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ABSTRACT 
 
 

VISUAL DETECTION AND TRACKING OF MOVING 

OBJECTS 

 
 

Ergezer, Hamza 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Kemal Leblebicioğlu 

 
 

November 2007, 85 pages 

 
 
 

In this study, primary steps of a visual surveillance system are presented: moving 

object detection and tracking of these moving objects. Background subtraction has 

been performed to detect the moving objects in the video, which has been taken 

from a static camera. Four methods, frame differencing, running (moving) 

average, eigenbackground subtraction and mixture of Gaussians, have been used 

in the background subtraction process. After background subtraction, using some 

additional operations, such as morphological operations and connected component 

analysis, the objects to be tracked have been acquired. While tracking the moving 

objects, active contour models (snakes) has been used as one of the approaches. In 

addition to this method; Kalman tracker and mean-shift tracker are other 

approaches which have been utilized. A new approach has been proposed for the 

problem of tracking multiple targets. We have implemented this method for single 

and multiple camera configurations. Multiple cameras have been used to augment 

the measurements. Homography matrix has been calculated to find the 
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correspondence between cameras. Then, measurements and tracks have been 

associated by the new tracking method.  

 

Keywords: Visual surveillance, moving object detection, background subtraction, 

moving object tracking, multiple hypothesis tracking, object tracking with multi-

camera. 
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ÖZ 
 
 

HAREKETLİ NESNELERİN GÖRSEL TESPİTİ VE 

İZLENMESİ 

 
 

Ergezer, Hamza 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Kemal Leblebicioğlu 

 
 

Kasım 2007, 85 sayfa 

 
 

Bu çalışmada, bir görsel gözetim sisteminin ilk adımları olan hareketli nesnelerin 

tespiti ve izlenmesi ile ilgili yapılan çalışmalar sunulmuştur. Hareketli nesnelerin 

tespiti için sabit bir kameradan alınan görüntüde arkaplan çıkarma (modelleme) 

yöntemi kullanılmıştır. Arkaplan modellemede dört yöntem gerçekleştirilmiş ve 

performansları karşılaştırılmıştır. Arkaplan çıkarımının ardından, takip edilecek 

nesnelerin düzgün bir şekilde elde edilmesi ve belirlenmesi amacıyla morfolojik 

operatörlerden ve bağlı eleman analizi gibi ek işlemlerden yararlanılmıştır. Tek 

kamerada hareketli nesnelerin takibinde ise, aktif dış çevritlerden, Kalman 

süzgecinden ve ortalama değer kayması yönteminden yararlanılmıştır. Çoklu 

kamerayla çoklu hedef takibi problemi için yeni bir metot önerilmiştir. Klasik 

çoklu varsayım takibi metodunda bulanık mantık kullanılarak çoklu hedef takibi 

yapılmıştır. Hedefler ve takipler hakkında daha çok bilgi sağlanması amacıyla ikili 

kamera sistemi kullanılmıştır. İki kamera arasındaki eşleştirmeyi bulmak için 

eşleştirme (homography) matrisi hesaplanmıştır. Kameralardan birinde hedefler 

arasında örtüşme olması durumunda, diğer kameradan gelen bilgilerden 
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yararlanılmıştır. Uygulanan ve önerilen metotlarla ile ilgili test sonuçları da 

ayrıntılı bir şekilde verilmiştir. 

 

Anahtar Kelimeler: Görsel gözetim sistemleri, hareketli nesnelerin tespiti, 

arkaplan çıkarımı, hareketli nesnelerin izlenmesi, çoklu varsayım takibi, çoklu 

kamerayla hedef takibi. 
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CHAPTER 1 

 
 

INTRODUCTION 

 
 
 
Visual surveillance has become a popular area for research and development with 

recent advances of computer (hardware) and camera technology. In addition to 

this development in technology, due to increasing crime rate, better precautions 

are required in security-sensitive areas, such as, country borders, airports and 

some government offices.  

 

Traditional security systems were greatly depending on operator instead of an 

automated system. As a result, detection and judgment of events was limited with 

the concentration of the operator. Additionally, with traditional systems, area 

under surveillance must be restricted with the number of operators and number of 

cameras may exceed their monitoring capability. This situation forces the use of 

more personnel, which makes it even a more expensive task in an era of much 

cheaper technological equipments being than the human resources. 

 

Visual surveillance in dynamic scenes attempts to detect, recognize and track 

certain objects from image sequences, and more generally to understand and 

describe object behaviors. The aim is to develop intelligent visual surveillance to 

replace the traditional passive video surveillance that is proving ineffective as the 

number of cameras exceeds the capability of human operators to monitor them. In 

short, the goal of visual surveillance is not only to put cameras in the place of 

human eyes, but also to accomplish the entire surveillance task as automatically as 

possible. 
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A general framework of visual surveillance is shown in Figure 1.1. Additional 

steps can be inserted to this scheme. However, steps in the figure are the 

unavoidable parts of a visual surveillance system. 

 
 
 

 

 

Figure 1.1 General scheme of the visual surveillance systems 
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Visual surveillance is still one of the hot topics in computer vision area. There are 

many researches on the general visual surveillance theme and especially on the 

steps in Figure 1.1 and other related topics, such as object classification, occlusion 

handling, etc. 

 

Visual surveillance has been investigated worldwide under several large research 

projects. For example, the Defense Advanced Research Projection Agency 

(DARPA) supported the Visual Surveillance and Monitoring (VSAM) project 

[15] in 1997, whose purpose was to develop automatic video understanding 

technologies that enable a single human operator to monitor behaviors over 

complex areas such as battlefields and civilian scenes. Furthermore, to enhance 

protection from terrorist attacks, the Human Identification at a Distance (HID) 

program sponsored by DARPA in 2000 aims to develop a full range of 

multimodal surveillance technologies for successfully detecting, classifying, and 

identifying humans at great distances. The European Union’s 6th Framework 

Program sponsored AVITRACK [8] that aims at developing an intelligent 

surveillance system on the apron, addressing aircraft, vehicles and people’s 

presence and movements. 

 

1.1 Scope of the Thesis 

This thesis is devoted to the problem of defining and developing the fundamental 

blocks of automated video surveillance systems via single-camera and multi-

camera configurations. Initial problem is the detection of object motions in the 

scene. Background subtraction algorithms (frame differencing, running average, 

eigenbackground subtraction and mixture of Gaussians) which are capable of 

coping with the changes in the scene (i.e., adaptable), are described for extracting 

isolated moving objects. In order to remove undesired components which are part 

of foreground such as shadow and noises, a shadow removal algorithm and 

morphological operations have been utilized.  
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Tracking of detected objects is the next section of the thesis. Three methods have 

been implemented and discussed as object tracker. Kalman tracker, snake tracker 

and mean-shift tracker have been utilized as point tracker, contour tracker, and 

kernel tracker, respectively.  

 

To cope with the some of the difficulties, such as occlusion, multiple camera 

tracking is chosen as solution. Using multiple cameras, more information can be 

obtained about objects. Also, information acquired from cameras must be 

corresponded. In order to find the correspondence between cameras, homography 

matrix has been utilized. 

 

In order to track multiple targets, there must be a special algorithm to initiate, 

associate and finalize the tracks of objects. Multiple hypothesis tracking (MHT) is 

the only multi-target tracker which considers these three operations. This powerful 

feature of MHT is combined with fuzzy logic. Fuzzy logic has been used as an 

evaluation tool of tracks. 

 

1.2 Outline of the Thesis 

In Chapter 2, related works and broad overview for each of the proposed system 

blocks are presented. 

 

Moving object detection, first step of the visual surveillance system, is described 

in Chapter 3. Four methods are extensively described and compared by means of 

obtained results. Shadow removal and morphological operations are also 

mentioned in this chapter. 

 

After moving object detection, the next part, moving object tracking, is given in 

Chapter 4. Simple Kalman filter tracking, Active-contour (snake) based tracking, 

and mean-shift tracking are presented and discussed. 
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Rule-based multiple hypothesis tracking has been proposed in Chapter 5. General 

idea of generic multiple hypothesis tracking and proposed method that have been 

applied for both single and multiple camera have been presented. 2D homography 

is introduced as a correspondence tool for the multiple-camera configuration. 

Also, the results have been presented for single and multi-camera configurations. 

 

This thesis is summarized in Chapter 6 and some future works are also discussed 

in this chapter. 
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CHAPTER 2 

 
 

A SHORT SURVEY ON VISUAL SURVEILLANCE 

 
 
 

The main theme of this thesis is the design of some of the primary blocks of an 

automated visual surveillance system. This chapter describes the latest studies in 

the literature related with these blocks. 

 

2.1 Moving Object Detection 

Moving object detection is generally the first block of a visual surveillance 

system. Detecting moving regions provides a focus of attention for later processes 

such as tracking and behavior analysis because only these regions will be 

considered in the later processes. Hence, moving object detection plays an 

important role in the overall performance of the system. There are several 

methods that aim at detecting the moving objects, but they can be divided into two 

conventional groups: background subtraction (modeling) and optical flow. 

