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ABSTRACT 

 

APPROACHES FOR  

MULTIOBJECTIVE COMBINATORIAL OPTIMIZATION PROBLEMS 

 

Özpeynirci, Nail Özgür 

Ph.D., Department of Industrial Engineering 

Supervisor: Prof. Dr. Murat Köksalan          

 

January 2008, 132 pages 

 

 

In this thesis, we consider multiobjective combinatorial optimization problems. We 

address two main topics. We first address the polynomially solvable cases of the 

Traveling Salesperson Problem and the Bottleneck Traveling Salesperson Problem. 

We consider multiobjective versions of these problems with different combinations 

of objective functions, analyze their computational complexities and develop exact 

algorithms where possible.  

 

We next consider generating extreme supported nondominated points of 

multiobjective integer programming problems for any number of objective functions. 

We develop two algorithms for this purpose. The first one is an exact algorithm and 

finds all such points. The second algorithm finds only a subset of extreme supported 

nondominated points providing a worst case approximation for the remaining points. 

 

Keywords: Multiobjective Combinatorial Optimization, Traveling Salesperson 

Problem, Bottleneck Traveling Salesperson Problem, Computational Complexity, 

Extreme Points, Approximation Algorithm.  
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ÖZ 

 

ÇOK AMAÇLI KOMB ĐNATORYAL OPTĐMĐZASYON PROBLEMLERĐ  

ĐÇĐN YAKLA ŞIMLAR 

 

Özpeynirci, Nail Özgür 

Doktora, Endüstri Mühendisliği Bölümü 

          Tez Yöneticisi: Prof. Dr. Murat Köksalan  

 

Ocak 2008, 132 sayfa 

 

Bu tezde, çok amaçlı kombinatoryal optimizasyon problemleri üzerinde çalıştık. 

Çalışmamızı iki ana başlıkta gruplayabiliriz. Đlk başlık, gezgin satıcı probleminin ve 

darboğaz gezgin satıcı problemlerinin polinom çözülebilen durumlarıyla ilgilidir. Biz 

bu problemlerin, farklı amaç fonksiyonlarının birleşkeleri olan çok amaçlı türevlerini 

ele aldık, hesaplama karmaşıklıklarını analiz ettik ve mümkün olan durumlarda kesin 

yordamlar geliştirdik. 

 

Đkinci başlığımız, herhangi sayıda amaç fonksiyonu olan çok amaçlı tam sayılı 

programlama problemlerinin destekli uç etkin noktalarını bulmakla ilgidir. Bu başlık 

altında iki yordam geliştirdik. Đlki bu noktaların hepsini bulan bir kesin yordamdır. 

Đkinci yordam ise bu noktaların bir alt kümesini bulmakta ancak kalan noktalar için 

bir en kötü durum bilgisi sunmaktadır. 

  

Anahtar Kelimeler: Çok Amaçlı Kombinatoryal Optimizasyon, Gezgin Satıcı 

Problemi, Darboğaz Gezgin Satıcı Problemi, Hesaplama Karmaşıklığı, Uç Noktalar, 

Yaklaşıklama Yordamı. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Combinatorial optimization is a field of mathematical programming that has been 

attracting researchers for many years.  It has various potential applications in real life 

problems.  Some of these applications are radiation therapy, crew and resource 

scheduling in airline operations, internet traffic routing, vehicle routing, and portfolio 

optimization. 

 

Classical combinatorial optimization problems deal with a single objective, whereas 

many real life problems have several conflicting objectives.  Hence, multiobjective 

combinatorial optimization (MOCO) is a field of great interest due to its ability to 

represent real life problems well.  Combinatorial optimization problems are generally 

difficult to solve, even with a single objective.  Dealing with multiple objectives 

further complicates these problems, since one has to consider the trade-offs and 

conflicts between these objectives where there may be many solutions of interest. 

 

In single objective optimization, there is a single optimal objective function value.  

There might be alternative optimal solutions giving the same objective function value.  

On the other hand, in multiobjective optimization, there are typically many “good” 

solutions called nondominated solutions.  They represent the trade-offs and conflicts 

between the objectives.  A decision maker (DM), or a group of DMs, who are the 
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owner(s) of the problem should evaluate these solutions and select the best one 

according to their preferences.   

 

The Traveling salesperson problem (TSP) is one of the most widely studied 

combinatorial optimization problems in the literature.  TSP aims to find the shortest 

tour that visits each node exactly once and returns to the starting node on a given 

graph.  A variant of TSP is the Bottleneck TSP (BTSP), where the aim is to find the 

tour whose longest edge is as short as possible.  Both TSP and BTSP are difficult 

problems in general.  However, there are some special cases that are easy to solve.   

 

The research on multiobjective TSP is limited compared to single objective TSP.  

The main reason is the complexity of TSP even with a single objective.  The 

literature on multiobjective TSP mainly focuses on heuristic approaches for 

biobjective TSPs.  There are few studies dealing with BTSP for multiobjective 

problems. 

 

Some researchers classify the special cases of TSP and BTSP into two groups.  The 

first class deals with problems having special distance matrices.  The problems with 

special graph structures are in the second class.  The special cases of TSP and BTSP 

studied so far are all single objective problems and, to the best of our knowledge, 

there is no study on their multiple objective versions. 

 

We study two special cases, one from each class.  The first one has a distance matrix 

such that there is a set of constraints defined on the distances between cities.  These 

constraints ensure that the optimal tour has a special structure, i.e., it looks like a 

pyramid when the numbers of the cities are plotted in the order they are visited by 

the optimal tour.  There is an exact algorithm that finds the optimal pyramidal tour 

quite easily.  We define the multiobjective versions of these problems, develop some 

properties of nondominated solutions and propose an exact algorithm. 

 

The second type has a special graph structure such in which only some roads 

between cities are available.  These graphs are called Halin graphs.  There are exact 



 

3 

algorithms using the special structure of Halin graphs efficiently, and they find the 

optimal tours of TSP and BTSP on Halin graphs easily.  We define several 

combinations of TSP and BTSP with multiple objectives on Halin graphs, develop 

some properties of nondominated solutions, analyze the complexity of the problems, 

and propose exact algorithms.   

 

A nondominated solution is an extreme nondominated solution if it is not possible to 

represent it as a convex combination of other nondominated solutions.  Experimental 

studies on the multiobjective knapsack problem (MOKP) showed that number of 

nondominated solutions increases exponentially as the problem size increases.  

Interestingly, the number of extreme nondominated solutions increases linearly for 

the same problem.  Hence finding only the set of extreme nondominated solutions 

may be useful because these solutions also provide valuable information about the 

trade-offs between the objectives.  Finding the extreme nondominated solutions does 

not require more effort to find all nondominated points.   

 

There is an approach to find all extreme nondominated solutions for biobjective 

problems.  This approach systematically changes the weights of the objective 

functions and solves single objective problems with a weighted sum objective 

function.  This approach is only applicable to biobjective problems due to their 

special structure.  We develop an exact algorithm that finds all extreme 

nondominated solutions of a problem for any number of objectives, and apply it to 

TSP and two other well-known combinatorial optimization problems, the Assignment 

Problem (AP) and the Knapsack Problem (KP).   

 

Although we develop an algorithm to find all extreme nondominated solutions, it 

may still be a difficult task to generate them because the underlying single objective 

problem may be difficult or the number of extreme nondominated solutions may be 

large.  In this case, we can try to find a subset of solutions that is a good 

representation of all extreme nondominated solutions.  For this purpose we define a 

measure and develop an approximation algorithm.  This algorithm finds a subset of 
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extreme nondominated solutions that represents the whole set at a desired quality.  

We apply our approximation algorithm on a set of assignment problems. 

 

This thesis consists of seven chapters.  In Chapter 2, we review the literature and 

give necessary definitions.  In Chapters 3 and 4, we discuss the solvable special cases 

of TSP and multiple objectives.  In Chapter 3, we focus on multiobjective TSP and 

pyramidal tours.  We address TSP and BTSP on Halin graphs and extend it to 

multiple objectives in Chapter 4.  In Chapter 5, we explain our exact algorithm that 

finds all the extreme nondominated solutions for a multiobjective problem for any 

number of objectives.  We develop an approximation algorithm that finds a subset of 

extreme nondominated solutions in Chapter 6.  We discuss further research 

directions and conclude the thesis in Chapter 7. 
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CHAPTER 2 

 

 

DEFINITIONS AND LITERATURE REVIEW  

 

 

 

In this chapter, we give definitions related to combinatorial problems in general and 

to the Traveling Salesperson Problem in particular.  We introduce multiobjective 

optimization and multiobjective combinatorial optimization problems with a review 

of literature. 

 

2.1 Combinatorial Optimization  

 

Combinatorial optimization is a field of mathematical programming, which has been 

attracting researchers for many years.  It has various potential applications in real life 

problems.  Some of these applications are radiation therapy, crew and resource 

scheduling in airline operations, internet traffic routing, vehicle routing, and portfolio 

optimization. We refer to Ehrgott and Gandibleux (2002) for a discussion on such 

real life applications.  

 

Combinatorial optimization deals with combinatorial problems.  The feasible set of a 

combinatorial problem has a finite number of elements.  Let E be the finite set 

{ }1, ,= … mE e e  and : →w E ℝ  be a function assigning weights to the elements of E.  

We assume that w is a vector of rational numbers.  The feasible set of a 
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combinatorial problem is given by 2EX ⊂  as a power set of E.  An objective 

function f, which is to be minimized, is defined to for a feasible solution ∈x X .  We 

can write the combinatorial optimization problem as: 

( )min
x X

f x
∈

 

In general, there are two types of objective functions considered in combinatorial 

optimization problems: 

 ( ) ( )
e x

f x w e
∈

=∑  , and  

 ( ) ( )max
e x

f x w e
∈

= . 

 

The problem with the first type of objective function; 

( )min
∈ ∈
∑

x X
e x

w e  

is called as the sum problem.  The problem with the second type of objective 

function; 

( )min max
∈ ∈x X e x

w e  

is called as the bottleneck problem. 

 

Combinatorial problems can also be formulated using binary variables.  Let 

{ }0,1
m

x∈  and  

1 if 

0 otherwise

∈
= 


i
i

e x
x  

where x is a feasible solution.  Using binary variables, problems can be defined as  

1

min
m

i ix X
i

w x
∈ =
∑ , and  

1min maxm
i i i

x X
w x=∈

  

where ( )i iw w e= . 

 

The assignment, knapsack, minimum spanning tree, shortest path, traveling 

salesperson and set covering problems are well-known combinatorial optimization 
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problems.  We refer to Nemhauser and Wolsey (1988) for the theory of 

combinatorial optimization.  Korte and Vygen (2002) review the theory and 

algorithms on combinatorial optimization problems. 

 

2.2 The Traveling Salesperson Problem 

 

Let ( ),=G N E  be a graph with the given set of nodes, { }1, ,= …N n  and the set of 

edges E.  The node set may stand for the cities and the edge set for the roads directly 

connecting the cities.  For each e E∈ , a weight w(e) is given.  This weight may 

correspond to different objectives, such as duration, cost, distance, risk, etc. 

associated with traversing the edge.  A traveling salesperson starts a tour from a city, 

visits all cities exactly once and returns to the city where the tour is started.  Such a 

tour is called a Hamiltonian tour.  The problem is to find the Hamiltonian tour with 

the minimum total weight.   

 

Let ϕ  be a Hamiltonian tour on G and let F denote the set of all Hamiltonian tours.  

Using these definitions, TSP can be stated as: 

( ) ( ): min   subject to 
ϕ

ϕ ϕ
∈

 
= ∈ 

 
∑
e

TSP f w e F. 

We call above objective function as TSP-type objective function.  An alternative 

representation is as follows: 

 

Let ϕ (i) represent the node succeeding node i in tourϕ .  A tour can be represented 

by ϕ =(1,i1,i2,…,in-1) where ϕ (1)=i1, ϕ (i1)=i2,…, ϕ (in-1)=1.  Let d be the distance 

matrix and d[i, j] denote the distance between nodes i and j.  Then the length of tour 

ϕ  is ( ) [ ]
1

, ( )
n

i

d d i iϕ ϕ
=

=∑ .  TSP can be defined as: 

1

min  ( ) [ , ( )]
ϕ

ϕ ϕ
∈ =

 = 
 

∑
n

F
i

d d i i  . 
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To formulate a mathematical model of TSP, let e=(i,j) be the edge between nodes i 

and j, w(e)=wij and introduce the binary decision variable xij where 

 
( )1 if edge ,  is used

0 otherwise
ij

i j
x

= 


 

Hence, the decision variable space is { }0,1
E

x X∈ = .  If edge (i,j) is used in a tour, 

then the traveling salesperson visits node j immediately after node i in that tour.  The 

integer programming formulation of TSP is as follows: 

 

The aim is to minimize the total weight of the selected edges. 

TSP: 
( ),

min ij ij
i j E

w x
∈
∑ . 

 

The first constraint set ensures that the tour enters node j exactly once, for each node 

∈j N . 

( ): ,

1  for ij
i i j E

x j N
∈

= ∈∑ . 

 

The second constraint set ensures that the tour leaves node i exactly once, for each 

node ∈i N . 

( ): ,

1  for ij
j i j E

x i N
∈

= ∈∑ . 

 

The third constraint set eliminates all possible subtours.  These constraints are called 

subtour elimination constraints.  Let U N⊆ .  We define the third constraint set as:  

( ),

\

1  for 2 2ij
i j E

i U
j N U

x U N
∈

∈
∈

≥ ≤ ≤ −∑ . 

 

The last constraint set defines decision variables as binary. 

{ } ( )0,1  for ,ijx i j E∈ ∈ . 
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It is possible to represent the subtour elimination constraints and TSP itself in 

alternative ways.  We refer to Punnen (2002a) for a discussion on the alternative 

formulations.   

 

In a variant of TSP, we are not interested in the total distance traveled by the 

salesperson but in the maximum distance traveled between any two succeeding cities.  

This problem is called as Bottleneck TSP (BTSP).  We refer to Kabadi and Punnen 

(2002) for a review of BTSP.   

 

BTSP can be stated as: 

( ) ( ){ }{ }: min  max  subject to 
ϕ

ϕ ϕ
∈

= ∈
e

BTSP f w e F 

We call above objective function the BTSP-type objective function.  The BTSP-type 

objective function can be handled in the mathematical formulation of BTSP by 

defining the following constraint. 

( ) for ,β≤ ∈ij ijw x i j E  

 

BTSP can be formulated as: 

 

BTSP: min β  

Subject to  

( ) for ,β≤ ∈ij ijw x i j E  

( ): ,

1  for ij
i i j E

x j N
∈

= ∈∑ . 

( ): ,

1  for ij
j i j E

x i N
∈

= ∈∑ . 

( ),

\

1  for 2 2ij
i j E

i U
j N U

x U N
∈

∈
∈

≥ ≤ ≤ −∑  

{ } ( )0,1  for ,ijx i j E∈ ∈ . 
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TSP and BTSP are both NP-Hard problems.  For an overview of the complexity 

results for TSP, we refer to Punnen (2002b).  Kabadi and Punnen (2002) discusses 

the complexity results for BTSP. 

 

Although TSP and BTSP are NP-Hard in general, there are special cases of TSP and 

BTSP that are solvable in polynomial time.  These are not trivial cases and special 

algorithms are developed to solve them optimally.  Deineko and Woeginger (2000) 

discuss the combinatorial nature of the solution spaces of several such TSPs.  We 

refer the reader to the surveys of Kabadi (2002), Burkard et al. (1998), and Gilmore, 

Lawler, and Shmoys (1985) for further information.   

 

Polynomially solvable cases of TSP and BTSP can be classified under two main 

categories:  

(i) those having a special distance matrix, and  

(ii)  those that have a special graph structure.   

In the first category, the graphs are complete graphs and a set of restrictions is 

defined over the edge weights.  Whereas in the second one, there are restrictions on 

the graph structure but no restrictions are imposed on edge weights. 

 

The studies on special cases mainly focus on TSP rather than on BTSP.  However, 

there are a number of papers on special cases of BTSP.  See for example Phillips, 

Punnen and Kabadi (1998), Van der Veen (1993), and Burkard and Sandholzer 

(1991).  Vairaktarakis (2003) considers a polynomially solvable TSP and shows that 

the corresponding BTSP is NP-Hard. 

 

We refer to the books of Gutin and Punnen (2002) and Lawler et al. (1985) for 

further information on TSP and BTSP. 

 

2.3 Multiobjective Optimization 

 

In classical optimization problems, there is a single objective function and the aim is 

to find a solution that optimizes the objective function value.  However, many real 
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life problems have several objectives and decisions should be made by considering 

these objective functions simultaneously.   

 

Typically, different objectives are conflicting with each other and a solution that 

performs well in one objective will not perform as well in other objectives.  There 

are many solutions that do not outperform each other in all objectives.  It is not clear 

which of these solutions are better until the decision maker (DM) or a group of DMs 

evaluates them.   

 

A multiobjective problem (MOP) can be written as 

( ) ( ) ( )( )1 2" " C , , ,

 . .     

pmin x f x f x f x

s t x X

=

∈

…
 

where ∈ℝnx  is a feasible solution and X is the set of all feasible solutions.  In this 

problem, there are p objective functions to be minimized and C is a p n×  matrix.  

The qth row of C corresponds to the qth objective function, ( )qf x .  We use the 

quotation marks since vector minimization is not a well-defined mathematical 

operation.   

 

The point ( )1, ,
T p

py y y= ∈… ℝ  such that y Cx=  is the outcome of the solution 

x X∈ .  The sets X and { }: ,= ∈ = ∈ℝ
pY y y Cx x X are called the decision space and 

the objective (criterion) space, respectively.  All vectors in objective space are 

column vectors of dimension 1p× .  For the sake of simplicity, we drop the transpose 

figure in our notation.   

 

We assume that there exists no point y Y∈  that minimizes all objective functions 

simultaneously to avoid a trivial case.  Hence we are interested with a set of “good” 

points instead of a single optimal solution.  We use the dominance concept to define 

“good” points.  We can consider the dominance concept as the multiobjective 

counter part of the optimality concept.   
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Point y is said to dominate point ′y  if and only if ′≤q qy y for all q and ′<q qy y for at 

least one q.  If ′<q qy y  for all q then y is said to strictly dominate ′y .  If there exists 

no y Y′∈ such that ′y  dominates y, then y is said to be nondominated.  A point y is 

said to be weakly nondominated if and only if there exists no point y Y′∈  such that 

′>q qy y  for all q.  The set of weakly nondominated points includes all nondominated 

points and some special dominated points. 

 

Let NDY  denote the set of nondominated points.  The point ( )1 , ,ideal ideal ideal
py y y= …  is 

said to be the ideal point where { }
ND

ideal
q q

y Y
y min y

∈
= .  Similarly, the nadir point is 

defined as ( )1 , ,nadir nadir nadir
py y y= … where { }

ND

nadir
q q

y Y
y max y

∈
= .   

 

Let NDy Y∈  and convy  be a convex combination of the nondominated points except y.  

That is;  

{ }\k
ND

conv k k

y Y y

y w y
∈

= ∑ ,
{ }\

1
k

ND

k

y Y y

w
∈

=∑  and { }0 for \k k
NDw y Y y≥ ∈ . 

 

Using these definitions, we define three types of nondominated points.  A point 

NDy Y∈  is said to be  

• an extreme supported nondominated point if and only if there exists no convy  

such that convy y≤ ,  

• a nonextreme supported nondominated point if and only if there exists a convy  

such that convy y= ,  

• an unsupported nondominated point if and only if there exists aconvy  such that 

convy y< . 

 

The terms dominance and efficiency are counterparts of each other in the objective 

and decision spaces, respectively.  A solution x X∈ is said to be efficient if and only 

if y Cx=  is nondominated and solution x X∈  is inefficient if and only if y Cx=  is 
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dominated.  A solution x X∈  is weakly efficient if and only if y Cx=  is weakly 

nondominated.  Similarly, we can define extreme supported efficient, nonextreme 

supported efficient and unsupported efficient solutions.  We refer Steuer (1986) for 

an overview of the multiple criteria optimization theory, methodology and 

applications.   

 

In Figure 2.1, y1, y2, y6, and y7 are extreme supported nondominated points, y3 is 

nonextreme supported nondominated point, and y4 is unsupported nondominated 

point.  Points y0 and y8 are weakly nondominated but dominated.  Point y5 is strictly 

dominated. 

 

 

 

 

Figure 2.1 Different types of points in objective space  

 

 

 

Throughout the thesis, we discuss our results mainly in the objective space and use 

EY  for the set of extreme supported nondominated points.  We should note that more 

than one efficient solution may correspond to the same nondominated point.  In such 

cases, it is sufficient for our purposes to find only one of those efficient solutions.   
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A multiobjective integer programming problem (MOIP) with p objective functions 

can be written as: 

( ) ( ) ( )( )1 2" " C , , ,

 . .     

pmin x f x f x f x

s t x X

=

∈

…
 

where { }, 0,X Ax b x x= ≤ ≥ ∈ℤ .  A is a m n×  matrix and mb∈ℝ .  The solution of 

the problem, nx∈ℤ  is the integer decision variable vector.  Without loss of 

generality, we assume that ( ) 0qf x >  and ( )qf x ∈ℤ  for 1,...,q p=  and for all 

x X∈ .  Suppose ( ) 0<qf x  for some q and x X∈ , then we can shift the objective 

function value by adding a positive constant, shift
qc  which satisfies ( )( ) 0+ >shift

q qf x c  

for 1,...,q p=  and for all x X∈ .  Similarly, suppose ( )∉qf x ℤ , then we can 

multiply the objective function value by a positive constant, multiply
qc , so that the 

condition ( )( )∈multiply
q qc f x ℤ  is satisfied. 

 

In a multiobjective combinatorial optimization (MOCO) problem, p weights are 

associated with each element of E.  The weight of element e in objective q (q=1,…,p) 

is denoted by ( )qw e .  The value of a solution x in objective q is ( ) qf x .  A MOCO 

problem can be defined as: 

( ) ( ) ( ) ( )( )1 2"min" , , ,
∈

= … p
x X

f x f x f x f x  

where ( ) qf x  is a sum or a bottleneck objective.  Ehrgott and Gandibleux (2000, 

2002) review the MOCO theory, methodology and applications.   

 

Multiobjective TSP and BTSP are examples of MOCO problems.  In these problems, 

each edge is represented by several weights.  These weights may correspond to 

different objectives such as cost, distance, risk, etc. associated with traversing an 

edge.  Using the classification scheme of Ehrgott and Gandibleux (2002), a MOCO 

problem with p objectives can be denoted as p-Σ TSP if all objectives are TSP-type 

and p-max TSP if all objectives are BTSP-type.  The notation p1-Σ p2-max TSP 

stands for a MOCO problem with p1 TSP-type and p2 BTSP-type objectives.   
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There are some recent studies on multiobjective TSP and BTSP.  Some of these are 

heuristic approaches, some are local search methods, and some are exact algorithms.  

Ehrgott and Gandibleux (2002) review some of these approaches. 

 

The number of efficient solutions is another important issue in MOCO problems.  

Finding all efficient solutions of a problem is said to be intractable if the number of 

efficient solutions may (potentially) increase exponentially as the size of the problem 

increases.  It is known that p-Σ TSP is intractable for 2p ≥ (see Ehrgott, 2000). 

 

In single objective optimization, enumerative algorithms, such as branch and bound 

or dynamic programming, use lower and upper bounds during their search.  Using 

tighter bounds may decrease the size of the search space and the time required to find 

the optimal solution.  Similarly we can use bounds in enumerative algorithms for 

multiobjective optimization.  The ideal and nadir points as defined earlier in this 

section can be used as lower and upper bounds for the nondominated point set, 

respectively.  However, these bounds may not be very useful in reducing the search 

space because the ideal and nadir points may be far away from the nondominated 

points set.  Due to this, using a set of points instead of a single point may be more 

useful in reducing the search space.  These sets are called bound sets.  We refer to 

Ehrgott and Gandibleux (2007) for a discussion on the bound sets. 

 

2.4 Approximation Algorithms for Multiobjective Pro blems 

 

Many multiobjective approaches attempt to find all nondominated points (or efficient 

solutions).  However this can be a difficult task if finding such points is time 

consuming, or if the number of such points is large, i.e., the problem may be 

intractable.  It may be reasonable to generate a set of points that represents the 

nondominated points well.  This set provides useful information to the DM, although 

not as complete as the whole nondominated set.  The points in this set may be 

nondominated points (found by an exact algorithm) or approximations (found by a 

heuristic approach) of the nondominated points. 
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Cohon (1978) proposed an exact approximation algorithm for MOIPs with two 

objectives.  Solanki, Appino and Cohon (1993) proposed an exact approximation 

algorithm for MOLPs with three or more objectives.  We refer to Ruzika and Wiecek 

(2005) and Ehrgott and Gandibleux (2004) for exact and heuristic approximation 

algorithms for multiobjective optimization problems, respectively.   
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CHAPTER 3 

 

 

PYRAMIDAL TOURS AND MULTIPLE OBJECTIVES 

 

 

 

3.1 Introduction 

 

In this chapter, we work on TSP and BTSP that have special matrix structures and 

lead to polynomially solvable cases.  We extend the problems to multiple objectives 

and investigate the properties of nondominated points.  We develop a pseudo-

polynomial time algorithm to find a nondominated point for any number of 

objectives.  Finally, we propose an approach to generate all nondominated points for 

the biobjective case.  To the best of our knowledge, there exists no other study that 

addresses the polynomially solvable special cases of the multiobjective TSP.   

