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ABSTRACT

APPROACHES FOR
MULTIOBJECTIVE COMBINATORIAL OPTIMIZATION PROBLEMS

Ozpeynirci, Nail Ozgiir
Ph.D., Department of Industrial Engineering

Supervisor: Prof. Dr. Murat Koksalan

January 2008, 132 pages

In this thesis, we consider multiobjective combameti optimization problems. We
address two main topics. We first address the pohyjally solvable cases of the
Traveling Salesperson Problem and the Bottleneelkéling Salesperson Problem.
We consider multiobjective versions of these protdenith different combinations
of objective functions, analyze their computationaimplexities and develop exact
algorithms where possible.

We next consider generating extreme supported mom@dwed points of
multiobjective integer programming problems for anymber of objective functions.
We develop two algorithms for this purpose. Thetfone is an exact algorithm and
finds all such points. The second algorithm findty@ subset of extreme supported

nondominated points providing a worst case appration for the remaining points.

Keywords: Multiobjective Combinatorial OptimizationTraveling Salesperson
Problem, Bottleneck Traveling Salesperson Probl@mmputational Complexity,

Extreme Points, Approximation Algorithm.
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GOK AMAGLI KOMB INATORYAL OPTIMIZASYON PROBLEMLER
ICIN YAKLA SIMLAR

Ozpeynirci, Nail Ozgiir
Doktora, Endustri Mihendigi Bolumu

Tez Yoneticisi: Prof. Dr. Murat Koksalan

Ocak 2008, 132 sayfa

Bu tezde, ¢ok amagh kombinatoryal optimizasyonbjemleri tzerinde caguk.
Calismamizi iki ana bgikta gruplayabiliriz.ilk baslk, gezgin satici probleminin ve
darb@az gezgin satici problemlerinin polinom ¢ozilebitemumlariyla ilgilidir. Biz
bu problemlerin, farkli amag fonksiyonlarinin bgiteleri olan ¢ok amacli turevlerini
ele aldik, hesaplama kargniiklarini analiz ettik ve mimkin olan durumlarkizsin

yordamlar geltirdik.

Ikinci baligimiz, herhangi sayida amag fonksiyonu olan ¢ok &ntagn sayili
programlama problemlerinin destekli u¢ etkin noktadl bulmakla ilgidir. Bu bgik
altinda iki yordam geftirdik. ilki bu noktalarin hepsini bulan bir kesin yordamdir
Ikinci yordam ise bu noktalarin bir alt kimesini imakta ancak kalan noktalar icin

bir en kot durum bilgisi sunmaktadir.

Anahtar Kelimeler: Cok Amacli Kombinatoryal Optiragyon, Gezgin Saticl
Problemi, Darbgaz Gezgin Satici Problemi, Hesaplama Kawkigsi, U¢ Noktalar,
Yaklagiklama Yordami.
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CHAPTER 1

INTRODUCTION

Combinatorial optimization is a field of mathematiprogramming that has been
attracting researchers for many years. It haguarpotential applications in real life
problems. Some of these applications are radiati@mapy, crew and resource
scheduling in airline operations, internet traffaciting, vehicle routing, and portfolio

optimization.

Classical combinatorial optimization problems deéh a single objective, whereas
many real life problems have several conflictingeobves. Hencemultiobjective

combinatorial optimizatiofMOCO) is a field of great interest due to its ability t
represent real life problems well. Combinatorigiiimization problems are generally
difficult to solve, even with a single objectiveDealing with multiple objectives
further complicates these problems, since one basonhsider the trade-offs and

conflicts between these objectives where there Ipeaypany solutions of interest.

In single objective optimization, there is a singlatimal objective function value.
There might be alternative optimal solutions givihg same objective function value.
On the other hand, in multiobjective optimizatiohere are typically many “good”
solutions callechondominatedsolutions They represent the trade-offs and conflicts

between the objectivesA decision makef(DM), or a group of DMs, who are the



owner(s) of the problem should evaluate these isnlsitand select the best one

according to their preferences.

The Traveling salesperson problefTSP is one of the most widely studied
combinatorial optimization problems in the litenatu TSP aims to find the shortest
tour that visits each node exactly once and rettonthe starting node on a given
graph. A variant of TSP is tHottleneck TSREBTSB, where the aim is to find the
tour whose longest edge is as short as possibeh BSP and BTSP are difficult

problems in general. However, there are some apeases that are easy to solve.

The research on multiobjective TSP is limited coragato single objective TSP.
The main reason is the complexity of TSP even witlsingle objective. The
literature on multiobjective TSP mainly focuses beuristic approaches for
biobjective TSPs. There are few studies dealinth VTSP for multiobjective

problems.

Some researchers classify the special cases ofM8MBTSP into two groups. The
first class deals with problems having specialagise matrices. The problems with
special graph structures are in the second claBs. special cases of TSP and BTSP
studied so far are all single objective problemd, dn the best of our knowledge,

there is no study on their multiple objective verns.

We study two special cases, one from each clabks.filst one has a distance matrix
such that there is a set of constraints definetherdistances between cities. These
constraints ensure that the optimal tour has ai@psttucture, i.e., it looks like a
pyramid when the numbers of the cities are ploitethe order they are visited by
the optimal tour. There is an exact algorithm tirads the optimal pyramidal tour
quite easily. We define the multiobjective versiai these problems, develop some

properties of nondominated solutions and proposexant algorithm.

The second type has a special graph structure suckhich only some roads

between cities are available. These graphs aledcHhblin graphs. There are exact



algorithms using the special structure of Halinpips efficiently, and they find the
optimal tours of TSP and BTSP on Halin graphs gasilWe define several
combinations of TSP and BTSP with multiple objeesivon Halin graphs, develop
some properties of nondominated solutions, analygecomplexity of the problems,

and propose exact algorithms.

A nondominated solution is axtreme nondominatesblution if it is not possible to
represent it as a convex combination of other nonidated solutions. Experimental
studies on themultiobjective knapsack probledOKP) showed that number of
nondominated solutions increases exponentially hes fgroblem size increases.
Interestingly, the number of extreme nondominateldt®ns increases linearly for
the same problem. Hence finding only the set afeexe nondominated solutions
may be useful because these solutions also praxgtimble information about the
trade-offs between the objectives. Finding theesme nondominated solutions does

not require more effort to find all nondominatedrs.

There is an approach to find all extreme nondorethegolutions for biobjective
problems. This approach systematically changeswhb&ghts of the objective
functions and solves single objective problems wathweighted sum objective
function. This approach is only applicable to léative problems due to their
special structure. We develop an exact algorithmat tfinds all extreme
nondominated solutions of a problem for any numifeobjectives, and apply it to
TSP and two other well-known combinatorial optinti@a problems, théssignment
Problem(AP) and theKnapsack ProblenKP).

Although we develop an algorithm to find all extemondominated solutions, it
may still be a difficult task to generate them hessathe underlying single objective
problem may be difficult or the number of extrenendominated solutions may be
large. In this case, we can try to find a subsetsautions that is a good

representation of all extreme nondominated solgtioRor this purpose we define a

measure and develop an approximation algorithmis @lgorithm finds a subset of



extreme nondominated solutions that representsvtizde set at a desired quality.

We apply our approximation algorithm on a set cigisment problems.

This thesis consists of seven chapters. In Chdhteve review the literature and
give necessary definitions. In Chapters 3 andeldiscuss the solvable special cases
of TSP and multiple objectives. In Chapter 3, weus on multiobjective TSP and
pyramidal tours. We address TSP and BTSP on Hataphs and extend it to
multiple objectives in Chapter 4. In Chapter 5, explain our exact algorithm that
finds all the extreme nondominated solutions fanatiobjective problem for any
number of objectives. We develop an approximagilgorithm that finds a subset of
extreme nondominated solutions in Chapter 6. Wscudis further research

directions and conclude the thesis in Chapter 7.



CHAPTER 2

DEFINITIONS AND LITERATURE REVIEW

In this chapter, we give definitions related to damatorial problems in general and
to the Traveling Salesperson Problem in particul@¥e introduce multiobjective
optimization and multiobjective combinatorial optoation problems with a review

of literature.
2.1 Combinatorial Optimization

Combinatorial optimization is a field of mathematiprogramming, which has been
attracting researchers for many years. It haguarpotential applications in real life
problems. Some of these applications are radiatii@mapy, crew and resource
scheduling in airline operations, internet traffaciting, vehicle routing, and portfolio
optimization. We refer to Ehrgott and Gandibleu®(2) for a discussion on such

real life applications.

Combinatorial optimization deals wittombinatorial problems The feasible set of a

combinatorial problem has a finite number of eleteenlLet E be the finite set

E :{q,..., eh} andw: E - R be a function assigning weights to the element. of

We assume thatv is a vector of rational numbers. The feasible stta



combinatorial problem is given b¥ 02% as a power set oE. An objective
functionf, which is to be minimized, is defined to for addde solutiorx] X . We

can write the combinatorial optimization problem as
min f (x)

In general, there are two types of objective fuordi considered in combinatorial

optimization problems:

f(x)=> w(e ,and

ellx

f(x)= ng]axxw( g.

The problem with the first type of objective furoetj
rg)p%w(e)
is called as thesum problem The problem with the second type of objective

function;

min maxw( e)
XOX  edx

is called as theottleneck problem

Combinatorial problems can also be formulated ushiagary variables. Let

x0{0,4" and

_|1ifgOx
' ] 0 otherwise

wherex is a feasible solution. Using binary variablemhpems can be defined as
rxnul)pizzl:wix , and
min maxZ, w x

wherew, = w(e).

The assignment, knapsack, minimum spanning treertest path, traveling

salesperson and set covering problems are well-knoewnbinatorial optimization



problems. We refer to Nemhauser and Wolsey (19%8) the theory of
combinatorial optimization. Korte and Vygen (200&view the theory and

algorithms on combinatorial optimization problems.
2.2 The Traveling Salesperson Problem

Let G=(N, E) be a graph with the given set of nodbs={1....,n} and the set of

edgesE. The node set may stand for the cities and tlge sdt for the roads directly
connecting the cities. For eaelil E, a weightw(e) is given. This weight may
correspond to different objectives, such as dumaticost, distance, risk, etc.
associated with traversing the edge. A travelalgsperson starts a tour from a city,
visits all cities exactly once and returns to titg where the tour is started. Such a
tour is called @amiltonian tour The problem is to find the Hamiltonian tour with

the minimum total weight.

Let ¢ bea Hamiltonian tour o1& and letF denote the set of all Hamiltonian tours.

Using these definitions, TSP can be stated as:

TSP: min{ f(¢)=g¢; w e)} subject tap O F.

We call above objective function aSP-typeobjective function. An alternative

representation is as follows:

Let ¢ (i) represent the node succeeding nodetourg. A tour can be represented
by ¢ =(1,i,iz...,in1) Whereg (1)=i1, ¢ (i1)=iy,..., ¢ (in1)=1. Letd be the distance

matrix andd([i, j] denote the distance between nodasdj. Then the length of tour

¢ isd(g) :Zn: d[i,#(i)] . TSP can be defined as:

r;’luip{ d@)= Zn: d[i,¢(i)]} :



To formulate a mathematical model of TSP,defi,j) be the edge between nodes

andj, w(e)=w; and introduce the binary decision variakjevhere

_ {1 if edg(i j) is use

! 0 otherwise

Hence, the decision variable spacexis X ={O,]}‘E‘. If edge (jj) is used in a tour,

then the traveling salesperson visits npdemediately after nodein that tour. The

integer programming formulation of TSP is as folkow

The aim is to minimize the total weight of the stdel edges.

TSP min > w.x .
(i.i)E

The first constraint set ensures that the tourremedg exactly once, for each node
jON.

Y. % =1 forjON.

is(i . )E

The second constraint set ensures that the touedeaode exactly once, for each

nodei N .
> % =1 foriON.

(i, )CE

The third constraint set eliminates all possiblbtsurs. These constraints are called

subtour elimination constraintsLetU 0 N . We define the third constraint set as:

> % =1 for 2<|U|<|N|- 2,
(i,i)E

inJ

jON\U

The last constraint set defines decision variafelinary.

x, 0{0,3 for(i,j)OE.



It is possible to represent the subtour eliminatamstraints and TSP itself in
alternative ways. We refer to Punnen (2002a) faliseussion on the alternative

formulations.

In a variant of TSP, we are not interested in th&ltdistance traveled by the
salesperson but in the maximum distance travelasldssm any two succeeding cities.
This problem is called aBottleneck TSRBTSB. We refer to Kabadi and Punnen
(2002) for a review of BTSP.

BTSP can be stated as:

BTSP: min{ f(¢)= rngx{ W é}} subject tgp ] F

We call above objective function tiB SP-typeobjective function. The BTSP-type
objective function can be handled in the matherahtiormulation of BTSP by

defining the following constraint.

w,x < B for (i,j)0E
BTSP can be formulated as:

BTSP min g
Subject to
w,x < B for (i, j)0E

D> % =1 forjON.

ii(i.j )E
D> % =1 foriON.
i, )E
> % =21 for 2<|U[<|N|- 2

(i.i)E

iy
jON\U

x, 0{0,3 for (i ,j)OE.



TSP and BTSP are botiP-Hard problems. For an overview of the complexity
results for TSP, we refer to Punnen (2002b). Kabad Punnen (2002) discusses
the complexity results for BTSP.

Although TSP and BTSP aMP-Hard in general, there are special cases of T8P an
BTSP that are solvable in polynomial time. Thes rot trivial cases and special
algorithms are developed to solve them optimalBeineko and Woeginger (2000)
discuss the combinatorial nature of the solutioacsg of several such TSPs. We
refer the reader to the surveys of Kabadi (200Ryk8rdet al (1998), and Gilmore,

Lawler, and Shmoys (1985) for further information.

Polynomially solvable cases of TSP and BTSP cartlassified under two main
categories:

(i) those having a special distance matrix, and

(i) those that have a special graph structure.
In the first category, the graphs are complete ligagnd a set of restrictions is
defined over the edge weights. Whereas in thengeoae, there are restrictions on

the graph structure but no restrictions are impaseddge weights.

The studies on special cases mainly focus on T8Rmrgéhan on BTSP. However,
there are a number of papers on special cases 8PBTSee for example Phillips,
Punnen and Kabadi (1998), Van der Veen (1993), Bakard and Sandholzer
(1991). Vairaktarakis (2003) considers a polyndiyisolvable TSP and shows that
the corresponding BTSP MP-Hard.

We refer to the books of Gutin and Punnen (2002) bawler et al (1985) for
further information on TSP and BTSP.

2.3 Multiobjective Optimization

In classical optimization problems, there is a Engpjective function and the aim is

to find a solution that optimizes the objective dtian value. However, many real

1C



life problems have several objectives and decisgirmild be made by considering

these objective functions simultaneously.

Typically, different objectives are conflicting Wwiteach other and a solution that
performs well in one objective will not perform all in other objectives. There
are many solutions that do not outperform eachrathell objectives. It is not clear
which of these solutions are better until the denisnaker (DM) or a group of DMs

evaluates them.

A multiobjective problenfMOP) can be written as

“min' Cx=( (%, £(X..... £()

st. xOX
where x[OR" is a feasible solution and is the set of all feasible solutions. In this
problem, there ar@ objective functions to be minimized a@lis a pxn matrix.

The g" row of C corresponds to thg" objective function,f,(x). We use the

quotation marks since vector minimization is notwell-defined mathematical

operation.

The pointyz(yl,..., yp)TD]Rp such thaty =Cx is the outcome of the solution

xO X . The setX andY ={ yORP: y= Cx xJ >} are called thelecision spacand

the objective (criterion) space respectively. All vectors in objective space are
column vectors of dimensiopx1. For the sake of simplicity, we drop the trangpos

figure in our notation.

We assume that there exists no poimiY that minimizes all objective functions
simultaneously to avoid a trivial case. Hence weeiaterested with a set of “good”
points instead of a single optimal solution. We tleedominanceconcept to define
“good” points. We can consider the dominance cphas the multiobjective

counter part of the optimality concept.

11



Pointy is said todominatepoint y' if and only if y, <y, for all g and y, <y, for at
least oneg. If y, <y, for all g theny is said tostrictly dominatey'. If there exists
no y' Y such thaty’ dominatesy, theny is said to benondominated A pointy is
said to beweakly nondominatei and only if there exists no point OY such that
Y, > Y, for allg. The set of weakly nondominated points includes@dominated

points and some special dominated points.

Let Y,, denote the set of nondominated points. The pyffit =(yl‘dea',..., y,‘)dea') is

said to be thddeal point where y;** :Jinn{ yq} . Similarly, thenadir point is

defined asy™"" = ( v, ygad") where y3*" = ma>{ 36} :

YO¥ao

Let yOY,, and y™" be a convex combination of the nondominated partepty.
That is;
yeor= > wiy, DY w=landw =0 fory<OY, \{ ¥ .

Y OV \{ 3} Y DY\ 3}

Using these definitions, we define three types ofhdominated points. A point

yOY,, is said to be

conv

* anextreme supported nondominateaint if and only if there exists ng

such thaty®™< vy,

conv

* anonextremeupported nondominatgbint if and only if there exists g

conv

such thaty*“" =y,
» anunsupported nondominatg@aint if and only if there existsy@™" such that

conv
<

y y.

The terms dominance aradficiencyare counterparts of each other in the objective

and decision spaces, respectively. A solutkdhX is said to beefficientif and only

if y=Cx is nondominated and solutiori] X is inefficientif and only if y=Cx is
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dominated. A solutiorxd X is weakly efficientif and only if y=Cx is weakly

nondominated. Similarly, we can defiegtreme supported efficiemonextreme
supported efficienandunsupported efficiersolutions. We refer Steuer (1986) for
an overview of the multiple criteria optimizatiorhebry, methodology and

applications.

In Figure 2.1y"% y? \°, andy’ are extreme supported nondominated poiyitss
nonextreme supported nondominated point, ghds unsupported nondominated
point. Points/’ andy? are weakly nondominated but dominated. Pyiris strictly

dominated.

f2

v

7
Figure 2.1 Different types of points in objectiyese

Throughout the thesis, we discuss our results mamthe objective space and use

Y. for the set of extreme supported nondominatedtpoi#/e should note that more

than one efficient solution may correspond to @& nondominated point. In such

cases, it is sufficient for our purposes to findyamne of those efficient solutions.

13



A multiobjective integer programming problefOIP) with p objective functions

can be written as:
it Cx=( §(%, 43 £(3)
st. xOX

where X ={ Ax< j x=0, xJZ}. Ais amxn matrix andoOR™. The solution of

the problem,x0Z" is the integer decision variable vector. Withdass of

generality, we assume thdt (x)>0 and f,(x)0Z for q=1,...p and for all
xdX. Supposefq(x) <0 for someq and x X, then we can shift the objective
function value by adding a positive constagjt" which satisfies( f, (x)+ cjh"‘) >0
for q=1,...,p and for all xOX . Similarly, supposefq(x)DZ, then we can
multiply the objective function value by a positivenstant,cT""™ , so that the

condition (cg‘“'“’)'y fq(x)) 07 is satisfied.

In a multiobjective combinatorial optimizatioMOCQO) problem, p weights are

associated with each elementtof The weight of elemerg in objectiveq (g=1,...p)

is denoted byy,(e). The value of a solutior in objectiveq is f,(x). A MOCO

problem can be defined as:

"min"f(x)z(fl(x), f,(%),..., fp(x))

xOX
where f (x) is a sum or a bottleneck objective. Ehrgott arahdibleux (2000,

2002) review the MOCO theory, methodology and ajapions.

Multiobjective TSP and BTSP are examples of MOCGbjgms. In these problems,
each edge is represented by several weights. Thegghts may correspond to
different objectives such as cost, distance, rigk, associated with traversing an
edge. Using the classification scheme of Ehrgott @andibleux (2002), a MOCO
problem withp objectives can be denoted @& TSPif all objectives are TSP-type
and p-max TSPif all objectives are BTSP-type. The notatippX p;-max TSP
stands for a MOCO problem withh TSP-type ang, BTSP-type objectives.
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There are some recent studies on multiobjective &I8PBTSP. Some of these are
heuristic approaches, some are local search methndssome are exact algorithms.
Ehrgott and Gandibleux (2002) review some of tregg@oaches.

The number of efficient solutions is another impattissue in MOCO problems.
Finding all efficient solutions of a problem is@ao beintractableif the number of
efficient solutions may (potentially) increase empntially as the size of the problem

increases. It is known thptX TSPis intractable forp = 2(see Ehrgott, 2000).