 

2.1.1 Background subtraction (modeling) 

There are many methods that use a background model to extract the foreground 

objects. The methods in this category differ from each other by how background 

is modeled. Although all of methods propose a statistical model for background 

image, the utilized statistical model is different for each method. 



 7  

Pfinder [1] uses a multi-class statistical model for the foreground objects, but the 

background model is a single Gaussian per pixel. After an initialization period 

where the room is empty, the system reports good results. There have been no 

reports on the success of this tracker in outdoor scenes. 

 

Haritaoğlu [5], models the background by representing each pixel with its 

maximum intensity value, minimum intensity value and intensity difference 

values between consecutive frames in W4 system. The limitation of such a model 

is its susceptibility to illumination changes. 

 

Elgammal, et al. [12] uses sample background images to estimate the probability 

of observing pixel intensity values in a nonparametric manner without any 

assumption about the form of the background probability distribution. As a matter 

of fact, this theoretically well established method yields many accurate results 

under challenging outdoor conditions. 

 

2.1.2 Optical Flow 

Optical flow based motion detection uses characteristics of flow vectors of 

moving objects over time to detect moving regions in an image sequence. For 

example, Meyer et al. [11] computes the displacement vector field for the 

extraction of articulated objects. The results are used for gait analysis. Optical-

flow-based methods can be used to detect independently moving objects even in 

the presence of camera motion. However, most flow computation methods are 

computationally complex and very sensitive to noise, and cannot be applied to 

video streams in real time without specialized hardware. More detailed discussion 

of optical flow can be found in Barron’s work [13]. 
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2.2 Moving Object Tracking 

In visual surveillance systems, moving object detection is generally followed by 

tracking of the detected regions. There are various methods in the literature related 

with the visual tracking of moving objects. They can be classified into three major 

categories according to Yılmaz [14]: point tracking, kernel tracking and silhouette 

tracking. Furthermore, these categories have been divided into subcategories in 

his work. 

 

2.2.1 Point Tracking 

Objects detected in consecutive frames are represented by points, and the 

association of the points is based on the previous object state which can include 

object position and motion. Generally, center points or corners are used as tracked 

points. This approach requires an external mechanism to detect the objects in 

every frame. 

 

Point correspondence is a complicated problem- especially in the presence of 

occlusions, misdetections, entries, and exits of objects. Overall, point 

correspondence methods can be divided into two broad categories, namely, 

deterministic and statistical methods. The deterministic methods use qualitative 

motion heuristics to constrain the correspondence problem. On the other hand, 

probabilistic methods explicitly take the object measurement and take 

uncertainties into account to establish correspondence. 

 

2.2.2 Kernel Tracking 

Kernel refers to the object shape and appearance. For example, the kernel can be a 

rectangular template or an elliptical shape with an associated histogram. Objects 

are tracked by computing the motion of the kernel in consecutive frames. This 

motion is usually in the form of a parametric transformation such as translation, 

rotation, and affine. 
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Kernel tracking is typically performed by computing the motion of the object, 

which is represented by a primitive object region, from one frame to the next. The 

object motion is generally in the form of parametric motion (translation, 

conformal, affine, etc.) or the dense flow field computed in subsequent frames. 

These algorithms differ in terms of the appearance representation used, the 

number of objects tracked, and the method used to estimate the object motion. 

These tracking methods can be into two subcategories based on the appearance 

representation used, namely, templates and density-based appearance models, and 

multi-view appearance models.  

 

2.2.3 Silhouette Tracking 

Tracking is performed by estimating the object region in each frame. Silhouette 

tracking methods use the information encoded inside the object region. This 

information can be in the form of appearance density and shape models which are 

usually in the form of edge maps. Given the object models, silhouettes are tracked 

by either shape matching or contour evolution. Both of these approaches can 

essentially be considered as object segmentation applied in the temporal domain 

using the priors generated from the previous frames. 

 

Objects may have complex shapes, for example, hands, head, and shoulders that 

cannot be well described by simple geometric shapes. Silhouette based methods 

provide an accurate shape description for these objects. The goal of a silhouette-

based object tracker is to find the object region in each frame by means of an 

object model generated using the previous frames. This model can be in the form 

of a color histogram, object edges or the object contour. Silhouette trackers can be 

divided into two categories, namely, shape matching and contour tracking. Shape 

matching approaches search for the object silhouette in the current frame. Contour 

tracking approaches, on the other hand, evolve an initial contour to its new 
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position in the current frame by either using the state space models or direct 

minimization of some energy functional. 

 

2.3 Multiple Object Tracking 

When tracking multiple objects using Kalman or particle filters, there is a need to 

associate the most likely measurement for a particular object to that object’s state, 

that is, the correspondence problem needs to be solved before these filters can be 

applied. The simplest method to perform correspondence is to use the nearest 

neighbor approach. However, if the objects are close to each other, then there is 

always a chance that the correspondence is incorrect. An incorrectly associated 

measurement can cause the filter fail to converge. There exist several statistical 

data association techniques to tackle this problem. Joint Probability Data 

Association (JPDA) and Multiple Hypothesis Tracking (MHT) are two widely 

used techniques for data association. We give a brief description of these 

techniques in the following. 

 

2.3.1 JPDA 

JPDA is a target oriented approach, that is, for a known number of targets it 

evaluates the measurement-to-target probabilities and combines them into the 

corresponding state estimates. The major limitation of the JPDAF algorithm is its 

inability to handle new objects entering the field of view (FOV) or already tracked 

objects exiting the FOV. Since the JPDA algorithm performs data association of a 

fixed number of objects tracked over two frames, serious errors can arise if there 

is a change in the number of objects. The MHT algorithm, which is explained 

next, does not have this shortcoming. 
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2.3.2 Multiple Hypothesis Tracking (MHT) 

MHT is an iterative algorithm. Iteration begins with a set of current track 

hypotheses. Each hypothesis is a collection of disjoint tracks. For each hypothesis, 

a prediction of each object’s position in the next frame is made. The predictions 

are then compared with actual measurements by evaluating a distance measure. A 

set of correspondences (associations) are established for each hypothesis based on 

the distance measure which introduces new hypotheses for the next iteration. Each 

new hypothesis represents a new set of tracks based on the current measurements. 

Note that each measurement can belong to a new object entering the FOV, a 

previously tracked object, or a spurious measurement. Moreover, a measurement 

may not be assigned to an object because the object may have exited the FOV, or 

a measurement corresponding to an object may not be obtained. The latter 

happens because either the object is occluded or it is not detected due to noise. 

The MHT algorithm is computationally exponential both in memory and time. To 

overcome this limitation, Cox and Hingorani [19] use a special algorithm to 

determine best hypotheses in polynomial time for tracking interest points. 
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CHAPTER 3 

 
 

MOVING OBJECT DETECTION 

 
 
 

In visual surveillance systems, if there is no operation on video data after 

observed from camera, moving object detection, sometimes called motion 

segmentation or foreground extraction, is the first step. The following operations, 

such as object tracking and object classification, take the output of moving object 

detection module as its input. Therefore, the performance of motion detection 

algorithm together with the submodules affects the overall performance of the 

entire system. 

 

3.1 Foreground Segmentation 

As mentioned in Chapter 2, there are many works on moving object detection. 

Among these methods, background subtraction has been chosen due to its 

simplicity and computational efficiency. Four methods have been implemented as 

background modeling technique. These implemented methods are: Frame 

differencing, running (moving) average, eigenbackground subtraction and mixture 

of Gaussians. 

 

3.1.1 Frame differencing 

The easiest and simplest way of detecting moving objects is frame differencing. In 

this method, background is taken as the previous frame and the difference 

between the current and the previous frame is thresholded.  
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In the formula above, I (x,y,t) is the intensity value at pixel location (x,y) at time t 

and I (x,y,t-1) is the intensity value at pixel location (x,y) at time t-1. M (x,y,t) is 

the mask image resulting from differencing and thresholding operations. 

 

Although this method is quite fast and can adapt to changes in the scene, it is very 

sensitive to the threshold value. Also there is an aperture problem as can be seen 

from Figure 3.2.b. Parts which are extracted as foreground are only the parts near 

the edges for the large-sized objects. 

 

Instead of previous frame, a mean image of previous N frames can be used as a 

background image. However, this approach is not memory-efficient. 

 

3.1.2 Running (Moving) Average 

The main goal of background modeling is to achieve a background image, even 

when there are moving regions in the scene. It can be said that all techniques 

require a background observation (training) time.  

 

In running average method, each pixel is modeled using an adaptive filter. The 

parameter, α, must be selected as considering the features (size, speed, etc.) of 

potential moving objects and video. 

