

APPROACHES FOR
MULTIOBJECTIVE COMBINATORIAL OPTIMIZATION PROBLEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NAĐL ÖZGÜR ÖZPEYNĐRCĐ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

INDUSTRIAL ENGINEERING

JANUARY 2008

ii

Approval of the thesis:

APPROACHES FOR
MULTIOBJECTIVE COMBINATORIAL OPTIMIZATION PROBLEMS

submitted by NAĐL ÖZGÜR ÖZPEYNĐRCĐ in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Industrial Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Nur Evin Özdemirel
Head of Department, Industrial Engineering

Prof. Dr. Murat Köksalan
Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Canan Sepil
Industrial Engineering Dept., METU

Prof. Dr. Murat Köksalan
Industrial Engineering Dept., METU

Prof. Dr. Sencer Yeralan
Agricaltural and Biological Engineering Dept.,
University of Florida

Assoc. Prof. Dr. Esra Karasakal
Industrial Engineering Dept., METU

Assoc. Prof. Osman Oğuz
Industrial Engineering Dept., Bilkent University

 Date:

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Last Name: Nail Özgür Özpeynirci

 Signature:

iv

ABSTRACT

APPROACHES FOR

MULTIOBJECTIVE COMBINATORIAL OPTIMIZATION PROBLEMS

Özpeynirci, Nail Özgür

Ph.D., Department of Industrial Engineering

Supervisor: Prof. Dr. Murat Köksalan

January 2008, 132 pages

In this thesis, we consider multiobjective combinatorial optimization problems. We

address two main topics. We first address the polynomially solvable cases of the

Traveling Salesperson Problem and the Bottleneck Traveling Salesperson Problem.

We consider multiobjective versions of these problems with different combinations

of objective functions, analyze their computational complexities and develop exact

algorithms where possible.

We next consider generating extreme supported nondominated points of

multiobjective integer programming problems for any number of objective functions.

We develop two algorithms for this purpose. The first one is an exact algorithm and

finds all such points. The second algorithm finds only a subset of extreme supported

nondominated points providing a worst case approximation for the remaining points.

Keywords: Multiobjective Combinatorial Optimization, Traveling Salesperson

Problem, Bottleneck Traveling Salesperson Problem, Computational Complexity,

Extreme Points, Approximation Algorithm.

v

ÖZ

ÇOK AMAÇLI KOMB ĐNATORYAL OPTĐMĐZASYON PROBLEMLERĐ

ĐÇĐN YAKLA ŞIMLAR

Özpeynirci, Nail Özgür

Doktora, Endüstri Mühendisliği Bölümü

 Tez Yöneticisi: Prof. Dr. Murat Köksalan

Ocak 2008, 132 sayfa

Bu tezde, çok amaçlı kombinatoryal optimizasyon problemleri üzerinde çalıştık.

Çalışmamızı iki ana başlıkta gruplayabiliriz. Đlk başlık, gezgin satıcı probleminin ve

darboğaz gezgin satıcı problemlerinin polinom çözülebilen durumlarıyla ilgilidir. Biz

bu problemlerin, farklı amaç fonksiyonlarının birleşkeleri olan çok amaçlı türevlerini

ele aldık, hesaplama karmaşıklıklarını analiz ettik ve mümkün olan durumlarda kesin

yordamlar geliştirdik.

Đkinci başlığımız, herhangi sayıda amaç fonksiyonu olan çok amaçlı tam sayılı

programlama problemlerinin destekli uç etkin noktalarını bulmakla ilgidir. Bu başlık

altında iki yordam geliştirdik. Đlki bu noktaların hepsini bulan bir kesin yordamdır.

Đkinci yordam ise bu noktaların bir alt kümesini bulmakta ancak kalan noktalar için

bir en kötü durum bilgisi sunmaktadır.

Anahtar Kelimeler: Çok Amaçlı Kombinatoryal Optimizasyon, Gezgin Satıcı

Problemi, Darboğaz Gezgin Satıcı Problemi, Hesaplama Karmaşıklığı, Uç Noktalar,

Yaklaşıklama Yordamı.

vi

To my love and my parents

vii

ACKNOWLEDGMENTS

I would like to thank my supervisor Prof. Dr. Murat Köksalan for his guidance and

advice in academic issues and beyond. I am extremely fortunate to have such a great

supervisor as him. I hope we will keep working together in the future.

Thanks Assoc. Prof Haldun Sural, Prof. Dr. Sencer Yeralan, Assoc. Prof. Esra

Karasal, Assoc. Prof. Canan Sepil and Assoc. Prof. Osman Oğuz for their valuable

comments throughout the study.

My lovely wife and my best friend Selin Özpeynirci was my endless support. We

lived the difficulties of being a graduate student together and we tried to understand,

help, and encourage each other.

I strongly felt the support and faith of my parents Suzan and Ali Rıza Özpeynirci in

every stage of my life. I deem myself blessed to have their presence and love. Also

I would like to thank my sister Dilek Kırbıyık.

I am grateful to all my colleagues, friends and managers in the Scientific and

Technological Research Council of Turkey (TÜBĐTAK) and especially the ones in

my department, KGO. It was a great pleasure for me to work in TÜBĐTAK. I would

like to express my gratitude to TÜBĐTAK for the scholarship provided during some

part of my graduate study.

I would like to thank Bora Kat, Oğuz Solyalı and Deniz Türsel Eliiyi for being kind

supportive and cheerful friends. I am grateful to all my professors and friends at

METU IE for their kindness.

viii

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ... v

ACKNOWLEDGEMENTS... vii

TABLE OF CONTENTS... viii

LIST OF TABLES... xi

LIST OF FIGURES.. xii

CHAPTER

 1. INTRODUCTION.. 1

 2. DEFINITIONS AND LITERATURE REVIEW.. 5

 2.1 Combinatorial Optimization.. 5

 2.2 The Traveling Salesperson Problem... 7

 2.3 Multiobjective Optimization... 10

 2.4 Approximation Algorithms for Multiobjective Problems..................... 15

 3. PYRAMIDAL TOURS AND MULTIPLE OBJECTIVES.......................... 17

 3.1 Introduction... 17

 3.2 Pyramidal Tours.. 17

 3.3 The Multiobjective TSP.. 20

 3.4 The Biobjective TSP... 28

 3.5 The Bottleneck TSP.. 32

 3.6 Discussions.. 34

 4. HALIN GRAPHS AND MULTIPLE OBJECTIVES.................................. 35

 4.1 Introduction... 35

 4.2 Definitions and Background.. 35

ix

 4.3 Multiple Objective TSP and BTSP on Halin Graphs............................ 39

 4.3.1 2-Σ TSP... 40

 4.3.2 1-Σ 1-max TSP.. 44

 4.3.3 2-max TSP.. 47

 4.3.4 p1-Σ p2-max TSP.. 48

 4.3.5 1-Σ p-max TSP.. 49

 4.3.6 p-max TSP.. 49

 4.4 Discussions.. 50

 5. AN EXACT ALGORITHM TO FIND ALL EXTREME SUPPORTED

NONDOMINATED POINTS IN MULTIOBJECTIVE

PROBLEMS.. 52

 5.1 Introduction... 52

 5.2 Algorithms for Biobjective Integer Problems....................................... 53

 5.3 The Algorithm of Przybylski, Gandibleux and Ehrgott (2007)............ 57

 5.4 An Exact Algorithm.. 58

 5.4.1 Additional Definitions.. 59

 5.4.2 The Algorithm.. 65

 5.5 Improvements on the Exact Algorithm... 75

 5.5.1 Nondominated Facets... 76

 5.5.2 Pre-Calculation... 79

 5.5.3 Queuing Disciplines... 80

 5.6 Computational Experiments.. 86

 5.6.1 The Test Problems.. 86

 5.6.2 Computational Results.. 90

 6. GENERATING AN APPROXIMATE SET OF EXTREME

SUPPORTED NONDOMINATED POINTS IN MULTIOBJECTIVE

PROBLEMS.. 98

 6.1 Introduction... 98

 6.2 CAN as an Approximation Algorithm... 99

 6.3 Lower and Upper Bound Sets for YE... 101

 6.4 An Approximation Algorithm... 104

 6.4.1 The Approximation Approach.. 105

x

 6.4.2 Steps of the Algorithm.. 107

 6.4.3 Calculation of the Proximity Measure.. 109

 6.5 Tightening the Lower Bound Set.. 112

 6.5.1 Stages with Dummy Points.. 113

 6.5.2 Nondominated Facet Defining Stages.. 113

 6.5.3 Shifting Partial Ideal Points.. 115

 6.6 Improvements on the Approximation Algorithm.................................. 115

 6.6.1 Pre-Calculation with Partial Ideal Points..................................... 116

 6.6.2 Queuing Discipline... 117

 6.6.3 Recovery Policy.. 119

 6.7 Computational Experiment... 120

 6.8 Discussions.. 124

 7. CONCLUSIONS... 125

REFERENCES... 128

CURRICULUM VITAE.. 132

xi

LIST OF TABLES

TABLES

Table 5.1 Results of Base ExA (p=3)... 92

Table 5.2 Results of Base ExA (p=4)... 92

Table 5.3 Results of the preliminary runs.. 93

Table 5.4 Results of Best ExA (p=3).. 95

Table 5.5 Results of Best ExA (p=4).. 95

Table 5.6 Comparison of PGE and Best ExA for AP (p=3)..................................... 96

Table 5.7 Percent of the search space visited... 97

Table 6.1 Results of ApA... 122

Table 6.2 Percent of points found by ApA... 123

Table 6.3 Performance of pmL2... 124

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Different types of points in objective space... 13

Figure 3.1 Plots of the tours.. 18

Figure 4.1 Constructing a Halin graph.. 36

Figure 4.2 Shrinking H to H(1)... 37

Figure 4.3 A Halin graph, H.. 39

Figure 5.1 An example iteration of CAN... 55

Figure 5.2 Properties of the example problem.. 61

Figure 5.3 The effect of the dummy points in the objective space.......................... 65

Figure 5.4 Steps of ExA... 67

Figure 5.5 Progress of ExA.. 72

Figure 5.6 Calculating a lower bound for M... 73

Figure 5.7 Tree structure of the example problem.. 82

Figure 5.8 Change in the E

E

Y

Y

′
 ratio for different queuing disciplines on a sample

problem.. 84

Figure 5.9 Change in the E

E

Y

Y

′
 ratio for different queuing disciplines on a sample

problem where Rules 1-4 are used... 85

Figure 5.10 First 100 points found by BF and DF.. 86

Figure 6.1 Approximation of CAN.. 100

Figure 6.2 Steps of ApA... 108

Figure 6.3 Effect of the new queuing discipline.. 119

1

CHAPTER 1

INTRODUCTION

Combinatorial optimization is a field of mathematical programming that has been

attracting researchers for many years. It has various potential applications in real life

problems. Some of these applications are radiation therapy, crew and resource

scheduling in airline operations, internet traffic routing, vehicle routing, and portfolio

optimization.

Classical combinatorial optimization problems deal with a single objective, whereas

many real life problems have several conflicting objectives. Hence, multiobjective

combinatorial optimization (MOCO) is a field of great interest due to its ability to

represent real life problems well. Combinatorial optimization problems are generally

difficult to solve, even with a single objective. Dealing with multiple objectives

further complicates these problems, since one has to consider the trade-offs and

conflicts between these objectives where there may be many solutions of interest.

In single objective optimization, there is a single optimal objective function value.

There might be alternative optimal solutions giving the same objective function value.

On the other hand, in multiobjective optimization, there are typically many “good”

solutions called nondominated solutions. They represent the trade-offs and conflicts

between the objectives. A decision maker (DM), or a group of DMs, who are the

2

owner(s) of the problem should evaluate these solutions and select the best one

according to their preferences.

The Traveling salesperson problem (TSP) is one of the most widely studied

combinatorial optimization problems in the literature. TSP aims to find the shortest

tour that visits each node exactly once and returns to the starting node on a given

graph. A variant of TSP is the Bottleneck TSP (BTSP), where the aim is to find the

tour whose longest edge is as short as possible. Both TSP and BTSP are difficult

problems in general. However, there are some special cases that are easy to solve.

The research on multiobjective TSP is limited compared to single objective TSP.

The main reason is the complexity of TSP even with a single objective. The

literature on multiobjective TSP mainly focuses on heuristic approaches for

biobjective TSPs. There are few studies dealing with BTSP for multiobjective

problems.

Some researchers classify the special cases of TSP and BTSP into two groups. The

first class deals with problems having special distance matrices. The problems with

special graph structures are in the second class. The special cases of TSP and BTSP

studied so far are all single objective problems and, to the best of our knowledge,

there is no study on their multiple objective versions.

We study two special cases, one from each class. The first one has a distance matrix

such that there is a set of constraints defined on the distances between cities. These

constraints ensure that the optimal tour has a special structure, i.e., it looks like a

pyramid when the numbers of the cities are plotted in the order they are visited by

the optimal tour. There is an exact algorithm that finds the optimal pyramidal tour

quite easily. We define the multiobjective versions of these problems, develop some

properties of nondominated solutions and propose an exact algorithm.

The second type has a special graph structure such in which only some roads

between cities are available. These graphs are called Halin graphs. There are exact

3

algorithms using the special structure of Halin graphs efficiently, and they find the

optimal tours of TSP and BTSP on Halin graphs easily. We define several

combinations of TSP and BTSP with multiple objectives on Halin graphs, develop

some properties of nondominated solutions, analyze the complexity of the problems,

and propose exact algorithms.

A nondominated solution is an extreme nondominated solution if it is not possible to

represent it as a convex combination of other nondominated solutions. Experimental

studies on the multiobjective knapsack problem (MOKP) showed that number of

nondominated solutions increases exponentially as the problem size increases.

Interestingly, the number of extreme nondominated solutions increases linearly for

the same problem. Hence finding only the set of extreme nondominated solutions

may be useful because these solutions also provide valuable information about the

trade-offs between the objectives. Finding the extreme nondominated solutions does

not require more effort to find all nondominated points.

There is an approach to find all extreme nondominated solutions for biobjective

problems. This approach systematically changes the weights of the objective

functions and solves single objective problems with a weighted sum objective

function. This approach is only applicable to biobjective problems due to their

special structure. We develop an exact algorithm that finds all extreme

nondominated solutions of a problem for any number of objectives, and apply it to

TSP and two other well-known combinatorial optimization problems, the Assignment

Problem (AP) and the Knapsack Problem (KP).

Although we develop an algorithm to find all extreme nondominated solutions, it

may still be a difficult task to generate them because the underlying single objective

problem may be difficult or the number of extreme nondominated solutions may be

large. In this case, we can try to find a subset of solutions that is a good

representation of all extreme nondominated solutions. For this purpose we define a

measure and develop an approximation algorithm. This algorithm finds a subset of

4

extreme nondominated solutions that represents the whole set at a desired quality.

We apply our approximation algorithm on a set of assignment problems.

This thesis consists of seven chapters. In Chapter 2, we review the literature and

give necessary definitions. In Chapters 3 and 4, we discuss the solvable special cases

of TSP and multiple objectives. In Chapter 3, we focus on multiobjective TSP and

pyramidal tours. We address TSP and BTSP on Halin graphs and extend it to

multiple objectives in Chapter 4. In Chapter 5, we explain our exact algorithm that

finds all the extreme nondominated solutions for a multiobjective problem for any

number of objectives. We develop an approximation algorithm that finds a subset of

extreme nondominated solutions in Chapter 6. We discuss further research

directions and conclude the thesis in Chapter 7.

5

CHAPTER 2

DEFINITIONS AND LITERATURE REVIEW

In this chapter, we give definitions related to combinatorial problems in general and

to the Traveling Salesperson Problem in particular. We introduce multiobjective

optimization and multiobjective combinatorial optimization problems with a review

of literature.

2.1 Combinatorial Optimization

Combinatorial optimization is a field of mathematical programming, which has been

attracting researchers for many years. It has various potential applications in real life

problems. Some of these applications are radiation therapy, crew and resource

scheduling in airline operations, internet traffic routing, vehicle routing, and portfolio

optimization. We refer to Ehrgott and Gandibleux (2002) for a discussion on such

real life applications.

Combinatorial optimization deals with combinatorial problems. The feasible set of a

combinatorial problem has a finite number of elements. Let E be the finite set

{ }1, ,= … mE e e and : →w E ℝ be a function assigning weights to the elements of E.

We assume that w is a vector of rational numbers. The feasible set of a

6

combinatorial problem is given by 2EX ⊂ as a power set of E. An objective

function f, which is to be minimized, is defined to for a feasible solution ∈x X . We

can write the combinatorial optimization problem as:

()min
x X

f x
∈

In general, there are two types of objective functions considered in combinatorial

optimization problems:

 () ()
e x

f x w e
∈

=∑ , and

 () ()max
e x

f x w e
∈

= .

The problem with the first type of objective function;

()min
∈ ∈
∑

x X
e x

w e

is called as the sum problem. The problem with the second type of objective

function;

()min max
∈ ∈x X e x

w e

is called as the bottleneck problem.

Combinatorial problems can also be formulated using binary variables. Let

{ }0,1
m

x∈ and

1 if

0 otherwise

∈
= 


i
i

e x
x

where x is a feasible solution. Using binary variables, problems can be defined as

1

min
m

i ix X
i

w x
∈ =
∑ , and

1min maxm
i i i

x X
w x=∈

where ()i iw w e= .

The assignment, knapsack, minimum spanning tree, shortest path, traveling

salesperson and set covering problems are well-known combinatorial optimization

7

problems. We refer to Nemhauser and Wolsey (1988) for the theory of

combinatorial optimization. Korte and Vygen (2002) review the theory and

algorithms on combinatorial optimization problems.

2.2 The Traveling Salesperson Problem

Let (),=G N E be a graph with the given set of nodes, { }1, ,= …N n and the set of

edges E. The node set may stand for the cities and the edge set for the roads directly

connecting the cities. For each e E∈ , a weight w(e) is given. This weight may

correspond to different objectives, such as duration, cost, distance, risk, etc.

associated with traversing the edge. A traveling salesperson starts a tour from a city,

visits all cities exactly once and returns to the city where the tour is started. Such a

tour is called a Hamiltonian tour. The problem is to find the Hamiltonian tour with

the minimum total weight.

Let ϕ be a Hamiltonian tour on G and let F denote the set of all Hamiltonian tours.

Using these definitions, TSP can be stated as:

() (): min subject to
ϕ

ϕ ϕ
∈

 
= ∈ 

 
∑
e

TSP f w e F.

We call above objective function as TSP-type objective function. An alternative

representation is as follows:

Let ϕ (i) represent the node succeeding node i in tourϕ . A tour can be represented

by ϕ =(1,i1,i2,…,in-1) where ϕ (1)=i1, ϕ (i1)=i2,…, ϕ (in-1)=1. Let d be the distance

matrix and d[i, j] denote the distance between nodes i and j. Then the length of tour

ϕ is () []
1

, ()
n

i

d d i iϕ ϕ
=

=∑ . TSP can be defined as:

1

min () [, ()]
ϕ

ϕ ϕ
∈ =

 = 
 

∑
n

F
i

d d i i .

8

To formulate a mathematical model of TSP, let e=(i,j) be the edge between nodes i

and j, w(e)=wij and introduce the binary decision variable xij where

()1 if edge , is used

0 otherwise
ij

i j
x

= 


Hence, the decision variable space is { }0,1
E

x X∈ = . If edge (i,j) is used in a tour,

then the traveling salesperson visits node j immediately after node i in that tour. The

integer programming formulation of TSP is as follows:

The aim is to minimize the total weight of the selected edges.

TSP:
(),

min ij ij
i j E

w x
∈
∑ .

The first constraint set ensures that the tour enters node j exactly once, for each node

∈j N .

(): ,

1 for ij
i i j E

x j N
∈

= ∈∑ .

The second constraint set ensures that the tour leaves node i exactly once, for each

node ∈i N .

(): ,

1 for ij
j i j E

x i N
∈

= ∈∑ .

The third constraint set eliminates all possible subtours. These constraints are called

subtour elimination constraints. Let U N⊆ . We define the third constraint set as:

(),

\

1 for 2 2ij
i j E

i U
j N U

x U N
∈

∈
∈

≥ ≤ ≤ −∑ .

The last constraint set defines decision variables as binary.

{ } ()0,1 for ,ijx i j E∈ ∈ .

9

It is possible to represent the subtour elimination constraints and TSP itself in

alternative ways. We refer to Punnen (2002a) for a discussion on the alternative

formulations.

In a variant of TSP, we are not interested in the total distance traveled by the

salesperson but in the maximum distance traveled between any two succeeding cities.

This problem is called as Bottleneck TSP (BTSP). We refer to Kabadi and Punnen

(2002) for a review of BTSP.

BTSP can be stated as:

() (){ }{ }: min max subject to
ϕ

ϕ ϕ
∈

= ∈
e

BTSP f w e F

We call above objective function the BTSP-type objective function. The BTSP-type

objective function can be handled in the mathematical formulation of BTSP by

defining the following constraint.

() for ,β≤ ∈ij ijw x i j E

BTSP can be formulated as:

BTSP: min β

Subject to

() for ,β≤ ∈ij ijw x i j E

(): ,

1 for ij
i i j E

x j N
∈

= ∈∑ .

(): ,

1 for ij
j i j E

x i N
∈

= ∈∑ .

(),

\

1 for 2 2ij
i j E

i U
j N U

x U N
∈

∈
∈

≥ ≤ ≤ −∑

{ } ()0,1 for ,ijx i j E∈ ∈ .

10

TSP and BTSP are both NP-Hard problems. For an overview of the complexity

results for TSP, we refer to Punnen (2002b). Kabadi and Punnen (2002) discusses

the complexity results for BTSP.

Although TSP and BTSP are NP-Hard in general, there are special cases of TSP and

BTSP that are solvable in polynomial time. These are not trivial cases and special

algorithms are developed to solve them optimally. Deineko and Woeginger (2000)

discuss the combinatorial nature of the solution spaces of several such TSPs. We

refer the reader to the surveys of Kabadi (2002), Burkard et al. (1998), and Gilmore,

Lawler, and Shmoys (1985) for further information.

Polynomially solvable cases of TSP and BTSP can be classified under two main

categories:

(i) those having a special distance matrix, and

(ii) those that have a special graph structure.

In the first category, the graphs are complete graphs and a set of restrictions is

defined over the edge weights. Whereas in the second one, there are restrictions on

the graph structure but no restrictions are imposed on edge weights.

The studies on special cases mainly focus on TSP rather than on BTSP. However,

there are a number of papers on special cases of BTSP. See for example Phillips,

Punnen and Kabadi (1998), Van der Veen (1993), and Burkard and Sandholzer

(1991). Vairaktarakis (2003) considers a polynomially solvable TSP and shows that

the corresponding BTSP is NP-Hard.

We refer to the books of Gutin and Punnen (2002) and Lawler et al. (1985) for

further information on TSP and BTSP.

2.3 Multiobjective Optimization

In classical optimization problems, there is a single objective function and the aim is

to find a solution that optimizes the objective function value. However, many real

11

life problems have several objectives and decisions should be made by considering

these objective functions simultaneously.

Typically, different objectives are conflicting with each other and a solution that

performs well in one objective will not perform as well in other objectives. There

are many solutions that do not outperform each other in all objectives. It is not clear

which of these solutions are better until the decision maker (DM) or a group of DMs

evaluates them.

A multiobjective problem (MOP) can be written as

() () ()()1 2" " C , , ,

 . .

pmin x f x f x f x

s t x X

=

∈

…

where ∈ℝnx is a feasible solution and X is the set of all feasible solutions. In this

problem, there are p objective functions to be minimized and C is a p n× matrix.

The qth row of C corresponds to the qth objective function, ()qf x . We use the

quotation marks since vector minimization is not a well-defined mathematical

operation.

The point ()1, ,
T p

py y y= ∈… ℝ such that y Cx= is the outcome of the solution

x X∈ . The sets X and { }: ,= ∈ = ∈ℝ
pY y y Cx x X are called the decision space and

the objective (criterion) space, respectively. All vectors in objective space are

column vectors of dimension 1p× . For the sake of simplicity, we drop the transpose

figure in our notation.

We assume that there exists no point y Y∈ that minimizes all objective functions

simultaneously to avoid a trivial case. Hence we are interested with a set of “good”

points instead of a single optimal solution. We use the dominance concept to define

“good” points. We can consider the dominance concept as the multiobjective

counter part of the optimality concept.

12

Point y is said to dominate point ′y if and only if ′≤q qy y for all q and ′<q qy y for at

least one q. If ′<q qy y for all q then y is said to strictly dominate ′y . If there exists

no y Y′∈ such that ′y dominates y, then y is said to be nondominated. A point y is

said to be weakly nondominated if and only if there exists no point y Y′∈ such that

′>q qy y for all q. The set of weakly nondominated points includes all nondominated

points and some special dominated points.

Let NDY denote the set of nondominated points. The point ()1 , ,ideal ideal ideal
py y y= … is

said to be the ideal point where { }
ND

ideal
q q

y Y
y min y

∈
= . Similarly, the nadir point is

defined as ()1 , ,nadir nadir nadir
py y y= … where { }

ND

nadir
q q

y Y
y max y

∈
= .

