INVESTIGATION OF MICRORNAS ON GENOMIC INSTABILITY REGIONS IN BREAST CANCER

ŞADAN DUYGU SELÇUKLU

NOVEMBER 2007

INVESTIGATION OF MICRORNAS ON GENOMIC INSTABILITY REGIONS IN BREAST CANCER

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY ŞADAN DUYGU SELÇUKLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGY

NOVEMBER 2007

Approval of the Thesis

INVESTIGATION OF MICRORNAS ON GENOMIC INSTABILITY REGIONS IN BREAST CANCER

Submitted by **Ş. DUYGU SELÇUKLU** in partial fulfillment of the requirements for the degree of **Master of Science in Biology Department**, **Middle East Technical University** by,

Prof. Dr. Canan Özgen Dean, Graduate School of Natural and Applied Sciences		
Prof. Dr. Zeki Kaya Head of the Department, Biology		
Assist. Prof. Dr. A. Elif Erson Supervisor, Biology Dept., METU		
Assoc. Prof. Dr. Cengiz Yakıcıer Co-Supervisor, Molecular Biology and Genetic Dept., Bilke r	nt Universi	ity
Examining Committee Members		
Prof. Dr. Hüseyin Avni Öktem Biology Dept., METU		
Prof. Dr. Gülay Özcengiz Biology Dept., METU		
Assist. Prof. Dr. Ayşe Elif Erson Biology Dept., METU		
Assoc. Prof. Dr. Cengiz Yakıcıer Molecular Biology and Genetic Dept., Bilkent University		
Dr. Sreeparna Banerjee Biology Dept., METU		
Dat	e: 13/	11/2007

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work

Name, Last name: Ş.Duygu Selçuklu

Signature :

ABSTRACT

INVESTIGATION OF MICRORNAS ON GENOMIC INSTABILITY REGIONS IN BREAST CANCER

Selçuklu, Ş.Duygu M.Sc., Department of Biology Supervisor: Assist. Prof. Dr. Ayşe Elif Erson

November 2007, 119 pages

Genomic instability is commonly seen in breast cancers. To date, various chromosomal or segmental loss or amplification regions have been detected in primary tumors and cell lines. Hence, an intensive search for potent tumor suppressors or oncogenes located in these regions continues.

MicroRNAs (miRNAs) are ~18-24 nt long non-coding RNAs that regulate protein expression either by target mRNA cleavage or translational repression. We hypothesized that miRNAs located in genomic instability regions in breast cancer cells may contribute to the initiation or maintenance of breast tumors. Here, we investigated genomic levels of miRNAs on frequent loss or gain regions of breast cancer cells. First, using bioinformatics resources we mapped known miRNAs and candidate miRNAs to reported genomic instability regions. Our extensive searches resulted with more than 30 known miRNAs and 35 candidate miRNAs. To further confirm loss or amplification of miRNA genes on these chromosomal regions in breast cancer cells, we designed specific primers for the known pre-miRNA DNA regions and performed semi-quantitative PCR in 20 breast cancer cell lines, 2 immortalized mammary cell lines, and 2 control samples. Densitometry results suggested that a striking 61 % (22/36) of selected miRNAs showed either loss or amplification in at least 3 different breast cancer cell lines. Interestingly most of these alterations were found to be amplifications even in regions reported to harbor losses in breast tumors. Genomic fold change results of these microRNAs provide a biologically relevant starting point for further expression and functional experiments of microRNAs in breast cancer studies. Genomic fold change analysis followed expression analysis of two significant microRNAs (hsa-miR-21 and hsa-miR-383) was done by qRT-PCR method.

Our data provide a wide screen of genomic instability of 36 microRNA genes in 20 breast cancer cells and normal samples detected by semi-quantitative duplex PCR method as well as expression analysis of two microRNAs. To this date, such an extensive data on genomic status of microRNA genes in breast cancer cells did not exist. Therefore, our results are the first comprehensive investigation of many microRNA genes on genomic instability regions in breast cancers and provide further clues to the potential involvement of these microRNAs in breast tumorigenesis MicroRNA genomic instability may affect their expression and therefore their targets' expressions. Understanding how these microRNAs regulate their targets and contribute to the neoplastic events will also contribute to the field by using this information for future diagnostic and threaupetical applications.

Key words: Breast cancer, genomic instability, microRNAs

MEME KANSERİNDE GENOMİK İNSTABİLİTE BÖLGELERİNDEKİ "MİKRO-RNA"LARIN ARAŞTIRILMASI

Selçuklu, Ş.Duygu Yüksek Lisans, Biyoloji Bölümü Tez yöneticisi: Yrd. Doç. Dr. Ayşe Elif Erson

Kasım 2007, 119 sayfa

Genomik instabilite meme kanserinde sıklıkla görülür. Bugüne kadar primer tümörlerde ve kanser hücre hatlarında bir çok kromozomal veya bölgesel kopya sayısı değişikliği gösteren bölge belirlenmiştir. Bu sebeple, bu bölgelerdeki potansiyel tumor baskılayıcı genler veya onkogenler araştırılmaktadır.

MikroRNAlar ~18-24 nt uzunluğunda protein kodlamayan RNAlardır. Protein ekspresyonunu hedef mRNAlarin kesilmesi veya translasyonun engellenmesi ile düzenlerler. Bu çalışmanın hipotezi, meme kanseri hücrelerindeki sıklıkla görülen genomik instabilite bölgelerinde bulunan mikroRNAların tümörigenez mekanizmasındaki etki edebilecekleri veya katkıda bulunabilecekleridir. Bu çalışmada, meme kanserinde sıklıkla görülen kopya sayısı değişikliği gösteren bölgelerde bulunan mikroRNA genlerinin genomik düzensizlikleri araştırılmıştır. İlk olarak, biyoinformatik kaynaklar kullanılarak bugüne kadar belirlenmiş, sıklıkla görülen genomik instabilite bölgelerinden 18 tane seçildi ve bu bölgelerde bulunan 30 dan fazla ve 35 aday mikroRNA genleri belirlendi. Belirlenen mikroRNA genlerindeki kopya sayısı değişikliklerini doğrulamak için öncül mikroRNA'lara spesifik primerler dizayn edildi ve "yarınicel PCR" yöntemi ile 20 meme kanseri hücre hattı DNAsında, 2 ölümsüz hücre hattı DNAsında ve 2 normal kontrol DNA örneğinde kopya sayısı analizleri yapıldı. Densitometre ölçüm sonuçlarına göre dikkat çekici bir şekilde mikroRNAların % 61 'inde (22/36) en az 3 farklı hücre hattında kopya sayısı değişikliği (delesyon veya amplifikasyon) gösterdiği bulundu. İlginç olarak bu değişikliklerin çoğu literatürde delesyon olarak geçen bazı bölgelerdeki mikroRNAların amplifikasyonu olarak bulundu. Belirlenen kopya sayıları, biyolojik olarak anlamlı bir başlangıç noktası olarak kullanılabilir ve meme kanserinde mikroRNA ekspresyon düzeyi ve fonksiyonel çalışmalar açısından adayların seçilmesinde önemlidir Kopya sayısı analizlerini takiben seçilen iki mikroRNA geninin (hsa-miR-21 ve hsa-miR-383) qRT-PCR yöntemi ile ekspresyon analizi yapıldı.

Bu çalışmanın sonuçları, 20 meme kanseri hücre hattında ve normal örneklerde 36 mikroRNA geninin yarı-nicel PCR yöntemi ile genomik instabilite düzeylerinin kapsamlı taramasını sunmaktadır. Bugüne kadar meme kanseri hücre hatları ile bu kadar geniş çaplı bir tarama yapılmamıştır ve sunduğumuz sonuçlar bir çok mikroRNAnın meme kanserinde kapsamlı araştırılmasını içermektedir ve meme kanseri mekanizmasında potansiyel olarak rolü olabilecek adayların belirlenmesi açısından önemli ipuçları sunmaktadır. MikroRNAların genomik instabilitesi ekspresyon düzeylerine etki edebilir, bu da hedef genlerin ekspresyonunu etkileyecektir. MikroRNAların bu genleri nasil düzenlediklerinin belirlenmesi tümörigenez mekanizmasına katkıda bulunacak, teşhis ve tedavi amaçlı uygulamalarda bu bilgiler kullanılabilecektir.

Anahtar kelimeler: meme kanseri, genomik instabilite, mikroRNA

To my Family

ACKNOWLEDGEMENTS

I am most grateful to my Supervisor Assist.Prof.Dr.Elif Erson for her endless support and encouragements throughout this study. It's impossible to express my feelings about how lucky I am to be a part of her team. I am deeply thankful to her for changing my direction to be a good scientist, without her I would lost my way.

I am sincerely thankful to my Co-supervisor Assist.Prof.Dr.Cengiz Yakıcıer from Bilkent Universtiy for sharing his invaluable ideas and wisdom leading me to work on microRNAs. I would like to thank all staff in department of Molecular biology and Genetics in Bilkent University for letting me to complete a part of my experiments.

I would like to thank all my jury members; Prof. Dr. Gülay Özcengiz, Prof. Dr. Hüseyin Avni Öktem and Dr. Sreeparna Banerjee for their invaluable comments and advices and contributions to my thesis.

I would like to express my grateful thanks to my lab buddy Serkan Tuna for his great contribution to PCR experiments and densitometry analyses and his hard work. Besides these, I am thankful to him for his friendship, patience and motivation. I'm glad to work with him in the same project.

Many thanks to my dear lab mates Begüm Akman, Shiva Akhavan, Aysegul Sapmaz for their invaluable helps all the time and sharing all those tough and fun times, and my other lab mates Kevser Gençalp, Aycan Apak, Rukiye Yüce, Ferhunde Ayşin and Murat Kavruk for their friendship. It's impossible to find this kind of team anywhere else. I would like to thank Biochemistry department staff, University College Cork, Ireland for providing me the cancer cell lines. Also, I would like to thank Prof. E.Petty, University of Michigan, US fro providing breast cancer cell line DNAs.

I would like to express my special thanks to Dr. Charles Spillane for welcoming me to his laboratory in University College Cork, Ireland as an exchange student to complete a part of my experiments. He treated me as a part of his team and I'm grateful to him for his advices and encouragements for this study and for my future academic life. I'd like to express my deepest thanks to Katherine Schouest for her support during my experiments and contributions to my thesis. Also I'd like to thank Prasad Kovvuru, Rachel Clifton and Grace Martin in Spillane lab for their valuable helps during my research in University College Cork.

I would like to thank my best friends Özge Aydın and Umut Özbek for their true friendship forever and being a part of my best years.

I would like to express my deepest gratitude to a special person in my life, Mert Ayaroğlu, for sharing my tears and joy, his endless patience and helping me for overcoming all kinds of challenges.

Finally I would like to thank my dear parents, my father, Soner Selçuklu and my mother, Hanife Selçuklu for being inspiration throughout my life. They always supported my dreams and aspirations. They thought me never ever giving up. I'm grateful to them for believing in me

This work was supported by METU BAP-2006-07-02-0001 and TUBA_GEBIP.

TABLE OF CONTENTS

ABSTRACT	iv
ÖZ	vi
DEDICATION	viii
ACKNOWLEDGEMENTS	ix
TABLE OF CONTENTS	xi
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xviii
CHAPTERS	
1.INTRODUCTION	1
1.1 Cancer and Genetic Alterations	1
1.2 Common Genomic Instability Regions in Breast Cancer	
1.3 microRNAs	9
1.3.1 microRNA Biogenesis and Function	9
1.3.2 Gene Regulation by microRNAs	
1.3.3 microRNAs and Cancer	14
1.4 Aim of the Study	

2.MATERIALS AND METHODS 2	23
2.1 Materials:	23
2.1.1 Cancer Cell Lines	23
2.1.1.1 Mammalian Cell Culture Conditions	24
2.2 Methods	25
2.2.1 Literature Research on Common Genomic Instability Regions in Breast	
Cancer	25
2.2.2 Mapping microRNAs to Common Loss and Gain Regions	25
2.2.3 Investigation of microRNA Gene Fold Changes in Breast Cancer Cell	
Line Genomes	25
2.2.3.1 Primer Designs	26
2.2.3.2 Semi-quantitative Duplex PCR	27
2.2.3.3 Densitometry Analysis and Fold Change Calculation	28
2.2.4 Expression Analysis of microRNAs	29
2.2.4.1 RNA Isolation and DNase Treatment	29
2.2.4.1.1 RNA Isolation by Trizol Reagent	29
2.2.4.1.2 RNA Isolation by <i>mir</i> Vana microRNA Isolation Kit	30
2.2.4.2 Expression Analysis of pre-microRNAs by RT-PCR	31
2.2.4.3 Expression Analysis of Mature microRNAs by Real-Time RT-PCR3	35
2.2.5 Target Search for hsa-miR-21	39
3.RESULTS AND DISCUSSION	42
3.1 microRNAs Mapping to Reported Common Genomic Instability Regions in	
Breast Cancer	42
3.2 Semi-quantitative Duplex PCR Results and Fold Changes of microRNAs4	45
3.2.1 Fold Change Results for microRNAs mapping to common gain regions 4	46
3.2.2 Fold Change Results for microRNAs mapping to common loss regions 5	55

3.2.3 Fold Change Results for microRNAs mapping to common loss or gain	
regions	2
3.3 Expression Analysis Results	6
3.3.1 Pre-miRNA Expression Results	6
3.3.2 Mature microRNA Expression Results	7
3.3.2.1 Results for RNA Isolation by Trizol Reagent versus mirVana	8
3.3.2.2 Real time RT-PCR Results and Absolute Quantification of U6, hsa-	
miR-21 and hsa-miR-383	9
3.3.2.2.1 Absolute Quantification of U6 Endogenous Gene	0
3.3.2.2.2 Absolute Quantification of hsa-miR-21	2
3.3.2.2.3 Absolute Quantification of hsa-miR-383	6
3.4 Potential Targets of hsa-miR-21	9
4.CONCLUSION	3
REFERENCES	5
APPENDICES	3
A. MAMMALIAN CELL CULTURE MEDIUM11	3
B. PRIMER SEQUENCES 114	4
C. BUFFERS AND SOLUTIONS11	9

LIST OF TABLES

Table 2-1: cDNA synthesis (RT) protocol and reaction mixture by RevertAid Fir	st
strand cDNA synthesis Kit	32
Table 2-2: cDNA synthesis (RT) protocol and reaction mixture by Superscript II	
cDNA synthesis Kit	33
Table 2-3: cDNA synthesis (RT) protocol and reaction mixture by Omniscript	
cDNA synthesis Kit	33
Table 2-4: PCR reaction mixture to amplify pre-miRNA	34
Table 2-5:.PCR cycling conditions for pre-miRNA	34
Table 2-6: Duplex PCR reaction mixture to amplify pre- miRNA and GAPDH	35
Table 2-7: Duplex PCR cycling conditions for pre-miRNA	35
Table 2-8: cDNA synthesis (RT) mixture by Taqman microRNA RT Kit	37
Table 2-9: Taqman miRNA cDNA synthesis reaction program.	37
Table 2-10: .Taqman miRNA cDNA PCR reaction mixture	38
Table 2-11: Taqman miRNA PCR reaction conditions for real-time RT-PCR 3	38
Table 3-1: Selected common genomic instability regions in breast cancer and	
microRNAs mapping to these regions	44
Table 3-2: Densitometry and Fold Change Results for hsa-mir-383 normalized to	0
GAPDH and normal breast tissue	37
Table 3-3: Predicted targets of hsa-miR-21 by 4 target prediction programs 10	00
Table A-1: Composition of Cell Culture Medium 11	13
Table B-1: Pre-miRNA microRNA DNA Specific Primers and Product Sizes 11	14
Table B-2: Semi-quantitative Duplex PCR Optimization Conditions 11	17
Table B-3: pre-microRNA cDNA Specific Primers	18

LIST OF FIGURES

Figure 1.1: Features of cancerous state.	2
Figure 1.2: MCF7 SKY (Spectral Karyotyping) karyotype	5
Figure 1.3: T47D SKY karyotype	5
Figure 1.4: Genomic instability regions in breast cancer cell lines	6
Figure 1.5: Genomic instability regions and calculated copy numbers in breast	
cancer cell lines by CGH	7
Figure 1.6: Amplification and Homozygous deletion regions in breast cancer ce	11
lines by SNP Microarrays.	8
Figure 1.7: Biogenesis of microRNAs	11
Figure 1.8: mRNA cleavage by microRNAs	12
Figure 1.9: Translational repression by microRNAs	13
Figure 1.10: Deadenylation and translational repression by microRNAs	13
Figure 1.11: microRNA genomic alterations and cancer relation 1	35
Figure 1.12: Abberantly regulated microRNAs and cancer types	17
Figure 1.13: MicroRNAs and predicted target genes that have significant	
functions in tumorigenesis.	18
Figure 1.14: Copy number changes of 283 microRNAs in breast, ovarian and	
melanoma cancer samples by CGH.	20
Figure 1.15: Expression levels of 56 microRNAs in SKBR3 and breast tumors.	21
Figure 2.1: cDNA primer design for hsa-mir-21 pre-miRNA.	26
Figure 2.2: An example of PCR optimization by cycle selection	28
Figure 2.3: Formula used in normalization and calculation of fold changes of	
microRNAs	28
Figure 2.4: Taqman microRNA real-time RT-PCR Assay	37
Figure 2.5: miRanda web interface, microRNA targets search page	39
Figure 2.6: miRBase web interface, microRNA targets search page	40
Figure 2.7: TargetScan web interface, microRNA targets search page	40

Figure 2.8: PicTar web interface, microRNA targets search page	. 41
Figure 3.1: Example of finding microRNAs mapping to common loss region by	у
using UCSC Genome Browser.	. 43
Figure 3.2: mir-17-92 polycistron mapping to common loss region 13q31	. 46
Figure 3.3: hsa-mir-92-1 semi-quantitative duplex PCR results	. 48
Figure 3.4: hsa-mir-19a semi-quantitative duplex PCR results.	. 49
Figure 3.5: hsa-mir-19b-1 semi-quantitative duplex PCR results	. 50
Figure 3.6: hsa-mir-301 semi-quantitative duplex PCR results	. 51
Figure 3.7: hsa-mir-21 semi-quantitative duplex PCR results	. 52
Figure 3.8: hsa-mir-633 semi-quantitative duplex PCR results	. 53
Figure 3.9: hsa-mir-103-2 semi-quantitative duplex PCR results	. 54
Figure 3.10: hsa-mir-135a-1 semi-quantitative duplex PCR results	. 56
Figure 3.11: hsa-mir-125b-2 semi-quantitative duplex PCR results	. 57
Figure 3.12: hsa-mir-145 semi-quantitative duplex PCR results	. 58
Figure 3.13: hsa-mir-138-1 semi-quantitative duplex PCR results	. 59
Figure 3.14: hsa-mir-191 semi-quantitative duplex PCR results	. 60
Figure 3.15: hsa-mir-361 semi-quantitative duplex PCR results	. 61
Figure 3.16: hsa-mir-383 semi-quantitative duplex PCR results	63
Figure 3.17: hsa-mir-125b-1 semi-quantitative duplex PCR results	. 64
Figure 3.18: hsa-let-7a-2 semi-quantitative duplex PCR results.	. 65
Figure 3.19: hsa-mir-100 semi-quantitative duplex PCR results	. 66
Figure 3.20: hsa-mir-198 semi-quantitative duplex PCR results	. 67
Figure 3.21: hsa-mir-20a semi-quantitative duplex PCR results.	. 68
Figure 3.22: hsa-mir-18a semi-quantitative duplex PCR results.	. 69
Figure 3.23: hsa-mir-17 semi-quantitative duplex PCR results	. 70
Figure 3.24: hsa-mir-10b semi-quantitative duplex PCR results	. 71
Figure 3.25: hsa-let-7g semi-quantitative duplex PCR results.	. 72
Figure 3.26: hsa-mir-425 semi-quantitative duplex PCR results	. 73
Figure 3.27: hsa-mir-7-3 semi-quantitative duplex PCR results	. 74
Figure 3.28: hsa-mir-142 semi-quantitative duplex PCR results	. 75

Figure 3.29: hsa-mir-15a semi-quantitative duplex PCR results.	. 76
Figure 3.30: hsa-mir-16-1 semi-quantitative duplex PCR results	. 77
Figure 3.31: hsa-mir-34c semi-quantitative duplex PCR results.	. 78
Figure 3.32: hsa-mir-486 semi-quantitative duplex PCR results	. 79
Figure 3.33: hsa-mir-320 semi-quantitative duplex PCR results	. 80
Figure 3.34: hsa-mir-143 semi-quantitative duplex PCR results	. 81
Figure 3.35: hsa-mir-16-2 semi-quantitative duplex PCR results	. 82
Figure 3.36: hsa-mir-15b semi-quantitative duplex PCR results	. 83
Figure 3.37: hsa-mir-325 semi-quantitative duplex PCR results	. 84
Figure 3.38: hsa-mir-384 semi-quantitative duplex PCR results	. 85
Figure 3.39: RT-PCR of hsa-mir-383 pre-miRNA in MCF7, MDA-MB-231	. 86
Figure 3.40: Amplification plot of hsa-miR-21 in MCF7	. 88
Figure 3.41: Amplification plot of hsa-miR-21 in MCF7	. 89
Figure 3.42: Standard Plot of U6 gene in MCF10 cell line	. 91
Figure 3.43: Amplification plot of U6 in all cell lines	. 91
Figure 3.44: Real time RT-PCR analysis of U6 gene in all cell lines by absolute	e
quantification	. 92
Figure 3.45: Standard Plot of hsa-miR-21 gene in MCF10 cell line	. 93
Figure 3.46: Amplification plot of hsa-miR-21 in all cell lines	. 93
Figure 3.47: Real time RT-PCR analysis of hsa-miR-21 in cell lines by absolu	te
quantification.	. 95
Figure 3.48: Comparison of hsa-miR-21 and U6 expression in cell lines	. 96
Figure 3.49: Standard plot of hsa-miR-383 in brain tissue	. 97
Figure 3.50: Amplification plot of hsa-miR-383 in all cell lines	. 97
Figure 3.51: Real-time RT-PCR analysis of hsa-miR-383 in all cell lines	. 98
Figure 3.52: Comparison of hsa-miR-383 and U6 expression in cell lines	. 99
Figure 3.53: Map of PMIR-REPORT Luciferase Expression Vector	102

LIST OF ABBREVIATIONS

BLAST	Basic Local Alignment Search Tool
bp	Base Pairs
cDNA	Complementary Deoxyribonucleic Acid
CGH	Comparative Genomic Hybridization
Ct	Cycle Threshold
DEPC	Diethyl Pyrocarbonate
DMEM	Dulbecco's minimum Essential Medium
DMSO	Dimethyl Sulfoxide
DNA	Deoxyribonucleic Acid
DNase I	Deoxyribonuclease I
Dntp	Deoxyribonucleotide Triphosphate
DTT	Dithiothreitol
EDTA	Ethylenediaminetetraacetic Acid
FASTA	Fast Aye
FISH	Fluorescence in situ Hybridization
g	Centrifuge gravity force
GAPDH	Glyceraldehyde 3-Phosphate Dehydrogenase
HD	Homozygous Deletion
NCBI	National Center for Biotechnology Information
LOH	Loss of Heterozygosity
miRNA	microRNA
mRNA	Messenger RNA
PCR	Polymerase Chain Reaction
PBS	Phosphate Buffered Saline
Pri-miRNA	Primary microRNA

Pre-miRNA	Precursor microRNA
RISC	RNA-induced Silencing Complex
RNA	Ribonucleic Acid
RNase	Ribonuclease
RNU6B	Small Nuclear U6B
rpm	Revolution Per Minute
RT-PCR	Reverse Transcription Polymerase Chain Reaction
siRNA	Small Interfering RNA
SKY	Spectral Karyotyping
SNP	Single Nucleotide Polymorphism
stRNA	Small Temporal RNA
Taq	Thermus aquaticus
TBE	Tris-Boric acid-EDTA
UCSC	University of California, Santa Cruz
UTR	Untranslated Region

CHAPTER 1

INTRODUCTION

1.1 Cancer and Genetic Alterations

Cancer remains as one of the leading causes of death worldwide. Several studies predict that by 2020, the number of cancer cases will increase to more than 15 million, with cancer-related deaths increasing to 12 million world-wide [2]. Cancer is a complex genetic disorder, and cancer cells usually harbor various genetic alterations and demonstrate uncontrolled cell proliferation [3], [4], [5]. Continuous cell proliferation leads to further accumulation of mutations in important genes such as *PTEN*, *RAS*, or *TP53* which may also predispose cells to neoplastic transformation [6], [7].

According to some studies, not all but most cancers have common six "acquired capabilities": (a) ability to grow in the absence of stimulatory signals, (b) avoiding apoptosis, (c) resistance to anti-growth signals, (d) ability to invade other tissues, (e) angiogenesis, and (f) continuous replication potential as summarized in Figure 1.1. For example, loss of function of tumor suppressor genes such as TP53 allows genomic instability to generate selectively advantageous cells and enables them to continue to acquire other capabilities [8].

In terms of genetic content, most epithelial human cancers show complex karyotypes with high genomic instability [9] with chromosomal losses, gains, or translocations [10]. Genomic instability is a chromosomal state that the cell gains or loses whole chromosomes or specific regions of chromosomes. Genomic instability may also increase the risk of new mutations or it may manifest itself due to mutations in certain genes. Therefore, it's still not clear that if genomic instability is a cause or consequence of cancer [11], [12].

Figure 1.1: Features of cancerous state. (Figure taken from Hanahan *et al*, 2000).

Translocations, changes in gene copy numbers such as deletions or amplifications, may cause inactivation of tumor suppressors or activation of oncogenes, respectively which may contribute to cancer progression [11], [13], [14]. Loss of heterozygosity (LOH) and homozygous deletions (HD) may indicate the presence of tumor suppressor genes on a specific chromosomal band [15]. Although LOH and HD are frequent alterations in cancers such as lung cancer, only a few tumor suppressor genes have been identified: *TP53*, *RB*, *p16*, *PTEN*, and *FHIT* [13], [14]. Identification of homozygous deletions is a good way to start searching for novel tumor suppressor genes [13] as the candidate gene is lost and, thus, functionally inactive unlike LOH regions. In a microarray study of homozygous deletions in human cancer genomes, 281 homozygous deletions were identified in 636 cancer cell lines including deletions of some known tumor suppressor genes and fragile sites but some were "unexplained" regions which many of them were found to be in intergenic DNA regions [16]. Similarly, amplification regions may indicate the regions harboring oncogenes as some amplification regions were shown to harbor oncogenes such as *MYC* and *ERBB2* [14].

1.2 Common Genomic Instability Regions in Breast Cancer

Breast cancer is the most common cancer type among women in the developing world. It is the leading cause of cancer mortality in women with 411,000 annual deaths representing 14% of female cancer deaths worldwide [17].

Comparative genomic hybridization (CGH) studies on many chromosomal regions in breast cancer cells show genomic instability regions such as HD or LOH in 3p21, 5q33, 8p21, 11q, and 13q and amplifications in 8p23, 11q, and 17q [14]. Among these, 3p deletions (LUCA and AP20 regions) have been identified in 80% of breast carcinomas as well as small-cell lung carcinoma, renal carcinoma, cervix, kidney, and head and neck carcinomas [18], [19]. For instance, 3p21.3 has been identified as a frequent homozygous deletion region in lung and breast cancers [18], [20]. This region is known to harbor some candidate tumor

suppressor genes such as *PL6*, *NPRL2*, *101F6*, and *FUS1* [21]. Another region, 8p, has been shown to be one of the most common allelic loss regions in many human cancers including breast (and bladder, prostate, non-small cell lung, larnygeal, hepatocellular, medulloblastoma, pancreatic, biliary and colorectal carcinomas) [22], [23], [24]. On the contrary, a segmental region of 8p11-12 was shown to be amplified in breast cancer cell lines harboring *FGFR1* as a candidate oncogene [25]. Another frequent deletion region, 11q23-24, in breast, ovarian and lung cancers has been shown to harbor a candidate tumor suppressor gene (BCSC-1) [26].

Cancer cell lines are good sources to model tumor genomes for identification of cancer related genes as it is not easy to work with tumor samples, grow or treat them with chemicals. Cell lines provide useful data on DNA copy number changes for meaningful biological interpretation of neoplastic events. Cancer cell lines show complex karyotypes such as a common model breast cancer cell line MCF7 (See Figure 1.2). It is described as having multiple rearrangements, almost a "triploid cell line", and translocations were found in almost all chromosomes, except chromosome 4, and deletions were detected on chromosomes 3 and 13 [27]. Another model breast cancer cell line, T47D, shows translocations in chromosomes 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 20 and X and deletions in chromosomes 3, 10, 11, 12 and 18 [27], karyotype is shown in Figure.1.3.

Figure 1.2: MCF7 SKY (Spectral Karyotyping) karyotype (Figure taken from Davidson *et al*, 2000, http://www.path.cam.ac.uk/)

Figure 1.3: T47D SKY karyotype (Figure taken from Davidson *et al*, 2000, http://www.path.cam.ac.uk/)

Array comparative genomic hybridization (CGH) studies on genomic alterations in breast cancer cell lines show many genomic alterations revealing potential oncogenes and tumor suppressors. For example, the MCF7 cell line shows common losses in 8p, 11q14-pter, 13q21-qter, X, 1p13, 8p14, 17q23, and 20q13 and gains in 11q13, 17q21-qter, 20q, 3q13, 8p, 11q23, 11q14, and 13q14. A detailed summary of these regions is listed in Figure 1.4 and Figure 1.5. [5], [10], [28].