 

      iii BGFRBG *)1(* 11 αα −+= ++            (3.2) 

 

As regards to updating parameter, α, it is generally selected about 0.05. α 

determines the how the background model adapts to changes in the scene such as 

parked car, left luggage etc.. In addition to determination of updating parameter, 
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the background model can be updated with every new frame as well as by using 

the matching criteria given below. 
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In figure 3.1, video frames (a, b, c, d) taken from an area which has dense traffic 

and modeled background (e) are shown. 

 

 

 

 (a)   (b)     (c)          (d)             (e) 

 

Figure 3.1 Background modeling using running average method (a) 1st frame 
(b) 20th frame (c) 50th frame, (d) 90th frame and (e) Modeled background 

 
 
 

3.1.3 Eigenbackground Subtraction 

In this method [16], an eigenspace that models the background is adaptively built. 

This eigenspace model describes the range of appearances (e.g., lighting 

variations over the day, weather variations, etc.) that have been observed.  

 

The main idea of this method can be described as: since moving objects do not 

appear in the same location in the sample N images, they do not have significant 

contributions to this model. Consequently, the portions of an image containing a 

moving object cannot be well-described by this eigenspace model, whereas the 

static portions of the image can be accurately described as a sum of the various 
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eigenbasis vectors. That is, the eigenspace provides a robust model of the 

probability distribution function of the background, but not for the moving 

objects. 

 

Dimensionality of the space constructed from sample images is reduced by the 

help of Principal Component Analysis (PCA). It is proposed that the reduced 

space after PCA should represent only the static parts of the scene, yielding 

moving objects, if an image is projected on this space. 

 

The main steps of the algorithm can be summarized as follows [17]: 

• A sample of N images of the scene is obtained; mean background image, 

µb, is calculated and mean normalized images are arranged as the columns 

of a matrix, A. 

• The covariance matrix, C=AAT, is computed. 

• Using the covariance matrix C, the diagonal matrix of its eigenvalues, L, 

and the eigenvector matrix, Φ, is computed. 

• The M eigenvectors, having the largest eigenvalues (eigenbackgrounds), 

are retained and these vectors form the background model for the scene. 

• If a new frame, I, arrives it is first projected onto the space spanned by M 

eigenvectors and the reconstructed frame I' is obtained by using the 

projection coefficients and the eigenvectors. 

• The difference I - I' is computed. Since the subspace formed by the 

eigenvectors well represents only the static parts of the scene, outcome of 

the difference will be the desired change mask including the moving 

objects. 

3.1.4 Mixture of Gaussians 

Background model must be adapted gradual and fast changes in the scene for the 

complicated environments. Therefore, background model must cope with multi-

modal distributions.  
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In mixture of Gaussians based moving object detection method [2], background is 

modeled by utilizing the recent history of each pixel, {X1, ...,Xt}, with an 

approximation to a mixture of K Gaussian distributions. The probability of 

observing the current pixel value given in model is 

 

         ∑
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K
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where K is the number of distributions, ωi,t is an estimate of the weight (the 

portion of the data accounted for by this Gaussian) of the ith Gaussian in the 

mixture at time t, µi,t and Σi,t are the mean value and covariance matrix of the ith 

Gaussian in the mixture at time t, and where η is a Gaussian probability density 

function 
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K is determined by the available memory and computational power. Generally, 

values ranging from 3 to 5 are used. Also, for computational reasons, the 

covariance matrix is assumed to be of the form: 

 

    Iktk

2
, σ=Σ          (3.6) 

 

This assumes that the red, green, and blue pixel values are independent and have 

the same variances. While the noise is certainly not spherical, this assumption 

allows us to avoid a costly matrix inversion at the expense of reduced accuracy. 

Using a diagonal covariance would allow a Gaussian to represent that a particular 

channel showed more variation. Using a full covariance matrix would allow each 

Gaussian to model its local variation with more accuracy. This would be 
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particularly helpful in modeling of variation due to lighting, which varies 

significantly across the color space. 

 

Thus, the distribution of recently observed values of each pixel in the scene is 

characterized by a mixture of Gaussians. Each new pixel value will be represented 

by one of the major components of the mixture model and used to update the 

parameters of that component of the mixture. 

 

Every new pixel value, Xt, is checked against the existing K Gaussian 

distributions (starting with the most likely background Gaussians) until the first 

match is found. A match is defined as a pixel value within 2.5 standard deviations 

of a distribution. If none of the K distributions match the current pixel value, the 

least probable distribution is replaced with a distribution with the current pixel 

value as its mean value, an initially high variance, and low prior weight. The prior 

weights of the K distributions at time t are adjusted as follows 

 

    1,, *)1(),(* −−+= tktk tkM ωααω       (3.7) 

 

where α  is the learning rate and tkM ,  is ‘1’ for matched models, and ‘0’ for 

remaining models. 

 

The mean (µ) and variance (σ) parameters for unmatched distributions remain the 

same. The parameters of the distribution which matches the new observation are 

updated as follows 

 

    ttt Xρµρµ +−= +1)1(                    (3.8) 

)()()1( 2
1

2
tt

T

tttt XX µµρσρσ −−+−= −       (3.9) 

 

where ),|( kktX σµαηρ = . These equations are logically same as the equations 

used in weight updating equation and in running average method. 
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Measurements must be organized such that any changes in the scene must be 

inserted to the model. For this reason, Gaussians are evaluated by the following 

approach. First, the Gaussians are ordered by the value of ω/σ. This value 

increases both as a distribution gains more evidence and as the variance decreases. 

After re-estimating the parameters of the mixture, it is sufficient to sort from the 

matched distribution towards the most probable background distribution, because 

only the matched models relative value will have changed. This ordering of the 

model is effectively an ordered, open-ended list, where the most likely 

background distributions remain on top and the less probable transient 

background distributions gravitate towards the bottom and are eventually replaced 

by new distributions. Then the first B distributions are chosen as the background 

model, where 

 

   )(minarg
1

∑
=

>=
b

k
kb TB ω       (3.10) 

 

where T is a measure of the minimum portion of the data that should be accounted 

for by the background. This takes the “best” distributions until a certain portion, 

T, of the recent data has been accounted for. If a small value for T is chosen, the 

background model is usually unimodal. If this is the case, using only the most 

probable distribution will save processing. If T is higher, a multi-modal 

distribution caused by a repetitive background motion (e.g., leaves on a tree, a flag 

in the wind, a construction flasher, etc.) could result in more than one color being 

included in the background model. This results in a transparency effect which 

allows the background to accept two or more separate colors. 

 

3.2 Results and Discussion 

Acquired results of moving object detection methods and comparison of these 

methods have been presented in this section. PETS2001 video sequence has been 

used to obtain simulation results of the methods. 
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(a) 

  

         (b)       (c) 

  

         (d)       (e) 

 

Figure 3.2 Results of background subtraction algorithms. (a) Input frame   

(b) Frame differencing (c) Running average (d) Eigenbackground 

subtraction (e) Mixture of Gaussians 
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Frame differencing is the simplest approach to detect moving objects. It is very 

sensitive to the selected threshold value. Also, small motions which occurred in 

the previous frame can be regarded as moving objects. It is not suitable for 

complex environments such as city traffic and airports. 

 

Running average is more complex than frame differencing, but it has also some 

deficiencies. Running average is not an appropriate approach for the environments 

where objects have different sizes. Updating parameter, α, can not be optimum for 

all objects. As can be seen in Figure 3.2.c a bus destroyed the real background, 

e.g. some part of the bus is considered as background.  

 

Eigenbackground subtraction has a powerful theoretical background when 

compared to both of the previous methods. The results of eigenbackground 

subtraction are better than frame differencing and running average as show in 

Figure 3.2.d. However, there is no updating step of this approach. That is, it is not 

suitable in complex situations which have dynamic background. Despite its 

deficiency in updating the environment, it can be a solution for environments 

which have rare changes such as metro stations and smart rooms. 

 

It can be said that among all of the methods, mixture of Gaussians is the most 

powerful method. It can adapt to all changes in the scene such as noises, gradual 

light changes, etc. It models all of the problems as some part of the mixture of 

Gaussians. Our experiment has shown that mixture of Gaussians gives good 

results for all environments. Consequently, it has been used as the detection 

method for the subsequent tracking module. 

 

3.3 Suboperations 

Outputs of background subtraction process cannot be directly used in the 

following processes. Shadows and noises are also part of the output. In order to 

remove these undesired components, a shadow removal algorithm and 

morphological operations have been applied after background subtraction. 
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3.3.1 Shadow Removal 

In moving object detection process, shadows are also detected as part of the 

moving objects. This is an expected result, because shadows cause considerable 

intensity change when compared with the pixel value of background. Shadow can 

be a critical issue for some surveillance systems such as traffic surveillance 

systems.  