 

3.2 Pyramidal Tours 

 

A tourρ  is pyramidal if starting from node 1, a set of nodes are visited in ascending 

order up to node n and the remaining nodes are visited in descending order.  

Formally, tourρ  is called pyramidal ifρ =(1,i1,i2,…,ik,n,j1,j2,…,jm) such that 

1<i1<i2<…<ik<n and n>j1>j2>…>jm>1.   
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Consider two tours, ( )1,2,5,6,4,3ρ = and ( )1,2,5,4,6,3ϕ = .  In Figure 3.1, we plot 

the node numbers in the order they are visited.  The plot of tour ρ  (Figure 3.1a) 

looks like a pyramid and it has only one peak.  Tour ρ  is a pyramidal tour.  On the 

other hand, the plot of tour ϕ  has two peaks and ϕ  is a non-pyramidal tour.   

 

 

 

 

a) A pyramidal tour b) A non-pyramidal tour 

Figure 3.1 Plots of the tours 

 

 

 

In this chapter, we use the notation [ ],d i j  instead of ijw  in order to differentiate 

between node indices and the objective function index. A complete graph has an 

edge directly connecting each pair of nodes.  If the cost of traversing an edge is 

independent of the direction of the traverse for all edges (i.e., [ ] [ ], ,d i j d j i=  for all 

(i,j) pairs) then the graph is said to be undirected (symmetric).  If [ ] [ ], ,d i j d j i≠  for 

some (i,j) pair then the graph is said to be directed (asymmetric).  We mainly use the 

term  edge for the undirected graphs and arc for the directed graphs.  Gutin, Yeo and 

Zverovitch (2002) prove that the number of pyramidal tours is 2n-3 in an undirected 

complete graph and 2n-2 in a directed graph.  In both cases, the number of pyramidal 

tours is an exponential function of the number of nodes, n.  Let PYRF  be the set of all 
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pyramidal tours for a given graph.  By definition, PYRF F∈ where F is the set of all 

tours. 

 

Although the number of pyramidal tours is exponential in n, finding the shortest 

pyramidal tour for any distance matrix has a complexity of O(n2) using the dynamic 

program given in Gilmore, Lawler and Shmoys (1985).  Let PYRD  denote the family 

of distance matrices for which a pyramidal tour is optimal.  Then, for any matrix in 

PYRD , TSP is polynomially solvable.   

 

Tour improvement (TI) technique is a proof technique developed by Van der Veen 

(1994).  TI is used to prove that for a class of matrices in PYRD , the optimal tour is 

pyramidal.  TI starts with an initial tour and iterates by exchanging a set of arcs with 

others to obtain a new tour and generates a sequence of tours without increasing the 

tour length.  The new tour’s length must be at most as large as that of the previous 

tour in order for this exchange to be a feasible transformation.  TI is a framework of 

feasible transformations that needs to be developed for each class of matrices in 

PYRD .  A feasible transformation for a class may not be feasible for another.   

 

There are different classes of distance matrices in PYRD  that have been defined in the 

literature.  There are symmetric and asymmetric matrices in PYRD .  Burkard et al. 

(1998) applied TI technique to Monge, Supnick, Demidenko, Kalmanson, Van der 

Veen matrices and generalized distribution matrices.  Let TI PYR∈D D  denote the set 

of matrix classes for which TI technique can be applied. 

 

Note that, for a matrix in TID , a non-pyramidal tour ϕ  may also be optimal, giving 

the same length as the optimal pyramidal tour.  A trivial case is a TSP where all arc 

lengths are equal.  TI technique implies that there exists at least one pyramidal tourρ , 

that can be obtained from ϕ  by applying a sequence of feasible transformations.  If 

ϕ  is optimal, ρ  should also be optimal.  This is possible if all feasible 

transformations used to obtain ρ  from ϕ  keep the tour length unchanged, i.e. none 
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of the feasible transformations improve the tour length.  By definition, feasible 

transformations cannot increase the tour length.  On the other hand, if all possible 

feasible transformations strictly decrease the tour length, then a non-pyramidal tour 

cannot be optimal, since for every non-pyramidal tour, there exists at least one 

pyramidal tour that has a strictly shorter length.   

 

A matrix that is in PYRD  may not be readily recognizable and may require a 

renumbering of the nodes to be recognized.  There are polynomial time algorithms 

for recognizing some of these matrices in PYRD  (see, for example, Burkard and 

Deineko, 2004, and Burkard, Klinz and Rudolf, 1996). 

 

3.3 The Multiobjective TSP 

 

In multiobjective problems, nondominated points are important.  The ability to find 

nondominated points is an important challenge in multiobjective combinatorial 

problems, many of which are NP-Hard.  We first present some properties of the 

nondominated points for multiobjective TSPs having distance matrices in TID .  We 

then address finding nondominated points for these problems.   

 

Let us define qd  as the qth distance matrix, [ ],qd i j  as the length of arc (i,j) in qth 

objective function, and ( )qd ϕ  as the length of tour ϕ  in qth objective function.  The 

point ( ) ( ) ( )( )1 , , pd d dϕ ϕ ϕ= …  is in the objective space and corresponds to tour ϕ .   

 

Theorem 3.1.  If all distance matrices are in the same class of TID , then for each 

non-pyramidal tour there exists at least one pyramidal tour that is at least as good in 

every objective and possibly better in some objectives.   

 

Proof: Since we assume that all distance matrices are in the same class of TID , any 

feasible transformation does not increase the tour length in any of the objectives.  In 

the worst case, TI results with a pyramidal tour having equal lengths in all objectives 
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to those of the initial tour.  If any of the feasible transformations used in any of the 

objectives is positive, then the resulting pyramidal tour dominates the initial tour. □ 

 

Corollary 3.1.  If all distance matrices are in the same class of TID , there exists a 

pyramidal tour corresponding to each nondominated point.   

 

Proof: Follows directly from Theorem 3.1. □  

 

Corollary 3.2.  If all distance matrices are in the same class of TID , and all feasible 

transformations in all distance matrices are improving, then each non-pyramidal tour 

is strictly dominated by at least one pyramidal tour.   

 

Proof: Follows directly from Theorem 3.1. □ 

 

Example.  The following Van der Veen matrix, VDV TI∈D D shows that there may be 

pyramidal tours strictly better than any other tour.  The pyramidal tour ρ =(1,2,3,4) 

is shorter than any other tour for the following matrix.  Therefore, no tour can be as 

good as ρ  for this objective. 

0 1 2 3

1 0 4 7

2 4 0 3

3 7 3 0

VDV TId

 
 
 = ∈ ∈
 
 
 

D D  

 

Remark.  If distance matrices belong to different classes inTID , then a non-

pyramidal tour may correspond to a unique nondominated point. 

 

Consider the following TID  matrices (Van der Veen, 1994) where 1 VDVd ∈ D  and 

2 DEMId ∈ D  (Demidenko matrix). 
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1

0 4 2 4

4 0 0 1

2 0 0 0

4 1 0 0

 
 
 = ∈
 
 
 

VDVd D  and 2

0 4 4 2

4 0 1 0

4 1 0 0

2 0 0 0

DEMId

 
 
 = ∈
 
 
 

D  

1 (1,2,3,4)ρ = , 2 (1,2,4,3)ρ = and (1,4,2,3)ϕ =  are all possible tours where the set of 

pyramidal tours is { }1 2,PYRF ρ ρ= .  The tour lengths are ( )1d ρ =(8,7), ( )2d ρ =(7,8) 

and ( )d ϕ =(7,7), respectively.  ( )d ϕ  dominates both ( )1d ρ  and ( )2d ρ , hence it is 

the only nondominated point for these two matrices. 

 

Let ( ) ( ) ( )( )1 , ,q q q
pd d dρ ρ ρ= …  be the point corresponding to shortest pyramidal 

tour qρ  with respect to qth distance matrix, i.e, ( ) ( )q
q qd dρ ρ≤  for any PYRFρ ∈ . 

 

Theorem 3.2.  If distance matrices belong to different classes in TID , then ( )qd ρ  is 

weakly nondominated.   

 

Proof: Since qρ  is the shortest tour in objective q, ( )qd ρ  is weakly nondominated.  

However, ( )qd ρ  may be dominated as demonstrated in Remark. □  

 

For p-Σ TSP, finding nondominated points is an important problem.  We may wish to 

find all nondominated points or a subset that could be of interest to the DM.   

 

Let us define a convex combination of p matrices that are in the same class of TID  

as:  

p

1 q=1

. , 1 and 0 1,...,  
p

q q q q
q

d d q pµ µ µ µ
=

= = ≥ =∑ ∑ .   

In the following theorem we prove that this matrix is also in the same class ofTID .   

 

Theorem 3.3.  If all distance matrices are in the same class of TID , then any convex 

combination of these matrices is also in the same class of TID . 
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Proof: Currently existing classes of TID  are defined with inequalities like  

[ ] [ ] [ ] [ ]1 2 3 4 5 6 7 8, , , ,q q q qd i i d i i d i i d i i+ ≤ +  for some q and i1,…,i8 or, 

[ ] [ ] [ ] [ ] [ ] [ ]1 2 3 4 5 6 7 8 9 10 11 12, , , , , ,q q q q q qd i i d i i d i i d i i d i i d i i+ + ≤ + + for some q 

and i1,…,i12 

Since all convex combinations of these types of inequalities hold for all possible 

i1,…,i12 used in the class definition, we conclude that all convex combinations are 

also in the same class. □ 

 

By convex combination of matrices, p-Σ TSP becomes a single objective TSP.  For a 

given µ  vector, an extreme supported nondominated point can be found using the 

DP given by Gilmore, Lawler and Shmoys (1985).  We refer to this DP as ( )GLSDP d  

where d is distance matrix.  All extreme supported nondominated points can be 

found by choosing suitableµ  vectors.  In the next section, we show a method for 

determining suitable µ  for 2-Σ TSP.  In Chapter 5, we develop a method for 

determining suitable µ  vectors for MOIPs with any number of objective functions. 

 

Let us define the following two problems, ( )kP  and ( )ε
kP for kth objective function.  

Let 
1

ε ε
=
≠

= + ∑
p

k k q
q
q k

d d d be a distance matrix.  Given a set of upper bounds by Bq ≠q k , 

( )kP finds the solution with shortest possible tour length in objective k.  ( )ε
kP , on the 

other hand, finds a tour corresponding to a nondominated point and satisfying 

constraints (1) and (2).   

1

( )  [ , ( )]ϕ
=
∑

n

k k
i

P min d i i  

1

           ( ) [ , ( )]  ϕ ϕ
=

= ≤ ∀ ≠∑
n

q q q
i

st d d i i B q k                                                   (1) 

              ϕ ∈ F                                                                                                (2) 
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where F is the set of all Hamiltonian tours and Bq is an upper bound for objective q.  

Let ( )1 1 1,..., , ,...,k k pB B B B B− +=  be the vector of upper bounds, Bq for criteria q≠p. 

( )
1

  [ , ( )]

           (1) and (2)

n

k k
i

P min d i i

st

ε ε ϕ
=
∑   

 

Let ky∗  be the optimal solution of problem( )kP  and ( )1 ,..., py y y∗ ∗ ∗=  be the vector of 

tour lengths for the optimal tour of problem( )kP .  Similarly, for problem ( )ε
kP , let 

ky ε∗  and ( )1 ,..., py y yε ε ε∗ ∗ ∗=  be the optimal solution and optimal tour length vector, 

respectively.  Note that, different solutions can be obtained by changing ε  in ( )ε
kP .  

The ε  value should be positive to avoid dominated points but small enough to 

ensure k ky yε∗ ∗= .  Steuer (1986) showed an appropriate interval for the ε  value for 

the augmented weighted Tchebycheff program.  For our case, the appropriate value 

of ε  can be determined through Theorem 3.4.   

 

Theorem 3.4.  Let ( )1 ,..., py y y∗ ∗ ∗= , ( )1 ,..., py y yε ε ε∗ ∗ ∗=  be the optimal solutions to 

( )kP  and ( )ε
kP , respectively, and ( )1,..., py y y= be any nondominated point 

satisfying (1) and (2).  Then for any ( ) 1

0, max εε
−

∗
≠∈

 
 ∈ −  

 
∑ q qq ky S

y y  we have 

k ky yε∗ ∗=  where ( ) ( ) ( ){ }1 2 k kS y yε∗= ∩ ∩ > . 

 

Proof: It is known that y ε∗ is a nondominated point for any 0ε > . 

As ε  value increases, the relative importance of kth objective decreases.  Increasing 

the ε  value does not improve ky ε∗ .  Then, ε  should be small enough to ensure 

k ky yε∗ ∗= .  This implies, 

k q k q
q k q k

y y y yε εε ε∗ ∗

≠ ≠

+ < +∑ ∑                                                                             (3) 

for all nondominated points satisfying k ky y∗> , (1) and (2). 
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Since (3) needs to hold for all nondominated points satisfying k ky y∗> , ky ε∗ cannot be 

greater than ky∗ , thus k ky y ε∗ ∗≥ .  It is impossible to have k ky y ε∗ ∗> .  Hence, k ky yε∗ ∗= .  

If we can find suitable a ε  satisfying inequality (3), we can rewrite it as 

q q k k
q k

y y y yε εε ∗ ∗

≠

 − < − ∑  

We have two cases: 

(i) If 0q q
q k

y yε∗

≠

 − > ∑  then k k

q q
q k

y y

y y

ε

εε
∗

∗

≠

−<
 − ∑

.   

Since the minimum possible value for 1k ky y ε∗− =  assuming (without loss of 

generality) that all edge lengths are integers, we need 

1

q q
q k

y yεε
∗

≠

<
 − ∑

. 

A general bound over all nondominated points is then  

1

max q q
y S

q k

y yε

ε
∗

∈ ≠

<
 

 −  
 
∑

 

where  

( ) ( ) ( )1 2 0k k q q
q k

S y y y yε ε∗ ∗

≠

 
 = ∩ ∩ > ∩ − >  

 
∑   

 

(ii) If 0q q
q k

y yε∗

≠

 − ≤ ∑ then setting 0ε ≥  is sufficient.  Since k ky yε∗ <  and 

q q
q k q k

y yε∗

≠ ≠

≤∑ ∑ , we have  

k q k q
q k q k

y y y yε εε ε∗ ∗

≠ ≠

+ < +∑ ∑  for any 0ε ≥ . 

 

The range is defined as: 

( ) 1

0, max q qq ky S
y yεε

−
∗

≠∈

 
 ∈ −  

 
∑  where ( ) ( ) ( ){ }1 2 k kS y yε∗= ∩ ∩ >  □ 
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The above theorem gives the upper bound ( ) 1

max εγ
−

∗
≠∈
 = − ∑k q qq ky S
y y  for ε  for 

objective k.  By taking the minimum γ k , we generalize the upper bound for all 

objectives as follows. 

 

Corollary 3.3.  Replacing the range of ε  with ( )0,minε γ∈ k
k

 in Theorem 3.4, the 

theorem is generalized for any number of objective functions. 

 

To determine the above range, we need to know the set of nondominated points.  

This set may not be readily available, but this is not a problem in practice.  A trivial 

upper bound for ε  can be obtained by finding the total length of the longest n arcs, 

say UBq, and substituting qy  for q
qy , the shortest tour length in objective q, using 

q
q qq

UB y − ∑ .  Then the range ( ) 1

0, q
q qq

UB yε
−  ∈ −   

∑  is a practical and valid 

range. 

 

We develop a dynamic program to find the optimal pyramidal tour that solves ( )ε
kP .  

We define a state variable vector ( )1 1 1,..., , ,...,k k pR R R R R− += .  qR  corresponds to the 

remainder or the unconsumed portion of bound qB  by the partial tour constructed so 

far.  Initially R B=  and as DP moves to inner stages, R  decreases.   

 

The DP we developed is quite different than GLSDP .  Given a distance matrix, GLSDP  

finds the shortest pyramidal tour considering a single objective function. On the other 

hand, our DP considers multiple objective functions by imposing upper bounds to all 

but one objective. The DP either finds the shortest pyramidal tour that does not 

violate the upper bounds or reports that no such tour exists.  

 

Let ( ), ,C i j R  be the length of the shortest Hamiltonian path with respect to the kth 

distance matrix from i to j on cities 1,2,…,max{ i,j} that visits a subset of these nodes 

in a descending order from i to 1 and the remaining nodes in ascending order from 1 
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to j without violating the bounds, R .  ( ), ,C i j R  finds the shortest pyramidal path in 

criterion k from i to j while the bounds qR  for ≠q k , are not violated.  Let M be a 

sufficiently large number, i.e., [ ]{ }
,

.max ,> k
i j

M n d i j . At state ( ), ,C i j R , there are 

five possible cases. If any of the upper bounds is violated then the corresponding 

component of R vector is negative.  In this case (Case 1), DP returns M value for the 

current state. If |i-j|>1 and the bounds are not violated then we consider Cases 2 or 4.  

In both cases, the selection of the next state is straight forward in order to keep the 

path pyramidal.  In Case 2, arc (j-1,j) is added to the path.  In Case 4, arc (i,i-1) is 

added to the path. In Cases 3 and 5, |i-j|=1 and the bounds are not violated.  In these 

cases, the selection of the next state is not straight forward. The minimum valued 

state is selected among the possible states. In all cases except for the first one, the 

remaining bounds are updated according to the selection of the next state. 

 

( )
[ ]( ) [ ]

[ ]( ) [ ]{ }

1)                                                           if 0 for any 

2) , 1, 1, 1,  for -1 and 0 

, , 3) , , , ,       for -1 and 0 

4) 1

ε

ε

<

<

− − − + − < ≥ ∀ ≠

= − + = ≥ ∀ ≠

−

q

k q

k q
l i

M R q

C i j R d j j d j j i j R q k

C i j R min C i l R d l j d l j i j R q k

C i [ ]( ) [ ]
[ ]( ) [ ]{ }

, , , 1 , 1      for 1 and 0 

5) , , , ,        for 1 and 0   

ε

ε

<

 
 
 
 
 
 
 
 − − + − > + ≥ ∀ ≠
 
 − + = + ≥ ∀ ≠
 

k q

k q
l j

j R d i i d i i i j R q k

min C l j R d i l d i l i j R q k

 

Number of states in this DP is 2

1=
≠

 
 
  
 

∏
Q

q
q
q k

O n B .  The number of states is a function of 

the magnitudes of the upper bounds.  Hence, this DP has pseudo-polynomial 

complexity.  The optimal objective function value to ( )ε
kP  is given by 

( ) ( ) [ ]{
( ) [ ]}

k , , 1, , [ , 1] , 1 ,

                                 , 1, [ 1, ] 1, .

ε ε

ε

= − − − + −

− − − + −

k

k

DP d B d min C n n B d n n d n n

C n n B d n n d n n
 

 

Note that in ( )k , ,DP d B dε , kdε  is a distance matrix, B is a vector of upper bounds, d 

is a vector of distance matrices, and d[i,j] is the vector of arc lengths.  If there is no 
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feasible solution for the given bounds, then the DP will return an objective function 

value of at least M.  This DP finds the shortest pyramidal tour for any distance matrix.   

 

The ranges developed for ε  value in Theorem 3.4 and Corollary 3.3 are valid in 

general.  If all distance matrices are in the same class of TID , as stated in Theorem 

3.1, then the optimal tour to ( )ε
kP  is obtained.   

 

All nondominated points can be found by this DP by changing the qB  values.  In the 

next section, we propose an approach for finding all nondominated points for the 

biobjective TSP.   

 

The above DP can be used for both symmetric and asymmetric matrices.  If all 

distance matrices are symmetric then DP can be simplified as follows: 

( ) [ ]( ) [ ]
[ ]( ) [ ]{ }

                                                                   if 0 for any 

, , , 1, 1, 1,  for -1 and 0 

, , , ,        for -1 and 

q

k q

k
l i

M R q

C i j R C i j R d j j d j j i j R q k

min C i l R d l j d l j i j R

ε

ε

′<

<

′ ′ ′ ′ ′ ′ ′ ′= − − − + − < ≥ ∀ ≠

′ ′ ′ ′ ′− + = 0   q q k

 
 
 
 
 

≥ ∀ ≠  

 

where min( , )i i j′ = and max( , )j i j′ = .  In this case, the optimal objective function 

value also simplifies to 

( ) ( ) [ ]k , , 1, , [ , 1] , 1kDP d B d C n n B d n n d n nε ε= − − − + − . 

 

3.4 The Biobjective TSP 

 

We develop an approach to generate all nondominated points for the biobjective TSP.  

We first find the extreme supported nondominated points by using the weighting 

scheme proposed by Aneja and Nair (1979).  Then we search for the nonextreme 

supported nondominated and unsupported nondominated points between each 

adjacent pair of extreme supported nondominated points. 

 

We define nonextreme supported nondominated and unsupported nondominated 

points as nonextreme nondominated points, because we do not need to differentiate 
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between these two types of points in our method.  Let YE and YNE be the sets of 

extreme supported nondominated points and nonextreme nondominated points, 

respectively.   

 

Consider the optimal objective function values of the single objective TSPs, 

( )minq
q q

F
y d

ϕ
ϕ

∈
= , and let ϕ q be the corresponding optimal tours for q=1, 2.  Let 

( )1 1
2 2y d ϕ= , ( )2 2

1 1y d ϕ= , ( )1 1 1
1 2,y y y=  and ( )2 2 2

1 2,y y y= .  Without loss of 

generality, assume that 1 2
1 1y y<  and 1 2

2 2y y> .  If 1 2y y=  or 1 2y y≤  or 2 1y y≤  then 

there is a unique nondominated point and the problem is trivial. 

 

Theorem 3.5.  Using ε  in the range 
1 2 2 1
2 2 1 1

1 1
0,min ,

y y y y

  
   − −  

is sufficient to 

avoid nondominated points in problem( )ε
kP . 

 

Proof: Follows directly from Theorem 3.4. □ 

 

Note that both points 1y  and 2y can be weakly nondominated.  The nondominated 

points, q effy − having q q eff
q qy y −= q=1,2 can be determined by the DP we developed.  

Using these points a larger upper bound for ε  can be obtained. 

 

Corollary 3.4.  The upper bound for ε can be replaced by the following term: 

1 2 2 1
2 2 1 1

1 1
min ,

eff effy y y y− −

 
 − − 

. 

 

Proof: The points 1y  and 2y  may be weakly nondominated.  An overestimated range 

(for nondominated points) is obtained by the denominator term using 1y  and 2y .  If 

nondominated points are used in the denominator, the range (for nondominated 

points) may decrease and the upper bound value for ε  may increase.  □ 
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We define two algorithms to find all points in YE; ( ),a bRecursive y y  and A1.  

( ),a bRecursive y y  finds all extreme supported nondominated points between two 

given extreme supported nondominated points ay  and by .  A1 solves ( )1Pε  and 

( )2Pε .  If two different solutions are obtained in A1 then ( ),a bRecursive y y  is called.  

DP(dq) finds the shortest pyramidal tour with respect to distance matrix dq and 

returns the point ( )1 2,y y y=  

 

We can obtain the extreme supported nondominated points in O(n2) using distance 

matrices 1dε  and 2dε .  The extreme supported nondominated points can be 

determined by changing the weight µ of matrix ( )1 21d d dµ µ µ= + − , ( )0,1µ ∈  and 

applying ( )GLSDP dµ  for the resulting single objective problem.  For each weight set, 

a solution is obtained in O(n2).   

 

A1 

Initialization: Set EY = ∅ . 

Step 1.  Solve ( )1GLSDP dε , let the optimal point be 1y . 

Step 2.  Solve ( )2GLSDP dε , let the optimal point be 2y . 

Step 3.  If 1 2
1 1y y< and 2 1

2 2y y< then go to Step 5 else go to Step 4. 

Step 4.  If 1 2y y=  then single optimal solution is 1y , { }1
EY y= , go to Step 7. 

Step 5.  { }1 2,EY y y= . 

Step 6.  Call Recursive ( )1 2,y y . 

Step 7.  Terminate the algorithm. 

 

Recursive ( ),a by y  

Step 1.  Set ( ) ( )
2 2

1 2 1 2

a b

a a b b

y y

y y y y
µ −=

− − −
. 
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Step 2.  Set ( )1 21d d dµ µ µ= + − . 

Step 3.  Solve ( )GLSDP dµ , let the solution be newy . 

Step 4.  If { } { }new new
EY y y∩ =  then go to Step 5  

else 

 { }new
E EY Y y= ∪ , 

 Call Recursive ( ),a newy y , 

 Call Recursive ( ),new by y . 