In single objective optimization, enumerative altfons, such as branch and bound
or dynamic programming, use lower and upper bouhd@g their search. Using

tighter bounds may decrease the size of the sspaite and the time required to find
the optimal solution. Similarly we can use boumidsnumerative algorithms for

multiobjective optimization. The ideal and nadwirgs as defined earlier in this

section can be used as lower and upper boundshéomondominated point set,

respectively. However, these bounds may not bg weeful in reducing the search
space because the ideal and nadir points may bawfay from the nondominated

points set. Due to this, using a set of pointsemd of a single point may be more
useful in reducing the search space. These setsaflied bound sets. We refer to
Ehrgott and Gandibleux (2007) for a discussionhenktound sets.

2.4 Approximation Algorithms for Multiobjective Pro blems

Many multiobjective approaches attempt to findn@hdominated points (or efficient
solutions). However this can be a difficult tagkfinding such points is time
consuming, or if the number of such points is large., the problem may be
intractable. It may be reasonable to generatetafs@oints that represents the
nondominated points well. This set provides usgfidrmation to the DM, although
not as complete as the whole nondominated set. pbivs in this set may be
nondominated points (found by an exact algorithmajpproximations (found by a

heuristic approach) of the nondominated points.
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Cohon (1978) proposed an exact approximation dlgarifor MOIPs with two

objectives. Solanki, Appino and Cohon (1993) psguzban exact approximation
algorithm for MOLPs with three or more objectivesle refer to Ruzika and Wiecek
(2005) and Ehrgott and Gandibleux (2004) for examdl heuristic approximation

algorithms for multiobjective optimization problemespectively.
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CHAPTER 3

PYRAMIDAL TOURS AND MULTIPLE OBJECTIVES

3.1 Introduction

In this chapter, we work on TSP and BTSP that reperial matrix structures and
lead to polynomially solvable cases. We extendptitodlems to multiple objectives
and investigate the properties of nondominated tpoinWe develop a pseudo-
polynomial time algorithm to find a nondominatedirgofor any number of

objectives. Finally, we propose an approach tegge all nondominated points for
the biobjective case. To the best of our knowledigere exists no other study that

addresses the polynomially solvable special casgseanultiobjective TSP.

3.2 Pyramidal Tours

A tourp is pyramidal if starting from node 1, a set of esdre visited in ascending
order up to noden and the remaining nodes are visited in descendirtgr.
Formally, tourp is called pyramidal ifo =(1,i1,i,...,ikNj1j2,-...jm) Such that

1<ii<i<...<ig<n andn>j;>j>... > >1.
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Consider two toursp=(1,2,5,6,4,3and¢ =(1,2,5,4,6,3. In Figure 3.1, we plot
the node numbers in the order they are visitede plot of tourp (Figure 3.1a)
looks like a pyramid and it has only one peak. rTpuis a pyramidal tour. On the

other hand, the plot of tow# has two peaks and is a non-pyramidal tour.

E 5 :
3)
(2 @
Order of visit Order of visit
a) A pyramidal tour b) A non-pyramidal tour

Figure 3.1 Plots of the tours

In this chapter, we use the notatidl[ﬂ, j] instead ofw; in order to differentiate
between node indices and the objective functiorexndd complete graph has an
edge directly connecting each pair of nodes. & tlost of traversing an edge is

independent of the direction of the traverse foedyes (i.e.d[i, j|=d[j.i] for all
(i,j) pairs) then the graph is said to be undirectgahisetric). Ifd[i, j] zd [ ] ,i] for

some {,j) pair then the graph is said to be directed (asgtrin). We mainly use the
term edgefor the undirected graphs aacdt for the directed graphs. Gutin, Yeo and
Zverovitch (2002) prove that the number of pyrarhtdars is 22 in an undirected
complete graph and™2in a directed graph. In both cases, the numb@yamidal

tours is an exponential function of the number ades,n. Let F, be the set of all
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pyramidal tours for a given graph. By definitidf, s F whereF is the set of all

tours.

Although the number of pyramidal tours is exporedniin n, finding the shortest
pyramidal tour for any distance matrix has a comipleof O(n®) using the dynamic
program given in Gilmore, Lawler and Shmoys (198bgt D, denote the family
of distance matrices for which a pyramidal touoimal. Then, for any matrix in

D;yr: TSP is polynomially solvable.

Tour improvemen(Tl) technique is a proof technique developed by Van\ékeen
(1994). TI is used to prove that for a class ofrio@s inD,,g, the optimal tour is
pyramidal. TI starts with an initial tour and &ées by exchanging a set of arcs with
others to obtain a new tour and generates a segudrtours without increasing the
tour length. The new tour’s length must be at nasstarge as that of the previous
tour in order for this exchange to be a feasitd@gsformation. Tl is a framework of
feasible transformations that needs to be develdpeaach class of matrices in

D, A feasible transformation for a class may nofdaesible for another.

There are different classes of distance matricd3,ip that have been defined in the
literature. There are symmetric and asymmetricricedt inD,,,. Burkardet al

(1998) applied TI technique to Monge, Supnick, Dagnko, Kalmanson, Van der
Veen matrices and generalized distribution matricest D, D, denote the set

of matrix classes for which TI technique can beliapp

Note that, for a matrix irD,,, a non-pyramidal toup may also be optimal, giving

T
the same length as the optimal pyramidal tour.riAal case is a TSP where all arc

lengths are equal. TI technique implies that tlexists at least one pyramidal tguy
that can be obtained frogn by applying a sequence of feasible transformatioifis
@ is optimal, p should also be optimal. This is possible if a#lagible

transformations used to obtam from ¢ keep the tour length unchanged, i.e. none
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of the feasible transformations improve the toumgtd. By definition, feasible

transformations cannot increase the tour lengtim tl@ other hand, if all possible
feasible transformations strictly decrease the tength, then a non-pyramidal tour
cannot be optimal, since for every non-pyramidalrtdhere exists at least one

pyramidal tour that has a strictly shorter length.

A matrix that is inD,,; may not be readily recognizable and may require a

renumbering of the nodes to be recognized. Thergalynomial time algorithms

for recognizing some of these matricesDn,; (see, for example, Burkard and

Deineko, 2004, and Burkard, Klinz and Rudolf, 1996)
3.3 The Multiobjective TSP

In multiobjective problems, nondominated points ian@ortant. The ability to find
nondominated points is an important challenge inltiohjective combinatorial
problems, many of which ardP-Hard. We first present some properties of the

nondominated points for multiobjective TSPs hawiigftance matrices iD;,. We

then address finding nondominated points for tipeeblems.

Let us defined, as theq” distance matrixd,[i, j] as the length of ardj) in g"
objective function, andl, (¢) as the length of toup in " objective function. The

point d (¢) = (d1(¢) d (¢)) is in the objective space and corresponds to gaur

TP

Theorem 3.1. If all distance matrices are in the same clasB.of then for each

non-pyramidal tour there exists at least one pydahtour that is at least as good in

every objective and possibly better in some obyjesti

Proof. Since we assume that all distance matrices atleeirsame class d@,,, any

feasible transformation does not increase thelemgth in any of the objectives. In

the worst case, Tl results with a pyramidal touritig equal lengths in all objectives
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to those of the initial tour. If any of the fedsiltransformations used in any of the

objectives is positive, then the resulting pyrarhtdar dominates the initial tour.o

Corollary 3.1. If all distance matrices are in the same clas®f there exists a

pyramidal tour corresponding to each nondominatedtp
Proof. Follows directly from Theorem 3.1. o

Corollary 3.2. If all distance matrices are in the same clasBpf and all feasible

transformations in all distance matrices are imprgyvthen each non-pyramidal tour

is strictly dominated by at least one pyramidaltou
Proof. Follows directly from Theorem 3.1. o

Example. The following Van der Veen matribD,,,, 0D, shows that there may be
pyramidal tours strictly better than any other todihe pyramidal toup =(1,2,3,4)
is shorter than any other tour for the followingtrma Therefore, no tour can be as
good asp for this objective.

01 2 3

7
3 UDypy UD+,

0

d=

o b

10
2 4
3 7

w

Remark. If distance matrices belong to different classe®,in, then a non-

pyramidal tour may correspond to a unique nondotathpoint.

Consider the followingD;, matrices (Van der Veen, 1994) whetgllD,,, and

d, 0Dy (Demidenko matrix).
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0 4 2 4 0 4 4 2
4 0 0 1 4 010

d, = 500 0 0D,y andd, = 4100 OD e
4 1 0O 2 000

0'=1,2,3,4), p°=(1,2,4,3and ¢ = (1,4,2,3, are all possible tours where the set of
pyramidal tours is=,, ={pl,p2} . The tour lengths aré(pl) =(8,7),d (,02) =(7,8)
andd(¢)=(7,7), respectively.d (¢) dominates bothd(,ol) andd(pz), hence it is

the only nondominated point for these two matrices.

Let d(,oq) =(dl(,0q), d (,oq)) be the point corresponding to shortest pyramidal

- Uy

tour p* with respect ta)” distance matri, i.ed, (,oq) < d, () for any pOF,y.

Theorem 3.2. If distance matrices belong to different classeB;,, thend(,oq) is

weakly nondominated.

Proof. Since p? is the shortest tour in objectivp d(pq) is weakly nondominated.

However,d (pq) may be dominated as demonstrated in Remark. o

For p-2 TSR finding nondominated points is an important peoll We may wish to

find all nondominated points or a subset that cinaaf interest to the DM.

Let us define a convex combination pimatrices that are in the same clasDgf

as:

p P

d,=> u.d,.,> #,=landuy,z Og= 1..p.

q=1 o=1

In the following theorem we prove that this matgxlso in the same classf .

Theorem 3.3. If all distance matrices are in the same clasBof then any convex

combination of these matrices is also in the sadassofD;, .
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Proof. Currently existing classes @f,, are defined with inequalities like
d, [in.i,] +d [izi,] <d[isi  +d [i ;i  for someqandiy,... g or,
dq [in,i,] +d [igi ] +d [isi ¢ <d [i - d+d Ji o JJ+d i 1 o} for some q
andil,...,ilz

Since all convex combinations of these types ofjuadities hold for all possible

i1,...,il12 used in the class definition, we conclude thatcalhivex combinations are

also in the same class. ]

By convex combination of matrices;2 TSPbecomes a single objective TSP. For a
given i vector, an extreme supported nondominated pointbeafound using the

DP given by Gilmore, Lawler and Shmoys (1985). fer to this DP aDP, s(d)

where d is distance matrix. All extreme supported nondwated points can be
found by choosing suitabje vectors. In the next section, we show a methad fo
determining suitabley for 2-2 TSR In Chapter 5, we develop a method for

determining suitablg: vectors for MOIPs with any number of objective dtians.

Let us define the following two problem)) and(F{f)for k™ objective function.

p

Let d; =d, +£z d, be a distance matrix. Given a set of upper bolyd3, q # Kk,
g=1
q#

(R,)finds the solution with shortest possible tour knig objectivek. (F{f), on the

other hand, finds a tour corresponding to a nondated point and satisfying

constraints (1) and (2).

(R) min 3" d[14()]

st d, ¢)=> d,i4 Ok B, Doz k (1)

gUF (2)
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whereF is the set of all Hamiltonian tours aBg is an upper bound for objectize

Let B= ( B,...B_, B, Bp) be the vector of upper bound, for criteriagzp.

(R?) min3. Tig()
st (1) and (2)

Let y,’ be the optimal solution of proble,) and yD:(yE,..., y;) be the vector of
tour lengths for the optimal tour of probl«éﬁﬁ). Similarly, for problerr( F{f), let
y. andy” :(yf?yff) be the optimal solution and optimal tour lengttctoe,

respectively. Note that, different solutions candbtained by changing in (Pkf).

The £ value should be positive to avoid dominated poimi$ small enough to
ensurey,” =y,. Steuer (1986) showed an appropriate intervaltfers value for

the augmented weighted Tchebycheff program. Forcase, the appropriate value

of £ can be determined through Theorem 3.4.

Theorem 3.4. Let yD:(yf,...,yﬁ),ny (yf?yff) be the optimal solutions to

(Pk) and (Rf), respectively, andy:(yl,...,yp) be any nondominated point
. . - -1
satisfying (1) and (2). Then for aer[O,(r%%xzqtk[yq —yq]) J we have

yE =y, WhereS:{(l) n(2n(y> )EE)} :

Proof: It is known thaty™is a nondominated point for aay 0.
As ¢ value increases, the relative importancé!obbjective decreases. Increasing

the £ value does not improvg,”. Then,& should be small enough to ensure
Y. =VY,. This implies,
Y +HED Yo SUFED Y, 3

g#k gt k

for all nondominated points satisfying > y;, (1) and (2).
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Since (3) needs to hold for all nondominated pogatssfyingy, > v,, Y, cannot be

greater thany,, thusy,'> y,”. It is impossible to haveg, > y,°. Hence,y,” = y,.

If we can find suitable @ satisfying inequality (3), we can rewrite it as
N AR
gzk

We have two cases:

M1 X[y -y, ]>0 then£<yk+y'?].
v

grk Z[yq

gzk
Since the minimum possible value fof —y,* =1 assuming (without loss of

generality) that all edge lengths are integersnesd

fe— L _
Z[yc? B yq} .

gzk
A general bound over all nondominated points isithe
1

rv&x{Z[y?-yq]}

gzk

<

where

s=@0(In (x> ¥)a [ i - ¥]>0)

gzk

(ii) If Z[ygb - yq]so then settinge>0 is sufficient.  Sincey,” <y, and

gzk

>y <>y, we have

gzk ok

Ve tEY YL <Y te) y, foranye=0.
Kk

gzk

The range is defined as:

£D(O,(r§1magxzq¢k[y? - yq])_j WhereS:{(l) n(2)n(y> f)} O
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-1
The above theorem gives the upper boumek(rrylmaéxzm[y?—yq]) for € for

objectivek. By taking the minimuny, , we generalize the upper bound for all

objectives as follows.

Corollary 3.3. Replacing the range & with £D(O, mkinyk) in Theorem 3.4, the

theorem is generalized for any number of objediivetions.

To determine the above range, we need to know ¢hefsnondominated points.
This set may not be readily available, but thinds a problem in practice. A trivial

upper bound for can be obtained by finding the total length of litregestn arcs,

say UBq, and substitutingy, for y, the shortest tour length in objectige using

zq[UBq ~y2]. Then the rangeD(O,(zq[UBq _ yg])‘lj is a practical and valid

range.

We develop a dynamic program to find the optimabpyidal tour that soIve(sF{f).

We define a state variable vectar= ( R,... R, Ryvees Ig) . R, corresponds to the

remainder or the unconsumed portion of bodcby the partial tour constructed so

far. Initially R= B and as DP moves to inner stagBsgecreases.

The DP we developed is quite different thaR,, ;. Given a distance matribDP, ¢

finds the shortest pyramidal tour considering glsimbjective function. On the other
hand, our DP considers multiple objective functiogamposing upper bounds to all
but one objective. The DP either finds the shorfgsamidal tour that does not

violate the upper bounds or reports that no sughemists.

Let C(i, j,R) be the length of the shortest Hamiltonian patthwispect to th&"

distance matrix from toj on cities 1,2,..maxi,j} that visits a subset of these nodes

in a descending order froimo 1 and the remaining nodes in ascending orden ft
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to j without violating the boundRR. C(i, j,R) finds the shortest pyramidal path in

criterionk from i to j while the bounds}, for g# k, are not violated. LeM be a
sufficiently large number, i.eM >n.max{ dk[i,j]}. At stateC(i, j,R), there are
]

five possible cases. If any of the upper boundsgiotated then the corresponding
component oR vector is negative. In this case (Case 1), D&rmetM value for the
current state. Ifi{j|>1 and the bounds are not violated then we con€§ldses 2 or 4.

In both cases, the selection of the next statérasght forward in order to keep the
path pyramidal. In Case 2, aliel(j) is added to the path. In Case 4, ajiel( is
added to the path. In Cases 3 and-B=1 and the bounds are not violated. In these
cases, the selection of the next state is notgsirdorward. The minimum valued
state is selected among the possible states. lkcaséls except for the first one, the

remaining bounds are updated according to the ts@heaf the next state.

HM ifR, < O for anyg

2)C(i,j-1R-d[j-1j])+d[j-1j] foi<j -lanB,> Qg#Kk

c(i.j.R) =13y min{ C(i,l,R-d[ I ])+ E[1.j} foi=j -1an® > Tg* k
I<i

gc(i-1j,R-d[ii-1)+d;[ii-] foi>j+ 1anR,> Qgzk

5) min{ C(1, j.R-d[il])+ 4 [il}  fori=j+ 1an® > Ogxk

Q
Number of states in this DP 3 n2|_J Bq . The number of states is a function of
q:

gzk
the magnitudes of the upper bounds. Hence, thish@® pseudo-polynomial
complexity. The optimal objective function vaImxe(Pk‘f) is given by
DP(df,Bd)=mi{ d nrl, nB dnri)+ J nnl,
C(nn- B-dnt D)t d[ rl, ]‘}

Note that inDP(d;f, B, d), d, is a distance matriB is a vector of upper bounds,

is a vector of distance matrices, aidj] is the vector of arc lengths. If there is no
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feasible solution for the given bounds, then thevidlPreturn an objective function

value of at leag¥l. This DP finds the shortest pyramidal tour foy distance matrix.

The ranges developed fer value in Theorem 3.4 and Corollary 3.3 are vafid i

general. If all distance matrices are in the safass ofD,,, as stated in Theorem

3.1, then the optimal tour téPk‘f) is obtained.

All nondominated points can be found by this DRchgnging theB, values. In the

next section, we propose an approach for findinghahdominated points for the
biobjective TSP.

The above DP can be used for both symmetric anchmggric matrices. If all

distance matrices are symmetric then DP can belifiealpas follows:

M ifR, < O for any
C(i,j.R)=4C(i, ' -LR=d[ j=Lj])+d[ - 1j] foi'<j' -lan®,> @q#k
min{ C(1,LR=d[ I i])+ &[1.§]} ~ fori'=]' -lan® 200q#k

wherei’ =min(,j)and j'=max({,j ). In this case, the optimal objective function
value also simplifies to

DP(df,B.d)=C(n-1LnB dnri)+ f nnai.

3.4 The Biobjective TSP

We develop an approach to generate all nondomirnzdids for the biobjective TSP.
We first find the extreme supported nondominateahfgoby usingthe weighting

scheme proposed by Aneja and Nair (1979). Therseagch for the nonextreme
supported nondominated and unsupported nondominptadts between each

adjacent pair of extreme supported nondominateatgoi

We define nonextreme supported nondominated andppoested nondominated

points asnonextreme nondominatgmbints, because we do not need to differentiate
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between these two types of points in our methoet Yg and Yne be the sets of
extreme supported nondominated points and nonegtraondominated points,

respectively.

Consider the optimal objective function values bk tsingle objective TSPs,

yd =mind,(¢), and letg?be the corresponding optimal tours fgel, 2. Let

gUF
v;=d,(¢') . v =d,(¢°) . v'=(w.¥) and y*=(¥,)) . Without loss of
generality, assume thaf <y? andy; > y>. If y'=y” or y'<y? or y*< y" then

there is a unique nondominated point and the pnoldetrivial.

, . . 1 1 , -
Theorem 3.5. Using € in the range 0, mln{ , } is sufficient to
{ =Y, i~ W%
avoid nondominated points in problélﬁ}f).
Proof. Follows directly from Theorem 3.4. o

Note that both pointy' and y*can be weakly nondominated. The nondominated
points, y**"having yJ = y"*"g=1,2 can be determined by the DP we developed.

Using these points a larger upper bounddaran be obtained.

Corollary 3.4. The upper bound fog can be replaced by the following term:

min{ 1 1 }
y;—eff _yg ! ylz—eff_ yll

Proof: The pointsy* and y* may be weakly nondominated. An overestimatedeang

(for nondominated points) is obtained by the demaar term usingy' and y*. |If

nondominated points are used in the denominatar,rémge (for nondominated

points) may decrease and the upper bound value foay increase. i
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We define two algorithms to find all points i¥ig; Recursivé g, R/) and AL
Recursivé 9, 8/) finds all extreme supported nondominated pointsvéen two
given extreme supported nondominated poiytsand y°. A1l solves(Pj) and

(P;). If two different solutions are obtainedAd then Recursivé g, 8/) is called.
DP(dy) finds the shortest pyramidal tour with respectdistance matrixd, and

returns the poing = ( Yoo yz)

We can obtain the extreme supported hondominat@udspm O(nz) using distance

matrices d; and d; . The extreme supported nondominated points can be
determined by changing the weightof matrix d* = ud, +(1- ) d,, #0(0,1) and
applying DPGLS(d”) for the resulting single objective problem. Facle weight set,

a solution is obtained i®(n?).

Al

Initialization: SetY, =0 .

Step 1. SolveDPGLs(df) , let the optimal point be/*.

Step 2. SolveDPGLs(dg), let the optimal point bey’.

Step 3. Ify; < y’and y> < y;then go to Step 5 else go to Step 4.

Step 4. Ify* = y? then single optimal solution ig', Y. ={ yl} , go to Step 7.
Step 5. Y. ={ V. v} .