 

Shadows can be a big problem especially in outdoor environments but also can be 

for indoor environments. In figure 3.3.a, an example of how shadows can be 

problem in indoor environments is shown. Depending on the angle of the 

incoming light, moving objects might be merged because of shadows as can be 

seen in Figure 3.3.b. Shadows also changes some features of the objects and 

creates instability related to, for example, center point of objects which will be 

used in later processes. 
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(a) 

  

(b) 

 

Figure 3.3 Input images and output images with shadows a) Effect of shadow 

for indoor environment. b) Merging problems due to shadows 

 
 
 

In the literature, several methods can be found for shadow detection problem. 

Prati [27] has divided these methods into two categories: statistical and 

deterministic. In this work, we have applied the algorithm which is proposed in 

[26]. The main idea of the algorithm is that the shadow changes the intensity of 

the background but normalized intensity values of shadow pixels are 

approximately the same as background. Results of the algorithm are given in 

Figure 3.3.  
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Is(x,y) = αI(x,y)    (3.11) 

 

where I(x,y) is the intensity value at point (x,y) and subscript “s” denotes the 

value after shadow. The foreground pixels, having intensity values different from 

the background, but normalized color values that are close to background values, 

are labeled as shadow region. 

 

3.3.2 Morphological Operations 

After moving object detection, we have a binary image that indicates the 

foreground image as well as undesired noises. To get rid of these noises, 

morphological operations, erosion and dilation have been utilized.  

 

Morphological operations are generally applied in binary images by using a 

structuring element. Structuring element is a matrix which contains 0’s and 1’s 

and is mostly selected in sizes such as 3x3. It is shifted over the image and at each 

pixel of the image its elements are compared with the ones on the image. If the 

two sets match the condition defined by the set operator (e.g., if element by 

element multiplication of two sets exceeds a certain value), the pixel underneath 

the origin of the structuring element is set to a pre-defined value. Erosion and 

dilation are two fundamental morphological operations and applied to binary 

image which is obtained by background subtraction and shadow removal, 

respectively.  

 

3.3.2.1 Erosion 

The basic effect of erosion operator is to erode the boundaries of the regions for 

the foreground pixels. A structuring element which has been utilized for this 
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purpose is shown in (3.12). Each foreground pixel in the input image is aligned 

with the center of the structuring element.  
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erosionSE     (3.12) 

 

If, for each pixel having a value “1” in the structuring element, the corresponding 

pixel in the image is a foreground pixel, then the input pixel is not changed. 

However, if any of the surrounding pixels (considering 4-connectedness) belong 

to the background, the input pixel is also set to the background value. The effect 

of this operation is to remove any foreground pixel that is not completely 

surrounded by other white pixels as shown in Figure 3.4. As a result, foreground 

regions shrink and holes inside a region grow. 

 
 

  

(a)          (b) 

 

Figure 3.4 Effect of erosion operation (a) Output image of background 

subtraction process (b) Eroded image 

 

3.3.2.2 Dilation 

Dilation is the dual operation of erosion. A sample structuring element which has 

been utilized is given in (3.13). 
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The structuring element works on the background pixels instead of foreground 

pixels, with the same methodology defined in the erosion operator (considering 8-

connectedness). After the dilation operation, foreground objects become bigger 

and also holes inside them shrink. 

 
 

  

(a)          (b) 

 

Figure 3.5 Effect of dilation operation (a) Eroded image (b) Dilated image 

(resulting image of morphological operations) 

 
 
 

3.3.3 Connected Component Labeling 

One of the most common operations in computer vision is finding the connected 

components in an image. The points in a connected component form a candidate 

region for representing an object. 
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A connected component labeling algorithm finds all connected components in an 

image and assigns a unique label to all points in the same object. The algorithm 

[20] which has been used to find the connected components is given below: 

1) Run-length encodes the input image. 

2) Scan the runs, assigning preliminary labels and recording label 

equivalences in a local equivalence table. 

3) Resolve the equivalence classes. 

4) Relabel the runs based on the resolved equivalence classes. 

 

 

 

 

Figure 3.6 Labeling of Connected Components 
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CHAPTER 4 

 
 

MOVING OBJECT TRACKING 

 
 
 

Moving object tracking is one of the important steps for an automated surveillance 

system. The increasing need for automated video analysis has generated a great 

deal of interest in object tracking algorithms. In its simplest form, tracking is 

defined in [4] as the estimation of the state of a moving object based on remote 

measurements. In our work, tracking can be defined as of finding associations of 

moving regions between current and previous frames.  

 

Three methods have been used to track moving objects: Kalman tracker, active 

contour based tracker and mean-shift tracking. These methods have been 

evaluated using PETS2001 [9] and PETS2004 [10] data sets. 

 

4.1 Kalman Tracker 

Kalman filtering is a popular approach in estimation theory. In this work, Kalman 

tracker estimates the position of the object using standard Kalman filter with a 

motion model. Kalman filter has been utilized as a stand-alone tool to track the 

targets, as well as it has been used as supporting tool in snake tracker and rule-

based MHT tracker which will be described in next chapter. 

 



 28  

4.1.1 Kalman Filter 

The Kalman filter [18] is a set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state of a process, in a way that 

minimizes the mean of the squared error. The filter is very powerful in several 

aspects: it supports estimations of past, present, and even future states, and it can 

do so even when the precise nature of the modeled system is unknown. 

 

The Kalman filter addresses the general problem of trying to estimate the state 

x∈Rn of a discrete-time controlled process that is governed by the linear 

stochastic difference equation 

 

111 −−− ++= kkkk wBuAxx     (4.1) 

 

with a measurement defined by the equation 

 

kkk vHxz +=       (4.2) 

 

The random variables wk and vk represent the process and measurement noise, 

respectively. They are assumed to be independent of each other, white, and with 

normal probability distributions. 

 

p(w) ~ N(0, Q) 

p(v) ~ N(0, R) 

 

In practice, the process noise covariance Q and measurement noise covariance R 

matrices might change with each time step or measurement, however assume they 

are assumed to be constant in our work. 

 

The next state of a process is estimated by Kalman filter by the scheme given in 

Figure 4.1. The time update projects the current state estimate ahead in time. The 
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measurement update adjusts the projected estimate by an actual measurement at 

that time. 

 

 

 

 

Figure 4.1 The Kalman filter cycle 

 
 
 
For these steps of Kalman filter, namely time-update and measurement update, 

there are equations by which a priori (xk
-) and posteriori (xk) estimates are 

determined. 

 

Time update equations (predict): 

   11ˆˆ −−
− += kkk BuxAx         (4.3) 

  QAAPP T

kk += −
−

1        (4.4) 

Measurement update (correct): 

1)( −−− += RHHPHPK T

k

T

kk        (4.5) 

)ˆ(ˆˆ −− −+= kkkkk xHzKxx        (4.6) 

−−= kkk PHKIP )(         (4.7) 
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4.1.2 Moving Object Tracking via Kalman Filter 

After detection of moving object, Kalman tracker is used as point tracker. Center 

position of the moving object has been used as the core point to be estimated. The 

state vector of Kalman filter has been defined as x and y positions and 

displacements in x and y directions per unit time interval.  

 

        ( )
yxcck vvyxX =         (4.8) 

 

The Kalman filtering algorithm estimates the state vector based on a measurement 

errors. State model has been assumed as linear and defined by 

 

11 −− += kkk AXX ω         (4.9) 
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where A is the transition matrix and ω is the estimation error vector. We also 

assume that a linear relationship between state vector and measurements.  

 

          kkk vHXZ +=         (4.11) 
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where H is observation matrix and v is the measurement error. Using these values 

of transition and observation matrix, time-update and measurement-update 

equations given in 4.1.1 have given estimate of next state of object.  
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4.2 Active Contour (Snake) Tracking 

Active contour (snakes) approach has been proposed in [3]. Active contours have 

been used in several applications in computer vision such as region segmentation, 

contour extraction. 

 

In our work, snake model proposed by Hamarneh [7] has been utilized and 

developed. Snakes have been extended to RGB images to track the moving 

objects after detection of moving objects. In fact, snake tracker differs from 

Kalman tracker due to following reason: Kalman tracker waits for results that 

come from detection module. However, once snake tracker detects the moving 

object, the snake is initialized and it works directly on input image without output 

of moving object detection module. 

 

4.2.1 Introduction to Active Contour (Snake) Concept 

Active contours, belonging to the class of deformable models, have gained large 

acceptance as a segmentation tool. This is due to a collection of factors including 

the way snakes consider the boundary as a single, inherently connected, and 

smooth structure. Snakes also support intuitive interactive mechanisms for 

guiding the segmentation deformations. Many variations to the original snake 

formulation have been proposed to improve their performance. Snakes are energy 

minimizing parametric contours with smoothness constraints deformed according 

to image data. Snakes are designed to be semi-automatic tools supporting intuitive 

interactive mechanisms for guiding the segmentation deformations. Some of the 

problems of the classical snakes are initialization sensitivity and lack of high level 

automatic control that cause the snakes, for example, to leak or latch to erroneous 

edges. 