Let NDy Y∈ and convy be a convex combination of the nondominated points except y.

That is;

{ }\k
ND

conv k k

y Y y

y w y
∈

= ∑ ,
{ }\

1
k

ND

k

y Y y

w
∈

=∑ and { }0 for \k k
NDw y Y y≥ ∈ .

Using these definitions, we define three types of nondominated points. A point

NDy Y∈ is said to be

• an extreme supported nondominated point if and only if there exists no convy

such that convy y≤ ,

• a nonextreme supported nondominated point if and only if there exists a convy

such that convy y= ,

• an unsupported nondominated point if and only if there exists aconvy such that

convy y< .

The terms dominance and efficiency are counterparts of each other in the objective

and decision spaces, respectively. A solution x X∈ is said to be efficient if and only

if y Cx= is nondominated and solution x X∈ is inefficient if and only if y Cx= is

13

dominated. A solution x X∈ is weakly efficient if and only if y Cx= is weakly

nondominated. Similarly, we can define extreme supported efficient, nonextreme

supported efficient and unsupported efficient solutions. We refer Steuer (1986) for

an overview of the multiple criteria optimization theory, methodology and

applications.

In Figure 2.1, y1, y2, y6, and y7 are extreme supported nondominated points, y3 is

nonextreme supported nondominated point, and y4 is unsupported nondominated

point. Points y0 and y8 are weakly nondominated but dominated. Point y5 is strictly

dominated.

Figure 2.1 Different types of points in objective space

Throughout the thesis, we discuss our results mainly in the objective space and use

EY for the set of extreme supported nondominated points. We should note that more

than one efficient solution may correspond to the same nondominated point. In such

cases, it is sufficient for our purposes to find only one of those efficient solutions.

14

A multiobjective integer programming problem (MOIP) with p objective functions

can be written as:

() () ()()1 2" " C , , ,

 . .

pmin x f x f x f x

s t x X

=

∈

…

where { }, 0,X Ax b x x= ≤ ≥ ∈ℤ . A is a m n× matrix and mb∈ℝ . The solution of

the problem, nx∈ℤ is the integer decision variable vector. Without loss of

generality, we assume that () 0qf x > and ()qf x ∈ℤ for 1,...,q p= and for all

x X∈ . Suppose () 0<qf x for some q and x X∈ , then we can shift the objective

function value by adding a positive constant, shift
qc which satisfies ()() 0+ >shift

q qf x c

for 1,...,q p= and for all x X∈ . Similarly, suppose ()∉qf x ℤ , then we can

multiply the objective function value by a positive constant, multiply
qc , so that the

condition ()()∈multiply
q qc f x ℤ is satisfied.

In a multiobjective combinatorial optimization (MOCO) problem, p weights are

associated with each element of E. The weight of element e in objective q (q=1,…,p)

is denoted by ()qw e . The value of a solution x in objective q is () qf x . A MOCO

problem can be defined as:

() () () ()()1 2"min" , , ,
∈

= … p
x X

f x f x f x f x

where () qf x is a sum or a bottleneck objective. Ehrgott and Gandibleux (2000,

2002) review the MOCO theory, methodology and applications.

Multiobjective TSP and BTSP are examples of MOCO problems. In these problems,

each edge is represented by several weights. These weights may correspond to

different objectives such as cost, distance, risk, etc. associated with traversing an

edge. Using the classification scheme of Ehrgott and Gandibleux (2002), a MOCO

problem with p objectives can be denoted as p-Σ TSP if all objectives are TSP-type

and p-max TSP if all objectives are BTSP-type. The notation p1-Σ p2-max TSP

stands for a MOCO problem with p1 TSP-type and p2 BTSP-type objectives.

15

There are some recent studies on multiobjective TSP and BTSP. Some of these are

heuristic approaches, some are local search methods, and some are exact algorithms.

Ehrgott and Gandibleux (2002) review some of these approaches.

The number of efficient solutions is another important issue in MOCO problems.

Finding all efficient solutions of a problem is said to be intractable if the number of

efficient solutions may (potentially) increase exponentially as the size of the problem

increases. It is known that p-Σ TSP is intractable for 2p ≥ (see Ehrgott, 2000).

In single objective optimization, enumerative algorithms, such as branch and bound

or dynamic programming, use lower and upper bounds during their search. Using

tighter bounds may decrease the size of the search space and the time required to find

the optimal solution. Similarly we can use bounds in enumerative algorithms for

multiobjective optimization. The ideal and nadir points as defined earlier in this

section can be used as lower and upper bounds for the nondominated point set,

respectively. However, these bounds may not be very useful in reducing the search

space because the ideal and nadir points may be far away from the nondominated

points set. Due to this, using a set of points instead of a single point may be more

useful in reducing the search space. These sets are called bound sets. We refer to

Ehrgott and Gandibleux (2007) for a discussion on the bound sets.

2.4 Approximation Algorithms for Multiobjective Pro blems

Many multiobjective approaches attempt to find all nondominated points (or efficient

solutions). However this can be a difficult task if finding such points is time

consuming, or if the number of such points is large, i.e., the problem may be

intractable. It may be reasonable to generate a set of points that represents the

nondominated points well. This set provides useful information to the DM, although

not as complete as the whole nondominated set. The points in this set may be

nondominated points (found by an exact algorithm) or approximations (found by a

heuristic approach) of the nondominated points.

16

Cohon (1978) proposed an exact approximation algorithm for MOIPs with two

objectives. Solanki, Appino and Cohon (1993) proposed an exact approximation

algorithm for MOLPs with three or more objectives. We refer to Ruzika and Wiecek

(2005) and Ehrgott and Gandibleux (2004) for exact and heuristic approximation

algorithms for multiobjective optimization problems, respectively.

17

CHAPTER 3

PYRAMIDAL TOURS AND MULTIPLE OBJECTIVES

3.1 Introduction

In this chapter, we work on TSP and BTSP that have special matrix structures and

lead to polynomially solvable cases. We extend the problems to multiple objectives

and investigate the properties of nondominated points. We develop a pseudo-

polynomial time algorithm to find a nondominated point for any number of

objectives. Finally, we propose an approach to generate all nondominated points for

the biobjective case. To the best of our knowledge, there exists no other study that

addresses the polynomially solvable special cases of the multiobjective TSP.

3.2 Pyramidal Tours

A tourρ is pyramidal if starting from node 1, a set of nodes are visited in ascending

order up to node n and the remaining nodes are visited in descending order.

Formally, tourρ is called pyramidal ifρ =(1,i1,i2,…,ik,n,j1,j2,…,jm) such that

1<i1<i2<…<ik<n and n>j1>j2>…>jm>1.

18

Consider two tours, ()1,2,5,6,4,3ρ = and ()1,2,5,4,6,3ϕ = . In Figure 3.1, we plot

the node numbers in the order they are visited. The plot of tour ρ (Figure 3.1a)

looks like a pyramid and it has only one peak. Tour ρ is a pyramidal tour. On the

other hand, the plot of tour ϕ has two peaks and ϕ is a non-pyramidal tour.

a) A pyramidal tour b) A non-pyramidal tour

Figure 3.1 Plots of the tours

In this chapter, we use the notation [],d i j instead of ijw in order to differentiate

between node indices and the objective function index. A complete graph has an

edge directly connecting each pair of nodes. If the cost of traversing an edge is

independent of the direction of the traverse for all edges (i.e., [] [], ,d i j d j i= for all

(i,j) pairs) then the graph is said to be undirected (symmetric). If [] [], ,d i j d j i≠ for

some (i,j) pair then the graph is said to be directed (asymmetric). We mainly use the

term edge for the undirected graphs and arc for the directed graphs. Gutin, Yeo and

Zverovitch (2002) prove that the number of pyramidal tours is 2n-3 in an undirected

complete graph and 2n-2 in a directed graph. In both cases, the number of pyramidal

tours is an exponential function of the number of nodes, n. Let PYRF be the set of all

19

pyramidal tours for a given graph. By definition, PYRF F∈ where F is the set of all

tours.

Although the number of pyramidal tours is exponential in n, finding the shortest

pyramidal tour for any distance matrix has a complexity of O(n2) using the dynamic

program given in Gilmore, Lawler and Shmoys (1985). Let PYRD denote the family

of distance matrices for which a pyramidal tour is optimal. Then, for any matrix in

PYRD , TSP is polynomially solvable.

Tour improvement (TI) technique is a proof technique developed by Van der Veen

(1994). TI is used to prove that for a class of matrices in PYRD , the optimal tour is

pyramidal. TI starts with an initial tour and iterates by exchanging a set of arcs with

others to obtain a new tour and generates a sequence of tours without increasing the

tour length. The new tour’s length must be at most as large as that of the previous

tour in order for this exchange to be a feasible transformation. TI is a framework of

feasible transformations that needs to be developed for each class of matrices in

PYRD . A feasible transformation for a class may not be feasible for another.

There are different classes of distance matrices in PYRD that have been defined in the

literature. There are symmetric and asymmetric matrices in PYRD . Burkard et al.

(1998) applied TI technique to Monge, Supnick, Demidenko, Kalmanson, Van der

Veen matrices and generalized distribution matrices. Let TI PYR∈D D denote the set

of matrix classes for which TI technique can be applied.

Note that, for a matrix in TID , a non-pyramidal tour ϕ may also be optimal, giving

the same length as the optimal pyramidal tour. A trivial case is a TSP where all arc

lengths are equal. TI technique implies that there exists at least one pyramidal tourρ ,

that can be obtained from ϕ by applying a sequence of feasible transformations. If

ϕ is optimal, ρ should also be optimal. This is possible if all feasible

transformations used to obtain ρ from ϕ keep the tour length unchanged, i.e. none

20

of the feasible transformations improve the tour length. By definition, feasible

transformations cannot increase the tour length. On the other hand, if all possible

feasible transformations strictly decrease the tour length, then a non-pyramidal tour

cannot be optimal, since for every non-pyramidal tour, there exists at least one

pyramidal tour that has a strictly shorter length.

A matrix that is in PYRD may not be readily recognizable and may require a

renumbering of the nodes to be recognized. There are polynomial time algorithms

for recognizing some of these matrices in PYRD (see, for example, Burkard and

Deineko, 2004, and Burkard, Klinz and Rudolf, 1996).

3.3 The Multiobjective TSP

In multiobjective problems, nondominated points are important. The ability to find

nondominated points is an important challenge in multiobjective combinatorial

problems, many of which are NP-Hard. We first present some properties of the

nondominated points for multiobjective TSPs having distance matrices in TID . We

then address finding nondominated points for these problems.

Let us define qd as the qth distance matrix, [],qd i j as the length of arc (i,j) in qth

objective function, and ()qd ϕ as the length of tour ϕ in qth objective function. The

point () () ()()1 , , pd d dϕ ϕ ϕ= … is in the objective space and corresponds to tour ϕ .

Theorem 3.1. If all distance matrices are in the same class of TID , then for each

non-pyramidal tour there exists at least one pyramidal tour that is at least as good in

every objective and possibly better in some objectives.

Proof: Since we assume that all distance matrices are in the same class of TID , any

feasible transformation does not increase the tour length in any of the objectives. In

the worst case, TI results with a pyramidal tour having equal lengths in all objectives

21

to those of the initial tour. If any of the feasible transformations used in any of the

objectives is positive, then the resulting pyramidal tour dominates the initial tour. □

Corollary 3.1. If all distance matrices are in the same class of TID , there exists a

pyramidal tour corresponding to each nondominated point.

Proof: Follows directly from Theorem 3.1. □

Corollary 3.2. If all distance matrices are in the same class of TID , and all feasible

transformations in all distance matrices are improving, then each non-pyramidal tour

is strictly dominated by at least one pyramidal tour.

Proof: Follows directly from Theorem 3.1. □

Example. The following Van der Veen matrix, VDV TI∈D D shows that there may be

pyramidal tours strictly better than any other tour. The pyramidal tour ρ =(1,2,3,4)

is shorter than any other tour for the following matrix. Therefore, no tour can be as

good as ρ for this objective.

0 1 2 3

1 0 4 7

2 4 0 3

3 7 3 0

VDV TId

 
 
 = ∈ ∈
 
 
 

D D

Remark. If distance matrices belong to different classes inTID , then a non-

pyramidal tour may correspond to a unique nondominated point.

Consider the following TID matrices (Van der Veen, 1994) where 1 VDVd ∈ D and

2 DEMId ∈ D (Demidenko matrix).

22

1

0 4 2 4

4 0 0 1

2 0 0 0

4 1 0 0

 
 
 = ∈
 
 
 

VDVd D and 2

0 4 4 2

4 0 1 0

4 1 0 0

2 0 0 0

DEMId

 
 
 = ∈
 
 
 

D

1 (1,2,3,4)ρ = , 2 (1,2,4,3)ρ = and (1,4,2,3)ϕ = are all possible tours where the set of

pyramidal tours is { }1 2,PYRF ρ ρ= . The tour lengths are ()1d ρ =(8,7), ()2d ρ =(7,8)

and ()d ϕ =(7,7), respectively. ()d ϕ dominates both ()1d ρ and ()2d ρ , hence it is

the only nondominated point for these two matrices.

Let () () ()()1 , ,q q q
pd d dρ ρ ρ= … be the point corresponding to shortest pyramidal

tour qρ with respect to qth distance matrix, i.e, () ()q
q qd dρ ρ≤ for any PYRFρ ∈ .

Theorem 3.2. If distance matrices belong to different classes in TID , then ()qd ρ is

weakly nondominated.

Proof: Since qρ is the shortest tour in objective q, ()qd ρ is weakly nondominated.

However, ()qd ρ may be dominated as demonstrated in Remark. □

For p-Σ TSP, finding nondominated points is an important problem. We may wish to

find all nondominated points or a subset that could be of interest to the DM.

Let us define a convex combination of p matrices that are in the same class of TID

as:

p

1 q=1

. , 1 and 0 1,...,
p

q q q q
q

d d q pµ µ µ µ
=

= = ≥ =∑ ∑ .

In the following theorem we prove that this matrix is also in the same class ofTID .

Theorem 3.3. If all distance matrices are in the same class of TID , then any convex

combination of these matrices is also in the same class of TID .

23

Proof: Currently existing classes of TID are defined with inequalities like

[] [] [] []1 2 3 4 5 6 7 8, , , ,q q q qd i i d i i d i i d i i+ ≤ + for some q and i1,…,i8 or,

[] [] [] [] [] []1 2 3 4 5 6 7 8 9 10 11 12, , , , , ,q q q q q qd i i d i i d i i d i i d i i d i i+ + ≤ + + for some q

and i1,…,i12

Since all convex combinations of these types of inequalities hold for all possible

i1,…,i12 used in the class definition, we conclude that all convex combinations are

also in the same class. □

By convex combination of matrices, p-Σ TSP becomes a single objective TSP. For a

given µ vector, an extreme supported nondominated point can be found using the

DP given by Gilmore, Lawler and Shmoys (1985). We refer to this DP as ()GLSDP d

where d is distance matrix. All extreme supported nondominated points can be

found by choosing suitableµ vectors. In the next section, we show a method for

determining suitable µ for 2-Σ TSP. In Chapter 5, we develop a method for

determining suitable µ vectors for MOIPs with any number of objective functions.

Let us define the following two problems, ()kP and ()ε
kP for kth objective function.

Let
1

ε ε
=
≠

= + ∑
p

k k q
q
q k

d d d be a distance matrix. Given a set of upper bounds by Bq ≠q k ,

()kP finds the solution with shortest possible tour length in objective k. ()ε
kP , on the

other hand, finds a tour corresponding to a nondominated point and satisfying

constraints (1) and (2).

1

() [, ()]ϕ
=
∑

n

k k
i

P min d i i

1

 () [, ()] ϕ ϕ
=

= ≤ ∀ ≠∑
n

q q q
i

st d d i i B q k (1)

 ϕ ∈ F (2)

24

where F is the set of all Hamiltonian tours and Bq is an upper bound for objective q.

Let ()1 1 1,..., , ,...,k k pB B B B B− += be the vector of upper bounds, Bq for criteria q≠p.

()
1

 [, ()]

 (1) and (2)

n

k k
i

P min d i i

st

ε ε ϕ
=
∑

Let ky∗ be the optimal solution of problem()kP and ()1 ,..., py y y∗ ∗ ∗= be the vector of

tour lengths for the optimal tour of problem()kP . Similarly, for problem ()ε
kP , let

ky ε∗ and ()1 ,..., py y yε ε ε∗ ∗ ∗= be the optimal solution and optimal tour length vector,

respectively. Note that, different solutions can be obtained by changing ε in ()ε
kP .

The ε value should be positive to avoid dominated points but small enough to

ensure k ky yε∗ ∗= . Steuer (1986) showed an appropriate interval for the ε value for

the augmented weighted Tchebycheff program. For our case, the appropriate value

of ε can be determined through Theorem 3.4.

Theorem 3.4. Let ()1 ,..., py y y∗ ∗ ∗= , ()1 ,..., py y yε ε ε∗ ∗ ∗= be the optimal solutions to

()kP and ()ε
kP , respectively, and ()1,..., py y y= be any nondominated point

satisfying (1) and (2). Then for any () 1

0, max εε
−

∗
≠∈

 
 ∈ −  

 
∑ q qq ky S

y y we have

k ky yε∗ ∗= where () () (){ }1 2 k kS y yε∗= ∩ ∩ > .

Proof: It is known that y ε∗ is a nondominated point for any 0ε > .

As ε value increases, the relative importance of kth objective decreases. Increasing

the ε value does not improve ky ε∗ . Then, ε should be small enough to ensure

k ky yε∗ ∗= . This implies,

k q k q
q k q k

y y y yε εε ε∗ ∗

≠ ≠

+ < +∑ ∑ (3)

for all nondominated points satisfying k ky y∗> , (1) and (2).

25

Since (3) needs to hold for all nondominated points satisfying k ky y∗> , ky ε∗ cannot be

greater than ky∗ , thus k ky y ε∗ ∗≥ . It is impossible to have k ky y ε∗ ∗> . Hence, k ky yε∗ ∗= .

If we can find suitable a ε satisfying inequality (3), we can rewrite it as

q q k k
q k

y y y yε εε ∗ ∗

≠

 − < − ∑

We have two cases:

(i) If 0q q
q k

y yε∗

≠

 − > ∑ then k k

q q
q k

y y

y y

ε

εε
∗

∗

≠

−<
 − ∑

.

Since the minimum possible value for 1k ky y ε∗− = assuming (without loss of

generality) that all edge lengths are integers, we need

1

q q
q k

y yεε
∗

≠

<
 − ∑

.

A general bound over all nondominated points is then

1

max q q
y S

q k

y yε

ε
∗

∈ ≠

<
 

 −  
 
∑

where

() () ()1 2 0k k q q
q k

S y y y yε ε∗ ∗

≠

 
 = ∩ ∩ > ∩ − >  

 
∑

(ii) If 0q q
q k

y yε∗

≠

 − ≤ ∑ then setting 0ε ≥ is sufficient. Since k ky yε∗ < and

q q
q k q k

y yε∗

≠ ≠

≤∑ ∑ , we have

k q k q
q k q k

y y y yε εε ε∗ ∗

≠ ≠

+ < +∑ ∑ for any 0ε ≥ .

The range is defined as:

() 1

0, max q qq ky S
y yεε

−
∗

≠∈

 
 ∈ −  

 
∑ where () () (){ }1 2 k kS y yε∗= ∩ ∩ > □

26

The above theorem gives the upper bound () 1

max εγ
−

∗
≠∈
 = − ∑k q qq ky S
y y for ε for

objective k. By taking the minimum γ k , we generalize the upper bound for all

objectives as follows.

Corollary 3.3. Replacing the range of ε with ()0,minε γ∈ k
k

 in Theorem 3.4, the

theorem is generalized for any number of objective functions.

To determine the above range, we need to know the set of nondominated points.

This set may not be readily available, but this is not a problem in practice. A trivial

upper bound for ε can be obtained by finding the total length of the longest n arcs,

say UBq, and substituting qy for q
qy , the shortest tour length in objective q, using

q
q qq

UB y − ∑ . Then the range () 1

0, q
q qq

UB yε
−  ∈ −   

∑ is a practical and valid

range.

We develop a dynamic program to find the optimal pyramidal tour that solves ()ε
kP .

We define a state variable vector ()1 1 1,..., , ,...,k k pR R R R R− += . qR corresponds to the

remainder or the unconsumed portion of bound qB by the partial tour constructed so

far. Initially R B= and as DP moves to inner stages, R decreases.

The DP we developed is quite different than GLSDP . Given a distance matrix, GLSDP

finds the shortest pyramidal tour considering a single objective function. On the other

hand, our DP considers multiple objective functions by imposing upper bounds to all

but one objective. The DP either finds the shortest pyramidal tour that does not

violate the upper bounds or reports that no such tour exists.

Let (), ,C i j R be the length of the shortest Hamiltonian path with respect to the kth

distance matrix from i to j on cities 1,2,…,max{ i,j} that visits a subset of these nodes

in a descending order from i to 1 and the remaining nodes in ascending order from 1

27

to j without violating the bounds, R . (), ,C i j R finds the shortest pyramidal path in

criterion k from i to j while the bounds qR for ≠q k , are not violated. Let M be a

sufficiently large number, i.e., []{ }
,

.max ,> k
i j

M n d i j . At state (), ,C i j R , there are

five possible cases. If any of the upper bounds is violated then the corresponding

component of R vector is negative. In this case (Case 1), DP returns M value for the

current state. If |i-j|>1 and the bounds are not violated then we consider Cases 2 or 4.

In both cases, the selection of the next state is straight forward in order to keep the

path pyramidal. In Case 2, arc (j-1,j) is added to the path. In Case 4, arc (i,i-1) is

added to the path. In Cases 3 and 5, |i-j|=1 and the bounds are not violated. In these

cases, the selection of the next state is not straight forward. The minimum valued

state is selected among the possible states. In all cases except for the first one, the

remaining bounds are updated according to the selection of the next state.

()
[]() []

[]() []{ }

1) if 0 for any

2) , 1, 1, 1, for -1 and 0

, , 3) , , , , for -1 and 0

4) 1

ε

ε

<

<

− − − + − < ≥ ∀ ≠

= − + = ≥ ∀ ≠

−

q

k q

k q
l i

M R q

C i j R d j j d j j i j R q k

C i j R min C i l R d l j d l j i j R q k

C i []() []
[]() []{ }

, , , 1 , 1 for 1 and 0

5) , , , , for 1 and 0

ε

ε

<

 
 
 
 
 
 
 
 − − + − > + ≥ ∀ ≠
 
 − + = + ≥ ∀ ≠
 

k q

k q
l j

j R d i i d i i i j R q k

min C l j R d i l d i l i j R q k

Number of states in this DP is 2

1=
≠

 
 
  
 

∏
Q

q
q
q k

O n B . The number of states is a function of

the magnitudes of the upper bounds. Hence, this DP has pseudo-polynomial

complexity. The optimal objective function value to ()ε
kP is given by

() () []{
() []}

k , , 1, , [, 1] , 1 ,

 , 1, [1,] 1, .

ε ε

ε

= − − − + −

− − − + −

k

k

DP d B d min C n n B d n n d n n

C n n B d n n d n n

Note that in ()k , ,DP d B dε , kdε is a distance matrix, B is a vector of upper bounds, d

is a vector of distance matrices, and d[i,j] is the vector of arc lengths. If there is no

28

feasible solution for the given bounds, then the DP will return an objective function

value of at least M. This DP finds the shortest pyramidal tour for any distance matrix.

The ranges developed for ε value in Theorem 3.4 and Corollary 3.3 are valid in

general. If all distance matrices are in the same class of TID , as stated in Theorem

3.1, then the optimal tour to ()ε
kP is obtained.

All nondominated points can be found by this DP by changing the qB values. In the

next section, we propose an approach for finding all nondominated points for the

biobjective TSP.

The above DP can be used for both symmetric and asymmetric matrices. If all

distance matrices are symmetric then DP can be simplified as follows:

() []() []
[]() []{ }

 if 0 for any

, , , 1, 1, 1, for -1 and 0

, , , , for -1 and

q

k q

k
l i

M R q

C i j R C i j R d j j d j j i j R q k

min C i l R d l j d l j i j R

ε

ε

′<

<

′ ′ ′ ′ ′ ′ ′ ′= − − − + − < ≥ ∀ ≠

′ ′ ′ ′ ′− + = 0 q q k

 
 
 
 
 

≥ ∀ ≠  

where min(,)i i j′ = and max(,)j i j′ = . In this case, the optimal objective function

value also simplifies to

() () []k , , 1, , [, 1] , 1kDP d B d C n n B d n n d n nε ε= − − − + − .

3.4 The Biobjective TSP

We develop an approach to generate all nondominated points for the biobjective TSP.

We first find the extreme supported nondominated points by using the weighting

scheme proposed by Aneja and Nair (1979). Then we search for the nonextreme

supported nondominated and unsupported nondominated points between each

adjacent pair of extreme supported nondominated points.