Cell line	Losses	Gains ^a
BT-474	Ip10-p31, p10-p14, 5q10-q23, 6q23-qter, 8p, 9p, 21q10-q21, Xq	lq22–q25, lq42–qter, 3ql3.3–qter, 5p, 7pter–q22, 7q33–qter, 8q21–qter, 9q33–qter, 10q25-qter, llq13-ql4, l2q, l4q10– a21, l5a10–a21, l7a (17a10–a23), l8p, l9, 20a, Xp
BT-549	2, 10g25–gter, 11p, Xp	1p31-pter, 8, 9p, 9q34, 11q13, 17p, 20q
CAMA-I	1p22-p32, 6q, 8p21-pter, 11q14-qter, 12p, X	1p21-qter, 5q31-qter, 6p, 7q32-qter, 8q, 9q, 16, 17q21, 17q24-qter, 22q10-q12.1
DU4475	5q14-q23, 6q10-q22, 11q23-qter, 18	Iq, 7, 10pter-q22
MCF7	1p21-p22, 4p15-qter, 8p, 9p21-pter, 11p, 11q14-qter, 13q21-qter, 18q12-qter, X	lq, 3p13-p14, 7q21-q31, 8q21-qter, 9q22-qter, 11q13, 12q24-qter, 14q, 15q23-qter, 17q21-qter, 19, 20q (20q12-qter)
MDA-MB-134 MDA-MB-157	2q, 8p22–pter, 11q21–qter, 13q, 16q, 17p, 18p 3p10–p21, 8p21–pter, 12p, 13q10–q22, 18q	8p12-qter (8p10-p12), 11q13, 11p14-pter 1p32-pter, 1q32-qter, 2p, 2q31-qter, 3p22-pter, 5p, 5q31- qter, 6p, 7, 8q, 9q, 10p12-pter, 11q13, 13q31-qter, 14q32- ater, 17, 18p, 19, 20, 21a22-ater, X
MDA-MB-361	8p21-pter, 9p21-pter, 11p, 11q21-q22, 21q10-q21, Xq	1q32-qter, 5p, 6p, 8p21-qter, 9q32-qter, 10q23-qter, 12, 15q23-qter, 16, 17q, 20q
MDA-MB-436	1p13-p21, 2q22-q24, 3q24-q27, 4q21-q28, 4q32-q34, 5q14-q23, 6p12-q14, 8p10-p12, 8q21-q22, 9p13-p21, 11q22-q23, 12q10- q23, 13q13-q31, 14q13-q24, 18p, 18q21-qr, 20p10-p12	1p31-pter, 1q, 2p23-pter, 2p13-q21, 3p24-pter, 4p15-pter, 5p, 5q31-qter, 6q2-3qter, 7, 8p21-pter, 8q23-qter, 9q, 11q10q13, 12p12-pter, 13q32-qter, 15q10-q24, 16p, 17p12-pter, 19p13-pter, 19q13.3-qter, 20q13.1-qter
MPE600	9q, Ilql4–qter, I6q	lq, 11q13, 13q10-q14, 13q32-qter, 16p, 17q, 20q12-qter
SK-BR-3	2q22-q34, 3p12-q13, 4p, 4q26-qter, 5pter- q23, 6q10-q22, 10q24, 18, Xq	1931-pter, 1q10-q42, 3p21-pter, 3q26-qter, 5q31-qter, 6p21-pter, 7, 8q12-qter 9q32-qter, 10q22, 11q13, 12q23-qter, 13q32-qter, 14q24-qter, 16p, 17q10-q21, 17q23-qter, 19q, 20 (20q12-qter), 22q12-qter
T-47D	IpI0-p31, 2q22-q33, 3pI0-p13, 4pI5.I-qter, 6qI0-q22, 7q31, 9p, 13q, 18q, X	Ip31-pter, Iq, 3p21-pter, 3q13.3-qter, 5q31-qter, 6p, 7pter-q21, 8q23-qter, 9q22-qter, 11p13-qter, 12q, 14q12-q21, 15q21-qter, 16p, 16q22-qter, 17q, 19p13.1- pter, 20q, 22q
UACC-812		lg21-g41, 7pter-g21, 8g, 12g, 13g21-g33, 17g, 20g, 21g22
UACC-893	2q34-qter, 3p, 4pter-q24, 5q, 8p, 10q23-qter, 11p14-pter, 11q23-qter, 13q14-q31, 17p, 18q10-q21, 20p, Xp	1p32-pter, 1q. 2p16-pter, 6p, 6q25-qter, 7p, 8q, 10pter-q22, 11q13-q14, 14q10-q21, 15q24-qr, 17q, 20q
ZR-75-1	lp21-p31, 2, 6pter-q22, 11q14-qter, 20p, 21q, X	lq (1q25-qter), 4q31-qter, 7p, 8p21-q21, 11q13, 12pter-q15, 15q10-q24, 16 (16p) 17q21-qter, 18, 20q, 22q10-q13.1

Figure 1.4: Genomic instability regions in breast cancer cell lines [10]. (Figure taken from Kytola *et al*, 2000).

Cell line	Locus	Start clone	End clone	Size (kb)		Locus	Start clone	End clone	Size (k
MCF7	Amplifications					Deletions			
	1p13.3	N0451114	N0228E23	1,290		9q13.31	N0747H24	N0362H11	7
	1p13.2	N0099M15	N0795O09	288		4q34.3-35.2	N0442N05	N0746B09	7,1
	1p13.2	N0626F04	N0517B05	1,330		6q25.2-27	M2007C03	M2256B24	14,4
	3p14.2-14.1	NOB69F02	N0569G04	3,180		8p ann	P	Р	
	8q21.2-q24.21	N0133G02	N0315E00	43,300		11p15.5-11.2	N0412M16	M2326E01	45,3
	15q21.1-21.3	N0416B20	N0664B09	4,930		11p11.2	N0070A09	M2326E01	1,9
	17q23.2-24.3	N0716B04	N0203A19	113,200		11q11-q12.1	N0010E21	F0627109	4,9
Peak	17q23.2	N0760B22	N0433B24	4,900		11q14.2-23.3	N0262G16	N0004N09	30,0
	17q25.1	N0076G04	N0552F03	766		11q23.3-25(tel)	N0196E01	N0715D10	15,4
	20q12	N0365G02	N0476P15	1,790		13q14.2-34(tel)	N0155D15	M2323L19	66,9
	20q13.12-20q13.33 (tel)	N0272C13	N0476115	17,500					
Peaks:	20q13.12-20q13.13 A	N0702E03	N0730020	1,790					
	20q13.13 B	N0711M06	F0592G 15	309					
	20q13.2 C	N0020J08	N0346B03	1,450					
	20q13.31D	N0044A06	N0671P16	411					
	21 q22.13-22.3(tel)	N0094J12	N0457P07	8,450					
BT474	Amplifications					Amplifications			
	1q21.2-q25.1					15q11.2 -q12	N0607H20	N0208F21	5,0
Peeks:	1q21.2-q21.3A	N0035F14	N0714N02	366	Peaks:	15q11.2 A	N0552D03	M2200G17	9
	1q22-q23.1B	N0647N20	N0740J19	510		15q11.2 B	N0484P15	N0710L06	6
	1q24.2C	N0137J06	N0616K15	540		17q12-21.2	N0196P12	N0278E15	4,0
	1q31.3	N0662E13	N0141E20	1,661		17q21.32-23.2	N0771D19	M2014K24	13,8
	1q32.1	N0783D13	N0617D19	936	Peaks:	17q21.32-g21.33A	N0071G24	N0607H13	2,5
	1q42.12-q42.13	M2185P06	M2016D17	500		17q22-23.2 B	N0515J20	N0473G17	2,1
	1q43	N0236L13	N0614N14	449		17q23.2 C	N0399O18	N0767P09	1,1
	1q44-q43	N0440F10	N0794A13	865		17q24.1-24.3	N0583F02	N0693H11	5,9
	1q44	N0778E23	N0071K05	1,720	Peak:	17q24.1	N0583F02	N0394K10	4
	4p16.1-15.33	N0270103	N0652B07	1,210		19p13.2-13.12	N0295M02	N0441D08	6,3
	4q21.1	N0598G02	N0772H01	2,700		20p12.1	N0134G22	N0022E15	8
	9p13.3	N0069E18	N0795P12	2,060		20q11.22	N0601G07	N0552G16	1,9
	9q33.1-34.13	H2248M11	N0738114	12,600		20q13.11-13.32	N0809G24	N0261P09	14,8
-	11q13.1-13.5	N0813P09	N0360N22	19,800		20q13.39	N0648D07	N0694110	9
Peaks:	11q13.1 A	N0029K11	N0804F01	704		20013.3946	N0806P22	N0134L13	1,9
	11q13.4 B	N0093M11	N0598G03	1,030		Deletions	NO100501		
	119221-222	NOT 0744	N0347H03	3,560		0q14.1-14.3	NOT29E04	NU291024	0,9
	14q11.2-q21.1	N059/A11	NO254B15	21,230		6q24.1	N0709321	M22024J17	3,2
	14q31.8-32.12	107/1008	MU325L17	3,080		20011.22	N0710122	H0774C15	
78 75 90	Amplifications					20p11.23-13.11	N0/12N14	N0464F07	7,1
26 75 30	Angene dons					Angeneere e			

Figure 1.5: Genomic instability regions and calculated copy numbers in breast cancer cell lines by CGH [28]. (Figure taken from Shadeo *et al*, 2006)

In a microarray study of copy number changes in breast cancer cell lines several regions were found to be amplified (Xq21.1, 19p13.3) or homozygously deleted (13q31.3, 11q14.1, 20q13.2, listed in Figure 1.6 [29].

			Turbur Provident	Merced Annual Merced
Size range ^b (Mb)	Cytoband ^c	Candidate gene ^{d}	Interred copy number	measured copy number
0.06-0.47	8q24.12	NON	61	43.23
0-0-0	17:4750	MIC	-	CF/10
0-0.62	20q11.23-q13.11		<i>ه</i> م	60.63 33 55
1 08 2 08	01719-1-1-1-2000	JAN .	ν <u>τ</u>	00.00 73 54
1 67-2 11	110141-0142	0.000	1	14.57
1.86-3.21	12n11.23-n11.22		. 0	23.14
0.46-6.3	11a13.1-11a13.4	CCNDI		25.44
1.98-3	12a14.3-a15	DYRK2	6	10.05
4.5-5.76	19a12-a13.12	CCNEI	5	13.48
0,13-0.99	17011.2		11	32.90
1.69-2.82	17025.1		6	22.97
2.07 - 4.64	17012-021.2	ERBB2	6	35.27
2.74-5.12	20a13.2-a13.31	BCASI	14	36.91
188.47	13014.2-014.3			515
7 20 8 50	13401 31-001 33		. [*	14.86
3 3 3 1 1	13000 0 0311		. [198
	rich-zizzhei		, č	1010
47.0-01.2	cricher		2	16.17
2.84-5.74	5014.2-014.1		م	23.90
0.78-2.46	16:61puz-2:61puz	BCASI	13	68.05
 Homozygous deletio	n regions			
Size range ^b		Candidate	Inferred copy	Measured copy
(Mb)	Cytoband°	gened	number	number
0.21-0.5	3p14.2	FHIT	0	0.00012
0 30 0 68	00713	<i>D16</i>		0.00001
1 00 4 5	V-01 21 V-01 22	077		1200000
0.4-00.1	cc17bv-1c17bv			060000
0.26 - 0.83	10p12.1		0	0.015
0.05-1.01	14q23.2		0	0.0069
4.06-4.16	4a35.1-a35.2		0	0,00028
0.76 - 2.04	10a21.3		0	0,0012
2 48 5 86	30123-0122		-	0 00019
10.05 10.72	0001 2 001 1	216		0.00062
2101-000	272.1 June 1	011		000000
	1.01po			
2.88-4.45	6916.3-921		0	0.000081
0.12-1.6	11p13-p12		0	0.000083
7.99–10.37	13q14.3-q21.2		0	0.0013
0.74 - 2.53	Xa21.1-a21.2		0	0.000083
0.22-0.4	3013.31		0	0.12
0.84-1.01	1013 1-012			150
1 0.2 6 0.4				101

Figure 1.6: Amplification and Homozygous deletion regions in breast cancer cell lines by SNP Microarrays. (Figure taken from Zhao *et al.*, 2004)

1.3 MicroRNAs

MicroRNAs (miRNAs) were first discovered in 1993 by Victor Ambros and his colleagues while studying developmental timing in *Caenorhabditis elegans*. They found that a gene, *lin-4*, which doesn't code for a protein but a small RNA that controls timing of *C. elegans* larval development [30], [31]. This small RNA is complementary to the 3'UTR region of *lin-14* messenger RNA (mRNA) which is a developmental repressor of LIN-14 protein; *lin-4* binds to *lin-14* mRNA and represses translation [31]. *Lin-4* is known to be the first microRNA discovered and *let-7*, the second identified microRNA, was later found to act as *lin-4* in the same way by binding to the 3' UTR complementary regions of genes such as *lin-14*. They were first named as small temporal RNAs (stRNAs) [32] because of their role in development. However, other labs soon discovered many small RNAs that are not developmentally regulated but specific in certain cell types in *Drosophila*, human, and *C. elegans* and then they were named as microRNAs [33].

By 2007, more than 400 microRNAs have been identified in eukaryotes [34], [35] and more than 2000 miRNAs in vertebrates, flies, nematodes, plants, and viruses [36]. The predicted number of microRNAs is about 1-5% of the genes in genome, based on computational prediction programs. Many miRNAs have been cloned from *C.elegans*, *Arabidopsis*, *Drosophila*, mice, and humans. They are highly conserved and they were also found in fungi and in pathogenic viruses [31], [37], [38], [39].

1.3.1 MicroRNA Biogenesis and Function

MicroRNAs are usually transcribed as capped and polyadenylated full length primary transcripts transcribed by RNA polymerase III (pol III) [40], [37]. Some findings also predict that some microRNAs are transcribed by pol II [41], [40]. These primary transcripts (pri-miRNA) undergo maturation process (see Figure 1.7) into precursor hairpins (stem-loop miRNAs or pre-miRNAs) approximately 60-80 bp with a 3' 2nt overhang by excision by RNase III enzyme Drosha. They are then transferred to cytoplasm by Exportin 5 and a second RNase III enzyme, Dicer, recognizes and cuts pre-miRNA into a ~20-22 bp RNA duplex. This duplex contains mature microRNA in one strand which is the active form designated with organism such as "hsa" for *Homo sapiens*, "miR", and a number for each microRNA (i.e., hsa-miR-xxx) [36]. One of the strands are degraded and other is associated with RISC (RNA-induced silencing complex) where it is guided to mRNA targets by the help of Argonaute proteins [42], [43], [44].

MicroRNAs are specifically and differentially expressed across different organisms, developmental stages, tissues or cell types [45], [33], [46]. For example, hsa-mir-124 is expressed exclusively in brain [33]. They have been shown in several cell functions such as development, cell proliferation, differentiation, hematopoiesis, death, stress resistance, and fat metabolism [47], [48].

Computational methods are used to predict potential microRNA targets (binding sites in 3' UTR) by using degrees of complementarity and conserved regions among related species although some algorithms such as miRanda [49] does not consider conservation as a pre-requisite [36].

Figure 1.7: Biogenesis of microRNAs (Figure taken from http://www.microrna.ic.cz/obr/image003.png)

1.3.2 Gene Regulation by microRNAs

MicroRNAs are predicted to regulate a large number of genes (about 30% of all human genes) [50], [51]. MicroRNAs regulate gene expression post-transcriptionally by two different mechanisms: mRNA cleavage or translational repression by binding complementary regions in 3' UTR of the target genes [41], [30], [52], [53]. In some studies, it has also been described that binding to 5' UTR regions are as efficient as binding the 3' UTR to repress the mRNAs [54]. Translational repression by partial complementarity was found to be more common in animals, whereas more perfect complementarity of miRNA:mRNA resulting in mRNA cleavage was observed in plants [31], [55], [56]. In animals, some microRNAs have been found to mediate mRNA cleavage (Figure 1.8) in addition to translational repression (Figure 1.9) [57].

Figure 1.8: mRNA cleavage by microRNAs [41]. (Figure taken from Bartel *et al.*, 2004).

Figure 1.9: Translational repression by microRNAs [41]. (Figure taken from Bartel *et al.*, 2004).

Previous reports suggest mRNA down-regulation by microRNAs is due to decreased translation [30], [58]. However, recent findings indicate that microRNAs can also decrease the amount of cellular mRNAs and destabilize them with imperfect complementation. This mechanism is through the removal of poly-A tails of mRNAs, which is not necessary in translational repression [59], [60]. Although decreasing protein levels by translational repression is known to be a common mechanism of microRNA mediated targetting [30], studies suggest that microRNAs can reduce mRNA levels [61], [59] by rapid mRNA deadenylation [60], [62] (Figure 1.10).

Figure 1.10: Deadenylation and translational repression by microRNAs (Figure taken from <u>www.ebiotrade.com</u>)

1.3.3 MicroRNAs and Cancer

Some microRNAs have been shown to act as tumor suppressors while other microRNAs have been shown to act as oncogenes. Their mechanism of action depends on their target gene functions such as cell proliferation, apoptosis, or invasion. They were also recently shown to be important cancer biomarkers in terms of their significant expression in cancer samples compared to normal [1], [63].

MicroRNAs were previously reported to be located in chromosomal instability regions, including fragile sites. According to some estimates 50% of known microRNAs have been found to be located in cancer related regions. Alterations in microRNA genes may lead to up-regulation or down-regulation of the target genes which may lead to cancer progression depending on target gene functions (Figure 1.11) [64], [1].

Few of the over 400 known microRNAs, have been verified to be involved in cancer. Their genomic instability and differential expression have been shown to relate with tumorigenesis. For example, hsa-mir-15a and hsa-mir-16a are located on 13q14, a common deletion region of BCL in leukemia [1]. By using single nucleotide polymorphism (SNP) microarrays, Lamy *et al*, 2006 showed that microRNA copy number changes relate to expression levels in prostate and colon cancers. However, in bladder cancer they found controversial results indicating that cancer related regions and microRNA locations are that directly correlated. This might be dependent on cancer type and possibly microRNA expression is regulated by different mechanisms compared to mRNAs, such as in a targetdependent manner [64].

Another microRNA, hsa-mir-142, is located on breakpoint region of a translocation t(8;17) which causes B cell leukemia. Hsa-mir-142 expression was found to be higher in B-lymohoid lineages compared to others suggesting a potential role of hsa-mir-142 in hematopoietic lineage differentiation [31], [65]. A polycistron, hsa-mir-17-92, encodes seven microRNAs, located on common amplification region 13q31.3 in B cell lymophomas and lung cancers, and is also overexpressed and this polycistron has been implicated as potential oncogene [66].

Microarray studies were conducted on poorly differentiated tumor samples by comparing mRNA profiling versus microRNA profiling. This study showed that microRNA expression profiles classified 12 of 17 tumor samples whereas mRNA expression profiles could discriminate only 1 of 17 samples despite the fact that mRNA array contains 15,000 genes but miRNA array contains 200 genes [34]. Thus, microRNAs were found to be powerful discriminators of classified human cancers as they show different expression patterns in different cancer types [67]. MicroRNAs showing abnormal expression in cancer are shown in Figure 1.12.
Cancer type	Aberrantly regulated microRNAs		
CLL - chronic lymphocytic leukemia (CLL)	 m(R-15a and m(R-16-1, down-regulated in more than 60% of CLL cases m(R-155/ BIC RNA, increased levels m(R-17-92 cluster, only some members are abnormally expressed m(R-213, m(R-183, m(R-190, m(R-24-1, m(RNAs lo- cated exactly inside fragile sites m(R-96, m(R-182, m(R-183= 7q32 group, all members are aberrantly regulated and many others¹ (see Calin et al., 2004) 		
CLL - distinguish CLL samples that express unmutated IgVh gene from those that express mutated IgVh gene	miR-186, miR-132, miR-16-1, miR-102(miR-29) and miR- 29c		
CLL - 13 miRNAs prognostic group, could discrimi- nate between CLL samples that express ZAP.70 and unmutated IgVh and CLL samples that have no expres- sion of ZAP and have a mutated IgVh	miR-15a, miR-195, miR-223, miR-24-1, miR-29b-2, miR-29a-2, miR-16-1, miR-16-2, miR-155, miR-146, miR-221, miR-23b and miR-29c		
CLL - 9 miRNAs predicting interval from diagnosis to therapy, differentiate patients with a short interval from diagnosis from patients with a longer interval	miR-155, miR-146, miR-221, miR-23b, miR-29c, miR-222, miR-24-2, miR-23a and miR-181a		
diffuse large B cell lymphoma, marginal zone lymphomas, other non-Hodgkin lymphomas and Hodgkin lymphomas	m(R-155/ BIC RNA, increased levels		
aggressive B cell leukemia	m(R-14.2 translocation t(8, 17) cause s up-regulation of a translocated eMYC gene		
breast cancer	 miR-10b, miR-125b and miR-145, down-regulated miR-21 and miR-155, up-regulated 		
lung cancer	o let-7, reduced expression o mtR-155, over-expression o mtR-17-92 cluster, over-expression		
glioblastoma	 miR-221, miR-21, strongly over-expressed miR-128, miR-181a, miR-181b and miR-181c, down-regulated 		
colorectal tumors	miR-143 and miR-145, down-regulated		
for chromosomal location of microRNAs see: http://microrna.sanger.ac.uk	miR-17-92 cluster: miR-17-5p, miR-17-3p, miR-18, miR-19a, miR-20, miR-19b1, miR-92-1		

Figure 1.12: Abberantly regulated microRNAs and cancer types [31]. (Figure taken from Kusenda *et al*, 2006)

To date, microRNA involvement in tumorigenesis has been implicated in targeting genes with significant functions in cancer pathways such as angiogenesis or cell signaling [63], [31]. Involvement of microRNAs and their deregulation in cancer have been attributed to its target gene functions. Potential targets of some microRNAs are listed in Figure 1.13.

Target (gene)	Potential microRNA	Supporting observations
Cell adhesion		
E-cadherin (CDH1)	mir-9	mir-9 increased in breast cancers (Iorio et al., 2005), but downregulated in lung cancers (Yanaihara et al., 2006)
β-Catenin (CTNNB1)	mir-139, mir-200*	
Integrin α 4 ITGA 4	none	
Integrin a V (ITGAV)	mir-25/32/92/367 mir-142-3p	mir-32 downregulated in lung cancer (Yanaihara et al., 2006); mir-92 downregulated in six solid cancer types by PAM (Voliria et al. 2006).
Integrin β l (ITGB1)	mir-124, mir-183, mir-223, mir-29	(Yanaihara et al., 2006); ITGBI validated as mir-124 downegulated gene (Lim et al., 2005)
Integrin ß 3 (ITGB3)	let-7/mir98, mir-30, mir-125, 1/206	let-7a-2 downregulated in lung cancer (Yanaihara et al., 2006; Johnson et al., 2005); let-7a-2, 7a-3, 7d, 7f-2 downregulated in breast cancer (torio et al., 2005); let-7a-1 downregulated in six solid cancer types by PAM and SAM (Volinia et al., 2006); mir-30a-5p downregulated in lung cancer (Yanaihara et al., 2006); mir-30d downregulated in six solid cancer types by SAM (Volinia et al., 2006); mir-125a, bl, b2 downregulated in breast cancer (lorio et al., 2005); ITGB3 also identified as putative target gene in this study)
Integrin α 5 (ITGA5)	mir-30, mir-25/32/92/367, mir-128, mir-26, mir-148/152	See ITGAV (mir-32/92), ITGB3 (mir-30); mir-26a-1-prec downregulated in lung cancer, deleted in epithelial cancers (Yanaihara et al., 2006)
Fibronectin (FN1) Syndecan-1 (SDC1)	mir-1/206, mir-199a*, mir-200b, mir-217 mir-19, mir-9, mir-10, mir-93/302/372/373	See Ecadherin (mir-9); mir-10b downregulated in breast cancer (Iorio et al., 2005); mir-372/373 shown to be orcorepres conpending with Bas (Northorne et al., 2006)
Paxillin (PXN)	mir-137, mir-218, mir-145	mir-145 downregulated in breast cancer (lorio <i>et al.</i> , 2005) and lung cancer and deleted in prostate cancer (Yanaihara <i>et al.</i> , 2006); mir-218-2 downregulated in lung cancer (Yanaihara <i>et al.</i> , 2006)
FAK (PTK2)	mir-138, mir-135, mir-25/32/92/367, mir-7, mir-199	See ITGAV (mir-32/92); FN1 (mir-199)
CD44	mir-27	
LOX	mir-145	See Paxillin (PXN)
Anglogenesis		
VEGF-A	mir-125	See ITGB3
VEGF-B	mir-128	
VEGF-C	None	
FIGF (VEGF-D)	None	
VEGFR2 (KDR)	None	
VEGFRI (FLTI)	mir-17/20/106, mir-181, mir-10, mir-24	See HIF-1α (mir-17/20/106); mir-181c-prec downregulated in lung cancer (Yanaihara et al., 2006); we condectual (mir-10).
HIF-1α (HIF-1A)	mir-17/20/106, mir-138, mir-199, mir-135, mir-19, mir-18, mir-203, mir-155	Elevated mir-17/20/106 seen as part of a 'solid cancer signature' (Volinia et al., 2009; see FN1 (mir-199). High mir-155 associated with poor prognosis in lung cancer (Vonihara et al., 2006)
ARNT	mir-221/222, mir-9, mir-135, mir-153, mir-10, mir-103/107, mir-29	See E-cadherin (mir-9), syndecan-1 (mir-10)
Angiopoietin 1	mir-124, 204/211	Downregulated mir-124a1 in lung cancer
(ANGPT1) Angiopoietin 2	mir-145	(Yanaihara et al., 2006); see ITGB1 (mir-124) See Paxillin (PXN)
(ANGPT2) FLT4	None	
Proteclusis and cell sizecolline		
MMP1	None	
MMP2	mir.29	
MMP7	None	
MMP8	None	
MMP9	None	
MMP14	mir-26 mir-24 mir-181	See VEGER1/FLT1 (mir-181); ITGA5 (mir-26)
ADAM-17	mir-145	See Paxillin (PXN)
TIMP-1	None	and a second for a second second
TIMP-2	mir-30	See ITGB3 (mir-30)
TIMP-3	mir-181, mir-1/206, mir-30, mir-199a*, mir-21, mir-221/222, mir-17/20/106	Upregulated mir-221/222 in papillary thyroid cancer (He et al., 2005); mir-21 upregulated in glioblastoma and associated with antiapoptosis (Chen et al.), and

Figure 1.13: MicroRNAs and predicted target genes that have significant functions in tumorigenesis.(Figure taken from Dalmay *et al*, 2006) [63]

Among thousands of target genes predicted, few have been experimentally confirmed. For instance, hsa-miR-21 has been shown to regulate tumor growth and apoptosis through regulating genes directly or indirectly that are involved in

cancer pathways (i.e. *PTEN*, *BCL-2*, *PDCD4*, *TPM1*) [68], [69], [70], [71]. It has also been shown that hsa-let-7 regulates RAS, hsa-miR-17-5p regulates E2F1 expression, and hsa-miR-15 and hsa-miR-16 downregulate BCL-2 and induce apoptosis [72], [73], [74]. Moreover, hsa-miR-142 has been found to target *c-myc* (myelocytomatosis viral oncogene), hsa-miR-20a targets *E2FI*, and hsa-mir-19a targets *PTEN*. [75], [76].

On the other hand, in a study by Bommer et al, 2007, hsa-mir-34 was reported to be targeted by p53 tumor suppressor gene in human and mouse cells. It has been attributed as "significant downstream effecter of p53 function" and it is suggested that the inactivation of hsa-mir-34 might contribute to certain cancer types [77].

In recent studies on microRNAs and breast cancer, few microRNAs have been shown to be deregulated in genomic level and expression level. For example, a CGH study on 283 microRNAs in ovarian cancer, breast cancer, and melanoma found common microRNAs deregulated in all three cancer types as well as some microRNAs unique to a certain cancer type. They showed copy number changes of microRNAs in 72.8 % of breast cancer samples [78] (Figure 1.14).

In addition, hsa-miR-21 which is thought to be correlated with breast cancer has also been found to be amplified and overexpressed and involved in many cancer types indicating an oncogenic role [71], [68], [69], [70]. The target of hsa-miR-21, the tumor suppressor gene tropomyosin 1 (*TPM1*), has been identified and verified using MCF7 cells [70]. This was verified by the suppression of tumor growth after treatment of cells with anti-miR-21 to knock down hsa-miR-21 [70], [69].

Figure 1.14: Copy number changes of 283 microRNAs in breast, ovarian and melanoma cancer samples by CGH.

In terms of comparison of miRNA expressions in breast cancer cell lines and tumors, Mattie et al, 2006, analyzed many microRNAs in 10 breast tumors (ErbB2 +) and SKBR3 cell line (ErbB2 +). This study suggested that unique sets of microRNAs are associated with phenotypic status of breast cancer samples. Similar expression patterns of 56 microRNAs in ErbB2 + tumor samples and in ErbB2 + cell line SKBR3 are shown in Figure 1.15.

MicroRNA microarray study by Iorio et al, 2005, analyzed breast cancer tumors and cell lines and showed that compared to normal breast tissue, hsami125b, hsa-miR-145, hsa-miR-21, and hsa-miR-155 were significantly deregulated in breast cancer. MicroRNA expression profiling was clustered and breast cancer samples were clearly differentiated from normal samples also according to biopathological features. They found that let-7, miR-125b, and miR-145 were down-regulated, whereas miR-155 and miR-21 were up-regulated [79].

1.4 Aim of the Study

Genomic instability is commonly seen in breast cancer cells. Loss or gain of particular chromosomal segments may harbor potential tumor suppressor genes or oncogenes that may contribute to tumorigenesis when lost or gained, respectively [11], [13], [14].

microRNAs have already shown to be involved in cancer related pathways/mechanisms. Our aim was to investigate microRNAs mapping to breast cancer genomic instability regions, and to confirm their fold changes (loss or gain) in 20 breast cancer cell lines, 2 immortalized mammary cell lines and 2 normal DNAs compared to a housekeeping gene, *GAPDH*.

CHAPTER 2

MATERIALS AND METHODS

2.1 Materials:

2.1.1 Cancer Cell Lines

Twenty breast cancer cell line DNAs (BT20, BT474, BT549, CAL51, DU4475, Hs578T, MCF7, MDA-MB157, MDA-MB231, MDA-MB361, MDA-MB435, MDA-MB468, SUM-52, SUM-102, SUM-149, SUM-159, SUM-185, SUM-229, SK-BR3, and T-47D) and 2 immortalized mammary cell line DNAs (HPV4-12 and MCF10) were kindly provided by E.M. Petty from the University of Michigan, Ann Arbor, U.S.A. and were used in semi-quantitative duplex PCR experiments. Two normal DNA controls were isolated from blood and used for comparison to cancer cell lines.