Step 5.  Terminate the algorithm. 

 

If 2EY ≥ then we search for the nonextreme nondominated points using the DP we 

developed.  Since there are only two objectives, we use the state variable ( ), ,C i j R  

where R is a scalar.  For each consecutive extreme supported nondominated point 

pair in YE, nonextreme nondominated points should be searched between them.  A 

point is obtained in O(n2B) where B is the upper bound on one of the objectives.  

Without loss of generality, we select to use the second objective as a bound and 

minimize the augmented version of the first objective.  Algorithm A2 is used to find 

all nonextreme nondominated points in YNE.  We refer to our DP as ( )1 2 2, ,DP d B dε  

where 1dε  and 2d  are distance matrices and B2 is a scalar. 

 

A2 

Initialization: Set NEY = ∅ . 

   Sort elements of YE, such that [ ][1] [2]
1 1 1... EYy y y< < < . 

  Set r=1. 

Step 1.  Solve DP2( )[ ]
1 2 2, 1,rd y dε − , let the resulting point be y . 

Step 2.  If [ 1]ry y +=  then r=r+1.  

If Er Y=  then go to Step 6 else go to Step 1. 

Step 3.  { }NE NEY Y y= ∪ . 
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Step 4.  If [ ]
2 21 ry y− = z2-1= [ ]

2
rz then r=r+1, go to Step 1. 

Step 5.  Solve ( )[ ]
1 2 2, 1,rd y dε − , let the resulting point be y , go to Step 2. 

Step 6.  Terminate the algorithm. 

 

The set of nondominated points is ND E NEY Y Y= ∪ .  We can find a nondominated 

point satisfying the given bound with a pseudo-polynomial DP.  However, the 

complexity of identifying all nondominated points is still an open problem. 

 

3.5 The Bottleneck TSP 

 

The optimal pyramidal tour for the Bottleneck TSP can be found in O(n2) with a 

small modification in DP.  Burkard and Sandholzer (1991) studied the polynomially 

solvable special cases of the Bottleneck TSP.  They presented several conditions for 

pyramidally solvable Bottleneck TSPs.   

 

One may be curious to know whether some results on pyramidal tours are applicable 

to the bottleneck-type objectives.  For some classes in PYRD , using the “maximum” 

operator instead of the “sum” operator in the distance matrix definition results in a 

class which is also in PYRD .  The class of Monge matrices is such an example 

(Burkard and Sandholzer, 1991).  In a similar way, we can define the bottleneck 

version of the Van der Veen matrix as follows: 

{ } { }
[ , ] [ , ] for all i and j

[ , ]
max [ , ], [ 1, ] max [ , ], [ , 1] for all i<j<j+1<kBVDV

d i j d j i
d i j

d i j d j k d i k d j j

 =  =  + ≤ +  
D . 

 

Theorem 3.6.  BVDV PYR∉D D . 

 

Proof: We provide a counter example.  BVDVd ∈ D  for y≥1.  For the distance matrix 

given below, the length of tourρ =(1,4,2,6,3,5) is 1.  However, all pyramidal tours 

have tour lengths of y.   
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0 0 1

0 0 1

0 1 1

0 0 0

1 0 1 0

1 1 0 0

BVDV PYR

y y

y y

y y
d

y y

y

y

− 
 − 
 −

= ∈ ∉ − 
 −
 

− 

D D   

 

Increasing the value of y in BVDVd ∈ D  the lengths of pyramidal tours can be 

increased arbitrarily. □ 

 

 We next define the bottleneck version of the Demidenko matrix as follows: 

{ } { }
[ , ] [ , ] for all i and j

[ , ]
max [ , ], [ 1, ] max [ , 1], [ , ] for all i<j<j+1<kBDEMI

d i j d j i
d i j

d i j d j k d i j d j k

 =  =  + ≤ +  
D . 

 

Theorem 3.7.  BDEMI PYR∉D D . 

 

Proof: We provide a counter example.  BDEMId ∈ D  for y≥0.  For the distance matrix 

given below, the length of tourρ =(1,5,3,4,2,6) is 0.  However, all pyramidal tours 

have tour lengths of y.   

 

0 0

0 0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0

BDEMI PYR

y y y

y

y y
d

y y

y y

− 
 − 
 −

= ∈ ∉ − 
 −
 

− 

D D   

 

Increasing the value of y in BDEMId ∈ D  the lengths of pyramidal tours can be 

increased arbitrarily. □ 

 

Since BVDVD  and BDEMID  do not guarantee that the optimal tour is pyramidal, we 

consider the bottleneck type objectives no further. 
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3.6 Discussions 

 

In this chapter, we studied the multiobjective TSP on TI PYR∈D D  and showed some 

properties of nondominated points.  We developed a pseudo-polynomial DP to find a 

nondominated point to the problem when all distance matrices are in the same class 

of TID .  For the biobjective case, we developed an approach to find all nondominated 

points.  We also demonstrated that bottleneck types of Van der Veen matrices and 

Demidenko matrices are not in PYRD , and hence the developments are not applicable 

to these cases. 
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CHAPTER 4 

 

 

HALIN GRAPHS AND MULTIPLE OBJECTIVES 

 

 

 

4.1 Introduction 

 

In this chapter, we study TSP and BTSP on special graphs called Halin graphs.  

Although both problems are NP-Hard on general graphs, they are polynomially 

solvable on Halin graphs.  We address the multiobjective versions of these problems.  

We show computational complexities of finding a single nondominated point as well 

as finding all nondominated points for different objective function combinations.  

We develop algorithms for the polynomially solvable combinations. 

 

4.2 Definitions and Background 

 

Some definitions on Halin graphs are provided in this section.  We review TSP and 

BTSP on Halin graphs and discuss the polynomial algorithms to solve these 

problems.   

 

In a graph, the number of edges incident to a node gives the degree of that node.  An 

undirected planar graph is called a Halin graph if it is a combination of a tree with no 

nodes of degree two and a cycle passing through the leaf nodes of the tree (see for 

example Kabadi, 2002).  An example of such a tree and a Halin graph constructed 
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using this tree is given in Figure 4.1.  The leaf nodes of the tree are called the outer 

nodes of the Halin graph and an edge set that connects the outer nodes is called a 

cycle.  The remaining nodes of the Halin graph are called the internal nodes.  If a 

Halin graph has only one internal node, it is called a wheel (see Figure 4.2b).  Let t 

be an internal node adjacent to exactly one other internal node.  Let L(t) be the set of 

outer (leaf) nodes adjacent to node t.  Then the subgraph of H induced by the set 

{ } ( )t L t∪  is called a fan, and t is the center of the fan.  In Figure 4.2a, we 

demonstrate a fan where 1=t  and ( ) { }1 1 ,1 ,...,1=L a b x . 

 

 

 

 

a) A tree having no nodes with degree two b) A Halin graph 

Figure 4.1 Constructing a Halin graph 

 

 

 

Theorem 4.1.  (Cournejols, Naddef and Pulleyblank, 1983).  A Halin graph H which 

is not a wheel has at least two fans.   

 

Let H be a Halin graph that has at least two fans.  Let H(t) denote the graph obtained 

by shrinking the fan centered at t into a single node t.  In Figure 4.2a, we show a 

graph H and a fan centered at node 1.  In Figure 4.2b, we show graph H(1) obtained 
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after shrinking this fan into node 1.  Note that, H(1) is a wheel.  The shrinking 

operation can be used as a part of an algorithm as we discuss later. 

 

 

 

  

a) A Halin graph, H b) A wheel, H(1) 

Figure 4.2 Shrinking H to H(1) 

 

 

 

Theorem 4.2.  (Cournejols, Naddef and Pulleyblank, 1983).  If { } ( )t L t∪  is a fan in 

a Halin graph, H, then H(t) is also a Halin graph.   

 

Cournejols, Naddef and Pulleyblank (1983) showed that TSP on Halin graphs can be 

solved in O(n).  Coullard et al. (1993) developed an algorithm that solves the  

2-Connected Steiner Subgraph Problem on Halin graphs in O(n).  Since TSP is a 

special case of this problem, the algorithm developed by Coullard et al. (1993) also 

solves TSP on Halin graphs in O(n).  Phillips, Punnen and Kabadi (1998) developed 

an O(n) algorithm for BTSP.  Throughout this paper, we will refer to the algorithm of 

Cournejols, Naddef and Pulleyblank (1983) as CNP and to the algorithm of Phillips, 

Punnen and Kabadi (1998) as PPK. 

 

In a Halin graph, each fan is connected to the rest of the graph with exactly three 

edges.  For example, the fan centered at node 1 in Figure 4.2a is connected to the rest 

of the graph with edges (k,1a), (u,1) and (2,1x).  In a tour, exactly two of these three 
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edges are used.  If edge (u,1) is used then there are two possibilities to construct a 

tour: either edge (k,1a) or edge (2,1x) is included in the tour.  If edge (k,1a) is 

included in the tour then nodes in ( )1L  are visited by path 1a,1b,…,1x,1.  If, on the 

other hand, edge (2,1x) is included in the tour then nodes in ( )1L  are visited by path 

1,1a,1b,…,1x.  If edge (u,1) is not used in the tour then both edges (2,1x) and (k,1a) 

must be included in the tour.  The nodes in ( )1L  can be visited in ( )1 1L −  different 

ways with path 1a, 1b, …,1j, 1, 1(j+1),…, 1x for some node 1j.  The decisions on 

which of the above edges are selected depend on the respective objective function 

values in CNP and PPK. 

 

In each iteration of CNP, first a fan is selected.  For example, for the fan centered at 

node 1 in Figure 4.2a, CNP selects the best node 1j for the pair (k,1a) and (2,1x).  

Then lengths of the paths corresponding to the three pairs, (u,1) and (k,1a), (u,1) and 

(2,1x), and (k,1a) and (2,1x), are calculated.  In order to eliminate the fan and shrink 

the graph, new weights of edges (k,1), (u,1) and (2,1) in H(1) are determined by 

solving a system of three linear equations.  CNP keeps shrinking the Halin graph 

until obtaining a wheel.  The TSP is solved on the wheel and the optimal tour is 

obtained.   

 

Although CNP solves TSP, it is not directly applicable to BTSP.  PPK also uses the 

approach of shrinking the graph.  The basic idea behind PPK is in the updating 

scheme of the weights.  PPK defines penalties for the pairs of edges in addition to the 

edge weights.  It keeps track of the longest edge, the second longest edge, and the 

pair of edges with highest, second highest, and third highest penalties and updates 

this information after each shrinking.   

 

Both algorithms are straightforward if edge (u,1) of H is used since there are only 

two alternative paths to construct the tour.  However, if (u,1) is not used, then the 

other two edges have to be used, and the algorithm needs to make the optimal 

selection for node 1j based on the objective function used.  In CNP, the updated edge 

weights (those obtained after previous shrinking operations) are used during this 
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selection.  However, in PPK, the selection is done using both the edge weights and 

the penalties of edge pairs.  In some cases, there may not be a single best selection 

for node 1j and alternative optimal selections may exist.  In these cases, both CNP 

and PPK break ties arbitrarily.  However, if there are multiple objectives in the 

problem then all of the objectives must be considered to break ties. 

 

4.3 Multiple Objective TSP and BTSP on Halin Graphs 

 

In this section, we first work on biobjective cases and then extend the results to more 

than two objectives.  For all problems considered in this section, we assume that a 

Halin graph, with multiple weights assigned to each of its edges, is given.  We first 

consider the biobjective cases: 2-Σ TSP, 1-Σ 1-max TSP and 2-max TSP.  We then 

generalize the results to multiobjective cases.  For each case, we define two 

problems: finding a single nondominated point and finding all nondominated points.  

In the remainder of the section, we refer to the Halin graph given in Figure 4.3 as H 

and use it to demonstrate our proofs.   

 

 

 

 

Figure 4.3 A Halin graph, H 
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4.3.1 2-Σ TSP 

 

Finding all nondominated points  

There are 4k+1 nodes in H given in Figure 4.3.  Cournejols, Naddef and Pulleyblank 

(1983) state that there are k×2k-2 different tours in H without a proof.  We next prove 

this result . 

 

Theorem 4.3.  Let H=(N,E) and |N|=4k+1.  There are k×2k-2 different tours in H. 

 

Proof: Define a set of edges ( ) ( ) ( )( ) ( ){ }1 ,2 , 2 ,3 ,..., 1 , , ,D c a c a k c ka kc 1a= − , and 

observe that |D|=k.  Each tour on H contains k-1 of the k edges of D.  Assume that 

edge (1c,2a) is not in tour ϕ .  Then the edges (u, 1), (1, 1c), (1c, 1b), (1b, 1a), (1a, 

kc), (ka,(k-1)c), ((k-1)a,(k-2)c), …, (3a, 2c), (2c, 2b), (2b, 2a), (2a, 2) and (2, u) must 

be in tour ϕ .  Consider nodes 3, 3a, 3b and 3c.  Tour ϕ  uses the edge (2c, 3a) to 

reach these nodes and leaves these nodes using the edge (3c, 4a).  These four nodes 

in the tour ϕ  can be visited either by path (3a, 3, 3b, 3c) or by path (3a, 3b, 3, 3c).  

Similarly, for each node quartet (i, ia, ib, ic) i=3,…, k-1, there are two possible ways 

of visiting them all.  For a fixed element of D, say (1c, 2a), there are 2k-2 tours.  Since 

|D|=k, we can fix k different edges and obtain 2k-2 tours for each fixed edge.  Hence, 

there are k×2k-2 different tours in H. □ 

 

Theorem 4.4.  The number of nondominated points in H is exponential in k. 

 

Proof: Let 

w1(e)=2j and w2(e)=0 for edge (ja, jb) for j=1,…,k, 

w1(e)=0 and w2(e)= 2j for edge (jb, jc) for j=1,…,k, 

w1(e)=w2(e)=M for edge (1c, 2a) where M is such a big number (i.e.  2kM > ) that 

edge (1c, 2a) cannot be used in any efficient tour, and  

w1(e)=w2(e)=0 for all other edges in H. 

The tour length of any tour with respect to each objective is at least 21+22 since edges  

(1c, 1b), (1b, 1a), (2c, 2b) and (2b, 2a) are used in every efficient tour.  If the length 
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of a tour in the first objective is represented in binary digits then the jth digit of the 

number corresponding to the tour length is set to 1 if edge (ja, jb) is used and to 0 if 

edge (jb, jc) is used in the tour.  Similarly, for the second objective, the j th digit is set 

to 0 if edge (ja, jb) is used and 1 if edge (jb, jc) is used.  Since each digit represents 

the selection of an edge and there are k-2 such edges, totally 2k-2 different numbers 

can be written in binary digits.  The same number of distinct tour lengths can be also 

obtained for the second objective.  Since the sum of the two objective function values 

is constant (and is equal to 1

1

2 2 2
k

j k

j

+

=

= −∑ ), each of the 2k-2 tours is efficient in H.  

Since these tours have different objective function values, each of them corresponds 

to a different nondominated point in the objective space. □ 

 

Since the number of the nondominated points is exponential, the problem of 

identifying all of them in H is intractable.   

 

Finding a nondominated point 

CNP solves the single objective TSP for any given Halin graph.  The point found by 

CNP may be dominated when we consider multiple objectives.  The following 

perturbation in the weights guarantees to obtain a nondominated point using CNP: 

( ) ( ) ( )1 1 2w e w e w eε ε= +  e H∀ ∈  

where ε  is a sufficiently small positive constant to avoid weakly nondominated but 

dominated points.  In Theorem 3.5, we developed an appropriate range of ε  value 

for 2-Σ TSP.   

 

Let w(e) be a convex combination of two weights: 

( ) ( ) ( ) ( )1 21w e w e w eλ λ= + −  e H∀ ∈ , [ ],1λ ε ε∈ − . 

CNP can be used with this weight set to find an extreme supported nondominated 

point.  Aneja and Nair (1979) develop a method to find all extreme supported 

nondominated points by systematically varying theλ value for the biobjective 

transportation problem.  In Section 3.4, we implemented this approach on 2-Σ TSP.   
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All extreme supported nondominated points can be found using the above approach.  

In order to find any nondominated point, we may use a variation of the ε -constraint 

approach (see for example Steuer, 1986, pp 202-206).  We impose an upper bound U 

on the first objective and minimize the second objective, breaking ties in favor of the 

first objective.  This corresponds to problem P1: 

( ) ( )

( )

2 2 1

1 1

: min  ( )

.

  ( )

e

e

P1 f w e w e

st

f w e U

F

ϕ

ϕ

ϕ ε

ϕ

ϕ

∈

∈

= +  

= ≤

∈

∑

∑
 

Consider graph H given in Figure 4.3.  Let H ′  be a special case of H such that 

( )1w e = ( )2w e = M for all edges (u, j) j=2,…,k-1, where M is such a big number that 

these edges cannot be in any efficient tour,( )1w e = ( )2w e =0 for edges (u, 1) and (u,k), 

( )1w e = ( )2w e = 0 for all edges (jc, (j+1)a) j=1,…,k-1 and for (kc,1a), 

( )1w e = ( )2w e = 0 for all edges (j, ja), (j, jb) and (j, jc) j=1,…,k.  In Theorem 4.5, we 

prove that solving P1 on H ′  is NP-Hard in the ordinary sense. 

 

Theorem 4.5.  Problem P1 on H ′  is NP-Hard in ordinary sense. 

 

Proof: Every efficient tour starts with path (u, 1, 1a, 1b, 1c, 2a) and ends with path 

((k-1)c, ka, kb, kc, k, u).  Tour lengths are determined by the selections of the paths to 

visit the inner nodes at fans centered at nodes 2,3,…,k-1.  As in the proof of Theorem 

4.3, node j can be visited in two different ways, (ja, j, jb, jc) or (ja, jb, j, jc).  Let us 

define a binary decision variable Xj , j=1,…,k, such that 

 
( )
( )

1 if path  is selected

0 if path  is selectedj

ja, jb, j, jc
X

ja, j, jb, jc

= 


 

Define penalties 

 ( ) ( ) ( )1 1 1, ,p j w ja jb w jb jc= −  and 

 ( ) ( ) ( ) ( )2 2 2 1, ,p j w ja jb w jb jc p jε= − +    for each j, j= 1,…,k. 
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Problem P1 can be redefined as 

( ) ( ) ( )

( ) ( )

{ }

2 2 1
1

1 1
1

:  , ,

.

,

0,1    1,..., .

ε
=

=

 + + 

 + ≤ 

∈ =

∑

∑

k

j
j

k

j
j

j

P2 min p j X w jb jc w jb jc

st

p j X w jb jc U

X j k

 

 Since ( )1 ,w jb jc , ( )2 ,w jb jc  and ε  are constants, ( ) ( )2 1, ,w jb jc w jb jcε+  can be 

dropped from the objective function.  Let ( ) ( )2 2  p j p j j′ = − ∀  and 

( )1 ,
j J

U U w jb jc
∈

′ = −∑ .  Then P2 is transformed to P3.   

( )

( )

{ }

2
=1

1
1

:  

.

 

0,1    1,..., .

=

′

′≤

∈ =

∑

∑

k

j
j

k

j
j

j

P3 max p j X

st

p j X U

X j k

 

 

The transformations from P1 to P2 and from P2 to P3 are both polynomial.  P3 is a 

0-1 Knapsack problem, which is NP-Hard in the ordinary sense.  Since the 0-1 

Knapsack problem is a special case of P1 on H ′ , P1 on H ′  is also NP-Hard in the 

ordinary sense. □ 

 

For H ′ , we can use the pseudo polynomial dynamic program developed for 

knapsack problems (Martello and Toth, 1990) to solve 2-Σ TSP.  However, the graph 

structure of H ′  is a special case of H, and hence solving P1 on a general Halin graph 

may be more difficult than solving it on H ′ .  Further analyzing the computational 

complexity of P1 and developing an algorithm for solving 2-Σ TSP on general Halin 

graphs are future research topics.   

 

For 2-Σ TSP, we showed that each extreme supported nondominated point can be 

found in O(n) by using convex combinations of two weight sets.  However, finding 

other nondominated points (both nonextreme supported and unsupported) is NP-Hard 
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in the ordinary sense for a special case of Halin graphs.  We also showed that finding 

all nondominated points is intractable.  We next consider 1-Σ 1-max TSP. 

 

4.3.2 1-Σ 1-max TSP  

 

Finding a nondominated point  

Let ( ) ( )1 1 
e

f w e
ϕ

ϕ
∈

=∑  and ( ) ( ){ }2 2 
e

f max w e
ϕ

ϕ
∈

= .  We develop an algorithm that finds 

a nondominated point for this problem.  Our algorithm uses CNP and PPK 

simultaneously.  The inputs of the algorithm are the weights of the edges and an 

upper bound U on the 1-max objective.  The output is the minimum 1-Σ objective 

value satisfying the upper bound U on the 1-max objective. 

 

Max_Algorithm  

Input: ( )1w e and ( )2w e for all e∈E, and U. 

Output: A tour ϕ  with minimum 1 ( )f ϕ  where 2 ( )f Uϕ ≤  

Steps of the algorithm 

Step 0.  Using a sufficiently large number M, update the edge weights as 

follows: 

( ) ( ) ( )
( )

1 2

1

2

 if 
=        

 if 

w e w e U
w e e E

M w e U

≤′ ∈
>

 

Step 1.  Run CNP with ( )1w e′ weight set and calculate the pair penalties of the 

BTSP-type objective function with the selections of CNP (not with the 

selections of PPK).  Break the ties of CNP using the penalties of PPK.  Let 

the optimal tour be  ϕ∗ and the objective function value be( )1 f ϕ ∗ .   

Step 2.  If ( )1  f Mϕ∗ <  then  ϕ∗  is optimal; stop.  Otherwise, there is no 

solution satisfying the given upper bound. 

 

In Step 0 of Max_Algorithm, ( )2w e  values are compared with U.  If the weight of an 

edge in the second objective is larger than U, then its weight in the first objective is 
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set to M.  This comparison and updating is done in O(|E|).  By Euler’s formula, 

3 6E n≤ −  for 3E ≥  for planar graphs (see Bondy and Murthy, 1979).  Since Halin 

graphs are planar graphs, ( ) ( )O E O n= .  Step 1 uses CNP and PPK, both 

algorithms run in O(n).  Step 2 runs in O(1).  Overall complexity of Max_Algorithm 

is O(n). 

 

In Step 1, we use CNP and PPK simultaneously.  In the original PPK algorithm, best 

selections are made using the BTSP-type objective.  We force the PPK algorithm to 

use the selections that are best for the CNP algorithm.  The selections of the PPK 

algorithm are important only if there is a tie in the CNP algorithm’s selections 

 

Theorem 4.6.  Given a Halin graph and an upper bound U on the 1-max objective, a 

nondominated point to 1-Σ 1-max TSP can be found in O(n). 

 

Proof: The Max_Algorithm finds a nondominated point in O(n). □ 

 

Finding all nondominated points 

In Theorem 4.3, we proved that the number of tours grows exponentially.  Hence the 

objective function value for 1-Σ may take an exponential number of distinct values.  

However, the number of distinct values for 1-max objective is bounded by the 

number of distinct edge weights and that is bounded by the number of edges.  The 

number of edges is bounded by O(n).  Therefore, the number of nondominated points 

for 1-Σ 1-max TSP is bounded by O(n) due to the 1-max objective.   

 

The complexity of finding a nondominated point is O(n) and the number of 

nondominated points is bounded by O(n).  All nondominated points can be 

determined in O(n2) using the Max_Algorithm by systematically varying the upper 

bound U.  We develop the Iterative_Algorithm to find all nondominated points. 
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Iterative_Algorithm 

Input: ( )1w e and ( )2w e for all e∈E. 

Output: Set of nondominated points 

Steps of the algorithm 

Step 0.a.  Sort ( )2w e  values in nonincreasing order and let 

 [ ] [ ] [ ]{ }1 2, ,..., rψ ψ ψΨ =  be the set of distinct edge weights, such 

that [ ] [ ]1i iψ ψ +> , 

  Set S=∅. 

Step 0.b.  Call Max_Algorithm on ( )1w e  with U= [ ]1ψ  and let the optimal tour 

 be CNPϕ . 

 ( ) ( )( )1 2 ,CNP CNP CNPf f fϕ ϕ= . 

Step 0.c.  Call PPK on ( )2w e  and let the optimal tour be ϕ′ . 

 Call Max_Algorithm on ( )1w e  with U= ( )2f ϕ′  and let the optimal 

tour be PPKϕ . 

 ( ) ( )( )1 2 ,PPK PPK PPKf f fϕ ϕ= , 

 If CNP PPKf f= then set { }PPKS S ϕ= ∪ and stop since there is a 

single optimal solution, else go Step 0.d. 

Step 0.d.  Set c=0, cϕ = CNPϕ  and ( ) ( )2 2
c CNPf fϕ ϕ= . 

Step 1.   Let ( ){ }[ ]
2

1,..,

i c

i r

j argmax fψ ϕ
=

= < , set [ ]jU ψ= , 

 c= c+1, 

 Call Max_Algorithm, let the solution be cϕ ,  

 if ( ) ( )1 1
c PPKf fϕ ϕ≤  then set { }cS S ϕ= ∪ and go to Step 1 else go 

 to Step 2. 

