 9.9 0 0.7071 0.7071 0 
7 11 11 0 0.7071 0.7071 0 
8 14 14 0 0.7071 0.7071 0 
9 15.5 15.5 0 0 1 0 
10 15.5 15.5 0 1 0 0 
11 15.5 15.5 0 0.7071 0.7071 0 
12 18.4 18.4 0 0.7071 0.7071 0 
13 18.4 18.4 0 1 0 0 
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Figure 6.2 Top view of the 3D map formed by only using the odometry data for experiment 2. 

 

 

As expected, using only odometry data is not sufficient for building a consistent map. 

The map presented in Figure 6.2 is inconsistent and do not represent the true 

characteristics of the environment. The estimated path by using odometry 

measurements is given in Figure 6.3. Figures 6.4 and 6.5 present the maps formed by 

using pairwise registration alone and multiview registration. Different colors in these 

figures represent data taken from different poses. 
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Figure 6.3 Robot poses estimated by the odometry data (Table 6.1) 

 

 

 

Figure 6.4 Left: Top view of the map formed after pairwise registration. Right: Top view of the map 
formed after global registration 
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Despite there seems no significant difference between top views of maps formed 

after pairwise and multiview registrations, observing Figure 6.5, one may understand 

the improvement in the map after global registration. The red mark in the left figure 

encloses a street lamp. It is observed that a deformed shape occurs after pairwise 

registrations. Using multiview registration corrects this error (Figure 6.5, Left). More 

importantly, as marked by blue in Figure 6.5, there are elevation errors between data 

taken at different poses. A map which does not represent true characteristics of the 

terrain and shows discontinuous elevation jumps is formed. Figure 6.5 (Right) shows 

that multiview registration solved this problem.  

 

Robot localization by using only outputs of pairwise registrations is presented in 

Table 6.2 and Figure 6.6. Table 6.3 along with Figure 6.7 presents the poses obtained 

after using multiview registration. 

 

 
Table 6.2 Robot poses obtained after pairwise registrations 

Data# 
Position 

X 
Position 

Y 
Position 

Z 
Heading 

X 
Heading 

Y 
Heading 

Z 
0 0 0 0 0 1 0 
1 1.35 1.25 -0.07 0.642 0.7663 -0.0259 
2 2.45 2.48 -0.24 0.6298 0.7754 -0.0454 
3 4.27 3.87 -0.53 0.9842 0.1769 -0.0066 
4 4.04 4.24 -0.54 0.6208 0.7827 -0.0441 
5 6.33 6.91 -0.78 0.5983 0.801 0.0225 
6 8.97 9.53 -0.68 0.6375 0.7704 0.0018 
7 10.44 11.18 -0.53 0.6335 0.7738 0.0009 
8 12.78 13.72 -1.30 0.6425 0.766 0.0237 
9 13.80 16.07 -1.58 -0.0033 0.9941 -0.1088 
10 14.28 15.57 -1.29 0.9913 0.1256 -0.0381 
11 14.18 15.46 -1.20 0.6256 0.7801 0.0104 
12 16.92 18.49 -1.68 0.6135 0.7836 -0.0978 
13 16.57 18.68 -1.75 0.0675 0.9931 -0.096 
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Figure 6.6 The path calculated after the pairwise registrations 

. 

 
Table 6.3 Calculated poses after multiview registration step 

Data# 
Position 

X 
Position 

Y 
Position 

Z 
Heading 

X 
Heading 

Y 
Heading 

Z 
0 0 0 0 0 1 0 
1 1.37 1.40 -0.16 0.6438 0.7648 -0.0223 
2 2.64 2.73 -0.27 0.6235 0.7817 -0.0141 
3 4.39 4.20 -0.33 0.9834 0.1811 0.009 
4 4.07 4.52 -0.39 0.6213 0.7834 -0.0139 
5 6.34 7.20 -0.51 0.5941 0.8025 0.0555 
6 8.95 10.07 -0.78 0.6411 0.7658 0.0504 
7 10.12 11.40 -0.85 0.6243 0.78 0.0432 
8 12.57 14.56 -1.15 0.6341 0.7712 0.0564 
9 13.50 16.82 -1.36 -0.0242 0.9987 -0.0449 
10 13.98 16.22 -1.19 0.9889 0.1439 -0.0373 
11 13.77 16.24 -1.28 0.6168 0.7854 0.052 
12 16.50 19.33 -1.54 0.6009 0.7978 -0.05 
13 16.25 19.25 -1.53 0.0402 0.9986 -0.0342 
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Figure 6.7 The path calculated after multiview registration. 