Step 6. CaIRecursive(yl, yz).

Step 7. Terminate the algorithm.

Recursive (ya, yb)

Step 1. Se = Y: = Y;

(vi-%)-(v-¥)
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Step 2. Setl” = pd, +(1- ) d,.
Step 3. SolveDPGLS(d“), let the solution bey™".
Step 4. IfY; n{ weW} ={ y”e“} then go to Step 5
else
Yo =Y. Of ¥},
Call Recursive( ye, y”ew) ,
Call Recursive( Vi yb) .

Step 5. Terminate the algorithm.

If |YE|2 2then we search for the nonextreme nondominatedgasing the DP we

developed. Since there are only two objectivesuse the state variab(é(i, ] ,R)

whereR is a scalar. For each consecutive extreme sugparvndominated point
pair in Yg, nonextreme nondominated points should be searobedeen them. A
point is obtained irO(n’B) whereB is the upper bound on one of the objectives.
Without loss of generality, we select to use theosd objective as a bound and

minimize the augmented version of the first objexti AlgorithmA2 is used to find

all nonextreme nondominated points¥ige. We refer to our DP a@P(df, B, dz)

whered; andd, are distance matrices aBglis a scalar.

A2

Initialization: SetY,. =0 .

Sort elements ofg, such thatyl < y2 <. < ¥l
Setr=1.
Step 1. Solv@PZ(df, -1, dz), let the resulting point bg .
Step 2. Ify = y"* thenr=r+1.
If r =|Y;| then go to Step 6 else go to Step 1.

Step 3. Yye = Ve O{ }} -
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Step 4. Ify, —1= y/1z-1=Z"thenr=r+1, go to Step 1.
Step 5. Solve(df, il -1, dz), let the resulting point bg , go to Step 2.

Step 6. Terminate the algorithm.

The set of nondominated pointsYg, = Y- U Y. We can find a nondominated

point satisfying the given bound with a pseudo-polpial DP. However, the

complexity of identifying all nondominated poingsstill an open problem.

3.5 The Bottleneck TSP

The optimal pyramidal tour for the Bottleneck TS&hde found in Qf) with a
small modification in DP. Burkard and SandholzZE991) studied the polynomially
solvable special cases of the Bottleneck TSP. Thegented several conditions for

pyramidally solvable Bottleneck TSPs.

One may be curious to know whether some resulfsyoamidal tours are applicable
to the bottleneck-type objectives. For some cla$s®,,, using the “maximum”
operator instead of the “sum” operator in the diseamatrix definition results in a
class which is also iD.,. The class of Monge matrices is such an example
(Burkard and Sandholzer, 1991). In a similar wag, can define the bottleneck
version of the Van der Veen matrix as follows:

d[i, j] =d[ j,i] for all i and | }
max{d[i,jld[j+1k} < maXdf k1d[j,j+1} forall i<j<j+1<k|

DBVDV = {d[l’ J]

Theorem 3.6. Dgypy OD pyg
Proof: We provide a counter exampla& (1D, for y>1. For the distance matrix

given below, the length of tow=(1,4,2,6,3,5) is 1. However, all pyramidal tours

have tour lengths of y.
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-y 01y
y -y 0 0 1
Oy -y 11
d= 0 O y _ y O DDBVDVDDPYF
1 01y -0
ly 1.1 0 0 —]

Increasing the value of y idOD,,,, the lengths of pyramidal tours can be

increased arbitrarily. o

We next define the bottleneck version of the Deanla matrix as follows:

d[i, j]=d[ j,i] for all i and j }
o

Dgoem :{d[h il max{dfi,j1d[j+1k}<maxdf,j+1d [ k} for all i<j<j+1<

Theorem 3.7. Dgpeyy ODpyg-

Proof. We provide a counter example& 0D, for y>0. For the distance matrix

given below, the length of towr=(1,5,3,4,2,6) is 0. However, all pyramidal tours

have tour lengths of y.

|
o

O O <

o o o ©

D DBDEMI D DPYR

oK <K o o

O O K K
o O O O

< o O
|

Increasing the value of y idODgy,, the lengths of pyramidal tours can be

increased arbitrarily. i

Since Dy, and Dy, do not guarantee that the optimal tour is pyrainide

consider the bottleneck type objectives no further.
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3.6 Discussions

In this chapter, we studied the multiobjective T&PD,, OD,,; and showed some

properties of nondominated points. We developpdeaido-polynomial DP to find a
nondominated point to the problem when all distamedrices are in the same class

of D,,. For the biobjective case, we developed an agpraafind all nondominated

points. We also demonstrated that bottleneck tyfegan der Veen matrices and
Demidenko matrices are not .-, and hence the developments are not applicable

to these cases.
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CHAPTER 4

HALIN GRAPHS AND MULTIPLE OBJECTIVES

4.1 Introduction

In this chapter, we study TSP and BTSP on speciblts called Halin graphs.
Although both problems ardlP-Hard on general graphs, they are polynomially
solvable on Halin graphs. We address the multaibje versions of these problems.
We show computational complexities of finding agénnondominated point as well
as finding all nondominated points for differentjaatiive function combinations.

We develop algorithms for the polynomially solvabtembinations.

4.2 Definitions and Background

Some definitions on Halin graphs are provided is #ection. We review TSP and
BTSP on Halin graphs and discuss the polynomiabrdtgns to solve these

problems.

In a graph, the number of edges incident to a mbekes thedegreeof that node. An
undirectedplanar graph is calledldalin graphif it is a combination of a tree with no
nodes of degree two and a cycle passing throughetifenodes of the tree (see for

example Kabadi, 2002). An example of such a tre aaHalin graph constructed
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using this tree is given in Figure 4.1. The leafles of the tree are called theter
nodesof the Halin graph and an edge set that connéetotiter nodes is called a
cycle The remaining nodes of the Halin graph are dafleeinternal nodes If a
Halin graph has only one internal node, it is chbevheel(see Figure 4.2b). Leét
be an internal node adjacent to exactly one otiternal node. Lek(t) be the set of

outer (leaf) nodes adjacent to nade Then the subgraph &f induced by the set

{t} OL(t) is called afan, andt is the center of the fan. In Figure 4.2a, we

demonstrate a fan whete=1 and L (1) ={1a, b, ..., § .

a) A tree having no nodes with degree two b) A igliaph
Figure 4.1 Constructing a Halin graph

Theorem 4.1. (Cournejols, Naddef and Pulleyblank, 1983). A HaraphH which

is not a wheel has at least two fans.
Let H be a Halin graph that has at least two fans. HBtdenote the graph obtained

by shrinking the fan centered tainto a single node¢. In Figure 4.2a, we show a
graphH and a fan centered at node 1. In Figure 4.2bshesv grap(1) obtained
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after shrinking this fan into node 1. Note the{l) is a wheel. The shrinking

operation can be used as a part of an algorithweadiscuss later.

Fan with center 1

-

a) A Halin graphH b) A wheel,H(1)
Figure 4.2 Shrinkingd to H(1)

Theorem 4.2. (Cournejols, Naddef and Pulleyblank, 1983){tfOL(t) is a fan in

a Halin graphH, thenH(t) is also a Halin graph.

Cournejols, Naddef and Pulleyblank (1983) showed TSP on Halin graphs can be
solved in Of). Coullardet al (1993) developed an algorithm that solves the
2-Connected Steiner Subgraph Problem on Halin graphOf). Since TSP is a
special case of this problem, the algorithm dewedbpy Coullardet al. (1993) also
solves TSP on Halin graphs iniQp( Phillips, Punnen and Kabadi (1998) developed
an Of) algorithm for BTSP. Throughout this paper, wd véfer to the algorithm of
Cournejols, Naddef and Pulleyblank (1983)Ca$P and to the algorithm of Phillips,
Punnen and Kabadi (1998) RBK.

In a Halin graph, each fan is connected to the séshe graph with exactly three

edges. For example, the fan centered at nodé-igume 4.2a is connected to the rest

of the graph with edges,(a), (u,1) and (2,%). In a tour, exactly two of these three
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edges are used. If edgel) is used then there are two possibilities tostwet a

tour: either edgek(la) or edge (2,4) is included in the tour. If edge&,{a) is
included in the tour then nodes Ml) are visited by pathdllb,...,1x,1. If, on the

other hand, edge (X]Lis included in the tour then nodele) are visited by path
1,1a,1b,...,1x. If edge @,1) is not used in the tour then both edgesxj2ahd k,1a)
must be included in the tour. The noded.ifi) can be visited i|1|L (1)|—1 different

ways with path &, 1b, ...,1, 1, 1{+1),..., Ix for some nodejl The decisions on
which of the above edges are selected depend oresipective objective function
values inCNPandPPK

In each iteration o€ENP, first a fan is selected. For example, for the dantered at
node 1 in Figure 4.2& NP selects the best nod¢ fbr the pair k,1a) and (2,%).
Then lengths of the paths corresponding to theethears, ¢,1) and k,1a), (u,1) and
(2,1x), and k,1a) and (2,X), are calculated. In order to eliminate the fad ahrink
the graph, new weights of edgdslj, u,1) and (2,1) inH(1) are determined by
solving a system of three linear equatiorGNP keeps shrinking the Halin graph
until obtaining a wheel. The TSP is solved on wWieeel and the optimal tour is

obtained.

Although CNP solves TSP, it is not directly applicable to BTSPPK also uses the
approach of shrinking the graph. The basic ideaingePPK is in the updating
scheme of the weight®2PK defines penalties for the pairs of edges in aoldito the
edge weights. It keeps track of the longest etlge second longest edge, and the
pair of edges with highest, second highest, andl thighest penalties and updates

this information after each shrinking.

Both algorithms are straightforward if edgel( of H is used since there are only
two alternative paths to construct the tour. Hoevevf (u,1) is not used, then the
other two edges have to be used, and the algoritheds to make the optimal
selection for nodejlbased on the objective function used.CNP, the updated edge

weights (those obtained after previous shrinkingrapons) are used during this
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selection. However, iRPPK, the selection is done using both the edge weights
the penalties of edge pairs. In some cases, thayenot be a single best selection
for node 1 and alternative optimal selections may exist.thiese cases, botBNP
and PPK break ties arbitrarily. However, if there are tiplé objectives in the

problem then all of the objectives must be considdo break ties.

4.3 Multiple Objective TSP and BTSP on Halin Graphs

In this section, we first work on biobjective casesl then extend the results to more
than two objectives. For all problems consideredhis section, we assume that a
Halin graph, with multiple weights assigned to eactlits edges, is given. We first
consider the biobjective casés2 TSR 1-2 1-max TSPand2-max TSP We then
generalize the results to multiobjective cases.r €ach case, we define two
problems: finding a single hondominated point andihg all nondominated points.
In the remainder of the section, we refer to thdirHgraph given in Figure 4.3 &%

and use it talemonstrate our proofs.

Figure 4.3 A Halin grap
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4.3.12-2 TSP

Finding all nondominated points

There aredk+1 nodes irH given in Figure 4.3. Cournejols, Naddef and Rilank
(1983) state that there ake2"? different tours irH without a proof. We next prove
this result .

Theorem 4.3. Let H=(N,E) and N|=4k+1. There aréx2<2 different tours irH.

Proof: Define a set of edgds={(1c,2a) (2,3 ,..{( k- }c kg ( ke, 1} , and

observe thatDj|=k. Each tour orH containsk-1 of thek edges oD. Assume that
edge (t,2a) is not in tourg . Then the edgesi(1), (1, 1c), (1c, 1b), (1b, 1a), (1a,
ko), (ka(k-1)c), (k-1)a,(k-2)c), ..., (3, 2c), (2, 2b), (2b, 2a), (2a, 2) and (2 u) must
be in tourg. Consider nodes 3a33b and . Tour ¢ uses the edge ¢23a) to
reach these nodes and leaves these nodes usirdgbd8, 4a). These four nodes
in the tourg can be visited either by patha(33, 3b, 3c) or by path (&, 3b, 3, 3¢).
Similarly, for each node quartét g, ib, ic) i=3,...,k-1, there are two possible ways
of visiting them all. For a fixed elementbf say (&, 2a), there are 2 tours. Since
ID|=k, we can fixk different edges and obtaiffZours for each fixed edge. Hence,

there are&x2“? different tours irH. i
Theorem 4.4. The number of nondominated pointsHris exponential irk.

Proof. Let

wi(e)=2 andw(e)=0 for edgejg, jb) forj=1,...k,

wi(€)=0 andw,(e)= 2 for edge jb, jc) forj=1,...k,

wi(e)=w,(e)=M for edge (&, 2a) whereM is such a big number (i.eM >2“) that
edge (t, 2a) cannot be used in any efficient tour, and

wy(e)=w(e)=0 for all other edges iH.

The tour length of any tour with respect to eacjective is at least'22? since edges
(1c, 1b), (1b, 1a), (2c, 2b) and (D, 2a) are used in every efficient tour. If the length
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of a tour in the first objective is representecbinary digits then th¢" digit of the
number corresponding to the tour length is set ifoetige fa, jb) is used and to O if
edge jb, jc) is used in the tour. Similarly, for the secorijeative, thg™ digit is set
to O if edge j@, jb) is used and 1 if edggb(jc) is used. Since each digit represents
the selection of an edge and there ka2 such edges, totall%‘?different numbers
can be written in binary digits. The same numbedistinct tour lengths can be also
obtained for the second objective. Since the sttheotwo objective function values

[
is constant (and is equal EZ" = 21 - 2), each of the 2 tours is efficient irH.

=1
Since these tours have different objective functialues, each of them corresponds

to a different nondominated point in the objectpace. o

Since the number of the nondominated points is eeptal, the problem of

identifying all of them irH is intractable.

Finding a nondominated point
CNP solves the single objective TSP for any given ialiaph. The point found by
CNP may be dominated when we consider multiple objesti The following

perturbation in the weights guarantees to obtaiaredominated point usingNFP:

W (€)= w(g+ew(¢ DellH

where ¢ is a sufficiently small positive constant to aveveakly nondominated but
dominated points. In Theorem 3.5, we develope@@ropriate range of value
for 2-2 TSP

Let w(e) be a convex combination of two weights:

w(e)=Aw(g+(1-1) w( ¢ DedH, A0[e,1-¢].
CNP can be used with this weight set to find an ex&resupported nondominated
point. Aneja and Nair (1979) develop a method ital fall extreme supported

nondominated points by systematically varying fhealue for the biobjective

transportation problem. In Section 3.4, we implatad this approach dX TSP
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All extreme supported nondominated points can lbmdousing the above approach.
In order to find any nondominated point, we may asariation of thes -constraint
approach (see for example Steuer, 1986, pp 202-208) impose an upper bouhd
on the first objective and minimize the second ofdye, breaking ties in favor of the

first objective. This corresponds to probléx

P1:min f2(¢):§¢[w2(63+€v¥( ¢

st

L@)=Y w(esU
ellp

$OF

Consider graptH given in Figure 4.3. LeH' be a special case &f such that
w (e)=w, (€)= M for all edgesy, j) j=2,... k-1, whereM is such a big number that
these edges cannot be in any efficient taw(re) =w, (€) =0 for edgesy, 1) and ¢,K),
w(e) = w,(e) = 0 for all edges j¢, (+1)@) j=1,...k-1 and for kc/la),

w (e)=w, (€)= 0 for all edgesij(ja), (, jb) and [, jc) j=1,...k. In Theorem 4.5, we

prove that solving’1 on H' is NP-Hard in the ordinary sense.
Theorem 4.5 ProblemP1on H' is NP-Hard in ordinary sense.

Proof. Every efficient tour starts with path,(1, 1a, 1b, 1c, 2a) and ends with path
((k-1)c, ka, kb, kc, k,)u Tour lengths are determined by the selectidriseopaths to
visit the inner nodes at fans centered at nodes. 2k3L. As in the proof of Theorem
4.3, nodg can be visited in two different wayga,(j, jb, jc) or (a, jb, j, jo). Let us
define a binary decision variab¥, j=1,...,k,such that
~ {1 if path ( ja, jb, j, jc) is selecte
' |oif path(ja, j, jb, jc) is selecte

Define penalties
p (1) =w(ja jb)=w( jb, jc) and

p, (1) =[w,(Ja, jb)—w,( jb, jc) |+ p( ]) for each, j=1,....k
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ProblemP1 can be redefined as

P2: mmz[ R()X+w(ibig+ew( ibig]

st
Z[pl )X, +w( jb, jc)|s U
X, 0{0,} j=1.k.

Sincew, ( jb, jc), w,( jb, jc) ande are constants, ( jb, jc)+ew/( jb, jc) can be
dropped from the objective function. Letp,(j)=-p,(j) O and

U'=U-> w(jb, jc). ThenP2is transformed t&3.

i

P3:maxg p( ) X
st
Zp1 )X, sU’

0{o.3

The transformations frorR1 to P2 and fromP2 to P3 are both polynomial P3is a
0-1 Knapsack problem, which NP-Hard in the ordinary sense. Since the 0-1
Knapsack problem is a special caséP@fon H', P1 on H' is alsoNP-Hard in the

ordinary sense. o

For H', we can use the pseudo polynomial dynamic progdaweloped for
knapsack problems (Martello and Toth, 1990) toes8ht’ TSP However, the graph
structure ofH' is a special case éf, and hence solving1 on a general Halin graph
may be more difficult than solving it oA'. Further analyzing the computational
complexity ofP1 and developing an algorithm for solviggx TSPon general Halin

graphs are future research topics.

For 2-2 TSR we showed that each extreme supported nondordirgimt can be
found in Of) by using convex combinations of two weight settéowever, finding

other nondominated points (both nonextreme supg@nme unsupported) P-Hard
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in the ordinary sense for a special case of Hataplgs. We also showed that finding
all nondominated points is intractable. We nextsiderl-X' 1-max TSP

4.3.21-2' 1-max TSP

Finding a nondominated point

Let f,(¢) :%wl(e) and f,(¢) = rQ]?x{ w( 6}. We develop an algorithm that finds

a nondominated point for this problem. Our aldornt usesCNP and PPK
simultaneously. The inputs of the algorithm are weights of the edges and an
upper boundJ on thel-maxobjective. The output is the minimuiaX’ objective

value satisfying the upper bouhdon thel-maxobijective.

Max_Algorithm
Input: w, (€) and w, () for all eJE, andU.
Output: A tour ¢ with minimum f,(¢) wheref,(¢)<U

Steps of the algorithm
Step 0 Using a sufficiently large numbeé, update the edge weights as

follows:

(9]

w(e) if w(gsU

e E
M if w,(€) > U

Step 1 RunCNP with V\ll(e) weight set and calculate the pair penalties of the

BTSP-type objective function with the selections @NP (not with the
selections oPPK). Break the ties oENP using the penalties ¢tPK. Let

the optimal tour bep”and the objective function value Q€(¢D) :

Step 2 If f1(¢D)<M then ¢" is optimal; stop. Otherwise, there is no

solution satisfying the given upper bound.

In Step 0 oMax_Algorithm w, (e) values are compared with If the weight of an

edge in the second objective is larger tharthen its weight in the first objective is
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set toM. This comparison and updating is done inE{)(] By Euler's formula,

|E| <3n-6 for |E| 23 for planar graphs (see Bondy and Murthy, 1979hc&Halin

graphs are planar graph(|E|)=0(r) . Step 1 use<CNP and PPK, both

algorithms run in Qf). Step 2 runs in O(1). Overall complexity dax_Algorithm
is O().

In Step 1, we us€NP andPPK simultaneously. In the origin&PK algorithm, best
selections are made using the BTSP-type objective. force thePPK algorithm to
use the selections that are best for @¢P algorithm. The selections of tHPK

algorithm are important only if there is a tie e CNP algorithm’s selections

Theorem 4.6. Given a Halin graph and an upper bolwhdn thel-maxobjective, a

nondominated point tb-2~ 1-max TSRan be foundih O(n).
Proof. The Max_Algorithmfinds a nondominated point in ( o

Finding all nondominated points

In Theorem 4.3, we proved that the number of tguosvs exponentially. Hence the
objective function value fot-2 may take an exponential number of distinct values.
However, the number of distinct values fbymax objective is bounded by the
number of distinct edge weights and that is bourtsethe number of edges. The
number of edges is bounded byn( Therefore, the number of nondominated points
for 1-X' 1-max TSRs bounded by @ due to thel-maxobjective.

The complexity of finding a nondominated point ignpand the number of
nondominated points is bounded bynD( All nondominated points can be
determined in Of) using theMax_Algorithmby systematically varying the upper

boundU. We develop théterative Algorithmto find all nondominated points.
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Iterative Algorithm
Input: w, (€) and w, () for all eDE.

Output: Set of nondominated points
Steps of the algorithm

Step 0.a.Sort w, (€) values in nonincreasing order and let
W={£//[1],l//[2],...,l//[r]} be the set of distinct edge weights, such
thatyl! > i+,

SetS=[].
Step 0.b CallMax_Algorithmon w; (€) with U=y and let the optimal tour

be¢CNP.
§ CNP :(f1(¢CNP), f2(¢ CNP)).
Step 0.c CallPPKon w,(€) and let the optimal tour bg' .