Cancer cell lines MCF7, MDA-MB-231, SUM-159, Hs578T, HeLa and SHSY-5Y and rat brain tissue were kindly provided by Biochemistry department of University College Cork, Ireland and were used in real-time RT-PCR expression analysis of hsa-miR-21 and hsa-miR-383.

2.1.1.1 Mammalian Cell Culture Conditions

MCF7, HS578T, HeLa, and SYSY-5Y cell lines were grown as monolayers in tissue culture plates (Sarstedt) in Dulbecco's Minimum Essential Medium (DMEM) (Sigma, D6429). Composition of the media is presented in Appendix A. The MCF10 cell was grown in Ham's F-12 nutrient mixture (Sigma-Aldrich, N6760) with supplements given in Table A.1. The MDA-MB-231 cell line was grown in Leibovitz's L15 media (Sigma-Aldrich, L4386). All media included 1 % L-Glutamine (Biowhittaker, BE17-605E), 10 % Fetal Bovine Serum (Biosera, S1900/500), and 1 % Penicillin / Streptomycin (10 000 IU/ 10 000 μ g/ml), (Biowhittaker, DE17-602E) filtered through 0, 45 μ m filters. All cell lines were incubated in 37°C incubators with 95% air and 5% CO₂. Details of culture medium are given in Table A.1.

1X PBS (phosphate buffered saline) was used in cell culture wash 2-3 times a week to remove metabolic wastes and fresh media was added to cells.

1X Trypsin-EDTA (Sigma, T4174) was used to detach the cells from the flask when the cells were confluent. Subculturing of the cells was done according to doubling time of each cell line with 1:2, 1:3, or 1:4 ratios. Centrifugation at 1400 rpm for 4 min was used to pellet the cells before subculturing and freezing.

Cells were frozen in liquid nitrogen when they reached 90% confluency. Five percent (5%) DMSO (dimethyl sulfoxide) (Sigma, 154938) was used in the corresponding media for each cell line for long term storage of frozen cells. Cells were frozen and kept at -80°C for 1-2 days and transferred to liquid nitrogen. Cells were thawed in a 37°C water bath. Counting of the dead cells was done by staining cells with tryphan blue to discriminate them from living cells in hemocytometer under light microscope.

2.2.1 Literature Research on Common Genomic Instability Regions in Breast Cancer

Literature search was performed by using NCBI PubMed database for published studies about genomic instability regions (homozygous deletion, loss of heterozygosity and amplification) in breast cancer cells. The chromosomal regions found to be frequently altered were selected and listed. Positions of instability regions were defined by single nucleotide polymorphism (SNP) markers available for some regions.

2.2.2 Mapping microRNAs to Common Loss and Gain Regions

After defining common regions of alterations, microRNAs in these regions were located by using two approaches. First, by using Human Genome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway) and Sanger Institute miRBase database (http://microrna.sanger.ac.uk/sequences/), microRNAs were mapped to these regions. Second, combined DNA sequences of microRNAs in FASTA format were blasted against genomic instability region sequences using NCBI BLAST program (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi).

2.2.3 Investigation of microRNA Gene Fold Changes in Breast Cancer Cell Line Genomes

Fold changes of 39 microRNAs were investigated in 20 breast cancer cell lines, 2 immortalized mammary cell lines, and 2 normal DNAs by semiquantitative duplex PCR.

2.2.3.1 Primer Designs

Primers for DNA regions of the 39 pre-miRNAs and for housekeeping gene, *GAPDH*, were designed by using Primer3 program (http://frodo.wi.mit.edu/). Specificity of primers was tested by using UCSC *insilico* PCR program (http://genome.brc.mcw.edu/cgi-bin/hgPcr). MicroRNA PCR products ranged from 190bp to 350bp and for *GAPDH*, 2 primer sets to generate 472 bp and 644 bp were designed (Table B.1).

For pre-miRNA expression analysis, sequences were obtained from miRBase database and cDNA primers were designed manually, example of hsamir-21 pre-miRNA primers design is shown in Figure 2.1. PCR product sizes were approximately 70bp-80bp and *GAPDH* primers were designed to yield a PCR product of 115 bp. Specificity of designed primers were checked by using UCSC *in-silico* PCR program (http://genome.brc.mcw.edu/cgi-bin/hgPcr). All primers were resuspended in RNase-free water to a final concentration of 100µM.

mir-21 stemloop precursor cDNA primer design

UCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA

UCSC In silico PCR check: ><u>chr17:55273409+55273478</u> 70bp TGTCGGGTAGCTTATCAGACTgatgttgactgttgaatctcatggcaacaccaGTCGATGGGCTGTCTGA Forward: 56.6 C tgtcgggtagcttatcagact Reverse: 56.4 C tcagacagcccatcgac

Figure 2.1: cDNA primer design for hsa-mir-21 pre-miRNA. Green; mature microRNA sequence, arrows; forward (21 nt) and reverse (17 nt) primers, red; stem-loop region. UCSC In-Silico PCR primer specificity program shows 70 bp PCR product specific for the hsa-mir-21 pre-miRNA cDNA on 17q23.

2.2.3.2 Semi-quantitative Duplex PCR

DNAs from 2 normal samples isolated from blood were used in optimization of duplex PCRs such as adjusting *GAPDH* and microRNA primer concentrations. A total of 30 μ L PCR master mixture included: 3 μ L 10X complete Taq Pol buffer, 3 μ L dNTP mix (2nM each), and 3 μ L microRNA forward primer (5 μ M) and 3 μ L microRNA reverse primer (5 μ M), 16.25 μ L dH₂O, 0.25 μ L Taq Polymerase (Applichem, A5186), and 2 μ L DNA (50ng/ μ L).

PCR was performed in a thermal cycler using ~3-4°C lower Tm of each primer pair in PCR program: 1 cycle denaturation step at 94°C for 2 min, 35 cycles of amplification at 94°C for 30 sec (Tm-3) °C for 30 sec, extension step at 72°C for 30 sec) and final extension step at 72°C for 10 min was performed. For nonspecific bands, relatively higher temperatures were used for amplification step ((Tm-1)°C). For some of the microRNA PCRs, the following touchdown program was used: 1 cycle denaturation step at 94°C for 2 min., 3 cycles of amplification at 94°C 30 sec., annealing at (Tm-1)°C 30 sec and extension step at 72°C for 30 sec), 3 cycles of (94°C 30 sec., (Tm-3)°C 30 sec., 72°C 30 sec), 29 cycles (94°C 30 sec., (Tm-5)°C 30 sec., 72°C 30 sec), and 72°C 10 min.

Semi-quantitative duplex PCR master mixture included 3μ L 10X complete Taq Pol Buffer, 3 μ L dNTP mix (2mM each), 3 μ L *GAPDH* forward primer (5 μ M) and 3 μ L *GAPDH* reverse primer (5 μ M), 3 μ L microRNA forward primer (5 μ M) and 3 μ L microRNA reverse primer (5 μ M), 9.75 μ L dH2O and 0.25 μ L Taq Polymerase, finally 2 ul of 50ng/ μ L DNA template (total 100 ng) was added for a final 30 μ L reaction mix. PCR conditions such as Tm, primer:primer amounts and amplification cycles were first optimized in normal DNA samples (See Figure 2.2 for an example of cycle optimization) and later cancer cell line DNAs were used in previously optimized PCR conditions listed in Table B.2.

Figure 2.2: An example of PCR optimization by cycle selection In this case, hsa-mir-34c was optimized at cycle 27 before saturation of the bands.

2.2.3.3 Densitometry Analysis and Fold Change Calculation

Semi-quantitative duplex PCR gel images were analyzed using Scion Image program (National Institute of Health). Fold changes calculated for normal DNAs for *GAPDH* and microRNA band intensities were used in normalization of cancer cell line DNA fold changes. The formula used in calculation of fold change of microRNAs in cancer cell lines normalized to normal DNAs is shown in Figure 2.3.

Figure 2.3: Formula used in normalization and calculation of fold changes of microRNAs. Ratios of peak values generated by Densitometry analysis program were used. (C): Cancer cell line; (N1) and (N2): Normal DNAs

2.2.4 Expression Analysis of microRNAs

Expression analysis of selected microRNAs was performed in two stages. First, pre-miRNAs (precursor) expression was investigated by using RT-PCR. Second, expression of mature miRNAs (active form) was investigated by using real-time RT-PCR method.

2.2.4.1 RNA Isolation and DNase Treatment

All the solutions were prepared with DEPC-treated water and micropipettes were UV cross linked. RNase free tubes and filtered tips (Biosphere) were used. The bench was cleaned with RNase AWAY solution (Molecular BioProducts, 7000) and DNA AWAY (Molecular BioProducts, 7010) to remove any contaminating RNases or DNases. Two different isolation methods were used: (a) Trizol Reagent (Invitrogen, 15596-026) and (b) *mir*Vana microRNA Isolation Kit (Ambion, AM1560). RNAs were DNase treated following isolation by TURBO DNA-free kit (Ambion, AM1907) to remove any contaminating DNA template.

2.2.4.1.1 RNA Isolation by Trizol Reagent

RNA was isolated from MCF7, MDA-MB-231, HS578T, SUM-159, MCF10A, SHSY-5Y, and HeLa (cervical carcinoma) cell lines for RT-PCR analysis of pre-microRNAs and mature microRNAs by using Trizol Reagent. Additionally, normal breast RNA (Ambion, 7952) was used as a control in pre-miRNA RT-PCR.

For RNA isolation by Trizol Reagent, cells were grown in T75 cell culture flasks to 70% confluency. Trizol reagent (1 ml) was used to lyse the cells, passing

them through the pipette several times and transferred to an eppendorf tube. 0.2 ml of isopropanol (Sigma, I9516) per 1 ml Trizol reagent was added to cells, and the tube was shaken for 15 sec. the tube was centrifuged at 12,000 x g for 15 min at 2-8°C. Following centrifugation, mixture separates into 3 levels; phenol chloroform phase, interphase and aqueous phase from bottom to top. Aqueous phase containing RNA was transferred to a new tube. 0.5 ml isopropyl alcohol was added and mixture was incubated at 15-30°C for 10 min. Then, it was centrifuged at 12,000 x g for 10 min at 2-8°C. RNA precipitated, supernatant was removed and RNA pellet was washed once with 1 ml of 75% ethanol. Sample was mixed by vortexing and centrifuged at 7,500 x g for 5 min. at 2-8 °C. The RNA pellet was air-dried for 5-10 min. RNA was dissolved in 30-50 μ L RNase-free water and stored at -80°C. RNA concentrations were measured in Nanodrop Spectrophotometer (ND-1000).

50 μ l RNA (~200ng/ul) was treated with 1 μ l DNase I supplied in TURBO DNA-free Kit, and incubated at 37°C for 30 min. 5 μ l of DNase inactivating reagent was added and incubated at room temperature for 2 min. After centrifugation at 10,000 x g for 1.5 min, supernatant containing RNA was transferred to a fresh tube. DNase treated RNAs were stored at -80°C.

2.2.4.1.2 RNA Isolation by mirVana microRNA Isolation Kit

Optimization of expression analysis experiments included comparison of two RNA isolation methods; by *mir*Vana miRNA isolation kit and by Trizol Reagent.

Total RNA was isolated from MCF7 by using *mir*Vana miRNA isolation kit. Seventy percent (70%) confluent cells were washed with 5ml 1X PBS. 3ml of 1X Trypsin was added to detach the cells and cells were incubated at 37° C, 5% CO₂ incubator for 10-15 min. Supernatant was removed by centrifuging the cells

at 1400 rpm for 4 min in 5-6 ml culture medium. The media was removed and cells were washed once with 1x PBS and kept on ice. Lysis buffer (600 μ L) was added to cells and vortexed. MiRNA homogenate additive (60 μ l) was added to the cell lysate, mixed, and incubated on ice for 10 min. Then, 600 μ l acid:phenol:chloroform was added to cells and vortexed for 1 min. Cells were centrifuged at 10,000 x g for 5 min at room temperature to separate organic and aqueous phases. For isolation of total RNA, 1.25 volumes of 100% ethanol was added to aqueous phase and mixed. The lysate was filtered through cartridge and centrifuged at 10,000 x g for 15 sec. The flow through was discarded. MiRNA wash solution (700 μ L) was added to the filter cartridge, and the filter cartridge was centrifuged for 5-10 sec and the flow through was discarded. The filter cartridge was transferred to a new microcentrifuge tube and RNA was eluted by applying 100 μ l RNase-free water to filter and centrifuging at 10,000 x g for 20-30 sec. RNA was stored at -80°C.

2.2.4.2 Expression Analysis of pre-microRNAs by RT-PCR

Overview of expression analysis for pre-miRNAs is as follows:

Expression analysis of 7 candidate pre-miRNAs (hsa-mir-633, hsa-mir-145, hsamir-21, hsa-mir-361, hsa-mir-486, and hsa-mir-301) was done by RT-PCR. MCF7, MDA-MB-231, HeLa, and normal breast RNAs were used in cDNA synthesis. Duplex PCR was performed by coamplifying *GAPDH*, as a housekeeping control after setting optimized PCR conditions in DNA templates.

Three different cDNA synthesis kits were used and compared; RevertAid First Strand cDNA synthesis kit (Fermentas, K1632), Superscript II RT (Invitrogen, 11904-018), and Omniscript RT kit (Qiagen, 205110). Both oligodT and random hexamer primers were used. Table 2.1, Table 2.2 and Table 2.3 show master mix preparation and protocol for the kits used.

RNA	1 μg (1-2 μL)			
Primer (oligodT or random hexamer)	1 μL			
dNTP mix	2 μL			
DEPC- treated water	variable			
TOTAL	12 μL			
Briefly centrifuged, incubated at 70C for 5 min., chilled on ice and briefly centrifuged.				
5X reaction buffer	4 μL			
Ribolock RNase inhibitor	1 μL			
Briefly centrifuged and incubated at 37°C for 5 min (25°C for random hexamer primers)				
Revertaid RT enzyme	1 μL			
TOTAL	20 μL			
Mixed and incubated at 42°C for 60 min (25°C for 10 min,, 42°C for 60 min for random hexamer primers), reaction was stopped by heating to 70°C for 10 min. and chilling on ice.				

 Table 2-1: cDNA synthesis (RT) protocol and reaction mixture by RevertAid First strand cDNA synthesis Kit

Table 2-2: cDNA synthesis (RT) protocol and reaction mixture by Superscript II cDNA synthesis

 Kit

RNA	1 μg (1-2 μL)		
heated to 70°C for 10 min. to avoid secondary structure, briefly centrifuged and put on ice.			
Primer (oligodT or random hexamer)	1 µL		
dNTP mix	1 µL		
DEPC- treated water	variable		
TOTAL	12 μL		
Mixed and heated to 70oC for 5 min., put on ice			
5X 1st strand reaction buffer	4 µL		
0.1 M DTT	2 µL		
Ribolock RNase inhibitor	1 µL		
Mixed and incubated at 42°C for 2 min (25°C for random hexamer primers)			
Superscript II	1 ul		
Mixed and incubated at 42°C for 50 min (25°C for 10 min, 42°C for 50 min for random hexamer primers) and 70°C for 15 min.			

Table 2-3: cDNA synthesis (RT) protocol and reaction mixture by Omniscript cDNA synthesis Kit

RNA	1 μg (1-2 μL)
heated to 65oC for 5 min to avoid secondary structure, but	riefly centrifuged and put on ice.
10X reaction buffer	2 µL 1
Primer (oligodT or random hexamer)	2 μL
dNTP mix	2 μL
DEPC- treated water	variable
Ribonuclease inhibitor, 10U/ul (Fermentas, cat#)	1 μL
Omniscript RT enzyme	1 µL
TOTAL	20 μL
Mixed and heated to 37°C for 60 min	

First, PCR conditions such as Tm for primers and PCR program for hsamir-21, mir-633, mir-145, mir-383 and mir-361 were optimized by using normal DNAs. PCR reaction mixture and PCR program used are shown in Table 2.4 and Table 2.5. **Table 2-4:** PCR reaction mixture to amplify pre-miRNA

1X master mix		
10 X buffer with MgCl ₂	3 μL	
dNTP mix	3 μL	
microRNA forward primer	3 μL	
microRNA reverse primer	3 μL	
DMSO (to prevent secondary structures)	3 μL	
DEPC-treated water	13.75 μL	
Taq Polymerase	0.25 μL	
DNA(100ng /ul)	1 μL	
TOTAL	30 µL	

 Table 2-5:.PCR cycling conditions for pre-miRNA

95°C	3:00 min	
95°C	0:30 min	
48-60°C	0:30 min	> 35 cycles
72°C	0:30 min	
72°C	10:00 min	

Thirteen tubes were prepared for optimization and each tube was placed in a well in the thermocycler and 13 different annealing temperatures ranging from 48° C to 60° C were used in a gradient PCR program.

Hsa-miR-383 and *GAPDH* were co-amplified in the duplex PCR reaction and program (Table 2.6 and Table 2.7) in cancer cell line cDNAs and normal breast cDNA Table 2-6: Duplex PCR reaction mixture to amplify pre-miRNA and GAPDH.

1X master mix		
10 X buffer with MgCl ₂	3 μL	
dNTP mix (2mM each)	3 µL	
microRNA forward primer (100%)	3 µL	
microRNA reverse primer (100%)	3 µL	
GAPDH forward primer (12.5 %)	4 μL	
GAPDH reverse primer (12.5 %)	4 μL	
DMSO	3 μL	
DEPC-treated water	5.75 μL	
Taq Polymerase	0.25 μL	
cDNA	1 μL	
TOTAL	30 µL	

Table 2-7: Duplex PCR cycling conditions for pre-miRNA.(Annealing temperature differs for all microRNAs)

2.2.4.3 Expression Analysis of Mature microRNAs by Real-Time RT-PCR

For expression analysis of mature microRNAs (hsa-miR-21 and hsa-miR-383), Taqman microRNA Reverse Transcription Kit (ABI, 4366596) and commercially available Taqman microRNA Assays (ABI, 4373381), and Taqman Universal Master Mix (ABI, 4304437). An ABI Prism 7900 HT Sequence Detection System was utilized for detection. Data analysis was conducted using SDS 2.0 software. U6 was used as internal control but not used in normalization.

In our study where a suitable endogenous gene was not present, absolute quantification was used. Absolute quantification detects the quantity of a single nucleic acid in an unknown sample. A sample with known quantity (calculated by spectrophotometer and molecular weight) is used to construct a standard curve to determine the quantities of other samples according to Ct detected and quantity matches that Ct value in the constructed curve. The Ct value is defined as threshold cycle, the fractional cycle number that fluorescence from the products passes a certain threshold. One Ct value difference between samples equals to 2 fold difference. An efficient PCR reaction (100% efficiency) gives slope of -3.3 on standard curve.

Three biological replicates of 6 cell lines were grown in tissue culture and RNA was isolated separately. Each replicate was loaded into 3 wells of a 384-well plate as 3 technical replicates for statistical significance. For rat brain tissue, whole brain RNA was used in the experiments.

Taqman microRNA assay protocol by real time qRT-PCR includes two steps as represented in Figure 2.3. The first step was cDNA synthesis (by reverse transcriptase, RT) of mature microRNAs by microRNA RT kit; extension by looped primers specific to particular microRNA from 10 ng total RNA of starting material, shown in Table 2.8. The second step was synthesis of second strand of cDNA and PCR amplification of microRNA by using specific primers, Taqman Universal master mix. Amplitaq Gold DNA Polymerase provided in Assay kit was also used. After the RNA was added to master mix, the mixture was centrifuged briefly and tubes were placed into the ABI 2720 thermal cycler for the RT reaction with the program shown in Table 2.9.

Figure 2.4: Taqman microRNA real-time RT-PCR Assay (Figure taken from www.appliedbiosystems.com)

Table 2-8: cDNA	synthesis (RT) mixture by	y Taqma	n microRNA	RT Kit
-----------------	-------------	----	--------------	---------	------------	--------

Component	Volume ul / 15 µL reaction
dNTP mix (100mM total)	0.15 μL
Multiscribe RT enzyme (50U/µL)	1 μL
10X RT Buffer	1.5 μL
RNase inhibitor (20U/µL)	0.19 µLl
Nuclease-free water	8.16 μL
Specific primer mix	3 μL
RNA (10ng/µL)	1 μL
Total	15 μL

Table 2-9: Taqman miRNA cDNA synthesis reaction program.

16°C	30:00 min
42°C	30:00 min
85°C	5:00 min
4°C	Hold

MCF10 was used as standard sample in U6 and hsa-mir-21 analyses. Brain tissue was used in hsa-mir-383 analysis. Standard samples were diluted in certain ratios and quantities were set. For example, 4 serials dilutions were done for MCF10 cDNA as follows; no dilution (neat), 1:2, 1:4, 1:8 and quantities of 1, 0.5, 0.25, and 0.125 were attributed to each dilution, respectively and set to program before run. Constructed curves were used by the program to calculate quantities of other samples.

After cDNA products are prepared, master mixture was prepared for PCR amplification of RT products (Table 2.10) loaded on 384-well clear optical plates (ABI, 4309849) and covered with optical adhesive covers (ABI, 4313663). The PCR program is shown in Table 2.11 and was performed using the ABI Prism 7900 HT Fast Real-Time PCR System. FAM reporter dye linked to 5' of the probe was used to label the products with fluorescence.

Table 2-10: .Taqman miRNA cDNA PCR reaction mixture

Component	Volume µL / 10µLreaction
Taqman microRNA Assay (20X)	0.5 μL
Product from RT reaction (cDNA)	0.7 μL
Taqman 2X Universal Master mix	5 µL
Nuclease-free water	3.8 μL
Total	10 µL

 Table 2-11:
 Taqman miRNA PCR reaction conditions for real-time RT-PCR

95°C	10:00 min	
95°C	0:10 min	
60°C	1:00 min	\int 40 cycles

2.2.5 Target Search for hsa-miR-21 and hsa-miR-383

Four microRNA target prediction programs available online MiRanda (www.microrna.org) (For web interface, see Figure 2.5) [49], miRBase (http://microrna.sanger.ac.uk/sequences/) (For web interface, see Figure 2.6) [36], TargetScan, version 3.0 (http://www.targetscan.org/) (For web interface, see Figure 2.7) [76] and PicTar (http://pictar.bio.nyu.edu/) (For web interface, see Figure 2.8) [80] were used to find predicted target genes of hsa-miR-21 and hsa-miR-383. All programs were screened and listed for high scored genes from top to bottom.

About 40 high scored genes were selected from each prediction program. Common genes predicted by at least 2 of the programs were selected. Also, functions of the predicted genes were obtained from NCBI web site and the genes with potential function in tumorigenesis were included in candidate list.

Human miRNA Tai	gets	5 April 2005 V	ersion, Using	Ensemb	l build 27.1									1	miRanda web serv	er microrna.org FAQ C
Ouery by miRIA(s); hsa-mir21 Display; O Al targets Common targets Genes targeted by: hs <u>Download Results</u> (I <u>Found 76 genes</u> . Sorted from highest to Prepend "ENSCE0000	a-mir ixcel	-21 [Format]] st scoring. iene in sumn s (Chicken)	nary table to	get ENS	Query by Enter lis Display: O mRN4 O mRN4 SEMBL get	gene(s): it of genes regulators regulators ne id.	2 s of any of thes common to all	e geni of the	es se genes se (C-at)	Additional Search	Options: t sites con:	2 erved in:				6
Legenu. gga - Gallus	ganu	is (chicken)	mmu - w	us musc	ulus (Muu	se) m	o - Rattus nu	ivegi	cus (real)	-						-
Gene Gene Nam	e Hit	s Hit	t by	Conser	ved in	Gene	Gene Name	e Hits	Hit by	Conserved in	Gene	Gene Name	Hits	Hit by	Conserved in	Gene Gene Name
<u>141034</u>	1	hsa-mir-21,	, hsa-miR-21	mmu, n	no	<u>163681</u>	SLMAP	1	hsa-mir-21, hsa-miR-21	mmu, mo	<u>155324</u>		1	hsa-mir-21, hsa-miR-21	mmu, mo	1//2/2 KCNA3
<u>152061</u>	1	hsa-mir-21,	, hsa-miR-21	mmu, n	no	<u>197111</u>		1	hsa-mir-21, hsa-miR-21	mmu, mo	126947		1	hsa-mir-21, hsa-miR-21	mmu, mo	107679 PLEKHA1
147862 NFIB	1	hsa-mir-21,	, hsa-miR-21	mmu, n	no, gga	<u>122707</u>	RECK	1	hsa-mir-21, hsa-miR-21	mmu, mo	<u>143436</u>	MRPL9	1	hsa-mir-21, hsa-miR-21	mmu, mo	155640 C10orf12 1
122756 CNTFR	1	hsa-mir-21,	, hsa-miR-21	mmu, n	no	<u>174010</u>		1	hsa-mir-21, hsa-miR-21	mmu, mo	<u>164093</u>	PITX2	1	hsa-mir-21, hsa-miR-21	mmu, mo	<u>175066</u>
134532 SOX5	1	hsa-mir-21,	, hsa-miR-21	mmu, n	no, gga	<u>156531</u>	PHF6	1	hsa-mir-21, hsa-miR-21	mmu, mo	<u>164684</u>		1	hsa-mir-21, hsa-miR-21	mmu, mo	<u>061987</u>
<u>149970</u>	1	hsa-mir-21,	, hsa-miR-21	mmu, n	no	<u>171316</u>		1	hsa-mir-21, hsa-miR-21	mmu, mo	<u>187772</u>		1	hsa-mir-21, hsa-miR-21	mmu, mo	150593 PDCD4 1
<u>133030</u>	1	hsa-mir-21,	, hsa-miR-21	mmu, n	no, gga	<u>087448</u>		1	hsa-mir-21, hsa-miR-21	mmu, mo	<u>162378</u>		1	hsa-mir-21, hsa-miR-21	mmu, mo	157933 SKI 1
075239 ACAT1	1	hsa-mir-21,	, hsa-miR-21	mmu, n	no	<u>196937</u>		1	hsa-mir-21, hsa-miR-21	mmu, mo	<u>101972</u>	STAG2	1	hsa-mir-21, hsa-miR-21	mmu, mo	144580 RQCD1 1
169564 PCBP1	1	hsa-mir-21,	, hsa-miR-21	mmu, n	no	<u>113300</u>		1	hsa-mir-21, hsa-miR-21	mmu, mo	<u>180667</u>		2	hsa-mir-21, hsa-miR-21	mmu, mo	185652 NTF3 1
145675 PIK3R1	1	hsa-mir-21	, hsa-miR-21	mmu, n	no, gga	100425	BRD1	1	hsa-mir-21, hsa-miR-21	mmu, mo	050628	PTGER3	1	hsa-mir-21, hsa-miR-21	mmu, mo	119669 C14orf4 1
Displaying hits 1 - 50 (first next last Click on gene ID to se Click on miRNA ID to The numbering below i	if 109 e all i see a s rela). miRNAs that Ill genes that ative to the st	hit that gene are hit by th tart of the 3' 1	e. at miRN JTR.	A.											

Figure 2.5: miRanda web interface, microRNA targets search page

welkome trust Sanger institute			TI	RA								Sean
miRBase Targets miRBase home Enter Database Information Release Notes				Downloa Highlighted rows in the table indic All miRNA hits for <i>Horr</i> 1130 l Pa 12345628	d table: <u>GFF</u> cate genes 10 SAP hits fou hits fou 19 10 11 2	IXI with pub iens a ind. 3 next >>	lished kn nd hs	own targets a-miR-2	:1			
Known Targets	Species	Gene Name	Transcript	Description	GO Terms	Score	Energy	P-value	Length	Total Sites	No. Cons Species	No. miRNAs
FAU Statistics						▽.	▽.		▽ .	_ ⊽_		▽ .
Search	Homo	PDCD4	ENST00000280154	programmed cell death 4 isoform 1 [Source:RefSeg_nentide:Acc:NP_055271]		15.3493	-12.85	1.24696e-07	1918	12	9	16 [+]
Download Website Search	Homo sapiens	PELI1	ENST0000358912	Protein pellino homolog 1 (Pellino-1) (Pellino-related intracellular signaling molecule). [Source:Uniprot/SWISSPROT;Acc:Q96FA3]	1 🗌 🗌 🗌	15.3689	-11.82	1.59706e-07	1835	13	7	13 [+]
People Search	Homo sapiens	MRIP_HUMAN	ENST00000313485	Myosin phosphatase Rho-interacting protein (Rho- interacting protein 3) (M-RIP) (RIP3) (p116Rip).		17.9999	-21.82	3.88417e-07	662	18	7	35 [+]
Library Services				[Source:Uniprot/SWISSPROT;Acc:Q6WCQ1]								
Site Map Feedback / Help	Homo sapiens	GLCCI1	ENST00000223145	glucocorticoid induced transcript 1 [Source:RefSeq_peptide;Acc:NP_612435]		15.7923	-12.82	6.36876e-07	800	20	9	29 [+]
	Homo sapiens	NFIB	ENST00000380937	Nuclear factor 1 B-type (Nuclear factor 1/B) (NF1-B (NF1-B) (NF1/B) (CCAAT-box-binding transcription)	17.142	-18.59	6.61076e-07	2000	10	7	12 [+]

Figure 2.6: miRBase web interface, microRNA targets search page (Accessible from MiRanda link in <u>http://microrna.sanger.ac.uk/sequences/</u>)

Human | miR-21

186 conserved targets, with a total of 192 conserved sites and 48 poorly conserved sites.

Table sorted by total context score (Grimson et al., 2007).

