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ABSTRACT 
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Öksüz, Özhan 

Ph.D., Department of Aerospace Engineering 

Supervisor: Prof. Dr. İ. Sinan Akmandor 

 

 

December 2007, 217 Pages 

 

 

 

 

To decrease the computational cost of genetic algorithm optimizations, 

surrogate models are used during optimization. Online update of surrogate 

models and repeated exchange of surrogate models with exact model during 

genetic optimization converts static optimization problems to dynamic ones. 

However, genetic algorithms fail to converge to the global optimum in 

dynamic optimization problems. To address these problems, a multiploid 

genetic algorithm optimization method is proposed. Multi-fidelity surrogate 

models are assigned to corresponding levels of fitness values to sustain the 

static optimization problem. Low fidelity fitness values are used to decrease 

the computational cost. The exact/highest-fidelity model fitness value is 



 
v

used for converging to the global optimum. The algorithm is applied to 

single and multi-objective turbine blade aerodynamic optimization 

problems. The design objectives are selected as maximizing the adiabatic 

efficiency and torque so as to reduce the weight, size and the cost of the gas 

turbine engine. A 3-D steady Reynolds-Averaged Navier-Stokes solver is 

coupled with an automated unstructured grid generation tool. The solver is 

validated by using two well known test cases. Blade geometry is modelled 

by 37 design variables. Fine and coarse grid solutions are respected as high 

and low fidelity surrogate models, respectively. One of the test cases is 

selected as the baseline and is modified in the design process. The effects of 

input parameters on the performance of the multiploid genetic algorithm are 

studied. It is demonstrated that the proposed algorithm accelerates the 

optimization cycle while providing convergence to the global optimum for 

single and multi-objective problems. 

 

Keywords: Genetic Algorithms, Diploid, Multiploid, Surrogate models, 

Low-fidelity, Turbine Blade Design, Aerodynamic Optimization, Multi-

objective. 
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ÖZ 
 
 
 

TÜRBİN KANATÇIKLARININ ÇOK AMAÇLI OPTİMİZASYONU 

İÇİN ÇOK KROMOZOMLU GENETİK ALGORİTMALAR 

 

Öksüz, Özhan 

Doktora, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. İ. Sinan Akmandor 
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Genetik algoritmaların hesaplama maliyetlerini düşürmek için, indirgenmiş 

modeller kullanılmaktadır. Bu modellerin optimizasyon sırasında çevrim içi 

güncellenmesi ve kesin modeller ile tekrarlanan değiş tokuşlar yapılması, 

statik problemi dinamik hale getirmektedir. Ancak genetik algoritmalar 

dinamik optimizasyon problemlerinde global optimum’a yakınsayamazlar. 

Bu sorunları çözmek için, yeni çok kromozomlu bir genetik algoritma 

önerilmektedir. Optimizasyon problemini statik halde korumak için, değişik 

doğruluktaki indirgenmiş modeller, farklı seviyelerde uygunluk değerlerine 

eşlenmektedir. İndirgenmiş modellerin uygunluk değerleri hesaplama 

maliyetini düşürmek için kullanılırken, kesin model ise global optimum’a 
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yakınsamak için kullanılır. Algoritma tek ve çok amaçlı türbin kanatçık 

aerodinamik optimizasyonu problemlerine uygulanmıştır. Tasarım amaçları 

olarak adiyabatik verim ve torkun arttırılması olarak seçilmiştir. 3 boyutlu 

Reynolds Averaged Navier Stokes çözücüsü  otomatik grid çözücüsü ile 

akuple edilmiştir. Çözücünün doruluğu iyi bilinen iki test problemi ile 

sabitleştirilmiştir. Kanatçık geometrisi 36 tasarım parametresi ile 

modellenmiş, ayrıca bir kademedeki pale sayısı da buna eklenmiştir. Kaba 

ve ince grid çözümleri, sırasıyla, kesin ve indirgenmiş model olarak 

kullanılmıştır.  Test problemlerinden biri baz alınmış ve tasarım prosesi ile 

modifiye edilmiştir. Giriş parametrelerinin çok kromozomlu genetik 

algoritmanın performansı üzerine etkisi çalışılmıştır. Önerilen çok 

kromozomlu genetik algoritmanın tek ve çok amaçlı optimizasyon çevrimini 

hızlandırdığı, aynı zamanda global optimum’a yakınsadığı gösterilmiştir.  

 

  

 

 

Anahtar Kelimeler: Genetic Algoritmalar, Diploid, Çok kromozomlu, 

Basitleştirilmiş Model, Türbin Kanatçık Tasarımı, Aerodinamik 

Optimizasyon, Çok-amaçlı. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
 

The design of today’s modern high performance turbo engine 

components requires fast but sophisticated design tools. The flow in a 

turbomachine is extremely complex because of the presence of blade 

boundary layers, interaction of rotating and non-rotating blades with the 

upstage wakes, development of secondary flow vortices and overall 

periodic but still inherently unsteady flow. Since the conventional 

experimental design methods are very expensive and time consuming, 

investigators started to make use of low-cost numerical methods for the 

design of internal aerodynamic blade shapes. 

 

The numerical simulation methods of turbine blade aerothermodynamics 

have improved extensively over the last 10 years. In spite of the 

limitation due to modeling approximations such as turbulence and 

transition modeling, and heat transfer predictions, these methods are 

now capable of analyzing the performance of turbine blades with a flow 

accuracy which is acceptable for most engineering purposes. 

Computational fluid dynamics has also matured to the point where it is 

widely used as a key tool for aerodynamic design. Moreover, the CPU 

speeds of latest personal computers are extremely fast when compared 

to those of 10 years ago. Despite these advantageous progresses in 

science and technology, most designers still adopt a ‘trial and error’ 
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approach for the final design process; analyzing the current blade shape, 

modifying it in function of the computational results or the experimental 

data, and abiding by empirical rules or to their own experience.  

 

In this study, it is shown that intelligent optimization techniques such as 

genetic algorithms (GA) coupled with accurate objective function solvers 

(CFD) running on parallel fast computing computers, a fast, automatic, 

and robust turbine blade aerodynamic optimization method has been 

developed. This algorithm can prevent human intervention from 

becoming a bottleneck, and can preserve design engineers’ experience. 

 

 

1.1 Overview of Design Methods 

 

Design methods can be categorized as inverse design methods and 

optimization methods. In the first approach, the inverse algorithm 

calculates the corresponding blade geometry once the surface pressure or 

velocity distribution is specified. On the other hand, the second category 

couples a conventional flow solver with an optimization routine to 

modify the parameterized blade geometry iteratively with the aim of 

minimizing some cost function such as difference between calculated 

and required blade loading.  

 

 

1.1.1 Inverse Methods 

 

Inverse methods based on the analytical solutions are called potential 

inverse methods. The analytical solution of the given surface pressure 

distribution directly defines the blade geometry. Some analytical 
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examples of such approach is briefly summarized below: A conformal 

mapping method was developed by Lighthill [1],  a stream function 

method was developed by Stanitz [2], and using method of 

characteristics Dulikravitch [3] developed a transonic cascade inverse 

design method. All of these methods are limited to 2D potential and 

irrotational flow and are no longer used in real design problems. 

 

Iterative inverse methods are based on the modification of blade 

geometry iteratively until the desired pressure distribution is reached. 

Hawthorne [4] developed a method based on circulation imposed on 

blade walls instead on velocity distribution for 2D axial slender 

geometries with incompressible flows. Borges [5] extended the method 

to radial machines and Zangeneh [6] included viscous and compressible 

effects and blockage effect due to blade thickness. Dang [7] used a 3D 

Euler flow solver, and applied the method for transonic flow regimes. 

Due to inviscid flow, blade forces are assumed to be proportional to 

mean swirl distribution.  

 

Most of the recent iterative inverse methods are based on Euler solvers. 

This subgroup can be divided into two sections, methods using different 

set of equations for flow field solution and geometry modification, and 

methods using the same set of equations for both flow solution and 

geometry modification. Leonard [8] and Bartelheimer [9] used the former 

method, and Meauze [10] and Demeulenaere [11] used the latter method. 

In the second group, blade geometry is modified by using either 

impermeable or permeable blade walls and planning mesh movements 

accordingly.  
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These methods are currently still being developed and applied to 2D and 

3D problems and can be very efficient in terms of computational time. 

Moreover, there is no need to define a complex objective function. 

However, objective functions of these methods are mainly restricted to 

an imposed pressure distribution. The real performance measures such 

as efficiency, torque, outlet flow angles and loss coefficient cannot be 

imposed. Therefore, the designer needs to convert the performance 

requirements to pressure distribution. Most of the time, pre-defined 

pressure distributions do not meet the given performance criteria. 

Therefore, designer has to redefine the pressure distribution until 

solution converges to the design criteria. Moreover, there is an existence 

problem, which means one may not always be able to converge to the 

target pressure distribution. These main problems increase the design 

cycle time dramatically. 

 

 

1.1.2 Optimization Methods 

 

Numerical optimization methods aim to shorten and simplify the 

iterative process of inverse methods, while significantly improving the 

design output. All optimization problems contain three components: 

- Objectives: describing what one hopes to achieve through the 

optimization process. In this thesis, the objective functions are set to 

be the blade torque and efficiency, since these are the key design 

parameters of a stage. 

- Optimization parameters: describe how the system is to be adjusted 

in order to best meet the objectives. Parameters that determine the 

shape of the boundary are an example. In this study, the optimization 
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parameters are the blade shape design parameters and the number of 

blades in a stage which determines the pitch distance. 

- Constraints: guide the optimization through states that must be 

satisfied. In our case, these are the geometric limitations, 

aerodynamic constraints and mechanical constraints.  

 

Optimization techniques can be classified in three categories: local, 

global, and other methods. Local methods are gradient-based algorithms, 

which only search one part of the design space and stop after finding a 

local optimum. Adjoint, single or multi-grid preconditioners, alternating 

direction implicit methods are all local methods [12]. Global methods are 

stochastic methods that take into consideration the entire design space 

and only require objective function values, not the derivatives. Genetic 

algorithms, simulated annealing, random search methods are all 

considered as global methods. They also have the advantage of operating 

on discontinuous design spaces. Other optimization algorithms that do 

not fall entirely within either of these two categories are one-shot or 

inverse methods [13]. In this thesis, only global methods are discussed. 

 

Random search is the simplest approach to minimize a function. In this 

context, a large number of candidates are selected randomly throughout 

the design space and objective function of these candidates is evaluated 

and the minima or the maxima of this set is called the optimum [14]. A 

slightly modified version of this method is called random walk and 

includes a search direction [15]. Regarding the number of function 

evaluations, random search or walk method is the most inefficient global 

optimization method, and therefore, cannot be applied on real industrial 

problems involving CFD analyses.  
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Simulated annealing ideas are derived from the annealing of solid bodies 

[16]. At a given temperature, the state of the system varies randomly. If a 

state results in a lower energy level, it is immediately accepted (for a 

minimization problem). If however a higher energy state results from the 

variation, it is only accepted with an acceptance probability defined as the 

Boltzmann Distribution of the temperature. Aly [17] applied simulated 

annealing to airfoil aerodynamic shape design and Tekinalp [18] 

proposed a new multi-objective simulated annealing algorithm recently. 

In the simulated annealing optimization method, the cost function 

replaces the energy of the system, and the optimization variables 

represent the atoms. This idea was first used by Kirkpatrick [19] to solve 

discrete combinatorial optimization problems. 

 

Genetic Algorithms are search algorithms that mimic the behavior of 

natural selection to find the global optimum point in a given design 

space [20]. They operate on a population of potential solutions applying 

the principle of survival of the fittest to produce better and better 

approximations to a solution. At each generation, a new set of 

approximations is created by the process of selecting individuals 

according to their level of fitness in the design space and breeding them 

together using operators borrowed from natural genetics. This process 

leads to the evolution of populations of individuals that are better suited 

to their environment than the individuals that they were created from, 

just as in natural adaptation. GAs are becoming more and more widely 

used in mechanical and aerodynamic problems, including preliminary 

design of turbines [21], aerodynamic optimization using CFD [22], [23], 

[24], [25], [26], optimization of target pressure distribution for inverse 

design methods [27], [28], multi-objective aerodynamic shape 

optimization [29], and multidisciplinary optimization of wings [30]. 
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1.2 Research Goals 

 

Although genetic algorithms are able to converge to the global optimum, 

they consume considerable time to converge for a 3D aerodynamic 

design problem which requires expensive high-fidelity RANS solver. 

This drawback of genetic algorithms was avoided by using faster but less 

accurate low-fidelity 2D solvers such as an Euler [31] or Euler/boundary 

layer coupled flow solvers [26] in the past. On the other hand, 

researchers used to implement parallel processing techniques to decrease 

the convergence time. However, even implementing parallel processing, 

one needs to decrease the computational time of the genetic 

optimization technique further.  

 

The computational power of computers converged to a degree which 

investments for further improvements are really infeasible. While a CPU 

speed could be doubled in each year a decade ago, for the last few years, 

CPU speeds did not increase remarkably. On the contrary, new 

developed sophisticated commercial CFD analysis tools demand more 

and more computational power during the solution of complex 

problems.  

 

Furthermore, designers tend to increase the complexity of the problem 

in order to achieve satisfying results and tackle powerful CFD software. 

For example, full 3D calculations, even multi-stage turbo component 

analysis need very fine meshes. Even simulation of the full characteristics 

of the engine and multiple operating point performance analysis are 

common nowadays. They even tend to try unsteady computations for 

this kind of analyses. This high-fidelity solver demand already consumes 

the computational power supplied by the newest technologies.  
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Therefore, a robust, fast, and accurate global optimization technique 

needs to be employed while preserving the accuracy of the optimization. 

Consequently, in this thesis, a new multiploid genetic optimization 

method based on multi-fidelity solutions is presented and applied for 

single and multi objective turbine blade optimization problem.  

  

 

1.3 A New Optimization Method 

 

Today, advanced CFD software is routinely used in the design process. 

These solvers are capable of analyzing 3D, viscous, transonic and 

turbulent flows. Analyzing accuracy of these codes is so powerful that, 

design engineers reduced the number of experimental studies and 

increased the CFD calculations. Consequently, in this method, a 

powerful commercial CFD code is used for analyzing the performance 

of the blade. 

 

The increase in the number of CFD calculations and the complexity of 

the geometries brings the fact that, the design engineer needs to handle 

hundreds of design parameters, and ten thousands of CFD solutions for 

different geometries at different boundary conditions. Therefore, it is 

very difficult to handle this massive information and decide which way to 

go. One way to solve this problem is to define an objective function 

which translates the design engineer’s decision criteria into a 

mathematical formulation that computer can handle. Consequently, 

knowing that design engineer may have more than one goal, a set of 

objective functions are used for this new multi objective optimization 

method.  
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As stated in the research goals of this thesis, the optimization algorithm 

needs to be robust, fast, and accurate. A robust algorithm prevents the 

human interaction become a bottleneck during the optimization cycle, 

and allows the solution to converge to the global optimum. A fast 

optimization method is able to use the available high-fidelity resources 

such as a 3D RANS solver. An accurate optimization algorithm is one 

which is not fooled by some low-fidelity solver solutions such as 2D 

results or surrogate models such as ANN, and which is able to preserve 

human expertise. Consequently, the new method uses a modified multi-

chromosome genetic algorithm, which is called “multiploid”, which is 

able to interpret separately the high-fidelity, high quality, very expensive 

information such as a fine mesh solution of the blade, and the low-

fidelity, low quality inexpensive information such as a coarse mesh blade 

solution. The algorithm does not degrade the quality of the optimization 

result by mixing the information of multi-fidelity solutions. 

 

 

1.4 Thesis Outline 

 

In the present study, a multiploid genetic algorithm method is proposed 

for computationally intensive multiple objective problems and it is 

applied for the multi objective aerodynamic optimization of the turbine 

blades.  

 

Chapter 2 gives a brief discussion on high pressure turbine rotor blade 

aerodynamic design. Turbine blade aerodynamic design concepts are 

presented followed by the description of the three-dimensional blade 

profile design method used in this study. For the flow field solution, 

automatic mesh generator and three-dimensional RANS solver is 
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discussed with application to test cases. The flow field parallel solution 

properties are described. Finally, the optimization problem of this thesis 

is defined. 

 

Chapter 3 is devoted to single objective optimization problems, starting 

with the definition of maximizing torque and the efficiency of a rotor 

stage. Simple Haploid Genetic Algorithm (GA) is described with 

evolutionary operators. The chapter is concluded with the introduction 

of the theory of Multiploid Genetic Algorithms (GAXL) and a 

discussion of understanding how they work. 

 

Chapter 4 deals with multi-objective optimization problem. The multi-

objective optimization problem is formulated at the beginning. With the 

definition of dominance and Pareto-optimality, elite preserving haploid 

multi-objective genetic algorithm (MOGA) is described which 

implements a distance based fitness assignment. Test case solutions of 

MOGA are provided with two different multi-objective algorithms 

existing in the literature. Finally, multiploid multi-objective genetic 

algorithm (MOGAXL) is defined with multi-fidelity handling fitness 

assignment, selection and crossover operators. 

 

Chapter 5 includes the results of the single and multi objective 

optimization problems. In the first part, the two single objective 

problems are solved with GA and GAXL and the results are compared 

in terms of global optimum values found and the computational cost of 

both algorithms to converge the global optimum. In the second part, 

multi-objective optimization problem is solved by MOGA and 

MOGAXL. The global Pareto-optimum frontiers of both methods are 
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compared with the computational costs incurred. Finally, the flow field 

properties of the optimized blade shapes are discussed briefly. 

 

This study is concluded with discussions and recommendations for 

future work in Chapter 6. 
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CHAPTER 2 
 
 
 

AXIAL TURBINE ROTOR BLADE  
AERODYNAMIC DESIGN 

 
 

 

 

Traditional aerodynamic design of turbine blades usually assumes two 

distinct design stages. One dimensional flow analysis and blade-to-blade 

detailed design. However, this approach assumes the flow is two 

dimensional and cannot take the three dimensional secondary flows into 

account. For that reason, today, experienced design engineers make use 

of three dimensional RANS solvers, and by trial and error approach, try 

to converge to an acceptable design. 

 

Since the efficiency of the gas turbines is getting more and more 

attention, design engineers begin implementing the popular RANS 

solvers more often, from 20 to 50 RANS computations [32]. By 

increasing efficiency, torque, and pressure ratio, it is possible to reduce 

the number of blades per stage needs but this definitely needs more and 

more computational results to be exploited. Although this trend 

increased the efficiency of a stage by a few points, a definite need for 

shortening the design cycle and increasing the efficiencies promptly 

requires an optimization tool to be applied. GE Aircraft Engines, one of 

the largest gas turbine manufacturers, has already applied optimization 

tools for preliminary design of axial compressors and turbines [33], [34], 

and for designing airfoil layers [35], [36], and for optimizing three 



 
13 

dimensional blade profiles by maximizing efficiency while meeting 

mechanical requirements [37]. 

 

 

 2.1 Turbine Blade Aerothermodynamics  

 

The cross section of a high pressure turbine rotor blade with disk is 

shown in Figure 2.1. The blade is mounted to disk at its hub. The disk is 

located on the gas turbine shaft. High temperature and high pressure 

flow originally coming from the combustor rotates the turbine blades. 

 

 

Figure 2.1 High Pressure Turbine Rotor cross-section schematic on 

radial-axial plane 

 

2.1.1 Coordinate System 

 

The coordinate system of a turbine stage consists of three directions as 

shown in Figure 2.2: 
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- Axial direction: parallel to the axis of rotation 

- Radial direction: radial through the axis of rotation 

- Tangential direction: tangent to the rotating stage. 

 

 

 

Figure 2.2 Coordinate System 

 

 

Analysis of flow in the meridional (radial-axial) plane depicts the 

circumferentially averaged (blade-to-blade average) radial and axial 

variation of the desired flow parameters. For many types of calculations, 

blade-to-blade variation of parameter values can be ignored and only 

average values are used. Such a calculation is called axisymmetric or through 

flow analysis [38]. 

 

Calculations made in the blade-to-blade (axial-tangential) or radial-tangential 

planes are usually at some constant value (rather than for average 

conditions) of the third coordinate. Velocity diagrams, as well as blade-

Z 
R 

θ 
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to-blade velocity variation calculations are usually made in these planes. 

When flow is predominantly radial or when the flow is axially symmetric, 

such as at the inlet to a radial-flow turbine, the radial-tangential plane is 

used. When flow is predominantly axial, such as in an axial-flow turbine, 

the axial-tangential plane is used. In this thesis, the flow is predominately 

axial therefore, the latter is used. 

 

 

2.1.2 Meridional and Blade-to-Blade Planes 

 

The complex 3-dimensional geometry of a blade is broken into two        

2-dimensional planes, meridional and blade-to-blade planes. The 

Meridional plane is used to define the blade in radial vs. axial space.  From 

this definition, the streamlines are generated which are required for the 

Blade-to-Blade (B2B) plane. The cross section of the succeeding blade rows 

of rotor and stator at a given span percentage creates a turbine blade layer 

in the B2B plane which defines the blade layer in tangential vs. axial 

space. The basic turbine layer terminology in B2B plane is shown in 

Figure 2.3. 

 

A three dimensional turbine blade is represented by layers at various 

spanwise locations in meridional plane. The data from these planes is 

used to create the 3-dimensional blade geometry, using one blade's layer 

at a time.  

 

In the blade to blade plane, flow enters the layer through the leading 

edge of the blade and leaves it through the trailing edge. The spacing 

between the blades is called as pitch. Blade inlet and exit angles as well as 

flow inlet and exit angles are also shown in Figure 2.3.  



 
16 

 

Figure 2.3 Turbine blade layer terminologies in B2B plane 

 

 

2.1.3 Velocity Vectors and Diagrams 

 

Flow kinematics and related energy transfer between the blade and the 

fluid are the most important topics of turbine aerodynamics. For that 

analysis, velocity vector diagrams are used. The inlet and exit flow 

characteristics are given as inputs to the system. For convenience, 

absolute velocity vectors for inlet ( 1V
r
) and exit ( 2V

r
) flow are shown for a 

rotating disk in Figure 2.4. 

Tangent to Camber 

Line at Leading Edge 

Tangent to Camber 

Line at Trailing Edge 
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Figure 2.4 Velocity components for a generalized rotor [39] 

 

 

According to Figure 2.4, blade inlet velocity is the vector sum of axial 

velocity VX,1 and tangential velocity Vθ,1. Similarly, blade exit velocity is 

found by vector summation of the axial velocity VX,2 and tangential 

velocity Vθ,2. 

 

 

2.1.4 Blade Loading, Torque, and Efficiency 

 

It is the change in tangential momentum of the fluid that results in the 

transfer of energy from the fluid to the rotor. As the fluid flows through 

the cascade between each pair of blades, through a curved passage, a 

centrifugal force acts on it in the direction of the pressure (concave) 

surface. To counterbalance, a pressure force is established to turn the 

fluid through its curved path. The pressure force is directed normal to 

the flow and toward the suction (convex) surface. Thus, the pressure in 
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the passage is highest at the pressure surface and lowest at the suction 

surface. The resulting difference of the static pressure on the blade 

surfaces is called as the blade loading. The blade force acting in the 

tangential direction, tangential blade force. 

 

The tangential blade force F on a blade section can be expressed as: 

 

mm DLF αα sincos +=       (2.1) 
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where L is lift, D is drag, and CD and CL are drag and lift coefficients 

respectively. The mean flow angle αm is defined by: 

 

)tan(tantan 212
1 ααα +=m        (2.3) 

 

Turbine rotor stage torque is used as one of the two objective functions in 

this thesis and calculated as: 
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      (2.4) 

 

where N is the number of blades in a stage, p is the static pressure, and 

,,nA
rr
and e

r
are face area at node, face normal, and node vectors, 

respectively. The remaining objective function of this thesis is the blade 

efficiency, defined as follows: 
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where Q is the mass flux. The mass flow calculated at a node is given as: 

 

Qm ρ='&          (2.6) 

 

Then, the mass flow averaged total pressure and temperature values at 

the inlet and exit boundaries of the blade are found by: 
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where the subscripts b and c indicates the flow conditions at the inlet 

and exit of the blade, respectively. Finally the blade efficiency is: 
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2.2 Three-Dimensional Blade Profile Design Method 

 

Following sections cover the aspects of blade shape design method 

implemented in this thesis. Firstly, the importance of the blade spacing 
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selection, which can be expressed non-dimensionally as solidity (ratio of 

chord to pitch in B2B plane), will be discussed in the next section and 

shown that the number of blades in a stage is a very practical design 

parameter for representing the solidity. Secondly, blade profile design, 

including B2B design parameters, will be defined. Finally, blade geometry 

reshaping algorithm is discussed in the last section with examples of 3-

dimensional blade shapes generated which shows the capability of the 

developed method. 

 

 

2.2.1 Solidity 

 

One of the important aspects of blade design is the selection of the blade 

solidity, which is the ratio of chord or axial chord to blade spacing at a 

given span as shown in Figure 2.5. A minimum value is usually desired 

from the standpoint of reducing weight, cooling flow, and cost. 

However, increasing the blade spacing eventually results in decreased 

blade efficiency due to separated flow, on the other hand lowered 

frictional losses. Therefore, an optimum solidity should be a fully 

attached flow with maximum blade spacing, and minimum frictional and 

secondary losses.  

 

A very widely used traditional approach is the use of tangential loading 

coefficient, which is introduced by Zweifel [40]. Zweifel loading 

coefficient ψz is used to relate the actual and ideal blade loading in terms 

of the flow absolute inlet and exit angles α1 and α2, respectively. In 

equation form the axial solidity is given as, 
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Figure 2.5 Definition of solidity and thicknesses 

 

 

Therefore, according to Zweifel, solidity depends on exit and inlet 

angles, and for a given Zweifel loading coefficient, axial solidity should 

be decreased for decreasing exit flow angle to keep optimum solidity. 

