
 
 

HIGHLY EFFICIENT NEW METHODS OF CHANNEL ESTIMATION FOR 
OFDM SYSTEMS 

 
 
 
 
 
 

A THESIS SUBMITTED TO  
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES  

OF  
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 

BY 
 
 
 
 

SELVA MURATOĞLU ÇÜRÜK 
 
 
 
 
 
 
 

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF DOCTOR OF PHILOSOPHY 
IN 

ELECTRICAL AND ELECTRONICS ENGINEERING 
 
 
 
 
 
 
 

FEBRUARY 2008 
 



 
 
 
 

Approval of the thesis: 
 
 

HIGHLY EFFICIENT NEW METHODS OF CHANNEL ESTIMATION 
FOR OFDM SYSTEMS 

 
 
 
submitted by SELVA MURATOĞLU ÇÜRÜK in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in Electrical and 
Electronics Engineering Department, Middle East Technical University by, 
 
 
Prof. Dr. Canan Özgen  ______________ 
Dean, Graduate School of Natural and Applied Sciences 
 
Prof. Dr. İsmet Erkmen  ______________ 
Head of Department, Electrical and Electronics Engineering 
 
Prof. Dr. Yalçın Tanık ______________ 
Supervisor, Electrical and Electronics Engineering Dept., METU  
 
 
 
Examining Committee Members: 
 
Prof. Dr. Mehmet Şafak ______________ 
Electrical and Electronics Engineering Dept., HU 
 
Prof. Dr. Yalçın Tanık ______________ 
Electrical and Electronics Engineering Dept., METU 
 
Assoc. Prof. Dr. Melek Yücel ______________ 
Electrical and Electronics Engineering Dept., METU 
 
Asst. Prof. Dr. Ali Özgür Yılmaz ______________ 
Electrical and Electronics Engineering Dept., METU 
 
Asst. Prof. Dr. Elif Uysal Bıyıkoğlu ______________ 
Electrical and Electronics Engineering Dept., METU 

 
 

Date: 05.02.2008 
 



 
iii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also 
declare that, as required by these rules and conduct, I have fully cited and 
referenced all material and results that are not original to this work. 

 

Name, Last name  : Selva Muratoğlu Çürük 

Signature  :  

 



 
iv 

ABSTRACT 

 

HIGHLY EFFICIENT NEW METHODS OF CHANNEL 
ESTIMATION FOR OFDM SYSTEMS 

 

 

Çürük, Selva Muratoğlu 

Ph. D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Yalçın Tanık 

 

February 2008, 144 pages 

 

 

 

In the first part, the topic of average channel capacity for Orthogonal Frequency 

Division Multiplexing (OFDM) under Rayleigh, Rician, Nakagami-m, Hoyt, 

Weibull and Lognormal fading is addressed. With the assumption that channel 

state information is known, we deal with a lower bound for the capacity and find 

closed computable forms for Rician fading without diversity and with Maximum 

Ratio Combining diversity at the receiver. Approximate expressions are also 

provided for the capacity lower bound in the case of high Signal to Noise Ratio. 

This thesis presents two simplified Maximum A Posteriori (MAP) channel 

estimators to be used in OFDM systems under frequency selective slowly varying 

Rayleigh fading. Both estimators use parametric models, where the first model 

assumes exponential frequency domain correlation while the second model is 

based on the assumption of exponential power delay profile. Expressions for the 

mean square error of estimations are derived and the relation between the 

correlation of subchannel taps and error variance is investigated. Dependencies of 



 
v 

the proposed estimators’ performances on the model parameter and noise variance 

estimation errors are analyzed. We also provide approximations on the estimators’ 

algorithms in order to make the estimators practical. Finally, we investigate SER 

performance of the simplified MAP estimator based on exponential power delay 

profile assumption used for OFDM systems with QPSK modulation. The results 

indicate that the proposed estimator performance is always better than that of the 

ML estimator, and as the subchannel correlation increases the performance comes 

closer to that of perfectly estimated channel case. 

 

Keywords: Orthogonal Frequency Division Multiplexing, Channel Capacity, 

MAP Channel Estimator, MSE, SER. 
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ÖZ 

 

OFDM SİSTEMLERİNDE KANAL KESTİRİMİ İÇİN ÇOK 
ETKİN YENİ METODLAR 

 

 

Çürük, Selva Muratoğlu 

Doktora, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Yalçın Tanık 

 

Şubat 2008, 144 sayfa 

 

 

 

Bu tezin ilk bölümünde Rayleigh, Rician, Nakagami-m, Hoyt, Weibull ve 

Lognormal sönümlü kanallarında Dikgen Sıklık Bölümlü Çoğullama (OFDM)’nın 

ortalama kanal kapasitesi konusu incelenmiştir. Durum bilgisinin bilindiği 

varsayılarak, kanal kapasitesi için bir alt sınırla ilgilenilmiş, ve Rician 

sönümlemeli kanallar için çeşitlemesiz ve almaçta Maksimum Oran Birleşimi 

çeşitlemesi uygulandığı durumda kapalı hesaplanır formlar bulunmuştur. Ayrıca 

sinyal gürültü oranı yüksek olduğunda, kapasite alt sınırı için yaklaşık ifadeler de 

verilmiştir. 

Bu tezde, frekans seçici zamanla yavaş değişen Rayleigh kanallarda kullanılacak 

OFDM sistemleri için basitleştirilmiş iki tane MAP kestirici sunulmuştur. İki 

kestirici de parametric modele dayanmaktadır, öyleki ilk model frekans bölgesi 

ilintisinin üstel olduğunu varsayarken, ikinci model güç gecikme profilinin üstel 

olduğu varsayımına dayanmaktadır. Kestiricilerin başarımını değerlendirmek 

amacıyla ortalama karesel hata ifadeleri bulunmuş ve altkanallar arasındaki ilinti 



 
vii 

ile hata değişintileri arasındaki ilişki incelenmiştir. Önerilen kestiricilerinin 

başarımlarının gürültü değişintisi ve model parametresi hatasına olan 

bağımlılıkları da incelenmiştir. Ayrıca, kesticileri pratikleştirmek amacıyla 

algoritmaları sadeleştirilmiştir. Son olarak, Dördün Faz Kaydırmalı Kiplenimli 

(QPSK) OFDM sistemlerinde kullanılan üstel güç gecikme spektrumuna dayanan 

basitleştirilmiş MAP kestiricisinin Simge Hata Oranı (SER) başarımı 

incelenmiştir. Sonuçlar, önerilen kestiricinin her zaman ML kestiriciye göre daha 

iyi olduğunu göstermiştir. Altkanallar arasındaki ilinti arttıkça, kestirici başarımı 

kanalın tam bilindiği duruma yaklaşmaktadır. 

 

Anahtar Kelimeler: Dikgen Frekans Bölüşümlü Çoğullama, Kanal Kapasitesi, 

MAP Kanal Kestiricisi, MSE, SER. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

1.1 Background 

The proliferating demand for reliable and effective transmission of information 

through various communication media has flourished many interesting research 

areas over the past decades. These led to a rapid growth in the fields of wired and 

wireless communications and to substantial advances in digital transmission 

techniques. Multicarrier Modulation (MCM) is the principle of transmitting data 

by dividing the input stream into several parallel bit streams, each of which has a 

much lower bit rate, and by using these substreams to modulate several carriers. 

The first systems using MCM were military high frequency radio links in 1960s 0, 

[2]. Starting from the early 1990s, multicarrier systems have taken considerable 

attention for their numerous advantages over the conventional single carrier 

schemes.  

Orthogonal Frequency Division Multiplexing (OFDM), a special form of MCM 

with densely spaced subcarriers and overlapping spectra, was patented in 1970 0. 