We define nonextreme supported nondominated and unsupported nondominated

points as nonextreme nondominated points, because we do not need to differentiate

29

between these two types of points in our method. Let YE and YNE be the sets of

extreme supported nondominated points and nonextreme nondominated points,

respectively.

Consider the optimal objective function values of the single objective TSPs,

()minq
q q

F
y d

ϕ
ϕ

∈
= , and let ϕ q be the corresponding optimal tours for q=1, 2. Let

()1 1
2 2y d ϕ= , ()2 2

1 1y d ϕ= , ()1 1 1
1 2,y y y= and ()2 2 2

1 2,y y y= . Without loss of

generality, assume that 1 2
1 1y y< and 1 2

2 2y y> . If 1 2y y= or 1 2y y≤ or 2 1y y≤ then

there is a unique nondominated point and the problem is trivial.

Theorem 3.5. Using ε in the range
1 2 2 1
2 2 1 1

1 1
0,min ,

y y y y

  
   − −  

is sufficient to

avoid nondominated points in problem()ε
kP .

Proof: Follows directly from Theorem 3.4. □

Note that both points 1y and 2y can be weakly nondominated. The nondominated

points, q effy − having q q eff
q qy y −= q=1,2 can be determined by the DP we developed.

Using these points a larger upper bound for ε can be obtained.

Corollary 3.4. The upper bound for ε can be replaced by the following term:

1 2 2 1
2 2 1 1

1 1
min ,

eff effy y y y− −

 
 − − 

.

Proof: The points 1y and 2y may be weakly nondominated. An overestimated range

(for nondominated points) is obtained by the denominator term using 1y and 2y . If

nondominated points are used in the denominator, the range (for nondominated

points) may decrease and the upper bound value for ε may increase. □

30

We define two algorithms to find all points in YE; (),a bRecursive y y and A1.

(),a bRecursive y y finds all extreme supported nondominated points between two

given extreme supported nondominated points ay and by . A1 solves ()1Pε and

()2Pε . If two different solutions are obtained in A1 then (),a bRecursive y y is called.

DP(dq) finds the shortest pyramidal tour with respect to distance matrix dq and

returns the point ()1 2,y y y=

We can obtain the extreme supported nondominated points in O(n2) using distance

matrices 1dε and 2dε . The extreme supported nondominated points can be

determined by changing the weight µ of matrix ()1 21d d dµ µ µ= + − , ()0,1µ ∈ and

applying ()GLSDP dµ for the resulting single objective problem. For each weight set,

a solution is obtained in O(n2).

A1

Initialization: Set EY = ∅ .

Step 1. Solve ()1GLSDP dε , let the optimal point be 1y .

Step 2. Solve ()2GLSDP dε , let the optimal point be 2y .

Step 3. If 1 2
1 1y y< and 2 1

2 2y y< then go to Step 5 else go to Step 4.

Step 4. If 1 2y y= then single optimal solution is 1y , { }1
EY y= , go to Step 7.

Step 5. { }1 2,EY y y= .

Step 6. Call Recursive ()1 2,y y .

Step 7. Terminate the algorithm.

Recursive (),a by y

Step 1. Set () ()
2 2

1 2 1 2

a b

a a b b

y y

y y y y
µ −=

− − −
.

31

Step 2. Set ()1 21d d dµ µ µ= + − .

Step 3. Solve ()GLSDP dµ , let the solution be newy .

Step 4. If { } { }new new
EY y y∩ = then go to Step 5

else

 { }new
E EY Y y= ∪ ,

 Call Recursive (),a newy y ,

 Call Recursive (),new by y .

Step 5. Terminate the algorithm.

If 2EY ≥ then we search for the nonextreme nondominated points using the DP we

developed. Since there are only two objectives, we use the state variable (), ,C i j R

where R is a scalar. For each consecutive extreme supported nondominated point

pair in YE, nonextreme nondominated points should be searched between them. A

point is obtained in O(n2B) where B is the upper bound on one of the objectives.

Without loss of generality, we select to use the second objective as a bound and

minimize the augmented version of the first objective. Algorithm A2 is used to find

all nonextreme nondominated points in YNE. We refer to our DP as ()1 2 2, ,DP d B dε

where 1dε and 2d are distance matrices and B2 is a scalar.

A2

Initialization: Set NEY = ∅ .

 Sort elements of YE, such that [][1] [2]
1 1 1... EYy y y< < < .

 Set r=1.

Step 1. Solve DP2()[]
1 2 2, 1,rd y dε − , let the resulting point be y .

Step 2. If [1]ry y += then r=r+1.

If Er Y= then go to Step 6 else go to Step 1.

Step 3. { }NE NEY Y y= ∪ .

32

Step 4. If []
2 21 ry y− = z2-1= []

2
rz then r=r+1, go to Step 1.

Step 5. Solve ()[]
1 2 2, 1,rd y dε − , let the resulting point be y , go to Step 2.

Step 6. Terminate the algorithm.

The set of nondominated points is ND E NEY Y Y= ∪ . We can find a nondominated

point satisfying the given bound with a pseudo-polynomial DP. However, the

complexity of identifying all nondominated points is still an open problem.

3.5 The Bottleneck TSP

The optimal pyramidal tour for the Bottleneck TSP can be found in O(n2) with a

small modification in DP. Burkard and Sandholzer (1991) studied the polynomially

solvable special cases of the Bottleneck TSP. They presented several conditions for

pyramidally solvable Bottleneck TSPs.

One may be curious to know whether some results on pyramidal tours are applicable

to the bottleneck-type objectives. For some classes in PYRD , using the “maximum”

operator instead of the “sum” operator in the distance matrix definition results in a

class which is also in PYRD . The class of Monge matrices is such an example

(Burkard and Sandholzer, 1991). In a similar way, we can define the bottleneck

version of the Van der Veen matrix as follows:

{ } { }
[,] [,] for all i and j

[,]
max [,], [1,] max [,], [, 1] for all i<j<j+1<kBVDV

d i j d j i
d i j

d i j d j k d i k d j j

 =  =  + ≤ +  
D .

Theorem 3.6. BVDV PYR∉D D .

Proof: We provide a counter example. BVDVd ∈ D for y≥1. For the distance matrix

given below, the length of tourρ =(1,4,2,6,3,5) is 1. However, all pyramidal tours

have tour lengths of y.

33

0 0 1

0 0 1

0 1 1

0 0 0

1 0 1 0

1 1 0 0

BVDV PYR

y y

y y

y y
d

y y

y

y

− 
 − 
 −

= ∈ ∉ − 
 −
 

− 

D D

Increasing the value of y in BVDVd ∈ D the lengths of pyramidal tours can be

increased arbitrarily. □

 We next define the bottleneck version of the Demidenko matrix as follows:

{ } { }
[,] [,] for all i and j

[,]
max [,], [1,] max [, 1], [,] for all i<j<j+1<kBDEMI

d i j d j i
d i j

d i j d j k d i j d j k

 =  =  + ≤ +  
D .

Theorem 3.7. BDEMI PYR∉D D .

Proof: We provide a counter example. BDEMId ∈ D for y≥0. For the distance matrix

given below, the length of tourρ =(1,5,3,4,2,6) is 0. However, all pyramidal tours

have tour lengths of y.

0 0

0 0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0

BDEMI PYR

y y y

y

y y
d

y y

y y

− 
 − 
 −

= ∈ ∉ − 
 −
 

− 

D D

Increasing the value of y in BDEMId ∈ D the lengths of pyramidal tours can be

increased arbitrarily. □

Since BVDVD and BDEMID do not guarantee that the optimal tour is pyramidal, we

consider the bottleneck type objectives no further.

34

3.6 Discussions

In this chapter, we studied the multiobjective TSP on TI PYR∈D D and showed some

properties of nondominated points. We developed a pseudo-polynomial DP to find a

nondominated point to the problem when all distance matrices are in the same class

of TID . For the biobjective case, we developed an approach to find all nondominated

points. We also demonstrated that bottleneck types of Van der Veen matrices and

Demidenko matrices are not in PYRD , and hence the developments are not applicable

to these cases.

35

CHAPTER 4

HALIN GRAPHS AND MULTIPLE OBJECTIVES

4.1 Introduction

In this chapter, we study TSP and BTSP on special graphs called Halin graphs.

Although both problems are NP-Hard on general graphs, they are polynomially

solvable on Halin graphs. We address the multiobjective versions of these problems.

We show computational complexities of finding a single nondominated point as well

as finding all nondominated points for different objective function combinations.

We develop algorithms for the polynomially solvable combinations.

4.2 Definitions and Background

Some definitions on Halin graphs are provided in this section. We review TSP and

BTSP on Halin graphs and discuss the polynomial algorithms to solve these

problems.

In a graph, the number of edges incident to a node gives the degree of that node. An

undirected planar graph is called a Halin graph if it is a combination of a tree with no

nodes of degree two and a cycle passing through the leaf nodes of the tree (see for

example Kabadi, 2002). An example of such a tree and a Halin graph constructed

36

using this tree is given in Figure 4.1. The leaf nodes of the tree are called the outer

nodes of the Halin graph and an edge set that connects the outer nodes is called a

cycle. The remaining nodes of the Halin graph are called the internal nodes. If a

Halin graph has only one internal node, it is called a wheel (see Figure 4.2b). Let t

be an internal node adjacent to exactly one other internal node. Let L(t) be the set of

outer (leaf) nodes adjacent to node t. Then the subgraph of H induced by the set

{ } ()t L t∪ is called a fan, and t is the center of the fan. In Figure 4.2a, we

demonstrate a fan where 1=t and () { }1 1 ,1 ,...,1=L a b x .

a) A tree having no nodes with degree two b) A Halin graph

Figure 4.1 Constructing a Halin graph

Theorem 4.1. (Cournejols, Naddef and Pulleyblank, 1983). A Halin graph H which

is not a wheel has at least two fans.

Let H be a Halin graph that has at least two fans. Let H(t) denote the graph obtained

by shrinking the fan centered at t into a single node t. In Figure 4.2a, we show a

graph H and a fan centered at node 1. In Figure 4.2b, we show graph H(1) obtained

37

after shrinking this fan into node 1. Note that, H(1) is a wheel. The shrinking

operation can be used as a part of an algorithm as we discuss later.

a) A Halin graph, H b) A wheel, H(1)

Figure 4.2 Shrinking H to H(1)

Theorem 4.2. (Cournejols, Naddef and Pulleyblank, 1983). If { } ()t L t∪ is a fan in

a Halin graph, H, then H(t) is also a Halin graph.

Cournejols, Naddef and Pulleyblank (1983) showed that TSP on Halin graphs can be

solved in O(n). Coullard et al. (1993) developed an algorithm that solves the

2-Connected Steiner Subgraph Problem on Halin graphs in O(n). Since TSP is a

special case of this problem, the algorithm developed by Coullard et al. (1993) also

solves TSP on Halin graphs in O(n). Phillips, Punnen and Kabadi (1998) developed

an O(n) algorithm for BTSP. Throughout this paper, we will refer to the algorithm of

Cournejols, Naddef and Pulleyblank (1983) as CNP and to the algorithm of Phillips,

Punnen and Kabadi (1998) as PPK.

In a Halin graph, each fan is connected to the rest of the graph with exactly three

edges. For example, the fan centered at node 1 in Figure 4.2a is connected to the rest

of the graph with edges (k,1a), (u,1) and (2,1x). In a tour, exactly two of these three

38

edges are used. If edge (u,1) is used then there are two possibilities to construct a

tour: either edge (k,1a) or edge (2,1x) is included in the tour. If edge (k,1a) is

included in the tour then nodes in ()1L are visited by path 1a,1b,…,1x,1. If, on the

other hand, edge (2,1x) is included in the tour then nodes in ()1L are visited by path

1,1a,1b,…,1x. If edge (u,1) is not used in the tour then both edges (2,1x) and (k,1a)

must be included in the tour. The nodes in ()1L can be visited in ()1 1L − different

ways with path 1a, 1b, …,1j, 1, 1(j+1),…, 1x for some node 1j. The decisions on

which of the above edges are selected depend on the respective objective function

values in CNP and PPK.

In each iteration of CNP, first a fan is selected. For example, for the fan centered at

node 1 in Figure 4.2a, CNP selects the best node 1j for the pair (k,1a) and (2,1x).

Then lengths of the paths corresponding to the three pairs, (u,1) and (k,1a), (u,1) and

(2,1x), and (k,1a) and (2,1x), are calculated. In order to eliminate the fan and shrink

the graph, new weights of edges (k,1), (u,1) and (2,1) in H(1) are determined by

solving a system of three linear equations. CNP keeps shrinking the Halin graph

until obtaining a wheel. The TSP is solved on the wheel and the optimal tour is

obtained.

Although CNP solves TSP, it is not directly applicable to BTSP. PPK also uses the

approach of shrinking the graph. The basic idea behind PPK is in the updating

scheme of the weights. PPK defines penalties for the pairs of edges in addition to the

edge weights. It keeps track of the longest edge, the second longest edge, and the

pair of edges with highest, second highest, and third highest penalties and updates

this information after each shrinking.

Both algorithms are straightforward if edge (u,1) of H is used since there are only

two alternative paths to construct the tour. However, if (u,1) is not used, then the

other two edges have to be used, and the algorithm needs to make the optimal

selection for node 1j based on the objective function used. In CNP, the updated edge

weights (those obtained after previous shrinking operations) are used during this

39

selection. However, in PPK, the selection is done using both the edge weights and

the penalties of edge pairs. In some cases, there may not be a single best selection

for node 1j and alternative optimal selections may exist. In these cases, both CNP

and PPK break ties arbitrarily. However, if there are multiple objectives in the

problem then all of the objectives must be considered to break ties.

4.3 Multiple Objective TSP and BTSP on Halin Graphs

In this section, we first work on biobjective cases and then extend the results to more

than two objectives. For all problems considered in this section, we assume that a

Halin graph, with multiple weights assigned to each of its edges, is given. We first

consider the biobjective cases: 2-Σ TSP, 1-Σ 1-max TSP and 2-max TSP. We then

generalize the results to multiobjective cases. For each case, we define two

problems: finding a single nondominated point and finding all nondominated points.

In the remainder of the section, we refer to the Halin graph given in Figure 4.3 as H

and use it to demonstrate our proofs.

Figure 4.3 A Halin graph, H

40

4.3.1 2-Σ TSP

Finding all nondominated points

There are 4k+1 nodes in H given in Figure 4.3. Cournejols, Naddef and Pulleyblank

(1983) state that there are k×2k-2 different tours in H without a proof. We next prove

this result .

Theorem 4.3. Let H=(N,E) and |N|=4k+1. There are k×2k-2 different tours in H.

Proof: Define a set of edges () () ()() (){ }1 ,2 , 2 ,3 ,..., 1 , , ,D c a c a k c ka kc 1a= − , and

observe that |D|=k. Each tour on H contains k-1 of the k edges of D. Assume that

edge (1c,2a) is not in tour ϕ . Then the edges (u, 1), (1, 1c), (1c, 1b), (1b, 1a), (1a,

kc), (ka,(k-1)c), ((k-1)a,(k-2)c), …, (3a, 2c), (2c, 2b), (2b, 2a), (2a, 2) and (2, u) must

be in tour ϕ . Consider nodes 3, 3a, 3b and 3c. Tour ϕ uses the edge (2c, 3a) to

reach these nodes and leaves these nodes using the edge (3c, 4a). These four nodes

in the tour ϕ can be visited either by path (3a, 3, 3b, 3c) or by path (3a, 3b, 3, 3c).

Similarly, for each node quartet (i, ia, ib, ic) i=3,…, k-1, there are two possible ways

of visiting them all. For a fixed element of D, say (1c, 2a), there are 2k-2 tours. Since

|D|=k, we can fix k different edges and obtain 2k-2 tours for each fixed edge. Hence,

there are k×2k-2 different tours in H. □

Theorem 4.4. The number of nondominated points in H is exponential in k.

Proof: Let

w1(e)=2j and w2(e)=0 for edge (ja, jb) for j=1,…,k,

w1(e)=0 and w2(e)= 2j for edge (jb, jc) for j=1,…,k,

w1(e)=w2(e)=M for edge (1c, 2a) where M is such a big number (i.e. 2kM >) that

edge (1c, 2a) cannot be used in any efficient tour, and

w1(e)=w2(e)=0 for all other edges in H.

The tour length of any tour with respect to each objective is at least 21+22 since edges

(1c, 1b), (1b, 1a), (2c, 2b) and (2b, 2a) are used in every efficient tour. If the length

41

of a tour in the first objective is represented in binary digits then the jth digit of the

number corresponding to the tour length is set to 1 if edge (ja, jb) is used and to 0 if

edge (jb, jc) is used in the tour. Similarly, for the second objective, the j th digit is set

to 0 if edge (ja, jb) is used and 1 if edge (jb, jc) is used. Since each digit represents

the selection of an edge and there are k-2 such edges, totally 2k-2 different numbers

can be written in binary digits. The same number of distinct tour lengths can be also

obtained for the second objective. Since the sum of the two objective function values

is constant (and is equal to 1

1

2 2 2
k

j k

j

+

=

= −∑), each of the 2k-2 tours is efficient in H.

Since these tours have different objective function values, each of them corresponds

to a different nondominated point in the objective space. □

Since the number of the nondominated points is exponential, the problem of

identifying all of them in H is intractable.

Finding a nondominated point

CNP solves the single objective TSP for any given Halin graph. The point found by

CNP may be dominated when we consider multiple objectives. The following

perturbation in the weights guarantees to obtain a nondominated point using CNP:

() () ()1 1 2w e w e w eε ε= + e H∀ ∈

where ε is a sufficiently small positive constant to avoid weakly nondominated but

dominated points. In Theorem 3.5, we developed an appropriate range of ε value

for 2-Σ TSP.

Let w(e) be a convex combination of two weights:

() () () ()1 21w e w e w eλ λ= + − e H∀ ∈ , [],1λ ε ε∈ − .

CNP can be used with this weight set to find an extreme supported nondominated

point. Aneja and Nair (1979) develop a method to find all extreme supported

nondominated points by systematically varying theλ value for the biobjective

transportation problem. In Section 3.4, we implemented this approach on 2-Σ TSP.

42

All extreme supported nondominated points can be found using the above approach.

In order to find any nondominated point, we may use a variation of the ε -constraint

approach (see for example Steuer, 1986, pp 202-206). We impose an upper bound U

on the first objective and minimize the second objective, breaking ties in favor of the

first objective. This corresponds to problem P1:

() ()

()

2 2 1

1 1

: min ()

.

 ()

e

e

P1 f w e w e

st

f w e U

F

ϕ

ϕ

ϕ ε

ϕ

ϕ

∈

∈

= +  

= ≤

∈

∑

∑

Consider graph H given in Figure 4.3. Let H ′ be a special case of H such that

()1w e = ()2w e = M for all edges (u, j) j=2,…,k-1, where M is such a big number that

these edges cannot be in any efficient tour,()1w e = ()2w e =0 for edges (u, 1) and (u,k),

()1w e = ()2w e = 0 for all edges (jc, (j+1)a) j=1,…,k-1 and for (kc,1a),

()1w e = ()2w e = 0 for all edges (j, ja), (j, jb) and (j, jc) j=1,…,k. In Theorem 4.5, we

prove that solving P1 on H ′ is NP-Hard in the ordinary sense.

Theorem 4.5. Problem P1 on H ′ is NP-Hard in ordinary sense.

Proof: Every efficient tour starts with path (u, 1, 1a, 1b, 1c, 2a) and ends with path

((k-1)c, ka, kb, kc, k, u). Tour lengths are determined by the selections of the paths to

visit the inner nodes at fans centered at nodes 2,3,…,k-1. As in the proof of Theorem

4.3, node j can be visited in two different ways, (ja, j, jb, jc) or (ja, jb, j, jc). Let us

define a binary decision variable Xj , j=1,…,k, such that

()
()

1 if path is selected

0 if path is selectedj

ja, jb, j, jc
X

ja, j, jb, jc

= 


Define penalties

 () () ()1 1 1, ,p j w ja jb w jb jc= − and

 () () () ()2 2 2 1, ,p j w ja jb w jb jc p jε= − +   for each j, j= 1,…,k.

43

Problem P1 can be redefined as

() () ()

() ()

{ }

2 2 1
1

1 1
1

: , ,

.

,

0,1 1,..., .

ε
=

=

 + + 

 + ≤ 

∈ =

∑

∑

k

j
j

k

j
j

j

P2 min p j X w jb jc w jb jc

st

p j X w jb jc U

X j k

 Since ()1 ,w jb jc , ()2 ,w jb jc and ε are constants, () ()2 1, ,w jb jc w jb jcε+ can be

dropped from the objective function. Let () ()2 2 p j p j j′ = − ∀ and

()1 ,
j J

U U w jb jc
∈

′ = −∑ . Then P2 is transformed to P3.

()

()

{ }

2
=1

1
1

:

.

0,1 1,..., .

=

′

′≤

∈ =

∑

∑

k

j
j

k

j
j

j

P3 max p j X

st

p j X U

X j k

The transformations from P1 to P2 and from P2 to P3 are both polynomial. P3 is a

0-1 Knapsack problem, which is NP-Hard in the ordinary sense. Since the 0-1

Knapsack problem is a special case of P1 on H ′ , P1 on H ′ is also NP-Hard in the

ordinary sense. □

For H ′ , we can use the pseudo polynomial dynamic program developed for

knapsack problems (Martello and Toth, 1990) to solve 2-Σ TSP. However, the graph

structure of H ′ is a special case of H, and hence solving P1 on a general Halin graph

may be more difficult than solving it on H ′ . Further analyzing the computational

complexity of P1 and developing an algorithm for solving 2-Σ TSP on general Halin

graphs are future research topics.

For 2-Σ TSP, we showed that each extreme supported nondominated point can be

found in O(n) by using convex combinations of two weight sets. However, finding

other nondominated points (both nonextreme supported and unsupported) is NP-Hard

44

in the ordinary sense for a special case of Halin graphs. We also showed that finding

all nondominated points is intractable. We next consider 1-Σ 1-max TSP.

4.3.2 1-Σ 1-max TSP

Finding a nondominated point

Let () ()1 1
e

f w e
ϕ

ϕ
∈

=∑ and () (){ }2 2
e

f max w e
ϕ

ϕ
∈

= . We develop an algorithm that finds

a nondominated point for this problem. Our algorithm uses CNP and PPK

simultaneously. The inputs of the algorithm are the weights of the edges and an

upper bound U on the 1-max objective. The output is the minimum 1-Σ objective

value satisfying the upper bound U on the 1-max objective.

Max_Algorithm

Input: ()1w e and ()2w e for all e∈E, and U.

Output: A tour ϕ with minimum 1 ()f ϕ where 2 ()f Uϕ ≤

Steps of the algorithm

Step 0. Using a sufficiently large number M, update the edge weights as

follows:

() () ()
()

1 2

1

2

 if
=

 if

w e w e U
w e e E

M w e U

≤′ ∈
>

Step 1. Run CNP with ()1w e′ weight set and calculate the pair penalties of the

BTSP-type objective function with the selections of CNP (not with the

selections of PPK). Break the ties of CNP using the penalties of PPK. Let

the optimal tour be ϕ∗ and the objective function value be()1 f ϕ ∗ .

Step 2. If ()1 f Mϕ∗ < then ϕ∗ is optimal; stop. Otherwise, there is no

solution satisfying the given upper bound.

In Step 0 of Max_Algorithm, ()2w e values are compared with U. If the weight of an

edge in the second objective is larger than U, then its weight in the first objective is

45

set to M. This comparison and updating is done in O(|E|). By Euler’s formula,

3 6E n≤ − for 3E ≥ for planar graphs (see Bondy and Murthy, 1979). Since Halin

graphs are planar graphs, () ()O E O n= . Step 1 uses CNP and PPK, both

algorithms run in O(n). Step 2 runs in O(1). Overall complexity of Max_Algorithm

is O(n).

In Step 1, we use CNP and PPK simultaneously. In the original PPK algorithm, best

selections are made using the BTSP-type objective. We force the PPK algorithm to

use the selections that are best for the CNP algorithm. The selections of the PPK

algorithm are important only if there is a tie in the CNP algorithm’s selections

Theorem 4.6. Given a Halin graph and an upper bound U on the 1-max objective, a

nondominated point to 1-Σ 1-max TSP can be found in O(n).

Proof: The Max_Algorithm finds a nondominated point in O(n). □

Finding all nondominated points

In Theorem 4.3, we proved that the number of tours grows exponentially. Hence the

objective function value for 1-Σ may take an exponential number of distinct values.

However, the number of distinct values for 1-max objective is bounded by the

number of distinct edge weights and that is bounded by the number of edges. The

number of edges is bounded by O(n). Therefore, the number of nondominated points

for 1-Σ 1-max TSP is bounded by O(n) due to the 1-max objective.

The complexity of finding a nondominated point is O(n) and the number of

nondominated points is bounded by O(n). All nondominated points can be

determined in O(n2) using the Max_Algorithm by systematically varying the upper

bound U. We develop the Iterative_Algorithm to find all nondominated points.