This means that as long as the absolute value of exit angle increases, the 

blade spacing should be increased to decrease blade loss.  

 

However, there are other loss factors affecting the solidity design 

parameter. The primary cause of losses is the boundary layer that 

develops on the blade and end-wall surfaces. Other losses occur because 

of shocks, tip-clearance flows, windage (disk friction), and flow 

incidence. A minimum loss occurs at some optimum solidity [41]. As 
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solidity increases, the amount of frictional surface area per unit flow is 

increasing. On the contrary, as solidity reduced, the loss per unit surface 

area is increasing because of the increased surface diffusion required. 

Therefore, a minimum loss is expected to occur at a given value for 

solidity, and this requires an accurate prediction of blade losses. 

 

For a 3-dimensional design problem, solidity varies along the blade, and 

is a function of blade height, it is not constant. Therefore, it is not a 

suitable to implement solidity as a design parameter. Rather, a constant 

parameter for a stage should be defined. The easiest and convenient way 

to represent solidity in a stage is to define and fix the number of blades 

in a row. In this thesis, an integer value which represents the number of 

blades in a row is used as the only design parameter in the place of 

solidity. 

 

 

2.2.2 Blade Profile Design 

 

The geometric model of the 3-dimensional blade profile must be defined 

as few as possible parameters in order to simplify the optimization 

problem. On the other hand, a robust geometric model should be able to 

cover distinct blade profiles in every corner of the design space, almost 

entirely, while generating realistic blade profiles. Consequently, the 

parameterization of the blade profile should minimize the possibility of 

generating geometrically unrealistic profiles. 

 

In that sense, the 3-dimensional blade is represented by several 2-

dimensional cylindrical surface layers which are stacked along the 

centroids (center of gravities) that are based on the hub layer centroid 
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location in the tangential direction, as shown in Figure 2.6. The stacking 

on centroids has the main advantage of satisfying mechanical constraints 

to reduce bending stresses under rotational loads. Additionally, since a 

linear stacking line passing through the centroids of the layers is used, no 

any additional design variables that may be required for defining a 

stacking curve is necessary. This also helps avoiding increasing the 

number of design variables due to additional stacking curve parameters. 

 

         
(a)      (b) 

Figure 2.6 Stacking layers (a) on centroid (b) 

 

 

The number of layers, the spanwise locations of the layers, and the layer 

angles between the layer plane and the axial direction might be included 

in the design parameters. However, pre-setting these variables avoid a 

dramatic increase in design parameters. Moreover, for the design point 

of view, a focus on aerodynamic parameters such as blade angles rather 

than aforementioned geometric parameters is more suitable for the 

design engineer.  

 

For these reasons, the number of layers is fixed and selected as 6.  The 

spanwise locations of the layers are taken to be constant. The mid-layers’ 
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spanwise locations are set equal to that of the baseline blade, and hub 

and shroud layers are set as the hub and tip sections of the blade, 

respectively. Shroud layer plane is set in the shroud axis whereas the 

remaining layers’ planes are set in the axial direction for the in this study. 

Consequently, the selected layers in the meridional view and their names 

are shown in Figure 2.7. 

Figure 2.7 Six layers in the meridional view with definitions 

 

 

3-dimensional end wall shaping is a recent practice for decreasing the 

adverse effects of secondary flows. Both in axial and circumferential 

directions, end wall contours are used to control corner vortex 

generation. One can include design parameters which sets the meridional 

and axial-tangential curves. However, this kind of investigation in blade 

design is beyond the objectives of this thesis and left for further 

investigations. Consequently, 2-dimensional end walls of the baseline 

blade are used and not included as a geometric design parameter. 

 

 

Shroud Layer 

Hub Layer 

1st Layer 

2nd Layer 

3rd Layer 

4th Layer 
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2.2.3 Layer Geometric Parameterization 

 

The geometric parameterization of the two-dimensional cylindrical 

surface layers is the critical item in the successful implementation of a 

turbine blade shape optimization method. The geometric model should 

include as few as possible parameters and be able to cover distinct and 

realistic layer shapes in every corner of the design space, almost entirely.  

 

The point by point presentation of suction and pressure sides of a layer 

does not ensure smoothness of the blade passage and includes 

discontinuities which cause unavoidable shock waves. Additionally, an 

unnecessary large number of parameters needed to be used. Therefore, 

there are several attempts found in the literature. 

 

The most basic and popular airfoil definition method is the NACA 

family [42], in which the blade is defined by a mean camber line and a 

thickness distribution. These airfoils cannot be applied to an 

optimization problem due to limited and restricted number of airfoils. A 

recent study shows an airfoil modification algorithm for layers shaped by 

adding thickness distribution to camberline [43]. However, this method 

uses only 4 design parameters and relies on the baseline camber and 

thickness distribution. 

 

Pritchard implemented an 11 variable airfoil with circular arc and 3rd 

order polynomial curves tangent to each other [44]. However, 

polynomial curves suffer from discontinuities due to inflection points as 

well. Trigg improved this method by replacing the polynomial curves 

with Bezier curves [45], and increased the number of variables to 17. 

Anders represented the airfoil with two 5th order Bezier curves which 
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requires 20 parameters [46]. Yamamoto and Inoue used cubic B-splines 

of camber line and thickness distribution for wing sections [47].  

 

Pierret draw a comprehensive literature review on two-dimensional 

geometric turbomachinery airfoil parameterization [48]. He observed 

that any curvature discontinuity should be avoided in the critical parts of 

the airfoil, such as leading edge and throat regions. He proposed three-

curve airfoil geometry and a second order curvature derivative for the 

leading edge and first order for the trailing edge. This geometry includes 

a circle at the trailing edge and two Bezier curves for suction and 

pressure sides. In order to decrease the number of variables and increase 

the realistic airfoil generation probability, he defined a camber line and 

selected the Bezier control points according to the camber line. 

However, this method decreases the coverage of the shapes in the design 

space, since the airfoil shape is built on 3-control point Bezier curve. 

 

In this study, the design engineers’ traditional aerodynamic design 

parameters such as leading and trailing edge radiuses, and inlet and outlet 

metal angles are respected while generation the layer shapes, since these 

parameters are often imposed by manufacturing, mechanical or 

aerodynamic constraints.  The layer is parameterized using five angles as 

shown in Figure 2.8. These angles are the wedge angles of leading and 

trailing edges (WTE, and WLE), blade inlet and exit metal angles (βLE, and 

βTE), and the stagger angle (ξ). Additionally, circumferential rotation 

angle Θ is selected as the sixth design parameter since this angle sets the 

lean of the blade in three dimensional geometry.  

 

Consequently, there are six design parameters selected for a layer 

geometry shaping. Since there are six pre-determined layers and one 
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more design parameter which is the number of blades, a total number of 

37 design parameters are used to define one particular 3-dimensional 

blade profile. 

 

 

2.2.4 Generation of Layer Curves 

 

In order to generate the layer profiles, four different curves are used. 

Two Bezier curves are selected to represent pressure and suction sides of 

the layer, and remaining two ellipse cuts for leading and trailing edges. 

Continuity up to second order derivative is ensured at the junction 

points of these curves.  

 

A complete description of curves and surfaces can be found in the 

literature [49] and [50]. The main reason of using Bezier curves instead 

of polynomials is that although inflection points can occur with Bezier 

curves, they are far less than polynomials. Moreover, curve definition is 

simpler, and the degree of the curve can be very easily increased. More 

importantly, the parametric form of the equations allows obtaining the 

coordinates of the blade points at any points [48]. 

 

A Bezier curve is specified by the coordinates of control points in which 

only the first and the last lie on the curve they define. The curve is the 

weighted average of these control points defining the curve. The Bezier 

curves of 3rd degree (which is also used in this study) require 4 control 

points, and are defined as follows: 

 

3

3

2

2

1

2

0

3 )1(3)1(3)1( PtPttPttPtR
rrrrr

+−+−+−=     (2.13) 



 
28 

 

where kP
r
 are the vectors of the 4 control points, t is an auxiliary 

parameter varying between 0 and 1 and R
r
is the coordinates of the 

corresponding point coordinates vector on the Bezier curve. 

 

 

Figure 2.8 Layer geometric parameterization 

 

 

Note that the 3rd order Bezier curve is constructed from 4 control 

points. The tangents at both end control points are defined by the line 

connecting the control points. The second derivative at end control 

points depends only the first three points.  

 

The number of Bezier control points and their parameterization is 

another decision making issue for the designer. One can set more than 4 

control point and the dimension of the Bezier curve can be increased 
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freely. However, this increases the number of design parameters 

unnecessarily since a sufficient number of control points can cover the 

design space almost entirely. For demonstration purposes, only 4 control 

points are set to define the Bezier curves in this study, and it is suggested 

to use this value as a minimum requirement for the curve 

parameterization for future investigations. 

 

In a two-dimensional definition, each control point of the Bezier curve 

requires two variables to set the coordinate values. Therefore, a two-

dimensional 3rd order Bezier curve which has four control points is 

represented using 8 variables. However, optimization models utilizing 

global search methods such as genetic algorithms involve random 

generation of blade shapes. Therefore, it is critical to generate as much 

realistic blade shapes as possible at the blade profile generation phase.  

 

Consequently, to limit the variation of these control points and generate 

as realistic blade profiles as possible, some profile generation procedures 

are applied. First, as shown in Figure 2.9 and 2.10, the end control points 

P0,SS, P0,PS, P3,SS, and P3,PS are fixed by leading and trailing edge 

thicknesses, and blade inlet and exit metal angles (βLE, and βTE), 

respectively. The construction of the leading edge of the blade layer 

profile is shown in Figure 2.9. The trailing edge construction is similar. 

The leading and trailing thicknesses are set equal to that of the baseline 

blade, since these parameters are pre-determined according to blade 

cooling flow scheme. The blade leading and trailing edge shapes are 

constructed from an elliptical edge, which is formed through the 

intersection of the camberline and the meridional limit.  
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Figure 2.9 Leading edge construction of a blade layer profile 

 

 

The remaining mid control points are limited by setting their DM axis 

values fixed according to the baseline blade. Firstly, baseline blade point-

by-point pressure and suction side curves are converted to Bezier curves 

of 3rd order, with end control points same as the layer profile Bezier 

curve end control points. Secondly, the DM axis values of the baseline 

Bezier curves’ mid control points are selected as the same as that of the 

generated blade layer profile mid control points. Hence, the DM values of 

the mid control points are fixed. Finally, the design parameters that are 

the wedge angles of leading and trailing edges (WTE, and WLE) are used 

to set the Θ axis values of the mid control points as shown in Figure 

2.10. 

 

WLE 
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Figure 2.10 Blade layer profile control points 

 

 

2.2.5 Blade Profile Reshaping Algorithm 

 

The blade profile reshaping algorithm is given in Figure 2.11. According 

to the algorithm, there are two main steps. In the first step, the baseline 

blade geometry is parameterized. In the second step, the baseline blade 

geometry parameters are modified according to the design parameters.  
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Figure 2.11 Blade profile reshaping algorithm 
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2.2.6 Blade Profile Reshaping Examples 

 

Figure 2.12 shows four different blade profile examples generated from 

the baseline blade using the reshaping model. These profiles demonstrate 

the capabilities of the method to represent a diverse range of blade 

shapes in the design space. Except swept blades, the reshaping algorithm 

is capable of producing conventional, positive/negative leaned, tapered, 

twisted blade shapes. 

 

 

Figure 2.12 Three-dimensional blade profile examples of conventional 

rotor, positive lean, twisted, and negative lean profiles 
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2.3 Automatic Mesh Generation 

 

For 3-dimensional meshing, a mesh generator, ANSYS® TurboGridTM  

software [51], is used for unstructured automatic volume meshing. 

Mainly, the program automatically generates a triangular surface mesh 

and the interior tetrahedral mesh using the Octree approach [52]. 

Automatic meshing of the volume is done by successive refinement until 

all grid density requirements are met. The resulting tetrahedral mesh is an 

adaptive mesh of non-uniform density. The automatically generated UH 

turbine 1st stage baseline stage mesh is shown in Figure 2.13 [53]. 

 

 

Figure 2.13 UH turbine 1st stage rotor automatic mesh generation  

 

 



 
35 

In leading and trailing edge regions of high surface curvature, the mesh is 

automatically refined in order to maintain the necessary geometric 

resolution as shown in Figure 2.14. This improves the robustness and 

eliminates the additional user input.  

 

The flow adjacent to suction and pressure side walls are characterized by 

high flow variable gradients in the normal direction. Moreover, the 

boundary layer development in the turbine blade is the main factor 

affecting the efficiency of the blade. While tetrahedral cells can be used 

in such boundary layers, greater accuracy can be achieved using prism 

elements.  

 

 

Figure 2.14 Zoomed view of leading and trailing edge regions at hub 

 

 

The meshing software automatically arranges layers of prism elements 

near the boundary surfaces in order to appropriately model close to wall 

physics. Prisms are generated by extruding the triangular surface mesh. 

As a result, a hybrid tetrahedral grid consisting of prism elements near 

the boundary surfaces and tetrahedral elements in the interior of the 

space is meshed. The prismatic mesh is inflated by a prescribed number 
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of layers, which is set as ten layers in this study. The prismatic mesh of 

the UH stator blade surface boundary is shown in Figure 2.15.  

 

 

 

Figure 2.15 Zoomed view of leading edge pressure side region showing 

prismatic mesh elements on the boundary 

 

Since the automatic meshing of the volume is done by successive 

refinement, a pre-defined grid refinement level is used to meet all grid 

density requirements. The mesh quality represents a tradeoff between the 

accuracy of the solution and computational cost. In this thesis, two 

different grid refinement levels is used for a low quality and a high 

quality mesh generation, which are called as coarse grid, and fine grid, 

respectively.  
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2.4 Three-dimensional RANS Flow Solver 

 

A commercial RANS flow solver, ANSYS® CFX® software [54], is used 

in this study for evaluating the objective functions. The code is capable 

of solving a three-dimensional steady state compressible viscous 

Reynolds averaged Navier Stokes equations in conservation form.  

 

The five equations of mass, momentum and energy conservation in a 

stationary or rotating frame of reference are solved for seven unknowns 

(V
r
, p, T, ρ , h), which the set is closed by adding two algebraic 

thermodynamic equations: the Equation of State, which relates density to 

pressure and temperature; and the Constitutive Equation, which relates 

enthalpy to temperature and pressure.  

 

The original unsteady Navier-Stokes equations are modified by the 

introduction of averaged and fluctuating quantities to produce the 

Reynolds Averaged Navier-Stokes (RANS) equations. These equations 

represent the mean flow quantities only, while modeling turbulence 

effects without a need for the resolution of the turbulent fluctuations. All 

scales of the turbulence field are being modeled. The averaging 

procedure introduces additional unknown terms containing products of 

the fluctuating quantities, which act like additional stresses in the fluid. 

These Reynolds' stresses terms are difficult to determine directly and so 

become further unknowns. The Reynolds (turbulent) stresses need to be 

modeled by additional equations of known quantities in order to achieve 

“closure”.  
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The equations used to close the system define the type of turbulence 

model. Turbulence models close the Reynolds-averaged equations by 

providing models for the computation of the Reynolds stresses and 

Reynolds fluxes. Among many popular turbulence models available such 

as 2 equation turbulence models, a zero-equation turbulence model is 

used in this study in order to keep robustness and decrease 

sophistication. The Zero Equation model implemented in this study is 

simple to implement and use, can produce approximate results very 

quickly, and provides a good guess. In this context, a constant turbulent 

eddy viscosity is calculated for the entire flow domain. 

 

Very simple eddy viscosity models compute a global value for turbulent 

viscosity, tµ , from the mean velocity and a geometric length scale using 

an empirical formula. Because no additional transport equations are 

solved, these models are termed ‘zero equation'. The zero equation 

model in the solver uses an algebraic equation to calculate the viscous 

contribution from turbulent eddies. A constant turbulent eddy viscosity 

is calculated for the entire flow domain.  

 

The turbulence viscosity is modeled as the product of a turbulent 

velocity scale, Ut, and a turbulence length scale, lt, as proposed by 

Prandtl and Kolmogorov [55]; 

 

ttt lUf µρµ =             (2.14) 

 

where µf  is proportionality constant. The velocity scale is taken to be 

the maximum velocity in the fluid domain. The length scale is derived 

using the formula: 
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Dt Vl =             (2.15) 

 

where VD is the fluid domain volume.  

 

Engineering transition predictions are based mainly on two modeling 

concepts. The first is the use of low-Reynolds number turbulence 

models, where the wall damping functions of the underlying turbulence 

model trigger the transition onset. The second approach is the use of 

experimental correlations. The correlations usually relate the turbulence 

intensity, Tu, in the free-stream to the momentum-thickness Reynolds 

number, θeR , at transition onset. 

 

For the zero equation transition model a prescribed intermittency, which 

is used to trigger transition, is set by the solver. The specified 

intermittency is based on the x, y and z co-ordinates. This way, if else 

statements are used to defined geometric bounds where the 

intermittency can be specified as zero (laminar flow) or one (turbulent 

flow). This method is used to prescribe laminar zones at the leading 

edges of the blades.  

 

One of the ways of modeling the flow in the near-wall region is the wall 

function method. The wall-function method of Launder and Spalding 

[56] is implemented in the solver. In this approach, the viscosity affected 

sub -layer region is resolved by employing empirical formulas to provide 

near-wall boundary conditions for the mean flow and turbulence 

transport equations. Thus, computational resources are significantly 

saved using these empirical formulas. These formulas connect the wall 

conditions (e.g., the wall-shear-stress) to the dependent variables at the 



 
40 

near-wall mesh node which is presumed to lie in the fully-turbulent 

region of the boundary layer. 

 

The logarithmic relation for the near wall velocity is given by: 
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+
u is the near wall velocity, τu  is the friction velocity, TU  is the known 

velocity tangent to the wall at a distance of y∆ from the wall, +y  is the 

dimensionless distance from the wall, ωτ  is the wall shear stress, κ  is the 

von Karman constant and c  is a log-layer constant depending on wall 

roughness. 

 

The above wall function equations are appropriate when the walls can be 

considered as hydraulically smooth. For rough walls, the logarithmic 

profile still exists, but moves closer to the wall. Roughness effects are 

accounted for by modifying the expression for +
u  as follows: 
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where 

 

µ

ρ τuy
k R=+               (2.20) 

 

and Ry  is the equivalent sand grain roughness height [57], which is not 

exactly equal to the real roughness height of the surface under 

consideration. Wall friction depends not only on roughness height but 

also on the type of roughness (shape, distribution, etc.); therefore, an 

appropriate equivalent sand-grain roughness of 0.01 mm is used 

throughout of this study. 

 

 

2.5 Boundary Conditions 

 

Inlet, outlet, periodic and wall boundary layers are used to numerically 

close the RANS equations. Total pressure, total temperature and swirl 

angle profiles are used in absolute frame of reference for the inlet 

boundary conditions. For a stator, flow inlet conditions are used. If the 

blade is a rotor, stator exit conditions are imposed. Either static pressure 

or mass flow rate is used as the outlet boundary condition.  

 

Instead of simulating one stage, the problem is divided first into two 

rows, and then one blade only. First, the stator row is solved by freezing 

the rotor row. In the stator row, only one blade is solved by 

implementing periodicity boundary conditions between the blades. 

Finally, the rotor blade is solved using the exit conditions of the stator in 

the rotating frame of reference. 
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For the hub, shroud and blade surfaces, wall boundary condition is used. 

Note that a wall roughness of 0.01 mm is set for these surfaces. Blade, 

hub and shroud surfaces are modeled with no-slip adiabatic wall 

conditions. Both stator and rotor is solved using rotating frame of 

reference with setting either zero angular velocity or the rpm of the 

machine, respectively. Rotor shroud is set stationary in the absolute 

frame of reference. 

 

 

2.6 Test Case Studies With Different Grid Qualities 

 

Although the commercial flow solver has been tested for various 

problems, the ability of the current solution procedure is demonstrated 

for two popular test cases. This will further demonstrate the selected 

methods such as the turbulence model, transition prediction and 

boundary layer developments. Moreover, since, two different grid 

refinement levels is used for a low quality and a high quality mesh 

generation, which are called as coarse grid, and fine grid, respectively, in 

this thesis, the effect of grid quality is further investigated by test cases.  

 

The two selected experimental test cases are relevant to three-

dimensional flow calculations for viscous flows in axial turbine 

calculations: VKI and UH. The VKI low speed annular turbine blade 

row test case is used to validate radial-tangential downstream plane flow 

variables [58]. The VKI test case is solved for coarse and fine grids, and 

the grid quality effect on the results are shown. The UH 4-stage low 

speed turbine test case results are used to validate stage performance 

parameters for only the first stage [53]. This test case is used to 

demonstrate the off-design performance predictions of the solver. 
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2.6.1 VKI Low Speed Annular Turbine Blade Row 

 

The VKI test case is a low speed, low aspect ratio, high speed annular 

nozzle guide vane [58]. The blades have a constant profile over the blade 

height and are untwisted. To account for differences in the upstream 

flow conditions for an inlet guide vane and an intermediate stage vane, 

the annular cascade was tested with skewed inlet end wall boundary 

layers. The inlet skew was generated by rotating the upstream hub end 

wall.  

 

One of the two aims of the test case validation is to verify 3D flow field 

through the blade row with particular attention to the end wall and wake 

regions. The second aim is to investigate the grid quality effect on the 

calculated flow parameters, and to compare the required computational 

time for coarse and fine grids. 

 

The cascade geometry is first constructed according to the test case 

parameters. Then, the geometry is parameterized according to design 

parameters as shown in Figure 2.11. Finally, the nozzle is solved using 

test case boundary conditions of upstream inlet total temperature, total 

pressure and swirl angle, and downstream static pressure using coarse 

and fine girds. 

 

The coarse and fine gird generation parameters are listed in Table 2.1. 

For both of the cases, the automatic grid is generated with 10 layer 

prismatic boundary cells with an expansion factor of 1.2. The aspect 

ratio of all elements is below 5. Corresponding generated grids are 

shown for coarse and fine meshes in Figure 2.16 and 2.17, respectively. 
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For the solution of the test case, standard air is used as the working fluid. 

The same settings and methods used in the optimization problems are 

set for the solver such as the turbulence model, wall roughness and so 

on. The calculated average values of Reynolds number and turbulence is 

1.5 105 and 7%, respectively.  

 

Table 2.1 Comparison of Coarse and Fine Grid Parameters 

 
Coarse Grid Fine Grid 

Number of  

Prismatic Layers 
10 10 

Prismatic Layers 

Expansion Factor 
1.2 1.2 

Number of Nodes  

in Surface Mesh 
7,946 31,597 

Number of Faces  

in Surface Mesh 
17,292 63,194 

Number of Nodes  

in Volume Mesh 
81,885 454,785 

Number of Tetrahedral 

Elements in Volume Mesh 
263,107 1,955,673 

Number of Prismatic  

Elements in Volume Mesh 
64,420 206,570 

Number of Elements  

in Combined Mesh 
327,527 2,162,243 

 

Table 2.2 Comparison of Coarse and Fine Grid Solution CPU Times 

 Coarse Grid Fine Grid 

Geometry Generation [s] 10 10 

Grid Generation [s] 157 705 

Solver Run [s] 827 3,564 

Total CPU Time [min] 16.6 71.3 

 

 

The CPU times for the coarse and fine mesh solutions are tabulated in 

Table 2.2. It is shown that a coarse mesh solution is more than 4 times 

faster than the fine mesh solution. Although the accuracy level of the 
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coarse mesh solution is lower than the fine mesh solution, the solution 

time is considerable faster for the former, therefore, is a very suitable low 

fidelity model of the latter solution for the use in optimization method 

developed in this study. 

 

Figure 2.16 VKI Test Case - Coarse Mesh 

 

Figure 2.17 VKI Test Case - Fine Mesh 
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The test case upstream flow conditions are measured at a distance of 

X/Cax = - 0.70, whereas the rotating hub extends from X/Cax = - 0.15 to 

X/Cax = -4.16. The numerical model takes into account only the 

measured upstream flow conditions as the inlet conditions of the 

problem, and the rotating hub is not modeled at all. Therefore, the 

remaining part of the rotating hub after the measurement plane could 

not be included in the model in any way. 

 

The VKI test case measurement planes of X/Cax = 0.86 and X/Cax = 

1.11 are shown in Figure 2.18. The former is located between the blades 

near trailing edge, and the latter is located at the downstream of the 

trailing edge. Contour plots of the static and total pressure coefficients 

CPs and CP0 at the measurement planes of X/Cax = 0.86 and           

X/Cax = 1.11 are shown in Figure 2.19 and 2.20, respectively. Contour 

plots of blade to blade exit flow angle β at the measurement planes of 

X/Cax = 0.86 and X/Cax = 1.11 are shown in Figure 2.21. These figures 

represent the exceptionally strong three dimensional features of the flow 

field. 

 

Figure 2.18 VKI test case measurement planes of X/Cax = 0.86 and 1.11  
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According to Figures 2.19 and 2.20, both CPs and CP0 values are in very 

good agreement with coarse and fine mesh solutions. Hub and shroud 

wall surface region measurements have steeper gradients with respect to 

calculated results. This is attributed to simplicity of the selected wall 

roughness and turbulence model of the solver. When compared with the 

fine mesh solution, the coarse mesh solution resolution is somewhat 

lower, however at an acceptable degree. The results have the same order 

of magnitude and topology. It can also be said that the measurement 

plane location has no significant effect on the flow parameter prediction. 

 

According to Figures 2.21 exit flow angle β values are in a very good 

agreement with coarse and fine mesh solutions. When compared with 

the fine mesh solution, the coarse mesh solution resolution is lower at an 

acceptable degree. The results have the same order of magnitude and 

topology. It can also be said that the measurement plane location has no 

significant effect on the exit flow angle parameter prediction. 