Instead of using steep bandpass filters that completely separated the spectrum of 

subcarriers, as it was common practice in older Frequency Division Multiplexing 

systems, OFDM waveforms are chosen that mutually orthogonality is ensured 

even though subcarrier spectra may overlap. OFDM is popular for high-data-rate 

wireless communication systems due to its features such as multipath immunity, 

bandwidth efficiency and resistance to narrowband interference. The use of 
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Discrete Fourier Transform (DFT) in modulation and demodulation of OFDM 

systems was first proposed by Weinstein and Ebert in 1971 0. For a relatively 

long time, since implementation aspects such as the complexity of real time 

Fourier transform and the linearity required in radio frequency power amplifiers 

appeared prohibitive, the practicality of the concept seemed to be limited. Today, 

many of the problems associated with OFDM have become solvable and MCM 

has become a part of several international standards [3-5], including Asymmetric 

Digital Subscriber Loop (ADSL) and High-bit-rate Digital Subscriber Loop 

(HDSL), Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB) 

and several wireless local area networks (WLAN) standards like IEEE 802.11a, 

802.16 and ETSI HIPERLAN type II, for spectrally efficient very high data rate 

wireless services. 

Capacity analysis of multipath fading channels is an important and fundamental 

issue in the design and study of wireless communication systems due both to the 

scarce radio spectrum available and to the rapidly growing demand for wireless 

services. Indeed, the performance limit of any coding and modulation technique is 

dictated by the channel capacity bound. Accordingly, there have been many 

papers dealing with the instantaneous channel capacity of various fading channels, 

in the past decade [1, 2, 6-16]. Moreover, studies that present average channel 

capacity for Rayleigh fading channels [1, 2, 15, 16], Nakagami-m fading channels 

[7] and Hoyt fading channels [8] have been published. Some of these studies have 

dealt with multiple input multiple output (MIMO) systems, and the performance 

of OFDM has been studied. In 0, the capacity bounds and performance of adaptive 

loading OFDM under frequency selective Rayleigh fading channel conditions 

have been investigated, assuming that the channel state information is available to 

the transmitter. The average capacity with ideal maximum ratio combining (MRC) 

diversity at the receiver is also evaluated. We aim to expand the results obtained 

in 0, which are for Rayleigh fading, to other channel models, especially for Rician 

channels, since studies have shown that indoor fading is often expected to be 

Rician distributed. 
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In this thesis, the topic of average channel capacity for OFDM under Rayleigh, 

Rician, Nakagami-m, Nakagami-q, Weibull and Lognormal fading is extensively 

addressed. The performance of OFDM under Rician fading, with MRC diversity 

at the receiver is also investigated. Following the investigation and comparison, 

we deal with a lower bound given in 0 for the sake of simple computable and 

handy forms. Finally, we reach a closed form expression for the Rician fading 

channel. Approximate expressions for the average capacity are also provided for 

high Signal to Noise Ratio (SNR) case. 

In wireless systems, the transmitted signals are subject to the effects of multipath 

channels, caused by the remote terrestrial objects and the inhomogenities in the 

physical medium. These effects will degrade system performance and need to be 

kept to a minimum. Therefore, channel estimation is a demanding task for 

coherent detection in order to reduce the channel impairments and detect the 

transmitted symbols coherently. Dispersion estimation is necessary for many 

wireless communication systems, but it is particularly crucial for OFDM based 

wireless communication systems. Because, although OFDM signaling is proven to 

be an efficient way to overcome the effects of fading channel and multipath, it is 

very sensitive to carrier frequency and phase offset. Basic assumption that 

subcarriers are orthogonal within an OFDM symbol is valid only if perfect 

synchronization is established. Channel estimation is an integral part of the 

synchronization process and performance of the synchronization unit, in particular 

the accurate estimation of the frequency offset and timing error, is of crucial 

influence on the overall OFDM system performance. 

There have been many papers dealing with channel estimation for OFDM systems 

under fading [17-31], which are based on Maximum Likelihood (ML) or 

Maximum A-Posteriori (MAP) techniques. The ML based estimators have 

acceptable complexity, but since they ignore the correlation between subchannels 

they suffer from a high mean-square error (MSE), especially if the system 

operates with low SNR. In contrast, the MAP estimators which use a priori 

channel information have good performance but higher complexity. 
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In OFDM systems, the frequency domain channel coefficients at different 

subcarriers are typically highly correlated. If the correlation between the 

subchannel coefficients is well estimated, MAP estimation procedure can be 

performed optimally. However, in practical systems, such knowledge is not 

precisely available at design time. Because the correlation depends upon the 

power delay profile of the channel impulse response, which is a function of the 

wireless environment in which the system will operate. Additionally, the 

subcarrier phases inevitably fluctuate from packet to packet. Therefore, the phases 

must be estimated dynamically and MAP estimation procedure is an excellent 

candidate for the purpose. 

Some modifications to MAP estimator for simplifying the computations have 

been presented in the literature [27-31]. In [27], the authors introduce a low 

complexity approximation to the frequency-based linear minimum mean square 

error (MMSE) estimator that uses the theory of optimal rank reduction. To reduce 

the implementation complexity, [29] considers the use of a channel estimation 

filter whose tap coefficient is real-valued and symmetrically weighted. In the 

work published in [31], a low-complexity windowed Discrete Fourier Transform 

(DFT) based MMSE channel estimators is presented. However, we believe that 

there is still work to be done to develop an estimator with good performance and 

acceptable complexity. Therefore, we have developed a simplified MAP estimator 

[28], which yields the channel estimates under fading conditions using a 

parametric correlation model. A block estimates this parameter from the channel 

coefficients and feeds it to the MAP estimator. 

The performance of the estimators is another task that should follow, for the sake 

of the completeness. All coherent receivers assume exact channel information. In 

practical situations, however, the estimator will experience estimation errors, 

which leads to detector performance degradation. The error variances of the 

channel coefficients are good indicators of the resultant performance of the 

receiver. Hence, we have determined the error variances of the estimates. We have 
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also analyzed the sensitivity of the proposed estimator to the correlation parameter 

estimation error and SNR estimation error. 

The performance degradation due to the channel estimation error may be analyzed 

by investigating bit error ratio (BER). There have been various works interested in 

BER performances of OFDM systems for different channel estimation methods 

[3], [32-38]. Probability of error expressions for various modulation schemes 

under Rician channel fading are given in [3]. Another method for analytical 

calculation of BER is given in [32], which presents a systematic approach for 

evaluating the BER performance of OFDM receivers in Rayleigh fading when 

pilot aided channel estimate is used. Using these references, BER expressions for 

the proposed simplified MAP estimator are found. 

1.2 Outline 

The rest of this thesis consists of five main chapters. Chapter 2 is devoted to 

channel capacity for OFDM systems under fading. In Chapter 3, after reviewing 

multipath channels and OFDM transmission systems, channel estimation methods, 

namely, ML and MAP estimators, and their MSE and BER performances are 

briefly discussed. Chapter 4 is devoted to the proposal of two simplified MAP 

estimators. Following a description of these estimators, we present the MSE 

performances and sensitivities to model parameters and SNR estimation errors. 

Real channel simulations and results related to the MSE and BER performances 

are given in Chapter 5. Finally, in Chapter 6, we draw our conclusions and discuss 

some possible future research directions in accordance with the study performed 

throughout this study. 
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CHAPTER 2  

 

 

CHANNEL CAPACITY 

 

 

 

In this chapter, the topic of channel capacity for OFDM systems under Rayleigh, 

Rician, Nakagami-m, Hoyt, Weibull and Lognormal fading is addressed in some 

detail. We assume that perfect channel estimates are available to the transmitter 

through an ideal feedback channel. The performance of OFDM under Rician 

fading, with MRC diversity at the receiver is also investigated. 

