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ABSTRACT 

A NOVEL MUSIC ALGORITHM BASED 

ELECTROMAGNETIC TARGET RECOGNITION 

METHOD IN RESONANCE REGION FOR THE 

CLASSIFICATION OF SINGLE AND MULTIPLE 

TARGETS 

Seçmen, Mustafa 

Ph. D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Gönül Turhan Sayan 

Co-Supervisor: Prof. Dr. Altunkan Hızal 

 

 

February 2008, 246 pages 

 

 

 

This thesis presents a novel aspect and polarization invariant electromagnetic target 

recognition technique in resonance region based on use of MUSIC algorithm for the 

extraction of natural-resonance related target features. In the suggested method, the 

feature patterns called “MUSIC Spectrum Matrices (MSMs)” are constructed for 

each candidate target at each reference aspect angle using targets’ scattered data at 
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different late-time intervals. These individual MSMs correspond to maps of targets’ 

natural-resonance related power distributions. All these patterns are first used to 

obtain optimal late-time interval for classifier design and a “Fused MUSIC Spectrum 

Matrix (FMSM)” is generated over this interval for each target by superposing 

MSMs. The resulting FMSMs include more complete information for target 

resonances and are almost insensitive to aspect and polarization. In case of multiple 

target recognition, the relative locations of a multi-target group and separation 

distance between targets are also important factors. Therefore, MSM features are 

computed for each multi-target group at each “reference aspect/topology” 

combination to determine the optimum late-time interval. The FMSM feature of a 

given multi-target group is obtained by the superposition of all these aspect and 

topology dependent MSMs. In both single and multiple target recognition cases, the 

resulting FMSM power patterns are main target features of the designed classifier to 

be used during real-time decisions. At decision phase, the unknown test target is 

classified either as one of the candidate targets or as an alien target by comparing 

correlation coefficients computed between MSM of test signal and FMSM of each 

candidate target.     

 

 

Keywords: Electromagnetic target recognition, feature extraction, natural-resonance 

mechanism, target poles, MUSIC algorithm, isolated targets, multiple targets 
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ÖZ 

TEK VE ÇOKLU HEDEFLERİN SINIFLANDIRILMASI 

İÇİN REZONANS BÖLGEDE MUSIC 

ALGORİTMASINA DAYALI YENİ BİR 

ELEKTROMANYETİK HEDEF TANIMA YÖNTEMİ 

Seçmen, Mustafa 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gönül Turhan Sayan 

Ortak Tez Yöneticisi: Prof. Dr. Altunkan Hızal 

 

 

Şubat 2008, 246 sayfa 

 

 

 

Bu tez, doğal rezonansa bağlı hedef özniteliklerini çıkartmak için MUSIC 

algoritmasının kullanılmasına dayanan rezonans bölgesindeki görüş açısı ve 

polarizasyon bağımsız yeni bir elektromanyetik hedef tanıma tekniğini sunmaktadır. 

Önerilen yöntemde, her bir hedef için “MUSIC Tayf Matrisleri (MTMler)” adı 

verilen öznitelik matrisleri, farklı geç-zaman aralıklarındaki saçınım verileri 

kullanılarak önceden seçilmiş her bir referans açısı için hesaplanır. Bu MTMlerin her 

biri, hedefin doğal rezonanslara ilişkin güç dağılım haritalarına karşılık gelmektedir. 
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Bütün bu öznitelik matrisleri ilk olarak öznitelik çıkarımı için en uygun geç-zaman 

aralığının elde edilmesinde kullanılır. Sonra, hedefin “Kaynaştırılmış MUSIC Tayf 

Matrisi (KMTM)” bu en uygun geç zaman aralığı üzerinde o hedefe ait bütün 

MTMlerin bindirilmesi ile üretilir. Bu KMTMler hedeflerin rezonansları açısından 

daha fazla bilgi içermektedir ve görüş açısı/polarizasyon değişimlerine daha az 

duyarlıdırlar. Çoklu hedef tanınması durumunda ise, hedeflerin birbirlerine göre 

konumları ve hedefler arası ayrım mesafesi de önemli faktörlerdir. Bu yüzden, en 

uygun geç-zaman aralığının kestirimi için, MTM öznitelikleri her çoklu hedef 

grubunun her “referans görüş açısı/referans topoloji” kombinasyonunda hesaplanır. 

Çoklu hedef grubunun KMTM özniteliği, bütün bu görüş açısı ve topoloji şartlarına 

bağımlı MTM’lerin bindirilmesi ile elde edilir. Hem tek hem de çoklu hedef tanıma 

durumlarında, KMTM güç örüntüleri, tasarlanan sınıflandırıcının gerçek zamanlı 

karar evresinde kullanılan ana hedef öznitelikleridir. Karar evresinde, bilinmeyen test 

hedefine ait sinyalden hesaplanan MTM ile aday hedeflerin KMTMleri arasındaki 

ilinti katsayılarını karşılaştırılır. Bilinmeyen hedef ya aday hedeflerden biri ya da 

bunların dışında yabancı bir hedef olarak sınıflandırılır.       

 

 

Anahtar Kelimeler: Elektromanyetik hedef tanıma, öznitelik çıkarımı, doğal rezonans 

mekanizması, hedef kutupları, MUSIC algoritması, yalıtık hedefler, çoklu hedefler 
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CHAPTER 1 

1. INTRODUCTION 

 

 

 

Electromagnetic target recognition is an ongoing field of exploration and 

development with critical applications in multi-disciplinary problems of both civilian 

and military use. In these problems, the main goal is to filter out characteristic 

properties (feature information) belonging to targets and identify the targets on the 

basis of comparison of these features. These features can be either direct or indirect 

information related to the targets’ physical properties such as their size, shape or 

material structures or parameters related to their dynamical properties such as their 

position, speed or acceleration. In other words, target features can be any information 

which distinguish one target among the others as sensitively as possible.  

 

It is possible to broadly categorize target recognition methods as cooperative and 

non-cooperative methods. The recognition of a target with a cooperative system 

where the target directly cooperates in some manner with the identification sensor is 

called Cooperative Target Recognition [1]-[3]. These cooperative systems can be 

some form of communication system, data link or transponder system, which allows 

the target to identify itself on a regular basis. A well-known example of Cooperative 

Target Recognition used in military cooperative identification systems is the 

Identification Friend or Foe (IFF) technique [4]-[7]. Another cooperative 

identification system example, which is used in air-traffic control, is the Air-Traffic 

Control Radar Beacon System (ATCRBS).  
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On the other hand, noncooperative target recognition methods, whose main interest 

areas are military applications, obtain target recognition information without any 

cooperation with the target. In these methods, recognition becomes possible by 

investigating the target features extracted from the scattered electromagnetic signals 

received from the target. 

 

Target recognition from backscattered electromagnetic data has been a difficult 

problem to solve with complicated scattering mechanism even for geometrically 

simple targets. This is because the scattered signals are strongly dependent on aspect 

angle, polarization and operating frequency. In addition to these dependencies, 

presence of strong random additive noise brings further complications to this 

challenging problem. In noncooperative target recognition problems, each candidate 

target should be represented in the reference database by some characteristic features 

which should have minimum sensitivity to the variations in aspect angle and 

polarization to increase the accuracy rate of the method which is the most important 

design criterion. In addition to the accuracy, robustness under noisy conditions, high 

decision speed in real time, small memory requirements, modest need for diversity in 

the reference database, simplicity and repeatability of the design work and generality 

regarding the admissible types of candidate targets are all important classifier design 

criteria to meet.  

 

In noncooperative target recognition, the suggested recognition method produces the 

identification decision automatically by the help of signal processing techniques, the 

pattern recognition methods, in particular. In the classifier design process, known or 

extracted target features for a set of library targets are stored in the classifier 

database. When a test signal from an unknown target is received, the feature 

corresponding to this unknown test target is extracted and compared with the features 

in the classifier’s database to find the best match. 
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Different methods of noncooperative electromagnetic target recognition need to be 

used in different regions, which are mainly the Rayleigh region, the resonance region 

and the optical region. Common characteristics of electromagnetic scattered fields in 

each of these frequency regions are discussed in Appendix A together with a brief 

summary of target recognition methods used in the optical region.  

 

The main purpose of this dissertation is to introduce a novel electromagnetic target 

recognition method, which is useful in the resonance region. As discussed in 

Appendix A, the wavelength (λ) of the electromagnetic signals must be comparable 

to the overall dimensions of the target in this frequency region. More specifically, if 

d is the largest dimension of the target in consideration, d10
10
d

≤≤ λ  condition 

needs to be met. It is well known that the scattered response of a target changes 

moderately in a resonative manner in the resonance region. In addition, the response 

is sensitive to the aspect and polarization conditions. As a result, the scattered 

response in resonance region carries valuable information regarding the size and 

overall geometry of the target.  

 

In this chapter, Section 1.1 presents a brief overview about various electromagnetic 

target recognition methods, which are applicable in resonance region. More detailed 

information about these methods will be given in Chapter 2. Finally, Section 1.2 

describes the target recognition method developed in this thesis and outlines the 

organization of the thesis. 

 

1.1. Resonance Region Methods for Target Recognition 

 

There have been several methods proposed for target recognition in the resonance 

region. One method makes use of the ramp response of a target and develops a 

feature space based on the amplitude, phase and polarization at each distinct 
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frequency over a bandwidth for a given target [8], [9]. Some other methods employ 

the complex natural resonances (CNRs) of targets (i.e. the system poles of the 

targets) to uniquely characterize the target [10]. The feature extraction approach used 

in these methods is conceptually based on the utilization of dominant natural 

resonance mechanisms in the scattered target response. The main idea behind this 

approach can be explained by the basic concepts of the linear system theory. The 

complex natural resonance mechanisms associated with the linear system models of 

electromagnetic targets were extensively studied and formalized as the Singularity 

Expansion Method (SEM) [11], [12] which is explained in detail in Chapter 2. Most 

of the target recognition methods suggested in resonance region depend on this SEM 

approach. These methods are based on the fact that shape, size and material 

properties of a target determine the values of complex natural resonance frequencies 

of that target in an aspect and polarization independent manner. All this feature 

information is provided by the late-time scattering signals, which are formed by the 

linear combination of natural response components oscillating at target’s CNR 

frequencies [13]. Creeping waves traveling around a conducting target are directly 

related to the target’s natural response, for example.   

 

The earlier target recognition methods in resonance region attempted to estimate the 

target pole values directly from the scattered data by using methods such as Prony’s 

Method, Matrix Pencil Method or Nonlinear Least Square Methods [14]-[16]. 

However, one of the major drawbacks of these methods is that the performance of 

such methods dramatically deteriorates as the signal-to-noise (SNR) of the scattered 

data gets lower. Another group of recognition methods based on the SEM theory is 

based on synthesizing a special time-limited input signal (an incident signal) as the 

main target feature, which leads to the annihilation of the target’s transform domain 

poles and hence produced a time-limited target response. Kill pulse (K-pulse), 

extinction pulse (E-pulse) and single mode extraction pulse (S-pulse) techniques are 

the well known methods in this group [17]-[19] and they are all based on the work of 

Kennaugh published in 1981 [68]. In such methods if the target-specified signal 
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impinges on the correct target, the late-time energy of the scattered response will be 

very low (theoretically zero) due to the lack of natural modes; however, if it 

impinges on the other candidate targets of the database, the late-time response 

energies of these mismatched targets will be considerably higher. Although the 

methods like K-pulse, E-pulse are popular, they suffer from the difficulties of 

isolating late-time scattered data from the early-time scattered response especially for 

extremely low-Q targets such as a conducting sphere. In addition to these methods, 

there are other resonance region methods in the literature, which also use the 

late-time region of the scattered fields and give more successful results. These 

methods generally use advanced signal processing tools and algorithms such as 

neural networks, generalized likelihood ratio test (GLRT), matching pursuit method 

or time-frequency representations (TFRs) to form target features like late-time 

feature vector (LTFV) [20]-[23]. Furthermore, some other methods, which benefit 

from the full-time scattered response of the targets, also exist [24], [25]. Detailed 

information about the natural resonance mechanism as formulated by the SEM 

approach and the related resonance region methods will be given in Chapter 2.     

 

1.2. Target Recognition Method Developed in This Thesis 

 

The electromagnetic target recognition method developed in this thesis is a resonance 

region method, which is based on natural-resonance mechanism formulated by the 

SEM. As most of the other resonance region methods, the proposed method makes 

use of the late-time region of targets’ scattered fields and it utilizes the Multiple 

Signal Classification (MUSIC) algorithm in the natural-resonance related feature 

extraction process. This method uses the MUSIC algorithm to construct feature maps 

in complex frequency domain, which give the targets’ natural response related power 

distributions for late-time region. For this purpose, a matrix called MUSIC spectrum 

matrix (MSM) is generated from scattered field at each pre-selected reference aspect 

angle for each target. Then, each MSM is normalized to have normalized MUSIC 
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Spectrum Matrix. Afterwards, these normalized matrices are used to determine the 

optimal late-time interval to be used in the classifier design process. Details of this 

process will be explained in Section 3.2. Then, the MUSIC spectrum matrices of a 

given candidate target, which are computed at all reference aspect angles over the 

optimal late-time interval, are superposed and normalized to obtain the Fused 

MUSIC Spectrum Matrix (FMSM) for that specific target. The fused MUSIC 

spectrum matrix of a target has a substantially reduced dependency on aspect angle 

as it is constructed from multi-aspect scattered data. The FMSM features are used as 

the main target classifier features in the proposed target classification method. As an 

example, the MSM of a conducting sphere with 18 mm radius corresponding to 

optimal late-time interval at one reference aspect angle is shown in Figure 1.1(a). 

The FMSM of the same target, which is the superposition of three MSMs at three 

different reference aspect angles including the MSM in Figure 1.1(a), is shown in 

Figure 1.1(b) [26]. In these figures, the local peak points roughly show the pole 

locations. An FMSM contains the overall power distribution information of a given 

target due to the superposition of the power distribution information from all 

reference aspect angles. Hence, a resonance information missed at one aspect can be 

extracted at some other reference aspects, resulting in a more complete natural 

resonance information in the FMSM for that target of concern. For example, the 

resonance component seen in the fused MSM feature in Figure 1.1(b) (around α= -10 

GNeper/s and f= 8 GHz location) is missing in the MSM in Figure 1.1(a)). 
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Figure 1.1 (a) The MSM of a conducting sphere with 18 mm radius obtained at 

one reference aspect angle  (b) The FMSM of same sphere as the superposition of 

three different MSMs at one of which is the MSM in Figure 1.1(a).  

 

 

Once the classifiers feature database is designed to include the fused MSM feature 

for each library target, an MSM is computed from the selected optimal late-time 

portion of the test scattered signal in the real-time classification phase and it is 

compared to the FMSM of each candidate target in the classifier database. The 

maximum correlation coefficient computed in this process indicates the classification 

label for the test target. 

 

The aim of this thesis is to propose a novel target recognition method to design 

classifiers which can identify targets with high correct classification rates and also 

possess properties such as robustness to noise, minimum sensitivity to aspect angle 

and polarization changes and low memory requirements by using a small sized 

reference database.   
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This thesis introduces the theory and design steps for the suggested target recognition 

method together with the various classifier libraries with single and multiple targets. 

The organization of the thesis is as follows: 

 

Chapter 2 gives the theory of natural-resonance mechanism of the target responses 

associated with the SEM. Details of familiar SEM based methods are also given in 

this chapter.  

 

Chapter 3 presents the proposed method of classifier design and the feature 

extraction technique used to obtain fused MUSIC spectrum patterns for each target. 

Besides, the target recognition method developed in this thesis is compared to the 

other resonance region methods in this chapter. 

 

Chapter 4 gives demonstrations of this novel method for single target libraries. 

Scattered target responses are used in this section obtained by using either analytical 

expressions or numerical simulations. 

 

Chapter 5 presents the measurement set-up for scattered field measurements in 

Millimeter and Microwave (MMW) Laboratory at METU and demonstrates the 

usefulness of the proposed target classification method for single target libraries. 

Scattered fields used in these demonstrations are measured either at MMW of METU 

or at the ElectroScience Laboratory of the Ohio State University. 

 

Chapter 6 explains the modifications made on the design method, which is suggested 

to classify single targets, so that it can be used to recognize multi-target groups as 

well. Simulation results obtained for this modified method is presented for target 

libraries including single targets as well as multi-target groups. 

 

Finally, Chapter 7 gives an overall summary of the main contributions made in this 

thesis and also presents a brief discussion for future work.  
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Appendix A gives the characteristics of scattering regions as well as the target 

recognition methods in the optical region. 

 

Appendix B gives the derivation of the singularity expansion method (SEM). 

  

Appendix C presents the derivation of scattered far field expressions for perfectly 

conducting and dielectric spherical targets. 

 

Appendix D contains a sample program code written in MATLAB for classifier 

design and target recognition simulations for small-scale aircraft targets modeled by 

perfectly conducting, straight, thin wires.  
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CHAPTER 2 

2. NATURAL-RESONANCE MECHANISM AND 

ELECTROMAGNETIC TARGET RECOGNITION  

METHODS BASED ON NATURAL-RESONANCES 
 

 

 

This chapter is initially focused on the theory of the natural-resonance mechanism of 

scattering phenomena. Then, the common resonance region methods using this 

mechanism are described.  

 

2.1. Singularity Expansion Method (SEM) 

 

The singularity expansion method (SEM) is a way to represent the solution of 

electromagnetic induction or scattering with linear system models. The analysis 

techniques of the linear system theory and the concept of impulse response were 

applied to electromagnetic scattering problems for the first time in 1958 [27]. Then, 

it is suggested that a linear time-invariant lumped parameter system model can be 

efficiently used for the electromagnetic targets at sufficiently low frequencies [28]. 

Besides, it has been observed that the frequency response in the range 

ππ 10Lk
5 o <<  (or L10L2.0 o << λ , where L  is the maximum linear dimension of 

the target) can provide useful information on bulk dimensions, approximate shape 

and material composition of the scatterer [8], [29]. The higher frequencies, on the 
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other hand, characterize fine details. In the early 1970’s, L. Marin showed that 

electromagnetic scattering from a perfectly conducting target is a meromorphic 

function of frequency under certain mathematical restrictions [30]. Finally, a more 

sophisticated identification method emerged after Marin’s result and numerous 

observations had shown that the late-time scattered fields could be represented by a 

series of damped sinusoidal oscillations [31]. The basic concepts of this method stem 

from the observation of typical transient responses of complicated scatterers such as 

aircraft, missiles, etc. As an example, an experimentally observed current on one of 

the wire sections of the Boeing 707 aircraft, which is modeled by a few conducting 

sticks, is shown in Figure 2.1 [32].   

 

 
 

Figure 2.1 The experimental current response on a wire section of the Boeing 

707 aircraft model, which is modeled by conducting wires [32].  

 

 

This response reminds an oscillation of an R-L-C circuit. Response of such a circuit 

is in the form of jwtt ee ±−α  and it is associated with the presence of poles ( )ωα j+  

in the Laplace domain. It is shown that the complex frequencies associated with 

these oscillations depend only on the geometry and material parameters of the 

scatterer and not on the nature of the incident fields [31]. However, the 

representation of whole scattering phenomena in time-domain with a series of 

damped sinusoidal oscillations is inadequate especially when considering forced 
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response of the target due to specular scattered fields at early-times. By representing 

the early time scattering using a time-limited response, the total scattered field can be 

formally expressed with the Singularity Expansion Method (SEM) which formalizes 

the complex natural resonance mechanism observed in linear system models of 

targets [33], [34]. According to SEM, in the complex frequency (Laplace) domain, 

the aspect dependent system function of the target which is modeled as a distributed, 

linear, time-invariant system, can be given as 

 

ωα
φθ

φθφθ

φθ

j swhere
)ss)(ss(

),,s(R),,s(E),,s(H

)d,d,s(L
1n nn

ddn
dddd +=
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∞

=
∗

444 3444 21
 (2.1) 

 

with dθ  and dφ  being the elevation and azimuth angles. The inverse Laplace 

transform of this expression, which is the aspect dependent impulse response of the 

target, can be obtained in the general form as 

 

∑
∞

=
++=

1n
nn

tnddndddd )twcos(e),(b),,t(e),,t(h δφθφθφθ α
 (2.2) 

 

The derivation of the Singularity Expansion Method is given in Appendix B. In 

Equation (2.1), ),,s(E dd φθ  is an entire functiona in complex domain, ),,s(L dd φθ  

is a meromorphic functionb in complex domain and ),(R ddn φθ  is an aspect and 

polarization dependent complex residue of the nth target pole.  

 
 

 

a Functions, such as polynomials or convergent power series, which are differentiable everywhere are 

called entire functions [35].  
b A function which is analytic in a domain except at isolated poles is called as a meromorphic function 

in this domain [35]. 
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Therefore, the meromorphic function yields a damped sinusoidal signal in time 

domain which is the natural impulse response of the target, while the entire function 

yields a time-limited response in Equation (2.2) as ),,t(e dd φθ , which comprises an 

important portion of the early-time scattered signature. 

 

The complex natural frequencies in these equations, nnn js ωα +=  with 0n <α , 

are only the functions of the geometry and physical composition of scatterer, that 

they are independent of the aspect angle and polarization conditions. These complex 

natural resonance frequencies thus have the potential for use in aspect and 

polarization independent identification of scatterers. This beneficial property creates 

a distinguishable feature for a specific target. Some additional properties of these 

natural resonances are: 
 

• The ns ’s appear in complex conjugate pairs as a result of the real nature of 

source-free induced currents in physical problems. 

 

• The real part of each ns  is less than zero to produce exponential decay of the 

magnitude of each mode, corresponding to power being radiated away from 

the scatterer (radiation loss). 

 

• There are an infinite number of natural resonances, even for the targets of 

simplest shapes. In practice, however, only a finite number of resonances will 

be significantly excited by an incident signal of particular frequency 

bandwidth. 
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2.1.1. The Early-Time Response 

 

Evolution of the scattered fields in time, under an impulse excitation, can be split 

into two time regions: the early-time and the late-time. Some qualitative statements 

can be made about these two zones, which may be separated by a transition time 

instant, which is approximately expressed as v/L2tlate ≅ , where L  is the largest 

dimension of the target and v  is the speed of propagation of the incident wave (equal 

to c  in vacuum).  

 

When an incident field first hits a smooth surfaced target, some of its 

electromagnetic energy is initially reflected according to the Snell's Law of 

reflection. The time duration needed for the wave to fully pass through the target is 

known as the early-time period. In the early-time, the forced response exists, by 

definition, as long as the target and the excitation wave directly interact. This forced 

response produces specular fields at the receiving point which correspond to the 

entire function in SEM expression (Equation (2.1)). This entire function is highly 

dependent on the polarization and aspect angle of the incident and reflected fields in 

addition to target parameters and geometry. Furthermore, this function has no 

standard form similar to ),,s(L dd φθ  in Equation (2.1). The force fields have high 

frequency content that they are organized naturally according to the hierarchy of the 

reflected (surface reflections) and diffracted (edge diffractions) fields of the 

geometrical theory of diffraction. By its very nature, the early-time response conveys 

local information pertaining to the excited portions of the target.  

 

As the incident field passes through a conducting target, for example, it induces 

currents on the target’s conducting surface. The finite surface area of the target limits 

the current flow and causes it to flow back and forth on the body. When the 

excitation frequency coincides with the inverse of the period of oscillation of the 

induced currents, a strong resonance will occur. The contribution of these resonant 

modes could not be neglected in the early-time region because their fields have not 
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decayed significantly at early-times. Thus, these resonances create the natural 

resonance response component in addition to the forced response in early-time 

response [36]. Therefore, it is not possible to isolate forced and natural responses 

from each other perfectly in time domain as they overlap. This overlapping region is 

usually considered as a part of the early-time response. In early-time region, the 

surface reflected and diffracted field (due to the wavefront arrival) arrives first to the 

receiving point, followed by the creeping wave generated by the fields diffracted 

around the target. The SEM resonances have been attributed to these creeping waves, 

which, after one revolution, return in phase coherence with their initial values. This 

connection creates a complex hybrid approach, efficient at all early-times, in which 

specular returns and resonances both exist. However, the forced response of a target 

is dominant in the early-time where the resonances take over later on the late-time 

response [37]. The concept of the early-time and late-time responses of an incident 

wave on a conducting target is illustrated in Figure 2.2 [38].        

               

 2L/c 

incident 
pulse 

late time early time 

 
 

Figure 2.2 The concept of the early-time and late-time responses [38].   
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As indicated before, the early-time response has a very complex scattering 

mechanism due to having both forced and natural-resonance responses where the 

forced response highly depends on polarization and aspect angle of the incident and 

reflected fields. Therefore, the methods/techniques, which are based on the 

singularity expansion method, usually keep away from this early-time region. 

However, there exist some methods in the literature which also uses the early-time 

response information [24], [25], [38]. 

 

2.1.2. The Late-Time Response 

 

The forced response, dominant at early-time, vanishes after a finite time duration 

when all specular fields reach the receiving point. The resonant signals (natural 

response), on the other hand, keep to exist in the response and they are exponentially 

attenuated as time progresses. The interval during which only the natural response 

(made of all natural resonances) exist is called the late-time period [39]. In this 

period, the time domain expression in Equation (2.2) reduces to a representation 

 

( ) ( ) ( ) v/L2'tt,twcose,b,,th
1n

nn
tn

ddnddlate ≅>+= ∑
∞

=

δφθφθ α
 (2.3) 

 

As mentioned earlier, the nnn js ωα +=  values characterize the target, in size, 

shape and material properties in a manner being independent of the nature of the 

incident wave and reflected wave (polarization, aspect angle, etc.). The oscillatory 

parts the target poles is more sensitive to size because of their dependence on path 

length. On the other hand, the attenuated part is more sensitive to shape because the 

radiation damping is influenced by curves, bends and edges [40].  

 

The late-time resonance response, however, is weak as compared to the early-time 

values of the received signal beacuse the most dominant part of the overall response, 
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the forced response, does not exist in the late-time region. Besides, the resonances in 

the remaining natural response strongly attenuates with respect to their values at 

early-time while arriving late-time region. Even some of the target poles having 

relatively higher damping coefficients become negligibly small in amplitude and 

they may be easily suppressed in the presence of additive noise. The remaining poles, 

which have smaller damping coefficients, diminish slower and survive through the 

late-time region. These poles, which can be called as the dominant poles, are 

important for the natural-resonance based methods since they provide valuable signal 

information in the late-time region. 

 

Although the values of complex natural resonance frequencies (target poles) depend 

only on target geometry and parameters, their residues (amplitudes in time domain) 

are strongly related with the aspect angle/polarization conditions of both incident and 

received fields which complicates the scattering mechanism even in the late-time 

region. Because the residue of a target pole is varying with respect to aspect 

angle/polarization conditions, a specific pole may be highly excited at one condition; 

while, it appears very weakly at another condition. Therefore, the aspect angle and 

polarization variance of pole residues is considered to be the major difficulty in 

target recognition based on natural-resonance mechanism [41]-[43].  

 

2.2. Target Recognition Methods based on Late-Time SEM 

2.2.1. Pole Extraction Methods 

 

As mentioned in the previous section, target poles are independent from aspect and 

polarization conditions. Target poles could therefore give an initial rise to an aspect 

and polarization independent method of discriminating targets. After the SEM 

theory, the earlier target recognition methods have attempted to estimate the target 

pole values by using several methods/techniques since target poles constitute an 
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excellent feature set for target recognition purpose. One of the more popular pole 

extraction techniques is the Prony method. 

 

Prony’s method, which is also known as polynomial method, is a widely used 

method for modeling uniformly sampled data as a linear combination of complex 

exponential terms. This method attempts to fit a deterministic exponential model 

(target pole) to the sampled data that it requires N>2P data points to fit P 

exponentials containing in the exponents. In the Prony’s method, the late-time 

scattered signal is modeled as [44] 

 

)tt(u))tt(weC()tt(x o
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where P is the number of modes in the target response (system order), )t(w  is the 

noise signal, mmm js ωα +=  is mth target pole and mj
mm ebc θ=  is the 

corresponding mth complex residue. Unlike ms , mc  is function of both target 

orientation and excitation source. It should be noted here that the poles and complex 

residues must be in complex conjugate pairs in order to ensure that )t(x  is real. 

)t(u  is a unit Heaviside function and ot  is assumed to be zero for convenience 

without any loss of generality. A discrete set of sampling points for this transient data 

of this signal can be written as 

 

1Nn0,)n(wzc)n(wec)n(x
P

1m

n
mm

P

1m

)nTms(
m −≤≤+=+= ∑∑

==

 (2.5) 

 

where T  is the sampling period which should satisfy Nyquist sampling criteria to 

avoid higher mode aliasing and N>2P is the data length. The set of equations given 

in Equation (2.5) contains N nonlinear equations in 2P unknowns. Prony’s method 
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can be applied to this set of equations to obtain an exact solution for N= 2P, or a least 

squares fit if more than 2P data points are used. 

 

The complicated nonlinear curve fitting problem defined in Equation (2.5) was 

solved by Prony by realizing that ( )nx  also satisfies the following forward difference 

and matrix equations: 
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The coefficients ma  in Equation (2.6) can be found by ( )xXa #−=  where # is the 

pseudo inverse operation. By applying complex Z-transform to the above matrix 

equation, it can be shown that these coefficients are also the coefficients of the 

following Pth order polynomial: 
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Then, the poles of the model are determined from the roots of the polynomial of 

Equation (2.7) as P,...,1m,
T
zln

s m
m == .  

 

In the past, Prony’s method has been a very popular technique for the extraction of 

target poles and used for target recognition purposes [14], [45]-[47]. Although this 
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technique is simple and efficient, it has serious drawbacks. Firstly, the method makes 

the assumption of using only the late-time portion of the signal. However, for many 

complicated targets, it is hard to isolate the late-time signal. Secondly, this method 

has been found to be overly sensitive to random noise and to the parameter P, which 

is the number of modes assumed to be present in the scattering response [48], [49]. 

Overestimating the number of poles generate both the correct poles and spurious 

poles. However, the actual number of significant target poles is usually unknown and 

is determined by the system bandwidth and target properties. In its basic form, 

Prony’s method is inherently an ill-conditioned algorithm, but some improvements 

have made the scheme more robust [50]-[52]. However, in spite of these 

modifications, the accuracy of the Prony’s method dramatically reduces as the SNR 

of the scattered data gets lower. This level appears to be in the 15 to 20 dB range for 

the individual signal components comprising the total signal. The signal-to-noise 

level for the total signal in some cases needs to be as good as 25 dB [48] which is 

assumed to be noise-free case in most applications. This fact causes Prony’s method 

to be limited for use with clean data systems which are not always possible in 

practice. 

 

Another popular pole extraction method is the Matrix Pencil method which is newer 

than the Prony’s method. Similar to Prony’s method, the mathematical derivation of 

the Matrix Pencil Method can be started from Equation (2.5) which models the 

late-time electromagnetic scattered response from a target. Different from Prony’s 

method, the objective in this method is to find best estimates of P and ms  from the 

noisy data. Let’s define the following set of information vector, )i(y  as 

 

[ ]T)1LNi(x)1i(x)i(x)i(y −−++= L  (2.8) 

 

Based on this vector, two L)LN( ×−  matrices, Y1 and Y2, can be defined as 

follows:      
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where L  is referred to as the pencil parameter [74]. This pencil parameter is very 

useful in eliminating some effects of noise in the data. For efficient noise filtering, 

the parameter L  is chosen to be between N/3 to N/2 [53], [54]. For these values of 

L , the variance in the parameters mz , due to noise, has found to be minimum. Based 

on the decomposition of 1Y  and 2Y , it can be shown that if PNLP −≤≤ , the poles 

mz  with corresponding generalized eigenvectors mp  are the generalized eigenvalues 

of the Matrix Pencil 12 zYY − . This means that if PNLP −≤≤ , mzz =  is a rank 

reducing number of 12 zYY − . The matrix 1Y  can be approximated with best rank-P 

approximation by using the singular value decomposition (SVD) as follows:            
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where [ ]P21 u,,u,uU L= , [ ]P21 v,,v,vV L= , [ ]P21 ,,,diagD σσσ L= . iu  and iv  

are the left and right singular vectors for a singular value of iσ , respectively. For 

noisy data ( )tx , P21 σσσ >>> L  should be chosen to be the P largest values of 

1Y  (i.e. 1PP +>> σσ ). The choice of the number of poles, P, can be estimated from 

the singular values by looking at the raito of the various singular values to the largest 

one. By using Equation (2.10), it can be shown that               
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Here, the steps of the derivation of this equation are omitted for simplicity. Note that 

the matrix Z  is a PP×  matrix, mz  and me  are the eigenvalues and eigenvectors of 

Z  respectively. Then, the values of the target poles, ms , can be extracted from the 

eigenvalues of Z  as P,...,1m,
T
zln

s m
m == . 

 

When two methods (Prony and Matrix Pencil methods) are compared, it can be said 

that the Matrix Pencil Method has superiorities to Prony’s method for pole 

extraction. First of all, it can be shown that the Matrix Pencil Method is more 

computationally efficient than the Prony’s method [55], [56]. Besides, by using the 

dominant eigenvalues to estimate the modal number, the spurious poles due to noise 

can be distinguished from the target poles. Hence, the Matrix Pencil method 

estimates the number of target poles and reduces the number of spurious poles. The 

Matrix Pencil method is not only computationally more efficient and more successful 

in pole number estimation, but it has also better statistical properties as compared to 

the Prony’s method. Under additive noise, the statistical variance of the poles for the 

Matrix Pencil method is less than those for the Prony’s method [57]. Thus, it can be 

concluded that the Matrix Pencil method gives better results as compared to the 

Prony’s method for noise corrupted data. The usage of Matrix pencil method has 

been considered in several studies for target pole estimation based on the SEM [15], 

[56], [58], [59]. However, in spite of having a few dB better noise performance than 

Prony’s method, the method has still poor noise performance that only up to 20 dB of 

signal-to-noise ratio can be handled adequately by this technique and the 

performance of the pencil matrix method deteriorates below this ratio as stated in 

[56]. Besides, the difficulty of separating late-time region in Prony’s method is still 

valid for the pencil method. The target recognition methods using Matrix pencil are 
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only demonstrated for simple targets such as thin wires and need to be validated for 

complex targets. 

 

A variety of other techniques for target pole extraction have been also introduced 

including several nonlinear and combined linear-nonlinear approaches which require 

heavy computations [16], [60]-[62]. Additionally, the benefits of using multiple data 

sets are mentioned in some papers[63], [64], while Baum has stressed the importance 

of incorporating a priori information about the target [65]. Besides, alternative pole 

estimation techniques are suggested by Turhan-Sayan et al. in [66] and by Rothwell 

et al. in [67] requiring the synthesis of K-pulse and E-pulse signals, as to be 

explained in the following section. Not only in Prony’s and Matrix pencil methods 

but also in the other pole extraction techniques, the main problem is the requirement 

of relatively low noise scattered data (around 15 dB of SNR value) for successful 

results. This dissertation research will propose an indirect pole estimation scheme as 

a side product of the suggested target classifier design technique, which is much 

more robust to noise than the previous pole estimation techniques discussed in 

literature so far. 

 

2.2.2. K-pulse, E-pulse and S-pulse 

 

Following the direct pole extraction techniques, the target recognition methods using 

the time-domain response of a target to design a specially synthesized incident 

waveform have generated considerable interest. Three well-known methods of this 

group are kill-pulse (K-pulse), extinction-pulse (E-pulse) and single-pulse (S-pulse) 

methods which are based on the same design principles. The oldest of these three 

methods is the “kill-pulse” technique which is first described by Kennaugh [68]. The 

common basic idea in this approach is to synthesize a discriminative excitation 

waveform in such a way that the transient scattered field response is minimized 

(ideally reduced tozero) at all aspects and polarizations in the late-time region. In a 



 24

formal definition, there exists a pulse )t(p  of minimal duration to match the 

scattered field in the following way: 

 

∫ +≅≥=−=∗=
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c
L2Tt,0'dt)'tt(h)'t(p)t(h)t(p)t(c  (2.12) 

 

where )t(h  is the impulse response of the target as in Equation (2.2), eT  is the 

duration of the pulse )t(p  and cT  is the starting time of the late-time region of )t(c . 