 

Consequently, the VKI test case demonstrates the ability to predict stage 

losses sufficiently, which in turn is used to calculate the efficiencies. Flow 

turning is directly related to torque calculations and therefore accurate 

predictions of the flow exit angles are essential. The solution method is 

validated against the VKI test case which represents exceptionally strong 

flow turnings. Additionally, the test case is used to compare the 

difference of flow filed calculations for the coarse and fine mesh. The 

comparison showed that although the resolution of the calculated 

contours is lower for the coarse mesh, the flow filed has the same 

topology with the same order of magnitude as of the fine mesh.  
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Figure 2.19 Coarse and fine mesh RANS solution comparison of CP0 

and CPs values with measurements [58] at plane X/Cax = 0.86 
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  Figure 2.20 Coarse and fine mesh RANS solution comparison of CP0  

and CPs values with measurements [58] at plane X/Cax = 1.11 
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Figure 2.21 Coarse and fine mesh RANS solution comparison of β 

values with measurements [58] at planes X/Cax = 0.86 and X/Cax = 1.1 
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2.6.2 UH 4-Stage Low Speed Turbine 

 

The UH 4-stage low speed annular turbine blade row test case results are 

used to validate spanwise stage performance parameters for only the first 

stage [53]. This test case is used to demonstrate the on-design and off-

design performance predictions of the solver. 

 

The UH turbine is designed for a rotational speed of 7500 rpm, and a 

mass flow rate of 7.8 kg/s which is set with the aid of by-pass. The 

blading is of the free-vortex type with a 50-percent degree of reaction at 

the middle section of the last stage. A tip clearance of 0.4 mm is used for 

the rotor. Only through flow radial traverse measurements at the 

upstream of the stator and the downstream of the rotor were made. 

Total pressure pt, static pressure p, total temperature Tt, and flow angle β 

are measured for design and off-design conditions.  

 

The stage geometry is first constructed according to the test case 

parameters. Then, the geometry is parameterized according to design 

parameters as shown in Figure 2.11. Finally, the stage is solved using test 

case boundary conditions measured at the upstream inlet total 

temperature, total pressure and swirl angle, and mass flow rate. Only 

coarse mesh solution is used for validation. 

  

The coarse gird generation parameters are listed in Table 2.3. The 

automatic grid is generated with 10 layer prismatic boundary cells with an 

expansion factor of 1.2. The aspect ratio of all elements is below 5. 

Corresponding generated mesh of stator and rotor is shown in        

Figure 2.22. 
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Table 2.3 Coarse grid parameters of stator and rotor 

 
Stator Rotor 

Number of Nodes  

in Surface Mesh 
16,556 16,909 

Number of Faces  

in Surface Mesh 
33,112 33,818 

Number of Nodes  

in Volume Mesh 
206,650 214,977 

Number of Tetrahedral 

Elements in Volume Mesh 
637,502 669,731 

Number of Prismatic  

Elements in Volume Mesh 
177,265 182,856 

Number of Elements  

in Combined Mesh 
814,767 852,587 

 

 

 

Figure 2.22 UH turbine 1st stage coarse mesh of stator and rotor 

 

The problem is solved using frozen rotor approach. The stator is solved 

with problem boundary conditions, first. Then, the rotor is solved using 

outlet flow conditions of the stator as the upstream boundary conditions, 
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and setting the same mass flow rate. Finally, the test case is solved for 

design and six off-design conditions. For the solution of the test case, 

standard air is used as the working fluid. The same settings and methods 

used in the optimization problems are set for the solver such as the 

turbulence model, wall roughness and so on. The calculated average 

values of Reynolds number and turbulence is 1.5 105 and 7%, 

respectively.  

 

Table 2.4 Coarse mesh average CPU Times for stator and rotor 

 Stator Rotor 

Geometry Generation [s] 10 10 

Grid Generation [s] 287 298 

Solver Run [s] 1,945 2,783 

Total CPU Time [min] 37,4 51,5 

 

The CPU times for the coarse mesh solutions for design and of design 

conditions are averaged per run and tabulated in Table 2.4. It is shown 

that a stator solution is faster than the rotor solution, and the test case 

can be solved in one and a half hour using coarse mesh. 

 

Table 2.5 The UH test case experimental conditions 

 RPM 
Mass Flow 

[kg/s] 

On-design Condition 7500 7,8 

Off-design Condition 1 7500 6,5 

Off-design Condition 2 7500 4,6 

Off-design Condition 3 7500 4,1 

Off-design Condition 4 5625 5,5 

Off-design Condition 5 5625 3,9 

Off-design Condition 6 5625 3,2 

 

The on-design and off-design conditions are listed in Table 2.5. The UH 

test case is solved for these 7 cases and the calculated results are 
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compared. Figure 2.23 shows the measured and computed total pressure 

distribution along the span at the downstream of the rotor blade. The 

measurements are made in nine radial locations. It is seen that the 

predictions are 2 to 3 percent lower than the measured values. This is 

acceptable in the uncertainty region of the measured values, which is 

indicated as 2 %. 

 

 

Figure 2.23 Comparison of spanwise total pressure distribution at the 

downstream plane of the rotor 

 

Figure 2.24 compares the measured static pressure values with respect to 

the calculated values at on and off-design conditions. In any case, the 

calculated values are slightly lower than the measured values, and the 

difference is well within the uncertainty level of 2 %. Figure 2.25 

compares the measured total temperature values with respect to the 

calculated values at on and off-design conditions. The predicted values 

matched exactly from mid-span to shroud. However, there is a slight 

difference between measured and calculated values from hub to mid-
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span, more on the near hub region. This difference is attributed to the 

boundary layer development at the hub end-wall of the rotor. 

 

 

Figure 2.24 Comparison of spanwise static pressure distribution at the 

downstream plane of the rotor  

 

The most difficult predicted parameter is the exit flow angle. This is 

because the simulation is performed without any tip clearance at the 

rotor, whereas the experimental setup has a tip clearance of 0.4 mm. 

Additionally, since there was no measured data between the stator and 

rotor, the rotor inlet conditions could only be supplied from the 

calculated stator downstream flow field. Moreover, rotor-stator 

interaction is not taken into consideration since the stage is not solved 

simultaneously, but the stator and rotor are solved independently. 

According to these observations, Figure 2.26 shows that the exit flow 

angle matches best near the mid-span location. Farther from the mid-

span, the deviation grows, especially at the hub and shroud regions. The 

order of magnitudes is the same for measured and calculated exit flow 

angles for all conditions. The variation of exit flow angle with respect to 

mass flow and RPM parameters are simulated very well. 
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Figure 2.25 Comparison of spanwise total temperature distribution at the 

downstream plane of the rotor 

 

 

 

Figure 2.26 Comparison of spanwise exit flow angle distribution at the 

downstream plane of the rotor  
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2.7 Parallel Processing 

 

Today’s modern computational power is constructed using parallel 

processing super computers. The computations can be performed using 

distributed CPU nodes, which can be more than 1000 in some cases. 

Therefore, in an optimization environment, the power of parallel 

processing should be implemented to decrease the optimization time. 

 

In this thesis, 50 CPU clusters are used for parallel processing at most. 

Although the solver is able to run in parallel, since the genetic algorithm 

is parallel in nature, the solver is not parallelized. Instead, the 

optimization algorithm is run in parallel such that in one generation, each 

of the individual blades in a population is evaluated at one PC which is 

called as slave PCs. The so called master PC is the one which the genetic 

algorithm itself is running. 

 

The slave PCs are controlled in Microsoft Windows® environment. A 

visual basic application is developed to let the master PC command the 

slave PCs to run the solver. The application is defined as a service 

program, which starts at the startup of the slave PC, letting the master 

PC control at any time. Moreover, the data flow is controlled by TCP/IP 

network connection. Design parameters and evaluated objective function 

values are transferred by this simple network sharing. 

 

 

2.8 Optimization Problem 

 

The UH test case 1st stage rotor is selected as the baseline blade. The on-

design conditions are selected as the operating conditions. The stator is 
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set as fixed and is not optimized. The rotor is parameterized as shown in 

Figure 2.11. The objective functions are selected as the rotor torque Τ  

and efficiency η. 

 

In this study, two different optimization problems are constructed: single 

and multi-objective aerodynamic optimization of turbine rotor. There are 

two separate single objective optimization problems solved, which are 

defined as: 

 

minimize f(x) = Τ         (2.21) 
 subject to gi(x) ≤ 0 
 

and: 

 

maximize f(x) = η        (2.22) 
 subject to gi(x) ≤ 0 
 

where the gi(x) are the design constraints. 

 

The multi-objective objective function is defined as follows: 

 

minimize f(x) = Τ         (2.23) 
maximize f(x) = η         
 subject to gi(x) ≤ 0 

 

The only constraints are the mechanical constraints imposed on the 

optimization problems. For mechanical strength and cooling holes, 

trailing edge thickness which is determined by the wedge angle design 

parameter is constrained according to the baseline blade. In order to 

have enough metal to withstand the stresses, airfoil area is also 

constrained. The stagger angle is limited to restrict the overhang of the 
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blade and to prevent interference with the dovetails of the adjacent 

blades in a row. Consequently, the constrained values with parameters 

are shown in Table 2.6. These values are given in ratios calculated by 

dividing with baseline values. As long as the constrained values are 

exceeded, the blade is assigned with the lowest objective function value 

possible. 

 

Table 2.6 Mechanical Constraints 

 min max 

TE Thickness  1 2 

LE Thickness 0.80 1.60 

Airfoil  0.75 1.25 
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CHAPTER 3 
 
 
 

SINGLE OBJECTIVE OPTIMIZATION 
 
 
 

 

In this chapter, the descriptions of the haploid and multiploid genetic 

algorithms are presented together with application of single objective 

aerodynamic optimization of turbine rotors. First, formulation of the 

design optimization problems is discussed. Then, a brief description of 

the haploid genetic algorithm (GA) technique is presented in the next 

section, followed by a more detailed description of the technique applied 

to the UH turbine rotor blade in section 3. Next, multiploid genetic 

algorithm is introduced. Finally, the application of the multiploid genetic 

algorithm to design problem is presented. 

 

 

3.1 Formulation of the Design Optimization Problem 

 

In general, design optimization is the process of achieving the best 

solution of a given objective or objectives while satisfying certain 

restrictions. If a single-objective function is to be minimized or maximized, 

then the problem is of single objective optimization nature. If there are 

several conflicting objectives, then the problem is formulated as a multi-

objective problem, in which the goal is to minimize and/or maximize 

several objective functions simultaneously. This chapter deal with only 
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one objective and the discussion will be based on the formulation of 

single-objective problems. 

 

 

3.1.1 Optimization Variables 

 

In a design optimization task, the numerical quantities for which values 

are to be chosen will be called the design variables or decision variables. In 

mathematical formulation, these quantities are denoted by xn where 

n=1,2,…,N. These variables creates a decision vector x given as 

 

[ ]TNxxx ,...,, 21=x        (3.1) 

 

where T denotes the transpose of the vector. Any specific vector x 

composed of numbers is called a solution. All solutions create the design 

space which is N-dimensional by nature. 

 

Accordingly, there are six design parameters selected for a layer geometry 

shaping: the wedge angles of leading and trailing edges (WTE, and WLE), 

blade inlet and exit metal angles (βLE, and βTE), the stagger angle (ξ), and 

the circumferential rotation angle (Θ). Since there are six pre-determined 

layers and one more design parameter which is the number of blades, a 

total number of 37 design parameters are used to define one particular 3-

dimensional blade profile. Therefore, the design space is 37-dimensional. 

Note that, any numerical combination of these variables constructs a 

different blade shapes two of which are illustrated in Figure 3.1. 

Corresponding design variable values of the two sample blade shapes are 

given in Table 3.1. There are infinite numbers of these solutions and the 
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aim is to approximate the best solution in these many of solutions. In 

GA nomenclature, each one of the blade shape is called an individual of a 

generation.  

 

 

 

Figure 3.1 Two different blades (paired) in the design space 

 

 

Table 3.1 Design parameters of sample blade shapes 

La
y

e
r 

Sample Blade 1 

N = 32 

Sample Blade 2 

N = 26 

ξ Θ βLE βTE WLE WTE ξ Θ βLE βTE WLE WTE 

1 

hub 
12 1 -50 72 23 7 30 0 -10 50 20 5 

2 20 -1 -50 60 24 4 30 0 -5 50 18 5 

3 23 -2 -43 68 23 4 30 0 -10 50 15 5 

4 30 -4 -32 60 23 3 30 0 5 50 20 5 

5 36 -6 1 62 24 7 36 0 10 50 20 5 

6 

tip 
40 -6 17 75 26 6 36 0 15 50 20 5 
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3.1.2 Constraints 

 

In each engineering task, there are some restrictions dictated by 

environment and process and/or resources, which must be satisfied in 

order to produce an acceptable solution. These restrictions are 

collectively called constraints, and describe the dependencies among design 

variables.  The constraints are written in the mathematical form of 

inequalities and sometimes equalities. The general form of writing 

inequality constraint is 

 

0)( ≥xkg  for k=1,2,…,K      (3.2) 

 

In certain models, we can have equality constraints as follows 

 

0)( =xmh  for m=1,2,…,M      (3.3) 

 

Note that the number of equality constraints, M, must be less than the 

number of design variables, N. Otherwise, the problem is over-

constrained, and there is no degrees of freedom left for optimization. 

 

There is no single way of implementing the constraints in a GA problem. 

The best way is to simplify the constraints so that they are only 

constraining the design variables. Keeping this in mind, the range of each 

of design variables of the turbine blade are geometrically constrained by 

the design space as shown in Table 3.2 
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Table 3.2 Design space constraints 

La
y

e
r 

Minimum  

Values 

Maximum  

Values 

ξ Θ βLE βTE WLE WTE ξ Θ βLE βTE WLE WTE 

1 

hub 
10 0.1 -60 60 17 3 20 3 -50 75 35 9 

2 15 -2 -55 60 17 3 25 -0.1 -45 75 35 9 

3 20 -3.5 -45 60 17 3 30 -1.5 -35 75 35 9 

4 30 -5 -35 60 17 3 40 -3.5 -20 75 35 9 

5 35 -7 0 60 17 3 45 -5 10 75 35 9 

6 

tip 
50 -8 10 60 17 3 60 -6 20 75 35 9 

N 26 33 

 

 

Additionally, mechanical constraints are imposed on the optimization 

problems. The constrained values with parameters are shown in      

Table 3.3. These values are set in consistent with the baseline blade 

values. As long as the constrained values are exceeded, the blade is 

assigned with the lowest objective function value possible. 

 

Table 3.3 Mechanical Constraints 

 Minimum values Maximum values 

L tLE 

(mm) 

tTE 

(mm) 

A 

(mm
2

) 

tLE 

(mm) 

tTE 

(mm) 

A 

(mm
2

) 

1 

hub 
3 0.5 300 6 1 500 

2 3 0.5 300 6 1 500 

3 2.5 0.5 200 5 1 400 

4 2 0.5 200 4 1 400 

5 1.5 0.5 150 3 1 300 

6  

tip 
1 0.5 150 2 1 300 
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3.1.3 Objective Function 

 

In the process of selecting a good solution from all solutions, which 

satisfy the constraints, there must be a criterion, which allows these 

solutions to be compared. The mathematical formulation of this criterion 

is called objective function, f(x) and given as a function of decision variables. 

It can be either linear or nonlinear.  

 

Aerodynamic optimization of turbine blades offers many objective 

functions such as total pressure loss coefficient, lift coefficient, drag 

coefficient, lift to drag ratio, blade loading, and blade energy loss, Mach 

number distribution. Since the blade efficiency which directly takes into 

account the losses, and blade torque are the final result of the design aim 

of a rotor, they are selected as the objective functions in this problem. 

 

It is interesting that as an objective function, neither efficiency, nor the 

torque is simply an explicit function of the design variables. This is one 

of the two main reasons of utilizing a flow solver in order to calculate 

the objective functions. The solver calculates flow field of a given blade 

and then the objective functions value is found using equations 

presented in Chapter 2. The second reason is that the designer may not 

only wish to see the numerical value of objective functions, but also the 

pressure and velocity distribution of the flow field so that some physical 

meaning can be assigned such as shock location, boundary layer 

development, and separation. 
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3.1.4 Optimization Problems 

 

Once the decision variables, constraints, and the objective function are 

determined, the optimization problem is constructed as follows: 

 

0                    

0)(                    

0)(  that     such

),...,,()(            .max 21

≥

=

≤

=

x

x

x

x

m

k

N

h

g

xxxff

for k=1,2,…,K m=1,2,…,M  (3.4) 

 

Accordingly, the optimization problems of this thesis in a compact form 

is that 

 

Torque Optimization: 

minimize f(x) = Τ         (3.5) 
 subject to Table 3.2. and Table 3.3 
 

Efficiency Optimization: 

maximize f(x) = η        (3.6) 
 subject to Table 3.2. and Table 3.3 
 

The calculated objectives are subsequently analyzed by the optimization 

algorithm, which evolutionarily approaches the optimum turbine blade 

shape. 

 

 

3.2 Genetic Algorithm Optimization (GA) 

 

The question now becomes which method should we use in order to 

efficiently and globally search the aerodynamically optimum blade in a 
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multi-dimensional design space. To answer this question, the reasoning 

and arguments of Goldberg [20] is given here: 

 

"The current literature identifies three main types of search methods: 

calculus-based, enumerative, and random…First, calculus-based methods 

are local in scope; the optima they seek are the best in a neighborhood of 

the current point…Second, calculus-based methods depend upon the 

existence of derivatives (well-defined slope values). Even if we allow 

numerical approximation of derivatives, this is a severe 

shortcoming…The real world of search is fraught with discontinuities 

and vast multimodal, noisy search spaces…It comes as no surprise that 

methods depending upon the restrictive requirements of continuity and 

derivative existence are unsuitable for all but a very limited problem 

domain. For this reason and because of their inherently local scope of 

search, we must reject calculus-based methods. They are insufficiently 

robust in unintended domains. 

 

Enumerative schemes look at objective function values at every point in 

the search space; one at a time…such schemes must ultimately be 

discounted in the robustness race for one simple reason: lack of 

efficiency…Even the highly touted enumerative scheme dynamic 

programming breaks down on problems of moderate size and complexity. 

Random search algorithms have achieved increasing popularity as 

researchers have recognized the shortcomings of calculus-based and 

enumerative schemes...The genetic algorithm is an example of a search 

procedure that uses random choice as a tool to guide a highly 

exploitative search through a coding of a design space. Using random 

choice as a tool in a directed search process seems strange at first, but 

nature contains many examples. Another currently popular search 
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technique, simulated annealing, uses random processes to help guide its 

form of search for minimal energy states...The important thing to 

recognize at this juncture is that randomized search does not necessarily 

imply directionless search." 

 

Since the aerodynamic optimization of turbomachinery blades is highly 

non-linear and the large design space is highly multimodal, calculus-

based and enumerative techniques were discounted as being either not 

robust enough or not efficient enough to find a global optimum. Thus, 

the two most efficient algorithms that are robust enough to search for a 

global optimum given this highly non-linear problem in this highly 

multimodal phase space (many local minimum) are the genetic algorithm 

[20] and the simulated annealing technique [59]. Advantages and 

disadvantages of these techniques are discussed by Davis [59]. Sufficient 

comparisons have not yet been made between the two techniques and 

there was no clear reason to use one method over the other; so, the 

genetic algorithm was chosen for its biological and evolutionary appeal. 

 

This section describes the GA methodology to solve the problems (3.5 

& 3.6). Genetic algorithms in general are discussed in the first part, with 

a short overview on the structure and basic algorithms. Following parts 

deal with genetic operators: initialization, discretization and binary 

coding, selection, recombination, mutation, and regeneration. For an 

excellent in-depth treatment of the subject of GA's, Goldberg’s book 

[33] is highly recommended. 
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3.2.1 Brief Description of Genetic Algorithms 

 

Genetic Algorithms are search algorithms that mimic the behavior of 

natural selection to find the global optimum point in a given design 

space. They operate on a population of potential solutions applying the 

principle of survival of the fittest to produce better and better 

approximations to a solution. At each generation, a new set of 

approximations is created by the process of selecting individuals 

according to their level of fitness in the design space and breeding them 

together using operators borrowed from natural genetics. This process 

leads to the evolution of populations of individuals that are better suited 

to their environment than the individuals that they were created from, 

just as in natural adaptation. Evolutionary algorithms model natural 

processes, such as selection, crossover, and mutation. Figure 3.2 shows 

the structure of a simple genetic algorithm.  

 

Evolutionary algorithms work on populations of individuals instead of 

single solutions. In this way, the search is performed in a parallel manner. 

Therefore, GA may climb many peaks in parallel thus; the probability of 

finding a local peak instead of the global is reduced significantly with 

GAs as compared with the conventional methods that search from a 

point to another point like the gradient-based methods. 

 

A genetic algorithm operates on the Darwinian principle of "survival of 

the fittest". At the beginning, an initial population (a number of 

individuals) is created from random design parameters. Each parameter 

set represents the individual's chromosomes. Each of the individuals is 

assigned a fitness based on how well each individual's chromosomes allow 
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it to perform in its environment, computationally equal to their objective 

function value. 

 

 

Figure 3.2 Structure of a single population genetic algorithm 

 

 

If the optimization criteria are not met, the creation of a new generation 

starts. Individuals are selected according to their fitness for the 

production of children. Parents are recombined to produce children. All 

children will be mutated with a certain probability. The fitness of the 

children is then computed. They are inserted into the population 

replacing the parents, producing a new generation. This cycle is 

performed until the optimization criteria are reached.  
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From the above discussion, it can be seen that genetic algorithms differ 

substantially from more traditional search and optimization methods:  

• GAs search a population of points in parallel, not a single point.  

• GAs do not require derivative information or other auxiliary 

knowledge; only the objective function and corresponding fitness 

levels influence the directions of search.  

• GAs use probabilistic transition rules, not deterministic ones.  

• GAs are generally more straightforward to apply.  

• GAs can provide a number of potential solutions to a given 

problem. The final choice is left to the user. Thus, in cases where 

the particular problem does not have one individual solution, as 

in the case of multi-objective optimization, then the genetic 

algorithm is potentially useful for identifying these alternative 

solutions simultaneously. 

 

Similar to the above structure of genetic algorithms, a GA is developed 

based on the Fortran source code of Carroll [61]. The optimization 

algorithm modifies the UH rotor blade by changing the optimization 

parameters. Then, the RANS flow solver calculates the objective 

function value –either the efficiency or the torque- and sends it back to 

the GA. Accordingly, GA uses this value to assign a fitness value for the 

blade geometry. The corresponding automated optimization flow chart is 

given in Figure 3.3.  
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Figure 3.3 Automated GA optimization flow chart 

 

 

3.2.2 Initial Population 

 

Unlike other optimization tools, GAs require an initial population of 

solutions (individuals) in the design space, before the application of GA 
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operators. Initiation of this population begins with selection of two GA 

parameters. They are mainly the population size and the chromosome 

length. 

 

A population size of 5 individuals will be very insufficient for most of 

the engineering problems since the diversity in the design space will not 

be obtained. However, increasing the population size will increase the 

computational cost incurred on the CPU. As the population size 

increases, number of objective function evaluation increases. Therefore, 

there is a big trade of between the population size and computational 

time. Frequently, population sizes of 50 to 200 individuals are used in the 

literature [62]. 

 

Chromosome length selection is another tradeoff between the 

computational cost and diversity. A very short chromosome means a 

lack of diversity of the solutions and possible a worse optimization 

result. However, longer lengths cause a decrease in the convergence 

speed of the population towards the optimal solution. Mostly 16 or 32 

bits chromosomes are used. 

 

Specifying the population size and chromosome length, the GA code 

becomes ready to create first population which is called a generation. For 

illustration purposes, a population size of 10 individuals will be created 

randomly and a chromosome length of 20 bits will be assigned for each 

individual for an optimization problem with 4 design variables; inlet and 

exit angles, leading and trailing edges wedge angle values. This means 

that 5 bits will correspond to a design variable.  These settings will be 

used throughout in this chapter to clearly illustrate how the GA code 

process. While using these operators, the GA generates random 
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numbers, which is the essence of the method. In this application, 

random numbers were generated using Knuth's subtractive method [63]. 

Knuth's algorithm is regarded as one of the best random number 

generators. 

 

In this thesis, as mentioned before, each variable set defines a blade 

configuration with a corresponding chromosome. The real value of each 

design variable is expressed as a string of binary digits, which is called as 

binary coding, e.g.: 101101. The associated chromosome for a specific 

blade is formed by placing the binary digits corresponding to each 

variable back to back in one string. For example, if blade inlet and exit 

angles, leading and trailing edges wedge angle values were binary coded 

as 001100, 010101, 001011, and 110001 respectively, and then the 

chromosome string would be 001100010101001011110001. The binary 

coding of ten blades (individuals) is shown in Table 3.4.  

 

Table 3.4 Initial generation 

GENERATION 1 

Ind 
Exit 

Angle 

LE Wedge 

Angle 

TE Wedge 

Angle 

Inlet 

Angle 
Binary Coding 

Fitness 

Value 

1 -38.39 2.500 0.895 31.29 10001111110101000100 0.065 

2 -36.13 1.281 0.444 31.29 10000011010001100100 0.000 

3 -38.39 1.755 2.056 39.03 10001101001110001100 0.000 

4 -56.45 1.077 1.863 38.71 11001010101100101011 0.000 

5 -22.58 2.161 0.895 34.52 01010110100101001110 0.030 

6 -11.29 2.229 2.185 35.48 00101110111111010001 0.000 

7 -65.48 2.500 0.250 35.81 11101111110000010010 0.000 

8 -33.87 1.823 0.895 39.03 01111101010101011100 0.051 

9 -40.65 2.297 1.927 36.45 10010111001101000100 0.000 

10 -47.42 1.958 1.347 35.81 10101101111000100010 0.098 

Average function value 0.025 

Maximum function value 0.098 
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3.2.3 Discretization 

 

At this point, one may question that how can a number such as –38.39 

binary coded? The answer lies in the explanation of discretization. The 

design space is virtually continuous and there are infinite numbers of 

possible blade configurations. However, in practice, this design space 

needs to be discretized, so that there are a finite number of possible 

blades in the design space, but yet too many to choose the optimum one. 

