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ABSTRACT 

VISIBILITY BASED PREFETCHING WITH SIMULATED ANNEALING  

 

Şafak Burak ÇEVİKBAŞ 
M.S., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Veysi Isler 

 

January 2008, 69 pages 
 

Complex urban scene rendering is not feasible without culling invisible 

geometry before the rendering actually takes place. Visibility culling can be 

performed on predefined regions of scene where for each region a potential 

visible set of scene geometry is computed. Rendering cost is reduced since 

instead of a bigger set only a single PVS which is associated with the region of 

the viewer is rendered. However, when the viewer leaves a region and enters 

one of its neighbors, disposing currently loaded PVS and loading the new PVS 

causes stalls. Prefetching policies are utilized to overcome stalls by loading 

PVS of a region before the viewer enters it. This study presents a prefetching 

method for interactive urban walkthroughs. Regions and transitions among 

them are represented as a graph where the regions are the nodes and transitions 

are the edges. Groups of nodes are formed according to statistical data of 

transitions and used as the prefetching policy. Some heuristics for constructing 

groups of nodes are developed and Simulated Annealing is utilized for 

constructing optimized groups based on developed heuristics. The proposed 

method and underlying application of Simulated Annealing are customized for 

minimizing average transition cost. 

 

Keywords: Visibility, Prefetching, Simulated Annealing, Urban, Walkthrough 
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ÖZ 

GÖRÜNÜRLÜK TABANLI OLASILIKSAL ERKEN OKUMA 

 

Şafak Burak ÇEVİKBAŞ 

Yüksek Lisans, Fen Bilimleri Bölümü 

Tez Yöneticisi: Doç. Dr. Veysi Isler 

 

Ocak 2008, 69 sayfa 

 

Karmaşık şehir ortamları, herhangi bir ayıklama kullanılmadan gerçeklenebilir 

değillerdir. Ayıklama yapmak için kullanılan bir yöntem, sahneyi hücrelere 

bölmek ve her hücreye bir görünebilir nesneler kümesi atamaktır. Sadece 

izleyicinin bulunduğu hücrenin görünebilir nesne kümesinin gerçeklenmesi, 

bütün sahne ya da sahnenin büyük bir kısmının gerçeklenmesine göre çok daha 

az kaynak gerektirir. Buna rağmen akıcı bir gerçekleme için hücre 

geçişlerindeki yavaşlamanın üstesinden gelinmelidir. Bu sorunu aşmak için 

kullanılan yaklaşıma erken yükleme adı verilir. Erken yükleme ile gerçekleme 

için gerekli veri daha izleyici hücreye girmeden önce yüklenir. Bu çalışma şehir 

ortamında etkileşimli gezinti uygulamaları için kullanılabilecek bir erken 

yükleme yöntemi sunar. Yöntem sahneyi bir çizge olarak ifade eder ve bu çizge 

üzerinde düğüm grupları tanımlar. Tanımlanan gruplar erken yükleme için girdi 

olarak kullanılır. Grupların oluşturulması için Benzetimli Tavlama algoritması  

ve buluşsallar. Yöntem ortalama geçiş masrafının azaltılması ya da en yüksek 

geçiş masrafının azaltılması gibi farklı amaçlar için özelleştirilebilir.  

 

Anahtar Kelimeler: Görünürlük, Ön-okuma, Şehir, Benzetimli Tavlama 
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CHAPTER 1 

INTRODUCTION 

Interactive frame-rates are required for walkthrough applications. Even the best 

performing hardware can become insufficient with the increasing size of the 

scene data. Rendering cost can be reduced by culling the invisible geometry 

before the actual rendering. Visibility studies concentrate on identifying then 

culling invisible away before they are sent to rendering pipeline.  

 

Simple method of culling is frustum culling where the scene geometry is tested 

against the view frustum and those staying out of the frustum are culled.  

However, this method is far from being sufficient. After frustum culling there is 

still significant amount of invisible geometry that can be culled. These are the 

away facing surfaces and geometry occluded by other geometry. Surfaces 

facing away from the viewer do not contribute to rendered image, so they can 

be culled away and this process is called Hidden Surface Removal. Many 

improvements on Hidden Surface Removal are provided by researchers.  

 

Other group of geometry to cull besides Hidden Surfaces is the occluded 

geometry. In complex scenery occlusion between scene geometry is inevitable. 

Studies focus on exploiting this fact. Traditional approach of visibility aims 

computing exact visible set. However computational cost is very high and 

consequently it is not feasible for interactive applications. Methods with lower 

computational costs were developed based on the concept of conservative 

visibility where the visible set is overestimated for the sake of computational 

cost. In other words a trade-off between culling accuracy and culling speed is 
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provided. Overestimated set of visible geometry is referred as Potential Visible 

Set (PVS).  

 

Visibility studies cluster around two approaches point-based and region/cell 

based. While point-base methods recalculate PVS for each location of the 

viewer at run-time, region based methods calculate PVS usually at 

preprocessing. Region based methods separate the scene into view-cells. The 

geometry visible from each cell is computed and attached as PVSs of cells. At 

run-time, PVS of the view-cell containing the viewer is sent to rendering 

pipeline. Region based methods provide infrastructure necessary for effective 

prefetching. With prefetching, next move of the viewer is predicted before it 

happens and necessary PVS is loaded. Starting from this point cell and region 

are used interchangeably. 

 

The motivation of this study is to develop a method for improving prefetching 

policies used for cell based rendering of complex urban scenery where the 

occluders and occludees are buildings and view-cells built from spaces between 

the buildings. In dense city scenery, most of the buildings are occluded by the 

others and only a small portion of the scene can be seen by the viewer. The 

urban scene can be represented by a function of height, in other words it is in 

fact 2.5D, not 3D with hanging objects. This property of the urban scene is 

exploited by the visibility methods to decrease computation costs.  

 

Basic prefetching policy that can be applied to region based rendering of urban 

environment is fetching PVSs of all neighbor cells of the current cell. For a grid 

representation of scene, this means fetching cell PVSs in groups of nine. 

Instead fetching subsets of neighbors according to viewer tendency of motion 

will be an improvement to this approach. 
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This study presents adaptation of a generic probabilistic optimization algorithm 

to prefetching. In fact, the method does more than optimization and provides a 

general approach for developing prefetching policies. The method converts 

prefetching policy development to defining heuristics which exploits scene 

semantics and scene structure.  

 

The scene to be rendered is abstracted to a graph where nodes are the view-cells 

and edges are the transitions among view-cells. Each transition is assigned a 

cost generated by the delta loading of destination cell’s PVS. Delta loading 

means loading data which is not already in the memory. In other words, delta 

loading is omitting preexisting data from fetching. 

 

Using the graph, prefetching is mapped to a graph partitioning problem. Groups 

of node are identified and sets of buildings called Prefetching Set assigned to 

the groups. When the user is in a cell and completed loading of PVS, the idle 

IO time is utilized to load PS of groups containing the current cell. With this 

mapping graph partitions are used to express data to be prefetched. A standard 

way of finding the best partitioning is not available because the concerns for 

prefetching may be different and exact solution may never exist. Therefore 

Heuristics are defined for group forming and PS construction. These heuristics 

are accompanied by evaluation schemas to find best solution on the graph. 

Simulated Annealing is utilized for optimizing the solution, in other words; 

finding the nearest approximation to best partitioning. 

 

Proposed method provides a flexible and extendable approach for developing 

prefetching policies. One of the major contributions is mapping prefetching to 

an abstract problem of graph partitioning. The other is adapting a generic 
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optimization algorithm for solution finding therefore allowing development of 

heuristics. Sample implementation of the method proposes a prefetching policy 

which considers both scene properties and structure. The method favors high 

probability transitions and central view-cells during construction of cell groups, 

therefore considers scene geometry and view-cell characteristics. The method is 

customized for optimization of popular paths for limited resource environment, 

average case performance, and worst case performance.  

 
The rest of the paper is organized as follows. Chapter II reviews related work 

on visibility methods and prefetching for region based methods. Chapter III 

explains the method in detail. Chapter IV presents implementation details, 

Chapter V discusses the results. Finally, Chapter VI presents the conclusion and 

future work. 
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CHAPTER 2 

RELATED WORK 

Increasing complexity of models and the need for interactive walkthroughs in 

them, led visibility studies to become a significant area. Starting from the early 

stages of computer graphics area, visibility has always been a fundamental 

problem. Algorithms are designed to determine which parts of the scene is 

visible on the scene and which part was invisible. Primitive approach is hidden 

line removal on vector displays. Later this approach is replaced with hidden 

surface removal techniques after the emergence of raster displays.  

 

Required framerate for an interactive walkthrough application is at least 20 Hz 

[1]. There always have been scenes more complex than the best performing 

hardware can handle with brute force. Visibility algorithm has to be utilized for 

necessary acceleration of complex scene rendering. Since the early days of 

visibility computation, many approaches including the visibility culling 

methods have been built.  