Call Max_Algorithmon w; (€) with U= f,(¢') and let the optimal

tour bep™™ .
§ PPK :( f1(¢PPK)’ f2(¢PPK)),

If £ =fP"then setS= SD{¢PPK} and stop since there is a
single optimal solution, else go Stepl.
Step 0.d Setc=0, ¢°=¢°"* and f, (¢°) = f,(¢°*").

- i c =yl
Step1l Let] —arigmax{w“ < fz((p )} , setU =g,

Cc=Cc+1,
Call Max_Algorithm let the solution be&*°,

if fl(¢°) < f1(¢PPK) then setS= SD{¢°} and go to Step 1 else go

to Step 2.
Step 2 The set of nondominated pointsSis
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In each iteration of the above algorithiiax_Algorithmis called. In the worst case,
all edges have distinct weights aftdrative_Algorithm calls Max_Algorithm for
each edge. Since the number of distinct edge wsighbounded by @f, the

complexity oflterative_Algorithmis O(?).

Theorem 4.7. Given a Halin Graph, all nondominated pointdtd 1-max TSRan
be foundin O(n?) .

Proof: Thelterative Algorithmfinds all nondominated points in &}. o
4.3.32-max TSP

Finding a nondominated point

Finding a nondominated point @max TSHs easier than that df-> 1-max TSP
We usePPK twice and find a nondominated point for a givenermpound on one of
the objective values. We refer to this algorithsi2&lax_Algorithm This algorithm

finds a nondominated point ®max TSRn O(n).

2Max_Algorithm

Input: w, (€) and w, () for all eJE, andU.

Output: A nondominated point (¢) =(f,(¢), f,(#)) with minimum f,(¢)
wheref,(¢)<U

Steps of the algorithm
Step 0. Using a sufficiently large numbeW, update the edge weights as

follows:

(9]

Step 1 RunPPK with W, (e)weight set. Let the optimal tour bg’and the

w(e) if w(gs=U

el E
M ifw,(g)>U

objective function value btg((pm) and f2(¢D).
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Step 2 If fl(¢D)2 M then stop, there is no solution satisfying theegiv

upper bound. Else go to Step 3.
Step 3 Using a sufficiently large numbeé, update the edge weights as

follows:

w, (e) if < f(g"”
(9 ( ). w(d I(D) e

M ifw(e)> fl(¢ )
Step 4 RunPPK with w, (€) weight set. Let the optimal tour p&’and the
objective function values H@((pm) and f, (¢m).

Step 5 Report the pointf (¢m) as the nondominated point satisfying the

given upper bound.

Finding all nondominated points

This problem is similar td-X 1-max TSP Iterative_Algorithmcan be modified by
replacingMax_Algorithmwith PPK in Step 0.c and replacingax_Algorithmwith
2Max_Algorithmin Step 0.b and Step 1. We will refer to thiscaithm as
2lterative_Algorithm The complexity of identifying all nondominated ptsinof

2-max TSRs On?) by using2lterative_Algorithm

Up to now, we discussed three biobjective problenmsthe following subsections,

we will generalize the results to multiobjectivelplems.
4.3.4p-2 p-max TSP

There argy; TSP-type ang, BTSP-type objectives in this problem. Fmr2, we
know that finding a nondominated pointNg>-Hard and finding all nhondominated
points is intractable. Since increasipgdoes not simplify the problems, the same

complexity results are valid fop, 22. We next consider the remaining two cases:

p,=landp, =0.

48



4.3.51-2 p-max TSP

In Theorems 4.6 and 4.7, we showed that a nonddedrzoint can be found i@(n)
for 1-X 1-max TSPand all nondominated points for this problem canf@und in

O(n?). In this subsection, we generalize these refwits-> p-max TSP.

Finding a nondominated point

For this problem, we consider that an upper bosridtroduced for each BTSP-type
objective, and the TSP-type objective is minimizedbject to thesp upper bounds.
A nondominated point can be obtained with a modifan in Step 0 of
Max_Algorithm An updating is done for the distance matrix esponding to the
BTSP-type objective in the originMax_Algorithm This updating operation should
be done for alp BTSP-type objectives. The complexity of the updais Opn).
Max_Algorithmcan be used to find a nondominated im)O(The overall complexity

of finding a nondominated point is thenpdy).

Finding all nondominated points
Each BTSP-type objective function can taken)Qlistinct values. In the worst case,

there are Qf) distinct combinations of objective function vasufer p BTSP-type

objectives. On the other hand, the TSP-type obgdunction can hav@(ﬁE‘)
distinct values. So we conclude that the numbethef nondominated points is
bounded by Q). For each combination of upper boundp &TSP-type objectives,

the modifiedMax_Algorithmcan be used. The set of nondominated points ean b
identified in Opr*™).

4.3.6p-max TSP
We showed that, fo2-max TSPa nondominated point can be found imgsing

2Max_Algorithmand all nondominated points can be identified D using

2lterative_Algorithm In this subsection, we generalize these refuifg-max TSP.
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Finding a nondominated point

For this problem, we consider that an upper bosnihtroduced for all BTSP-type
objectives but the last one. The last BTSP-typeative is minimized subject to
these p-1 upper bounds. A nondominated point can be péthiby the
2Max_Algorithmafter two modifications on this algorithm. An @thg is required
for the distance matrix corresponding to the BT@ketobjective in Step O of the
2Max_Algorithm This updating operation should be done forpEIBTSP-type
objectives. This can be done indd). PPKis called in the first step of the algorithm.
Steps 3 and 4 must be executed for each ofptheobjectives in order to ensure
finding a nondominated point. After these modificas, the complexity of the
2Max_Algorithmis still O(n).

Finding all nondominated points

Each BTSP-type objective function can taken)Odistinct values. Since we are
minimizing one of the objectives, in the worst gae remainingp-1 BTSP-type
objectives may have @") distinct combinations of objective function vasue
Hence, the number of nondominated points is bounbgd OQ"*) and all

nondominated points can be identified i@ in the worst case.

4.4 Discussions

In this chapter, we considered polynomially soleagpecial cases of two problems,
TSP and BTSP. Although both problems &B-Hard in general, there exist
polynomial algorithms when these problems are defion Halin graphs. We
addressed the multiobjective versions of theselpnad with various combinations

of objective functions.

We showed that, when there are two or more TSP-tjgjective functions in the
problem then finding a nondominated pointNiB-Hard and there are exponentially
many nondominated points. However, if there isnaist one TSP-type objective

function in the problem and all remaining objecsivare BTSP-type, then the
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problem is polynomially solvable. We developedoaitnms to find nondominated

points.

To summarize, we showed the complexity resultsalbpossible combinations of
TSP and BTSP-type objectives for multiobjectivelgeons on Halin graphs and we

developed polynomial time algorithms where possible
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CHAPTER 5

AN EXACT ALGORITHM TO FIND ALL EXTREME
SUPPORTED NONDOMINATED POINTS IN
MULTIOBJECTIVE PROBLEMS

It is possible to find all extreme supported nond@ted points of a biobjective
integer programming problem in the objective spasig the algorithm of Cohon
(1978) and Aneja and Nair (1979). However, thiggoathm is not directly applicable
to problems with three or more objectives. In tbipter, we develop an exact
algorithm to find all extreme supported nondomidapmints of a multiobjective
problem. We propose several properties to impribne algorithm. We test our
algorithm on the Assignment, the Knapsack and tlaedling Salesperson Problems

with three and four objectives.

5.1 Introduction

Consider the following single objective integer gmam, MOIP(/I), which has a

weighted sum objective function:
p
min ACx=>"2, (%
q=1

st xOX
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where AOR? and R? :{/l ORP:A,>0,0=1,.. ,p} . The optimal solution of

MOIP(A) is an extreme supported nondominated poinM@iIP for anyAOR?.

As we defined in Chapter Xg is the set of all extreme supported nondominated

points.

For a multiobjective linear progranMOLP, all efficient solutions are supported
(Steuer, 1986). There are algorithms to genethédfient solutions oMOLP, see
for example the ADBASE algorithm developed by Sted®89). Benson and Sun
(2002) proposed an algorithm to find all nondomedapoints in the objective space
for MOLP, instead of studying in the decision space.

However, research about this issue MOIPs is very limited compared to that of
MOLP. For biobjective integer problems, Cohon (197&) &neja and Nair (1979)
developed similar algorithms to find all extremepparted nondominated points.
They proposed a systematic way of varying the wsigli the objective functions.
However, to the best of our knowledge, only Przgkiyl Gandibleux and Ehrgott
(2007) propose an algorithm to find all extrememurped nondominated points of

MOIP with three or more objective functions.

In this chapter, our aim is to develop an algorittorfind all extreme supported
nondominated points dflOIPs. In Section 2, we review the algorithms of Cohon
(1978) and Aneja and Nair (1979). We discuss tielysand the algorithm of
Przybylski, Gandibleux and Ehrgott (2007) in Sett® In Section 4, we present
additional definitions and our algorithm. In Seati 5, we discuss possible
improvements. In Section 6, we report the comjmrtat results on the test problems.

In the last section, we conclude the chapter.
5.2 Algorithms for Biobjective Integer Problems

In this section, we review the algorithm develofpgdCohon (1978) and Aneja and
Nair (1979) for the biobjective integer problemSohon (1978) calls the algorithm
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as Noninferior Set Estimation (NISE). We will caHlis algorithm as theCAN

algorithm due to the initials of the authors.

CAN keeps a lisL. The elements of are extreme supported nondominated point

pairs. In each iteration @AN a pair of extreme supported nondominated posatsg,

(yk, yj), is selected from a lidt. Consider pointy* andy in Figure 5.1a. The

normal vectorA of the line passing through these points is cateal such

thatly“ =Ay'. MOIP(A) is solved with this1. Let y” be the point corresponding
to the optimal solution oMOIP(A). If Ay’<Ay*, as in Figure 5.1b, thep" ;.
New point y” is recorded and two new pa(ryk, yD) and(yD, yi)are added ta. If
Ay”=Ay* then CAN concludes that no more extreme supported nonddetina
points can be obtained from this pair. At the ehthe iteration, the pai(ryk, yi) is
removed fronL. CAN stops when the lidt is empty.

To initialize CAN, the pair(yl,yz) is generated such thaf = min{ )ﬁ} g=1,2.

Yo%
These points can be obtained by solviMOIP(A) with A=(1-¢,6) and
A :(e,l— 5) where¢ is a very small positive problem instance speabastant to

avoid dominated points. Aneja and Nair (1979) sbbvhat the algorithm stops

exactly after2|Y,| - 3 iterations if|Y;| > 2.
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Figure 5.1 An example iteration GIAN

In biobjective problems, if the nondominated poiats sorted in increasing order of
their first objective function values, then theg aaturally sorted in decreasing order
of their second objective function values. Thisaispecial property of biobjective

problems and is not valid for problems with threenoore objectives. By this

property, for any pai(yk, yj) , both weights are strictly positive, 1R?.

Solanki, Appino and Cohon (1993) and Przybylskin@hleux and Ehrgott (2007)
point out two difficulties in generalizin€AN to problems withp >3 objectives.

The first difficulty is the determination of initipoints. Sincep points are needed to
define a hyper plane iR", we have to seleq points minimizing each objective

function. Ifp=2then, for each objectivg, there exists only one point' Y. such

that y; = min{ )ﬁ} . Due to the special property of the biobjectivehtems,

y¥OYe

v = 511&’{ 32} for r #q. However, if p=3, then for each objectivg there may be

more than one distinct poirt® 0Y; such thaty; = min{ ){q‘} . Thus, the selection of
ana

the initial problems may be problematic. The sekcdifficulty is about the normal
vector of the hyperplane passing throygtpoints. In biobjective problems, the

normal vector always has positive components. Hewéor p=>3, it may have

58



some negative components. Using suci &ector in MOIP()I) may result in

dominated points.

We will use an example developed by Tenfelde-Pod2BD3) throughout this
chapter to explain the algorithms and their deta®nsider an assignment problem
with p objectives:

This problem has three objective functions andellewing cost matrices:

andC?®=

g o1 W o
w 01 b
a N W w
N O b O
a b~ w b
N A BB
AN NN
g o ~ b
W w o N

There are four extreme supported nondominated gamthis example problem:
y'=(11,1119, y*=(15,9,19 , y*=(19,14,1Q and y*=(13,16,1)}. The first
three points are the unique optimal points of theresponding single objective
problems. Przybylski, Gandibleux and Ehrgott (2005ed this example and showed
that a direct implementation &AN is not able to find these four points. By solving
single objective problems, the first three pointse éound. However, the plane
passing through these three points has a negagéireeat in its normal, angf cannot
be found.
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5.3 The Algorithm of Przybylski, Gandibleux and Ehrmgott (2007)

In this section, we discuss the algorithm propolgdPrzybylski, Gandibleux and
Ehrgott (2007) to findv; of a MOIP withp=3. We call this algorithm th®GE

algorithm. They develop some properties for théghtespace of a MOIP and use
these properties in tHeGE algorithm. Some of these properties will alsouseful

in the proofs related to our algorithm.

In the PGE algorithm, they use the weight space decomposéjproach of Benson
and Sun (2000). Benson and Sun (2002) developealgamithm to findY; of a

MOLP. However their algorithm is not applicable MOIP since it uses some

properties of linear programming.

The weight space decomposition approach uses aatinen weight space#/® and

decomposes it into subsat®’ (y) for all yOY,. Each subsét/®(y) corresponds

to the weight set whenrg is the point corresponding to the optimal solutairnthe
MOIP(A).
p
WO ={/1 OR2, DA =1} andW°(y) ={A0W: A y< A y: §0 ¥
i=1
whereyOY;.
Benson and Sun (2000) showed thdt= U W°( ).
yOYe
Let us defineConvYas the convex hull of ={ yOZP : y= Cx xJ >} . Przybylski,

Gandibleux and Ehrgott (2007) developed the foltayproperties for MOIP with

p objectives. Note that the dimensionwf is p-1.

Proposition 5.1. (Przybylski, Gandibleux and Ehrgott, 200W°(y) is a convex
polytope.
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Proposition 5.2. (Przybylski, Gandibleux and Ehrgott, 2007)he nondominated

point y is an extreme nondominated point @bnvY if and only if Wo(y) has

dimensionp-1.
Definition 5.1. (Przybylski, Gandibleux and Ehrgott, 2007). Two rewrie
nondominated pointy* andy? are adjacent if and only Wo(yl)ﬂ V\f’( )F) is a

polytope of dimensiop-2.

The weight space decomposition cannot be usedgltiman search oY, sinceY; is
not completely known. Let us defing as the set of known solutions at some
iteration of the algorithm. Przybylski, Gandibleard Ehrgott (2007) proposed to

decompose the weight space properly by usfhas follows:

W;’(y):{ADV\/O:A y<Ay: YO g/} whereyOY..

The PGE algorithm keeps the information dN,f(y) for all yOY.. For each
solution yY;, PGE searches for new solutions at the boundariewp%(f y) and
updates the proper decomposition information as smutions are added ¢ . For
example, ifp=3 ,y', y’OY. and they are adjacent, thwf(yl)ﬂ V\g)( )f) is a line

segment. PGE searches for new solutions on this line segmentsblying
biobjective problems. HendeGE utilizes CAN for this purpose. OriginallyCAN
works in the two dimensional objective space. Hmvd>GE usesCAN in the two
dimensional weight space oMOIP with three objectives. Similarly, multiobjective
integer problems with four or more objectives atsoarecursively reduced to
biobjective problems in their weight spaces angeblusingCAN

5.4 An Exact Algorithm

In this section, we develop an exact algorithm imd fall extreme supported
nondominated points of a multiobjective integer heon with three or more

objectives. We first provide the additional defims and notation. We then
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introduce a set of dummy points and their effectde weight and objective spaces.

Finally, we introduce the algorithm.
5.4.1 Additional Definitions

We first present the definitions @hlid inequality face andfacetfrom Nemhauser
and Wolsey (1998). Using these, we definenandominated faceand a

nondominated facet

Definition 5.2. (Nemhauser and Wolsey, 1988). The inequality< A, (or (1,4,))
is called a valid inequality faConvYif it is satisfied by all points i€onvY
Definition 5.3. (Nemhauser and Wolsey, 1988).(H,)I0)is a valid inequality for
ConvY F ={yOConvY:A y=A}}, Fis called a face a€onvY

Definition 5.4. (Nemhauser and Wolsey, 1988). A fdeeof ConvYis a facet of
ConvYif dim(F) = dim( Convy-1.

Definition 5.5. A nondominated face is a face@bnvYwith ACORP.

Definition 5.6. A nondominated facet is a facet@bnvYwith AOR?.

Let us defineg-dimensional nondominated faces @bnvY as SHqg). Then the

nondominated frontiekDF is defined as:

NDF=GSF(a).

q=0
Using only the nondominated facets may not be eimaaglefine the nondominated

frontier, i.e., there may be cases Whéﬂ@F;tSF( p—l). For example, the
nondominated frontier of the linear relaxationfué £xample problem is:

NDF ={y: y=ay+(1-a) ¥, 0sa<3}O

{y y=a'y+a*y+a’ya = Oiai = }

i=1
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In this problemNDF consists of a facet andpa2 dimensional face. In Figure 5.2,
the nondominated frontier (5.2a) and the weightspdecomposition (5.2b) of the

example problem is given.

Let us define dummy points in the objective spacéotows:
m'=Mxg for g=1,...,p,
whereg, =(0,...,0,1,0,..., P is theq" unit vector andM is a large number. These

points havep-1 components equal to zero, agitlcomponent equal tM. We will
derive a lower bound fdvl in Section 5.4.2. These are infeasible dummy paanid

there exists noyJY; dominating these points since we assume tp(ax) >0 for

g=1...,p. Letus define two sets:

p
Yy, =Unf andY,, =Y. O Y,.
o=

Introducing the dummy points has important effeotsthe weight and objective
spaces. We first mention the effects on the wesglatce and provide Theorems 5.1
and 5.3.
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Figure 5.2 Properties of the example problem

61



The weight space decomposition in Figure 5.2b isedior yOY.. We propose to

consider the dummy points in the weight space deoaition, in addition to the
p

pointsyY, . Let Boundar)( V\?)={/1D wW: ”Aq =O}, i.e., at least onel, is
q:

equal to zero. The effect of introducing dummyni®iis given in the following
theorem.

Theorem 5.1.1f W°= U W°(y), thenW°(y)N Boundarf W) =0 forallydY,.
YO¥em

Proof. On the boundaries &/°, at least one of the weights, saty, is equal to 0.

Since f,(x)>0 andAy>0 for all yOY. and AOW°, we haveim®=0 .

Corresponding boundary is W° ( rrf*). o

We first mention the effect of the above theorem tbhe weight space on a
biobjective problem and then generalize it. Ifréhare two objectives, tha® and

weight setsWO(y) are line segments. Only two points, sayand y*, have

common boundaries wittW° and these points are adjacent to only one othiait.po
Every pointy Y., excepty' and y*, are adjacent to exactly two other pointsvin
These adjacent points determine the boundaridseoiveight set decomposition. By
introducing pointsm' and m?, we crop some portions WO( yl)andWO( y2) such
that they do not have common boundaries with So every point iry; is adjacent
to exactly two points iy, . For a problem witlp objectives, there may be a point
in Y such that it is adjacent to only one other pomv¥i. However, the upper

bound on the number of points adjacenyta Y, is Y| -1, notp.

Let us define the sefsy) andNA(y) for yO'Y,, as:

A(y)={yDOY,: yand y are adjace.
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NA(y)={yO ¥, : yand ¥ are not adjacdr.

By definition, A(y)O NA(y)O{ y= ¥, and A(y)n NA(y)=0O for any yOY,, .
In Theorem 5.3, we prove that every poyil Y. is adjacent to at leagtpoints in

Yeu -
Theorem 5.2.(Kalai, 1993). Every-dimensional polytope has at legstl facets.

Theorem 5.3.Every pointy Y, is adjacent to at leaptpoints inYg,, .

Proof. For a giveryDY,, W°(y)is a convex polytope with dimensignl (by
Propositions 5.1 and 5.2). Moreov, ( y)\W°( y) is a polytope with dimension

p-2 for ally' O A( y) (by Definition 5.1). In order to define a poly®pf dimension

p-1, at leastp facets (faces with dimensiom2) are required (by Theorem 5.2).

Henceymust be adjacent to at legspoints. Every poinyY; is adjacent to at

leastp points inYg,, . O

Note that, all points adjacent ]Y. are not necessarily if. and some of them

may be inY,, .

We observe that, i¥ =0 thenY. =00 becauser; O Y. Itis obvious that, ify # O

thenY, 20 .