For the illustrative setting of 20 bits for each chromosome consisting of 

four design variables, a design variable is specified by five bits (0 or 1). 

Therefore, for this setting, a design variable can have 25=32 possible 

values. For example, the exit angle in Table 3.4 is constrained to be 

 

0° > α2 > -70° (3.7) 

 

Using this expression, exit angle can have infinite numbers between 0 

and –70. Discretizing the variable space using five bits yields  
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I=-1, -2,…, -32       (3.8) 

 

where ∆S is the variable space length and n is the number of bits of the 

design variable. Accordingly, exit angle has random values corresponds 

to I = -17, -16, -17, -25, -10, -5, -29, -15, -18, -21 in the first generation 

given in Table 3.4. Note that the minus sign of the integer I is specific to 

this design variable and do not exist in other design variables. 
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It is clear that increasing the number of bits in a chromosome increases 

the number of possibilities of a design variable value; therefore more 

accurate search on the design space can be established. However, as 

mentioned, this increases the search time. For the illustrative settings, 

each design variable has 32 values in the design space, which means that 

there are a possible of 324 ≅ 1 million blade shapes to be searched. The 

optimum blade is one of these 1 million blades in this simple discretized 

problem. 

 

 

3.2.4 Binary Coding 

 

Binary coding is followed after discretization. While discretization, 

integer numbers such as I in Equation 3.8 are obtained for each blade 

configurations. Thereafter, base 10 is converted to base two. 

Considering, for instance individual #1 in Table 3.4, if I = 17 for exit 

angle and, 32, 10, 4 for LE and TE wedge and inlet angle respectively, 

then 

 

(17)10 = (10001)2       (3.9.a) 

(32)10 = (11111)2       (3.9.b) 

(10)10 = (01010)2       (3.9.c) 

(04)10 = (00100)2       (3.9.d) 

 

Putting simply these digits back to back, the chromosome of the first 

blade is obtained as 10001111110101000100. While numerical values of 

design variables have no meaning for GA, chromosome of the blade has 

all meaning for GA. Now, GA can operate on these chromosomes.  
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3.2.5 Selection 

 

In selection, the parents producing children are chosen. Selection 

determines which individuals are chosen for mating (recombination) and 

how many children each selected individual produces. Methods of fitness 

assignment are:  

• proportional fitness assignment [60], 

• rank-based fitness assignment [64].  

 

In proportional fitness assignment, the fitness is proportional to 

objective values and normalized to the unity. In the rank based 

assignment, on the other hand, the population is sorted according to the 

objective values. The fitness assigned to each individual depends only on 

its position in the individuals rank and not on the actual objective value. 

These fitness values are calculated and given in Table 3.5. The GA code 

in this thesis assigns fitness of the blades directly equal to the objective 

function value, as shown in Table 3.5. There is no clear rule of thumb in 

fitness assignment in literature and since the fitness is the performance 

of a blade in a given environment (flow field in a turbine stage), the 

direct assignment is considered to be the most suitable way. 

 
Selection, which is also called reproduction, is a process in which blades are 

selected according to their fitness values. This implies that a blade with a 

higher fitness value (objective function value) has a higher probability of 

contributing in the next generation. Generally, each individual in the 

selection pool receives a reproduction probability depending on the 

fitness value of its own and of all other individuals in the selection. This 

probability is used for the actual selection step afterwards. There are 

several selection procedures in the literature:  
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• roulette-wheel selection [65],  

• stochastic universal sampling [65],  

• local selection [66], [67],  

• truncation selection [68], 

• tournament selection [69].  

 

 
Table 3.5 Various fitness assignments 

GENERATION 1 

Ind 
Objective 

Function 

Proportional 

Fitness 

Rank-based  

Fitness 

Direct  

Fitness 

1 0.065 0.266 9 0.065 

2 0.000 0 0 0.000 

3 0.000 0 0 0.000 

4 0.000 0 0 0.000 

5 0.030 0.123 7 0.030 

6 0.000 0 0 0.000 

7 0.000 0 0 0.000 

8 0.051 0.209 8 0.051 

9 0.000 0 0 0.000 

10 0.098 0.402 10 0.098 

Average fitness  0.1 3.4 0.0245 

Maximum fitness  0.402 10 0.098 

 

 

It is worth discussing only roulette-wheel selection and tournament 

selection methods and comparing them to clarify selection procedure 

and its different applications.  

 

The simplest selection scheme is roulette-wheel selection, also called 

stochastic sampling with replacement. In this stochastic algorithm, the 

individuals are mapped to contiguous segments of a line, such that each 

individual's segment is equal in size to its fitness. A random number is 

generated and the individual whose segment spans the random number 

is selected and copied to mating pool. The process is repeated until the 
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desired number of individuals is obtained in the mating pool. This 

technique is analogous to a roulette wheel with each slice proportional in 

size to the fitness, and the wheel is rotated so that an individual is 

selected. Figure 3.4 shows probabilities corresponding to direct fitness 

assignment of the 1st generation. 

 

 

Figure 3.4 Illustration of Roulette Wheel selection 

 

 

Instead of roulette-wheel selection, present GA code utilizes tournament 

selection. Because, Goldberg and Deb [70] showed that tournament 

selection has better or equivalent convergence and computational time 

complexity properties when compared to any other selection operator in 

the literature. In tournament selection, after assigning the fitness to each 

blade configuration, selection for mating is performed [20]. A pair of 

blades is selected randomly from the population and the “better” (fitter) 

blade is assigned to be first parent. Then, again randomly two other blades 

chosen from the population and compared, the better is assigned as the 

second parent. Once two parents are determined, a new individual, called 

as child, who has some mix of the two parents’ chromosomes, is created 
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using crossover and mutation operators. This cycle is repeated until a 

new population is generated form children as illustrated in Figure 3.5.  

 

 

Figure 3.5 Tournament selection methodology, illustrating the first child 

creation 

 

 

In this thesis, twice of the population size tournaments are performed, 

because two parents will be used to create one child. Note that each 

individual, therefore, will participate to four tournaments.  

 

Table 3.6 is the selection performed on the 1st generation. Randomly 

generated pairs are compared and individuals with higher fitness are 

mated to create ten children for the new generation. Detailed mating of 

parents is discussed in the crossover and mutation section. It is 

interesting to note that how better blades with high fitness values have 

made themselves to exist in many mating slots in Table 3.6. This is 

precisely the purpose of a selection operator. An interesting aspect of 
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tournament selection operator is that just by changing the comparison 

operator (“better” to “worse”), the minimization and maximization 

problems can be handled easily. One other beauty of the selection is that 

even the worst fit individual such as Ind # 6 may exist in the mating so 

that the diversity of the population can be obtained. 

 

Table 3.6 Selection scheme 

Ind  Fitness 
Random 

Tournaments  

Winner 

(Fitter) 

Mating  

Parents 

Child to be 

created 

1 0.065 Ind # 4 & Ind # 6 Ind # 6 Ind # 6 & Ind # 10 Child #1 

2 0.000 Ind # 8 & Ind # 10 Ind # 10   

3 0.000 Ind # 9 & Ind # 3 Ind # 3 Ind # 3 & Ind # 1 Child #2 

4 0.000 Ind # 1 & Ind # 7 Ind # 1   

5 0.030 Ind # 2 & Ind # 4 Ind # 4 Ind # 4 & Ind # 10 Child #3 

6 0.000 Ind # 10 & Ind # 5 Ind # 10   

7 0.000 Ind # 1 & Ind # 3 Ind # 1 Ind # 1 & Ind # 9 Child #4 

8 0.051 Ind # 7 & Ind # 9 Ind # 9   

9 0.000 Ind # 6 & Ind # 2 Ind # 2 Ind # 2 & Ind # 8 Child #5 

10 0.098 Ind # 8 & Ind # 4 Ind # 8   

- - Ind # 4 & Ind # 7 Ind # 7 Ind # 7 & Ind # 10 Child #6 

- - Ind # 10 & Ind # 1 Ind # 10   

- - Ind # 3 & Ind # 8 Ind # 8 Ind # 8 & Ind # 5 Child #7 

- - Ind # 2 & Ind # 5 Ind # 5   

- - Ind # 4 & Ind # 9 Ind # 4 Ind # 4 & Ind # 10 Child #8 

- - Ind # 10 & Ind # 8 Ind # 10   

- - Ind # 7 & Ind # 3 Ind # 3 Ind # 3 & Ind # 5 Child #9 

- - Ind # 5 & Ind # 2 Ind # 5   

- - Ind # 1 & Ind # 6 Ind # 1 Ind # 1 & Ind # 4 Child #10 

- - Ind # 9 & Ind # 4 Ind # 4   

 

 

 

3.2.6 Crossover 

 

Once the parents to be mated are determined, crossover is applied to the 

parents according to a specified probability previously. Noting that 

selection operator does not produce any new solutions (individuals), but 

only makes more copies of solutions to be used for new generation at 
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the expense of not-so-good solutions. The creation of the child is 

performed only by crossover and mutation operators. 

 

Like selection, there exist many crossover operator types in the GA 

literature [71]. Mostly, some portion of the chromosomes of parents is 

exchanged to create a (or two) new child. Two important crossover 

operators widely used are single point and uniform crossover. Only 

single point crossover is applied in this thesis.  

 

In single point crossover, a crossing site is randomly chosen. All bits on the 

right hand side of the parents are exchanged.  This can be easily 

illustrated in an example, recalling the first generation given in Table 3.4, 

and the selection performed in Table 3.6. The crossover probability is set 

to 50%, therefore, if a randomly generated number is less than 0.5, the 

crossover operates; otherwise, the first parent is copied exactly as a child. 

Running the GA code, the crossover did not operate on the first two 

rows of mating parents in Table 3.6. In the third row of mating parents, 

we have two parents namely Ind #4 and Ind #10. The code performed 

single point crossover on the parents as illustrated in Figure 3.6. The 

crossing site is again determined randomly as on the 9th bit. 

 

Note that the above crossover operator created two solutions. In this 

thesis, only one child is created from two parents. However, the second 

child is shown in Figure 3.6 for illustration purposes. The crossover 

operator created C#1, a blade with objective function value is equal to 

0.168. This fitness value is better than both of the parents are. One may 

wonder if a different crossover site were chosen or two other parents 

were chosen, whether we would have found a better of the parents every 

time? It is true that every crossover between two parents is not likely to 
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find child better than both parent solution, but it will be clear in a while 

that the chance of creating better solutions is far better than random. 

This is true because the parent chromosomes being crossed are not any 

two arbitrary random chromosomes. These parents have survived 

tournaments played with other solutions during the selection operator. 

Thus, they have some good bit combinations in their chromosome 

representations. 

 

 

Figure 3.6 Illustration of single point crossover operator 
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Moreover, not every crossover may produce better solutions, but if so, 

they will be eliminated in the next selection, hence, have a shorter life. 

Nevertheless, they are useful since they preserve the diversity on the 

design space. Additionally, the crossover probability preserves some 

good parents. For the illustrated example, a 50% probability means that, 

half of the parents will be reproduced again in the next generation, by 

simply copying. The single point crossover results for the first generation 

are tabulated in Table 3.7 with specific crossing point.  

 

Table 3.7 Single point crossover results 

P# Fitness Chromosomes Cr. 

site  

C

# 

New individual  

(child) 

Fitness 

  6 0.000 00101110111111010001 - 1 00101110111111010001 0.000 

 10 0.098 10101101111000110010 -    

  3 0.000 10001101001110011100 - 2 10001101001110011100 0.000 

  1 0.065 10001111110101000100 -    

  4 0.000 11001010101100111011 9 3 11001010111000110010 0.168 

 10 0.098 10101101111000110010 9    

  1 0.065 10001111110101000100 3 4 10010111001101010100 0.000 

  9 0.000 10010111001101010100 3    

  2 0.000 10000011010001100100 5 5 10000101010101011000 0.057 

  8 0.051 01111101010101011100 5    

  7 0.000 11101111110000010010 - 6 11101111110000010010 0.000 

 10 0.098 10101101111000110010 -    

  8 0.051 01111101010101011100 8 7 01111100100101001110 0.050 

  5 0.030 01010110100101001110 8    

  4 0.000 11001010101100111011 - 8 11001010101100111011 0.000 

 10 0.098 10101101111000110010 -    

  3 0.000 10001101001110011100 10 9 10001101000101001110 0.062 

  5 0.030 01010110100101001110 10    

  1 0.065 10001111110101000100 - 10 10001111110101100100 0.047 

  4 0.000 11001010101100111011 -    

 

 

In the case of uniform crossover, one child is constructed by choosing every 

bit with a probability from either parent, as shown in Figure 3.7. For this 

example, again a 50 % probability is used. In this example, 2nd, 3rd, 5th, 

7th, 9th, 10th, 12th, 14th, 15th, and 18th bits are exchanged between the 

parents and two children are created. 
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In terms of the extent of search power of a crossover operator, a single 

point crossover preserves the structure of the parent strings to the 

maximum extent in the children. The extent of chromosome 

preservation reduces with increasing crossing sites, and is minimized in 

the case of a uniform crossover operator. Spears [71] has analyzed a 

number of these operators and has shown this fact.   

 

 

Figure 3.7 Illustration of uniform crossover 

 

 

3.2.7 Mutation 

 

Mutation is a bit change of a chromosome that occurs during the 

crossover process. Mutation implies a random walk through the string 

space and plays a secondary role in the GA: keep diversity in the 
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population. The operator changes a bit from 1 to 0 or 0 to 1 according 

to a given probability. If a random number is less than the given 

probability, mutation occurs. For example, a child may be faced with a 

mutation like 1001111:'1001111:' 11 10 CC ⇒ on the second bit of its 

chromosome. The mutations of the first generation are shown bold and 

italic in Table 3.7. Here, the probability was set to 2 %. Accordingly, ten 

children with 20 bit each means 200 bits. With that probability, only 

three bits were mutated.  

 

 

3.2.8 Regeneration 

 

After the creation of children using crossover and mutation operators, 

they are used to replace old population consisting of their parents. All of 

the old population members are deleted and all of the children become a 

new population called as a new generation.   

 

One may wonder about the best individual of a population. Elitism (i.e. 

best individual replicated into next generation) may be invoked in the 

GA code. This ensures the survival of the best individual from each 

generation. Therefore, after the population is generated, the GA checks 

to see if the best parent has been replicated; if not, then a random 

individual is chosen and the chromosome set of the best parent is 

mapped into that individual. Although this operator is not necessary, it 

was found to help prevent the random loss of good chromosome strings. 

Therefore, at each generation, the best individual is either the same of or 

better than the best individual of the previous generation. 
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In the first generation of the illustrated problem, crossover and mutation 

operators discarded the best individual, Ind #10. For that reason, 

invoking the elitism, the GA selected the 10th child and replaced it by 

the old super-individual. The final population of the new generation is 

given in Table 3.8. Note that the blades now have better fitness in 

average, and GA succeeded to find a better solution, Ind #3.  

 

There are various stopping criteria for GAs. In this thesis, the stopping 

criterion is the maximum generation number. Sufficient generations are 

selected and stated, and the code checks whether this number is achieved 

or not. Typically, 100 generations are enough for an optimization run. 

 

 

Table 3.8 An evolved population of the 2nd generation 

GENERATION 2 

Ind 
Exit 

Angle 

LE Wedge 

Angle 

TE. Wedge 

Angle 

Inlet 

Angle 
Binary Coding Fitness 

1 -11.29 2.229 2.185 35.48 00101110111111010001 0.000 

2 -38.39 1.755 2.056 39.03 10001101001110011100 0.000 

3 -56.45 1.145 1.347 35.81 11001010111000110010 0.168 

4 -40.65 2.297 1.927 36.45 10010111001101010100 0.000 

5 -36.13 1.823 0.895 37.74 10000101010101011000 0.057 

6 -65.48 2.5 0.25 35.81 11101111110000010010 0.000 

7 -33.87 1.619 0.895 34.52 01111100100101001110 0.050 

8 -56.45 1.077 1.863 38.71 11001010101100111011 0.000 

9 -38.39 1.755 0.895 34.52 10001101000101001110 0.062 

10 -47.42 1.958 1.347 35.81 10101101111000110010 0.098 

Average function value 0.043 

Maximum function value 0.168 
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3.2.9 Understanding GAs 

 

Comparing Table 3.4 and 3.8, an improvement from the initial 

population can easily be recognized. Selection, crossover and mutation 

operators completed one generation of the GA simulation and average 

objective function values of population members increased more than 

75%. Moreover, the objective function value of the best individual of the 

second generation is around 72% higher than that of the first generation.  

 

Even though all operators used random numbers, GA produces a 

directed search, which usually results in an increase in the average quality 

of solutions from one generation to the next. It is true for the fitness of 

best individual in a population, too. 

 

If we investigate carefully among the bit groups of the two populations, 

some similarities in chromosome positions can be observed. By the 

application of three GA operators, the number of bit groups with 

similarities at certain chromosome positions has been increased from the 

initial population to the new population. These similarities, called schema, 

represents a set of bits with certain similarities at certain chromosome 

positions. Schemas represented by 1, 0, and *; where * represents (1 or 

0). The order and length of schema may vary in different analyses. For 

example the schema  

H1=( * * * * * * * * * * * * * * * * 0 0 1 0 )  

is represented two times, Ind #7 and Ind # 10 in the initial population, 

and there are three chromosomes represented by this schema in the 

second generation; Ind #3, Ind #6, Ind #10. On the other hand, even 

though there was one chromosome corresponding to schema  

H2=( * * * * * 0 1 1 0 1 0 * * * * * * * * * )  
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in the initial population, there is not one in the new population. There 

are some other schemas that may be investigated and concluded whether 

the number of chromosomes they represent is increased from the initial 

population to the new population or not.  

 

A schema represents a number of similar chromosomes. Thus, a schema 

can be thought of as representing a certain region in the design space. 

For example, schema H1 represents blades with inlet angle of either 

30.645o or 35.806o with any combination of exit, LE and TE wedge 

angles. Similarly, H2 represents blades with 1.281 LE wedge angle, TE 

wedge angle values varying from 0.24 to 1.218, and any other inlet and 

exit angles. Since our aim is to maximize the objective function, GA 

increased the number of H1 schema and decreased the number of H2 

schema without having to count all schemas in whole design space. That 

way, GA succeeded to find a better blade.  

 

While GA operators are applied on a population of chromosomes, a 

number of such schema in various parts along the chromosome are 

emphasized. Once adequate number of such schemas is present in a GA 

population, they are combined together due to the action of the GA 

operators to form better schema. This process finally leads a GA to find 

the optimal solution. This hypothesis is known as the Building Block 

Hypothesis [20].  

 

 

3.3 Multiploid Genetic Algorithm Optimization (GAXL) 

 

Although, GAs are able to converge to the global optimum, they 

consume considerable time to converge to the global optimum for a 3D 
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aerodynamic design problem which requires expensive high-fidelity 

RANS solver. This drawback of genetic algorithms is avoided by using 

faster but less accurate low-fidelity models. In this study, the high fidelity 

model corresponds to fine grid RANS solution of the flow field, and 

coarse grid RANS solutions corresponds to the low fidelity model. 

 

Since aerodynamic optimization problems can be solved for different 

quality levels of mesh, the expensive aerodynamic optimization problems 

are very suitable for multi-fidelity optimization. Consequently, the novel 

method developed in this thesis involves a modified genetic algorithm, 

which is titled as “multiploid”, and is able to interpret the high-fidelity, 

high quality, very expensive information such as a fine mesh solution of 

the blade, and the low-fidelity, low quality inexpensive information such 

as a coarse mesh blade solution, and does not degrade the quality of the 

optimization result by mixing the information of multi-fidelity solutions. 

 

 

3.3.1 Brief Description of Multiploid Genetic Algorithm 

 

A haploid genetic structure is one in which the genotype is composed of a 

single chromosome. The GA discussed previously is a haploid genotype. 

However, multiploid –mostly diploid- genotype also exists in nature which 

contains two (diploid) or more sets of single chromosomes. Although 

the reason of existence of multiploid genotype in nature might be 

different than the reason of this study, it will be shown that multiploid 

genotype can efficiently be used for much faster converging optimization 

algorithms. 

 



 

91 

In the literature, there exist many studies regarding application of 

surrogate assisted evolutionary optimization for solving computationally 

expensive design problems on a limited computational budget [72]. Most 

of these studies consist of building a low cost less accurate model of the 

expensive fitness from a small number of data points that represents the 

design space. The model is then exploited by the evolutionary algorithm 

as an auxiliary fitness function in order to get the maximum amount of 

information out of these initial data points. Subsequently, the model is 

updated online based on new data points obtained during the surrogate-

assisted evolutionary search [73], [74], [75]. For a review of existing 

surrogate-assisted evolutionary optimization frameworks for high-fidelity 

engineering design problems, the reader may refer to [76]. 

 

Earlier research efforts related to evolutionary optimization have focused 

on the use of problem specific knowledge to increase the computational 

efficiency. Oksuz et al. [26] used Euler/Boundary layer coupled flow 

solver instead of RANS solver to increase the computational efficiency 

to satisfy the limited computational budget. Even though such problem 

specific heuristics can be effectively used to achieve performance 

improvements, there are finite limits to the design improvements 

achievable by such techniques, since the lower cost solvers are not 

accurate enough. 

 

Several efforts have been made over recent years, particularly using GAs, 

applying surrogate models of accurate solvers. The most popular ones 

are response surface methodology, the Kriging model, design of 

experiments, neural networks, and the support vector machines. Ratle 

[77] examined a strategy for integrating GAs with Kriging models. This 

work uses a heuristic convergence criterion to determine when an 
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approximate model must be updated. The same problem was revisited by 

El-Beltagy et al. [78], where the issue of balancing the design of 

experiments is addressed. Jin et al. [79] presented a framework for 

coupling GAs and neural network-based surrogate models. This 

approach uses both the expensive and approximate models throughout 

the search, with an empirical criterion to decide the frequency at which 

each model should be used. In Song [80], a real-coded GA was coupled 

with Kriging in structural optimization.  A recent study of Pierret [48] 

presents the design of turbomachinery blades by means of function 

approximation. The concept is based on the use of online trained 

Artificial Neural Network (ANN) as a surrogate model of RANS solver 

with GA optimization algorithm. 

 

Evolutionary algorithms, especially GAs, face a big convergence problem 

when solving dynamic optimization problems (DOPs) [81]. Convergence 

deprives GAs’ adaptability to the changing environment: Once 

converged, they are unable to adapt to the new environment when 

change occurs. In order to enhance the performance of GAs for DOPs, 

several approaches have been developed [82], such as random 

immigrants [83], [84], hyper-mutation [85], memory [86], [87], [88], [89], 

[90], and multi-population schemes [91]. Further literature review about 

the subject can be found in [81]. All of these studies prove the fact that 

GAs are not suitable as it is condition for dynamically changing 

environments without any modification to GA itself. The main reason 

behind this is, once the GA converges, it cannot adapt to the changing 

environment. Therefore, optimization methods proposed such as in [48] 

has the problem of convergence. In this specific case, the ANN is the 

dynamic environment, which is trained online with each new generation. 

Meanwhile, a simple GA is used to find the optimum of this DOP. As 
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stated before, the GA will not follow the changing ANN environment, 

won’t be able to adapt and will stuck an optimum of an older 

environment. 

 

Although the multiploid GAs have been integrated successfully into 

traditional GAs [92], [93], [94], the main aim was to enhance their 

performance for DOPs. However, the aerodynamic optimization in this 

problem differs from the above optimization problems in the fact that: 

- the surrogate model already exists, and 

- the problem environment is not dynamic.  

 

Consequently, in order to use limited computational budget efficiently, 

without degrading the optimization quality, existing surrogate model is 

implemented with a modified version of a GA. First, the best surrogate 

model available for the aerodynamic performance prediction of turbine 

blade is selected as the coarse mesh solution. Then, GA is modified to 

yield multiploid genetic representation in order not to fool GA with 

changing fitness environment. Finally, the optimization is performed on 

multi-fidelity fitness values. 

 

Figure 3.8 shows the flowchart of a multiploid multi-fidelity genetic 

algorithm, GAXL in short notation. The XL abbreviation stands for 

“multi-level” fitness assignment. A higher level fitness means that the 

objective function value is calculated using a higher-fidelity model. On 

the contrary, a lower level fitness corresponds to a lower-fidelity model 

calculated value of the objective function.  
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The operators are the same for both GA and GAXL, although there are 

main modifications to selection and crossover operators of GA to 

handle multi-fidelity objective function values. 

 

 

Figure 3.8 Flowchart of GAXL 
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From the above discussion, it can be seen that GAXL differ substantially 

from more traditional GA:  

• GAXL has multiploid genetic representation, i.e. more than one 

chromosome for each individual, whereas GA has only one. 

• GAXL assigns multi-fidelity fitness values of an individual 

whereas GA assigns only one –highest fidelity- fitness. 

• Although tournament selection is common, GAXL has a pre-

defined confidence level parameter which sets the decision base 

for the selection. 

• Although single point crossover is common, GAXL implements 

two different kinds of crossover, namely full crossover, and level 

crossover. 

• Although jump mutation method is common, GAXL mutates 

only crossover performed chromosomes. 

 

Similar to the above structure of multiploid genetic algorithms, a GAXL 

is developed based on the GA in section 3.2. Again, for comparison with 

GA, the optimization algorithm modifies the UH rotor blade by 

changing the optimization parameters. Then, GAXL requests either the 

low fidelity or the high fidelity fitness value from the RANS flow solver. 