 

Visibility culling methods filter invisible geometry out before it is sent to 

rendering pipeline. Visibility culling achieves great acceleration on scenes 

crowded by geometries occluding each other. Examples are indoor and outdoor 

walkthrough applications. Geometry to be culled can be grouped into three as 

shown in Figure 1. Visibility culling:  

 

1. View-frustum culling: Those stay out of the view-frustum.  
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2. Back-Face culling: Surfaces facing away from the viewer. 

3. Occlusion Culling: Geometry occluded by other geometry in the scene. 

 

 

 

Figure 1. Visibility culling. 

Since processing of each polygon is too expensive, algorithms generally work 

on hierarchies of scene geometry where lower levels on the hierarchy present a 

smaller portion of the scene. An important concept necessary to differentiate 

algorithms is conservative visibility [2, 3]. While computing the Potential 

Visible Set (PVS) of scene objects, algorithms which include all visible objects 

from the reference point or region are called conservative algorithms. Usually 

for the sake of computation cost, algorithms overestimate the PVS. In other 

words to decrease computation costs as a trade off, PVS usually include all 

visible objects of the scene with a small set of invisible objects which increase 
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the rendering cost [2, 3]. Methods which are not considered as conservative 

methods, risk culling visible geometry for the sake of rendering performance. 

 

One of the available classifications has to be highlighted: online visibility 

culling and offline visibility culling. While the former determines visibility of 

scene geometry on the fly at run-time, the latter precompute visibility at 

preprocessing stage [4].  

2.1   ONLINE VISIBILITY CULLING ALGORITHMS 

Online visibility culling algorithms recompute PVS at each change of viewer 

location, i.e. the viewpoint. Methods computing the PVS for each change of 

viewpoint are classified as point-based or from-point visibility culling methods 

[4]. Some algorithms amortize the cost of PVS computation by doing the 

computation for a small neighborhood of the viewpoint. Once the PVS is 

computed, it is valid for several frames. This amortized time is allocated for 

computation of consequent PVS. 

 

Object precision from-point visibility culling methods exploit relations between 

objects of the scene. They are built on the existence of large occluders. Coorg 

and Teller [5, 6] proposed a method which uses a selection of large convex 

occluders to compute the occlusion in the scene. Two objects are considered, 

one as occluder the other as the ocludee. Supporting and separating lines are 

defined based on selected couple of objects as in Figure 2. Supporting and 

Separating Lines They partition the space cells from where the view is 

invariant. This means, visible set is constant until the viewer passes one of these 
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lines. In 3D lines are replaced with planes and point generating these lines are 

replaced with edges of the objects. However the complexity of the method is 

quite high.  Figure 3. Cells generated by three polygons. illustrates exponential 

complexity of the method. 

 

 

Figure 2. Supporting and Separating Lines. 
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Figure 3. Cells generated by three polygons.  

 
Another similar way of utilizing occlusion relations is proposed by Hudson et 

al. where a set of occluders is dynamically selected to compute occlusion in the 

scene [7]. Depending on this fact, viewer cannot see the occludee if the ocludee 

is in the shadow frustum of the occluder. Shadow frustums of the selected 

occluders are used to cull the scene.  Culling is done for bounding boxes from 

top to down on the object hierarchy of the scene. If a node in the hierarchy is 

found to be totally occluded it is discarded for the current frame. If a node in 

the hierarchy is found to be partially occluded, testing is continued for the 

lower levels of hierarchy to find totally occluded or totally visible nodes. 

 
Bittner et al. improved Hudson’s approach by employing an occlusion tree built 

by combining shadow frustum of the occluders [8]. Frustums are combined in 

the way presented by Chin and Feiner [9]. Once the tree is built as explained in 
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Bittner’s study, instead of testing the scene against each of the shadow 

frustums, it is tested against a tree. Figure 4 is illustrates the method.  

 

 

Figure 4 Illustration of Bittner's method.  

 
A group of point-based methods perform culling on the image during rendering. 

Objects fill out the image during rendering and consequent objects culled away 

using the filled parts of the image. Algorithms in this group operate on a fixed 

array of pixels and therefore are more robust and easier to implement.  

 
Greene enhanced standard Hidden Surface Removal method Z-Buffer to 

Hierarchical Z-Buffer (HZB) by adding multiple layers of different resolutions 
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[10]. Each level on the hierarchy is constructed by halving the resolution of 

lower level on each dimension. Z value associated with an element is the 

furthest z value of the elements forming that element on the lower level. During 

scan-conversion change of a z-value on leaf elements are propagated to upper 

levels. 

 

Greene presented the scene as an octree [10]. Nodes of octree are traversed 

from top to down and from front to back and tested against depth values in 

hierarchical depth buffer. If a node is found to be occluded it is discarded, 

otherwise testing continues for its children. To test a node, its faces are tested 

against z buffer hierarchically starting from the coarsest level. If a primitive is 

found to be further than the value in z-buffer it is occluded, if not testing 

continues in the lower levels of z-buffer until the visibility can be decided. 

Objects in non-occluded leaf nodes are rendered and the z-buffer is updated. 

Greene proposed modifications on graphics hardware for hardware 

implementation of hierarchical z-buffer.  

 

Zhang proposed a method which is similar to Greene’s Hierarchical Z-Buffer 

[11]. To work on current graphics hardware, method separates occlusion 

overlap test and depth test. The method utilizes a data structure called 

Hierarchical Occlusion Map (HOM). HOM stores only opacity information 

while the depth information is kept separately. At rendering time, for each 

frame HOM is constructed and scene is culled with it. HOM is built by 

rendering a set of occluders on the frame buffer. For building the HOM only 

opacity information is needed. Therefore all features like lighting and texturing 

are turned off and occluders are rendered s pure white on black background. 

After rendering on frame-buffer, a hierarchical structure is built like the HZB. 

Elements on levels upper then the finest level can have gray opacity values to 
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reflect opacity of the region that is represented by the element. To test occlusion 

of an object, first its bounding box is projected on the HOM at the appropriate 

level and tested against opacity values for overlap with occluders.  Then the 

depth values are used to decide whether the object is occluded or not. 

 

A different point-based image-space approach is proposed by Wonka et al. for 

urban environments [12, 13]. Wonka exploited the fact that urban environment 

is in fact 2.5D. In other words the scene can be described as z = f(x, y).  Volume 

behind the occluder limited with the planes generated by the viewpoint and the 

edges of the occluder is called Occluder Shadows. Projection of occluder 

shadow on the floor is called the footprint and used to compute occlusion. An 

ocludee is hidden if it lies in the footprint of the occluder and it is below the 

topmost edge of the occluder assuming that viewer is located below the 

occluder heights. The z-buffer is used to create shadow footprints and their 

height information by rendered with an orthographic top view of the scene as in 

Figure 5. Occluder shadow footprint.. 
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Figure 5. Occluder shadow footprint.  

 

Also Downs et al. exploit the 2.5D characteristic of urban environment [14]. 

They use the abstraction called Occlusion Horizon in their algorithm. OH is the 

connected set of lines passing through the top of the visible buildings in urban 

scenery. Downs maintained OH as a binary tree for optimum performance. 

Figure 6. Occlusion Horizon in Urban Scenery and its binary tree 

representation. illustrates occlusion horizon in urban scenery and its 

representation as binary tree. Downs use approximations of inner and outer 

volumes of objects in the scene. For outer volume approximation bounding box 

is used. For inner volume approximation, a set of convex vertical prisms (CVP) 

that fit in the object volume is used as in Figure 7. Building and CVP.  
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Figure 6. Occlusion Horizon in Urban Scenery and its binary tree 
representation. (Courtesy of Koldas) 

 

 

Figure 7. Building and CVP. 
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The method assumes a plane which sweeps the scene starting from the viewer 

and through the viewing direction. Scene is accessed hierarchically. Potentially 

visible objects are compared with the horizon when the sweeping plane touches 

them and their CVPs are used to update the horizon when the sweeping plane 

leaves them. By this was accidental occlusion of an object by another which 

does not occlude it at some point. Outer volume approximations of objects are 

used for comparison and inner volume of objects are used for updating the 

horizon. If outer volume of an object is found to be below the horizon it is 

occluded since the objects are traversed from front to back. Sweeping plane 

abstraction is implemented by an event queue.  

 

 

  

Figure 8. Occluder Shadow in Polar coordinates.  (Courtesy of Koldas) 

Koldas et al. improved the occlusion horizon method with incremental updates 

and polar coordinate system as called the method as Delta-Horizon [15]. 