Step 2.  The set of nondominated points is S. 
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In each iteration of the above algorithm, Max_Algorithm is called.  In the worst case, 

all edges have distinct weights and Iterative_Algorithm calls Max_Algorithm for 

each edge.  Since the number of distinct edge weights is bounded by O(n), the 

complexity of Iterative_Algorithm is O(n2). 

 

Theorem 4.7.  Given a Halin Graph, all nondominated points to 1-Σ 1-max TSP can 

be found in O(n2) . 

 

Proof: The Iterative_Algorithm finds all nondominated points in O(n2). □ 

 

4.3.3 2-max TSP 

 

Finding a nondominated point  

Finding a nondominated point of 2-max TSP is easier than that of 1-Σ 1-max TSP.  

We use PPK twice and find a nondominated point for a given upper bound on one of 

the objective values.  We refer to this algorithm as 2Max_Algorithm.  This algorithm 

finds a nondominated point to 2-max TSP in O(n). 

 

2Max_Algorithm  

Input: ( )1w e and ( )2w e for all e∈E, and U. 

Output: A nondominated point ( ) ( ) ( )( )1 2 ,f f fϕ ϕ ϕ=  with minimum 1 ( )f ϕ  

where 2 ( )f Uϕ ≤  

Steps of the algorithm 

Step 0.  Using a sufficiently large number M, update the edge weights as 

follows: 

( ) ( ) ( )
( )

1 2

1

2

 if 
=        

      if 

w e w e U
w e e E

M w e U

≤′ ∈
>

 

Step 1.  Run PPK with ( )1w e′ weight set.  Let the optimal tour be  ϕ∗ and the 

objective function value be ( )1 f ϕ ∗  and ( )2 f ϕ∗ . 
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Step 2.  If ( )1  f Mϕ ∗ ≥  then stop, there is no solution satisfying the given 

upper bound.  Else go to Step 3. 

Step 3.  Using a sufficiently large number M, update the edge weights as 

follows: 

( )
( ) ( ) ( )

( ) ( )
2 1 1

2

1 1

 if  
=        

      if  

w e w e f
w e e E

M w e f

ϕ

ϕ

∗

∗

 ≤′ ∈
>

 

Step 4.  Run PPK with ( )2w e′  weight set.  Let the optimal tour be ϕ∗∗ and the 

objective function values be( )1 f ϕ ∗∗  and ( )2 f ϕ∗∗ .   

Step 5.  Report the point ( )f ϕ∗∗  as the nondominated point satisfying the 

given upper bound. 

 

Finding all nondominated points  

This problem is similar to 1-Σ 1-max TSP.  Iterative_Algorithm can be modified by 

replacing Max_Algorithm with PPK in Step 0.c and replacing Max_Algorithm with 

2Max_Algorithm in Step 0.b and Step 1.  We will refer to this algorithm as 

2Iterative_Algorithm.  The complexity of identifying all nondominated points of 

2-max TSP is O(n2) by using 2Iterative_Algorithm.   

 

Up to now, we discussed three biobjective problems.  In the following subsections, 

we will generalize the results to multiobjective problems.   

 

4.3.4 p1-Σ p2-max TSP 

 

There are p1 TSP-type and p2 BTSP-type objectives in this problem.  For p1=2, we 

know that finding a nondominated point is NP-Hard and finding all nondominated 

points is intractable.  Since increasing p1 does not simplify the problems, the same 

complexity results are valid for 1 2p ≥ .  We next consider the remaining two cases: 

1 1p =  and 1 0p = . 

 

 



 

49 

4.3.5 1-Σ p-max TSP 

 

In Theorems 4.6 and 4.7, we showed that a nondominated point can be found in O(n) 

for 1-Σ 1-max TSP and all nondominated points for this problem can be found in 

O(n2).  In this subsection, we generalize these results for 1-Σ p-max TSP.   

 

Finding a nondominated point 

For this problem, we consider that an upper bound is introduced for each BTSP-type 

objective, and the TSP-type objective is minimized subject to these p upper bounds.  

A nondominated point can be obtained with a modification in Step 0 of 

Max_Algorithm.  An updating is done for the distance matrix corresponding to the 

BTSP-type objective in the original Max_Algorithm.  This updating operation should 

be done for all p BTSP-type objectives.  The complexity of the updating is O(pn).  

Max_Algorithm can be used to find a nondominated in O(n).  The overall complexity 

of finding a nondominated point is then O(pn). 

 

Finding all nondominated points 

Each BTSP-type objective function can take O(n) distinct values.  In the worst case, 

there are O(np) distinct combinations of objective function values for p BTSP-type 

objectives.  On the other hand, the TSP-type objective function can have ( )O 2E  

distinct values.  So we conclude that the number of the nondominated points is 

bounded by O(np).  For each combination of upper bounds of p BTSP-type objectives, 

the modified Max_Algorithm can be used.  The set of nondominated points can be 

identified in O(pnp+1).   

 

4.3.6 p-max TSP 

 

We showed that, for 2-max TSP, a nondominated point can be found in O(n) using 

2Max_Algorithm and all nondominated points can be identified in O(n2) using 

2Iterative_Algorithm.  In this subsection, we generalize these results for p-max TSP.   
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Finding a nondominated point 

For this problem, we consider that an upper bound is introduced for all BTSP-type 

objectives but the last one.  The last BTSP-type objective is minimized subject to 

these p-1 upper bounds.  A nondominated point can be obtained by the 

2Max_Algorithm after two modifications on this algorithm.  An updating is required 

for the distance matrix corresponding to the BTSP-type objective in Step 0 of the 

2Max_Algorithm.  This updating operation should be done for all p BTSP-type 

objectives. This can be done in O(pn).  PPK is called in the first step of the algorithm.  

Steps 3 and 4 must be executed for each of the p-1 objectives in order to ensure 

finding a nondominated point.  After these modifications, the complexity of the 

2Max_Algorithm is still O(pn).   

 

Finding all nondominated points 

Each BTSP-type objective function can take O(n) distinct values.  Since we are 

minimizing one of the objectives, in the worst case, the remaining p-1 BTSP-type 

objectives may have O(np-1) distinct combinations of objective function values.  

Hence, the number of nondominated points is bounded by O(np-1) and all 

nondominated points can be identified in O(pnp) in the worst case. 

 

4.4 Discussions 

 

In this chapter, we considered polynomially solvable special cases of two problems, 

TSP and BTSP.  Although both problems are NP-Hard in general, there exist 

polynomial algorithms when these problems are defined on Halin graphs.  We 

addressed the multiobjective versions of these problems with various combinations 

of objective functions.   

 

We showed that, when there are two or more TSP-type objective functions in the 

problem then finding a nondominated point is NP-Hard and there are exponentially 

many nondominated points.  However, if there is at most one TSP-type objective 

function in the problem and all remaining objectives are BTSP-type, then the 
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problem is polynomially solvable.  We developed algorithms to find nondominated 

points.   

 

To summarize, we showed the complexity results for all possible combinations of 

TSP and BTSP-type objectives for multiobjective problems on Halin graphs and we 

developed polynomial time algorithms where possible. 
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CHAPTER 5 

 

 

AN EXACT ALGORITHM TO FIND ALL EXTREME 

SUPPORTED NONDOMINATED POINTS IN 

MULTIOBJECTIVE PROBLEMS 

 

 

 

It is possible to find all extreme supported nondominated points of a biobjective 

integer programming problem in the objective space using the algorithm of Cohon 

(1978) and Aneja and Nair (1979).  However, this algorithm is not directly applicable 

to problems with three or more objectives.  In this chapter, we develop an exact 

algorithm to find all extreme supported nondominated points of a multiobjective 

problem.  We propose several properties to improve the algorithm.  We test our 

algorithm on the Assignment, the Knapsack and the Traveling Salesperson Problems 

with three and four objectives. 

 

5.1 Introduction 

 

Consider the following single objective integer program, ( )MOIP λ , which has a 

weighted sum objective function: 

( )
1

 C

 . .     

p

q q
q

min x f x

s t x X

λ λ
=

=

∈

∑  
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where pλ >∈ℝ  and { }: 0, 1, ,p p
q q pλ λ> = ∈ > =ℝ ℝ … .  The optimal solution of 

( )MOIP λ  is an extreme supported nondominated point of MOIP for any pλ >∈ℝ .  

As we defined in Chapter 2, YE is the set of all extreme supported nondominated 

points. 

 

For a multiobjective linear program, MOLP, all efficient solutions are supported 

(Steuer, 1986).  There are algorithms to generate all efficient solutions of MOLP, see 

for example the ADBASE algorithm developed by Steuer (1989).  Benson and Sun 

(2002) proposed an algorithm to find all nondominated points in the objective space 

for MOLP, instead of studying in the decision space.   

  

However, research about this issue on MOIPs is very limited compared to that of 

MOLP.  For biobjective integer problems, Cohon (1978) and Aneja and Nair (1979) 

developed similar algorithms to find all extreme supported nondominated points.  

They proposed a systematic way of varying the weights of the objective functions.  

However, to the best of our knowledge, only Przybylski, Gandibleux and Ehrgott 

(2007) propose an algorithm to find all extreme supported nondominated points of 

MOIP with three or more objective functions.   

 

In this chapter, our aim is to develop an algorithm to find all extreme supported 

nondominated points of MOIPs.  In Section 2, we review the algorithms of Cohon 

(1978) and Aneja and Nair (1979).  We discuss the study and the algorithm of 

Przybylski, Gandibleux and Ehrgott (2007) in Section 3.  In Section 4, we present 

additional definitions and our algorithm.  In Section 5, we discuss possible 

improvements.  In Section 6, we report the computational results on the test problems.  

In the last section, we conclude the chapter. 

 

5.2 Algorithms for Biobjective Integer Problems 

 

In this section, we review the algorithm developed by Cohon (1978) and Aneja and 

Nair (1979) for the biobjective integer problems.  Cohon (1978) calls the algorithm 
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as Noninferior Set Estimation (NISE).  We will call this algorithm as the CAN 

algorithm due to the initials of the authors.   

 

CAN keeps a list L. The elements of L are extreme supported nondominated point 

pairs. In each iteration of CAN, a pair of extreme supported nondominated points, say 

( ),k jy y , is selected from a list L.  Consider points yk and yj in Figure 5.1a.  The 

normal vector λ  of the line passing through these points is calculated such 

that k jy yλ λ= .  ( )MOIP λ  is solved with this λ .  Let y∗  be the point corresponding 

to the optimal solution of ( )MOIP λ .  If ky yλ λ∗ < , as in Figure 5.1b, then Ey Y∗ ∈ .  

New point y∗  is recorded and two new pairs ( ),ky y∗  and ( ), jy y∗ are added to L.  If 

ky yλ λ∗ =  then CAN concludes that no more extreme supported nondominated 

points can be obtained from this pair.  At the end of the iteration, the pair ( ),k jy y  is 

removed from L.  CAN stops when the list L is empty. 

 

To initialize CAN, the pair ( )1 2,y y  is generated such that { }
k

E

q k
q q

y Y
y min y

∈
= q=1,2.  

These points can be obtained by solving ( )MOIP λ  with ( )1 ,λ ε ε= −  and 

( ),1λ ε ε= −  where ε  is a very small positive problem instance specific constant to 

avoid dominated points.  Aneja and Nair (1979) showed that the algorithm stops 

exactly after 2 3EY −  iterations if 2EY > . 
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(a)Stage (yj,yk) 
 

(b) Stages (yj,y*) and (y*,yk) 

Figure 5.1 An example iteration of CAN  

 

 

 

In biobjective problems, if the nondominated points are sorted in increasing order of 

their first objective function values, then they are naturally sorted in decreasing order 

of their second objective function values.  This is a special property of biobjective 

problems and is not valid for problems with three or more objectives.  By this 

property, for any pair ( ),k jy y , both weights are strictly positive, 2λ >∈ℝ .   

  

Solanki, Appino and Cohon (1993) and Przybylski, Gandibleux and Ehrgott (2007) 

point out two difficulties in generalizing CAN to problems with 3p ≥  objectives.  

The first difficulty is the determination of initial points.  Since p points are needed to 

define a hyper plane in p
ℝ , we have to select p points minimizing each objective 

function.  If 2p = then, for each objective q, there exists only one point q Ey Y∈  such 

that { }
k

E

q k
q q

y Y
y min y

∈
= .  Due to the special property of the biobjective problems, 

{ }
k

E

r k
q q

y Y
y max y

∈
= for ≠r q .  However, if 3p ≥ , then for each objective q, there may be 

more than one distinct point q Ey Y∈  such that { }
k

E

q k
q q

y Y
y min y

∈
= .  Thus, the selection of 

the initial problems may be problematic.  The second difficulty is about the normal 

vector of the hyperplane passing through p points.  In biobjective problems, the 

normal vector always has positive components.  However for 3p ≥ , it may have 
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some negative components.  Using such a λ  vector in ( )MOIP λ  may result in 

dominated points. 

 

We will use an example developed by Tenfelde-Podehl (2003) throughout this 

chapter to explain the algorithms and their details.  Consider an assignment problem 

with p objectives:  

{ }

1 2

1 1 1 1 1 1

1

1

" " C , , ,

 . .     1    1, ,

          1    1, ,

          0,1    1, , ,   1, ,

n n n n n n
p

ij ij ij ij ij ij
i j i j i j

n

ij
i

n

ij
j

ij

min x c x c x c x

s t x j n

x i n

x i n j n

= = = = = =

=

=

 
=  
 

= =

= =

∈ = =

∑∑ ∑∑ ∑∑

∑

∑

…

…

…

… …

 

 

This problem has three objective functions and the following cost matrices: 

 

1

3 6 4 5

2 3 5 4

3 5 4 2

4 5 3 6

 
 
 =
 
 
 

C , 2

2 3 5 4

5 3 4 3

5 2 6 4

4 5 2 5

 
 
 =
 
 
 

C  and 3

4 2 4 2

4 2 4 6

4 2 6 3

2 4 5 3

 
 
 =
 
 
 

C . 

 

There are four extreme supported nondominated points in this example problem: 

( )1 11,11,14y = , ( )2 15,9,17y = , ( )3 19,14,10y =  and ( )4 13,16,11y = .  The first 

three points are the unique optimal points of the corresponding single objective 

problems.  Przybylski, Gandibleux and Ehrgott (2007) used this example and showed 

that a direct implementation of CAN is not able to find these four points.  By solving 

single objective problems, the first three points are found.  However, the plane 

passing through these three points has a negative element in its normal, and y4 cannot 

be found.   
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5.3 The Algorithm of Przybylski, Gandibleux and Ehrgott (2007) 

 

In this section, we discuss the algorithm proposed by Przybylski, Gandibleux and 

Ehrgott (2007) to find EY  of a MOIP with 3p ≥ .  We call this algorithm the PGE 

algorithm.  They develop some properties for the weight space of a MOIP and use 

these properties in the PGE algorithm.  Some of these properties will also be useful 

in the proofs related to our algorithm. 

 

In the PGE algorithm, they use the weight space decomposition approach of Benson 

and Sun (2000).  Benson and Sun (2002) developed an algorithm to find EY  of a 

MOLP.  However their algorithm is not applicable to MOIP since it uses some 

properties of linear programming. 

 

The weight space decomposition approach uses a normalized weight space 0W  and 

decomposes it into subsets ( )0W y  for all Ey Y∈ .  Each subset ( )0W y  corresponds 

to the weight set where y is the point corresponding to the optimal solution of the 

( )MOIP λ . 

0

1

, 1
p

p
i

i

W λ λ>
=

 
= ∈ = 
 

∑ℝ  and ( ) { }0 0 : : EW y W y y y Yλ λ λ ′ ′= ∈ ≤ ∈   

where Ey Y∈ . 

Benson and Sun (2000) showed that ( )0 0

Ey Y
W W y

∈
= ∪ . 

 

Let us define ConvY as the convex hull of { }: ,pY y y Cx x X= ∈ = ∈ℤ .  Przybylski, 

Gandibleux and Ehrgott (2007) developed the following properties for a MOIP with 

p objectives.  Note that the dimension of 0W  is p-1. 

 

Proposition 5.1. (Przybylski, Gandibleux and Ehrgott, 2007). ( )0W y  is a convex 

polytope. 
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Proposition 5.2. (Przybylski, Gandibleux and Ehrgott, 2007). The nondominated 

point y is an extreme nondominated point of ConvY if and only if ( )0W y has 

dimension p-1. 

Definition 5.1. (Przybylski, Gandibleux and Ehrgott, 2007). Two extreme 

nondominated points y1 and y2 are adjacent if and only if ( ) ( )0 1 0 2W y W y∩  is a 

polytope of dimension p-2. 

 

The weight space decomposition cannot be used during the search of EY , since EY  is 

not completely known.  Let us define EY′  as the set of known solutions at some 

iteration of the algorithm.  Przybylski, Gandibleux and Ehrgott (2007) proposed to 

decompose the weight space properly by using EY′  as follows:  

( ) { }0 0 : :p EW y W y y y Yλ λ λ ′ ′ ′= ∈ ≤ ∈  where Ey Y′∈ . 

 

The PGE algorithm keeps the information on ( )0
pW y  for all Ey Y′∈ .  For each 

solution Ey Y′∈ , PGE searches for new solutions at the boundaries of ( )0
pW y  and 

updates the proper decomposition information as new solutions are added to EY′ .  For 

example, if p=3 , 1 2, Ey y Y′∈  and they are adjacent, then ( ) ( )0 1 0 2
p pW y W y∩ is a line 

segment.  PGE searches for new solutions on this line segment by solving 

biobjective problems.  Hence PGE utilizes CAN for this purpose.  Originally, CAN 

works in the two dimensional objective space.  However PGE uses CAN in the two 

dimensional weight space of a MOIP with three objectives.  Similarly, multiobjective 

integer problems with four or more objectives are also recursively reduced to 

biobjective problems in their weight spaces and solved using CAN. 

 

5.4 An Exact Algorithm 

 

In this section, we develop an exact algorithm to find all extreme supported 

nondominated points of a multiobjective integer problem with three or more 

objectives.  We first provide the additional definitions and notation.  We then 
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introduce a set of dummy points and their effects in the weight and objective spaces.  

Finally, we introduce the algorithm.   

 

5.4.1 Additional Definitions 

 

We first present the definitions of valid inequality, face and facet from Nemhauser 

and Wolsey (1998).  Using these, we define a nondominated face and a 

nondominated facet. 

 

Definition 5.2. (Nemhauser and Wolsey, 1988). The inequality 0yλ λ≤  (or ( )0,λ λ ) 

is called a valid inequality for ConvY if it is satisfied by all points in ConvY. 

Definition 5.3. (Nemhauser and Wolsey, 1988). If ( )0,λ λ is a valid inequality for 

ConvY, { }0:F y ConvY yλ λ= ∈ = , F is called a face of ConvY. 

Definition 5.4. (Nemhauser and Wolsey, 1988). A face F of ConvY is a facet of 

ConvY if ( ) ( ) 1dim F dim ConvY= − . 

Definition 5.5. A nondominated face is a face of ConvY with pλ >∈ℝ . 

Definition 5.6. A nondominated facet is a facet of ConvY with pλ >∈ℝ . 

 

Let us define q-dimensional nondominated faces of ConvY as SF(q).  Then the 

nondominated frontier NDF is defined as: 

( )
1

0

p

q

NDF SF q
−

=

=∪ . 

Using only the nondominated facets may not be enough to define the nondominated 

frontier, i.e., there may be cases where ( )1≠ −NDF SF p .  For example, the 

nondominated frontier of the linear relaxation of the example problem is: 

( ){ }1 2

3
1 1 2 3 3 4

1

: 1 ,0 1

            : , 0, 1

α α α

α α α α α
=

= = + − ≤ ≤ ∪

 = + + ≥ = 
 

∑i i

i

NDF y y y y

y y y y y
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In this problem, NDF consists of a facet and a p-2 dimensional face.  In Figure 5.2, 

the nondominated frontier (5.2a) and the weight space decomposition (5.2b) of the 

example problem is given. 

 

Let us define dummy points in the objective space as follows: 

q
qm M e= ×  for 1,...,q p= ,  

where ( )0,...,0,1,0,...,0qe =  is the qth unit vector and M is a large number.  These 

points have p-1 components equal to zero, and qth component equal to M.  We will 

derive a lower bound for M in Section 5.4.2.  These are infeasible dummy points and 

there exists no Ey Y∈  dominating these points since we assume that ( ) 0qf x >  for 

1,...,q p= .  Let us define two sets: 

 
1

p
q

M
q

Y m
=

= ∪  and EM E MY Y Y= ∪ . 

 

Introducing the dummy points has important effects on the weight and objective 

spaces.  We first mention the effects on the weight space and provide Theorems 5.1 

and 5.3. 
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(a) The Nondominated Frontier 

 

 

(b) Weight Space Decomposition 

Figure 5.2 Properties of the example problem 
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The weight space decomposition in Figure 5.2b is done for Ey Y∈ .  We propose to 

consider the dummy points in the weight space decomposition, in addition to the 

points Ey Y∈ .  Let ( )0 0

1

: 0λ λ
=

  = ∈ = 
  

∏
p

q
q

Boundary W W , i.e., at least one qλ is 

equal to zero.  The effect of introducing dummy points is given in the following 

theorem. 

 

Theorem 5.1. If ( )0 0

EMy Y
W W y

∈
= ∪ , then ( ) ( )0 0W y Boundary W = ∅∩  for all Ey Y∈ . 

 

Proof: On the boundaries of 0W , at least one of the weights, say qλ , is equal to 0.  

Since ( ) 0qf x >  and 0yλ >  for all Ey Y∈  and 0Wλ ∈ , we have 0qmλ = .  

Corresponding boundary is in ( )0 qW m . □ 

 

We first mention the effect of the above theorem on the weight space on a 

biobjective problem and then generalize it.  If there are two objectives, then 0W  and 

weight sets ( )0W y  are line segments.  Only two points, say1y  and 2y , have 

common boundaries with 0W  and these points are adjacent to only one other point.  

Every point Ey Y∈ , except 1y  and 2y , are adjacent to exactly two other points in EY .  

These adjacent points determine the boundaries of the weight set decomposition.  By 

introducing points 1m  and 2m , we crop some portions of ( )0 1W y and ( )0 2W y  such 

that they do not have common boundaries with 0W .  So every point in EY  is adjacent 

to exactly two points in EMY .  For a problem with p objectives, there may be a point 

in EY  such that it is adjacent to only one other point in EY .  However, the upper 

bound on the number of points adjacent to Ey Y∈  is 1EY − , not p.   

 

Let us define the sets A(y) and NA(y) for EMy Y∈ as: 

( ) { }:  and  are adjacent′ ′= ∈ EMA y y Y y y . 
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( ) { }:  and  are not adjacent′ ′= ∈ EMNA y y Y y y . 

 

By definition, ( ) ( ) { }∪ ∪ = EMA y NA y y Y  and ( ) ( )A y NA y∩ = ∅  for any EMy Y∈ .  

In Theorem 5.3, we prove that every point Ey Y∈  is adjacent to at least p points in 

EMY . 

 

Theorem 5.2. (Kalai, 1993). Every q-dimensional polytope has at least q+1 facets. 

 

Theorem 5.3. Every point Ey Y∈  is adjacent to at least p points in EMY . 

 

Proof: For a given Ey Y∈ , ( )0W y is a convex polytope with dimension p-1 (by 

Propositions 5.1 and 5.2).  Moreover, ( ) ( )0 0W y W y′∩  is a polytope with dimension 

p-2 for all ( )y A y′∈  (by Definition 5.1).  In order to define a polytope of dimension 

p-1, at least p facets (faces with dimension p-2) are required (by Theorem 5.2).  

Hence y must be adjacent to at least p points.  Every point Ey Y∈  is adjacent to at 

least p points in EMY . □ 

 

Note that, all points adjacent to Ey Y∈  are not necessarily in EY  and some of them 

may be in MY . 

 
We observe that, if = ∅Y  then = ∅EY  because ⊆EY Y .  It is obvious that, if ≠ ∅Y  

then ≠ ∅EY . 

 

Corollary 5.1. If EY ≠ ∅  then every point EMy Y∈  is adjacent to at least p points in 

EMY .   

 

Proof: By Theorem 5.3, we know this corollary holds for every Ey Y∈ .  If EY = ∅ , 

then every dummy point My Y∈  is adjacent to the remaining p-1 dummy points.  If 
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1EY = , then every dummy point is also adjacent to this point due to Theorem 5.3, i.e.  

this point  must be adjacent to at least p points.  Adding more points to EY  cannot 

decrease ( )A y  for any EMy Y∈ .  Hence, given that EY ≠ ∅ , every point EMy Y∈  is 

adjacent to at least p points in EMY . □ 

 

Introducing dummy points also affects the structure of the objective space.  Let us 

define ConvYEM as the convex hull of EMY , and nondominated frontier of ConvYEM as 

NDFEM.  We first prove that the dummy points are extreme supported nondominated 

points.  We next show that we can define NDFEM only with the nondominated facets, 

SF(p) of ConvYEM. 