Target	Come anno	С	onser	ved si	tes	Po	orly o si	onser ites	Repre-	Total	
gene	Gene name	total	8mer	7mer- m8	7mer- 1A	total	8mer	7mer- m8	7mer- 1A	miRNA	score
YOD1	YOD1 OTU deubiquinating enzyme 1 homolog (S. cerevisiae)	2	2	0	0	2	0	1	1	hsa-miR-590	-0.91
LOC150786	RAB6C-like	1	0	0	1	2	1	0	1	hsa-miR-590	-0.81
GPR64	G protein-coupled receptor 64	1	1	0	0	1	1	0	0	hsa-miR-21	-0.79
PLAG1	pleiomorphic adenoma gene 1	3	0	2	1	1	0	1	0	hsa-miR-590	-0.72
SCML2	sex comb on midleg-like 2 (Drosophila)	1	1	0	0	1	0	1	0	hsa-miR-21	-0.70
KRIT1	KRIT1, ankyrin repeat containing	1	1	0	0	1	1	0	0	hsa-miR-590	-0.70
FRS2	fibroblast growth factor receptor substrate 2	1	1	0	0	1	0	1	0	hsa-miR-590	-0.70
RP2	retinitis piamentosa 2 (X-linked recessive)	1	0	0	1	2	1	1	0	hsa-miR-590	-0.69

Figure 2.7: TargetScan web interface, microRNA targets search page

		Pi	cTar	WEB	INTE	RFACE							
	Choos	e Species: vertebrate 💌											
	Choose	e Dataset: target prediction	ons for all hurr	nan microRNAs b	ased on conserva	tion in mammals (human, chimp, mouse, rat, dog)							
Click	<u>micro</u> above for all microRNAs	oRNA ID: linked to RFAM	~										
Clic	k above for all RefSeq Id's (Warning: ma	Gene ID: linked to NCBI y take ~20 secs) vertebrate	es: use Re	rfSeq identif	iers, e.g. NN	I_003483 or Gene symbols (for example HK2).							
		Search for targets of a n	niRNA	Sean PicTar p	ch for all miRNAs redictions	predicted to target a Gene reset							
Rank Click here for detailed 3'utr alignments and location of predicted site	human RefSeq Id	All miRNAs predicted to target the gene	PicTar score	microRNA	Genome Browser	annotation							
<u>1</u>	<u>1</u> <u>NM_002655</u> <u>All miRNA predictions</u> 6.5983 <u>hsa-miR-21</u> <u>Genome</u> browser Homo sapiens pleiomorphic adenoma gene 1 (PLAG1), mRN												
2	NM 015339	All miRNA predictions	4.2722	hsa-miR-21	Genome	Homo sapiens activity-dependent neuroprotector (ADNP), transcript vari							

Figure 2.8: PicTar web interface, microRNA targets search page

CHAPTER 3

RESULTS AND DISCUSSION

3.1 MicroRNAs Mapping to Reported Common Genomic Instability Regions in Breast Cancer

Literature research on more than 40 publications on common genomic instabilities in breast resulted in several regions. Among these, 18 regions were selected for finding microRNAs mapping these regions.

These genomic instabilities were reported as loss (homozygous deletion or loss of heterozygosity-LOH), gain (amplifications), and genomic imbalances (reported as loss or gain) by using different methods such as CGH (Comparative Genomic Hybridization) or microarray analysis. Selected regions include losses in: **2q** [26], **3p** [81], **3p21** [14], [82], [83], **3q13.3** [29], **5q32** [14], [84], [85], **8p11-21** [86], **8p21** [81], [86], **8p21-8p23** [14], [81], [87], [88], **11q23-24** [89], [90], [91], **13q14** [92], [81], [29], [93], **17q21** [81], [94], [95], [96], [97], **19p13** [29], [98], [99], **21q21** [100], and **Xq21** [29]. Gains were found in: **2q31-32** [101], **3q** [102], [103], **8p11-12** [104], [105], [106], **8p23** [14], **11q23-24** [91], **13q31** [29], [107], **17q22-24** [108], [109], [110], **17q23** [95], [109], [21], [110], [108], [109], [111], [110], [112], and **20p** [21], [113], [112].

Boundaries of lost or gained regions were defined by SNP markers when available in reports. UCSC Genome Browser (According to Human May 2004 Assembly) and miRBase databases (Version 7.1) were used to find microRNAs mapping between these boundaries. Thirty-nine microRNAs were found to be mapping these 18 regions. For example, hsa-mir-143 and hsa-mir-145 were located on common loss region 5q33, as shown in Figure 3.1.

Figure 3.1: Example of finding microRNAs mapping to common loss region by using UCSC Genome Browser. Hsa-mir-143 and hsa-mir-145 were found to be mapping to 5q33 region.

Among 39 microRNAs selected, 16 of them were mapping to common loss regions, 13 of them were in common gain regions and 10 of them were mapping to regions reported as loss or gain. Literature research on common genomic instability regions in breast cancer and microRNAs mapping to these regions are summarized in Table 3.1.

	Genomic Loci	Gain / Loss	Samples	References	microRNA genes mapping
1	2q31-32	gain	MDA-MB-231	[101]	hao mir 10h
	2q	loss	breast tumors	[26]	nsa-mir-100
2	3p21	loss	breast cancer cell lines and breast tumors	[14],[82], [83]	hsa-mir-135a-1, let7g, hsa-mir-191, hsa-mir-
	3p	loss	breast tumors	[81]	138-1, hsa-mir-425
3	3q	gain	breast tumors	[102], [103]	hsa-mir-15b, hsa-mir- 16-2
4	3q13.3	loss	MCF7	[29]	hsa-mir-198
5	5q32	loss	breast tumors	[14], [84], [85]	hsa-mir-143, hsa-mir- 145
6	8p11-12	gain	breast cancer cell lines and breast tumors	[104], [105], [106]	hsa-mir-486
	8p11-21	loss	breast tumors	[86]	
7	8p21	loss	breast tumors	[81], [86]	hsa-mir-320
8	8p21-8p23	loss	breast cancer cell lines and breast tumors	[14], [81], [87], [88]	hsa-mir-383, hsa-mir-
		gain	breast tumors	[14]	124a-1
		gain	breast tumors	[91]	hsa-mir-34c, hsa-mir-
9	11q23-24	loss	breast tumors	let7a-2, hsa-mir-125b-	
10	13q14	loss	breast cancer cell lines and breast tumors	hsa-mir-15a, hsa-mir- 16-1	
11	13q31	gain	breast cancer cell lines	hsa-mir-17, hsa-mir- 18a, hsa-mir-20a, hsa- mir-19a, hsa-mir-19b- 1, hsa-mir-92-1	
12	17q21	loss	breast tumors	[81], [94], [95], [96], [97]	hsa-mir-152
13	17q22-24	gain	breast cancer cell lines and breast tumors	[109], [21], [110]	hsa-mir-301, hsa-mir- 142
14	17q23	gain	breast cancer cell lines and breast tumors	[95], [109], [21], [110], [108], [114], [111], [110], [112]	hsa-mir-21, hsa-mir- 633
15	19p13	loss	breast tumors and cancer cell lines	[29], [98], [99]	hsa-mir-7-3
16	20p	gain	breast cancer cell lines and breast tumors	[21], [113], [112]	hsa-mir-103-2
17	21q21	loss	breast tumors	[100]	hsa-mir-125b-2
18	Xq21	loss	breast cancer cell lines	[29]	hsa-mir-384, hsa-mir- 325, hsa-mir-361

Table 3-1: Selected common genomic instability regions in breast cancer and microRNAs mapping to these regions

3.2 Semi-quantitative Duplex PCR Results and Fold Changes of microRNAs

First, primers were specifically designed for each of the microRNA genes and *GAPDH*, a housekeeping gene. Primers were used in duplex PCR with 2 normal DNAs. In PCR optimizations, microRNA and *GAPDH* bands were set to equal or near equal intensities by adjusting PCR conditions such as primer: primer concentrations, Tm and cycle number were optimized for each microRNA. The assumption behind this approach was that normal genomes are considered to have equal amounts (2 copies) of each gene (microRNA and *GAPDH*). On the other hand, cancer genomes may show imbalances in other genes but are considered to have 2 copies of *GAPDH* gene as it is a housekeeping gene, despite the fact that some cancer cell lines showed imbalanced *GAPDH* gene as well (i.e., CAL51). Then, using optimized conditions, 36 pre-microRNA DNA regions were successfully co-amplified with *GAPDH* gene by using semi-quantitative duplex PCR in 20 breast cancer cell lines, 2 immortalized mammary cell lines and 2 normal DNAs.

PCR results were further analyzed for fold changes of microRNAs by using Scion Image densitometry analysis program that detects band intensities from agarose gel images and creates peaks. Area of each peak is attributed to a value. Values of mir/gapdh for each cell lines were compared to mir/gapdh ratios of normal DNAs resulted in a normalized fold change all microRNAs in each cell line.

Fold changes calculated for each microRNA in cancer cells versus controls were classified with the following cut off values and represented as 0- 0.5 fold (loss, \mathbb{Z}), 0.5-1.5 folds (no significant change, \Box), 1.5-2.5 folds (low gain, \Box), 2.5-4 folds (moderate gain, \blacksquare) and > 4 folds (significant gain, \blacksquare). Semiquantitative duplex PCR results, fold changes calculates and fold graphs for 36 microRNAs are shown in Figure 3.3-38. Analyses results showed that in 61% (22/36) of selected microRNAs exhibited genomic instabilities (loss or moderate to significant gain) in at least 3 cell lines of 22 analyzed.

3.2.1 Fold Change Results for microRNAs mapping to common gain regions

MicroRNAs mapping to common gain regions showed both gains and losses in some cell lines. For instance, mir-17-92 polycistron, located on 13q31 reported as gain region, encodes hsa-mir-17, hsa-mir-18a, hsa-mir-19a, hsa-mir-19b-1, hsa-mir-20a, and hsa-mir-92-1 (Figure 3.2). These clustered microRNAs were previously found to be amplified in B cell lymphomas and lung cancers [66].

Figure 3.2: mir-17-92 polycistron mapping to common loss region 13q31 (Figure taken from UCSC Genome Browser)

Fold change calculations on these clustered microRNAs showed that there were low gains in some cell lines but no consistent gain along all breast cancer cell lines was detected. Hsa-mir-92-1 showed significant gain (more than 4 fold) in BT-549 (see Figure 3.3). Interestingly, hsa-mir-19a showed loss in 15 cell lines (see Figure 3.4), 7 of them were consistent with hsa-mir-19b-loss (MDA-MB-435,

MDA-MB-361, BT-549, SKBR3, BT20, HS578T, and MDA-MB-468) as well as immortalized cell lines MCF10 and HPV4-12 (Figure 3.5).

Moreover, hsa-mir-301, located on 17q22, showed moderate gains in 27% (6/22) of the cell lines (Figure 3.6), hsa-mir-21, located on 17q23, showed moderate gains in 22% (5/22) of the cell lines and significant gain in MDA-MB-231 (Figure 3.7). Another microRNA located on 17q23, hsa-mir-633, showed moderate gains in 18% (4/22) of the cell lines (Figure 3.8), whereas hsa-mir-103-2 showed significant gain in MDA-MB-231 (Figure 3.9)

Figure 3.3: hsa-mir-92-1 semi-quantitative duplex PCR results .

Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

	Jen	Ce	su su	SUS	SU SU MDA	MDA		MDA	H	N	H	HUN	H		
5	н											A A			
	19EAQM	H.	(•)											894-910 894-910	
	162AQM	11	*21-4VqH											\$7\$78 \$7\$78 \$M.AON	1
	2 6443 5	D.	894AQM								C			- 1878728H	
2	677WNS	11	BT474	11										WCF10 -	
	ZOUVINS	11	T8/22H		hh						e			67518 81549	
	65 TVINS	11	BTZ0		gra			Ū						0747 0747 am. Adv	1
	ZIMINS	11	*0HOW		nge							E		- 125-8M-AGN	1
	DA4475	11	OIGNE	11	cha									- 252-MO-AON - 254-8M-AON	1
	WCE 7	11	aar	11	plo'					e				ZOL-WINS	
	CALSI	1	057.A		E.					20				- ^{ZS-W} NS	
	61 INUS	11	721AQM							Q				52000 232W	
	28 11/1 182	11	T ₄7D											CALS1	
	7N	11	ZN		9									- 581-WUS	
	IN	11	IN	11		80.	- 09' 1	9 6	8 8	- 08' 0	0.60	- 00'r		1	

hsa-mir-19a

sitometry and Fold change results

A						
	IN	5333,76	8176,16	1,53	091	
1	N2	6715,32	12275,57	1,83	00'T	
H	SUM-185	5775,40	87,278	1,21	21/0	
H	SUM-149	5311,11	4359,86	0,82	0,49	
1	CAL51	1200,38	3703,05	3,08	1,84	
A	MCF7	4110,73	6217,05	1,51	06'0	
4	DU4475	3748,35	4212,65	1,12	0'01	
l	SUM-52	4450,46	2921,68	0,66	0,39	
1	SUM-159	4325,89	1223,03	0,28	0,17	
J	SUM-102	5095,95	7224,92	1,42	0,84	
1	SUM-229	4393,84	1121,11	0,26	0,15	
1	MDA-MB-435	3080,22	792,70	0,26	0,15	
1	MDA-MB-231	4642,97	2480,03	0,53	0,32	
1	MDA-MB-361	6364,27	1766,59	0,28	0,17	
A	IN	7827,02	15603,94	1,99	90 C	
1	N2	10957,82	23355,82	2,13	on'7	ļ
J	T47D	11095,58	27,10672	2,51	1,22	
1	MDA-MB-157	5397,51	5109,48	0,95	0,46	
	BT549	6775,07	5572,84	0,82	0,40	
	SKBR3	10669,79	7538,98	0,71	0,34	
	MCF10	6800,11	2579,78	0,33	0,18	
	BT20	1953,62	1978,67	1,01	0'46	
	HST578T	5284,80	626,16	0,12	0,06	
J	BT474	10143,81	13550,13	1,34	0,65	
	MDA-MB-468	4257,90	2604,83	0,61	0,30	
	HPV4-12	6173,95	2855,30	0,46	0,22	

Figure 3.4: hsa-mir-19a semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent losses.

Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss. Figure 3.5: hsa-mir-19b-1 semi-quantitative duplex PCR results.

hsa-mir-19b-1

	ults	fold change	105	coʻn	0,59	0,79	1,42	2,98	0,91	1,28	0,99	0,79	16'0	0,97	3,02	2,00	111	1,14	2,49	2,22	0,85	0,48	0,90	1,41	2,53	1,26	
	ange res	mir/gapdh	0,92	0,79	0,51	0,67	1,21	2,55	0,78	1,09	0,84	0,68	0,77	0,83	2,58	1,71	1,08	1,19	2,82	2,52	96'0	0,55	1,02	1,60	2,87	1,43	
	Fold ch	mir	1815,96	2227,98	1236,07	1373,41	961,39	4471,22	2441,62	2350,06	1785,43	1373,41	1617,57	900,35	5554,69	3280,93	3437,65	5522,95	10550,38	2653,08	1373,00	1352,35	1403,96	1620,75	11035,58	1001,36	
	try and	gapdh	1983,82	2807,86	2441,62	2044,86	793,53	1754,91	3143,59	2151,68	2121,16	2029,60	2090,64	1083,47	2151,68	1922,78	3169,24	4635,15	3737,02	1052,97	1424,61	2467,26	1373,00	1011,68	3850,58	701,98	
	sitome	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	HST578T	BT474	HPV4-12	
ł	Ď		00-	-00-					-00-	00-	100-	-00-	-00-		A	20	200	44	AN							000	
)	19EAUN	I	I			1000	(•)										_		_		1						¢1-\$AdH
	MD&231		1	*	714	γΛd	H																_		_		- 187878H
	264AQM			(39t/	₽₹	W																				WCF10 MCF10
	677MNS				t	/₺1	Я		1								1					-	C		-		67578
	ZOINUS				TO		TT		ľ		ų					Q	į.		_			1					a747 anam-Aam
	65 IVINS				TQ	£5.	н				grat			T				ľ									122-9W-AGM
	ZIMUZ				*0	EEC)	W				nge			3									_			-	354-8M-AGM
	574475	1	!		£	BB	¥S				chai																SUM-220
	WCE7		1		6	j\$5]	BJ				plo												1				6SL-WNS
	CALST				LSI	W	W				H																5144Ua
	OF INUIS					Œ٤	ħŢ							0													WCE7
	5811/1118 7NT					1	ZN	I	1														C				641-WNS
	IN						IN	1	1			50.5	3	5	5	50	5	100	3	00	20	5	3	0	1 20	00	, <i>™®1•₩NS</i> 3
	0.000											e	2	C	2	c	1	C	1	*	-21	*	26	¢	2	C	2

hsa-mir-301

Figure 3.6: hsa-mir-301 semi-quantitative duplex PCR results. Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

			1						· .													- 1							
	esults	fold change	ŗ	c/'n	0,45	0,78	3,13	3,35	1,09	1,39	1,61	1,14	1,66	1,12	7,62	3,24	240	110	3,25	2,72	1,04	0,80	1,10	1,42	0,98	1,40	0,48	0,24	
	hange r	mir/gapdh	0,61	0,86	0,33	0,57	2,30	2,46	0,30	1,02	1,19	0,34	1,22	0,82	5,60	2,38	0,52	0,42	1,54	1,29	0,49	0,38	0,52	0,67	0,46	0,66	0,22	0,11	
	d Fold c	mir	7407,33	7337,12	4405,78	6231,29	4195,15	13901,92	8583,38	8758,91	8513,17	7916,37	7828,60	2580,28	14551,37	7617,97	6194,11	5404,36	10359,65	7061,29	4026,17	3855,83	3855,83	696,84	1951,14	2694,44	449,07	356,16	
	etry and	dbqcg	12181,73	8513,17	13182,25	10865,26	1825,50	5652,04	10724,84	8548,27	7179,15	9408,37	6424,37	3141,97	2597,83	3194,63	11846,24	12759,87	6736,10	5481,79	8160,74	10127,37	7401,96	1037,51	4227,48	4057,14	1997,60	3112,54	
	ensitom	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
21	H										Ę		<			<	<										-	0	
Ė.	19EAUM	1					((-)	3																				894-15 HDN4-15
Ē	152AOM	i	ľ	l	.7	T-+	Ad	ш																		-			\$7478 9M. AOM
8-	2544AM	i	l	l	**		nu	11		l															3	-			H21278H
hs	67.7MNS	i	i		2	90	νu	N																		t			WCE 10
	ZOTIVINS	ľ	i	i		ħ	L¢I	B			ł												- 24			t			8K849
	65 W AS	h	h	i		18	LSS	H					hn										ļ						0741 721-8M-AOM
	ZIMINS	ľ	٢	l			07I	B					61a		5		_				3	1	Ė						192-8W-Vaw
	DA4475	ľ	t		1000	*01	ECF	W	l				nge												10				254-AM-ADM
	WCE 7	ľ	r	1		83	B	IS	I.				CIN													ł			ZOL-WAS
	CALSI		h			6	ÞSI.	B	l				old												9		V		80W-125
	617WNS	ľ	i	l	L	ST.	ÐA	W				3	-									,		_					5744Ua
	811VINS	ľ				(I/t	Z														2							CALSI
	ZN		I				2	N	5		1			5	10			L		_		_		_					581-WUS
	IN		J				I	N]		1			B OO	2	7 00 -	-	6,00	2001	nn'c	A 00 -	2	3,00		2,UU	1 00	0	0.00	

Figure 3.7: hsa-mir-21 semi-quantitative duplex PCR results . Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

.
		-		- 1						_									1			_	_				_	
sults	fold change	101	70'T	1,36	0,94	1,95	3,38	1,08	2,49	0,80	1,24	0,98	0,38	2,98	1,87	101	10'1	2,22	1,83	0,75	1,18	0,97	0,96	0,86	1,07	0,84	0,79	
lange re	mar/gapdh	1,04	0,99	1,39	0,96	1,99	3,44	1,10	2,53	0,82	1,26	1,00	0,39	3,04	1,90	0,99	1,03	2,23	1,84	0,75	1,18	0,97	0,97	0,86	1,08	0,85	0,80	
Fold ch	mir	5393,41	5316,80	7890,93	4412,79	4320,86	12809,35	5807,11	10970,69	3784,58	4933,75	3202,34	1179,81	9162,67	7186,11	14372,61	11414,43	19706,32	11160,44	7470,17	14163,45	6528,93	3376,52	5752,03	9233,14	2599,62	4870,55	
try and	gapdin	5163,58	5362,77	5684,53	4596,66	2175,75	3723,29	5286,16	4336,18	4627,30	3907,16	3202,34	3018,47	3018,47	3784,58	14581,78	11130,56	8829,75	6080,72	9935,33	11982,16	6708,22	3481,10	6663,40	8545,88	3062,77	6125,54	
nsitome	cell lines	IN	N2	SUM-185	SUM-149	CALS1	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
Dei		Ę			Č							Ċ								4		A		4	4	0 0	6	
19EAUN		1	1	1			(-)					- 0						-3									SI-4VAH
162AQM			ľ		*7	17	Λđ	H															ļ		1			\$7\$78 834.8M.AOM
264AQM					8	948	Ð	N															1					HST578H
677WNS						ŧ/	4I	B	1		í													5	1			WCE10
70 U VINS			1	ļ		18	ÇS	H	i		1	5	q											C	1			81249 491-911
65 TVINS			l			(ZI	B					grap												3			ater an. Adm
ZIMUZ			H		*	OL	łCł	N					lge g		1			-		-		_		_				125-8M-ADM
574475			H			ß	KB	s	i		1	a a	chai									8	¢	_				80M.80W.229
WCE 7			ł	l		6	SI.	B	1		l		old									Q		C				691-WNS
CALSI		i	i		L	SU/	۳D،	N	1		I	0	-								T		ļ		ļ			52. WUS
67 TVI S		i	1			0	I/ħ	L	1		1			C								2						WCF7
SSUALIS		1					7	N	1		1		2									Ē	1		1			6+1-WNS
IN			1				IJ	N			1		01.0	Juc's	000	3,007	03 0	-00'7	000	-nn'7	1 501	22	1 00	2	ח החל	2	0.00-	"''\\\$

hsa-mir-633

Figure 3.8: hsa-mir-633 semi-quantitative duplex PCR results. Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

3.2.2 Fold Change Results for microRNAs mapping to common loss regions

MicroRNAs mapping to common loss regions show consistent losses in hsa-mir-135a-1 (Figure 3.10) and hsa-mir-125b-2 (Figure 3.11). Hsa-mir-135a-1, located on 3p21, showed losses (less than 0.5 fold) in 31% (7/22) of the cell lines whereas hsa-mir-125b-2 showed losses in 54% (12/22) of the cell lines. Also, some microRNAs were observed to show low gains (1.5-2.5 folds) or losses in some cell lines. Besides these, hsa-mir-145 (Figure 3.12) showed low gains in 31% (7/22), and moderate gains (more than 2.5 folds) in 59 % (13/22) of the cell lines.

Hsa-mir-138-1 in the MDA-MB-231 cell line (Figure 3.13) and hsa-mir-191 in the CAL51 and MCF10 cell lines (Figure 3.14) showed significant gains (more than 4 fold) are both are located on 3p21. Also, hsa-mir-361, located on Xq21, showed significant gain in MDA-MB-231 (Figure 3.15).

		80						1				1				1											
	sults	fold change	101	10'1	1,07	0,91	2,42	1,48	1,09	1,21	0,69	1,26	0,56	0,41	1,90	0,57	1,34	0,20	0,67	0,22	0,41	0,44	0,33	0,97	1,08	0,40	
	lange re	minigapolin	1,01	1,02	1,09	0,92	2,46	1,50	1,11	1,23	0,70	1,28	0,57	0,41	1,93	0,58	1,36	0,20	0,68	0,22	0,42	0,44	0,34	0,98	1,10	0,41	
	Fold ch	mir	10955,42	11863,54	15167,56	10,747,61	14143,51	15283,49	14259,44	11882,87	7554,80	16462,12	3497,23	2511,83	14529,94	3381,30	15216,40	1031,62	5183,89	2579,05	3958,84	2230,88	2553,26	11463,88	12843,67	3920,16	
	ry and	gapdh	10839,49	11670,33	13950,29	12810,31	\$757,88	10163,23	12887,60	9699,51	10858,81	12848,95	6144,31	6105,67	7535,48	5854,49	11193,08	5132,31	7621,09	11747,58	9516,70	5016,25	7608,20	11683,10	11708,89	9581,17	
-	sitomet	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
35a-	Den									K K			A A	4		N N	44					2 V	Z	XX			
	19EAON			ľ	2.10		(-)				ľ									80	W 1		1		5	1.4	Лdн
mir	NDA231			1	*7	14	٨đH		1	1	l								1		_		1		• • •	201	8 8 ^{M- A} OM
a-1	264AQM	1		l	8	9¢¥	ND)	[0	l												E	_		0	27	a 12 ⁴
hs	677MNS	1				ħĹ	\$18		1	0													6		0	E1 BR) W
	ZOTIVIOS	ľ		1		18/	,çsp		0	Ĩ	l	qu													6	12	18
	65 IV INS	E		l		0	718			Î		. 6.1.0	10 10				٥		10	_	_				_ _	124	T .8M-AOM
	ZIMAS	1		1		OLE	NCI		1	ł		0.000	j j					_	1	_	1				 	38	8W-40W
	574475	E		3	7.5	RG	RE		١	P		cha									1	C			2	67	am-Adm
	WCE 7	1		1		60			l	ŀ		Fold								_			_		5	01-	Wns Wns
	CALSI				1	CIN			i	ľ									22	_					6 7	51- S-12	Wns
	61 INUS	E			L	517	un.		1	P						3	-	_			=				S.	100	ng
	SSIMUS					d				k				10											1	57	W 40
	ZN						ZŇ										\		Ę						6 5	81- \$1-	Wns
	IN						IN		J	U	0 50 -	20.1		2,00-			- nc. [1 00 -			0.50-		100 0	0.0		

Figure 3.10: hsa-mir-135a-1 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

	try and	gapdh	11876,55	14872,28	16538,54	9111,27	4786,07	16857,62	14907,73	11202,96	11096,60	16254,93	10210,29	6558,69	6097,81	13436,46	5458,30	7997,04	7840,81	3329,66	5350,89	6464,03	4481,86	3144,14	4003,40	9168,77	2323,93	2958,61	
	nsitome	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
25-b2	De				44				A	4				H	Z	<	1251									- AAC			
H	19EACIM		I					(•)																					51.4 NdH
i.	162AQM		l	1	*	71-	¢Λ	łH	l																	C			\$7\$78 \$7\$78 \$7\$78
Ę	264AQM					89t	¥C	W	1																				B1202 187572H
Sa	6727VINS		l			t	lt.	BJ	ľ	Ī																C			WCF10 SKBR3
Ч	ZOTIVINS					T	<u>x</u> s	H	l				3	E											-	ę			64818 M.L
	65 U VINS		Į				07	IN						19 19								ļ				-			192. a
	ZIMUZ		Į	1		-0	IJ	TAT	ľ	ľ				e e e		C	-									_			152-8M-AOM
	574475		Į			*V		<i></i>	P	ļ			a a												Ī				BSS.WUS
	WCE 1		I			8	BB	SK	b	į													- 0		I				551-WAS
	CALSI		ļ	l		(it S.	BJ	l	Į			ſ	4															SUM US
	67 IMAS					LSI	VC	W	l	ļ	Į																		LIJOW
	58 UVI AS		1	1			Œ٤	ħ		l	J																		671-WDC
	7N			1				ZN							B0-1-08	Bn J	3 !	40+	100	Ş		80-1-08		109	40-	2	20-1	00	581-WUS
	IN			l				IN							-	Ŧ	1	÷	Ŧ	-	-	0	l	ŏ	C	,	ò	0	ī

ŝ

0,44 0,27 0,15 0,08 0,08 0,16 0,16

0,57 0,13 0,40 0,57 0,25

2519,21 3700,71 1201,02 419,87 1591,60 5204,42 673,74 742,09

0.14

1,76

0,77

1,36 0,77 0,47

1,03 0,82 0,35 0,44 1,60 0,10

1,37 1,10 1,15 0,47 0,59 0,59 0,13 1,97 1,55

15368,62 12160,17 12160,17 4786,07 4786,07 3846,59 13064,21 1772,62 1772,62 12772,62 12772,62 12772,62 2577,80

Figure 3.11: hsa-mir-125b-2 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

Fold change results

fold change 1,335

mir/gapdh 1,33

mir 15847,22

20030,61

0,76 0,62 1,42 1,04

1,35 1,01 0,82 1,90 1,39

16698,08 7515,91 9075,81 23380,86 6470,06

0,33

~ /	-
5	/

															1						8			1	6	5			
	sults	fold change	91	141	1,24	1,08	3,68	3,21	1,63	1,84	2,02	1,53	2,44	3,13	3,87	1,93	1 50	nc'T	1,78	2,65	2,35	2,22	2,31	3,00	2,59	1,71	1,74	3,01	
	lange re	min/gapolin	1,386	1,426	1,744	1,524	5,187	4,525	2,296	2,588	2,842	2,162	3,443	4,416	5,459	2,728	1,439	1,565	2,666	3,968	3,53	3,335	3,469	4,495	3,838	2,564	2,615	4,52	
	l Fold ch	Ші,	6263.32	8464.55	9219.79	5741.37	3767.07	8214.93	8260.32	9338.24	5321.55	13252.81	5900.23	3006.85	8362.44	3188.39	6616.34	9672.08	16580.71	13392.11	14680.83	15730.41	13644.54	6270.91	8835.07	10801.37	10668.52	8649.07	
	try and	gapdh	4515.94	5934.27	11.72 MS	3767.07	726.18	1815.45	3596.87	3608.21	1872.19	6127.16	1713.33	680.80	1531.79	1168.70	4596.89	6177.91	6217.77	3374.60	4158.46	4716.47	3932.60	1395.01	2271.88	4211.61	4078.75	1913.16	
	isitomet	cell lines	IN	N2	SUM-185	SUM-149	CALSI	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
S	Der		<	444		4	4	47-4-		AT A	TT CT		the second	40	the second	the w	4					A Y Y			L.L.L.			Y Y	
4	195AUN							(-)	11	11				- 0	. 0	1					1		1		1				· .
ir-]	162AQM	I		1	*	15	·ŧΛ	đH			1											0			I				\$7410 894-8M-AQM
H	254435	I				89	Þ¥(TN			1	l							C	1					1		-		1878TSH
8-	677MAS						t/t	IR			i									q			1						MCF10 MCF10
hs	ZOUVIOS		1	1		I	Q/ (ISH			1									q			1						SKBR3 SKBR3
	65 I VINS					ŭ	07	, II 10	3		ł		n an	dbi					C	Ē	T	C	ł				_		221-8M-ADM
	ZIMOS		1	1		4	JU				H		0.01	5 5	C								Ţ						MDA-MB-361
	5744UQ	I	1	1		*0		370			H		han	1011				t					1						822-WB-438
	VICE 7	l		-		2	BB.	35K			H		a ph	- m							8								ZOL-WUS
	ISLAD)) 	61/5	BT			H	i	E.								Ū			_					SUM.52
	67 IVIO S	5	1	1		LS	IA(W			U	1					C	-			0.1	2					_		DU4475
	58 U VIOS			1			۵.	L¥L			L					Ē							T						19740 641.111
	ZN		1	1				7N						1000	<u>}_</u>		2	ļ	5 10	ļ	4	_	ļ	E	Ţ		-		S81-MUS
	IN		1	1				IN		1	-			. 200	4,00	3 50	5	3,00		2,50	00 0	7/7/7	1.50		1,00	02.0	20,0	00 0	

Figure 3.12: hsa-mir-145 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

	hange r	mir/gapdh	1,82	1,77	1,58	1,43	3,69	2,27	1,72	2,02	1,42	2,41	1,33	1,17	8,11	16'0	1,54	1,48	2,82	0,75	1,45	1,12	1,47	0,57	1,11	1,44	1,46	1,30	
	d Fold c	mir	17717,78	18895,83	16963,84	10272,55	19037,19	26505,99	14277,90	13618,19	9683,52	19838,26	12110,29	4924,22	25799,17	6738,41	19334,94	20933,49	30163,26	4434,09	12712,34	14367,99	10828,33	4966,95	8335,34	18840,14	16347,15	8068,91	
	itry and	apdh	9730,65	10649,52	10720,20	7186,07	5159,83	11686,20	8316,99	6738,41	6809,10	8246,31	9118,06	4217,40	3180,72	6974,02	12541,07	14120,59	10714,14	5937,50	8792,07	12883,61	7364,78	8658,85	7498,00	13092,95	11227,96	6222,96	
	ensitome	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
	ğ		<	XX	VVV	4	4		4	4	A		VV	4	1	VV			N - N	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<	4				V	< <	
2	19EVOW	١					0.1	с м ()	(•)		11		Ì			8		s a	1 1 1	1	- 1 (3	Π	ं	1		0	1	1	21-4 4
. 	162AQM	1		1	1	*	71-1	λd	H	1		1																	898-8W-VOW
	VID¥432	I			Ļ		891	Ad	W	1		1	1																187872H
	677MNS	I		1	I		t	/ħ]	B	1		ľ	1																0570M
2	ZOTVANS	l		1			Τ	χç	H	1		1		9	hq											C			87849 87849
	65 IVINS			l				07I	B	1					graj								,	2					² SL-8W-YOW
	ZIMUS	1					*01	CE	W	1		1	1		nge								10			0.	E	10	L9E-BW-VOW
	52447U	1		1	1		Ω	Œ	IS	1		1	1	9	cha														SEP-BM-YOW
	WCEJ			ļ	ł		6	ibsi	B	1			1	1	F old														- ^{SOL-WINS}
	CALST	-		•			LSI	₽ď	W	1			l															172	^{891-W} NS 29-WNS
	67 JALIS	-					1	۵LI	μ	Ì		ġ	1														1		SLODA
	581/U18 7N	1						1	N	1			1																19700
	IN	1						1	IN	1					5 00 1	4 50 -		4 / 10 /	3,50 -		}	2,50 +	2.00		۱ 2 -	1 00 1		2	SBI-WINS

1.51

1,86 0,49 0,96 0,74 0,97 0,74 0,95 0,96 0,86

0,96 1,12 0,79 1,34 0,65 0,65 0,65

Figure 3.13: hsa-mir-138-1 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

hsa-mir-138-1

e results

fold change

1,80

2,05 1,26

0,83

Figure 3.14: hsa-mir-191 semi-quantitative duplex PCR results

t0 Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

00'00

1,62 2,60 2,01

2.57 66

99.1

2,71 2,44 1,25 1,24 1,72

2.67

2.34

F.