46

Iterative_Algorithm

Input: ()1w e and ()2w e for all e∈E.

Output: Set of nondominated points

Steps of the algorithm

Step 0.a. Sort ()2w e values in nonincreasing order and let

 [] [] []{ }1 2, ,..., rψ ψ ψΨ = be the set of distinct edge weights, such

that [] []1i iψ ψ +> ,

 Set S=∅.

Step 0.b. Call Max_Algorithm on ()1w e with U= []1ψ and let the optimal tour

 be CNPϕ .

 () ()()1 2 ,CNP CNP CNPf f fϕ ϕ= .

Step 0.c. Call PPK on ()2w e and let the optimal tour be ϕ′ .

 Call Max_Algorithm on ()1w e with U= ()2f ϕ′ and let the optimal

tour be PPKϕ .

 () ()()1 2 ,PPK PPK PPKf f fϕ ϕ= ,

 If CNP PPKf f= then set { }PPKS S ϕ= ∪ and stop since there is a

single optimal solution, else go Step 0.d.

Step 0.d. Set c=0, cϕ = CNPϕ and () ()2 2
c CNPf fϕ ϕ= .

Step 1. Let (){ }[]
2

1,..,

i c

i r

j argmax fψ ϕ
=

= < , set []jU ψ= ,

 c= c+1,

 Call Max_Algorithm, let the solution be cϕ ,

 if () ()1 1
c PPKf fϕ ϕ≤ then set { }cS S ϕ= ∪ and go to Step 1 else go

 to Step 2.

Step 2. The set of nondominated points is S.

47

In each iteration of the above algorithm, Max_Algorithm is called. In the worst case,

all edges have distinct weights and Iterative_Algorithm calls Max_Algorithm for

each edge. Since the number of distinct edge weights is bounded by O(n), the

complexity of Iterative_Algorithm is O(n2).

Theorem 4.7. Given a Halin Graph, all nondominated points to 1-Σ 1-max TSP can

be found in O(n2) .

Proof: The Iterative_Algorithm finds all nondominated points in O(n2). □

4.3.3 2-max TSP

Finding a nondominated point

Finding a nondominated point of 2-max TSP is easier than that of 1-Σ 1-max TSP.

We use PPK twice and find a nondominated point for a given upper bound on one of

the objective values. We refer to this algorithm as 2Max_Algorithm. This algorithm

finds a nondominated point to 2-max TSP in O(n).

2Max_Algorithm

Input: ()1w e and ()2w e for all e∈E, and U.

Output: A nondominated point () () ()()1 2 ,f f fϕ ϕ ϕ= with minimum 1 ()f ϕ

where 2 ()f Uϕ ≤

Steps of the algorithm

Step 0. Using a sufficiently large number M, update the edge weights as

follows:

() () ()
()

1 2

1

2

 if
=

 if

w e w e U
w e e E

M w e U

≤′ ∈
>

Step 1. Run PPK with ()1w e′ weight set. Let the optimal tour be ϕ∗ and the

objective function value be ()1 f ϕ ∗ and ()2 f ϕ∗ .

48

Step 2. If ()1 f Mϕ ∗ ≥ then stop, there is no solution satisfying the given

upper bound. Else go to Step 3.

Step 3. Using a sufficiently large number M, update the edge weights as

follows:

()
() () ()

() ()
2 1 1

2

1 1

 if
=

 if

w e w e f
w e e E

M w e f

ϕ

ϕ

∗

∗

 ≤′ ∈
>

Step 4. Run PPK with ()2w e′ weight set. Let the optimal tour be ϕ∗∗ and the

objective function values be()1 f ϕ ∗∗ and ()2 f ϕ∗∗ .

Step 5. Report the point ()f ϕ∗∗ as the nondominated point satisfying the

given upper bound.

Finding all nondominated points

This problem is similar to 1-Σ 1-max TSP. Iterative_Algorithm can be modified by

replacing Max_Algorithm with PPK in Step 0.c and replacing Max_Algorithm with

2Max_Algorithm in Step 0.b and Step 1. We will refer to this algorithm as

2Iterative_Algorithm. The complexity of identifying all nondominated points of

2-max TSP is O(n2) by using 2Iterative_Algorithm.

Up to now, we discussed three biobjective problems. In the following subsections,

we will generalize the results to multiobjective problems.

4.3.4 p1-Σ p2-max TSP

There are p1 TSP-type and p2 BTSP-type objectives in this problem. For p1=2, we

know that finding a nondominated point is NP-Hard and finding all nondominated

points is intractable. Since increasing p1 does not simplify the problems, the same

complexity results are valid for 1 2p ≥ . We next consider the remaining two cases:

1 1p = and 1 0p = .

49

4.3.5 1-Σ p-max TSP

In Theorems 4.6 and 4.7, we showed that a nondominated point can be found in O(n)

for 1-Σ 1-max TSP and all nondominated points for this problem can be found in

O(n2). In this subsection, we generalize these results for 1-Σ p-max TSP.

Finding a nondominated point

For this problem, we consider that an upper bound is introduced for each BTSP-type

objective, and the TSP-type objective is minimized subject to these p upper bounds.

A nondominated point can be obtained with a modification in Step 0 of

Max_Algorithm. An updating is done for the distance matrix corresponding to the

BTSP-type objective in the original Max_Algorithm. This updating operation should

be done for all p BTSP-type objectives. The complexity of the updating is O(pn).

Max_Algorithm can be used to find a nondominated in O(n). The overall complexity

of finding a nondominated point is then O(pn).

Finding all nondominated points

Each BTSP-type objective function can take O(n) distinct values. In the worst case,

there are O(np) distinct combinations of objective function values for p BTSP-type

objectives. On the other hand, the TSP-type objective function can have ()O 2E

distinct values. So we conclude that the number of the nondominated points is

bounded by O(np). For each combination of upper bounds of p BTSP-type objectives,

the modified Max_Algorithm can be used. The set of nondominated points can be

identified in O(pnp+1).

4.3.6 p-max TSP

We showed that, for 2-max TSP, a nondominated point can be found in O(n) using

2Max_Algorithm and all nondominated points can be identified in O(n2) using

2Iterative_Algorithm. In this subsection, we generalize these results for p-max TSP.

50

Finding a nondominated point

For this problem, we consider that an upper bound is introduced for all BTSP-type

objectives but the last one. The last BTSP-type objective is minimized subject to

these p-1 upper bounds. A nondominated point can be obtained by the

2Max_Algorithm after two modifications on this algorithm. An updating is required

for the distance matrix corresponding to the BTSP-type objective in Step 0 of the

2Max_Algorithm. This updating operation should be done for all p BTSP-type

objectives. This can be done in O(pn). PPK is called in the first step of the algorithm.

Steps 3 and 4 must be executed for each of the p-1 objectives in order to ensure

finding a nondominated point. After these modifications, the complexity of the

2Max_Algorithm is still O(pn).

Finding all nondominated points

Each BTSP-type objective function can take O(n) distinct values. Since we are

minimizing one of the objectives, in the worst case, the remaining p-1 BTSP-type

objectives may have O(np-1) distinct combinations of objective function values.

Hence, the number of nondominated points is bounded by O(np-1) and all

nondominated points can be identified in O(pnp) in the worst case.

4.4 Discussions

In this chapter, we considered polynomially solvable special cases of two problems,

TSP and BTSP. Although both problems are NP-Hard in general, there exist

polynomial algorithms when these problems are defined on Halin graphs. We

addressed the multiobjective versions of these problems with various combinations

of objective functions.

We showed that, when there are two or more TSP-type objective functions in the

problem then finding a nondominated point is NP-Hard and there are exponentially

many nondominated points. However, if there is at most one TSP-type objective

function in the problem and all remaining objectives are BTSP-type, then the

51

problem is polynomially solvable. We developed algorithms to find nondominated

points.

To summarize, we showed the complexity results for all possible combinations of

TSP and BTSP-type objectives for multiobjective problems on Halin graphs and we

developed polynomial time algorithms where possible.

52

CHAPTER 5

AN EXACT ALGORITHM TO FIND ALL EXTREME

SUPPORTED NONDOMINATED POINTS IN

MULTIOBJECTIVE PROBLEMS

It is possible to find all extreme supported nondominated points of a biobjective

integer programming problem in the objective space using the algorithm of Cohon

(1978) and Aneja and Nair (1979). However, this algorithm is not directly applicable

to problems with three or more objectives. In this chapter, we develop an exact

algorithm to find all extreme supported nondominated points of a multiobjective

problem. We propose several properties to improve the algorithm. We test our

algorithm on the Assignment, the Knapsack and the Traveling Salesperson Problems

with three and four objectives.

5.1 Introduction

Consider the following single objective integer program, ()MOIP λ , which has a

weighted sum objective function:

()
1

 C

 . .

p

q q
q

min x f x

s t x X

λ λ
=

=

∈

∑

53

where pλ >∈ℝ and { }: 0, 1, ,p p
q q pλ λ> = ∈ > =ℝ ℝ … . The optimal solution of

()MOIP λ is an extreme supported nondominated point of MOIP for any pλ >∈ℝ .

As we defined in Chapter 2, YE is the set of all extreme supported nondominated

points.

For a multiobjective linear program, MOLP, all efficient solutions are supported

(Steuer, 1986). There are algorithms to generate all efficient solutions of MOLP, see

for example the ADBASE algorithm developed by Steuer (1989). Benson and Sun

(2002) proposed an algorithm to find all nondominated points in the objective space

for MOLP, instead of studying in the decision space.

However, research about this issue on MOIPs is very limited compared to that of

MOLP. For biobjective integer problems, Cohon (1978) and Aneja and Nair (1979)

developed similar algorithms to find all extreme supported nondominated points.

They proposed a systematic way of varying the weights of the objective functions.

However, to the best of our knowledge, only Przybylski, Gandibleux and Ehrgott

(2007) propose an algorithm to find all extreme supported nondominated points of

MOIP with three or more objective functions.

In this chapter, our aim is to develop an algorithm to find all extreme supported

nondominated points of MOIPs. In Section 2, we review the algorithms of Cohon

(1978) and Aneja and Nair (1979). We discuss the study and the algorithm of

Przybylski, Gandibleux and Ehrgott (2007) in Section 3. In Section 4, we present

additional definitions and our algorithm. In Section 5, we discuss possible

improvements. In Section 6, we report the computational results on the test problems.

In the last section, we conclude the chapter.

5.2 Algorithms for Biobjective Integer Problems

In this section, we review the algorithm developed by Cohon (1978) and Aneja and

Nair (1979) for the biobjective integer problems. Cohon (1978) calls the algorithm

54

as Noninferior Set Estimation (NISE). We will call this algorithm as the CAN

algorithm due to the initials of the authors.

CAN keeps a list L. The elements of L are extreme supported nondominated point

pairs. In each iteration of CAN, a pair of extreme supported nondominated points, say

(),k jy y , is selected from a list L. Consider points yk and yj in Figure 5.1a. The

normal vector λ of the line passing through these points is calculated such

that k jy yλ λ= . ()MOIP λ is solved with this λ . Let y∗ be the point corresponding

to the optimal solution of ()MOIP λ . If ky yλ λ∗ < , as in Figure 5.1b, then Ey Y∗ ∈ .

New point y∗ is recorded and two new pairs (),ky y∗ and (), jy y∗ are added to L. If

ky yλ λ∗ = then CAN concludes that no more extreme supported nondominated

points can be obtained from this pair. At the end of the iteration, the pair (),k jy y is

removed from L. CAN stops when the list L is empty.

To initialize CAN, the pair ()1 2,y y is generated such that { }
k

E

q k
q q

y Y
y min y

∈
= q=1,2.

These points can be obtained by solving ()MOIP λ with ()1 ,λ ε ε= − and

(),1λ ε ε= − where ε is a very small positive problem instance specific constant to

avoid dominated points. Aneja and Nair (1979) showed that the algorithm stops

exactly after 2 3EY − iterations if 2EY > .

55

(a)Stage (yj,yk)

(b) Stages (yj,y*) and (y*,yk)

Figure 5.1 An example iteration of CAN

In biobjective problems, if the nondominated points are sorted in increasing order of

their first objective function values, then they are naturally sorted in decreasing order

of their second objective function values. This is a special property of biobjective

problems and is not valid for problems with three or more objectives. By this

property, for any pair (),k jy y , both weights are strictly positive, 2λ >∈ℝ .

Solanki, Appino and Cohon (1993) and Przybylski, Gandibleux and Ehrgott (2007)

point out two difficulties in generalizing CAN to problems with 3p ≥ objectives.

The first difficulty is the determination of initial points. Since p points are needed to

define a hyper plane in p
ℝ , we have to select p points minimizing each objective

function. If 2p = then, for each objective q, there exists only one point q Ey Y∈ such

that { }
k

E

q k
q q

y Y
y min y

∈
= . Due to the special property of the biobjective problems,

{ }
k

E

r k
q q

y Y
y max y

∈
= for ≠r q . However, if 3p ≥ , then for each objective q, there may be

more than one distinct point q Ey Y∈ such that { }
k

E

q k
q q

y Y
y min y

∈
= . Thus, the selection of

the initial problems may be problematic. The second difficulty is about the normal

vector of the hyperplane passing through p points. In biobjective problems, the

normal vector always has positive components. However for 3p ≥ , it may have

56

some negative components. Using such a λ vector in ()MOIP λ may result in

dominated points.

We will use an example developed by Tenfelde-Podehl (2003) throughout this

chapter to explain the algorithms and their details. Consider an assignment problem

with p objectives:

{ }

1 2

1 1 1 1 1 1

1

1

" " C , , ,

 . . 1 1, ,

 1 1, ,

 0,1 1, , , 1, ,

n n n n n n
p

ij ij ij ij ij ij
i j i j i j

n

ij
i

n

ij
j

ij

min x c x c x c x

s t x j n

x i n

x i n j n

= = = = = =

=

=

 
=  
 

= =

= =

∈ = =

∑∑ ∑∑ ∑∑

∑

∑

…

…

…

… …

This problem has three objective functions and the following cost matrices:

1

3 6 4 5

2 3 5 4

3 5 4 2

4 5 3 6

 
 
 =
 
 
 

C , 2

2 3 5 4

5 3 4 3

5 2 6 4

4 5 2 5

 
 
 =
 
 
 

C and 3

4 2 4 2

4 2 4 6

4 2 6 3

2 4 5 3

 
 
 =
 
 
 

C .

There are four extreme supported nondominated points in this example problem:

()1 11,11,14y = , ()2 15,9,17y = , ()3 19,14,10y = and ()4 13,16,11y = . The first

three points are the unique optimal points of the corresponding single objective

problems. Przybylski, Gandibleux and Ehrgott (2007) used this example and showed

that a direct implementation of CAN is not able to find these four points. By solving

single objective problems, the first three points are found. However, the plane

passing through these three points has a negative element in its normal, and y4 cannot

be found.

57

5.3 The Algorithm of Przybylski, Gandibleux and Ehrgott (2007)

In this section, we discuss the algorithm proposed by Przybylski, Gandibleux and

Ehrgott (2007) to find EY of a MOIP with 3p ≥ . We call this algorithm the PGE

algorithm. They develop some properties for the weight space of a MOIP and use

these properties in the PGE algorithm. Some of these properties will also be useful

in the proofs related to our algorithm.

In the PGE algorithm, they use the weight space decomposition approach of Benson

and Sun (2000). Benson and Sun (2002) developed an algorithm to find EY of a

MOLP. However their algorithm is not applicable to MOIP since it uses some

properties of linear programming.

The weight space decomposition approach uses a normalized weight space 0W and

decomposes it into subsets ()0W y for all Ey Y∈ . Each subset ()0W y corresponds

to the weight set where y is the point corresponding to the optimal solution of the

()MOIP λ .

0

1

, 1
p

p
i

i

W λ λ>
=

 
= ∈ = 
 

∑ℝ and () { }0 0 : : EW y W y y y Yλ λ λ ′ ′= ∈ ≤ ∈

where Ey Y∈ .

Benson and Sun (2000) showed that ()0 0

Ey Y
W W y

∈
= ∪ .

Let us define ConvY as the convex hull of { }: ,pY y y Cx x X= ∈ = ∈ℤ . Przybylski,

Gandibleux and Ehrgott (2007) developed the following properties for a MOIP with

p objectives. Note that the dimension of 0W is p-1.

Proposition 5.1. (Przybylski, Gandibleux and Ehrgott, 2007). ()0W y is a convex

polytope.

58

Proposition 5.2. (Przybylski, Gandibleux and Ehrgott, 2007). The nondominated

point y is an extreme nondominated point of ConvY if and only if ()0W y has

dimension p-1.

Definition 5.1. (Przybylski, Gandibleux and Ehrgott, 2007). Two extreme

nondominated points y1 and y2 are adjacent if and only if () ()0 1 0 2W y W y∩ is a

polytope of dimension p-2.

The weight space decomposition cannot be used during the search of EY , since EY is

not completely known. Let us define EY′ as the set of known solutions at some

iteration of the algorithm. Przybylski, Gandibleux and Ehrgott (2007) proposed to

decompose the weight space properly by using EY′ as follows:

() { }0 0 : :p EW y W y y y Yλ λ λ ′ ′ ′= ∈ ≤ ∈ where Ey Y′∈ .

The PGE algorithm keeps the information on ()0
pW y for all Ey Y′∈ . For each

solution Ey Y′∈ , PGE searches for new solutions at the boundaries of ()0
pW y and

updates the proper decomposition information as new solutions are added to EY′ . For

example, if p=3 , 1 2, Ey y Y′∈ and they are adjacent, then () ()0 1 0 2
p pW y W y∩ is a line

segment. PGE searches for new solutions on this line segment by solving

biobjective problems. Hence PGE utilizes CAN for this purpose. Originally, CAN

works in the two dimensional objective space. However PGE uses CAN in the two

dimensional weight space of a MOIP with three objectives. Similarly, multiobjective

integer problems with four or more objectives are also recursively reduced to

biobjective problems in their weight spaces and solved using CAN.

5.4 An Exact Algorithm

In this section, we develop an exact algorithm to find all extreme supported

nondominated points of a multiobjective integer problem with three or more

objectives. We first provide the additional definitions and notation. We then

59

introduce a set of dummy points and their effects in the weight and objective spaces.

Finally, we introduce the algorithm.

5.4.1 Additional Definitions

We first present the definitions of valid inequality, face and facet from Nemhauser

and Wolsey (1998). Using these, we define a nondominated face and a

nondominated facet.

Definition 5.2. (Nemhauser and Wolsey, 1988). The inequality 0yλ λ≤ (or ()0,λ λ)

is called a valid inequality for ConvY if it is satisfied by all points in ConvY.

Definition 5.3. (Nemhauser and Wolsey, 1988). If ()0,λ λ is a valid inequality for

ConvY, { }0:F y ConvY yλ λ= ∈ = , F is called a face of ConvY.

Definition 5.4. (Nemhauser and Wolsey, 1988). A face F of ConvY is a facet of

ConvY if () () 1dim F dim ConvY= − .

Definition 5.5. A nondominated face is a face of ConvY with pλ >∈ℝ .

Definition 5.6. A nondominated facet is a facet of ConvY with pλ >∈ℝ .

Let us define q-dimensional nondominated faces of ConvY as SF(q). Then the

nondominated frontier NDF is defined as:

()
1

0

p

q

NDF SF q
−

=

=∪ .

Using only the nondominated facets may not be enough to define the nondominated

frontier, i.e., there may be cases where ()1≠ −NDF SF p . For example, the

nondominated frontier of the linear relaxation of the example problem is:

(){ }1 2

3
1 1 2 3 3 4

1

: 1 ,0 1

 : , 0, 1

α α α

α α α α α
=

= = + − ≤ ≤ ∪

 = + + ≥ = 
 

∑i i

i

NDF y y y y

y y y y y

60

In this problem, NDF consists of a facet and a p-2 dimensional face. In Figure 5.2,

the nondominated frontier (5.2a) and the weight space decomposition (5.2b) of the

example problem is given.

Let us define dummy points in the objective space as follows:

q
qm M e= × for 1,...,q p= ,

where ()0,...,0,1,0,...,0qe = is the qth unit vector and M is a large number. These

points have p-1 components equal to zero, and qth component equal to M. We will

derive a lower bound for M in Section 5.4.2. These are infeasible dummy points and

there exists no Ey Y∈ dominating these points since we assume that () 0qf x > for

1,...,q p= . Let us define two sets:

1

p
q

M
q

Y m
=

= ∪ and EM E MY Y Y= ∪ .

Introducing the dummy points has important effects on the weight and objective

spaces. We first mention the effects on the weight space and provide Theorems 5.1

and 5.3.

61

(a) The Nondominated Frontier

(b) Weight Space Decomposition

Figure 5.2 Properties of the example problem

62

The weight space decomposition in Figure 5.2b is done for Ey Y∈ . We propose to

consider the dummy points in the weight space decomposition, in addition to the

points Ey Y∈ . Let ()0 0

1

: 0λ λ
=

  = ∈ = 
  

∏
p

q
q

Boundary W W , i.e., at least one qλ is

equal to zero. The effect of introducing dummy points is given in the following

theorem.

Theorem 5.1. If ()0 0

EMy Y
W W y

∈
= ∪ , then () ()0 0W y Boundary W = ∅∩ for all Ey Y∈ .

Proof: On the boundaries of 0W , at least one of the weights, say qλ , is equal to 0.

Since () 0qf x > and 0yλ > for all Ey Y∈ and 0Wλ ∈ , we have 0qmλ = .

Corresponding boundary is in ()0 qW m . □

We first mention the effect of the above theorem on the weight space on a

biobjective problem and then generalize it. If there are two objectives, then 0W and

weight sets ()0W y are line segments. Only two points, say1y and 2y , have

common boundaries with 0W and these points are adjacent to only one other point.

Every point Ey Y∈ , except 1y and 2y , are adjacent to exactly two other points in EY .

These adjacent points determine the boundaries of the weight set decomposition. By

introducing points 1m and 2m , we crop some portions of ()0 1W y and ()0 2W y such

that they do not have common boundaries with 0W . So every point in EY is adjacent

to exactly two points in EMY . For a problem with p objectives, there may be a point

in EY such that it is adjacent to only one other point in EY . However, the upper

bound on the number of points adjacent to Ey Y∈ is 1EY − , not p.

Let us define the sets A(y) and NA(y) for EMy Y∈ as:

() { }: and are adjacent′ ′= ∈ EMA y y Y y y .

63

() { }: and are not adjacent′ ′= ∈ EMNA y y Y y y .

By definition, () () { }∪ ∪ = EMA y NA y y Y and () ()A y NA y∩ = ∅ for any EMy Y∈ .

In Theorem 5.3, we prove that every point Ey Y∈ is adjacent to at least p points in

EMY .

Theorem 5.2. (Kalai, 1993). Every q-dimensional polytope has at least q+1 facets.

Theorem 5.3. Every point Ey Y∈ is adjacent to at least p points in EMY .

Proof: For a given Ey Y∈ , ()0W y is a convex polytope with dimension p-1 (by

Propositions 5.1 and 5.2). Moreover, () ()0 0W y W y′∩ is a polytope with dimension

p-2 for all ()y A y′∈ (by Definition 5.1). In order to define a polytope of dimension

p-1, at least p facets (faces with dimension p-2) are required (by Theorem 5.2).

Hence y must be adjacent to at least p points. Every point Ey Y∈ is adjacent to at

least p points in EMY . □

Note that, all points adjacent to Ey Y∈ are not necessarily in EY and some of them

may be in MY .

We observe that, if = ∅Y then = ∅EY because ⊆EY Y . It is obvious that, if ≠ ∅Y

then ≠ ∅EY .

Corollary 5.1. If EY ≠ ∅ then every point EMy Y∈ is adjacent to at least p points in

EMY .

Proof: By Theorem 5.3, we know this corollary holds for every Ey Y∈ . If EY = ∅ ,

then every dummy point My Y∈ is adjacent to the remaining p-1 dummy points. If

64

1EY = , then every dummy point is also adjacent to this point due to Theorem 5.3, i.e.

this point must be adjacent to at least p points. Adding more points to EY cannot

decrease ()A y for any EMy Y∈ . Hence, given that EY ≠ ∅ , every point EMy Y∈ is

adjacent to at least p points in EMY . □

Introducing dummy points also affects the structure of the objective space. Let us

define ConvYEM as the convex hull of EMY , and nondominated frontier of ConvYEM as

NDFEM. We first prove that the dummy points are extreme supported nondominated

points. We next show that we can define NDFEM only with the nondominated facets,

SF(p) of ConvYEM.

Theorem 5.4. The dummy point q
Mm Y∈ is an extreme supported nondominated

point ConvYEM.

Proof: The dummy point mq is nondominated since no Ey Y∈ can dominate mq due

to the assumption () 0qf x > and no k
Mm Y∈ , k q≠ dominates mq. This point is also

an extreme point since its qth objective function value M is the largest value in

objective q. □

Theorem 5.5. ()=EMNDF SF p .

Proof: Assume that there exists a face ()qF SF q∈ and there exists no ()pF SF p∈

such that q pF F⊆ . This is possible if there exists a qy F∈ such that () 1A y q= − .