Corollary 5.1. If Yz 20 then every pointy Y, is adjacent to at leaptpoints in

Yeu -

Proof. By Theorem 5.3, we know this corollary holds &veryyOY.. If Y. =0,

then every dummy pointJY,, is adjacent to the remainingl dummy points. If
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|YE| =1, then every dummy point is also adjacent to tlistpdue to Theorem 5.3, i.e.
this point must be adjacent to at legspoints. Adding more points t4. cannot
decreasefeA( y)| for any yOY, . Hence, given that, # [, every pointydY,, is

adjacent to at leagtpoints inYy,, . o

Introducing dummy points also affects the structoiréhe objective space. Let us

defineConv¥y as the convex hull of,, , and nondominated frontier Gfonv¥ey as

NDFem. We first prove that the dummy points are extremeported nondominated
points. We next show that we can defiMieFgy only with the nondominated facets,
SHp) of Conv¥.

Theorem 5.4.The dummy pointm’ Y, is an extreme supported nondominated

point Conv¥w.

Proof: The dummy point® is nondominated since np0Y, can dominaten’ due
to the assumptiorf, (x) >0and nom‘0Y, , k # gdominatesn’. This point is also

an extreme point since it§" objective function valueM is the largest value in

objectiveq. o

Theorem 5.5.NDF,,, = SF( p).

Proof. Assume that there exists a faEel] SF( g)and there exists g OSF( p)
such thatF, OF,. This is possible if there existsyed F,such thatA(y)| = q-1.
Since|A(y)| 2 p for yOY,, (by Theorem 5.3 and Corollary 5.3.1) it is notgibke

to have such a poingY,, . Hence nondominated frontier Gfonv¥y can be

defined by the set of nondominated facets. o

In Figure 5.3, we present the effect of dummy mintthe objective spaceConvY

(Figure 5.3a) is defined with a face and a facthe face passes through poigts
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andy?. The facet passes through the points”® andy®. Conv¥ycan be defined by
using only facets. The blue facet is the sametfased inConvY The red facets are
defined by two points ilYg and one point itYgy. The grey facets are defined by one
point in Y and two points inYgm. All O-dimensional and 1-dimensional faces of

ConvYare transformed to 2-dimensional facets by theofisee dummy points.

(a) NDF (b) NDFey
Figure 5.3 The effect of the dummy points in thgotive space

5.4.2 The Algorithm

The main idea of the exact algorithm is very simitathat of CAN We start with a
set of initial points. At each iteration of theyatithm, we try to find new points in
Ye or identify new facets a€onv¥y. The algorithm stops when no more points or

facets can be identified. We call our exact atponi asExA

The CAN algorithm uses pairs of extreme supported nondatach points and
calculates the normal vector of the line passimgugh these points. Using two

points is sufficient for the biobjective problemsce two points can define a facet of

the nondominated frontier. Similarly, we definset R:{ [ S "} containingp
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points wherer0Y. O, for q=1...,p. We refer to thesR sets astages ExA

keeps track of three different lists of the stagélese lists are:

L : list of stages to be searched,

V : list of stages already searched (visited), and

F : list of facet defining stages.
Lists L, V andF are sets and their elements are stages, whichlsoesats with
exactlyp elements.F is a subset 0¥.
Steps ofExA s given in Figure 5.4. At the first step of thlgorithm, we initialize
the setY; and listsF, L andV. Variablek corresponds to the cardinality gf and it
is initially set to one. The important featuretlois step is the initialization af with

the dummy points.

During the search of the algorithm, a st&js selected fronk. and it is added t¥ at
the second step. The normal of the hyperplanepassing through the points of

stageR, is calculated at the third step. AfJR?, then MOIP(A) is solved and

optimal pointr” is obtained at Step 4.1. if R then we conclude th& is a facet
defining stage and it is added Foat Step 4.2. I¥”"0R then,p new stages are

generated by replacing’ with eachelement olR. A newly generated stage is added

to list L, if it is not already a member of listsor V. Otherwise, it is discarded in
order to prevent cycling between a subset of statfes’JY(, then it is a new point
and is added t; as thek™ member. If a stagR has a negative component in its

normal vector, then that stage is discarded at Step

The stager is removed from list. at Step 6, since a search is performed with this

stage. At Step ExAreportsY. andstops if there are no more stages to be visited,

otherwise, the algorithm moves to Step 2 for a search.
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ExA

. SetY, =0, k=1,V=0,F=0,L={(m,nf,...nt)}.

Initialize
. Select an elemerR={r',r?,...r?} OL and setV =VO{R.
. CalculateA such thatir' =Ar®=...=r".
. If AOR?
4.1. Solve problemMOIP(A) and let the optimal point be
rD:(rlD,rf,...rpD).
Search 4.2.1f r"OR then setF = FO{R}.
4.3.1f r”0R then
4.3.1. L:LD{{rl ..... r’”,rD} ,{rl 5 "} {( Joa p}}
andL=L-(LnV).
4.3.2. If r70Y¢ theny* =17, Yz = Y. Of ¥} andk=k+1.
. If AOR? then go to Step 6.
contal L=L-{R}.
the loop

. If L=0 then reporty; and stop, otherwise go to Step 2.

Figure 5.4 Steps &xA
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In the following theorems, we prove th&xA finds all extreme supported

nondominated points in finite iterations and doetsfimd any other points.
Theorem 5.6.ExAends in a finite number of iterations.

Proof. Whenever a stage is selected, it is recorded Ybin Step 2. If a generated
stage (at Step 4.3.1) is alreadynthen it is immediately removed frolm Hence a

stage can be visited at most once during the algori Number of stages visited is

\V| and it is bounded by:

|V| < ['YE 0 YM|j - |YE 0 YM|! )
P P % O Y, |- B!
HenceExAends in a finite number of iteration. ]

Note that although there is a finite number ofa’t’ems,|YE| may be exponential in

the problem size anlxAmay require an exponential number of iterations.

Theorem 5.7.r"0Y;.
Proof. r” is obtained byMOIP(A) using AORP. o

Corollary 5.2. Y; O Y.
Proof: Follows directly by Theorem 5.7. o

Let C, = Con\{ (S ,rD} denote the convex hull defined by;r?,...r Pandr”
where R={r'r?....r*} and r” solves MOIP(A) for AOR? such that

t=ar=. =P,

Lemma 5.1.There exists no extreme supported nondominated poihe interior of

Cg, intCy. (In other words, there is nd such thatr’ Y, nintCy)
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Proof: Assume that' OintC,. Then by Minkowski’'s Theorem

p
r'=at"+) a't* for somea = (al, @ ,aD) ORP such that
k=1

: k O

Za =l-a .

k=1

Sincer' can be expressed as a convex combination of otietsgn Yg,,

r'dYg, andYg, nint G, =0 m
Theorem 5.8.EachR F defines a nondominated facet@dnv¥w.

Proof. A stageR is added td= if AORP andr”’OR. There arg extreme points in

R and they are affinely independent sikElR”. Hence the polyhedron defined by

R has dimensiop-1 and is a nondominated facet@invéy. o

In the next theorem, we prove thaxA finds all extreme supported nondominated

points. We need the following two definitions hretproof of the theorem.

B ({ fr?y p}) :BE(R) ={y=(>{13/z ""’yp)

p
DAz AT
gq=1

where/g' = i"qR [11 - Zp‘/lqutf = - :-Zp‘,/‘quqp}
g=1 g=1 =1

We defineB*(R) for ROF. The hypervolume defined bB*(R) is the set of

points dominated by any linear combination of thenfs inR.

BS({rl,rz,...,r p}):BS(R):{y=(yL,y2,...,yp) xszp:ak £ O0q

P
WhereZa'k = ,01>00 %
k=1
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We defineB*(R) for ROFO L. The hypervolume defined bB* (R) is the set of

points dominating all convex combinations of thinminR.

Theorem 5.9.At the termination oExA Y. = Y.

Proof: By induction we will prove that ify* 0Y, then the following term holds at

each iteration of the algorithm:

y‘0 | B(R.

ROFOL

At the first iterationF O L :{(ml, nt,..., rr?)} , and the term holds since all feasible

points lie in the defined hypervolume.

Assume that at some iteration of the algorithmtéme holds. Then at that iteration,
an elemeniRO L is selected in Step 2 and tlevector corresponding to stageis

calculated in Step 3.

If AOR?, thenMOIP (/) is solved and the optimal point is obtained in Step 4.1.

If r"OR thenR is added toF (in Step 4.2) and removed froin (in Step 6)
henceF O L does not change. KH'OR thenR is removed froni (in Step 6). In

Step 4.3.1p new stages are generated and the unvisited opeadded td.. By

removingR and adding new stages tb, some hypervolume defined by the term is
removed, however, by Lemma 5.1, we know that tiereo y“ O, in the removed

hypervolume.

If AOR? then the hyperplane defined I® cannot define a nondominated facet.

HenceR is removed fronik (in Step 6).

Therefore after one iteratiogp 0 | ] B*(R) still holds.

ROFOL
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The algorithm stops wheih =0 . At the end of the algorithnF OL=F .
y“O(J B*(R) holds for ally*0Y.. Also all feasible solutions are B (R) for

ROF

all ROF. So for all extreme supported nondominated ppiyits] BZ( R) for all

ROF. Moreover,y*0 N B*(R). Hence for everyy*OY,, there exists &0 F

ROF

such thaty* [J Bz( F\*) n E( R“). This completes the proof. 0

In Figure 5.5, we show the progresskofA graphically on the example problem of
Tenfelde-Podehl (2003). We only show a subset@fiterations of the algorithm. In

the first iteration, we havée :{(ml, nt, n?)} . In order to display enough detail, we

use a range of [0,25] for the axes. Due to thésoa, we cannot show the dummy
points. Each plane in Figure 5.5a, passes throwghdummy points ang’. Grey
planes represent staged.inBlue planes are facets Gbnv¥y. In this example, the
number of iterations and the number of visited etdlg| happened to be equal. This
is because the stages generated in Step 4.3.balistad inL orV and are added to
L. However, this may not always happen and thelleowiinstances wher¥/||is less

than the number of iterations.

ExAworks using the dummy points. We provide a lobeund for theM value used
by the dummy points. We should mention that tbisdr bound is valid when all
objective function values are strictly positive anteger valued. It can be adapted
for the general case with some modifications, asudised in Section 2.3. We first
consider the biobjective case to explain the maleaj and then provide a

generalization for the multiple objectives case.
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Figure 5.5 Progress &XxA
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Assume that_Bq and UBy correspond to the lower and upper bounds of ffie
objective functiong=1,2. If UBq is found among all efficient solutions, then itlwi
lead to a better (smalle®j value. Since, this is not an easy problem, andesany
UBq value is sufficient for our purposes, we can fid8, among all feasible

solutions. TheM value must be large enough so that no pginty. should be
convex dominated by stagé:(nf, y) for any y OY. andg=1,2. Consider the
slope of the line passing through poinfs y* Y, in Figure 5.6. The slope is the
steepest whery' =(LB +1,LB) and y*=(LB,UB,). In this case, the line and
the f, axis intersect at the poh(t),[UBz(LBﬁl)—(LBlLEg)]). By a similar
analysis on the f, axis, we conclude thatM must be greater than
max{[UE;( LB+1)-( LBLB)][ UB( LB+1)-( LB L@]} Eliminating the terms
with negative coefficients and replacing the loweundsLB;, LB, with the upper

bounds UB, andUB, we can define amore conservative lower bound afithelM
as:

M > (UB, +1)(UB, +1)

ft
v O mi=(0M)

UB, q----- \.. II.ZZ(LBII’TBl)

Y y!=(B,+1.LB,)

; >
LB, LB+l 1

LBy H-----

Figure 5.6 Calculating a lower bound fdr
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In the following theorem, we give a general loweubd to theM value.

Theorem 5.10: Given y, >0 and y,0Z for q=1,..,p, for all yOY , and

LB, < y,<UB, forall yO'Y.. Alower bound foM is

M Z(qi;UBqJ(qg%{ UI%}).

Proof. In order to obtain steepest edges, let us defime following set of

nondominated points:
2'=(LB, LB,..., LB, LB+1,LB,,,.., LB) forg=1,...p,
r=(UB,UB,,...,UB, ,,LB,,UB,,...,UBfor g=1,...p, and

dummy pointsm® = Mg, for q=1,...,p, whereg, =(0,...,0,1,0,..., P is theq" unit

vector.

The value ofM should be large enough so thdtshould dominate any convex
combination of the points,..., nf™, 72, n*,..., .
P i p
ri< > am'+a,z' where a, =1, a = 00i.
i=1j#q i=1
This corresponds to the following set of inequediti
UB<aM+a,LB i=1..pj#(q
LB, <a,(LB,+1)

LB
For agiveryg, a,2———. Leta, =Y a;. Thena, < LBl

LB, +1 <

q +-1.

Summation of thg@-1 constraints corresponding itéq.

dYUB <MY a+a,> LB

i#q i#q i#q
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2UB-a. > LB Y UB-(1-a,)X LB > UB-> LB
M > i#q i#q - i#q i#q = i#q i#q +Z LBI

Z a a, a, i#q
[E=}

In order to seM as small as possible, use the maximum possiblee\ala,. Then

M > (LB, +1)[ZUB, -y L3j+z LB

i#q i#q iZq

M > (LB, +1)> UB.

i2q
This term is valid for eaclky. In order to get a general lower bound, we nded a
upper and lower bound values. This term has teabeulated for eacly, and the

largest value should be selected.

In order to obtain an easy conservative valueMorwe eliminate the terms with

P
negative coefficients and repIaEUBI with ZUB| . We also replac&B, +1 with

i#q i=1

max{ UI%} since LB, +1<UB, must hold for every). Hence a conservative value
g=1,..,p

for M can be constructed as follows:

M Z(qZ:UBqJ(qg%{ UI%}). O

5.5 Improvements on the Exact Algorithm

In this section, we discuss the opportunities tprsme EXA During its searchExA
faces different situations. There are severaldygfanformation embedded in these
situations, and we can use them to improve theritthge. We first discuss the

information embedded in nondominated facet defirsteges. We next discuss a

property which may decrease the numbeMﬁIP()I)s solved. We finally discuss

different queue disciplines for selectiRgrom L.
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5.5.1 Nondominated Facets

Let us define the following two sets for eagh! Y. :
CF(y): The set of pointsy’ Y. such that there exists a staBeél F (i.e.
common facet) ang, y 0 R.
NF(y): The set of pointsy’'IY; such that there exists no staB&l F (no

common facet) ang, y 0 R.
We considery’DCF( y) if there is a nondominated facet defining st&yand both

yand y'are elements oR. The second selF(y) is the complement aEF(y). If

there exists no nondominated facet defining stageich thattwo pointsyand y'
are elements oR, then yONF(y). By definition, CF(y)n NF(y)=0 and
CF(y)O NF(y)O{ = Y. Also, these sets are symmetric, i.e.y'i] CF(y) then

yOCF(y) and if y ONF(y) thenyONF(Y).

We can obtain these two sets when we know @ly;, i.e. when we have complete

information about the nondominated points and aldominated facets. However,

during the search, we only know a subsetYpfand we must use the partial

information gathered. Due to this reason, we @e@f'(y) and NF'(y) for yOY;.

If both pointsy andy’ are elements of a facet defining stage then wetegutzth sets;
CF'(y)=CF(y)O{ y} and CF'(y)=CF(y)O{y} . The setsCF'(y) and
NF'(y) are subsets of the original se®F'(y) O CF(y) and NF'(y) O NF(y).
The propertyCF'(y)n NF(y)=0 still holds. However, the other property,
CF'(y)ONF(y)O{ y}=Y may not hold since we add point to the set

NF'(y) only if we are sure that these two points cannotth®e members of a

nondominated facet defining stage at the same time.
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Theorem 5.11.I1f AOR? for someR, then there exists at least a pair of points

r',r*0OR, such thatrSDNF’(r‘).

Proof. If AOR?, the elements oR cannot define a nondominated facet since by
definition, the conditiond OR’” must hold for nondominated facets. However, if
re DCF’(rt) holds for all pairs of elements Bf thenR must define a nondominated

facet. So we conclude that there must be at egstir of points irR which cannot
be on the same nondominated facet. o

Corollary 5.3. If RO FthenrsDCF'(rt) for all pairsr',r°R.

Proof. All points inR are elements of a nondominated facet. o

If AORP, then in Step 4.1 dExA there are five possible cases consideringAr"
and A, where A, = Ar“ for eachr* OR. These cases are:

Case 1Ar"< A, andr"0Y,

Case 2Ar"< A, andr”0Y,

Case 3Ar"=4, andr’ OR

Case 4Ar"= A, andr’0OY{\R

Case 5Ar"= A, andr"0Y{
In the following theorems, we show the implicati@ighese cases.
Theorem 5.12.1f AOR? and Ar” < A, then the elements & do not define a facet.
Proof. A facet is ap-1 dimensional face, and a face is a valid inetyyalHowever,

condition Ar” < Ar¥ is contradicting with the definition of a validdquality. o
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Corollary 5.4. If AOR? and Ar”< A, then the elements dR do not define a

nondominated facet.

Proof. Follows directly from Theorem 5.12. o

Theorem 5.13.If AOR? andAr” =, thenr” and all points oR are on the same

nondominated facet.

Proof. If the points inR did not define a nondominated facet, thdmn' < A, should

hold (as proved in Theorem 5.12). Theremfer cases 1, 2 and 3 apéll for cases

4 and 5 affinely independent points having the sabjective function value for the

given AOR?. Hence these points define a nondominated facétfar all pairs

r‘,rsDRD{rD}, rSDCF'(r‘) holds O

We can use the information gathered during thecheaf EXA by developing rules
based on Theorems 5.11, 5.12, 5.13 and Corollaty Ve define the following

rules:

Rule 1: After selecting stageR:{rl,rz,...,rp}DL in Step 2, check

NF'information for all pairs of points iR If there exists a pair',r°*0R
such thatr®[J NF’(r‘) thenR cannot be a nondominated facet defining stage.

Add RtoV, Kip Steps 3, 4 and &nd proceed to Step 6.

Rule 2: If AOR? for someR, and there exist points’ r",[JR such that
rSDCF’(rt) for all (r‘,rs) pairs forr',r°*0OR except(r“,rv) pair, then set
r“DNF’(rV) andrVDNF’(r”).

Rule 3: If Case 2 is observed and there exist poitits'[JR such that
rSDCF’(rt) for all (r‘,rs) pairs forr' r°0OR except(r“,rv) pair, then set

r' DNF'(rV) andr" DNF'(r”).
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Rule 4: If Cases 3, 4 or 5 is observed then r§e€ﬂCF’(rt) for all (r‘,rs)

pairs such that',r°*0OR D{rD} .

5.5.2 Pre-Calculation

In this section, we define a property that may éase the number dVIOIP(/])s

solved during the sear&xA We refer to this property gse-calculation

Let us defineConvy,, as the convex hull of; O'Y,,. The aim ofExAis to close the
gap betweerConvy,, andConv¥y. At the end of the algorithn¥. =Y., and also
Convy,, is equal toConv¥y. Consequently, in Step 4.1 &xA we solve
MOIP(/l)and obtainr”. Usingr”, we define new stages and add themLto
However, in some cases (Cases 2, 3 and 4 in Seztlyir” may be a known point,
i.e., r"0Y¢. Inthese cases, we would obtaihby simply searching the best point
yOY; for the given instead of solvinglOIP(A). Although it depends on the
size of the single objective problem, the perforoeanf MOIP(/]) solver used, and

the cardinality ofY., searching for the best point for the given wesgbbuld be

much easier than solving a single objective intggegram. We will discuss the

trade-offs of pre-calculation in the computatioresults section.

Based on this observation, we modify Step 4.Exd&as follows:

4.1Pre-calculation proceed to Step 4.1.1
4.1.1 Letr be such thatir,, =min{Ay} .

yove

4.1.2 If r,ORthenr”=r_, go to Step 4.3, otherwise go to Step 4.1.3

4.1.3 Solve MOIP(A) and let the optimal point blé]:(rlm,rf,...rf), go to

Step 4.2.
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In Step 4.1.1, we determine the best availabletp(ﬁnfor the givenA. In Step
4.1.2, we check if,i OR. If rpDCDRthen eitheR is a nondominated facet defining
stage, or the optimal point of this stage is aehith unknown point, i.er”0Y,.
Hence for this case, we proceed to Step 4.1.3 ahwd Q/IOIP(A). However, if
r.OR, then we set”=r_ and proceed to Step 4.3 (we skip Step 4.2 since we

already know that“0R).

When we apply the Pre-calculation property, pmﬁgtfound in Step 4.1.1 and the

optimal solution ofMOIP()I), r” may not be equal. This corresponds to Cases 1

and 5. This may result with the addition of sonemges toL, which would have
never been added to in the originalEXA On the other hand, some stages that
would have been visited by the original algorithmmay not be visited when using

pre-calculation.