2.1 Channel Capacity 

2.1.1 Average Capacity of Single Carrier Systems 

In order to assess the performance of any kind of coding and modulation 

technique, the ultimate reference is the channel capacity bound. The capacity of 

an ideal bandlimitted additive white Gaussian noise (AWGN) channel is given by 

the well known result due to Shannon [39]: 

 



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2 1log , (2.1) 

where N0 is the noise power per Hertz, W is the transmission bandwidth and PR is 

the average received power. The channel capacity in a fading channel has to be 

calculated in an average sense. If the transmission time is long enough to reveal 
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the longterm ergodic properties of the channel, a capacity in the Shannon sense 

exists and is given by the ergodic capacity. The instantaneous capacity is [1]: 
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where γ is the instantaneous power gain of the channel for a specific instant. Since 

γ has a certain distribution ( )γp  under fading channel, the average value of 

capacity (ergodic capacity) is expressed as: 
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The ergodic capacity indicates the average over the fading environment. Note that 

if the transmission time is not long enough to reveal the long-term ergodic 

properties of the fading channel, the concept of outage capacity is evoked, in 

which the capacity is viewed as a random variable, because it depends on the 

instantaneous random channel parameters. Thus, the system has no Shannon 

capacity in the strict sense. 

The integral of average channel capacity given in (2.3) is easily evaluated for 

Rayleigh channel, where we can get the following expression for the average 

channel capacity [1]: 

 







=

a

rayleighav Eie
W

C a

γ
γ 1

2ln

1

_ , (2.4) 

where 
WN

PR
a

0

γ
γ =  and ( ) du

u

e
xEi

x

u

∫
∞ −

= . 



 
8 

2.1.2 Average Capacity of OFDM Systems 

We assume that the channel is frequency selective for the whole band, but is 

nearly flat for subbands. Hence, the total bandwidth of the OFDM signal, W, is 

much greater than the coherence bandwidth of the channel (Bc), while subcarrier 

bandwidth is small compared to Bc. We further assume that channel fading is 

independent on each subcarrier. For a given set of channel gains at subcarrier 

frequencies, the capacity maximization problem can be stated as [1]: 

 

NiPPP

fN

P
fC

iR

N

i
i

N

i

ii

..1:,0tosubject

1logMaximize

1

1 0

2

≥=




















∆
+∆=

∑

∏

=

=

γ

, (2.5) 

where f∆  is the subcarrier bandwidth, N is the number of subcarriers, iP  is the 

power assigned to the ith subcarrier, iγ  is the instantaneous SNR at ith subcarrier 

frequency. For the ease of notation, it is assumed that instantaneous SNR’s, iγ ’s 

are grouped in decreasing order, hence 1γ  is the maximum gain and Nγ  is the 

minimum gain (or the largest attenuation). As given in [1], the above problem can 

be solved and we get the following optimal power distribution: 
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where the number D+1 is the minimum index in the set {1/ iγ }, which satisfies 
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The resultant maximum capacity value is: 
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When the result is averaged over the joint probability density function (pdf) of 

iγ ’s, which are independent and identically distributed (distributed according to 

the channel pdf with the same average power), we can get the average capacity of 

OFDM system for any chosen fading. Unfortunately, this approach seems to be 

mathematically intractable. It is even not possible to employ numeric integration 

methods, since the parameter D which appears on the upper limit of summation in 

(2.8) is also a random variable that depends on the channel statistics and 

distribution, and is hard to compute. 

A simple lower bound can be obtained by considering the fact that, any choice of 

power distribution different than the power distribution given by (2.6) yields a 

capacity value less than or equal to the maximum value [1]. Thus, if we uniformly 

distribute the total power over the subcarriers, then the resultant capacity will 

always be less than Cmax. Then, lower bound for capacity is given by [1]: 

 ( ) γγ
γ

dp
WN

P
WC R

l ∫
∞









+=

0 0

2 1log , (2.9) 

where fNW ∆= . It should be noted here that this expression has the same form 

as given in (2.3), in which the average capacity of a constant power variable rate 

single carrier communication is evaluated. 

2.2 Multipath Channels 

The theory for dispersive channels, whether time-invariant or time-varying, has 

been reported systematically over the years [39-43]. Doubtless, the rapid advance 

in technology and the exploding demand for efficient high quality digital wireless 

communications over almost every possible media (cellular, personal, data 

networks, the ambitious wireless high rate ATM networks, point-to-point 
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microwave systems, underwater communications, satellite communications, etc.) 

plays a dramatic role in this trend. Information theoretic study of increasingly 

complicated fading channel models has accelerated to a degree where its impact 

on communications in a fading regime is notable. These studies have already led 

to interesting results, which matured to a large degree in the understanding of 

communications through fading media, under a variety of constraints and models. 

A number of distributions exist that well describe the statistics of the mobile radio 

signals [39]. Extensive field trials have been used to validate these distributions 

and results showed agreement between measurements and theoretical formulas. 

The long-term signal variation is well characterized by the lognormal distribution 

whereas the short-term signal variation is described by several other distributions 

such as Rayleigh, Rice, Nakagami-m, and Weibull. It is generally accepted that 

the path strength at any delay is characterized by the short-term distributions over 

spatial dimensions of a few hundred wavelengths, and by the lognormal 

distribution over areas whose dimension is much larger. Composite distributions 

attempt to describe the transition from the local distribution to the global 

distribution of the path strength, thus combining both fast and slow fading. These 

distributions assume the local mean, which is the mean of fast fading distribution, 

to be lognormally distributed. The best-known composite distributions are 

Rayleigh-lognormal (also known as Suzuki), Rice-lognormal, and Nakagami-

lognormal. 

Among these, Nakagami-m distribution has been given a special attention for its 

ease of manipulation and wide range of applicability. Although, in general, it has 

been found that the fading statistics of the mobile radio channel may well be 

characterized by the Nakagami-m, situations are found for which Rice and even 

Weibull yield better results. Some studies even question the use of Nakagami-m 

distribution because its tail does not seem to yield a good fitting to experimental 

data, better fitting being found around the mean or median. More importantly, 

situations are encountered for which no distributions seem to adequately fit 

experimental data, though one or another may yield a moderate fitting. 
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2.2.1 Rayleigh Fading Channels 

In macrocellular environments, fading appears as Rayleigh distributed, because 

the transmitted field is heavily scattered between the transmitter and the receiver. 

In fact, Rayleigh distribution constitutes a special case of the Rice, Nakagami-m, 

Weibull and the composite distributions and can be obtained in an exact manner 

by appropriately setting the parameters of these distributions. 

Rayleigh distribution is used to model multipath fading with no direct line of sight 

(LOS) path. In this case, instantaneous SNR per symbol of the ith path, γ, is 

distributed according to an exponential distribution given by [39]: 
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Eb=  denotes the average SNR per symbol of the ith path. Here, α 

is the attenuation factor, and Eb is the bit energy. 

MRC diversity technique is proved to be optimal in the sense that it achieves the 

maximum possible combiner output SNR at any instant of time. It is assumed that 

there are L diversity channels, carrying the same information-bearing signal, each 

channel is frequency nonselective and slowly fading. The fading processes among 

the L diversity channels are assumed to be mutually statistically independent. In 

the MRC, each demodulator output is multiplied by the corresponding complex-

valued (conjugate) channel gain. The effect of this multiplication is to compensate 

for the phase shift in the channel and weight the signal by a factor that is 

proportional to the signal strength [39]. For a Rayleigh fading, the pdf of 

instantaneous SNR at the output of the MRC is [39]: 
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2.2.2 Nakagami-n (Rician) Fading Channels 

Rician distribution is used to model propagation environments consisting of one 

strong direct LOS component and many random weaker components. In 

microcellular or picocellular environments, LOS paths are more likely to exist 

because cell size is smaller and the user is nearer to base stations. Thus, indoor 

fading is often expected to be Rician distributed. 

In Rician fading, γ is distributed according to a non-central chi-square distribution 

given by [43-45]: 
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where K is the Rician factor, γ is the sum of the power in the LOS and local-mean 

scattered power, and In(.) is the nth order modified Bessel function of the first 

kind. The K factor is the ratio of signal power in LOS component over the local-

mean scattered power and ranges from 0=K  (Rayleigh fading) to ∞→K  (no 

fading, constant amplitude). Typical value of K is in the range of 7-12 dB. 

For a Rician fading channel, the pdf of instantaneous SNR at the output of MRC 

is given by [43-45]: 
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where ∑
=

=
L

i
iKK

1

and Ki is the Rician factor of ith diversity branch. 