Instead of recomputing the horizon for each position of the viewer, horizon is 

updated. Koldas exploit the fact that the occlusion horizon and PVS do not 

change much during a walkthrough and parts of the horizon to be updated can 



 
16 

be identified based on the horizon and the direction and size of the viewer 

movement. Instead of using image space, Koldas utilized polar coordinate 

representation of occluder shadows and the horizon as in Figure 8. Occluder 

Shadow in Polar coordinates.. Figure 9. Delta Horizon summarizes Koldas’s 

method. 

 

 



 
17 

 

Figure 9. Delta Horizon method.  (Courtesy of Koldas) 



 
18 

2.2   OFFLINE VISIBILITY CULLING ALGORITHMS 

Offline visibility culling methods generally partition the scene into cells and 

compute the PVS of each cell at preprocessing. At run-time, only the objects in 

the PVS of the cell where the viewer is located are rendered. Methods 

computing the PVS for cells of the scene are classified as region-based or from-

region visibility culling methods [4]. PVS of a cell is valid for the frames 

generated while the viewer in that cell. However it is hard to compute exact or 

conservative PVS for regions. One basic approach is sampling the visibility 

from viewpoints inside the cell and building an approximate PSV; but 

approximate PVS may cause unwanted flickering. Moreover, region based 

visibility is not effective with occluders smaller than the cell since an occluder 

smaller than the cell generates only a finite conservative shadow frustum 

behind it as seen in Figure 10. a) Occluders smaller than the cell. b) Aggregate 

umbra.. Methods based on large occluders were proposed by Cohen and 

Vazquez. However occluders are usually smaller than the cells in real 

applications [4, 16, 17].  

 

The important concept that overcomes this problem is using the aggregation of 

the occlusion caused by the individual objects.  This approach is called occluder 

fusion. Individuals forming the aggregate umbra do not have to be connected or 

convex [4]. A sample aggregate umbra generated with this approach is shown 

in Figure 10. a) Occluders smaller than the cell. b) Aggregate umbra. Effective 

methods which are significantly more successful than the previous methods 

were developed with utilization of occlusion fusion concept [4]. 
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Figure 10. a) Occluders smaller than the cell. b) Aggregate umbra.  

 

Teller builds a BSP to divide the scene into convex cells. Boundaries of the 

cells are composed of large opaque faces like walls. Non-opaque portals on the 

cell boundaries are identified and used to build an adjacency graph where the 

nodes are the cells and the portals are the edges. If a line from a point in a cell 

to a point in another cell, only passing through the portals thus not intersecting 

with cell boundaries, then these two cells can see each other through portals. 

These lines are called sightlines and with adjacency graph utilized to build 

portal sequences. PVS of a cell is the cells which are visible from the cell, are 

in the view-frustum, all cells in the portal sequence are in the frustum and there 

exists a sightline in the frustum. Teller extended his work to 3D and arbitrary 

portals. [18] 
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Schaufler’s method [19] uses discrete representation of space. First the object 

boundaries are rasterized into discrete space and interior of these boundaries 

filled with opaque voxels. For each view-cell adjacent voxels are grouped into 

larger occluders. Regions of space hidden by these occluders are marked as 

occluded. Regions are extended to space and occluder fusion is applied. To 

determine visibility of an object, the space occupied by the object is tested 

against the occluded volume of the scene for the cell where the viewer is 

located. 

 

Durand developed a conservative visibility preprocessing with use of extended 

projections which works on image-space [20]. Basically occluders and 

occludees are projected on a plane. If projection of an occludee is completely 

covered with aggregated projections of occluders then the occludee is said to be 

hidden. To ensure conservativeness projection of occluders are underestimated 

and projection of occludees are overestimated by extended projection. Extended 

projections are represented with a discrete extended depth map. Positions and 

number of planes are crucial for the effectiveness of the method and proper 

decision is also explained in the study. 

 

Koltun proposes using virtual occluders which is an aggregated representation 

of occlusion generated by multiple occluders [21]. In the preprocessing stage, 

nearby objects are iteratively added to clusters of objects which then used to 

build the virtual occluder that satisfies the occlusion generated by the objects 

forming it. Virtual occluders are placed at the furthest point of the cluster 

generated it. At the end of the iterations there are many virtual occluders which 

can be represented by a set of much smaller and effective virtual occluders. At 

run-time Scene is hierarchically tested against the virtual occluders. Since the 

number of occluders is small the method runs fast. 
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Figure 11. Occluder shrinking.  (Courtesy of Koldas) 

 

Wonka present a method to compute conservative approximation of visibility 

from a cell with discrete sampling from that cell [95]. He observed that if an 

occluder is shrank by з, occludees occluded by the shrunk occluder, stay 

occluded with respect to the original sized occluder while moving the viewpoint 

no more than з. Depending on this observation, visibility from a cell can be 

approximated by shrinking the occluders by з and taking samples on the 

boundary of the cell with intervals of з. Sampling is visualized on Figure 11. 

Occluder shrinking.. Size of з generates a trade-off between cost of visibility 

calculation and accuracy of the computed PVS. Small з increases accuracy and 

computation cost while large з does vice versa. 



 
22 

2.3   PREFETCHING 

Region based approaches are necessary for server-client applications and 

application with huge data sets. However they have their own drawbacks. 

Preprocessing time and storage requirements are high. Moreover a transition 

from one view-cell to another causes loading bulk data necessary to build PVS 

of the destination view-cell. During loading either the rendering pauses or the 

scene is rendered with incomplete data. Stall can be overcome by prefetching 

PVS of adjacent cells before leaving the current cell provides smooth visibility. 

The prefetching methods that this study concentrates on are visibility based 

prefetching methods. 

 

Both Teller [23] and Zach [24] fetch scene data in small chunks of different 

LOD representations. Decision of data to be retrieved and level of detail is 

made according to some benefit/cost calculation. Parameters like viewing 

direction and view position used for fetching data are estimated for future based 

on short history of viewer motion to predict the future. Based on this prediction 

prefetching is performed.  

 

Koltun utilizes a simple prefetching method for his dual-space visibility 

algorithm [25]. In this algorithm, with the PVS of the current cell, PVSs of all 

adjacent cells are also prefetched. When the viewer passes to an adjacent cell, 

PVS of that cell is prefetched already and rendering continues smoothly. 

Initially PVS of the cell containing the viewer and the PVSs of neighbor cells 

are fetched. Then when the viewer passes to a new cell all of the PVSs of new 

cell’s neighbors are fetched. 
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Figure 12. a) Prefetching with Koltun's approach b) Delta Transmission.                         
Red cells are fetched during transmission. 

 

Zheng and Chan improve Koltun’s algorithm [26]. First enhancement they 

constructed is the delta-transmission. Instead of fetching all neighbors of a cell, 

they just fetch the PVSs of the cells which are not already in the memory. 

Figure 12. a) Prefetching with Koltun's approach b) Delta Transmission. 

explains delta-transmission. Instead of re-fetching six of the cells only three 

cells are fetched.  
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Figure 13. Monitoring viewer tendency for prefetching. a) No cells are 
prefetched when the viewer is in the middle (M) of the cell. b) South 
neighbor is prefetched when the viewer is in the south (S) of the current 
cell. c) South, South-East and East neighbor cells are prefetched when the 
viewer in the north-east (NE) of the current cell. 

Key point of their algorithm is sub-dividing the cells into subcells and avoiding 

redundant prefetching. They defer prefetching until the viewer shows tendency 

to change view-cell. Also they avoid prefetching all eight neighbors by 

deciding a subset of neighbor cells according the tendency of the viewer. Figure 

13. Monitoring viewer tendency for prefetching. a) No cells are prefetched 

when the viewer is in the middle (M) of the cell. b) South neighbor is 

prefetched when the viewer is in the south (S) of the current cell. c) South, 

South-East and East neighbor cells are prefetched when the viewer in the north-

east (NE) of the current cell. summarizes their approach. 
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CHAPTER 3  

THE PROPOSED PREFETCHING METHOD 

To render complex urban data, scene data is culled to decrease amount of data 

sent to rendering pipeline. Culling is done in point based or region based 

manner. While point based methods calculate Potential Visible Set for each 

location of viewer, region based methods partition the scene in view-cells and 

calculate PVS of each view-cell at preprocessing. Therefore, region based 

approach removes overhead of PVS calculation from rendering time. However 

a transition from one view-cell to another causes loading bulk data necessary to 

build PVS of the destination view-cell. During loading either the rendering 

pauses or the scene is rendered with incomplete data.  

 

This section proposes a method to avoid stalls generated by the loading of the 

scene data during view-cell transitions. General approach of avoiding stalls is 

called Prefetching. Prefetching is predicting next transition and loading 

necessary data before the transition occurs. Our method is based on the graph 

representation of view-cells and the transitions among them. A generic 

optimization algorithm, which is called Simulated Annealing, is utilized to 

optimize prefetching of scene data on our graph representation. 