Coarse mesh or fine mesh, respectively, are generated and solved to 

calculate the objective function value –the efficiency or the torque- and 

assigned to fitness of the correct level of chromosomes. Accordingly, 

GAXL interprets these values to create a new generation. The 

corresponding automated optimization flow chart is given in Figure 3.9.  
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Figure 3.9 Automated GAXL optimization flow chart 

 

 

3.3.2 Initial Population 

 

Similar to GA, GAXL require an initial population of solutions 

(individuals) in the design space, before the application of GAXL 

operators. Initiation of this population begins with selection of two GA 
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and one GAXL parameters. They are mainly the population size and the 

chromosome length, and number of chromosomes i.e. number of fitness 

levels, respectively.  

 

In this study, only diploid genetic representation which consists of two 

chromosomes is used. Every method presented can be applied to 

multiploid presentations. A population size of 10 individuals is used for 

illustration purposes, which is the same size with the GA. Chromosome 

length of the example is selected as 20 bits, again consistent with GA. 

 

First generation is created from 10 individuals randomly and twin 

chromosomes with a length of 20 bits are assigned for each individual 

for the same illustrative optimization problem given in section 3.2.2. 

These settings will be used remaining of this chapter to clearly illustrate 

how the GAXL code process. GAXL generates random numbers using 

the same method of GA, which is the Knuth's subtractive method [36].  

 

In this thesis, as mentioned before, each variable set defines a blade 

configuration with two corresponding chromosomes. The real value of 

each design variable is expressed as a string of binary digits, which is 

called as binary coding, e.g.: 101101. The associated chromosomes for each 

blade are formed by placing the binary digits corresponding to each 

variable back to back in one string. For example, if blade inlet and exit 

angles, leading and trailing edges wedge angle values were binary coded 

as 001100, 010101, 001011, and 110001 respectively, and then one 

chromosome string would be 001100010101001011110001.  

 

At the initial generation, the two chromosome strings are set equal to 

each other. The top chromosome string corresponds to a lower fidelity 
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fitness value, and bottom chromosome string corresponds to higher 

fidelity. Consequently, for a diploid GAXL, the top chromosome can be 

interpreted as the geometry with coarse mesh, and the bottom 

chromosome can be interpreted as the same blade geometry with fine 

mesh. Note that only lowest fidelity fitness values are evaluated at the 

initial generation. The binary coding of ten blades (individuals) is shown 

in Table 3.9.  

 

Table 3.9 GAXL Initial generation 

GENERATION 1 

Ind 
Exit 

Angle 

LE.Wedge 

Angle 

TE.Wedge 

Angle 

Inlet 

Angle 
Binary Coding 

Fitness 

Values 

1 -38.39 2.500 0.895 31.29 10001111110101000100 

10001111110101000100 

0.061 

- 

2 -36.13 1.281 0.444 31.29 10000011010001100100 

10000011010001100100 

0.000 

- 

3 -38.39 1.755 2.056 39.03 10001101001110001100 

10001101001110001100 

0.000 

- 

4 -56.45 1.077 1.863 38.71 11001010101100101011 

11001010101100101011 

0.000 

- 

5 -22.58 2.161 0.895 34.52 01010110100101001110 

01010110100101001110 

0.022 

- 

6 -11.29 2.229 2.185 35.49 00101110111111010001 

00101110111111010001 

0.000 

- 

7 -65.48 2.500 0.250 35.81 11101111110000010010 

11101111110000010010 

0.000 

- 

8 -33.87 1.823 0.895 39.03 01111101010101011100 

01111101010101011100 

0.055 

- 

9 -40.65 2.297 1.927 36.45 10010111001101000100 

10010111001101000100 

0.000 

- 

10 -47.42 1.958 1.347 35.81 10101101111000100010 

10101101111000100010 

0.090 

- 

 

 

 

3.3.3 Discretization and Binary Coding 

 

The design space of the illustrative optimization problem is discretized 

similar to GA example, i.e. each design variable can have 32 distinct 
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values, which means that there is a possible of 324 ≅ 1 million blade 

shapes to be searched. The optimum blade is one of these 1 million 

blades in this simple discretized problem. 

 

Binary coding is followed after discretization. At the first generation, in 

which all of the blades are randomly chosen, once a chromosome of a 

blade is obtained similar to GA, then it is copied as much as the number 

of levels - surrogate models - of GAXL. In the case of a diploid GAXL, 

low fidelity level top chromosome is binary coded from randomly 

chosen blade parameters. Then, the high fidelity level bottom 

chromosome is found by copying exactly the top chromosome. Finally, 

all of the blades in the first generation are randomly generated and then 

binary coded. 

 

As the population evolves with each new generation, different level 

chromosomes depart from each other because of “level crossover” and 

mutation operators which will be discussed in the forthcoming sections.  

 

 

3.3.4 Multi-fidelity Selection 

 

One of the biggest disadvantages of GA is that although one can use a 

low-fidelity fitness model such as ANN or a coarse grid, the GA is NOT 

able to converge to the global optimum in changing environments. That 

is because assignment of low-fidelity fitness values to the chromosome 

of an individual at the initial generations, and then high-fidelity fitness 

values at later generations, the schemas mentioned in section 3.2.9 does 

not work for convergence to global optimum. The genes (binary digits) 
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coming from ancestors fool the children’s chromosomes with low-

fidelity fitness values. For GA, the only operator to get rid of these low-

fidelity well performing but high fidelity bad performing genes is 

mutation which has a very low probability to happen to an individual. 

Therefore, GA will eventually converge to a local optimum rather than 

the global. 

 

On the contrary to optimizing the problem in a dynamic environment 

using GA, fitness values are separately assigned to each chromosome of 

an individual for each surrogate model calculation in GAXL. Each 

fitness value corresponds to either the exact or approximate solution of 

the objective function.  

 

Therefore, there must be a method to select the fitter individual by 

comparing multi-fidelity fitness values. One will either combine the 

chromosomes and fitness values and create only one chromosome with 

one average fitness value, or will leave the chromosomes and fitness 

values as it is and define a method to select which fitness value to use for 

selection. The former fools the chromosomes as indicated in the 

previous paragraph, whereas the latter, which is used in GAXL, guides 

the chromosomes for faster convergence but never manipulates on 

fitness values. 

 

The selection method which is developed for multiploid GAXL includes 

an additional input parameter, called as confidence level, CL. Expressed in 

percentage; the confidence level indicates the expected accuracy of the 

surrogate model used. A confidence level of 100% is assigned for the 

highest-fidelity model solution of an objective function. Therefore, the 

bottom level fitness values have 100% confidence level automatically.  
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On the other hand, lower percentages of confidence levels are assigned 

for a lower fidelity fitness levels. There might not exist a unique error 

percentage between high and low fidelity accuracy of the objective 

function values. Nevertheless, confidence level is set by finding the mean 

deviation of the calculated objective function values between surrogate 

and exact solutions, and can be expressed as: 

 

exact

surrogateexact

f

ff
CL

−
−≈ 1       (3.10) 

 

This equation is calculated for few points in the design space and the 

average value can be set as the confidence level. Note that, each 

objective function surrogate model has a unique confidence level 

throughout the optimization. In the case of this study, since diploid 

genetic structure is used, and only one surrogate model is used, one 

confidence level is set for the low fidelity level fitness value. 

 

Tournament selection is used in GAXL algorithm, same as in the case of 

GA. The population is sorted randomly, and a pair of blades is selected 

as x1 and x2 from the sorted list. Starting from highest level (most 

accurate) fitness to lower levels, existence of fitness is checked. If any of 

two individuals do not have a fitness assigned on a given level, a lower 

fidelity level existing fitness values are checked. For the specific case of 

diploid GAXL; if the bottom (high-fidelity) fitness values exist 

(calculated at the previous generation) for both x1 and x2, then selection 

is performed based on high-fidelity fitness values, FH(x1), and FH(x2), 

respectively. Else, the selection is performed based on low-fidelity fitness 

values FL(x1), and FL(x2).  
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If the decision is based on high-fidelity fitness values, FH(x1), and FH(x2), 

then the fitter is selected as the Parent 1, or P1. A very rare case, both of 

them are selected given their fitness values are the same. Otherwise, the 

decision is based on low-fidelity fitness values, FL(x1), and FL(x2), and 

there are three possible outcome of this tournament: either x1 or x2, or 

both are selected. In this case, “better” (fitter) individual is selected 

using: 
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Note that, if the fitness values of both individuals are zero, they are both 

selected for the next generation. The fitness level according to which 

selection of the parent performed is recorded for the second step. 

 

In the second step, in case only one Parent P1 is selected in above 

process, another pair of blades is selected as x3 and x4 from the sorted 

list. However, in that case, only the individuals which have a fitness 

assigned on the same recorded level of the P1 participate to selection. 

Remaining individuals are omitted from the sorted list if any.   

If the recorded level is the highest-fidelity fitness level, then the fitter of 

x3 and x4 is selected as the Parent 2, P2. In case both have the same 

fitness value, one of them is chosen randomly, x3. 
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If the first tournament selection is performed on the low-fidelity fitness 

level, then the decision is based on low-fidelity fitness values, FL(x3), and 

FL(x4), and there are three possible outcome of this tournament: either x3 

or x4 is selected as the P2, or both are selected according to equation 

3.11. Since only one remaining parent is to be selected, if both x3 and x4 

is selected in the second tournament, then randomly choose x3 as P2. 

The flowchart of multi-fidelity tournament selection process is given in 

Figure 3.10. 
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Figure 3.10 Multi-fidelity tournament selection algorithm of a diploid 

GAXL 
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3.3.5 Full and Layer Crossover 

 

Once the parents to be mated are determined, crossover is applied to the 

parents according to a pre-selected probability. The crossover operator 

determines whether the information coming from the genes of the 

selected parents will be transferred to the next generation. Therefore, for 

a proper flow of the information from past to future generations, and to 

prevent mixing of low and high fidelity information, crossover operator 

should carefully be modified. Consequently, in GAXL, two different 

kinds of crossover operator used simultaneously, in which both of them 

implements the single point crossover technique. 

 

There are mainly two quality levels of information flowing from 

ancestors to the next generation in GAXL, when compared to GA in 

which only fixed quality (accuracy) information is transferred. These are 

the better performing genes according to exact fitness values (highest-

fidelity fitness level), and the better performing genes according to 

surrogate fitness values (lower-fidelity fitness levels). If the selected 

individuals’ lower level fitness values are far away when compared to 

confidence level, the information coming from the lower level genes can 

be used to guide higher level chromosomes. Therefore, “full crossover” 

is used in this case. On the other hand, if the selected individuals’ lower 

level fitness values are within the confidence level, the information 

coming from the lower level genes cannot be used to guide higher level 

chromosomes, since one cannot decide if the better performing 

individual according to low fidelity fitness is really performing better 

when exact fitness is compared. Therefore, “level crossover” is used in 

that case. For the specific case of diploid GA, the decision of full versus 

level crossover is shown in Figure 3.10 and given in equation form as: 
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  (3.12) 

 

Note that if the selection is performed according to highest level fitness 

values, then full crossover is performed. If the selection is performed on 

the low-fidelity level, and two parents are selected in the first 

tournament, then level crossover performed. In all other cases, equation 

3.12 is used to determine which crossover type is used on the parents.  

 

Full crossover operator requires chromosomes of all levels of selected 

individuals are crossed over at the same point simultaneously. This 

ensures the better genes information is passed on all levels. The 

illustration of full crossover is given in Figure 3.11 for the initial 

population. 

 

Level crossover operator works only on one layer. This is the layer which 

selection of the individuals is performed according to this layer’s fitness. 

Level crossover prevents any false information to be passed to higher 

level chromosomes. The crossover is performed on only the 

chromosome of the selection performed level. The illustration of level 

crossover is given in Figure 3.12 for the initial population. 

 



 

107

 

 

Figure 3.11 Diploid GAXL Full Crossover Illustration 

 

 

3.3.6 Mutation 

 

Mutation is a bit change of a chromosome that occurs during the 

crossover process. In GAXL, mutation operator is only applied to the 

chromosomes of selection performed levels. Mutation probability is set 

as the probability of performing mutation on a bit of the chromosome 

which selection is performed on. 
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Figure 3.12 Diploid GAXL Level Crossover Illustration 

 

 

 

3.3.7 Regeneration and High-Fidelity Fitness Value Assignment 

 

After the creation of children using crossover and mutation operators, 

they are used to replace old population consisting of their parents. All of 

the old population members are deleted and all of the children become a 

new population called as a new generation.   
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The costly objective function evaluation is the main concern for 

regeneration in GAXL. In traditional GA, fitness value of exact objective 

function evaluation is calculated at each generation. However, since the 

main aim and also advantage of GAXL is reducing the number of exact 

objective function evaluations, a decision must be made for which level 

of fitness will be calculated and when at each new generation. 

 

As indicated in Section 3.3.2, at the initial generation, only the lowest 

level fitness values are evaluated for each individual. Then, selection is 

performed by comparing the lowest fidelity level fitness values. For a 

given probability of occurrence, crossover and mutation operators 

works, according to this selection performed level. In the next 

generation, evaluation of a higher level fitness value for an individual is 

decided according to previous selection. If in the previous selection, the 

selected individuals’ fitness values are close enough to eachother 

according to confidence level, then in the next generation, the same level 

and one level higher fitness values for both individuals are evaluated. If 

in the previous selection, the selected individuals’ fitness values are far 

away from eachother according to confidence level, then only the same 

level fitness value of the individual is evaluated in the next generation. 

For the specific case of diploid GA, the decision of high-fidelity function 

evaluation is given in equation form as: 
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Note that if the individuals have already assigned the highest level fitness 

values, then another evaluation is unnecessary.  

 

 

3.3.8 Understanding GAXLs 

 

In Section 3.2.9, schemas are defined and discussed to show how GAs 

converge to a global optimum. These schemas are built from the initial 

generations and carry valuable information to the next generation. The 

information carried away is that the schema is a good performer or it is a 

bad performer in the environment. When it is talked about an 

individual’s performance in a given environment, in traditional GA, 

environment corresponds to the objective function and performance 

corresponds to the objective function value evaluated result of the 

individual’s design parameters. 

 

In GAXL, instead of changing the environment, two or more 

environments are defined and the performance of an individual in these 

environments is evaluated. The clue is that, one of the environments is 

exact objective function and the remaining ones are the surrogate 

models. The schemas work in all of the environments. The selection 

operator of GAXL ensures the performance of any pair of individuals is 

compared in only the same environment, and the better performing is 

selected for sure. If it is not sure, then, both of them are selected and the 

performance of the pair is evaluated in a higher fidelity level 

environment. The crossover operator, on the other hand, ensures the 

information flows from one environment to the other only in the correct 

way. If the fitness comparison is confident enough that one individual is 

better than the other in the lower level environment, then this 
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information is passed to higher fidelity level chromosomes of the child 

by full crossover. However, if the comparison is not confident enough, 

then, only level crossover is implemented, and the transfer of any wrong 

information to a higher level is prevented. The full crossover operator 

works on the schemas, and accelerates the convergence of GAXL 

without any loss of or misleading information. 
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CHAPTER 4 
 
 
 

MULTI-OBJECTIVE OPTIMIZATION 
 
 
 

 

In this chapter, a haploid and a multiploid multi-objective genetic 

algorithm is presented together with an application of a turbine rotor 

aerodynamic optimization problem. First, formulation of the design 

optimization problems is discussed. Then, a brief description of the 

haploid multi-objective genetic algorithm (MOGA) technique is 

presented in the next section, followed by a more detailed description of 

the operators applied to the UH turbine rotor blade in section three. 

Next, multiploid multi-objective genetic algorithm (MOGAXL) is 

introduced. Finally, the application of the multiploid genetic algorithm to 

design problem is presented. 

 

 

4.1 Formulation of the Design Optimization Problem 

 

Most real world problems involve multiple objectives. As long as an 

optimization problem involves more than one objective function, the 

problem is solved using a multi-objective optimization technique. There 

are many algorithms and case studies using multi-objective techniques, 

however, much of these studies transform multi-objective design 

problem into a single objective function by using some user-defined 

parameters. On the other hand, in problems with more than one 
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conflicting objective, there is no single optimum solution. There exist a 

number of solutions which are all optimum. This is the fundamental 

difference between a single objective and a multi-objective optimization 

task. 

 

Although there exists many optimal solutions for problems with more 

than one conflicting objective, a decision maker practically needs only 

one decision to act. Knowing the optimal solutions, decision maker can 

select this one optimum solution according to higher level information 

which is usually qualitative, even experience driven.  

 

 

4.1.1 Optimization Variables 

 

The decision vector x is the same as the single objective optimization 

problem case eq. (3.1) and is given as 

 

[ ]TNxxx ,...,, 21=x        (4.1) 

 

where T denotes the transpose of the vector. Any specific vector x 

composed of numbers is called a solution. All solutions create the design 

space which is N-dimensional by nature. 

 

As in the case of single objective optimization, there are six design 

parameters selected for a layer geometry shaping: the wedge angles of 

leading and trailing edges (WTE, and WLE), blade inlet and exit metal 

angles (βLE, and βTE), the stagger angle (ξ), and the circumferential 

rotation angle (Θ). Since there are six pre-determined layers and one 
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more design parameter which is the number of blades, a total number of 

37 design parameters are used to define one particular 3-dimensional 

blade profile. Therefore, the design space is 37-dimensional.  

 

 

4.1.2 Constraints 

 

As in the case of single objective optimization problem, the multi-

objective optimization problem usually has a number of constraints 

which any feasible solution must satisfy.  The general form of writing 

inequality constraint is 

 

0)( ≥xkg  for k=1,2,…,K      (4.2) 

 

In certain models, we can have equality constraints as follows 

 

0)( =xmh  for m=1,2,…,M      (4.3) 

 

Note that the number of equality constraints, M, must be less than the 

number of design variables, N. Otherwise, the problem is over-

constrained, and there is no degrees of freedom left for optimization. 

 

The constraints in this chapter are only constraining the design variables. 

Keeping this in mind, the range of each of design variables of the turbine 

blade are geometrically constrained by the design space, which is taken as 

the same lower and upper bounds of single objective problem, as shown 

in Table 4.1. 
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Table 4.1 Design space constraints 

La
y

e
r 

Minimum  

Values 

Maximum  

Values 

ξ Θ βLE βTE WLE WTE ξ Θ βLE βTE WLE WTE 

1 

hub 
10 0.1 -60 60 17 3 20 3 -50 75 35 9 

2 15 -2 -55 60 17 3 25 -0.1 -45 75 35 9 

3 20 -3.5 -45 60 17 3 30 -1.5 -35 75 35 9 

4 30 -5 -35 60 17 3 40 -3.5 -20 75 35 9 

5 35 -7 0 60 17 3 45 -5 10 75 35 9 

6 

tip 
50 -8 10 60 17 3 60 -6 20 75 35 9 

N 26 33 

 

 

Additionally, mechanical constraints are imposed on the multi-objective 

optimization problems. The constrained values with parameters are 

shown in Table 4.2. These values are set in consistent with the baseline 

blade values. As long as the constrained values are exceeded, the blade is 

assigned with the lowest objective function value possible. 

 

 

Table 4.2 Mechanical Constraints 

 Minimum values Maximum values 

L tLE 

(mm) 

tTE 

(mm) 

A 

(mm
2

) 

tLE 

(mm) 

tTE 

(mm) 

A 

(mm
2

) 

1 

hub 
3 0.5 300 6 1 500 

2 3 0.5 300 6 1 500 

3 2.5 0.5 200 5 1 400 

4 2 0.5 200 4 1 400 

5 1.5 0.5 150 3 1 300 

6  

tip 
1 0.5 150 2 1 300 
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4.1.3 Objective Function 

 

There are I objective functions, F(x) = (f1(x), f2(x), … fI(x))T which are either 

linear or nonlinear considered in the multi-objective optimization 

problem. Each objective function, which can be either minimized or 

maximized, is converted to a minimization problem by multiplying the 

objective function by -1 using duality principle [62].  

 

In addition to the decision variable (design) space, the objective 

functions constitute a multi-dimensional space, which is called as objective 

space. For each solution x in the design space, there exists a point in the 

objective space, denoted by f(x) = z. The mapping takes place between 

N-dimensional decision vector and I-dimensional objective vector. 

Figure 4.1 illustrates these two spaces and a mapping between them. 

Figure 4.1 Representation of the design space and the objective space 

 

 

Aerodynamic optimization of turbine blades offers many objective 

functions such as total pressure loss coefficient, lift coefficient, drag 

coefficient, lift to drag ratio, blade loading, and blade energy loss, Mach 

x 

z 

f2 

f1 

x3 

x2 

x3 Design Space Objective Space 
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number distribution. Since the blade efficiency which directly takes into 

account the losses, and blade torque are the final result of the design aim 

of a rotor, they are selected as the objective functions in this problem 

(I=2). 

 

 

4.1.4 Optimization Problem 

 

Once the decision variables, constraints, and the objective function are 

determined, the optimization problem is constructed as follows: 

 

0                    

0)(                    

0)(     such that 

),...,,()(            min 21
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xxxff
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
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N,…1,2,=n

M,…1,2,=m

K,…1,2,=k

I,…1,2,=i

  (4.4) 

 

Accordingly, the optimization problems of this thesis in a compact form 

is that 

 

minimize  f1(x) = Τ         (4.5) 
                 f2(x) = -1.η 
                 subject to Table 4.1 and Table 4.2 
 

 

4.2 Multi-Objective Genetic Algorithm Optimization (MOGA) 

 

This section describes the MOGA methodology to solve the problem 

given in eq. 4.5. In order to interpret the outcomes of multi-objective 

optimization, some basic principles and definitions of multi-objective 

genetic algorithm optimization are discussed in the first part, with a short 
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







and

overview on the structure and basic algorithms. Following parts deal 

with MOGA structure and operators: initialization, discretization and 

binary coding, selection, recombination, mutation, and regeneration. For 

an in-depth treatment of the subject of MOGA's, Deb’s book [62] is 

highly recommended. 

 

 

4.2.1 Dominance and Pareto-Optimality 

 

Multi-Objective Genetic Algorithms usually use the concept of 

domination. For an optimization problem of which all functions are to 

be minimized, a solution x1 is said to dominate the other solution x2, if and 

only if: 

 

         )( 2xif ≤ )( 1xif for all i = 1,2…I    (4.6)    

  )( 2xif < )( 1xif for at least one i ∈ [1,2…I]    

  

If any of the above condition is violated, the solution x1 does not 

dominate the other solution x2, and x2 is said to be a non-dominated 

solution with respect to the other. 

 

For the turbine blade aerodynamic optimization problem, a population 

of randomly selected six blades is shown in the objective space in Figure 

4.2. The objective functions of both efficiency and torque are to be 

maximized. The design variables of the six blade shapes are shown in 

Table 4.3. The RANS solution of each blade shape have different 

corresponding efficiency and torque results, as tabulated in Table 4.3.  
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Table 4.3 Design parameters of six different blade shapes 

Layer 
Blade #1   η = 0.8467   Τ = 169.9 Nm Blade #2   η = 0.8321  Τ = 149.2 Nm 

ξ Θ βLE βTE WLE WTE ξ Θ βLE βTE WLE WTE 

1 

hub 
19 0.1 -58 70 33 8 11 0 -53 70 33 7 

2 21 -0.4 -52 60 23 5 24 -2 -52 74 31 4 

3 25 -3.1 -42 64 17 4 22 -2 -39 65 33 8 

4 40 -4.2 -34 70 31 4 33 -5 -32 67 31 4 

5 44 -5.1 10 73 19 5 40 -6 10 61 34 6 

6    

tip 
51 -6.8 19 71 19 6 50 -8 17 73 25 4 

N 32 29 

 

Layer 
Blade #3   η = 0.8070   Τ = 159.5 Nm Blade #4   η = 0.8400   Τ = 119.1 Nm 

ξ Θ βLE βTE WLE WTE ξ Θ βLE βTE WLE WTE 

1 

hub 
11 3 -56 73 27 4 14 2 -52 74 25 5 

2 20 -1 -49 71 21 8 25 0 -45 70 18 4 

3 27 -3 -44 73 17 3 21 -3 -40 67 28 9 

4 39 -4 -21 72 18 7 32 -4 -34 60 34 5 

5 44 -7 9 60 32 4 35 -6 9 69 26 7 

6    

tip 
54 -7 12 66 23 3 59 -7 17 68 18 7 

N 30 26 

 

Layer 
Blade #5   η = 0.8192   Τ = 205.8 Nm Blade #6   η = 0.8293   Τ = 186.6 Nm 

ξ Θ βLE βTE WLE WTE ξ Θ βLE βTE WLE WTE 

1 

hub 
17 1 -57 68 24 5 17 0 -54 69 31 3 

2 19 -1 -51 64 19 8 21 -1 -45 67 22 7 

3 25 -3 -36 64 20 6 29 -3 -41 62 35 3 

4 33 -4 -26 74 18 3 37 -4 -31 71 30 4 

5 45 -6 1 71 22 4 44 -5 3 65 19 4 

6    

tip 
59 -6 19 73 22 5 50 -8 11 62 34 5 

N 33 32 
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Figure 4.2 Six sample blade shape solutions in the objective space 

 

 

The concept of domination allows us to select the better among any two 

given blade shapes in terms of both objectives. For these six blade 

shapes, all possible pair-wise comparisons are performed and dominated 

and non-dominated pairs are tabulated in Table 4.4. Dominated blades 

are marked red in the table.  The set of blades, any two of which do not 

dominate each other, dominates all other blades which do not belong to 

this set. That is, the blades of this set are fitter than the remaining blades. 

Consequently, the set of solutions which dominates all other solutions is 

called the non-dominated set for the given set of solutions. For in the case 

of the sample blade population; blades #2, 3, and #4 are dominated, and 

#1, #5, and #6 constitutes the non-dominated set of the given 

population. 