2.2.3 Nakagami-m Fading Channels 

Nakagami-m distribution fits some urban empirical data well [39]; therefore it is 

often used in performance analysis for fading channels. Its general form takes 
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Rayleigh and one sided Gaussian distributions as special cases. It can also 

approximate Lognormal distribution when certain conditions are satisfied. 

Nakagami-m and Rician are found to approximate each other by some simple 

equations relating the physical parameters associated to each distribution. In 

particular, the approximation to Rician distribution is an attractive feature since 

the Nakagami-m distribution is mathematically more convenient to handle than 

the Rician. However, the approximation to Lognormal distribution is of less 

interest because of certain constraints. 

In Nakagami-m, γ is distributed according to a gamma distribution. Then [39], 

[43]: 
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where ( ).Γ  is the gamma function, and m is the Nakagami-m parameter that 

ranges from 0.5 to ∞. With 5.0=m , it becomes one-sided Gaussian distribution; 

1=m  is Rayleigh fading, and in the limit ∞→m  the Nakagami-m fading channel 

converges to a no-fading AWGN channel. Especially for high m, Nakagami-m can 

approximate Rician for 
( )( )211

1

+−
=

KK
m . 

Any single channel system with Nakagami-m fading, in which the parameter m is 

an integer, is equivalent to an L-channel diversity system for a Rayleigh fading 

channel. Consequently, it follows that a K-channel system transmitting in a 

Nakagami-m fading channel with independent fading is equivalent to an L=K.m 

channel diversity in a Rayleigh fading channel. Under a Nakagami-m fading 

channel, pdf for L-branch MRC, where iim γ  identical across the branches, is 

expressed as [39]: 
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where ∑
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 is the total fading index, ∑
=
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1

γγ  is the total average SNR 

after combining. Here, mi and iγ  are the fading index and the average SNR on the 

ith branch, respectively. 

2.2.4 Nakagami-q (Hoyt) Fading Channels 

The Hoyt fading channels are typically observed on satellite links subject to 

strong ionospheric scintillation. In this case, γ is distributed according to [8], [43], 

[46]: 
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where q is the Hoyt fading parameter ranging from 0=q  for a one-sided 

Gaussian fading to 1=q  for a Rayleigh fading. 

Under Hoyt fading channel with MRC, the pdf of the instantaneous SNR of the 

combiner output is given by [8], [52]: 
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2.2.5 Weibull Fading Channels 

The Weibull distribution was often used to model the time until failure of many 

different physicals systems. Following this, it is used for describing the indoor 

radio channel fading and has been identified as one of the major probability 

distributions for modeling amplitude fading in a multipath environment. It is a 
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flexible model providing a very good fit to experimental fading channel 

measurements for both indoor and outdoor environments. 

The pdf of Weibull is [47-50]: 
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where 0>β . For 1=β , the Weibull distribution is identical to the exponential 

distribution, while for 2=β  the Weibull distribution is equal to the Rayleigh 

distribution. 

2.2.6 Lognormal Fading Channels 

A problem with mobile radio propagation is the effect of shadowing of the signal 

due to large obstructions, such as large buildings, trees and hilly terrain between 

the transmitter and the receiver. Shadowing is usually modeled as a multiplicative 

and, generally, slowly time varying random process; as lognormally distributed.  

The pdf of the instantaneous SNR γ is given by [39], [51]: 
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where µ and σ2 are the mean and variance in decibels of γ10log10 , the SNR. For 

typical cellular and microcellular environments, σ is in the range of 5-12 dB. The 

corresponding average SNR is given by: 
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2.3 Capacity Bounds for Fading Channels 

As already mentioned, the integral for the lower bound of channel capacity under 

Rayleigh fading can easily be evaluated. Lower bound for MRC output under 

Rayleigh fading is also given in 0 and stated below for L=1, 2, 3 and 4: 

( )[ ]

( )

( )

( )











+−+










−+−=












−+










+−=









+







−=

=

−

−

−

−

232

4
,

2

3
,

2
,

1
,

3

8

3

8

6

11

3

3284
14

2ln
)4(

2

3

2

3

2

93
13

2ln
)3(

1
2

12
2ln

)2(

1
2ln

)1(

aaaaa

aMRCrayleighl

aaa

aMRCrayleighl

a

aMRCrayleighl

aMRCrayleighl

Eie
W

C

Eie
W

C

Eie
W

C

Eie
W

C

a

a

a

a

γγγγγ
γ

γγγ
γ

γ
γ

γ

γ

γ

γ

γ

 

 (2.21) 

The results given in (2.21) can be stated as lower bound under Nakagami-m 

fading, with L=K.m if m is integer. 

For Rician fading channels, evaluating the integral in (2.9) and obtaining closed 

form expression for the lower bound is not easy because of complex pdf. 

Therefore, in evaluating the integral we use a series expansion for the logarithm 

function. i.e, 
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where 
WN

PRa
b

0

==
γ

γ
γ  is the SNR, 0x  is the reference point for the series 

expansion, and n is the number of components that the series contain. Series 

convergence is guaranteed when 021 xx b +< γ . For the lower bound of the 

channel capacity under Rician fading, we obtain the following expression: 
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Similarly, for Rician fading with MRC, the channel capacity lower bound is: 

 

( ) ( )
( ) ( )

( ) ( ) ( )
( )!1

!1

1

1

2ln

1

2ln

1ln

0 0
0

1 0

1

0
,

jimL

imL

j

im
K

i

m
LKx

KLxm

x
C

m

i

im

j

jimimii

n

m
mm

b

mm

bb
MRCricianl

−−+−

−+−







 −








+−

⋅
++

−
+

+
=

∑ ∑

∑

=

−

=

−−−

=

−

−

γ

γ

γγ

. (2.24) 

When we substitute K=0 in the above expressions, we obtain Rayleigh fading 

expressions with and without diversity: 
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Further simplifications for the lower bound of channel capacity can be developed 

for specific conditions. For high SNR assumption, the bound in (2.9) becomes 
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Following, the lower bounds for the fading channels are found easily: 
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2.3.1 Simulation Results 

We have employed Monte-Carlo simulation in determining the average capacity 

given in (2.8). For this purpose, we have generated 100,000 independent sets of 

channel coefficients for each fading, then (2.8) has been computed for each set. 

Finally, the average was found. 

The results of the Monte-Carlo simulations for Rician, Nakagami-m, Hoyt, 

Weibull and Lognormal fading are shown in Figure 2.1 - Figure 2.5, respectively. 

In the figures, the average capacity per unit bandwidth, WC  R avav = , is plotted 

against the average received SNR, aγ . The number of carriers N is chosen as 48 1. 

The capacity of the ideal bandlimited AWGN and Rayleigh fading channels are 

given for comparison. In the figures, the average channel capacity per unit 

bandwidth obtained by Monte-Carlo simulations are compared with the lower 

bound expressions by employing numeric integration of (2.9). It is clearly seen 

from the figures that the lower bounds are tight for all fading channels, except for 

Lognormal fading. For Rician, Nakagami-m and Weibull, as the fading factor 

increases, the capacity of channel approaches to the AWGN channel, as expected. 

Again, as the fading factor increases, the lower bounds of channel capacity get 

closer to the average channel capacity values. For the channel under Hoyt fading, 

as the fading factor increases, the capacity approaches to the capacity of Rayleigh 

fading channel, as expected. The lower bound of the channel capacity is tight for 

Hoyt fading, and as the fading factor increases, the bound becomes tighter. For the 

                                                 

 
1 As shown in 0, there is no significant difference between N values greater than 8, for 1 R av ≥ . 
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Lognormal fading channel, as the variance increases, the average capacity 

decreases, which is always lower than the Rayleigh fading channel, as expected. 

For this case, the lower bound of the average capacity is not tight especially for 

large variance. But, still the bound is acceptable for small variance values. 