 

In active contour models, a contour is initiated on the image and is left to deform 

in a way that, firstly, moves it toward the features of interest in the image and, 

secondly, maintains a certain degree of smoothness and continuity in the contour. 
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In order to favor this type of contour deformation, an energy term is associated 

with the contour and is designed to be inversely proportional to the contour’s 

smoothness and the fit to desired image features.  

 

The deformation of the contour in the image plane will change its energy, thus one 

can imagine an energy (potential) surface on top of which the contour moves (in a 

way that resembles the slithering of a snake and hence the name) seeking valleys 

of low energy. This can also be formulated using a force field that causes this 

energy change (analogous to physical systems). Moreover, certain forces can be 

designed (or derived from energy terms) in a way that the resulting contour 

deformations will reduce its energy, thus yielding a smooth contour located along 

desired image features such as edges. 

 

A snake in the continuous spatial domain is represented as a 2D parametric 

contour curve v(s) = (x(s), y(s)) where s∈[0,1]. In order to fit the snake model to 

the image data we associate energy terms with the snake and aim to deform the 

snake in a way that minimizes its total energy. The energy of the snake, ξ, 

depends on both the shape of the contour and the image data I(x,y) reflected via 

the internal and external energy terms, Eint(v) and Eext(v), respectively. The total 

snake energy is written as 

 

                   Etotal = Eint(v) + Eext(v)        (4.13) 

 

The internal energy term is given as 
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The weighting functions w1 and w2 control the tension and flexibility of the 

contour, respectively. The external energy term is given as 
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        ∫=
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For the contour to be attracted to image features, the function P(x,y) is designed 

such that it has minima where the features have maxima. For example, for the 

contour to be attracted to high intensity changes (high gradient values) we can 

choose 

 

[ ]),(*),( yxIGcyxP σ∇−=    (4.16) 

 

where Gσ*I denotes the image convolved with a smoothing (e.g. Gaussian) filter 

with a parameter σ controlling the extent of the smoothing (e.g. variance of 

Gaussian). 

 

4.2.2 Application of Active Contour (Snake) to Object Tracking 

In our implementation a polygonal discrete active contour model is used and is 

represented by a set of nodes or vertices. 

 

[ ])(),()( tytxtv iii =      (4.17) 

 

where i = 1,2, …, N is the node number and t denotes the time or iteration 

number. The snake deformation is performed iteratively thanks to the 

minimization of an energy function. As defined in (4.13), the energy is composed 

of internal and external energies. 

 

The internal energy is itself composed of two energies linked to flexural and 

tensile forces. The definition of the internal energy is 
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where α, β and γ are weighting factors. )(tF
tensile

i  is a tensile force (resisting 

stretching) acting on node i at time t and is given by 

   )()()(2)( 11 tvtvtvtF iii

tensile

i +− −−=        (4.19) 

 

)(tF flexural

i  is a flexural force (resisting bending) and is given by 
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)(tF external

i  is an external (image-derived) force. It is derived in a way that causes 

the snake node to move towards regions of higher intensity gradient in the image 

and is given by  

 

))(),(()( tytxPtF ii

external

i ∇=           (4.21) 

 

where ))(),(( tytxP ii  is given in (4.16). )(tF external

i  is a mixture of R, G, B spaces. 

Deformation of the snake is done by equating internal and external forces. 

Therefore, main snake equation is 
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Tracking of objects is done by firstly initializing the snake around the object. 

Then, for each frame, snake is deformed by using equations given before. Snake 

initialization has been done by utilizing background subtraction for images taken 

from stationary cameras. On the other hand, snake initialization had to be done 

manually for images taken from moving cameras. Once the snake is deformed for 

the first image, there is no need to the background subtraction operation. Our final 

snake in the first image is the initial snake for the second image. This assumption 

is valid if an acceptable amount of object is in the area covered by our final snake 
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in second image. That is, object speed must be taken into consideration. If object 

speed is high, Kalman filter would be solution to initialize the snake for the next 

frame. The state vector of the Kalman filter is the average point and speed of this 

average point of our snake nodes. xsnake is the average of x and y coordinates of 

the snake nodes. 
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After the calculation of the estimation of the xsnake, all nodes of the snake is shifted 

by the amount of  

 

     Shift = xsnake,estimate - xsnake    (4.24) 

 

4.3 Mean-Shift Tracking  

Mean shift tracking is a kernel based method for tracking moving objects in video 

[28]. Mean-shift tracking can be an important tool in any tracking system. It is 

based on normalized and smoothed color histogram of the moving objects. Color 

histogram smoothing is essentially equivalent to so-called kernel density 

estimation process described in [28]. In our work, we try to express mean-shift 

tracking briefly. Details of the mean-shift concept and mean-shift tracking can be 

found in [28]. 

 

In mean-shift tracking, next state of target is found by comparing the histogram of 

the target in the current frame and histogram of candidate regions in the next 

image frame. The mean shift iterations are employed to find the target candidate 

that is the most similar to a given target model, with the similarity being 

expressed by a metric based on the Bhattacharyya coefficient.  
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Discrete density, q = {qu} u=1…m is estimated from the m-bin histogram of 

target model, while p(y) = {pu(y)} u=1…m is estimated from the m-bin histogram 

of target candidate. The sample estimate of the Bhattacharyya coefficient is given 

by 
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and the Bhattacharyya coefficient is maximized by the distance measure 

 

[ ]qypyd ),(1)( ρ−=       (4.26) 

 

In order to find the maximum of the Bhattacharyya coefficient, the mean-shift 

vector which is the estimate of gradient vector’s density function should be traced. 

When mean-shift vector converges to a certain region y0, which maximizes the 

Bhattacharyya coefficient, y0 becomes the new location of the target object in the 

next frame. 

 

4.4 Results and Discussions  

Three methods have been implemented to track the moving objects. Kalman 

tracker has utilized Kalman filter by setting state vector as center position and 

speed of center. In this chapter, we have only tested the power of Kalman filter in 

estimation of next state of targets. There is no association step for this chapter.  

 

Kalman tracker has given good results when object motion is linear. Other 

Kalman filters (extended, unscented) and more complex state vectors can be 

selected for more complicated situations. In Figure 4.2 estimated (blue) and real 

(green) trajectory of a moving object is shown. 
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Figure 4.2 Kalman Tracker: Estimated and real trajectories of a moving 

object 

 
 
 

Snake tracker is basically a solution to the problem of target localization problem. 

That is, snakes have been utilized to solve the problem of where target is and there 

is no estimation step. However, Kalman filter is again a tool for estimation in the 

snake tracker for the cases in which object speed is high. Actually, we have tested 

snake tracker with and without Kalman filter for stationary camera. For both 

cases, snake tracker gives sufficiently good results. In addition to stationary 

camera, snake tracker has been tested for moving camera. In figures 4.3 and 4.4, 

simulation results of snake tracker for the PETS04 sequence and a moving camera 

sequence have been given, respectively. 
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(a)          (b) 

 

(c) (d) 

 

 

Figure 4.3 Simulation results of snake tracker for PETS04 sequence (a) 

25th frame (b) 43rd frame (a) 83rd frame (a) 107th frame 
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(a)            (b) 

 

(c)            (d) 

 

Figure 4.4 Simulation results of snake tracker for a sequence taken from 

moving camera (a) 1st frame (b) 55th frame (c) 240th frame (d) 430th frame 
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Mean-shift tracker is a color tracker and works well when object is visible. We 

can say that it is more robust to partial occlusions when compared with Kalman 

and snake trackers. In addition, mean-shift tracker has been tested for moving 

cameras. Simulation results of mean-shift tracking for moving and stationary 

cameras have been given in Figure 4.5 and 4.6, respectively. 

 

 

 

(a)            (b) 

 

(c)            (d) 

 

Figure 4.5 Simulation results of mean-shift tracker for a sequence taken 

from moving camera (a) 1st frame (b) 32nd frame (c) 113rd frame (d) 408th 

frame 
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(a)       (b) 

 

(c)       (d) 

 

(e) 

 

Figure 4.6 Simulation results of mean-shift tracker (a) 1st frame (b) 36th 

frame (c) 83rd frame (d) 110th frame (e) 151st frame 
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CHAPTER 5 

 
 

RULE-BASED MULTIPLE HYPOTHESIS TRACKING  

 
 
 
Visual tracking is a concept which concerns the problem of target localization, 

i.e., where the target is for a specified time. In visual tracking, if there is only one 

target in the scene, there may be no need for a special tracking algorithm to 

determine the features of the target. However, for multi-target case, there must be 

a special algorithm to associate the targets in the current frame to the targets in 

previous frames.  

 

5.1 Standard MHT Algorithm  

The multiple hypothesis tracking algorithm was originally developed by Reid [29] 

in the context of multi-target tracking. MHT approach is measurement oriented in 

the sense that the probability that an established target or a new target give rise to 

a certain measurement sequence is obtained.  

 

MHT approach considers the association of sequence of measurements and 

evaluates the probabilities of all the sequences (i.e., hypotheses). This leads to a 

complexity that increases exponentially with time and appropriate techniques, 

such as merging and pruning have to be used to limit the number of hypotheses to 

be constructed.  