2.31

62.1

6

6.87

00

fold change 1,06

ubqcg/nim

8 Ŧ

8 0,96 0,58 3,35 1,27 2.3 1,46 6,47 0,68

55

191

Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss. Figure 3.15: hsa-mir-361 semi-quantitative duplex PCR results

3.2.3 Fold Change Results for microRNAs mapping to common loss or gain regions

MicroRNAs mapping to genomic imbalance regions were found to be hsamir-10b, hsa-mir-198, hsa-mir-486, hsa-mir-383, hsa-mir-34, hsa-mir-125b-1, hsa-let-7a-2, and hsa-mir-100.

Among these 8 microRNAs reported in imbalanced regions (loss or gain), 4 microRNAs showed fold changes in at least 3 cell lines. Hsa-mir-383 exhibited moderate gain (more than 2.5 folds) in 13% (3/22) of the cell lines (MCF7, MDA-MB-231, and T47D) (Figure 3.16). Hsa-mir-125b-1 showed loss in 18% (4/22) of the cell lines (Figure 3.17). Hsa-let-7a-2 showed loss in 27% (6/22) of the cell lines whereas it showed moderate gain in 13% (3/22) of the cell lines (Figure 3.18). For significant gains, more than 4 fold, hsa-mir-100 exhibited gains in 2 cell lines (Figure 3.19) and hsa-mir-198 exhibited gain in MDA-MB-231 (Figure 3.20).

Figure 3.16: hsa-mir-383 semi-quantitative duplex PCR results

Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

	1.27					_			_																		_	
ults	fold change	1.43	CP/1	0,81	0,80	0,92	1,07	0,94	0,81	0,27	0,87	0,08	0,07	1,22	0,10	0.60	vc,U	4,19	1,32	1,79	1,41	1,30	1,82	1,18	1,67	3,04	0,83	
ange res	mir/gapdh	1,35	1,50	1,15	1,14	1,32	1,53	1,34	1,15	0,38	1,24	0,11	0,11	1,74	0,14	0,54	0,65	2,47	0,78	1,05	0,83	0,77	1,07	0,70	0,99	1,80	0,49	
Fold ch	mir	14793,25	16459,38	11797,57	8297,01	11309,51	16257,43	10754,14	7775,29	4291,56	9138,49	622,70	757,33	8095,05	1497,84	9406,02	15284,79	38421,93	15158,81	22969,17	21982,38	17258,37	13563,15	9511,00	19756,85	25488,64	6613,61	
try and	gandh	10956,09	10939,26	10232,42	7253,57	8599,94	10653,16	8010,91	6765,51	11191,71	7388,21	5621,10	7186,25	4644,98	10636,33	17279,37	23536,05	15557,73	19462,91	21793,42	26412,45	22507,27	12639,34	13647,13	20050,79	14193,02	13479,17	
ensitome	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
ă					E				L			4	Ļ			4		No.					ł			N N	N N	
19EACIM	ľ	1	ľ				(•)	1					[Ī									ì	21.71
162AQM	ł		ł	*	71-	ŧΛ	Æ	۱																				\$95-8M-AGM
XIDA435	1		i		891	-V(πN	1		1	1												1			-		187872H
677MAS				l		-/+	Ia	i		1													C					BT20 BT20
zouvins						NLW	cut.	Ì		ľ																		SKBR3
65 I MAS	P		ł	l	T	86.5	эн •н	l				ц											E			_		721.8M.AQM
zavins				l		06	ГЯ	ļ				U K L		2													C	198-8M-AUM
574475				l	*0	ET.	M	K		l		0.90																254-8M-ADM
UCE			ß	1	5	BK	SK	k		ł		han												1			0	622-WNS
CALSI			ł	l	(5¢5.	BT	k		ŀ		old														T		6SI-WAS
617 TANS					LSI	W(W	ļ		ļ		H												C				STADUC
58 TW DS						Œ۷	杠																					VCF7 WCF7
ZN						0.000	ZN											Į					_		<u>í</u>			581.WUS
IN							IN						1 50		4,00-	0 2 0	- 00'0	3,00-	03 0		2,004	0.5		1.00-	0.70		100'0	

hsa-mir-125b-1

Figure 3.17: hsa-mir-125b-1 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

2	De											
a-	19EAUM	11	(•)						3 3] (j	21-th Addy
t1	162AQM		#21-⊅∆dH	H	Ŀ							51418 44-YOW
-le	ND¥432	11	894AUN		B							HELELEH
Sa	67.7MNS	11	BT474		0	-						WC b 10
_	2011/10S	11	T8722H	0	I	apł						everal skeps
	65 U VINS	11	BT20	1		6 8			=			151-8W-YOW
	ZIMAS	11	*01-JOW			ang						196-304-YON
	DU4475	11	CUEVE	î	ł.	d ch				C		SEP-BH-YON
	MCE7	11	acta	ł		Fol						SUM-200
	CALSI	11	022TA	ł	H							851-W/18
	67 IMINS	11	721AOM	ł					6			STAPUG
	58 U VINS	11	Ωζ≱Τ	1			C					WCF>
	ZN	11	ZN	1	1	<u></u>						641-WINS
	IN	11	IN	1	1	4,507	4,00- 3,50-	3,00- 2,50-	2,00-	1,90,1	0,50	3 ***8 5

insitometry and Fold change results

cell lines	dbqrg	mir	mir/gapdh	fold change
IN	4667,85	8584,92	1,84	5
N2	7001,77	11196,3	1,60	1.1.F
SUM-185	6479,49	10576,1	1,63	0,95
SUM-149	4814,74	8111,61	1,68	0,98
CAL51	2284,96	13334,37	5,84	3,39
MCF7	4537,28	12958,99	2,86	1,66
DU4475	6659,03	4,727.9	1,46	0,85
SUM-52	6006,18	11033,09	1,84	1,07
SUM-159	5859,29	6610,06	1,13	0,66
SUM-102	6430,53	16517	2,57	1,49
SUM-229	7230,27	6887,52	0,95	0,55
MDA-MB-435	3525,37	5026,91	1,43	0,83
MDA-MB-231	2774,59	19552,73	7,05	4,10
MDA-MB-361	6593,74	3704,9	0,56	0,33
IN	9931,4	14890,01	1,50	121
N2	11759	17879,35	1,52	101
T47D	8939,67	27484,89	3,07	2,04
MDA-MB-157	7310,41	4136,9	0,57	0,37
BT549	6162,85	9838,89	1,60	1,06
SKBR3	10554,76	9733,05	0,92	0,61
MCF10	6318,69	3131,01	0,50	0,33
BT20	9109,68	3357,69	0,37	0,24
HST578T	10073,07	5426,14	0,54	0,36
BT474	13402,43	20358,65	1,52	1,01
MDA-MB-468	10044,74	7735,44	0,77	0,51
21-4-12	11263.14	6092.01	0.54	0.36

Figure 3.18: hsa-let-7a-2 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

Figure 3.19: hsa-mir-100 semi-quantitative duplex PCR results

Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

change	mir/gapdh	1,31	1,27	1,36	1,62	1,33	3,46	1,33	1,81	1,06	1,46	1,69	2,01	5,54	1,36	2,69	1,14	1,51	1,05	1,09	0,81	1,20	1,74	1,63	1,33	
nd Fold	mir	7573,57	8271,44	8957,86	8065,51	2722,82	7687,97	4816,42	5708,78	2642,74	903,79	2665,62	1635,98	4564,73	777,95	9186,10	1007,51	2167,41	3064,86	2870,13	1828,75	2768,53	8457,99	7416,62	1346,17	
netry aı	gapdh	5788,86	6498,17	6578,25	4976,59	2047,84	2219,44	3615,18	3146,12	2482,58	617,78	1578,78	812,27	823,71	572,02	3411,98	880,51	1430,83	2912,46	2641,53	2252,08	2311,34	4868,21	4554,95	1015,97	
Densiton	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
	4	1 AF					X					11.11		00	~~~	CHO.	2		C C	00	0.0	ΞU		5		
19EAON					1000		()						a''			1			Î	1		_			21-4A.I.
162AQIV	[1		k7	7.T+	٨đ	Ŧ																T		899-81 Van
2 64AQ M																								E		18/518H
6771108					8	1901	ζШ/	N.	U	U	1													Ţ		MCF10
2011/105						14	14L	I	n	Π	l											ę				- 84878 84878
65 IVIO S						18	[[s]	ł			l	Ч							į	-						251-8m-Van
2 JUNE S			٥			,	777	,			l	LaD			_	=	_		_				=	-		195-81-Van
574475	I					ļ)(TP)				l	99	U I D											T		SEP-BIP-VOM
MCE7			0			*0L	ACF	I			l	han										C	_			ZOL-WINS
ISIAC						ß	KB	8			l	ld c									q				1000 March 1000	ZS-WINS
617WU 8		I	0			6	ST8	I				Fo						¢	_					1		S2WING
\$8 UW 08	1	L	0				1/11																	T		LSTV3 BHLOW
ZN	1	l	0		L	511	Ű	l		-			5	4		<u> </u>	ļ			ļ	1			ł		Sal-MUS
IN	t	I	Π			(I/ti				10		4,50	4 N		ດ່າ	3,00	ц С	577	2,00	1.50		ы́.	0,50	0.0	j J

 $\begin{array}{c} 1,26\\ 1,03\\ 2,68\\ 1,03\\ 1,03\\ 1,41\\ 0,82\\ 1,13\\ 1,13\\ 1,13\\ 1,13\\ 1,17\\ 0,89\\ 0,89\\ 0,89\\ 0,82\\ 0,84\\ 0,08\\ 0,082\\ 0,082\\ 0,082\\ 1,17\\ 1,17\\ 1,17\\ 1,17\\ 1,13\\ 1,$

fold change results

hsa-mir-198

1,29

1,06

Figure 3.20: hsa-mir-198 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

	Ē		16	19	15	П	30	19	İ	96	89	18	46	43	11	R.	47	20	10	11	63	24	4	46	25		
	try and	apdh	16935,97	18087,47	28947,04	17839,46	17874,89	24482,75	11550,47	17095,41	9105,74	17432,00	8910,87	5987,82	7706,22	9371,47	32260,38	12376,54	9516,63	14965,26	8308,56	5029,51	18848,34	1701,16	4277,55		
	nsitome	cell lines	IN	N2	SUM-185	SUM-149	CALSI	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	T47D	MDA-MB-157	BT549	SKBR3	MCF10	HST578T	BT474	MDA-MB-468	HPV4-12		
ອ	De		< <												<	<	\leq	<					<	(
20	19EACIM	I												8				8			8	Q			Ì	21-4 Adu	
Ľ	162AQM	İ	I	I							I		l	T		1					1					897-8W-YOW	
E	NDV435			Į			(•)																			18291SH	
ģ	677MAS	1			*71	† ∧	dH	8													1					WCE'S 2KBK3	
n P	ZOUVIOS	1	I	I	89)\$¥(W					ų						C								181-8M-Aum	
	65 DVIDS					t/t	, I R		N	l		0TST									ŝ					198-8W-V-	
	ZANAS	۱				v.u			1	1		100	0							-						465-84-40W	
	574475	1			3	[8/	,sH					cha									-		1			MOA-MB	
	MCE 7		1	I	*	EIO	MC					bld.								1	C	_				691-Wns	
	C∀T2J	1	I			SR3	ZXS					T	•									_				20-WAS	
	67 I VINS			I		61	E La												_	_	-					4JOW	
	88 1 MDS			I	1	TW	(TTA)		ì	ï				0							2	C)			641-WUS	
	ZN				L.	114	ωı					-00		504	2	00) 	(50 1		1 00'	ant-MUS	
	IN					D	/ħI					m		c	4	C	V		-	,	-		0		0		

Figure 3.21: hsa-mir-20a semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

old change results

cell lines	gapdh	mir	uni/gap dh	fold change
IN	16935,97	16245,07	0,96	501
N2	18087,47	19451,56	1,08	7/17
SUM-185	28947,04	15447,87	0,53	0,52
SUM-149	17839,46	11851,63	0,66	0,65
CALSI	17874,89	30860,31	1,73	1,70
MCF7	24482,75	19026,39	0,78	9/20
DU4475	11550,47	11497,33	1,00	0,98
SUM-52	17095,41	12'0206	0,53	0,52
SUM-159	9105,74	8981,73	66'0	16'0
SUM-102	17432,00	18796,09	1,08	1,06
SUM-229	8910,87	4623,73	0,52	0,51
MDA-MB-435	5987,82	4358,00	0,73	0,72
MDA-MB-231	7706,22	11674,48	15,1	1,49
MDA-MB-361	9371,47	7440,49	61,0	0,78
T47D	32260,38	47891,31	1,48	1,46
MDA-MB-157	12376,54	20278,30	1,64	1,61
BT549	9516,63	10847,97	1,14	1,12
SKBR3	14965,26	11821,82	61.0	0,78
MCF10	8308,56	6360,85	0,77	0,75
HST578T	5029,51	2490,10	05'0	65'0
BT474	18848,34	14940,61	61,0	0,78
MDA-MB-468	1701,16	4672,02	2,75	2,70
HPV4-12	4277,55	2588,72	0,61	65,0

	ults	fold ch	1	T,Y	0,70	0,68	2,49	1,08	1,01	0,60	0,72	1,05	0,39	0,69	1,36	0,82	-	-	1,50	1,03	0,99	0,83	0,82	1,65	0,67	1,01	1,53	0,73		
	ange res	mar/gapdh	1,41	1,56	1,04	1,00	3,69	1,60	1,50	0,89	1,07	1,55	0,58	1,03	2,02	1,22	1,35	1,53	2,15	1,47	1,43	1,19	1,17	2,37	0,96	1,46	2,20	1,04		
	Fold ch:	mir	11875,40	15685,81	12670,21	12109,17	16316,98	10800,07	15124,77	10542,92	9467,59	15639,06	6451,99	7457,19	11150,72	11501,37	12512,62	14720,72	15627,93	5854,06	7206,31	7634,24	5922,52	4981,08	4467,57	7086,49	10663,97	4501,80		
	ry and	gapdin	8439,01	10052,01	12179,30	12085,79	4418,21	6755,89	10075,39	11781,89	8836,42	10075,39	11174,10	7270,17	5516,92	9420,84	9294,60	9636,94	7274,78	3971,17	5049,55	6418,92	5049,55	2105,41	4655,86	4861,26	4844,15	4313,51		
	sitomet	cell lines	IN	N2	SUM-185	SUM-149	CALSI	MCF7	DU4475	SUM-S2	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12		
3a	Den		<	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2			4		~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< <		<					<				<		<		
Ϋ́	19EACIM	1		1				(-)						Γ			1								Î			21	
nir	162AQM	1		i		*7	17	Λđ	H											į									\$94-8M-AOM	
-	264AQM	1		1		8	917	Ð	W													_			C				18121SH	
SS	677MNS	l					1	Lt.L	B			1												0	į	ł			WCF10 MCF10	
2	20 U VIOS						18	LÇS	H			1				ų							I						64878	
	65 T AUS			1			()7.L	В			1				grap					-	_		7					a747 a747 a1.8M-AaM	
	ZANUZ					,	*0I.	Ð	W			1				nge	D				1			ा					122-8M-AQM	
	DU4475						ß	KB	S			1				l cha													622-WUS	
	ICLE?	1		i			6	ST .	B			1				Fold													651-WNS	
	67 INNS	ľ		i		L	çı	Ð	W			1											T	_	_				^{52tt} na	
	58 UVI DS			1			(ILŧ	Ł						C		_			_					4				WCE2 ISTVD	
	ZN			1				7	N	1		1				_				_	Ļ			-		Ţ	1		S81-WUS	
	IN			1				I	N						2.50	1		2,00			1,50		1 00			0.50			00'0	

1,44

0,60 0,72 0,39 0,69 0,82

fold change

1,48

Figure 3.22: hsa-mir-18a semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

	itry au	gapdh	9859,89	10953,01	12876,89	11980,54	8395,12	5706,06	6383,79	9182,16	4765,98	9400,79	5793,51	3869,63	5793,51	5837,23	7130,28	6826,46	4376,91	1471,63	3009,72	4082,58	2563,48	1832,42	5497,25	1091,85	1718,48	
	ensitome	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	HST578T	BT474	MDA-MB-468	HPV4-12	
7	Ω		2				444			4		444			~~~	~~~	2			<				0-0-	4		0	
-	19EAOM	I	I					(-))												C			_	I		-	21.4 VAN
i.	162AQM	I	I			*7	[+]	/Œ	ł					Q	3	Ī		T							I			894-8W-ADM
- H	284433	I	Ì	l		8)¢V	۳D/	Į																			-187878H
Sa	677MNS	I					ÞL	\$18	I	1											C							WCE10 2KBK3
д	2011/105	l	l				L&/	S.	ł		1				Ę													64518 151-811
	65 TVINS	l	1				0	71 E	I				apr								-	-						0747 0747 0M.AOM
	ZIMAS		1			*	EIO	NC	Į		ļ		6 6									-			22			125-8M-AUM
	DA4475						SR3	RE	5				ang										151	6				MDA.435
	MCE7	1					61	CT S	Ŧ	1	۱											C		_		-		SUM NIS
	CALSI					1	.16	улл с //ПА			Í	P	0									C		ł				SUM-150
	67 IVINS					L	,14	U.		i	ì									C		-						5144Ua
	8011/10S						D	[/]	L	1																		_ 430W _ VCE
	ZN							ZN	Į							2				3				C				- 601-WUS
	IN							IN	Į	I				3,00-	2	2,50+		100 0	7,00,4	0 1 1		100	1.00		0,50+		00.0	

1,25

1,42 2,08 1,43 1,27 1,24 2,08 3,41

12067,99 8329,53 9048,14 8468,99 9114,60 9114,60 5022,53 5022,53

1,50

2,73 1,32

> 2,06 1,66 1.57 1,23

> > 6760,00 4035,11 2250,17 6665,05

1,26 0,98 0,97

2,90

141

1.77

3959,16 3038,20

1,21 3,63

fold change

mir/gapdh

mir 14516,56 14385,39

4.1

and Fold change results

1,39

0,68

0,95 0,80 1,40 2,17

12221,02

9597,55

1,31

11761,91 3860,69 7323,87 14538,42

7498,77

7936,01

1,31

0,58 10.1 0,95 1,56 0,62 1,11

1,11 0,65 1,02

0,86 1,54 0,91

5268,81

5509,30

Figure 3.23: hsa-mir-17 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

_	Ω	
<	Ð	
	J	
•		
	Ē	
	4	
	J S	

Densitometry and Fold change results

19EAUN

ND¥531

VIDV432

677WNS

ZOTVINS

69 IWNS

ZIMAS

DA4475

WCE7

CALSI

67 WUS

SSIMUS

IN

Т

	fold change	-90	10'0	0,75	0,68	1,78	0,82	1,07	0,96	0,79	0,80	0,96	0,77	0,43	1,01	100	IKN	1,33	1,29	0,86	1,03	0,82	1,77	0,96	0,81	1,26	0,55	
	mir/gapdh	0,72	0,61	0,50	0,46	1,18	0,55	0,72	0,64	0,53	0,53	0,64	0,51	0,28	0,67	0,93	0,88	1,21	1,17	0,78	0,93	0,74	1,60	0,87	0,73	1,14	0,50	
	mir	8253,77	7430,40	8896,40	6767,69	13193,98	13033,32	9679,60	7028,76	8193,52	8193,52	10683,71	4659,06	2731,17	10844,37	8521,28	5207,95	6366,27	5737,72	6689,52	9455,12	6258,52	5567,12	4678,17	6985,83	8584,14	2774,58	
	gapdh	11507,08	12089,46	17752,63	14840,72	11145,60	23737,11	13535,38	10984,94	15583,76	15342,77	16728,44	9077,14	9599,27	16125,97	9131,87	5908,33	5261,82	4902,65	8557,20	10146,52	8422,51	3474,96	5387,53	9509,00	7533,57	5549,16	
	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
		- AV	A	AAT		A	AT	ARTI	AA	AA	AAA	AA	Ach		5	A	AR	- AP-	Leg	Ag	AIT	ART	L			4	- An-	
W		1	I				(•)						2		ľ	8		[ľ		2		C	1		1		21
TN		1			*2I	-ħΛ	dH			1							1	0	-		ľ			1		I.		894 8W-40W
TN		1		l	89	ŧ¥(W							_			_			E								187878H
ns		1	I			\$/\$	BT			1			8											1				MCF10
ns		1	I		J	8/ (जा			1				_						1	ſ							8K ⁸⁴³ . 812 ⁴³ .
ns		ľ		l	č	07	Ta							rapt						_	L.							0241 0741
ns		1				UU TJ	TAL			1				50										ł				190 84 404
DA		1			*1	7121	<i>)</i> /(ļ			hang						F	C		0	1				404 432 404 48 432
MC		ľ	1		1	BB.	8K							ld c														201-WU2
₹		1	1			61/5	BT			1			J	5										1				,
ns		1			LS	Į∀(W														-			T				***00 .430/W
ns		1	1			۵.	L¥L															E						. ^{6\$1.} WD8
ZN		1	1				ZN						1.80 -	_	1.60	100	<u>}</u>	1,20	<u>(</u>		1,80 t	_	09'0	140-		0,20+	00.0	. ⁹⁸¹⁻ WD8

Figure 3.24: hsa-mir-10b semi-quantitative duplex PCR results

Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

IN

	22									_		_						_				_	_		_	
esults	fold change	-		0,97	0,78	1,96	0,97	0,92	1,78	0,72	1,54	0,51	0,77	1,77	0,53	1,94	0,66	1,23	0,86	1,02	1,44	1,09	1,03	1,29	1,26	
nange ro	mir/gapdh	0,97	1,27	1,08	0,88	2,19	1,09	1,03	1,99	0,80	1,72	0,57	0,87	1,98	0,59	2,16	0,73	1,37	0,97	1,14	1,61	1,21	1,15	1,45	1,41	
l Fold cl	noir	8365,26	13406,07	8782,75	8025,08	11937,12	7282,88	10313,55	10576,41	6757,15	15369,82	4886,18	4066,66	13777,17	2953,35	18846,13	2100,20	5326,99	6592,67	5841,60	3491,05	5438,25	11488,49	14131,12	3797,04	
etry and	gapdh	8659,05	10545,49	8133,32	9153,85	5458,29	6695,30	10019,76	5303,67	8411,65	8937,38	8643,59	4700,63	6958,17	5025,34	8706,77	2865,17	3880,49	6829,11	5118,36	2169,74	4478,56	9972,45	9763,82	2684,36	
ensitomo	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
Ā		<	K								K												<	2		
19EAQIM		1	I			U.S.I.G.	1	\ \		, in				1		ľ	1	Ļ	n I			1.	1	-	-	
NDA231		1	1				()										Ē								891-8W-VOW
NDV432		I	l	*	17	77	/dł	I		ļ						2		ł	Ę					ľ		187278H
677WNS			I		89	₽₩	ď	V	l	l	l															8120
ZOTVINS						† /	7 1 {	H			ļ												T			. 642TB 642TB
6SIMUS			l		I	.8/	ζsł	Ŧ			•	,	hph	4	_					_	_		I L	T		alti
ZIMAS		ą	ļ	j		0	215	Ŧ					BTB 5							_	_		I.	I		NDV-MB-321
DA4475		1	ł			LTI	21/	T					ange			8		2				(T			SET-EN-VON
MCF7			ł		*\	בית		N.				, ,	d ch			-		ſ		1	C					COL-WINS
CALSI	i	1	ł		8	3K.	K	S .				, J	0.4					Ĩ					T	T		25-WINS 544400
67 IWUS			-			614	۲t	Η					ļ		_											Adam Adam
SOLVUIS			-		LŞ	I¥	Œ⁄	I									Į					r \	T	T		541 WINS
IN		1	1			Δ	Lħ	L	1		1		2 MI -		- -	1,60	1,40-	1.20-	1 00 -	}	- 1 8 1	0,60.	0,40-	0.20-	000)))
	Densitometry and Fold change results MDA351 MDA351 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MDA353 MD353 MD353 MD353 MD3	All Densitometry and Fold change NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 NIDA351 <	NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution NID Solution	NI NI 2000 NI NI 2000 NI NI 2000 NI NI 2000 NI NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 2000 NI 200	NID NID NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID Second NID<	1 1 20 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111	MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI <	MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU MU<	It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It<	Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item Item	Image: constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday Interface Sunday Sunday	Image: constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	200. 11/10 11/10 11/10 Fold change graph 11/10 11/10 11/10 11/10 Fold change graph 11/10 11/10 11/10 11/10 11/10 Fold change graph 11/10 11/10 11/10 11/10 11/10 11/10 Fold change graph 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11/10 11	2.00 14.77 2.00 11.1 2.00 14.57 11.1 11.1 2.00 14.57 11.1 11.1 1.00 11.1 11.1 11.1 11.1 1.00 11.1 11.1 11.1 11.1 1.00 11.1 11.1 11.1 11.1 1.01 11.1 11.1 11.1 11.1 1.01 11.1 11.1 11.1 11.1 1.01 11.1 11.1 11.1 11.1 1.01 11.1 11.1 11.1 11.1 1.01 11.1 11.1 11.1 11.1 1.01 11.1 11.1 11.1 11.1 1.01 11.1 11.1 11.1 11.1 1.01 11.1 11.1 11.1 11.1 1.01 11.1 11.1 11.1 11.1 1.01 11.1 11.1 11.1 11.1 1.01 11.1 11.1 11.1 11.1 1.01 11.1 11.1	1000000000000000000000000000000000000	1000000000000000000000000000000000000	200 14710 113 113 1004157 10040157 100100 10010 1004157 100100 10010 113 1004157 10010 10010 113 113 1004157 10010 10010 113 113 1004157 10010 10010 113 113 1004157 10010 1013 10010 113 113 1004157 10010 1013 10010 113 113 1004157 10010 1013 10010 113 113 1004157 10010 1013 10010 113 113 1004157 10010 1013 10010 113 113 1004157 10010 1013 10010 113 113 1004168 113711 10010 1013 113 113 1004169 113711 1000 113 113 113 1004169 113711 1000 113 113 113 100516 1100 10010 <td< th=""><th>2.00 177D 177D 177D 177D 1.04775 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1177D</th><th>Image: Substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrate of the substrain of the substrain of the su</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>NI NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ <th< th=""><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1 1 1 1 1 0 0 14/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 1 11/10 11/10 11/10 1</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1000000000000000000000000000000000000</th></th<></th></td<>	2.00 177D 177D 177D 177D 1.04775 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1.04755 1177D 1177D 1177D 1177D 1177D 1177D	Image: Substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrain of the substrate of the substrain of the substrain of the su	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NI NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ NZ <th< th=""><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1 1 1 1 1 0 0 14/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 1 11/10 11/10 11/10 1</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1000000000000000000000000000000000000</th></th<>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 0 0 14/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 11/10 11/10 11/10 11/10 1 1 1 11/10 11/10 11/10 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000000000000000000000000000000000000