 

 

 

5 10 15 20
1

2

3

4

5

6

7

Average SNR(dB)

C
/W

Rician, K=4

AWGN

Rician, K=16

Rician, K=0 (Rayleigh)

 

Figure 2.1 Average capacity per unit bandwidth (C/W) versus average SNR of 
OFDM: Rician channel (--: theoretical lower bound, -: simulation result). 
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Figure 2.2 Average capacity per unit bandwidth (C/W) versus average SNR of 
OFDM: Nakagami-m channel (--: theoretical lower bound, -: simulation result). 
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Figure 2.3 Average capacity per unit bandwidth (C/W) versus average SNR of 
OFDM: Hoyt channel (--: theoretical lower bound, -: simulation result). 
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Figure 2.4 Average capacity per unit bandwidth (C/W) versus average SNR of 
OFDM: Weibull channel (--: theoretical lower bound, -: simulation result). 
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Figure 2.5 Average capacity per unit bandwidth (C/W) versus average SNR of 
OFDM: Lognormal channel (--: theoretical lower bound, -: simulation result). 
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In [43], it stated that for Rician channels, as K tends to infinity, the reception 

converges to the case of AWGN regardless of the order of diversity applied (This 

result is also seen in Figure 2.1.). Furthermore, the improvement in reception, 

using diversity, is most significant for the smaller values of K, especially for 

Rayleigh fading. This fact can be explained by the greater randomness of 

Rayleigh fading over other types of fading in which case the diversity techniques 

tend to be more efficient. For Rician channels, MRC diversity improvement in 

channel capacity is given in Figure 2.6. In the figure, average channel capacities 

per unit bandwidth obtained by Monte-Carlo simulations are compared with the 

lower bound expressions given by (2.9) by employing numeric integration, for 

Rician (K=4) fading, for no diversity case as well as for 2nd, 3rd and 4th diversity 

levels. It is observed that the lower bound expressions are tight for all values of L. 

As expected, when the order of diversity L is sufficiently large, the impact of 

channel fading on system performance is of little significance. The reception 

always reduces to the case of AWGN, regardless of the degree of fading, as L 

approaches infinity. 
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Figure 2.6 Average capacity per unit bandwidth (C/W) versus average SNR of 
OFDM: Rician channel (K=4), L=1st, 2nd, 3rd and 4th order MRC diversity 

reception, (--: theoretical lower bound, -: simulation result). 

 

 

 

In Figure 2.7 and Figure 2.8, for Rician (K=4) fading, the channel capacity lower 

bounds per unit bandwidth obtained by numeric integrations are compared with 

lower bound expressions obtained by employing series expansion, given by (2.23) 

and (2.24), for L=1, 2, 3 and 4 diversity level. x0 is chosen as 15 for n=100 to 

guarantee series convergence in Figure 2.7 and x0=1 for n=2 in Figure 2.8. It is 

clearly seen that the expressions for lower bound of average capacity under Rician 

fading are highly accurate for all values of L. Selection of n and x0 is quite 

important, because since Bessel function takes very small values, even small 

amount of divergence in series of logarithm causes great divergence in total 

integral value. As seen in Figure 2.8, n=2 gives results close enough to real values 

in the given range, which means we can express the formulas in a quite simple 

way. 
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Figure 2.7 Average capacity per unit bandwidth (C/W) versus average SNR of 
OFDM: Rician channel (K=4), MRC diversity reception (--: series expansion 

(n=100, x0=15) lower bound, -: lower bound). 
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Figure 2.8 Average capacity per unit bandwidth (C/W) versus average SNR of 
OFDM: Rician channel (K=4), MRC diversity reception (--: series expansion 

(n=2, x0=1) lower bound, -: lower bound). 
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Figure 2.9, Figure 2.10 and Figure 2.11 compare the channel capacity lower 

bound high SNR approximations provided by (2.28), (2.30) and (2.31), to the 

lower bound expressions, for Rician, Weibull and Lognormal fading, respectively. 

In the figures, channel capacities for AWGN and Rayleigh channels are also given 

for the sake of comparison. It is observed that the approximation given in (2.27) is 

highly accurate for average SNR values greater than 20 dB, for the given fading 

channels. 
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Figure 2.9 Average capacity per unit bandwidth (C/W) versus average SNR of 
OFDM: Rician channel (--: high SNR approximation, -: lower bound). 
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Figure 2.10 Average capacity per unit bandwidth (C/W) versus average SNR of 
OFDM: Weibull channel (--: high SNR approximation, -: lower bound). 
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Figure 2.11 Average capacity per unit bandwidth (C/W) versus average SNR of 
OFDM: Lognormal channel (--: high SNR approximation, -: lower bound). 
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CHAPTER 3  

 

 

CHANNEL ESTIMATION FOR OFDM SYSTEMS 

 

 

 

In this chapter, we provide a brief theoretical background on multipath fading 

channels and OFDM transmission technique. Following, channel taps are 

estimated on the model developed for unmodulated OFDM assuming slowly time 

varying Rayleigh channel. We present the well known channel estimation 

methods, namely ML and MAP estimations, with their MSE and BER 

performances. 

3.1 Multipath Channels [39, 41] 

For a typical terrestrial wireless channel, the existence of multiple propagation 

paths between the transmitter and the receiver are assumed. With each path, a 

propagation delay and an attenuation factor are associated, which are usually time 

varying due to changes in propagation conditions resulting primarily from 

transceiver mobility. Then, we model the multipath fading channel by a time 

varying linear filter with impulse response ( )tz ,τ  given by 

 ( ) ( ) ( )( )∑ −=
i

ii ttatz ττδτ , , (3.1) 

where ( )⋅δ  stands for Dirac’s delta function, ( )tai  and ( )tiτ  are the path 

attenuation and propagation delay on the ith path, respectively. By the central limit 

theorem, if a large number of paths between the transmitter and the receiver 

exists, the impulse response can be modeled by a complex valued Gaussian 
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random process, and further, the associated attenuation per path are independent 

and identically distributed. If the received signal has only a single diffuse 

multipath component ( )tz ,τ  is characterized by a zero mean complex Gaussian 

random variable and the channel is called as Rayleigh fading channel. ( ( )tz ,τ  has 

a Rayleigh distribution). Alternately, if there are fixed scatterers or signal 

reflections in the medium, ( )tz ,τ  has a nonzero mean value and therefore ( )tz ,τ  

has a Rician distribution. In this case, the channel is a Rician fading channel. 

In many physical channels the fading statistics may be assumed approximately 

stationary for time intervals sufficiently long to make it meaningful to define a 

subclass of channels, called wide-sense stationary (WSS). When we assume the 

fading process ( )tz ,τ  is WSS in t, then its autocorrelation function is: 

 ( ) ( ) ( ){ }*

2121 ,,
2

1
;, ttztzEtz ∆+⋅=∆Φ ττττ . (3.2) 

A further reasonable assumption for most mobile communication channels (e.g., 

troposcatter, chaff, moon reflection) is known as uncorrelated scattering (US). 

Thus, the attenuation and phase shift associated with path delay 1τ  are 

uncorrelated with the corresponding attenuation and phase shift associated with a 

different path delay 2τ . Then, (3.2) can be expressed as: 

 ( ) ( ) ( )21121 ,;, ττδτττ −∆Φ=∆Φ tt zz , (3.3) 

where ( )tz ∆Φ ,τ  represents the average channel power as a function of the time 

delay τ  and the difference t∆  in observation time. The multipath delay spread of 

the channel, Tm, is the range of the values of the path delay τ  for which ( )0,τzΦ , 

the power delay profile (the average power output of the channel) is essentially 

nonzero. 

The spaced frequency spaced time correlation function, the Fourier transform of 

( )tz ∆Φ ,τ  with respect of τ  is given by 
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 ( ) ( ){ }ttf zz ∆Φℑ=∆∆Φ ,, ττ . (3.4) 

The coherence bandwidth of the channel, Bc, is the range of the values of 

frequency f for which spaced frequency correlation function ( )0,fz ∆Φ  is 

essentially nonzero. Hence the multipath delay spread and the coherence 

bandwidth are related reciprocally, i.e., mc TB 1≈ . Rougly speaking, the channel 

frequency response remains the same within the coherence bandwidth Bc. When 

the bandwidth of the transmitted signal is lager than the coherence bandwidth, the 

channel is called frequency selective fading; and when it is smaller, the channel is 

called frequency nonselective (flat) fading. 