Since the resulting convolution signal has finite duration theoretically, the pulse 

)t(p  should also be a time-limited signal. As considered in Laplace domain, this is 

achieved by annihilating the natural resonances of the target response by the zeros in 

the Laplace spectrum of the K-pulse signal. In other words, K-pulse can be defined 

as the inverse Laplace transform of the denominator of the transfer function 

(response) of the target. The K-pulse spectrum has only those zeros which coincide 

with the CNR’s of the target but no additional zeros. The K-pulse is not unique in 

form unless its transform domain zeros coincides with all the target poles in one-to-

one manner. This is to rule out the possibility that a linear combination of derivatives 

of the K-pulse as another possible K-pulse, as the differentiation process adds zeros 

which are not poles of targets. In K-pulse approach, the energy content outside the 

duration of the K-pulse response is minimized with respect to a set of unknowns. The 

assumed model of the K-pulse may be represented in terms of a set of N+1 equally-

spaced continuous-time delta functions with unknown weights, na , as described in 

Equation (2.13). 
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where N/Te=τ . Let’s define the cost function, J , to be the energy outside the 

K-pulse response duration [69]:                
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2 dt)t(h)t(pJ  (2.14) 

 

where T∞ is the cutoff time representing an arbitrarily long duration. Impulsive 

functions, which are fairly general, are chosen as basis functions for )t(p  to simplify 

the evaluation of the convolution integral. Alternatively, the pulse )t(p  can be 

represented in terms of a set of time-limited, continuous basis functions such as 

Legendre polynomials [70]. The cost function in Equation (2.14) can be expressed in 

a quadratic form as    
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where 
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To find the extremum of a cost function, the gradient with respect to each na  

coefficient is equated to zero as given in Equation (2.18)  
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Thus, the A  vector can be evaluated via SA 1−−= Φ . However, in most problems, 

SA 1−−= Φ  cannot be used directly since Φ  is ill-conditioned or singular. 

Therefore, the optimization schemes such as the steepest descent algorithm can be 

used to search for the minimum point of the cost function with respect to the 

unknowns. In Figure 2.3, the impulse response and the response to the K-pulse is 

given for a circular loop at θ = 0 degree and φ polarization for noiseless case [69]. 

For this target, the K-pulse is obtained st a different aspect angle/polarization 

condition at θ = 45 degree and θ polarization. It can be concluded from the figure 

that the K-pulse response has very little energy after c/r4.2t π= .           

 

 
   

Figure 2.3 The impulse response and response to the K-pulse for the circular 

loop at θ = 0 degree and φ polarization for noiseless case [69].   
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Another approach similar to the K-pulse method is the extinction-pulse (E-pulse) 

method which is almost the same as the K-pulse method under certain conditions 

[71]. An E-pulse is viewed as a transient, finite duration waveform which annihilates 

the contribution of only a selected number of natural resonances of a target as being 

different from the ideal K-pulse definition. In other words, an E-pulse eliminates the 

desired natural modal content of the late-time scattered field regardless of the 

orientation of the target with respect to transmitting and receiving antennas. Being 

another difference, a physical interpretation of the E-pulse can be facilitated by 

decomposing the waveform as   

 

)t(e)t(e)t(e ef +=  (2.19) 

 

where )t(e f  is a forcing component, nonvanishing during fTt0 <≤ , and )t(ee  is 

an extinction component during ef TtT <≤  which extinguishes the response due to 

)t(e f . Note that )t(e f  is only a unit delta function in K-pulse. In Equation (2.19), 

while the forcing component is chosen freely, the extinction component is expanded 

in a set of basis functions 
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A variety of basis functions, ( )tfm , have been used in Equation (2.20) including 

delta functions, Fourier cosines, damped sinusoids, polynomials and subsectional 

basis functions [19], [72], [73]. It is important to mention that since the forcing 

component of E-pulse can be arbitrarily chosen, the duration of E-pulse and the 

E-pulse itself is not unique, which is the basic difference with K-pulse.   
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Let )t(hk  represent the impulse scattered field response of a target to an 

interrogating waveform at aspect angle k . The convolution of the target’s E-pulse 

with the impulse response is zero at all aspects in the late-time interval. Writing the 

convolution in time domain and using Equation (2.12), (2.19) and (2.20) gives 
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where kLT  is the beginning of late-time region for the thk  scattered response, K  is 

the number of different aspect angles, L  is the number of discrete times and N is the 

number of modes expected to be annihilated. The matrix form of Equation (2.21) is 
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where 
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Here, incorporating multiple aspect data is important as the modal amplitudes, ma ,  

are highly aspect dependent that some modes may not be excited at certain aspects. 
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Generally the product KL  is chosen to be at least 2N, so that the matrix equation is 

not underdetermined, and a solution is obtained using least squares and singular 

value decomposition. The matrix equation (2.22) has a solution of the modal 

amplitudes for any choice of E-pulse duration. However, for some choice of eT  the 

determinant of the matrix vanishes, which correspond to discrete eigenvalues for the 

E-pulse duration eT , and Equation (2.21) has a solution only if 0)t(e f = . Since 

there is no excitatory component, this type of E-pulse is viewed as extinguishing its 

own excited field and is called a natural E-pulse. On the other hand, all other 

E-pulses, which have a nonzero excitatory component, are termed as forced E-pulse. 

The minimum natural E-pulse duration is determined as [74] 

 

max
e N2T

ω
π

=  (2.24) 

 

where maxω  is the largest radian frequency among the target modes, if a priori 

knowledge of the target poles is available; otherwise, it is the largest radian 

frequency within operating frequency band. Figure 2.4 shows the impulse responses, 

E-pulse and the responses to E-pulse of a thin cylinder at θ = 30 and 60 degree, 

generated by using the first ten resonance frequencies [74].  

 

  
Figure 2.4(a) Figure 2.4(b) 
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(c) 

 

Figure 2.4 The responses and E-pulse of a thin cylinder for θ = 30 and 60 degree 

generated using the first ten resonance frequencies [74]  (a) the impulse responses  

(b) E-pulse (same for both)  (c) the responses to E-pulse.  

 

 

In this specific noise-free case, 21 subsectional rectangular pulses, one of which 

constitutes the forced component, are used as basis functions in order to construct 

E-pulse and eliminate ten natural resonances. From the results in Figure 2.4(c), this 

E-pulse is quite successful in both aspect angles for noise-free case.  

 

The other type of discriminative pulse is the single-pulse (S-pulse) which is strictly 

based on known natural frequencies [75]. Different from K and E pulses, the 

S-pulse’s scheme consists of synthesizing the waveform of an incident signal which 

excites the target in such a way that the return signal from the target contains only a 

single natural resonance mode of the target in the late-time region. Equivalently, the 

S-pulse waveform for the ith mode of a particular target is defined as 
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As seen from Equation (2.25) this pulse depends on the information of target pole 

values that at least, the value of the pole, which is desired to exist in the scattered 

field in the late-time region, should be known. By substituting Equation (2.3) into 

(2.25), it can be obtained 
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It should be noticed that nA  and nB  are numerically stable because they are finite 

integrals over a short period of time, even though there is a time growing factor of 

tne α−  in them. Hence, for instance, if a single pulse is synthesized in such way that 

1A1 =  and all other nA  and nB  vanish, then the output signal will be a cosine, a 

natural mode. By representing the single pulse with a set of basis functions as in 

Equation (2.20) and combining this with nA  and nB  in Equation (2.26), the matrix 

equation form for the S-pulse is obtained as        
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The coefficients ma  for constructing single pulse can be obtained from 
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m,nm B

A
Ma . To synthesize )t(s  for the ith mode extraction, it is assigned 

that 1Ai =  or 1Bi =  and all other A’s and B’s are set to zero. Using this approach, 

an appropriate value for the single pulse duration eT  can be selected. As in the 

E-pulse case, the signal duration eT  of S-pulse is not unique so does the pulse itself; 

however, there exists an optimum value for which the single pulse possesses a 

maximal sensitivity in discriminating the target [76]. In order to find this optimum 

eT , Equation (2.27) can be modified as          
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where [ ]trunc
m,nM  is the truncated original [ ]m,nM  matrix with its ith row and last 

column removed. When all nA  and nB are forced to be zero, the solution exists 

when [ ] 0Mdet trunc
m,n = . Then, Equation (2.28) can be solved numerically to 

determine the optimum eT  value for the extraction of ith mode cosine signal.  
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These special discriminative pulses, especially K-pulse and E-pulse, were primarily 

constructed for target discrimination. However, they can be also used for pole 

estimation by computing the zeros of pulse spectrum in the literature [68], [69], [74]. 

The noise performance of these methods, on the other hand, is not so good as they 

can give successful target discrimination and pole value estimation up to SNR= 10 

dB. As a remedy, the normalized instantaneous energy function of target response is 

defined in [77] in the context of K-pulse design and target discrimination, as     
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where )t(p  is the K-pulse of a specific target and maxt  is a sufficiently late-time 

instant replacing infinity for practical purposes. The normalized energy curve of the 

target’s matched K-pulse response should reach high energy levels earlier than those 

of the target’s mismatched K-pulse responses. The discrimination parameter for 

E-pulse, E-pulse discrimination ratio (EDR), can be defined as [78] 
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Therefore, the E-pulse yielding the smallest EDN has an EDR of 0 dB, while the 

EDR produced by the other E pulses is greater.  
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With the use of discrimination parameters defined in Equations (2.29) and (2.30), the 

K-pulse and E-pulse methods became more resistant to the additive noise for target 

recognition than the direct pole estimation methods. However, these methods contain 

crucial drawbacks and problems. First, these feature pulses are either synthesized 

from the known/extracted poles of the target where a good estimate for the number 

of target poles is needed, or they are optimized (without using target pole 

information) via conventional or global optimization techniques. Optimization itself 

is a tricky signal processing approach; results may not be repeatable especially when 

there are many local optimal solutions. Reaching the globally optimal solution may 

not be possible in complicated problems involving complex target geometries or non-

conducting material compositions. Besides, all of these approaches require either 

noise-free synthesized data or very low noise measurement data recorded in specially 

controlled environments for classifier design purpose which may not be always 

possible. Additionally, in the K-pulse, a successful estimation for K-pulse duration is 

needed while it is not always easy to make a good guess of this duration, especially 

for complicated target geometries. This problem is also valid in the E-pulse and 

S-pulse methods for the choice of cT . Even if the target dimensions are known, the 

forced response time may vary with respect to aspect angle which makes the 

estimation of cT  more difficult. Furthermore, estimation of cT  for dielectric or 

composite targets is much more difficult and needs the solution of a very 

complicated global optimization problem. 

 

Modified and/or improved versions of all K-pulse, E-pulse and S-pulse methods have 

been published in late 90’s and in 2000 and thereafter. The K-pulse estimation 

problem is solved by a genetic algorithm-based approach in 1998 by Turhan-Sayan 

et al. [79] to be used in complicated cases where the K-pulse duration can not be 

estimated beforehand. Later, this technique is applied to dielectric targets for the first 

time in [66]. An improved automated S-pulse scheme is analyzed by Gallego et al. 

[80] to show the superiority of using quadratic subsectional polynomials as basis 

functions in noise performance to classical rectangular S-pulses in [78]. According to 
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this study, although the scheme gives successful results even for SNR= 0 dB, the 

method is tested only for high-Q conducting thin wires at a fixed aspect angle and 

polarization and needs to be repeated for more complex targets and different aspect 

angle/polarization conditions. The performance of an automated E-pulse target 

identification scheme in white Gaussian noise is analytically evaluated by Mooney 

et al. in [81] to determine the probability of identification as a function of SNR. 

These probabilities are reported being less than 80 percent for small 4-target libraries 

when SNR values get lower than 30 dB. In this study, conducting wire model targets 

are used and simulation results are demonstrated at four different aspect angles. In 

2004, an asymptotically unbiased E-pulse scheme is suggested by Blanco et al. in 

[82] to improve the noise performance of the conventional E-pulse technique. Up to 

45 percent improvement in accuracy is demonstrated at low SNR levels when this 

method is applied to three conducting thin straight wires of different lengths. 

Although these results are promising, the method has been tested in a very simple 

case and at a single aspect angle of 60 degrees only. The usefulness of the method 

needs to be demonstrated in more complicated simulation problems involving low-Q 

targets, dielectric objects, targets with complex shapes, etc., together with the 

aspect/polarization invariance tests. Another modification to the E-pulse method is 

suggested in 2006 by the same group of researchers, Blanco et al., [83] where 

β-splines are used as the basis functions in E-pulse construction together with new 

E-pulse conditions. Better noise performance is demonstrated in this paper as 

compared to the classic E-pulse discrimination scheme but the proposed method is 

demonstrated for the same very simple target scenario used in [82] without any 

analysis for aspect/polarization invariance. Finally, in 2006, the feasibility of 

“banded” E-pulse technique is demonstrated by Lui and Shuley [84] using aircraft 

targets modeled by thin wires. Although an improvement in the discrimination 

performance with respect to the classic E-pulse scheme is demonstrated, the 

technique needs to be tested for low-Q and dielectric targets. Furthermore, the 

performance of the method is demonstrated at a single aspect angle and a fixed 

polarization only for the ideal noise free conditions. The important performance tests 
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showing the invariance of the target identification technique with respect to aspect 

angle (in both azimuth and elevation) and polarization as well as those showing 

robustness with respect to noise are not provided. 

 

2.2.3. Other methods 

 

In addition to the pole estimation methods and feature pulse techniques discussed so 

far, there are several other resonance region techniques suggested for target 

recognition, which are worth mentioning briefly in this section. Use of generalized 

likelihood ratio test (GLRT) in late-time target discrimination is suggested in [85] by 

Mooney et al. and the performance analysis of this method is given in [21]. The 

performance of the method is demonstrated for four wire targets with sufficiently 

complex geometries at four different azimuth aspect angles, for the SNR ranging 

from 20 to -20 dB. Although the performance tests for different elevation angles and 

different polarizations are not conducted, and the classifier shows a poor 

performance below 10 dB SNR, the authors present an interesting theoretical 

performance analysis and compare their analytical findings with the results of 

numerical demonstrations.  

 

Another interesting target recognition work was published in 2000 by Kim et al. [86] 

where target’s scattered responses at multi-aspect angles are processed both in the 

early and late-time regions using the adaptive Gaussian representation (in joint time-

frequency domain), the principal component analysis (PCA) tool and a neural 

network technique, successively. The performance of the technique is demonstrated 

for five small-scale aircraft targets modeled by conducting thin wires, which are the 

same targets with the targets to be used in the classifier design example in 

Section 4.3. Despite the presence of too much complexity in the design process and 

extreme aspect-redundancy in the use of design data, aspect invariance (at least with 

respect to azimuth angle) and of noise performance are demonstrated. The target 

recognition method proposed in this thesis, however, is proven to show definitely 
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higher accuracy and better noise performance by using only 5 reference aspect angles 

for classifier design instead of 46 reference aspect angles under the same design 

conditions as discussed in detail in Section 4.3. In another recent paper published in 

2006 by J. H. Lee and H. T. Kim [87], a closed-form expression for the normalized 

estimation error is presented for a late-time target recognition scheme which is based 

on the a priori knowledge of target pole values. The performance simulations are 

conducted for a very simple target set consisting of five conducting straight thin 

wires of different lengths, without any performance tests for aspect and polarization 

invariance. The noise analysis is given only for relatively high SNR values between 

10 dB and 25 dB. Although, the paper presents an interesting analysis for the 

estimation error, the usefulness of the proposed study needs to be proven for 

challenging targets at arbitrary aspect and polarization conditions and at low SNR 

levels. 

 

A considerable amount of target recognition applications are based on neural 

network (NN) techniques as seen in literature [20], [79], [88]-[90]. However, NN 

based feature extraction techniques have two main disadvantages. First of all, NN 

training needs a large set of scattering data at many different aspects for each target 

in the database. A large database for each target is not desirable; because generally it 

is neither feasible nor practical to use such kind of huge database especially in the 

real world applications. Furthermore, addition of a new target or even a new 

reference angle to a neural network type classifier requires the training of the whole 

classifier overall again with this new reference database which complicates the 

classifier design.  
 

Finally, another late-time target classification technique is reported in [23] and [91] 

by Turhan-Sayan, which introduces a novel feature extraction technique using the 

Wigner distribution and the principal component analysis (PCA) based multi-aspect 

fusion. In this method, there exist late-time partitioned energy density vectors 
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constructed by computing the spectral distribution of scattered signal energy of some 

non-overlapping subsequent time bands which can be defined as 
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where )f,t(W mx  is Wigner-Ville distribution of the scattered signal )t(x  as [92]  
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The vectors corresponding to predetermined reference aspect angles for each target 

are obtained and a suitable late-time interval (optimum q  value) is found by using 

these vectors after a detailed investigation [91]. Afterwards, late-time feature vectors 

(LTFVs) for each target are constructed and then combined to form one feature 

vector for each target, fused feature vector (FFV), by using PCA, which decreases 

aspect dependency and redundancy. In the last step, the decision is done by 

comparing FFV of candidate target in database and LTFV of test target.     

 

The performance of this technique is demonstrated for four dielectric spheres of 

equal size but of different permittivities giving 100 percent accuracy rate at 20 dB 

SNR level, which drops to 90 percent at 10 dB SNR and to 75 percent at 5 dB SNR. 

The detailed aspect variance and noise analyses are provided in [91]. The method is 

also tested for dielectric coated conducting spheres resulting in similar noise 

performance results [93] and it gives successful accuracy rates for small-scale 
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aircraft targets modeled by thin, conducting wires for noise-free case [94]. However, 

the technique still needs a comprehensive noise analysis for low-Q and complex 

targets. 

 

In the following chapter, a novel resonance region method proposed in this thesis 

will be introduced and explained by indicating the advantages with respect to the 

other resonance methods mentioned throughout Section 2.2.            
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CHAPTER 3 

3. A NOVEL TARGET RECOGNITION METHOD WITH 

NATURAL-RESONANCE MECHANISM AND MUSIC 

ALGORITHM 

 

 

 

As mentioned in Section 1.3, the electromagnetic target recognition method 

developed in this thesis is based on the utilization of natural resonance mechanism in 

the sufficiently late-time interval of the target’s scattered response. While this 

method inspired by the singularity expansion method (SEM), the MUSIC (MUltiple 

SIgnal Classification) algorithm is employed as the main signal processing tool to 

extract natural resonance related target features which are not very sensitive to noise. 

The MUSIC algorithm is a well-known technique to extract the parameters of 

undamped/damped sinusoidal signal components of a composite signal such as the 

late-time scattered signal modeled in Equation (2.2) in the presence of Gaussian 

noise [95], [96]. This algorithm is widely used in biomedical, telecommunication, 

signal processing and electromagnetic areas especially for direction-of-arrival, 

multiple frequency, spectrum and signal parameter estimation applications due to its 

high resolution [97]-[99]. The MUSIC algorithm is quite successful in rather simple 

applications which contain at most a few sinusoidal signal components. However, the 

late-time scattered signal of a target may be composed of a large number of damped 

sinusoidal components due to target poles. Besides, as it happens with all the other 

pole estimation techniques mentioned in Section 2.2.1, the accuracy of pole 

extraction via the MUSIC algorithm also deteriorates by decreasing signal-to-noise 
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ratio (SNR) of the scattered signals. As an example, the true pole values and their 

estimation of the first four pole pairs of a perfectly conducting sphere with radii 

1.8 cm are given in Table 3.1 for both noise free and SNR= 10 dB cases. In this 

table, the complex frequency values are normalized as crjs /)( ω+α=  with r  

being the sphere radius in meters and c is the speed of light while )( ωα js += is 

being the unnormalized complex frequency. In addition, Table 3.2 shows the 

percentage error of real and imaginary parts of the estimated pole values with respect 

to true values for both noiseless and SNR= 10 dB cases. 

 

     

Table 3.1 The true pole values and the estimated normalized pole values with 

MUSIC algorithm for perfectly conducting spheres of radii 1.8 cm for both noise free 

and SNR= 10 dB cases (in crjs /)( ω+α=  scale).  

 

True pole values 

Estimated pole values  

for conducting sphere of radius 1.8 cm  

using the MUSIC spectrum 

 Noise free case SNR= 10 dB case 

-0.500 ± j 0.866 -0.504 ± j 0.867 -0.504 ± j 0.848 

-0.702 ± j 1.807 -0.708 ± j 1.827 -0.720 ± j 1.884 

-0.843 ± j 2.758 -0.853 ± j 2.762 -0.752 ± j 2.698 

-0.953 ± j 3.718 -0.938 ± j 3.742 -0.480 ± j 3.624 
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Table 3.2 The percentage error for the estimated pole values with MUSIC 

algorithm for perfectly conducting spheres of radii 1.8 cm for both noise free and 

SNR= 10 dB cases. 

 

True pole values 
(%) error for the estimated pole values 

 for conducting sphere of radius 1.8 cm  

 Noise free case SNR= 10 dB case 

 Real Imaginary Real Imaginary 

-0.500 ± j 0.866 0.8 0.11 0.8 2 

-0.702 ± j 1.807 0.85 1 2.5 3.1 

-0.843 ± j 2.758 1.2 0.14 10.8 2.17 

-0.953 ± j 3.718 1.5 0.64 49 2.5 

 

 

As to be reported in Table 3.2, the accuracy of extracted poles decreases, by a 

maximum of 3 percent error in imaginary parts and by almost 50 percent error in real 

parts at 10 dB SNR level, for instance. Therefore, the estimation and utilization of 

target poles in target feature extraction via MUSIC algorithm are strictly avoided in 

this method because of the susceptibility of pole extraction procedure to noise, as 

discussed above. Instead, the MUSIC algorithm is used to construct MUSIC 

Spectrum Matrices of the scattered signals as described in the next section.  

  

3.1. The Definition of MUSIC Spectrum Matrix (MSM) 

 

The MUSIC algorithm, which is the fundamental signal-processing tool used for the 

extraction of MUSIC Spectrum Matrices (MSMs), is a parametric method for line 
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spectra estimation manipulating the fact that the associated sinusoidal signal 

components and the Gaussian noise are uncorrelated. Let’s assume that  
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represents a late-time interval of the scattered signal of a given target recorded at a 

certain aspect angle/polarization condition and sampled at a total of N discrete time 

points in the presence of additive Gaussian noise )(nw . The noise-free (ideal) signal 

component )(nx  is expressed in Equation (3.1) in terms of the linear combination of 

L complex exponentials having the target poles is  in the exponents. The ic ’s are the 

related complex valued weight coefficients, which can be expressed as 

ij
ii ebc δθφ ),(=  in general. For an integer m  that satisfies the condition of 

NmL << , we can form the vector )(ny of length m  as 

 

[ ]T)1mn(z)1n(z)n(z)n(w)n(x)n(y +−−=+= K  (3.2) 

 

By using basic assumption that the signal and noise components are uncorrelated, the 

correlation matrix IR  can be expressed as 
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where E is the expected value operator, the superscript H denotes the complex 

conjugate transpose, 2σ  is the variance of Gaussian noise, I  is the unit matrix. In 
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this expression, the matrix A , which is defined in Equation (3.4) is a Vandermonde 

matrix whose dimensions and rank are Lm× and L respectively and the matrix C , 

which is defined in Equation (3.5), is an LL×  matrix with rank L. 
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In Equation (3.5), the elements of matrix C  are zero except the diagonal elements 

since 
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In Equation (3.5) and (3.6), the phases of ic ’s are assumed to be random phases 

having uniform distribution in the interval [-π, π]. 

 

Equation (3.3) constitutes the covariance matrix model of the data and the 

eigenstructure of IR  contains complete information on the complex frequencies. Let 

mλ≥≥λ≥λ K21  denote the eigenvalues of the correlation matrix IR , arranged in 

nonincreasing order, [ ]L21 eeeS KK=  be the set of orthonormal eigenvector matrix 

associated with { }L21 λλλ KK  and [ ]m1L e....eG +=  a set of orthonormal 
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eigenvector matrix associated with { }m1L λλ KK+ . For m >L, the matrix HACA  is 

singular; it has a rank equal to L [100]. So HACA  has L strictly positive eigenvalues, 

the remaining Lm −  eigenvalues all being equal to zero. Hence, the eigenvalues of 

IR  for mLi ,,1K+=  should be equal to 2σ . Then by using fundamental theorem 

such that eAe λ=  where a scalar λ and a nonzero vector e  are an eigenvalue and its 

associated eigenvector of a matrix A ,  
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In Equation (3.7), the matrix AC  has full column rank since null space dimension of 

AC  is equal to zero, so AC  should be nonzero. Thus, the key result obtained from 

Equation (3.7) is that 0=GAH . In other words, { }m
Liie 1+=  span both range space of 

G and null space of HA . Then, the true complex frequency values, { }L
iis 1= , are the 

only solutions of the following equation 

 

)Lmanyfor(0)s(aGG)s(a HH >=  (3.8) 

 

At this step, there are two submethods emerging that can be used for pole estimation 

within the framework of MUSIC algorithm. One of them is the root MUSIC method 

that can be used to estimate the poles by the roots of Equation (3.8). This method 

works well for undamped exponentials, aiming to find the roots nearest to the unit 

circle; but, it has a poor performance for damped exponentials where the locations of 

poles are far away from the unity circle. Therefore, complex poles with large real 

parts can not be estimated correctly by this submethod. Spectral MUSIC method, on 

the other hand, gives more accurate results for damped exponentials. Accordingly, 

the use of Spectral MUSIC method is preferred in the proposed target recognition 
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method. The Spectral MUSIC submethod can be used to search for the peaks of 

“MUSIC spectrum function” defined as 
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where ωα js +=  is the complex frequency. Obviously, the function )(sP  has peak 

values in the spectrum at iss =  values. The function )(sPunnorm  in Equation (3.9) 

can be expressed in the form of a matrix by taking discrete values along the 

{ }sRe=α  and { }sIm=ω  axes with indices u and v to compute the normalized 

MUSIC spectrum matrix (MSM) as 
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where 1k,,1u K=  and 2k,,1v K=  are the row and column indices of the MUSIC 

spectrum matrix. This matrix provides a natural-resonance related power distribution 

map for the target on the complex frequency plane. By using the expression of 

unnormP , in Equation (3.10) the matrix P  should have peak values in the spectrum at 

iii js ωα +=  values for low noise scattered data; however, the peak values can shift 

in the complex frequency plane with the increase in the noise level as indicated in 

Table 3.1. 
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In the proposed method, the MUSIC algorithm is used with the following steps to 

construct MUSIC spectrum matrices. First of all, for a noisy or noiseless scattered 

signal as given in Equation (3.1), the sampled correlation matrix is computed using 
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where )n(y  is defined in Equation (3.2). While forming sampled correlation matrix, 

the modifications such as forward-backward approach are not used since they give 

inaccurate results for damped sinusoidal signals [101]. Afterwards, the 

eigendecomposition of the sampled correlation matrix is realized with singular value 

decomposition (SVD) and the matrix G  is constructed. At the last step, the 

normalized MUSIC spectrum matrix (MSM) is computed using Equation (3.10).    

 

The values of m and L are crucial parameters for MUSIC algorithm. Regarding the 

selection of a value for m , this parameter may be chosen as large as possible, but not 

too close to N, to still allow a reliable estimation of the covariance matrix. In some 

applications, the largest possible value that may be selected for m  may also be 

limited by computational complexity considerations [101]. However, it is usually 

advised to choose 2/Nm =  to obtain best performance [102]. The value (L/2) gives 

the estimated number of damped sinusoids in the late-time scattered signals. For low 

noise cases, the selection of L has no significant importance. Even if the correct 

number of damped sinusoids is exceeded while choosing the value of L, the 

algorithm has the advantage of finding the correct number of damped sinusoids. 

However, for moderate and low SNR cases, the selection of L is important and it 

should not be chosen too small as to be demonstrated in Section 4.3.2. Based on 

experience, L can be chosen as 2/m  or (N/4). 
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The MUSIC algorithm has some important advantages as compared to other signal 

processing techniques. First of all, MUSIC spectrum matrix has nonnegative values 

always as opposed to some quadratic Time-Frequency Representations such as the 

Wigner Distribution [103]. Besides, the MUSIC algorithm suffers from no undesired 

cross terms in its spectrum due to the fact that the damped sinusoidal signal and noise 

components are uncorrelated. As an example, even for moderate noise case, the 

MUSIC spectrum matrix gives one peak for the signal of one damped sinusoidal with 

noise and it gives only two peaks, without any other possible peaks due to 

cross-terms, for the signal of two damped sinusoidals with additive noise.  

  

3.2. The Classifier Design Steps 

 

In the proposed method, let’s assume that a target classifier will be designed for TK  

targets and scattered data are available for each target at AK  preselected aspect 

angle/polarization conditions called as reference aspect angle/polarization conditions. 

The scattered fields at these aspect angle/polarization conditions for each target are 

either synthesized or measured for each target. It should be indicated that for most of 

the classifier design examples presented in this thesis, the reference aspect 

angle/polarization conditions are chosen at different aspect angles at a fixed 

polarization. However, the whole procedure can be applied without any difficulty for 

arbitrary reference aspect angle/polarization conditions. The reference aspect angles 

should not be chosen too closely to each other to avoid redundancy. A minimum of 

10-15 degrees of aspect angle separation would be proper for the initial choice of 

reference aspect angles when using scattered data for smooth conducting objects, for 

example, in the resonance region as discussed in Chapter 1. A simulation example 

investigating the effects of choosing the parameter AK  on classifier performance 

will be presented in Section 4.3.1.  
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As a distinct superiority of the suggested target classifier design method, it should be 

emphasized that scattered data used in this design process are not needed to be low 

noise or noise free. On the contrary, moderately noisy data are better to achieve 

higher accuracy rates within a wider SNR range. 

  

DESIGN STEP 1: 

The common time span of the scattered signals is divided into certain overlapping 

subintervals. Let’s represent these subintervals with index p (p=1,…,P). Without any 

priori information about the pole values, target dimensions, the initial time of 

late-time interval or any other quantity, the MUSIC spectrum matrices (MSMs) are 

constructed over each subinterval for each target at each reference aspect angle as 

explained in the previous section. It should be noted that these MSMs are aspect 

dependent. To get rid of the aspect variance in MSM features of a target, these non-

negative valued individual MSMs belonging to different aspect angles are first 

superposed and then normalized to form the fused MUSIC spectrum matrix (FMSM) 

for this target. The same procedure is repeated for each candidate target and for each 

subinterval of the classifier given as 
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where iFMSM  refers to the FMSM of the ith target and j,iP  refers to the MSM of 

target i  at the reference aspect j . 

 

DESIGN STEP 2: 

As a crucial step of the classifier design, an optimal late-time interval for feature 

extraction must be selected. In this step, the FMSMs for all candidate targets and the 
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individual MSMs computed for all targets at all reference aspects are used. As 

explained in Section 3.1, in the late-time region the scattered signal of a target can be 

modeled by the superposition of damped sinusoidals. Each sinusoidal signal is 

associated with a target pole pair which corresponds to a peak location in the MUSIC 

spectrum. Since these damped sinusoidal signals exist at all aspect angles in varying 

strengths, peak locations of aspect dependent MUSIC spectra remain roughly the 

same but with different excitation levels. Thus, for a given target, the superposition 

of the MUSIC spectrum matrices (FMSMs) over different aspects should contain all 

possible pole information observed at different reference aspects. This situation is 

not valid for earlier time intervals where the early-time non-resonant components are 

also effective. It is not valid also for too late time intervals where the additive noise 

becomes dominant over the natural resonances. Thus, every MSM constructed over 

the optimal (or near optimal) late-time interval should highly resemble the 

corresponding FMSM of this target with a high correlation coefficient. It should be 

also true that, over the optimal late-time interval, correlation between any MSM 

belonging to this target and the FMSMs of any other candidate target should be low 

since their pole distributions (peak locations of the MSMs) are quite different. 

Therefore, an optimal late-time interval can be chosen by searching for a specific 

time interval over which the sum of correlation coefficients between MSMs 

(computed at reference aspect angles only) and their corresponding FMSM is 

maximum while the sum of correlation coefficients between MSMs and the 

mismatched FMSMs is minimum. Mathematically speaking, an optimal late-time 

interval can be found by the following algorithm: 
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with 
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It should be emphasized that in addition to m  and L, the initial time for the late-time 

region and the time increment ∆t of the discrete scattered signal (and hence the 

duration of the late-time signal subject to IR  matrix computations) are also 

important design parameters. After the selection of an optimal late-time interval, 

FMSMs belonging to the determined late-time interval are used altogether to form 

the feature database of the classifier. As the scattered response of a target is strongly 

aspect dependent, the target’s natural resonances may be excited at varying strengths 

at different aspect angles. Some of the resonances may be even too weak to make a 

detectable contribution under certain excitation conditions and additional noise as 

shown in Table 3.1. Consequently, the recognition ambiguity resulting from this sort 

of aspect dependency is minimized by superposing the individual MSM matrices of a 

target to obtain its fused MSM (FMSM) feature which incorporates the effects of 

more and more natural resonance components of the target. Characterization of each 

target by a single aspect invariant FMSM, instead of a bunch of aspect-sensitive 

MSMs, considerably improves the accuracy rate of the classifier in addition to 

reducing the dimensionality and redundancy of the classifier’s reference database.  
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At the real-time target recognition phase, the recognition algorithm is diverged into 

two separate ways, which are quite similar, according to the description of test 

targets. For both ways, the test scattered signal received from an unknown target at 

an arbitrary and unknown aspect/polarization condition is first processed to obtain 

the associated testing MSM of the signal over the previously determined optimal 

late-time interval. Then, if all test targets belong to the candidate targets in database, 

in other words, if there is no test target out of the target library, the unknown test 

target is classified as one of the candidate targets based on the highest correlation 

coefficient computed between this testing MSM and candidate targets’ FMSMs. The 

correlation coefficient between these matrices is defined as  

 

( ) ∑∑
= =

=
2k

1v

1k
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testi )v,u(P)v,u(FMSMir  (3.18) 

 

If there exists a test target that does not belong to the classifier’s target library, that 

target is called “alien target”. To determine the presence of alien target, in addition to 

the FMSMs of candidate targets, the standard deviation, iσ , and mean values, iµ , of 

match,ir  correlation coefficients for each library target are stored. Afterwards, the 

decision is made over the optimal late-time interval according to following 

algorithm: 
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where )i(r  is given in Equation (3.18). This algorithm is based on the fact that if the 

test target is one of the targets in database, the MSM of test target will be highly 

correlated with FMSM of the corresponding target in database since their power 

distribution maps are similar and the correlation coefficient evaluated will be close to 
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match,ir  values of the decided target. However, if it is an alien target, the correlation 

coefficients between MSM of test target and FMSMs of all targets in database will 

be low since the power distributions are different and even the highest testing 

correlation coefficient among the correlation coefficients evaluated will be much 

smaller than all of the match,ir  values computed for the candidate targets. 

  

To clarify both ways in the proposed methods quantitatively, assume there are 5 

targets with 3 reference aspect angles in the database. The correlation coefficients 

between MSM of test target and FMSMs of candidate targets through one to five are 

0.2354, 0.5501, 0.1675, 0.0893 and 0.2907. If it is known that all test targets belong 

to targets in database, then the test target will be recognized as the second target in 

database. Accordingly, if it is known there may exist a test target out of database and 

match,2r  coefficients of the second target at three aspect angles are found as 0.5223, 

0.6887 and 0.6209 resulting in 6106.02 =µ , 0837.02 =σ  and 3596.03 22 =− σµ , 

then the test target will again be recognized as the second target in the database. 