 

There are two basic approaches to MHT implementation. The first (hypothesis-

oriented) approach follows the original work of Reid [29]. It maintains the 
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hypothesis structure from frame (scan) to frame and continually expands and cuts 

back (i.e., prunes) the hypotheses as new data are received. At each frame a set of 

hypotheses will be carried over from the previous frame and composed of one or 

more tracks that are compatible with all other tracks in the hypothesis. Compatible 

tracks are defined to be the tracks that do no share any common observation. 

Then, on the receipt of new data, each hypothesis is expanded into a set of new 

hypotheses by considering all observation-to-track assignments for the tracks 

within the hypothesis. Again, as new hypotheses are formed, the compatibility 

constraint for tracks within a hypothesis is maintained. Direct, but inefficient, 

hypothesis expansion methods are given in [29] but the use of Murty’s algorithm 

[19] will reduce the number of low probability hypotheses that are unnecessarily 

formed and to be deleted later. 

 

The alternative (track-oriented) approach [32] does not maintain hypotheses from 

frame to frame. The tracks that are formed on each frame are reformed into 

hypotheses and the tracks that survive the pruning are predicted to the next frame 

where the process continues. A major advantage of the track-oriented approach is 

that hypothesis formation can be restricted to higher quality tracks. Low score 

tracks are deleted before hypotheses are formed. This feature of track-oriented 

approach reduces the computational load. Hence, track-oriented MHT has been 

applied to our problem. 

 

The track-oriented approach to MHT starts by independently forming tracks. 

Using this approach, observations are formed into tracks without imposing the 

usual constraints that an observation not be used to update more than one track 

and that a track not be updated by more than one observation one the same frame. 

The tracks that are formed may not be consistent with each other; i.e., two tracks 

may both use the same observation. These inconsistencies are resolved through 

the formation and evaluation of hypotheses composed of sets of consistent tracks. 

To satisfy computational constraints and produce information that can readily be 

interpreted by a user, it is necessary to limit the number of hypotheses. The basic 
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method of doing this is to delete (or prune) unlikely tracks. Pruning is performed 

at two stages. First, individual track hypotheses are compared with the hypothesis 

that all included observations are false alarms. Then, tracks that survive this first 

test (versus the false alarm option) are compared at the global level by formation, 

evaluation and pruning hypotheses. In upcoming subsections, elements of MHT 

algorithm such as pruning and merging, have been described briefly. 

 

5.1.1 Track Formation and Maintenance 

Track formation and maintenance constitutes the central track file where all tracks 

and the operations that are performed on those tracks are maintained. As new 

observations are received, gating has been exploited to determine the feasible 

observation-to-track pairings.  

 

Existing tracks are updated with all observations within the gates, and 

extrapolated tracks (that are not updated with any current observation) are formed. 

Also, essentially all observations are used to form the first point of a new track. 

Thus, a large number of tracks are potentially formed and many of the tracks are 

inconsistent in the sense that same observations are used for more than one track. 

 

The formation of too many tracks can lead to excessive computer storage 

requirements or to unacceptable computational time requirements. Thus, a fail-

safe logic is required to limit the number of tracks that are formed as new data are 

received. 

 

Track compatibility is required for the purposes of hypothesis formation. Tracks 

are compatible when they have no observations in common. A significant 

improvement can be achieved by maintaining the results of previous 

incompatibility tests from frame to frame. Thus, there is, in effect, for each track a 

list of tracks that are incompatible with that track. This incompatibility is passed 

along to descendant tracks that are spawned from a parent track. 
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Figure 5.1 General flow diagram of standard MHT algorithm 

 
 
 

5.1.2 Pruning and Confirmation 

Each track has a track-level probability and resultant track score that is the 

likelihood ratio. The track-level pruning process just compares the track-level 

probability versus a suitably chosen deletion threshold. The tracks that fail this 

test are deleted and the surviving tracks are tested for confirmation and then 

passed to the next stage, which is clustering. An additional computational saving 

can be achieved by only allowing further processing to be performed on 

confirmed tracks. Also, track confirmation status is used later to determine the 

eligibility of tracks for presentation to the user. 
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5.1.3 Clustering 

The process of clustering is the collection of all tracks that are linked by common 

observations. Tracks that share observations are defined to be incompatible and a 

record of incompatible tracks is maintained from frame to frame. This record is 

updated as tracks are deleted and as new tracks are formed from the current 

frame’s observations. 

 

A cluster can include tracks that do not share observations directly but that both 

share observations with a third track. Thus, if track 1 shares an observation with 

track 2 and track 2 shares another observation with track 3, all three tracks are in 

the same cluster. 

 

The formation of clusters with large numbers of tracks can lead to an unacceptable 

amount of time required by hypothesis formation. Thus, several techniques are 

employed in order to maintain clusters that contain no more than several hundred 

tracks. The result of clustering is a list of tracks that are interacting (linked 

through common observations). These tracks are ranked in order of track score. 

The next step is to form hypotheses of compatible tracks.  

 

5.1.4 Hypothesis Formation and Pruning 

Multiple track hypotheses are formed to represent the multiple targets in the 

scene. Hypotheses are defined to be sets of consistent (compatible) tracks in the 

sense that no two tracks within a given hypothesis share observations. There can 

theoretically be any number of tracks within a hypothesis. 

 

A search routine is required to find the hypothesis that represents the most likely 

collection of tracks. A relatively straightforward breadth-first approach to 

hypothesis formation starts with the search process by the definition of one-track 

hypotheses and expands the hypotheses by adding new tracks to existing 

hypotheses. The new tracks that are added to any hypothesis as the hypothesis is 
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expanded cannot share observations with any tracks in the existing hypothesis. 

This can be accomplished directly because each track has an incompatibility list, 

so that an incompatibility list can be inferred for the hypothesis as a whole. 

 

Each subsequent step of hypothesis generation process begins with a set of N-

track hypotheses (starting with N = 1) and expands a subset of these hypotheses 

into (N+1)-track hypotheses. This process is continued until the potential scores 

that are associated with further expansion are no longer deemed adequate to 

justify expansion. Initially, this expansion should be done using only positive 

(high) score tracks. Then negative (low) score tracks can be evaluated by their 

compatibility with the higher score hypotheses that were formed from positive 

score tracks. 

 

5.1.5 Global-Level Track Pruning 

The a posteriori probability of a given track can be computed as the sum of the 

probabilities of all the hypotheses containing that track. Some tracks, for example, 

may have only been contained in hypotheses that were deleted. Thus, since these 

tracks are contained in no surviving hypotheses, they will be computed (as an 

approximation) to have probability zero and can be immediately deleted. Also, 

each track whose probability is below a deletion threshold is removed from track 

file. Finally, an N-scan pruning approach is used to delete selected confirmed 

tracks.  

 

5.1.6 Track Updating and Merging 

Filtered state and covariance estimates are formed for those tracks that survive 

pruning. This computationally demanding Kalman filtering step should not be 

performed until poor tracks are deleted by pruning. Tracks that potentially share 

observations will have been identified during clustering. Merging logic is 

performed to determine which of these tracks are redundant representations of the 
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same target. Merging rules are defined to use both common observation history 

and similar state vectors to identify these tracks that should be merged. 

 

Once two tracks are determined to be similar, the track with the higher a posteriori 

probability is retained and other track is deleted. Thus, a single track now takes 

the place of two tracks that previously represented essentially the same potential 

target. An increment to the score of the retained track is also made in order to 

account for the probability of the track that is deleted. 

 

Merging is the last logical operation performed in order to reduce the number of 

tracks that re to be maintained. Tracks that survive pruning and merging steps are 

predicted ahead to the time of the next observation data and process continues. 

 

5.2 Introduction to Multi-View Geometry  

In this section, a brief introduction to the multi-view geometry and more 

specifically 2D homography is discussed. Our main concern is to find the 

correspondence between two cameras. For this reason 2D homography idea has 

been utilized. 

 

5.2.1 2D Homography 

Homography is a projective transformation that maps each xi in IP
2

 to xi’ in IP
2

 

[30]. We consider a set of point correspondences xi � xi’ between two images. 

Our problem is to compute a 3 x 3 matrix H such that Hxi = xi’ for each i.  

 

The first question to consider is how many corresponding points xi � xi’ is 

required to compute the projective transformation H. A lower bound is available 

by a consideration of the number of degrees of freedom and number of 

constraints. On the one hand, the matrix H contains 9 entries, but is defined only 

up to scale. Thus, the total number of degrees of freedom in a 2D projective 
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transformation is 8. On the other hand, each point-to-point correspondence 

accounts for two constraints, since for each point xi in the first image the two 

degrees of freedom of the point in the second image must correspond to the 

mapped point Hxi. A 2D point has two degrees of freedom corresponding to the x 

and y components, each of which may be specified separately. Alternatively, the 

point is specified as a homogeneous 3-vector, which also has two degrees of 

freedom since scale is arbitrary. As a consequence, it is necessary to specify four 

point correspondences in order to constrain H fully. 