We still know that at the end of the algorithm, wél haveY; =Y. because, the

hypervolume removed from the | B*(R) term is equal to the interior of the
ROFOL

convex hull defined b{rl,rz,... r ')rpDC} . By Lemma 5.1, it is not possible to have

an extreme supported nondominated point in thi€hygume.
5.5.3 Queuing Disciplines

In each iterationEXA selects a stagR from list L in Step 2. In this section, we

considelL as a queue of stages and discuss three queuglidissifor selectindr.

Before discussing how to select a st&y&om L, let us mention how we add new

stages td.. In Step 4.3.1, we add new stages to the ehdagffollows:
L:LD{{rl,...,r p‘l,rD} ,{r L p} {r o ”}}
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and we remove fronk the stages that are already visited. Thus updated as

L=L-(LnV). This removal prevents the cycling of the aldorit

The first queue discipline we usefiisst in first out In this discipline, we select the
first element ofL in Step 2 as the nelR stage and remove it fromin Step 6. The
second queue discipline we usdast in first out In this discipline, we select the

last element ok in Step 2 as the neRand remove it fronk in Step 6.

In Figure 5.7, we build a tree to represent thecteaf EXA It is the tree of the
example problem of Tenfelde-Podehl (2003) with ¢hobjectives. Each node of the
tree corresponds to a sta@e The number in the first line is a unique numioerefer

to a stage easily. The second line correspontigeteet of points iRR. The third line

contains the point corresponding to the optimaltsoh of MOIP(/l) for that stage.

At the beginning of the algorithm, only sta{m‘, nrt, m”} is in L and the optimal

solution ofMOIP(/l)corresponds ty>. We then remove the first stage franand
add three new stage{syl, e, m3} , {ml, v m3} and{ml, nt, )}}. Assume that we

next seIectR={ V', nt, rﬁ} . As seen from the figure, the optimal solution

corresponds ty'. We remove this stage froin and add it toF, since it is a

nondominated facet defining stage. Note that, |tfa# nodes (those without any
offspring) are nondominated facet defining stagethis tree. However, in general,
there are three different possibilities for beingaf node. A stage is a leaf node if it

i) defines a nondominated facet stage,
i) has negative elements in its normal vectat R’ , or

iii) has no unvisited offspring, i.e., there are nodethé tree corresponding

to its offspring.

Assume that, we next seIeRt={ m, y, rﬁ} . We obtain/? and add three new stages

to L: {yz, v, n13} , {ml, v, nf} and{ml, v, yz} . Now there are four stageslin4™,
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5" 6" and 7' stages. According to the first-in-first-out arfue tlast-in-first-out
disciplines, we should select'4nd 7' stages, respectively. As it can be seen, the
first in first out and the last-in-first-out disdiipes correspond to breadth first and

depth first strategies of exploring the tree, resipely.

{mlmdm’}
—pl
2 3 4
{PI,mQ,m3} {mla},l,mZ} {ml,mz‘yl}
—y! —yl —y?
3 i} 7 2 9 10
{Fptm®y {mlptm®} {mlplp?) (= miply {mlpialy {mlm ¥}
—p? —p? —p —pt —p? —p?
11 12 13
ot ply Ertalh {3t gty
—pt —pt —pt

Figure 5.7 Tree structure of the example problem

Consider Rules 2 and 3 discussed in Section 5.5lese rules are applicable for a

stageR if there exist points",r'OR such thatrSDCF'(r‘) for all (rt,rs) pairs for
all r*,r'0OR except the(r“,rv) pair. If all conditions are satisfied, we set
r“DNF’(rV) andrVDNF'(r”). This information would be helpful in applying
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Rule 1 at other stages. The earlier this typetafjes are selected, the sooner
information extracted can be used. Obtaining mi®rmation sooner will

generally decrease the number of iterations reduire

For a given stage, we can find the number of p(al‘r,ss) satisfyingr?® DCF’(r‘) as

follows:

1 > ‘rt nCF'(rS)

r'rSIR

We halve the summation sin@F' sets are symmetric. There {rgj pairs in any
stage and Rules 2 and 3 reqLﬁrgzj—l pairs inCF' sets. Hence, if we can select a

stage havin{gj—l pairs inCF' sets, then we may have a chance to apply these

rules. The third queue discipline searches far type of stages. A stagelIL is a
such candidate if

1 r' nCF'(rS)

_[P
2r‘,rZSéR‘ _[Zj_l .

If there is no such candidate, this disciplineize first in first out discipline.

We solve a sample assignment problem \pi#B8 andn=20. We first consideExA
and do not gather any common facet information.this case, the third queuing
discipline is equivalent to the first one. Hence Wwave two different queuing
disciplines. In both discipline&xA stops nearly after 14,800 iterations. In Figure
4

5.8, we plot the rati after every ten iterations for each disciplinere&lth first

el
discipline finds all points before 19%Geration. It tries to prove thadl = Y. in the

remaining iterations. At 19iGteration, the depth first discipline found onlg% of
the points. It finds all points before 1480eration.
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Figure 5.8 Change in thI%E—I ratio for different queuing
E

disciplines on a sample problem.

We next solve the same sample problem with the eimitated facets property. In
Figure 5.9, we show the effect of using the nond@igd facet information by
YI
applying Rules 1-4 discussed in Section 5.5.1. denot plot% for the third
E
gueuing discipline since it is very similar to tipéot of breadth first discipline.
Applying the rules does not change the pattermefpiots. However the number of

iterations decreases substantially.
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Figure 5.9 Change in thI?(E—I ratio for different queuing disciplines
E

on a sample problem where Rules 1-4 are used.

In Figure 5.10, we plot the first 100 points fouoy the breadth first and the depth
first queuing disciplines. The blue points arerfdiy breadth first discipline. They
are spread over the nondominated frontier. Thepaadts are found by depth first

discipline. They are concentrated on a regiomefrtondominated frontier.
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Figure 5.10 First 100 points found by BF and DF.

5.6 Computational Experiments

In order to test the performance BXA and the proposed improvements to it, we
solve three- and four-objective versions of threellsknown combinatorial
optimization problems: The Assignment Problem (AR® Knapsack Problem (KP)

and the Traveling Salesperson Problem (TSP).

In Section 5.6.1, we give the mathematical modedaath test problem, random data
generation schemes and implementation details. rédert the results in Section
5.6.2.

5.6.1 Test Problems
The Assignment Problem (AP)
In AP, there aren jobs andn resources. The cost of assigning tfigob to thej™

resource ig;j. The aim is to assign each job to a differenbuese in such a way that
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the total cost of the assignment is minimizedis lknown that the constraint set of
AP is unimodular and the optimal solution of theekr relaxation is equal to the

optimal solution of the original problem.

In the multiobjective version of this problem, itmst of assigning thi&' job to thej™

resource with respect to tigf' objective is¢j. The mathematical model of AP with

p objectives is:
"min" Cx=[. . (;}ggzz ﬁ@(ZZ iJ.éijxj
i=1 j=1 i=1j=1 i=1j=1

st. Y x=1j=1.n

lifjobi is assigned to resouic

where x; =
% {0 otherwise

For AP, we use a random data generation schemesumiiar to the one used by

Przybylski, Gandibleux and Ehrgott (2007). Thepeatecvalues from a discrete

uniform distribution in the interval [0,20], wheas we use the interval [1,20]in order
to have strictly positive objective function value®/e solve problems with 10, 20,
30 and 40 jobs.

The Knapsack Problem (KP)

In KP, there are items and a knapsack with a known capadcityEach itenj has a
weightw; and a valuej. The aim is to select a subset of items in sualaythat the
total weight of the selected items does not exae&dhile the total value of the
selected items is maximizedKP is NP-Hard in the ordinary sense. We refer to
Martello and Toth (1990) and Kellerer, Pferschy dfidinger (2004) for further

details on KP.
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In the multiobjective version of KP, the value be§" item with respect to thg"

objective function isy?. The mathematical model of KP with p objectives i

"max’ sz(i \’( %‘i )3?(2” 7 jxj

st. Ywxsc

=1

x 0{ 0, i= 1.n

J

1lif itemi is selecte

where x. = )
' |0 otherwise

EXA is developed for minimization problems. In orderapply EXA directly, we
transform KP into a minimization problem:

"min"Vx:[Uli—Zn:\h(, ug—zn: § % ug—i ﬁ/jxj

n
st ZWj X<cC
=1

x {0} j=1.n

whereUB, > Z V! x for all g and for all feasible solutions.
i=1

We use an upper bound strictly greater than theatibp function values of all
feasible solutions in order to ensure that objectifunction values of the

minimization problem is strictly greater than zero.

We use the random data generation scheme usedrbykPand Koksalan (2003).

We generatey; andv] values from a discrete uniform distribution in timterval

[60,100]. The capacity of the knapsackcis The capacity is set as the nearest

. 1 : , ,
integer tO—ZWj in order to generate harder instances. We solvlgms with 50,
i=1

75, 100, 150 and 200 items. We 54, ZZV? since it is not possible to select all
j=1

items at the same time with the capacity generatiethod used.
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The Traveling Salesperson Problem (TSP)

In TSP, there are cities. The distance between citieandj is ¢;. A traveling

salesperson is located at city 1 and has to ptanrahat visits each city exactly once.
The salesperson’s aim is to find a tour with th@imum total distance travelled.
TSP isNP-Hard in the strong sense. We refer to Gutin amthEn (2002) for further

information on the TSP.

In the multiobjective version of the problem, trestof traveling from city i to city
with respect to thg™ objective function iss] . The mathematical model of TSP with

p objectives is

x0{0) i=1.n j=1..n

whereN is the set of all citied) is a subset dN, E is the set of all city pairs and the
decision variables are defined as

" 10 otherwise

{1 if city j is visited just after citiy
For TSP, we use a random data generation scheméarsiim the one used in
DIMACS STSP Implementation Challenge (see www.radeatt.com/~dsj/chtsp).
We generate the integer coordinates of the citiesa0l000 x 1000 square and
calculate the Euclidian distances between citl® generat@ coordinates for each
city and calculate distance matrices. We solve problems with 5,18),25 and 30
cities. We use Concorde, a special TSP solverldegd by Applegate, Bixby,

Chavatal and Cook to solve each TSP instance (se®.tap.gatech.edu/concorde).
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All objective function coefficients are integer uad in all three problems, but their
weighted sums are not necessarily integers. We wgsneral-purpose solver for AP
and KP where having rational coefficients for these problems does not pose any
concerns. However, Concorde uses only integeredaldistances. Thus, we
multiply the weighted sum values by a large nundest round them to the nearest
integer for TSP.

5.6.2 Computational Results

We codeExA on Microsoft Visual C++ 6.0 and test on a computéh Pentium M
1.6 GHz, 256 RAM and Microsoft Windows XP. We uGallable Library of
CPLEX 8.1 for AP and KP and Concorde for TSP.

We generate 10 instances for each problem-simmber of objective function
combination. We solve these problems vitkA We set the time limit as one hour
and terminate the algorithm if it exceeds the tlmgt. We start solving small sized
problems and increase the problem sizeExlA reaches the time limit in most of the
instances then we stop increasing the problem sipethis section, we calExA
without any additional properties 8ase ExA We want to find as many points as

possible during the time limit. AccordinglBase ExAperforms breadth first search.

In Table 5.1, we present the resultsBafseExAfor p=3. The first two columns
show the problem type and problem size, respegtivéhe third column shows the
number of instances (out of 10) tigédse ExAcould not solve in one hour. Base
ExA stops before the time limit is reached, thérr Y., otherwiseY; O Y.. We
separately report the results for instantgés Y. andY; 0 Y. because mathematical

operations on their results do not make sense. nExé four columns are for the

instances wher& =Y.. The CPU column shows the average run time of the

algorithm in seconds. Average numbers of extreapparted nondominated points

are reported in thi;| column. The third column i% where SC stands for the
E
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number of solver calls, i.e., number of timMOIP()I) is solved. This column

shows the average number of solver calls to findheaxtreme supported

nondominated point. TP’M column shows the number of stages visited duttieg t

search. The last four columns are for the instauvaleereY. [0 Y.. We report the

averageY|, SC and|V| values when the algorithm stops at the one hoe timit.

Y|
At the end of each iteration, the algorithm chetksand stops ifL is empty.

However, if the algorithm stops due to the timeitjrthenL may not be empty. In

|
VY

visited stages to the number of opened and visiizges.

the last column we report the averag , l.e., the ratio of the number of

In the one hour time limitBase ExAcan solve APs up to 30 jobs, KPs up to 150

items and TSPs up to 25 nodes. The average CRiJatih the averaqv| increases
. o SC . .
rapidly as problem size increases. Averbg{a and averag(TY—| also increase with
E

the problem size. It is observed that all indicatmcrease faster in AP and TSP
compared to KP. We think that the number of deaisiariables may have an effect
on this result. Note that the number of decisiarniables in KP is O{) where as it is
O(n?) in AP and TSP.

We report result fopp=4 in Table 5.2. In general, results are similathe p=3

case. In the one hour time limBase ExAcan solve APs with 10 jobs, KPs up to

100 items and TSPs with 10 nodes. The reason edetluecreases is the rapid

increase in averaqafE|. Increasing from 3 to 4 enormously effects.. Consider
AP with 20 jobs. Averagf,| is nearly 150 forp=3. For p=4, Base ExAcan

search only half of the opened stages in the timi but average}YE’| is nearly 1000.
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Table 5.1 Results @dase ExA p=3).

Ye =Y Ye O
Problem| n # CPU SC . SC ‘V‘
(seconds) |YE| m |V| |YE| @ |V| ‘V‘ + ‘ L‘
10 0.05| 30.8 7.5 264.
ap | 20 31.25| 156.9 75.0 14369
30 1719.03| 368.3 246.f 109894 &97.0| 367.1] 171833.0 99.6
40| 10 640.5| 214.0 154290.4 85.4
50 439| 48.4 145 978.
75 4460| 822 32.6 3688
KP ] 100 194.80| 122.4  40. 6201
150 1443.71| 217.1 96.4 25652]8309.0| 86.3] 30551.0 85.7,
200 10 429.8| 70.4 338205 80.4
S 0.83| 4.7/ 3.6 19.
10| O} 1527| 252 6.8 205.
TSP | 15 163.47| 63.8 26.0 2165
25 2396.85| 198.3 94.8 23152|4258.7| 101.9 29579.7 89.3
30| 10 316.1| 60.3 21552.9 83.9
Table 5.2 Results @dase ExA p=4).
Y. =Y, Y. OY,
A I I I VT = VI VT BV
(seconds) . |YE | F |YE' | M +‘ L‘
AP 10| O 212.23| 104.6 194.430734.8
20| 10 980.7| 104.9 131102.9 51.2
S0| 1] 618.98| 129.6 174.037753.7| 222.0| 535.5 168326.0 94.7
KP | 75| 9] 33953 149.0 87.719169.0] 415.8| 255.6 133182.1 74.8
100| 9] 1520.69| 337.0 109.855784.0] 529.8| 135.6 86384.4 66.4
510 154 54| 58 381
TSP | 10| Of 710.63| 70.6 105.612430.3
15|10 297.0| 130.3 48560.3 71.3
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We discussed three improvementsEbA in Section 5.5. We must decide the best
combination of them. We observe that using thedoarinated facets property
substantially decreases the CPU time whereas it asés negligible additional
memory (compared th, V or F lists) for keeping the gathered information. Henc
we use the nondominated facets property in thedmabination. We perform a set

of preliminary runs in order to decide the remagngmoperties.

We solve three instances for each combination an@dch problem witp=3. We
aim to select the problems that can be solved arlpel800 seconds. However, in
order to decrease the variance of CPU times, wecsé¢he instances that can be
solved in nearly 1900 seconds. In Table 5.3, vpenteaverage CPU times for each
combination. BF, DF and BF+NF columns stand faalith first, depth first and the
third (breadth first plus nondominated facets) gogudisciplines, respectively. In
the last column, we report the average CPU timdédask ExAn order to provide an
insight into the effect of the nondominated fagetsperty. We see that using the
pre-calculation property with the depth first queyi discipline is the best
combination for all problems. We apply the pair€lest and observe that,

statistically speaking this combination is sigrafitly better than the others.

Table 5.3 CPU times (sec) of the preliminary runs

Queuing Disciplines | Base ExA

Problem | Pre calculation BF DF | BF+NF| (BF)
AP Not used 589.48| 826.13| 669.28| 1927.20
Used 524.56| 441.82| 573.93 )
KP Not used 822.22| 830.48| 825.23| 1916.42
Used 109.51| 89.22| 111.74 -
TSP Not used 858.20| 704.77| 853.04| 1901.65
Used 117.14| 111.64| 117.89 )
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Let us callExA with the pre-calculation and the nondominated tpeoperties and
the depth first queuing discipline combinatiBast ExA In Tables 5.4 and 5.5, we
report the results fdBest ExAor p=3 and p=4, respectively.

As expectefBest ExAperforms better thaBase ExA Base ExAcannot solvell AP,
12 KP and 13 TSP instances wjil= 3 in the one hour time limit. Among these
instancesBest ExAsolves 1 AP, 11 KP and 13 TSP instances. Simjléolyp = 4,
Base ExAcannot solvel0 AP, 19 KP and 10 TSP instancéest ExAsolves 10 KP
and 10 TSP instances among them. CPU times atseai® considerably witBest
ExA There is important decrease in the average numibsolver calls per point

found inYe. This is due to the pre-calculation property, eithilecreases the number

of MOIP()I)S solved, but increases the number of stages iHowever, in general,

there is a decrease in avera|g’e|z because the nondominated facets property

eliminates many stage&est ExAis more effective on KP and TSP compared to AP.
That is, the improvements in CPU time and the numb@stances solved in the one

hour limit are much better for KP and TSP. Thigyrba related to the computational
complexities of the problems. Solving feV\MOIP()I)s affects CPU time more for
KP and TSP because they ale-Hard problems. There is an interesting propenty o
the averageY;| and V| values. For all problems, problem sizes and nuntfer
objectives, instances that cannot be solved inotie hour time limit have more
extreme supported nondominated points than thosebeasolved, i.e., the average
|Ye| is greater than the averafyg|. This observation is also valid for averdge
values. More extreme supported nondominated poimigy define more

nondominated facets and the algorithms require nstages to search and define

these nondominated facets.

94



Table 5.4 Results dest EXA( p =3).

Yo=Y, Y. Oy,
Problem| n # CPU v sC v v sC v M
Yel || MM | M| v
(seconds) E E
101 O] 0.2 308 32 199
20 0
AP 3.15| 156.9 3.0 5429.
30| O] 490.80| 371.2 3.0 58559
40| 10 531.2| 3.0/ 172176.1 927
50 0 0.86| 48.4| 3.2 472.
7B 0 343 822 31 1212
KP 1100 O] 1048| 1224 31 2175
150 O] o9s560| 2355 3.1 16700
200| 1} 1065.34| 417.4 3.0 82621|1540.0| 2.3| 172429.0 937
51 0 0.81 47| 31 19.]
10 0 6.27| 25.2| 3.1 156.
TSP | 15| O] 17.09| 638 34 811
25| Ol 141.78| 2164 3.0 12840
30| Ol 336.16| 316.1] 3.0 28750
Table 5.5 Results dest EXA p=4).
Y=Y VoY
Problem| n # CPU v sC v v sC v M
A ARV E - VI
(seconds) E E
AP 1010 1.70| 104.6] 595 4110.
201 10 701.8| 6.1 165528.6 7218
501 O 1684| 1388 53 8063
KP 75| 3
723.71| 318.4 55 78448)6380.3| 4.8 187782.3 87.2
100\ 6 49718| 3895 53 55774b414.8| 5.1 1903507 896
51 0 1.14| 5.4 45 36.
TSP
100 O 3176 706 54 2051
151 O} 560.29| 2970 62 55119
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Przybylski, Gandibleux and Ehrgott (2007) proposeal versions for their algorithm
and reported computational results for AP wiihlr 3 up to 50 jobs. Let us call their
better algorithmPGE In Table 5.6, we compare the performanc®GE andBest
ExXA For problems with 10 jobs?GE and Best ExAare performing similarly.
However, PGE outperformsBest ExAfor larger sized instances. We believe that
p=3 is a special case f®*GE because the dimension of the weight space is two
and CAN is directly applicable to solving biobjective pleims in the weight space.
PGE may not have this advantage wigie 4 and it may perform worse. In order to
comparePGE andBest ExAa computational test on several MOCO problems with
different number of objective functions should bend. However, the coding of
PGE for four or more objectives is not straight fordlaand conducting such a

comparison may not easy.

Table 5.6 Comparison 6fGE andBest ExAfor AP (p =3).