 

When all possible (feasible) individuals in the design space are generated 

and corresponding objective functions are evaluated, the entire objective 

space is mapped. The resulting non-dominated set of the entire objective 

space is called the global Pareto-optimal set, or Pareto-frontier. Since 
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individuals of the Pareto-frontier are non-dominated by any feasible 

individual, they are the optimal solutions of the MOGA. The Pareto-

frontiers of the objective space for four combinations of two types of 

objectives; min-min, min-max, max-min, max-max; always consist of 

solutions from a particular edge of the feasible search region.  

 

Table 4.4 Pair-wise comparisons of six different blade shapes 

First Blade Second Blade 
Dominance 

Blade # η Τ (Nm) Blade # η Τ (Nm) 

1 0.8467 169.9 2 0.8321 149.2 1 dominates 2 

1 0.8467 169.9 3 0.8070 159.5 1 dominates 3 

1 0.8467 169.9 4 0.8400 119.1 1 dominates 4 

1 0.8467 169.9 5 0.8192  205.8 Non-dominated 

1 0.8467 169.9 6 0.8293 186.6 Non-dominated 

2 0.8321 149.2 3 0.8070 159.5 Non-dominated 

2 0.8321 149.2 4 0.8400 119.1 Non-dominated 

2 0.8321 149.2 5 0.8192  205.8 Non-dominated 

2 0.8321 149.2 6 0.8293 186.6 Non-dominated 

3 0.8070 159.5 4 0.8400 119.1 Non-dominated 

3 0.8070 159.5 5 0.8192  205.8 5 dominates 3 

3 0.8070 159.5 6 0.8293 186.6 6 dominates 3 

4 0.8400 119.1 5 0.8192  205.8 Non-dominated 

4 0.8400 119.1 6 0.8293 186.6 Non-dominated 

5 0.8192  205.8 6 0.8293 186.6 Non-dominated 

 

 

4.2.2 Elite Preserving in Multi-Objective Genetic Optimization 

 

In order to use the previously found best individual of the latest 

generated population in the subsequent generation, an elite-preserving 

operator is often utilized. Although there are a number of multi-

objective genetic algorithms which do not use any elite preserving 

operator, recent comparative studies of multi-objective evolutionary 

algorithms shows that, elitism play a major role in the performance of 

the algorithm. Zitzler et. al. [95, 96] compared eight multi-objective 

genetic algorithms -only one of which has an elitist-preserving operator- 
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on the six different test problems, and found out that the elitist 

algorithm clearly outperformed any other algorithm. Accordingly, results 

indicate that elite-preservation is an important matter for converging to 

the Pareto-frontier. Therefore, elitist MOGA is used in this study. 

 

The elite members e is the same as the decision vector x given in eq. (4.1), 

but this case it represents a non-dominated solution obtained and is 

given as 

 

[ ]T

Neee ,...,, 21=e        (4.7) 

 

where T denotes the transpose of the vector. Any specific vector e listed 

in EMS is called an elite member or a Pareto solution. At the end of an 

optimization simulation, all Pareto solutions create the Pareto Optimal 

Frontier of the min-min problem. 

 

 

4.2.3 Structure of the Multi-Objective Genetic Algorithm  

 

The MOGA is developed based on the “Distance Based Pareto Genetic 

Algorithm” of Osyczka and Kundu [97]. The method of selecting a set 

of Pareto optimal solutions and modified distance method are also 

discussed in Osyczka’s book [98].  

 

In general, the optimization algorithm modifies the baseline blade by 

changing the optimization parameters. Then, the RANS flow solver 

calculates the objective function values of both the efficiency and the 

torque, and sends them back to the MOGA. Accordingly, MOGA uses 
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these values to assign a fitness value to every blade. The detailed 

automated optimization flow chart is given in Figure 3.3.  

 

 

 

Figure 4.3 Optimization flow chart of MOGA 
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The initial population is randomly constructed by generating a prescribed 

number of blades. For each individual, blade shape is constructed. An 

automatic fine grid is applied and RANS flow solver is run to get 

efficiency and torque values. The MOGA has an elite members set (EMS) 

which is updated at each generation and initially empty. The first 

individual of the first generation is directly copied to the EMS, and 

fitness is assigned.  A distance based fitness value is calculated for the 

remaining individuals while the EMS is updated simultaneously 

according to dominance principle. Only non-dominated individuals are 

allowed in the EMS. Finally, based on distance based fitness values, GA 

operators of selection, crossover and mutation are applied to generate 

the next population. The population generation cycle is repeated until a 

pre-defined maximum number of function evaluations or generations. At 

the end of the optimization, the EMS set consists of the Pareto optimal 

frontier individuals which are to be presented to the decision maker. 

 

From the above discussion, it can be seen that multi objective genetic 

algorithms differ substantially from more traditional search and 

optimization methods in the sense that:  

• Besides having multiple objectives, MOGAs have two goals 

instead of one: progressing towards Pareto frontier and diversity 

of Pareto solutions. 

• MOGAs deal with two search spaces: design space and objective 

space. 

• MOGAs are true multi-objective algorithms since they do not 

require any artificial objective functions such as weighted sum of 

objectives.  
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• Elite preserving MOGAs have an additional members set, EMS, 

which contains the Pareto optimal solutions up to that 

generation.  

• MOGAs provide a number of non-dominated Pareto optimal 

solutions to a given problem. The final choice is left to the user. 

Thus, the genetic algorithm is potentially useful for identifying 

these alternative solutions simultaneously. 

• In case of the objective function values can be calculated for the 

same cost of only one function calculation, such as both 

efficiency and torque calculation require same RANS solution, 

MOGAs represent higher level of information about the 

objective space landscape. MOGAs not only give information of 

possible optimum solutions for the problem, but also provide the 

variation of Pareto optimum frontier of an objective function 

with respect to the other one. 

 

 

4.3 Distance Based MOGA Operators 

 

Basically, there is only a minor modification of the simple genetic 

algorithm to construct the MOGA. In this section, the modified GA 

operators and new MOGA operators will be discussed using a sample 

population of 10 individuals. 

 

Similar to GAs, MOGA requires an initial population of solutions 

(individuals) in the design space, before the application of MOGA 

operators. Initiation of this population begins with the selection of two 
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MOGA parameters. They are mainly the population size and the 

chromosome length. 

 

A population size of 10 individuals will be very insufficient for most of 

the engineering problems since the diversity in the design space will not 

be obtained. However, increasing the population size will increase the 

computational cost incurred on the CPU. As the population size 

increases, number of objective function evaluation increases. Therefore, 

there is a big trade of between the population size and computational 

time. Frequently, population sizes of 50 to 200 individuals are used in the 

literature [62]. 

 

Chromosome length selection is another tradeoff between the 

computational cost and diversity. A very short chromosome means a 

lack of diversity of the solutions and possible a worse optimization 

result. However, longer lengths cause a decrease in the convergence 

speed of the population towards the optimal solution. Practically, 

chromosome length is determined from the number of design 

parameters and the desired resolution of the design space for each one of 

the design parameters. 

 

For illustrating the MOGA’s working principles, an example blade 

optimization problem with 4 design variables; number of blades N, 

leading flow inlet angle βLE, and leading edge wedge angle WLE, and 

leading edge circumferential angle Θ values is constructed. For the initial 

generation, a population size of 10 individuals is created randomly and a 

chromosome length of 18 bits will is assigned for each individual. The 

binary coding of ten blades (individuals) is shown in Table 4.5. Note that 

individuals with unrealistic geometries and inexistent RANS solution are 
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assigned objective function values of zero and not shown in the 

objective space. This population will be evolved in the remainder of this 

chapter to clearly illustrate how the MOGA process. 

 

Table 4.5 Initial population  

# N βLE WLE Θ Binary Coding 
Torque 

(Nm) 

Eff. 

% 

1 26 -38.55 21.65 -0.56 000101000100011010 123.4 83.612 

2 26 -40.16 34.42 -0.11 000011111111011110 0 0 

3 26 -35.32 18.16 -3.27 000111100001000010 120.9 85.693 

4 26 -39.19 25.13 -2.15 000100100111001100 130.9 82.671 

5 29 -39.19 18.16 -2.71 011100100001000111 0 0 

6 32 -43.39 18.74 -0.56 110001010001111010 0 0 

7 32 -41.45 32.10 -1.81 110010111101001111 0 0 

8 26 -37.58 26.29 -1.35 000101111000010011 0 0 

9 26 -40.81 30.94 -0.90 000011011100010111 0 0 

10 27 -35.97 18.74 -1.92 001111000001101110 0 0 

 

 

 

4.3.1 Fitness Assignment 

 

Although GA uses direct assignment of the objective function value as 

the fitness of an individual, since MOGA handles more than one 

objective function, direct fitness assignment is not possible. Therefore, a 

distance based fitness assignment method is implemented in order to be 

able to make a comparison for two individuals and decide which one will 

be selected. 

 

Distance based fitness assignment was proposed and modified later by 

Osyczka and Kundu [97, 99]. The MOGA has two separate populations: 

one standard population Pt where GA operators are performed, and 
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another elite members set (EMS) Et containing all non-dominated 

solutions found so far, where t indicates the generation number. 

According to the distance based method, fitness is assigned to each 

solution in Pt based on its farthest distance from the Et members. Two 

new parameters play a key role in determination of the fitness of an 

individual. These are the relative distance of a Pt individual from an elite 

member k in Et, and latent potential value of an elite member k in an Et set, 

dk(x), and pk, respectively. 

 

At the first generation, the first member of the initial population P0 is 

directly copied to the empty E0 set and a random latent potential value pk 

is assigned. Now, there is an elite member with a latent potential value in 

the EMS, and this will help in setting the fitness values of the remaining 

members in the initial population P0 and the new members of the next 

generations. 

 

The relative distances are calculated according to its distance from the 

elite set, Et = {e1, e2, …, eK}, where K is the number of elite members 

in the EMS. For each individual in the Pt the relative distances from all 

elite members in Et are calculated by: 
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For the calculation of fitness value of the individual x, the minimum 

distant elite member is considered where the minimum distance is found 

as: 

( ))(min* xkk dd =  for all k = 1, 2, … K    (4.9) 
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where the index k* indicates which of the existing elite members in Et is 

nearest to the individual x. 

 

After the determination of the minimum distance and the minimum 

distant elite member, the individual is checked whether it is dominated 

by the elite members or not. If the individual is a new Pareto solution, 

the Et is updated by adding the new non-dominated solution x and 

removing members ek which are dominated by x. The fitness and the 

latent potential values of the individual x (which is now an elite member 

in the EMS, too) are calculated using: 

 

**)( kk dpF +=x        (4.10) 

)(xFpk =         (4.11) 

 

where index k in Eqn. 4.11 belongs to the new elite member in the EMS. 

 

On the other hand, if the individual x is dominated by any elite member 

in Et, then it is not accepted in the EMS and its fitness is calculated as 

follows: 
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Note that in this equation, a minimum fitness value of zero is assigned 

for avoiding non-negative fitness values. 

 

The fitness values of all individuals in the population are evaluated while 

the EMS is constantly updated. At the end of a generation, GA operators 
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like selection, crossover, and mutation is applied to create a new 

population. Before starting the fitness assignment calculations of the new 

generation, latent potential values of all elite members in the EMS are 

replaced by that of maximum among the elite members. That is, 

 

( ))(max ekk pp =  for all k = 1, 2, … K    (4.13) 

 

Consequently, all elite members in the EMS are assigned an equal latent 

potential value regardless of their previous values or position in the 

objective space. This ensures that, no distinction is made between elite 

members, since they are all non-dominated and there is no other higher 

level information to decide which elite member is a better performing 

than the other. 

 

Distance based fitness assignment helps MOGA in three ways. First, a 

dominated individual will have a worse fitness value compared to a non-

dominated individual. Second, if the new individual dominates some elite 

members, then the fitness assignment procedure supports solutions 

closer to the Pareto-optimal frontier by assigning bigger fitness values to 

distant solutions from the existing EMS. Third, if the non-dominated 

solution lies in the same Pareto front along with the EMS, the distance 

based fitness assignment helps maintaining the diversity among EMS by 

assigning bigger fitness values to an isolated solution on the same front.  

 

For the max-max sample problem with an initial population given in 

Table 4.5, the calculated parameters determining the fitness of 

individuals in the population of the first generation together with the 

updated EMS are listed in Table 4.6. The first member of the population 
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is directly copied to the empty EMS and a latent potential value of 2 is 

assigned, which is also equal to the fitness of the individual. Since there 

is only one member in the EMS, the distance between the elite member 

and the second individual is calculated as 1.4142 and set as the minimum 

distance with k* is equal to one, the index of minimum distant elite 

member. Since the elite member dominates the second individual, the 

fitness of it is calculated using 4.12 and EMS remains unchanged. For 

the third individual, the EMS is updated by adding this individual since it 

is a new non-dominated solution. Similar computations are performed 

for the remaining individuals of the population, and three Pareto 

solutions exist after the first generation. Note that, all three non-zero 

fitness individuals of the first population are added to EMS. This is only 

due to the fact that these random individuals are not dominated by each 

other. 

 

Table 4.6 Generation #1 fitness calculation and EMS update: P0 

# N βLE WLE Θ 
Torque 

(Nm) 

Eff. 

% 
k

*
 dk* F(x) 

EMS 

Update 
K

1 26 -38.55 21.65 -0.56 123.4 83.61 - - 2 Yes 1 

2 26 -40.16 34.42 -0.11 0 0 1 1.4142 0.5858 No 1 

3 26 -35.32 18.16 -3.27 120.9 85.69 1 0.0325 2.0325 Yes 2 

4 26 -39.19 25.13 -2.15 130.9 82.67 1 0.0623 2.0623 Yes 3 

5 29 -39.19 18.16 -2.71 0 0 1 1.4142 0.5858 No 3 

6 32 -43.39 18.74 -0.56 0 0 1 1.4142 0.5858 No 3 

7 32 -41.45 32.10 -1.81 0 0 1 1.4142 0.5858 No 3 

8 26 -37.58 26.29 -1.35 0 0 1 1.4142 0.5858 No 3 

9 26 -40.81 30.94 -0.90 0 0 1 1.4142 0.5858 No 3 

10 27 -35.97 18.74 -1.92 0 0 1 1.4142 0.5858 No 3 
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Contrary to zero objective function value, these individuals also have a 

positive small fitness value assigned. Therefore, although these 

individuals have an unrealistic blade shape due to one or more design 

parameters, non-negative fitness assignment helps the individual to be 

selected by a low probability so that remaining parameters of the 

individual can contribute to the next generations. This is so useful for 

MOGA converge to the global optimum rather than a local optimum.  

 

Noting the assigned fitness values of the individuals, they are all greater 

than the dominated individuals. This helps GA converge to the Pareto 

frontier at each consecutive generation. Note also that the non-

dominated individuals have different fitness values. The distant 

individual to the EMS receives a higher fitness value when compared to 

an individual closer to the elite members in the objective space. This 

helps MOGA to keep diversity of the Pareto frontier, which is the main 

goal of any multi-objective optimization technique. 

 

The second generation calculations are shown in Table 4.7. Note that, 

the calculations in this generation start with a three-member EMS, which 

consists of the Pareto optimal individuals of the first generation. In this 

generation, 2nd and 8th non-zero objective function individuals are 

dominated by an EMS member, whereas 4th and 5th individuals are non-

dominated by the EMS. Although 4th individual is added to the EMS to 

have a 4-member population, addition of the 5th individual in the EMS 

did not alter the set size, since 5th individual dominated one ex-elite 

member in the EMS and caused its removal. 

 

Finally, the 3rd generation calculation results are given in Table 4.8. In 

this case, 5th individual is non-dominated, and added to the EMS. This 
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individual dominated two ex-elite members in the EMS and caused their 

removal from the elite set. There is no guarantee that the number of elite 

members in the EMS will increase in each successive generation as 

shown in this case. But, considering the entire evolution of MOGA, one 

may expect two goals to be accomplished: convergence of Pareto 

frontier to the global optimum frontier, and the increase of the number 

of elite members in the Pareto frontier with a diverse distribution. 

 

 

Table 4.7 Generation #2 fitness calculation and EMS update: P1 

# N βLE WLE Θ 
Torque 

(Nm) 

Eff. 

% 
k

*
 dk* F(x) 

EMS 

Update 
K

1 33 -44.03 32.10 -1.81 0 0 1 1.4142 0.6481 No 3 

2 26 -38.55 17.00 -0.56 119.6 83.77 2 0.0244 2.0379 No 3 

3 32 -43.71 25.13 -2.15 0 0 1 1.4142 0.6481 No 3 

4 26 -37.58 26.87 -1.47 123.4 85.02 1 0.0168 2.0791 Yes 3 

5 26 -37.90 30.94 -0.90 128.7 84.12 3 0.0245 2.1037 Yes 4 

6 32 -43.71 22.23 -0.56 0 0 1 1.4142 0.6481 No 4 

7 26 -39.84 25.71 -1.92 0 0 1 1.4142 0.6481 No 4 

8 27 -41.45 32.10 -1.81 126.1 83.37 4 0.0218 2.0819 No 4 

9 26 -38.55 21.65 -0.11 0 0 1 1.4142 0.6481 No 4 

10 26 -39.19 21.06 -1.92 0 0 1 1.4142 0.6481 No 4 

 

 

 

4.3.2 Dominance Check 

 

In the process of distance based fitness assignment, EMS needs to be 

updated. This is accomplished by comparing the new individual with the 

elite members in the EMS using the dominance check procedure 

described in this section.  
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Table 4.8 Generation #3 fitness calculation and EMS update: P2 

# N βLE WLE Θ 
Torque 

(Nm) 

Eff. 

% 
k

*
 dk* F(x) 

EMS 

Update 
K

1 26 -39.19 25.71 -1.92 0 0 1 1.4142 0.6894 No 4 

2 26 -41.45 32.10 -1.81 118.8 82.56 2 0.04 2.0637 No 4 

3 26 -37.58 26.87 -0.56 127.0 84.03 4 0.0131 2.0906 No 4 

4 26 -38.55 17.00 -0.56 119.6 83.77 2 0.0244 2.0792 No 4 

5 27 -42.10 32.10 -1.47 131.6 84.80 4 0.0239 2.1276 Yes 3 

6 26 -37.58 26.87 -1.35 0 0 1 1.4142 0.6894 No 3 

7 32 -43.39 17.00 -0.56 0 0 1 1.4142 0.6894 No 3 

8 32 -43.71 21.65 -0.90 0 0 1 1.4142 0.6894 No 3 

9 27 -41.77 32.10 -0.11 0 0 1 1.4142 0.6894 No 3 

10 26 -37.58 26.87 -1.69 117.2 83.03 2 0.0431 2.0606 No 3 

 

 

The concept of domination is described in section 4.2.1. The eqn. 4.6 is 

used to check the dominance of the individual during the fitness 

assignment procedure. The flowchart of EMS update procedure 

according to the dominance check is given in Figure 4.4. Accordingly, 

the individual under consideration can fall in any of three cases: 

Case 1 

 The individual is dominated by one or more elite members in the 

EMS; therefore there is no change in the EMS. 

Case 2 

 Although the individual is a new Pareto solution, it does not 

dominate any of the existing elite members in the EMS, therefore the 

individual simply added to the EMS. 

Case 3 

 The individual is a new Pareto solution which dominates at least 

one elite member (called as ex-elite) in the EMS. In this case, ex-elite 
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members are removed from the EMS and the individual is added as the 

new elite member to the EMS. 

 

 

Figure 4.4 EMS Update procedure flowchart 

 

 

For the sample optimization problem, the final elite members in the 

EMS after the 3rd generation are listed in Table 4.9. In the Pareto 

optimal frontier, there are three non-dominated members, which serve a 

basis for an implementation of higher level information by the decision 

Case 1 

1 

Case 2 

1 
Case 3 

1 
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maker. For example, if the number of blades should be 27 due to the 

clocking effect, then the decision maker may elect the 3rd Pareto optimal 

solution at the end. 

 

Table 4.9 EMS at the end of 3rd Generation: E3  

# N βLE WLE Θ 
Torque 

(Nm) 

Eff. 

% 

1 26 -37.58 26.87 -1.47 123.4 85.02 

2 26 -35.32 18.16 -3.27 120.8 85.69 

3 27 -42.10 32.10 -1.47 131.6 84.80 

 

 

 

4.3.3 Remaining MOGA Operators 

 

As soon as the distance based fitness assignment procedure is completed 

for the population, simple GA operators are applied on the population 

considering the assigned fitness values. There is no difference between 

the GA operators and MOGA operators theoretically and for the sake of 

convenience, the same numerical parameters of selection, crossover and 

mutation are used for both GA and MOGA. 

 

For the example optimization problem, which is a max-max type, the 

evolution of the Pareto optimum frontier is illustrated in Figure 4.4 for 

the first 3 generations. In this figure, the concave initial Pareto front 

transforms to a convex type in the next generations. Moreover, non-

dominated initial solutions are dominated better performing solutions in 

the sense of both objective functions. The MOGA optimization result 

presents a set of non-dominated Pareto solutions as shown in this figure. 
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Figure 4.5 Pareto frontier evolutions in three successive generations  

 

 

4.4. Application of Test Problems 

 

In order to validate the distance based MOGA and compare the 

performance of MOGA with respect to other multi-objective 

optimization algorithms, two test problems are selected. These test 

problems are optimized using MOGA, and the calculated Pareto-optimal 

frontier is compared with the results of a simulated annealing algorithm 

MC-MOSA and a genetic algorithm NSGA-II given in [18, 100].  

 

 

4.4.1 Test Problem 1 

 

The first test problem is a structural optimization problem of the design 

of a two-bar truss structure [18]. The two objectives are to minimize the 

three dimensional design space; distance, y, and the maximum stress on 
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the two truss members A1 and A2. There are also constraints on the 

geometric dimensions and maximum stress allowed, as the optimization 

problem is given below: 
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Figure 4.6 Two bar truss for Test Problem 1 [18] 

 

 

The optimization problem is solved using a population size of 100 

individuals, and the MOGA is run up to 200 generations. Single point 

cross-over probability is set to .90 meanwhile jump mutation probability 

is 0.04. The chromosome length is selected to be 45, equally shared 

between the three design variables. The problem is solved with 30 

different randomly chosen initial population and the average of the 

number of elite members found in the EMS is given in Table 4.10.  
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The number of elite members found after the given number of objective 

functions evaluations is compared with the NSGA-II and MC-MOSA in 

the Table 4.10. Although NSGA-II is a genetic algorithm and MC-

MOSA is a simulated annealing algorithm, their performance is 

comparable to each other but worse than MOGA in terms of elite 

members found in the Pareto-optimum frontier. The distribution of the 

members in the Pareto frontier found by MOGA after 20,000 function 

evaluations are shown in Figure 4.7 with that of MC-MOSA. Both 

algorithms maintain a good diversity along the frontier. 

 

Table 4.10 Comparison of elite members in the global Pareto-optimum 

frontier of MOGA with NSGA-II and MC-MOSA for Test Problem 1 

Number of 

Function 

Evaluations 

NSGA-II MC-MOSA MOGA 

1,000  30 129 

5,000  73 292 

10,000 96 86 391 

20,000  99 630 

 

 

 

The number of non-dominated elite members in the EMS is plotted in 

Figure 4.8 with respect to the number of generations. It is clear that the 

size of the EMS increases with generation, except for occasional drops 

due to new non-dominated solutions which eliminates some of the ex-

elite members in EMS by dominating them. When all elite members in 

the EMS converge to the global Pareto-optimum frontier, then the EMS 

size will monotonically increase or remain constant with successive 

generations. 
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Figure 4.7 Comparison of Pareto-optimum fronts of MOGA (upper) 

and MC-MOSA (lower) after 20,000 function evaluations 
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Figure 4.8 Growth of EMS size with respect to generation number 

 

 

4.4.2 Test Problem 2 

 

This test problem is given in [35] and formulated as follows: 
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The optimization problem is solved using a population size of 100 

individuals, and the MOGA is run up to 200 generations. Single point 
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cross-over probability is set to 0.90 meanwhile jump mutation 

probability is 0.04. The chromosome length is selected to be 30, equally 

shared between the three design variables. The problem is solved with 30 

different randomly chosen initial populations and the average of the 

number of elite members found in the EMS is given in Table 4.11.  

 

Table 4.11 Comparison of elite members in the global Pareto-optimum 

frontier of MOGA with NSGA-II and MC-MOSA for Test Problem 2  

Number of 

Function 

Evaluations 

NSGA-II MC-MOSA MOGA 

1,000  58 181 

5,000  134 1571 

10,000 96 170 3583 

20,000  212 7454 

 

 

 

The number of elite members found after the given number of objective 

functions evaluations is compared with the NSGA-II and MC-MOSA in 

the Table 4.11. The simulated annealing algorithm MC-MOSA 

performed better than NSGA-II which is a genetic algorithm, but both 

of them are worse than MOGA in terms of elite members found in the 

Pareto-optimum frontier. The distribution of the members in the Pareto 

frontier found by MOGA after 20.000 function evaluations are shown in 

Figure 4.9. MOGA maintain a good diversity along the frontier. The 

number of non-dominated elite members in the EMS is plotted in Figure 

4.10 with respect to the number of generations. 
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Figure 4.9 Comparison of Pareto-optimum fronts of MOGA (upper) 

and MC-MOSA (lower) after 10,000 function evaluations 

 

10,000 Evaluations 
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Figure 4.10 Growth of EMS size with respect to generation number 

 

 

4.5 Multiploid Genetic Algorithm Optimization (MOGAXL) 

 

Although, MOGA is able to converge to the global Pareto-optimum 

frontier, it consumes considerable computational power to converge to 

the global frontier for a 3D aerodynamic design problem which requires 

expensive high-fidelity RANS solutions. This is the similar drawback of 

genetic algorithms as discussed in Chapter 3 and it is avoided by using 

faster but less accurate low-fidelity models that can be implemented in 

MOGA.  