However, if the correlation coefficient corresponding to the second target were 

0.3501 instead of 0.5501 and all other correlation coefficients were also the same; 

this test target would be recognized as an alien target which does not belong to the 

target library. The schematic view of the overall procedure of the proposed method 

for both ways is demonstrated in Figure 3.1.          
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Figure 3.1 The flow chart of the design/decision algorithm for the proposed 

target recognition method.   
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3.3. Advantages of Using the Proposed Target Recognition Method 

 

When compared to other resonance region methods mentioned in Section 2.2, the 

method suggested and explained throughout this chapter has many advantages both 

in the design and testing phases. First of all, this novel method needs no a priori 

information about the targets such as target geometry or target pole values as 

opposed to some other target recognition methods such as the E-pulse, S-pulse 

methods [104], [105]. This property is very important since a priori information may 

be available for some canonical targets such as spheres or infinitely long thin 

cylinders with analytical field expressions. However, it is not always possible to 

obtain this kind of information in real world target recognition problems. Secondly, 

almost all other resonance methods require reference scattered signals with no noise 

or very low noise in classifier design phase to construct classifier’s feature in 

database. However, the classifier design method suggested in this dissertation is able 

to use noisy late-time scattered signals with moderate (or even low) SNR levels to 

design target classifiers with very high correct classification rates and with excellent 

testing noise performances. This property is demonstrated for the first time in 

literature for the resonance-region target recognition.         

 

Another striking feature of the suggested target recognition method is the 

computational efficiency and theoretical simplicity of the signal processing approach 

used. The MUSIC algorithm is the only signal processing tool used for feature 

extraction and the computations are fast enough for real-time target recognition. 

Concerning the classifier performance, a high degree of aspect and polarization 

invariance can be provided by using reference scattered signals at only a few 

different design aspect angle/polarization conditions which also reduces the 

computational load and database memory requirements. The suggested classifier 

design method contains no complex signal processing tools/algorithms such as 

genetic algorithms or conventional optimization tools, which increase the complexity 

of these methods enormously. Furthermore, the feature database contains only one 
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matrix (FMSM) for each library target, which provides very small memory 

requirements in the database. These matrices are obtained with a simple 

superposition operation using MSMs of the targets to increase the accuracy of 

decisions while reducing the dimensionality of the problem. A similar task is 

achieved using a much more complex method involving the PCA method in [150] for 

example.  

 

In addition to the advantages mentioned above, the method has also ability of being 

applied to all sorts of targets such as perfectly conducting or dielectric bodies, simple 

or complex geometries without any difficulty. Especially, the applications to 

dielectric targets are important since recognition of dielectric targets is not 

investigated in the literature except for a recent work reported in [91]. Furthermore, 

the proposed target recognition method is capable of discriminating an alien target 

from the targets in the classifier database. The other resonance region methods 

reported in literature labels the test target as one of the library targets and they give 

no indication or warning when the test target is out of the classifier library. This 

ability is important especially for the IFF (identification friend or foe) applications.  

 

Finally, as it is going to be demonstrated in the following chapters, the suggested 

method has high accuracy rates with satisfactory noise performance when compared 

with the present resonance region methods. This result is achieved by the use of 

MUSIC algorithm in obtaining MSM and FMSM features of the targets, which are 

not significantly sensitive to noise. Therefore, the suggested target classifier method 

leads to sufficiently high accuracy rates even for the use of extremely noisy signals. 

Thus, in the present method, use of MUSIC algorithm for the indirect extraction of 

natural resonance related power distributions has the special advantage of leading to 

a very robust and aspect/polarization independent classification algorithm even at 

extremely low SNR levels as to be demonstrated later.      
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CHAPTER 4 

4. APPLICATIONS AND RESULTS FOR SINGLE 

TARGET RECOGNITION USING NUMERICALLY 

SIMULATED SCATTERED FIELD DATA 

 

 

 

In this chapter, validity and robustness of the proposed target recognition scheme are 

demonstrated by several simulation examples for highly challenging single target 

libraries where the scattered field database are constructed either analytically or 

numerically. The first demonstration example of Section 4.1 involves a set of three 

perfectly conducting spheres of different radii. Despite its simple geometry, a 

conducting sphere is known to be one of the most difficult targets for late-time target 

recognition studies, especially under noisy conditions, as it is an extremely low-Q 

target. In the second simulation example of Section 4.2, a classifier is designed for 

three lossless dielectric spheres with the same radius but different relative 

permittivity values. Again, despite its simple geometry, a dielectric sphere is a very 

challenging target as it has a very dense pole pattern resulting from the interior 

resonating modes [106]. Speaking from experience, a method displaying good 

performance for spherical targets usually works for the other targets. In other words, 

spherical targets can be thought as canonical reference targets for the target classifier 

design problems. Besides, considering the fact that almost all of the target 

recognition methods in literature have been demonstrated for only high-Q conducting 

targets such as conducting thin wires so far, this example is also particularly 

important to demonstrate the applicability of our target recognition technique to non-
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conducting, penetrable targets. The scattered responses of these spherical targets are 

easily generated from the available analytical solutions at arbitrarily chosen aspect 

angles [107], [108] providing an easily accessible data set for design and verification 

tasks. The derivations and the resulting expressions of these scattered fields for both 

perfectly conducting spheres and dielectric spheres are given in Appendix C. Next, a 

target classifier is designed in Section 4.3 for a set of more realistic targets with 

complex but yet similar geometrical features. Five small-scale aircraft modeled by 

conducting thin wires are chosen to be the library targets for this challenging 

demonstration. The scattered responses of these aircraft targets are obtained with 

simulation programs FEKO and CST as explained in Section 4.3. The simulation 

examples presented in Section 4.3.1 and 4.3.2 demonstrate the importance of 

choosing the design parameters AK  and L properly. Finally, the aspect and 

polarization invariance of the suggested target recognition method will be further 

investigated in Section 4.3.3 and 4.3.4 using the aircraft-classifier designed in 

Section 4.3. Then, in Section 4.4, the suggested method will be demonstrated for the 

isolated target types from Section 4.1 to Section 4.3 using incomplete frequency 

domain data. The drawbacks of using such data in target recognition problems will 

be also investigated in this section. Moreover, the effect of frequency bandwidth on 

accuracy performance will be also examined. In the aircraft target simulations 

presented in this section, an alien aircraft target is also considered as a test target in 

order to test the performance of the classifier under such a special but important 

circumstance.  

 

All the calculations including the generation of frequency domain and time domain 

responses of targets (except for the frequency domain responses of aircraft targets), 

the generation of MSMs and FMSMs, other intermediate design steps and test 

computations are done with MATLAB 7.1. As an example, the program code written 

in MATLAB for the design and testing of the classifier of Section 4.3 is given in 

Appendix D.             
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4.1. The Classifier Design for Low-Q Conducting Spheres 

 

This first classifier is designed for a target library with three perfectly conducting 

spheres of radii 1.8 cm, 2.4 cm and 3 cm. As mentioned before, target responses are 

numerically synthesized with the expressions given in Appendix C for a plane wave 

excitation which is linearly polarized in x-direction and propagates in z-direction, as 

shown in Figure 4.1. The linear polarization in x-direction in this configuration can 

be also defined as φ polarization. 
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Figure 4.1 The problem geometry used to generate electromagnetic signals 

scattered from the spherical targets. 

 

 

The far field scattered responses are computed using MATLAB 7.1 in frequency 

domain over a bandwidth from zero to 12 GHz at 873 frequency sample points with 

frequency resolution of 13.75 MHz which is deliberately chosen to be compatible 

with the resolution of measurements described in Chapter 5. With this frequency 

band, the targets are in the range of [0, 2.4λ] which can be regarded in resonance 

region. These responses are also obtained at φ= π/2 plane, with a radial distance of 

72 cm from the sphere center, for twelve different bistatic aspect angles, θb= 5, 15, 
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30, 45, 60, 75, 90, 105, 120, 135, 150 and 165 degrees which corresponds to 180-θb= 

θ= 175, 165, 150, 135, 120, 105, 90, 75, 60, 45, 30 and 15 degrees, respectively in 

Figure 4.1. It should be noted that studying with bistatic aspect angles in the 

recognition of spherical targets is compulsory since the monostatic (backscattered) 

response of a sphere is identical at every direction.  

 

When considering the field expressions in Equation (B.13), this special case (φ= π/2) 

brings only φ component (-x direction) of electric field ( 0E =θ ) and no cross 

polarization (φθ polarization) in the observation point. This fact is also true for θ 

polarization that if the excitation is linearly polarized in y-direction (θ polarization), 

same geometry will bring only θ component of electric field ( 0E =φ ) without any 

θφ polarization component, in the observation point. Hence, only φφ polarization will 

be taken into account for this spherical target problem. The polarization invariance of 

the proposed recognition method will be investigated with different polarizations in 

Section 4.3 and 5.4. After getting frequency responses, time-domain scattered fields 

are computed by using Gaussian windowing, inverse fast Fourier transformation 

(IFFT) and zero padding to get a 5 picoseconds resolution, which is enough to 

observe the frequency range up to 12 GHz. The resulting time signals have 1024 

sample points with a total time span of 5.115 nanoseconds. The noisy scattered time-

domain signals at all the aspect angles stated above are synthesized at the signal-to-

noise ratio (SNR) levels of 20, 15, 10, 5 and 0 dB to be used for classifier design and 

for performance testing. As an example, the scattered time domain signal for the 

perfectly conducting sphere of radius 1.8 cm is plotted in Figure 4.2 at the bistatic 

aspect angle of 30 degrees (θ=150 degrees) for 10 dB SNR level. Five of the bistatic 

aspect angles at θ= 45, 75, 105, 135 and 165 degrees are chosen as reference aspect 

angles to construct the FMSM features of the classifier design with noisy signals of 

10 dB SNR level. It should be again emphasized that this is a very challenging 

classifier design example as the reference data used in design is highly noisy 

particularly over the late-time intervals for these low-Q conducting spheres.  
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Figure 4.2 The time-domain signal scattered from the perfectly conducting 

sphere of radius 1.8 cm at 30 degree bistatic aspect angle with 10 dB SNR level. 

 

 

As the first step of the design procedure, for each given target/reference aspect angle 

case, the scattered signal is divided into parts over the overlapping subintervals of 

time starting from 2.08 nanoseconds with a total length of N=128. For each 

subinterval and for every target/reference aspect angle, the normalized MUSIC 

spectrum matrices are constructed with L= 32 for two different values of m , m = 64 

and m = 96, and two different values of time resolution, t∆ = 2.5 psec and t∆ = 5 

psec where the signals with 2.5 psec resolution are obtained by the linear 

interpolation of signals with 5 psec resolution. Then, the MUSIC spectrum matrices 

computed at each different reference aspect angle over each subinterval are 

superposed for each given target to obtain the fused MUSIC spectrum matrices over 

individual subintervals. After obtaining these FMSMs, totalr  values in 
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Equation (3.15) are computed for each subinterval to provide a measure of aspect 

invariance. Finally, the most suitable late-time interval is determined for optimum 

classifier performance choosing the highest totalr  value. The computed totalr  values 

for different late-time intervals and for two different m  and t∆  choices are shown in 

Figure 4.3 where  
 

• indices 1 to 8 along the horizontal axis refers to a total of 8 subintervals in 

time established with m = 64, t∆ = 5 psec, time duration= 128x5 psec= 0.64 

nsec and shifting by 0.16 nsec (i.e. index 1 corresponds to 2.08 nsec-2.72 

nsec interval; index 2 corresponds to 2.24 nsec-2.88 nsec interval, etc. and 

finally index 8 corresponds to 3.2 nsec-3.84 nsec interval). 

 

• indices 9 to 24 along the horizontal axis refers to a total of 16 subintervals in 

time established with m = 64, t∆ = 2.5 psec, time duration= 128x2.5 psec= 

0.32 nsec and shifting by 0.08 nsec (i.e. index 9 corresponds to 2.08 nsec-

2.40 nsec interval; index 10 corresponds to 2.16 nsec-2.48 nsec interval, etc. 

and finally index 24 corresponds to 3.28 nsec-3.6 nsec interval). 

 

• indices 25 to 32 along the horizontal axis refers to a total of 8 subintervals in 

time established with m = 96, t∆ = 5 psec, time duration= 128x5 psec= 0.64 

nsec and shifting by 0.16 nsec (i.e. index 25 corresponds to 2.08 nsec-2.72 

nsec interval; index 26 corresponds to 2.24 nsec-2.88 nsec interval, etc. and 

finally index 32 corresponds to 3.2 nsec-3.84 nsec interval). 

 

• indices 33 to 48 along the horizontal axis refers to a total of 16 subintervals in 

time established with m = 96, t∆ = 2.5 psec, time duration= 128x2.5 psec= 

0.32 nsec and shifting by 0.08 nsec (i.e. index 33 corresponds to 2.08 nsec-

2.40 nsec interval; index 34 corresponds to 2.16 nsec-2.48 nsec interval, etc. 

and finally index 48 corresponds to 3.28 nsec-3.6 nsec interval). 
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Figure 4.3 The totalr  values computed for the classifier design for perfectly 

conducting spheres at SNR= 10 dB. 

 

 

It can be concluded from Figure 4.3 that the intervals with m = 96 (index 25-48) 

have lower totalr  values compared to intervals with m = 64 (index 1-24). 

Consequently, the intervals with 2/Nm = = 64 give better results [109] and hence 

the parameter m  is chosen to be N/2 for classifier design to follow. Besides, from 

Figure 4.3, it can be seen that totalr  values in the earlier time intervals are smaller 

since these intervals contain forced scattered response components in addition to the 

superposition of damped sinusoidal signals. The presence of highly aspect dependent 

early-time scattered response components in data obviously causes deterioration in 

the aspect invariance and hence in the correct classification capacity of the classifier. 

As it is moved into later time intervals, these forced response components vanish 
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leading to higher totalr  values. However, at very late-time intervals, the effective 

SNR becomes very low as the amplitudes of damped sinusoidal signals attenuate to 

very small values. So, staying away from the low SNR zone and keeping as much of 

the useful resonance information as possible, the optimal subinterval index is 

selected to be 3 (interval from 2.4 to 3.04 nsec) for which the highest totalr  value is 

observed. It should be noted that although SNR levels of reference signals are 10 dB, 

SNR levels belonging to only this subinterval, which can be called as effective SNR, 

are much lower than 10 dB since the selected time interval is in late-time region 

which is much weaker than the early time intervals. Then, the feature database of the 

classifier design is constructed by using the FMSM features computed over this 

optimal subinterval. The resulting FMSM features for the conducting spheres with 

1.8 cm, 2.4 cm and 3 cm radii are given in Figure 4.4(a), 4.4(b) and 4.4(c), 

respectively. After completing the design procedure as described above, the resulting 

classifier is extensively tested for aspect invariance and noise performance. While 

preparing the noisy scattered data set for testing, addition of the random Gaussian 

noise to the ideal noise free scattered signals is repeated in 50 independent trials at 

each SNR level to obtain reliable results for noise analysis. A total of (3 targets) x 

(12 bistatic aspect angles) x (5 SNR levels) x (50 trials at each SNR level) = 9000 

noisy scattered test signals are generated for performance tests. As an example, the 

MSM feature for the conducting sphere of radius 1.8 cm at 30 degree bistatic aspect 

with 10 dB SNR level (see the associated scattered test signal in Figure 4.2) is 

constructed over the optimal time interval [2.4, 3.04] nsec as shown in Figure 4.4(d). 

The matched correlation coefficient computed between the FMSM of Figure 4.4(a) 

and the MSM of Figure 4.4(d) is 0.8194 while the mismatched correlation 

coefficients computed between the MSM of Figure 4.4(d) and the FMSMs of Figure 

4.4(b) and 4.4(c) turn out to be 0.3462 and 0.1371, respectively, leading to a correct 

classification result in favor of the conducting sphere of radius 1.8 cm by a very large 

safety margin.  
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Figure 4.4 (a)-(c) The FMSM features of the perfectly conducting spheres with 

1.8 cm, 2.4 cm and 3 cm radii  (d) the MSM feature of the test target (the conducting 

sphere with radius of 1.8 cm at 30 degree bistatic aspect angle) at SNR= 10 dB. 

 

 

The correct classification rates obtained as a result of all those 9000 tests are 

presented in Table 4.1 for various SNR levels not only for the optimum late-time 

interval labeled by the index 3 but also for two other suboptimal but promising 

intervals with indices 4 and 14 to show the importance of choosing the proper design 
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interval in time. In this table, while the decision criterion of “0% margin” looks for 

the condition that the matched correlation coefficient is simply higher than all 

mismatched correlation coefficients, the more demanding decision criterion of “5% 

margin” looks for the case that the highest mismatched correlation coefficient is at 

least 5 percent lower than matched correlation coefficient [91]. 

 

    

Table 4.1 The correct classification rates (in percentage) of optimal and 

suboptimal perfectly conducting sphere classifiers which are designed over three 

different late-time interval with 10 dB SNR.  

 

SNR Levels 20 dB  
SNR 

15 dB  
SNR 

10 dB  
SNR 

5 dB  
SNR 

0 dB  
SNR 

Safety margin for decisions 0% 5% 0% 5% 0% 5% 0% 5% 0% 5%

Late-time Index 3   
(Optimal) [2.4, 3.04] nsec 100 100 98 97 94 91 89 85 83 80 

Late-time Index 14 
[2.48, 2.80] nsec 100 99 97 94 91 87 84 79 77 73 

Late-time Index 4 
[2.72, 3.36] nsec 99 98 96 92 88 85 81 76 74 70 

 

 

According to the results displayed in Table 4.1, the late-time interval [2.4, 3.04] nsec 

corresponding to the index 3 gives the highest accuracy, as expected. For this optimal 

late-time interval, it is verified that the resulting classifier reaches a correct decision 

rate of 97 percent for low noise test signals with SNR levels of 15 dB and higher. 

This rate drops to 80 percent at 0 dB overall SNR level with 5% margin decision 

criterion. However, it can be concluded that the proposed method performs quite 

effectively in this conducting sphere classifier with still high accuracy rates even in 

the case of highly contaminated test signals. 
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The performance analysis of the method with respect to the construction of FMSMs 

at different SNR levels is also important and an optimal SNR level required for 

constructing the optimal FMSMs, which gives the highest accuracy rates at wider 

SNR ranges, should be determined. In the conducting sphere simulation of this 

section, the reference signals with 10 dB SNR are used for constructing the FMSMs. 

However, in addition to 10 dB SNR, the simulation is repeated with the reference 

signals with lowest and highest SNR levels in SNR range, 0 dB SNR and 20 dB 

SNR. The correct decision rates of the classifiers designed by using reference signals 

at 0 dB, 10 dB and 20 dB SNR levels are given in Table 4.2.  

 

    

Table 4.2 The correct classification rates (in percentage) of perfectly conducting 

sphere classifiers, which are designed with reference signals at 0, 10 and 20 dB SNR 

levels.   

 

SNR Levels 20 dB  
SNR 

15 dB  
SNR 

10 dB  
SNR 

5 dB  
SNR 

0 dB  
SNR 

Safety margin for decisions 0% 5% 0% 5% 0% 5% 0% 5% 0% 5%

Classifier design with     
 0 dB SNR reference signals 97 95 95 93 91 88 87 84 82 79

Classifier design with     
10 dB SNR reference signals 100 100 98 97 94 91 89 85 83 80

Classifier design with     
20 dB SNR reference signals 100 100 99 97 94 90 86 81 80 77

 

 

According to the results in Table 4.2, the classifier design having reference signals 

with 10 dB SNR gives highest accuracy rates and hence 10 dB is the optimum SNR 

level for this classifier design example. The classifier with 0 dB SNR gives 

successful rates for low SNR values (at 0 dB and 5 dB); however, it gives lower 
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accuracy rates for high SNR values (at 20 dB) when compared to the classifier 

designed with 10 dB SNR data. On the other hand, the classifier designed with 20 dB 

data SNR gives successful rates for high SNR values (at 15 dB and 20 dB); however, 

it gives lower accuracy rates for low SNR values such as 0 dB.      

 

4.2. The Classifier Design for Dielectric Spheres 
 

In this second classifier design, the performance of the proposed MUSIC-based 

classification method is tested for a non-conducting target set containing three 

lossless dielectric spheres with the same radius of 1.8 cm but with different relative 

permittivity values of εr= 2, 3 and 4. The problem geometry, generation scheme of 

scattered time-domain signals, choice of testing and reference aspect angles of this 

classifier design are exactly the same as those used in the first classifier design 

example of Section 4.1. The only difference is that the noisy scattered time-domain 

signals are synthesized at the signal-to-noise ratio (SNR) levels of 15, 10, 5, 0 and -5 

dB to be used for classifier design and for performance testing. As an example, the 

scattered time domain signal for lossless dielectric sphere of εr= 3 is plotted in 

Figure 4.5 at the bistatic aspect angle of 15 degrees for 5 dB SNR level. The same 

five bistatic aspect angles, 45, 75, 105, 135 and 165 degrees, are chosen as reference 

aspect angles to construct the FMSM features with noisy signals of 5 dB SNR level 

for this classifier design. The normalized MUSIC spectrum matrices are constructed 

with m = 64 (only), L= 32 for two different values of time resolution, t∆ = 2.5 psec 

and t∆ = 5 psec. The results of totalr  calculations for various subintervals are 

displayed in Figure 4.6 where the definitions of subintervals from index 1 to index 24 

are the same as those given in the previous classifier design. The late-time interval 

[2.56, 2.88] nsec corresponding to index 15 is the optimal choice for this classifier. 
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Figure 4.5 The time-domain signal scattered from lossless dielectric sphere of 

εr= 3 at 15 degree bistatic aspect angle with 5 dB SNR level. 
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Figure 4.6 The totalr  values computed for the classifier design for dielectric 

spheres at SNR= 5 dB. 
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The FMSM features of the dielectric spheres extracted over this optimal time interval 

for SNR= 5 dB case are shown in Figure 4.7(a)-(c). A total of (3 targets) x (12 aspect 

angles) x (5 SNR levels) x (50 trials at each level)= 9000 noisy test signals are used 

altogether to test the performance of this dielectric sphere-classifier. Again, it is 

important to notice that, for the first time in literature, a classifier design is 

accomplished by such highly contaminated data with 5 dB SNR level.  
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Figure 4.7 The FMSM features of the lossless dielectric spheres with a common 

radius r= 1.8 cm with relative permittivity values εr= 2, 3 and 4 at SNR= 5 dB. 
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As an example to the decision tests, the MSM computed using an arbitrarily selected 

test signal in Figure 4.5 (belonging to the dielectric sphere of εr= 3 at 15 degree 

bistatic aspect angle with 5 dB SNR) over the optimal time interval is shown in 

Figure 4.8(a). The matched correlation coefficient between this testing MSM and the 

FMSM of the sphere with εr= 3 is found to be 0.7963 while the mismatched 

correlation coefficients are 0.3264 and 0.3571 for the sphere with εr= 2 and 4, 

respectively. The MSM computed using another test signal belonging to the 

dielectric sphere of εr= 2 at 60 degree bistatic aspect angle with 0 dB SNR, where the 

SNR levels of the reference signals in database (5 dB) and the test signal (0 dB) are 

different, is shown in Figure 4.8(b). For this challenging test case, the matched 

correlation coefficient between this testing MSM and the FMSM of the sphere with 

εr= 2 is found to be 0.6067 while the mismatched correlation coefficients are 0.4792 

and 0.2810 for the sphere with εr= 3 and 4, respectively, which satisfies both decision 

criteria of 0% and 5% safety margin. 
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Figure 4.8 (a) The MSM feature of the test target (dielectric sphere with εr= 3 at 

15 degree bistatic angle) at SNR= 5 dB  (b) The MSM feature of the test target 

(dielectric sphere with εr= 2 at 60 degree bistatic angle) at SNR= 0 dB. 
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The accuracy rates computed for the dielectric sphere classifier for three different 

late-time subintervals (the next-to-optimal intervals with indices 5 and 14 in addition 

to the optimal interval with index 15) are displayed in Table 4.3 for various SNR 

values and for two different decision criteria. 

 

 

Table 4.3 The correct classification rates (in percentage) of optimal and 

suboptimal lossless dielectric sphere classifiers which are designed over three 

different late-time interval with 5 dB SNR.  

 

SNR Levels 15 dB  
SNR 

10 dB  
SNR 

5 dB  
SNR 

0 dB  
SNR 

-5 dB  
SNR 

Safety margin for decisions 0% 5% 0% 5% 0% 5% 0% 5% 0% 5%

Late-time Index 15   
(Optimal) [2.56, 2.88] nsec 100 100 97 95 92 88 86 82 80 77 

Late-time Index 3 
[2.40, 3.04] nsec 98 95 95 91 89 84 82 77 75 71 

Late-time Index 14 
[2.48, 2.80] nsec  96 92 93 88 87 82 80 74 72 66 

 

 

According to these results, the optimal classifier designed over the time interval with 

index 15 gives the highest accuracy rates at all SNR levels. From the results in 

Table 4.1 and 4.3, it can be concluded that the highest accuracy rates are obtained 

from the subinterval having highest totalr  value as expected. Therefore, the correct 

decision rates only belonging to the subinterval with highest totalr  value are given 

for the classifier design examples to follow. The proposed method has 95 percent 

accuracy at 10 dB SNR with the more stringent 5% decision criterion for this 

dielectric sphere set. This rate drops to only 76 percent at a very low SNR value of -5 

dB under the same 5% margin criterion. In other words, the proposed classifier 
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design method works out very satisfactorily not only for conducting targets but also 

for dielectric targets, which are characterized by much more complicated internal 

natural resonance mechanisms.  

 

The performance analysis of the method with respect to the construction of FMSMs 

at different SNR levels is also done for this dielectric sphere classifier. In this 

simulation, classifier design is repeated with the reference signals having 15 dB SNR 

levels. Comparison of correct decision rates of the resulting classifiers are given in 

Table 4.4.  

 

     

Table 4.4 The correct classification rates (in percentage) of dielectric sphere 

classifiers which are designed with 5 and 15 dB SNR reference signals.   

 

SNR Levels 15 dB 
SNR 

10 dB 
SNR 

5 dB 
SNR 

0 dB 
SNR 

-5 dB 
SNR 

Safety margin for decisions 0% 5% 0% 5% 0% 5% 0% 5% 0% 5%

Classifier design with 
5 dB SNR reference signals 100 100 97 94 91 88 86 82 79 76

Classifier design with 
15 dB SNR reference signals 100 100 96 93 90 87 84 79 75 71

 
 

As being similar to the results in Table 4.2, the classifier design with 5 dB SNR, the 

middle SNR value of the considered SNR test range, gives highest accuracy rates. 

Besides, the other classifiers have higher accuracy rates for SNR levels close to SNR 

value of the classifier; however, they give lower accuracy rates for SNR levels far 

away from SNR value of the classifier when compared to the classifier with 5 dB 

SNR.  
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4.3. A Classifier Design for Small-Scale Aircraft Targets Modeled 

by Perfectly Conducting, Straight, Thin Wires 

 

In this simulation example, the performance of the proposed MUSIC-based classifier 

design technique is demonstrated for a target set of five small-scale aircraft; Airbus, 

Boeing 747, Caravelle, P-7 and Tu 154, which are modeled by perfectly conducting, 

straight, thin wires (with length to radius ratio of 2000 for all wire structures). The 

design code written in MATLAB for this simulation example is given in 

Appendix D. It should be indicated that the target set includes all five aircraft targets 

in the database and there exists no alien aircraft target throughout the simulations in 

Section 4.3. The actual aircraft dimensions are scaled down by a factor of 100 to 

obtain the small-scale target dimensions. The resulting wire lengths for body, wing 

and tail of each target are given in Table 4.5. 

 

 

Table 4.5 The dimensions of the small-scale aircraft targets used in the 

simulations in Section 4.3. 

 

Substructures 
Target 1 

(Airbus) 

Target 2 

(Boeing 747)

Target 3 

(Caravelle) 

Target 4    

(P-7) 

Target 5   

(Tu 154) 

Body length (m) 0.5408 0.7066 0.3200 0.3435 0.4790 

Wing length (m) 0.4484 0.5964 0.3440 0.3250 0.3755 

Tail length (m) 0.1626 0.2217 0.1092 0.1573 0.1340 

 

 

As seen in this table, the dimensions of target 3 and target 4 are especially close 

which makes the classification problem in hand quite difficult. It should be noted that 

the same target set is used in [86] where a different target classifier design method is 
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used based on the combination of Adaptive Gaussian Distribution, Principal 

Component Analysis (PCA) and neural networks. In the classifier design given in 

[86], 46 reference aspect angles are used for each target in the range of 0-90 degrees 

azimuth angle to train the classifier. It is decided to use the same target set with the 

similar problem definition so that the results obtained from the proposed method 

could be easily compared with the results reported in [86]. The same target is also 

used in [94] with a classification method using late-time feature vector (LTFV) and 

PCA; however, since there is no noise analysis results presented in [94], results of 

that work are not taken into account for comparisons. 

 

Geometrically, the aircraft models lie in the x-y plane with nose pointing +y 

direction as described in Figure 4.9.   
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Figure 4.9 Target geometry for aircraft-classifier simulations where the vector k
r

 

denotes the propagation direction of incident plane wave with θ and φ are being the 

elevation and azimuth aspect angles, respectively.  

 

 

The scattered responses of aircraft targets are obtained by using a simulation 

program FEKO, an abbreviation derived from the German phrase FEldberechnung 
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bei Körpern mit beliebiger Oberfläche (field computations involving bodies of 

arbitrary shape), in [94] by Mehmet Okan Ersoy. The program FEKO, whose details 

can be found in [94] and [110], is based on the Method of Moments (MoM). In this 

program, the electromagnetic fields are obtained by first calculating the electric 

surface currents on conducting surfaces (which is the case in this section because 

targets modeled by perfectly conducting, thin wire structures are used throughout this 

section) and equivalent electric and magnetic surface currents on the surface of a 

dielectric solid. FEKO implements the frequency-domain MoM solution of the 

Electric Field Integral Equation (EFIE) for low frequency problems, and the Physical 

Optics (PO), Geometrical Theory of Diffraction (GTD) and Uniform Theory of 

Diffraction (UTD) for high frequency problems. The currents are calculated using a 

linear combination of basis functions, where the coefficients are obtained by solving 

a system of linear equations. Once the current distribution is known, further 

parameters can be obtained e.g. the near field, the far field, radar cross sections, 

directivity or the input impedance of antennas.  

 

The backscattered (monostatic) responses of aircraft are numerically generated by 

using FEKO for φφ polarization (φ-polarized) over the frequency band from 4 MHz 

to 1024 MHz (with frequency steps of 4 MHz) using φ-polarized uniform plane wave 

illumination at a fixed elevation of θ= 60 degrees and at the azimuth angles of φ= 5, 

10, 15, 22.5, 30, 37.5, 45, 52.5, 60, 67.5, 75 and 82.5 degrees [111]. The targets’ 

noise-free time domain responses are produced using the IFFT technique at all these 

aspects and then the noisy backscattered responses are synthesized at the SNR levels 

of 20, 15, 10, 5, 0 and -5 dB with 50 independent trials at each SNR level. The 

common time span of all scattered responses is 250 nanoseconds with 512 time 

samples. As an example, the backscattered time domain signal for Airbus at 5 

degrees aspect angle for 10 dB SNR level is plotted in Figure 4.10. 
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Figure 4.10 The time-domain signal backscattered from Airbus at φ= 5 degree 

aspect angle with 10 dB SNR level. 

 

 

Out of 12 different aspect angles listed above, five of them (φ= 5, 15, 30, 45 and 75 

degrees) are chosen as the reference aspect angles to construct the feature database of 

the classifier at 10 dB SNR level. The design parameters of the MUSIC algorithm are 

chosen to be N= 64, m = 32 and L= 16 with two alternatives, approximately 250 psec 

and 500 psec, for the time resolution t∆ . The computed totalr  values for different 

late-time intervals and for two different t∆  choices are shown in Figure 4.11 where  
 

• indices 1 to 8 along the horizontal axis refers to a total of 8 subintervals in 

time established with m = 32, t∆ ≈ 500 psec, time duration= 64x500 psec= 32 

nsec and shifting by 8 nsec (i.e. index 1 corresponds to 0 nsec-32 nsec 

interval; index 2 corresponds to 8 nsec-40 nsec interval, etc. and finally index 

8 corresponds to 56 nsec-88 nsec interval). 
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• indices 9 to 24 along the horizontal axis refers to a total of 16 subintervals in 

time established with m = 32, t∆ ≈ 250 psec, time duration= 64x250 psec= 16 

nsec and shifting by 4 nsec (i.e. index 9 corresponds to 0 nsec-16 nsec 

interval; index 10 corresponds to 4 nsec-20 nsec interval, etc. and finally 

index 24 corresponds to 60 nsec-76 nsec interval). 
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Figure 4.11 The totalr  values computed for the classifier design for small-scale 

aircraft targets at SNR= 10 dB. 

 

 

The optimal late-time interval for this design problem is found to be [16, 48] nsec 

(index 3). The resulting FMSM features characterizing five aircraft targets in the 

classifier database are shown in Figure 4.12(a)-(e). Although the extraction of target 

poles is not necessary in the proposed method, the most dominant pole values of 

library targets can be easily estimated from these figures, if needed, simply reading 

the coordinates of the spectrum peaks. From these figures, the peak locations of 

power distributions are found at the frequencies about 200 and 300 MHz for 
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aircraft 1, 155 and 230 MHz for aircraft 2, 330 and 450 MHz for aircraft 3, 290 and 

430 MHz for aircraft 4, 235 and 345 MHz for aircraft 5 [112]. Even for the 

geometrically similar targets, aircraft 3 and aircraft 4, the peak values of the 

computed MUSIC spectra occur at quite distinct locations on the complex frequency 

plane. 
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Figure 4.12 (a)-(e) The FMSM features of the small-scale aircraft targets for the 

classifier designed at 5-azimuth aspects using the φ-polarized data at θ= 60 degree 

elevation angle with SNR= 10 dB  (f) the MSM of the test target (arbitrarily chosen 

as the aircraft 4) for φ-polarized data at θ= 60 degrees elevation and φ= 22.5 degrees 

azimuth angles with SNR= 10 dB. 

 

 

The resulting aircraft-classifier is tested by a total of (5 targets) x (12 azimuth aspect 

angles) x (6 SNR levels) x (50 trials per SNR level)= 18000 noisy φ-polarized 

backscattered signals to begin with. As an example, the MSM for the aircraft 4 (P-7) 

at 22.5 degree computed over the optimal late-time interval of the classifier is shown 

in Figure 4.12(f). The matched correlation coefficient for this test target/aspect angle 

is computed as 0.8221 (between spectra of Figure 4.12(d) and Figure 4.12(f)) while 

the mismatched correlation coefficients are computed as 0.0994, 0.0232, 0.1668 and 

0.0325 for Airbus, Boeing 747, Caravelle and Tu 154, respectively. In these initial 

tests, the elevation aspect angle of the test signals is intentionally kept constant at 60 

degrees so that the results could be directly compared to the results in [86] closely 

mimicking the same classifier design/test conditions. (The effects of changing 
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elevation aspect and polarization of the test signals on the classifier performance will 

be investigated later in Section 4.3.3 and 4.3.4) The correct classification rates of this 

aircraft classifier are plotted in Figure 4.13 against various SNR values for two 

different decision criteria of the proposed method and the method in [86]. 
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Figure 4.13 Correct decision rates demonstrated by the aircraft-classifier designed 

at 5-azimuth aspect angles using φ-polarized data at θ=60 degree elevation angle 

with SNR= 10 dB for 0% margin and 5% margin decision criteria. These results are 

compared to the correct decision rates in [86] for the same set of aircraft targets. 

 

 

In this figure, the accuracy rate is observed to be 100 percent for SNR levels as low 

as 10 dB. Accuracy rate gradually decreases to 93 percent at 0 dB SNR and drops to 

87 percent at the worst case of -5 dB SNR with 0% margin criterion. These rates 

become 89 percent and 85 percent, respectively, by using the more demanding 5% 

margin decision criterion. Assuming that the correct classification rates of at least 90 
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percent are acceptable, from the results in Figure 4.13, it can be seen that the 

resulting aircraft classifier has successful classification performance even at SNR 

levels as low as 0 dB. Besides, from the results displayed in Table 4.1 and Figure 

4.13, it can be concluded that the classifier designed for the conducting aircraft target 

set has higher accuracy rates as compared to the classifier designed for the 

conducting spheres because the conducting aircraft targets are higher-Q targets with 

more signal energy to be processed at later times. These results are also compared to 

the performance test results of the classifier designed in [86] revealing the fact that 

the accuracy rate of our technique is higher by about 15 percent accuracy at all SNR 

levels although our classifier design approach is much simpler and needs only 5 

reference aspect angles (instead of 46 as used in [86]) during the design phase.  