Now, for the time variations of the channel, in order to relate the Doppler effects 

to the time variations of the channel, we take the Fourier transform of ( )tfz ∆∆Φ ,  

with respect to t∆  to obtain: 

 ( ) ( ){ }tffS ztz ∆∆Φℑ=∆ ∆ ,,λ . (3.5) 

The doppler spread of the channel, Bd, is the range of the values of frequency λ 

for which Doppler power spectrum of the channel, ( )λ,0zS  is essentially nonzero. 

The channel coherence time is given by dc BT 1≈ . Rougly speaking, the channel 

time response remains the same within the coherence time Tc. When the symbol 

interval of the transmitted signal is smaller than the coherence time (small 

Doppler), the channel is said to be time-nonselective (slow) fading; and when it is 

larger than the coherence time (large Doppler) the channel is said to be time-

selective (fast) fading. 

In the literature, there are various multipath channel models suitable for typical 

propagation environments. The most popular ones were developed by the 

European working group COST 207 (European Cooperation in the Field of 

Scientific and Technical Research) [41]. The typical propagation environments 

are classifiable into areas with rural character (rural area), areas typical for cities 

and suburban (typical urban), densely built urban areas with bad propagation 
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conditions (bad urban), and hilly terrains (hilly terrain). Basing on the WSSUS 

assumption, the working group COST 207 developed specifications for the power 

delay profile and Doppler power spectrum for these four classes of propagation 

environments. 

The specification of typical power delay profile is based on the assumption that 

the corresponding function can be represented by one or more negative 

exponential functions. The power delay profile functions of the channel models 

according to COST 207 are shown in Table 3.1 and Figure 3.1. 

 

 

 

Table 3.1 Specifications of typical power delay profiles of COST 207 channels. 

Propagation area Power delay profile Delay Spread 
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Figure 3.1 Power delay profile of the COST 207 channel models. 

 

 

 

The real valued constant quantities introduced can in principle be chosen 

arbitrarily. Hence, they can be determined in such a way that the average delay 

power is equal to one, for example. In this case: 
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Table 3.2 shows the four types of Doppler power spectrum specified by COST 

207, where ( )
( )

2

2

2,, i

i

s

ff

iiii eAsfAG

−
−

= . They are also presented graphically in 

Figure 3.2 for better illustration. For the real valued constants A1 and A2, 

preferably the values are chosen as 

 
( ) max

5.1
2

max1

1510210

250

fA

fA

+=

=

π

π
, (3.8) 

since it is then ensured that average Doppler power is equal to one. The classical 

Jakes power spectral density only occurs in the case of very short propagation 

delays. Only in this case, the assumptions that the amplitudes of the scattering 

components are homogenous and the angles of arrival are uniformly distributed. 

For scattering components with medium and long propagation delays, however, it 

is assumed that the corresponding Doppler frequencies are normally distributed, 

resulting in a Doppler power spectral density with a Gaussian shape. 

 

 

 

Table 3.2 Specifications of typical Doppler power spectral densities of COST 207 
channels. 
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Figure 3.2 Doppler power spectral densities of the COST 207 channel models. 

 

 

 

From Table 3.1 and Table 3.2, it can be seen that the power delay profile is 

independent of the Doppler frequencies, but the propagation delays have a 

decisive influence on the shape of the Doppler power spectrum. However, this is 

not valid for rural areas, where only the classical Jakes power spectral density is 

used. In this special case, the scattering function can be represented by the product 

of the power delay profile and the Doppler power spectrum functions. Channels 

with such a scattering function are called independent time and frequency 

dispersive channels. For this class of channels, the physical mechanism causing 

the propagation delays is independent from that which is responsible for the 

Doppler effect. 
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3.2 OFDM [39] 

In recent years, OFDM systems have attracted an increasing interest due to their 

use in digital audio and video broadcasting services and to the possible adoption 

in Fourth Generation mobile communication standards. OFDM is a parallel 

transmission scheme, where a high rate serial data stream is split up into a set of 

low rate substreams, each of which is modulated on a separate subcarrier. 

Figure 3.3 displays the conventional transceiver of an OFDM system. An OFDM 

signal can be represented as the sum of N independent QAM/PSK signals 

modulated onto subchannels of equal bandwidth. A serial-to-parallel buffer 

segments the information sequence into frames. The bits in each frame are parsed 

into N groups. Each group may be encoded separately. The complex valued signal 

points corresponding to the information symbols on the subchannels are denoted 

by Xk, k=0,1…,N-1. 

In order to modulate the subcarriers by the information symbol Xk, inverse 

Discrete Fourier Transform (IDFT) is employed. Then, the N-point IDFT yields 

the real-valued sequence 

 
∑

−

=

−==
1

0

2 1,1,0,
1 N

k

Nnkj
kn NneX

N
x K

π

. (3.9) 

The sequence { }10, −≤≤ Nnxn  corresponds to the samples of the sum x(t) of N 

subcarrier signals, which is expressed by 

 
( ) ∑

−

=

≤≤=
1

0

2 0,
1 N

k

Tktj
k TteX

N
tx π

 (3.10) 

where T is the symbol duration. The subcarrier frequencies are Tkf k = . 

Furthermore, the discrete time sequence xn represents the samples of x(t) taken at 

times NnTtn = . 
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Figure 3.3 Schematic diagram of an OFDM system 
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The computation of the DFT is performed efficiently by the use of the Fast 

Fourier Transform (FFT) algorithm. Usually N is taken as an integer to the power 

of two, enabling the application of the highly efficient (inverse) FFT algorithms. 

In practice, the signal samples xn are passed through a digital-to-analog converter 

(DAC) whose output, ideally, would be the signal waveform x(t). The output of 

the channel is the waveform 

 ( ) ( ) ( ) ( )twtztxtr +∗= , (3.11) 

where z(t) is the impulse response of the multipath channel, w(t) is the additive 

noise and * denotes convolution. By selecting the bandwidth of each subchannel 

f∆  to be very small, the symbol duration fT ∆= 1  is large compared to the 

channel time dispersion. Thereby, the bandwidth of the subchannels becomes 

small compared with the coherence bandwidth of the channel; that is, the 

individual subcarriers experience flat fading, which requires no traditional 

equalization. This implies that the symbol period of the substreams is made long 

compared to the delay spread of the time dispersive radio channel. 

We assume that the use of a cyclic prefix both preserves the orthogonality of the 

tones and eliminates ISI between consecutive OFDM symbols. The information is 

demodulated by computing the DFT of the received signal after it has been passed 

through an analog-to-digital converter (ADC). As in the case of the modulator, the 

DFT is performed efficiently by the use of the FFT algorithm. Because of the 

cyclic prefix, successive blocks of the transmitted information sequence do not 

interfere and hence, the kth demodulated sequence may be expressed as 

 kkkk WZXR += , (3.12) 

where Rk is the output of the demodulator and Wk is the additive noise corrupting 

the signal. Zk is the frequency response of the channel impulse at the subcarrier 

frequencies: 
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22 ππ
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Consequently, an OFDM receiver implements channel estimation and frequency 

domain equalization. Thus, channel factors are estimated and compensated prior 

to passing the data to the detector and decoder. The estimation and equalization 

methods used depend on the modeling of the channel and complexity invested in 

each task. The nature of the OFDM enables powerful estimation and equalization 

techniques. The equalization (signal demapping) required for detecting the data 

constellations is an elementwise multiplication of the FFT output by the inverse of 

the estimated channel. For phase modulation schemes, multiplication by the 

complex conjugate of the channel estimate can do the equalization. 

3.3 Channel Estimation under Rayleigh Fading 

In an OFDM link, modulated bits are disturbed during the transmission through 

the channel, since the channel introduces amplitude and phase shifts due to 

frequency selective and time varying nature of the radio channel. In order for the 

receiver to acquire the original bits, it needs to take into account these unknown 

changes. Channel equalization uses channel estimations and inverts the effect of 

non-selective fading on each subcarrier. 