 

The proposed method for pre-fetching scene data improves smoothness of view 

cell transition in region based rendering of complex urban environment. The 

method represents view-cells and the transitions among them as a graph and 

constructs abstract groups of view-cells. Groups are used for prefetching scene 

data. To construct groups, a generic optimization algorithm is used. The method 
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is customized by changing the heuristics and evaluation criteria used for 

grouping and constructing prefetching set. With the flexibility and abstraction 

provided by the method, better policies can be developed. 

3.1 STATEMENT OF PROBLEM 

Considering a transition T from view-cell S to view-cell D, four sets are defined 

where bi is a building: 

 

PVS(S) = {b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}  

PVS(D) = {b1, b4, b6, b9, b11, b12, b13, b14, b15, b16}. 

discard(T) = {b2, b3, b5, b7, b8, b10} 

load(T) = {b11, b12, b13, b14, b15, b16}  

 

Assuming PVS(S) is already in memory at the time of transition; buildings 

which are in PVS(S) and not in PVS(D) should be discarded. The set of 

buildings to be discarded is discard(T). Buildings which are in PVS(D) and are 

not in PVS(S) should be loaded. The set of buildings to be loaded is load(T). 

 

It is clear that a break in the smoothness (a stall), whose length varies with the 

complexity of the building models, will occur. To overcome stalling, load(T) 

should be loaded into the memory before the transition takes place. 

 

Statement of the problem proposes a structure. When view-cells are taken as 

nodes and transitions are taken as edges between nodes, a graph structure is 
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formed. Figure 14. View-cells to graph mapping. shows the mapping from 

view-cells and transitions to graph. 

 

On this graph groups of nodes are defined according to some set of heuristics 

like “nodes with transitions of probability higher than 50% should be in the 

same group”. Each these groups are assigned a set of buildings which is again 

built according to a heuristic like “10 most expensive buildings should be 

included in the prefetching set”. When a transition occurs, first the PVS of the 

target view-cell should be constructed by fetching the missing buildings. While 

the viewer stays in the cell, perform prefetching of buildings identified in the 

set assigned to groups which includes the current view-cell/node. This simple 

schema constructs the basics of our approach. 

 

 

Figure 14. View-cells to graph mapping. 
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With this approach, optimizing prefetching is converted to graph partitioning 

problem. To generate useful partitioning which minimizes the transition costs 

we utilized a generic optimization algorithm called Simulated Annealing. There 

are three main steps of this approach. The first step is to representing the scene 

as a graph. The second step is to map the prefetching process to a graph 

partitioning. The third step is to solve graph partitioning problem using 

simulated annealing algorithm by utilizing heuristics. At the end, whole 

prefetching optimization problem is transformed to defining effective heuristics 

of graph partitioning. 

3.2 SIMULATED ANNEALING 

Simulated annealing (SA) is a generic probabilistic meta-algorithm for the 

global optimization problem, namely locating a good approximation to the 

global optimum of a given function in a large search space.  

 

Simulated annealing builds an analogy between physical systems and 

optimization problems. Point s in the search space of the problem is analogous 

to one state of the physical system. Internal energy of the physical system at 

current state is analogous to the cost of a solution, E(s), in the search space. The 

goal is to bring the system, from an arbitrary initial state, to a state with the 

minimum possible energy. Speaking in terms of optimization problem, this 

means finding the point in the search space with minimum E(s). 

 

Basically SA works in five steps which are repeated as iterations. Iterations are 

repeated until the computation budget is exhausted. In SA, computation budget 
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is realized with a global variable called Temperature. Temperature is gradually 

decreased in each iteration. Five steps of simulated annealing are: 

 

1. Choose a neighbor state s’ of the current state s. 

2. Calculate E(s’) the energy of the candidate state. 

3. Store s’ if it is the best solution so far. 

4. Decide moving to s’ or staying at s. 

5. Cool down – decrease Temperature.  

 

It is shown that, for any given finite problem, the probability that the simulated 

annealing algorithm terminates with the global optimal solution approaches to 1 

as the annealing schedule is extended. 

 

Which separates SA from greedy algorithms is the function used for step 4. 

Decision is made by a probability function of acceptance P(e, e’, T) where e = 

E(s), e` = E(s`) and T = Temperature. P is implemented so that it allows moving 

to worse states depending on T and the difference between energies of the 

candidate state and the current state. Probability of moving to a state with 

higher energy (worse state since we are trying to minimize the energy) 

increases with increasing T and decreasing difference in energies of two states. 

On the other hand P is always 1 when candidate state has a lower energy. This 

property of SA avoids being stuck at local minima by allowing it to jump out of 

the local minima to a state (probably with higher energy when T is high) which 

can lead to global minima. 

 

Lack of the definition of exact solution leads to utilization of stochastic 

optimization methods. Alternatives in this area include Genetic Algorithms, Ant 

colony optimization and those similar to simulated Annealing like Stochastic 
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Tunneling and Tabu Search which traverse neighbor solutions of current one 

and try to avoid local minima. Although it is probable to achieve optimization 

with alternatives, simplicity of understanding and implementation, resulted with 

utilization of Simulated Annealing.  

3.3 METHOD 

3.3.1 REPRESENTATION 

Our method is built on top of a representation of scene as a graph. View-cell 

graph is defined as <N, E> where N is set of view-cells and E is set of 

transitions {t1, t2, t3…}. For N each cell has set of buildings {b1, b2, b3...} which 

has to be rendered when viewer is in that vie-cell, in other words the PVS of the 

cell. A transition is defined as <S, D, L> where S is source view-cell, D is 

destination view-cell and L = {b1, b2, b3…} is a set of buildings to be loaded.  

 

When a transition <S, D, L> occurs, it is sufficient to load buildings in L to 

built necessary building set, PVS of the destination cell, to render. L is the set 

of buildings which are not in the PVS of S and are in the PVS of D. Therefore 

each edge/transition has a cost which is the loading time of the buildings that 

will be loaded for completing PVS of destination view-cell. 
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3.3.2 MAPPING 

Costs of the transitions cause the stalls and that should be minimized. Assuming 

there is more resource than necessary for rendering PVS of a regular cell, some 

more IO can be performed in parallel while the viewer stays in a cell. Deciding 

which data to be loaded drives us to implement a prefetching policy.   

 

Simplest application of prefetching would be loading PVSs of all neighbor 

cells. This approach is static in terms of customization and prioritization. It 

ignores scene specific properties like time spent in cells and size of the cells. 

When the neighbor cells are small or the viewer passes through a cell in a short 

time, next transition will again cause a stall. Moreover when there are more 

transitions than the memory limitations can handle, some of the transitions 

should have a priority for prefetching to increase throughput of the prefetching. 

Solution of the problem should consider scene specific information, viewer 

behaviors and memory limitations. 

 

Instead of defining strict rules of prefetching we developed a more flexible 

method based on representation of the scene as a graph. We define groups of 

adjacent nodes and construct sets of buildings for each of these groups and call 

these sets as PS (Prefetching Sets). Idle time spent in a cell is used for loading 

PSs of the cell. 

 

Figure 15. Sample partitioning illustrates a sample partitioning of a graph. It is 

seen that groups are allowed to intersect with each other. When the viewer is in 

a node which is included in more than one group, the PS to be used for 

Prefetching is constructed based on the union of building sets of these groups. 
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Figure 15. Sample partitioning 

 
Definition of optimum changes with the objective. For example minimizing the 

average transition cost may be an objective. Heuristics are used to optimize the 

grouping of cells according to the defined objective. Examples of these 

heuristics are: 

 

• High probability transitions pull source and destination nodes into the 

same group.  

• Cells where the viewer stays for short time act like transitions between 

their neighbors. 

• Central cells with number of transitions above a defined threshold pull 

its neighbors. 

 

First heuristic is intuitive since it is clear that if there is a high probability for 

the viewer to pass to a neighbor cell than content of that cell should be 

prefetched. Second heuristic exploits the fact that when the viewer stays short 
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in a cell, policy should consider neighbors of this short stayed cell. Third one 

uses the natural grouping exposed by the structure of the scene. If there is a cell 

which is connected to lots of cells, it is clear that constructing a group around 

this cell will be advantageous.  

 

Once a group is formed, next point to consider is selecting a set of buildings as 

PS of the group. Which buildings from the cells should be included in the PS of 

the created group? Answers may include the following items: 

 

• All units of all cells.  

• High cost buildings. 

• Long and frequently appearing buildings. 

 

First one is the simplest, keeping the PS as the union of PVSs. A PS of a group 

contains all the building contained by PVS of the participant cells.  Second one 

is a smarter choice, prefetching the high cost buildings but the effectiveness of 

the choice is not clear since it is not guaranteed that these building are seen 

most of the time. Third one is building the PS as a subset of all buildings which 

only includes most active buildings, in other words those buildings which are 

rendered for the longest time. 