 

The novel method developed in Chapter 3 is applied to multi-objective 

genetic algorithm. The method again is able to interpret the high-fidelity, 

high quality, very expensive information such as a fine mesh solution of 

the blade, and the low-fidelity, low quality inexpensive information such 
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as a coarse mesh blade solution, and does not degrade the quality of the 

optimization result by mixing the information between different fidelity 

solutions. Called as the multiploid multi-objective genetic algorithm 

(MOGAXL), the method uses more than one chromosome to represent 

an individual in the design space. 

 

The automated optimization flow chart is given in Figure 4.11. The 

initial population is randomly constructed by generating a prescribed 

number of blades. For each individual, blade shape is constructed. An 

automatic coarse or fine grid is applied, and RANS flow solver is run to 

get efficiency and torque values. The MOGAXL has two elite members sets 

(EMS-L and EMS-H) which are updated at each generation and initially 

empty. The first individual of the first generation is evaluated using low 

fidelity coarse grid solution and directly copied to the low fidelity elite 

members set EMS-L, and fitness is assigned.  A distance based fitness value 

is calculated for the remaining individuals while the EMSs are updated 

simultaneously according to dominance principle. Only non-dominated 

individuals are allowed in the EMSs. Finally, based on distance based low 

and high-fidelity fitness values, GAXL operators of selection, crossover 

and mutation are applied to generate the next population. The 

population generation cycle is repeated until a pre-defined maximum 

number of function evaluations or generations. At the end of the 

optimization, the EMS-H set consists of the Pareto optimal frontier 

individuals which are to be presented to the decision maker. 
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Figure 4.11 Flowchart of MOGAXL 

 

 



 

147

From the above discussion, it can be seen that MOGAXL differ 

substantially from MOGA:  

• MOGAXL has multiploid genetic representation, i.e. more than 

one chromosomes for each individual, whereas MOGA has only 

one chromosome per individual. 

• MOGAXL maintains two elite members sets; a low fidelity set 

called as EMS-L, and a high fidelity set called as EMS-H. MOGA 

has only one EMS. 

• Distance based fitness assignment procedure of MOGAXL 

involves the assignment of high and low-fidelity fitness values for 

an individual whereas MOGA assigns only one fitness, which is 

the high fidelity fitness. 

• Although tournament selection is common, MOGAXL has a pre-

defined confidence level parameter which sets the base for 

selection decision. 

• Although single point crossover is common, MOGAXL 

implements two different kinds of crossover, namely full 

crossover, and level crossover. 

• Although jump mutation method is common, MOGAXL 

mutates only crossover performed chromosomes. 

 

Besides these differences, similar to the above structure of multi-level 

genetic algorithms, a MOGAXL is developed based on the MOGA in 

section 4.2. Again, for comparison with MOGA, the optimization 

algorithm modifies the UH rotor blade by changing the optimization 

parameters. Then, MOGAXL requests either the low fidelity or the high 

fidelity fitness value from the RANS flow solver. Coarse mesh or fine 

mesh, respectively, are generated and solved to calculate the objective 
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function value –the efficiency or the torque- and assigned to fitness of 

the correct level of chromosomes. Accordingly, MOGAXL interprets 

these values to create a new generation.  

 

 

4.5.1 Initial Population 

 

Similar to MOGA, MOGAXL require an initial population of solutions 

(individuals) in the design space, before the application of MOGAXL 

operators. Initiation of this population begins with selection of two 

MOGA and one MOGAXL parameters. They are mainly the population 

size and the chromosome length, and number of chromosomes i.e. 

genetic structure, respectively.  

 

In this study, only diploid genetic representation which consists of two 

chromosomes is used. Every method presented can be applied to 

multiploid presentations. Although initial population is constructed 

randomly in every new problem, in order to be consistent with the 

MOGA discussion, the first generation population is copied from 10 

individuals given in Table 4.5, and twin chromosomes with a length of 

18 bits each are assigned for each individual for the same illustrative 

optimization problem given in section 4.2. These settings will be used 

remaining of this chapter to clearly illustrate how the MOGAXL code 

process. MOGAXL generates random numbers using the same method 

of GA, which is the Knuth's subtractive method [36].  

 

In the concept of diploid MOGAXL, as mentioned before, each variable 

set defines a blade configuration with two corresponding chromosomes. 

At the initial generation, the two chromosome strings are set the same of 
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each other. The upper chromosomes correspond to lower fidelity fitness, 

and lower chromosomes correspond to higher fidelity. Consequently, for 

a diploid MOGAXL, the upper chromosome can be interpreted as the 

geometry with coarse mesh and the lower chromosome can be 

interpreted as the same blade geometry with fine mesh. Note that only 

low fidelity fitness values are evaluated at the initial generation. The 

binary coding of ten blades (individuals) is shown in Table 4.12.  

 

Table 4.12 MOGAXL Initial population, objective function values are 

calculated for only low fidelity coarse mesh solution 

# N βLE WLE Θ Binary Coding 
Torque 

(Nm) 

Eff. 

% 

1 26 -38.55 21.65 -0.56 000101000100011010

000101000100011010 

120.3 

- 

81.11 

- 

2 26 -40.16 34.42 -0.11 000011111111011110

000011111111011110 

0 

- 

0 

- 

3 26 -35.32 18.16 -3.27 000111100001000010

000111100001000010 

113.7 

- 

86.84 

- 

4 26 -39.19 25.13 -2.15 000100100111001100

000100100111001100 

142.7 

- 

83.21 

- 

5 29 -39.19 18.16 -2.71 011100100001000111

011100100001000111 

0 

- 

0 

- 

6 32 -43.39 18.74 -0.56 110001010001111010

110001010001111010 

0 

- 

0 

- 

7 32 -41.45 32.10 -1.81 110010111101001111

110010111101001111 

0 

- 

0 

- 

8 26 -37.58 26.29 -1.35 000101111000010011

000101111000010011 

0 

- 

0 

- 

9 26 -40.81 30.94 -0.90 000011011100010111

000011011100010111 

0 

- 

0 

- 

10 27 -35.97 18.74 -1.92 001111000001101110

001111000001101110 

0 

- 

0 

- 

 

 

4.5.2 Discretization and Binary Coding 

 

The illustrative optimization problem design space is discretized similar 

to MOGA example, i.e. each design variable has 32 values except the 

number of blades with 8 possibilities in the design space, which means 
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that there are a possible of 262,144 blade shapes to be searched. The 

optimum blade is one of these blades in this simple discretized problem. 

 

Binary coding is followed after discretization. At the first generation, in 

which all of the blades are randomly chosen, once a chromosome of a 

blade is obtained similar to GA, then it is copied as much as the number 

of levels of MOGAXL. In the case of a diploid MOGAXL, low fidelity 

level chromosome is binary coded from randomly chosen blade 

parameters. Then, the high fidelity level chromosome is copied exactly 

from the low fidelity level chromosome. Finally, all the blades in the first 

generation are randomly generated and then binary coded. 

 

As the population evolves with each new generation, different level 

chromosomes differ from each other because of level/full crossover and 

mutation operators which will be discussed in the forthcoming sections.  

 

 

4.5.3 Distance Based Multi-fidelity Fitness Assignment 

 

Although MOGA uses distance based fitness assignment of the objective 

function value as the fitness of an individual, since MOGAXL handles 

multi-fidelity models to calculate objective function values, simple 

distance based fitness assignment is not possible. Therefore, a modified 

version of distance based fitness assignment method is implemented in 

order to be able to make use of surrogate models in MOGAXL 

computations. 

 

The MOGAXL has more than one elite members set. The number of 

EMSs depends on the number of surrogate models. Since only one low 
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fidelity model is used in this thesis, two EMSs will be implemented, 

namely the EMS-L and EMS-H, corresponding to lower-fidelity solution 

and the higher-fidelity solution, respectively. As in the case of MOGA, 

only one standard population Pt exists where GA operators are 

performed. Among the elite members sets (EMSs) EtL and EtH, EtL 

contains all non-dominated lower-fidelity solutions found so far, where t 

indicates the generation number. Similarly, Et-H contains all non-

dominated higher-fidelity solutions found so far. According to the multi-

fidelity distance based fitness assignment method, two (or more depending on the 

number of chromosomes) fitness values are assigned to each solution in 

Pt based on its farthest distance from the EtL and EtH members. For each 

EMS, corresponding relative distance dk(x) of a Pt individual from an elite 

member k in EMS, and latent potential value pk of an elite member k in 

EMS are calculated separately and used to determine the low and high 

fidelity fitness values. 

 

The relative distances are calculated according to its distance from the 

elite set, Etl = {e1l, e2l, …, eKl}, where K is the number of elite members 

in the lth-level EMS. Diploid MOGAXL has two l values corresponding 

to low fidelity fitness and high fidelity fitness; L and H, respectively.  

 

For each individual in the Pt the relative distances from all elite members 

in Etl are calculated by: 
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where fl terms represent the l-fidelity calculated values of the objective 

functions. 
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For the calculation of l-fidelity fitness value of the individual x, the 

minimum distant elite member in the Etl is considered, where the 

minimum distance is found as: 

 

( ))(min* xkk dd =  for all k = 1, 2, … K    (4.17) 

 

where the index k* indicates which of the existing elite members in Etl is 

nearest to the individual x. 

 

After the determination of the minimum distance and the minimum 

distant elite member, the individual is checked whether it is dominated 

by the elite members of Etl or not. If the individual is a new Pareto 

solution, the Etl is updated by adding the new non-dominated solution x 

and removing members ekl which are dominated by x. The l-fidelity 

fitness and the corresponding latent potential values of the individual x 

(which is now an elite member in the Etl, too) are calculated using: 

 

**)( kk

l
dpF +=x        (4.18) 

)(xl

k Fp =         (4.19) 

 

where Fl(x) term represents the l-fidelity fitness values, and index k in 

Eqn. 4.19 belongs to the new elite member in the Etl. 

 

On the other hand, if the individual x is dominated by any elite member 

in Etl, then it is not accepted in the Etl and its l-fidelity fitness is 

calculated as follows: 
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Note that in this equation, a minimum fitness value of zero is assigned 

for avoiding non-negative fitness values. 

 

 

4.5.4 Regeneration and High-Fidelity Function Evaluation 

 

At the initial generation, only low-fidelity objective function values are 

calculated for every individual and, the first member of the initial 

population P0 is directly copied to the empty E0L set while a random 

latent potential value pk is assigned to it. Now, there is an elite member 

with a latent potential value in the EMS-L, and this will help in setting 

the low-fidelity fitness values of the remaining members in the initial 

population P0 and the new members of the next generations. 

 

Once the low-fidelity fitness values of all individuals in the population 

are evaluated while the EMS-L is constantly updated at the initial 

generation, multi-fidelity tournament selection is carried out. None of 

the individuals in the first generation has high-fidelity fitness values 

assigned, and the EtH set is left empty at the first generation. 

 

At the end of the fitness assignment, the multi-fidelity selection method 

which is developed for multiploid GAXL is also used for MOGAXL. 

The method is described in Section 3.3.4 in the previous chapter. The 

full and level crossover operators are described in section 3.3.5 in the 

same chapter. The mutation operator is discussed in section 3.3.6. 

 

Before starting the fitness assignment calculations of the new generation, 

corresponding latent potential values of all elite members in the EMS-L 
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and EMS-H are replaced by that of maximum among the elite members. 

That is, 

 

( ))(max ekk pp =  for all k = 1, 2, … K    (4.21) 

 

Consequently, all elite members in the each EMS are assigned an equal 

latent potential value regardless of their previous values or position in 

the objective space. This ensures that, no distinction is made between 

elite members in an EMS, since they are all non-dominated. Note that 

the latent potential values of EMS-L and EMS-H are not the same. 

 

The costly objective function evaluation is the main concern for 

regeneration in MOGAXL. In MOGA, high-fidelity objective function 

evaluation is carried out to assign fitness at each generation. However, 

since the main aim and also advantage of MOGAXL is reducing the 

number of costly high-fidelity objective function evaluations, a decision 

must be made for which level of fitness will be assigned and when at 

each new generation. 

 

As indicated, at the initial generation, only the lowest level fitness values 

are assigned for each individual. Then, selection is performed by 

comparing the lowest fidelity level fitness values. For a given probability 

of occurrence, crossover and mutation operators works, according to 

this selection performed level. In the next generation, assignment of a 

higher level fitness value for an individual is decided according to 

previous selection. If in the previous selection, the selected individuals’ 

low-fidelity fitness values are close enough to eachother according to 

confidence level, then in the next generation, the same level and one 
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level higher fitness values for both individuals are assigned. If in the 

previous selection, the selected individuals’ fitness values are far away 

from eachother according to confidence level, then only that level fitness 

value of the individual is assigned in the next generation. For the specific 

case of diploid GA, the decision of high-fidelity fitness assignment is 

given in equation form as: 
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Note that if the individuals have already assigned the highest level fitness 

values, then repeated evaluation is unnecessary. The EMS update works 

only for fitness assigned individuals. If a high-level fitness is not yet 

assigned, this individual is not included in the dominance check of EMS-

H. On the other hand, if the individual is going to be assigned a high-

level fitness, then dominance check procedure is applied for the EMS-H 

update. Note that, if the EMS-H is empty, the first individual to be 

assigned a high-level fitness will be directly added to the EMS-H. 
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CHAPTER 5 
 
 
 

OPTIMIZATION RESULTS 
 
 
 

 

This chapter presents the single and multi-objective aerodynamic turbine 

blade shape optimization results. The baseline UH 1st stage turbine rotor 

blade shape is optimized for the given test conditions. Objective 

functions are selected as maximizing torque and maximizing efficiency. 

In the first part of this chapter, these objectives are solved using a 

haploid GA and a diploid GAXL. In the second part, the objective 

functions are optimized by the multi-objective optimization algorithms; 

haploid MOGA and diploid MOGAXL. The geometric and flow-field 

properties of the optimum blade shapes are discussed at each related 

optimization section separately. The performance variations of GAXL 

and MOGAXL according to the algorithm parameters are discussed at 

the remaining part. 

 

 

5.1 Single-objective Optimization Results 

 

The baseline UH rotor blade is first optimized for maximum torque. 

Second, the objective function is set as maximizing the blade adiabatic 

efficiency. Both optimization problems are solved using a haploid GA 

and a diploid GAXL. Table 5.1 shows the GA and GAXL parameter 
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values used in the optimization processes. The parameters are kept same 

for both of the optimization problems. 

 

Table 5.1 Optimization parameter values of GA and GAXL  

Parameter GA GAXL 

Number of Chromosomes 1 2 

Design Parameters 37 37 

Chromosome Length  219 219 

Number of child 1 1 

Maximum Generation 100 100 

Population Size 100 100 

Elitism Yes Yes 

Cross-over Probability 50% 50% 

Mutation Probability 2% 2% 

Low-fidelity Confidence Level - 5% 

 

 

 

Table 5.2 UH Baseline blade shape parameterization 

La
y

e
r 

Baseline Blade 

ξ Θ βLE βTE WLE WTE 

1 

hub 
10 1.5 -55 65 32 9 

2 19 -0.5 -50 65 25 7 

3 27 -2.3 -39 65 25 6 

4 36 -3.9 -27 66 25 5 

5 38 -6.2 0 70 20 4 

6 

tip 
53 -6.9 12 71 17 3 

N 30 

Torque 

(Nm) 
143.3 

Efficiency 86.27 % 
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Before the optimization, the baseline blade shape is parameterized using 

blade profile reshaping algorithm and the parameter values are listed in 

Table 5.2. 

 

 

5.1.1 Maximizing Torque 

 

The optimum rotor blade shape is found by using GA and GAXL 

algorithms. The two algorithms have converged to different torque 

values in 100 generations.  The optimum design parameters of GA-

optimized and GAXL-optimized blade shapes are compared in Table 

5.3. The optimized torque values and corresponding efficiencies are 

given in the table as well. 

 

 

Table 5.3 Optimum blade shape parameters of GA and GAXL 

La
y

e
r 

Optimum Blade  

found by GA 

Optimum Blade  

found by GAXL 

ξ Θ βLE βTE WLE WTE ξ Θ βLE βTE WLE WTE 

1 

hub 
16 0.3 -55 61 32 3 11 2.9 -56 73 25 6 

2 16 -0.5 -51 73 26 6 23 -0.9 -52 71 20 5 

3 28 -2.9 -42 70 21 6 30 -2.5 -42 61 22 5 

4 35 -4.4 -23 61 32 6 39 -4.7 -23 67 35 9 

5 44 -6.2 5 71 26 7 45 -5.6 4 60 28 9 

6 

tip 
53 -7.4 18 62 19 7 60 -6.3 16 60 24 7 

N 33 33 

Torque (Nm) 253.8 254.9 

Efficiency 78.24% 72.96% 
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The number of blades increased from 30 to 33 for maximizing the 

baseline blade torque. GAXL optimized blade is twisted more than the 

GA optimized blade according to the stagger angles. Circumferential 

angles are lower than the baseline blade values for the GAXL optimized 

blade, indicating the lean of the optimum blade is less. Leading edge flow 

angles are consistent with the baseline blade and the optimized blades, 

except higher inlet angles at the mid-to-tip sections of the optimized 

blades. The GAXL optimized blade exit angle at the hub is higher than 

the baseline blade, contrary to GA optimized blade. Optimized blades 

have lower tip exit angle when compared to baseline blade. The data in 

the table indicates thicker leading edge radius from mid to tip sections of 

the optimized blades. While baseline blade trailing edge thickness 

decreases from hub to tip, optimized blades have higher trailing edge 

thickness at the tip regions.  

 

 

 

Figure 5.1 Maximization of torque using GA and GAXL 
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The evolution of the 100-member population towards 100 generations is 

shown in Figure 5.1 for GA and GAXL. Both optimization algorithms 

converged to a torque value very close to each other. Although in this 

figure, GA looks like outperformed GAXL at the initial 30 generations 

according to faster convergence, GAXL converged to the global 

optimum after 29 generations, whereas GA converged after 44 

generations. Convergence of GAXL to the global optimum for this 

problem demonstrated the GAXL’s ability of global convergence using 

surrogate models. 

 

 

Figure 5.2 Computational Cost of GA and GAXL optimization cycle 

 

 

The computational cost of the optimization cycle is equivalent to the 

number of high-fidelity function evaluations needed for convergence to 

the global optimum. For this purpose, the time evolution of the 

optimizations per high-fidelity (fine grid solution) function evaluation is 

given in Figure 5.2. At the beginning, GA increased the maximum blade 
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torque faster than GAXL. However, GAXL converged to global 

optimum faster than GA; only in 2244 high-fidelity function evaluations, 

when compared to 4400 function evaluations of GA. GAXL converged 

to the global optimum almost two times faster than GA. 

 

 

Figure 5.3 High and low fidelity function evaluations of GA and GAXL 

 

 

The accelerated convergence of GAXL is investigated by comparing the 

high and low function evaluations during successive generations. For this 

reason, the number of high/low fidelity objective function evaluations at 

each generation is shown in Figure 5.3. The figure is limited to only first 

15 generations, since GA and GAXL have only evaluated high fidelity 

values beyond the 15th generation. 

 

Since GA only uses high fidelity evaluations, the number of evaluations 

is fixed at 100 at each generation, which is equal to the population size. 

Besides 100 low-fidelity evaluations, GAXL did not evaluate any high-
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fidelity torque values at the first generation. After the second generation, 

low fidelity function evaluations of GAXL decreased monotonically to 

zero, until the 11th generation. Beginning from the second generation, 

high fidelity evaluations are increased to 100 evaluations at the 11th 

generation. In the remaining part of the optimization, according to the 

GAXL algorithm theory, GAXL basically acted as a simple GA 

automatically. This is because all of the individuals in the 11th population 

have their high-fidelity fitness values calculated, and the selection process 

is performed considering only the high-fidelity fitness values. Therefore, 

low-fidelity calculations are not needed after the 11th generation. 

 

Until the 11th generation, GAXL performed 344 high-fidelity 

computations, compared to 1000 computations of GA. The number of 

computations of GA and GAXL are equal after the 11th generation. The 

accelerated global optimization of GAXL is not only due to the  

difference of 656 computations of the first 10 generations, but also 

mainly because of the faster convergence of GAXL in the later steps of 

the optimization at the same number of function evaluations compared 

to GA. The main reason of this acceleration is the schemes that are built 

by the low fidelity chromosome strings in the initial generations and 

carried over the next generations. 

 

 

5.1.2 Maximizing Efficiency 

 

The design variables of maximum efficiency blade shape and baseline 

rotor are compared in Table 5.4. The number of blades decreased from 

30 to 26, which is also the design space lower constraint. According to 

the stagger angles, the blade is twisted more at the hub, and same in the 
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remaining sections. Circumferential angles of optimized blades are 

similar to the baseline blade values. Leading edge flow angles are lower 

for the GA optimized blade, and higher for the GAXL optimized blade 

at the hub sections compared to baseline blade values. The exit angles of 

the GAXL optimized blade are remarkably higher than the baseline 

blade values at the hub section. The data in the table indicates inversely 

proportional leading edge wedge angles with the baseline blade at the 

mid sections. The trailing edge wedge angles of the GAXL optimized 

blade are consistent with the baseline blade values.  

 

Table 5.4 Optimum blade shape parameters of GA and GAXL 

La
y

e
r 

Optimum Blade  

found by GA 

Optimum Blade  

found by GAXL 

ξ Θ βLE βTE WLE WTE ξ Θ βLE βTE WLE WTE 

1 

hub 
16 0.8 -60 65 32 8 14 1.5 -50 70 28 9 

2 19 -0.3 -45 69 25 3 18 -0.3 -46 70 28 8 

3 25 -2.4 -42 61 19 4 25 -1.7 -44 63 35 5 

4 35 -3.7 -27 67 29 6 39 -4.4 -23 69 21 4 

5 37 -6.3 6 60 18 4 37 -6.5 6 64 19 4 

6 

tip 
50 -7.1 19 74 18 7 50 -6.7 13 65 18 4 

N 26 26 

Torque (Nm) 122.9 131.3 

Efficiency 87.29% 87.44% 

 

 

 

The maximization of the efficiency problem is solved using a simple 

haploid GA and the diploid GAXL. The evolution of the 100-member 

population towards 100 generations is shown in Figure 5.4 for GA and 

GAXL. Contrary to torque optimization, GAXL clearly outperformed 
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than GA at the end of the optimization cycle according to faster 

convergence, and converged to a better efficiency value.  

 

 

Figure 5.4 Maximum efficiency values per generation 

 

 

For this specific optimization case, GAXL did not evaluate the high-

fidelity efficiency values for the first generation. Again, GAXL 

accelerated the optimization and converged faster than GA in this 

optimization problem. After the 60th generation, GAXL converged to a 

better individual at each successive generation than the simple GA. 

 

The computational cost comparison of GA and GAXL per generation is 

given in Figure 5.5.  Until 2000 high-fidelity objective function 

evaluations, GA and GAXL performed equally well. Afterwards, GA 

converged to better efficiency values than GAXL until the 6000th 

generation. In the last part however, GAXL converged faster and a 

better efficiency value than GA, as in the case of torque optimization 

problem. 
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       Figure 5.5 Computational cost of maximizing efficiency 

 

 

 

Figure 5.6 High and low fidelity function evaluations of GA and GAXL 

 

 

Figure 5.6 represents the high and low fidelity function evaluations of 

GA and GAXL for the first fifteen generations. At the first generation, 
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GAXL only requested the low fidelity function evaluations. The high 

fidelity function evaluations started from the second generation until the 

10th generation, where fitness values all of the 100 individuals are 

assigned only high-fidelity. From that point on, no low fidelity fitness 

assignment is performed on the individuals, and GAXL acted similar to 

the simple GA. On the other hand, GA only uses high fidelity function 

evaluations from the first generation, which is equal to the number of 

individuals in the population. The optimum rotor geometries for 

maximum efficiency and torque are shown in Figure 5.7. 

 

 

Figure 5.7 Optimum rotor geometries of maximum efficiency and torque 

 

 

5.1.3 Effect of population size on the GA/GAXL performances 

 

To investigate the effects of population size on the performances of GA 

and GAXL, the optimization problems are solved using a 25-individual 

population size. The evolution of the 25-member population towards 40 

generations is shown in Figure 5.8 for GA and GAXL. Although in this 

figure, GA looks like clearly outperformed GAXL, as will be discussed 
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later, GAXL meets the two objectives of this study, since only the high-

fidelity torque values are plotted in Figure 5.8. For this specific 

optimization case, GAXL did not evaluate the high-fidelity torque values 

for the first generation. From the 2nd till the 10th generation, some of the 

individuals are assigned high-fidelity torque values. In the remaining part 

of the optimization, GAXL algorithm switched to simple GA 

automatically since all of the individuals in the 10th population have their 

high-fidelity fitness values calculated. Therefore, low-fidelity calculations 

are not performed after the 10th generation. 

 

 

Figure 5.8 Maximum torque values per generation for 25-member 

population size 

 

 

With the maximized torque value of 214.15 Nm, neither GA, nor GAXL 

is able to converge to the global optimum found by 100-member 

population, which is 254.9 Nm. However, the GAXL is able to converge 

to an optimum value slightly better than the one of GA in 40 
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generations, which satisfies the first objective of converging global 

optimum. 

 

Regarding the second objective of the study, acceleration in the 

optimization cycle is aimed by GAXL, so that the expensive 

computational cost of the GAs would be decreased. Figure 5.9 

represents the high-fidelity function evaluations needed to maximize 

torque. The number of high-fidelity function evaluations of simple GA is 

equal to the multiplication of the population size with the generation 

numbers. From the 1st till the 10th generation, GAXL requested high and 

low fidelity function evaluations simultaneously, and there is no direct 

proportionality between the number of generations versus high-fidelity 

function evaluations. After the 10th generation, the number of high-

fidelity function evaluations is equal to the multiplication of the 

population size with the generation numbers, as in the case of simple 

GA. 