 

4.3.1. The Effect of the Design Parameter AK  on Classifier Performance 

 

The number of reference aspect angles, AK , is an important design parameter that 

should be chosen as small as possible for practical reasons but yet, it must be large 

enough to characterize the target properly. It is well known that a target’s 

electromagnetic scattered response is highly aspect dependent but it does not change 

much within a few degrees of aspect angle in the resonance region. As previous 

experience has shown [23], 10-15 degrees of separation between the reference 

aspects would be adequate for a classifier design realized in the resonance region. 

Besides, especially when realistic targets of complex structures are considered, 

scattered data (directly measured or synthesized with high accuracy) may not be 

easily available at many different reference aspect angles. After choosing the value 

for the AK   parameter, specific determination of the reference aspect angle values 

may require some trial-and-error phase during the design procedure but they can be 

chosen usually in at most several trials without much trouble.  
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In this simulation example, the accuracy rates and noise behaviors of three different 

aircraft classifier desings are compared in Table 4.6 to show the effect of the design 

parameter AK   on classifier performance. The first classifier listed in Table 4.4 is the 

one already designed in the previous section by using φ-polarized data with 10 dB 

SNR at 5 reference aspects, (φ=5, 15, 30, 45 and 75 degrees) by about 15 degrees 

separation, where the elevation angle θ is kept constant at 60 degrees. The second 

and third aircraft-classifiers are newly designed for this example by using three 

reference aspects (φ= 15, 45 and 75 degrees) by about 30 degrees separation and four 

reference aspects (φ=5, 22.5, 45 and 67.5 degrees) by about 20 degrees separation, 

respectively, keeping all the other design parameters the same. All three classifiers 

are tested at various SNR levels using exactly the same test signal database of 18000 

noisy signals as described in the previous section. 

  

 

Table 4.6 The correct classification rates of the aircraft-classifiers designed in 

Section 4.3 by φ-polarized data with 10 dB SNR at θ=600 elevation with AK = 3, 4 

and 5 reference aspect angles in the azimuth. The classifiers are tested by φ-polarized 

data at θ=600; φ= 5, 10, 15, 22.5, 30, 37.5, 45, 52.5, 60, 67.5, 75, 82.5 degrees.  

 

SNR Levels 20 dB 15 dB  10 dB  5 dB  0 dB  -5 dB  

Safety margin 
for decisions 0% 5% 0% 5% 0% 5% 0% 5% 0% 5% 0% 5%

AK = 5, φ= 5, 
15, 30, 45, 75 

100 100 100 100 100 99 97 94 93 89 87 85 

AK = 4, φ= 5, 
22.5, 45, 67.5 

100 100 100 99 99 97 95 92 92 87 86 83 

AK = 3, φ= 15, 
45, 75 

99 98 97 94 93 91 89 86 85 82 80 77 
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As revealed by the results in Table 4.6, the performance of the four-aspect design is 

very close to that of the five-aspect design. Both classifiers have 100 percent 

accuracy rate at 20 dB SNR and a relative drop of 2 percent in maximum is observed 

in the accuracy rate of the four-aspect classifier at very low SNR levels. The 

three-aspect design, on the other hand, produces poor results especially at very low 

SNR levels with almost 8 percent decrease (as compared to five-aspect classifier) at 

the accuracy rate. This deterioration in classifier performance is pronounced 

especially for SNR levels of 10 dB and lower. Based upon these results, it can be 

concluded that, for the aircraft-classifier, choice of three aspects is insufficient, four 

aspects may be used but the five-aspect design gives slightly better results especially 

for highly contaminated test signals. 

 

4.3.2. The Effect of the Design Parameter L on Classifier Performance 

 

Another important design parameter is L, half of which denotes the estimated 

number of damped sinusoidal signals in the design data. Based on our experience 

with the MUSIC algorithm [26], an optimal value for the parameter L is around 

2/m . While the overestimation of L does not cause a serious problem but reduces 

the accuracy rate of the classifier very slightly (within tolerable limits), the 

underestimation of this parameter may cause serious deterioration in the classifier 

performance. To demonstrate this argument, in addition to the aircraft-classifier 

designed in Section 4.3 with L =16, three more classifiers are designed with L = 4, 8, 

and 24, keeping all the other design parameters the same. All these four classifiers 

are tested by the same test signal database of 18000 signals and their performance 

results are reported in Table 4.7. 
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Table 4.7 The correct classification rates of the aircraft-classifiers designed in 

Section 4.3 using φ-polarized data with 10 dB SNR at five aspect angles (θ=600; 

φ= 5, 15, 30, 45 and 75 degrees) for various L values. The classifiers are tested by 

φ-polarized data at θ=600 and φ= 5, 10, 15, 22.5, 30, 37.5, 45, 52.5, 60, 67.5, 75 and 

82.5 degrees.  

 

SNR Levels 20 dB 15 dB  10 dB  5 dB  0 dB  -5 dB  

Safety margin 
for decisions 0% 5% 0% 5% 0% 5% 0% 5% 0% 5% 0% 5%

L=24 100 100 100 100 99 98 95 94 92 88 86 84 

L=16 100 100 100 100 100 99 97 94 93 89 87 85 

L=8 100 100 99 98 98 96 94 92 91 88 85 82 

L=4 98 97 94 91 89 88 86 84 82 79 77 74 

 

 

It is seen that the performances of the classifier designs with L= 16 and L= 24 are 

very close to each other while a relative drop of 3 percent in accuracy is observed in 

the L= 8 classifier. The L= 4 classifier, on the other hand, turns out to be the worst 

case with 2-3 percent drop in accuracy at 20 dB SNR level and almost 11 percent 

drop in accuracy at -5 dB SNR level, as compared to the classifier with L= 16. In 

conclusion, choosing L very small may seriously deteriorate the classifier 

performance but this problem can be easily handled by increasing L to a value 

around 2/m . The extra computational load due to choosing L larger is a negligible 

factor within the context of the whole design procedure. 
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4.3.3. The Aspect Invariance of Classifier Performance: Additional Tests for 

Elevation Aspect Angles 

 

As indicated in previous chapters, the aspect invariance is a critical performance 

criterion for a target classifier. The aircraft classifier designed in Section 4.3 has been 

tested intensively for the aspect invariance with respect to azimuth angle but keeping 

the elevation angle fixed at 60 degrees which is already used for design. Now, in this 

example, that previously designed classifier will be tested at two different elevation 

angles, (θ= 30 and 45 degrees), which are not used in design procedure earlier. In 

this simulation, all reference aspect angles (θ= 60 degrees; φ= 5, 15, 30, 45 and 75 

degrees), optimal late-time subinterval and FMSMs in feature database are the same 

with the classifier design of Section 4.3. Using two different elevation angles (θ= 30 

and 45 degrees) and three azimuth angles (φ= 22.5, 37.5 and 60 degrees) at the SNR 

levels of 20, 15, 10, 5, 0 and -5 dB, a total of (5 targets) x (2 new elevation angles) x 

(3 azimuth angles) x (6 SNR levels) x (50 trials per SNR level)= 9000 additional 

noisy test signals are synthesized for this simulation. While the noiseless 

backscattered frequency responses corresponding to all (reference and test) aspect 

angles at θ= 60 degrees are generated by simulation program FEKO, the noiseless 

backscattered frequency responses corresponding to test aspect angles in this section 

(θ= 30 and 45 degrees; φ= 22.5, 37.5 and 60 degrees) are generated by simulation 

program Computer Science Technology (CST) Microwave Studio.  

 

CST Microwave Studio is a general-purpose electromagnetic simulator dedicated to 

fast and accurate 3D EM Simulation of high frequency problems. This simulation 

program is based on Finite Integration Technique [113] which provides a universal 

spatial discretization scheme applicable to various electromagnetic problems ranging 

from static field calculations to high frequency applications in time and frequency 

domains. CST embeds a variety of different solvers operating in time and frequency 

domains. A key feature of CST Microwave Studio is the method on demand 

approach which allows using the simulator or mesh type that is best suited to a 
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particular problem. All simulators support hexahedral grids in combination with 

Perfect Boundary Approximation (PBA) Method. Since no method works equally 

well in all application domains, the software contains three different simulation 

techniques (transient solver, frequency domain solver, eigenmode solver) to best fit 

their particular applications. The most flexible tool is the transient (time domain) 

solver, which is based on the solution of the discretized set of Maxwell’s Grid 

Equations. Transient solver allows the simulation of a structure’s behavior in a wide 

frequency range in just a single computation run. Consequently, this solver is 

remarkably efficient for most kinds of high frequency applications such as scattered 

fields from a target. The field results for many frequencies can be obtained from a 

single simulation run [114].        

 

The performance of the aircraft classifier regarding the attained correct classification 

rates for this new set of test signals is given in Table 4.8.  

 

 

Table 4.8 Aspect invariance of the aircraft-classifier demonstrated via accuracy 

rates (in percentage): classifier is designed by φ-polarized data with 10 dB SNR at 5 

aspect angles (θ=600; φ= 50, 150, 300, 450, 750) and tested using φ-polarized data at 

aspect angles θ=300, 450, 600; φ= 22.50, 37.50, 600.  

 

SNR Levels 20 dB 15 dB  10 dB  5 dB  0 dB  -5 dB  

Safety margin 
for decisions 0% 5% 0% 5% 0% 5% 0% 5% 0% 5% 0% 5%

θ= 600 elevation 
tests only 100 100 100 100 100 99 98 94 93 89 87 85 

θ= 300 and 450 
elevation tests 

only 
100 100 100 100 99 98 98 93 92 88 86 84 
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In this table, to make a fair comparison, the correct classification rates obtained for 

θ= 30 and 45 degrees are compared to those obtained for θ= 60 degree at the same 

azimuth angles of 22.5, 37.5 and 60 degrees. As revealed with strong confidence by 

the content of Table 4.6, the performance of the classifier (designed with data at 

θ= 60 degrees) remains almost the same at all SNR levels when it is tested at 

completely new elevation aspects of 30 and 45 degrees. 

 

4.3.4. The Polarization Invariance of Classifier Performance 

 

In this simulation example, the aircraft-classifier designed in Section 4.3 will be 

tested for polarization invariance that is also a very important performance criterion. 

This classifier, which is designed by φ-polarized backscattered data at 10 dB SNR, 

will be tested in this example by a total of 13500 newly generated θ-polarized 

(θθ polarization) noisy backscattered signal at various SNR levels (with 50 

independent trials at each level) using the elevation/azimuth aspect angles (θ= 30, 45 

and 60 degrees; φ= 22.5, 37.5, 60 degrees), which are not used in the design 

procedure at all. All these newly generated test signals are again obtained with CST 

Microwave Studio. The performance test results obtained under these different 

polarization conditions are presented in Table 4.9. Comparing the classifier’s 

accuracy rates in Table 4.8 and Table 4.9, it is observed that the accuracy rate of the 

classifier remains to be 100 percent at the SNR level of 20 dB. As the noise level of 

test signals gets higher, i.e. as the SNR gets lower, accuracy of the classifier drops 

slightly. It becomes 96 percent on the average at 10 dB SNR level with a 2 percent 

drop due to polarization change. Even with the 5% margin criterion, the classifier’s 

accuracy rate becomes 85 percent (after a 3 percent drop due to polarization change 

only) at 0 dB when the noise power is equal to the signal power at this extremely 

noisy case.    
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Table 4.9 Polarization invariance of the aircraft-classifier demonstrated via 

accuracy rates (in percentage): classifier is designed by φ-polarized data with 10 dB 

SNR at 5 aspect angles (θ=600; φ= 50, 150, 300, 450, 750) and tested using θ-polarized 

data at aspect angles (θ=300, 450, 600; φ= 22.50, 37.50, 600).  

 

SNR Levels 20 dB 15 dB  10 dB  5 dB  0 dB  -5 dB  

Safety margin 
for decisions 0% 5% 0% 5% 0% 5% 0% 5% 0% 5% 0% 5%

Accuracy  
rates for  

θ-Polarization 
tests 

100 100 99 98 98 96 95 90 89 85 84 81 

 

 

As a worst-case testing example, the MSM feature computed over the optimal 

late-time interval [32, 96] nsec for an arbitrarily selected test signal (which happens 

to be the θ-polarized scattered signal belonging to the Aircraft (P-7), i.e. target 4, at 

θ=30 degrees elevation and φ=22.5 degrees azimuth angles with 5 dB SNR level) is 

shown in Figure 4.14. The matched correlation coefficient for this test scenario is 

computed to be 0.6411 (between the FMSM of Figure 4.12(d) and the MSM of 

Figure 4.14) while the mismatched correlation coefficients turn out to be 0.1212, 

0.0575, 0.2038 and 0.0568 for Airbus, Boeing 747, Caravelle and Tu 154, 

respectively. In other words, the classifier correctly identifies the test target with a 

very large safety margin at this very low SNR level, although the classifier is tested 

at the worst condition where not only the polarization type but also the elevation, 

azimuth aspect angles and SNR level of the test data are totally different from the 

reference data used to design this aircraft classifier. 
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Figure 4.14 The MSM of the test target (arbitrarily chosen as the aircraft 4) for 

θ-polarized data at θ= 30 degrees elevation and φ= 22.5 degrees azimuth angles with 

SNR= 5 dB. 

 

 

According to the results obtained from the simulations throughout Section 4.3, the 

designed aircraft-classifier displays a perfect aspect invariance (both in elevation and 

azimuth) and an almost perfect polarization invariance at all SNR levels (based on 

the results of more than 40,000 performance tests) although this 5 target-classifier is 

designed by reference data at only 5 different azimuth angles (at a fixed elevation 

and fixed polarization with 10 dB SNR level) using 25 scattered signals altogether. 
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4.4. The Classifier Design Simulations for Single Targets with 

Incomplete Frequency Domain Data 

 

The resonance region target recognition methods, including the proposed method, are 

ultrawideband methods covering the effects of sufficiently large numbers of target 

poles. However, ensuring ultrawide frequency bandwidth while covering very low 

frequencies is difficult for the real-world target recognition applications since the 

practical antennas do not have this order of wide operating frequency bands. The 

ultrawide operating frequency bandwidth of a target recognition method should be 

reduced in order to be more compatible with the bandwidth of the practical antennas 

in radar systems. Therefore, the effect of frequency bandwidth (incomplete 

frequency domain data) on the accuracy performance of the target recognition 

method should be investigated and an optimum frequency bandwidth satisfying 

sufficient accuracy rate should be determined. This frequency bandwidth effect is 

mentioned in only a few studies in the literature [84], [115]-[117] and in these studies 

either this effect is only investigated for noiseless or low noise data [84], [115] or the 

method simply gives poor noise performance for all frequency bandwidths 

considered [116], [117]. 

 

The scattered frequency response containing frequency data starting from DC region 

(for 0-12 GHz bandwidth, for example) can be called as complete data. Studying 

with incomplete data, which do not include some portion of low frequencies (such as 

1-12 GHz or 2-12 GHz bandwidths), is more realistic since the operating frequency 

bands of practical antennas do not include very low frequencies around DC region. 

However, dealing with incomplete data brings additional difficulties compared to 

using complete data in target classification due to the following reasons: The 

dominant target poles with small real parts are important in natural-resonance based 

target classification and they may be located in low frequency region for certain 

targets such as conducting spheres and thin wires By excluding the frequency 

response data at low frequencies, important contributions of these dominant poles 
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(falling into the excluded frequency region) are totally lost. Besides, bandpass 

Gaussian windowing used prior to IFFT operations in the case of incomplete (i.e. 

bandpass) data further attenuates the frequency information around the lower edge of 

the available frequency band. Therefore, contributions of the dominant poles close to 

lowest frequency of the operating band are dramatically reduced due to windowing. 

Then, only the effects of the poles placed comparably in the middle region of the 

frequency band are dominantly observed in the time domain response. Information 

loss caused by the incomplete data conditions may become very serious if most of 

the dominant target poles fall in the missing data region depending on the geometry 

and material composition of the targets. In this section, the performance results of the 

classifier designs in Section 4.1, 4.2 and 4.3 with respect to different frequency 

bandwidths will be reported.  

 

4.4.1. Classifier Designs for Perfectly Conducting Spheres and Lossless 

Dielectric Spheres with Incomplete Frequency Data 

 

In this simulation, effects of frequency bandwidth on classifier performance are 

examined for two different target library; first for the set of three perfectly 

conducting spheres (r= 1.8, 2.4 and 3 cm) in Section 4.1 and then, for the set of three 

lossless dielectric spheres (r= 1.8 cm, εr=2, 3, 4) used in Section 4.2. Not only the 

problem geometries but also the choice of testing and reference aspect angles used 

for these two new classifier designs are exactly the same as those used in Section 4.1 

and 4.2. The far field scattered responses of the library targets are computed in 

frequency domain over the frequency bands of (1-12 GHz), (2-12 GHz) and (3-10 

GHz) with frequency resolution of 13.75 MHz by truncating frequency responses for 

(0-12 GHz). The incomplete frequency band (1-12 GHz) is the same as the band of 

measurements to be used in Chapter 5. The noisy scattered time-domain signals at all 

aspect angles for each bandwidth are again synthesized at the same SNR levels for 

both conducting and dielectric spheres. By using the same MUSIC parameters and 

subintervals as those used in Section 4.1, the optimal late-time subintervals for 
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conducting spheres are found as [2.4, 3.04 nsec] for the frequency bands of (1-12 

GHz) and (2-12 GHz), and [2.56, 2.88] nsec for the band (3-10 GHz). The FMSM 

features of the conducting sphere with 1.8 cm radius are given in Figure 4.15(a)-(d) 

for frequency bands (0-12 GHz), (1-12 GHz), (2-12 GHz), (3-10 GHz), respectively.             
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Figure 4.15 (a)-(d) The FMSM features of the conducting sphere with 1.8 cm radii 

for the frequency bands 0-12 GHz, 1-12 GHz, 2-12 GHz and 3-10 GHz. 
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It should be noted that the FMSMs for conducting and dielectric sphere targets are 

again constructed with SNR levels of 10 dB and 5 dB, respectively. From the 

FMSMs in Figure 4.15, it can be observed that the most dominant pole for the 

complete data (0-12 GHz) appears around 2 GHz but the resonance associated with 

this pole attenuates and further vanishes as the frequency band becomes narrower. In 

the meantime, poles in the middle of the frequency band (around 5 GHz and 8 GHz) 

start showing their effects more strongly. With the same approach, the optimal late-

time subintervals for dielectric spheres are found as [2.56, 2.88] nsec for the bands of 

(1-12 GHz) and (3-10 GHz) and as [2.56, 3.20] nsec for the band of (2-12 GHz). A 

total of (3 targets) x (12 bistatic aspect angles) x (5 SNR levels) x (10 trials at each 

SNR level)= 1800 noisy scattered test signals for each frequency band are generated 

for performance tests of each of these libraries. The correct decision rates of 

conducting and dielectric sphere sets for each frequency band, including the 

complete data band (0-12 GHz) with 10 trials at each SNR levels are given in Table 

4.10 and Table 4.11, respectively.   

 

     

Table 4.10 The correct classification rates (in percentage) of perfectly conducting 

sphere classifiers designed at 10 dB SNR for different frequency bands. 

 

SNR Levels 20 dB  
SNR 

15 dB  
SNR 

10 dB  
SNR 

5 dB  
SNR 

0 dB  
SNR 

Safety margin  
for decisions 0% 5% 0% 5% 0% 5% 0% 5% 0% 5%

Frequency Band 
0-12 GHz 100 100 98 97 94 91 89 85 83 80 

Frequency Band 
1-12 GHz 100 100 97 96 92 90 86 84 80 78 

Frequency Band 
2-12 GHz 100 99 95 93 89 87 84 81 79 77 

Frequency Band 
3-10 GHz 99 97 92 91 86 83 82 79 75 72 
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Table 4.11 The correct classification rates (in percentage) of dielectric sphere 

classifiers designed at 5 dB SNR for different frequency bands.  

 

SNR Levels 15 dB  
SNR 

10 dB  
SNR 

5 dB  
SNR 

0 dB  
SNR 

Safety margin  
for decisions 0% 5% 0% 5% 0% 5% 0% 5% 

Frequency Band 
0-12 GHz 100 100 97 94 91 88 86 82 

Frequency Band 
1-12 GHz 100 100 96 93 91 87 86 81 

Frequency Band 
2-12 GHz 100 99 95 93 89 85 84 79 

Frequency Band 
3-10 GHz 100 98 95 92 90 85 82 78 

 

 

From the results displayed in Table 4.10 and Table 4.11, it can be concluded that as 

the frequency data gets more incomplete, the classification problem becomes more 

difficult and the correct classification rate degrades. However, the decrease in 

accuracy rates is faster for the conducting sphere classifier as compared to the 

dielectric sphere classifier. While the accuracy rates of dielectric sphere classifiers 

designed for (0-12 GHz) and (1-12 GHz) bands are almost the same, there are 2 or 3 

percent differences in the accuracy rates of the conducting sphere classifiers over 

these designed bands. This is due to fact that the dominant poles of conducting 

spheres appear at the lower frequencies covered by the complete frequency band of 

(0-12 GHz) (i.e. the pole at 2 GHz). The same argument does not hold for the 

dielectric spheres, as their dominant poles are not located only at lower frequencies. 

Therefore, the accuracy rates of the dielectric sphere classifiers are not affected much 

by the incomplete frequency band conditions. However, there exists no dramatic 

decrease in accuracy rates for both target sets under these incomplete data tests and it 



 96

is concluded that the performance of the method is not so sensitive to frequency 

bandwidth for these spherical target sets.       

 

4.4.2. The Classifier Designs for Small-Scale Aircraft Targets with 

Incomplete Frequency Data 

 

In this experiment, performance of the proposed classifier design method is 

demonstrated for a target set of five small-scale aircraft described in Section 4.3. An 

alien aircraft (DC-10), which is not one of the targets in the training set of the 

training set of the classifier, is also used as a test target in the following simulations. 

The aim of these simulations is to classify all five aircraft in the target set while 

discriminating DC-10 as an outsider test target. The dimensions for the wire models 

(i.e. the body, wing and tail lengths) of six aircraft targets are given in Table 4.12. 

 

 

Table 4.12 The dimensions of the small-scale aircraft targets used in the 

simulations in Section 4.4.2. 

 

Substructure Target 1 
Airbus 

Target 2 
Boeing-747 

Target 3 
Caravelle 

Target 4  
P-7 

Target 5  
Tu 154 

Target 6 
DC-10 

Body  
length (m) 0.5408 0.7066 0.3200 0.3435 0.4790 0.6342 

Wing 
 length (m) 0.4484 0.5964 0.3440 0.3250 0.3755 0.5348 

Tail  
length (m) 0.1626 0.2217 0.1092 0.1573 0.1340 0.2437 

 

 

As seen in this table, dimensions of the alien target (target 6) and the library target 2 

are so similar that the presence of alien target in the test bench may seriously affect 

the decision accuracy of the classifier. The φ-polarized (φφ polarization) 
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backscattered responses of targets are again numerically generated at the aspect 

angles of φ= 5, 10, 15, 22.5, 30, 37.5, 45, 52.5, 60, 67.5, 75 and 82.5 degrees and at 

θ= 60 degree for complete and incomplete data of (0-1024 MHz), (100-1024 MHz), 

(200-1024) MHz and (300-800 MHz) frequency bands with f∆ = 4 MHz for all 

cases. For the sake of noise analysis, the targets’ time-domain scattered data are 

again synthesized at the SNR values of 20, 15, 10, 5, 0 and -5 dB. The feature 

database of the classifier is constructed at 10 dB SNR level for only the first five 

aircraft at five aspect angles (φ= 5, 15, 30, 45 and 75 degrees) out of 12 different 

aspect angles. In the design step of determining the optimal late-time intervals, the 

same MUSIC parameters and subintervals used previously in Section 4.3 are chosen. 

The optimal late-time interval is obtained for each frequency band by searching for 

totalr  value. As an example, totalr  values of subintervals for (300-800 MHz) band at 

SNR= 10 dB are given in Figure 4.16.  

 

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Subinterval Index

r to
ta

l

 
 

Figure 4.16 The totalr  values of the classifier design for small-scale aircraft 

targets at the frequency band (300-800 MHz) and at SNR= 10 dB. 
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The optimal late-time interval is found to be [16-48 nsec] (corresponding to index 3 

in Figure 4.16) for the (300-800 MHz) band as well as the (100-1024 MHz) band. 

For the (200-1024 MHz) band, on the other hand, the optimal late-time interval is 

found to be [8-40 nsec] for band. The FMSM target features computed for the 

(300-800 MHz) frequency band and optimal late-time interval [16-48 nsec] are 

shown in Figure 4.17(a)-(e).  
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Figure 4.17 (a)-(e) The FMSM features of the small-scale aircraft targets for the 

frequency band (300-800 MHz) and at SNR= 10 dB  (f) the MSM of the test target 

(arbitrarily chosen as Tu 154) for φ= 52.5 degrees azimuth angle with SNR= 5 dB. 

 

 

The approximate peak locations of the power distributions of candidate targets for 

the (300-800 MHz) frequency band can be easily distinguishable in these figures. As 

indicated in Section 4.3, the peak locations of power distributions for complete data 

of (0-1024 MHz) are found at the frequencies about 200 and 300 MHz for Airbus, 

155 and 230 MHz for Boeing 747, 330 and 450 MHz for Caravelle, 290 and 430 

MHz for P-7, 235 and 345 MHz for Tu 154. However, when the frequency band is 

reduced to 300-800 MHz, as seen in Figure 4.17(a)-(e), the contributions of poles 

located lower than 300 MHz are lost and the effects of poles around 300 MHz are 

fairly reduced. Thus, only, the contributions of poles sufficiently far away from 300 

MHz (450 MHz in Caravelle and 470 MHz in P-7) are preserved and new resonance 

contributions become dominant in the FMSMs patterns. After completing the 

classifier design, the resulting classifier is tested for a total of (6 targets) x (12 aspect 

angles) x (10 trials)= 720 signals at each SNR level. As an example, the MSM for Tu 

154 at 52.5 degree and SNR= 5 dB computed over the optimal late-time interval is 
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shown in Figure 4.17(f). The matched correlation coefficient for this test 

target/aspect is computed as 0.5701 (between spectra in Figure 4.17(e) and 

Figure 4.17(f)) while the mismatched correlation coefficients are computed as 

0.3672, 0.4199, 0.1422 and 0.1889 for Airbus, Boeing 747, Caravelle and P-7, 

respectively. The overall correct classification rate of the aircraft classifiers designed 

for four frequency bands and tested for various SNR levels using two different 

decision criteria are given in Table 4.13. The confusion matricesa obtained for 

(100-1024 MHz), (200-1024 MHz) and (300-800 MHz) frequency bands (with 

SNR= 5 dB and for the 0% margin case are) given in Table 4.14, Table 4.15 and 

Table 4.16, respectively.  

 
 

Table 4.13 The correct classification rates (in percentage) of the 

aircraft-classifiers designed with 10 dB SNR for different frequency bands.  

 

SNR Levels 20 dB 15 dB  10 dB  5 dB  0 dB  

Safety margin 
for decisions 0% 5% 0% 5% 0% 5% 0% 5% 0% 5%

Frequency Band 
0-1024 MHz 100 100 100 100 100 99 97 94 93 89 

Frequency Band 
100-1024 MHz 100 100 98 97 97 95 94 91 90 87 

Frequency Band 
200-1024 MHz 100 99 97 95 93 91 91 88 87 84 

Frequency Band 
300-800 MHz 99 98 95 92 89 87 85 82 83 80 

 

 
a The confusion matrix is simply a square matrix that shows the number of accurate classifications and 

the number and type of misclassifications of the classifier given the test targets and the classifier 

decisions [118]. 
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Table 4.14 The confusion matrix of the aircraft-classifier designed for the 

(100-1024 MHz) frequency band and tested at SNR= 5 dB with the decision criterion 

of 0% margin (the overall decision rate of the classifier is 94.02 percent).  

 

Decision Test Targets
⇓ Airbus Boeing 747 Caravelle P-7 Tu 154 DC-10  

(Alien target)

Airbus 114 4 0 0 2 0 

Boeing 747 3 113 0 0 3 1 

Caravelle 0 0 112 7 1 0 

P-7 0 0 7 112 0 1 

Tu 154 3 2 1 2 112 0 

DC-10 
(Alien target) 2 3 0 0 1 114 

 

 

Table 4.15 The confusion matrix of the aircraft-classifier designed for the 

(200-1024 MHz) frequency band and tested at SNR= 5 dB with the decision criterion 

of 0% margin (the overall decision rate of the classifier is 90.97 percent). 

 

Decision Test Targets
⇓ Airbus Boeing 747 Caravelle P-7 Tu 154 DC-10  

(Alien target)

Airbus 109 6 0 0 4 1 

Boeing 747 5 110 1 0 3 1 

Caravelle 1 0 109 9 1 0 

P-7 0 0 9 108 2 1 

Tu 154 3 4 1 2 109 1 

DC-10 
(Alien target) 3 5 0 0 2 110 
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Table 4.16 The confusion matrix of the aircraft-classifier designed for the 

(300-800 MHz) frequency band and tested at SNR= 5 dB with the decision criterion 

of 0% margin (the overall decision rate of the classifier is 85.27 percent).  

 

Decision Test Targets
⇓ 

Airbus Boeing 747 Caravelle P-7 Tu 154 DC-10  
(Alien target)

Airbus 103 9 0 0 6 2 

Boeing 747 9 104 1 0 4 2 

Caravelle 1 0 100 16 3 0 

P-7 0 0 15 101 3 1 

Tu 154 5 8 2 2 102 1 

DC-10 
(Alien target) 5 7 0 1 3 104 

 

 

From the results displayed in Table 4.13, it can be concluded that as the frequency 

data gets more incomplete, the classification problem becomes more difficult and the 

correct classification rate degrades. However, even in the case of most challenging 

frequency band (300-800 MHz), for which the bandwidth is shrinked to almost fifty 

percent of the complete bandwidth of (0-1024 MHz), the accuracy rate is above 80 

percent for SNR levels exceeding 0 dB. This superior noise performance is the result 

of using noisy reference data in classifier design. Besides, the accuracy rates for the 

identification of DC-10 aircraft as an alien target is also similar to the overall 

accuracy rates in Table 4.13 (i.e. while the overall accuracy rate in Table 4.16 is 

85.27 percent (614/720), it is 86.66 percent (104/120) for the DC-10 aircraft) that 

shows the capability of the classifier to discriminate an alien target successfully.                                 
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CHAPTER 5 

5. APPLICATIONS AND RESULTS FOR SINGLE 

TARGET RECOGNITION USING MEASURED 

SCATTERED FIELD DATA 

 

 

 

In order to be suitable for real-time applications, a target recognition method should 

be proven to give satisfactory results in classifying realistic targets under real world 

sensing conditions. Thus, in this chapter, the performance of the proposed target 

recognition method is demonstrated by several classifier designs for realistic single 

target types whose scattered fields are obtained by measurements. The measurement 

setup constructed in METU Millimeter and Microwave (MMW) Laboratory for 

obtaining measured scattered fields of the targets is described in detail in Section 5.1. 

The properties of the vector network analyzer (VNA) and the wideband double ridge 

horn antennas used in the measurement setup are also mentioned in this section. In 

Section 5.2, a classifier design example involving four thick dielectric rods with the 

same dimensions but different permittivities is demonstrated. The scattered fields of 

these targets are measured for a constant polarization with the setup described in 

Section 5.1. The performance analysis for different frequency bands of this classifier 

design is also presented in this section. Another design example, which also uses the 

same measurement setup for scattered fields, is provided for three small-scale aircraft 

targets in Section 5.3. The targets in this section are not simple models constructed 

by thin wires as the targets used in Section 4.3 but they are small-scale models of 

actual aircraft targets. In the last section, another target classifier is designed for two 
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small-scale aircraft targets (again small-scale models of real aircraft targets) whose 

scattered fields are obtained by using the measurement setup at the ElectroScience 

Laboratory of the Ohio State University. In this section, since the measured scattered 

fields of the targets for different polarizations are available, the polarization 

invariance of the proposed method is also investigated for a target set using 

measurement data.     

 

5.1. The Measurement Setup at METU Millimeter and Microwave 

(MMW) Laboratory  

 

In order to measure the scattered signals of library targets, a measurement setup is 

constructed in Millimeter and Microwave Laboratory. The measurement setup 

contains a vector network analyzer (HP 8720D), two wideband ridge horn antennas 

and a foam structure on which the target is placed. The target lies on H-planes of the 

antennas (xz plane in Figure 5.1) and the center of target is 95 cm away from the 

centers of both antennas. The reason of choosing this distance will be explained in 

Section 5.1.3. The antennas are placed as to form 10 degree bistatic angle with the 

center of target. The antennas’ positions are kept fixed during the measurements and 

the target on the foam structure can be rotated with respect to its center by changing 

the azimuth angle. The vector network analyzer (VNA) is behind the antennas and its 

both ports are attached to both antennas (port 1 is attached to transmitter antenna and 

port 2 is attached to receiver antenna). The scattered fields are measured with the 

transmission coefficient (S21) parameter of the vector network analyzer. The 

schematic view of the measurement setup and the photographs of antennas-target 

configuration and antennas-network analyzer configuration of the setup are given in 

Figure 5.1, Figure 5.2(a) and Figure 5.2(b), respectively.  
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Figure 5.1 The schematic top view of the measurement setup.       

 

 

Figure 5.2(a) 
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(b) 

 

Figure 5.2 The photographic views of the measurement setup  (a) the antennas 

and target configuration  (b) the antennas and vector network analyzer configuration. 

 

 

Since there are two separate antennas (one transmitter and one receiver) in the setup, 

only the bistatic scattered responses of the targets can be measured. Initially, a 

different measurement setup for monostatic scattered field measurements was 

considered using a single antenna and a circulator to separate the incident and 

reflected fields. The responses were again measured with the transmission coefficient 

(S21) parameter of the vector network analyzer. However, due to high noise and high 

circulator leakage level, this setup was abandoned. Although the current setup in 

Figure 5.1 has a configuration for bistatic response measurements with fix antenna 

positions, it can be thought as measuring almost monostatic (backscattered) 

responses of the targets since the bistatic angle between the antennas is as small as 10 
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degrees. In this setup, in addition to keeping the antennas’ positions fixed, the 

antennas can not be rotated with respect to its center. Therefore, both antennas have 

constant polarizations (V polarization) that the measurement setup can only measure 

VV polarization responses of the targets. Two main components of this measurement 

setup, which are horn antennas and HP 8720D vector network analyzer, and the 

process of obtaining measured signals are explained in the following sections.   

 

5.1.1. The Double Ridge Horn Antennas 

 

The antennas used in this setup are double ridged horn antennas which is shown in 

Figure 5.3 where antenna on the left is the transmitting antenna and antenna on the 

right is the receiving antenna. 

 

 
 

Figure 5.3 The double ridge horn antennas used in the measurement setup (left 

hand side antenna is the transmitting antenna; right hand side antenna is the receiving 

antenna). 
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The antennas were previously designed by Prof. Dr. Altunkan Hızal to operate within 

the frequency band 1-12 GHz. Indeed, at the frequencies higher than 12 GHz and 

lower than 1 GHz, the input return losses are higher and the gains of both antennas 

are lower as compared to the band 1-12 GHz. As shown in Figure 5.4, the input 

return losses of the antennas within 1-12 GHz are below -10 dB which means that a 

minimum of 90 percent of the transmitted power is transferred to the antennas.    
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Figure 5.4 The input return loss graphs of the horn antennas in the setup. 

 

 

As a result, the operating frequency band of the measurement setup is assigned to be 

(1-12 GHz). The horn antennas shown in Figure 5.3 have 27 cm maximum linear 

dimensions and there is an absorber placed between them in order to decrease mutual 

coupling which also causes interference like noise. The thickness of the absorber is 

arranged to minimize the mutual coupling and the distance between horn antennas is 

arranged to obtain minimum distance between the antennas for minimum bistatic 
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angle of the setup. However, since there is a trade-off between mutual coupling and 

the distance between the horn antennas, the thickness of the absorber and the 

distance between the horn antennas are optimized that the absorber thickness is 3 cm 

and the distance between antennas is 26 cm. For these values, the mutual coupling 

between antennas is below -60 dB within most of the frequency band (1-12 GHz) as 

shown in Figure 5.5. 
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Figure 5.5 The mutual coupling between the horn antennas. 