 

Theorem 5.4. The dummy point q
Mm Y∈  is an extreme supported nondominated 

point ConvYEM. 

 

Proof: The dummy point mq is nondominated since no Ey Y∈  can dominate mq due 

to the assumption ( ) 0qf x > and no k
Mm Y∈ , k q≠ dominates mq.  This point is also 

an extreme point since its qth objective function value M is the largest value in 

objective q.   □ 

 

Theorem 5.5. ( )=EMNDF SF p . 

 

Proof: Assume that there exists a face ( )qF SF q∈ and there exists no ( )pF SF p∈  

such that q pF F⊆ .  This is possible if there exists a qy F∈ such that ( ) 1A y q= − .  

Since ( )A y p≥  for EMy Y∈  (by Theorem 5.3 and Corollary 5.3.1) it is not possible 

to have such a point EMy Y∈ .  Hence nondominated frontier of ConvYEM can be 

defined by the set of nondominated facets. □ 

 

In Figure 5.3, we present the effect of dummy points in the objective space.  ConvY 

(Figure 5.3a) is defined with a face and a facet.  The face passes through points y1 
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and y2.  The facet passes through the points y1, y3 and y4.  ConvYEM can be defined by 

using only facets.  The blue facet is the same facet used in ConvY.  The red facets are 

defined by two points in YE and one point in YEM.  The grey facets are defined by one 

point in YE and two points in YEM.  All 0-dimensional and 1-dimensional faces of 

ConvY are transformed to 2-dimensional facets by the use of the dummy points.   

 

 

 

 

(a) NDF (b) NDFEM 

Figure 5.3 The effect of the dummy points in the objective space  

 

 

 

5.4.2 The Algorithm 

 

The main idea of the exact algorithm is very similar to that of CAN.  We start with a 

set of initial points.  At each iteration of the algorithm, we try to find new points in 

YE or identify new facets of ConvYEM.  The algorithm stops when no more points or 

facets can be identified.  We call our exact algorithm as ExA. 

 

The CAN algorithm uses pairs of extreme supported nondominated points and 

calculates the normal vector of the line passing through these points.  Using two 

points is sufficient for the biobjective problems since two points can define a facet of 

the nondominated frontier.  Similarly, we define a set { }1 2, ,..., pR r r r= containing p 
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points where q
E Mr Y Y′∈ ∪  for 1, ,q p= … .  We refer to these R sets as stages.  ExA 

keeps track of three different lists of the stages.  These lists are: 

L : list of stages to be searched, 

V : list of stages already searched (visited), and 

F : list of facet defining stages. 

Lists L, V and F are sets and their elements are stages, which are also sets with 

exactly p elements.  F is a subset of V.   

Steps of ExA is given in Figure 5.4.  At the first step of the algorithm, we initialize 

the set EY′  and lists F, L and V.  Variable k corresponds to the cardinality of EY′  and it 

is initially set to one.  The important feature of this step is the initialization of L with 

the dummy points.   

 

During the search of the algorithm, a stage R is selected from L and it is added to V at 

the second step.  The normal of the hyperplane, λ , passing through the points of 

stage R, is calculated at the third step.  If pλ >∈ℝ , then ( )MOIP λ  is solved and 

optimal point r ∗  is obtained at Step 4.1.  If r R∗ ∈  then we conclude that R is a facet 

defining stage and it is added to F at Step 4.2.  If r R∗ ∉  then, p new stages are 

generated by replacing r ∗  with each element of R.  A newly generated stage is added 

to list L, if it is not already a member of lists L or V.  Otherwise, it is discarded in 

order to prevent cycling between a subset of stages.  If Er Y∗ ′∉ , then it is a new point 

and is added to EY′  as the kth member.  If a stage R has a negative component in its 

normal vector, then that stage is discarded at Step 5.   

 

The stage R is removed from list L at Step 6, since a search is performed with this 

stage.  At Step 7, ExA reports EY′  and stops if there are no more stages to be visited, 

otherwise, the algorithm moves to Step 2 for a new search.   
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ExA  

Initialize 1. Set EY′ = ∅ , 1k = , V = ∅ , F = ∅ , ( ){ }1 2, ,..., pL m m m= . 

Search 

2. Select an element { }1 2, ,..., pR r r r L= ∈  and set { }V V R= ∪ . 

3. Calculate λ  such that 1 2 ... p
λr λr λr= = = . 

4. If pλ >∈ℝ   

4.1. Solve problem ( )MOIP λ  and let the optimal point be 

( )1 2, ,..., pr r r r∗ ∗ ∗ ∗= . 

4.2. If r R∗ ∈  then set { }F F R= ∪ . 

4.3. If r R∗ ∉  then 

4.3.1. { } { } { }{ }1 1 1 1,..., , , ,..., , ,..., ,..., ,p p p pL L r r r r r r r r r− ∗ ∗ ∗ −= ∪  

and ( )L L L V= − ∩ . 

4.3.2. If Er Y∗ ′∉  then ky r∗= , { }k
E EY Y y′ ′= ∪ and k=k+1.   

5. If pλ >∉ℝ  then go to Step 6. 

Control 

the loop 

6. { }L L R= − .   

7. If L = ∅  then report EY′  and stop, otherwise go to Step 2. 

Figure 5.4 Steps of ExA  
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In the following theorems, we prove that ExA finds all extreme supported 

nondominated points in finite iterations and does not find any other points.   

 

Theorem 5.6. ExA ends in a finite number of iterations. 

 

Proof: Whenever a stage R is selected, it is recorded to V in Step 2.  If a generated 

stage (at Step 4.3.1) is already in V, then it is immediately removed from L.  Hence a 

stage can be visited at most once during the algorithm.  Number of stages visited is 

V  and it is bounded by: 

( )
!

! !
E ME M

E M

Y YY Y
V

p p Y Y p

∪ ∪
≤ =  ∪ − 

.   

Hence ExA ends in a finite number of iteration. □ 

 

Note that although there is a finite number of iterations, EY  may be exponential in 

the problem size and ExA may require an exponential number of iterations.  

 

Theorem 5.7. Er Y∗ ∈ . 

 

Proof: r ∗  is obtained by ( )MOIP λ  using pλ >∈ℝ . □ 

 

Corollary 5.2. E EY Y′ ⊆ . 

 

Proof: Follows directly by Theorem 5.7. □ 

 

Let { }1 2, ,..., ,p
RC Conv r r r r∗=  denote the convex hull defined by 1 2, ,..., pr r r and r ∗  

where { }1 2, , , pR r r r= …  and r ∗  solves ( )MOIP λ  for pλ >∈ℝ  such that 

1 2 ... p
λr λr λr= = = .   

 

Lemma 5.1. There exists no extreme supported nondominated point in the interior of 

RC , int RC .  (In other words, there is no r ′ such that intEM Rr Y C′∈ ∩ ) 
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Proof: Assume that int Rr C′∈ .  Then by Minkowski’s Theorem 

1

p
k k

k

r r rα α∗ ∗

=

′ = +∑  for some ( )1 1,..., ,p pa a aα ∗ +
≥= ∈ℝ  such that 

1

1
p

k

k

α α
∗

=
= −∑ .   

Since r ′ can be expressed as a convex combination of other points in EMY  

EMr Y′∉  and intEM RY C∩ = ∅  □ 

 

Theorem 5.8. Each R F∈  defines a nondominated facet of ConvYEM.   

 

Proof: A stage R is added to F if pλ >∈ℝ  and r R∗ ∈ .  There are p extreme points in 

R and they are affinely independent since pλ >∈ℝ .  Hence the polyhedron defined by 

R has dimension p-1 and is a nondominated facet of ConvYEM. □ 

 

In the next theorem, we prove that ExA finds all extreme supported nondominated 

points.  We need the following two definitions in the proof of the theorem. 

 

{ }( ) ( ) ( )1 2
1 2 0

1

1 2
0

1 1 1

, ,..., , ,...,  

                                                  ...

p
p R R

p q q
q

p p p
R R R R p

q q q q q q
q q q

B r r r B R y y y y y

where r r r

λ λ

λ λ λ λ

≥ ≥

=

= = =

= = = ≥



= = = = 



∑

∑ ∑ ∑

 

 

We define ( )B R≥  for R F∈ .  The hypervolume defined by ( )B R≥  is the set of 

points dominated by any linear combination of the points in R.   

 

{ }( ) ( ) ( )1 2
1 2

1

1

, ,..., , ,...,   

                                                  1, 0 

p
p k k

p q q
k

p
k k

k

B r r r B R y y y y y r q

where k

α

α α

≤ ≤

=

=

= = = ≤ ∀



= ≥ ∀ 



∑

∑
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We define ( )B R≤  for R F L∈ ∪ .  The hypervolume defined by ( )B R≤  is the set of 

points dominating all convex combinations of the points in R. 

 

Theorem 5.9. At the termination of ExA, E EY Y′ = . 

 

Proof: By induction we will prove that if k
Ey Y∈  then the following term holds at 

each iteration of the algorithm: 

( )k

R F L

y B R≤

∈ ∪

∈ ∪ . 

 

At the first iteration ( ){ }1 2, ,..., pF L m m m∪ = , and the term holds since all feasible 

points lie in the defined hypervolume. 

 

Assume that at some iteration of the algorithm the term holds.  Then at that iteration, 

an element R L∈  is selected in Step 2 and the λ  vector corresponding to stage R is 

calculated in Step 3.   

 

If pλ >∈ℝ , then ( )MOIP λ  is solved and the optimal point r ∗  is obtained in Step 4.1.  

If r R∗ ∈  then R is added to F (in Step 4.2) and removed from L (in Step 6) 

henceF L∪ does not change.  If r R∗ ∉  then R is removed from L (in Step 6).  In 

Step 4.3.1, p new stages are generated and the unvisited ones are added to L.  By 

removing R and adding p new stages to L, some hypervolume defined by the term is 

removed, however, by Lemma 5.1, we know that there is no k
Ey Y∈  in the removed 

hypervolume. 

 

If pλ >∉ℝ  then the hyperplane defined by R cannot define a nondominated facet.  

Hence R is removed from L (in Step 6). 

 

Therefore after one iteration ( )k

R F L

y B R≤

∈ ∪

∈ ∪  still holds. 
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The algorithm stops when L = ∅ .  At the end of the algorithm F L F∪ = .  

( )k

R F

y B R≤

∈

∈∪  holds for all k
Ey Y∈ .  Also all feasible solutions are in ( )B R≥  for 

all R F∈ .  So for all extreme supported nondominated points, ( )ky B R≥∈  for all 

R F∈ .  Moreover, ( )k

R F
y B R≥

∈
∈ ∩ .  Hence for every k

Ey Y∈ , there exists a kR F∈  

such that ( ) ( )k k ky B R B R≥ ≤∈ ∩ .  This completes the proof. □ 

 

In Figure 5.5, we show the progress of ExA graphically on the example problem of 

Tenfelde-Podehl (2003).  We only show a subset of the iterations of the algorithm. In 

the first iteration, we have ( ){ }1 2 3, ,L m m m= .  In order to display enough detail, we 

use a range of [0,25] for the axes.  Due to this reason, we cannot show the dummy 

points.  Each plane in Figure 5.5a, passes through two dummy points and y1.  Grey 

planes represent stages in L. Blue planes are facets of ConvYEM.  In this example, the 

number of iterations and the number of visited stages |V| happened to be equal.  This 

is because the stages generated in Step 4.3.1 are not listed in L or V and are added to 

L.  However, this may not always happen and there will be instances where |V| is less 

than the number of iterations. 

 

ExA works using the dummy points.  We provide a lower bound for the M value used 

by the dummy points.  We should mention that this lower bound is valid when all 

objective function values are strictly positive and integer valued.  It can be adapted 

for the general case with some modifications, as discussed in Section 2.3.  We first 

consider the biobjective case to explain the main idea, and then provide a 

generalization for the multiple objectives case.   
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a) Iteration=1, |L|=3, |V|=1, |F|=0, 

{ }1 , 1E EY y Y′ ′= =  

 

b) Iteration=2, |L|=5, |V|=2, |F|=0,  

{ }1 3, , 2E EY y y Y′ ′= =  

 

c) Iteration=4, |L|=6, |V|=4, |F|=1,  

{ }1 3 2, , , 3E EY y y y Y′ ′= =  

 

d) Iteration=7, |L|=6, |V|=7, |F|=3,  

{ }1 3 2 4, , , , 4′ ′= =E EY y y y y Y  

 

e) Iteration=10, |L|=3, |V|=10, |F|=6,  

{ }1 3 2 4, , , , 4E EY y y y y Y′ ′= =  

 

f) Iteration=13, |L|=0, |V|=13, |F|=9, 

{ }1 3 2 4, , , , 4′ = = =E E EY Y y y y y Y  

Figure 5.5 Progress of ExA 
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Assume that LBq and UBq correspond to the lower and upper bounds of the qth 

objective function, q=1,2.  If UBq is found among all efficient solutions, then it will 

lead to a better (smaller) M value.  Since, this is not an easy problem, and since any 

UBq value is sufficient for our purposes, we can find UBq among all feasible 

solutions.  The M value must be large enough so that no point Ey Y∈  should be 

convex dominated by stage ( ), ′= qR m y  for any Ey Y′∈  and q=1,2.  Consider the 

slope of the line passing through points 1 2, Ey y Y∈  in Figure 5.6.  The slope is the 

steepest when ( )1
1 11,y LB LB= +  and ( )2

1 2,y LB UB= .  In this case, the line and 

the 2f  axis intersect at the point ( ) ( )( )2 1 1 20, 1UB LB LB LB + −  .  By a similar 

analysis on the 1f  axis, we conclude that M must be greater than 

( ) ( ) ( ) ( ){ }2 1 1 2 1 2 1 21 , 1max UB LB LB LB UB LB LB LB   + − + −    .  Eliminating the terms 

with negative coefficients and replacing the lower bounds LB1, LB2 with the upper 

bounds UB1, and UB2 we can define amore conservative lower bound and define M 

as: 

( )( )1 21 1M UB UB≥ + +  

 

 

 

 

Figure 5.6 Calculating a lower bound for M 
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In the following theorem, we give a general lower bound to the M value. 

 

Theorem 5.10: Given 0qy >  and qy ∈ℤ  for 1,...,q p= , for all y Y∈ , and 

q q qLB y UB≤ ≤  for all Ey Y∈ .  A lower bound for M is 

{ }( )1, ,
1

p

q q
q p

q

M UB max UB
==

 
≥  
 
∑

…
. 

 

Proof: In order to obtain steepest edges, let us define the following set of 

nondominated points: 

( )1 2 1 1, , , , 1, , ,q
q q q pz LB LB LB LB LB LB− += +… …  for q=1,…,p,  

( )1 2 1 1, , , , , , ,q
q q q pr UB UB UB LB UB UB− += … … for q=1,…,p, and 

dummy points, =q
qm Me  for 1,...,q p= , where ( )0,...,0,1,0,...,0qe =  is the qth unit 

vector. 

 

The value of M should be large enough so that rq should dominate any convex 

combination of the points 1 1 1, , , , , ,q q q pm m z m m− +
… … .   

1,

p
q i q

i q
i i q

r m zα α
= ≠

≤ +∑  where 
1

1,  0 
p

i i
i

iα α
=

= ≥ ∀∑ .   

This corresponds to the following set of inequalities. 

( )

1

   1,..., ,

1

1

α α

α

α
=

≤ + = ≠

≤ +

=∑

i i q i

q q q

p

i
i

UB M LB i p i q

LB LB  

For a given q, 
1

q
q

q

LB

LB
α ≥

+
.  Let 0α α

≠

=∑ i
i q

.  Then 0

1

1qLB
α ≤

+
.   

Summation of the p-1 constraints corresponding to i≠q. 

i i q i
i q i q i q

UB M LBα α
≠ ≠ ≠

≤ +∑ ∑ ∑  
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( )0

0 0

1α α

α α α
≠ ≠ ≠ ≠ ≠ ≠

≠
≠

− − − −
≥ = = +
∑ ∑ ∑ ∑ ∑ ∑

∑
∑

i q i i i i i
i q i q i q i q i q i q

i
i qi

i q

UB LB UB LB UB LB

M LB  

In order to set M as small as possible, use the maximum possible value of 0α .  Then 

( )1
≠ ≠ ≠

 
≥ + − + 

 
∑ ∑ ∑q i i i
i q i q i q

M LB UB LB LB  

( )1
≠

≥ + ∑q i
i q

M LB UB . 

This term is valid for each q.  In order to get a general lower bound, we need all 

upper and lower bound values.  This term has to be calculated for each q, and the 

largest value should be selected.   

 

In order to obtain an easy conservative value for M, we eliminate the terms with 

negative coefficients and replace i
i q

UB
≠
∑  with 

1

p

i
i

UB
=
∑ .  We also replace 1qLB +  with 

{ }
1, ,

q
q p
max UB
= …

since 1q qLB UB+ ≤  must hold for every q.  Hence a conservative value 

for M can be constructed as follows: 

{ }( )1, ,
1

p

q q
q p

q

M UB max UB
==

 
≥  
 
∑

…
. □ 

 

5.5 Improvements on the Exact Algorithm 

 

In this section, we discuss the opportunities to improve ExA.  During its search, ExA 

faces different situations.  There are several types of information embedded in these 

situations, and we can use them to improve the algorithm.  We first discuss the 

information embedded in nondominated facet defining stages.  We next discuss a 

property which may decrease the number of ( )MOIP λ s solved.  We finally discuss 

different queue disciplines for selecting R from L. 
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5.5.1 Nondominated Facets 

 

Let us define the following two sets for each Ey Y∈ : 

CF(y): The set of points Ey Y′∈  such that there exists a stage R F∈ (i.e.  

common facet) and,y y R′∈ . 

NF(y): The set of points Ey Y′∈  such that there exists no stage R F∈ (no 

common facet) and,y y R′∈ . 

We consider ( )y CF y′∈ if there is a nondominated facet defining stage R and both 

y and y′are elements of R.  The second set, NF(y) is the complement of CF(y).  If 

there exists no nondominated facet defining stage R such that two points y and y′  

are elements of R, then ( )y NF y′∈ .  By definition, ( ) ( )CF y NF y∩ = ∅  and 

( ) ( ) { } ECF y NF y y Y∪ ∪ = .  Also, these sets are symmetric, i.e., if ( )y CF y′∈ then 

( )y CF y′∈  and if ( )y NF y′∈  then ( )y NF y′∈ . 

 

We can obtain these two sets when we know allEy Y∈ , i.e. when we have complete 

information about the nondominated points and all nondominated facets.  However, 

during the search, we only know a subset of YE and we must use the partial 

information gathered.  Due to this reason, we define ( )CF y′  and ( )NF y′  for Ey Y′∈ .  

If both points y andy′are elements of a facet defining stage then we update both sets; 

( ) ( ) { }CF y CF y y′ ′ ′= ∪ and ( ) ( ) { }CF y CF y y′ ′ ′ ′= ∪ .  The sets ( )CF y′  and 

( )NF y′  are subsets of the original sets, ( ) ( )CF y CF y′ ⊆  and ( ) ( )NF y NF y′ ⊆ .  

The property ( ) ( )CF y NF y′ ′∩ = ∅  still holds.  However, the other property,  

( ) ( ) { } ECF y NF y y Y′ ′ ′∪ ∪ =  may not hold since we add point y to the set 

( )NF y′ ′ only if we are sure that these two points cannot be the members of a 

nondominated facet defining stage at the same time. 
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Theorem 5.11. If pλ >∉ℝ  for some R, then there exists at least a pair of points 

,t sr r R∈ , such that ( )s tr NF r′∈ . 

 

Proof: If pλ >∉ℝ , the elements of R cannot define a nondominated facet since by 

definition, the condition pλ >∈ℝ must hold for nondominated facets.  However, if 

( )′∈s tr CF r  holds for all pairs of elements of R, then R must define a nondominated 

facet.  So we conclude that there must be at least a pair of points in R which cannot 

be on the same nondominated facet.  □ 

 

Corollary 5.3. If R F∈ then ( )′∈s tr CF r  for all pairs ,t sr r R∈ . 

 

Proof: All  points in R are elements of a nondominated facet. □ 

 

If pλ >∈ℝ , then in Step 4.1 of ExA, there are five possible cases considering r ∗ , λ ∗r  

and 0λ  where 0λ λ= kr  for each ∈kr R .  These cases are: 

 Case 1: 0λ λ∗ <r  and Er Y∗ ′∉  

 Case 2: 0λ λ∗ <r  and Er Y∗ ′∈  

 Case 3: 0λ λ∗ =r  and *r R∈  

 Case 4: 0λ λ∗ =r  and \Er Y R∗ ′∈  

 Case 5: 0λ λ∗ =r  and Er Y∗ ′∉  

 

In the following theorems, we show the implications of these cases.   

 

Theorem 5.12. If pλ >∈ℝ  and 0λ λ∗ <r  then the elements of R do not define a facet.   

 

Proof: A facet is a p-1 dimensional face, and a face is a valid inequality.  However, 

condition λ λ∗ < kr r  is contradicting with the definition of a valid inequality. □ 
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Corollary 5.4. If pλ >∈ℝ  and 0λ λ∗ <r  then the elements of R do not define a 

nondominated facet.   

 

Proof: Follows directly from Theorem 5.12. □ 

 

Theorem 5.13. If pλ >∈ℝ  and 0λ λ∗ =r , then r ∗  and all points of R are on the same 

nondominated facet. 

 

Proof: If the points in R did not define a nondominated facet, then 0λ λ∗ <r  should 

hold (as proved in Theorem 5.12).  There are p for cases 1, 2 and 3 and p+1 for cases 

4 and 5 affinely independent points having the same objective function value for the 

given pλ >∈ℝ .  Hence these points define a nondominated facet and for all pairs 

{ }, ∗∈ ∪t sr r R r , ( )′∈s tr CF r  holds.  □ 

 

We can use the information gathered during the search of ExA by developing rules 

based on Theorems 5.11, 5.12, 5.13 and Corollary 5.4.  We define the following 

rules: 

 

Rule 1: After selecting stage { }1 2, ,..., pR r r r L= ∈  in Step 2, check 

′NF information for all pairs of points in R.  If there exists a pair ,t sr r R∈  

such that ( )′∈s tr NF r  then R cannot be a nondominated facet defining stage.  

Add R to V, skip Steps 3, 4 and 5 and proceed to Step 6.   

Rule 2: If pλ >∉ℝ  for some R, and there exist points ,∈u vr r R such that 

( )′∈s tr CF r  for all ( ),t sr r  pairs for , ∈t sr r R  except ( ),u vr r  pair, then set 

( )′∈u vr NF r  and ( )′∈v ur NF r . 

Rule 3: If  Case 2 is observed and there exist points ,∈u vr r R  such that 

( )′∈s tr CF r  for all ( ),t sr r  pairs for , ∈t sr r R  except ( ),u vr r  pair, then set 

( )′∈u vr NF r  and ( )′∈v ur NF r . 
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Rule 4: If  Cases 3, 4 or 5 is observed then set ( )′∈s tr CF r  for all ( ),t sr r  

pairs such that { }, ∗∈ ∪t sr r R r . 

 

5.5.2 Pre-Calculation 

 

In this section, we define a property that may decrease the number of ( )MOIP λ s 

solved during the search ExA.  We refer to this property as pre-calculation. 

 

Let us define ′EMConvY  as the convex hull of E MY Y′ ∪ .  The aim of ExA is to close the 

gap between ′EMConvY  and ConvYEM.  At the end of the algorithm, E EY Y′ = , and also 

′EMConvY  is equal to ConvYEM.  Consequently, in Step 4.1 of ExA, we solve 

( )MOIP λ and obtain r ∗ .  Using r ∗ , we define new stages and add them to L.  

However, in some cases (Cases 2, 3 and 4 in Section 5.1), r ∗  may be a known point, 

i.e.,  Er Y∗ ′∈ .  In these cases, we would obtain r ∗  by simply searching the best point 

Ey Y′∈  for the given λ  instead of solving ( )MOIP λ .  Although it depends on the 

size of the single objective problem, the performance of ( )MOIP λ  solver used, and 

the cardinality of EY′ , searching for the best point for the given weights could be 

much easier than solving a single objective integer program.  We will discuss the 

trade-offs of pre-calculation in the computational results section. 

 

Based on this observation, we modify Step 4.1 of ExA as follows:  

4.1 Pre-calculation, proceed to Step 4.1.1 

4.1.1 Let pcr ∗  be such that { }
E

pc
y Y

r min yλ λ∗

′∈
= . 

4.1.2 If pcr R∗ ∉ then pcr r∗ ∗= , go to Step 4.3, otherwise go to Step 4.1.3 

4.1.3 Solve ( )MOIP λ  and let the optimal point be ( )1 2, ,..., pr r r r∗ ∗ ∗ ∗= , go to 

Step 4.2. 
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In Step 4.1.1, we determine the best available point pcr ∗  for the given λ .  In Step 

4.1.2, we check if pcr R∗ ∈ .  If pcr R∗ ∈ then either R is a nondominated facet defining 

stage, or the optimal point of this stage is a hitherto unknown point, i.e., Er Y∗ ′∉ .  