 

Two points where heuristics are utilized were considered: forming groups of 

cells and building PSs for groups. Both steps are subject to inevitable 

constraints: memory size and loading time. Loading time constraint is explained 

first. Prefetching at a cell can continue as long as the viewer stays in that cell. 

When the user leaves the cell, prefetching is stopped for left cell and starts for 

the arrived cell. In a similar way, data exceeding the memory limitation can not 

be loaded. Total size of the building to be prefetched for a cell therefore cannot 
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exceed the memory size. Both of these constraints can be embedded in the 

implementation or just be ignored because of the algorithm utilized for 

optimization. Practically, ignoring the two constraint does not cause any 

problems for execution of the algorithm and the rendering but it is for sure that 

it affects the effectiveness of prefetching. Situation will be clarified when 

application of simulated annealing is explained later. 

 

As stated but not clarified before, prefetching by grouping can be applied for 

one of the possible global objectives. Utilization for a generic optimization 

algorithm provides flexibility to work for different goals. An evaluation 

function is utilized as detailed later to calculate the score of a solution. Different 

scoring functions are proposed for three objectives: 

 

• Minimizing maximum transition cost. 

• Minimizing average transition cost. 

• Minimizing popular path cost. 

 

The first objective is used to reduce the cost, which is the stall time during a 

transition. If this value is kept below a specific value then the walkthrough runs 

smoothly. The second option optimizes for the throughput of the walkthrough. 

Minimizing the average cost of transition means minimizing the overall IO cost 

of the walkthrough. The third option is suitable for walkthroughs on low end 

resources. When the resources are limited, instead of the first two options, this 

option is utilized for optimizing costs for popular path, those are used mostly by 

the viewer. When a multi-viewer environment is considered depending on the 

facts of the scene and its semantics the third option provides focusing on the 

most effective transitions. An example where the third objective is applicable is 

that, a client-server application of hundreds of clients are connected to a server 
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and play an RPG game. At a specific location of the world, there is a monster 

that clients avoid facing it and run away instead of fighting. Even this one 

semantic property of the scene will create a popular path where the users come 

to the cell containing the monster and run away to the next cell containing the 

escape. It is wise to prefetch the escape path before the client faces the monster 

since probably he will take the escape path. 

 

It can be argued that discarding unnecessary data should also be considered in 

this study. It is clear that groups generated by this method can be used for 

setting priorities for discarding data. Discarding with priority is stated as future 

work and out of scope for this study. 

3.3.3 ADAPTATION 

Previous section established a baseline for creating effective prefetching policy. 

Scene was represented as graph, prefetching was mapped to graph partitioning, 

evaluation methods were stated, heuristics used for grouping and PS 

construction were developed. If a mapping of our partitioning problem is 

generated, SA can be utilized. 

 

Repeating steps of SA were stated in the previous sections as followings: 

• Choose a neighbor state s` of the current state s. 

• Calculate E(s`) the energy of the candidate state. 

• Store s` if it is the best solution so far. 

• Decide moving to s` or staying at s. 

• Cool down – decrease Temperature.  
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Mapping starts with defining the search space for SA. For our case each 

partitioning of the view-cell graph is a solution. Therefore our search 

space/solution space is the set of all possible partitioning of view-cell graph.  

 

In the solution space, the relation between neighbor solutions should be defined 

in order to have a basic step which leads to a new solution depending on 

another. A solution can be reached from another by doing one of the 

followings: 

 

• Adding a view-cell to a group. 

• Removing a view-cell from a group. 

 

It is clear that starting from an arbitrary partitioning of the graph, with using 

only the two actions stated above, all search space can be traced. 

Evaluation of a solution is the step after selecting a neighbor solution. Since SA 

tries to minimize the energy, it can be defined as E(s) = C(s) where C(s) is the 

cost to be minimized. Three options suggested as goals can be directly utilized 

as evaluation function. All of the three suggestions are straightforward to 

implement. For maximum cost minimization, C(s) is the cost of most expensive 

transition. For average cost minimization, C(s) = sum of transition costs / 

transition count. For popular transition cost minimization C(s) = sum of the 

costs of transitions included on the popular paths. 

 

Comparing the new solution with the best solution so far and storing it, is 

trivial. In the original formulation of the method by Kirkpatrick et.al [27], the 

acceptance probability P(e,e',T) was defined as 1 if e' < e, and exp((e − e') / T) 

otherwise. Although there is no mathematical justification for using this 
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particular formula in SA, this formula is quite popular. Therefore, fourth step of 

the algorithm is realized with this formula. At each step Temperature is 

decreased by one. With this simple approach T is the number of iterations. 

 

Memory and time constraints were mentioned in the pervious section but the 

explanation was deferred to the end of this section. With the schema explained 

these constraints are embedded in the implementation at step one of SA, 

choosing a neighbor solution. While moving to a neighbor solution, if adding a 

node to a group violates one of these constraints, simply the candidate solution 

is discarded and another candidate solution is built. When constraints are not 

considered during candidate generation the drawback will be producing fake 

best solutions which cannot be realized during rendering. Since these 

constraints cannot be violated at rendering time, fake best solutions are still 

optimizations with less effectiveness. The sample implementation considers 

only memory constraint for simplicity.   
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CHAPTER 4 

IMPLEMENTATION OF THE METHOD 

Sample implementation works with a subset of suggested heuristics. Heuristic 
used for forming groups is: 
 

• “High probability transitions pull source and destination nodes into the 

same group.”  

 

Heuristic selected for constructing PS is: 

 

• “Long and frequently appearing buildings.” 

 

Implementation is tested for the goal: 

 

• “Minimizing average transition cost.” 

 

There are two major parts of the implementation: 
 

1. Generic Simulated Annealing Implementation 

2. Adaptation of Simulated Annealing for Prefetching optimization 
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Below is the pseudo code describing the implementation of simulated 
annealing: 
 
 
CoolingSchedule  coolingSchedule; 

SolutionSpace   solutionSpace; 

StateTransition  stateTransition; 

ScorePolicy   scorePolicy;  

Solution    bestSolution; 

Solution    candidate; 

 

while (coolingSchedule.getTemperature() > 0) { 

 candidate = solutionSpace.getCandidate(); 

 

 if (candidate better than bestSolution) { 

  bestSolution = candidate; 

} 

 

candidateScore = scoringPolicy.score(candidate); 

currentScore = scoringPolicy.score(solutionSpace.getCurrent());  

temperature = coolingSchedule.getTemperature(); 

 

if (stateTransition.checkTransition(temperature, currentScore,     

candidateScore)) { 

 solutionSpace.acceptCandidate(); 

} 

 

 coolingSchedule.cool(); 

} 
 
 
Cooling schedule keeps temperature and gradually decreases it with each call to 

cool function. Solution space keeps best solution available with current solution 

and generates candidate solutions. StateTransition probabilistically decides to 

accept the candidate solution as the current solution or not. Score policy 

calculates the score/energy of each solution. Implemented algorithms for each 

of these briefly mentioned components are explained in the next section. 
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4.1 ADAPTATION OF SIMULATED ANNEALING 

Following figure show the overview of simulated annealing and its adaptation: 
 

 

Figure 16. Adaptation Overview 

Cooling schedule used for tests is a straightforward implementation. Cooling 

schedule is started with an initial temperature and in each iteration; the 

temperature is decreased by one. Literally, cooling schedule counts the number 

of iterations and makes simulated annealing to stop after specified number of 

iterations. 

 

State transition function P(e,e',T) is defined as 1 if e' < e, else exp((e − e') / T) 

where e and e` are the scores assigned with the associated Scoring instance and 

T is the current temperature. This allows moving to worse states depending on 

T and the difference between energies of the candidate state and the current 
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state. Probability of moving to a state with higher energy (worse state since we 

are trying to minimize the energy) increases with increasing T and decreasing 

difference in energies of two states. On the other hand P is always 1 when 

candidate state has a lower energy. This property of SA avoids being stuck at a 

local minimum by allowing it to jump out of a local minimum to a state 

(probably with higher energy when T is high) which can lead to global minima. 

 

A solution is defined as a set of groups of nodes in the graph and sets of 

buildings (Prefetching Sets) associated with groups. Partitioning is not used in 

as the original definition but used as in the relaxed definition which allows 

intersecting partitions.  

 

Solution space keeps the best solution available, the current solution and 

generates candidate solutions in two alternative ways. First one is called the 

default candidate generator and randomly selects nodes and groups to generate 

candidates.  
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Figure 17. Random candidate generator 

 
Second way is supported with heuristics to create tendency of generating better 

solutions for optimizing the average transition cost. While adding a node to a 

group, transitions with higher hit count are favored. While removing a node 

from a group, transitions with lower hit count are favored. After a transition is 

selected, its source and destination nodes are used to generate a candidate. 