Classical methods estimate channel coefficients relying on known training 

sequences [4]. Training sequence dependent channel estimation methods for 

OFDM transmission systems have been developed under the assumption of a 

slowly varying channel, where the channel transfer function is assumed stationary 

within one OFDM data block. Thus, the channel transfer function for the previous 

OFDM data block is used as the transfer function for the present data block. The 

block diagram is given in Figure 3.4. 
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Figure 3.4 Block diagram of the channel estimation using training sequence. 

 

 

 

When training sequences are used in order to cope with Doppler effect due to the 

mobility in wireless systems, the repetition period must not be too small in order 

not to lose much from the overhead. However, then one faces the problem of not 

tracking the channel variations properly. The classical method of decision directed 

channel estimation (DDCE) provides a suitable solution for this problem [4]. The 

simple philosophy of this method is that in the absence of transmission errors we 

can benefit from the availability of all information by using the detected 

subcarrier symbols as an a posteriori reference signal. The block diagram of 

DDCE scheme is shown in Figure 3.5. 
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Figure 3.5 Block diagram of the decision directed channel estimation. 

 

 

 

In certain cases, the channel transfer function of a wideband radio channel may 

have significant changes even within one OFDM data block [4]. For such 

channels, it can be preferable to estimate channel characteristic parameters in 

every OFDM symbol based on continuous pilot signals. In wideband mobile 

channels, the pilot based channel estimation scheme has been proven to be a 

feasible method for OFDM systems, if the channel is slowly fading. The block 

diagram of this scheme is given in Figure 3.6. 

For pilot subcarrier arrangement, the total N subcarriers are divided into Np 

groups, each with L=N/Np adjacent subcarriers. In each group, the first subcarrier 

is used to transmit pilot signal. The pilot signals are first extracted from the 

received signal, and the channel transfer function is estimated from the received 

known pilot signals. Then, the channel responses of subcarriers that carry data are 

interpolated by using the neighboring pilot channel responses. Theoretically, 

using high-order polynomial interpolation will fit the channel response better. 

However, the computational complexity grows as the order is increased. 
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Figure 3.6 Block diagram of the pilot aided channel estimation. 

 

 

 

We assume that the channel is frequency selective for the whole band, but is 

nearly flat for subbands. We take an OFDM system with N subcarriers 

(modulation effects are assumed to have been removed, e.g., as in a training 

section, pilots or by decision feedback), assume a channel which is stationary 

inside the observation interval and AWGN at the receiver. In vector notation, the 

received signal is  

 wzr += , (3.14) 

where the additive white Gaussian noise w are assumed to be samples from zero 

mean jointly Gaussian complex random processes with covariance matrix Cw. 

(Please note that smaller cases of letters are used for frequency domain of signals 

after removing of modulation effects throughout the study.) The subchannel noise 

processes are mutually independent so that Cw can be taken as a diagonal matrix 

with equal entries. The channel coefficients, z, are samples from a continuous and 

jointly Gaussian complex random process. We assume that z is zero mean; thus, it 

is completely characterized by its covariance matrix Cz. 
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Channel estimation methods in the literature are generally based on ML or MAP 

estimation. The ML estimate of the coefficient vector is given by [53]: 

 ( )r/zz
z

ML pmaxargˆ = , (3.15) 

where the conditional probability density function is [54] 

 ( ) ( ) ( )[ ]zrCzr
C

zr 1
w

H

w

−−−=
−

exp
1

N
p

π
. (3.16) 

A necessary condition is obtained by differentiating the likelihood function with 

respect to z and setting the result equal to zero: 

 
( )

0
ln

ˆ

=
∂

∂

= MLzzz

r/zp
. (3.17) 

Then, 

 ( ) ( ) ( ) ( )w
1

w
H CzrCzrzr Np πlnln −−−−=

−  (3.18) 

 
( ) ( )zrC
z

zr 1
w −=

∂

∂ −pln
 (3.19) 

and the ML estimate is 

 rzML =ˆ . (3.20) 

The MAP estimation of the coefficient vector [53] is found similarly: 

 ( )z/rz
z

MAP pmaxargˆ = , (3.21) 

where 

 ( ) ( ) ( )
( )r

zzr
rz

p

pp
p = , (3.22) 
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z 1
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−= exp
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z
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The necessary condition is, 

 
( )

0
ln

ˆ

=
∂

∂

= MAPzzz

z/rp
. (3.24) 

Following the steps given below 

 ( ) ( ) ( ) ( )rzr/zz/r pppp lnlnlnln −+= , (3.25) 

 
( ) ( ) zCzrC
z
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z

1
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−−=

∂

∂ pln
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 0ˆˆ =−−
−−−

MAP
1

zMAP
1

w
1

w zCzCrC , (3.27) 

 ( ) rCzCC 1
wMAP

1
z

1
w

−−−
=+ ˆ , (3.28) 

 ( ) rCCCz 1
w

1
z

1
wMAP

−−−−
+=

1
ˆ , (3.29) 

and simplifying (3.29), MAP estimation expression is found to be 

 ( ) 1
zwzMAP CCCArAz −

+=⋅= whereˆ . (3.30) 

Notice that for the ML estimator (without a priori knowledge on the channel) A 

becomes the identity matrix. 

The time invariant channel is modeled simply as attenuation and phase shift. i.e., 

 ( ) ϕϕ jeαα,z =  (3.31) 

Then, after estimation of the channel coefficients z, we can compute the estimated 

channel phase, ϕ  and attenuation, α  separately, from the amplitude and phase of 

the estimate z. 
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3.4 Estimator Performance 

MSE and BER performances of ML and MAP channel estimators are discussed 

briefly in the following sections. Estimators’ performances are evaluated to see 

the degradation in the performance in case of channel estimation errors and to 

compare with other estimators. 

3.4.1 MSE 

The error variances (diagonal of MSE matrix), provide important quantitative 

information concerning the quality of the estimates that can be used in subsequent 

detection analysis. The MSE matrix of the estimates is defined by [54]: 

 ( )( ){ }HzzzzEMSE −−= ˆˆ , (3.32) 

where ẑ  is the estimated channel vector. (.)H is the notation for Hermitian of a 

matrix or a vector. Then, MSE of the ML estimates can be shown to be: 

 
( ) ( ){ }
w

H
ML

C

zrzrEMSE

=

−−=
, (3.33) 

and for the MAP estimator, the MSE matrix is: 

 
( ) ( ){ }

[ ] [ ]H
NzN

H
w

H
MAP

IACIAAAC

zArzArEMSE

−−+=

−−=
 (3.34) 

where IN is the identity matrix with size NxN. It can easily be proven that, 

 
( )

( ) z
1

zwzz

zNMAP

CCCCC

CAIMSE
−

+−=

−=
. (3.35) 

Following this, using the Inversion Lemma [55], i.e., 
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( ) BCBCCDBCBE

CCDBE

H1H1

H11

−−

−−

+−=

+=
, (3.36) 

with wCDICCB Nz === ,, , we reach the final equation, 

 ( ) ACCMSE
11

z
1

wMAP
2

wσ=+=
−−−

, (3.37) 

where 2
wσ  is the variance of the white noise component. As known, in linear 

signaling scheme with a Gaussian a priori density, as in our case, the MAP 

estimator is the efficient estimate, where the error variance is equal to the bound 

on MSE [53]. For independent fading, Nz IC 2
zσ= , where 2

zσ  is the variance of 

channel coefficients. Then, MSE is found to be 

 NindMAP, IMSE
22

22

wz

wz

σσ

σσ

+
= . (3.38) 

For a flat fading channel, Nz 1C 2
zσ= , where 1N is the notation we use for the 

NxN matrix with all entries equal to one. Then, 

 NflatMAP, 1MSE
22

22

wz

wz

N σσ

σσ

+
= . (3.39) 

As seen from (3.38) and (3.39), for independent fading MSE does not depend on 

N, on the contrary for flat fading channel, as the number of subchannels increases, 

MSE decreases. A ratio on resulting from the correlation can be found by dividing 

the error variance of independent fading by the error variance of the flat fading. 