Figure 3.25: hsa-let-7g semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

sults	fold change	161	50	1,27	0,81	2,74	0,94	1,59	16'0	1,19	1,11	0,77	16,0	1,34	0,86	-20	0'0/	1,23	1,18	1,75	1,24	0,97	1,85	0,98	1,03	1,03	0,70	
nange re	mir/gapdh	0,70	0,58	18'0	0,52	1,75	09'0	1,02	85'0	0,76	0,71	0,49	85'0	98'0	0,55	0/10	0,65	0,83	08'0	1,18	0,84	0,66	1,25	0,66	0,69	0,70	0,47	
l Fold cl	mir	8188,57	8070,24	13016,51	6200,59	17039,80	7407,58	14412,83	8141,24	8993,23	11691,19	5750,93	5088,27	10129,21	7715,24	10646,26	11419,87	12948,65	7275,56	15030,02	14366,93	8435,96	7293,98	6280,93	7201,88	8933,28	4788,98	
try and	dbqeg	11714,86	13939,50	15998,48	11998,86	9750,55	12330,19	14199,83	14057,83	11833,19	16448,14	11714,86	8780,23	11809,53	14034,17	15158,95	17663,95	15601,01	9135,89	12746,04	17111,38	12856,56	5838,87	9504,27	10369,97	12838,14	10185,78	
ensitome	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
Ā		AAA	ł		Tert	ALA			Lu		AHT I	All		VVV	VIII	A A		AL	4		VIII	ALL	444	AL	10-0-	44	A A	
195400	Į	1		1				(-)																				40 V4-12
1624000	ľ	i		i		↓ 7I	-64	Л		1		1												_				47478 AM-AOM
VID¥432	I	1		I		00)+H			i									ł		-	_		_				- ₀₅ T8 - _{T878} T2H
677WNS	5	1				07	ьл	10		i													10		T			WCE10
2011105	5	1		1				(T.O		ł					Ipn					Ľ		0						645TB
65 WN 8	5	1					LØL	29H		1					56							C	-	_				
ZWINS	5	0				8	00	от. ТЯ		-					ang								-		T			498-30- VOW
574470	I	8		8		*	FIC	-WC		ł	ļ	l		-	CÜ								2					254-8M-Adm
VICE 7	I	0					EALE SIR3	SKI		l	l			-	1010								¢					SUM-229
ISIAD				1			61/2	18		I	l			8								1			T			6SI-WAS
67 WU S	5	1				LS	IV	UND.				ĺ.									k		5	_				_ ^{S_} WNS
58 TW OS	5	1		1			D	/#I										_			1				T			WCF7
ZN	I	1		I				ZN		1															T			671-WUS
IN	I	1		I				IN		1					3,001		2,50+		2,001	ž	1,50+	1	1.00+		0.504)		or Wns

hsa-mir-425

Figure 3.26: hsa-mir-425 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

	ults	fold c	,	-	1,0	0,1	1,5	1,3	0,9	1,0	0.6	1.0	0,81	0,4	6,4	0,2		1	1,5	0,5	0,6	0,4	0,4	0,4	0,4	0,7	n /2	0,3	
	lange res	nir/gapdh	1,21	1,83	1,64	0,21	2,36	2,05	1,37	1,59	0,99	1,64	1,22	0,66	9,78	0,43	2,02	1,92	3,04	11,11	1,17	0,96	0,83	0,90	0,97	1,41	n/a	0,72	
	l Fold ch	mir	11363,87	14659,08	11564,04	908,49	4973,62	15875,54	11979,79	12580,32	4142,11	15228,81	5820,52	2340,53	7683,70	2371,32	20766,61	28086,30	29700,66	7723,27	10236,55	11502,36	6971,12	4384,47	7062,85	11025,38	n/a	4292,75	
	etry and	dbqcg	9362,10	8022,46	7036,97	4342,29	2109,55	7760,69	8746,17	7914,67	4203,71	9285,11	4758,04	3541,58	785,31	5558,75	10291,58	14602,67	9777,92	6934,43	8713,91	11924,29	8420,39	4861,44	7264,65	7796,65	n/a	5925,46	
	ensitom	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	VIDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
7-3	А		L	444	44	H	4	4 E	44								Ę			4	4	4	4						
È	19EAQM						()					Ĩ	187 - X	3			1		- 0			ŀ	<u>`</u>			_	7	21.444
Ë	162AQM				*7	17	Λđ	H			1						t		_										\$34-8M-AQM
2-	NDV435				8	948	۳D/	N			I										¢	ľ		_			_		187272H
hs	677WNS					Þ/	扣	B			1	E							_				1						SKBR3 SKBR3
	2011/10/13		Į	1		18	[çs]	H	q		i	rapl	•	_															721-8M-ADM
	65 IMNS					0	719	B	1		l	geg)							2					1	T			102-8M-AOM
	ZAMUZ				,	eOL:	Ð	N	1		l	han												22	Ĩ				254-8M-AUM
	DU4475					ß	KB	s	1		l	old c																	201-WUS
	TCIAD)					61	SI	B			l	Ĥ										τ		े					- ² S-WNS
	67 IWNS				L	ŞI	۳D/	N	ļ		ļ													ļ			_		L'ADW
	SSIMUS					0	I/k	I]											C		_					641-WUS
	7N	0					71	N	0]		-J- 00						1		۲ B		1 00		50	ł			S81-WUS
	IN						IJ	N		1			12000		00000	Innun		8000	1		6000		4000		0000	7000		0	18

1,97

1,55 0,57 0,60 0,49 0,42 0,49

n/a 0,37

1,08 0,14 1,55 1,35 1,35 1,35 1,35 1,35 1,05 0,60 0,43 0,43 0,28 0,28

fold change 1,52

Figure 3.27: hsa-mir-7-3 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

	ults	fold change	01.1	6T'T	0,88	0,84	1,74	1,53	1,09	1,23	1,26	1,08	1,42	0,86	1,48	1,32	200	1.00	1,51	2,07	1,42	1,06	0,97	1,34	1,07	1,88	1,07	1,13	
	ange res	min/gap dh	1,07	1,33	1,04	1,01	2,07	1,82	1,30	1,47	1,49	1,28	1,69	1,03	1,76	1,57	0,91	1,03	1,46	2,01	1,37	1,03	0,94	1,30	1,03	1,82	1,04	1,09	
	Fold ch	rrar	9268,26	9802,96	10337,67	7584,92	3762,75	16476,90	10535,71	12001,20	15387,68	7129,43	13110,22	3921,19	14753,95	11961,59	12262,33	17528,03	16726,33	12954,71	6905,53	5520,78	9401,73	2769,50	5028,83	11314,87	1876,70	6194,94	
	ry and	gapdh	8654,33	7386,88	9901,98	7545,31	1821,96	9050,41	8119,63	8179,04	10298,06	5564,91	7763,15	3822,17	8396,88	7624,53	13428,44	17054,30	11442,41	6450,02	5028,83	5375,02	10003,00	2131,79	4864,85	6213,16	1803,82	5666,55	
	ensitomet	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
1	Ă		4	VV		00	-0-0-	1 H			AW	000	VV	000	M.M.	22		AAA		A de						4			
	19EAON			١				(•)																		2			894-91 894-91
	ND&231		l	İ	*	71	ŧΛ	dH									8												47478 47478 9.4 9M. AGM
	NDV435					89	₩(M													Ē	-		_			_		8727 187578H
3	677WNS					1	b/b	BI			1											1							WCF10 MCF10
2	70 TW INS		1	1		T	Q/ (SH			i	ļ						_	_	ł						-			81249
	65 IV INS					4	003	70														-				-			athT am.Aam
	ZIMUUS						00	Tg		È					qu	h								_		0	_		185-8M-AQM
	DA4475					*U	19	JM		1	ľ				orna.	8 10				q			8			-			00A.MB.435
	MCE 7		1			8	BK	SK							0.00	20 20					2	ľ		_			_		ZOL-WUS
	CALSI					30	6\$5	BT							cho	CI10					्ष - १			_			_		- 25. MUS
	61 WUS					LS	IV(W							P P							t							5144UQ
	58 TW NS						٩	h							H			1	_		_								CALS1
	ZN							ZN						-			ļ						ļ			1			S81-WUS
	IN							IN						250.			2.00			1,50.			1,00		01.0	nc'n		000	2

Figure 3.28: hsa-mir-142 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

hsa-mir-142

	sults	fold change	1 06	10017	0,91	1,11	3,21	1,26	0,95	1,33	1,25	1,41	0,87	1,26	3,52	1,41	1 10	1,40	1,84	1,33	1,52	1,04	1,56	3,55	1,03	1,28	1,27	1,32		
	ange re	mir/gapdh	1,08227	1,04460	0,97209	1,17862	3,41203	1,33633	1,01399	1,40986	1,32779	1,50079	0,92176	1,34153	3,74391	1,50317	1,37550	1,19026	2,36554	1,70968	1,95417	1,33333	1,99531	4,55555	1,31783	1,63597	1,63510	1,69091		
	^r old ch	mir	10168,69	11861,25	10675,13	10728,44	9822,18	13873,67	9662,26	11048,29	7449,93	12620,91	6437,06	6543,68	12274,40	9475,68	10188,49	11631,24	13475,58	3153,23	LT.ST20	7377,36	6321,33	4878,58	2528,53	11095,79	10530,59	4149,77		
	y and F	gapdin	17,295,71	11354,82	10981,65	9102,51	2878,69	10381,93	9528,98	7836,42	5610,77	8409,50	6983,48	4877,777	3278,50	6303,79	7407,11	9772,03	5696,63	1844,34	3569,69	5533,02	3168,10	1070,91	1918,71	6782,41	6440,32	2454,16		
	tometry	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12		
a	Densi				AAA	AAA	00	ATA				AI			A A		<			A C C	<		<	<	0		A A A	0		
72	195¥UW	1	1	i				(•)		,		ľ				Ì		Ť			Ī			_				1	21-\$A44	
Ľ.	152AQM		1		*	21	ŧΛ	dH																					\$34-8M-AOM	
Ę	264AQM					89	₩(W			ì																		18251SH	
ŝä	677MNS						t/t	LЯ		1	i																		WCE10	
Ě	20 U NOS					I	8/0	SH			1												E	-					8K804	
	65 I NINS						07	Ig	I		i	3	caph									-		_		-			a147 a147 a1.8M.AaM	
	ZANUZ					-0	IJ'	TA	I		Ì		ge 99				_	1	_			_	9						122-8M-AUM	
	574475					4U	DIC	70			i	3	han												C				925-MU2	
	UCE 7		Ī				.aa	до 10	l				old c										9				_		651-W05	
	CALSI						013	Tg	Ì		1		Ē,												0				29-WUS	
	61 INUS					LS	14(IN																			-		Land MCF7	
	28 I MUS						٩	μ												1				1					641-MU2	
	ZN							7N						00		50-1-	3	10	1	50		3	50-1-			50		00	S81-MUS	
	IN							IN							ন	c	5	e	(N.	C	4	÷	8	-	C	5	0	ī	

Figure 3.29: hsa-mir-15a semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

		2														5		3	000	15				1	102			100	
	sults	fold change	0.53	ccin	1,12	0,89	3,37	1,72	0,82	1,46	1,22	1,60	0,72	0,94	0,42	0,64	22.0	0,/4	1,58	1,61	1,42	1,45	1,54	3,37	1,92	1,17	0,97	1,62	
	nge rei	minigapdin	0,52	0,55	0,59	0,48	62'1	0,92	0,44	0,78	0,65	0,85	0,38	0,50	0,22	0,34	0,69	0,79	1,17	1,19	1,06	1,07	1,14	2,50	1,42	0,87	0,72	1,20	
	old cha	mer	6378,30	\$263,60	9391,26	6431,16	5532,56	14782,86	6501,64	10483,67	5514,94	13760,92	2590,08	2008,64	1673,86	1797,20	12971,38	18315,89	26113,94	13979,42	16870,40	21758,45	17764,33	14359,81	12115,50	15539,03	14721,19	11982,36	
	/ and F	gapdh	12316,11	15117,63	15822,42	13514,25	3083,43	16121,95	14923,82	13461,39	8475,04	16210,05	6765,93	4017,27	7488,34	5285,89	18772,37	23146,88	22252,96	11735,11	15976,48	20255,90	15596,09	5743,93	8520,79	17935,50	20408,05	9966,28	
	cometry	cell lines	IN	N2	SUM-185	SUM-149	CALS1	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	ADA-MB-361	IN	N2	T47D	ADA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	ADA-MB-468	HPV4-12	
<u>,</u>	Densit			AN AN		AAA	1010	AA		AA	Litt.	A H		A THO	A THIN	A A	44			A THAT			KK	HUL	TIC			AAA	
-16	19EVOW	l			1	T		(·)	2	7	-	7	1	1	1			1		T)								HPV4-12
Ľ.	1152AQM				*	71	ŧΛ	dH	I		۱												Q					ł	\$7\$10 034.8M.AOM
Ë	XIDA435	1		1		89	₩(W	I								_		_	1	5	1				Į.			187272H
sa-	677MNS	1					\$/\$	BT	Ì						_								_						WCF10 MCF10
Ë	ZOTIVINS	Ľ	Ι	l.		T	8/9	SH.	I													ł	_		_	n R	_		87549 SK803
	65 TVINS	1					07	гя	I				aph																0141 721-8M-AGM
	ZANNS	ľ	1	l		.0	1.1		I		i		e 91														_		198-8M-AUM
	574475	ľ	n			*0	u a	м	ļ		!	l	ang											œ	_				854-8M-AGM
	MCE 7	ľ	ï	ľ		8	BK	SK	l		L		ld ch										_		C	I		1	SUM-229
	C¥T2J	h	Í				61/5	BT	l		I	1	E E										G		_		_	ł	651-WUS
	61 TWAS	ľ	ñ			LS	IV(W	I													C		Ī				ŀ	SUM-52
	COMINICS	ł					٩	μ	1		1										6								Lajow
	761	ŀ	-					ZN	Ì		1											1		1	2	Ī			641-MC-
	UN TO T							TAT			-			F			2	ļ	-		00		y Q	Ţ		 	X	Į	S81-MUS
	IN	L						IN	l		I			3.50		3 DG)	2.50		2.00		1,50		1.00		0.50		00,00	- santana Ng

Figure 3.30: hsa-mir-16-1 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

	esults	fold chan	91.1	01'1	1,05	0,80	562	0,75	1,01	0,67	0,72	1,05	0,79	1,41	1,28	0,53	200	/o'n	1,73	1,04	10'1	02'0	1,09	0,85	0,66	4,31	2,03	
	hange r	mir/gapdh	1,37	0,95	1,23	0,92	3,41	0,87	1,18	0,78	0,84	1,22	0,91	1,64	1,49	0,62	0,86	0,88	1,50	0,90	0,87	0,69	0,95	0,74	0,57	3,73	1,76	
	l Fold c	mir	5122,19	4581,27	5409,21	3896,84	6855,35	4426,72	3753,33	3168,25	2627,33	3808,53	3090,98	2550,06	2991,63	1534,45	18665,69	21283,53	23576,08	7946,47	2261,57	9526,47	8535,10	4770,98	11679,61	12996,27	7125,49	
	try and	dbdeg	3742,29	4802,06	4415,68	4216,98	2009,14	5100,11	3190,33	4051,39	3135,14	3113,06	3389,04	1556,53	2009,14	2483,82	21748,23	24304,12	15753,53	8782,94	2586,86	13786,27	9030,78	6490,39	20369,61	3485,29	4058,43	
	nsitome	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	IDA-MB-435	IDA-MB-231	IDA-MB-361	IN	N2	T47D	IDA-MB-157	BT549	SKBR3	MCF10	HST578T	BT474	IDA-MB-468	HPV4-12	
J	De				KIK									M LU - W	N LUL	A TOT A	V		4	N C C		¢		; (N		
34	19EAUN	ł			1		, j	(•)		1																		
ir-	NDA231	1		i	,	¥71	τ λ	dH	10000			l			Q			-							=			899-8W-VGW
Ē	2 64AQIN					89	Þ¥(W																Ū	E	1		TBT2TEH
Sa	677MNS	۱					ŧ/.ŧ	BT		1															6	1		WCF10 - SKBR3
д	ZOTIVINS	1			l	I	849	;sH		l				hdu	•													Lat-an-Van
					l	*(EI(JW						e gra)											L		195-81 Van
	5/144/13	i			l	5	BK	ZK		ľ				ang)								Ţ					NDA-MB-231
	MCE7	1			l		61/5	BT						ld ch										ţ	۳. ا	1		SCL-WUR
	ISLAD			l	L	LS	I¥(M	8			l		Fo										2	l			S-WUS
	617 INDS				ľ		α	 ••T		ł	ł	l							225			×						SLAANDO LADON
	28 11/1 08						u	7N														8	T		C			15783 BH-100
	ZN			-				IN							507				1 + 00	1 1 1 2			50			50 -		Sel-MUS
	IN							PL C		l					4	4	Ċ	ñ	m	c	Ň	N	~		Ē	0	Ċ	Ĵ

0,87

fold change 1,16

Figure 3.31: hsa-mir-34c semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

	sults	fold change	501	124	1,32	1,49	1,05	1,13	1,21	1,92	0,65	1,15	0,72	0,73	0,80	0,78	21 0	01.4	1,84	0,91	1,48	0,62	0,72	0,65	1,06	0,88	1,17	0,38		
	lange re	mir/gapdh	1,61	2,23	2,55	2,86	2,02	2,18	2,33	3,70	1,25	2,21	1,38	1,41	1,54	1,51	1,53	2,82	4,01	1,98	3,22	1,35	1,57	1,42	2,30	1,92	2,54	0,83		
	Fold ch	mir	7453,86	14668,14	15759,60	12139,15	6215,99	7746,69	16212,15	16771,19	6535,44	11979,42	5803,377	4206,11	3620,45	5896,54	20421,88	46906,51	42895,07	16775,12	32661,34	14928,94	15020,11	7202,36	12285,04	23407,67	25732,48	5356,19		
	ry and	dbqcg	4618,73	6575,37	6189,37	4246,04	3074,72	3553,90	6948,07	4538,87	5217,70	5430,67	4192,80	2981,55	2355,95	3913,28	13310,69	16638,36	10689,58	8478,73	10142,56	11054,26	9549,97	5082,68	5333,39	12216,66	10142,56	6427,42		
	sitomet	cell lines	IN	N2	SUM-185	SUM-149	CALSI	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	IDA-MB-435	IDA-MB-231	IDA-MB-361	IN	N2	T47D	IDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	IDA-MB-468	HPV4-12		
9	Den		Ę							410															20-0			- UN		
48	19EACIM		1	1		0.00		(•)																					214AdH	
ir.	162AQM			1	*	¢71	τħ	dH	1														C		I	1			47478 934-8M-AOM	
-H	2 64AQM			I		89	¢¥(UU.			1														E	1			0278 187272M	
ISa	677MNS			1	l		ŧ/t	18			1																		WCE10	
2	20 11/1 05					J	8L	ÇSH			1			4	I														69518 15100	
	65 I VINS	J					07	I8							20	6	-	Ī	Ī		Γ	T				I			OLUL AN-YOW	
	ZANUZ	ļ	l		l	*(EI	OW				l			n N														162-814-YOW	
	DU4475		l	ł		1	BK	2K		l				A abe							5				I	1			WDA-MB-435	
	WCE7	ġ		H	l		61/2	18			I			Tol.		2003							- 2						501-WOS	
	CALSI			K	l	LS	IA	ND				1							1		C	I		_	F				25-WUS	
	OFINITS			h			D	L\$1													C	F				1			WCFF	
	501/UIS 7N			h				ZN		1		1							Ē	C	1	1				1			641-Wins	
	IN			1				IN		1					- UU C			1,60+	1 40		1,20+	1 00 +			0,60 +	1000		0,20+	0 0 1 *****	

Figure 3.32: hsa-mir-486 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

																	1												
	ults	fold change	U SU	ne'n	1,08	0,68	2,61	0,90	1,11	0,95	0,67	0,90	0,55	0,92	0,377	0,22	0 50	ncin	1,39	0,50	1,26	0,97	0,76	3,20	0,41	0,75	1,03	0,22	
	mge res	min'gapdh	0,80	0,80	0,86	0,55	2,09	0,72	0,89	0,76	0,54	0,72	0,44	0,74	0,29	0,17	0,46	0,54	0,70	0,25	0,63	0,49	0,38	1,61	0,21	0,38	0,52	0,11	
	^r old cha	mar	13227,36	14198,98	15811,00	9539,60	19874,16	15369,35	15258,94	13271,52	7110,53	12476,56	5564,77	6889,71	3157,78	2186,16	12034,56	17650,69	19068,10	6017,28	16554,21	14414,73	9814,86	22838,93	4626,62	10403,21	14013,58	2139,48	
	y and F	gapdh	16495,55	17732,17	18328,39	17467,18	9495,43	21375,77	17135,94	17400,93	13227,36	17224,27	12542,80	9362,94	10709,977	12609,05	25914,43	32520,06	27331,83	23748,21	26155,12	29605,03	25753,97	14174,04	22277,31	27626,01	26930,68	19522,74	
	itometr	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
õ	Dens																					444						~	
3	1001000		1			1	J	(-)		11	1	1	1	Γ	1		T						11	N	ļ			י ר	7.
5	1954000					71.		П		1															_		-	-	894-8W.V.
Ε	TELAUM				1	:(I'	VΛ	dH	l																<u>e</u>		2	-	1810 47478 ACATA
<u>a</u> -	284AUM					89	₽¥(IN							9												_		BT20 BT27572H
IS.	622MUS						\$L\$	BT				l												C	C	2		-	WCF10 WCF10
<u> </u>	2011/INS			1		T	84.9	,sH	l			l			ho									2					81249
	65 T AUNS						07	BT	l		ľ	l			6.15							2			_		_	ŀ	0747 -31.8M.AOM
	ZANAS	l		Ľ		*0	E	JW	I	1		1			19.0	D												-	NDA-MB-361
	574475			0		5	RK	NG	I	ł		ļ			char									C					SEP-8M-AUM
	MCE 7	I]	0		Č	au	10	l	H	ģ	ŝ			old									9	00				201-MUS
	CALS1	J	l	0	1		013	та	l	ł		ł			F	ĺ.									C				6SL-WAS
	61-UNUS		1			LS	IV(W	l															f	_		_	-	s144Ua
	2011/108		1	1			۹ŋ	Lt1										Ļ	_		_		_	1	2				WCF7
	ZN		1	1				7N																	C				6+1-WNS
	IN			1				IN						3 50-1	}	S nn -	22.2	504-	}	2.004		1.50+		1-00.1		1,50-1		100	- WNS

Figure 3.33: hsa-mir-320 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

																			100										
	esults	fold change	101	7 A'N	1,45	0,90	1,95	2,62	1,14	1,71	1,10	1,72	1,05	0,97	2,70	0,48	000	ns'n	1,86	1,67	1,47	1,24	1,56	1,05	1,15	1,05	1,22	1,19	
	hange r	min/gapdh	0,83	1,10	1,40	0,87	1,89	2,53	1,11	1,65	1,06	1,66	1,01	0,93	2,61	0,46	0,81	0,99	1,67	1,50	1,32	1,12	1,40	0,95	1,03	0,94	1,09	1,07	
	[Fold c]	mir	9619,68	18536,67	19893,60	15362,41	10080,07	19530,13	16065,11	15192,80	7099,660	17712,81	8432,37	4870,42	17034,35	2689,63	10626,80	16016,47	17440,15	12253,87	12762,33	14355,50	11864,05	2745,68	5152,39	9491,24	9304,81	5711,69	
	try and	gapdh	11558,16	16792,04	14199,33	17640,12	5330,81	7705,44	14538,56	9183,52	6687,74	10661,61	\$311,21	5209,65	6518,12	5791,19	13067,40	16253,75	10423,42	8152,30	9643,78	12847,07	8474,32	2898,22	4999,85	10084,44	8508,22	5321,87	
	nsitome	cell lines	IN	N2	SUM-185	SUM-149	CALS1	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	MDA-MB-468	HPV4-12	
43	De							4,40	444	A A	And I	444	44	44-4	120	200					AAA			0_0		444	44	00	
r-1	195AQM		1	ľ				(-))															Î					21-4/9H
ni	1152AQM		1	1		*71	1	/dF	ł		1													-					- 47478 - 47478 - 404.80.40M
a-]	NDA435			1		89)#¥	Ē	Į	1	1												C			I			H215720
hSi	677MNS			1			ŧĽ	FT8	I	1	I										l		_						WCE10
	ZOTIVINS		I	1			L&L	ζsŦ	ł		I	l		c							1				_		_		8K8-
	65 T AINS			l			0	715	ł					rap															a141 -21.8M.AOM
	ZIMUS		Ī	1		*	014		Ţ	i	ĥ			90 90		ſ	00000	_		_		_	_		_	E			MDA-MB-231
	574475		I	1		Ť		1/10		i	h		,	han												I			MDA-MB-435
	MCE 7		I	1					,	H	H	ŀ	;	old c							U				_		_		ZOL-WUS
	CALSI		I	1		10	07	2TS	1	ł	ł	b	ļ	Ä							U		्। ः						- ²⁵⁻ WNS
	67 I NII S					LS	,IV	۵V	Į								Ļ	_		_			C						210W
	88 1 MUS						D	[#]	L		ļ													0					157VJ 671-140
	ZN]				ZN	Į	L										<u>} </u>			_	Ì.		T)		S81-MUS
	IN		1					IN	Į	1					3,00		2.50	1		JUL, ∠		1,50		1,00		0,50		0.00	5

Figure 3.34: hsa-mir-143 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

																		_		- 55								
	sults	fold change	u en	70'N	0,97	1,06	1,32	1,20	1,14	1,28	1,10	1,04	1,17	0,68	1,40	0,66	31.1	1,10	1,47	1,75	1,14	1,19	1,17	0,72	1,39	1,15	1,28	
	ıange re	mir/gapdh	0,90	0,73	0,79	0,87	1,08	0,98	0,93	1,05	0,90	0,85	0,95	0,56	1,15	0,54	1,08	1,24	1,71	2,02	1,32	1,38	1,36	0,83	1,61	1,33	1,48	
	Fold ch	mar	9634,10	5266,17	7502,97	8365,99	5530,36	10127,25	9651,71	9827,83	7150,72	8771,08	7820,00	2395,31	10937,43	4861,08	26832,27	16975,06	35948,51	25889,21	18726,46	30177,89	17985,48	7477,11	15852,37	12686,39	10216,47	
	ry and	gapdh	10655,63	7185,94	9493,19	9634,10	5107,66	10338,60	10356,21	9352,29	7960,90	10338,60	8189,86	4297,48	9528,42	8964,82	24878,79	13719,26	21084,10	12798,66	14168,34	21825,08	13247,73	9003,97	9857,21	9565,31	6915,77	
	nsitomet	cell lines	IN	N2	SUM-185	SUM-149	CAL51	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	HST578T	BT474	MDA-MB-468	HPV4-12	
Ņ	Dei		4	200			00			E	00	-W-	A	00		W	444		LE						44	200	44	
10	19EAON		1					(•)										E						_		1		4PV4-12
	162AQM		I	1	*	71-	ŧΛ	đH		1	1						I	-										47478 834-8M-AGM
Ē	NDA435		11			891	-V(TN		i	i								U		_	1				1		HSTST8H
sa-	677MNS		I					IR		i	i																	2KBK3
Ë	2011/105					I	010	cu cu		i	i		h			8									1	1		121-8M-ADM
	65 IMAS		ļ			٦.	065	TIT		1			<u>era</u> l	D												1		105-8M-AOM
	ZIMNS		ļ	1		*0	17	M					nge	D			Ĩ					0.000		_				264-8M-Adm
	DU4475		ļ	ą		8	BB	SK		l	J		I cha							F						1		201.MU2
	MCE7					(9K)	BT					Folc					C		Ï								651-WNS
	65100					LSI	V	W																				52440a
	SSIMUS						Œ۷	ħ1																				19740 671-11
	ZN		1	1				ZN								ļ							1) (S81-WUS
	IN		1	1				IN						۰ ۵	2	1,0	1	5	1.2	1		n'a	ПВ	j, j (U,4	0.2		ה ה