Hence for this case, we proceed to Step 4.1.3 and solve ( )MOIP λ .  However, if 

pcr R∗ ∉ , then we set pcr r∗ ∗=  and proceed to Step 4.3 (we skip Step 4.2 since we 

already know that r R∗ ∉ ).   

 

When we apply the Pre-calculation property, point pcr ∗  found in Step 4.1.1 and the 

optimal solution of ( )MOIP λ , r ∗  may not be equal.  This corresponds to Cases 1 

and 5.  This may result with the addition of some stages to L, which would have 

never been added to L in the original ExA.  On the other hand, some stages that 

would have been visited by the original algorithm, may not be visited when using 

pre-calculation.  

 

We still know that at the end of the algorithm, we will have E EY Y′ =  because, the 

hypervolume removed from the ( )
R F L

B R≤

∈ ∪
∪  term is equal to the interior of the 

convex hull defined by { }1 2, , , ,p
pcr r r r ∗

… .  By Lemma 5.1, it is not possible to have 

an extreme supported nondominated point in this hypervolume. 

 

5.5.3 Queuing Disciplines 

 

In each iteration, ExA selects a stage R from list L in Step 2.  In this section, we 

consider L as a queue of stages and discuss three queue disciplines for selecting R.   

 

Before discussing how to select a stage R from L, let us mention how we add new 

stages to L.  In Step 4.3.1, we add new stages to the end of L as follows: 

{ } { } { }{ }1 1 1 1,..., , , ,..., , ,..., ,..., ,p p p pL L r r r r r r r r r− ∗ ∗ ∗ −= ∪  
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and we remove from L the stages that are already visited.  Thus L is updated as 

( )L L L V= − ∩ .  This removal prevents the cycling of the algorithm.   

 

The first queue discipline we use is first in first out.  In this discipline, we select the 

first element of L in Step 2 as the new R stage and remove it from L in Step 6.  The 

second queue discipline we use is last in first out.  In this discipline, we select the 

last element of L in Step 2 as the new R and remove it from L in Step 6.   

 

In Figure 5.7, we build a tree to represent the search of ExA.  It is the tree of the 

example problem of Tenfelde-Podehl (2003) with three objectives.  Each node of the 

tree corresponds to a stage R.  The number in the first line is a unique number to refer 

to a stage easily.  The second line corresponds to the set of points in R.  The third line 

contains the point corresponding to the optimal solution of ( )MOIP λ  for that stage.   

 

At the beginning of the algorithm, only stage { }1 2 3, ,m m m  is in L and the optimal 

solution of ( )MOIP λ corresponds to y1.  We then remove the first stage from L and 

add three new stages: { }1 2 3, ,y m m , { }1 1 3, ,m y m and { }1 2 1, ,m m y .  Assume that we 

next select { }1 2 3, ,R y m m= .  As seen from the figure, the optimal solution 

corresponds to y1.  We remove this stage from L and add it to F, since it is a 

nondominated facet defining stage.  Note that, the leaf nodes (those without any 

offspring) are nondominated facet defining stages in this tree.  However, in general, 

there are three different possibilities for being a leaf node.  A stage is a leaf node if it  

i) defines a nondominated facet stage, 

ii)  has negative elements in its normal vector, pλ >∉ℝ , or 

iii)  has no unvisited offspring, i.e., there are nodes in the tree corresponding 

to its offspring. 

 

Assume that, we next select { }1 1 3, ,R m y m= .  We obtain y2 and add three new stages 

to L: { }2 1 3, ,y y m , { }1 2 3, ,m y m and { }1 1 2, ,m y y .  Now there are four stages in L, 4th, 
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5th, 6th and 7th stages.  According to the first-in-first-out and the last-in-first-out 

disciplines, we should select 4th and 7th stages, respectively.  As it can be seen, the 

first in first out and the last-in-first-out disciplines correspond to breadth first and 

depth first strategies of exploring the tree, respectively.   

 

 

 

 

 

Figure 5.7 Tree structure of the example problem 

 

 

 

Consider Rules 2 and 3 discussed in Section 5.5.1.  These rules are applicable for a 

stage R if there exist points , ∈u vr r R  such that ( )′∈s tr CF r  for all ( ),t sr r  pairs for 

all , ∈s tr r R except the ( ),u vr r  pair.  If all conditions are satisfied, we set 

( )′∈u vr NF r  and ( )′∈v ur NF r .  This information would be helpful in applying 
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Rule 1 at other stages.  The earlier this type of stages are selected, the sooner 

information extracted can be used.  Obtaining more information sooner will 

generally decrease the number of iterations required. 

 

For a given stage, we can find the number of pairs ( ),t sr r  satisfying ( )′∈s tr CF r  as 

follows:  

( )
,

1

2 ∈

′∩∑
t s

t s

r r R

r CF r  . 

We halve the summation since ′CF sets are symmetric.  There are 
2

 
 
 

p
 pairs in any 

stage and Rules 2 and 3 require 1
2

 
− 

 

p
 pairs in ′CF  sets.  Hence, if we can select a 

stage having 1
2

 
− 

 

p
 pairs in ′CF  sets, then we may have a chance to apply these 

rules.  The third queue discipline searches for this type of stages.  A stage R L∈  is a 

such candidate if  

( )
,

1
1

22 t s

t s

r r R

p
r CF r

∈

 ′∩ = − 
 

∑  . 

If there is no such candidate, this discipline utilizes first in first out discipline.  

 

We solve a sample assignment problem with p=3 and n=20.  We first consider ExA 

and do not gather any common facet information.  In this case, the third queuing 

discipline is equivalent to the first one.  Hence we have two different queuing 

disciplines.  In both disciplines, ExA stops nearly after 14,800 iterations.  In Figure 

5.8, we plot the ratio E

E

Y

Y

′
 after every ten iterations for each discipline.  Breadth first 

discipline finds all points before 1910th iteration.  It tries to prove that E EY Y′ =  in the 

remaining iterations.  At 1910th iteration, the depth first discipline found only 73% of 

the points.  It finds all points before 14600th iteration.   
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Figure 5.8 Change in the E

E

Y

Y

′
 ratio for different queuing  

disciplines on a sample problem. 

 

 

 

We next solve the same sample problem with the nondominated facets property.  In 

Figure 5.9, we show the effect of using the nondominated facet information by 

applying Rules 1-4 discussed in Section 5.5.1.  We do not plot E

E

Y

Y

′
 for the third 

queuing discipline since it is very similar to the plot of breadth first discipline.  

Applying the rules does not change the pattern of the plots.  However the number of 

iterations decreases substantially.   
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Figure 5.9 Change in the E

E

Y

Y

′
 ratio for different queuing disciplines  

on a sample problem where Rules 1-4 are used. 

 

 

 

In Figure 5.10, we plot the first 100 points found by the breadth first and the depth 

first queuing disciplines.  The blue points are found by breadth first discipline.  They 

are spread over the nondominated frontier.  The red points are found by depth first 

discipline.  They are concentrated on a region of the nondominated frontier.   
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Figure 5.10 First 100 points found by BF and DF.  

 

 

 

5.6 Computational Experiments 

 

In order to test the performance of ExA and the proposed improvements to it, we 

solve three- and four-objective versions of three well-known combinatorial 

optimization problems: The Assignment Problem (AP), the Knapsack Problem (KP) 

and the Traveling Salesperson Problem (TSP). 

 

In Section 5.6.1, we give the mathematical model of each test problem, random data 

generation schemes and implementation details.  We report the results in Section 

5.6.2. 

 

5.6.1 Test Problems 

 

The Assignment Problem (AP) 

In AP, there are n jobs and n resources.  The cost of assigning the i th job to the jth 

resource is cij.  The aim is to assign each job to a different resource in such a way that 
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the total cost of the assignment is minimized.  It is known that the constraint set of 

AP is unimodular and the optimal solution of the linear relaxation is equal to the 

optimal solution of the original problem. 

 

In the multiobjective version of this problem, the cost of assigning the ith job to the jth 

resource with respect to the qth objective is q
ijc .  The mathematical model of AP with 

p objectives is:  

{ }

1 2

1 1 1 1 1 1

1

1

" " C , , ,

 . .     1    1, ,

          1    1, ,

          0,1    1, , ,   1, ,

n n n n n n
p

ij ij ij ij ij ij
i j i j i j

n

ij
i

n

ij
j

ij

min x c x c x c x

s t x j n

x i n

x i n j n

= = = = = =

=

=

 
=  
 

= =

= =

∈ = =

∑∑ ∑∑ ∑∑

∑

∑

…

…

…

… …

 

where 
1 if job  is assigned to resource 

0 otherwise                                  


= 


ij

i j
x  

 

For AP, we use a random data generation scheme very similar to the one used by 

Przybylski, Gandibleux and Ehrgott (2007).  They generate q
ijc values from a discrete 

uniform distribution in the interval [0,20], where as we use the interval [1,20]in order 

to have strictly positive objective function values.  We solve problems with 10, 20, 

30 and 40 jobs.   

 

The Knapsack Problem (KP) 

In KP, there are n items and a knapsack with a known capacity, c.  Each item j has a 

weight wj and a value vj.  The aim is to select a subset of items in such a way that the 

total weight of the selected items does not exceed c while the total value of the 

selected items is maximized.  KP is NP-Hard in the ordinary sense.  We refer to 

Martello and Toth (1990) and Kellerer, Pferschy and Pisinger (2004) for further 

details on KP.   

 



 

88 

In the multiobjective version of KP, the value of the j th item with respect to the qth 

objective function is q
jv .  The mathematical model of KP with p objectives is  

{ }

1 2

1 1 1

1

" " V , , ,

 . .     

          0,1       1, ,

= = =

=

 
=  
 

≤

∈ =

∑ ∑ ∑

∑

…

…

n n n
p

j j j j j j
j j j

n

j j
j

j

max x v x v x v x

s t w x c

x j n

 

where 
1 if item  is selected

0 otherwise              


= 


j

i
x  

 

ExA is developed for minimization problems.  In order to apply ExA directly, we 

transform KP into a minimization problem: 

{ }

1 2
1 2

1 1 1

1

" " V , , ,

 . .     

          0,1       1, ,

= = =

=

 
= − − − 
 

≤

∈ =

∑ ∑ ∑

∑

…

…

n n n
p

j j j j p j j
j j j

n

j j
j

j

min x UB v x UB v x UB v x

s t w x c

x j n

 

where 
1=

>∑
n

q
q j j

j

UB v x for all q and for all feasible solutions.   

 

We use an upper bound strictly greater than the objective function values of all 

feasible solutions in order to ensure that objective function values of the 

minimization problem is strictly greater than zero. 

 

We use the random data generation scheme used by Pamuk and Köksalan (2003).  

We generate wj and q
jv  values from a discrete uniform distribution in the interval 

[60,100].  The capacity of the knapsack is c.  The capacity is set as the nearest 

integer to 
1

1

2

n

j
j

w
=
∑  in order to generate harder instances. We solve problems with 50, 

75, 100, 150 and 200 items.  We set 
1

n
q

q j
j

UB v
=

=∑  since it is not possible to select all 

items at the same time with the capacity generation method used. 
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The Traveling Salesperson Problem (TSP) 

In TSP, there are n cities.  The distance between cities i and j is ijc .  A traveling 

salesperson is located at city 1 and has to plan a tour that visits each city exactly once.  

The salesperson’s aim is to find a tour with the minimum total distance travelled.  

TSP is NP-Hard in the strong sense.  We refer to Gutin and Punnen (2002) for further 

information on the TSP. 

 

In the multiobjective version of the problem, the cost of traveling from city i to city j 

with respect to the qth objective function is q
ijc .  The mathematical model of TSP with 

p objectives is 

 

( )

{ }

1 2

1 1 1 1 1 1

1

1

,
, \

" " C , , ,

 . .     1    1, ,

          1    1, ,

          1  for 2 2

          0,1    1,

n n n n n n
p

ij ij ij ij ij ij
i j i j i j

n

ij
i

n

ij
j

ij
i j E

i U j N U

ij

min x c x c x c x

s t x j n

x i n

x U N

x i

= = = = = =

=

=

∈
∈ ∈

 
=  
 

= =

= =

≥ ≤ ≤ −

∈ =

∑∑ ∑∑ ∑∑

∑

∑

∑

…

…

…

…, ,   1, ,n j n= …

 

where N is the set of all cities, U is a subset of N, E is the set of all city pairs and the 

decision variables are defined as 

 
1 if city  is visited just after city 

0 otherwiseij

j i
x


= 


.   

 

For TSP, we use a random data generation scheme similar to the one used in 

DIMACS STSP Implementation Challenge (see www.research.att.com/~dsj/chtsp).  

We generate the integer coordinates of the cities on a 1000 × 1000 square and 

calculate the Euclidian distances between cities.  We generate p coordinates for each 

city and calculate p distance matrices.  We solve problems with 5, 10, 15, 25 and 30 

cities.  We use Concorde, a special TSP solver developed by Applegate, Bixby, 

Chavatal and Cook to solve each TSP instance (see www.tsp.gatech.edu/concorde). 
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All objective function coefficients are integer valued in all three problems, but their 

weighted sums are not necessarily integers.  We use a general-purpose solver for AP 

and KP where having rational coefficients for these two problems does not pose any 

concerns.  However, Concorde uses only integer valued distances.  Thus, we 

multiply the weighted sum values by a large number and round them to the nearest 

integer for TSP.   

 

5.6.2 Computational Results 

 

We code ExA on Microsoft Visual C++ 6.0 and test on a computer with Pentium M 

1.6 GHz, 256 RAM and Microsoft Windows XP.  We use Callable Library of 

CPLEX 8.1 for AP and KP and Concorde for TSP.   

 

We generate 10 instances for each problem size−number of objective function 

combination.  We solve these problems with ExA.  We set the time limit as one hour 

and terminate the algorithm if it exceeds the time limit.  We start solving small sized 

problems and increase the problem size.  If ExA reaches the time limit in most of the 

instances then we stop increasing the problem size.  In this section, we call ExA 

without any additional properties as Base ExA.  We want to find as many points as 

possible during the time limit.  Accordingly, Base ExA performs breadth first search. 

 

In Table 5.1, we present the results of Base ExA for 3=p .  The first two columns 

show the problem type and problem size, respectively.  The third column shows the 

number of instances (out of 10) that Base ExA could not solve in one hour.  If Base 

ExA stops before the time limit is reached, then ′ =E EY Y , otherwise ′ ⊆E EY Y .  We 

separately report the results for instances ′ =E EY Y  and ′ ⊆E EY Y  because mathematical 

operations on their results do not make sense.  The next four columns are for the 

instances where ′ =E EY Y .  The CPU column shows the average run time of the 

algorithm in seconds.  Average numbers of extreme supported nondominated points 

are reported in the EY  column.  The third column is 
E

SC

Y
 where SC stands for the 
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number of solver calls, i.e., number of times ( )MOIP λ  is solved.  This column 

shows the average number of solver calls to find each extreme supported 

nondominated point.  The V  column shows the number of stages visited during the 

search.  The last four columns are for the instances where ′ ⊆E EY Y .  We report the 

average ′EY , 
′E

SC

Y
 and V  values when the algorithm stops at the one hour time limit.  

At the end of each iteration, the algorithm checks L and stops if L is empty.  

However, if the algorithm stops due to the time limit, then L may not be empty.  In 

the last column we report the average of 
V

V L+
, i.e., the ratio of the number of 

visited stages to the number of opened and visited stages.   

 

In the one hour time limit, Base ExA can solve APs up to 30 jobs, KPs up to 150 

items and TSPs up to 25 nodes.  The average CPU time and the average V  increases 

rapidly as problem size increases.  Average EY  and average 
E

SC

Y
 also increase with 

the problem size.  It is observed that all indicators increase faster in AP and TSP 

compared to KP.  We think that the number of decision variables may have an effect 

on this result.  Note that the number of decision variables in KP is O(n) where as it is 

O(n2) in AP and TSP.   

 

We report result for 4p =  in Table 5.2.  In general, results are similar to the 3=p  

case.  In the one hour time limit, Base ExA can solve APs with 10 jobs, KPs up to 

100 items and TSPs with 10 nodes.  The reason of these decreases is the rapid 

increase in average EY .  Increasing p from 3 to 4 enormously effects EY .  Consider 

AP with 20 jobs.  Average EY  is nearly 150 for 3=p .  For 4p = , Base ExA can 

search only half of the opened stages in the time limit but average ′EY  is nearly 1000. 
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Table 5.1 Results of Base ExA ( 3=p ). 

′ =E EY Y  ′ ⊆E EY Y  

Problem n # CPU 

(seconds) 
EY  

E

SC

Y
 V  ′EY  ′E

SC

Y
 V  

V

V L+
 

10 0 0.05 30.8 7.5 264.8     

20 0 31.25 156.9 75.0 14369.5     

30 1 1719.03 368.3 246.7 109894.8 397.0 367.1 171833.0 99.6 
AP 

40 10     640.5 214.0 154290.4 85.4 

50 0 4.39 48.4 14.5 978.0     

75 0 44.60 82.2 32.6 3688.5     

100 0 194.80 122.4 40.0 6201.0     

150 2 1443.71 217.1 96.4 25652.8 309.0 86.3 30551.0 85.7 

KP 

200 10     429.8 70.4 33820.5 80.4 

5 0 0.83 4.7 3.6 19.0     

10 0 15.27 25.2 6.8 205.8     

15 0 163.47 63.8 26.0 2165.1     

25 3 2396.85 198.3 94.8 23152.4 258.7 101.9 29579.7 89.3 

TSP 

30 10     316.1 60.3 21552.9 83.9 

 

Table 5.2 Results of Base ExA ( 4=p ). 

′ =E EY Y  ′ ⊆E EY Y  

Problem n # CPU 

(seconds) 
EY  

E

SC

Y
 V  ′EY  ′E

SC

Y
 V  

V

V L+
 

10 0 212.23 104.6 194.4 30734.8     
AP 

20 10     980.7 104.9 131102.9 51.2 

50 1 618.98 129.6 174.0 37753.7 222.0 535.5 168326.0 94.7 

75 9 339.53 149.0 87.7 19169.0 415.8 255.6 133182.1 74.8 KP 

100 9 1520.69 337.0 109.3 55784.0 529.8 135.6 86384.4 66.4 

5 0 1.54 5.4 5.8 38.1     

10 0 710.63 70.6 105.6 12430.3     TSP 

15 10     297.0 130.3 48560.3 71.3 
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We discussed three improvements to ExA in Section 5.5.  We must decide the best 

combination of them.  We observe that using the nondominated facets property 

substantially decreases the CPU time whereas it only uses negligible additional 

memory (compared to L, V or F lists) for keeping the gathered information.  Hence 

we use the nondominated facets property in the best combination.  We perform a set 

of preliminary runs in order to decide the remaining properties.   

 

We solve three instances for each combination and for each problem with p=3.  We 

aim to select the problems that can be solved in nearly 1800 seconds.  However, in 

order to decrease the variance of CPU times, we select the instances that can be 

solved in nearly 1900 seconds.  In Table 5.3, we report average CPU times for each 

combination.  BF, DF and BF+NF columns stand for breadth first, depth first and the 

third (breadth first plus nondominated facets) queuing disciplines, respectively.  In 

the last column, we report the average CPU times of Base ExA in order to provide an 

insight into the effect of the nondominated facets property.  We see that using the 

pre-calculation property with the depth first queuing discipline is the best 

combination for all problems.  We apply the paired T-Test and observe that, 

statistically speaking this combination is significantly better than the others.   

 

 

 

Table 5.3 CPU times (sec) of the preliminary runs 

Queuing Disciplines 

Problem Pre calculation BF DF BF+NF 

Base ExA 

(BF) 

Not used 589.48 826.13 669.28 1927.20 
AP 

Used 524.56 441.82 573.93 - 

Not used 822.22 830.48 825.23 1916.42 
KP 

Used 109.51 89.22 111.74 - 

Not used 858.20 704.77 853.04 1901.65 
TSP 

Used 117.14 111.64 117.89 - 
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Let us call ExA with the pre-calculation and the nondominated facets properties and 

the depth first queuing discipline combination Best ExA.  In Tables 5.4 and 5.5, we 

report the results for Best ExA for 3=p  and 4=p , respectively.   

 

As expected, Best ExA performs better than Base ExA.  Base ExA cannot solve 11 AP, 

12 KP and 13 TSP instances with p = 3 in the one hour time limit.  Among these 

instances, Best ExA solves 1 AP, 11 KP and 13 TSP instances. Similarly, for p = 4, 

Base ExA cannot solve 10 AP, 19 KP and 10 TSP instances.  Best ExA solves 10 KP 

and 10 TSP instances among them.  CPU times also decrease considerably with Best 

ExA.  There is important decrease in the average number of solver calls per point 

found in YE.  This is due to the pre-calculation property, which decreases the number 

of ( )MOIP λ s solved, but increases the number of stages in L.  However, in general, 

there is a decrease in average V  because the nondominated facets property 

eliminates many stages.  Best ExA is more effective on KP and TSP compared to AP. 

That is, the improvements in CPU time and the number of instances solved in the one 

hour limit are much better for KP and TSP.  This may be related to the computational 

complexities of the problems.  Solving fewer ( )MOIP λ s affects CPU time more for 

KP and TSP because they are NP-Hard problems.  There is an interesting property on 

the average ′EY  and V  values. For all problems, problem sizes and number of 

objectives, instances that cannot be solved in the one hour time limit have more 

extreme supported nondominated points than those can be solved, i.e., the average 

′EY  is greater than the average EY .  This observation is also valid for average V  

values.  More extreme supported nondominated points may define more 

nondominated facets and the algorithms require more stages to search and define 

these nondominated facets. 
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Table 5.4 Results of Best ExA ( 3=p ). 

′ =E EY Y  ′ ⊆E EY Y  

Problem n # CPU 

(seconds) 
EY  ′

E

SC

Y
 

V  ′EY  ′
E

SC

Y
 

V  
V

V L+
 

10 0 0.02 30.8 3.2 199.9     

20 0 3.15 156.9 3.0 5429.2     

30 0 490.80 371.2 3.0 58559.2     
AP 

40 10     531.2 3.0 172176.1 92.7 

50 0 0.86 48.4 3.2 472.2     

75 0 3.43 82.2 3.1 1212.8     

100 0 10.48 122.4 3.1 2175.8     

150 0 95.60 235.5 3.1 16700.5     

KP 

200 1 1065.34 417.6 3.0 82621.1 540.0 2.3 172429.0 93.7 

5 0 0.81 4.7 3.1 19.1     

10 0 6.27 25.2 3.1 156.5     

15 0 17.09 63.8 3.0 811.9     

25 0 141.78 216.4 3.0 12840.2     

TSP 

30 0 336.16 316.1 3.0 28750.7     

 

Table 5.5 Results of Best ExA ( 4=p ). 

′ =E EY Y  ′ ⊆E EY Y  

Problem n # CPU 

(seconds) 
EY  ′

E

SC

Y
 

V  ′EY  ′
E

SC

Y
 

V  
V

V L+
 

10 0 
1.70 104.6 5.5 4110.2 

    
AP 

20 10     
701.8 6.1 165528.6 72.8 

50 0 
16.84 138.8 5.3 8063.0     

75 3 
723.71 318.4 5.5 78448.6 380.3 4.8 187782.3 87.2 

KP 

100 6 
417.18 389.5 5.3 55774.0 414.8 5.1 190350.7 89.6 

5 0 
1.14 5.4 4.5 36.8 

    

10 0 
31.76 70.6 5.2 2051.5 

    TSP 

15 0 
560.29 297.0 6.2 55119.6     
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Przybylski, Gandibleux and Ehrgott (2007) proposed two versions for their algorithm 

and reported computational results for AP with 3=p  up to 50 jobs.  Let us call their 

better algorithm PGE.  In Table 5.6, we compare the performance of PGE and Best 

ExA.  For problems with 10 jobs, PGE and Best ExA are performing similarly.  

However, PGE outperforms Best ExA for larger sized instances.  We believe that 

3=p  is a special case for PGE because the dimension of the weight space is two 

and CAN is directly applicable to solving biobjective problems in the weight space.  

PGE may not have this advantage with 4p ≥  and it may perform worse.  In order to 

compare PGE and Best ExA, a computational test on several MOCO problems with 

different number of objective functions should be done.  However, the coding of 

PGE for four or more objectives is not straight forward and conducting such a 

comparison may not easy. 

 

 

 

Table 5.6 Comparison of PGE and Best ExA for AP ( 3=p ). 

 PGE Best ExA 

n 
CPU 

(seconds) 
EY  

CPU 

(seconds) 
EY  

10 0.02 43 0.02 30.8 

20 0.22 146 3.15 156.9 

30 1.14 351 490.80 371.2 

40 6.20 728 3600≥  640.5≥  

50 16.48 1150   

 

 

 

ExA performs a search by generating new stages.  We consider all possible stages as 

the search space of ExA.  We provided an upper bound on the number of possible 

stages in Theorem 5.6 as: 
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( )
!