Since ()A y p≥ for EMy Y∈ (by Theorem 5.3 and Corollary 5.3.1) it is not possible

to have such a point EMy Y∈ . Hence nondominated frontier of ConvYEM can be

defined by the set of nondominated facets. □

In Figure 5.3, we present the effect of dummy points in the objective space. ConvY

(Figure 5.3a) is defined with a face and a facet. The face passes through points y1

65

and y2. The facet passes through the points y1, y3 and y4. ConvYEM can be defined by

using only facets. The blue facet is the same facet used in ConvY. The red facets are

defined by two points in YE and one point in YEM. The grey facets are defined by one

point in YE and two points in YEM. All 0-dimensional and 1-dimensional faces of

ConvY are transformed to 2-dimensional facets by the use of the dummy points.

(a) NDF (b) NDFEM

Figure 5.3 The effect of the dummy points in the objective space

5.4.2 The Algorithm

The main idea of the exact algorithm is very similar to that of CAN. We start with a

set of initial points. At each iteration of the algorithm, we try to find new points in

YE or identify new facets of ConvYEM. The algorithm stops when no more points or

facets can be identified. We call our exact algorithm as ExA.

The CAN algorithm uses pairs of extreme supported nondominated points and

calculates the normal vector of the line passing through these points. Using two

points is sufficient for the biobjective problems since two points can define a facet of

the nondominated frontier. Similarly, we define a set { }1 2, ,..., pR r r r= containing p

66

points where q
E Mr Y Y′∈ ∪ for 1, ,q p= … . We refer to these R sets as stages. ExA

keeps track of three different lists of the stages. These lists are:

L : list of stages to be searched,

V : list of stages already searched (visited), and

F : list of facet defining stages.

Lists L, V and F are sets and their elements are stages, which are also sets with

exactly p elements. F is a subset of V.

Steps of ExA is given in Figure 5.4. At the first step of the algorithm, we initialize

the set EY′ and lists F, L and V. Variable k corresponds to the cardinality of EY′ and it

is initially set to one. The important feature of this step is the initialization of L with

the dummy points.

During the search of the algorithm, a stage R is selected from L and it is added to V at

the second step. The normal of the hyperplane, λ , passing through the points of

stage R, is calculated at the third step. If pλ >∈ℝ , then ()MOIP λ is solved and

optimal point r ∗ is obtained at Step 4.1. If r R∗ ∈ then we conclude that R is a facet

defining stage and it is added to F at Step 4.2. If r R∗ ∉ then, p new stages are

generated by replacing r ∗ with each element of R. A newly generated stage is added

to list L, if it is not already a member of lists L or V. Otherwise, it is discarded in

order to prevent cycling between a subset of stages. If Er Y∗ ′∉ , then it is a new point

and is added to EY′ as the kth member. If a stage R has a negative component in its

normal vector, then that stage is discarded at Step 5.

The stage R is removed from list L at Step 6, since a search is performed with this

stage. At Step 7, ExA reports EY′ and stops if there are no more stages to be visited,

otherwise, the algorithm moves to Step 2 for a new search.

67

ExA

Initialize 1. Set EY′ = ∅ , 1k = , V = ∅ , F = ∅ , (){ }1 2, ,..., pL m m m= .

Search

2. Select an element { }1 2, ,..., pR r r r L= ∈ and set { }V V R= ∪ .

3. Calculate λ such that 1 2 ... p
λr λr λr= = = .

4. If pλ >∈ℝ

4.1. Solve problem ()MOIP λ and let the optimal point be

()1 2, ,..., pr r r r∗ ∗ ∗ ∗= .

4.2. If r R∗ ∈ then set { }F F R= ∪ .

4.3. If r R∗ ∉ then

4.3.1. { } { } { }{ }1 1 1 1,..., , , ,..., , ,..., ,..., ,p p p pL L r r r r r r r r r− ∗ ∗ ∗ −= ∪

and ()L L L V= − ∩ .

4.3.2. If Er Y∗ ′∉ then ky r∗= , { }k
E EY Y y′ ′= ∪ and k=k+1.

5. If pλ >∉ℝ then go to Step 6.

Control

the loop

6. { }L L R= − .

7. If L = ∅ then report EY′ and stop, otherwise go to Step 2.

Figure 5.4 Steps of ExA

68

In the following theorems, we prove that ExA finds all extreme supported

nondominated points in finite iterations and does not find any other points.

Theorem 5.6. ExA ends in a finite number of iterations.

Proof: Whenever a stage R is selected, it is recorded to V in Step 2. If a generated

stage (at Step 4.3.1) is already in V, then it is immediately removed from L. Hence a

stage can be visited at most once during the algorithm. Number of stages visited is

V and it is bounded by:

()
!

! !
E ME M

E M

Y YY Y
V

p p Y Y p

∪ ∪
≤ =  ∪ − 

.

Hence ExA ends in a finite number of iteration. □

Note that although there is a finite number of iterations, EY may be exponential in

the problem size and ExA may require an exponential number of iterations.

Theorem 5.7. Er Y∗ ∈ .

Proof: r ∗ is obtained by ()MOIP λ using pλ >∈ℝ . □

Corollary 5.2. E EY Y′ ⊆ .

Proof: Follows directly by Theorem 5.7. □

Let { }1 2, ,..., ,p
RC Conv r r r r∗= denote the convex hull defined by 1 2, ,..., pr r r and r ∗

where { }1 2, , , pR r r r= … and r ∗ solves ()MOIP λ for pλ >∈ℝ such that

1 2 ... p
λr λr λr= = = .

Lemma 5.1. There exists no extreme supported nondominated point in the interior of

RC , int RC . (In other words, there is no r ′ such that intEM Rr Y C′∈ ∩)

69

Proof: Assume that int Rr C′∈ . Then by Minkowski’s Theorem

1

p
k k

k

r r rα α∗ ∗

=

′ = +∑ for some ()1 1,..., ,p pa a aα ∗ +
≥= ∈ℝ such that

1

1
p

k

k

α α
∗

=
= −∑ .

Since r ′ can be expressed as a convex combination of other points in EMY

EMr Y′∉ and intEM RY C∩ = ∅ □

Theorem 5.8. Each R F∈ defines a nondominated facet of ConvYEM.

Proof: A stage R is added to F if pλ >∈ℝ and r R∗ ∈ . There are p extreme points in

R and they are affinely independent since pλ >∈ℝ . Hence the polyhedron defined by

R has dimension p-1 and is a nondominated facet of ConvYEM. □

In the next theorem, we prove that ExA finds all extreme supported nondominated

points. We need the following two definitions in the proof of the theorem.

{ }() () ()1 2
1 2 0

1

1 2
0

1 1 1

, ,..., , ,...,

 ...

p
p R R

p q q
q

p p p
R R R R p

q q q q q q
q q q

B r r r B R y y y y y

where r r r

λ λ

λ λ λ λ

≥ ≥

=

= = =

= = = ≥



= = = = 



∑

∑ ∑ ∑

We define ()B R≥ for R F∈ . The hypervolume defined by ()B R≥ is the set of

points dominated by any linear combination of the points in R.

{ }() () ()1 2
1 2

1

1

, ,..., , ,...,

 1, 0

p
p k k

p q q
k

p
k k

k

B r r r B R y y y y y r q

where k

α

α α

≤ ≤

=

=

= = = ≤ ∀



= ≥ ∀ 



∑

∑

70

We define ()B R≤ for R F L∈ ∪ . The hypervolume defined by ()B R≤ is the set of

points dominating all convex combinations of the points in R.

Theorem 5.9. At the termination of ExA, E EY Y′ = .

Proof: By induction we will prove that if k
Ey Y∈ then the following term holds at

each iteration of the algorithm:

()k

R F L

y B R≤

∈ ∪

∈ ∪ .

At the first iteration (){ }1 2, ,..., pF L m m m∪ = , and the term holds since all feasible

points lie in the defined hypervolume.

Assume that at some iteration of the algorithm the term holds. Then at that iteration,

an element R L∈ is selected in Step 2 and the λ vector corresponding to stage R is

calculated in Step 3.

If pλ >∈ℝ , then ()MOIP λ is solved and the optimal point r ∗ is obtained in Step 4.1.

If r R∗ ∈ then R is added to F (in Step 4.2) and removed from L (in Step 6)

henceF L∪ does not change. If r R∗ ∉ then R is removed from L (in Step 6). In

Step 4.3.1, p new stages are generated and the unvisited ones are added to L. By

removing R and adding p new stages to L, some hypervolume defined by the term is

removed, however, by Lemma 5.1, we know that there is no k
Ey Y∈ in the removed

hypervolume.

If pλ >∉ℝ then the hyperplane defined by R cannot define a nondominated facet.

Hence R is removed from L (in Step 6).

Therefore after one iteration ()k

R F L

y B R≤

∈ ∪

∈ ∪ still holds.

71

The algorithm stops when L = ∅ . At the end of the algorithm F L F∪ = .

()k

R F

y B R≤

∈

∈∪ holds for all k
Ey Y∈ . Also all feasible solutions are in ()B R≥ for

all R F∈ . So for all extreme supported nondominated points, ()ky B R≥∈ for all

R F∈ . Moreover, ()k

R F
y B R≥

∈
∈ ∩ . Hence for every k

Ey Y∈ , there exists a kR F∈

such that () ()k k ky B R B R≥ ≤∈ ∩ . This completes the proof. □

In Figure 5.5, we show the progress of ExA graphically on the example problem of

Tenfelde-Podehl (2003). We only show a subset of the iterations of the algorithm. In

the first iteration, we have (){ }1 2 3, ,L m m m= . In order to display enough detail, we

use a range of [0,25] for the axes. Due to this reason, we cannot show the dummy

points. Each plane in Figure 5.5a, passes through two dummy points and y1. Grey

planes represent stages in L. Blue planes are facets of ConvYEM. In this example, the

number of iterations and the number of visited stages |V| happened to be equal. This

is because the stages generated in Step 4.3.1 are not listed in L or V and are added to

L. However, this may not always happen and there will be instances where |V| is less

than the number of iterations.

ExA works using the dummy points. We provide a lower bound for the M value used

by the dummy points. We should mention that this lower bound is valid when all

objective function values are strictly positive and integer valued. It can be adapted

for the general case with some modifications, as discussed in Section 2.3. We first

consider the biobjective case to explain the main idea, and then provide a

generalization for the multiple objectives case.

72

a) Iteration=1, |L|=3, |V|=1, |F|=0,

{ }1 , 1E EY y Y′ ′= =

b) Iteration=2, |L|=5, |V|=2, |F|=0,

{ }1 3, , 2E EY y y Y′ ′= =

c) Iteration=4, |L|=6, |V|=4, |F|=1,

{ }1 3 2, , , 3E EY y y y Y′ ′= =

d) Iteration=7, |L|=6, |V|=7, |F|=3,

{ }1 3 2 4, , , , 4′ ′= =E EY y y y y Y

e) Iteration=10, |L|=3, |V|=10, |F|=6,

{ }1 3 2 4, , , , 4E EY y y y y Y′ ′= =

f) Iteration=13, |L|=0, |V|=13, |F|=9,

{ }1 3 2 4, , , , 4′ = = =E E EY Y y y y y Y

Figure 5.5 Progress of ExA

73

Assume that LBq and UBq correspond to the lower and upper bounds of the qth

objective function, q=1,2. If UBq is found among all efficient solutions, then it will

lead to a better (smaller) M value. Since, this is not an easy problem, and since any

UBq value is sufficient for our purposes, we can find UBq among all feasible

solutions. The M value must be large enough so that no point Ey Y∈ should be

convex dominated by stage (), ′= qR m y for any Ey Y′∈ and q=1,2. Consider the

slope of the line passing through points 1 2, Ey y Y∈ in Figure 5.6. The slope is the

steepest when ()1
1 11,y LB LB= + and ()2

1 2,y LB UB= . In this case, the line and

the 2f axis intersect at the point () ()()2 1 1 20, 1UB LB LB LB + −  . By a similar

analysis on the 1f axis, we conclude that M must be greater than

() () () (){ }2 1 1 2 1 2 1 21 , 1max UB LB LB LB UB LB LB LB   + − + −    . Eliminating the terms

with negative coefficients and replacing the lower bounds LB1, LB2 with the upper

bounds UB1, and UB2 we can define amore conservative lower bound and define M

as:

()()1 21 1M UB UB≥ + +

Figure 5.6 Calculating a lower bound for M

74

In the following theorem, we give a general lower bound to the M value.

Theorem 5.10: Given 0qy > and qy ∈ℤ for 1,...,q p= , for all y Y∈ , and

q q qLB y UB≤ ≤ for all Ey Y∈ . A lower bound for M is

{ }()1, ,
1

p

q q
q p

q

M UB max UB
==

 
≥  
 
∑

…
.

Proof: In order to obtain steepest edges, let us define the following set of

nondominated points:

()1 2 1 1, , , , 1, , ,q
q q q pz LB LB LB LB LB LB− += +… … for q=1,…,p,

()1 2 1 1, , , , , , ,q
q q q pr UB UB UB LB UB UB− += … … for q=1,…,p, and

dummy points, =q
qm Me for 1,...,q p= , where ()0,...,0,1,0,...,0qe = is the qth unit

vector.

The value of M should be large enough so that rq should dominate any convex

combination of the points 1 1 1, , , , , ,q q q pm m z m m− +
… … .

1,

p
q i q

i q
i i q

r m zα α
= ≠

≤ +∑ where
1

1, 0
p

i i
i

iα α
=

= ≥ ∀∑ .

This corresponds to the following set of inequalities.

()

1

 1,..., ,

1

1

α α

α

α
=

≤ + = ≠

≤ +

=∑

i i q i

q q q

p

i
i

UB M LB i p i q

LB LB

For a given q,
1

q
q

q

LB

LB
α ≥

+
. Let 0α α

≠

=∑ i
i q

. Then 0

1

1qLB
α ≤

+
.

Summation of the p-1 constraints corresponding to i≠q.

i i q i
i q i q i q

UB M LBα α
≠ ≠ ≠

≤ +∑ ∑ ∑

75

()0

0 0

1α α

α α α
≠ ≠ ≠ ≠ ≠ ≠

≠
≠

− − − −
≥ = = +
∑ ∑ ∑ ∑ ∑ ∑

∑
∑

i q i i i i i
i q i q i q i q i q i q

i
i qi

i q

UB LB UB LB UB LB

M LB

In order to set M as small as possible, use the maximum possible value of 0α . Then

()1
≠ ≠ ≠

 
≥ + − + 

 
∑ ∑ ∑q i i i
i q i q i q

M LB UB LB LB

()1
≠

≥ + ∑q i
i q

M LB UB .

This term is valid for each q. In order to get a general lower bound, we need all

upper and lower bound values. This term has to be calculated for each q, and the

largest value should be selected.

In order to obtain an easy conservative value for M, we eliminate the terms with

negative coefficients and replace i
i q

UB
≠
∑ with

1

p

i
i

UB
=
∑ . We also replace 1qLB + with

{ }
1, ,

q
q p
max UB
= …

since 1q qLB UB+ ≤ must hold for every q. Hence a conservative value

for M can be constructed as follows:

{ }()1, ,
1

p

q q
q p

q

M UB max UB
==

 
≥  
 
∑

…
. □

5.5 Improvements on the Exact Algorithm

In this section, we discuss the opportunities to improve ExA. During its search, ExA

faces different situations. There are several types of information embedded in these

situations, and we can use them to improve the algorithm. We first discuss the

information embedded in nondominated facet defining stages. We next discuss a

property which may decrease the number of ()MOIP λ s solved. We finally discuss

different queue disciplines for selecting R from L.

76

5.5.1 Nondominated Facets

Let us define the following two sets for each Ey Y∈ :

CF(y): The set of points Ey Y′∈ such that there exists a stage R F∈ (i.e.

common facet) and,y y R′∈ .

NF(y): The set of points Ey Y′∈ such that there exists no stage R F∈ (no

common facet) and,y y R′∈ .

We consider ()y CF y′∈ if there is a nondominated facet defining stage R and both

y and y′are elements of R. The second set, NF(y) is the complement of CF(y). If

there exists no nondominated facet defining stage R such that two points y and y′

are elements of R, then ()y NF y′∈ . By definition, () ()CF y NF y∩ = ∅ and

() () { } ECF y NF y y Y∪ ∪ = . Also, these sets are symmetric, i.e., if ()y CF y′∈ then

()y CF y′∈ and if ()y NF y′∈ then ()y NF y′∈ .

We can obtain these two sets when we know allEy Y∈ , i.e. when we have complete

information about the nondominated points and all nondominated facets. However,

during the search, we only know a subset of YE and we must use the partial

information gathered. Due to this reason, we define ()CF y′ and ()NF y′ for Ey Y′∈ .

If both points y andy′are elements of a facet defining stage then we update both sets;

() () { }CF y CF y y′ ′ ′= ∪ and () () { }CF y CF y y′ ′ ′ ′= ∪ . The sets ()CF y′ and

()NF y′ are subsets of the original sets, () ()CF y CF y′ ⊆ and () ()NF y NF y′ ⊆ .

The property () ()CF y NF y′ ′∩ = ∅ still holds. However, the other property,

() () { } ECF y NF y y Y′ ′ ′∪ ∪ = may not hold since we add point y to the set

()NF y′ ′ only if we are sure that these two points cannot be the members of a

nondominated facet defining stage at the same time.

77

Theorem 5.11. If pλ >∉ℝ for some R, then there exists at least a pair of points

,t sr r R∈ , such that ()s tr NF r′∈ .

Proof: If pλ >∉ℝ , the elements of R cannot define a nondominated facet since by

definition, the condition pλ >∈ℝ must hold for nondominated facets. However, if

()′∈s tr CF r holds for all pairs of elements of R, then R must define a nondominated

facet. So we conclude that there must be at least a pair of points in R which cannot

be on the same nondominated facet. □

Corollary 5.3. If R F∈ then ()′∈s tr CF r for all pairs ,t sr r R∈ .

Proof: All points in R are elements of a nondominated facet. □

If pλ >∈ℝ , then in Step 4.1 of ExA, there are five possible cases considering r ∗ , λ ∗r

and 0λ where 0λ λ= kr for each ∈kr R . These cases are:

 Case 1: 0λ λ∗ <r and Er Y∗ ′∉

 Case 2: 0λ λ∗ <r and Er Y∗ ′∈

 Case 3: 0λ λ∗ =r and *r R∈

 Case 4: 0λ λ∗ =r and \Er Y R∗ ′∈

 Case 5: 0λ λ∗ =r and Er Y∗ ′∉

In the following theorems, we show the implications of these cases.

Theorem 5.12. If pλ >∈ℝ and 0λ λ∗ <r then the elements of R do not define a facet.

Proof: A facet is a p-1 dimensional face, and a face is a valid inequality. However,

condition λ λ∗ < kr r is contradicting with the definition of a valid inequality. □

78

Corollary 5.4. If pλ >∈ℝ and 0λ λ∗ <r then the elements of R do not define a

nondominated facet.

Proof: Follows directly from Theorem 5.12. □

Theorem 5.13. If pλ >∈ℝ and 0λ λ∗ =r , then r ∗ and all points of R are on the same

nondominated facet.

Proof: If the points in R did not define a nondominated facet, then 0λ λ∗ <r should

hold (as proved in Theorem 5.12). There are p for cases 1, 2 and 3 and p+1 for cases

4 and 5 affinely independent points having the same objective function value for the

given pλ >∈ℝ . Hence these points define a nondominated facet and for all pairs

{ }, ∗∈ ∪t sr r R r , ()′∈s tr CF r holds. □

We can use the information gathered during the search of ExA by developing rules

based on Theorems 5.11, 5.12, 5.13 and Corollary 5.4. We define the following

rules:

Rule 1: After selecting stage { }1 2, ,..., pR r r r L= ∈ in Step 2, check

′NF information for all pairs of points in R. If there exists a pair ,t sr r R∈

such that ()′∈s tr NF r then R cannot be a nondominated facet defining stage.

Add R to V, skip Steps 3, 4 and 5 and proceed to Step 6.

Rule 2: If pλ >∉ℝ for some R, and there exist points ,∈u vr r R such that

()′∈s tr CF r for all (),t sr r pairs for , ∈t sr r R except (),u vr r pair, then set

()′∈u vr NF r and ()′∈v ur NF r .

Rule 3: If Case 2 is observed and there exist points ,∈u vr r R such that

()′∈s tr CF r for all (),t sr r pairs for , ∈t sr r R except (),u vr r pair, then set

()′∈u vr NF r and ()′∈v ur NF r .

79

Rule 4: If Cases 3, 4 or 5 is observed then set ()′∈s tr CF r for all (),t sr r

pairs such that { }, ∗∈ ∪t sr r R r .

5.5.2 Pre-Calculation

In this section, we define a property that may decrease the number of ()MOIP λ s

solved during the search ExA. We refer to this property as pre-calculation.

Let us define ′EMConvY as the convex hull of E MY Y′ ∪ . The aim of ExA is to close the

gap between ′EMConvY and ConvYEM. At the end of the algorithm, E EY Y′ = , and also

′EMConvY is equal to ConvYEM. Consequently, in Step 4.1 of ExA, we solve

()MOIP λ and obtain r ∗ . Using r ∗ , we define new stages and add them to L.

However, in some cases (Cases 2, 3 and 4 in Section 5.1), r ∗ may be a known point,

i.e., Er Y∗ ′∈ . In these cases, we would obtain r ∗ by simply searching the best point

Ey Y′∈ for the given λ instead of solving ()MOIP λ . Although it depends on the

size of the single objective problem, the performance of ()MOIP λ solver used, and

the cardinality of EY′ , searching for the best point for the given weights could be

much easier than solving a single objective integer program. We will discuss the

trade-offs of pre-calculation in the computational results section.

Based on this observation, we modify Step 4.1 of ExA as follows:

4.1 Pre-calculation, proceed to Step 4.1.1

4.1.1 Let pcr ∗ be such that { }
E

pc
y Y

r min yλ λ∗

′∈
= .

4.1.2 If pcr R∗ ∉ then pcr r∗ ∗= , go to Step 4.3, otherwise go to Step 4.1.3

4.1.3 Solve ()MOIP λ and let the optimal point be ()1 2, ,..., pr r r r∗ ∗ ∗ ∗= , go to

Step 4.2.

80

In Step 4.1.1, we determine the best available point pcr ∗ for the given λ . In Step

4.1.2, we check if pcr R∗ ∈ . If pcr R∗ ∈ then either R is a nondominated facet defining

stage, or the optimal point of this stage is a hitherto unknown point, i.e., Er Y∗ ′∉ .

Hence for this case, we proceed to Step 4.1.3 and solve ()MOIP λ . However, if

pcr R∗ ∉ , then we set pcr r∗ ∗= and proceed to Step 4.3 (we skip Step 4.2 since we

already know that r R∗ ∉).

When we apply the Pre-calculation property, point pcr ∗ found in Step 4.1.1 and the

optimal solution of ()MOIP λ , r ∗ may not be equal. This corresponds to Cases 1

and 5. This may result with the addition of some stages to L, which would have

never been added to L in the original ExA. On the other hand, some stages that

would have been visited by the original algorithm, may not be visited when using

pre-calculation.

We still know that at the end of the algorithm, we will have E EY Y′ = because, the

hypervolume removed from the ()
R F L

B R≤

∈ ∪
∪ term is equal to the interior of the

convex hull defined by { }1 2, , , ,p
pcr r r r ∗

… . By Lemma 5.1, it is not possible to have

an extreme supported nondominated point in this hypervolume.

5.5.3 Queuing Disciplines

In each iteration, ExA selects a stage R from list L in Step 2. In this section, we

consider L as a queue of stages and discuss three queue disciplines for selecting R.

Before discussing how to select a stage R from L, let us mention how we add new

stages to L. In Step 4.3.1, we add new stages to the end of L as follows:

{ } { } { }{ }1 1 1 1,..., , , ,..., , ,..., ,..., ,p p p pL L r r r r r r r r r− ∗ ∗ ∗ −= ∪

81

and we remove from L the stages that are already visited. Thus L is updated as

()L L L V= − ∩ . This removal prevents the cycling of the algorithm.

The first queue discipline we use is first in first out. In this discipline, we select the

first element of L in Step 2 as the new R stage and remove it from L in Step 6. The

second queue discipline we use is last in first out. In this discipline, we select the

last element of L in Step 2 as the new R and remove it from L in Step 6.

In Figure 5.7, we build a tree to represent the search of ExA. It is the tree of the

example problem of Tenfelde-Podehl (2003) with three objectives. Each node of the

tree corresponds to a stage R. The number in the first line is a unique number to refer

to a stage easily. The second line corresponds to the set of points in R. The third line

contains the point corresponding to the optimal solution of ()MOIP λ for that stage.