Since method is developed for prefetching, destination nodes are added to and 

removed from group of source node. Since the implementation allows multiple 

groups on one node, group is selected randomly among the available groups. 
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Figure 18. Candidate generation with heuristic 

 
After a group is modified its PS should be updated. Two alternative methods 

for PS construction are implemented. The first method randomly chooses 

buildings among all buildings of nodes forming the group. The second method 

favors buildings from nodes with higher hit counts. However, the heuristic used 
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for the e second method does not perform better. See CHAPTER 5 for details 

and discussion of the situation. 

 

Sample implementation tries to minimize the average cost of transitions; 

therefore the scoring policy is implemented to compute the average cost of 

transitions. The straightforward formula is Σ cost(t) / number of t where t is a 

transition.  

4.2 CITY DRAWER 

 

Figure 19. Screenshot of CityDrawer 
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To generate test data a utility called City Modeler is also developed. City 

modeler displays images as background and allows defining buildings and 

view-cells as polygons. City Drawer can save and load city data as text files. 

Format of the text files are given below.  

4.3 GRAPH GENERATOR 

Another utility used after the generation of city data by City Drawer. Graph 

Generator takes output of the City Drawer and constructs a graph with it. Then 

Graph generator saves the graph data to another text file. At the end, there are 

three files: View-Cells, Buildings and Graph. These form the input for the 

algorithm.  

4.4 TEST BED 

Algorithm runs with statistical data of transitions between cells. The assumed 

real environment of the method is an application with hundreds of users, where 

the prefetching policy is continuously optimized with the statistical data 

generated by the users. Method tracks user trends in the environment and 

updates the prefetching according to these trends. However, generating the 

input and testing the results requires a simulator since it is not possible to gather 

hundreds of people to be used as testers. A simulator of tourists touring the city 

is utilized for the purpose.  
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There are tourists and bad guys in a city. Tourists are far more crowded than the 

bad guys like 1/100 or 1/1000. Tourists want to see as many buildings as 

possible, stay in the same view-cell with the bad guys as short as possible and 

they chat with each other. When tourists face each other in a cell, the time they 

spend in the cell increases. When there is a bad guy in the cell the tourists 

leaves the cell in a very short time. When the view cell contains only one tourist 

then the tourist stays in the cell proportional to the size of the cell since they 

discover every square meter of the view-cell. When the time is up and the 

tourist leaves a cell, it decides the destination cell with a probability generated 

according to cell PVS sizes. The more buildings in a neighbor cell the more it is 

likely that the tourist goes to that cell. 

 

Simulator runs in iterations and at each iteration every tourist takes a single 

move to cell other than the cell it is in. When leaving a cell, they register their 

stay time to cell according to the scenario described above. When a tourist 

makes a transition it also increases the hit number of the cell transition it takes. 

 

With the described simulator, transitions have probabilities assigned to them 

and cells have average stay times. These statistics are used for testing of the 

sample implementation. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

Tests are performed on the previously described test bed with 100 tourists, 93 

nodes and 135 buildings. Input statistics are collected with a run of 1000 turns 

where each tourist takes a move. On the total there are 100x1000 = 100000 

view-cell transitions. Each row on the following tables represents a single test 

run. Each test run consists of three steps:  

 

1. Create input statistics. 

2. Run the method. 

3. Collect output statistics. 

 

Each building has an associated cost with is proportional to the area covered by 

it. This cost is utilized as the memory occupied by buildings when fetched. An 

upper limit defined for the fetching which is identified as cache size on the 

results tables. 

 

Columns on the tables have the following meanings: 

 

CACHE SIZE : Maximum allowed cost of buildings to be kept 

in building cache. 

 

INITIAL TEMPERATURE : Number of cycles that the method will be run. 
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AVERAGE COUNT B.A. : Average number of buildings fetched in a view-

cell transition before applying the method. 

 

AVERAGE COST B.A : Average total cost of buildings fetched in a 

view-cell transition before applying the method. 

 

FIRST SCORE  : Initial score/energy calculated by the method. 

 

LAST SCORE : Best score calculated by the method, i.e. the 

score/energy of the best solution. 

 

AVERAGE COUNT A.A. : Average number of buildings fetched in a view-

cell transition after applying the method. 

 

AVERAGE COST A.A : Average total cost of buildings fetched in a 

view-cell transition after applying the method. 

 

COST REDUCTION : Decrease in the average cost of a transition with 

application of the method in terms of percentage. 

 

There is no specific unit of Cache Size and Building Costs. Since the tests are 

performed to see reduction ratios, only the magnitude of these value are 

important.  It can be argued that the test data is limited in size. Since the local 

visibility is independent of the size of the complete data, the results reflect a 

good approximation to higher data sizes. 

 

Although the method is assumed to be an off-line method, presenting its 

computational cost might be helpful. 800 iterations with full data set which is 
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mentioned above takes below 2 seconds. Even though there is no formal 

complexity analysis and comprehensive performance test available yet, 

parameters affecting the computational cost can be stated.  

 

1. Number of buildings in the scene. 

2. Number of nodes in the scene. 

3. Number of iterations of SA. 

4. Number of transitions in the scene. 

5. Complexity of the utilized heuristics. 

 

Each of the first four factors is expected to affect the computation time linearly 

or near linearly depending on the fact that the SA algorithm jumps randomly 

among nodes and transitions instead of tracing them one by one. However, 

suggested heuristics rely on sorting of transitions and nodes according to 

various criteria. Therefore, the performance of the method becomes dependant 

on the first four factors indirectly through the heuristics.  

5.1 RESULTS WITH HEURISTIC CANDIDATE 
GENERATOR AND RANDOM PS 
CONSTRUCTOR 

The first set of results are collected with CandidateGeneratorForAverage as 

candidate generator, ScoringForAverage as scoring policy and AllBuildingsPS-

Constructor as prefetching set constructor. See CHAPTER 4 for details of these 

components. This set illustrates the effect of using a simple heuristic of 

effectiveness of the method. 
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Table 1. Results with Heuristic Candidate Generator and Random PS 
Constructor 
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10000 25 12.12 5936 5066 4968 11.72 5829 1.80 
10000 50 12.02 5920 5066 4815 11.86 5916 0.06 
10000 100 12.04 5898 5066 4367 11.97 5925 -0.45 
10000 200 12.02 5934 5066 3511 11.76 5872 1.04 
10000 400 12.08 5956 5066 3160 11.82 5904 0.87 
10000 800 11.98 5905 5066 2681 11.82 5890 0.25 
50000 25 11.88 5878 5066 4942 11.51 5759 2.02 
50000 50 11.04 5899 5066 4703 10.56 5379 8.81 
50000 100 12.06 5942 5066 4493 8.64 4443 25.22 
50000 200 12.04 5906 5066 3673 3.83 1998 66.17 
50000 400 11.86 5895 5066 2888 1.99 998 83.07 
50000 800 11.96 5908 5066 2661 1.83 785 86.71 
100000 25 11.95 5875 5066 4905 11.77 5863 0.20 
100000 50 12.03 5929 5066 4820 10.95 5474 7.67 
100000 100 12.00 5883 5066 4441 8.79 4452 24.32 
100000 200 11.88 5848 5066 3303 2.75 1446 75.27 
100000 400 11.93 5897 5066 2991 1.30 762 87.07 
100000 800 11.93 5900 5066 2715 0.91 490 91.69 

 

 

 

Simulated Annealing implementation increases its effectiveness with increasing 

temperature as expected. However speed of decrease also decreases since the 
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probability of finding better solutions decreases. In other words score converges 

to some lower bound. (Figure 20. Performance of SA )   
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Figure 20. Performance of SA with Heuristic Candidate Generator and 
Random PS Constructor 

Cost reduction column shows much more dramatic facts. Even though SA can 

only reduce the score to its half, effect of this reduction to view-cell transition 

cost is more effective. Cost reduction is strongly bounded to cache size. As seen 

from the results, while reduction is near zero with low cache sizes it can hit to 
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96% with high cache sizes. (Figure 21. Cost Reduction with changing Cache 

Size  
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Figure 21. Cost Reduction with changing Cache Size with Heuristic 
Candidate Generator and Random PS Constructor 

For better visualization of the method see Figure 22, Figure 23 and Figure 24. 

Arrows indicate the transition from gray cell to black cell. Picture on the left 

side shows the transition without prefetching whereas the one on the right side 

shows the transition with prefetching. On both sides, white boxes are buildings 

which are in the destination cells PVS and dark gray boxes are buildings which 

are in the PVS of the source cell. On the right side, prefetched buildings are 

filled with light gray. White boxes on the right side indicate the buildings which 

are not covered by the prefetched set of buildings. 
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Figure 22 illustrates a transition where the PVS of the destination cell is fully 

prefetched before the transition happens. Transition has a high probability of 

occurrence on the average therefore the method favored the transition for 

prefetching. Figure 23 illustrates a transition with low probability of 

occurrence. Although the PVS of the destination cell is small, algorithm 

unfavored the transition and ignored it for prefetching. Figure 24 illustrates a 

situation which is similar to the first one but with one major difference: the 

cache size was not sufficient to fully prefetch the destination cell’s PVS. 