 

 

5.1.2. HP 8720D Vector Network Analyzer (VNA) 

 

The HP8720D vector network analyzer, which is shown in Figure 5.6, is a high 

performance vector network analyzer for laboratory or production line measurements 

of reflection (S11 and S22) or transmission (S21 and S12) parameters [119].  
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Figure 5.6 HP 8720D Vector Network Analyzer. 

 

 

It integrates a high resolution synthesized RF source, an S parameter test set and a 

dual channel three-input receiver to measure and display magnitude, phase and group 

delay responses of active and passive RF networks in frequency and time domains. 

Two independent display channels and a large screen color display show the 

measured results of one or both channels, in rectangular or polar/Smith chart formats. 

In measurements, the vector network analyzer mainly measures the frequency 

domain response of the test setup paramaters between 50 MHz and 20.05 GHz with 

201, 401, 801 or 1601 sample points (i.e. it is 1-12 GHz with 801 points in the 

measurement setup used in this thesis). Then, if desired, the frequency response of a 

certain parameter is converted to time domain with a software in the analyzer’s 

internal computer described in Section 5.1.2.1.  
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The accuracy of network analysis is greatly influenced by factors external to the 

network analyzer. Components of the measurement setup, such as interconnecting 

cables, probes and adapters, introduce variations in magnitude and phase that can 

mask the actual response of the device under test, so calibration (error-correction) is 

required during the testing.  

 

Making calibration (error-correction) is just trying to calculate the errors inserted by 

the measurement device parts or discontinuities at the connection of those parts. For 

this purpose, some devices with well-known characteristics such as short circuit are 

measured first and their responses are compared with the ideal expected 

characteristics.  From the difference between the ideal and the measured results of 

these known devices, the errors inserted by the whole measurement system is 

calculated, and in a sense “subtracted” from the response of the real device to be 

measured.  

 

In measurements with VNA, the following system characteristics may be affected by 

the amplitude at device input: frequency response accuracy, directivity, crosstalk 

(isolation), source match, load match errors. There are several different calibration 

techniques in the literature [120] which all use different models and require different 

calibration standards (known devices) to calculate and remove some or all (six errors 

with two ports) of the systematic errors. The standard short-open-load-thru (SOLT) 

full 2-port correction, where the names short-open-load-thru are the names of the 

calibration standards utilized during the calibration method, used in the measurement 

of the scattered fields to effectively remove all twelve correctable systematic errors. 

 

5.1.2.1. Transformation of Measurements from Frequency to Time Domain 

 

As indicated previously, the network analyzer first measures the response of a test 

device as a function of frequency and then transforms these measurements to time 

domain synthetically to obtain the time domain response. The transformations used 
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by the analyzer resemble those used in time domain reflectometry (TDR) 

measurements. TDR measurements, however, are made by launching an impulse or 

step signal into the test device and observing the response in time with a receiver 

similar to an oscilloscope. In contrast, the analyzer makes swept frequency response 

measurements, and mathematically transforms the data into a TDR-like display. The 

signal processing tool used for this transformation is the inverse chirp Z-transform 

[121] which is more flexible than classical IFFT such that while the time resolution 

of classical IFFT is fixed, it is variable for inverse chirp Z-transform. In time domain, 

the analyzer displays the response with a constant number of sample points which is 

the same as the number of sample points used in frequency domain, i.e. 801 in our 

measurements, over the selected time interval. Thus, the time resolution changes 

with the selected time interval which reveals the necessity of using a signal 

processing tool with variable time resolution. For the network analyzer we used, the 

time domain response of a test setup is equal to IFFT of frequency response only 

when the time interval is selected as [0, 
f2

1
∆

] sec where 
intpoof#
spanFrequencyf =∆  is 

the frequency resolution of the system. By using the inverse chirp Z-transform, the 

analyzer obtains received time signals as if it generates and sends a pulse signal and 

then measures the received time signal. However, while transforming into time 

domain, the analyzer takes one sided inverse chirp Z-transform that the resulting time 

signal displayed in the analyzer is complex. The artificial transmitted pulse has the 

form of )t(pe tmf2j π , where mf  is the center of operating frequency band and )t(p  

is a purely real synthesized pulse. The received time signal has the form of 

)t(he tmf2j π  where )t(h  can be complex or real. The genuine time response can be 

found by { })t(heRe2 tmf2j π  which can be thought as the time response of the system 

to a real transmitted pulse of { } ( ) )t(ptf2cos2)t(peRe2 m
tmf2j ππ = . Without any 

windowing in frequency domain the network analyzer produces rectangular shape 

pulse in frequency domain (it produces signals having the same power level for all 
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frequencies) and the artificially synthesized pulse )t(p  has a ( )
( )kt

ktsin  shape. 

However, although this form of the synthesized pulse has narrowest beamwidth, it 

causes overshoot and ringing in the time domain response because of the abrupt 

transitions in the frequency domain measurements at the start and stop frequencies 

which is known as the Gibbs phenomenon. This has two effects limiting the 

usefulness of time domain measurements: 
 

• Finite impulse width: Finite impulse width limits the ability to resolve 

between two closely spaced responses. The effects of the finite impulse width 

cannot be improved without increasing the frequency span of the 

measurement. 

 

• Sidelobes: The impulse sidelobes limit the dynamic range of the time domain 

measurement by hiding low level responses within the sidelobes of higher 

level responses. The effects of sidelobes can be improved by windowing. 

 

In order to balance these effects, the network analyzer has the windowing option. In 

windowing, the network analyzer rearranges the frequency response of the measured 

frequency response data by multiplying the frequency response of window by the 

measured frequency response data then taking its inverse chirp Z-transform (ICZT) 

to find the time domain response of the system, which is equivalent to 

)t(g)w(G)w(W).w(H ICZT⎯⎯ →⎯=  where )w(H  is the measured frequency 

response and )w(W  is the window frequency response. Windowing improves the 

dynamic range of a time domain measurement by altering the frequency domain data 

prior to converting it to the time domain, producing an impulse stimulus that has 

lower sidelobes. This makes it much easier to measure time domain responses having 

very different magnitudes. The sidelobe reduction is achieved, however, at the 

expense of increased impulse width. The network analyzer has three standard 

windows (minimum, normal and maximum) and a user-specified window. While the 
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artificial pulses for standard windows are fixed and only depend on the frequency 

span, user can arrange the shape of the pulse in the user-specified window. The 

sidelobe level and 6-dB beamwidth values of pulses ( )t(p ) for minimum, normal 

and maximum windows and pulse beamwidths for the operating frequency band of 

the setup (1-12 GHz) are given in Table 5.1.   

 

 

Table 5.1 The sidelobe levels and 6-dB beamwidths for minimum, normal and 

maximum windows.   

 

Window Type Sidelobe Level 6-dB Beamwidth Beamwidth  
for the setup 

Minimum -13 dB 1.2/Frequency Span 109.1 ps 

Normal -44 dB 1.96/Frequency Span 178.2 ps 

Maximum -75 dB 2.78/Frequency Span 252.7 ps 
 

 

In Table 5.1, the minimum window essentially corresponds to no window or 

rectangular window and as indicated above the pulse has sinc form resulting in 

highest sidelobe level. The normal window, which is also the preset mode, gives 

reduced sidelobes by increasing beamwidth and is the mode most often used. The 

maximum window gives the minimum sidelobes, providing the greatest dynamic 

range. In user-specified window, a pulse beamwidth can be assigned being different 

from the beamwidths of the standard windows in the range from 1.2/Frequency Span 

(109.1 ps) to 2.78/Frequency Span (252.7 ps). However, there is again a trade-off 

between sidelobe level and impulse width that as the beamwidth decreases, the 

sidelobe increases. A window is activated only for viewing a time domain response, 

and does not affect a displayed frequency domain response. In other words, the 

frequency response of a system is fixed for all windows; however, the time response 

changes with respect to selected window since the artificially synthesized pulse 
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changes. In the measurements of scattered time signals from single targets in this 

thesis, the effects of sidelobe level is much more important than the effects of 

impulse width. Since there exists only one target to be sensed in the test setup, there 

is only one time response measured at a given attempt. Therefore, having narrow 

beamwidth for the pulse has no practical importance. On the other hand, a pulse with 

high sidelobe level can create problems that the high sidelobe of early-time response 

can mask the late-time response. Thus, the pulse in the setup should have low 

sidelobe levels rather than having narrow beamwidths. For these reasons, the normal 

window is selected in time domain calculations to construct the classifier’s database 

in this chapter due to the requirements of low sidelobe level and moderate 

beamwidth. The artificially synthesized pulse in time domain and the window 

response in frequency domain for the normal window option are given in Figure 

5.7(a) and Figure 5.7(b), respectively. In order to obtain these responses, first thru 

connection (connecting two ports from the calibrated points with a thru used in 

calibration) is done between two ports which gives )w(G)w(Wand1)w(H ==  as 

the transmission coefficient (S21 parameter) for all frequencies in (1-12 GHz) band in 

the frequency domain. Then, by using normal window, the time response of the 

transmission coefficient is measured in network analyzer which is equal to 

)t(pe)t(g t9105.62j ×= π  where )t(p  is given in Figure 5.7. Afterwards, by 

selecting time interval as [0, 
f2

1
∆

] and taking FFT of )t(g  synthetically, the 

window frequency response of the normal window is gathered as shown in 

Figure 5.7(b). 
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Figure 5.7 The time and frequency domain responses of normal window  (a) time 

domain response  (b) frequency domain response. 
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5.1.2.2. Gating Option 

 

In network analyzer, gating option provides the flexibility of selectively removing 

time domain responses or focusing on a specific region of time response. The 

remaining region of the time domain response can then be transformed back to the 

frequency domain by using chirp Z-transform. This gate option is usually used in the 

reflection (or fault location) measurements in order to remove the effects of 

unwanted discontinuities in the time domain or in the transmission measurements in 

order to remove the effects of multiple transmission paths. The gate can be thought 

as a bandpass filter in the time domain which can be seen in Figure 5.8 [119]. 

 

 
 

Figure 5.8 A sample gate shape of the network analyzer [119]. 

 

 

When the gate is on, the responses outside the gate are mathematically removed from 

the time domain trace. The gate position can be entered as a start and stop time (not 

frequency) or as a center and span time. The start and stop times are the -6 dB cutoff 

times of the bandpass filter. Four gate shapes are available in this netwok analyzer 
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and they are listed in Table 5.2. Each gate has a different passband flatness, cutoff 

rate and sidelobe levels. 

 

 

Table 5.2 The characteristics of the gates available in network analyzer.   

 

Gate Shape Passband Ripple Sidelobe Levels Cutoff time 

Minimum ± 0.10 dB -48 dB 1.4/Frequency Span 

Normal ± 0.01 dB -68 dB 2.8/Frequency Span 

Wide ± 0.01 dB -67 dB 4.4/Frequency Span 

Maximum ± 0.01 dB -70 dB 12.7/Frequency Span 

 

 

The passband ripple and sidelobe levels are descriptive of the gate shape. The cutoff 

time is the time between the stop time (-6 dB on the filter skirt) and the peak of the 

first sidelobe, and is equal on the left and right side skirts of the gate. In a gate 

option, it is common to choose a gate span wider than the minimum, and for most 

applications, simply the knob is used to position the gate markers around the desired 

portion of the time domain trace. Normal gate shape is again the preset mode and the 

most commonly used one so that it is also used in the measurements of scattered 

signals used in this chapter.  

 

Since the measurements of the scattered time signals from a target can be considered 

as a transmission measurement, it is useful to use gate option of network analyzer for 

removing unwanted signals in time response. The main time interval to be processed 

for the proposed target recognition method starts from the time instant when the first 

return from the target is recorded at the receiving point (starting point of early-time 

signal). Therefore, the time intervals before this time instant (which contain the 

effects of mutual coupling, multiple transmission paths of the cables and adapters 
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and thermal noise) are not needed and even they should be removed due to being 

strong interferences to the frequency domain response. Besides, further late-time 

intervals where thermal noise is dominant may also be removed. Thus, gate option is 

compulsory in the measurement setup in order to obtain the frequency response of 

the system only coming from the target itself. The usage of gate option in the 

measurement setup will also be explained illustratively in Section 5.1.3.    

 

5.1.3. The Extraction of Scattered Time Signals from Measurements  

 

After determining the antenna positions and absorber thickness as indicated in 

Section 5.1.1, an SOLT calibration in network analyzer is done with respect to feed 

adapter points of the horn antennas before attaching the port cables to the antennas. 

The calibration parameters are fstart= 1 GHz, fstop= 12 GHz, # of points= 801, ∆f= 

13.75 MHz, Power level= 0 dBm, Averaging= ON, Averaging Number= 16 and 

Smoothing= OFF. After attaching the port cables, a suitable and clear time interval in 

the time domain response to be used for the process in the method, in other words, a 

suitable position for the foam structure and the target is investigated. For this 

purpose, without putting any target to the system, the overall time domain response, 

which contains the effects of all interferences such as mutual coupling, multipath and 

thermal noise, is measured. This response, which can be also called as noise time 

response, is shown in Figure 5.9(a). By examining the response in Figure 5.9(a), the 

suitable (clear) time interval in this response is decided as the interval [5.635, 

10.152] nsec and a time gate is put in this interval. In Figure 5.9(b), the noise time 

response is given when a time gate with normal shape is put between [5.635, 10.152] 

nsec. Thus, by using the gate option and removing unwanted signals, the noise level 

is decreased and the overall SNR values of the signals are also improved.     
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(a) 

 
(b) 

 

Figure 5.9 The noise time response of the setup with and without gate  (a) the 

noise response when the gate in the interval [5.635, 10.152] nsec is off  (b) the noise 

response when the gate in the interval [5.635, 10.152] nsec is on. 
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After the selection of time interval [5.635, 10.152] nsec, the foam structure, 

consequently, the center of the test target is decided to place 95 cm away from both 

horn antennas which corresponds to 6.82 nsec in time domain response. Therefore, 

there exists a clear time interval about 3.3 nsec after the time instant of the target 

center and about 1.2 nsec before the time instant of the target center to observe the 

time response of the target. When it is considered that the largest dimension of the 

targets in the classifier designs mentioned in the following sections is about 15 cm 

which corresponds to 0.5 nsec in time domain, 3.3 nsec time interval is sufficiently 

wide to observe both early and late-time responses of the targets. Besides, to preserve 

a time interval before the target center is needed since the incident field can first hit 

the test target before its center, which is equivalent to a time instant earlier than 6.82 

nsec in time domain, by rotating the test target and positioning some parts of the 

target closer to the transmitter antenna than the target center point. 

 

Before putting a test target on the foam structure and measuring its frequency 

response, to improve the accuracy of the measurements a calibration method using 

conducting spheres, which is common calibration method [122], [123], is applied. In 

this method, the conducting spheres with known dimensions are used. Since these 

spheres’ frequency responses at all frequencies can be evaluated theoretically, when 

these spheres’ frequency responses are measured with a measurement setup, the ratio 

of this measurement to the theoretical response gives the overall response effects of 

the measurement system (antenna effects, cable effects etc.) except frequency 

response effect of the target. So dividing the measured frequency response of any 

target into this ratio gives almost true frequency response of this target. Briefly this 

calibration method can be explained as:         

 

)w(Y
)w(H

)w(Y
)w(H

)w(X
)w(Y

true
measured

eretheoricsph

heremeasuredsp =⇒=  (5.1) 
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For this calibration, two conducting spheres of radii 1.8 cm and 3 cm are used in the 

proposed setup and average of )w(H  of these two spheres are taken as the overall 

response effect of the measurement system and stored as )w(Hoverall . Since this 

)w(Hoverall  has no zeros in the frequency band 1-12 GHz, dividing the measured 

data by )w(Hoverall  does not add any additional pole to the system.  

 

The network analyzer can be able to divide two responses with DATA/MEM option. 

However, it can only divide the displayed data in the screen by memory trace 

previously stored. Due to the fact that the implementation or store of an exterior data 

(function) such as )w(Hoverall  to the memory trace is not possible in this network 

analyzer, the calculations in order to obtain )w(Ytrue  in Equation (5.1) are done with 

Matlab simulator. Thus, after the construction of the measurement setup described 

above, a target with specific allocation (specific θ in Figure 5.1) is placed on the 

foam structure in order to obtain its scattered signal. Then, only the frequency 

response of the target within the frequency band 1-12 GHz by putting a time gate in 

the interval [5.635, 10.152] nsec is measured with the network analyzer and stored. 

The network analyzer is not used hereafter that the calculations and operations after 

this step are done synthetically with Matlab codes up to the extraction of time 

signals. After obtaining the measured frequency response, it is divided by 

)w(Hoverall  to get the true frequency response )w(Ytrue  cleaning from the antenna 

and cable effects. Afterwards, in the transformation to time domain, the normal 

window given in Figure 5.7(b) is used that )w(Ytrue  is multiplied with this window 

and the scattered time signal of a target is obtained by using classical IFFT and zero 

padding if necessary. Thus, with these operations, the time response of a test target, 

whose frequency response is )w(Ytrue , to an illuminated pulse given in Figure 5.7(a) 

is obtained as if it is measured by the network analyzer.        
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5.2. The Classifier Design for Thick Dielectric Rods with Scattered 

Data Measured at METU MMW Laboratory 

 

In this classifier design, the target library includes four dielectric rods with the same 

length and the same radius but different permittivity values. No alien target is used in 

the testing phases of the resulting classifier. The controlled dielectric rods 

manufactured by Custom Materials Inc. [124] have 15 cm length, 1.25 cm radii and 

different permittivities of εr= 3, 4, 5 and 5.5 that the material and physical 

characteristics of the targets are highly close to each other. The target dimensions, 

between 0.5λ and 6λ, are again in the resonance region.  The VV-polarized 

frequency responses of targets are measured at the aspect angles of θ= 0 to 170 

degrees with 10 degree steps, where at 0 degree the rod lies along z axis as shown in 

Figure 5.1, over incomplete frequency band of (1-12 GHz) with f∆ = 13.75 MHz. 

Then, the scattered time domain signals at each target/aspect angle case (with 5 psec 

time resolution) are obtained with the process explained in Section 5.1.3. The 

resulting time signals have 1024 sample points with a total time span of 5.115 

nanoseconds. As an example, the scattered time domain signals corresponding to the 

dielectric rods with εr= 3 and 4 at the aspect angle of θ= 90 degree over the 

frequency band of (1-12 GHz) are given in Figure 5.10. In order to observe the effect 

of frequency bandwidth on classifier performance, the scattered responses are also 

obtained at the other incomplete frequency bands of (2-12 GHz) and (3-10 GHz) 

with the same frequency resolution by truncating the frequency responses measured 

over the (1-12 GHz) band. Then, these responses are transformed into the time 

domain with the procedure explained earlier. By assuming that the overall noise level 

of the system is constant and has the time response given in Figure 5.9(b), the SNR 

values of scattered signals calculated over the time interval [5.635, 10.152] nsec are 

found as 16 dB on the average. 
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Figure 5.10 Scattered time signals of the dielectric rods with εr= 3 and 4 at the 

aspect angle of θ= 90 degree for the frequency band 1-12 GHz. 

 

 

Six of the aspect angles, θ= 0, 30, 60, 90, 120 and 150 degrees, out of eighteen aspect 

angles are chosen as reference aspect angles to construct the FMSM features of the 

classifiers designed for each frequency band. As the first step of the design 

procedure, for a given target/reference aspect angle case, the scattered time signal is 

divided into some overlapping subintervals starting from 2.5 nanoseconds with a 

total length of N= 128. For each subinterval and for every target/reference aspect 

angle, the parameters of normalized MUSIC spectrum matrices are chosen as 

m = 64, L= 32 with two different values of time resolution, t∆ = 2.5 psec and t∆ = 5 

psec. The subinterval having the highest totalr  value is again selected as the optimal 

late-time interval. These design steps are repeated for each frequency band to design 
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alternative classifiers. As an example, totalr  values of subintervals for the (1-12 

GHz) band are given in Figure 5.11 where 
 

• indices 1 to 10 along the horizontal axis refers to a total of 10 subintervals in 

time established with m = 64, t∆ = 5 psec, time duration= 128x5 psec= 0.64 

nsec and shifting by 0.32 nsec (i.e. index 1 corresponds to 2.5 nsec-3.14 nsec 

interval; index 2 corresponds to 2.82 nsec-3.46 nsec interval, etc. and finally 

index 10 corresponds to 5.38 nsec-6.02 nsec interval). 

 

• indices 11 to 31 along the horizontal axis refers to a total of 23 subintervals in 

time established with m = 64, t∆ = 2.5 psec, time duration= 128x2.5 psec= 

0.32 nsec and shifting by 0.16 nsec (i.e. index 11 corresponds to 2.5 nsec-

2.82 nsec interval; index 12 corresponds to 2.66 nsec-2.98 nsec interval, etc. 

and finally index 31 corresponds to 5.7 nsec-6.02 nsec interval). 
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Figure 5.11 The totalr  values computed for the classifier design of the thick 

dielectric rods in Section 5.2 for the frequency band (1-12 GHz). 
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From Figure 5.11, the optimal late-time interval is selected as index 22 (the interval 

from 4.26 to 4.58 nsec). The same optimal late-time interval is also determined for 

the (2-12 GHz) frequency band. For the (3-10 GHz) frequency band, the optimal 

late-time interval is found to be [3.78, 4.42] nsec. The FMSMs of the dielectric rods 

computed for the (1-12 GHz) band and the [4.26, 4.58] nsec optimal late-time 

interval are shown in Figure 5.12(a)-(d). 
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Figure 5.12 The FMSM features of the classifier design of the thick dielectric rods 

in Section 5.2 for the frequency band (1-12 GHz). 
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In the decision stage of this target classification simulation, a total of (4 targets) x 

(18 aspect angles)= 72 signals are used for testing purposes at the same SNR level. 

As an example, the testing MSM for the dielectric rod with εr= 5 at 100 degree aspect 

is computed over the (1-12 GHz) frequency band and shown in Figure 5.13. The 

matched correlation coefficient for this test target/aspect angle case is found as 

0.4383 while the mismatched correlation coefficients are 0.0436, 0.3408 and 0.3849 

for the dielectric rods with εr=3, 4 and 5.5, respectively. 
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Figure 5.13 The MSM of the test target of the dielectric rod with εr= 5 at the 

aspect angle of 100 degree for 1-12 GHz frequency band. 

 

 

According to correlation coefficient results, the overall correct classification rates of 

the dielectric rod classifiers designed over the (1-12 GHz), (2-12 GHz) and (3-10 

GHz) frequency bands are found as 93, 93 and 89 percent for 0% margin criterion, 

respectively. The corresponding correct classification rates are found as 92, 90 and 

86 percent based on 5% safety margin criterion. The confusion matrices for the 
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frequency bands (1-12 GHz), (2-12 GHz) and (3-10 GHz) are given in Table 5.3, 

Table 5.4 and Table 5.5, respectively. In these tables, the former values correspond 

to the decision numbers for 0% margin decision criterion; the latter values in 

parantheses are decisions numbers for the 5% safety margin case.   

 

 

Table 5.3 The confusion matrix of the dielectric rod-classifier for the (1-12 

GHz) frequency band (for the safety margins of 0% and 5% used in decisions).   

 

Decision Test Targets 
⇓ The rod 

with εr=3 
The rod 

with εr=4 
The rod 

with εr=5 
The rod 

with εr=5.5 

The rod with εr=3 18 (17) 0 (1) 0 (0) 0 (0) 

The rod with εr=4 0 (0) 17 (17) 1 (1) 0 (0) 

The rod with εr=5 0 (0) 0 (0) 16 (16) 2 (2) 

The rod with εr=5.5 0 (0) 0 (0) 2 (2) 16 (16) 

 

 

Table 5.4 The confusion matrix of the dielectric rod-classifier for the (2-12 

GHz) frequency band (for the safety margins of 0% and 5% used in decisions). 

 

Decision Test Targets 
⇓ The rod 

with εr=3 
The rod 

with εr=4 
The rod 

with εr=5 
The rod 

with εr=5.5 

The rod with εr=3 18 (17) 0 (1) 0 (0) 0 (0) 

The rod with εr=4 0 (1) 17 (16) 1 (1) 0 (0) 

The rod with εr=5 0 (0) 1 (1) 16 (16) 1 (1) 

The rod with εr=5.5 0 (0) 0 (0) 2 (2) 16 (16) 
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Table 5.5 The confusion matrix of the dielectric rod-classifier for the (3-10 

GHz) frequency band (for the safety margins of 0% and 5% used in decisions).  

 

Decision Test Targets 
⇓ The rod 

with εr=3 
The rod 

with εr=4 
The rod 

with εr=5 
The rod 

with εr=5.5 

The rod with εr=3 17 (17) 1 (1) 0 (0) 0 (0) 

The rod with εr=4 1 (1) 16 (16) 1 (1) 0 (0) 

The rod with εr=5 0 (0) 2 (2) 15 (14) 1 (2) 

The rod with εr=5.5 0 (0) 0 (1) 2 (2) 16 (15) 

 

 

Since the dominant poles of all dielectric targets are mostly confined to the frequency 

band (3-12 GHz) as concluded from the FMSMs plots given in Figure 5.12, the 

accuracy rates of the classifiers designed for the (1-12 GHz) and (2-12 GHz) 

frequency band are the same. However, the results begin to worsen for the classifier 

design over the (3-10 GHz) frequency band, as expected. However, the proposed 

method has still high accuracy rates for this dielectric rod classifier problem with 

measured frequency data having different degrees of incompleteness. 

    

5.3. The Classifier Design for Small-Scale Aircraft Targets with 

Scattered Data Measured at METU MMW Laboratory 

 

In the second classifier design of this chapter, the target library contains three 

conducting small-scale aircraft targets; Boeing 747, DC-10 and Boeing 767. As 

indicated in the introduction of this chapter, these aircraft targets are the small-scale 

models of the realistic aircraft targets that they are not modeled by thin wires like the 

library targets used in Section 4.3. The dimensions of the aircraft targets are scaled 
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by 1/500 for Boeing 747 and DC-10; but, by 1/600 for Boeing 767. In order to make 

a fair comparison, all targets need to be scaled by 1/500. Therefore, while the 

scattered fields of the targets are measured in the standard frequency band of the 

setup, which is the frequency band of (1-12 GHz), for Boeing 747 and DC-10. This 

frequency band of the measurement is set to (1.2-14.4 GHz) for Boeing 767 with a 

frequency scaling factor of 1.2. Thus, the resulting scattered signals of the present 

Boeing 767 model can be treated as the scattered data from a Boeing 767 model 

scaled by 1/500 with measurements conducted over the frequency band of (1-12 

GHz). The photographic views of the measured aircraft targets are shown in Figure 

5.14. The body, wing and tail lengths of each target are also given in Table 5.6; 

where the dimensions for the Boeing 767 are reported after proper scale adjustment 

so that all three aircraft can be considered to be scaled by the factor of 1/500.        

 

 
 

Figure 5.14 The small-scale aircraft targets used in the classifer design of 

Section 5.3. 
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Table 5.6 The dimensions of the small-scale aircraft targets used in the classifier 

design of Section 5.3.  

 

Substructure Boeing 747 DC-10 Boeing 767 

Body length (cm) 14.5 12.7 12.48 

Wing length (cm) 12.7 11.4 12.54 

Tail length (cm) 4.8 5.25 5 

 

 

For the substructure dimensions listed in Table 5.6, the measurement frequencies 

over the band (1-12 GHz) fall in the resonance region. The VV-polarized frequency 

responses of targets are measured at the aspect angles of θ= 0 to 180 degrees with 10 

degree steps, where at 0 degree the nose of aircraft target points +z axis. The 

incomplete frequency band of (1-12 GHz) is spanned by the stepping frequency of 

f∆ = 13.75 MHz. Then, the scattered time domain signals for each target/aspect 

angle case are constructed with 5 psec time resolution. As an example, the scattered 

time domain signals corresponding to the small-scale aircraft targets (Boeing 747, 

DC-10 and Boeing 767) at the aspect angle of θ= 90 degrees over the frequency band 

(1-12 GHz) are given in Figure 5.15. Again, in order to observe the effect of 

frequency bandwidth on the classifier performance, the scattered responses are also 

obtained at the frequency bands of (2-12 GHz) and (3-10 GHz) with the same 

frequency resolution by truncating the frequency responses measured for the 

frequency band of (1-12 GHz). For this aircraft target set, the SNR values of the 

scattered signals are calculated only over the time interval [5.635, 10.152] nsec and 

they are found to be 12 dB on the average.  
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Figure 5.15 The scattered time signals of the small-scale aircraft targets Boeing 

747, DC-10, Boeing 767 at the aspect angle of θ= 90 degree for the frequency band 

of (1-12 GHz). 

 

 

Seven of the aspect angles, θ= 0, 30, 60, 90, 120, 150 and 180 degrees, out of 

nineteen aspect angles are chosen as reference aspect angles to construct the FMSM 

features of the classifier design for each frequency band. As the first step of the 

design procedure, the scattered time signal is divided into some overlapping 

subintervals starting from 2.5 nanoseconds with a total length of N= 128. For each 

subinterval and for every target/reference aspect, the parameters of normalized 

MUSIC spectrum matrices are chosen as m = 64, L= 32 with two different values of 

time resolution, t∆ = 2.5 psec and t∆ = 5 psec. The subinterval having the highest 

totalr  value is again selected as the optimal late-time interval for each frequency 

band. As an example, totalr  values of subintervals for 1-12 GHz band are given in 

Figure 5.16 where the definitions of the subintervals are the same as the preceding 

classifier design. 



 133

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Subinterval index

r to
ta

l

 
 

Figure 5.16 The totalr  values computed for the classifier design of the small-scale 

aircraft targets in Section 5.3 for the frequency band 1-12 GHz. 

 

 

The optimal late-time interval for this small-scale aircraft classifier is found as 

[4.1 nsec - 4.74 nsec] corresponding to the index 6 for the frequency measurements 

over the band (1-12 GHz). The same optimal late-time interval is also valid for the 

(2-12 GHz) and (3-10 GHz) frequency bands. Resulting FMSMs of the small-scale 

aircraft models for the frequency band of (1-12 GHz) and for the optimal late-time 

interval [4.1 nsec - 4.74 nsec] are shown in Figure 5.17(a)-(c). 
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Figure 5.17 The FMSM features of the classifier design of the small-scale aircraft 

targets in Section 5.3 for the frequency band of (1-12 GHz). 

 

 

Later, in decision stage, a total of (3 targets) x (19 aspect angles) = 57 signals are 

used for testing the classifiers over each frequency band. As an example, the 

correlation coefficients obtained for all test cases for the classifier designed over the 

frequency band of (1-12 GHz) is given Table 5.7. The incorrect decision cases are 
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indicated on this table by bold prints. The target Boeing 747 is misclassified as the 

target DC-10 for instance at 170 degree aspect angle. The same target is correctly 

classified at 70 degrees on the other hand using the 0% safety margin criterion while 

it cannot pass the 5% safety margin criterion.  

 

 

Table 5.7 The correlation coefficients between the MSMs of test targets and 

FMSMs of the candidate targets for the classifier designed in Section 5.3 over the 

incomplete frequency band (1-12 GHz).  

 

Test Target/Aspect Angle Case 
⇓ Boeing 747 DC-10 Boeing 767 

Boeing 747 at θ=0 degree 0.7517 0.3633 0.3428 
Boeing 747 at θ=10 degree 0.4056 0.2085 0.1553 
Boeing 747 at θ=20 degree 0.4498 0.1683 0.1092 
Boeing 747 at θ=30 degree 0.5356 0.2134 0.1997 
Boeing 747 at θ=40 degree 0.4416 0.2592 0.1899 
Boeing 747 at θ=50 degree 0.5258 0.3067 0.1823 
Boeing 747 at θ=60 degree 0.4063 0.0984 0.0528 
Boeing 747 at θ=70 degree 0.4268 0.4239 0.3097 
Boeing 747 at θ=80 degree 0.4092 0.3162 0.1465 
Boeing 747 at θ=90 degree 0.4341 0.1153 0.0894 
Boeing 747 at θ=100 degree 0.5178 0.2930 0.3551 
Boeing 747 at θ=110 degree 0.5868 0.3415 0.2429 
Boeing 747 at θ=120 degree 0.7368 0.2320 0.1843 
Boeing 747 at θ=130 degree 0.6344 0.4507 0.3032 
Boeing 747 at θ=140 degree 0.4619 0.2206 0.1630 
Boeing 747 at θ=150 degree 0.5466 0.0866 0.0731 
Boeing 747 at θ=160 degree 0.4239 0.2484 0.2083 
Boeing 747 at θ=170 degree 0.4797 0.4854 0.4831 
Boeing 747 at θ=180 degree 0.3690 0.0578 0.0385 

DC-10 at θ=0 degree 0.1215 0.5278 0.1003 
DC-10 at θ=10 degree 0.1699 0.3494 0.1456 
DC-10 at θ=20 degree 0.4883 0.5789 0.3092 
DC-10 at θ=30 degree 0.1591 0.4881 0.0952 
DC-10 at θ=40 degree 0.3887 0.4270 0.2556 
DC-10 at θ=50 degree 0.2469 0.3424 0.3729 
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Table 5.7 cont’d    
DC-10 at θ=60 degree 0.1860 0.4415 0.1362 
DC-10 at θ=70 degree 0.1001 0.3302 0.0768 
DC-10 at θ=80 degree 0.3211 0.5458 0.3268 
DC-10 at θ=90 degree 0.2247 0.6436 0.1547 
DC-10 at θ=100 degree 0.3400 0.4725 0.2660 
DC-10 at θ=110 degree 0.2661 0.3544 0.2272 
DC-10 at θ=120 degree 0.1021 0.3816 0.1802 
DC-10 at θ=130 degree 0.3766 0.5473 0.4344 
DC-10 at θ=140 degree 0.3654 0.5307 0.3917 
DC-10 at θ=150 degree 0.1443 0.4614 0.1601 
DC-10 at θ=160 degree 0.3746 0.5214 0.2367 
DC-10 at θ=170 degree 0.4223 0.4582 0.3962 
DC-10 at θ=180 degree 0.0868 0.3753 0.0649 

Boeing 767 at θ=0 degree 0.2002 0.1559 0.5416 
Boeing 767 at θ=10 degree 0.4862 0.3849 0.6253 
Boeing 767 at θ=20 degree 0.2307 0.3262 0.5031 
Boeing 767 at θ=30 degree 0.0499 0.054 0.4259 
Boeing 767 at θ=40 degree 0.3822 0.3232 0.3379 
Boeing 767 at θ=50 degree 0.3982 0.3131 0.5398 
Boeing 767 at θ=60 degree 0.0533 0.0684 0.4621 
Boeing 767 at θ=70 degree 0.3758 0.2767 0.4755 
Boeing 767 at θ=80 degree 0.4109 0.3705 0.4590 
Boeing 767 at θ=90 degree 0.1611 0.1500 0.5147 
Boeing 767 at θ=100 degree 0.2211 0.2074 0.3210 
Boeing 767 at θ=110 degree 0.3145 0.5162 0.4807 
Boeing 767 at θ=120 degree 0.2561 0.3875 0.6867 
Boeing 767 at θ=130 degree 0.2613 0.2784 0.5201 
Boeing 767 at θ=140 degree 0.3601 0.3516 0.5891 
Boeing 767 at θ=150 degree 0.1231 0.0763 0.4847 
Boeing 767 at θ=160 degree 0.3369 0.3452 0.5089 
Boeing 767 at θ=170 degree 0.4361 0.2610 0.4816 
Boeing 767 at θ=180 degree 0.0486 0.0315 0.3235 

 

 

According to the correlation coefficient results given in Table 5.7, the overall correct 

classification rate of this small-scale aircraft target classifier is found as 93 percent 

for the 0% margin criterion and 91 percent for the 5% margin criterion, over the 

frequency band of (1-12 GHz). Similarly, the small-scale aircraft classifiers designed 
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over the frequency bands of (2-12 GHz) and (3-10 GHz) reach the accuracy rates of 

91 percent and 88 percent, respectively, using the 0% margin criterion. These 

accuracy rates drop to 88 percent and 84 percent when the 5% safety margin criterion 

is applied. As it is seen from the FMSMs in Figure 5.17, there are some dominant 

pole contributions around 2 GHz especially for the targets Boeing 747 and DC-10. 