Figure 3.35: hsa-mir-16-2 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

			-					11											0						12					
	esults	fold change	110	01'1	0,99	0,88	1,37	2,55	0,95	1,10	0,92	1,09	1,34	1,70	1,81	1,12		41,1	2,52	1,13	1,12	1,48	1,17	1,48	1,52	2,03	2,09	1,14		
	iange r	mir/gapdh	1,20	1,16	1,17	1,04	1,62	3,01	1,12	1,30	1,09	1,28	1,58	2,01	2,13	1,32	1,14	1,09	2,82	1,26	1,25	1,65	1,30	1,66	1,69	2,26	2,33	1,27		
	Fold ch	mir	10971,68	14885,14	12928,41	12212,11	11862,69	15793,63	11390,98	10395,14	6341,91	12194,64	10849,38	7372,69	15618,92	11705,45	7062,38	11376,75	15127,78	5166,26	8010,44	10469,91	6334,16	1978,57	3297,61	8463,86	6526,52	3146,47		
	ry and	gapdh	9137,24	12806,11	11059,03	11687,98	7337,75	5241,25	10133,08	7966,70	5835,26	9504,13	6866,03	3668,87	7320,28	8840,24	6196,76	10428,69	5372,36	4108,27	6416,60	6347,90	4863,97	1195,38	1951,09	3737,29	2802,97	2473,21		
	sitomet	cell lines	IN	N2	SUM-185	SUM-149	CALS1	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	IDA-MB-435	IDA-MB-231	IDA-MB-361	IN	N2	T47D	IDA-MB-157	BT549	SKBR3	MCF10	BT20	HST578T	BT474	IDA-MB-468	HPV4-12		
•	Dens		22					A A			000			A C C			22			V C		$\langle \langle \rangle$				<	< C			
2	19EAUM		1	1				(•)								1												2	1.4 VAH	
1	162AQIN		Í	1	*	71-	ŧΛα	Ħ											_			_		_		_		8. Þ.	7478 84-8M-AOM	
m	ND¥432		1			89t	¥O	W			I																	10	578 87878H	
:a-]	677MNS		I			t	z(k)	BJ			I																	0 53	MCFI	
q	2011/105		I			T	849	H							5													61	919 919	
	65 T AUNS						073	BJ							grap			1				0						Q.	747 747 2M.AOM	
	ZIMNS					*0	ΗC	W			I				nge													1 5	SC-AM-ADM	
	DA4475		ļ	1		£	BB	SR	UNDER	1	1				chai						C	_						6	SS-MUS	
	WCE			ł		(6¢5]	BJ	10.275	1	1				F OID								C					6	SI-WUS	
	CALSI		ł	ł		LSI	¥0	W			1											ľ						52	^{s-} WNS ^{!‡‡} Na	
	OLIVITS			1			Œ٤	ħ1			1										C	_	ľ.					4	A CALS	
	7N		1	1			i	ZN																				6) 51	BI-WOS	
	IN		1					IN						3,00-		2,50-		2 00 -	1	1 50			1,00		0,50-		00.00			

Figure 3.36: hsa-mir-15b semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

	ults	fold change	0.03	66'D	1,69	1,14	1,85	1,59	1,22	1.77	1,37	1,88	1,37	1,21	1,44	0,82	U SU	60'D	2,20	3,11	1,21	1,01	1,63	1,15	1,02	1,27	1,49	
	ange res	min/gapdh	0,82	1,05	1,57	1,06	1,72	1,48	1,13	1,65	1,28	1,75	1,28	1,12	1,34	0,77	0,63	1,16	1,96	2,76	1,07	0,90	1,45	1,02	0,91	1,13	1,33	
	Fold ch	mir	1702,38	3344,82	3548,63	4315,90	1894,20	5634,65	2901,24	5754,53	3380,79	6030,27	2997,15	2157,95	5346,92	1019,03	7485,58	11269,81	17843,86	8245,19	6739,79	7665,13	5897,31	2555,04	3742,79	1726,38	3259,41	
	try and	gapdh	2086,02	3176,98	2253,86	4064,14	1102,95	3812,38	2565,56	3488,68	2649,48	3452,72	2349,77	1918,18	4004,19	1330,74	11918,93	9736,78	9115,29	2983,18	6284,02	8493,79	4060,45	2499,80	4129,50	1533,03	2458,36	
	ensitome	cell lines	IN	N2	SUM-185	SUM-149	CALS1	MCF7	DU4475	SUM-52	SUM-159	SUM-102	SUM-229	MDA-MB-435	MDA-MB-231	MDA-MB-361	IN	N2	T47D	MDA-MB-157	BT549	SKBR3	MCF10	HST578T	BT474	MDA-MB-468	HPV4-12	
52	ă			<				- WW-											2									
3	195AUM		ľ	T			(-)			(5)		1	1.99			1	1			C		1		1			21-4-15
Ë.	NDA231		ì	i	*7	[+]	١₽٧	Ŧ														E	ļ		Ĵ			897-8W-40W
E	NDA435		i	i	0		/т																	_	-	_		187272H
8-	6777NNS				ð.	911	Ш.	V.												0			F					MCF10
hs	ZOUVINS		'n	ì		\$L	打8	I	ļ									_		_		8	1		1			67518
	65 U VINS		i	i		18/	ÇS	H										E	I									0747 -31.8M.AOM
	ZIMAS		i	ì	*	OL	Ð	V					han								T	_			1		1	152-8M-AOM
	DD#412		1	i		ß	KB	S	1	I			913	D														854-8M-AOM
	MCE 7		I	Ì		61	CL S	Ŧ	1	i			ange	D						8		96 85	1		1			201-WUS
	CALS1				Ŧ		или или	T	н П				l chi								71		1	_	1	_		- 22-WUS
	61-UNUS		I	1	L	510	UV	V					Fold									C			1			5144UQ
	58 UVI NS			1		0	[[t]	L	l										8	=								LSTRD CALST
	ZN		1	۱			7	I		l		ļ	_	3	<u>۲</u>		Ļ		Ĺ				ſ	-				S81-WUS
	IN		1	1			I	J	1	1		04 0	00'0	000	3,000		2,50		2,00-		1,50	8	1 ND-	2	0.50.		00.0	

Figure 3.37: hsa-mir-325 semi-quantitative duplex PCR results Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

4
8
ကိ
i.
Ξ
L
1

Densitometry and Fold change results

Figure 3.38: hsa-mir-384 semi-quantitative duplex PCR results

Upper bands are GAPDH and lower bands are microRNA genes. in gel images. Fold changes are represented as colored boxes from grey to black scale with increasing fold change respectively and dashed boxes represent fold changes of loss.

3.3 Expression Analysis Results

Expression analysis of microRNAs was performed for two forms of the microRNA pre-miRNA (precursor) by RT-PCR and mature miRNA (active form) by real-time RT-PCR.

3.3.1 pre-miRNA Expression Results

Both oligodT and random hexamer primers were used in cDNA synthesis although pre-microRNAs were known to have no poly-A tail but primary microRNAs have. Because pre-miRNAs are small (~70 bp), cDNA synthesis might not be efficient or not reflect the actual pre-miRNA amount in the cell. RT-PCR by oligodT and random hexamer primers in MCF7, MDA-MB-231, HeLa and normal breast tissue agarose gel image was given in Figure 3.39. HeLa cell line was used as a non-breast sample for comparison.

Figure 3.39: RT-PCR of hsa-mir-383 pre-miRNA in MCF7, MDA-MB-231, HeLa and normal breast tissue by using oligodT and random hexamer primers. Legend is shown in Table 3.2.

Fold changes of hsa-mir-383 in cell lines normalized to microRNA (mir)/ *GAPDH* in normal breast are shown in Table 3.2. Results showed that oligodT and random hexamer primers didn't differ and resulted in similar fold changes.

						fold change
	primers used in RT	cell lines	GAPDH	mir	mir/GAPDH	normalized
1	oligodT	MCF7	6461,84	10515,12	1,63	0,77
2	oligodT	MDA-MB-231	19096,00	17340,40	0,91	0,43
3	oligodT	HeLa	16250,08	16662,80	1,03	0,48
4	oligodT	Normal breast	11944,24	25379,20	2,12	
5	random hexamer	MCF7	9116,80	22422,40	2,46	0,80
6	random hexamer	MDA-MB-231	14469,84	23278,64	1,61	0,52
7	random hexamer	HeLa	8155,84	13810,72	1,69	0,55
8	random hexamer	Normal breast	6092,24	18695,60	3,07	

Table 3-2: Densitometry and Fold Change Results for hsa-mir-383 normalized to *GAPDH* and normal breast tissue.

Densitometry analysis on the RT-PCR gel image showed that hsa-mir-383 precursor expression was detected as loss (with fold changes ranging from 0.4 to 0.8) in MCF7, MDA-231, and HeLa cells compared to normal breast tissue. Analysis of precursor miRNAs (pre-miRNA) and primary transcripts (pri-miRNA) was not very accurate as differentiating them was not easy. Although primary transcript and pre-miRNA expression levels indicate expression of the mature form, it is not necessarily a direct indication of how much mature microRNA is present. Detection of mature microRNAs gives more biologically relevant results in expression levels and significance of a particular microRNA as mature forms are the active forms.

3.3.2 Mature microRNA Expression Results

Detection of mature microRNA expression is challenging with methods such as northern blotting [115], microarrays, and microRNAs are very small and require optimizations for accurate detection especially for low abundant microRNAs. Real-time RT-PCR analysis is used to detect mature microRNAs Expression of hsa-miR-21 and hsa-miR-383 was analyzed using Taqman miRNA assay kit and compared to U6 expression. Data analysis was done using absolute quantification.

3.3.2.1 Results for RNA Isolation by Trizol Reagent versus mirVana

Real time RT-PCR analysis of hsa-miR-21 in MCF7 was compared by using two different RNA isolation methods: mirVana and Trizol. *Mir*Vana microRNA isolation kit detected was more sensitive in detecting hsa-miR-21 (at Ct=18) than Trizol Reagent (Ct=19) with no very significant difference (Figures 3.40 and 3.41). This shows the accuracy and efficiency of both detection method and isolation methods. Trizol Reagent was used for further experiments as it is more cost effective.

Figure 3.40: Amplification plot (Ct=18 and Ct=19) of hsa-miR-21 in MCF7 Starting amount of 10 ng and 20 ng RNA were used and isolated by *mir*Vana Isolation Kit.

Figure 3.41: Amplification plot (Ct=19) of hsa-miR-21 in MCF7 Starting amount of 10 ng and 20 ng RNA were used and isolated by Trizol Reagent.

3.3.2.2 Real time RT-PCR Results and Absolute Quantification of U6, hsamiR-21 and hsa-miR-383

Taqman microRNA real-time detection involved two types of data analysis: relative quantification and absolute quantification.

Relative quantification (comparative Ct method) requires an endogenous gene that is constantly expressed across the samples to normalize sample expressions according to a selected calibrator sample. Constitutive expression of selected endogenous gene was analyzed prior to the experiment. Commonly used endogenous genes are 18S rRNA, let-7a, and hsa-miR-16. Ribosomal RNA (rRNA) 18S subunit was used in some studies and found to be most stable endogenous gene in colorectal cancer samples [116]. RNU6B regulation process is similar to that of microRNAs, unlike 18S rRNA. Moreover, let-7a and hsa-mir-16 have the potential to be deregulated in cancer samples and might not be suitable endogenous genes. To keep the RT efficiency similar with microRNAs, RNU6B was used in other studies in breast cancer samples. In our study, we decided to select RNU6B (small nuclear U6) as an endogenous gene, available in Taqman microRNA assays.

In our study, we assigned quantities of selected standard sample as 1, 0.5, 0.25, and 0.125 for cDNA dilutions no dilution (neat), 1:2, 1:4, and 1:8, respectively. Thus, the quantities detected were relative to standard sample selected but not the absolute quantity in the cell. In calculation of quantities, the average of all biological and technical replicates was used.

3.3.2.2.1 Absolute Quantification of U6 Endogenous Gene

Prior to detection of hsa-miR-21 and hsa-miR-383, U6 was tested to check its constant expression across different cancer samples. Acceptable Ct differences across samples should be 0.5-1 Ct (1-2 folds).

Quality control values (slope=-3.45 and R²=0.95) in the standard curve indicated that the efficiency and reliability of the detection is optimal (Figure 3.42). Quantities of other cell lines were calculated by the SDS 2.0 software using this standard plot, assigning each quantity due to Ct value detected in PCR reaction.

The absolute quantification of U6, to see whether it was suitable for relative quantification, resulted in variation in expression across different cell lines. The amplification plot in Figure 3.43 shows variation of U6 expression detected in a Ct ranging from 32-35 cycles. A 3 Ct change is equal to a 6 fold difference across samples. This may be due to various genetic alterations present in each cell line. Thus, instead of using U6 in comparative quantification and normalization, absolute quantification by constructing a standard curve was used in data analysis.

Figure 3.42: Standard Plot of U6 gene in MCF10 cell line MCF10 was used to construct a standard curve and quantify U6 gene in other cell lines. Blue dots are different dilutions of MCF10 and replicates

Figure 3.43: Amplification plot of U6 in all cell lines Data is represented by different colors, Ct (at exponential state) of each sample shows variation ranging from 32-35 cycles.

The expression level variation of RNU6B among cancer cell lines and MCF10 (immortalized breast cell line) is shown in Figure 3.44. This variation was not in an acceptable range for relative quantification and normalization. Thus, absolute quantification of U6 and microRNAs were done and U6 was compared to microRNAs for each cell line, individually.

Figure 3.44: Real time RT-PCR analysis of U6 gene in all cell lines by absolute quantification

3.3.2.2.2 Absolute Quantification of hsa-miR-21

Quality control values (slope=-3.59 and R²=0.97) in standard curve (Figure 3.45) indicated that the efficiency and reliability of the detection was optimal. MCF10 was used as standard sample. Overall amplification plot of all samples are shown (Figure 3.46).

Figure 3.45: Standard Plot of hsa-miR-21 gene in MCF10 cell line MCF10 was used to construct a standard curve and quantify hsa-miR-21 in other cell lines.

Figure 3.46: Amplification plot of hsa-miR-21 in all cell lines

Quantities calculated for hsa-mir-21 in 7 breast cancer cell lines and rat brain tissue show that hsa-mir-21 expression varies across cancer cell lines. Especially, MCF7 shows higher expression compared to other cell lines including MCF10. However, other cell lines, MDA-MB-231, HS578T, SUM159, HeLa, and SHSY-5Y show low expression compared to MCF7 and MCF10. Also, hsa-mir-21 expression is low in SHSY-5Y (neuroblastoma cell line) and rat brain tissue (Figure 3.47).

Considering MCF10 as a representative of normal breast, expression of hsa-mir-21 was down-regulated in cancer cell lines, except MCF7, which is contrary to studies showing overexpression and oncogenic role of hsa-mir-21 in several tumors compared to normal tissues [69], [70], [71], [68]. There are no published reports on hsa-mir-21 expression in MCF10. However, it is not clear that MCF10 cell line represents real expression of a normal breast since it is derived from breast epithelial tissue that was processed through a spontaneous immortalization step

Studies on MCF10 have shown that it represents normal breast characteristics as it lacked tumorigenicity in nude mice, three- dimensional growth in collagen, hormone and growth factor induced growth in culture, and formation of dome in confluent cultures. Although cytogenetic analyses on MCF10 before immortalization process indicates a normal diploid genome, immortalized MCF10 by cultivating in low calcium concentrations was shown to exhibit minimal rearrangements and abnormal karyotype [117]. Hence, immortalization step might have caused some rearrangements in the genome as well as possible gene expression differences. Moreover, it is acceptable that cells should change some characteristics to adjust cultivation and continuous division. Continuous cultivation and passaging may have also caused small regional rearrangements in the genome even if its karyotype shows diploidy. Considering all these possibilities, it would be a biased argument to consider MCF10 as "normal breast sample", although it is widely used as a model in studies with cancer cell lines.

hsa-miR-21 expression across cell lines

Figure 3.47: Real time RT-PCR analysis of hsa-miR-21 in cell lines by absolute quantification. MCF10 was used in standard curve and rat brain tissue was used as a control.

When we compare hsa-mir-21 expression to U6 expression within each cell line (Figure 3.48), its expression is higher in MCF7 and MDA-MB-231. MCF10 was set to equal expression as it was used in standard curve plot. SUM159 and HS578T show lower expression of hsa-mir-21 compared to U6 expression. HeLa and SHSY-5Y also showed lower expression compared to U6. These results might be due to gene expression deregulations due to cultivation and passaging of cell lines. Besides these, hsa-miR-21 expression (as well as many other microRNAs) may be dependent on complex factors such as cell type, cellular status, environmental effects or combinatorial consequence of these.

hsa-miR-21 and U6 expression across cell lines

Figure 3.48: Comparison of hsa-miR-21 and U6 expression in cell lines

3.3.2.2.3 Absolute Quantification of hsa-miR-383

Quality control values (slope=-3.76 and R²=0.96) in standard curve (Figure 3.49) indicated that the efficiency and reliability of the detection is in the optimal range. Rat brain tissue was used as standard sample as previously we detected its high expression in this tissue. Overall amplification plot of all samples are shown in Figure 3.50.

Figure 3.49: Standard plot of hsa-miR-383 in brain tissue Rat brain tissue was used to construct a standard curve and quantify hsa-miR-21 in other cell lines.

Figure 3.50: Amplification plot of hsa-miR-383 in all cell lines

Absolute quantification of hsa-miR-383 (Figure 3.51) in breast cancer cell lines showed that its expression is very low except in MDA-MB-231 and rat brain tissue where hsa-miR-383 is highly expressed. This may indicate that hsa-mir-383 is a brain specific miRNA; however, in the neuroblastoma cell line (SHSY-5Y) it is also expressed at low levels. Relatively high expression in the MDA-MB-231 cell line may suggest its cell type specific expression. MDA-MB-231 is known to be different from other cell lines as it is poorly differentiated and highly metastatic, Estrogen Receptor negative (ER-). Thus these differences may cause differential expression of some microRNAs.

hsa-miR-383 expression across cell lines

Figure 3.51: Real-time RT-PCR analysis of hsa-miR-383 in all cell lines

When we compare it with internal U6 expression, it is down-regulated in all cell lines, except MDA-MB-231 where its expression if slightly higher than U6 (Figure 3.52). It significance in MDA-MB-231 cell line should be investigated further.

hsa-miR-383 and U6 expression across cell lines

Figure 3.52: Comparison of hsa-miR-383 and U6 expression in cell lines

3.4 Potential Targets of hsa-miR-21

A search for predicted miR-21 targets in available microRNA target prediction programs (MiRanda, miRBase, TargetScan, and Pictar) resulted in a list of a thousand genes targeted by miR-21 with near-perfect complementarity to 3'UTR regions. High scoring (top of the list) targets indicated the high probability of being targeted by corresponding microRNA. Approximately 40 genes were selected from each program according to listing from high score to low score (top to bottom) within each program (Table 3.4).

Table 3-3: Predicted targets of hsa-miR-21 by 4 target prediction programsColored pairs are common genes targeted by different programs

	MiRanda		MiRBase	Ta	rgetScan	Pictar	
NFIB	Nuclear factor I/B	PDCD4	neoplastic transformation inhibitor, apoptosis	PLAG1	Protooncogene	PLAGI	Protooncogene
CNTFR	Ciliary neurotrophic factor receptor	PELII	Adaptor of turn necrosis factor	PURB	DNA replication and transcription	RP2	Retinitis pigmentosa
\$03(5	Regulation of embryonic development, determination of cell fate	MRIP	unknown	LOC153222	Adult retina protein	ADNP	Stimulatory or inhibitory of turnor cells
ACAT1	Acetyl-Coenzyme A acetyltransferase	GLCCII	Ghicocorticoid induced transcript 1	ARHGAP24	GTPase activating protein	LOCI153222	Adult retina protein
PCBP1	Poly(rC) binding protein, RNA binding	NFIB	nuclear factor I/B	BNC2	basonuclin	CCL1	htlammatory process
PIK3R1	Metabolic actions of insulin	THOC7	unknown	CCL1	inflammatory process	PIP3AP	PIP3 associated protein
SLMAP1		TSG101	Tumor susceptibility gene 101	CDC25A	ancogene	STAT3	Transcription activator, apoptosis
RECK	Reversion-inducing-cysteine-rich protein, expression is suppressed in many tumors	TOFBI	Transforming growth factor , deregulation shown in cancer	CBEP		TESK2	Testis specific kinase
PHF6	Transcriptional regulation, mental retardation	CCL1	İnflammatory process	EHD1	Endocytosis of IGFI receptors	SATBI	Homeobox 1 ,apoptosis
BRD1	Unknown	ZNF104	Zin: finger protein	ELF2	Transcription factor	SFRS8	Splicing regulatory protein
MRPL9	Helps protein synthesis within the mitochandrion	IL12A	Natural killer cell stimulatory factor	EPHA4	Nervous system	CNTFR	Ciliary neurotrophic factor receptor
PITX2	Transcription factor , development of the eye	MSH2	Homolog of mismatch repair gene, mutated in colon cancer	FASLG	apoptosis	PB1	polybramo
STAG2	Transcriptional co-activator, stromal antigen	UFC1	Ubiquitin-fold modifier conjugating enzyme	FLJ13910	Meiotic nuclear division	BRD2	Signal transduction pathway in growth control
PT GER3	digestion, nervous system, kidney reabsorption, and uterine contraction	STCH	Stress protein chaperone	GATAD2B	GATA zin: finger domain	PPARA	Peroxisame proliferator activated receptor
KCNA3	T-cell proliferation and activation	ASPN	Cartilage matrix	GPR64	G-protein coupled receptor	NTF3	Survival and differentiation of neurons
PLEKHA1	age-related maculopathy	RTN4	Neurite outgrowth inhibitor	JAG1	Tumor progression	MRPL9	Helps protein synthesis within the mitochondrion
PDCD4	neoplastic transformation inhibitor, apoptosis	KRIT1	Ankyrin repest containing	LOC51136	unknown	ZNF367	Zinc finger protein
SKI	Sarcoma Viral oncogene	LANCL1	Peptide modifying enzyme	MRIP	unknown	MRIP	unknown
RQCD1	Tumor suppressor, retinoic acid different.	CCL20	Chemokine ligand	NFIB	Nuclear factor I/B	NPAC	unknown
NT3	3' nucleotidase	PCBP2	poly(rC)bindingprotein, RNA binding	PDCD4	neoplastic transformation inhibitor, apoptosis	PCBP1	poly(rC)binding protein, RNA binding
HPGD	Prostoglandin,colan cancer	SPATA5L1	Spermatogenesis associated	PELII	Adaptor of turn necrosis factor	CASKIN	
CCL22	Chemokine promotes bone metastasis of hmg ca.	TTRAP	Tumornecrosis factor, inhibits NF-KB	PLEKHAI	age-related maculopathy	DD A3	p53 mediated growth suppression
GNG12	MAPKpathway	TSN9		PPARA	Peroxisame proliferator activated receptor	SPIN	unknown
RNPS1	mRNA suvalance	ATX2	unknown	RABIIA	Ras encogene family member	TOFFEI	Transforming growth factor, deregulation shown in cancer

\$032	Sex determining region Y, driver of breast cancer	TEK	Endothelial tyrosine kinase	RASGRP1	Ras gianylreleasing protein	RNF103	Protein-protein-DNA interactions
MTAP	Polyanine metabolism, deficient in many cancer, MCF7, co-deleted with p16	DEPDC1	unknown	RECK	reversion-inducing- cysteine-rich protein, expression is suppressed in turnors	SKI	Sarcoma Viral oncogene
SOCS5	Suppressor of cytokine signalling	SNRPA1	Small nudear ribonucleoprotien polypeptide	SCIMIL2	unknown	TIMP3	İnhibitors of matrix metalloproteinases
GLCCII	Glucocorticoid induced transcript 1	GALNT12	unknown	SKI	Sarcoma Viral oncogene	BRD1	Unknown
SATBI	Homeobox 1 ,apoptosis	PM14		SMAD7	Block apoptosis	TAGAP	T cell activation
JAG1	Alagille syndrame , overexpressed in breast cancer	MERTK	Protooncogene tyrosine kinase	\$035	Regulation of embryonic development, determination of cell fate	RHOB	Apotosis , tumor suppressor!!
TRPM7	Receptor potential cation channel, apoptosis	TNFRSF11B	Tumor necrosis factor receptor	T GFB1	Transforming growth factor, deregulation shown in cancer	PITX2	Transcription factor , development of the eye
T GFB1	Transforming growth factor, deregulation shown in cancer	PIK3R1	Kinase, metabolic actions of insulin	PIK3R1	Kinase, metabolic actions of insulin	PLEKHAI	age-related maculopathy
CBEP3	Neuronal	FASLG	Tumor necrosis factor, apoptosis	TAGAP	T cell activation	SMAD7	Block apoptosis
PRPF4B	Pre-mRNA processing factor	TOFBR2	Transforming growth factor	CASC4	Cancer susceptibility candidate, increased expression is related with overexpression of Her- 2/neu protooncogene	NFIB	Nuclear factor I/B
EGFLS	Multiple epidernal growth factor domain			МТАР	Polyamine metabolism,deficient. in many cancer,MCF7, co- deleted with p16	MATR3	Role in transcription
OSBPL1A	İntracellular lipid receptor					\$032	Sex determining region Y, driver of breast cancer
KCNA1	Potassium channel,MCF7 cell proliferation,epilepsy					KCNA2	Potassium channel
RHOB	Apotosis, tumor suppressor					RECK	reversion-inducing-cysteine- rich protein, expression is suppressed in tumors
MBL1	Manose specific leptin, Miscle dystrophy					TRPM7	Apoptosis neuronal death
VCL	Cell-cell junctions, Cardiamyopathy					JAG1	Tumor progression
MATR3	Role in transcription					PDCD4	neoplastic transformation inhibitor, apoptosis
PLAGI	Pleianorphic adenoma gene, Protooncogene					\$0X5	Regulation of embryonic development, determination of cell fate
MAPK10	Kinase, neuronal apoptosis					BCL2	Blocks apoptosis

Some genes with potential important roles in cancer mechanism (role in apoptosis and kinases) were predicted more than one program such as *PIK3RI*, *RECK*, *PLEKHA1*, *JAG1*, and *TRPM7*. Among this list, *PCDC4* and *TGFB1* were predicted by all 4 programs with potential roles in cancer such as tumor suppressor or growth factor. Recently, PDCD4 (predicted by all programs) has been shown to be regulated by hsa-miR-21 in colon cancer samples [71]. BCL-2 (predicted by Pictar) has also been shown to be indirectly regulated by hsa-mir-21 in breast cancer cells. This indirect effect was observed by transfection of MCF7 cells with anti-mir-21 inhibitors which resulted in down-regulation of BCL-2 protein (anti-apoptotic) and so lead to apoptosis [69] which may indicate the regulation of a gene that regulates BCL-2 protein expression. This may explain

the complexity of microRNA targeting and predicted oncogene targets of an oncogenic microRNA.

Experimental verifications of microRNA targets predicted by these target prediction programs show that it is worth to interrogate these predicted targets experimentally. Six target genes were selected (Table 3.4) and were examined for 3' UTR sites that hsa-miR-21 binds by using target prediction programs. Almost all resulted in same target sequences (~22 bp) which is imperfect complementary. Total 40 bp of these target regions (ordered as oligos from Sigma) were cloned into 3' UTR of luciferase vector (pMIR-REPORT miRNA Expression Reporter Vector; Ambion, AM5795; Vector map is given in Figure 3.45) and sequencing results confirmed successful cloning. Future direction for this project will be the experimental validation of hsa-miR-21 targeting these sequences and down-regulate that gene having potential roles in tumorigenesis

Figure 3.53: Map of PMIR-REPORT Luciferase Expression Vector

CHAPTER 4

CONCLUSION

MicroRNAs are recently discovered small non-coding RNAs that regulate protein expression and they have been found to have important roles in cellular pathways such as tumorigenesis.

The objective of this study was to investigate microRNAs mapping to reported common genomic instability regions in breast cancer.

To achieve this, first, a literature search on common reported genomic instability regions (loss or gain) in breast cancer was investigated and 18 regions were selected for further analyses. Thirty-nine microRNA genes were found to map to these regions by using databases such as UCSC Genome Browser, miRBase.

Thirty-nine DNA regions of pre-microRNAs (precursor) identified were further interrogated for confirmation of genomic instability in 20 breast cancer cell lines and 2 immortalized cell lines by using semi-quantitative duplex PCR method. Two normal DNAs were used as controls. GAPDH was co-amplified with microRNA genes and used as housekeeping gene. Densitometry analyses and fold change calculations showed that 61% (22/36) of microRNAs exhibited genomic instability (loss-less than 0.5 fold or gain-more than 2.5 folds) in at least 3 cell lines.

Among microRNAs showing significant gains, hsa-mir-383 and hsa-mir-21 were selected for further expression analysis in two stages. First, hsa-mir-383 pre-miRNA expression in MCF7, MDA-MB-231, HeLa, and normal breast was analyzed by using RT-PCR. However, this method is not very accurate in differentiating pre-miRNAs (precursor transcripts) and pri-miRNAs (primary transcripts).

Then, expression of hsa-miR-383 and hsa-miR-21 mature microRNA (active forms) expression analysis was done by using real-time RT-PCR. U6 was used as internal control to compare expression levels of microRNAs. Its expression was varying across cancer samples and, therefore, was not used in normalization. Absolute quantification of hsa-miR-383 and hsa-miR-21 showed that hsa-miR-21 is highly expressed in MCF7, MDA-231 and MCF10 compared to U6. Hsa-miR-383 was observed to be expressed in low levels except MDA-MB-231 and rat brain tissue which was used as a control tissue.

Future work will include identification of target genes of these microRNAs by using expression reporter vector systems and other confirming methods. Potential targets of hsa-mir-21 predicted by miRNA target prediction programs include many tumor suppressor and oncogenes. Further analysis of these candidate genes targeted by microRNAs will reveal significant microRNAs that involve in tumorigenesis mechanism. Thus, analyzing microRNAs and their targets will contribute to understanding functions of microRNAs and their potential to be used as biomarkers in breast cancer.