 

 

Figure 5.9 Computational Cost of Maximizing Torque 
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At the initial generations of the optimization cycle, GAXL converged 

rapidly than GA. The high-fidelity objective function value of GAXL 

was 171.56 Nm after only 91 function evaluations when compared to 

149.05 Nm after 125 function evaluations of GA. Therefore, until the 5th 

generation of GA, which corresponds to 10th generation of GAXL in 

terms of number of high-fidelity objective function evaluations, GAXL 

converged faster and to a better torque value than the simple GA. This 

optimization part, from the 1st generation of GAXL to the 10th 

generation, is the only part of new GAXL operators performing on low 

fidelity objective function values.  

 

As shown in Figure 5.10, after the 10th generation of GAXL, the 

outcomes of GAXL operators (selection, crossover and mutation) have 

no difference from the simple GA operators, since all individuals in the 

population have their high-fidelity fitness values assigned. Therefore, 

even the simple GA converged faster than GAXL after the 10th iteration; 

this is solely because of the random initial distribution of the two 

populations. Because, GAXL will have the same individuals in the 

successive generations with GA, as long as all of the individuals have 

their high-fidelity fitness values assigned. 

 

The maximization of the efficiency problem is solved using a simple 

haploid GA and the diploid GAXL. The evolution of the 25-member 

population towards 40 generations is shown in Figure 5.11 for GA and 

GAXL. Contrary to torque optimization, GAXL clearly outperformed 

than GA in the entire optimization generations.  
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Figure 5.10 High and low fidelity function evaluations of GA and GAXL 

 

 

 

Figure 5.11 Maximum efficiency values per generation for 25-member 

population size 
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For this specific optimization case, GAXL did not evaluate the high-

fidelity efficiency values for the first generation. From the 2nd till the 7th 

generation, some of the individuals are assigned high-fidelity efficiency 

values. In the remaining part of the optimization, GAXL algorithm 

switched to simple GA automatically since all of the individuals in the 7th 

population have their high-fidelity fitness values calculated. Therefore, 

low-fidelity calculations are not performed after the 7th generation as 

shown in Figure 5.12. 

 

 

Figure 5.12 High and low fidelity function evaluations of GA and GAXL 

 

 

With the maximized efficiency of 86.65 %, GAXL is able to converge to 

an optimum, which GA could not yet converge after 40 generations. The 

maximum efficiency found by GA optimization cycle after 40 

generations is 85.19 %. Therefore, again in this optimization problem, 

the GAXL is able to converge better than simple GA in a 40-generation 

design loop, which satisfies the first objective. 
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Regarding the second objective of the study, the acceleration effect of 

GAXL is studied in Figure 5.13. GAXL is able to converge to the 

optimum efficiency blade in only 178 high-fidelity function evaluations. 

This corresponds to the 5th generation of a 25-population simple GA. In 

this case, the simple GA could not even converge to this efficiency value 

after 40 generations.  

 

       
Figure 5.13 Computational cost of maximizing torque 

 

 

In Figure 5.14 and 5.15, the importance of population size on the global 

convergence of GAXL is presented for torque and efficiency 

maximization problems, respectively. In the former problem, 25-member 

population GAXL could not converge to the global optimum in 100 

generations, whereas, in the latter problem, population size did not affect 

the convergence of GAXL to the global optimum.  
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Figure 5.14 Effect of population size on the performance of GAXL – 

maximizing torque 

 

 

 

Figure 5.15 Effect of population size on the performance of GAXL – 

maximizing efficiency 
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However, in terms of computational cost, the number of generations 

does not give the correct interpretation. Figure 5.16 shows that a 

crowded population converges slowly at the beginning of the 

optimization cycle. For the maximization of torque problem, 25-

individual population converged to a better torque value faster than 100-

individual population.  

 

The same case for the efficiency maximization is presented in Figure 

5.17. In this case, again, the 25-member population converged to better 

efficiency values faster than the 100-member population. This indicates 

that, GAXL has inertia directly proportional to its population size, which 

has two effects. A large inertia GAXL will converge slowly but to a 

better optimum than a small inertia GAXL, which will converge faster at 

the initial generations, but will fail converging to global optimum in 

limited number of generations. 

 

 

Figure 5.16 Computational cost comparison for different population 

size– torque maximization 
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Figure 5.17 Computational cost comparison for different population size 

– efficiency maximization 

 

 

The reason behind the faster convergence of low population size, but 

better convergence of high-population size is based on the initial 

generations of the optimization cycle. This is shown in Figure 5.18 and 

Figure 5.19 for the torque and efficiency maximization problems, 

respectively. 

 

For both of the optimization problems, at the initial generations, 100-

member population is saturated with high fidelity fitness values later than 

the 25-member population. In the torque optimization problem, 100-

member population is saturated at the 11th generation, whereas 25-

member population is saturated at the 10th generation. This early 

saturation of 25-member population allowed more high-fidelity 

computation calculations in the earlier generations per individual, which 

led to faster convergence than 100-member population.  
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Figure 5.18 Effect of population size on high/low fidelity computations 

– torque maximization 

 

 

 

Figure 5.19 Effect of population size on high/low fidelity computations 

– torque maximization 
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Similarly, in the efficiency optimization problem, 100-member 

population is saturated at the 10th generation, whereas 25-member 

population is saturated at the 8th generation. The older saturation and 

much more low-fidelity function evaluations led to the fact that the 

individuals are guided by ancestors’ schemas in the chromosomes, and 

accelerated the global convergence at the remaining generations, which 

in turn provided global convergence faster in terms of number of 

generations. In conclusion, the inertial effect of population size proved 

the ability of accelerated GAXL convergence to the global optimum. 

 

 

5.1.4 The effect of confidence level parameter on the GAXL 

performance 

 

The confidence level parameter, which is between 0 and 100 %, is 

introduced as an additional parameter in the GAXL. For the maximizing 

efficiency problem, the effect of different confidence level parameters is 

studied in this section. For this purpose, the confidence levels are 

selected as 5% and 50 % respectively. A 5% confidence level indicates a 

lower accuracy of the low-fidelity model, whereas a 50% confidence level 

indicates a better accuracy of the low-fidelity model. 

 

As shown in Figure 5.20, 5% confidence level optimization run 

performed much better than 50% confidence level. High confidence 

level could not converge to the global optimum after 100 generations 

yet. Moreover, during the optimization cycle, low confidence level 

outperformed the higher one at nearly all generations. 
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Figure 5.20 Effect of confidence level on the GAXL performance 

 

 

 

Figure 5.21 Effect of confidence level on the computational cost of 

GAXL 
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The computational costs of optimization for 5 and 50% confidence 

levels are compared in Figure 5.21. As in the case of number of 

generations, the figure indicates that the 5% confidence level converged 

much faster than 50%, and costs less than the latter.  

 

The reason behind the better and faster convergence of 5% confidence 

level is investigated in Figure 5.23. In this figure, for both 5 and 50% 

confidence level value optimization runs, all of the individuals are 

saturated by high fidelity fitness values at the 10th generation. Therefore, 

confidence level has no effect on the saturation generation number. 

However, the number of low fidelity function evaluations of 50% is 

higher than 5%, whereas, the number of high fidelity function 

evaluations is almost equal for both cases. This indicates that, usage of 

confidence level beyond the accuracy of the low-fidelity surrogate model 

decreases the acceleration effect of GAXL, and delays the global 

convergence. 

 

 

5.2 Multi-objective Optimization 

 

The baseline UH rotor blade is optimized for maximum torque and 

maximum adiabatic efficiency simultaneously. The optimization problem 

is solved using a haploid MOGA and a diploid MOGAXL. Table 5.5 

shows the MOGA and MOGAXL parameter values used in the 

optimization processes.  
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Figure 5.22 Effect of confidence level on the high/low function 

evaluations 

 

 

5.2.1 Optimization Results 

 

The high-fidelity Pareto-optimal frontiers after 100 generations of 

MOGA and MOGAXL are shown in Figure 5.23. The figure represents 

the trade-off between efficiency and torque and the decision maker may 

chose one blade shape out of all individuals in the Pareto-optimal 

frontier according to higher level information, such as stress calculations 

or rotor/stator interactions. In this figure, baseline rotor blade is also 

pointed for comparison. Baseline blade is non-dominated by all MOGA 

optimum solutions in the Pareto-front, and the baseline blade does not 

dominate any MOGA optimum solutions either. This indicates that, after 

100 generations, MOGA did not converged sufficiently to the global 

optimum frontier yet.  
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Table 5.5 Optimization parameter values of MOGA and MOGAXL  

Parameter MOGA MOGAXL 

Number of Chromosomes 1 2 

Design Parameters 37 37 

Chromosome Length  219 219 

Number of child 1 1 

Maximum Generation 100 100 

Population Size 100 100 

Elitism Yes Yes 

Cross-over Probability 90% 90% 

Mutation Probability 2% 2% 

Initial Latent Potential pk 2 2 

Low-fidelity Confidence Level - 5% 

 

 

 

On the other hand, MOGAXL succeeded finding as many as eleven 

non-dominated optimum blades that also dominates the baseline blade. 

Although the Pareto-optimal frontier of MOGAXL may not be the 

global frontier of the problem, MOGAXL will eventually converge to it 

by increasing the number of generations of the optimization cycle. 

 

The diversity of the optimal solutions is a main concern in multi-

objective optimization problems. In the present case, the non-dominated 

individuals are broadly spread from a maximum torque value of 227 Nm 

to a maximum efficiency value of   86.8 %. Although it is desired to find 

many non-dominated solutions in the objective space, because of the 

complexity of the problem, only eleven optimum solutions could be 

achieved. In case of increasing the number of generations of the 

optimization loop, MOGAXL may converge to a better Pareto-frontier 

with more non-dominated blade shapes. 
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Figure 5.23 Pareto optimal frontiers of MOGA and MOGAXL after 100 

generations 

 

 

From the beginning of the first generation until the end of the 

optimization, the number of non-dominated individuals in the elite 

members set is given in Figure 5.24. Only high-fidelity fitness assigned 

elite members of MOGAXL are counted per generation. At the initial 

generations, MOGAXL found as twice as much as elite members 

compared to MOGA. Besides MOGA has fifteen elite members at the 

end of the generation, all of these members are dominated by 

MOGAXL elite members. 

 

The second objective of this paper is the acceleration of the optimization 

cycle in order to decrease the total computational cost. This cost is 

evaluated by counting the number of high-fidelity objective function 

evaluations in the optimization process. Figure 5.25 shows the number 
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of high and low fidelity evaluations with respect to the generation 

number of the first fifteen generations.  

 

 

Figure 5.24 Number of elite members in the EMS-H 

 

 

MOGAXL algorithm operates exactly same as the MOGA algorithm 

after all of the individuals in the population are assigned their high-

fidelity fitness values, which is called as the saturation of individuals with 

high-fidelity fitness values. In this specific case, MOGAXL assigned the 

high-fidelity fitness values to every individual of the 10th generation 

population. After 10th generation, both MOGA and MOGAXL will 

perform a hundred evaluations at each generation which corresponds to 

the population size.  

 

At the initial nine generations, MOGAXL used very little computational 

resources when compared to MOGA. In these 9 generations 293 and 

900 high fidelity RANS solutions are requested by MOGAXL and 

MOGA, respectively. Consequently, the 9th generation of MOGAXL 
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costs less than the 3rd generation of MOGA in terms of computational 

expenses. Therefore, in order to compare the Pareto-optimal frontiers of 

the both algorithms fairly, the 9th generation EMS-H of MOGAXL and 

the 3rd generation EMS of MOGA are compared in Figure 5.26.  

 

 

Figure 5.25 Computational cost comparison 

 

 

According to Figure 5.26, MOGA could only find three elite members in 

the Pareto-optimal frontier, and only one of them is non-dominated by 

MOGAXL Pareto-optimal frontier. Whereas, MOGAXL has already 

eight non-dominated members, and only two of them are dominated by 

MOGA. Additionally, MOGAXL has an excellent distribution of elite 

members when compared to the diversity of the simple MOGA. 
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Figure 5.26 Pareto optimal frontiers after 3 generations of MOGA and 9 

generations of MOGAXL 

 

 

 

Figure 5.27 Pareto optimal frontiers after 40 generations of MOGA and 

46 generations of MOGAXL 
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During the successive new generations of optimization cycle, the same 

analysis is performed for the 40th generation of MOGA. In terms of 

number of high fidelity computations, this corresponds to the 46th 

generation of MOGAXL. The Pareto-optimal frontiers are shown in 

Figure 5.27. There are eleven elite members in the EMS of MOGA and 

ten elite members in the EMS-H of MOGAXL. Only two of the 

MOGAXL elite members are dominated by MOGA, and the remaining 

eight members are the non-dominated solutions of the problem for this 

computational cost. This clearly indicates the accelerated convergence of 

MOGAXL to the global Pareto-optimal frontier. Moreover, the diversity 

of the MOGAXL elite members is better the MOGA elite members. 

 

 

5.2.2 Effect of Population Size on MOGA Performance 

 

The effect of population size is studied on the MOGA by solving the 

same multi-objective optimization problem. The MOGA solutions with 

50 and 100 individual populations are presented with Pareto-optimal 

frontiers after 100 generations in Figure 5.28, MOGA-50 and MOGA-

100, respectively. There are nine elite members in the EMS of 50-

individual population when compared to fifteen elite members in the 

EMS of 100-individual population solutions. Five members of the each 

optimization are non-dominated by any other elite members. Therefore, 

in terms of number of non-dominated elite members, both population 

sizes have the same number of non-dominated members.  

 

In terms of Pareto-optimal frontier diversity, 100-individual population 

solution keeps a much better diversity of elite members in the objective 

space. Lowering the population size has an adverse effect on the 
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diversity of the optimization solution. 50-individual Pareto-frontier could 

only find one elite member below 83% efficiency and this member is 

already dominated by 100-individual members.  

 

 

Figure 5.28 Effect of population size on MOGA performance 

 

 

Figure 5.29 Number of elite members in the EMS 
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From the beginning of the first generation until the end of the 

optimization, the number of non-dominated individuals in the elite 

members set is compared in Figure 5.29. Until the 40th generation, 

MOGA-50 and MOGA-100 found as much as the same number of elite 

members, which monotonically increases with consecutive generations. 

However, this increase stops for MOGA-50 afterwards, and the number 

of elite members in the EMS remains the same. On the other hand, 

MOGA-100 continues to increase the elite members monotonically until 

the end of the optimization. This suggests that, lower population size 

MOGA suffers from the convergence and divergence problems during 

the optimization cycle. 

 

 

5.2.3 Effect of Population Size on MOGAXL Performance 

 

The effect of population size is studied on the MOGAXL by solving the 

same multi-objective optimization problem. The MOGAXL solutions 

with 25, 50 and 100 individual populations are presented with Pareto-

optimal frontiers after 100 generations in Figure 5.30, MOGAXL-25, 

MOGAXL-50 and MOGAXL-100, respectively. There are eight elite 

members in the EMS-H of 25-individual population when compared to 

fourteen elite members in the EMS-H of 50-individual population 

solutions, and eleven elite members in the EMS-H of 100-individual 

population solutions. None of the elite members of these solutions are 

dominated by baseline blade. Therefore, the Pareto-optimal frontiers of 

these different population size solutions provide a better solution to the 

problem than the baseline blade. The closest global optimum frontier is 

found by MOGAXL-100, however the distance between MOGAXL-100 

frontier and the MOGAXL-25 and MOGAXL-50 frontiers are 
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comparable small compared to the convergence effect of population size 

on MOGA. Only one elite member of MOGAXL-100 is dominated by 

the other two solutions’ elite members. 

 

 

Figure 5.30 Effect of population size on MOGAXL performance 

 

 

Concerning the diversity of the Pareto-optimal frontiers, it is found that 

the elite members of all solutions have a very good distribution in the 

objective space. Contrary to diversity suffering of MOGA by decreasing 

the population size, MOGAXL does not poses any performance 

degradation in terms of elite members’ diversity. Below the 83% 

efficiency, MOGAXL-50 could generate five elite members, MOGAXL-

25 could generate four elite members, compared to only one elite 

member of MOGA-50 after 100 generations. 
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Figure 5.31 Number of elite members in the EMS-H 

 

 

From the beginning of the first generation until the end of the 

optimization, the number of non-dominated individuals in the elite 

members set is compared in Figure 5.31. Until the 30th generation, 

MOGAXL-25, MOGAXL-50 and MOGAXL-100 found as much as the 

same number of elite members, which monotonically increases with 

consecutive generations. Afterwards, the MOGAXL-100 looks like 

having more number of elite members in the EMS-H, however, again, all 

three optimizations found the same number of elite members until the 

75th generation. Beyond this point, MOGAXL-100 elite member size 

monotonically increases, MOGAXL-50 elite member size remains the 

same, and MOGAXL-25 elite member size decreases. This confirms that 

MOGAXL-25 and MOGAXL-50 Pareto-frontiers did not yet converged 

to the global optimum close enough and therefore, some new elite 

members in the new generations dominates many of the elite members 

in the EMS-H, preventing the size of EMS-H to increase. The 
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convergence of MOGAXL-100 is simply because of twice and quadruple 

number of function evaluations after 100 generations compared to 

MOGAXL-50 and MOGAXL-25, respectively.  

 

Finally, the effect of population size is compared between MOGA and 

MOGAXL by studying a 50-individual population optimization case. As 

shown in Figure 5.32, even in the low population size, MOGAXL clearly 

outperformed, converged to a better frontier, and a more diverse elite 

member distribution with much higher number of elite members. 

MOGA could only find 9 elite members compared to 14 elite members 

of MOGAXL after 100 generations. Only one elite member of 

MOGAXL is dominated by MOGA, and only one elite member of 

MOGA is non-dominated by MOGAXL. 

 

 

Figure 5.32 Effect of population size on MOGA/MOGAXL 

performance 
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In terms of elite members in the EMS of MOGA and EMS-H of 

MOGAXL, both algorithms increase the size until the 40th generation. 

Afterwards, MOGAXL clearly continue to improve the elite member 

size by converging to the global optimum while increasing the diversity 

of the EMS-H members. On the other hand, MOGA is out of breath 

after the 40th generation, and could not manage to increase the 

population size timely as shown in Figure 5.33. 

 

 

Figure 5.33 Number of elite members in the EMS/EMS-H 
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CHAPTER 6 

 

 

 

CONCLUSION 

 

 

 

 

A GA-based multi-objective aerodynamic shape design optimization tool 

capable of handling surrogate models for a turbine blade has been 

developed and demonstrated on a baseline test case.  

 

A blade reshaping algorithm is constructed to parameterize three-

dimensional blade shapes. 37 design parameters are used to create one 

blade shape at a time. Leaned, twisted, bended, and tapered blades can 

be obtained using the reshaping algorithm. 

 

A commercial RANS flow solver is coupled with a commercial 

automated grid generator for flow field solution. Two well-known test 

cases are solved for the validation of the coupled flow solver. Highly 

three dimensional VKI nozzle test case solution demonstrated the 

secondary flow and loss prediction capabilities of the solver and the pre-

selected CFD models. First stage of the UH high pressure turbine test 

case is solved to validate the off-design prediction capability of the 

coupled solver. Successful demonstration of the predictions is shown for 

mass flow and RPM variations. 

 

For the purpose of obtaining high and low fidelity model solutions of 

the objective functions, the parameters of the automatic grid generator 
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are modified. Two mesh structures with different quality grids are 

obtained by changing the spacing between the nodes and increasing the 

number of volumetric elements in the flow field. The effect of coarse 

and fine grid on the flow field solution is investigated using the VKI test 

case. It was observed that, the coarse grid solution can also be used to 

predict the flow field scarifying a level of accuracy. Therefore, according 

to the demand of the optimization algorithm, fine or coarse grid RANS 

solutions of a blade shape are obtained for high or low fidelity objective 

function values, respectively. 

 

To eliminate the genetic algorithm performance degradations when used 

with surrogate models, a multiploid genetic algorithm GAXL is 

developed and applied for single objective optimization problems. 

Assuring the convergence to the global optimum, and lowering the 

computational cost of optimization cycle are selected as the two key 

performance degradations.  

 

Maximization of blade torque and maximization of blade adiabatic 

efficiency problems are selected as two objectives, and solved separately 

using a conventional GA and the new GAXL. For both optimization 

problems, GAXL converged to a better performing blade shape than 

that of GA. For the torque optimization problem, GAXL converged 

almost twice faster than GA, and therefore computational cost is halved. 

In the efficiency optimization problem, again, GAXL accelerated the 

convergence by 40%, and lower corresponding computational cost. 

 

Both optimization problems revealed the fact that, GAXL operators 

operate only at the initial ten to twelve generations, until when all the 

individuals are saturated by high-fidelity fitness values. From that point 
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on, GAXL operators act just the same as the GA operators. However, 

the accelerated behavior of GAXL does not only belong to these initial 

generations, but also to the remaining generations. The schemes of the 

low fidelity level chromosomes that are formed in the initial generations 

work during the entire optimization cycle, and guide the population 

towards the global optimum by decreasing the necessary high-fidelity 

objective function evaluations. 

 

The effect of population size on GAXL and GA performance is studied 

for the same problems. The population size is decreased from 100 to 25 

individuals. First, GAXL and GA algorithms are compared. Both 

algorithms converged to the same torque value after 40 generations. 

However, when checking the first 10 generations, GAXL has already 

converged to a better blade shape than GA in less number of high-

fidelity function evaluations. In case of efficiency optimization, GAXL 

clearly outperformed GA in terms of optimum blade shapes and 

computational cost. 

 

The effect of population size on GAXL performance is studied for the 

same problems. In the torque problem, 25-member population GAXL 

could not converge to the global optimum in 100 generations, whereas, 

in the efficiency problem, population size did not affect the convergence 

of GAXL to the global optimum. However, in terms of computational 

cost, the number of generations does not give the correct interpretation. 

For the maximization of torque problem, 25-individual population 

converged to a better torque value faster than 100-individual population.  

 

These results indicate that, GAXL has inertia directly proportional to its 

population size, which has two effects. A large inertia GAXL will 
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converge slowly but to a better optimum than a small inertia GAXL, 

which will converge faster at the initial generations, but will fail to 

converge to the global optimum in limited number of generations. In 

conclusion, the inertial effect of population size proved the ability of 

accelerated GAXL convergence to the global optimum. 

 

The effect of confidence level parameter is demonstrated using the 

maximization of efficiency problem. The computational costs of 

optimization for 5 and 50% confidence levels are compared and the 5% 

confidence level converged much faster than 50%, and costs less than 

the latter. Investigation of the reason behind the better and faster 

convergence of 5% confidence level revealed that usage of confidence 

level beyond the accuracy of the low-fidelity surrogate model decreases 

the acceleration effect of GAXL, and delays the global convergence. 

 

The multiploid genetic structure is applied for multi-objective problems 

as well. For this purpose, the baseline UH rotor blade is optimized for 

maximum torque and maximum adiabatic efficiency simultaneously. The 

optimization problem is solved using a haploid MOGA and a diploid 

MOGAXL. The high-fidelity Pareto-optimal frontiers after 100 

generations of MOGA and MOGAXL are compared, and it is found 

that baseline blade is non-dominated by all MOGA optimum solutions 

in the Pareto-front, but the baseline blade does not dominate any 

MOGA optimum solutions either. This indicates that, after 100 

generations, MOGA did not converge sufficiently to the global optimum 

frontier yet. In other words, the number of high-fidelity function 

evaluations is not sufficient for MOGA to converge to the global 

optimum. 
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On the other hand, MOGAXL succeeded finding as many as eleven 

non-dominated optimum blades that also dominate the baseline blade. 

Although the Pareto-optimal frontier of MOGAXL may not be the 

global frontier of the problem, MOGAXL will eventually converge to it 

by increasing the number of generations of the optimization cycle. This 

confirms the accelerated global convergence behavior of MOGAXL. 

 

Although it is desired to find many non-dominated solutions in the 

objective space, because of the complexity of the problem, only eleven 

optimum solutions could be achieved. In case of increasing the number 

of generations of the optimization loop, MOGAXL may converge to a 

better Pareto-frontier with more non-dominated blade shapes. Diversity 

of the MOGAXL elite members found to be much better distributed 

when compared to MOGA elite members. 

 

The effect of population size is studied on the MOGA by solving the 

same multi-objective optimization problem for 50 and 100 individual 

populations. In terms of number of non-dominated elite members, both 

population sizes have the same number of non-dominated members. In 

terms of Pareto-optimal frontier diversity, 100-individual population 

solution keeps a much better diversity of elite members in the objective 

space. Lowering the population size has an adverse effect on the 

diversity of the optimization solution.  

 

The effect of population size is studied on the MOGAXL by solving the 

same multi-objective optimization problem. The MOGAXL solutions 

with 25, 50 and 100 individual populations are compared with Pareto-

optimal frontiers after 100 generations, MOGAXL-25, MOGAXL-50 

and MOGAXL-100, respectively. The Pareto-optimal frontiers of these 
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different population size solutions provide a better solution to the 

problem than the baseline blade. The closest global optimum frontier is 

found by MOGAXL-100, however the distance between MOGAXL-100 

frontier and the MOGAXL-25 and MOGAXL-50 frontiers are 

comparably small compared to the convergence effect of population size 

on MOGA. Only one elite member of MOGAXL-100 is dominated by 

the other two solutions’ elite members. Concerning the diversity of the 

Pareto-optimal frontiers, it is found that the elite members of all 

solutions have a very good distribution in the objective space. Contrary 

to diversity suffering of MOGA by decreasing the population size, 

MOGAXL does not pose any performance degradation in terms of elite 

members’ diversity.  

 

Finally, the effect of population size is compared between MOGA and 

MOGAXL by studying a 50-individual population optimization case. 

Even in the low population size, MOGAXL clearly outperformed, 

converged to a better frontier, and a more diverse elite member 

distribution with much higher number of elite members.  
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