Therefore, narrowing the classifier’s design bandwidth from (1-12 GHz) to (2-12 

GHz) causes the accuracy rates to drop. The accuracy rates further decrease for the 

(3-10 GHz) design bandwidth for the same reason. However, the proposed target 

classifier method still gives successful results for this aircraft recognition problem 

even when the classifier is designed with the realistic measurement data of highly 

truncated frequency content. 

    

5.4. The Classifier Design for Small-Scale Aircraft Targets with 

Scattered Data Measured at Ohio State University 

 

In this classifier design, two small-scale aircraft targets, Boeing 747 and DC-10, are 

used in the classifier library. The number of targets in this classifier design is only 

two, however, the polarization invariance property of the suggested target 

recognition technique can be investigated in this simulation problem as the scattered 

signal database include measurements at various polarizations. The aircraft targets to 

be used in the classifier design are again small-scale models of the actual Boeing 747 

and DC-10 aircraft targets with the scale factor of 3/500. The monostatic frequency 

response measurements of these aircraft targets were done at the ElectroScience 

Laboratory of the Ohio State University for different polarizations and aspect angles 

[125]. The list of measurement polarizatios and aspect angles for the library targets is 

given Table 5.8. In this table, VV, HH and X symbols refer to the vertical-vertical, 

horizontal-horizontal and cross polarizations respectively.  

 

  



 138

Table 5.8 The list of available scattered data for the model targets Boeing 747 

and DC-10 measured at various polarizations and aspect angles (HH: horizontal-

horizontal, VV: vertical-vertical, X: cross polarization).   

 

Polarization HH VV X 

Aircraft 
Target Boeing 747 DC-10 Boeing 747 DC-10 Boeing 747 DC-10 

Aspect 
Angle 

(degrees) 

0, 30, 45, 
60, 90, 120, 

150, 180 

0, 30, 45, 
60, 70, 90, 
120, 150, 

180 

0, 30, 45, 
60, 90,  

120, 150, 
180 

0, 30, 45, 
70, 90, 
120,150 

30, 60, 90, 
120, 135, 

150 

0, 30, 45, 
60, 70, 90, 
150, 180 

 

 

The operating frequency band of the measurements is 1-12 GHz with 50 MHz 

frequency resolution (221 points) except the Boeing 747’s HH polarization 

measurement data. The frequency band of measurements for these exceptional cases 

is (1.5-12 GHz) with the same frequency resolution. Due to these missing frequency 

data between 1 GHz and 1.5 GHz in Boeing 747 HH polarization measurements, it is 

decided to design two different classifiers for this aircraft target set. 

 

In the first classifier design, HH polarization measurements of Boeing 747 are 

excluded from the total target/polarization/aspect angle cases of the classifier that the 

whole test target/polarization/aspect angle cases are given in Table 5.8 except HH 

polarization measurements of Boeing 747. Since HH polarization measurements of 

Boeing 747 are excluded, the operating frequency band of this classifier design is 

taken as 1-12 GHz. All measured incomplete frequency data are transformed into 

time domain by using bandpass Gaussian windowing, zero padding and IFFT to 

obtain scattered time signals with t∆ = 25 psec resolution. The scattered time signals 

of both aircraft targets for VV polarization/90 degree case are given in Figure 5.18 as 

an example. 
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Figure 5.18 The scattered time signals of the small-scale aircraft targets in Section 

5.4 for VV polarization/90 degree case and the frequency band of (1-12 GHz). 

 

 

Six of the polarization/aspect angle cases, VV45, VV90, VV120, X30, X60 and 

X150, which are common cases for both aircraft targets, are chosen as reference 

combinations for each target to construct the FMSM database of the classifier. The 

construction of the fused feature database of the classifier design and the recognition 

are carried according to the following steps. For a given target/polarization/reference 

aspect angle case, the scattered signal is divided into some overlapping subintervals 

starting from 2 nanoseconds with a total length of N= 64. For each subinterval, the 

normalized MUSIC spectrum matrices are constructed with constant parameter 

values m = 32, L= 16 and two different values of t∆ . Two alternative values of time 

step, t∆ = 25 psed and t∆ = 12.5 psec, are used in the analysis where time signals 

with 12.5 psec resolution are obtained by the linear interpolation of time signals with 

25 psec resolution. Then, the steps of the proposed MUSIC-based method are applied 

to this design problem. The optimal late-time value is found according to highest 
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totalr  value. The totalr  values for different time intervals and t∆  values 

corresponding to this target set are shown in Figure 5.19 where  
 

• indices 1 to 8 along the horizontal axis refers to a total of 8 subintervals in 

time established with m = 32, t∆ = 25 psec, time duration= 64x25 psec= 1.6 

nsec and shifting by 0.4 nsec (i.e. index 1 corresponds to 2 nsec-3.2 nsec 

interval; index 2 corresponds to 2.4 nsec-3.6 nsec interval, etc. and finally 

index 8 corresponds to 4.8 nsec-6.4 nsec interval). 

 

• indices 9 to 25 along the horizontal axis refers to a total of 16 subintervals in 

time established with m = 32, t∆ = 12.5 psec, time duration= 64x12.5 psec= 

0.8 nsec and shifting by 0.2 nsec (i.e. index 9 corresponds to 2 nsec-2.8 nsec 

interval; index 10 corresponds to 2.2 nsec-3 nsec interval, etc. and finally 

index 25 corresponds to 5.2 nsec-6 nsec interval). 
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Figure 5.19 The totalr  values computed for the classifier design of the small-scale 

aircraft targets in Section 5.4 for the frequency band of (1-12 GHz). 
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The optimal late-time interval for this small-scale aircraft classifier is found as the 

interval from 4.8 nsec to 5.6 nsec (index 23). The FMSMs of this aircraft target set 

are computed far this optimal late-time interval and they are plotted in Figure 5.20. 
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Figure 5.20 The FMSM features of the classifier design of the small-scale aircraft 

targets in Section 5.4 for the frequency band 1-12 GHz. 
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After the design work is completed, the classifier is tested at all polarization/aspect 

angle combinations shown in Table 5.8, expect the HH polarization measurements 

for the Boeing 747. 39 test signals are used for testing. The correlation coefficients 

computed between the MSMs of test signals and the FMSMs of the library targets 

are given in Table 5.9. Again, the correlation coefficient values leading to incorrect 

recognition are printed in bold in this table. Only 3 incorrect decisions and 1 decision 

violating 5% margin criterion are made out of 39 tests as shown. 

 

 

Table 5.9 The correlation coefficients between the MSMs of test targets and 

FMSMs of the candidate targets for the classifier design in Section 5.4 with the 

frequency band of (1-12 GHz).  

 

Test Target/Polarization/Aspect Angle Case 
⇓ Boeing 747 DC-10 

Boeing 747/VV/0 degree 0.5180 0.3254 
Boeing 747/VV/30 degree 0.6250 0.6765 
Boeing 747/VV/45 degree 0.6625 0.2940 
Boeing 747/VV/60 degree 0.5562 0.2713 
Boeing 747/VV/90 degree 0.5196 0.1869 
Boeing 747/VV/120 degree 0.6737 0.2477 
Boeing 747/VV/150 degree 0.4628 0.3798 
Boeing 747/VV/180 degree 0.6914 0.6210 

Boeing 747/X/30 degree 0.4300 0.1493 
Boeing 747/X/45 degree 0.3632 0.3533 
Boeing 747/X/60 degree 0.5826 0.1017 
Boeing 747/X/90 degree 0.4567 0.3532 
Boeing 747/X/120 degree 0.3794 0.2448 
Boeing 747/X/135 degree 0.5296 0.3859 
Boeing 747/X/150 degree 0.4427 0.2666 

DC-10/HH/0 degree 0.2112 0.3354 
DC-10/HH/30 degree 0.6058 0.5805 
DC-10/HH/45 degree 0.4256 0.5472 
DC-10/HH/60 degree 0.3667 0.5626 
DC-10/HH/70 degree 0.2472 0.4224 
DC-10/HH/90 degree 0.1749 0.4022 
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Table 5.9 cont’d   
DC-10/HH/120 degree 0.1254 0.3177 
DC-10/HH/150 degree 0.4854 0.6312 
DC-10/HH/180 degree 0.4857 0.6796 
DC-10/VV/0 degree 0.4039 0.3707 
DC-10/VV/30 degree 0.3229 0.3744 
DC-10/VV/45 degree 0.1715 0.4015 
DC-10/VV/70 degree 0.3311 0.6167 
DC-10/VV/90 degree 0.2434 0.5728 
DC-10/VV/120 degree 0.1498 0.6503 
DC-10/VV/150 degree 0.5034 0.7956 

DC-10/X/0 degree 0.5410 0.6134 
DC-10/X/30 degree 0.1000 0.5493 
DC-10/X/45 degree 0.1896 0.5178 
DC-10/X/60 degree 0.1099 0.6097 
DC-10/X/70 degree 0.5029 0.6029 
DC-10/X/90 degree 0.3904 0.6170 
DC-10/X/150 degree 0.5576 0.7554 
DC-10/X/180 degree 0.3247 0.4000 

 

  

According to this correlation coefficient table, the accuracy rate of the classifier is 

found as 92 percent with 0% margin criterion and 90 percent with 5% margin 

criterion. In other words, the proposed target recognition method has given 

successful results for this classifier design also. Furthermore, these results show that 

the suggested method is invariant not only to aspect changes but also to polarization 

changes, as required. Moreover, as deduced from Table 5.9, the correct decision rate 

within the cross-polarized data (X polarization) is 100 percent (for 0% margin 

criterion, which is higher than accuracy rates within the co-polarized data (VV and 

HH polarizations) for 0% margin. This is due to the fact that the specular portion of 

the backscattered response from geometrically complicated targets is predominantly 

in the co-polarized return; hence, a very dominant specular return in the co-polarized 

data usually masks the resonance effects [126]. However, it can be safely concluded 

that only a weak entire function component exists in the cross-polarized return. As it 

is shown in this classifier design, this means better stability for the features extracted 
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from the cross-polarized returns. Thus, the results obtained from cross-polarized data 

are much more stable (with respect to aspect angle and polarization) than the results 

obtained from co-polarized data.  

 

In the second classifier design, HH polarization measurements of Boeing 747 are 

included in the total target/polarization/aspect angle combinations of the classifier 

database. Accordingly, this alternative classifier design contains all cases shown in 

Table 5.8. However, to keep the operating frequency band the same for all 

measurements, the frequency band of the classifier is narrowed down to 1.5-12 GHz 

by preserving the frequency resolution of 50 MHz. All the measured incomplete 

frequency domain data are again transformed into time domain with bandpass 

Gaussian windowing, zero padding and IFFT to obtain scattered signals with 

t∆ = 25 psec.  

 

Seven of the polarization/aspect angle cases, HH0, HH30, HH120, VV45, VV90, 

X60, X150 are chosen for each target sets to construct reference FMSMs of the 

classifier. The procedure steps, the parameter values and the definition of 

subintervals are all the same as those used in the previous classifier design. The 

optimal late-time interval is found as [4 nsec to 5.6 nsec] (index 6). In the decision 

stage, all polarization/aspect angle cases in Table 5.8 (47 test signals) are used for 

testing purpose. The correlation coefficients computed between the MSMs of test 

signals and the FMSMs of the classifier’s feature database are given in Table 5.10. 
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Table 5.10 The correlation coefficients between the MSMs of test targets and 

FMSMs of the candidate targets for the classifier design in Section 5.4 with the 

frequency band 1.5-12 GHz.  

 

Test Target/Polarization/Aspect Angle Case 
⇓ Boeing 747 DC-10 

Boeing 747/HH/0 degree 0.7139 0.2205 
Boeing 747/HH/30 degree 0.7432 0.2583 
Boeing 747/HH/45 degree 0.4389 0.3668 
Boeing 747/HH/60 degree 0.4376 0.3566 
Boeing 747/HH/90 degree 0.4494 0.3135 
Boeing 747/HH/120 degree 0.6285 0.4360 
Boeing 747/HH/150 degree 0.4755 0.5024 
Boeing 747/HH/180 degree 0.5565 0.4726 
Boeing 747/VV/0 degree 0.4607 0.2600 
Boeing 747/VV/30 degree 0.6316 0.4871 
Boeing 747/VV/45 degree 0.5858 0.3304 
Boeing 747/VV/60 degree 0.4361 0.2771 
Boeing 747/VV/90 degree 0.5265 0.3138 
Boeing 747/VV/120 degree 0.5183 0.3437 
Boeing 747/VV/150 degree 0.5442 0.4894 
Boeing 747/VV/180 degree 0.3867 0.4768 

Boeing 747/X/30 degree 0.6092 0.4188 
Boeing 747/X/45 degree 0.4705 0.2055 
Boeing 747/X/60 degree 0.4129 0.1066 
Boeing 747/X/90 degree 0.4845 0.4642 
Boeing 747/X/120 degree 0.5541 0.3717 
Boeing 747/X/135 degree 0.4350 0.3655 
Boeing 747/X/150 degree 0.7402 0.3372 

DC-10/HH/0 degree 0.4137 0.6766 
DC-10/HH/30 degree 0.2075 0.6825 
DC-10/HH/45 degree 0.2000 0.3716 
DC-10/HH/60 degree 0.4194 0.5356 
DC-10/HH/70 degree 0.3044 0.3760 
DC-10/HH/90 degree 0.4578 0.4251 
DC-10/HH/120 degree 0.2834 0.6013 
DC-10/HH/150 degree 0.3452 0.4392 
DC-10/HH/180 degree 0.3971 0.7452 
DC-10/VV/0 degree 0.1708 0.3173 
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Table 5.10 cont’d   
DC-10/VV/30 degree 0.2977 0.3872 
DC-10/VV/45 degree 0.4137 0.6766 
DC-10/VV/70 degree 0.3766 0.4803 
DC-10/VV/90 degree 0.2075 0.6825 

DC-10/VV/120 degree 0.5464 0.5038 
DC-10/VV/150 degree 0.3293 0.5861 

DC-10/X/0 degree 0.3037 0.4051 
DC-10/X/30 degree 0.3511 0.4400 
DC-10/X/45 degree 0.2006 0.3709 
DC-10/X/60 degree 0.3241 0.7313 
DC-10/X/70 degree 0.1693 0.4343 
DC-10/X/90 degree 0.4847 0.5329 
DC-10/X/150 degree 0.2583 0.4705 
DC-10/X/180 degree 0.2520 0.3440 

 

  

According to correlation coefficients table, the accuracy rate of this classifier is 

found as 91.5 percent for the 0% margin criterion and as 89.5 percent for 5% margin 

criterion. Therefore, the proposed method is again found successful against 

polarization and aspect angle changes in this classifier design, which includes a 

higher number of test cases at various target/polarization/aspect angle cases and a 

narrower frequency band with respect to the first classifier design. Besides, the 

cross-polarized data are found having higher accuracy rates with respect to 

co-polarized data again as also observed in the first classifier design example.   
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CHAPTER 6 

6. THEORY AND APPLICATIONS OF THE 

MULTI-TARGET RECOGNITION METHOD USING 

THE MUSIC ALGORITHM AND TIME CORRELATION 

CURVES  

 

 

 

This chapter presents, for the first time in literature, a natural resonance based 

electromagnetic target recognition method that is useful not only for single target 

classification but also for the classification of multiple targets. A simpler “single 

target classifier” version of this method has already been described in the former 

chapters of this dissertation and shown to be very successful in recognizing isolated 

(single) targets of various geometries and material compositions even in high-noise 

scenarios. The purpose of the research work to be presented in this chapter is to show 

the feasibility of multiple target detection by the modified and enhanced version of 

the already suggested method. In this pioneering work, efforts will be focused to 

design classifiers whose target library may contain single targets and double-target 

groups altogether. Applications of the method to the classification of target groups 

containing three or more targets at once is considered to be a future work. 

 

It is well known that electromagnetic target recognition is a very complicated 

problem due to the dependency of scattered fields on the operating frequency band, 

polarization and aspect angle. In order to minimize the effects of aspect and 

polarization dependency in target recognition, different late-time target recognition 
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techniques, which are based on the singularity expansion method (SEM), have been 

suggested in literature as already discussed in Chapter 2 of this dissertation.  

However, all of those present techniques are useful only for single target scenarios 

where the radar is assumed to collect scattered signals coming from only one target 

while neglecting the higher order effects due to the presence of any other scattering 

objects. Although the late-time scattering from a single target can be conveniently 

explained by the SEM theory, the scattering mechanism for a multi-target (a 

composite target composed of at least two objects separated from each other in space 

but sensed by a radar simultaneously) is much more complicated due to higher order 

electromagnetic interactions between the targets [127]. In the scattered response of a 

multi-target group, the first order and higher order scattered fields overlap in general. 

The higher order fields can be neglected when the distances between the elements of 

a multi-target are sufficiently large. In this “multiple but isolated targets” case, the 

total scattered response received by the radar is approximately equal to the 

superposition of targets’ individual scattered responses and hence the effective 

system poles of the multi-target are simply the collection of system poles due to each 

individual target. However, as the distances between the individual targets decrease, 

the electromagnetic interactions become stronger and additional system poles may 

appear. Therefore, the target recognition problem in the case of multiple targets is 

also highly sensitive to the separation distances between the targets. Target 

classification errors caused by this kind of sensitivity are highly reduced in the 

suggested multi-target recognition method by a novel feature fusion technique that 

will be described in detail in Section 6.1. 

 

As already explained in the previous chapters, in the suggested target classification 

method each library target is represented by its own fused MUSIC Spectrum Matrix 

(FMSM), which is the main target feature. In the “single target classifier” design 

problem, the sensitivity of target features to aspect angle is reduced by superposing 

the aspect dependent MSM patterns. In the case of “multi-target classifier” design 

problem, on the other hand, the MSM patterns computed for multi-target groups are 
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sensitive to both aspect angle and to the element topology within given multi-target 

groups. Here, the term topology refers not only to target-to-target separation 

distances between the elements of a given multi-target group but also to the positions 

of elements with respect to each other and with respect to the transmitter and receiver 

antennas. Therefore, the FMSM feature for a multi-target group should be obtained 

by a 2-step feature fusion process: First, for a given reference topology, the aspect 

dependent MSM patterns should be extracted and superposed to obtain an aspect 

invariant FMSM pattern. Then, this process should be repeated for the other 

reference topologies for the same multi-target group. Finally, the resulting aspect 

invariant but topology dependent FMSM patterns should be superposed one more 

time to obtain a target feature which has also a reduced sensitivity to the topology of 

this multi-target group. Usefulness of this “fusion over topology” approach will be 

demonstrated by the simulation examples in Section 6.2. 

 

Extracting “aspect and topology invariant” target features (i.e. FMSMs) for library 

targets (single and/or multi-targets) is the most critical step in the design of a multi-

target classifier. However, even this important contribution becomes insufficient for 

a practically important scenario where the test target happens to be a multi-target 

group having identical but highly separated elements. In this case, the 

electromagnetic interaction between the elements of the test target is negligible and 

the testing MSM computed for this multi-target group becomes highly correlated 

with the FMSM feature of the single library target, which is the same as the identical 

elements of the target group. As an example, let us assume that the target library of a 

classifier contains two perfectly conducting spheres of different radii, sphere A and 

sphere B. In addition to these single targets A and B, the double-target combinations 

AA, BB and AB are the multi-target groups of this classifier library. In other words, 

the library can be considered to have five targets altogether; A, B, AA, BB and AB 

where the distances between the elements of double-target groups may take any 

arbitrary value. Applying the proper design procedure, the feature database of the 

classifier can be constructed to have five different FMSM features, one for each 
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target. However, if the AA double-target group, for instance, occurs as a test target 

with a large separation distance between each sphere A, then the MSM test pattern 

computed for this AA group will be highly correlated with the FMSM feature of the 

single target, sphere A. In other words, the classifier will incorrectly recognize the 

existence of two A-type spheres as a single A-type sphere. To rule out this special 

type of decision error, the first step in the real-time test phase must include the 

computation of a time correlation curve for the received scattered time-domain test 

signal. If the radar senses two identical but almost isolated spheres, the received time 

domain signal will be made of the superposition of individual target responses. One 

of these response contributions will be delayed with respect to the other due to the 

separation distance between the spheres. Therefore, the time correlation curve 

computed from this composite response will contain a signal pattern repeated twice 

with two major peaks, instead of just one. This novel diagnostic step suggested for 

the first time here, will greatly help to increase the accurate decision rate of the 

multi-target classifier.  

 

6.1. Mathematical Steps for Multi-Target Classifier Design  

 

In the proposed design procedure, it is assumed that there exist 1K  different single 

targets and 2K  different multi-target groups in the library of the classifier. In other 

words, the classifier library contains 21 KKK +=  targets altogether where the 

indices 1K,,1i K=  refer to single targets and the indices K,,1Ki 1 K+=  refer to 

multi-target groups. For each multi-target group, 3K  different reference topologies 

are considered. For instance, if there is a double-target group in the library, the 

location/distance between two elements may take 3K  different combinations 

indexed by 3K,,1h K=  notation. Accordingly, there exist ( 32 KK ) different multi-

target/topology combinations regarding the multi-target groups of this classifier 

library. For each one of these combinations and also for 1K  single targets, the 
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classifier’s training database must contain scattered signals at a number of reference 

aspects indexed as AK,,1j K= . Therefore, the training database of the classifier has 

AK ( 321 KKK + ) scattered signals to be used in classifier design. Furthermore, an 

optimal late-time interval must be determined to design the classifier. For this 

purpose, the total time span of database signals is divided into P overlapping 

subintervals (indexed as P,,1p K= ). 

        

Step 1: Computation of MSM patterns: 

 

The MSM patterns are initially computed for all library targets for all 

aspect/topology combinations over each one of these subintervals as described in 

Section 3.1. 

 

Step 2: Computation of the FMSM features over a given late-time subinterval for 

single targets of the classifier library: 

 

In this case, computation of the FMSM features are exactly the same as described in 

Section 3.2.                          

 

Step 3: Computation of the FMSM features over a given late-time subinterval for 

multi-target groups of the classifier library: 

 

The FMSM for a multi-target group (over a given late-time subinterval) is computed 

in two steps: 

 

i. For a given preselected reference topology 3K,,1h K= , the MSM patterns of 

multi-target group is computed at each reference aspect for AK,,1j K= . Then, 

these MSMs are superposed and the resulting topology dependent sub-FMSM 

is normalized.  
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ii. Then, the process in i) is repeated at each reference topology for the same 

multi-target group. Resulting topology dependent sub-FMSM matrices are 

superposed again. After normalizing the resultant matrix, the aspect and 

topology invariant (almost) FMSM feature of this multi-target group is 

obtained. 

iii. The procedure outlined in ii) is repeated for each multi-target group of the 

classifier library. 

 

Step 4: Design steps 2 and 3 are repeated for each late-time subintervals p where 

P,,1p K=  

 

Step 5: Determination of the optimal late-time interval for the classifier design: 

 

After the construction of the FMSMs of all single and multi-targets over all late-time 

subintervals, the optimal late-time interval is determined as follows:    
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where K,,1i K=  is the total target index for single and multi-targets; AK,,1j K=  

is the reference aspect angle index; 3K,,1h K=  is the topology index for multi-

target groups, 1k,,1u K=  and 2k,,1v K=  are the row and column indices of the 

MUSIC spectrum matrices, respectively. Here, iFMSM  refers to the FMSM of the 

ith target, j,iP  refers to the MSM of target i  at the aspect angle j  for single targets 

( )1K,,1i K=  and h,iP  refers to the matrix of target i  at topology combination h  for 

multi-target groups ( )K,,1Ki 1 K+=  which can be defined as  
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where ( )v,uP j,h,i  is the MSM of multi-target group i  at the topology combination h  

and aspect angle j . 
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After the selection of an optimal late-time interval, the FMSM features belonging to 

the determined optimal late-time interval are collected altogether and saved to form 

the feature database of the designed classifier. At the real-time classification phase, 

the MSM computed over the selected late-time interval of the test scattered signal is 

compared to the FMSM of each candidate target (single, multi) in the classifier’s 

feature database. Finally, the decision is made over the optimal late-time interval 

according to following algorithm: 

 

K,..,1i)i(r)i(rifitargettargetTest ** =∀≥=  

where                                                                               
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with testP  being the MSM pattern of the received test signal. 

 

6.2. Classifier Design Simulations for Target Sets Containing Single 

and Multi-Targets   

 

In this section, applications of the modified method described in Section 6.1 to the 

design of classifier target sets containing single and multiple perfectly conducting 

spheres are demonstrated. In Section 6.2.1, the classifier library contains two single 

conducting spheres and one multi-target group of two conducting spheres with 

different (not identical) elements. In Section 6.2.2, the classifier library contains two 

single conducting spheres and one multi-target group of two conducting spheres with 

identical elements, which are also identical to the single conducting sphere target. 

During the test phase for both classifiers, the center-to-center separation distance 
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between two conducting spheres of the double target group may take arbitrary 

values. To account for the effects of such variations, several reference distances are 

selected during the classifier design. The reference separation distances in these 

simulations are chosen according to the following argument:  

 

The scattered fields which contribute to the response of this two-sphere multi-target 

group fall into three categories: i) reflected fields arising from direct and multiple 

reflections, ii) creeping waves bound to a single sphere, iii) combinations of both, 

called the hybrid fields [127]. The combination of direct reflection and creeping 

waves of a single sphere forms the first-order field of this sphere, which results from 

the excitation of this sphere by the incident plane wave alone. The other 

contributions constitute the higher order fields, which arise from multiple scattering 

interactions [128], [129]. These higher order fields are important and should be taken 

into account while processing the total scattered response, especially when individual 

spheres are close to each other. In the scattered response of a two sphere system, the 

first order fields and higher order fields overlap, however, the higher order fields can 

be neglected when the separation between the spheres is sufficiently large. Besides, 

the individual first-order fields may also overlap depending on the distance between 

two spheres. The response of the farther sphere to the observation point is seen later 

in time domain response due to the time shift between the first-order responses of 

two spheres. If the separation distance is sufficiently high, these responses do not 

overlap. The first-order response of the farther sphere starts after the response of the 

closer sphere almost vanishes, which may be called as “isolated case”. Thus, in this 

isolated case, the higher order fields can be neglected and the first-order fields can be 

separated. When the separation distance between the elements of a multi-target group 

decreases, the effect of higher order fields increases and the first-order fields begin to 

overlap. These effects further dominate for smaller separation distances. The critical 

separation distance between two conducting spheres, satisfying the conditions of the 

isolated case, can be taken as estargliso D3d =  where estarglD  is the diameter of 

the largest sphere in the system since the time response of a single sphere is 
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sufficiently attenuated at about c/D3t =  after the creeping wave is seen at 

c/D57.2t ≅  [28]. Although there is no formal proof for it, the selection of 

estargliso D3d =  turns out to be a large enough separation distance to neglect the 

higher order fields in simulations.                     

 

6.2.1. Classifier Design for a Target Library Containing Single and Double 

Conducting Spheres with Different Elements 

 

In this section, performance of the proposed method given in Section 6.1 is 

demonstrated for a target library, which contains single conducting spheres with 24 

and 30 mm radii and one multi-target group of two conducting spheres with 24 and 

30 mm radii. For the multi-target group of two conducting spheres, four different 

reference values of separation distance, d= 80, 120, 160 and 200 mm, are chosen 

where 200 mm is higher than estargliso D3d = =180 mm and satisfies the condition 

for the isolated case. The target responses are numerically generated for a plane wave 

excitation which is linearly polarized in y-direction and propagates in –z direction, 

which is shown in Figure 6.1(a) and Figure 6.1(b) for the single target and for the 

multi-target group, respectively.  
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Figure 6.1(a) 
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Figure 6.1 The schematic views of the configuration for (a) single target 

(b) multi-target group. 

 

 

As it is seen from the figures, the center of the single conducting spheres is located 

on the origin, ( ) ( )0,0,0z,y,x =  while computing their target responses. To compute 

the responses of multi-target groups, the center of the conducting sphere with 24 mm 

radius is kept at ( ) ( )0,0,0z,y,x =  and the center of the conducting sphere with 30 

mm radius is varied at positions ( ) ( )0,0,dz,y,x −= . The position of the smaller 

sphere is deliberately kept at the origin in order to make the starting time instants of 

all single and multi-target responses the same. The far field bistatic scattered 

responses of all single targets and multi-target groups are computed over the 

operating frequency band 0-12 GHz with the frequency step of 13.75 MHz at φ= 0 

degree, with a radial observation distance of 720 mm from the origin (satisfying the 

far field assumption), for ten different aspect angles, θ= 0, 10, 20, 30, 40, 50, 60, 70, 

80 and 90 degrees. The responses are numerically generated with CST (Computer 

Simulation Technology) Microwave Studio simulation program described in detail in 

Section 4.3. The simulation view of the configuration for the multi-target group is 

given in Figure 6.2.    
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Figure 6.2 CST Microwave Studio view of the setup for multi-target group. 

 

 

In the simulation example, scattered fields are computed for the φφ polarization for 

all library targets. The time-domain scattered signals for the noise-free case at all 

aspect angles are obtained by using Gaussian windowing, IFFT and zero padding. 

The resulting time signals have 701 sample points with t∆ = 5 psec time resolution. 

Out of ten different aspect angles, three aspect angles (θ= 0, 40 and 90 degrees) are 

chosen as reference aspects to construct the feature database and to design the 

classifier. Time domain responses of the double-sphere target for different separation 

values are computed at reference aspect angles and the results are given in Figure 

6.3. Here, the response belonging to the isolated case is clearly seen in black curve 

(θ= 90 degree) of Figure 6.3(d) that the response of the bigger sphere nearly starts 

after that of the smaller one.  

 

As the first step of the design procedure, for each given single target/reference aspect 

angle or multi-target/reference topology/aspect angle case, the scattered signal is 

divided into parts over the overlapping subintervals of time starting from 2.3 nsec 
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with a total length of N= 128. For each subinterval and for every target/reference 

aspect angle, the normalized MUSIC spectrum matrices are constructed with L= 32 

m = 64 and two different values of time resolution, t∆ = 2.5 psec and t∆ = 5 psec. 
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Figure 6.3 The noise-free time-domain signals scattered from a group of two 

perfectly conducting spheres with 24 and 30 mm radii at reference aspects angles 

θ= 0, 40 and 90 degrees when the separation between two spheres is  (a) d= 80 mm 

(b) d= 120 mm  (c) d= 160 mm  (d) d= 200 mm.  
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The MUSIC spectrum matrices, ( )v,uP j,i , computed at each different reference 

aspect angle for single targets and matrices ( )v,uP h,i  (obtained previously as 

superpositions of ( )v,uP j,h,i  matrices) for the multi-target group are superposed for 

each given target over each subinterval to obtain the fused MUSIC spectrum 

matrices. After obtaining these FMSMs, totalr  values are computed for each 

subinterval and the optimal late-time interval of the classifier is found as [3.58, 4.22] 

nsec. The normalized FMSMs of single conducting spheres and ( )v,uP h,i  matrices 

of the double sphere group for different separations are given in Figure 6.4. Here, the 

designation of ( )v,uP h,i  matrices for the double-target group instead of giving 

FMSM of multi-target is considered to be more informative in order to observe the 

effect of separation values on pole distribution of the multi-target group features. 
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Figure 6.4 (a)-(b) The FMSM features of the conducting spheres with 24 and 30 

mm radii  (c)-(f) the superposed matrices of two conducting spheres with 24 and 30 

mm radii for separation values d= 80, 120, 160 and 200 mm  (g) the FMSM feature 

of double conducting spheres  (h) the superposition of FMSMs of single conducting 

spheres. 

 

 

It should be noticed that the matrices from Figure 6.4(c) to Figure 6.4(f) are obtained 

with the superposition of MSMs at different aspect angles of corresponding reference 

topology. The FMSM of the double conducting spheres, which is given in 

Figure 6.4(g), is constructed then by the superposition of the matrices in 

Figure 6.4(c) through Figure 6.4(f), as explained earlier. 
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From the FMSMs of single conducting spheres in Figure 6.4(a) and Figure 6.4(b) and 

the matrices of multi-target group from Figure 6.4(c) to Figure 6.4(f), it can be 

deduced that the power distribution maps of multi-target group having high 

separation values (d= 160 mm and 200 mm) contain the collection of individual 

spheres’ poles; however; multi-target group with low separation values (d= 80 mm 

and 120 mm) contain some extra poles in addition to the poles of individual spheres. 

This result is consistent with the theory of scattering from multiple targets due to the 

following reason: As mentioned in Section 6.2, the scattered field from a multiple 

conducting sphere group consists of first order fields due to individual spheres and 

higher order fields due to interaction between spheres. Therefore, theoretically, the 

power distribution of multi-target group should contain the poles of individual 

spheres due to first order fields and some other poles, which may vary with respect to 

the separation distance between the spheres due to the higher order fields. These 

additional system poles can appear in the power distribution maps of multi-target 

group with low separation distance values as shown in the maps of Figure 6.4(c) and 

Figure 6.4(d); but they may not appear in the large separation distance maps since the 

first order fields are very dominant as compared to the higher order fields. In other 

words, the group of double conducting spheres with high separation values has 

power distributions (Figure 6.4(e) and (f)), which are highly similar to the power 

distribution belonging to the superposition of FMSMs of the individual spheres as 

given in Figure 6.4(h).   

 

In the decision stage, the signals of all target type/topology/aspect angle cases, (2 

single targets+1 multi-target x 4 situtions) x (10 aspect angles)= 60 signals, are used 

for testing purpose. The correlation coefficients between the MSMs of test signals 

and the FMSMs of library targets are again calculated as described in Section 3.2 and 

the decisions are made based on the highest correlation coefficient value. The 

correlation coefficients computed for each one of 60 test signals are tabulated in 

Table 6.1. 
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Table 6.1 The correlation coefficients between the MSMs of test signals and 

FMSMs of the candidate targets for the classifier design in Section 6.2.1.  