PGE Best EXA
CPU CPU

" (seconds |YE| (seconds |YE|
10 0.02| 43 0.02| 308
20 0.22| 146 3.15| 156.9
30 1.14| 351| 490.80| 371.2
40 6.20| 728| =3600| 26405
50 16.48| 1150

ExA performs a search by generating new stages. \Ws&d®r all possible stages as
the search space &xA We provided an upper bound on the number ofipless

stages in Theorem 5.6 as:

96



‘V‘ < [YE D YM j —
p p!(

Y O, !

Y OY,[- g

This bound is a theoretical bound and represemsabrst case. In practidexA

visits only a small portion of these stages. Ibl&eb.7, we compare the ratio M

to its theoretical upper bound. We report the agerof this ratio for the instances

solved within the time limit. The ratio decreasasthe problem size increases. Also

for a given problem size, the ratio is smaller for 4. Increasing or p increases

Y;|. As|Y.| increases, any randomly selected two points ame malikely to be the

common members of a nondominated facet.

Table 5.7 Percent of the search space visited.

p=3 p=4
Problem | n
Base EXA| BestExq Base EXA Best xA

10 4.786 3.704 0.413 0.079
AP 20 2.020 0.787
30 1.244 0.620

40

50 3.731 2.376 0.245 0.065

75 2.676 1.049 0.087 0.015

KP 100 1.735 0.648 0.010 0.005
150 1.363 0.590
200 0.635

5 39.095| 39.381] 25.081] 25.308

10 5.746 4.732 0.714 0.206

TSP 15 3.574 1.714 0.017
25 1.593 0.626
30 0.524

97



CHAPTER 6

GENERATING AN APPROXIMATE SET OF EXTREME
SUPPORTED NONDOMINATED POINTS IN
MULTIOBJECTIVE PROBLEMS

6.1 Introduction

In the previous chapter, we developed an exactrithgo, ExA that generates all
extreme supported nondominated points oM@IP with p objectives. As the
problem size or the number of objective functionsréase ExA needs more CPU
time. At the end oEXA Y. =Y.. It is possible to stop the algorithm at some
iteration and usé/; which is a subset of.. However such an approach has

important drawbacks. We do not know whethigris equal toY, or not. Moreover,

we have no idea about how clogeis to Y .

We observed that if we use the breadth first sean@tegy inExA then most of the
points inY; are found at the beginning of the algorithm. Thgoathm finds only a

small portion of the points in the remaining itéwas and mostly tries to prove that

Y: = Y. (see Figure 5.8 and Figure 5.9). If we can meabow closeY; is toY;,

then we may terminate the algorithm early.
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In this chapter, we propose an approximation allgori This algorithm utilizes a

lower bound set and an upper bound setYfor It provides a proximity measure

between these bound sets. Hence, we can stopghsetan when the proximity

measure is less than a predetermined level.
6.2 CAN as an Approximation Algorithm

Aneja and Nair (1979) proposedAN as an exact algorithm to find all extreme
supported nondominated points. However, Cohong)lL8iscussedAN not only as
an exact algorithm but also as an approximatioarétgn to find a subset of extreme

supported nondominated points for bicriteria proide

Cohon (1978) provided lower and upper bound set¥faand a proximity measure
between them. Consider Figure 6.1a. Assume piaatsy’, y?, y* andy” are inYg
and stage%yl, yz)and (y3, y“) are facet defining. There is only sta(gﬁ, y3) in L.

It is not possible to have extreme supported nomdated points in the southwest
regions of lines passing through andy? and throughy® andy®. Also there is no

extreme supported nondominated point in the cortudkdefined by points irY; .
In the extreme case, we obtain point A by soIvM@IP(/l) for stage( Yy, y3) Let

line segment [A,B] be perpendicular to the linegiag throughy® andy® and AB be

the length of this line segment. If AB is smallean a predetermined accuracy level

then we can stop. Otherwise we should deéIP()I) for stage( e y3) . Assume
that we want more accuracy and J&tin Figure 6.1b be the optimal solution of
MOIP () for stage(yz, ya). We remove stagéyz, y3) from L and add two new

stages:( Yy, f) and(y3, f) We draw a line passing throughthat is parallel to the

dashed line joining” andy®. Pointy® is the optimal point oMOIP(A) for A,

which is equal to this line’s normal vector. Hendeis not possible to have an

extreme supported nondominated point in the southwfethis line. We obtain two

points as new extremes, C and E. If we S(M@IP(/]) for stage(yz, ys), in the
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extreme case, we can obtain point C and the proxiwi this point to the line
passing through poing€ andy® is CD. Similarly for stageéyﬂ y5) , the proximity is

equal to EF. If the maximum of CD and EF is ldsantthe desired accuracy level

then we may stop the algorithm.

Note that the convex hull defined by pointsyhis used as the upper bound set for
Y.. The lines passing through pointsandy?, C and E, ang® andy* shown in

Figure 6.1b are used as lower bounds¥Yor

a)Gap =AB| b) Gap =mir{|CD|, EF[}
Figure 6.1 Approximation c€AN

This approach works for biobjective problems. Huere due to the difficulties
discussed in Section 5.2, it is not directly apgidie to problems with three or more
objectives.  Solanki, Appino and Cohon (1993) deped an approximation
algorithm applicable t¢1OLP's with p objectives. Their algorithm is an extension
to the approximation version @AN algorithm. They propose some approaches to

solve the problems that arise where 3.
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The algorithm and the approach we discuss in thapter are quite different from
that of Cohon (1978) and Solanki, Appino and Col{®893). Both approaches
make approximations for each stage. Since thehweigctors are known for their
cases, they operate in the objective space, asrdgrated for the biobjective case in
Figure 6.1. In our approach, we know the lower apger bounds in the objective
space and we operate in the weight space.

6.3 Lower and Upper Bound Sets foiYg

In this section, we develop lower and upper boueid forY.. We define partial
ideal points for stages and prove that these pdiefie a lower bound set fof .

We next show that the points ¥j naturally define an upper bound set r.

The partial ideal point of stagdR is I(R):(Il(R), L(R),..., | (R)) where
I,(R) :rrpDiQ{qu}. The set of points dominated by the partial ideaint | (R) is
Bf(R)={ y=( Y Yo, ¥)‘ y= (R O }]and the set of points dominatingR)
is Bf(R):{ y=( ¥ Yoo, 35)‘ y< J(R O }:1 . Note that I (R)<r* and

I(R);trk for all r*OR since all elements ofR are extreme supported

nondominated points.
In the following theorem, we prove that at any aten of ExA all extreme

supported nondominated points are in the unioofséte points dominated by partial

ideal points.

Theorem 6.1.y*0 | J B (R) forall y“OY,.

ROFOL

Proof. By induction, we will prove that the followingrtea holds for ally* O, at

each iteration oExA

101



yO {J B(R.

ROFOL

At the first iteration, FDLz{(ml,mz,...,nf)} and the term holds since

Assume that the term holds at some iteration oftherithm. Then at that iteration,
an elemenRO L is selected in Step 2 and tlevector corresponding to stageis

calculated in Step 3.

If AOR?, thenRis removed froni, since it does not define a nondominated facet

If AOR?, thenMOIP(A) is solved and the optimal solutiort;, is obtained in Step

4.1. Ifr’0R thenR is added td= (in Step 4.2) and removed from(in Step 6)
henceF O L does not change. KH'OR thenR is removed froni (in Step 6). In

Step 4.3.1p new stages are generated and the unvisited oaeslded td.

Let us define th&" new stage &R = ( U Gl G e o "), i.e., we replace the

k™ element ofR withr“and obtainR. In order to analyze the possible changes in

yO |J B(R) term, we must consider(R) and| (Rk). There are two cases in

ROFOL

the calculation of (R):

i) There exists ar*OR such thatry>1(R) Og, i.e., pointr* does not
contribute to partial ideal point and is stricthordinated by it. Since

I (Rk)s I (R) then Bf(R‘) 0 B (R. The term holds in the next iteration.

i) There is nor“ ORsuch thatr >1_(R) Og. This means, every elementRf

has at least one objective function value equ#iaob of the partial ideal point.

Without loss of generality we assume tihat=1 (R) If there exits & such
that r; <r¢ then | (Rq)sI(R) and the term holds in the next iteration

becauser(Rq) 0 B (R. However, ifr, >rd for all g then we define the
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convex hullS= con\( I( R), ( F%) ( F‘%), *r). In this caseS is the

region removed from the term. However, it is nosgible to have a poigt

such thaty # r"andyO Y. n S, otherwise™ will be dominated by that

Therefore after one iteratioy 0 | J B (R) still holds. O

ROFOL

Corollary 6.1. For eachy* O, there exists a stage(] FO L, such thatl (R) < y*.

Proof: Follows directly from Theorem 6.1. o

The term | J B7(R) defines a nonconvex hypervolume. In the next réveo we
ROFOL

show that there exists ng“ Y. dominating the partial ideal point of a stage

ROFDO L.

Theorem 6.2.For a given stag®] FO L such thatA®" OR?, Y. n B (R =0.

Proof (by contradiction) Assume that there exists Y. and Yz n If( Q: y.
Sincel (R)<r* and I (R)# r* forall r*OR, andyO B (R).

ARy < ARI(R)<AFr“forall r*OR.
Moreover, since (R) dominates every* OR, we can write the above term for any
AOW°.

Ay<AI(R)<Ar* forall r*OR.

Soy must dominate alt* JR. However we know that* OY, for all r“ R hence

it cannot be a dominated point. There is a coittimh and we conclude that no

suchy exists. o
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In the following two theorems, we propose lower apger bounds on the weighted

objective function value oMOIP(A), for a givenA OR?.
Theorem 6.3.For a givenA OR?, min{A1(R)} < MOIP(A).
ROFOL

Proof. Let the optimal solution oMOIP(A) bey. We know thatyOY, and by
Corollary 6.1, we know that each]Y; is dominated by a partial ideal point of a
stageROFO L. For the givendOR?, the minimum weighted objective function
value of partial ideal points must be strictly l¢isan that of anyyY.. Otherwise,

somey[Y. must weakly dominate a partial ideal point. i

Theorem 6.4.For a givend OR?, MOIP(A) < rknin{/] y<} .

y‘Ove

Proof. Let the optimal solution oMOIP(A) bey and Ay = min{/l )}(} It is not
an?

possible to havely > Ay . Since in that case, there exists a solugorbetter thary
for the givenA. However, this contradicts with the assumption thistthe optimal

solution of MOIP(4). O

Hence by Theorems 6.3 and 6.4, we know that foA allR?
min{A1(R)} < MOIP(4) < y[mér{A y}
We can consider the set[J {I (R)} as the lower bound set aig as the upper

ROFOL

bound set fory; .

6.4 An Approximation Algorithm

In this section, we present an approach to meakergroximity between lower and

upper bound sets. We then propose an approximatgmrithm using this measure.
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This algorithm is a variant dExA with a special property, which ensures that the
proximity values follow a nonincreasing patternotinghout the algorithm. By this

property, if the proximity is below a predeterminealue, we conclude thaf is
close enough t&: and stop the algorithm. We call this approximatadgorithm

ApA
6.4.1 The Approximation Approach
o . .
We know that for all ORP, RrD11F|Dr1L{/lI(R)} < MOIP(1) < mly{/l 3‘7} holds. For a

S

given A0R?, we can identify the value of best known pdiig = min{/l )}(} as an
ant

upper bound for the optimal value MOIP(A). Similarly, any point must have a

value strictly greater than the lower bouhdd = RanFiDnL{A I( R)} . If the gap between

LB andUB is less than an acceptable level, then we do eed o solvel\/IOIP(/]),
instead we can use the best known poinYin Let us define the gap betwekB

andUB for a givenAOR? as

UB—LB_WJQ{/‘ Y} - min{A 1( R} min{11(R)}

— =1-FROFOL
ug min{4} A v}

We prefer smaller values of this ratio, which metireg the bounds are closer. We
use a ratio term instead 0B - LB due to following reasons. Using the ratio of
UB-LB to UB eliminates the effect of the objective functiomgas. This is an
important advantage because we may not have enmigimation about these
ranges at the beginning of the search processplgsubtracting two values may be
misleading because the ranges of objective functnes may change from one
instance to another. In other words, while theort unitless, the difference is not.
Also A is not necessarily a normalized vector and the @apined by subtracting
the two values will be different fot vectors normalized to different constants, i.e.,

1 or 100. The ratio definition eliminates this Iplem as well.
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In the approximation algorithm, we assume tha not known but the lower and

upper bound sets are given. Then we define themity measurepm as

- min{Al(R
o ma}{us LB} I RDFD_L{ (R}
AORE rpm{/] )/(}
yOv
The proximity measure finds the wordt1R? such that the gap is maximum. Let
us define the optimal solution to this problem as
AP (RP7)

A pmy pm

pm=1-

Since partial ideal points dominate pointsYjn pm>0. In the worst case, partial
ideal point can be the origin antf"| (Rpm) =0 then pm=1. HenceO< pm<1. In

its current form, we need to solve a nonlinear f@obto find the optimapm value.

In Section 4.3, we discuss a solution method taiakihe optimapmyvalue.

Assume that, we calculate thenvalue at Step 2 in each iterationEA and record
this value. At some iteration, we may observe rameiase in thepm value, which

means that the proximity between lower and uppentisets increased.

We can explain this situation as follows. Afteriteration,Y; is either unchanged

or a new point is added to it. For a givéf", it is not possible to have a largéB
value compared to that of previous iteration. Beeathe minimum of a set does not

increase by adding new elements to it. EBywe expect a similar property since we

expect the hypervolume defined by the tefn] B (R) to get smaller as the

ROFOL

algorithm proceeds. However, this is not the ek | ] Bf (R) may expand after

ROFOL

an iteration. Assume that we select stRga Step 2 and obtain”. If r"0B; (R)
then the hypervolume gets smaller as shown in theff Theorem 6.1. However,

if r’0B; (R) then the hypervolume may increase %"DHE?L{/‘ Pm| (R)} <A p’“I( Rp’“).

Hence,LB may decrease and there is a possibility to gatgetpmvalue in the next
iteration.
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We resolve this problem of fluctuating pattern lve pm value by introducing two
new lists,L2 andV2, in addition toL, V andF lists. These lists are such that they

guarantee adherence to a nonincreasing properthdqm value through iterations.

By Theorem 6.1 we know thay“0 (] B*(R) holds at any iteration of the

ROFOL

algorithm for ally* 0Y,. Assume that, at some iteration of the algorithve, set

L2=L andV2=V. Sincel2 is equal toL, y*O (J B(R) also holds and we

ROFOL2

can usd.2 in thepmcalculation.

Let pmL and pmL2 be the pm values obtained using and L2, respectively as

follows:
min{AlI(R min §A1(R
pmL=1- mi RDFDL{ ( )} and pmL2 =1- mi M .
ACRE mln{ } ATRE | min /1)/‘}
yOY yov

We updateL2, V2 andpmL2, only if pmL< pmL2. ThereforepmL may fluctuate

through the iterations bgimL2follow a nonincreasing pattern.

6.4.2 Steps of the Algorithm

We provide the steps éfpAin Figure 6.2. Steps @&pAare similar to those d&xA
However, there are some important differences. dMg discuss the new steps and
the changes in the algorithm. In Step 1, we ilzgal 2 andV2 lists as well. In Step

2, we calculateomL and updatd.2, V2 andpmlL2 if L is a better lower bound set.
We assume that®"is a predetermined positive scalar representing dixgired
proximity between the bound sets. In Step 3, wengarepml2 and&*Pand if
pmL2 < £*P then we conclude that lower and upper boundasetslose enough. In
this caseApA stops and reports the pointsYf. The rest of the algorithm is similar

to ExA



ApA

. SetY/ =0, k=0,

Initialize
v=0,F=0,L={(m nf,..nf)} L2=L,v2=V.
. Calculate pmL=1- mi erryan{ ( )} , iIf pmL< pml2 then
ATRE 5nD|Yn{ y}
L2=L,V2=V and pmL2= pmL.
. If pmL2< £*P then stop and repox,. .
. Selecta stagR={ rl,rz,...,rp} OL and seiv =VO{R.
. CalculateA such thatir' =Ar®=...=r".
. If AORP
Search 6.1. Solve problemMOIP(A) and let the optimal point be
rD:(rf,rZD,...rpD).
6.2.1f r"OR then setF =F O{R}.
6.3.1f r"0OR then
6.3.1. L=L D{{rl,...,r Py D} {r DL P, ”}} and
L=L-(LnV).
6.3.2. If r"0Y, theny* =17, Y2 = . O{ ¥} andk=k+1.
AOR? then go to Step 8.
L=L-{R}.
Loop

. If L=0 then stop and repoM., otherwise go to Step 2.

Figure 6.2 Steps dkpA
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6.4.3 Calculation of the Proximity Measure

Calculation of thepm value is crucial irApA because the algorithm compapsL2

and £** values and decides whether to stop or to procebd.this section, we
discuss how we can solve the following problem ealdulate thggmvalue.
min{A1(R)
pmL=1- mi @
e mln{A )f}
yov
In this problem, we can skip the constant term tinguthe optimization and
minimize the second term. At the end of the opation, we can convert the
optimal solution topmL value. We usepmL =1- pmL in the following
mathematical models where
ot = min SEn A (R}
ACRE min{/l 3/}
a7

In this term, we only imposd OR”. Hence we can set the denominator term to a

constant and minimize the numerator term. Welsetdenominator to 1 in order to

keep the range gfmL unchanged, i.eQ< pmL<1. The corresponding nonlinear

programming problem i$\LP:

NLP min{ RDranDrl{/} I( R)}}

st

min{/l )f} =1

a2

A0OR?

We introduce a set of binary variables and chahgé# into a mixed integer

programming problemIP. The optimal solution value ®IP is pmL.



MIP  min LB

st.
Ay¢ =21 Yy OY
Al(R)=LB ROFO L
A(R)-M(1-B;,)< LB ROFOL
By 21

ROFOL2

AORP

B, 0{0.3 ROFO L

whereM is a sufficiently large number and binary variaBjgs defined as follows:

B - 1if A1 (R)=LB
® |0 otherwise

In MIP, we define Al (R)=LB for each stagsgROFO L. Using the binary
variables, we force the model to ha)&b(R) < LB for at least one stageJ F[ L.

The number of binary variables MIP increases ag= O L| increases. This may

result in longer solution times. However, we ndedsolve MIP frequently to
measure the gap between the lower and upper baisd B we can reduce the size

of MIP, we can reduce the total CPU time requiredApp

Property 6.1. Consider two stage®' and R? such thatR!, ROFO L. If
I (R')<1(R?) and ! (R")#1(R?) then Al (R") <A1 (R?) forany AOR?.

Using this property, we can reduce the sizéviti®. Let us defineNl as the set of

stages whose partial ideal points are nondominated.
NI ={R: RO FO L /RO FO Lsuch thatl( R)< I RB}.

We obtain the reduced mod#|P_Reducedby replacingF O L set withNI set as

follows:
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MIP_Reduced min LB

st
Ay* =1 YOy
Al(R)z LB RO NI

Al(R)-M(1-B;)< LB RO NI

> Bg=1

RONI

AOR?
B, 0{0.3 RO NI

As ApA proceeds, there will be more stages inhkheset and solvingMIP_Reduced

would require more CPU time. It may be even maretconsuming than solving

MOIP(/]). Hence, we decompoddIP_Reducedinto |NI| linear programming

problems. Consider the following LBm(R)for a stageR NI and let the optimal
solutions ofpm(R)andMIP_ReducedeLBr and LB”, respectively.

pPm(R)  minA1(R)
St
Ay =1 yOY
AORP

Theorem 6.5 %L‘rll{ LB.} = LB".

Proof: Let LB =min{ LB} and LB; =A"] (RY).

since LB =min{ LB} then LBy =A% (R") < A%I(R)= LB, where A% is the
optimal weight vector ofpm(R) Moreover A" (RD)SARI(R)SADI(R) holds
becausel” is not necessarily equal &' . Hence settin@, =land A=A"is a
feasible solution for MIP_Reduced The optimal solution of pm( F?) is

LBy = A" (RD) and we cannot obtain a better objective functialue with a more

restricted problenMIP_Reduced o
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This decomposition prevents us from solving a mikeeger programming problem
frequently duringApA  Moreover, it brings another important advantagéhe
optimal solution oppm(R)may change only if a new point is addedrfobecause we
add a constraint tpm(R) for each point ily. . So we do not need to solpen(R)
until a new point is added td.. Obviously, we must solvpm(R)for each new

stage added tul.

In ApA we assume that we do not kndfv and calculate the proximity between
lower and upper bound sets. HowevelYfis known, then we can calculate the real
proximity measurepmi®® for a givenY;. Although, approximating a set which is

already known does not make sense in practicecah®arison opmL2 andpni®®
values provide an insight on the tightness of theer bound set. We provide a

comparison of these two values in Section 6.7.

If we know Y, then we can calculate tpel®® value. We solve the following linear
program for eacty O Y: \ Y, which is similar tgpm(R)

pm(y) minAy
S.t.