At the beginning of the algorithm, only stage { }1 2 3, ,m m m is in L and the optimal

solution of ()MOIP λ corresponds to y1. We then remove the first stage from L and

add three new stages: { }1 2 3, ,y m m , { }1 1 3, ,m y m and { }1 2 1, ,m m y . Assume that we

next select { }1 2 3, ,R y m m= . As seen from the figure, the optimal solution

corresponds to y1. We remove this stage from L and add it to F, since it is a

nondominated facet defining stage. Note that, the leaf nodes (those without any

offspring) are nondominated facet defining stages in this tree. However, in general,

there are three different possibilities for being a leaf node. A stage is a leaf node if it

i) defines a nondominated facet stage,

ii) has negative elements in its normal vector, pλ >∉ℝ , or

iii) has no unvisited offspring, i.e., there are nodes in the tree corresponding

to its offspring.

Assume that, we next select { }1 1 3, ,R m y m= . We obtain y2 and add three new stages

to L: { }2 1 3, ,y y m , { }1 2 3, ,m y m and { }1 1 2, ,m y y . Now there are four stages in L, 4th,

82

5th, 6th and 7th stages. According to the first-in-first-out and the last-in-first-out

disciplines, we should select 4th and 7th stages, respectively. As it can be seen, the

first in first out and the last-in-first-out disciplines correspond to breadth first and

depth first strategies of exploring the tree, respectively.

Figure 5.7 Tree structure of the example problem

Consider Rules 2 and 3 discussed in Section 5.5.1. These rules are applicable for a

stage R if there exist points , ∈u vr r R such that ()′∈s tr CF r for all (),t sr r pairs for

all , ∈s tr r R except the (),u vr r pair. If all conditions are satisfied, we set

()′∈u vr NF r and ()′∈v ur NF r . This information would be helpful in applying

83

Rule 1 at other stages. The earlier this type of stages are selected, the sooner

information extracted can be used. Obtaining more information sooner will

generally decrease the number of iterations required.

For a given stage, we can find the number of pairs (),t sr r satisfying ()′∈s tr CF r as

follows:

()
,

1

2 ∈

′∩∑
t s

t s

r r R

r CF r .

We halve the summation since ′CF sets are symmetric. There are
2

 
 
 

p
 pairs in any

stage and Rules 2 and 3 require 1
2

 
− 

 

p
 pairs in ′CF sets. Hence, if we can select a

stage having 1
2

 
− 

 

p
 pairs in ′CF sets, then we may have a chance to apply these

rules. The third queue discipline searches for this type of stages. A stage R L∈ is a

such candidate if

()
,

1
1

22 t s

t s

r r R

p
r CF r

∈

 ′∩ = − 
 

∑ .

If there is no such candidate, this discipline utilizes first in first out discipline.

We solve a sample assignment problem with p=3 and n=20. We first consider ExA

and do not gather any common facet information. In this case, the third queuing

discipline is equivalent to the first one. Hence we have two different queuing

disciplines. In both disciplines, ExA stops nearly after 14,800 iterations. In Figure

5.8, we plot the ratio E

E

Y

Y

′
 after every ten iterations for each discipline. Breadth first

discipline finds all points before 1910th iteration. It tries to prove that E EY Y′ = in the

remaining iterations. At 1910th iteration, the depth first discipline found only 73% of

the points. It finds all points before 14600th iteration.

84

0

10

20

30

40

50

60

70

80

90

100

0 3000 6000 9000 12000 15000

Iteration

%
 |

Y
E

|

Breadth First

Depth First

Figure 5.8 Change in the E

E

Y

Y

′
 ratio for different queuing

disciplines on a sample problem.

We next solve the same sample problem with the nondominated facets property. In

Figure 5.9, we show the effect of using the nondominated facet information by

applying Rules 1-4 discussed in Section 5.5.1. We do not plot E

E

Y

Y

′
 for the third

queuing discipline since it is very similar to the plot of breadth first discipline.

Applying the rules does not change the pattern of the plots. However the number of

iterations decreases substantially.

85

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Iteration

%
 |

Y
E

|

Breadth First

Depth First

Figure 5.9 Change in the E

E

Y

Y

′
 ratio for different queuing disciplines

on a sample problem where Rules 1-4 are used.

In Figure 5.10, we plot the first 100 points found by the breadth first and the depth

first queuing disciplines. The blue points are found by breadth first discipline. They

are spread over the nondominated frontier. The red points are found by depth first

discipline. They are concentrated on a region of the nondominated frontier.

86

Figure 5.10 First 100 points found by BF and DF.

5.6 Computational Experiments

In order to test the performance of ExA and the proposed improvements to it, we

solve three- and four-objective versions of three well-known combinatorial

optimization problems: The Assignment Problem (AP), the Knapsack Problem (KP)

and the Traveling Salesperson Problem (TSP).

In Section 5.6.1, we give the mathematical model of each test problem, random data

generation schemes and implementation details. We report the results in Section

5.6.2.

5.6.1 Test Problems

The Assignment Problem (AP)

In AP, there are n jobs and n resources. The cost of assigning the i th job to the jth

resource is cij. The aim is to assign each job to a different resource in such a way that

87

the total cost of the assignment is minimized. It is known that the constraint set of

AP is unimodular and the optimal solution of the linear relaxation is equal to the

optimal solution of the original problem.

In the multiobjective version of this problem, the cost of assigning the ith job to the jth

resource with respect to the qth objective is q
ijc . The mathematical model of AP with

p objectives is:

{ }

1 2

1 1 1 1 1 1

1

1

" " C , , ,

 . . 1 1, ,

 1 1, ,

 0,1 1, , , 1, ,

n n n n n n
p

ij ij ij ij ij ij
i j i j i j

n

ij
i

n

ij
j

ij

min x c x c x c x

s t x j n

x i n

x i n j n

= = = = = =

=

=

 
=  
 

= =

= =

∈ = =

∑∑ ∑∑ ∑∑

∑

∑

…

…

…

… …

where
1 if job is assigned to resource

0 otherwise


= 


ij

i j
x

For AP, we use a random data generation scheme very similar to the one used by

Przybylski, Gandibleux and Ehrgott (2007). They generate q
ijc values from a discrete

uniform distribution in the interval [0,20], where as we use the interval [1,20]in order

to have strictly positive objective function values. We solve problems with 10, 20,

30 and 40 jobs.

The Knapsack Problem (KP)

In KP, there are n items and a knapsack with a known capacity, c. Each item j has a

weight wj and a value vj. The aim is to select a subset of items in such a way that the

total weight of the selected items does not exceed c while the total value of the

selected items is maximized. KP is NP-Hard in the ordinary sense. We refer to

Martello and Toth (1990) and Kellerer, Pferschy and Pisinger (2004) for further

details on KP.

88

In the multiobjective version of KP, the value of the j th item with respect to the qth

objective function is q
jv . The mathematical model of KP with p objectives is

{ }

1 2

1 1 1

1

" " V , , ,

 . .

 0,1 1, ,

= = =

=

 
=  
 

≤

∈ =

∑ ∑ ∑

∑

…

…

n n n
p

j j j j j j
j j j

n

j j
j

j

max x v x v x v x

s t w x c

x j n

where
1 if item is selected

0 otherwise


= 


j

i
x

ExA is developed for minimization problems. In order to apply ExA directly, we

transform KP into a minimization problem:

{ }

1 2
1 2

1 1 1

1

" " V , , ,

 . .

 0,1 1, ,

= = =

=

 
= − − − 
 

≤

∈ =

∑ ∑ ∑

∑

…

…

n n n
p

j j j j p j j
j j j

n

j j
j

j

min x UB v x UB v x UB v x

s t w x c

x j n

where
1=

>∑
n

q
q j j

j

UB v x for all q and for all feasible solutions.

We use an upper bound strictly greater than the objective function values of all

feasible solutions in order to ensure that objective function values of the

minimization problem is strictly greater than zero.

We use the random data generation scheme used by Pamuk and Köksalan (2003).

We generate wj and q
jv values from a discrete uniform distribution in the interval

[60,100]. The capacity of the knapsack is c. The capacity is set as the nearest

integer to
1

1

2

n

j
j

w
=
∑ in order to generate harder instances. We solve problems with 50,

75, 100, 150 and 200 items. We set
1

n
q

q j
j

UB v
=

=∑ since it is not possible to select all

items at the same time with the capacity generation method used.

89

The Traveling Salesperson Problem (TSP)

In TSP, there are n cities. The distance between cities i and j is ijc . A traveling

salesperson is located at city 1 and has to plan a tour that visits each city exactly once.

The salesperson’s aim is to find a tour with the minimum total distance travelled.

TSP is NP-Hard in the strong sense. We refer to Gutin and Punnen (2002) for further

information on the TSP.

In the multiobjective version of the problem, the cost of traveling from city i to city j

with respect to the qth objective function is q
ijc . The mathematical model of TSP with

p objectives is

()

{ }

1 2

1 1 1 1 1 1

1

1

,
, \

" " C , , ,

 . . 1 1, ,

 1 1, ,

 1 for 2 2

 0,1 1,

n n n n n n
p

ij ij ij ij ij ij
i j i j i j

n

ij
i

n

ij
j

ij
i j E

i U j N U

ij

min x c x c x c x

s t x j n

x i n

x U N

x i

= = = = = =

=

=

∈
∈ ∈

 
=  
 

= =

= =

≥ ≤ ≤ −

∈ =

∑∑ ∑∑ ∑∑

∑

∑

∑

…

…

…

…, , 1, ,n j n= …

where N is the set of all cities, U is a subset of N, E is the set of all city pairs and the

decision variables are defined as

1 if city is visited just after city

0 otherwiseij

j i
x


= 


.

For TSP, we use a random data generation scheme similar to the one used in

DIMACS STSP Implementation Challenge (see www.research.att.com/~dsj/chtsp).

We generate the integer coordinates of the cities on a 1000 × 1000 square and

calculate the Euclidian distances between cities. We generate p coordinates for each

city and calculate p distance matrices. We solve problems with 5, 10, 15, 25 and 30

cities. We use Concorde, a special TSP solver developed by Applegate, Bixby,

Chavatal and Cook to solve each TSP instance (see www.tsp.gatech.edu/concorde).

90

All objective function coefficients are integer valued in all three problems, but their

weighted sums are not necessarily integers. We use a general-purpose solver for AP

and KP where having rational coefficients for these two problems does not pose any

concerns. However, Concorde uses only integer valued distances. Thus, we

multiply the weighted sum values by a large number and round them to the nearest

integer for TSP.

5.6.2 Computational Results

We code ExA on Microsoft Visual C++ 6.0 and test on a computer with Pentium M

1.6 GHz, 256 RAM and Microsoft Windows XP. We use Callable Library of

CPLEX 8.1 for AP and KP and Concorde for TSP.

We generate 10 instances for each problem size−number of objective function

combination. We solve these problems with ExA. We set the time limit as one hour

and terminate the algorithm if it exceeds the time limit. We start solving small sized

problems and increase the problem size. If ExA reaches the time limit in most of the

instances then we stop increasing the problem size. In this section, we call ExA

without any additional properties as Base ExA. We want to find as many points as

possible during the time limit. Accordingly, Base ExA performs breadth first search.

In Table 5.1, we present the results of Base ExA for 3=p . The first two columns

show the problem type and problem size, respectively. The third column shows the

number of instances (out of 10) that Base ExA could not solve in one hour. If Base

ExA stops before the time limit is reached, then ′ =E EY Y , otherwise ′ ⊆E EY Y . We

separately report the results for instances ′ =E EY Y and ′ ⊆E EY Y because mathematical

operations on their results do not make sense. The next four columns are for the

instances where ′ =E EY Y . The CPU column shows the average run time of the

algorithm in seconds. Average numbers of extreme supported nondominated points

are reported in the EY column. The third column is
E

SC

Y
 where SC stands for the

91

number of solver calls, i.e., number of times ()MOIP λ is solved. This column

shows the average number of solver calls to find each extreme supported

nondominated point. The V column shows the number of stages visited during the

search. The last four columns are for the instances where ′ ⊆E EY Y . We report the

average ′EY ,
′E

SC

Y
 and V values when the algorithm stops at the one hour time limit.

At the end of each iteration, the algorithm checks L and stops if L is empty.

However, if the algorithm stops due to the time limit, then L may not be empty. In

the last column we report the average of
V

V L+
, i.e., the ratio of the number of

visited stages to the number of opened and visited stages.

In the one hour time limit, Base ExA can solve APs up to 30 jobs, KPs up to 150

items and TSPs up to 25 nodes. The average CPU time and the average V increases

rapidly as problem size increases. Average EY and average
E

SC

Y
 also increase with

the problem size. It is observed that all indicators increase faster in AP and TSP

compared to KP. We think that the number of decision variables may have an effect

on this result. Note that the number of decision variables in KP is O(n) where as it is

O(n2) in AP and TSP.

We report result for 4p = in Table 5.2. In general, results are similar to the 3=p

case. In the one hour time limit, Base ExA can solve APs with 10 jobs, KPs up to

100 items and TSPs with 10 nodes. The reason of these decreases is the rapid

increase in average EY . Increasing p from 3 to 4 enormously effects EY . Consider

AP with 20 jobs. Average EY is nearly 150 for 3=p . For 4p = , Base ExA can

search only half of the opened stages in the time limit but average ′EY is nearly 1000.

92

Table 5.1 Results of Base ExA (3=p).

′ =E EY Y ′ ⊆E EY Y

Problem n # CPU

(seconds)
EY

E

SC

Y
 V ′EY ′E

SC

Y
 V

V

V L+

10 0 0.05 30.8 7.5 264.8

20 0 31.25 156.9 75.0 14369.5

30 1 1719.03 368.3 246.7 109894.8 397.0 367.1 171833.0 99.6
AP

40 10 640.5 214.0 154290.4 85.4

50 0 4.39 48.4 14.5 978.0

75 0 44.60 82.2 32.6 3688.5

100 0 194.80 122.4 40.0 6201.0

150 2 1443.71 217.1 96.4 25652.8 309.0 86.3 30551.0 85.7

KP

200 10 429.8 70.4 33820.5 80.4

5 0 0.83 4.7 3.6 19.0

10 0 15.27 25.2 6.8 205.8

15 0 163.47 63.8 26.0 2165.1

25 3 2396.85 198.3 94.8 23152.4 258.7 101.9 29579.7 89.3

TSP

30 10 316.1 60.3 21552.9 83.9

Table 5.2 Results of Base ExA (4=p).

′ =E EY Y ′ ⊆E EY Y

Problem n # CPU

(seconds)
EY

E

SC

Y
 V ′EY ′E

SC

Y
 V

V

V L+

10 0 212.23 104.6 194.4 30734.8
AP

20 10 980.7 104.9 131102.9 51.2

50 1 618.98 129.6 174.0 37753.7 222.0 535.5 168326.0 94.7

75 9 339.53 149.0 87.7 19169.0 415.8 255.6 133182.1 74.8 KP

100 9 1520.69 337.0 109.3 55784.0 529.8 135.6 86384.4 66.4

5 0 1.54 5.4 5.8 38.1

10 0 710.63 70.6 105.6 12430.3 TSP

15 10 297.0 130.3 48560.3 71.3

93

We discussed three improvements to ExA in Section 5.5. We must decide the best

combination of them. We observe that using the nondominated facets property

substantially decreases the CPU time whereas it only uses negligible additional

memory (compared to L, V or F lists) for keeping the gathered information. Hence

we use the nondominated facets property in the best combination. We perform a set

of preliminary runs in order to decide the remaining properties.

We solve three instances for each combination and for each problem with p=3. We

aim to select the problems that can be solved in nearly 1800 seconds. However, in

order to decrease the variance of CPU times, we select the instances that can be

solved in nearly 1900 seconds. In Table 5.3, we report average CPU times for each

combination. BF, DF and BF+NF columns stand for breadth first, depth first and the

third (breadth first plus nondominated facets) queuing disciplines, respectively. In

the last column, we report the average CPU times of Base ExA in order to provide an

insight into the effect of the nondominated facets property. We see that using the

pre-calculation property with the depth first queuing discipline is the best

combination for all problems. We apply the paired T-Test and observe that,

statistically speaking this combination is significantly better than the others.

Table 5.3 CPU times (sec) of the preliminary runs

Queuing Disciplines

Problem Pre calculation BF DF BF+NF

Base ExA

(BF)

Not used 589.48 826.13 669.28 1927.20
AP

Used 524.56 441.82 573.93 -

Not used 822.22 830.48 825.23 1916.42
KP

Used 109.51 89.22 111.74 -

Not used 858.20 704.77 853.04 1901.65
TSP

Used 117.14 111.64 117.89 -

94

Let us call ExA with the pre-calculation and the nondominated facets properties and

the depth first queuing discipline combination Best ExA. In Tables 5.4 and 5.5, we

report the results for Best ExA for 3=p and 4=p , respectively.

As expected, Best ExA performs better than Base ExA. Base ExA cannot solve 11 AP,

12 KP and 13 TSP instances with p = 3 in the one hour time limit. Among these

instances, Best ExA solves 1 AP, 11 KP and 13 TSP instances. Similarly, for p = 4,

Base ExA cannot solve 10 AP, 19 KP and 10 TSP instances. Best ExA solves 10 KP

and 10 TSP instances among them. CPU times also decrease considerably with Best

ExA. There is important decrease in the average number of solver calls per point

found in YE. This is due to the pre-calculation property, which decreases the number

of ()MOIP λ s solved, but increases the number of stages in L. However, in general,

there is a decrease in average V because the nondominated facets property

eliminates many stages. Best ExA is more effective on KP and TSP compared to AP.

That is, the improvements in CPU time and the number of instances solved in the one

hour limit are much better for KP and TSP. This may be related to the computational

complexities of the problems. Solving fewer ()MOIP λ s affects CPU time more for

KP and TSP because they are NP-Hard problems. There is an interesting property on

the average ′EY and V values. For all problems, problem sizes and number of

objectives, instances that cannot be solved in the one hour time limit have more

extreme supported nondominated points than those can be solved, i.e., the average

′EY is greater than the average EY . This observation is also valid for average V

values. More extreme supported nondominated points may define more

nondominated facets and the algorithms require more stages to search and define

these nondominated facets.

95

Table 5.4 Results of Best ExA (3=p).

′ =E EY Y ′ ⊆E EY Y

Problem n # CPU

(seconds)
EY ′

E

SC

Y

V ′EY ′
E

SC

Y

V
V

V L+

10 0 0.02 30.8 3.2 199.9

20 0 3.15 156.9 3.0 5429.2

30 0 490.80 371.2 3.0 58559.2
AP

40 10 531.2 3.0 172176.1 92.7

50 0 0.86 48.4 3.2 472.2

75 0 3.43 82.2 3.1 1212.8

100 0 10.48 122.4 3.1 2175.8

150 0 95.60 235.5 3.1 16700.5

KP

200 1 1065.34 417.6 3.0 82621.1 540.0 2.3 172429.0 93.7

5 0 0.81 4.7 3.1 19.1

10 0 6.27 25.2 3.1 156.5

15 0 17.09 63.8 3.0 811.9

25 0 141.78 216.4 3.0 12840.2

TSP

30 0 336.16 316.1 3.0 28750.7

Table 5.5 Results of Best ExA (4=p).

′ =E EY Y ′ ⊆E EY Y

Problem n # CPU

(seconds)
EY ′

E

SC

Y

V ′EY ′
E

SC

Y

V
V

V L+

10 0
1.70 104.6 5.5 4110.2

AP

20 10
701.8 6.1 165528.6 72.8

50 0
16.84 138.8 5.3 8063.0

75 3
723.71 318.4 5.5 78448.6 380.3 4.8 187782.3 87.2

KP

100 6
417.18 389.5 5.3 55774.0 414.8 5.1 190350.7 89.6

5 0
1.14 5.4 4.5 36.8

10 0
31.76 70.6 5.2 2051.5

 TSP

15 0
560.29 297.0 6.2 55119.6

96

Przybylski, Gandibleux and Ehrgott (2007) proposed two versions for their algorithm

and reported computational results for AP with 3=p up to 50 jobs. Let us call their

better algorithm PGE. In Table 5.6, we compare the performance of PGE and Best

ExA. For problems with 10 jobs, PGE and Best ExA are performing similarly.

However, PGE outperforms Best ExA for larger sized instances. We believe that

3=p is a special case for PGE because the dimension of the weight space is two

and CAN is directly applicable to solving biobjective problems in the weight space.

PGE may not have this advantage with 4p ≥ and it may perform worse. In order to

compare PGE and Best ExA, a computational test on several MOCO problems with

different number of objective functions should be done. However, the coding of

PGE for four or more objectives is not straight forward and conducting such a

comparison may not easy.

Table 5.6 Comparison of PGE and Best ExA for AP (3=p).

 PGE Best ExA

n
CPU

(seconds)
EY

CPU

(seconds)
EY

10 0.02 43 0.02 30.8

20 0.22 146 3.15 156.9

30 1.14 351 490.80 371.2

40 6.20 728 3600≥ 640.5≥

50 16.48 1150

ExA performs a search by generating new stages. We consider all possible stages as

the search space of ExA. We provided an upper bound on the number of possible

stages in Theorem 5.6 as:

97

()
!

! !
E ME M

E M

Y YY Y
V

p p Y Y p

∪ ∪
≤ =  ∪ − 

.

This bound is a theoretical bound and represents the worst case. In practice ExA

visits only a small portion of these stages. In Table 5.7, we compare the ratio of V

to its theoretical upper bound. We report the average of this ratio for the instances

solved within the time limit. The ratio decreases as the problem size increases. Also

for a given problem size, the ratio is smaller for 4p = . Increasing n or p increases

EY . As EY increases, any randomly selected two points are more unlikely to be the

common members of a nondominated facet.

Table 5.7 Percent of the search space visited.

3=p 4p =
Problem n

Base ExA Best ExA Base ExA Best ExA

10 4.786 3.704 0.413 0.079

20 2.020 0.787

30 1.244 0.620
AP

40

50 3.731 2.376 0.245 0.065

75 2.676 1.049 0.087 0.015

100 1.735 0.648 0.010 0.005

150 1.363 0.590

KP

200 0.635

5 39.095 39.381 25.081 25.308

10 5.746 4.732 0.714 0.206

15 3.574 1.714 0.017

25 1.593 0.626

TSP

30 0.524

98

CHAPTER 6

GENERATING AN APPROXIMATE SET OF EXTREME

SUPPORTED NONDOMINATED POINTS IN

MULTIOBJECTIVE PROBLEMS

6.1 Introduction

In the previous chapter, we developed an exact algorithm, ExA, that generates all

extreme supported nondominated points of a MOIP with p objectives. As the

problem size or the number of objective functions increase, ExA needs more CPU

time. At the end of ExA, E EY Y′ = . It is possible to stop the algorithm at some

iteration and use EY′ which is a subset of EY . However such an approach has

important drawbacks. We do not know whether EY′ is equal to EY or not. Moreover,

we have no idea about how close EY′ is to EY .

We observed that if we use the breadth first search strategy in ExA, then most of the

points in EY are found at the beginning of the algorithm. The algorithm finds only a

small portion of the points in the remaining iterations and mostly tries to prove that

E EY Y′ = (see Figure 5.8 and Figure 5.9). If we can measure how close EY′ is to EY ,

then we may terminate the algorithm early.

99

In this chapter, we propose an approximation algorithm. This algorithm utilizes a

lower bound set and an upper bound set for EY . It provides a proximity measure

between these bound sets. Hence, we can stop the algorithm when the proximity

measure is less than a predetermined level.

6.2 CAN as an Approximation Algorithm

Aneja and Nair (1979) proposed CAN as an exact algorithm to find all extreme

supported nondominated points. However, Cohon (1978) discussed CAN not only as

an exact algorithm but also as an approximation algorithm to find a subset of extreme

supported nondominated points for bicriteria problems.

Cohon (1978) provided lower and upper bound sets for EY and a proximity measure

between them. Consider Figure 6.1a. Assume that, points y1, y2, y3 and y4 are in EY′

and stages ()1 2,y y and ()3 4,y y are facet defining. There is only stage ()2 3,y y in L.

It is not possible to have extreme supported nondominated points in the southwest

regions of lines passing through y1 and y2 and through y3 and y4. Also there is no

extreme supported nondominated point in the convex hull defined by points in EY′ .

In the extreme case, we obtain point A by solving ()MOIP λ for stage ()2 3,y y . Let

line segment [A,B] be perpendicular to the line passing through y2 and y3 and AB be

the length of this line segment. If AB is smaller than a predetermined accuracy level

then we can stop. Otherwise we should solve ()MOIP λ for stage ()2 3,y y . Assume

that we want more accuracy and let y5 in Figure 6.1b be the optimal solution of

()MOIP λ for stage ()2 3,y y . We remove stage ()2 3,y y from L and add two new

stages: ()2 5,y y and ()3 5,y y .We draw a line passing through y5 that is parallel to the

dashed line joining y2 and y3. Point y5 is the optimal point of ()MOIP λ for λ ,

which is equal to this line’s normal vector. Hence, it is not possible to have an

extreme supported nondominated point in the southwest of this line. We obtain two

points as new extremes, C and E. If we solve ()MOIP λ for stage ()2 5,y y , in the

100

extreme case, we can obtain point C and the proximity of this point to the line

passing through points y2 and y5 is CD. Similarly for stage ()3 5,y y , the proximity is

equal to EF. If the maximum of CD and EF is less than the desired accuracy level

then we may stop the algorithm.