 

5.2.2 The Direct Linear Transformation (DLT) Algorithm 

Direct linear transformation is a simple linear algorithm for determining H given a 

set of four 2D to 2D point correspondences, xi � xi’. The transformation is given 

by the equation xi’ = Hxi. This is an equation involving homogeneous vectors; 

thus the vectors xi’ and Hxi are not equal, they have same direction but may differ 

in magnitude by a nonzero scale factor. The equation may be expressed in terms 

of the vector cross product as xi’ x Hxi = 0. This form will enable a simple linear 

solution for H to be derived. 

 

If the j-th row of the matrix H is denoted by hjT, then we may write  
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Writing xi’= (xi’, yi’,wi’), the cross product may then be given explicitly as 
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Since hjTxi = xi
Thj for j = 1, 2, 3, this gives a set of three equations in the entries of 

H, which may be written in the form 
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These equations have the form Aih = 0, where Ai is a 3x9 matrix and h is a 9-

vector made up of the entries of matrix H, 
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with hi is the i-th element of h. Although there are three equations in (5.3), two of 

them are linearly independent. Thus each point correspondence gives two 

equations in the entries of H. It is usual to omit the third equation in solving for H. 

Then, the set of equations becomes 

 

        0

h

h

h

x'

x'

0

x'

x'

0

3

2

1

=




























−

−
T

ii

T

ii

T

T

ii

T

ii

T

x

yw

w
   (5.5) 

 

The homography matrix H is computed by solving a set of equations Ah=0, where 

h is the vector containing the entries of the matrix H. Since the homography 

matrix has 9 entries and 8 degrees of freedom, 8 equations are needed to solve for 

H. For each point correspondence, one has 2 equations, hence, 4 point 

correspondence is enough to solve for H. Then, the algorithm is  
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(i) For each correspondence xi � xi’, compute the matrix Ai from (5.3). 

Only the first two rows are required in general. 

(ii) Assemble the n 2x9 matrices Ai into a single 2nx9 matrix A.  

(iii) Obtain SVD of A. The unit singular vector corresponding to the 

smallest singular value is the solution h. Specifically, if A=UDVT with D 

diagonal with positive diagonal entries, arranged in descending order 

down the diagonal, then h is the last column of V.  

(iv) The matrix H is determined from h as in (5.4). 

 

Once we calculate homography matrix via DLT algorithm, we have tested the 

success of DLT algorithm on PETS2001 sequence [9]. Homography matrix has 

been calculated using four points which is taken from each image. In Figure 5.2, 

transfer of five points from left image to right image has been shown.  

 
 

 

 

Figure 5.2 Point transfer by using homography matrix 

 
 
 

 

5.3 Rule-Based MHT Algorithm  

A novel method which concatenates basic steps of multiple hypotheses tracking 

(MHT) and fuzzy logic has been proposed. Main idea of MHT is used to 
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determine whether a measurement is an existing target, or a new target. 

Evaluation of these hypotheses has been done utilizing fuzzy logic.  

 

5.3.1 Main Idea of Rule-Based MHT 

In this section, we have presented a novel method for single camera case. Some 

categories have been defined related with measurements. Each measurement may 

either belong to a previously known target or be the start of a track, e.g., a 

previously unseen object that has entered the field of view of the camera. 

 

Assignments or events can be generated by creating an ambiguity or hypothesis 

matrix. In this matrix, each measurement is represented by a row of matrix and 

known targets are represented by the columns of matrix. To detect new objects or 

false alarms an extra column is inserted into the hypothesis matrix. As regards the 

situation given in Figure 5.3, our hypothesis matrix will be: 
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Each “1” indicates that there is a possibility of measurement belongs to target. For 

example, generated hypotheses for the scenario given above are: 

 

• Measurement1 belongs to Target1 and Measurement2 belongs to 

Target2 and Measurement3 belongs to new target. 

• Measurement2 belongs to Target1 and Measurement1 belongs to 

Target2 and Measurement3 belongs to new target. 

• Measurement1 belongs to new target and Measurement2 belongs to 

new target and Measurement3 belongs to new target. 

• Measurement1 belongs to Target1 and Measurement2 belongs to new 

target and Measurement3 belongs to new target. 

• Measurement1 belongs to new target and Measurement2 belongs to 

Target2 and Measurement3 belongs to new target. 

• Measurement1 belongs to Target2 and Measurement2 belongs to new 

target and Measurement3 belongs to new target. 

• Measurement2 belongs to Target1 and Measurement1 belongs to new 

target and Measurement3 belongs to new target. 

 

For each frame, several hypotheses are generated and evaluated. Fuzzy logic has 

been used to evaluate these hypotheses. That is, fuzzy rules have been applied to 

determine category of each measurement, i.e., whether it belongs to known 

target(s), new object or false alarms. Membership functions used in fuzzy 

evaluation are related to bounding box overlapping, Euclidean distance and color 

histogram similarity. 

 

Bounding box overlapping is a measure of how the estimated bounding box and a 

measurement are overlapped. Euclidean distance is the distance between the 

estimated center position and the center position of measurement. For color 

histogram similarity, Bhattacharyya coefficient has been utilized. Bhattacharyya 

coefficient has been calculated for the histogram of measurement and histogram 

of tracks. Basic fuzzy rules applied to obtain track scores are given below: 
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• If bounding box overlapping is high, track score is high 

• If bounding box overlapping is medium, track score is medium. 

• If bounding box overlapping is low, track score is low. 

• If color similarity is high, track score is high 

• If color similarity is medium, track score is medium. 

• If color similarity is low, track score is low. 

• If Euclidean distance is high, track score is low 

• If Euclidean distance is medium, track score is medium. 

• If Euclidean distance is low, track score is high. 

 

These rules are the cues of the general concept. The working rules are the 

accumulation of these basic rules. Basic rules are combined with “AND” logical 

operator and “min” method is selected as “AND” method. Resulting rules are 

listed below: 

 

• If bounding box overlapping is high AND color similarity is high AND 

Euclidean distance is low, track score is high 

• If bounding box overlapping is high AND color similarity is high AND 

Euclidean distance is medium, track score is high 

• If bounding box overlapping is high AND color similarity is high AND 

Euclidean distance is high, track score is medium 

• If bounding box overlapping is high AND color similarity is medium 

AND Euclidean distance is low, track score is high 

• If bounding box overlapping is high AND color similarity is medium 

AND Euclidean distance is medium, track score is medium 

• If bounding box overlapping is high AND color similarity is medium 

AND Euclidean distance is high, track score is medium 

• If bounding box overlapping is high AND color similarity is low AND 

Euclidean distance is low, track score is high 

• If bounding box overlapping is high AND color similarity is low AND 

Euclidean distance is medium, track score is medium 

• If bounding box overlapping is high AND color similarity is low AND 

Euclidean distance is high, track score is low 
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• If bounding box overlapping is medium AND color similarity is high 

AND Euclidean distance is low, track score is high 

• If bounding box overlapping is medium AND color similarity is high 

AND Euclidean distance is medium, track score is medium 

• If bounding box overlapping is medium AND color similarity is high 

AND Euclidean distance is high, track score is medium 

• If bounding box overlapping is medium AND color similarity is medium 

AND Euclidean distance is low, track score is medium 

• If bounding box overlapping is medium AND color similarity is medium 

AND Euclidean distance is medium, track score is medium 

• If bounding box overlapping is medium AND color similarity is medium 

AND Euclidean distance is high, track score is medium 

• If bounding box overlapping is medium AND color similarity is low AND 

Euclidean distance is low, track score is low 

• If bounding box overlapping is medium AND color similarity is low AND 

Euclidean distance is medium, track score is medium 

• If bounding box overlapping is medium AND color similarity is low AND 

Euclidean distance is high, track score is low 

• If bounding box overlapping is low AND color similarity is high AND 

Euclidean distance is low, track score is medium 

• If bounding box overlapping is low AND color similarity is high AND 

Euclidean distance is medium, track score is medium 

• If bounding box overlapping is low AND color similarity is high AND 

Euclidean distance is high, track score is low 

• If bounding box overlapping is low AND color similarity is medium AND 

Euclidean distance is low, track score is medium 

• If bounding box overlapping is low AND color similarity is medium AND 

Euclidean distance is medium, track score is low 

• If bounding box overlapping is low AND color similarity is medium AND 

Euclidean distance is high, track score is low 

• If bounding box overlapping is low AND color similarity is low AND 

Euclidean distance is low, track score is low 

• If bounding box overlapping is low AND color similarity is low AND 

Euclidean distance is medium, track score is low 
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• If bounding box overlapping is low AND color similarity is low AND 

Euclidean distance is high, track score is low 

 

These rules have been applied to form hypotheses. The output of fuzzy evaluation, 

track score, has been used as form, merge and prune the hypotheses. Some rules 

can be thought as unnecessary because of the relationship between the criteria. 