Algorithm favored the transition but it was unable to prefetch all buildings.  

 
 
 

 

Figure 22. Full coverage of PVS. All buildings in the destination cell’s PVS 
are prefetched.  
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Figure 23. No prefetching for a transition. Nothing is prefetched because 
the source does not have transitions with high hit count. 

 
 

 

Figure 24. Partial PS coverage. Transition has a high hit count but the 
cache size is too small for full prefetching of destination cell's PS. 
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5.2 RESULTS WITH RANDOM CANDIDATE 
GENERATOR AND RANDOM PS 
CONSTRUCTOR 

The second set of results are collected with RandomCandidateGenerator as 

candidate generator, ScoringForAverage as scoring policy and AllBuildingsPS-

Constructor as prefetching set constructor. See CHAPTER 4 for details of these 

components. This set represents the performance of the approach without using 

heuristics for candidate generation. 

Table 2. Results with Random Candidate Generator and Random PS 
Constructor 
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10000 25 11.99 5913 5066 4991 12.00 5970 -0.96 
10000 50 12.05 5930 5066 4778 11.92 5850 1.34 
10000 100 11.98 5924 5066 4691 11.55 5813 1.87 
10000 200 11.99 5916 5066 4501 11.82 5815 1.70 
10000 400 12.08 5918 5066 4263 11.97 5908 0.16 
10000 800 11.93 5904 5066 4489 11.87 5865 0.66 
50000 25 12.00 5894 5066 4957 11.77 5895 -0.01 
50000 50 11.92 5886 5066 4846 11.13 5607 4.74 
50000 100 12.15 5949 5066 4696 10.08 5085 14.52 
50000 200 12.02 5917 5066 4355 10.28 5093 13.92 
50000 400 12.01 5926 5066 4169 10.11 4993 15.74 
50000 800 12.07 5933 5066 3839 11.29 5682 4.23 
100000 25 12.01 5914 5066 4977 11.77 5936 -0.37 
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100000 50 12.01 5946 5066 4838 11.04 5588 6.02 
100000 100 11.97 5904 5066 4614 10.66 5259 10.92 
100000 200 11.99 5928 5066 4597 9.90 5078 14.33 
100000 400 11.94 5885 5066 4129 9.32 4757 19.16 
100000 800 12.05 5911 5066 3848 11.6 5881 0.50 

 

 

 

It is clear that the heuristic was very effective on the performance of the 

method. Without it the performance decreased drastically as expected. SA 

performs less than 1/3 of the previous case. Again the pace of reduction 

decreases after 200 since it becomes probabilistically harder to find better 

solutions with increasing number of trials. (Figure 25. Performance of SA ) 
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Figure 25. Performance of SA with Random Candidate Generator and 
Random PS Constructor 

The ratio between SA performance and the Cost Reduction performance is 

again lower than the heuristic supported test series. While the heuristic provides 

91% cost reduction for 50% SA optimization, test without the heuristic 

provides 19% cost reduction for 20% SA optimization. In other words, 

effectiveness of SA decreases if the heuristic is not utilized. An interesting 

point to consider is that Cost Reduction decreases for temperatures higher than 

400. In the absence of the heuristic, although the SA finds better solutions at 

these temperatures, Cost Reduction acts in the opposite direction. This shows 
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that without the guidance of the heuristic during candidate generation, 

generated candidates may not help to increase transition costs although they 

seem producing better solutions for SA. In other words the method finds better 

solutions for global optima but misses the fact that minima on the more 

probable transitions are the ones to help to improve the results. With the 

increasing temperature, SA finds those global minima which are not the minima 

for the probable cases.  (Figure 26. Cost Reduction with changing Cache Size ) 
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Figure 26. Cost Reduction with changing Cache Size with Random 
Candidate Generator and Random PS Constructor 
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5.3 RESULTS WITH HEURISTIC CANDIDATE 
GENERATOR AND HEURISTIC PS 
CONSTRUCTOR 

Third set of results are collected with CandidateGeneratorForAverage as 

candidate generator, ScoringForAverage as scoring policy and MostAppearing-

BuildingsPSConstructor as prefetching set constructor. See CHAPTER 4 for 

details of these components. 

 

This set of results is interesting since it shows a heuristic may not improve the 

cost reduction as much as expected. It is easy to mis-predict the effect of a 

heuristic. Tested heuristic is injected into the PS construction state of the 

method. While constructing PS, instead of random order buildings are handled 

in the decreasing order of their containing nodes where the nodes/view-cells are 

sorted according to their global hit counts. Buildings in the PVS of more visited 

cells take place in front of the others in the PS.   

Table 3. Results with Heuristic Candidate Generator and Heuristic PS 
Constructor 
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10000 25 12.01 5931 5066 4944 11.55 5851 1.34 
10000 50 12.02 5916 5066 5063 11.68 5880 0.60 
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10000 100 12.02 5924 5066 4960 11.70 5800 2.09 
10000 200 11.96 5929 5066 4885 11.38 5751 3.00 
10000 400 12.01 5895 5066 4878 11.46 5845 0.84 
10000 800 11.98 5888 5066 4747 11.81 5840 0.81 
50000 25 12.07 5947 5066 4889 11.55 5769 2.99 
50000 50 12.04 5918 5066 4840 11.20 5622 5.00 
50000 100 12.06 5956 5066 4353 9.73 4962 16.68 
50000 200 12.05 5923 5066 4163 8.58 4160 29.76 
50000 400 12.03 5911 5066 4064 7.75 3510 40.61 
50000 800 12.03 5959 5066 3684 7.87 3265 45.20 
100000 25 12.12 5952 5066 4940 11.53 5807 2.43 
100000 50 11.95 5910 5066 4795 11.49 5689 3.73 
100000 100 11.98 5903 5066 4561 9.19 4683 20.66 
100000 200 12.03 5927 5066 3724 5.98 3025 48.96 
100000 400 11.96 5912 5066 3757 5.60 2359 60.09 
100000 800 11.97 5951 5066 3392 5.40 2098 64.74 

 
 
 
Both LAST SCORE and COST REDUCTION columns show results worse 

than expected. Injection of the heuristic decreased the performance instead of 

increasing it. When compared with results of the first test series, it is obvious 

that the heuristic harmful. Heuristic caused maximum cost reduction to 

decrease from 91% to 65%. After a short inspection, it is seen that selecting 

buildings from the globally most appearing cells decreased the probability of 

effective buildings when compared to random selection. Search space is 

narrowed to those solutions which optimize the graph according to global 

fetching frequency but for our case, required behavior was optimizing 
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according to local frequency which is selecting most buildings according to 

current view-cell. Selecting globally frequently loaded building did not covered 

frequently loaded neighbor view-cell PVSs. (Figure 27. Performance of SA  

and Figure 28. Reduction with changing Cache Size ) 
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Figure 27. Performance of SA with Heuristic Candidate Generator and 
Heuristic PS Constructor 
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Figure 28. Reduction with changing Cache Size with Heuristic Candidate 
Generator and Heuristic PS Constructor 

5.4 RESULTS WITH TRIVIAL PREFETCHING 

Table 4. Results of Trivial Prefetching with varying cache size.illustrates 

performance of trivial prefetching with different cache sizes. As seen on the 

table, for smaller cache sizes represented method is more successful than trivial 

prefetching. As the cache size gets larger clearly trivial method performs better 

than the represented method.  
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Table 4. Results of Trivial Prefetching with varying cache size.  
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10000 12.02 5921 11.717 5812 2 

30000 12.05 5915 10.84 5336 10 

50000 11.99 5913 6.49 3132 47 

75000 12.01 5913 1.73 848 86 

100000 11.96 5920 0.24 99 98 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

This study represents a method for implementing prefetching policies and 

includes a sample implementation with sample heuristics. Method represents 

the scene as graph where the nodes represent the view-cells and the edges 

represent the transitions between view-cells. On the defined graph, prefetching 

is mapped to a graph partitioning problem where the partitions are allowed to 

intersect. Partitions in other words the groups are interpreted as the prefetching 

policy. Each node is associated with a set of buildings to prefetch, namely 

Prefetching Set (PS). PS of a cell is constructed from the buildings contained in 

the nodes of the groups which contain the cell. A generic probabilistic 

optimization algorithm, Simulated Annealing, is utilized for producing 

solutions based on the graph representation. SA provides abstraction and 

flexibility to inject heuristics to the method.  

 

There are two points where heuristics can be injected into the method. 

Partitioning/grouping the cells and building the PS of cell-based on these 

groups. Sample implementation includes two grouping heuristics. First is the 

simple random grouping. Second heuristic assigns probabilities to transitions 

with respect to their hit counts. Based on the assigned probabilities transitions 
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are selected and their source and destination nodes are used to create groups. 