Note that the convex hull defined by points in EY′ is used as the upper bound set for

EY . The lines passing through points y1 and y2, C and E, and y3 and y4 shown in

Figure 6.1b are used as lower bounds for EY .

a)Gap = |AB|

b) Gap = min{|CD|,|EF|}

Figure 6.1 Approximation of CAN

This approach works for biobjective problems. However, due to the difficulties

discussed in Section 5.2, it is not directly applicable to problems with three or more

objectives. Solanki, Appino and Cohon (1993) developed an approximation

algorithm applicable to MOLP’s with p objectives. Their algorithm is an extension

to the approximation version of CAN algorithm. They propose some approaches to

solve the problems that arise when 3p ≥ .

101

The algorithm and the approach we discuss in this chapter are quite different from

that of Cohon (1978) and Solanki, Appino and Cohon (1993). Both approaches

make approximations for each stage. Since the weight vectors are known for their

cases, they operate in the objective space, as demonstrated for the biobjective case in

Figure 6.1. In our approach, we know the lower and upper bounds in the objective

space and we operate in the weight space.

6.3 Lower and Upper Bound Sets for YE

In this section, we develop lower and upper bound sets for EY . We define partial

ideal points for stages and prove that these points define a lower bound set for EY .

We next show that the points in EY′ naturally define an upper bound set for EY .

The partial ideal point of stage R is () ()1 2(), (), , ()pI R I R I R I R= … where

{ }() min
k

k
q q

r R
I R r

∈
= . The set of points dominated by the partial ideal point ()I R is

() () (){ }1 2, , , I p q qB R y y y y y I R q≥ = = ≥ ∀… and the set of points dominating ()I R

is () () (){ }1 2, , , ≤ = = ≤ ∀…I p q qB R y y y y y I R q . Note that () kI R r≤ and

() kI R r≠ for all kr R∈ since all elements of R are extreme supported

nondominated points.

In the following theorem, we prove that at any iteration of ExA, all extreme

supported nondominated points are in the union set of the points dominated by partial

ideal points.

Theorem 6.1. ()k
I

R F L

y B R≥

∈ ∪

∈ ∪ for all k
Ey Y∈ .

Proof: By induction, we will prove that the following term holds for all k
Ey Y∈ at

each iteration of ExA:

102

()k
I

R F L

y B R≥

∈ ∪

∈ ∪ .

At the first iteration, (){ }1 2, ,..., pF L m m m∪ = and the term holds since

() ()0,...,0I R = .

Assume that the term holds at some iteration of the algorithm. Then at that iteration,

an element R L∈ is selected in Step 2 and the λ vector corresponding to stage R is

calculated in Step 3.

If pλ >∉ℝ , then R is removed from L, since it does not define a nondominated facet.

If pλ >∈ℝ , then ()MOIP λ is solved and the optimal solution, r ∗ , is obtained in Step

4.1. If r R∗ ∈ then R is added to F (in Step 4.2) and removed from L (in Step 6)

henceF L∪ does not change. If r R∗ ∉ then R is removed from L (in Step 6). In

Step 4.3.1, p new stages are generated and the unvisited ones are added to L.

Let us define the kth new stage as ()1 1 * 1, , , , , ,k k k pR r r r r r− += … … , i.e., we replace the

kth element of R with r ∗ and obtain Rk. In order to analyze the possible changes in

()k
I

R F L

y B R≥

∈ ∪

∈ ∪ term, we must consider ()I R and ()kI R . There are two cases in

the calculation of ()I R :

i) There exists a kr R∈ such that () k
q qr I R q> ∀ , i.e., point rk does not

contribute to partial ideal point and is strictly dominated by it. Since

() ()kI R I R≤ then () ()k
I IB R B R≥ ≥⊇ . The term holds in the next iteration.

ii) There is no kr R∈ such that () k
q qr I R q> ∀ . This means, every element of R

has at least one objective function value equal to that of the partial ideal point.

Without loss of generality we assume that ()q
q qr I R= . If there exits a q such

that * q
q qr r≤ then () ()qI R I R≤ and the term holds in the next iteration

because () ()q
I IB R B R≥ ≥⊇ . However, if * q

q qr r> for all q then we define the

103

convex hull () () ()()1 2 *, , , ,pS conv I R I R I R r= … . In this case, S is the

region removed from the term. However, it is not possible to have a point y

such that *y r≠ and Ey Y S∈ ∩ , otherwise *r will be dominated by that y.

Therefore after one iteration, ()k
I

R F L

y B R≥

∈ ∪

∈ ∪ still holds. □

Corollary 6.1. For each k
Ey Y∈ , there exists a stage ∈ ∪R F L, such that () ≤ kI R y .

Proof: Follows directly from Theorem 6.1. □

The term ()I
R F L

B R≥

∈ ∪
∪ defines a nonconvex hypervolume. In the next theorem, we

show that there exists no k Ey Y∈ dominating the partial ideal point of a stage

∈ ∪R F L.

Theorem 6.2. For a given stage ∈ ∪R F L such that R pλ >∈ℝ , ()E IY B R≤∩ = ∅ .

Proof (by contradiction): Assume that there exists a Ey Y∈ and ()E IY B R y≤∩ = .

Since () kI R r≤ and () kI R r≠ for all kr R∈ , and ()Iy B R≤∈ .

()R R R ky I R rλ λ λ≤ < for all kr R∈ .

Moreover, since ()I R dominates every kr R∈ , we can write the above term for any

0Wλ ∈ .

() ky I R rλ λ λ≤ < for all kr R∈ .

So y must dominate all kr R∈ . However we know that k Er Y∈ for all kr R∈ hence

it cannot be a dominated point. There is a contradiction and we conclude that no

such y exists. □

104

In the following two theorems, we propose lower and upper bounds on the weighted

objective function value of ()MOIP λ , for a given λ >∈ℝ p .

Theorem 6.3. For a given λ >∈ℝ p , (){ } ()
R F L
min I R MOIPλ λ
∈ ∪

< .

Proof: Let the optimal solution of ()MOIP λ be y. We know that Ey Y∈ and by

Corollary 6.1, we know that each Ey Y∈ is dominated by a partial ideal point of a

stage ∈ ∪R F L. For the given λ >∈ℝ p , the minimum weighted objective function

value of partial ideal points must be strictly less than that of any Ey Y∈ . Otherwise,

some Ey Y∈ must weakly dominate a partial ideal point. □

Theorem 6.4. For a given λ >∈ℝ p , () { }
k

E

k

y Y
MOIP min yλ λ

′∈
≤ .

Proof: Let the optimal solution of ()MOIP λ be y and { }*

k
E

k

y Y
y min yλ λ

′∈
= . It is not

possible to have *y yλ λ> . Since in that case, there exists a solution *y better than y

for the given λ . However, this contradicts with the assumption that y is the optimal

solution of ()MOIP λ . □

Hence by Theorems 6.3 and 6.4, we know that for all λ >∈ℝ p

 (){ } () { }
k

E

k

R F L y Y
min I R MOIP min yλ λ λ
∈ ∪ ′∈

< ≤

We can consider the set (){ }
R F L

I R
∈ ∪
∪ as the lower bound set and EY′ as the upper

bound set for EY .

6.4 An Approximation Algorithm

In this section, we present an approach to measure the proximity between lower and

upper bound sets. We then propose an approximation algorithm using this measure.

105

This algorithm is a variant of ExA with a special property, which ensures that the

proximity values follow a nonincreasing pattern throughout the algorithm. By this

property, if the proximity is below a predetermined value, we conclude that ′EY is

close enough to EY and stop the algorithm. We call this approximation algorithm

ApA.

6.4.1 The Approximation Approach

We know that for all λ >∈ℝ p , (){ } () { }
k

E

k

R F L y Y
min I R MOIP min yλ λ λ
∈ ∪ ′∈

< ≤ holds. For a

given λ >∈ℝ p , we can identify the value of best known point { }
k

E

k

y Y
UB min yλ

′∈
= as an

upper bound for the optimal value of ()MOIP λ . Similarly, any point must have a

value strictly greater than the lower bound, (){ }
R F L

LB min I Rλ
∈ ∪

= . If the gap between

LB and UB is less than an acceptable level, then we do not need to solve ()MOIP λ ,

instead we can use the best known point in ′EY . Let us define the gap between LB

and UB for a given λ >∈ℝ p as

{ } (){ }
{ }

(){ }
{ }1

k
E

k k
E E

k

R F Ly Y R F L
k k

y Y y Y

min y min I R min I RUB LB

UB min y min y

λ λ λ

λ λ
∈ ∪′∈ ∈ ∪

′ ′∈ ∈

−− = = − .

We prefer smaller values of this ratio, which means that the bounds are closer. We

use a ratio term instead of UB LB− due to following reasons. Using the ratio of

UB-LB to UB eliminates the effect of the objective function ranges. This is an

important advantage because we may not have enough information about these

ranges at the beginning of the search process. Simply subtracting two values may be

misleading because the ranges of objective function values may change from one

instance to another. In other words, while the ratio is unitless, the difference is not.

Also λ is not necessarily a normalized vector and the gap obtained by subtracting

the two values will be different for λ vectors normalized to different constants, i.e.,

1 or 100. The ratio definition eliminates this problem as well.

106

In the approximation algorithm, we assume that λ is not known but the lower and

upper bound sets are given. Then we define the proximity measure, pm, as

(){ }
{ }1

p

k
E

R F L
k

y Y

min I RUB LB
pm max min

UB min yλ

λ

λ>

∈ ∪

∈
′∈

 
−   = = −   

   
 

ℝ

.

The proximity measure finds the worst λ >∈ℝ p such that the gap is maximum. Let

us define the optimal solution to this problem as

()
1

pm pm

pm pm

I R
pm

y

λ
λ

= − .

Since partial ideal points dominate points in ′EY , 0pm> . In the worst case, partial

ideal point can be the origin and () 0pm pmI Rλ = then 1pm= . Hence 0 1pm< ≤ . In

its current form, we need to solve a nonlinear problem to find the optimal pm value.

In Section 4.3, we discuss a solution method to obtain the optimal pm value.

Assume that, we calculate the pm value at Step 2 in each iteration of ExA and record

this value. At some iteration, we may observe an increase in the pm value, which

means that the proximity between lower and upper bound sets increased.

We can explain this situation as follows. After an iteration, ′EY is either unchanged

or a new point is added to it. For a given pmλ , it is not possible to have a larger UB

value compared to that of previous iteration. Because the minimum of a set does not

increase by adding new elements to it. For LB, we expect a similar property since we

expect the hypervolume defined by the term ()I
R F L

B R≥

∈ ∪
∪ to get smaller as the

algorithm proceeds. However, this is not the case and ()I
R F L

B R≥

∈ ∪
∪ may expand after

an iteration. Assume that we select stage R in Step 2 and obtain r ∗ . If ()Ir B R∗ ≥∈ ,

then the hypervolume gets smaller as shown in the proof of Theorem 6.1. However,

if ()Ir B R∗ ≥∉ then the hypervolume may increase and (){ } ()pm pm pm

R F L
min I R I Rλ λ
∈ ∪

≤ .

Hence, LB may decrease and there is a possibility to get a larger pm value in the next

iteration.

107

We resolve this problem of fluctuating pattern in the pm value by introducing two

new lists, L2 and V2, in addition to L, V and F lists. These lists are such that they

guarantee adherence to a nonincreasing property for the pm value through iterations.

By Theorem 6.1 we know that ()k
I

R F L

y B R≥

∈ ∪

∈ ∪ holds at any iteration of the

algorithm for all k
Ey Y∈ . Assume that, at some iteration of the algorithm, we set

2L L= and 2V V= . Since L2 is equal to L, ()
2

k
I

R F L

y B R≥

∈ ∪

∈ ∪ also holds and we

can use L2 in the pm calculation.

Let pmL and pmL2 be the pm values obtained using L and L2, respectively as

follows:

(){ }
{ }1

p

k
E

R F L
k

y Y

min I R
pmL min

min yλ

λ

λ>

∈ ∪

∈
′∈

 
 = −  
 
 

ℝ

 and
(){ }

{ }
22 1

p

k
E

R F L
k

y Y

min I R
pmL min

min yλ

λ

λ>

∈ ∪

∈
′∈

 
 = −  
 
 

ℝ

.

We update L2, V2 and pmL2, only if 2pmL pmL< . Therefore pmL may fluctuate

through the iterations but pmL2 follow a nonincreasing pattern.

6.4.2 Steps of the Algorithm

We provide the steps of ApA in Figure 6.2. Steps of ApA are similar to those of ExA.

However, there are some important differences. We only discuss the new steps and

the changes in the algorithm. In Step 1, we initialize L2 and V2 lists as well. In Step

2, we calculate pmL and update L2, V2 and pmL2 if L is a better lower bound set.

We assume that appε is a predetermined positive scalar representing the desired

proximity between the bound sets. In Step 3, we compare pmL2 and appε and if

2 apppmL ε≤ , then we conclude that lower and upper bound sets are close enough. In

this case, ApA stops and reports the points in ′EY . The rest of the algorithm is similar

to ExA.

108

ApA

Initialize
1. Set ε = ∅EY , 0k = ,

V = ∅ , F = ∅ , (){ }1 2, ,..., pL m m m= , 2L L= , 2V V= .

Search

2. Calculate
(){ }

{ }1
p

k
E

R F L
k

y Y

min I R
pmL min

min yλ

λ

λ>

∈ ∪

∈
′∈

 
 = −  
 
 

ℝ

, if 2pmL pmL< then

2L L= , 2V V= and 2pmL pmL= .

3. If 2 apppmL ε≤ then stop and report ′EY .

4. Select a stage { }1 2, ,..., pR r r r L= ∈ and set { }V V R= ∪ .

5. Calculate λ such that 1 2 ... p
λr λr λr= = = .

6. If pλ >∈ℝ

6.1. Solve problem ()MOIP λ and let the optimal point be

()1 2, ,..., pr r r r∗ ∗ ∗ ∗= .

6.2. If r R∗ ∈ then set { }F F R= ∪ .

6.3. If r R∗ ∉ then

6.3.1. { } { }{ }1 1 1,..., , ,..., ,..., ,− ∗ ∗ −= ∪ p p pL L r r r r r r and

()L L L V= − ∩ .

6.3.2. If Er Y∗ ′∉ then ky r∗= , { }k
E EY Y y′ ′= ∪ and k=k+1.

7. pλ >∉ℝ then go to Step 8.

Loop
8. { }L L R= − .

9. If L = ∅ then stop and report EY , otherwise go to Step 2.

Figure 6.2 Steps of ApA.

109

6.4.3 Calculation of the Proximity Measure

Calculation of the pm value is crucial in ApA because the algorithm compares pmL2

and appε values and decides whether to stop or to proceed. In this section, we

discuss how we can solve the following problem and calculate the pm value.

(){ }
{ }1

p

k
E

R F L
k

y Y

min I R
pmL min

min yλ

λ

λ>

∈ ∪

∈
′∈

 
 = −  
 
 

ℝ

.

In this problem, we can skip the constant term 1 during the optimization and

minimize the second term. At the end of the optimization, we can convert the

optimal solution to pmL value. We use 1pmL pmL′ = − in the following

mathematical models where

(){ }
{ }p

k
E

R F L
k

y Y

min I R
pmL min

min yλ

λ

λ>

∈ ∪

∈
′∈

 
 ′ =  
 
 

ℝ

.

In this term, we only impose pλ >∈ℝ . Hence we can set the denominator term to a

constant and minimize the numerator term. We set the denominator to 1 in order to

keep the range of pmL unchanged, i.e., 0 1pmL< ≤ . The corresponding nonlinear

programming problem is, NLP:

NLP (){ }{ }

{ }
. .

1
k

E

R F L

k

y Y

p

min min I R

s t

min y

λ

λ

λ

∈ ∪

′∈

>

=

∈ℝ

We introduce a set of binary variables and change NLP into a mixed integer

programming problem, MIP. The optimal solution value of MIP is pmL′ .

110

MIP

()
() ()

{ }

2

. .

1

1

1

0,1

k k
E

R

R
R F L

p

R

min LB

s t

y y Y

I R LB R F L

I R M B LB R F L

B

B R F L

λ
λ
λ

λ
∈ ∪

>

′≥ ∈
≥ ∈ ∪

− − ≤ ∈ ∪

≥

∈
∈ ∈ ∪

∑

ℝ

where M is a sufficiently large number and binary variable BR is defined as follows:

()1 if

0 otherwise R

I R LB
B

λ =
= 


In MIP, we define ()I R LBλ ≥ for each stage R F L∈ ∪ . Using the binary

variables, we force the model to have ()I R LBλ ≤ for at least one stage R F L∈ ∪ .

The number of binary variables in MIP increases as F L∪ increases. This may

result in longer solution times. However, we need to solve MIP frequently to

measure the gap between the lower and upper bound sets. If we can reduce the size

of MIP, we can reduce the total CPU time required by ApA.

Property 6.1. Consider two stages R1 and R2 such that 1 2,R R F L∈ ∪ . If

() ()1 2I R I R≤ and () ()1 2I R I R≠ then () ()1 2I R I Rλ λ< for any pλ >∈ℝ .

Using this property, we can reduce the size of MIP. Let us define NI as the set of

stages whose partial ideal points are nondominated.

() (){ }: , such that NI R R F L R F L I R I R′ ′= ∈ ∪ ∃ ∈ ∪ ≤ .

We obtain the reduced model, MIP_Reduced, by replacing F L∪ set with NI set as

follows:

111

MIP_Reduced

()
() ()

{ }

. .

1

1

1

0,1

k k
E

R

R
R NI

p

R

min LB

s t

y y Y

I R LB R NI

I R M B LB R NI

B

B R NI

λ
λ
λ

λ
∈

>

′≥ ∈
≥ ∈

− − ≤ ∈

≥

∈
∈ ∈

∑

ℝ

As ApA proceeds, there will be more stages in the NI set and solving MIP_Reduced

would require more CPU time. It may be even more time consuming than solving

()MOIP λ . Hence, we decompose MIP_Reduced into NI linear programming

problems. Consider the following LP, pm(R) for a stage R NI∈ and let the optimal

solutions of pm(R) and MIP_Reduced be LBR and LB∗ , respectively.

pm(R) ()

. .

1 k k
E

p

min I R

s t

y y Y

λ

λ
λ >

′≥ ∈

∈ℝ

Theorem 6.5: { }R
R NI
min LB LB∗

∈
= .

Proof: Let { }R R
R NI

LB min LB∗

∈
= and ()RLB I Rλ∗ ∗ ∗= .

Since { }R R
R NI

LB min LB∗

∈
= then () ()R

R RLB I R I R LBλ λ∗ ∗ ∗= ≤ = where Rλ is the

optimal weight vector of pm(R). Moreover () () ()RI R I R I Rλ λ λ∗ ∗ ∗≤ ≤ holds

because λ∗ is not necessarily equal toRλ . Hence setting 1
R

B ∗ = and λ λ∗= is a

feasible solution for MIP_Reduced. The optimal solution of ()pm R∗ is

()RLB I Rλ∗ ∗ ∗= and we cannot obtain a better objective function value with a more

restricted problem MIP_Reduced. □

112

This decomposition prevents us from solving a mixed integer programming problem

frequently during ApA. Moreover, it brings another important advantage. The

optimal solution of pm(R) may change only if a new point is added to ′EY because we

add a constraint to pm(R) for each point in ′EY . So we do not need to solve pm(R)

until a new point is added to ′EY . Obviously, we must solve pm(R) for each new

stage added to NI.

In ApA, we assume that we do not know EY and calculate the proximity between

lower and upper bound sets. However, if EY is known, then we can calculate the real

proximity measure, pmreal for a given EY′ . Although, approximating a set which is

already known does not make sense in practice, the comparison of pmL2 and pmreal

values provide an insight on the tightness of the lower bound set. We provide a

comparison of these two values in Section 6.7.

If we know EY , then we can calculate the pmreal value. We solve the following linear

program for each \E Ey Y Y′∈ , which is similar to pm(R).

pm(y)

. .

1 k k
E

p

min y

s t

y y Y

λ

λ
λ >

′≥ ∈

∈ℝ

Let the optimal solution of pm(y) be LBy, then the real proximity is

{ }
\

1
E E

real
y

y Y Y
pm min LB

′∈
= − .

Since each \E Ey Y Y′∈ is dominated by a partial ideal point of a stage 2 realpmL pm> .

6.5 Tightening the Lower Bound Set

In this section, we discuss some properties to help us to tighten the lower bound set.

By tightening the lower bound set, we may decrease the proximity between lower

and upper bound sets.

113

6.5.1 Stages with Dummy Points

We start ApA with stage ()1 2, ,..., pm m m having p dummy points. In later iterations,

the algorithm generates new stages and some of these stages may have dummy points

as elements. If a stage R has two or more dummy points then () { }0, ,0I R = … . If

there is only one dummy point in a stage, then p-1 components of the partial ideal

point are zero.

The stages with dummy points increase the value of pm substantially, since p or p-1

components of their partial ideal points are zero. However, we can improve these

partial ideal points and the pm value by setting lower bounds on all objective

function values. Let us define the lower bound on qth objective function as q qLB y≤

for all y Y∈ and for all q. Hence we can redefine the partial ideal point of stage R as

() { }1 2(), (), , ()pI R I R I R I R= … where { }{ }() ,
k

k
q q q

r R
I R min LB min r

∈
= .

For a given problem, we can find some underestimates of LBq for each objective

function and use them as LBq values in the algorithm. However we can determine

exact LBq values during the algorithm and obtain better pm values.

Let y0 be the first point found by the algorithm and Rq be the stage obtained from

stage ()1 2, ,..., pm m m by replacing y0. Let mq and yq be the optimal solution of stage

Rq. The weight vector corresponding to stage Rq is ()(),...,1 1 , ,q pλ ε ε ε= − − …

where ε is a very small positive scalar. Then q
q qLB y= .

6.5.2 Nondominated Facet Defining Stages

In Theorem 6.1, we proved that ()k
I

R F L

y B R≥

∈ ∪

∈ ∪ holds for all k
Ey Y∈ . Using this

property, we can obtain a lower bound for any weight vector at any iteration of the

114

algorithm. In Theorem 6.6, we show that we can tighten the lower bound by

cropping some portion of ()I
R F L

B R≥

∈ ∪
∪ .

Theorem 6.6. () ()k
I

R L R F

y B R B R≥ ≥

∈ ∈

   ∈    
   

∪∪ ∪ for all k
Ey Y∈ .

Proof: For a given stage ()1, , pR r r F= ∈… , consider two hypervolumes ()IB R≥ and

()B R≥ . Let us define () ()\IB R B R S≥ ≥ = . Note that we can also define S as

follows:

() { }1 1(), , , / , ,= … …
p pS Conv I R r r r r .

It is not possible to have Ey Y∈ in S, because R is a facet defining stage. Hence

ES Y∩ = ∅ and we can use ()B R≥ term instead of ()IB R≥ for nondominated facet

defining stages. Moreover,

() ()k
I

R L R F

y B R B R≥ ≥

∈ ∈

   ∈    
   

∪∪ ∪ holds for all k
Ey Y∈ . □

By the above theorem, we do not need to solve pm(R) for facet defining stages,

instead we may solve the following problem for each r R∈ .

pm(r)

. .

1 k k
E

p

min r

s t

y y Y

λ

λ
λ >

′≥ ∈

∈ℝ

Since Er Y′∈ , the optimal solution of pm(r) is equal to 1 for each point in a

nondominated facet defining stage. Hence we can skip the stages in F and consider

only the stages in L for the pm value calculation.

115

6.5.3 Shifting Partial Ideal Points

We can also improve the pm value by shifting some of the partial ideal points.

Consider a stage R L∈ . There are two cases in the calculation of the partial ideal

point of R as discussed in the proof of Theorem 6.1.

The first case is when there exists a kr R∈ such that () k
q qr I R q> ∀ , i.e., kr is not

contributing to the partial ideal point and I(R) strictly dominates kr . In this case, we

can shift the partial ideal point by 1 unit as { }() 1
u

s u
q q

r R
I R min r

∈
= + because it is not

possible to have a point \E Ey Y Y′∈ that dominates ()s
qI R . If such a point \E Ey Y Y′∈

existed, it would also dominate rk because ()k s
qr I R= in the best case.

If there is no kr R∈ such that () k
q qr I R q> ∀ , i.e., all points in R are contributing to

partial ideal point, then no shifting is possible. To demonstrate, consider an example

with 3=p , ()1 2 3, ,R r r r= where points are ()1 , 1, 1r a b c= + + , ()2 1, , 1r a b c= + +

and ()3 1, 1,r a b c= + + . Then () (), ,I R a b c= and () ()1, 1, 1SI R a b c= + + + . There

may be a nondominated point (), , 2y a b c= + . This point dominates the shifted

partial ideal point but not the original partial ideal point.