! !
E ME M

E M

Y YY Y
V

p p Y Y p

∪ ∪
≤ =  ∪ − 

. 

 

This bound is a theoretical bound and represents the worst case.  In practice ExA 

visits only a small portion of these stages.  In Table 5.7, we compare the ratio of V  

to its theoretical upper bound.  We report the average of this ratio for the instances 

solved within the time limit.  The ratio decreases as the problem size increases. Also 

for a given problem size, the ratio is smaller for 4p = .  Increasing n or p increases 

EY .  As EY  increases, any randomly selected two points are more unlikely to be the 

common members of a nondominated facet.   

 

 

 

Table 5.7 Percent of the search space visited. 

3=p  4p =  
Problem n 

Base ExA Best ExA Base ExA Best ExA 

10 4.786 3.704 0.413 0.079 

20 2.020 0.787   

30 1.244 0.620   
AP 

40     

50 3.731 2.376 0.245 0.065 

75 2.676 1.049 0.087 0.015 

100 1.735 0.648 0.010 0.005 

150 1.363 0.590   

KP 

200   0.635   

5 39.095 39.381 25.081 25.308 

10 5.746 4.732 0.714 0.206 

15 3.574 1.714   0.017 

25 1.593 0.626   

TSP 

30   0.524   
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CHAPTER 6 

 

 

GENERATING AN APPROXIMATE SET OF EXTREME 

SUPPORTED NONDOMINATED POINTS IN 

MULTIOBJECTIVE PROBLEMS 

 

 

 

6.1 Introduction 

 

In the previous chapter, we developed an exact algorithm, ExA, that generates all 

extreme supported nondominated points of a MOIP with p objectives.  As the 

problem size or the number of objective functions increase, ExA needs more CPU 

time.  At the end of ExA, E EY Y′ = .  It is possible to stop the algorithm at some 

iteration and use EY′  which is a subset of EY .  However such an approach has 

important drawbacks.  We do not know whether EY′  is equal to EY  or not.  Moreover, 

we have no idea about how close EY′  is to EY .   

 

We observed that if we use the breadth first search strategy in ExA, then most of the 

points in EY  are found at the beginning of the algorithm. The algorithm finds only a 

small portion of the points in the remaining iterations and mostly tries to prove that 

E EY Y′ =  (see Figure 5.8 and Figure 5.9).  If we can measure how close EY′  is to EY , 

then we may terminate the algorithm early. 
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In this chapter, we propose an approximation algorithm.  This algorithm utilizes a 

lower bound set and an upper bound set for EY .  It provides a proximity measure 

between these bound sets.  Hence, we can stop the algorithm when the proximity 

measure is less than a predetermined level. 

 

6.2 CAN as an Approximation Algorithm 

 

Aneja and Nair (1979) proposed CAN as an exact algorithm to find all extreme 

supported nondominated points.  However, Cohon (1978) discussed CAN not only as 

an exact algorithm but also as an approximation algorithm to find a subset of extreme 

supported nondominated points for bicriteria problems.   

 

Cohon (1978) provided lower and upper bound sets for EY  and a proximity measure 

between them.  Consider Figure 6.1a.  Assume that, points y1, y2, y3 and y4 are in EY′  

and stages ( )1 2,y y and ( )3 4,y y are facet defining.  There is only stage ( )2 3,y y  in L.  

It is not possible to have extreme supported nondominated points in the southwest 

regions of lines passing through y1 and y2 and through y3 and y4.  Also there is no 

extreme supported nondominated point in the convex hull defined by points in EY′ .  

In the extreme case, we obtain point A by solving ( )MOIP λ  for stage ( )2 3,y y .  Let 

line segment [A,B] be perpendicular to the line passing through y2 and y3 and AB be 

the length of this line segment.  If AB is smaller than a predetermined accuracy level 

then we can stop.  Otherwise we should solve ( )MOIP λ  for stage ( )2 3,y y .  Assume 

that we want more accuracy and let y5 in Figure 6.1b be the optimal solution of 

( )MOIP λ  for stage ( )2 3,y y .  We remove stage ( )2 3,y y  from L and add two new 

stages: ( )2 5,y y  and ( )3 5,y y .We draw a line passing through y5 that is parallel to the 

dashed line joining y2 and y3.  Point y5 is the optimal point of ( )MOIP λ  for λ , 

which is equal to this line’s normal vector.  Hence, it is not possible to have an 

extreme supported nondominated point in the southwest of this line.  We obtain two 

points as new extremes, C and E.  If we solve ( )MOIP λ  for stage ( )2 5,y y , in the 
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extreme case, we can obtain point C and the proximity of this point to the line 

passing through points y2 and y5 is CD.  Similarly for stage ( )3 5,y y , the proximity is 

equal to EF.  If the maximum of CD and EF is less than the desired accuracy level 

then we may stop the algorithm.   

 

Note that the convex hull defined by points in EY′  is used as the upper bound set for 

EY .  The lines passing through points y1 and y2, C and E, and y3 and y4 shown in 

Figure 6.1b are used as lower bounds for EY . 

 

 

 

 

a)Gap = |AB| 

 

b) Gap = min{|CD|,|EF|} 

Figure 6.1 Approximation of CAN 

 

 

 

This approach works for biobjective problems.  However, due to the difficulties 

discussed in Section 5.2, it is not directly applicable to problems with three or more 

objectives.  Solanki, Appino and Cohon (1993) developed an approximation 

algorithm applicable to MOLP’s with p objectives.  Their algorithm is an extension 

to the approximation version of CAN algorithm.  They propose some approaches to 

solve the problems that arise when 3p ≥ . 
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The algorithm and the approach we discuss in this chapter are quite different from 

that of Cohon (1978) and Solanki, Appino and Cohon (1993).  Both approaches 

make approximations for each stage.  Since the weight vectors are known for their 

cases, they operate in the objective space, as demonstrated for the biobjective case in 

Figure 6.1.  In our approach, we know the lower and upper bounds in the objective 

space and we operate in the weight space.   

 

6.3 Lower and Upper Bound Sets for YE 

 

In this section, we develop lower and upper bound sets for EY .  We define partial 

ideal points for stages and prove that these points define a lower bound set for EY .  

We next show that the points in EY′  naturally define an upper bound set for EY . 

 

The partial ideal point of stage R is ( ) ( )1 2( ), ( ), , ( )pI R I R I R I R= …  where 

{ }( ) min
k

k
q q

r R
I R r

∈
= .  The set of points dominated by the partial ideal point ( )I R  is 

( ) ( ) ( ){ }1 2, , ,   I p q qB R y y y y y I R q≥ = = ≥ ∀…  and the set of points dominating ( )I R  

is ( ) ( ) ( ){ }1 2, , ,   ≤ = = ≤ ∀…I p q qB R y y y y y I R q .  Note that ( ) kI R r≤  and 

( ) kI R r≠  for all kr R∈  since all elements of R are extreme supported 

nondominated points. 

 

In the following theorem, we prove that at any iteration of ExA, all extreme 

supported nondominated points are in the union set of the points dominated by partial 

ideal points.   

 

Theorem 6.1. ( )k
I

R F L

y B R≥

∈ ∪

∈ ∪  for all k
Ey Y∈ . 

 

Proof: By induction, we will prove that the following term holds for all k
Ey Y∈  at 

each iteration of ExA: 
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( )k
I

R F L

y B R≥

∈ ∪

∈ ∪ . 

At the first iteration, ( ){ }1 2, ,..., pF L m m m∪ = and the term holds since 

( ) ( )0,...,0I R = . 

 

Assume that the term holds at some iteration of the algorithm.  Then at that iteration, 

an element R L∈  is selected in Step 2 and the λ  vector corresponding to stage R is 

calculated in Step 3.   

 

If pλ >∉ℝ , then R is removed from L, since it does not define a nondominated facet. 

 

If pλ >∈ℝ , then ( )MOIP λ  is solved and the optimal solution, r ∗ , is obtained in Step 

4.1.  If r R∗ ∈  then R is added to F (in Step 4.2) and removed from L (in Step 6) 

henceF L∪ does not change.  If r R∗ ∉  then R is removed from L (in Step 6).  In 

Step 4.3.1, p new stages are generated and the unvisited ones are added to L.   

 

Let us define the kth new stage as ( )1 1 * 1, , , , , ,k k k pR r r r r r− += … … , i.e., we replace the 

kth element of R with r ∗ and obtain Rk.  In order to analyze the possible changes in 

( )k
I

R F L

y B R≥

∈ ∪

∈ ∪  term, we must consider ( )I R  and ( )kI R .  There are two cases in 

the calculation of ( )I R : 

i) There exists a kr R∈ such that ( )  k
q qr I R q> ∀ , i.e., point rk does not 

contribute to partial ideal point and is strictly dominated by it.  Since 

( ) ( )kI R I R≤  then ( ) ( )k
I IB R B R≥ ≥⊇ .  The term holds in the next iteration. 

ii)  There is no kr R∈ such that ( )  k
q qr I R q> ∀ .  This means, every element of R 

has at least one objective function value equal to that of the partial ideal point.  

Without loss of generality we assume that ( )q
q qr I R= .  If there exits a q such 

that * q
q qr r≤  then ( ) ( )qI R I R≤  and the term holds in the next iteration 

because ( ) ( )q
I IB R B R≥ ≥⊇ .  However, if * q

q qr r>  for all q then we define the 
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convex hull ( ) ( ) ( )( )1 2 *, , , ,pS conv I R I R I R r= … .  In this case, S is the 

region removed from the term.  However, it is not possible to have a point y 

such that *y r≠ and Ey Y S∈ ∩ , otherwise *r  will be dominated by that y. 

 

Therefore after one iteration, ( )k
I

R F L

y B R≥

∈ ∪

∈ ∪  still holds. □ 

 

Corollary 6.1. For each k
Ey Y∈ , there exists a stage ∈ ∪R F L, such that ( ) ≤ kI R y . 

 

Proof: Follows directly from Theorem 6.1. □ 

 

The term ( )I
R F L

B R≥

∈ ∪
∪  defines a nonconvex hypervolume.  In the next theorem, we 

show that there exists no k Ey Y∈  dominating the partial ideal point of a stage 

∈ ∪R F L.   

 

Theorem 6.2. For a given stage ∈ ∪R F L such that R pλ >∈ℝ , ( )E IY B R≤∩ = ∅ . 

 

Proof (by contradiction): Assume that there exists a Ey Y∈  and ( )E IY B R y≤∩ = .  

Since ( ) kI R r≤  and ( ) kI R r≠  for all kr R∈ , and ( )Iy B R≤∈ .   

( )R R R ky I R rλ λ λ≤ <  for all kr R∈ . 

Moreover, since ( )I R  dominates every kr R∈ , we can write the above term for any 

0Wλ ∈ .   

( ) ky I R rλ λ λ≤ <  for all kr R∈ . 

So y must dominate all kr R∈ .  However we know that k Er Y∈  for all kr R∈  hence 

it cannot be a dominated point.  There is a contradiction and we conclude that no 

such y exists. □ 
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In the following two theorems, we propose lower and upper bounds on the weighted 

objective function value of ( )MOIP λ , for a given λ >∈ℝ p .   

 

Theorem 6.3. For a given λ >∈ℝ p , ( ){ } ( )
R F L
min I R MOIPλ λ
∈ ∪

< . 

 

Proof: Let the optimal solution of ( )MOIP λ  be y.  We know that Ey Y∈  and by 

Corollary 6.1, we know that each Ey Y∈  is dominated by a partial ideal point of a 

stage ∈ ∪R F L.  For the given λ >∈ℝ p , the minimum weighted objective function 

value of partial ideal points must be strictly less than that of any Ey Y∈ .  Otherwise, 

some Ey Y∈  must weakly dominate a partial ideal point. □ 

 

Theorem 6.4. For a given λ >∈ℝ p , ( ) { }
k

E

k

y Y
MOIP min yλ λ

′∈
≤ . 

 

Proof: Let the optimal solution of ( )MOIP λ  be y and { }*

k
E

k

y Y
y min yλ λ

′∈
= .  It is not 

possible to have *y yλ λ> .  Since in that case, there exists a solution *y  better than y 

for the given λ .  However, this contradicts with the assumption that y is the optimal 

solution of ( )MOIP λ . □ 

 

Hence by Theorems 6.3 and 6.4, we know that for all λ >∈ℝ p  

 ( ){ } ( ) { }
k

E

k

R F L y Y
min I R MOIP min yλ λ λ
∈ ∪ ′∈

< ≤  

We can consider the set ( ){ }
R F L

I R
∈ ∪
∪  as the lower bound set and EY′  as the upper 

bound set for EY . 

 

6.4 An Approximation Algorithm 

 

In this section, we present an approach to measure the proximity between lower and 

upper bound sets.  We then propose an approximation algorithm using this measure.  
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This algorithm is a variant of ExA with a special property, which ensures that the 

proximity values follow a nonincreasing pattern throughout the algorithm.  By this 

property, if the proximity is below a predetermined value, we conclude that ′EY  is 

close enough to EY  and stop the algorithm.  We call this approximation algorithm 

ApA.   

 

6.4.1 The Approximation Approach 

 

We know that for all λ >∈ℝ p , ( ){ } ( ) { }
k

E

k

R F L y Y
min I R MOIP min yλ λ λ
∈ ∪ ′∈

< ≤  holds.  For a 

given λ >∈ℝ p , we can identify the value of best known point { }
k

E

k

y Y
UB min yλ

′∈
= as an 

upper bound for the optimal value of ( )MOIP λ .  Similarly, any point must have a 

value strictly greater than the lower bound, ( ){ }
R F L

LB min I Rλ
∈ ∪

= .  If the gap between 

LB and UB is less than an acceptable level, then we do not need to solve ( )MOIP λ , 

instead we can use the best known point in ′EY .  Let us define the gap between LB 

and UB for a given λ >∈ℝ p  as 

{ } ( ){ }
{ }

( ){ }
{ }1

k
E

k k
E E

k

R F Ly Y R F L
k k

y Y y Y

min y min I R min I RUB LB

UB min y min y

λ λ λ

λ λ
∈ ∪′∈ ∈ ∪

′ ′∈ ∈

−− = = − . 

We prefer smaller values of this ratio, which means that the bounds are closer.  We 

use a ratio term instead of UB LB−  due to following reasons.  Using the ratio of  

UB-LB to UB eliminates the effect of the objective function ranges.  This is an 

important advantage because we may not have enough information about these 

ranges at the beginning of the search process.  Simply subtracting two values may be 

misleading because the ranges of objective function values may change from one 

instance to another.  In other words, while the ratio is unitless, the difference is not.  

Also λ  is not necessarily a normalized vector and the gap obtained by subtracting 

the two values will be different for λ  vectors normalized to different constants, i.e., 

1 or 100.  The ratio definition eliminates this problem as well. 
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In the approximation algorithm, we assume that λ is not known but the lower and 

upper bound sets are given.  Then we define the proximity measure, pm, as 

( ){ }
{ }1

p

k
E

R F L
k

y Y

min I RUB LB
pm max min

UB min yλ

λ

λ>

∈ ∪

∈
′∈

 
−   = = −   

   
 

ℝ

. 

The proximity measure finds the worst λ >∈ℝ p  such that the gap is maximum.  Let 

us define the optimal solution to this problem as 

( )
1

pm pm

pm pm

I R
pm

y

λ
λ

= − . 

Since partial ideal points dominate points in ′EY , 0pm> .  In the worst case, partial 

ideal point can be the origin and ( ) 0pm pmI Rλ =  then 1pm= .  Hence 0 1pm< ≤ .  In 

its current form, we need to solve a nonlinear problem to find the optimal pm value.  

In Section 4.3, we discuss a solution method to obtain the optimal pm value.   

 

Assume that, we calculate the pm value at Step 2 in each iteration of ExA and record 

this value.  At some iteration, we may observe an increase in the pm value, which 

means that the proximity between lower and upper bound sets increased.   

 

We can explain this situation as follows.  After an iteration, ′EY  is either unchanged 

or a new point is added to it.  For a given pmλ , it is not possible to have a larger UB 

value compared to that of previous iteration.  Because the minimum of a set does not 

increase by adding new elements to it.  For LB, we expect a similar property since we 

expect the hypervolume defined by the term ( )I
R F L

B R≥

∈ ∪
∪  to get smaller as the 

algorithm proceeds.  However, this is not the case and ( )I
R F L

B R≥

∈ ∪
∪  may expand after 

an iteration.  Assume that we select stage R in Step 2 and obtain r ∗ .  If ( )Ir B R∗ ≥∈ , 

then the hypervolume gets smaller as shown in the proof of Theorem 6.1.  However, 

if ( )Ir B R∗ ≥∉  then the hypervolume may increase and ( ){ } ( )pm pm pm

R F L
min I R I Rλ λ
∈ ∪

≤ .  

Hence, LB may decrease and there is a possibility to get a larger pm value in the next 

iteration.   
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We resolve this problem of fluctuating pattern in the pm value by introducing two 

new lists, L2 and V2, in addition to L, V and F lists.  These lists are such that they 

guarantee adherence to a nonincreasing property for the pm value through iterations.  

By Theorem 6.1 we know that ( )k
I

R F L

y B R≥

∈ ∪

∈ ∪  holds at any iteration of the 

algorithm for all k
Ey Y∈ .  Assume that, at some iteration of the algorithm, we set 

2L L=  and 2V V= .  Since L2 is equal to L, ( )
2

k
I

R F L

y B R≥

∈ ∪

∈ ∪  also holds and we 

can use L2 in the pm calculation.   

 

Let pmL  and pmL2 be the pm values obtained using L and L2, respectively as 

follows:  

( ){ }
{ }1

p

k
E

R F L
k

y Y

min I R
pmL min

min yλ

λ

λ>

∈ ∪

∈
′∈

 
 = −  
 
 

ℝ

 and 
( ){ }

{ }
22 1

p

k
E

R F L
k

y Y

min I R
pmL min

min yλ

λ

λ>

∈ ∪

∈
′∈

 
 = −  
 
 

ℝ

. 

 

We update L2, V2 and pmL2, only if 2pmL pmL< . Therefore pmL may fluctuate 

through the iterations but pmL2 follow a nonincreasing pattern. 

 

6.4.2 Steps of the Algorithm 

 

We provide the steps of ApA in Figure 6.2.  Steps of ApA are similar to those of ExA.  

However, there are some important differences.  We only discuss the new steps and 

the changes in the algorithm.  In Step 1, we initialize L2 and V2 lists as well.  In Step 

2, we calculate pmL and update L2, V2 and pmL2 if L is a better lower bound set.  

We assume that appε is a predetermined positive scalar representing the desired 

proximity between the bound sets.  In Step 3, we compare pmL2 and appε and if 

2 apppmL ε≤ , then we conclude that lower and upper bound sets are close enough.  In 

this case, ApA stops and reports the points in ′EY .  The rest of the algorithm is similar 

to ExA. 
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ApA  

Initialize 
1. Set ε = ∅EY , 0k = , 

V = ∅ , F = ∅ , ( ){ }1 2, ,..., pL m m m= , 2L L= , 2V V= . 

Search 

2. Calculate 
( ){ }

{ }1
p

k
E

R F L
k

y Y

min I R
pmL min

min yλ

λ

λ>

∈ ∪

∈
′∈

 
 = −  
 
 

ℝ

, if 2pmL pmL<  then 

2L L= , 2V V=  and 2pmL pmL= . 

3. If 2 apppmL ε≤  then stop and report ′EY . 

4. Select a stage { }1 2, ,..., pR r r r L= ∈  and set { }V V R= ∪ . 

5. Calculate λ  such that 1 2 ... p
λr λr λr= = = . 

6. If pλ >∈ℝ   

6.1. Solve problem ( )MOIP λ  and let the optimal point be 

( )1 2, ,..., pr r r r∗ ∗ ∗ ∗= . 

6.2. If r R∗ ∈  then set { }F F R= ∪ . 

6.3. If r R∗ ∉  then 

6.3.1. { } { }{ }1 1 1,..., , ,..., ,..., ,− ∗ ∗ −= ∪ p p pL L r r r r r r  and 

( )L L L V= − ∩ . 

6.3.2. If Er Y∗ ′∉  then ky r∗= , { }k
E EY Y y′ ′= ∪ and k=k+1.   

7. pλ >∉ℝ  then go to Step 8. 

Loop 
8. { }L L R= − .   

9. If L = ∅  then stop and report EY , otherwise go to Step 2. 

Figure 6.2 Steps of ApA. 
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6.4.3 Calculation of the Proximity Measure 

 

Calculation of the pm value is crucial in ApA because the algorithm compares pmL2 

and appε  values and decides whether to stop or to proceed.  In this section, we 

discuss how we can solve the following problem and calculate the pm value.   

( ){ }
{ }1

p

k
E

R F L
k

y Y

min I R
pmL min

min yλ

λ

λ>

∈ ∪

∈
′∈

 
 = −  
 
 

ℝ

. 

In this problem, we can skip the constant term 1 during the optimization and 

minimize the second term.  At the end of the optimization, we can convert the 

optimal solution to pmL value.  We use 1pmL pmL′ = −  in the following 

mathematical models where  

( ){ }
{ }p

k
E

R F L
k

y Y

min I R
pmL min

min yλ

λ

λ>

∈ ∪

∈
′∈

 
 ′ =  
 
 

ℝ

. 

In this term, we only impose pλ >∈ℝ .  Hence we can set the denominator term to a 

constant and minimize the numerator term.  We set the denominator to 1 in order to 

keep the range of pmL unchanged, i.e., 0 1pmL< ≤ .  The corresponding nonlinear 

programming problem is, NLP: 

 

NLP ( ){ }{ }

{ }
. .

1
k

E

R F L

k

y Y

p

min min I R

s t

min y

λ

λ

λ

∈ ∪

′∈

>

=

∈ℝ

 

 

We introduce a set of binary variables and change NLP into a mixed integer 

programming problem, MIP.  The optimal solution value of MIP is pmL′ . 
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MIP 

( )
( ) ( )

{ }

2

 

. .

1                                

                        

1    

1

0,1                           

k k
E

R

R
R F L

p

R

min LB

s t

y y Y

I R LB R F L

I R M B LB R F L

B

B R F L

λ
λ
λ

λ
∈ ∪

>

′≥ ∈
≥ ∈ ∪

− − ≤ ∈ ∪

≥

∈
∈ ∈ ∪

∑

ℝ

 

 

where M is a sufficiently large number and binary variable BR is defined as follows: 

( )1 if 

0 otherwise       R

I R LB
B

λ =
= 


  

In MIP, we define ( )I R LBλ ≥  for each stage R F L∈ ∪ .  Using the binary 

variables, we force the model to have ( )I R LBλ ≤  for at least one stage R F L∈ ∪ .  

The number of binary variables in MIP increases as F L∪  increases.  This may 

result in longer solution times.  However, we need to solve MIP frequently to 

measure the gap between the lower and upper bound sets.  If we can reduce the size 

of MIP, we can reduce the total CPU time required by ApA.   

 

Property 6.1. Consider two stages R1 and R2 such that 1 2,R R F L∈ ∪ .  If 

( ) ( )1 2I R I R≤  and ( ) ( )1 2I R I R≠  then ( ) ( )1 2I R I Rλ λ<  for any pλ >∈ℝ . 

 

Using this property, we can reduce the size of MIP.  Let us define NI as the set of 

stages whose partial ideal points are nondominated.   

( ) ( ){ }: ,  such that NI R R F L R F L I R I R′ ′= ∈ ∪ ∃ ∈ ∪ ≤ . 

We obtain the reduced model, MIP_Reduced, by replacing F L∪  set with NI set as 

follows: 
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MIP_Reduced 

( )
( ) ( )

{ }

 

. .

1                                

                        

1    

1

0,1                           

k k
E

R

R
R NI

p

R

min LB

s t

y y Y

I R LB R NI

I R M B LB R NI

B

B R NI

λ
λ
λ

λ
∈

>

′≥ ∈
≥ ∈

− − ≤ ∈

≥

∈
∈ ∈

∑

ℝ

 

 

As ApA proceeds, there will be more stages in the NI set and solving MIP_Reduced 

would require more CPU time.  It may be even more time consuming than solving 

( )MOIP λ .  Hence, we decompose MIP_Reduced into NI  linear programming 

problems.  Consider the following LP, pm(R) for a stage R NI∈  and let the optimal 

solutions of pm(R) and MIP_Reduced be LBR and LB∗ , respectively.   

 

pm(R) ( ) 

. .

1   k k
E

p

min I R

s t

y y Y

λ

λ
λ >

′≥ ∈

∈ℝ

 

 

Theorem 6.5: { }R
R NI
min LB LB∗

∈
= . 

 

Proof: Let { }R R
R NI

LB min LB∗

∈
= and ( )RLB I Rλ∗ ∗ ∗= .   