Second point for injecting heuristics is PS construction stage. There are two 

implemented heuristics. First one randomly selects buildings among all 

buildings. Second one selects buildings from the nodes with higher hit counts. 

 

To test the implementation a simulator is developed. Simulator is utilized for 

both creating the input and testing the implementation. First run creates 

statistical data necessary for the method to run. Second run does prefetching 

according to produced results of the method.  

 

Tests show that the method performs up to %95 transition cost reduction 

compared to non-prefetched environment with selected set of heuristics. It 

provides focus on the heuristics rather than finding exact solutions. As 

expected, the effectiveness of the method is strictly bounded to effectiveness of 

the heuristics used and the allocated cache size used for prefetching. The study 

claims providing a general approach for the prefetching problem. It is shown 

that the developed method is successful in fulfilling its claim. 

 

While prefetching it is possible that the viewer stays in the cell more than 

necessary to complete the prefetching. After completion of the prefetching a 

second level of prefetching can be utilized for PS of the neighbor cells. Based 

on this fact developing an improved hierarchical method of prefetching will 

produce better results. 

 

Graph representation enables utilization of level of detail (LOD) methods. 

Different LODs can be prefetched to provide better performance. Graph 

abstraction can be utilized to make decisions about LOD of the building to 

prefetch. 
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Hierarchical approach and LOD capabilities are considered as the next step of 

this method with developing more effective heuristics for group forming and PS 

construction. 
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APPENDIX A - IMPLEMENTATION DETAILS 

This section gives details at the level of actual classes. Significant amount of 

the information stated here can be found in Chapter IV with a different point of 

view. If the reader is not specifically interested in class level, it is not necessary 

to cover this section. 

 

Design and implementation of the optimization algorithm has three main 

components.  

 
1. Generic Simulated Annealing Implementation 

2. Graph Implementation 

3. Adaptation of Simulated Annealing for Prefetching optimization 

1 GENERIC SIMULATED ANNEALING 

This component consists of five interfaces and a generic Simulated Annealing 

implementation: 

 

1. ICoolingSchedule 

2. IScorePolicy 

3. ISolution 

4. ISolutionSpace 

5. IStateTransition 

6. SimulatedAnnealing 
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Pseudo code of the generic SimulatedAnnealing implementation is given 

below. Before initiating the flow implementations of interfaces (interface 1, 2, 4 

and 5) are registered to SimulatedAnnealing instance.  

 
ICoolingSchedule  coolingSchedule; 

ISolutionSpace  solutionSpace; 

IStateTransition  stateTransition; 

IScorePolicy   scorePolicy;  

ISolution    bestSolution; 

ISolution    candidate; 

 

while(coolingSchedule.getTemperature() > 0) { 

 candidate = solutionSpace.getCandidate(); 

 

 if(candidate better than bestSolution) { 

  bestSolution = candidate; 

} 

 

candidateScore = scoringPolicy.score(candidate); 

currentScore = 

scoringPolicy.score(solutionSpace.getCurrent());  

temperature = coolingSchedule.getTemperature(); 

 

if(stateTransition.checkTransition(temperature, currentScore,     

candidateScore)) { 

 solutionSpace.acceptCandidate(); 

} 

 

 coolingSchedule.cool(); 

} 
 
Pseudo code given above summarizes the flow of the algorithm and the 

interfaces registered. 

 

ICoolingSchedule : Handles cooling. With each call to cool() temperature 

kept inside is decreased. 

 

ISolutionSpace : Responsible for candidate generation. 
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ISolution  : Represents solutions in the solution space. 

 

IStateTransition : Decides whether candidate solution should be accepted 

or rejected as the current solution. 

  

IScorePolicy  : Responsible for evaluating the solutions. 

2 GRAPH 

Graph component contains 5 classes that represent a graph. 

 

Building : Building has a cost associated with it. 

 

Node : Node has a set of buildings as its PVS, a set of transitions for 

both incoming and outgoing types, a list of groups that the node 

belongs to.   

 

Transition : Transition has fields, source node, destination node and a list of 

buildings to be loaded to complete the PVS of destination node.  

 

Graph : Graph is a container holding a list of nodes, a list of transitions 

and a list of groups. 

  

Group : Group contains the list of nodes forming it with a set of 

buildings forming the PS. 



iv 

3 ADAPTATION 

Generally, adaptation of Simulated Annealing is performed via implementation 

interfaces of generic implementation. Auxiliary classes cover the distance 

between SA component and graph component. For performance constraints 

instead of evolving solution space back and forth, an auxiliary class 

SolutionSpaceMove is utilized with undo capability. Candidate generation is 

separated from SolutionSpace for modularity. ISolutionSpace, IStateTransition, 

IScoringPolicy, ICoolingSchedule and ISolution is implemented on these 

auxiliary classes. Depending on these facts current design is as follows: 

3.1 UTILS 

This class provides util functions for set operations on lists of buildings. 

3.2 SOLUTION 

This class represents a specific partitioning of the graph. In fact there is only 

one solution and SolutionSpaceMove instance to produce a new solution on the 

single instance of Solution. This approach is used for increasing performance. 
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3.3 SOLUTION SPACE MOVE 

This class represents the necessary action defined on the Solution to evolve it to 

a new one. A SolutionSpaceMove can be an add action or a remove action. The 

add action adds a node to a group where remove removes a node from a group. 

SolutionSpaceMove has the unique property of undoing itself when 

StateTransition rejects moving to candidate solution. 

3.4 CANDIDATE GENERATOR 

Candidate generator generates a SolutionSpaceMove instance for creating a 

candidate partitioning based on current partitioning. First step of candidate 

generation is randomly selecting a node to operate on. After the node is 

selected, type of the move is decided, add or remove. According to the defined 

type CandidateGenerator tries to find a group to add the node into or a group to 

remove the node from. If this search fails, it is performed for the other type. If 

no suitable groups are found, whole cycle is done again for another randomly 

selected node until a suitable move is found. CandidateGenerationHeuristic 

instances are registered to CandidateGenerator to inject the defined heuristics in 

the candidate generation process. 

 

DefaultCandidateGenerator :  

Decides to add a node to a group or remove a node from a group with 

probability of 50-50. To add a node to a group, a Node and a neighbor Node are 

randomly selected. From the groups of the neighbor node selects one group 

randomly. To remove a Node from a group, a Node and a groups among the 

Node’s groups are randomly selected. 
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CandidateGeneratorForAverage :  

Decides to add a node to a group or remove a node from a group with 

probability of 50-50. To add a Node to a group, transitions with higher hit 

counts are favored whereas to remove a Node from a group transitions with 

lower hit counts are favored. When a transition is selected its source and 

destination Nodes are used to produce a candidate. 

3.5 PS CONSTRUCTOR 

AllBuildingsPSConstructor : All buildings contained in the groups of 

to Node are added to PS of the Node in 

random order. 

 

MostAppearingPSConstructor : Buildings with higher hit count, in other 

words buildings contained in the PVS of 

the Nodes with higher hit count are 

inserted first into the PS. 

3.6 CONSTRAINTCHECKER 

Instances of this class are registered to candidate generator for narrowing the 

search space. When a move is generated it is checked against the constraints. It 

it fails the test a new candidate is generated and tested. This continues until a 

suitable candidate is generated. 
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Current implementation extends ConstraintChecker to MemoryConstraint-

Checker. If a candidate exceeds memory limit with the constructed PS, the 

candidate is   discarded. 

3.7 SOLUTION SPACE 

SolutionPace wraps instances of CandidateGenerator, SolutionSpaceMove and 

Solution. By utilizing these instances it provides function necessary for generic 

Simulated Annealing implementation. 

3.8 COOLING SCHEDULE 

Cooling schedule in current implementation is an integer with is decreased by 

one at each iteration. 

3.9 STATE TRANSITION 

State transition function P(e,e',T) is defined as 1 if e' < e, and exp((e − e') / T) 

where e and e` are the scores assigned with the associated Scoring instance and 

T is the current temperature. This allows moving to worse states depending on 

T and the difference between energies of the candidate state and the current 

state. Probability of moving to a state with higher energy (worse state since we 

are trying to minimize the energy) increases with increasing T and decreasing 

difference in energies of two states. On the other hand P is always 1 when 
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candidate state has a lower energy. This property of SA avoids being stuck at a 

local minimum by allowing it to jump out of a local minimum to a state 

(probably with higher energy when T is high) which can lead to global minima. 

3.10 SCORING 

Scoring implements IScorePolicy and extended with three specific scoring 

schemas: ScoringForMaximum, ScoringForAverage and ScoringForPopular-

Path. 

 
ScoringForAverage : Average scoring policy calculates the average cost of 

transitions in the graph. The straightforward formula is 

Σ cost(t) / number of t. 

 