 

Target/Separation or Radius/ 
Aspect angle 

Two  
conducting 

spheres  
(Multi-target)

Single  
conducting sphere 

with  
24 mm radius 

Single  
conducting sphere 

with  
30 mm radius 

Multi-target/80 mm/0 degree 0.2425 0.0349 0.0181 
Multi-target/80 mm/10 degree 0.4231 0.0271 0.0274 
Multi-target/80 mm/20 degree 0.4202 0.0310     0.0187 
Multi-target/80 mm/30 degree 0.5695 0.0856  0.3635 
Multi-target/80 mm/40 degree 0.6153 0.0756     0.3489 
Multi-target/80 mm/50 degree 0.3038 0.0695    0.2295 
Multi-target/80 mm/60 degree 0.3117 0.0265     0.0175 
Multi-target/80 mm/70 degree 0.6642 0.0271     0.1667 
Multi-target/80 mm/80 degree 0.6884 0.0833    0.1957 
Multi-target/80 mm/90 degree 0.5654 0.0459     0.1031 
Multi-target/120 mm/0 degree 0.5587 0.0375     0.0361 
Multi-target/120 mm/10 degree 0.3714 0.0161    0.0219 
Multi-target/120 mm/20 degree 0.4914 0.0245    0.0703 
Multi-target/120 mm/30 degree 0.2797 0.1278    0.1496 
Multi-target/120 mm/40 degree 0.2757 0.0243    0.1140 
Multi-target/120 mm/50 degree 0.3128 0.0989    0.1854 
Multi-target/120 mm/60 degree 0.3291 0.0092    0.0742 
Multi-target/120 mm/70 degree 0.3279 0.0096    0.0636 
Multi-target/120 mm/80 degree 0.3594 0.0084   0.1501 
Multi-target/120 mm/90 degree 0.5192 0.0192    0.0458 
Multi-target/160 mm/0 degree 0.3740 0.0126     0.0107 
Multi-target/160 mm/10 degree 0.3458 0.0101    0.0092 
Multi-target/160 mm/20 degree 0.3008 0.0163     0.0152 
Multi-target/160 mm/30 degree 0.3637 0.0280     0.1871 
Multi-target/160 mm/40 degree 0.4953 0.0351    0.0085 
Multi-target/160 mm/50 degree 0.3799 0.0142   0.0125 
Multi-target/160 mm/60 degree 0.3932 0.0071    0.0075 
Multi-target/160 mm/70 degree 0.2370 0.0033     0.0745 
Multi-target/160 mm/80 degree 0.5079 0.0080    0.1523 
Multi-target/160 mm/90 degree 0.5252 0.0098    0.1861 
Multi-target/200 mm/0 degree 0.4382 0.0044     0.0946 
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Table 6.1 cont’d    
Multi-target/200 mm/10 degree 0.4847 0.0668    0.1081 
Multi-target/200 mm/20 degree 0.3792 0.0599     0.1143 
Multi-target/200 mm/30 degree 0.3520 0.0334     0.0170 
Multi-target/200 mm/40 degree 0.5056 0.0384    0.0092 
Multi-target/200 mm/50 degree 0.2811 0.0201    0.0111 
Multi-target/200 mm/60 degree 0.3634 0.0044     0.0841 
Multi-target/200 mm/70 degree 0.4133 0.0045     0.0959 
Multi-target/200 mm/80 degree 0.4412 0.0044 0.0954 
Multi-target/200 mm/90 degree 0.7151 0.0950 0.0935 
Single target/24 mm/0 degree 0.0886 0.6721 0.0044 
Single target/24 mm/10 degree 0.0016 0.5894 0.0006 
Single target/24 mm/20 degree 0.0008 0.5636 0.0003 
Single target/24 mm/30 degree 0.0390 0.7263 0.0024 
Single target/24 mm/40 degree 0.0653 0.8265 0.0044 
Single target/24 mm/50 degree 0.0409 0.7061 0.0025 
Single target/24 mm/60 degree 0.0013 0.5383 0.0002 
Single target/24 mm/70 degree 0.0315 0.4259 0.0010 
Single target/24 mm/80 degree 0.0433 0.4824 0.0017 
Single target/24 mm/90 degree 0.0018 0.6301 0.0007 
Single target/30 mm/0 degree 0.1806 0.0034 0.7524 
Single target/30 mm/10 degree 0.1582 0.0048 0.4400 
Single target/30 mm/20 degree 0.1683 0.0051     0.4674 
Single target/30 mm/30 degree 0.1559 0.0048     0.3831 
Single target/30 mm/40 degree 0.0679 0.0024 0.5900 
Single target/30 mm/50 degree 0.1427 0.0038     0.4070 
Single target/30 mm/60 degree 0.1699 0.0051     0.4620 
Single target/30 mm/70 degree 0.0355 0.0008     0.4742 
Single target/30 mm/80 degree 0.0305 0.0007    0.4619 
Single target/30 mm/90 degree 0.1222 0.0034 0.7060 

 

 

According to the correlation coefficients table shown above, the accuracy rate of this 

classifier containing single and multiple conducting spheres for noise-free case is 

found as 100 percent for both 0% margin and 5% margin criteria.  
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6.2.2. The Classifier Design for a Target Library Containing Single 

Conducting Sphere and Multiple Conducting Spheres with Identical 

Elements 

 

In this section, performance of the proposed method is investigated for a classifier 

library containing a single perfectly conducting sphere (B) with 30 mm radius and a 

multi-target group, which contains two identical conducting spheres (B-B) of 30 mm 

radius. In other words, elements of the double-target group are identical to the single 

conducting sphere in the classifier library. In this classifier design simulation, the 

single conducting sphere (A) with 24 mm radius is not included in the classifier 

library since the main purpose of this classifier design is to specifically investigate 

performance of the method in discriminating the single sphere B and the double-

sphere group B-B when all the elements are identical. 

 

The problem geometry used to compute the time responses of the single conducting 

sphere and double conducting sphere group is the same as described in Section 6.2.1 

except that the conducting sphere with 24 mm radius in Figure 6.1(b) is replaced by 

the conducting sphere with 30 mm radius. The far field bistatic scattered responses of 

the single target and the double-target group are again obtained over the operating 

frequency band of (0-12 GHz) with the frequency step of 13.75 MHz at φ= 0 degree 

and θ= 0, 20, 40, 60, 80 and 90 degrees with CST Microwave Studio simulation 

program. The time-domain scattered signals having 701 sample points with 

=t∆ 5 psec time resolution are obtained by using Gaussian windowing, IFFT and 

zero padding at all aspect angles for the noise-free case. The same three aspect angles 

(θ= 0, 40 and 90 degrees) are chosen as reference to construct the feature database 

and to design the classifier. 

 

In the step of searching for the optimal late-time interval, the MSMs are constructed 

by using the same candidate subintervals and the same MUSIC parameters as those 

used in the simulation problem of Section 6.2.1. The optimal late-time interval for 
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this classifier design is found as [3.58 nsec, 4.22 nsec], which is the same optimal 

interval found in the classifier simulation of Section 6.2.1. The normalized FMSM of 

the single sphere and the ( )v,uP h,i  matrices of the two- sphere group are given in 

Figure 6.5 for four different separation values.  
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Figure 6.5 (a)-(b) The FMSM feature of the single conducting sphere with 30 

mm radius and of the two conducting sphere group with 30 and 30 mm radii  (c)-(f) 

the superposed matrices of two conducting spheres with 30 and 30 mm radii for 

separation values d= 80, 120, 160 and 200 mm.     

 

 

It can be concluded based on the context of Figure 6.5 that the power distribution 

maps of the double-sphere group for high separation values (d= 160 mm in 

Figure 6.5(d) and d= 200 mm in Figure 6.5(e)) are very similar to the FMSM feature 

of the single sphere shown in Figure 6.5(a) especially in the frequency range up to 

6 GHz. The power distribution maps shown in Figure 6.5(b) for d= 80 mm and in 

Figure 6.5(c) for d= 120 mm, on the other hand, show different resonance features 

interpreted as additional poles particularly in the frequency region up to 7 GHz. 

These results point to a serious drawback of the suggested multi-target recognition 

method that the designed classifier may not discriminate the single target from the 

multi-target group when all the elements of multi-target group is the same as that 

single target when the separation between the elements of multi-target is large.   
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After the target classifier is designed as explained above, it is tested by (1 single 

target+1 multi-target x 4 situtions) x (6 aspect angles)= 30 test signals. The resulting 

correlation coefficients computed between the MSMs of test signals and FMSM 

features of the classifier in database are listed in Table 6.2. 

 

 

Table 6.2 The correlation coefficients between the MSMs of test signals and 

FMSMs of the candidate targets for the classifier design in Section 6.2.2.  

 

Target/Separation or Radius/ 
Aspect angle 

Two conducting 
spheres (Multi-target)

Single conducting sphere 
with 30 mm radius 

Multi-target/80 mm/0 degree 0.2276 0.0241 
Multi-target/80 mm/20 degree 0.2861 0.1054 
Multi-target/80 mm/40 degree 0.8245 0.6134 
Multi-target/80 mm/60 degree 0.5916 0.3626 
Multi-target/80 mm/80 degree 0.2397 0.0124 
Multi-target/80 mm/90 degree 0.2495 0.0148 
Multi-target/120 mm/0 degree 0.5040 0.4579 
Multi-target/120 mm/20 degree 0.5490 0.3559 
Multi-target/120 mm/40 degree 0.8118 0.5377 
Multi-target/120 mm/60 degree 0.5893 0.4476 
Multi-target/120 mm/80 degree 0.2910 0.0281 
Multi-target/120 mm/90 degree 0.2769 0.0219 
Multi-target/160 mm/0 degree 0.6357 0.4676 

Multi-target/160 mm/20 degree 0.5282 0.6435 
Multi-target/160 mm/40 degree 0.7997 0.4897 
Multi-target/160 mm/60 degree 0.7751 0.4479 
Multi-target/160 mm/80 degree 0.4296 0.1852 
Multi-target/160 mm/90 degree 0.3817 0.1723 
Multi-target/200 mm/0 degree 0.5302 0.2055 

Multi-target/200 mm/20 degree 0.5597 0.7054 
Multi-target/200 mm/40 degree 0.8038 0.5025 
Multi-target/200 mm/60 degree 0.7684 0.4675 

Multi-target/200 mm/80 degree 0.4888 0.4711 
Multi-target/200 mm/90 degree 0.4956 0.2546 
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Table 6.2 cont’d   
Single target/30 mm/0 degree 0.3971 0.7524 

Single target/30 mm/20 degree 0.4650 0.4674 
Single target/30 mm/40 degree 0.3567 0.5900 

Single target/30 mm/60 degree 0.4789 0.4620 
Single target/30 mm/80 degree 0.2671 0.4619 
Single target/30 mm/90 degree 0.4220 0.7060 

 

 

According to the correlation coefficients shown in Table 6.2, accuracy rate of this 

classifier is found as 90 percent (27/30) for 0% margin criterion and 83 percent 

(25/30) for 5% margin criterion for the noise free case. The incorrect decisions in 

Table 6.2 mostly correspond to the multi-target test group with high separation 

values, as expected. The resulting accuracy rates are not satisfactory enough 

considering that tests are conducted for the noise-free case. It is not hard to guess that 

classifier’s performance would get even worse as it is tested against noisy data. 

Although the classifier design in Section 6.1 for multi-targets with different elements 

turned out to be successful, the classifier designed in this section for multi-target 

groups with identical elements show an unsatisfactory performance. As a result, we 

have come to the conclusion that a major additional improvement is needed in the 

present method for multi-target classification. The solution we suggested for this 

problem will be discussed in the next subsection. 

 

6.3. Use of Time Correlation Curves as a Diagnostic Measure to 

Recognize Multi-Target Groups with Highly Separated 

Identical Elements  

 

As explained throughout Section 6.2, the target recognition method outlined in 

Section 6.1 has difficulty in discriminating a single target and a multi-target group 

whose elements are the same as this single target. This problem may be solved if the 
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targets in classifier library can be separated into two main sets; a set of single targets 

and a set of multi-target groups and then the recognition is done within the properly 

selected set. In other words, initially a test target can be designated as being a single 

target or a multi-target and then the classifier design is applied to only single target 

set without interfering with multi-target groups if the test target is designated as a 

single target, vice versa. 

 

It can be deduced from the time domain responses of two conducting spheres in 

Figure 6.3 that these responses almost repeat the same signal pattern due to the 

existence of specular fields received from two identical targets with a time lag 

especially for high separation distances. In other words, the responses of a multi-

target group can be thought as being equal to the superposition of the single target 

response and a shifted version of this response when the elements of multi-target 

group are the same. Then, to benefit from this special composite signal form, time 

correlation curves of such scattered signals are computed using the following 

expression: 
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where E is the expected value operator, ( )tx  is a scattered time domain signal of a 

test target and τ is the delay parameter. The time correlation curves computed for all 

targets used in the simulation example of Section 6.2.2 at all possible combinations 

of reference aspect angles topologies are plotted in Figure 6.6.  
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Figure 6.6(b) 
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Figure 6.6 Time correlation coefficient curves computed for the tests signals of 

the target classifier simulation given in Section 6.2.2 at the reference aspect angles of 

θ= 0, 40 and 90 degrees. 

 

 

It can be deduced from the curves plotted in Figure 6.6 that the time correlation 

curves belonging to multi-target groups attenuate down to very small levels for larger 

delay parameter (τ) values. The so called “cut-off τ” values, where correlation 

coefficient curves drop to the threshold of 0.01, are given in Table 6.3 for different 

target/topology cases at various aspect angles. 
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Table 6.3 The cut-off τ values in nsec, where the time correlation curve values 

drop to 0.01, for the classifier design in Section 6.2.2.  

 

 θ= 0 degree θ= 40 degree θ= 90 degree

Single conducting sphere 0.705 0.710 0.780 

Double spheres with d=80 mm 0.870 0.995 1.035 

Double spheres with d=120 mm 1.035 1.220 1.385 

Double spheres with d=160 mm 1.235 1.540 1.475 

Double spheres with d=200 mm 1.315 1.520 1.610 
 

 

As seen from Table 6.3, the cut-off τ values corresponding to the multi-target group, 

especially for high separation distances, are considerably larger than those of the 

single conducting sphere. Therefore, based on this observation, a multi-target can be 

easily separated from the single target by comparing the cut-off τ values of time 

correlation coefficient curves. This comparison can be done with a distance measure 

such as the Euclidean distance or the Mahalanobis distance. Classifier designs 

presented in this chapter both measures are used. Mathematically speaking, the 

Euclidean distance between a point, x , and a set is defined as 
σ
µ−x  where µ  and 

σ  are the mean and standard deviation of the data set. The point having Euclidean 

distance of 3 or greater is classified as out of the data set. The Mahalanobis distance, 

on the other hand, is a measure introduced by P. C. Mahalanobis [130]. It is based on 

correlations between variables by which different patterns can be identified and 

analysed. It is a useful way of determining similarity or dissimilarity of an unknown 

sample set to a known one. It differs from Euclidean distance in that it takes into 

account the correlations of the data set, it is scale-invariant and more strict than the 

Euclidean distance. In theory, the samples that have a Mahalanobis distance of 3 or 

greater have a probability of 0.01 or less and can be classified as non-members of the 

group as in the case of Euclidean distance applications. Consequently, if 
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Mahalanobis or Euclidean distances between the τ value of test signal and τ value 

arrays of single targets are all bigger than 3, then the test target is classified as a 

multi-target group. For example, let the test target be two conducting sphere group 

with 80 mm separation distance observed at 0 degree aspect angle. Then, the 

Mahalanobis distance between the τ value of this test target (0.870 nsec) and τ value 

array of single conducting sphere ([0.705  0.710  0.780] nsec) is 10.88. For the same 

test problem, the Euclidean distance is found to be only 3.  

 

Now, integrating all these ideas in the design procedure, the resulting modified 

classifier design method for the target sets containing single and multiple targets has 

the following steps: 

  

• The aspect/topology invariant FMSM features are computed and stored in the 

classifier’s feature database. 

 

• The standard deviation ( )iσ  and mean ( )iµ  values of match,ir  correlation 

coefficients belonging to each target are also computed and stored. 

 

• For each reference scattered signal belonging to a given single target, the 

corresponding time correlation curve is computed. Then, the cut-off delay 

value τi,j  is determined (for single target i, reference aspect angle j) for which  

the time correlation curve drops to a threshold value such as 0.01, for 

example. 

 

• Assume a text signal x(t) is received from an unknown test target. Then, the 

following decision mechanism, described by the flow chart given in 

Figure 6.7, is used in the real-time testing phase: 
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r(i*) ≥ µi* - 3σi*  

Compute the cut-off τ value of 
test target (τtest) 

The cut-off τ value arrays 
of only single targets ( iτ  

for ∀i=1,...,K1) 

Compute the correlation 
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MSM and target FMSMs of 
single targets only 

Test scattered 
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Compute testing 
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optimal time 

interval 
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single target index “i*” 
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(Mahalanobis distances between 
τtest and iτ ) > 3  

NO 

Compute the correlation 
coefficients between the testing 

MSM and target FMSMs of 
multi-target groups only 
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YES 
NO NO 

 
 

Figure 6.7 The flow chart of the decision algorithm for the suggested multi-target 

recognition method. 

 

 



 176

If a test target does not satisfy the criterion of )i(r)3( *
*i*i

≤− σµ  for both single 

and multi-target sets, then the decision is made within the overall target library using 

the following criterion: 

 

K,..,1i)i(r)i(rifitargettargetTest ** =∀≥=  

  

6.4. Classifier Design Simulations for a Target Library Containing 

Single and Multi-Targets Using the Modified Method Described 

in Section 6.3   

 

As the first classifier design simulation of this section, the target classifier design 

problem of Section 6.2.2 is repeated here, now by using the modified multi-target 

recognition method described in Section 6.3. In other words, the targets of this 

classifier are the single conducting sphere of 30 mm radius and the double-sphere 

group whose elements are identical 30 mm radius spheres. The resulting accuracy 

rates are found as 100 percent for both 0% and 5% margin criteria when the 

Mahalanobis distance is used. 97 percent accuracy is obtained for both 0% and 5% 

margin criteria when Euclidean distance is used. Earlier, in Section 6.2.2, the 

corresponding accuracy rates were found as 90 percent (for 0% criterion) and 83 

percent (for 0% criterion) without using the time correlation curve comparisons. 

Therefore, adding time correlation information improves the accuracy performance 

of the suggested multi-target recognition method considerably.    

 

In the first subsection to follow, the novel multi-target classifier design method 

described in Section 6.3 is initially applied to a target set containing two single and 

three double perfectly conducting spheres whose responses are generated 

synthetically using CST Microwave Studio. Then, the method is demonstrated for a 

target set containing single and multiple small-scale aircraft targets whose responses 
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are obtained with the measurement setup in METU MMW Lab explained in Section 

5.1 in detail. The aircraft targets are the small-scale models of realistic aircraft targets 

used in Section 5.3.   

 

6.4.1. Classifier Design for a Classifier Library Containing Single Conducting 

Spheres and Double Conducting Sphere Groups  

 

The modified and improved multi-target recognition method described in Section 6.3 

is going to be demonstrated for a classifier library, which contains two single 

conducting spheres with 24 mm radius (target A) and 30 mm radius (target B) and 

three double-target groups consisting of two conducting spheres with 24 and 24 mm 

radii (target group AA), 24 and 30 mm radii (target group AB) and 30 and 30 mm 

radii (target group BB). As seen, two of these double-target groups have identical 

elements, which are also identical with one of the single conducting spheres in the 

library. For the double sphere groups, four different separation distances, d= 80, 120, 

160 and 200 mm, are considered as reference values.  

  

The problem geometry used to compute the time responses of single and double 

conducting spheres is the same as the configuration used in Figure 6.1(b). The far 

field bistatic scattered responses of all single and double-target groups are obtained 

over the operating frequency band of (0-12 GHz) with the frequency step of 13.75 

MHz at the aspect angles of φ= 0 degree and θ= 0, 20, 40, 60, 80 and 90 degrees 

using the CST Microwave Studio simulation program. The time-domain scattered 

signals having 701 sample points with =t∆ 5 psec time resolution are obtained by 

using Gaussian windowing, IFFT and zero padding at all aspect angles for the noise-

free case. Three aspect angles (θ= 0, 40 and 90 degrees) are chosen as the reference 

angles to construct the feature database of this classifier. 
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In the step of searching for the optimal late-time interval, totalr  values are computed 

for each subinterval by using the same MUSIC parameters and the same subintervals 

as in the previous classifier designs. The optimal late-time interval of the classifier is 

found to be [3.58 nsec, 4.22 nsec]. Then, in addition to the FMSMs, which are given 

in Figure 6.4(a) and Figure 6.4(b) for the single conducting spheres with 24 and 30 

mm radii and in Figure 6.8 for the double conducting spheres, the standard deviation 

and mean values of match,ir  correlation coefficient sequences of each target (for the 

noise-free case) are stored in the feature database. Furthermore, as mentioned in 

Section 6.3 the τ values, at which the time correlation curves drops to 0.01 threshold 

level, are recorded and stored as [0.720 0.725 0.745] nsec for the single conducting 

sphere with 24 mm radius and [0.705 0.710 0.780] nsec for the single conducting 

sphere with 30 mm radius, for all three reference aspect angles.  

 

From the maps given in Figure 6.8, it can be observed that the FMSM of double 

conducting spheres with 24 and 30 mm radii (i.e. the group AB) covers higher 

number of pole effects since this multi-target group has two different elements 

resulting in the reception of two different first order field distributions in the 

response. On the other hand, each of the other double-sphere groups contains two 

identical elements, which causes the reception of only one type of first order field 

distribution. For that reason, less number of poles is observed in the FMSM features 

given in Figure 6.8(b) and 6.8(c).    
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Figure 6.8 (a) The FMSM feature of multiple conducting spheres with 24 and 30 

mm radii  (b) the FMSM feature of multiple conducting spheres with 24 and 24 mm 

radii  (c) the FMSM feature of multiple conducting spheres with 30 and 30 mm radii. 

 

 

After the classifier design is completed, the classifier is tested by (2 single targets+3 

multi-target groups x 4 situations) x (6 aspect angles)= 84 signals. The accuracy rate 

for this classifier design is found as 100 percent for both decision criteria when the 
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Mahalanobis distance is used. The accuracy becomes 98 and 97 percent for 0% 

margin criterion and 5% margin criterion, respectively by using the Euclidean 

distance.  

 

After the noise-free case, the noise performance of this classifier design is 

investigated. For this purpose, the noisy time domain signals are synthesized at the 

SNR values of 20, 15, 10, 5 and 0 dB for testing. As in the classifier designs given in 

Section 4.1 and Section 4.4.1, the FMSM features of the targets are constructed using 

only noisy signals of 10 dB SNR level at the reference aspect angles. However, while 

determining the τ values, it is observed that these values for the threshold 0.01 are 

severely affected by the additive noise so that their values do not remain stationary 

and spread randomly with the increase in noise level. In Figure 6.9, at θ = 40 degree 

aspect angle, the time correlation curves of the single conducting sphere with 30 mm 

radius and the double conducting spheres with 30 and 30 mm radii are given for 

SNR= 10 dB and 5 dB. The corresponding noise-free time correlation curves of these 

targets were already given in Figure 6.6(b). Examining these time correlation curves 

at different SNR levels, the threshold value was raised to 0.05 from 0.01 to obtain 

more stable τ values. Next, the τ values, where the time correlation curves drop to 

0.05, are found as [0.55 0.56 0.59] nsec for the single conducting sphere with 24 mm 

radius and as [0.63 0.66 0.675] nsec for the single conducting sphere with 30 mm 

radius. 
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Figure 6.9 The time correlation curves of single conducting sphere with 30 mm 

radius and double conducting spheres with 30 and 30 mm radii at θ= 40 degrees for 

(a) SNR= 10 dB  (b) SNR= 5 dB. 
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In classifier testing, again 84 signals per SNR level are used. The overall correct 

classification rates of the classifier is listed in Table 6.4 for several SNR values, 

using two different distance measures (Euclidean and Mahalanobis distances) and 

two different decision criteria (0% margin and 5% margin). 

 

 

Table 6.4 The correct classification rates (in percentage) of the classifier 

designed in Section 6.4.1 (with 10 dB SNR data) containing single and double 

conducting spheres in its library.  

 

SNR Levels ∞ 20 dB 15 dB  10 dB  5 dB  0 dB  

Safety margin 
for decisions 0% 5% 0% 5% 0% 5% 0% 5% 0% 5% 0% 5%

Mahalanobis 
distance 100 100 100 100 99 98 97 95 89 86 82 80 

Euclidean 
distance 98 97 98 96 95 93 91 90 84 82 78 75 

 

 

It is seen from the results shown in Table 6.4 that at all SNR levels the accuracy rates 

of the classifier is higher when the Mahalanobis distance is used rather than the 

Euclidean distance. Therefore, Mahalanobis distance is found more suitable to be 

used in the proposed target recognition method and will be used in the following 

classifier design and test examples to follow. The classifier designed by using the 

Mahalanobis distance in the algorithm can be regarded as successful up to 10 dB 

SNR level. However, although the accuracy rates are satisfactory up to 10 SNR level, 

the rates for this classifier design significantly drop after this level. One of the main 

reasons of this drop is the association of the test target with the wrong target set in 

the initial separation phase of the algorithm. In this phase, the cut-off τ values may 

be determined incorrectly, while using the threshold value of 0.05, especially for low 
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aspect angles under excessive noise. Furthermore, the results show that, the incorrect 

decisions mostly involve the single target tests. This observation can be explained by 

the fact that a common optimal late-time interval is determined for both single and 

multi-target groups while designing the classifier. This common design interval is 

conveniently at the starting part of the late-time region for multi-target groups but it 

is far beyond the starting part of the late-time region for the single conducting 

spheres. The scattered signals of the single conducting spheres are already attenuated 

to very small values over this optimal late-time interval becoming too vulnerable to 

added noise. Thus, as the SNR level of the test data gets smaller, the late-time 

characterization of the single targets gets worse leading to incorrect recognition 

results.  

 

6.4.2. Classifier Design for a Target Library Containing Single and Multiple 

Small-Scale Aircraft Targets  

 

In this classifier design simulation, the target library includes two single small-scale 

aircraft targets, Boeing 767 and DC-10, and three double-aircraft groups containing 

(Boeing 767 and Boeing 767), (DC-10 and DC-10) and (Boeing 767 and DC-10). As 

in Section 5.3, these aircraft targets are the small-scale models of the realistic aircraft 

targets. The dimensions of the aircraft targets used in this classifier are all scaled by 

1/600. The photographs of the aircraft targets are given in Figure 6.10.      

 

Frequency domain responses of the targets are obtained with measurements 

described in Section 5.1. The responses for single aircraft targets are measured by 

using same setup in Figure 5.1. Two different reference values for the separation 

distances, d= 100 and 200 mm, are chosen for the double-aircraft target groups where 

d= 100 mm case corresponds to non-isolated case and d= 200 mm case almost 

satisfies the isolated case. The schematic view of the measurement setup, which is 

used to collect scattered data for the aircraft, is given Figure 6.11. 
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Figure 6.10 The small-scale aircraft targets used in the classifier design in 

Section 6.4.1. 
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Figure 6.11 The schematic view of the measurement setup for multiple aircraft 

targets in Section 6.4.2.       
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The VV-polarized frequency responses of the targets are measured for the 

incomplete data bandwidth of 1-12 GHz with f∆ = 13.75 MHz frequency steps. The 

measurements are performed at aspect angles from θ = 0 degrees to 90 degrees with 

10 degree aspect angle steps for single targets; and from θ1 = θ2 = 0 to 90 degrees 

with 10 degree steps for multi-targets. Then, the scattered time domain signals with 5 

psec time resolution are constructed. As an example, the scattered time domain 

signals corresponding to the single aircraft targets, Boeing 767 and DC-10, at the 

aspect angle of θ = 90 degree are plotted in Figure 6.12. Scattered time domain 

signals for double-aircraft target groups, (Boeing 767 and Boeing 767) and (DC-10 

and DC-10) at the aspect angles of θ1=θ2=90 degree are also shown in same figure.  
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Figure 6.12 The scattered time domain signals of the single aircraft targets, 

Boeing 767 and DC-10, at the aspect angle of θ= 90 degrees and the double-aircraft 

targets, (Boeing 767 and Boeing 767) and (DC-10 and DC-10) at the aspect angles of 

θ1=θ2= 90 degrees. 
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Out of ten different aspect angles, four aspect angles (θ=θ1=θ2=0, 30, 60 and 90 

degrees) are chosen as reference to construct the feature database of this classifier. In 

the step of choosing the optimal late-time interval, the scattered signals are divided 

into some overlapping subintervals from 1.8 nanoseconds. The MSMs of targets at 

each subinterval are constructed with MUSIC parameters N= 128, m = 64, L= 32 and 

t∆ = 5 psec or 2.5 psec. The optimal late-time interval of this classifier is found as 

[3.84 nsec-4.48 nsec]. As in the previous classifier design, the FMSMs of targets and 

matched correlation coefficients corresponding to this optimal interval in addition to 

the τ values where correlation coefficients drop to 0.05 are stored.  

    

In the decision stage, (2 single aircraft targets+3 multiple aircraft targets x 2 

situtions) x (10 aspect angles)= 80 measured test signals are used for performance 

testing. In order to compare the τ values of test signals and τ value sets of single 

aircraft targets, only the Mahalanobis distance is used. The accuracy rate of this 

classifier is found as 94 percent (75/80) for both 0% margin and 5% margin where 

incorrect decisions are indicated in Table 6.5. 

 

 

Table 6.5 Incorrect decisions for the small-scale aircraft target classifier 

designed and tested in Section 6.4.2.  

 

Test Target Decision 

DC-10 at θ= 10 degree Multi-target: DC-10 and DC-10 

Boeing 767 at θ= 40 degree Multi-target: Boeing 767 and Boeing 767

DC-10 and DC-10 with d= 200 mm at 
θ1=θ2= 40 degree Multi-target: Boeing 767 and DC-10 

DC-10 and DC-10 with d= 100 mm at 
θ1=θ2= 10 degree Single Target: DC-10 

Boeing 767 and DC-10 with d= 100 
mm at θ1=θ2= 20 degree Single Target: DC-10 
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According to the incorrect decisions given in Table 6.5, it can be concluded that four 

of the total of five incorrect decisions result from the assignment of test target into a 

wrong target set (i.e. assignment of a single test target as a multi-target or a multiple 

test target as a test target). Since the SNR levels of the scattered signals are moderate 

(about 15 dB), the selection of optimal late-time interval in a too late time region 

should not constitute a considerable drawback for this classifier design. 

 

This aircraft classifier design simulation is also repeated without using the time 

correlation information and the accuracy rates are found to drop considerably to 83 

percent (66/80) for 0% margin and 81 percent (65/80) for 5% margin. In other words, 

use of valuable information provided by time correlation curves in the decision 

process leads to very high accuracy rates even in this challenging target classification 

example that involves totally realistic and complicated target geometries (small scale 

aircraft targets) with experimental scattered data used in both classifier design and 

test phases. 
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CHAPTER 7 

7. CONCLUSIONS AND FUTURE WORK  

 

 

 

This thesis presents a novel aspect and polarization invariant electromagnetic target 

recognition method in resonance region. A natural-resonance based classifier model 

is integrated with a MUSIC algorithm-based signal processing technique in the 

context of multi-aspect feature fusion approach. The “Fused MUSIC Spectrum 

Matrices (FMSMs)” generated for each target by superposing the individual MUSIC 

spectrum matrices at the optimal late-time interval are used as the main target feature 

in the suggested method. These FMSMs improve the performance of the method by 

including more pole effects and reducing both aspect and polarization dependency. 

The resulting, computationally simple technique is used to design highly efficient 

and successful classifier designs throughout this thesis. 

 

It must be emphasized that the success of an electromagnetic target recognition 

technique can be easily judged on the objective and fair grounds simply by checking 

a standard set of performance/design criteria. It is shown in Chapter 4 and 5 that the 

proposed method satisfies the following performance/design criteria for single 

targets:    

 

• Admissibility of arbitrary target geometries/material compositions: For the 

first time in literature, the proposed method is demonstrated to be applicable 

to all of highly challenging target classes of (a) very low-Q targets (perfectly 

conducting spheres), (b) dielectric targets with complicated internal 
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resonances (lossless dielectric spheres, thick dielectric rods), (c) moderately 

high-Q targets with complex geometries (small-scale aircraft targets modeled 

by conducting straight wires, small-scale aircraft targets as being the models 

of realistic aircraft targets). None of the target identification methods reported 

in the recent literature demonstrate their validity for all these extremely 

demanding target types. Some are demonstrated for the simplest case of high-

Q straight, thin conducting wires [82], [83], [87], some are applied to 

moderately high-Q targets with complex geometries [81], [84]-[86]; while 

some other methods are demonstrated for low-Q conducting spheres and/or 

dielectric targets [23], [66], [91] but not tested for targets with complex 

geometries.      

 

• High accuracy rate (i.e. correct classification ratio): With the proposed 

technique, excellent classifiers are designed having (a) almost 100 percent 

accuracy for the aircraft classifier designed in Section 4.3 even under 

moderately noisy conditions with overall SNR levels as low as 10 dB (b) 97 

percent accuracy for dielectric sphere classifier at 10 dB SNR (c) 98 percent 

accuracy (at 15 dB SNR) and 94 percent accuracy (at 10 dB SNR) for 

conducting sphere classifiers. Attaining accuracy rates close to 100 percent is 

demonstrated in some studies in literature for the noise-free case studies [91]. 

However, at SNR levels as low as 10 dB, the accuracy rates of the present 

techniques drop below 90 percent. 

 

• Invariance with respect to aspect and polarization: All of the given classifier 

designs, especially the aircraft target classifier in Section 4.3, have been 

demonstrated as being highly aspect and polarization invariant. For the first 

time in literature, the proposed method is demonstrated to be polarization 

invariant in addition to being fully aspect (both in azimuth and elevation 

invariant) invariant based on intensive testing over a broad range of 

signal-to-noise ratio. None of the target identification methods in the 
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literature has given such a complete analysis for these mandatory invariance 

requirements. The best analyses are given in [23], [86], [91] which provided a 

detailed analysis for the aspect invariance (with respect to azimuth variations 

only in [86]). Most of the other techniques are either demonstrated at a single 

aspect angle [82]-[84], [87], or at a small number of aspect angles [21], [81], 

[85]. No polarization invariance has been demonstrated in any present study 

so far. 

 

• Robustness with respect to noise: It is well accepted by researchers working 

on the electromagnetic target recognition area that being robust under noisy 

conditions is a mandatory requirement for a properly designed and practically 

useful target classifier. Being functional in noiseless or low-noise (roughly 

with SNR levels larger than 25-30 dB) conditions is definitely not enough for 

an acceptable classifier performance. Deterioration in classifier accuracy is of 

course inevitable but the amount of deterioration must remain within 

acceptable limits. Classifier designs given in this thesis are demonstrated to 

be highly accurate even at very low SNR levels. For instance, while the 

conducting and dielectric sphere classifier designs in Section 4.1 and 4.2 can 

attain accuracy rates of 85-86 percent at the 0 dB SNR level, the aircraft 

target classifier design in Section 4.3, a challenging design, still has 93 

percent accuracy (with 0% margin criterion) rate at the very high noise case 

of 0 dB SNR which means the noise power is equal to the signal power. In 

the literature, no present study has reached similar accuracy rates for such 

low SNR levels. 

 

• Classifier design with noisy data: For the first time in literature, the proposed 

technique is demonstrated to be useful for electromagnetic classifier design 

using substantially noisy reference scattered data. All the other methods 

demonstrated in literature use either noise-free numerical data or very low 

noise measurement data (recorded in controlled environments such as 
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compact ranges) in the classifier design phase. After the design, they test the 

performance of their classifiers with noisy data. With the method proposed in 

this thesis, successful classifiers are designed with already noisy data using 

reference signals having 5 dB SNR level (in Section 4.2); 10 dB SNR level 

(in Section 4.1 and 4.3). These classifiers are demonstrated to produce 97-100 

percent accuracy rates when tested with signals having SNR values as low as 

10 dB. Even at very low testing SNR values such as 0 dB or -5 dB the 

classifier designs still give completely acceptable accuracy rates. 

 

• Classifier design with only a few aspect angles and small memory storage: 

The proposed method needs reference data at only a few aspect angles which 

requires a very small volume of data. This property is shared by only the 

E-pulse/K-pulse type methods as well as the methods reported in [23] and 

[91]. However, some methods, such as the one in [86] for instance, is at the 

other extreme of using too many reference aspect angles. The proposed 

method also uses only one matrix for each target in the feature database 

which considerable reduces the memory storage of the classifier designs. 

 

• Simplicity and repeatibility of the design method and difficulties encountered 

in choosing design parameters: The proposed target recognition technique is a 

natural resonance-based technique processing the late-time scattered data in a 

very simple and repeatable way using the MUSIC algorithm only and without 

using any a priori target pole or other information. The method is inspired by 

the SEM of Baum, similar to the methods such as E-pulse/K-pulse methods. 

However, the suggested method in this thesis is very different from those 

methods in terms of the signal processing techniques needed for feature 

extraction procedure that the difficulties encountered in these former methods 

are not valid for the proposed technique. For instance, in E-pulse/K-pulse 

methods, in general, those E-pulse or K-pulse feature signals are (a) either 

synthesized from the known/extracted poles of the target, where a good 
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estimate for number of target poles is needed. Also, very low noise design 

data are needed for accurate pole extraction which may not be always 

possible, (b) or they are optimized (without using target pole information) via 

conventional or global optimization techniques. Optimization itself is a tricky 

signal processing approach; results may not be repeatable especially when 

there are many local optimal solutions. Reaching the globally optimal 

solution may not be possible in the case of complex target geometries or non-

conducting material compositions. Therefore, the target classifier design 

technique suggested in this thesis is very simple and repeatable, which uses 

the MUSIC algorithm as the only signal processing tool for feature 

extraction.   