Since { }R R
R NI

LB min LB∗

∈
=  then ( ) ( )R

R RLB I R I R LBλ λ∗ ∗ ∗= ≤ =  where Rλ  is the 

optimal weight vector of pm(R).  Moreover ( ) ( ) ( )RI R I R I Rλ λ λ∗ ∗ ∗≤ ≤  holds 

because λ∗  is not necessarily equal toRλ . Hence setting 1
R

B ∗ = and λ λ∗=  is a 

feasible solution for MIP_Reduced.  The optimal solution of ( )pm R∗  is 

( )RLB I Rλ∗ ∗ ∗=  and we cannot obtain a better objective function value with a more 

restricted problem MIP_Reduced. □ 
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This decomposition prevents us from solving a mixed integer programming problem 

frequently during ApA.  Moreover, it brings another important advantage.  The 

optimal solution of pm(R) may change only if a new point is added to ′EY  because we 

add a constraint to pm(R) for each point in ′EY  .  So we do not need to solve pm(R) 

until a new point is added to ′EY .  Obviously, we must solve pm(R) for each new 

stage added to NI. 

 

In ApA, we assume that we do not know EY  and calculate the proximity between 

lower and upper bound sets.  However, if EY  is known, then we can calculate the real 

proximity measure, pmreal for a given EY′ .  Although, approximating a set which is 

already known does not make sense in practice, the comparison of pmL2 and pmreal 

values provide an insight on the tightness of the lower bound set.  We provide a 

comparison of these two values in Section 6.7.   

 

If we know EY , then we can calculate the pmreal value.  We solve the following linear 

program for each \E Ey Y Y′∈ , which is similar to pm(R). 

pm(y)  

. .

1   k k
E

p

min y

s t

y y Y

λ

λ
λ >

′≥ ∈

∈ℝ

 

 

Let the optimal solution of pm(y) be LBy, then the real proximity is 

{ }
\

1
E E

real
y

y Y Y
pm min LB

′∈
= − . 

Since each \E Ey Y Y′∈  is dominated by a partial ideal point of a stage 2 realpmL pm> . 

 

6.5 Tightening the Lower Bound Set 

 

In this section, we discuss some properties to help us to tighten the lower bound set.  

By tightening the lower bound set, we may decrease the proximity between lower 

and upper bound sets. 
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6.5.1 Stages with Dummy Points 

 

We start ApA with stage ( )1 2, ,..., pm m m  having p dummy points.  In later iterations, 

the algorithm generates new stages and some of these stages may have dummy points 

as elements.  If a stage R has two or more dummy points then ( ) { }0, ,0I R = … .  If 

there is only one dummy point in a stage, then p-1 components of the partial ideal 

point are zero.   

 

The stages with dummy points increase the value of pm substantially, since p or p-1 

components of their partial ideal points are zero.  However, we can improve these 

partial ideal points and the pm value by setting lower bounds on all objective 

function values.  Let us define the lower bound on qth objective function as q qLB y≤  

for all y Y∈ and for all q.  Hence we can redefine the partial ideal point of stage R as 

( ) { }1 2( ), ( ), , ( )pI R I R I R I R= …  where { }{ }( ) ,
k

k
q q q

r R
I R min LB min r

∈
= .   

 

For a given problem, we can find some underestimates of LBq for each objective 

function and use them as LBq values in the algorithm.  However we can determine 

exact LBq values during the algorithm and obtain better pm values.   

 

Let y0 be the first point found by the algorithm and Rq be the stage obtained from 

stage ( )1 2, ,..., pm m m  by replacing y0.  Let mq and yq be the optimal solution of stage 

Rq.  The weight vector corresponding to stage Rq is ( )( ),...,1 1 , ,q pλ ε ε ε= − − …  

where ε  is a very small positive scalar.  Then q
q qLB y= .   

 

6.5.2 Nondominated Facet Defining Stages 

 

In Theorem 6.1, we proved that ( )k
I

R F L

y B R≥

∈ ∪

∈ ∪  holds for all k
Ey Y∈ .  Using this 

property, we can obtain a lower bound for any weight vector at any iteration of the 
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algorithm.  In Theorem 6.6, we show that we can tighten the lower bound by 

cropping some portion of ( )I
R F L

B R≥

∈ ∪
∪ . 

 

Theorem 6.6. ( ) ( )k
I

R L R F

y B R B R≥ ≥

∈ ∈

   ∈    
   

∪∪ ∪  for all k
Ey Y∈ . 

 

Proof: For a given stage ( )1, , pR r r F= ∈… , consider two hypervolumes ( )IB R≥  and 

( )B R≥ .  Let us define ( ) ( )\IB R B R S≥ ≥ = .  Note that we can also define S as 

follows: 

( ) { }1 1( ), , , / , ,= … …
p pS Conv I R r r r r .   

It is not possible to have Ey Y∈  in S, because R is a facet defining stage.  Hence 

ES Y∩ = ∅  and we can use ( )B R≥ term instead of ( )IB R≥  for nondominated facet 

defining stages.  Moreover,  

( ) ( )k
I

R L R F

y B R B R≥ ≥

∈ ∈

   ∈    
   

∪∪ ∪  holds for all k
Ey Y∈ . □ 

 

By the above theorem, we do not need to solve pm(R) for facet defining stages, 

instead we may solve the following problem for each r R∈ . 

 

pm(r)  

. .

1   k k
E

p

min r

s t

y y Y

λ

λ
λ >

′≥ ∈

∈ℝ

 

 

Since Er Y′∈ , the optimal solution of pm(r) is equal to 1 for each point in a 

nondominated facet defining stage.  Hence we can skip the stages in F and consider 

only the stages in L for the pm value calculation. 
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6.5.3 Shifting Partial Ideal Points 

 

We can also improve the pm value by shifting some of the partial ideal points.  

Consider a stage R L∈ .  There are two cases in the calculation of the partial ideal 

point of R as discussed in the proof of Theorem 6.1. 

 

The first case is when there exists a kr R∈ such that ( )  k
q qr I R q> ∀ , i.e., kr  is not 

contributing to the partial ideal point and I(R) strictly dominates kr .  In this case, we 

can shift the partial ideal point by 1 unit as { }( ) 1
u

s u
q q

r R
I R min r

∈
= +  because it is not 

possible to have a point \E Ey Y Y′∈  that dominates ( )s
qI R .  If such a point \E Ey Y Y′∈  

existed, it would also dominate rk because ( )k s
qr I R=  in the best case. 

 

If there is no kr R∈  such that ( )  k
q qr I R q> ∀ , i.e., all points in R are contributing to 

partial ideal point, then no shifting is possible.  To demonstrate, consider an example 

with 3=p , ( )1 2 3, ,R r r r= where points are ( )1 , 1, 1r a b c= + + , ( )2 1, , 1r a b c= + +  

and ( )3 1, 1,r a b c= + + .  Then ( ) ( ), ,I R a b c=  and ( ) ( )1, 1, 1SI R a b c= + + + .  There 

may be a nondominated point ( ), , 2y a b c= + .  This point dominates the shifted 

partial ideal point but not the original partial ideal point. 

 

6.6 Improvements on the Approximation Algorithm 

 

In this section, we discuss some properties in order to improve the performance of 

ApA.  We develop a variant of pre-calculation property discussed in Chapter 5.  We 

propose to use a different queuing discipline for selecting the next stage in Step 4 of 

ApA.  We discuss a policy to replace L and V with L2 and V2. 
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6.6.1 Pre-Calculation with Partial Ideal Points 

 

In Section 5.5.2, we discussed the pre-calculation property in order to decrease the 

number of ( )MOIP λ ’s solved.  In pre-calculation, for a given R and the 

corresponding weight vector λ , we search for point pcr ∗  such that { }
E

pc
y Y

r min yλ λ∗

′∈
=  

and pcr R∗ ∉ .   

 

In this section, we assume that a stage R and the corresponding weight vector λ  are 

given.  However, our aim is not to find the minimum valued point for the given λ .  

Instead, we search for a point which will help us to reduce the hypervolume defined 

by ( )IB R≥ .  Hence, we may improve pmL. 

 

We refer to this property as ideal-pre-calculation.  We search for a point ideal Er Y∗ ′∈  

which is not in R and dominated by partial ideal point of stage R, ( )I R , i.e., 

( )( ) \ideal E Ir Y B R R∗ ≥′∈ ∩ .  If there are many points in the defined hypervolume then 

we break the ties as follows: 

( )( )
{ }

\E I

ideal
y Y B R R

r min yλ λ
≥

∗

′∈ ∩
= . 

We treat idealr ∗ as the optimal point corresponding to R. We remove R from L and add 

up to p new stages to L.  As discussed in the proof of Theorem 6.1, we remove the 

convex hull ( ) ( ) ( )( )1 2 *, , , ,p
idealS conv I R I R I R r= …  from ( )IB R≥  where 

( )1 1 1, , , , , ,k k k p
idealR r r r r r− ∗ += … … .  That is, we replace the kth element of R with 

idealr ∗ and obtain Rk. 

 

We modify Step 6.1 of ApA as follows:  

6.1 Ideal-pre-calculation, proceed to Step 6.1.1 

6.1.1 Let idealr ∗  be such that 
( )( )

{ }
\E I

ideal
y Y B R R

r min yλ λ
≥

∗

′∈ ∩
= . 
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6.1.2 If there exists such a point then idealr r∗ ∗= , go to Step 6.3.1, otherwise 

go to Step 6.1.3. 

6.1.3 Solve ( )MOIP λ  and let the optimal point be ( )1 2, ,..., pr r r r∗ ∗ ∗ ∗= , go to 

Step 6.2. 

 

In Step 6.1.1, we search the best available point idealr ∗ .  In Step 6.1.2, if there is such a 

point then we set it as r ∗  and go Step 6.3.1, otherwise we proceed to Step 6.1.3 and 

solve ( )MOIP λ .   

 

Above, we discussed the use of the ideal-pre-calculation property for a given stage.  

This property deals with one stage at each iteration.  However, ApA may add up to p 

new stages to L.  Since the approximation approach considers all stages in L for pm 

value calculation, we can use this property to reorganize all stages in L.  Consider the 

following algorithm.  For each stage in L we search for idealr ∗  point.  If we can find 

such a point we update L and V. 

 

Reorganize_L  

1.  For each R L∈  perform the following steps. 

1.1.  Calculate λ  such that 1 2 ... p
λr λr λr= = = . 

1.2.  Let idealr ∗  be such that 
( )( )

{ }
\E I

ideal
y Y B R R

r min yλ λ
≥

∗

′∈ ∩
= . 

1.3. If there exists such a point then idealr r∗ ∗=  and go to Step 1.4. 

       Otherwise go to Step 1. 

1.4.  { } { } { }{ }1 1 1 1,..., , , ,..., , ,..., ,..., ,p p p p
ideal ideal idealL L r r r r r r r r r− ∗ ∗ ∗ −= ∪  

( )L L L V= − ∩  and { }V V R= ∪ .  

 

6.6.2 Queuing Discipline 

 

In Section 5.5.3, we discussed three queuing disciplines to select the next stage R 

from L for ExA.  Those disciplines are all applicable to ApA.  However, in ApA, our 
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main concern is to decrease the pm value by closing the gap between lower and 

upper bound sets.  With this motivation, we define a new queuing discipline.   

 

At each iteration of ApA, we first calculate pmL in Step 2.  We select next stage in 

Step 4.  Consider pm(R) (see Section 6.4.3) used for pmL calculation 

pm(R) ( ) 

. .

1   k k
E

p

min I R

s t

y y Y

λ

λ
λ >

′≥ ∈

∈ℝ

 

 

The optimal solution of pm(R) is LBR and { }1 R
R L

pmL min LB
∈

= − .  Let 1 CR
pmL LB= − .  

We refer to stage Rc as critical stage.  This critical stage determines pmL and we 

cannot improve pmL if we do not select Rc as the next stage. Hence ApA selects 

critical stage as the next stage in every iteration. 

 

As we discussed in Section 6.5.1, stages with dummy points have partial ideal points 

having p-1 or p zero components.  We proposed to improve these partial ideal points 

by replacing zero components with lower bounds.  In preliminary runs, we observed 

that these stages still have small pm(R) values and they are selected as the critical 

stage at the early iterations of ApA.  Based on this observation, we modify our 

queuing discipline.  We first select stages with dummy points from L, if there is no 

such stage in L then we select the critical stage.   

 

Using this discipline has two advantages.  We know that pmL is very high if there are 

stages with dummy points.  Hence, we do not calculate pmL until all stages with 

dummy points are visited and removed from L.  The second advantage is much more 

important.  If there are dummy points in a stage, then the corresponding weight 

vector λ has some components very close to zero, except the first stage, 

( )1 2, ,..., pm m m .  Hence ApA firstly determines the boundaries of the nondominated 

frontier.  We consider a sample AP with 3p = in Figure 6.3.  We plot extreme 

supported nondominated points found only considering the stages with dummy 
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points in Figure 6.3a and a subset of EY  in Figure 6.3b.  Since one or more 

components of λ  is very close to zero for the stages with dummy points, we have the 

advantage to analyze the tradeoffs between the other objective functions with larger 

components in λ . 

 

 

 

  
a) Optimal points found by  
stages with dummy points 

b) A subset of EY  

Figure 6.3.  Effect of the new queuing discipline 

 

 

 

6.6.3 Recovery Policy 

 

We developed L2, V2 and pmL2 in order to keep the best state of L, V and pmL, 

respectively, during the search of ApA.  In some iterations, pmL may get larger, 

which means the hypervolume defined by ( )I
R F L

B R≥

∈ ∪
∪  gets larger.  When we face 

such a case, we do not need to let the algorithm increase the hypervolume.  Since we 

keep the best state of the algorithm in L2 and V2, we can return to this state by 

setting 2L L=  and 2V V= .  ApA restarts its search from the best state again.  We 

refer this policy as the recovery policy.  

 

Using the recovery policy may result in the cycling of the algorithm.  Consider the 

following case.  At some iteration, we update L2, V2 and pmL2 and select the next 
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stage R.  The optimal point is r R∗ ∉  but Er Y∗ ′∈ .  Moreover, ( )Ir B R∗ ≥∉ .  We add 

new stages to L and remove R from L.  Hypervolume defined by ( )I
R F L

B R≥

∈ ∪
∪  

increases.  In the next iteration, pmL is larger than pmL2 and the recovery policy sets 

2L L=  and 2V V= .  ApA starts cycling in such a case.   

 

In order to prevent the cycling of ApA, we propose a simple rule.  We record 

2 EY Y′=  when L2, V2 and pmL2 are updated.  We do not apply the recovery policy 

before a new point is added to EY′  after the last update.  Hence, ApA be recovered if 

2EY Y′ > .  Note that this rule prevents the cycling of ApA for the case discussed in 

the above paragraph.  Having at least one new point in EY′  since the last update has 

two advantages.  We may have a chance to reorganize L with the help of new points.  

This may improve the lower bound set and decrease pmL.  Another advantage of new 

points is the possible improvement in the upper bound set.  Since we add new 

constraints to pm(R) for each new point, we may have a chance to decrease pmL.   

 

Using recovery policy forces ApA to improve pmL2.  This policy promotes 

improving moves of ApA, i.e., removing some hypervolume from ( )I
R F L

B R≥

∈ ∪
∪ .  

However, ApA may reach to a better state if it can first apply some nonimproving 

moves.  We propose to apply recovery policy if ApA finds a predetermined number 

of new points after the last update.  In computational tests, we use different numbers 

for this policy. 

 

6.7 Computational Test 

 

In this section, we conduct a computational test on ApA, and discuss the results of the 

test.  We code ApA on Microsoft Visual C++ 6.0 and test on a computer with 

Pentium M 1.6 GHz, 256 RAM and Microsoft Windows XP.  We use Callable 

Library of CPLEX 8.1. 
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We test ApA using the assignment problem with three objective functions.  We use 

the same random data generation scheme discussed in Chapter 5 and solve problems 

with 30, 40, 50 and 60 jobs.  We skip problems with 10 and 20 jobs since Best ExA 

solves them in less than 8 seconds of CPU time.  We add problems with 50 and 60 

jobs instead. 

 

We apply three lower bound set tightening properties discussed in Section 6.5 to ApA 

because these properties can be processed in negligible CPU times.  We also 

implement the improvements discussed in Section 6.6.  After preliminary runs, we 

decided to apply the ideal-pre-calculation property. We also call Reorganize_L in 

ApA. In preliminary runs, we tested results of calling this algorithm in every Q 

iterations for { }1,10,25,50,100Q = .We decided to call Reorganize_L in every 50 

iterations because it is expensive to call it frequently in terms of CPU time.  It also 

increases the number of stages L too much, which makes the pm value calculation 

harder. We use 5, 10, 15 and 20 as rule number required to apply the recovery policy 

in addition to its original value 1.  

 

We run ApA for 5000 iterations. We report the results in Table 6.1. The first column 

is the problem size and the second column is the rule number for recovery policy. 

After every thousand iterations, we report the average pmL2 value. Average CPU 

time is reported in the last column. Note that, CPU times are reasonable, considering 

the fact that Best ExA solves AP with 30 jobs in nearly 490 seconds and cannot solve 

AP with 40 jobs in 3600 seconds. As rule number increases CPU time increases and 

pmL2 values decreases. However, we do not observe a trend between problem size 

and pmL2. Table 6.2 is very similar to Table 6.1. In this table, we report the average 

ratio of EY′  to EY . As rule number increases the average ratio increases however 

this increase does not affect pmL2 value.  
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Table 6.1 Results of ApA. 

pmL2 (%) 

n 

Rule 

Number 1000 2000 3000 4000 5000 CPU 

1 23.61 23.11 23.04 22.71 22.57 41.91 

5 21.94 21.58 21.36 21.24 21.18 93.13 

10 21.93 21.47 21.29 21.21 21.13 108.03 

15 22.16 21.82 21.68 21.64 21.63 115.00 

30 

20 21.67 21.34 21.23 21.18 21.07 116.35 

1 24.19 23.58 23.49 23.32 23.26 51.05 

5 22.28 21.97 21.90 21.86 21.80 128.07 

10 21.68 21.36 21.26 21.16 21.13 184.49 

15 21.63 21.31 21.24 21.21 21.19 196.85 

40 

20 21.55 21.11 21.06 21.02 20.97 227.03 

1 25.22 24.39 24.30 24.24 24.21 74.31 

5 23.03 22.62 22.25 22.09 22.05 285.14 

10 22.14 21.64 21.57 21.49 21.46 432.88 

15 21.97 21.47 21.42 21.38 21.37 438.93 

50 

20 21.75 21.27 21.15 21.09 21.08 525.01 

1 26.28 25.05 24.77 24.48 24.42 133.85 

5 23.80 23.39 23.22 23.10 22.94 439.59 

10 22.67 22.04 21.94 21.89 21.85 724.58 

15 23.27 22.64 22.59 22.45 22.44 739.86 

60 

20 22.20 21.81 21.67 21.63 21.60 1031.03 
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Table 6.2 Percent of points found by ApA. 

( )% /E EY Y′  

n 

Rule 

Number 1000 2000 3000 4000 5000 CPU 

1 44.0 50.2 53.6 58.0 61.1 41.9 

5 55.0 65.4 72.4 76.8 80.2 93.1 

10 56.7 67.3 74.2 78.4 81.7 108.0 

15 57.9 69.6 75.1 79.2 82.5 115.0 

30 

20 59.1 69.2 75.2 80.2 82.9 116.4 

1 28.0 33.3 36.1 38.4 40.7 51.1 

5 37.8 47.3 52.5 56.1 59.3 128.1 

10 41.6 51.0 56.4 60.8 64.1 184.5 

15 42.5 52.0 57.6 61.5 64.6 196.8 

40 

20 43.2 53.1 58.4 62.2 65.3 227.0 

1 27.4 32.7 35.4 37.3 39.3 74.3 

5 37.1 47.7 55.6 61.4 65.0 285.1 

10 42.7 56.2 63.5 68.8 72.9 432.9 

15 43.1 57.2 64.2 69.4 73.6 438.9 

50 

20 44.4 58.3 65.9 71.4 75.2 525.0 

1 27.5 34.0 37.0 39.9 41.8 133.8 

5 37.1 48.5 56.0 62.3 68.4 439.6 

10 40.7 57.2 66.0 72.2 77.9 724.6 

15 42.2 58.0 65.8 72.3 77.3 739.9 

60 

20 44.4 61.1 71.1 78.3 83.2 1031.0 
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In Table 6.3, we compare the pmL2 obtained after 5000 iterations to the pmreal values. 

As seen from the table, the pmreal values are very small compared to the pmL2 values. 

We use same upper bound sets in the calculation of both values. Hence we conclude 

that the lower bound set used by ApA is not tight enough.  

 

Table 6.3 Performance of pmL2 (rule number = 15). 

 pmL2 pmreal 

n Min Ave Max Min Ave Max 

30 17.06 21.63 25.59 0.29 0.91 1.33 

40 16.50 21.19 25.10 0.49 1.14 1.71 

50 19.73 21.37 23.00 0.64 1.30 1.79 

60 20.55 22.44 24.91 0.96 1.35 2.03 

 

 

 

6.8 Discussions 

 

In this chapter, we developed an approximation algorithm to find a subset of extreme 

supported nondominated points of a MOIP. We proposed lower and upper bound sets 

for EY and provide a worst case proximity measure between the bound sets. We 

discussed a number of properties to improve the algorithm and the lower bound sets. 

We tested the algorithm on a MOCO problem.  
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CHAPTER 7 

 

 

CONCLUSIONS AND FURTHER RESEARCH 

 

 

 

In this thesis, we studied multiobjective combinatorial optimization problems.  We 

can organize our study under two main topics.  The first topic is about polynomially 

solvable cases of the Traveling Salesperson Problem (TSP) and the Bottleneck 

Traveling Salesperson Problem (BTSP).  We considered multiobjective versions of 

these problems.  To the best of our knowledge, there is no other study in the 

literature considering the solvable cases of TSP or BTSP with multiple objectives.  

Our second topic is generating extreme supported nondominated points of 

multiobjective integer programming problems.  We developed algorithms to find 

such points of an integer programming problem with any number of objective 

functions. 

 

We considered two solvable cases of TSP and BTSP: pyramidal tours and Halin 

graphs.  For pyramidal tours, we studied the multiobjective TSP on a set of special 

distance matrices and showed some properties of nondominated points.  We 

developed a pseudo-polynomial dynamic program to find a nondominated point 

when all distance matrices are in the same class.  For the biobjective case, we 

developed an approach to find all nondominated points.  We also demonstrated that 

the optimal tours of bottleneck types of Van der Veen matrices and Demidenko 
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matrices are not necessarily pyramidal.  Hence the developments are not applicable 

to these cases. 

 

For the Halin graphs, we addressed multiobjective problems with various 

combinations of TSP and BTSP−type objective functions.  We showed that, if there 

are two or more TSP-type objective functions in the problem, then finding a 

nondominated point is NP-Hard, and there are exponentially many nondominated 

points.  However, if there is at most one TSP-type objective function and all 

remaining objectives are BTSP-type, then the problem is polynomially solvable.  We 

developed algorithms to find the nondominated points.   

 

A future research topic is to study polynomially solvable cases of combinatorial 

problems in general.  The approaches developed in this thesis may prove useful in 

some of those problems as well.  Further analyzing the computational complexities 

of the studied problems is another future research topic. 

 

In our second topic, we developed two algorithms for generating the extreme 

supported nondominated points of a multiobjective integer programming problem 

with any number of objective functions.  The first algorithm is an exact algorithm 

and it finds all such points.  This algorithm finds only extreme supported 

nondominated points and stops after a finite number of iterations.  We proposed 

several improvements on this algorithm and tested on three well-known 

combinatorial optimization problems.   

 

The second algorithm is an approximation algorithm and finds only a subset of the 

extreme supported nondominated points.  The approximation algorithm keeps lower 

and upper bound sets for these points.  The main feature of this algorithm is its worst 

case proximity measure between lower and upper bound sets.  We proposed an 

approach that provides a nonincreasing proximity measure.  We tested our approach 

on a well-known combinatorial optimization problem. 
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Finding the set of all extreme supported nondominated points or an approximation 

for it requires extensive computational effort, because there may be too many such 

points even for moderate size problems.  It may be reasonable to focus on regions of 

nondominated frontier that are more interesting to the decision maker.  Incorporating 

the preferences of the decision maker into both algorithms is an interesting future 

research direction.   

 

We developed some properties in order to improve the performances of ExA and ApA.  

It may be possible to develop more properties using the multidimensional nature of 

the problems.  The resulting algorithms may be capable of solving larger instances. 

 

Another research direction is to conduct an experimental study on MOCO problems.  

In this study, we can figure out some properties on the cardinality of the 

nondominated set and that of extreme supported nondominated points.   

 

The approximation algorithm uses the partial ideal points as the lower bound set.  We 

proposed some properties to tighten these bounds.  However, these bounds, in their 

current state, are not tight enough for practical purposes.  We plan to work on 

improving the performance of these bounds.  Also another research direction is to 

incorporate other approximation methods with our exact algorithm. 
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