 

 

While conducting the experiment and taking distance measurements between 

different poses, the terrain was assumed to be flat. However, as it can be seen in 

tables 6.2 and 6.3, at the end of scan registration the elevation difference between 

different positions are also obtained. 
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Figure 6.8 The satellite image of the site that the experiment 2 is conducted. The red arrow indicates 
the starting position. 
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CHAPTER 7 

 

CONCLUSION 

 

 
In this thesis, a solution to the autonomous navigation problem of outdoor mobile 

robots, using the geometric structure of the environment, is implemented. Since 

extension of probabilistic localization methods like Kalman filter or Monte Carlo 

localization algorithms to non-planar, unstructured, unbounded environments is not 

clear, directly using geometrical relations between 3D range images acquired at 

different robot poses can be the solution to the SLAM problem in outdoor. 

 

For this purpose, a 3D range data collecting system, composing of a planar range 

finder and a tilt mechanism, was designed and built. Using data collected by this 

system at different poses, the relative motion between two different poses of the 

robot was found by using a variant of the ICP algorithm. During the registration 

process, not only the distance criterion, but also the angle criterion was used. The 

angle criterion used in this work eliminates the point correspondences having angles 

between their normals more than a preset threshold. Including this criterion in point 

correspondence finding step of the ICP algorithm was found out to give more 

accurate registrations. The output of the ICP algorithm, i.e. registered scans and the 

transformations which register the scans onto each other, is used to form the map of 

the environment and relatively localize the robot to its starting position. After the 

pairwise registration step, errors still remain in the global map formed and in the 

robot poses calculated, due to accumulation of the errors occurring in pairwise 

registrations. Correction these errors is done by using a global relaxation algorithm. 
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This algorithm diffuses the errors associated with pairwise registrations to the whole 

map. 

 

7.1 Discussions and Future Work 
 

Although the experiments to test the algorithm were conducted on almost planar 

terrain, the technique presented forms the 3D map of the environment and localizes 

the robot in 6D.  So, the technique can be used in unstructured terrain, provided that 

some moderate estimation of the relative motion between consecutive poses is 

provided as an input to the algorithm. This input can be obtained by inertial 

measurement units, odometry or even GPS. 

 

Instead of only using surface normals and point-to-point distances as the matching 

criteria, reflectivity values collected from the laser range finder can be used for point 

matching. This should make the registration process more robust, as normals 

calculated by the proposed method is not very reliable at vegetated areas in the 3D 

scan. Instead of using only active vision to collect data, a camera  can be calibrated 

with the scanner (or a 3D time of flight camera can be used) in order to collect color 

data along with the depth values. The color difference can be a good constraint while 

finding corresponding points. 

 

The registration of two point clouds takes about 5s on a Pentium-M 1700MHz 

Processor, and global relaxation of the map with 14 scans in experiment 2 took about 

1 hour to complete. Even though the pairwise matching step takes a relatively short 

time and a robot can localize itself relative to the previous pose while going for the 

next pose, the global relaxation algorithm’s performance is not satisfactory and needs 

to be speeded-up. A faster processor than the one which the tests are conducted on is 

also needed to speed up the processes.  

 

For navigation of the robot in the environment, obstacles must be detected in the 

map. An algorithm that detects the obstacles and extracts the traversable terrain 

might be developed. Another improvement can be done on the map representation. 
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Currently the final map formed consists of only points. Planes or 3D shapes can be 

fitted to these points. This way, not only a memory efficient map representation 

would be achieved, but also semantic maps consisting of rocks, buildings, trees, etc. 

can be formed. 

 

Maybe the most important enhancement to the implemented method would be the 

elimination of the need to stop for acquiring the range data. This way, a real time 

mapping would be possible and the robot would navigate much faster in the 

environment. This can be achieved by using a high-speed communication between 

the data collection system and the robot, and synchronizing the inertial navigation 

sensors and the odometry with the tilting mechanism of the data collection system. 
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