 

• The ability of discriminating an alien target from the target set: For the first 

time in literature, the proposed method is demonstrated to discriminate an 

alien target from the targets in database. Besides, the correct decision rate of 

this operation is similar with the accuracy rates of the classification of 

candidate targets in the database. There is no such study in literature of target 

recognition area about discrimination of an alien target from a known target 

database. 

 

To sum up, this thesis has not only shown the feasibility of a new electromagnetic 

target recognition technique with very high correct classification rates; but it has also 

provided extremely detailed analysis results to prove that the proposed technique is 

indeed (i) aspect and polarization invariant, (ii) very robust under noise and (iii) 

works out for even the most difficult target recognition problems involving very 

low-Q targets, dielectric targets and conducting targets with complex geometries. As 

an additional and very important asset, the proposed target recognition technique is 

also useful to design very effective target classifiers using noisy reference data. After 

comparing the contents of the target recognition methods in literature to the content 

of the proposed method, it can be confidently claimed that the technique introduced 
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in this thesis is the only one successfully satisfying all eight criteria listed above, 

which are objective and fair measures to test performance of any target classification 

method in electromagnetics. 

 

From the results in Chapter 4 and 5, it is seen that the suggested target recognition 

technique is general enough to be applicable to any single target scenario. 

Application of this technique to the recognition of target sets containing multi-targets 

is a very challenging problem because of the complicated multiple scattering 

mechanisms. This problem is addressed in Chapter 6 and solved after introducing 

major modifications for multi-topology feature fusion and using time correlation 

curves as the diagnostic measure for identical and isolated multi-target groups. For 

the first time in literature, performance of the resulting design method is found fully 

satisfactory in classifying not only single but also multiple targets accurately within 

composite target libraries. The demonstrations are given for two classifier libraries; 

library of conducting spheres and library of small-scale model aircraft.    

 

The future work for both single and multi-target classification can be summarized as 

follows:    

 

• Performance of the proposed single/multiple target classification method 

needs to be investigated for lossy target applications. 

 

• The proposed method may be applied to classification of targets made of 

metametarials.  

 

• The classifier design realized for multi-targets in Section 6.4.2 may be 

repeated for different target topologies where different locations of the 

aircraft targets within the double-target groups can be used for training and/or 

testing.    
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• The invariance of the multi-target classification method may be tested with 

respect to polarization and elevation angle.   

 

• In this thesis, the proposed method for multi-targets is only demonstrated for 

the classifier designs containing double-target groups. The number of 

elements in the multi-target groups can be increased to three or more to test 

the performance of the resulting classifiers. 

 

• Applicability of the proposed method to the detection of single or multiple 

landmines using ground penetrating radar (GPR) data may be investigated. 

For this purpose, scattered fields from landmine structure should be obtained 

either by simulations (CST) or measurements (GPR). 

 

• Applicability of the proposed method to discriminate a target from the clutter 

in the background may be investigated.  
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APPENDIX A 

SCATTERING REGIONS AND THE OPTICAL REGION 

METHODS FOR TARGET RECOGNITION 

 

 

 

The radar cross section (RCS) of a target can be basically defined in Equation (A.1) 

as [131] 
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where R  is the range from the receiver point to target, sE  is the scattered electric 

field strength at the receiver and iE  is the electric field strength incident on the 

target. 

    

Scattered target response, in general, and the radar cross section of a target depend 

on the ratios of characteristic dimensions of the target to the operating wavelength 

“λ”. For example, the normalized monostatic radar cross section of a perfectly 

conducting sphere is shown in Figure A.1 as a function of ka , where a  is the radius 

of the sphere and 
λ
π2k =  is the wavenumber.  
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Figure A.1 Normalized monostatic radar cross section of a perfectly conducting 

sphere as a function of ka  ( a = radius; k = wavelength). 

 

 

The scattered signal of a target show distinct characteristics as frequency changes. 

There are basically three different scattering regions which are also described in 

Figure A.1. The region where ka >>1 is the optical region and in this region the radar 

cross section approaches the physical area of the target. For example, conventional 

narrowband radars aiming to detect aircraft targets or ships at microwave frequencies 

generally operate in the optical region. Although it is seemed that the change in RCS 

with respect to operating frequency is not so significant, the radar cross sections of 

the targets in this region are extremely dependent on the aspect angle. In Figure A.2, 

the variation of the backscattered RCS (in dB scale) from a propeller-driven aircraft, 

a two-engine B-26 medium bomber, at the operating frequency of 3 GHz with 

respect to azimuth angle [132]-[133] is plotted. Changes in the radar cross section by 

as much as 15 dB can occur for a change in the aspect angle of only 1/3 degree. 
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Figure A.2 Backscattering from a full-scale two-engine B-26 medium bomber 

aircraft at 3 GHz with respect to azimuth angle [132], [133]. 

 

 

The region where ka <<1 in Figure A.1 is called as Rayleigh region [134]. In this 

region, the radar cross section is proportional to the fourth power of the operating 

frequency and is determined more by the volume of the target than by its shape. For 

example, the backscattering from rain is described by Rayleigh scattering at radar 

frequencies. 

 

The region between the Rayleigh and the optical region, which is also the region for 

the target recognition method introduced in this thesis, is Mie or the resonance 

region. In this region, where the wavelength is comparable to the targets’ 

dimensions, the changes in radar cross section of the targets with respect to the 

frequency are significant since there are two main waves that can interfere inphase or 
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out of phase. While the first wave is the direct reflections from the front faces of the 

target and multiple internal reflections for the penetrable targets, the other one is the 

creeping wave which circumnavigates around back sides of the target, returns and 

interferes with the reflections of the target [135]-[137]. As the operating frequency 

increases, the electrical path around the circumference of the target increases; 

therefore, greater loss in creeping waves occurs. Since the creeping waves attenuate 

more as frequency increases, their contributions to the total RCS or the scattered 

field of the target get smaller in the optical region while their contributions are 

significant in the resonance region. This is the reason why the magnitude of the 

fluctuation in RCS with respect to operating frequency is low at optical region. In the 

resonance region, where radar cross section can be larger than the other two regions, 

the targets’ scattered responses do not change much within a few degrees of aspect 

angles as it happens in the optical region. Significant changes in target responses can 

be seen with 10-15 degrees of aspect angle change in this region for smooth objects.   

 

In the following part of this appendix the optical region methods such as high range 

resolution profile (HRRP), scattering center, synthetic aperture radar (SAR), inverse 

synthetic aperture radar (ISAR) and polarization response method will be described 

briefly.   

 

• High Range Resolution Profile (HRRP) Method 

 

A radar with sufficiently high range resolution can resolve the individual scattering 

centers of a target and provide the range profile (the one-dimensional image) of the 

target [138]. In these methods, the range profiles are used as feature vectors to 

identify the targets. As an example, the range profile of a Boeing 737 aircraft viewed 

from broadside and obtained with an L band (1.2 GHz-1.4 GHz) radar having 1 m 

range resolution is given in Figure A.3 [139], [140]. 
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Figure A.3 The range profile of a Boeing 737 aircraft from broadside with a radar 

having 1 m range resolution and frequency band 1.2 GHz-1.4 GHz [139], [140]. 

 

 

The basic intuitive decision rule is to compare the similarity between the feature 

vectors of the unknown target with those stored in the database. The matching score 

is a parameter for measuring this similarity, which is explicitly given in [141], and 

[142]. The correlation coefficient between the normalized range profiles of test target 

and candidate target in database with a range shift r∆  is defined as  

 

dr)rr(R̂)r(R̂)r(c candidatetest∫ +⋅= ∗ ∆∆  (A.2) 

 

where )r(R̂test  and )rr(R̂candidate ∆+∗  are the normalized range profiles of test and 

candidate targets, respectively. The maximum of the quantity )r(c ∆  is referred to as 

matching score of these two range profile and is equal to one, if and only if 

)r(R̂C)r(R̂ candidatetest
∗= . The matching score is defined as coherent or incoherent 

depending on whether the complex range profiles or the magnitudes of the range 

profiles are used.  
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The range profile has often been worked as a potential method for the target 

recognition in many studies in literature [143]-[152]. However, the true physical 

target length might not be determined accurately with this method. Even if the length 

could be measured with accuracy, a serious problem exists that the details of range 

profile can change with only a small change in aspect angle. Therefore, when 

creating a library of range profiles to be used to match an unknown profile, each 

target in database has to be characterized by many reference range profiles 

corresponding to different aspect angles. Therefore, a huge number of reference 

range profiles must be stored in database for each target increasing the need for 

memory storage space and decreasing the real time recognition speed. These factors 

make the use of high resolution range profiles for target recognition not so practical 

in realistic target recognition scenarios [152], [153].     

 

• Scattering Center Method 

 

The target recognition methods based on scattering center determination are similar 

to high resolution range profile methods, as the crucial points in range profiles, 

which are called as scattering centers, are used for target characterization instead of 

full range profiles. It has been discussed in literature [154] that at sufficiently high 

frequencies, the scattering response of a target can be well approximated by a sum of 

responses from individual scatterers or scattering centers located at the target as seen 

in Figure A.4.  
 

 
 

Figure A.4 The scattering center representation of a target. 
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Therefore, the high-frequency scattered field, iy , at the frequency if  can be 

represented using undamped exponentials as   

 

N,....,2,1i),r
c
f4

jexp(ay k

L

1k

i
ki =−=∑

=

π
 (A.3) 

 

where kr  is the location of the kth scattering center, ka  is the associated amplitude, L 

is the number of scattering centers on the target and N is the number of frequency 

samples. A modified parametric approach to this scattering center method is reported 

in literature [155]-[157] where the diffraction coefficients of the scatterers are also 

taken into account. The scattering center distribution provides an insight into the 

geometrical and physical characteristics of the target and can be used in target 

recognition [158]-[160]. Target recognition methods based on scattering center 

extraction have been investigated by several researchers [161]-[163]. Target features 

in terms of one-dimensional, two-dimensional and three-dimensional scattering 

centers [164]-[169] have been used to identify targets. However, scattering center 

extraction algorithms are not robust to noise, which restricts target recognition 

performance of such algorithms. Besides, the scattering center extraction is highly 

aspect dependent which leads to a significant storage retrieval problem.     

 

• Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar 

(ISAR) 

 

The two-dimensional image of a target (in range and cross-range) can be obtained by 

use of an imaging radar such as synthetic aperture radar (SAR) and inverse synthetic 

aperture radar (ISAR). 
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Synthetic aperture radar (SAR) is a form of radar in which sophisticated post-

processing of radar data is used to produce a very narrow effective beam. SAR 

produces a high-resolution image of a scene of the target’s surface in both range and 

cross-range [170]. It can produce images of scenes at long range which are not 

possible with infrared and optical sensors. It is restricted to be used only by moving 

instruments over recognition of stationary targets, but it is widely used in remote 

sensing, mapping, target recognition, military and space applications [171]-[174]. In 

the basic operation of a SAR application, a single radar antenna is attached to the 

side of an aircraft or a space shuttle. Therefore, rather than constructing a large 

physical phased array antenna to meet the requirements of high-resolution imaging, a 

single array element of the antenna is implemented on a moving and then utilized 

from the antenna platform to obtain a complete array performance. During the 

motion of the antenna, at each element position, a pulse is transmitted and the 

resulting fast-time data collected. When the antenna element has traversed the length 

of the complete array, the data from each position is coherently combined through 

signal processing to create the effect of a large phased array. Thus, the system 

synthesizes a large phased array antenna aperture by operating a single element from 

multiple locations in space. The fundamental limitation of SAR is that the theoretical 

cross-range resolution is D/2, where D is the the dimension of SAR’s real antenna 

aperture [175]. A typical example to a SAR image, an X-band SAR image of Venus, 

is shown in Figure A.5.      
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Figure A.5 The surface of Venus imaged by the Magellan probe using SAR.  

 

 

Inverse Synthetic Aperture Radar (ISAR) is a technique to identify the scattering 

centers of the target with high spatial resolution. A fine two-dimensional scattering 

map of the target is generated by using a large bandwidth transmitted signal in order 

to achieve high range resolution; and by coherently processing the echoes received 

from different aspect angles of the target, to achieve fine cross-range resolution. 

ISAR can be considered as a radar in which the cross-range resolution is obtained by 

means of high resolution in the doppler frequency domain. Each part of a moving 

target can have a different velocity with respect to radar. Resolution in doppler 

frequency allows the parts of moving target to be resolved in the cross range. The 

cross-range resolution is λ/(2∆θ), where ∆θ is the change in aspect angle during the 

observation time and λ is the operating wavelength. Resolution in range is obtained 

with either a short pulse or pulse compression so that a two-dimensional image is 

obtained. Unlike SAR, ISAR takes the advantage of target’s motion to provide a 

two-dimensional image. The availability of this two-dimensional high resolution 

image permits the radar to better identify the target and it can also be useful for the 

purpose of target recognition [176]-[180]. As an example, the resulting ISAR image 
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of an L-1011 commercial aircraft with a X-band radar made up by superimposing 

three independent images is shown in Figure A.6 along with a plan view drawing of 

the L-1011 for comparison [181], [182].  
 

  
(a) (b) 

 

Figure A.6 (a) ISAR image of an L-1011 aircraft  (b) Outline drawing of the same 

aircraft [181], [182].  

 

 

• Other methods 

 

As mentioned before, the scattered signal from a target is highly dependent on the 

polarization of the incident and reflected fields. The target recognition methods 

based on this polarization diversity generally requires the data of what is called the 

polarization matrix. This is obtained from the scattered signals received on both 

horizontal and vertical polarizations. The polarization matrix is a 22×  complex 

scattering operator which characterizes a target’s scattering properties where HH and 

VV are both co-polar components and HV and VH are both cross-polar components. 

There have been many attempts to use the polarization matrix of the target’s 

scattered signal and other polarization features for target recognition [183]-[185]; 

however, there has not been the desired success in applying these methods for 

practical target recognition [1]. 
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In addition to optical region methods explained so far, there exist some other 

methods in literature such as genetic algorithm methods (neural network (NN) 

methods, support vector machine (SVM) methods) [186], [187] or probabilistic 

methods such as hidden-Markov model (HMM) and the Bayesian algorithm [188], 

[189]. 

 

 

 



 225

 

APPENDIX B 

DERIVATION OF SINGULARITY EXPANSION 

METHOD 

 

 

 

In this appendix, important steps of the derivation of singularity expansion method 

are given since the complete derivation is over 40 pages [11]. It is well-known in 

literature [34] that the Electric Field Integral Equation (EFIE) and Magnetic Field 

Integral Equation (MFIE) for the scattering problem involving a perfect conducting 

target in Laplace domain are given in Equation (B.1) and Equation (B.2), 

respectively, as   
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where S is the surface of conducting target, SJ
r

 is the induced current density on the 

exterior side of S and 
'rr

c
s

e
'rr4

1)s,'r,r(G
rr

rr
rr −−

−
=

π
 is the free space Green’s 

function. The integral equations for dielectric targets also exist; but, the derivation is 

given here for perfectly conducting objects which have exterior target poles only. 

However, the derivation can be easily repeated for other targets with interior poles 

with the same approach. For the rest of the derivation, it is convenient to use a 

notation given in Equation (B.3) due to simplicity.       
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where )s,r(F rr
 is the forcing function such as normalized temporal delta function 

incident electric or magnetic field and )s,'r,r( rrr
Γ  is the dyadic kernel of the integral 

equations [34]. It can be shown that these kernels are bounded operators analytic in 

the entire s plane. Besides, the square of them are Hilbert-Schmidt operators. These 

give a solution for current which is an analytic function of s except poles in the finite 

s plane [30].   

 

If the target is complicated (geometry or material composition) then using method of 

moments (MoM) these integral equations can be converted into a matrix equation in 

the form 

 

( ) N,...,2,1m,n)s(F)s(j)s( nmm,n ==⋅Γ  (B.4) 

 

The elements of )s(m,nΓ  are related to the Green’s functions which are analytic 

functions of s except s=0. So, they are entire functions except for finite order poles at 

s=0. Besides, the elements of forcing vectors )s(Fn  are entire functions 
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corresponding to delta function excitation in time domain. The solution of Equation 

(B.4) can be given as          
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In the finite s plane ))s(F))s((adj( nm,n •Γ  and [ ] 1
m,n ))s(det( −Γ have only pole 

singularities, therefore, )s(jm  has also only pole singularities. The natural 

frequencies and natural modes of the integral equations in (B.2) for the delta function 

response can be found with the non-trivial solution of Equation (B.3) that     

 

0)'r(v)s,'r,r(
rrrrrr

=• ααΓ  (B.6) 

 

where )'r(v rr
α  is the natural mode belonging to the non-trivial solution of the 

equations without a forcing function at αs . The MoM version of this equation is  
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 (B.7) 

 

which gives an equation for the natural frequencies as [ ] 0))s(det( m,n =αΓ . It is 

crucial that the elements of )s(m,nΓ  depends on target’s material properties and 

geometry and not on the forcing function or spatial coordinates (aspect angle of 

incident wave). Thus, αs  values depend only on the shape, size and material 

properties of a target. Then, the Laplace transformed surface currents induced by 

delta function excitation on finite-size perfectly conducting targets are 
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where )s(αη  can be called as the coupling coefficient which is the strength of the 

natural oscillation depending on the target and forcing function parameters such as 

polarization and propagation direction of the incident wave. )s,r(W rv
 is an entire 

function representing the trivial solution of integral equations due to forcing 

response. Besides, according to Mittag-Leffler theorem, each pole term in the infinite 

series requires an entire function to guarantee convergence of the series, which also 

explains the necessity of this entire function. These additional entire functions, which 

depend on the target parameters, position on the target and incident wave parameters, 

have not been shown explicitly due to the simplicity of the proof. In this equation, it 

is also assumed to be only first-order pole as the singularities by excluding both 

essential singularities and branch point singularities with their associated branch cuts 

[11].   

 

In order to find the coupling coefficients, first it should be needed to find the 

coupling vectors belonging to αs from     

 

0)s,'r,r()r( =• αα Γµ rrrrr
 (B.9) 

 

Then, the kernel of the integral equation and forcing function can be expanded in a 

power series around αs  as 
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By equating the coefficient of the )ss( α−  term gives respectively at αs  
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By operating on the left by )r( rr
αµ  and using (B.9) to the first term in (B.11) is 

thereby made to be zero. So, the equation is solved for the coupling coefficient as 
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As seen from Equation (B.12), the coupling coefficient depends on the parameters of 

forcing function (incident wave) such as polarization and target geometry. This 

coupling coefficient can also be thought as the residue belonging to αs . 

 

For finite size objects, the electric and magnetic fields have properties similar to that 

associated with complex natural frequencies, natural modes and possible entire 

functions for the surface currents. Once the surface current is found, by using 

classical radiation expression the scattered electric and magnetic fields at point 

),,r( o φθ  can be written as 
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From Equation (B.13), the field expressions are again related to the Green’s 

functions. So, these Green’s functions do not add a new pole (possibly add a pole at 

s=0) to the poles of surface current, then the poles of fields and surface current are 

identical which are crucially dependent only on the shape, size and material 

properties of a target and independent from propagation direction (aspect angle) of 

incident wave, position (aspect angle) of the receiving point and polarization of the 

incident and reflected waves. The entire function in the surface current also exists in 

the field expressions in different form which correspond to the specular fields 

contributing to early-time response. This entire function is highly dependent on the 

incident wave and target parameters. The residues corresponding to the poles of the 

field expressions are also highly dependent on the receiving position (aspect angle) 

since Green’s functions in (B.13) containing or
r  in their argument and polarization of 

the incident and reflected fields. Finally, the total reflected electric field can be 

expressed formally in the Laplace domain by an expansion over the poles of the 

meromorphic function plus an entire function as 
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where a similar expression can also be written for magnetic field.  

        



 231

APPENDIX C 

SCATTERED FIELD EXPRESSIONS FOR PERFECTLY 

CONDUCTING AND DIELECTRIC SPHERES 

 

 

 

Let a dielectric sphere of given isotropic characteristics ),( oor µεε  be immersed in 

an x polarized electric field of a plane wave as shown in Figure C.1. 

 

 Pobservation (R,θ,φ) 
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zkj
0x

inc eEâE −=
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Figure C.1 The geometry for scattered electromagnetic fields from the spherical 

targets. 

 

 

This incident and scattered electric and magnetic fields can be expressed in terms of 

Hertz and Debye potentials as [108] 
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where electric Hertz potential, eπ
r , called the electric wave or transverse magnetic 

wave (TM) and magnetic Hertz potential, mπ
r , called the magnetic wave or 

transverse electric wave (TE) satisfy the following forms of the general vector wave 

equations: 
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where P
r

 and M
r

 are the electric and magnetic polarizations arise from the electric 

and magnetic dipoles. In terms of Debye potentials, the component of the scattered 

electric field vectors in spherical coordinates in vacuum are given by 
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The Hertz-Debye potentials are also solutions of the scalar wave equation which can 

be solved by the method of separation of the variables. In spherical coordinates, the 

wave equation becomes 
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The general solution of Equation (C.4) is given in Equation (C.5) that the details and 

extraction of this solution can be found in many books [40], [107], [108].  
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where ( )( )θcosP 1
n  are the associated first kind Legendre polynomials. The functions 

of ( )kRjn , ( )kRnn  and ( )( )kRh 2
n  are spherical Bessel, Neumann and Hankel 

functions where ( )( )kRh 2
n  has the property of vanishing when kR becomes infinite 

and is useful for this reason.  

 

The incident field can be written in Equation (C.7) by utilizing from expressions in 

Equation (C.6) after a long mathematical computation. 
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By using Equation (C.1) and (C.7), the Debye potentials for the incident field can be 

written as 
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The functions ( )Rkn on  have been dropped from these expressions since they are 

infinite at the origin through which the incident wave must pass. The expressions of 

Debye potentials for scattered field and the field inside sphere are given as 
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Again, only the function ( )Rkn orn ε  may be used in the expression for the potential 

inside the sphere since ( )Rkn orn ε  becomes infinite at the origin. On the other 

hand, the scattered wave must vanish at infinity and ( )Rkh o
)2(

n  function imparts 

precisely this property. The constants nnn c,b,a and nd  can be determined by 

requiring the tangential components of electric and magnetic fields to be continuous 

at the surface of the sphere (i.e., at R=a). In terms of Debye potentials, these 

conditions take the form 
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By inserting series expressions in Equation (C.8) and (C.9) into (C.10) gives 
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These coefficients are important that the complex natural resonance frequencies 

(pole values) can be found from these na and nb  coefficients where resonances 

occur when denominators in Equation (C.11) vanish. The root values for the 
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denominators of na and nb  give TM and TE mode poles for spheres, respectively. It 

is particularly interesting to evaluate the scattered fields in the radiation region. This 

can be done by introducing the asymptotic values of Hankel functions as follows:           
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Besides, the radial component rE  falls off as 2R  so that they can be neglected in the 

far-field zone. The fields can be obtained by inserting Equation (C.9) into (C.1)  
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The field expressions in Equation (C.13) are general for all spheres (dielectric, 

perfectly conducting); however, the coefficients of na and nb  simplifies to Equation 

(C.14) for perfectly conducting sphere by taking 
∞→r
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 of expressions in Equation 
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The n=1 TM mode, for example, has a resonance at 5.0j866.0ako +±=  by 

equating 1a in Equation (C.14) to zero. 
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APPENDIX D 

A SAMPLE PROGRAM CODE WRITTEN IN MATLAB 

FOR AIRCRAFT TARGET SET 

 

 

 

In this Appendix Section, the program codes of the proposed target recognition 

method in MATLAB after the generation of time domain responses of scattered 

fields are given. 

 

warning('off','MATLAB:dispatcher:InexactMatch') 
clear all 
close all 
load ucak1_60_5_1024time.mat    %loading all time domain responses 
… 
load ucak5_60_82_1024time.mat 
%%%%%%%% 
xnorm1=ucak1_60_5_1024time(1:end).';  %choosing reference aspect angles 
xnorm1(2,1:end)=ucak1_60_15_1024time(1:end).'; 
xnorm1(3,1:end)=ucak1_60_30_1024time(1:end).'; 
xnorm1(4,1:end)=ucak1_60_45_1024time(1:end).'; 
xnorm1(5,1:end)=ucak1_60_75_1024time(1:end).'; 
… 
xnorm1(25,1:end)=ucak5_60_75_1024time(1:end).'; 
%%%%%%%%  
for uo=1:25 
noise=noisecg(length(xnorm1(uo,:)));  realnoise=real(noise); 
realnoise=realnoise-mean(realnoise);    
SNRref=10;         % SNR in dB in construction of FMSMs 
y1=sigmerge(xnorm1(uo,:)',realnoise,SNRref); 
xnorm(uo,:)=mean(y1,2); xnorm2(uo,:)=interp1(xnorm(uo,:),1:0.5:512,'linear'); 
end 
%%%%%%%%%% 
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N=128; m=N/2; n=32; temp=0; 
for you=1:2      
           if you==1 
              for ii=1:8 
              T=0;GG=0; 
                for kk=1:25 
                 y=real(xnorm(kk,1+(ii-1)*32:128+(ii-1)*32));      
                 y=y(:); 
                 N=length(y);                       % data length 
                 % compute the sample covariance matrix 
                 R=zeros(m,m); 
                     for i = m : N, 
                     R=R+y(i:-1:i-m+1)*y(i:-1:i-m+1)'/N; 
                     end 
                 % get the eigendecomposition of R; use svd because it sorts eigenvalues 
                 [U,D,V]=svd(R); G=U(:,n+1:m); 
                 GG = G*G'; % find the coefficients of the polynomial  
                       for u=1:151 
                          for v=1:257 
                          alpha(u)=-(u-1)*0.0006; w(v)=(v-1)*0.00390625*pi; 
                          s(u,v)=-alpha(u)+j*w(v);a=exp(s(u,v)*(0:m-1)); 
                          a=a./norm(a); T(u,v,kk)=abs(1./(a*GG*a')); 
                          end 
                       end 
                end 
                for kk=1:25 
                  T(:,:,kk)=T(:,:,kk)./norm(T(:,:,kk),'fro'); 
                end   
                T_totalucak1(:,:,ii)=T(:,:,1)+T(:,:,2)+T(:,:,3)+T(:,:,4)+ T(:,:,5); 
                … 
                T_totalucak5(:,:,ii)=T(:,:,21)+T(:,:,22)+T(:,:,23)+T(:,:,24)+ T(:,:,25); 
                T_totalucak1(:,:,ii)=T_totalucak1(:,:,ii)./norm(T_totalucak1(:,:,ii),'fro'); 
                … 
                T_totalucak5(:,:,ii)=T_totalucak5(:,:,ii)./norm(T_totalucak5(:,:,ii),'fro'); 
                %%%%%%%% 
                corrcoef1(1,1)=sum(sum(T(:,:,1).*T_totalucak1(:,:,ii))); 
                corrcoef1(2,1)=sum(sum(T(:,:,2).*T_totalucak1(:,:,ii))); 
                … 
                corrcoef1(25,1)=sum(sum(T(:,:,25).*T_totalucak5(:,:,ii))); 
                corrcoef2(1,1)=sum(sum(T(:,:,1).*T_totalucak2(:,:,ii))); 
                corrcoef2(2,1)=sum(sum(T(:,:,2).*T_totalucak2(:,:,ii))); 
                … 
                corrcoef2(100,1)=sum(sum(T(:,:,25).*T_totalucak4(:,:,ii))); 
                 
                CCF(ii)=(sum(corrcoef1)/25-sum(corrcoef2)/100) 
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                    if CCF(ii)>temp 
                       temp=CCF(ii); qstar=ii; 
                    end 
              end 
           else 
              for ii=1:16 
              T=0;GG=0; 
                for kk=1:25 
                 y=real(xnorm2(kk,1+(ii-1)*32:128+(ii-1)*32));      
                 y=y(:); 
                 N=length(y);                       % data length 
                 % compute the sample covariance matrix 
                 R=zeros(m,m); 
                     for i = m : N, 
                     R=R+y(i:-1:i-m+1)*y(i:-1:i-m+1)'/N; 
                     end 
                 [U,D,V]=svd(R);G=U(:,n+1:m);GG = G*G'; 
                       for u=1:151 
                          for v=1:257 
                          alpha(u)=-(u-1)*0.0006; w(v)=(v-1)*0.00390625*pi/2; 
                          s(u,v)=-alpha(u)+j*w(v);a=exp(s(u,v)*(0:m-1)); 
                          a=a./norm(a); T(u,v,kk)=abs(1./(a*GG*a')); 
                          end 
                       end 
                end 
 
                for kk=1:25 
                  T(:,:,kk)=T(:,:,kk)./norm(T(:,:,kk),'fro'); 
                end   
                T_totalucak1(:,:,8+ii)=T(:,:,1)+T(:,:,2)+T(:,:,3)+T(:,:,4)+ T(:,:,5); 
                … 
                T_totalucak5(:,:,8+ii)=T(:,:,21)+T(:,:,22)+T(:,:,23)+T(:,:,24)+ T(:,:,25); 
         T_totalucak1(:,:,8+ii)=T_totalucak1(:,:,8+ii)./norm(T_totalucak1(:,:,8+ii),'fro'); 
         … 
         T_totalucak5(:,:,8+ii)=T_totalucak5(:,:,8+ii)./norm(T_totalucak5(:,:,8+ii),'fro');                         
         %%%%%%%% 
                corrcoef1(1,1)=sum(sum(T(:,:,1).*T_totalucak1(:,:,8+ii))); 
                corrcoef1(2,1)=sum(sum(T(:,:,2).*T_totalucak1(:,:,8+ii))); 
                … 
                corrcoef1(25,1)=sum(sum(T(:,:,25).*T_totalucak5(:,:,8+ii))); 
                corrcoef2(1,1)=sum(sum(T(:,:,1).*T_totalucak2(:,:,8+ii))); 
                corrcoef2(2,1)=sum(sum(T(:,:,2).*T_totalucak2(:,:,8+ii))); 
                … 
                corrcoef2(100,1)=sum(sum(T(:,:,25).*T_totalucak4(:,:,8+ii))); 
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                CCF((8+ii)=(sum(corrcoef1)/25-sum(corrcoef2)/100) 
                    if CCF(8+ii)>temp 
                       temp=CCF(8+ii); qstar=8+ii; 
                    end 
              end 
     end 
end 
 
xnorm1(21,1:end)=ucak1_60_10_1024time;  %loading other signals 
… 
xnorm1(60,1:end)=ucak5_60_82_1024time; 
  
for uo=1:60 
noise=noisecg(length(xnorm1(uo,:))); realnoise=real(noise); 
realnoise=realnoise-mean(realnoise); SNRtest=5   %SNR in dB of test signals 
y1(:,iter)=sigmerge(xnorm1(uo,:)',realnoise,5); 
xnorm(uo,:)=mean(y1,2); xnorm2(uo,:)=interp1(xnorm(uo,:),1:0.5:512,'linear'); 
end 
  
T=0;GG=0; 
%%%%%%%%%% 
if qstar<9 
   for kk=1:60 
       y=real(xnorm(kk,(qstar-1)*32:128+(qstar-1)*32));   
      y=y(:); N=length(y); R=zeros(m,m); 
        for i = m : N, 
        R=R+y(i:-1:i-m+1)*y(i:-1:i-m+1)'/N; 
        end 
      [U,D,V]=svd(R); G=U(:,n+1:m); GG = G*G';    
      for u=1:151 
          for v=1:257 
          alpha(u)=-(u-1)*0.0006; w(v)=(v-1)*0.00390625*pi; 
          s(u,v)=-alpha(u)+j*w(v); a=exp(s(u,v)*(0:m-1)); 
          a=a./norm(a); T(u,v,kk)=abs(1./(a*GG*a')); 
          end 
      end 
   end 
      for kk=1:60 
        T(:,:,kk)=T(:,:,kk)./norm(T(:,:,kk),'fro'); %construct MSMs of test signal 
      end 
%correlation coefficients between FMSMs and MSMs 
    corrcoef3(1,1)=sum(sum(T(:,:,1).*T_totalucak1(:,:,qstar))); 
    … 
    corrcoef3(60,1)=sum(sum(T(:,:,60).*T_totalucak1(:,:,qstar)));     
    corrcoef3(1,2)=sum(sum(T(:,:,1).*T_totalucak2(:,:,qstar))); 
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    … 
    corrcoef3(60,2)=sum(sum(T(:,:,60).*T_totalucak2(:,:,qstar))); 
    … 
    corrcoef3(60,5)=sum(sum(T(:,:,60).*T_totalucak5(:,:,qstar))) 
else 
    for kk=1:60 
       y=real(xnorm(kk,(qstar-9)*32:128+(qstar-9)*32));   
      y=y(:); N=length(y); R=zeros(m,m); 
        for i = m : N, 
        R=R+y(i:-1:i-m+1)*y(i:-1:i-m+1)'/N; 
        end 
      [U,D,V]=svd(R); G=U(:,n+1:m); GG = G*G';    
      for u=1:151 
          for v=1:257 
          alpha(u)=-(u-1)*0.0006; w(v)=(v-1)*0.00390625*pi/2; 
          s(u,v)=-alpha(u)+j*w(v); a=exp(s(u,v)*(0:m-1)); 
          a=a./norm(a); T(u,v,kk)=abs(1./(a*GG*a')); 
          end 
      end 
   end 
      for kk=1:60 
        T(:,:,kk)=T(:,:,kk)./norm(T(:,:,kk),'fro'); %construct MSMs of test signal 
      end 
%correlation coefficients between FMSMs and MSMs 
    corrcoef3(1,1)=sum(sum(T(:,:,1).*T_totalucak1(:,:,qstar))); 
    … 
    corrcoef3(60,1)=sum(sum(T(:,:,60).*T_totalucak1(:,:,qstar)));     
    corrcoef3(1,2)=sum(sum(T(:,:,1).*T_totalucak2(:,:,qstar))); 
    … 
    corrcoef3(60,2)=sum(sum(T(:,:,60).*T_totalucak2(:,:,qstar))); 
    … 
    corrcoef3(60,5)=sum(sum(T(:,:,60).*T_totalucak5(:,:,qstar))) 
end 
% Find the accuracy rates in percentage for 0% and 5% margin 
for kkk=1:12 
        if corrcoef3(kkk,1)>max([corrcoef3(kkk,2),…,corrcoef3(kkk,5)]) 
            number=number+1; 
        end 
        if 0.95*corrcoef3(kkk,1)>max([corrcoef3(kkk,2),…,corrcoef3(kkk,5)]) 
            number1=number1+1; 
        end 
    if corrcoef3(kkk+12,2)>max([corrcoef3(kkk+12,1),…,corrcoef3(kkk+12,5)]) 
            number=number+1; 
   end 
   if 0.95*corrcoef3(kkk+12,2)>max([corrcoef3(kkk+12,1),…,corrcoef3(kkk+12,5)]) 
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            number1=number1+1; 
   end 
    if corrcoef3(kkk+24,3)>max([corrcoef3(kkk+24,1),…,corrcoef3(kkk+24,5)]) 
            number=number+1; 
   end 
   if 0.95*corrcoef3(kkk+24,3)>max([corrcoef3(kkk+24,1),…,corrcoef3(kkk+24,5)]) 
            number1=number1+1; 
   end 
    if corrcoef3(kkk+36,4)>max([corrcoef3(kkk+36,1),…,corrcoef3(kkk+36,5)]) 
            number=number+1; 
   end 
   if 0.95*corrcoef3(kkk+36,4)>max([corrcoef3(kkk+36,1),…,corrcoef3(kkk+36,5)]) 
            number1=number1+1; 
   end 
    if corrcoef3(kkk+48,5)>max([corrcoef3(kkk+48,1),…,corrcoef3(kkk+48,4)]) 
            number=number+1; 
   end 
   if 0.95*corrcoef3(kkk+48,5)>max([corrcoef3(kkk+48,1),…,corrcoef3(kkk+48,4)]) 
            number1=number1+1; 
   end 
end 
 
perc_0=number*100/60;  %the percentage for 0% margin 
perc_5=number1*100/60;  %the percentage for 5% margin 
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