Bounding box overlapping is generally parallel with Euclidean distance. That is, 

“if bounding box overlapping is high, Euclidean distance is low” statement is 

generally valid. However, for unexpected cases, such as occlusion and merging, 

this statement cannot be valid and some rules must be inserted. For each input 

feature (bounding box overlapping, color similarity and Euclidean distance) and 

track score (correspondence), membership functions have been set as in triangular 

shape. Membership functions of Euclidean distance and correspondence have 

been shown in Figure 5.4.  

 

Obviously, the phrase “track score is high”, does not match to a single value. For 

example, track score of the first case is bigger than the track score of the second 

case. Defuzzification is the cause of this difference. “Centroid” is selected as the 

defuzzification method.  
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(a) 

 

(b) 

 

Figure 5.4 Membership functions of (a) Euclidean distance and (b) 

Correspondence 

 
 
After fuzzy rules have been run, a track score in the range of [0, 1] is obtained, 

that is, set in the membership functions. Once the track score is obtained, some 

classification rules have been applied to determine the category of the 

measurement. That is, depending on the track score value, category of the 

measurement has been decided. At this point, some scenarios must be considered.  

 

Simple tracking conditions occur when for each measurement, there is only one 

high track score. In other words, for this case, there is a one-to-one association for 

the measurements and tracks. An example of simple tracking has been shown in 

Figures 5.5.a and 5.5.b. If track score is high for more than one measurement for a 

track, it is assumed that a split is occurred. Our algorithm creates new tracks as 
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soon as a split occurs. However, the previous track has also been updated with no 

measurement in Kalman filter and color histogram of the track remains same. In 

Figure 5.5.c, a splitting occurs due to the occlusion of the target by static objects. 

As can be seen from Figure 5.5.d, target has been tracked as previous object 

during and after splitting. Occlusion can be considered as the reverse case of 

splitting. In occlusion, there is only one measurement for two or more tracks. In 

this case, a new track has been created to track the objects during occlusion and a 

flag has been assigned to this track. Once the separation of the objects is detected, 

a match is searched between color histograms of current measurements and 

measurements before occlusion. Color histogram is a more reliable feature than 

bounding box and center point. Therefore, color histogram has been utilized to 

match measurements before and after occlusion. Simulation results for the 

occlusion case have been given in Figure 5.6. A new track, “Object3”, has been 

created after occlusion occurs for “Object1” and “Object2” in Figure 5.5. After 

occlusion, by color histogram comparison, “Object1” and “Object2” have been 

recovered again. 

 

In order to estimate the next state of targets, again Kalman filter has been used. 

However, due to the use of bounding box overlapping criteria, our Kalman state 

vector for this case is different than previous cases. Area of the object is inserted 

as the last variable to the state vector. Hence, transition and observation matrices 

have also been changed in the following way: 
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(a) 

 

(b) 
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(c) 

  

(d) 

 

Figure 5.5 Simulation results of rule-based tracker (a, b) before splitting (c) 

during splitting (d) after splitting 
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(a) 

 

(b) 

 

Figure 5.6 Simulation results for occlusion case 
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5.3.2 Rule-Based MHT Algorithm for Multi-Camera Configuration 

Multiple cameras have been utilized to enhance the information about targets. In 

the case of occlusions and other unexpected situations, multiple camera 

configuration is also useful. However, the disadvantage of the use of multiple 

cameras is the arrangement of FOVs. For example, intersected FOVs for 

PETS2001 data sequence is given in Figure 5.7. As can be seen easily, any 

possible loss of information for camera 1 will mostly not be recovered from 

camera 2. For this reason, location of cameras is an important task for the multi-

camera surveillance systems. 

 

Our proposed algorithm for multiple camera configuration work in a similar way 

as described in section 5.3.1. The extra part of the multi-camera case is to 

associate the measurements to tracks that continue in the other camera. For this 

problem, transfer error criteria have been used. Given a set of detected moving 

objects in each camera view, a match between a measurement and a track is 

defined when the following transfer error condition is satisfied: 

 

         τ<′−+−′ − 212 )()( xHxHxx     (5.6) 

 

where x and x' are image coordinates of estimated value of track and measurement 

in the first and second camera views, respectively. Since homography is a point 

transfer approach, area can not be transferred. Hence, only position information 

can be updated. We have same rules as single-camera configuration for the normal 

conditions. Normal condition can be defined as the measurement taken from 

camera itself is close enough to the estimated value. 
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(a)           (b) 

  

(c)           (d) 

 

Figure 5.7 Intersected parts of FOVs of PETS2001 dataset (a, b) Original 

frame of Camera1 and Camera2 (c, d) Common FOV of Camera1 and 

Camera2  

 
 

For a camera, when a transferred measurement (other camera) gives more reliable 

results, updating of tracks has been done by using this transferred measurement. 

This situation is generally occurs in occlusions as shown in Figure 5.8. If the 

condition given in equation (5.7) is satisfied, track is updated with the transferred 

point. 
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        τ>−−− measesttrest xxxx     (5.7) 

 

 

(a)           (b) 

 

(c)           (d) 

 

Figure 5.8 Use of correspondence point to update the Kalman filter (a) 

Prediction of next state of object (b) Measurement (occlusion) (c) 

Transferred point from camera 2 (d) Measurement of camera 2 
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In Figure 5.9, it has been shown that how multiple cameras can be utilized for the 

occlusion case. The trajectory of the occluded track is calculated via homography 

and track is updated with the measurement that is obtained from the other camera. 

 

 

Figure 5.9 Utilization of multiple cameras 
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CHAPTER 6 

 
 

CONCLUSION  

 
 
 

6.1 Conclusion  

In recent years, automation of the systems in both military and non-military areas 

has become more important. Unmanned air and land vehicles are some examples 

of military applications. Besides, public and personal security systems became 

automated as hardware and optical technologies improve. 

 

In this thesis, important modules of automated visual surveillance system have 

been presented. Moving object detection has been performed utilizing four 

methods. Frame differencing is the simplest method in the literature and is not 

suitable for complex situations. Running average is one of the basic methods in 

moving object detection. It gives good results if parameters are well-selected for 

indoor environments; however, it can not adapt to sudden changes that occur in 

outdoor environments.  

 

Eigenbackground subtraction has given better results than preceding methods. 

However, there is an updating trouble in outdoor environments for this approach. 

To cope with such complexities in outdoor environments, mixture of Gaussians 

method is used. Mixture of Gaussians has given adequate results for both indoor 

and outdoor environments. Therefore, mixture of Gaussians has been used as the 

detector while examining the trackers. 



 67  

 

During the extraction of foreground regions, some noises and shadows have also 

been detected as foreground. To minimize the effects of these unwanted 

components, morphological and shadow removal operations has been performed. 

 

After obtaining moving objects, tracking of these objects is the next step of this 

thesis. Kalman tracker, active contour based tracker and mean-shift tracker have 

been exploited. Kalman tracker is a point-based tracker and it has given good 

results when the motion of the object is linear. Active contour based tracker 

depends on minimization of external and internal energies. Non-flexibility of 

active contour based tracker is the poor part of it. That is, optimal parameters may 

change when environment changes. On the other hand, active contour based 

tracker is not dependent on detection as the Kalman tracker. This gives 

opportunity of skipping detection task for some frames and making the system 

faster.  

 

Mean-shift tracker has given satisfactory results for trained sequences. We can say 

that it is robust to partial occlusions. However, it needs correct initial model for 

the tracked objects and this approach would fail, if the objects enter the field of 

view, while occluding each other. Additionally, mean-shift tracker has a high 

computational complexity and observed as inappropriate for multi-object tracking. 

 

To cope with some of the difficulties, such as occlusion, multiple camera tracking 

is chosen as a solution. Using multiple cameras, more information can be obtained 

about objects. Also, information acquired from cameras must be in 

correspondence. In order to find the correspondence between cameras, 

homography matrix which is calculated by the use of direct linear transformation 

has been utilized. 

 

In order to track multiple targets, there must be a special algorithm to initiate, 

associate and finalize the tracks of objects. Rule-based multiple hypothesis tracker 
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has been proposed. Multiple hypothesis tracking (MHT) is the only multi-target 

tracker which considers these three operations. This powerful feature of MHT is 

combined with fuzzy logic. Fuzzy logic has been used as an evaluation tool of 

tracks. This novel method has been applied for multi-camera configuration. 

 

6.2 Future Work  

We have presented the main steps of typical visual surveillance systems. For the 

detection part, there are several works which have previously implemented 

successfully, such as mixture of Gaussians. The chance of making an 

improvement on the detection part is rare. One of the improvements which can be 

suggested is to extend the detection algorithms to moving camera images. 

However, for tracking algorithms there are more open items when compared with 

the detection part. Multi-target tracking is still one of the hot topics. Besides, 

multi-camera tracking is the best topic which can be improved even slightly.  
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