REFERENCES

- Calin, G.A., et al., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004. 101(9): p. 2999-3004.
- 2. *The rising burden of cancer in the developing world.* Ann Oncol, 2006. **17 Suppl 8**: p. viii15-viii23.
- Bibliography. Current world literature. Breast cancer. Curr Opin Obstet Gynecol, 2007. 19(1): p. 93-102.
- 4. Kops, G.J., B.A. Weaver, and D.W. Cleveland, *On the road to cancer: aneuploidy and the mitotic checkpoint*. Nat Rev Cancer, 2005. **5**(10): p. 773-85.
- 5. Teng, D.H., et al., *Mutation analyses of 268 candidate genes in human tumor cell lines.* Genomics, 2001. **74**(3): p. 352-64.
- 6. Schafer, R., et al., *Functional transcriptomics: An experimental basis for understanding the systems biology for cancer cells.* Adv Enzyme Regul, 2007. **47**: p. 41-62.
- Yoon, H., et al., Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53. Proc Natl Acad Sci U S A, 2002. 99(24): p. 15632-7.
- 8. Hanahan, D. and R.A. Weinberg, *The hallmarks of cancer*. Cell, 2000. 100(1): p. 57-70.
- Boehm, J.S. and W.C. Hahn, *Cancer genetics: Finding the right mix*. Eur J Hum Genet, 2005. 13(10): p. 1099-100.
- Kytola, S., et al., Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping. Genes Chromosomes Cancer, 2000.
 28(3): p. 308-17.
- 11. Pellman, D., Cell biology: aneuploidy and cancer. Nature, 2007. 446(7131): p. 38-9.
- 12. Fridlyand, J., et al., *Breast tumor copy number aberration phenotypes and genomic instability*. BMC Cancer, 2006. **6**: p. 96.
- Kishimoto, M., et al., *Mutations and deletions of the CBP gene in human lung cancer*. Clin Cancer Res, 2005. 11(2 Pt 1): p. 512-9.
- 14. Loo, L.W., et al., Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes. Cancer Res, 2004. **64**(23): p. 8541-9.
- 15. Wang, Z.C., et al., *Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers.* Cancer Res, 2004. **64**(1): p. 64-71.

- Cox, C., et al., A survey of homozygous deletions in human cancer genomes. Proc Natl Acad Sci U S A, 2005. 102(12): p. 4542-7.
- Parkin, D.M., et al., *Global cancer statistics*, 2002. CA Cancer J Clin, 2005. 55(2): p. 74-108.
- Senchenko, V.N., et al., Discovery of frequent homozygous deletions in chromosome 3p21.3 LUCA and AP20 regions in renal, lung and breast carcinomas. Oncogene, 2004. 23(34): p. 5719-28.
- 19. Maser, R.S., et al., *Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers.* Nature, 2007. **447**(7147): p. 966-71.
- 20. Li, J., et al., Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C. Cancer Res, 2004. 64(18): p. 6438-43.
- Forozan, F., et al., Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res, 2000. 60(16): p. 4519-25.
- 22. Levy, A., U.C. Dang, and R. Bookstein, *High-density screen of human tumor cell lines* for homozygous deletions of loci on chromosome arm 8p. Genes Chromosomes Cancer, 1999. **24**(1): p. 42-7.
- Yin, X.L., J.C. Pang, and H.K. Ng, *Identification of a region of homozygous deletion on* 8p22-23.1 in medulloblastoma. Oncogene, 2002. 21(9): p. 1461-8.
- Ryu, B., et al., Frequent germline deletion polymorphism of chromosomal region 8p12p21 identified as a recurrent homozygous deletion in human tumors. Genomics, 2001.
 72(1): p. 108-12.
- 25. Ray, M.E., et al., *Genomic and expression analysis of the 8p11-12 amplicon in human breast cancer cell lines.* Cancer Res, 2004. **64**(1): p. 40-7.
- 26. Aubele, M., et al., *Chromosomal imbalances are associated with metastasis-free survival in breast cancer patients*. Anal Cell Pathol, 2002. **24**(2-3): p. 77-87.
- Davidson, J.M., et al., Molecular cytogenetic analysis of breast cancer cell lines. Br J Cancer, 2000. 83(10): p. 1309-17.
- Shadeo, A. and W.L. Lam, Comprehensive copy number profiles of breast cancer cell model genomes. Breast Cancer Res, 2006. 8(1): p. R9.
- Zhao, X., et al., An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res, 2004. 64(9): p. 3060-71.
- Lee, R.C., R.L. Feinbaum, and V. Ambros, *The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14*. Cell, 1993. **75**(5): p. 843-54.

- Kusenda, B., et al., *MicroRNA biogenesis, functionality and cancer relevance*. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2006. 150(2): p. 205-15.
- 32. Pasquinelli, A.E., et al., *Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA*. Nature, 2000. **408**(6808): p. 86-9.
- Lagos-Quintana, M., et al., *Identification of novel genes coding for small expressed RNAs.* Science, 2001. 294(5543): p. 853-8.
- Jay, C., et al., *miRNA profiling for diagnosis and prognosis of human cancer*. DNA Cell Biol, 2007. 26(5): p. 293-300.
- 35. Aravin, A. and T. Tuschl, *Identification and characterization of small RNAs involved in RNA silencing*. FEBS Lett, 2005. **579**(26): p. 5830-40.
- Griffiths-Jones, S., et al., *miRBase: microRNA sequences, targets and gene nomenclature.* Nucleic Acids Res, 2006. **34**(Database issue): p. D140-4.
- Cai, X., C.H. Hagedorn, and B.R. Cullen, *Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.* Rna, 2004. 10(12): p. 1957-66.
- Grey, F., et al., Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol, 2005. 79(18): p. 12095-9.
- Pfeffer, S., et al., *Identification of virus-encoded microRNAs*. Science, 2004. 304(5671):
 p. 734-6.
- 40. Lee, Y., et al., *MicroRNA genes are transcribed by RNA polymerase II*. Embo J, 2004.
 23(20): p. 4051-60.
- Bartel, D.P., *MicroRNAs: genomics, biogenesis, mechanism, and function*. Cell, 2004.
 116(2): p. 281-97.
- Murchison, E.P. and G.J. Hannon, *miRNAs on the move: miRNA biogenesis and the RNAi machinery*. Curr Opin Cell Biol, 2004. 16(3): p. 223-9.
- Lee, Y., et al., *MicroRNA maturation: stepwise processing and subcellular localization*.
 Embo J, 2002. 21(17): p. 4663-70.
- Hammond, S.M., et al., Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 2001. 293(5532): p. 1146-50.
- 45. Sempere, L.F., et al., *Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation*. Genome Biol, 2004. **5**(3): p. R13.
- 46. Ambros, V., *microRNAs: tiny regulators with great potential*. Cell, 2001. 107(7): p. 823-6.
- 47. Ambros, V., *MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing.* Cell, 2003. **113**(6): p. 673-6.

- Chen, C.Z. and H.F. Lodish, *MicroRNAs as regulators of mammalian hematopoiesis*. Semin Immunol, 2005. 17(2): p. 155-65.
- 49. Enright, A.J., et al., *MicroRNA targets in Drosophila*. Genome Biol, 2003. 5(1): p. R1.
- Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20.
- Harfe, B.D., *MicroRNAs in vertebrate development*. Curr Opin Genet Dev, 2005. 15(4): p. 410-5.
- 52. Doench, J.G. and P.A. Sharp, *Specificity of microRNA target selection in translational repression*. Genes Dev, 2004. **18**(5): p. 504-11.
- 53. He, L. and G.J. Hannon, *MicroRNAs: small RNAs with a big role in gene regulation*. Nat Rev Genet, 2004. **5**(7): p. 522-31.
- 54. Lytle, J.R., T.A. Yario, and J.A. Steitz, *Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR*. Proc Natl Acad Sci U S A, 2007. 104(23): p. 9667-72.
- 55. Millar, A.A. and P.M. Waterhouse, *Plant and animal microRNAs: similarities and differences*. Funct Integr Genomics, 2005. **5**(3): p. 129-35.
- 56. Mallory, A.C. and H. Vaucheret, *Functions of microRNAs and related small RNAs in plants*. Nat Genet, 2006. **38 Suppl**: p. S31-6.
- 57. Yu, Z., T. Raabe, and N.B. Hecht, *MicroRNA Mirn122a reduces expression of the* posttranscriptionally regulated germ cell transition protein 2 (*Tnp2*) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod, 2005. **73**(3): p. 427-33.
- Moss, E.G., R.C. Lee, and V. Ambros, *The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA*. Cell, 1997. 88(5): p. 637-46.
- Wu, L. and J.G. Belasco, *Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells*. Mol Cell Biol, 2005. 25(21): p. 9198-208.
- Wu, L., J. Fan, and J.G. Belasco, *MicroRNAs direct rapid deadenylation of mRNA*. Proc Natl Acad Sci U S A, 2006. 103(11): p. 4034-9.
- 61. Lim, L.P., et al., *Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.* Nature, 2005. **433**(7027): p. 769-73.
- 62. Wakiyama, M., et al., *Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system.* Genes Dev, 2007. **21**(15): p. 1857-62.
- 63. Dalmay, T. and D.R. Edwards, *MicroRNAs and the hallmarks of cancer*. Oncogene, 2006. **25**(46): p. 6170-5.

- 64. Lamy, P., et al., *Are microRNAs located in genomic regions associated with cancer?* Br J Cancer, 2006. **95**(10): p. 1415-8.
- 65. Chen, C.Z., et al., *MicroRNAs modulate hematopoietic lineage differentiation*. Science, 2004. **303**(5654): p. 83-6.
- 66. He, L., et al., A microRNA polycistron as a potential human oncogene. Nature, 2005.
 435(7043): p. 828-33.
- Lu, J., et al., *MicroRNA expression profiles classify human cancers*. Nature, 2005.
 435(7043): p. 834-8.
- Chan, J.A., A.M. Krichevsky, and K.S. Kosik, *MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells*. Cancer Res, 2005. 65(14): p. 6029-33.
- 69. Si, M.L., et al., *miR-21-mediated tumor growth*. Oncogene, 2007. **26**(19): p. 2799-803.
- Zhu, S., et al., *MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1)*. J Biol Chem, 2007. 282(19): p. 14328-36.
- 71. Asangani, I.A., et al., *MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor* suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2007.
- Cimmino, A., et al., *miR-15 and miR-16 induce apoptosis by targeting BCL2*. Proc Natl Acad Sci U S A, 2005. 102(39): p. 13944-9.
- Johnson, S.M., et al., *RAS is regulated by the let-7 microRNA family*. Cell, 2005. 120(5):
 p. 635-47.
- 74. O'Donnell, K.A., et al., *c-Myc-regulated microRNAs modulate E2F1 expression*. Nature, 2005. **435**(7043): p. 839-43.
- 75. Esquela-Kerscher, A. and F.J. Slack, *Oncomirs microRNAs with a role in cancer*. Nat Rev Cancer, 2006. **6**(4): p. 259-69.
- 76. Lewis, B.P., et al., *Prediction of mammalian microRNA targets*. Cell, 2003. **115**(7): p. 787-98.
- 77. Bommer, G.T., et al., *p53-mediated activation of miRNA34 candidate tumor-suppressor genes*. Curr Biol, 2007. **17**(15): p. 1298-307.
- 78. Zhang, L., et al., *microRNAs exhibit high frequency genomic alterations in human cancer.* Proc Natl Acad Sci U S A, 2006. **103**(24): p. 9136-41.
- 79. Iorio, M.V., et al., *MicroRNA gene expression deregulation in human breast cancer*. Cancer Res, 2005. **65**(16): p. 7065-70.
- Krek, A., et al., *Combinatorial microRNA target predictions*. Nat Genet, 2005. 37(5): p. 495-500.
- Maitra, A., et al., *Molecular abnormalities associated with secretory carcinomas of the breast*. Hum Pathol, 1999. **30**(12): p. 1435-40.

- 82. Lerebours, F., et al., *Evidence of chromosome regions and gene involvement in inflammatory breast cancer*. Int J Cancer, 2002. **102**(6): p. 618-22.
- 83. Buchhagen, D.L., L. Qiu, and P. Etkind, *Homozygous deletion, rearrangement and hypermethylation implicate chromosome region 3p14.3-3p21.3 in sporadic breast-cancer development.* Int J Cancer, 1994. **57**(4): p. 473-9.
- Pierga, J.Y., et al., Microarray-based comparative genomic hybridisation of breast cancer patients receiving neoadjuvant chemotherapy. Br J Cancer, 2007. 96(2): p. 341-51.
- 85. Johannsdottir, H.K., et al., Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer, 2006. 119(5): p. 1052-60.
- 86. Charafe-Jauffret, E., et al., Loss of heterozygosity at microsatellite markers from region p11-21 of chromosome 8 in microdissected breast tumor but not in peritumoral cells. Int J Oncol, 2002. 21(5): p. 989-96.
- 87. Rummukainen, J., et al., *Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping.* Cancer Genet Cytogenet, 2001. **126**(1): p. 1-7.
- 88. Bhattacharya, N., et al., *Three discrete areas within the chromosomal 8p21.3-23 region are associated with the development of breast carcinoma of Indian patients*. Exp Mol Pathol, 2004. **76**(3): p. 264-71.
- 89. Shen, K.L., et al., Microsatellite alterations on human chromosome 11 in in situ and invasive breast cancer: a microdissection microsatellite analysis and correlation with p53, ER (estrogen receptor), and PR (progesterone receptor) protein immunoreactivity. J Surg Oncol, 2000. 74(2): p. 100-7.
- 90. Nagahata, T., et al., *Correlation of allelic losses and clinicopathological factors in 504 primary breast cancers.* Breast Cancer, 2002. **9**(3): p. 208-15.
- 91. Ferti-Passantonopoulou, A., A.D. Panani, and S. Raptis, *Preferential involvement of 11q23-24 and 11p15 in breast cancer*. Cancer Genet Cytogenet, 1991. **51**(2): p. 183-8.
- 92. Chen, C., et al., An 800-kb region of deletion at 13q14 in human prostate and other carcinomas. Genomics, 2001. 77(3): p. 135-44.
- 93. Dahlen, A., et al., *Clustering of deletions on chromosome 13 in benign and low*malignant lipomatous tumors. Int J Cancer, 2003. **103**(5): p. 616-23.
- 94. De Marchis, L., et al., *Candidate target genes for loss of heterozygosity on human chromosome 17q21*. Br J Cancer, 2004. **90**(12): p. 2384-9.

- 95. Orsetti, B., et al., 17q21-q25 aberrations in breast cancer: combined allelotyping and CGH analysis reveals 5 regions of allelic imbalance among which two correspond to DNA amplification. Oncogene, 1999. **18**(46): p. 6262-70.
- 96. Saito, H., et al., *Detailed deletion mapping of chromosome 17q in ovarian and breast cancers: 2-cM region on 17q21.3 often and commonly deleted in tumors.* Cancer Res, 1993. **53**(14): p. 3382-5.
- 97. Silva, J.M., et al., *Abnormal frequencies of alleles in polymorphic markers of the 17q21 region is associated with breast cancer.* Cancer Lett, 1999. **138**(1-2): p. 209-15.
- Yang, T.L., et al., *High-resolution 19p13.2-13.3 allelotyping of breast carcinomas demonstrates frequent loss of heterozygosity*. Genes Chromosomes Cancer, 2004. 41(3): p. 250-6.
- 99. Oesterreich, S., et al., *High rates of loss of heterozygosity on chromosome 19p13 in human breast cancer.* Br J Cancer, 2001. **84**(4): p. 493-8.
- 100. Ohgaki, K., et al., *Mapping of a new target region of allelic loss to a 6-cM interval at 21q21 in primary breast cancers.* Genes Chromosomes Cancer, 1998. **23**(3): p. 244-7.
- 101. Xie, D., et al., Discovery of over-expressed genes and genetic alterations in breast cancer cells using a combination of suppression subtractive hybridization, multiplex FISH and comparative genomic hybridization. Int J Oncol, 2002. 21(3): p. 499-507.
- 102. Weber-Mangal, S., et al., Breast cancer in young women (< or = 35 years): Genomic aberrations detected by comparative genomic hybridization. Int J Cancer, 2003. 107(4): p. 583-92.
- 103. Blegen, H., et al., DNA amplifications and aneuploidy, high proliferative activity and impaired cell cycle control characterize breast carcinomas with poor prognosis. Anal Cell Pathol, 2003. 25(3): p. 103-14.
- 104. Cingoz, S., et al., DNA copy number changes detected by comparative genomic hybridization and their association with clinicopathologic parameters in breast tumors. Cancer Genet Cytogenet, 2003. 145(2): p. 108-14.
- 105. Gelsi-Boyer, V., et al., *Comprehensive profiling of 8p11-12 amplification in breast cancer*. Mol Cancer Res, 2005. **3**(12): p. 655-67.
- Hwang, E.S., et al., *Patterns of chromosomal alterations in breast ductal carcinoma in situ*. Clin Cancer Res, 2004. 10(15): p. 5160-7.
- 107. Guan, X.Y., et al., *Identification of cryptic sites of DNA sequence amplification in human breast cancer by chromosome microdissection*. Nat Genet, 1994. **8**(2): p. 155-61.
- Andersen, C.L., et al., *High-throughput copy number analysis of 17q23 in 3520 tissue specimens by fluorescence in situ hybridization to tissue microarrays*. Am J Pathol, 2002. 161(1): p. 73-9.

- Barlund, M., et al., Increased copy number at 17q22-q24 by CGH in breast cancer is due to high-level amplification of two separate regions. Genes Chromosomes Cancer, 1997.
 20(4): p. 372-6.
- Wu, G., et al., Structural analysis of the 17q22-23 amplicon identifies several independent targets of amplification in breast cancer cell lines and tumors. Cancer Res, 2001. 61(13): p. 4951-5.
- 111. Parssinen, J., et al., High-level amplification at 17q23 leads to coordinated overexpression of multiple adjacent genes in breast cancer. Br J Cancer, 2007. 96(8): p. 1258-64.
- Gunther, K., et al., *Differences in genetic alterations between primary lobular and ductal breast cancers detected by comparative genomic hybridization*. J Pathol, 2001. **193**(1): p. 40-7.
- 113. James, L.A., et al., Comparative genomic hybridisation of ductal carcinoma in situ of the breast: identification of regions of DNA amplification and deletion in common with invasive breast carcinoma. Oncogene, 1997. **14**(9): p. 1059-65.
- Barlund, M., et al., Multiple genes at 17q23 undergo amplification and overexpression in breast cancer. Cancer Res, 2000. 60(19): p. 5340-4.
- 115. Lim, L.P., et al., *The microRNAs of Caenorhabditis elegans*. Genes Dev, 2003. **17**(8): p. 991-1008.
- 116. Bandres, E., et al., *Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues*. Mol Cancer, 2006. **5**: p. 29.
- 117. Soule, H.D., et al., *Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10.* Cancer Res, 1990. **50**(18): p. 6075-86.

APPENDIX A

MAMMALIAN CELL CULTURE MEDIUM

Table A-1. Composition of Cell Culture Medium

Component	End conc.	MCF7	HS578T	MDA-MB-231	SUM159	MCF10	HeLa	YS-YSHS
DMEM	-	+	+	+	-	-	+	+
Ham's F12 Nutrient mix	-	-	-	-	+	-	-	-
Leibovitz's media	-	-	-	+	-	-	-	-
Horse Serum	5%	-	-	-	-	+	-	-
Insulin (5 mg/ml)	10 µg/ml	-	-	-	-	+	-	-
EGF (100 ug/ml in DMEM)	20 ng/ml	-	-	-	-	+	-	-
Cholera Toxin (1 mg/ml in dH ₂ O)	100 ng/ml	-	-	-	-	+	-	-
Hydrocortisone (50 ug/ml)	0.5 μg/ml	-	-	-	-	+	-	-
L-Glu (200 mM)	1%	+	+	+	+	+	+	+
Penicillin / Streptomycin (10 mg/ml)	1%	+	+	+	+	-	+	+

APPENDIX B

PRIMERS AND PCR OPTIMIZATION CONDITIONS

Table B-1. Pre-miRNA microRNA DNA Specific Primers and Product Sizes

microRNAs	primer sequences $(5' \rightarrow 3')$	product sizes
mir-let7a2-F	ATAGGGAGAAAAGGCCTGGA	238 bp
mir-let7a2-R	ATGGCCCAAATAGGTGACAG	
mir-135a1-R	GAAGAAGTGCCTGCAAGAGC	169 bp
mir-135a1-F	CTGTCCTGCCTCCTTTTGAG	
mir-15a-R	ATTCTTTAGGCGCGAATGTG	203 bp
mir-15a-F	TACGTGCTGCTAAGGCACTG	
mir-34b-R	CAGGCATCTTCTCTCGAAGG	335 bp
mir-34b-F	CAGCTACGCGTGTTGTGC	
mir-let7g-R	AGCCTCTGCTGTGAGGATGT	238 bp
mir-let7g-F	GGTTTCCCAGAGATGAGCAG	
mir-138-1-F	AGCAGCACAAAGGCATCTCT	210 bp
mir-138-1-R	CTCTGTGACGGGTGTAGCTG	
mir-100-R	GTCACAGCCCCAAAAGAGAG	231 bp
mir-100-F	AGGTCTCCTTCCTCCACCTC	
mir-320-R	GGGACTGGGCCACAGTATTT	238 bp
mir-320-F	GAGGCGAATCCTCACATTG	
mir-425-F	CCACCCCATTCCTTTTAAT	247 bp
mir-425-R	CAGGTCATGCACCTTCAGAAT	
mir124a-1 F	TTGCATCTCTAAGCCCCTGT	201 bp

		_
mir-124a1-R	TCTACCCACCCCTCTTCCTT	
mir-7-3-R	CCGAGTGGAAGCGATTCTT	236 bp
mir-7-3-F	CAGGTGAGAAGGAGGAGCTG	
mir-16-1-R	CCATATTGTGCTGCCTCAAA	248 bp
mir-16-1-F	TGAAAAAGACTATCAATAAAACTGAAAA	
mir-34c-F	TTGAGCTCCAACTCAACCAA	191 bp
mir-34c-R	GATGCACAGGCAGCTCATT	
mir-125b-1-F	ACCAAATTTCCAGGATGCAA	171 bp
mir-125b-1-R	CGAACAGAAATTGCCTGTCA	
mir-191-F	AAGTATGTCTGGGGGGTCAGG	245 bp
mir-191-R	ACAACCTACTCCCGGGTCTT	
mir-383-F	AGTCCACCAAATGCAGTTCC	176 bp
mir-383-R	ACTTCAGAATCTCCCCGTCA	
mir-486-F	CCTGGGGTGTGAATGGTAAC	217 bp
mir-486-R	ATCTCCAGCAGGTGTGTGTG	
mir198F	GCCGGAGGTTAAACATGAAA	391 bp
mir198R	CCCAGCCTACCAATATGCTC	
mir384F	TGGCCAGTTAGCATCTTGAA	238 bp
mir384R	TCAGGCCTGCAGAAATAGTG	
mir325F	TCCTTTTCACCCCTCAACAC	280 bp
mir325R	GGATTCAAGTCCACAGAACCA	
mir145F	GGCTGGATGCAGAAGAGAAC	258 bp
mir145R	CAGGGACAGCCTTCTTCTTG	
mir143F	CCCTCTAACACCCCTTCTCC	276 bp
mir143R	AACTTCCCCAGCATCACAAG	
mir125b2F	TCGTCGTGATTACTCAGCTCAT	262 bp
mir125b2R	CAGGGATCAGCTGGAAGAAG	
mir10bF	TAATAAAGCCGCCATCCTTG	395 bp
mir10bR	CTGGCTATTCCGAAGAAACG	

mir361F	GGAGCTCAACCATACCAGGA	317 bp
mir361R	TTGGGCATATGTGACCATCA	
mir15bF	AGAACGGCCTGCAGAGATAA	388 bp
mir15bR	CGTGCTGCTAGAGTGGAACA	
mir16-2F	TGTTCGTTTTATGTTTGGATGA	391 bp
mir16-2R	AGTGGTTCCACCAAGTAAGTCA	
mir103-2F	CCCTAGGGAGGAATCCAGAG	236 bp
mir103-2R	AGCCATAAGCTGCACCAACT	
mir152 F	AAGGTCCACAGCTGGTTCTG	243 bp
mir152 R	CAGGGATCAGCTGGAAGAAG	
mir92-1F	CCATGCAAAACTGACTGTGG	199 bp
mir92-1R	CAGTGGAAGTCGAAATCTTCAG	
mir20aF	CGATGTAGAATCTGCCTGGTC	203 bp
mir20aR	GGATGCAAACCTGCAAAACT	
mir17 F	CCCCATTAGGGATTATGCTG	254 bp
mir17 R	CCTGCACTTTAAAGCCCAACT	
mir 18a F	GGCACTTGTAGCATTATGGTGA	247 bp
mir 18a R	TGCAAAACTAACAGAGGACTGC	
mir 19a F	TGCCCTAAGTGCTCCTTCTG	244 bp
mir 19a R	CCAGGCAGATTCTACATCGAC	
mir 19b-1F	GCCCAATCAAACTGTCCTGT	173 bp
mir 19b-1R	ACCGATCCCAACCTGTGTAG	
mir 21 F	CCATTGGGATGTTTTTGATTG	478 bp
Mir 21 R	TCCATAAAATCCTCCCTCCA	
mir142 F	CAGGGTTCCACATGTCCAG	479 bp
mir 142 R	CTGAGTCACCGCCCACAAG	
mir301F	CTCATTTAGACAAACCATAACAACTT	499 bp
mir 301R	CATCAATAAGCAACATCACTTTGA	
mir 633 F	AGGACTGGGTTTGAGTCCTG	284 bp

mir 633 R	TTAGACATTCCTCCTGGTGAA	
<i>GAPDH</i> (644) F	TGCCTTCTTGCCTCTTGTCT	644 bp
<i>GAPDH</i> (644) R	CTGCAAATGAGCCTACAGCA	
GAPDH_F(472bp)	TGCCTTCTTGCCTCTTGTCT	472 bp
GAPDH_R(472 bp)	TTGATTTTGGAGGGATCTCG	

Table B-2. Semi-quantitative Duplex PCR Optimization Conditions

microRNAs	<i>GAPDH</i> :miR	GAPDH conc	miR	Tm	Cycle #
hsa-mir-10b	3μ l/ 3μ l	100%	100%	59°C	28
hsa-mir-138-1	3µl/3µl	100%	100%	59°C	28
hsa-mir-425	3µl/3µl	100%	100%	58°C	28
hsa-mir-191	3µl/3µl	100%	100%	63°C	28
hsa-let7g	3µl/2µl	100%	100%	58°C	28
hsa-mir-135a1	3µl/3µl	100%	100%	58°C	28
hsa-mir-198	3µl/3µl	100%	100%	58°C	28
hsa-mir-15b	3µl/3µl	100%	100%	58°C	28
hsa-mir-16-2	3µl/3µl	100%	100%	58°C	28
hsa-mir-143	3µl/3µl	100%	100%	58°C	28
hsa-mir-145	3µl/3µl	100%	100%	58°C	28
hsa-mir-383	3µl/3µl	100%	100%	58°C	28
hsa-mir-320	3µl/3µl	100%	100%	58-60°C	29
hsa-mir-486	3µl/2µl	100%	100%	63°C	28
hsa-mir-34c	3µl/3µl	100%	100%	58°C	28
hsa-mir-125b1	3µl/2µl	100%	100%	58°C	28
hsa-let7a-2	3µl/3µl	100%	100%	60°C	28
hsa-mir-100	3µl/3µl	100%	50%	56°C	28
hsa-mir-16-1	3µl/3µl	100%	100%	59°C	29
hsa-mir-15a	3µl/2.5µl	200%	100%	58°C	30
hsa-mir-17	2µl/3µl	50%	100%	58°C	28
hsa-mir-18a	3µl/3µl	150%	100%	56°C	28
hsa-mir-19a	3µl/3µl	100%	100%	59°C	28
hsa-mir-20a	2µl/3µl	100%	50%	58°C	28
hsa-mir-19b-1	3µl/3µl	100%	100%	59°C	28
hsa-mir-92-1	3µl/3µl	50%	100%	56°C	28
hsa-mir-152	3µl/3µl	50%	100%	58°C	28
hsa-mir-142	3µl/3µl	100%	100%	59°C	28

hsa-mir-301	3µl/3µl	100%	100%	58°C	28
hsa-mir-21	3µl/3µl	100%	100%	59°C	27
hsa-mir-633	3µl/3µl	100%	100%	59°C	27
hsa-mir-7-3	3µl/1,5µl	100%	100%	63°C	28
hsa-mir-103-2	3µl/3µl	100%	100%	59°C	27
hsa-mir-125b-2	3µl/3µl	100%	100%	59°C	28
hsa-mir-384	3µl/3µl	100%	100%	59°C	28
hsa-mir-325	3µl/3µl	100%	100%	59°C	27
hsa-mir-361	3µl/3µl	100%	100%	58°C	28

Table B-3. pre-microRNA cDNA Specific Primers

Primers	Sequences 5'→3'
GAPDH (115bp)_F	TATGACAACGAATTTGGCTAC
GAPDH (115bp)_R	TCTCTCTTCCTCTTGTGCTCT
hsa-mir-633cDNA_F	CTCTGTTTCTTTATTGCGGTAG
hsa-mir-633cDNA_R	CCTCACAACAATTTTATTGTGG
hsa-mir-145cDNA_F	CACCTTGTCCTCACGGT
hsa-mir-145cDNA_R	AGAACAGTATTTCCAGGAATCC
hsa-mir-383cDNA_F	CTCCTCAGATCAGAAGGTGAT
hsa-mir-383cDNA_R	CTCTTTCTGACCAGGCAGT
hsa-mir-361cDNA_F	GGTGCTTATCAGAATCTCCAG
hsa-mir-361cDNA_R	GCAAATCAGAATCACACCTG
hsa-mir-21cDNA_F	TGTCGGGTAGCTTATCAGACT
hsa-mir-21cDNA_R	TCAGACAGCCCATCGAC
hsa-mir-486cDNA_F	GTATCCTGTACTGAGCTGCC
hsa-mir-486cDNA_R	CATCCTGTACTGAGCTGCC

APPENDIX C

BUFERS AND SOLUTIONS

10X TBE (Tris Borate) Buffer -1L

Tris-base	108 g
Boric acid	55 g
0.5M EDTA (pH: 8.0)	40 ml
The volume was completed to 1 L with dH2O.	

1X TE (Tris-EDTA) Buffer -1 L

Tris.HCl 10 mM EDTA 1 mM The volume was completed to 1 L with dH₂O.

DNA Loading Dye (6X)

Xylene Cyanol	0.025 g
Bromophenol Blue	0.010 g
Glycerol (60%)	5 ml
dH ₂ O	5 ml