Ay=1 yOY
AORP

Let the optimal solution gbm(y)beLB,, then the real proximity is
pm® =1- min{ L@}.

YO\ ¥

Since eachy Y.\ Y. is dominated by a partial ideal point of a stggaL > @nf™.

6.5 Tightening the Lower Bound Set

In this section, we discuss some properties to belfp tighten the lower bound set.
By tightening the lower bound set, we may decrahseproximity between lower

and upper bound sets.
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6.5.1 Stages with Dummy Points

We startApA with stage(ml, nT,..., m’) havingp dummy points. In later iterations,

the algorithm generates new stages and some @& #t@ges may have dummy points

as elements. If a stagehas two or more dummy points thefR) ={0....,¢ . If

there is only one dummy point in a stage, tpeh components of the partial ideal

point are zero.

The stages with dummy points increase the valygmo$ubstantially, since or p-1
components of their partial ideal points are zekowever, we can improve these
partial ideal points and thpm value by setting lower bounds on all objective

function values. Let us define the lower bouncyBrobjective function asB <y,

for all yOOY and for allg. Hence we can redefine the partial ideal poirgtageR as

I (R) ={ L(R). 1,(R)..... 1, (R} wherel (R) = min{ LB, mDLr{ g}}

For a given problem, we can find some underestisnafd B, for each objective
function and use them &3, values in the algorithm. However we can determine

exactLBq values during the algorithm and obtain bepiervalues.

Let y° be the first point found by the algorithm aRfibe the stage obtained from

stage(ml, nt,..., rﬁ’) by replacingy®. Letm? andy® be the optimal solution of stage
RY. The weight vector corresponding to stdgfeis A° =(£,...,1—(p— e, .. 5)

where ¢ is a very small positive scalar. TheB, = v .

6.5.2 Nondominated Facet Defining Stages

In Theorem 6.1, we proved thgt O ( | B°(R) holds for ally*0Y,. Using this

ROFOL

property, we can obtain a lower bound for any weigttor at any iteration of the
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algorithm. In Theorem 6.6, we show that we carntég the lower bound by

cropping some portion of( | B (R).

ROFOL

Theorem 6.6. y* D[U Ef(R)}U{ B ( Fﬂ forall y*OY,.

RIF

Proof. For a given stagéz(rl,...,r")D F, consider two hypervolumeBZ(R) and

B*(R). Let us defind’(R)\ B'(R= <. Note that we can also define S as
follows:

S= Con\( (R ..., l")/{ rl,...,rp}.

It is not possible to havgY; in S becauseR is a facet defining stage. Hence
Sn Y =0 and we can us8(R)term instead oB (R) for nondominated facet

defining stages. Moreover,

ykD{U 32(R)}ULL'JFB?( Fﬂ holds for ally* OY, . O

ROL

By the above theorem, we do not need to s@wgR)for facet defining stages,

instead we may solve the following problem for ea¢hR .

pm() minAr
st
Ay=1 y OV
AORP

Since r OY, , the optimal solution ofpm(r) is equal to 1 for each point in a

nondominated facet defining stage. Hence we cgntbk stages ifr and consider

only the stages ih for thepmvalue calculation.

114



6.5.3 Shifting Partial Ideal Points

We can also improve thpm value by shifting some of the partial ideal paints
Consider a stag®[J L. There are two cases in the calculation of theigdadeal

point of Ras discussed in the proof of Theorem 6.1.

The first case is when there exists“@a]Rsuch thatr, >1,(R) Oq, i.e., r* is not
contributing to the partial ideal point af@) strictly dominates®. In this case, we
can shift the partial ideal point by 1 unit B¥R) = [nman{ rq“} +1 because it is not
possible to have a poigt]1 Y.\ ¥ that dominated ;(R). If such a poinyOY.\ ¥

existed, it would also dominatébecause* = | qS(R) in the best case.

If there is nor“ OR such thatrqk > | q(R) 0q, i.e., all points irR are contributing to
partial ideal point, then no shifting is possiblEo demonstrate, consider an example
with p=3, R:(rl, rz,ra) where points are'=(a,b+1c+1), r’=(a+Llb,c+J)
andr®=(a+1b+1c). Thenl(R)=(ab ¢ andl®(R)=(a+Lb+1c+1). There
may be a nondominated poi|yt=(a, b c+ 2). This point dominates the shifted

partial ideal point but not the original partiaéal point.

6.6 Improvements on the Approximation Algorithm

In this section, we discuss some properties inrotleémprove the performance of
ApA We develop a variant of pre-calculation propeliscussed in Chapter 5. We

propose to use a different queuing discipline &esting the next stage in Step 4 of
ApA We discuss a policy to replaceandV with L2 andV2.
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6.6.1 Pre-Calculation with Partial Ideal Points

In Section 5.5.2, we discussed the pre-calculgbi@perty in order to decrease the

number of MOIP(/l) 's solved. In pre-calculation, for a giveR and the

corresponding weight vectot, we search for poinrtpDC such tha‘tx]rpDC :”gin,‘{/‘ y}
YUYe

andrpDcDR.

In this section, we assume that a stRgend the corresponding weight vectbrare
given. However, our aim is not to find the minimwalued point for the gived .

Instead, we search for a point which will help asd¢duce the hypervolume defined

by B (R). Hence, we may improyemL

We refer to this property @deal-pre-calculation We search for a poing,, OY.
which is not inR and dominated by partial ideal point of stagel (R) ie.,
M D(Yé n BT(R))\ F. If there are many points in the defined hypem then

we break the ties as follows:

ArD = i AVi.
r|deal yD(YéTéQF?)\ R{ y}

We treatr”

ideal

as the optimal point correspondingRoWe removeR from L and add
up top new stages th. As discussed in the proof of Theorem 6.1, weonesrthe

convex  hull S:con\( I( F’i), (R‘) ( R)wjém) from Bj(R) where

RX :(rl,...,r"‘l ror*tor ”). That is, we replace the" element ofR with

1 ideal ?
ri and obtairR".
We modify Step 6.1 oApAas follows:

6.11deal-pre-calculationproceed to Step 6.1.1

6.1.1 Letr” besuchthafir’ = min | {7y}
\R

ideal ideal —
yo(¥en §(R
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6.1.2 If there exists such a point thef,, =r", go to Step 6.3.1, otherwise
go to Step 6.1.3.
6.1.3 Solve MOIP(4) and let the optimal point blé]:(rf,rf,...rf), go to

Step 6.2.

In Step 6.1.1, we search the best available pgigt In Step 6.1.2, if there is such a

point then we set it as’ and go Step 6.3.1, otherwise we proceed to Stef énd
solve MOIP(A).

Above, we discussed the use of the ideal-pre-caticui property for a given stage.
This property deals with one stage at each itaratidowever ApAmay add up te
new stages th. Since the approximation approach considerstadjes inL for pm

value calculation, we can use this property toganize all stages in. Consider the
following algorithm. For each stage inwe search for,,, point. If we can find

such a point we updateandV.

Reorganize_L

1. For eachRO L perform the following steps.
1.1. Calculated such thatirt =ir?=...=rP".

1.2. Letr”  be such tha#ir” = [ AV,
r|deal u r|deal yD(YéTéQF?)\ R{ y}

1.3. If there exists such a point thep,, =r" and go to Step 1.4.

Otherwise go to Step 1.
L4 L=LOf{r g ot 7 e 87

L=L-(LnV)andv=VO{R.

6.6.2 Queuing Discipline

In Section 5.5.3, we discussed three queuing disep to select the next stage

from L for EXA Those disciplines are all applicableApA However, inApA our
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main concern is to decrease the value by closing the gap between lower and

upper bound sets. With this motivation, we dengew queuing discipline.

At each iteration oApA we first calculatgpmL in Step 2. We select next stage in
Step 4. Considggm(R) (see Section 6.4.3) used fanL calculation
pPmR) minA1(R)
st
Ay =1 YOV
AOR?

The optimal solution opm(R) is LBg and pmL=1- %Iﬂ LB}. Let pmL=1-LB,.

We refer to stagd&’ ascritical stage This critical stage determingsnL and we
cannot improvepmL if we do not selecR® as the next stage. Hené@A selects

critical stage as the next stage in every iteration

As we discussed in Section 6.5.1, stages with dumpomyts have partial ideal points
havingp-1 orp zero components. We proposed to improve thesabiaeal points

by replacing zero components with lower boundspriliminary runs, we observed
that these stages still have smaif(R) values and they are selected as the critical
stage at the early iterations 8pA Based on this observation, we modify our
queuing discipline. We first select stages witimduwy points fromL, if there is no

such stage ih then we select the critical stage.

Using this discipline has two advantages. We ktteatpmL is very high if there are
stages with dummy points. Hence, we do not cateyall until all stages with
dummy points are visited and removed framThe second advantage is much more
important. If there are dummy points in a stadentthe corresponding weight

vector A has some components very close to zero, exceptfitee stage,

(ml, nt,..., rﬁ’). HenceApAfirstly determines the boundaries of the nondoneida

frontier. We consider a sample AP with=3in Figure 6.3. We plot extreme

supported nondominated points found only considetime stages with dummy
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points in Figure 6.3a and a subsetYof in Figure 6.3b. Since one or more

components ofl is very close to zero for the stages with dummingsowe have the
advantage to analyze the tradeoffs between the otfjective functions with larger

components i .

a) Optimal points found by b) A subsét ofY,
stages with dummy points
Figure 6.3. Effect of the new queuing discipline

6.6.3 Recovery Policy

We developed.2, V2 andpmL2 in order to keep the best statelofV and pmL,

respectively, during the search ApA In some iterationspmL may get larger,

which means the hypervolume defined lM B,Z(R) gets larger. When we face

ROFOL
such a case, we do not need to let the algoritlunease the hypervolume. Since we
keep the best state of the algorithmLid andV2, we can return to this state by
settingL =L2 andV =V2. ApArestarts its search from the best state again. We

refer this policy as theecovery policy

Using the recovery policy may result in the cyclioigthe algorithm. Consider the

following case. At some iteration, we upda® V2 andpml2 and select the next



stageR. The optimal point is"0R but r’0Y;. Moreover r’0B; (R). We add

new stages td. and removeR from L. Hypervolume defined byU Bf(R)
ROFOL

increases. In the next iteratiggmLis larger tharpmL2 and the recovery policy sets

L=L2 andV =V2. ApAstarts cycling in such a case.

In order to prevent the cycling dkpA we propose a simple rule. We record

Y2:|Yé| whenlL2, V2 andpml2 are updated. We do not apply the recovery policy
before a new point is added Yp after the last update. Hend&A be recovered if
|YE’| >Y2. Note that this rule prevents the cyclingAgdA for the case discussed in

the above paragraph. Having at least one new poivit since the last update has

two advantages. We may have a chance to reorganizin the help of new points.
This may improve the lower bound set and decrpade Another advantage of new
points is the possible improvement in the uppernidoget. Since we add new

constraints tgm(R) for each new point, we may have a chance to deepenL

Using recovery policy forcesApA to improve pml2. This policy promotes

improving moves ofApA i.e., removing some hypervolume fronU Bf(R).
ROFOL

However, ApA may reach to a better state if it can first apgbyne nonimproving
moves. We propose to apply recovery policAA finds a predetermined number
of new points after the last update. In computetidests, we use different numbers

for this policy.

6.7 Computational Test

In this section, we conduct a computational tesApA, and discuss the results of the
test. We codeApA on Microsoft Visual C++ 6.0 and test on a compuigth
Pentium M 1.6 GHz, 256 RAM and Microsoft Windows .XPNe use Callable
Library of CPLEX 8.1.
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We testApA using the assignment problem with three objedtinetions. We use
the same random data generation scheme discus§dwpter 5 and solve problems
with 30, 40, 50 and 60 jobs. We skip problems wifhand 20 jobs sindBestExA
solves them in less than 8 seconds of CPU time. adeproblems with 50 and 60

jobs instead.

We apply three lower bound set tightening propsntiiscussed in Section 6.5ApA
because these properties can be processed in ibegli@PU times. We also
implement the improvements discussed in Section &fier preliminary runs, we
decided to apply the ideal-pre-calculation propeWe also callReorganize Lin

ApA In preliminary runs, we tested results of callitigs algorithm in everyQ

iterations forQ={1,10,25,50,10]O.We decided to calReorganize Lin every 50

iterations because it is expensive to call it feagly in terms of CPU time. It also
increases the number of stagesoo much, which makes thmn value calculation
harder. We use 5, 10, 15 and 20 as rule numbeireeqio apply the recovery policy

in addition to its original value 1.

We runApAfor 5000 iterations. We report the results in Eabll. The first column
is the problem size and the second column is the mumber for recovery policy.
After every thousand iterations, we report the agepml2 value. Average CPU
time is reported in the last column. Note that, GfPhes are reasonable, considering
the fact thaBest ExAsolves AP with 30 jobs in nearly 490 seconds amthatsolve
AP with 40 jobs in 3600 seconds. As rule numberaases CPU time increases and
pmL2values decreases. However, we do not observend bretween problem size
andpmL2 Table 6.2 is very similar to Table 6.1. In thable, we report the average

ratio of |Y¢| to [Y¢|. As rule number increases the average ratio iseseiowever

this increase does not affggnl2 value.
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Table 6.1 Results gipA

Rule pmL2 (%)
n | Number| 1000 2000 3000 [ 4000 5000 CPU
1 23.61| 23.11| 23.04| 2271 2257 4191
5 21.94| 21.58| 21.36| 21.24| 2118/ 93.13
30| 10 21.93| 21.47| 21.29] 21.21| 21.13| 108.03
15 22.16| 21.82| 21.68| 21.64| 21.63 115.00
20 21.67| 21.34| 21.23| 21.18| 21.07| 116.35
1 24.19| 23.58| 23.49| 23.32| 23.26| 51.05
5 22.28| 21.97| 21.90| 21.86| 21.80| 128.07
40 | 10 21.68| 21.36| 21.26] 21.16| 21.13| 184.49
15 21.63| 21.31| 21.24| 21.21| 21.19 196.85
20 21.55| 21.11| 21.06| 21.02| 20.97| 227.03
1 25.22| 24.39| 24.30| 2424 2421 7431
5 23.03| 22.62| 22.25| 22.09| 22.05| 285.14
50 | 10 22.14| 21.64| 21.57| 21.49| 21.46| 432.88
15 21.97| 21.47| 21.42| 21.38| 21.37| 438.93
20 21.75 21.27| 21.15| 21.09| 21.08 525.01
1 26.28| 25.05| 24.77| 24.48| 24.42| 133.85
5 23.80| 23.39| 23.22| 23.10| 22.94| 439.59
60 | 10 22.67| 22.04| 21.94| 21.89| 21.85| 724.58
15 23.27| 22.64| 22.59| 22.45| 22.44| 739.86
20 22.20| 21.81| 21.67| 21.63| 21.60| 1031.03
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Table 6.2 Percent of points found ApA

% (2| /| Yel)

Rule
n | Number| 1000 2000 3000 [ 4000 5000 CPU
1 44.0 50.2 53.6 58.0 61.1 41.9
5 55.0 65.4 72.4 76.8 80.2 93.1
30| 10 56.7 67.3 74.2 78.4 81.7| 108.0
15 57.9 69.6 75.1 79.2 82.5| 115.0
20 59.1 69.2 75.2 80.2 82.9| 116.4
1 28.0 33.3 36.1 38.4 40.7 51.1
5 37.8 47.3 52.5 56.1 59.3| 128.1
40 | 10 41.6 51.0 56.4 60.8 64.1| 1845
15 42.5 52.0 57.6 61.5 64.6| 196.8
20 43.2 53.1 58.4 62.2 65.3| 227.0
1 27.4| 327 35.4 37.3 39.3 74.3
5 37.1 47.7 55.6 61.4 65.0| 285.1
50 | 10 42.7 56.2 63.5 68.8 72.9| 4329
15 43.1 57.2 64.2 69.4 73.6| 438.9
20 44.4 58.3 65.9 71.4 75.2| 525.0
1 27.5 34.0 37.0 39.9 41.8| 133.8
5 37.1 48.5 56.0 62.3 68.4| 439.6
60 | 10 40.7 57.2 66.0 72.2 77.9| 7246
15 42.2 58.0 65.8 72.3 77.3|  739.9
20 44.4 61.1 71.1 78.3 83.2| 1031.0

12¢




In Table 6.3, we compare tpenl2 obtained after 5000 iterations to e values.
As seen from the table, tiperi®® values are very small compared to pimel2 values.
We use same upper bound sets in the calculatitotbf values. Hence we conclude

that the lower bound set used AgAis not tight enough.

Table 6.3 Performance pmL2(rule number = 15).

pmL2 prle®
n Min | Ave | Max | Min | Ave | Max
30 17.06| 21.63| 25.59| 0.29] 0.91| 1.33
40 16.50| 21.19| 25.10| 0.49| 1.14| 1.71
50 19.73| 21.37| 23.00| 0.64| 1.30| 1.79
60 20.55| 22.44| 24.91| 0.96| 1.35| 2.03

6.8 Discussions

In this chapter, we developed an approximationrélyo to find a subset of extreme
supported nondominated points of a MOIP. We propdseer and upper bound sets
for Y. and provide a worst case proximity measure betwlenbound sets. We

discussed a number of properties to improve theridigm and the lower bound sets.
We tested the algorithm on a MOCO problem.
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CHAPTER 7

CONCLUSIONS AND FURTHER RESEARCH

In this thesis, we studied multiobjective combimetiooptimization problems. We
can organize our study under two main topics. flisétopic is about polynomially
solvable cases of the Traveling Salesperson Prol[E&P) and the Bottleneck
Traveling Salesperson Problem (BTSP). We consitlereltiobjective versions of
these problems. To the best of our knowledge,etherno other study in the
literature considering the solvable cases of TSBT8P with multiple objectives.
Our second topic is generating extreme supporteddominated points of
multiobjective integer programming problems. Weraleped algorithms to find
such points of an integer programming problem wathy number of objective
functions.

We considered two solvable cases of TSP and BT@Rnpdal tours and Halin
graphs. For pyramidal tours, we studied the mijigictive TSP on a set of special
distance matrices and showed some properties otlamsimated points. We
developed a pseudo-polynomial dynamic program mol 2 nondominated point
when all distance matrices are in the same classr the biobjective case, we
developed an approach to find all nondominatedtpoiWWe also demonstrated that

the optimal tours of bottleneck types of Van dereNeamnatrices and Demidenko
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matrices are not necessarily pyramidal. Hencedthelopments are not applicable

to these cases.

For the Halin graphs, we addressed multiobjectiv@blems with various
combinations of TSP and BTS§pe objective functions. We showed that, if there
are two or more TSP-type objective functions in gm@blem, then finding a
nondominated point iNNP-Hard, and there are exponentially many nondominated
points. However, if there is at most one TSP-tyigective function and all
remaining objectives are BTSP-type, then the prakiepolynomially solvable. We

developed algorithms to find the nondominated oint

A future research topic is to study polynomiallyivedle cases of combinatorial
problems in general. The approaches developebisnthiesis may prove useful in
some of those problems as well. Further analy#iegcomputational complexities

of the studied problems is another future resetmgic.

In our second topic, we developed two algorithms denerating the extreme
supported nondominated points of a multiobjectineger programming problem
with any number of objective functions. The figorithm is an exact algorithm
and it finds all such points. This algorithm findsly extreme supported
nondominated points and stops after a finite nundfeiterations. We proposed
several improvements on this algorithm and tested three well-known

combinatorial optimization problems.

The second algorithm is an approximation algoriamad finds only a subset of the
extreme supported nondominated points. The apmabion algorithm keeps lower
and upper bound sets for these points. The maiurke of this algorithm is its worst
case proximity measure between lower and upper d@ats. We proposed an
approach that provides a nonincreasing proximitasuoee. We tested our approach

on a well-known combinatorial optimization problem.
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Finding the set of all extreme supported nondomithgioints or an approximation
for it requires extensive computational effort, éese there may be too many such
points even for moderate size problems. It mayelasonable to focus on regions of
nondominated frontier that are more interestintheodecision maker. Incorporating
the preferences of the decision maker into botlrdlyns is an interesting future

research direction.

We developed some properties in order to improeegirformances dxAandApA
It may be possible to develop more properties utiiegmultidimensional nature of

the problems. The resulting algorithms may be lbkgpaf solving larger instances.

Another research direction is to conduct an expemtial study on MOCO problems.
In this study, we can figure out some properties tha cardinality of the

nondominated set and that of extreme supportedamiméted points.

The approximation algorithm uses the partial igeahts as the lower bound set. We
proposed some properties to tighten these bouhltsvever, these bounds, in their
current state, are not tight enough for practicalppses. We plan to work on
improving the performance of these bounds. Alsotlzar research direction is to

incorporate other approximation methods with owogxalgorithm.
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