6.6 Improvements on the Approximation Algorithm

In this section, we discuss some properties in order to improve the performance of

ApA. We develop a variant of pre-calculation property discussed in Chapter 5. We

propose to use a different queuing discipline for selecting the next stage in Step 4 of

ApA. We discuss a policy to replace L and V with L2 and V2.

116

6.6.1 Pre-Calculation with Partial Ideal Points

In Section 5.5.2, we discussed the pre-calculation property in order to decrease the

number of ()MOIP λ ’s solved. In pre-calculation, for a given R and the

corresponding weight vector λ , we search for point pcr ∗ such that { }
E

pc
y Y

r min yλ λ∗

′∈
=

and pcr R∗ ∉ .

In this section, we assume that a stage R and the corresponding weight vector λ are

given. However, our aim is not to find the minimum valued point for the given λ .

Instead, we search for a point which will help us to reduce the hypervolume defined

by ()IB R≥ . Hence, we may improve pmL.

We refer to this property as ideal-pre-calculation. We search for a point ideal Er Y∗ ′∈

which is not in R and dominated by partial ideal point of stage R, ()I R , i.e.,

()() \ideal E Ir Y B R R∗ ≥′∈ ∩ . If there are many points in the defined hypervolume then

we break the ties as follows:

()()
{ }

\E I

ideal
y Y B R R

r min yλ λ
≥

∗

′∈ ∩
= .

We treat idealr ∗ as the optimal point corresponding to R. We remove R from L and add

up to p new stages to L. As discussed in the proof of Theorem 6.1, we remove the

convex hull () () ()()1 2 *, , , ,p
idealS conv I R I R I R r= … from ()IB R≥ where

()1 1 1, , , , , ,k k k p
idealR r r r r r− ∗ += … … . That is, we replace the kth element of R with

idealr ∗ and obtain Rk.

We modify Step 6.1 of ApA as follows:

6.1 Ideal-pre-calculation, proceed to Step 6.1.1

6.1.1 Let idealr ∗ be such that
()()

{ }
\E I

ideal
y Y B R R

r min yλ λ
≥

∗

′∈ ∩
= .

117

6.1.2 If there exists such a point then idealr r∗ ∗= , go to Step 6.3.1, otherwise

go to Step 6.1.3.

6.1.3 Solve ()MOIP λ and let the optimal point be ()1 2, ,..., pr r r r∗ ∗ ∗ ∗= , go to

Step 6.2.

In Step 6.1.1, we search the best available point idealr ∗ . In Step 6.1.2, if there is such a

point then we set it as r ∗ and go Step 6.3.1, otherwise we proceed to Step 6.1.3 and

solve ()MOIP λ .

Above, we discussed the use of the ideal-pre-calculation property for a given stage.

This property deals with one stage at each iteration. However, ApA may add up to p

new stages to L. Since the approximation approach considers all stages in L for pm

value calculation, we can use this property to reorganize all stages in L. Consider the

following algorithm. For each stage in L we search for idealr ∗ point. If we can find

such a point we update L and V.

Reorganize_L

1. For each R L∈ perform the following steps.

1.1. Calculate λ such that 1 2 ... p
λr λr λr= = = .

1.2. Let idealr ∗ be such that
()()

{ }
\E I

ideal
y Y B R R

r min yλ λ
≥

∗

′∈ ∩
= .

1.3. If there exists such a point then idealr r∗ ∗= and go to Step 1.4.

 Otherwise go to Step 1.

1.4. { } { } { }{ }1 1 1 1,..., , , ,..., , ,..., ,..., ,p p p p
ideal ideal idealL L r r r r r r r r r− ∗ ∗ ∗ −= ∪

()L L L V= − ∩ and { }V V R= ∪ .

6.6.2 Queuing Discipline

In Section 5.5.3, we discussed three queuing disciplines to select the next stage R

from L for ExA. Those disciplines are all applicable to ApA. However, in ApA, our

118

main concern is to decrease the pm value by closing the gap between lower and

upper bound sets. With this motivation, we define a new queuing discipline.

At each iteration of ApA, we first calculate pmL in Step 2. We select next stage in

Step 4. Consider pm(R) (see Section 6.4.3) used for pmL calculation

pm(R) ()

. .

1 k k
E

p

min I R

s t

y y Y

λ

λ
λ >

′≥ ∈

∈ℝ

The optimal solution of pm(R) is LBR and { }1 R
R L

pmL min LB
∈

= − . Let 1 CR
pmL LB= − .

We refer to stage Rc as critical stage. This critical stage determines pmL and we

cannot improve pmL if we do not select Rc as the next stage. Hence ApA selects

critical stage as the next stage in every iteration.

As we discussed in Section 6.5.1, stages with dummy points have partial ideal points

having p-1 or p zero components. We proposed to improve these partial ideal points

by replacing zero components with lower bounds. In preliminary runs, we observed

that these stages still have small pm(R) values and they are selected as the critical

stage at the early iterations of ApA. Based on this observation, we modify our

queuing discipline. We first select stages with dummy points from L, if there is no

such stage in L then we select the critical stage.

Using this discipline has two advantages. We know that pmL is very high if there are

stages with dummy points. Hence, we do not calculate pmL until all stages with

dummy points are visited and removed from L. The second advantage is much more

important. If there are dummy points in a stage, then the corresponding weight

vector λ has some components very close to zero, except the first stage,

()1 2, ,..., pm m m . Hence ApA firstly determines the boundaries of the nondominated

frontier. We consider a sample AP with 3p = in Figure 6.3. We plot extreme

supported nondominated points found only considering the stages with dummy

119

points in Figure 6.3a and a subset of EY in Figure 6.3b. Since one or more

components of λ is very close to zero for the stages with dummy points, we have the

advantage to analyze the tradeoffs between the other objective functions with larger

components in λ .

a) Optimal points found by
stages with dummy points

b) A subset of EY

Figure 6.3. Effect of the new queuing discipline

6.6.3 Recovery Policy

We developed L2, V2 and pmL2 in order to keep the best state of L, V and pmL,

respectively, during the search of ApA. In some iterations, pmL may get larger,

which means the hypervolume defined by ()I
R F L

B R≥

∈ ∪
∪ gets larger. When we face

such a case, we do not need to let the algorithm increase the hypervolume. Since we

keep the best state of the algorithm in L2 and V2, we can return to this state by

setting 2L L= and 2V V= . ApA restarts its search from the best state again. We

refer this policy as the recovery policy.

Using the recovery policy may result in the cycling of the algorithm. Consider the

following case. At some iteration, we update L2, V2 and pmL2 and select the next

120

stage R. The optimal point is r R∗ ∉ but Er Y∗ ′∈ . Moreover, ()Ir B R∗ ≥∉ . We add

new stages to L and remove R from L. Hypervolume defined by ()I
R F L

B R≥

∈ ∪
∪

increases. In the next iteration, pmL is larger than pmL2 and the recovery policy sets

2L L= and 2V V= . ApA starts cycling in such a case.

In order to prevent the cycling of ApA, we propose a simple rule. We record

2 EY Y′= when L2, V2 and pmL2 are updated. We do not apply the recovery policy

before a new point is added to EY′ after the last update. Hence, ApA be recovered if

2EY Y′ > . Note that this rule prevents the cycling of ApA for the case discussed in

the above paragraph. Having at least one new point in EY′ since the last update has

two advantages. We may have a chance to reorganize L with the help of new points.

This may improve the lower bound set and decrease pmL. Another advantage of new

points is the possible improvement in the upper bound set. Since we add new

constraints to pm(R) for each new point, we may have a chance to decrease pmL.

Using recovery policy forces ApA to improve pmL2. This policy promotes

improving moves of ApA, i.e., removing some hypervolume from ()I
R F L

B R≥

∈ ∪
∪ .

However, ApA may reach to a better state if it can first apply some nonimproving

moves. We propose to apply recovery policy if ApA finds a predetermined number

of new points after the last update. In computational tests, we use different numbers

for this policy.

6.7 Computational Test

In this section, we conduct a computational test on ApA, and discuss the results of the

test. We code ApA on Microsoft Visual C++ 6.0 and test on a computer with

Pentium M 1.6 GHz, 256 RAM and Microsoft Windows XP. We use Callable

Library of CPLEX 8.1.

121

We test ApA using the assignment problem with three objective functions. We use

the same random data generation scheme discussed in Chapter 5 and solve problems

with 30, 40, 50 and 60 jobs. We skip problems with 10 and 20 jobs since Best ExA

solves them in less than 8 seconds of CPU time. We add problems with 50 and 60

jobs instead.

We apply three lower bound set tightening properties discussed in Section 6.5 to ApA

because these properties can be processed in negligible CPU times. We also

implement the improvements discussed in Section 6.6. After preliminary runs, we

decided to apply the ideal-pre-calculation property. We also call Reorganize_L in

ApA. In preliminary runs, we tested results of calling this algorithm in every Q

iterations for { }1,10,25,50,100Q = .We decided to call Reorganize_L in every 50

iterations because it is expensive to call it frequently in terms of CPU time. It also

increases the number of stages L too much, which makes the pm value calculation

harder. We use 5, 10, 15 and 20 as rule number required to apply the recovery policy

in addition to its original value 1.

We run ApA for 5000 iterations. We report the results in Table 6.1. The first column

is the problem size and the second column is the rule number for recovery policy.

After every thousand iterations, we report the average pmL2 value. Average CPU

time is reported in the last column. Note that, CPU times are reasonable, considering

the fact that Best ExA solves AP with 30 jobs in nearly 490 seconds and cannot solve

AP with 40 jobs in 3600 seconds. As rule number increases CPU time increases and

pmL2 values decreases. However, we do not observe a trend between problem size

and pmL2. Table 6.2 is very similar to Table 6.1. In this table, we report the average

ratio of EY′ to EY . As rule number increases the average ratio increases however

this increase does not affect pmL2 value.

122

Table 6.1 Results of ApA.

pmL2 (%)

n

Rule

Number 1000 2000 3000 4000 5000 CPU

1 23.61 23.11 23.04 22.71 22.57 41.91

5 21.94 21.58 21.36 21.24 21.18 93.13

10 21.93 21.47 21.29 21.21 21.13 108.03

15 22.16 21.82 21.68 21.64 21.63 115.00

30

20 21.67 21.34 21.23 21.18 21.07 116.35

1 24.19 23.58 23.49 23.32 23.26 51.05

5 22.28 21.97 21.90 21.86 21.80 128.07

10 21.68 21.36 21.26 21.16 21.13 184.49

15 21.63 21.31 21.24 21.21 21.19 196.85

40

20 21.55 21.11 21.06 21.02 20.97 227.03

1 25.22 24.39 24.30 24.24 24.21 74.31

5 23.03 22.62 22.25 22.09 22.05 285.14

10 22.14 21.64 21.57 21.49 21.46 432.88

15 21.97 21.47 21.42 21.38 21.37 438.93

50

20 21.75 21.27 21.15 21.09 21.08 525.01

1 26.28 25.05 24.77 24.48 24.42 133.85

5 23.80 23.39 23.22 23.10 22.94 439.59

10 22.67 22.04 21.94 21.89 21.85 724.58

15 23.27 22.64 22.59 22.45 22.44 739.86

60

20 22.20 21.81 21.67 21.63 21.60 1031.03

123

Table 6.2 Percent of points found by ApA.

()% /E EY Y′

n

Rule

Number 1000 2000 3000 4000 5000 CPU

1 44.0 50.2 53.6 58.0 61.1 41.9

5 55.0 65.4 72.4 76.8 80.2 93.1

10 56.7 67.3 74.2 78.4 81.7 108.0

15 57.9 69.6 75.1 79.2 82.5 115.0

30

20 59.1 69.2 75.2 80.2 82.9 116.4

1 28.0 33.3 36.1 38.4 40.7 51.1

5 37.8 47.3 52.5 56.1 59.3 128.1

10 41.6 51.0 56.4 60.8 64.1 184.5

15 42.5 52.0 57.6 61.5 64.6 196.8

40

20 43.2 53.1 58.4 62.2 65.3 227.0

1 27.4 32.7 35.4 37.3 39.3 74.3

5 37.1 47.7 55.6 61.4 65.0 285.1

10 42.7 56.2 63.5 68.8 72.9 432.9

15 43.1 57.2 64.2 69.4 73.6 438.9

50

20 44.4 58.3 65.9 71.4 75.2 525.0

1 27.5 34.0 37.0 39.9 41.8 133.8

5 37.1 48.5 56.0 62.3 68.4 439.6

10 40.7 57.2 66.0 72.2 77.9 724.6

15 42.2 58.0 65.8 72.3 77.3 739.9

60

20 44.4 61.1 71.1 78.3 83.2 1031.0

124

In Table 6.3, we compare the pmL2 obtained after 5000 iterations to the pmreal values.

As seen from the table, the pmreal values are very small compared to the pmL2 values.

We use same upper bound sets in the calculation of both values. Hence we conclude

that the lower bound set used by ApA is not tight enough.

Table 6.3 Performance of pmL2 (rule number = 15).

 pmL2 pmreal

n Min Ave Max Min Ave Max

30 17.06 21.63 25.59 0.29 0.91 1.33

40 16.50 21.19 25.10 0.49 1.14 1.71

50 19.73 21.37 23.00 0.64 1.30 1.79

60 20.55 22.44 24.91 0.96 1.35 2.03

6.8 Discussions

In this chapter, we developed an approximation algorithm to find a subset of extreme

supported nondominated points of a MOIP. We proposed lower and upper bound sets

for EY and provide a worst case proximity measure between the bound sets. We

discussed a number of properties to improve the algorithm and the lower bound sets.

We tested the algorithm on a MOCO problem.

125

CHAPTER 7

CONCLUSIONS AND FURTHER RESEARCH

In this thesis, we studied multiobjective combinatorial optimization problems. We

can organize our study under two main topics. The first topic is about polynomially

solvable cases of the Traveling Salesperson Problem (TSP) and the Bottleneck

Traveling Salesperson Problem (BTSP). We considered multiobjective versions of

these problems. To the best of our knowledge, there is no other study in the

literature considering the solvable cases of TSP or BTSP with multiple objectives.

Our second topic is generating extreme supported nondominated points of

multiobjective integer programming problems. We developed algorithms to find

such points of an integer programming problem with any number of objective

functions.

We considered two solvable cases of TSP and BTSP: pyramidal tours and Halin

graphs. For pyramidal tours, we studied the multiobjective TSP on a set of special

distance matrices and showed some properties of nondominated points. We

developed a pseudo-polynomial dynamic program to find a nondominated point

when all distance matrices are in the same class. For the biobjective case, we

developed an approach to find all nondominated points. We also demonstrated that

the optimal tours of bottleneck types of Van der Veen matrices and Demidenko

126

matrices are not necessarily pyramidal. Hence the developments are not applicable

to these cases.

For the Halin graphs, we addressed multiobjective problems with various

combinations of TSP and BTSP−type objective functions. We showed that, if there

are two or more TSP-type objective functions in the problem, then finding a

nondominated point is NP-Hard, and there are exponentially many nondominated

points. However, if there is at most one TSP-type objective function and all

remaining objectives are BTSP-type, then the problem is polynomially solvable. We

developed algorithms to find the nondominated points.

A future research topic is to study polynomially solvable cases of combinatorial

problems in general. The approaches developed in this thesis may prove useful in

some of those problems as well. Further analyzing the computational complexities

of the studied problems is another future research topic.

In our second topic, we developed two algorithms for generating the extreme

supported nondominated points of a multiobjective integer programming problem

with any number of objective functions. The first algorithm is an exact algorithm

and it finds all such points. This algorithm finds only extreme supported

nondominated points and stops after a finite number of iterations. We proposed

several improvements on this algorithm and tested on three well-known

combinatorial optimization problems.

The second algorithm is an approximation algorithm and finds only a subset of the

extreme supported nondominated points. The approximation algorithm keeps lower

and upper bound sets for these points. The main feature of this algorithm is its worst

case proximity measure between lower and upper bound sets. We proposed an

approach that provides a nonincreasing proximity measure. We tested our approach

on a well-known combinatorial optimization problem.

127

Finding the set of all extreme supported nondominated points or an approximation

for it requires extensive computational effort, because there may be too many such

points even for moderate size problems. It may be reasonable to focus on regions of

nondominated frontier that are more interesting to the decision maker. Incorporating

the preferences of the decision maker into both algorithms is an interesting future

research direction.

We developed some properties in order to improve the performances of ExA and ApA.

It may be possible to develop more properties using the multidimensional nature of

the problems. The resulting algorithms may be capable of solving larger instances.

Another research direction is to conduct an experimental study on MOCO problems.

In this study, we can figure out some properties on the cardinality of the

nondominated set and that of extreme supported nondominated points.

The approximation algorithm uses the partial ideal points as the lower bound set. We

proposed some properties to tighten these bounds. However, these bounds, in their

current state, are not tight enough for practical purposes. We plan to work on

improving the performance of these bounds. Also another research direction is to

incorporate other approximation methods with our exact algorithm.

128

REFERENCES

Aneja, Y.P., Nair, K.P., 1979. Bicriteria transportation problem, Management
Science, 25(1), 73- 78.

Benson, H.P., Sun, E., 2000. Outcome space partition of the weight set in
multiobjective linear programming, Journal of Optimization Theory and Applications,
105, 17–36.

Benson, H.P., Sun, E., 2002. A weight decomposition algorithm for finding all
efficient extreme points in the outcome set of a multiple objective linear program,
European Journal of Operational Research, 139, 26–41.

Bondy, J.A., Murty, U.S.R., 1979. Graph Theory with Applications. North-Holland,
New York.

Burkard, R.E., Deineko, V.G., 2004. On the Euclidean TSP with permuted Van Der
Veen matrix, Information Processing Letters, 91, 259-262.

Burkard, R.E., Deineko, V.G., Van Dal, R., Van der Veen, J.A.A., Woeginger, G.J.,
1998. Well-solvable special cases of the traveling salesman problem: a survey,
SIAM Review, 40(3), 496-546.

Burkard, R.E., Sandholzer, W., 1991. Efficiently solvable special cases of bottleneck
traveling salesman problems, Discrete Applied Mathematics, 32, 61-76.

Burkard, R.E., Klinz, B., Rudolf, R., 1996. Perspectives of Monge properties in
optimization, Discrete Applied Mathematics, 70, 95-161.

Cohon, J.L., 1978. Multiobjective Programming and Planning. Academic Press,
New York.

129

Coullard, C.R., Rais, A., Rardin, R.L., Wagner, D.K., 1993. Linear-time algorithms
for the 2-connected Steiner subgraph problem on special classes of graphs, Networks,
23, 195-206.

Cournejols, G., Naddef, D., Pulleyblank, W.R., 1983. Halin graphs and the traveling
salesman problem, Mathematical Programming, 26, 287-294.

Deineko, W.G., Woeginger, G.J., 2000. A study of exponential neighborhoods for
the travelling salesman problem and for the quadratic assignment problem,
Mathematical Programming, 87, 519-542.

Ehrgott M., 2000. Multicriteria optimization, Lecture Notes in Economics and
Mathematical Systems, Springer, Berlin.

Ehrgott M., Gandibleux, X., 2000. A survey and annotated bibliography of
multiobjective combinatorial optimization. OR Spektrum, 22, 425-460.

Ehrgott M., Gandibleux, X., 2002. Multiobjective combinatorial optimization –
theory, methodology, and applications. Ehrgott, M., ed. Multiple criteria
optimization: state of the art annotated bibliographic surveys, Kluwer Academic
Publishers, USA, 369-444.

Ehrgott M., Gandibleux, X., 2004. Approximative solution methods for
multiobjective combinatorial optimization, Sociedad de Estadistica e Investigacion
Operative, TOP, 12,1-89.

Ehrgott M., Gandibleux, X., 2007. Bound sets for biobjective combinatorial
optimization problems, Computers & Operations Research, 34, 2674-2694.

Gamarnik, D., Lewenstein, M., Sviridenko, M., 2004. An improved upper bound for
the TSP in cubic 3-edge-connected graphs, Operations Research Letters, 33(5), 467-
474.

Gilmore, R.C., Lawler, E.L., Shmoys, D.B., 1985. Well-solved special cases.
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.), The
traveling salesman problem, Wiley, Chichester, 87-143.

130

Gutin, G., Punnen, A.P. (eds), 2002. The traveling salesman problem and its
variations. Kluwer Academic Publishers, Netherlands.

Gutin G., Yeo, A., Zverovitch, A., 2002. Exponential Neighborhoods and
Domination Analysis for The TSP. G. Gutin, A.P. Punnen, eds. The Traveling
Salesman Problem and Its Variations, Kluwer Academic Publishers, Dordrecht, 223-
256.

Kabadi. S.N., 2002. Polynomially Solvable Cases of the TSP. Gutin, G., Punnen,
A.P. (eds.), The traveling salesman problem and its variations. Kluwer Academic
Publishers, Netherlands, 489-583.

Kabadi. S.N., Punnen, A.P., 2002. The bottleneck TSP. Gutin, G., Punnen, A.P.
(eds.), The traveling salesman problem and its variations. Kluwer Academic
Publishers, Netherlands, 697-736.

Kalai, G. 1993. Some aspects of the combinatorial theory of convex polytopes.
Internet. Available from http://www.ma.huji.ac.il/~kalai/papers.html; accessed
25.01.2008

Kellerer,H., Pferschy,U., Pisinger, D. 2004. Knapsack Problems. Springer, Berlin

Korte, B., Vygen J., 2002. Combinatorial optimization theory and algorithms.
Springer, Berlin.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds,), 1985. The
traveling salesman problem. Wiley, Chichester.

Martello, S., Toth, P., 1990. Knapsack problems: algorithms and computer
implementations. Wiley, Chichester.

Nemhauser, G., Wolsey, L.A., 1988. Integer and combinatorial optimization. John
Wiley & Sons, USA.

Pamuk (Phelps), S., Köksalan, M., 2003. An interactive evolutionary metaheuristic
for multiobjective combinatorial optimization. Management Science, 49(12), 1726-
1738.

131

Phillips, J.M., Punnen, A.P., Kabadi, S.N., 1998. A linear time algorithm for the
bottleneck travelling salesman problem on a Halin graph, Information Processing
Letters, 67, 105-110.

Przybylski, A., Gandibleux, X., Ehrgott, M., 2007. Two recursive algorithms for
finding all nondominated extreme points in the outcome set of a multi-objective
integer programme. Technical Report, Universite de Nantes.

Punnen. A.P., 2002a. The traveling salesman problem: applications, formulations
and variations. Gutin, G., Punnen, A.P. (eds.), The traveling salesman problem and
its variations. Kluwer Academic Publishers, Netherlands, 1-28.

Punnen. A.P., 2002b. Computational complexity. Gutin, G., Punnen, A.P. (eds.),
The traveling salesman problem and its variations. Kluwer Academic Publishers,
Netherlands, 754-760.

Ruzika S., Wiecek, M.M., 2005. Approximation Methods in Multiobjective
Programming. Journal of optimization theory and applications, 126(3), 473-501.

Solanki, R. S., Appino, P. A., Cohon, J. L., 1993. Approximating the Noninferior Set
in Multiobjective Linear Programming Problems, European Journal of Operational
Research, 68, 356–373.

Steuer, R.E., 1986. Multiple criteria optimization: theory, computation and
application. John Wiley & Sons, USA.

Tenfelde-Podehl, D., 2003. A recursive algorithm for multiobjective combinatorial
problems with Q criteria. Technical Report, University of Graz.

Vairaktarakis, G.L., 2003. On Gilmore-Gomory's open question for the bottleneck
TSP, Operations Research Letters, 33(6), 483-491.

Van der Veen, J.A.A., 1993. An O(n) algorithm to solve the bottleneck traveling
salesman problem restricted to ordered product matrices, Discrete Applied
Mathematics, 47, 57-75.

Van der Veen, J.A.A., 1994. A new class of pyramidally solvable symmetric
traveling salesman problems, SIAM Journal Discrete Mathematics, 7, 585-592.

132

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Özpeynirci, Özgür
Nationality: Turkish (TC)
Date and Place of Birth: 01 February 1979, Konya
Marital Status: Married

EDUCATION

Degree Institution Year of Graduation
MS Industrial Engineering 2004
Minor Degree METU Sociology 2002
BS METU Industrial Engineering 2002
High School Mersin Science High School 1997

WORK EXPERIENCE

Year Place Enrollment
2002-2007 TÜBĐTAK Expert Researcher
2001-2002 TÜBĐTAK Part-time Employee
1999-2002 METU Industrial Engineering Student Assistant

FOREIGN LANGUAGE

Advanced English

PUBLICATIONS

Özpeynirci Özgür, Köksalan Murat, “Performance Evaluation using Data
Envelopment Analysis in the Presence of Time Lags”, Journal of Productivity
Analysis, 27, 221-229, 2007.

Özpeynirci Özgür, Süral Haldun, “Comment on Berman and Huang (2004):
Minisum collection depots location problem reduces to the p-median problem”,
Journal of the Operational Research Society, 58(10), 1395-1396, 2007.

Solyalı Oğuz, Özpeynirci Özgür, “Operational fixed job scheduling problem under
spread time constraints: a branch-and-price algorithm”, International Journal of
Production Research, to appear, 1-17, 2007.