The result is: 

 
22

22

max

wz

wzN
c

σσ

σσ

+

+
= . (3.40) 

In Figure 3.7, we show the ratio in (3.40) obtained for channel esimates versus 

number of subchannels for SNR=10 dB ( 2
zσ =1 and 2

wσ =0.1). As seen, the ratio 
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for the rms error of independent fading with respect to flat fading is almost equal 

to square root of N (upper bound for the variance is about N as given in (3.40)). 
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Figure 3.7 The ratio for the rms error of independent fading wrt flat fading. 

 

 

 

The error variances of real part of the channel with real covariance matrix (real 

and imaginary parts of channel coefficients are independent) can be found 

similarly [54]: 

 
( ) ( ){ }

[ ] [ ]H
NzN

H
w

H
rrrrr
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zArzArEMSE

rr
−−+=

−−=
. (3.41) 

Determining the error variance of channel phase estimation (or attenuation 

estimation) is somewhat difficult and needs large number of integration. (Details 
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are given in Appendix A.) Then, we find the channel phase error variance for each 

path seperately. The variance of the phase error of kth path is given by [56]: 

 ( ){ } ( ) ( ) kkkkkkkk ddpE φφφφφφφφ
π

π

π

π

ˆ,ˆˆˆ 22

∫ ∫
− −

−=− . (3.42) 

We can find ( )kkp φφ ,ˆ  by transforming the Cartesian pdf ( )kk zzp ,ˆ  to polar form, 

and then integrating. Thus, 

 ( ) ( ) kkkkkkkk ddpp ααφαφαφφ ˆ,,ˆ,ˆ,ˆ

0 0
∫ ∫
∞ ∞

= . (3.43) 

Note that, ( )kk zz ,ˆ  are jointly Gaussian, then ( )kk zzp ,ˆ  can be written as [56]: 
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where correlation 
zz

zzC
r

σσ ˆ

ˆ=  and { }kkzz zzEC ˆˆ = . r can be found considering 

 NkNkkNkNkkk wAwAwAzAzAzAz +++++++= LL 22112211ˆ , (3.45) 

which is also known to be a Gaussian variable. Then, we can evaluate the phase 

estimation error variance using (3.42). The error variance of the attenuation can be 

found similarly. 

3.4.2 BER 

Performance degradation due to channel estimation error can be best analyzed by 

finding the BER. The received signal for the kth subcarrier is given by 

 kkkk wzxr += , (3.46) 



 
47 

where kk rx and  are the transmitted and received symbols, respectively; kz  

accounts for the correlated, complex valued fading introduced by the frequency 

selective channel; and kw  denotes samples of an AWGN. Following [3], we start 

our analysis by defining the symbol transmitted as ikx , , which is an element of the 

symbol set { } { }Mmx mk ,,2,1,, K= . (M is the order of the modulation scheme.) 

At the receiver’s site, an optimum detector will detect the symbol { }mknk xx ,, ∈ , 

which minimizes the distance metric ( ) 2

,, ˆ nkkknkd xzrxM −= . kẑ  is the estimate 

channel coefficient. An error occurs when the metric calculated for a symbol 

iknk xx ,, ≠  is smaller than the metric for the transmitted symbol ikx , . The 

probability of this event is 

 ( ) ( ){ } { }0PrPr ,, <=<= DxMxMP ikdnkde , (3.47) 

where ( ) ( )ikdnkd xMxMD ,, −=  is called decision variable. Then, D becomes 

 ( ) ( ) ( )2

,

2

,

2

,,
**

,
*

,
* ˆˆˆ iknkknkikkknkikkk xxzxxzrxxzrD −+−+−= . (3.48) 

kr  is known to be a complex Gaussian random variable. The same holds for kẑ . 

Thus, the decision variable D is a special case of the generic quadratic form and 

the error probability is found to be [3] 

 ( ) ( ) ( ) 2
0

12

12
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22

1
, ba

e eabI
vv

vv
baQP +−

+
−= , (3.49) 

where ( )xI n  is the nth order modified Bessel function of the first kind and ( )baQ ,1  

is Marcum’s Q function. The parameters a, b, v1 and v2 are related to the moments 

[3]. For the Rayleigh channel, as in our case, it can easily be shown that 

0== ba . Then, the probability of error simplifies to 
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where  
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The constants that are representing the properties of the modulation schemes are 

iknkiknk xxCBxxA ,,

2

,

2

, and0, −==−= . Assigning different 

constellation values, the probability of error can be calculated. 

For gray coded QPSK and perfect channel estimation, which means that the 

receiver has exact knowledge of the channel tap ( kk zz =ˆ ), the BER can easily be 

shown to be 
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where 
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z
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σ

σ
γ =  is the bit SNR and K denotes the number of bits 

represented by one symbol (K=2 for QPSK). 

For the MAP estimator, 
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Here { }*2
kkz zzE=σ , ( ):,kA  and ( )k:,A  denote the kth row and the kth column of 

the matrix A, respectively. Then Pe can be calculated using (3.50). 

Another method for analytical calculation of BER is given in [32]. This paper 

presents a systematic approach for evaluating BER performance of OFDM 

receivers in Rayleigh fading when a linear pilot assisted channel estimate is used. 

These BER expressions are functions of the average bit SNR, and some 

correlation coefficients that depend on the true channel statistic and the estimation 

method used. The derivations are based on the facts that Rayleigh fading and a 

linear pilot assisted channel estimate is a linear function of the true channel 

responses at pilot symbol locations. 

The equation for evaluating the BER of QPSK modulated OFDM receiver with 

linear channel estimate algorithms is given by 
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For gray coded QPSK and perfect channel estimation, since 0,1 21 == ρρ  , the 

BER expression given in (3.55) can be shown to be 

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1
, which 

is the same as (3.53). 

For ML channel estimation, the probability of error is 
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1
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+
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For the MAP estimator, 
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After calculating these variables, Pe is found from (3.55). 
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CHAPTER 4  

 

 

SIMPLIFIED MAP ESTIMATORS 

 

 

 

Frequency selectivity of the channel caused by the multipath environment is 

characterized by the frequency domain correlation function (the spaced frequency 

correlation function) of the channel. Several frequency domain correlation 

estimation methods are found in the literature [57-63]. Frequency selectivity of 

the radio channel can be characterized using level crossing rate of the channel in 

frequency domain. The detected symbols in frequency domain can also be used to 

generate the frequency domain correlation function. These methods need 

computational effort since the entire correlation matrix must be estimated. Instead, 

we assign a structure to the frequency domain correlation, i.e., the correlation 

function is parameterized. 

In this chapter, we have proposed two simplified MAP estimators which model 

the correlation of subchannels by a single parameter. These estimators differ from 

the parametric estimators presented in the literature, which estimate the channel 

tap number and delays. The first simplified estimator is based on the exponential 

frequency domain correlation assumption, while for the second one we assume 

that power delay profile is exponential. 
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4.1 Exponential Frequency Domain Correlation Assumption 

4.1.1 Proposed Estimator (SMAP-efdc) 

In this section, we assume that the frequency domain correlation function has an 

exponential form, i.e., 

 ( ) mnmn −
= ρ,zC , (4.1) 

where the correlation coefficient is 10 ≤≤ ρ . The lower limit means independent 

fading, while upper limit is for flat fading channel. Note that this approximation is 

reasonable, because as the distance increases the correlation between subchannels 

decreases. Also note that covariance matrix has a fairly simple form. Then, we 

expect that the MAP estimator complexity reduces considerably. 

For a channel with exponential covariance matrix, Figure 4.1 shows the frequency 

domain correlation of the center subchannel (n=512) with the other subchannels 

for N=1024 and ρ=0.9, 0.99 and 0.999. As seen, for ρ=0.9, the correlation drops 

below 0.1 when we go only 20 neigbour subchannel away. But for ρ=0.999 

(almost flat channel), edge subchannels receive almost 60% of the full correlation. 
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Figure 4.1 Frequency domain correlation of middle subchannel (n=512) with 
others, N=1024, channel with exponential frequency domain correlation. 

 

 

 

Then, we propose the following simplified MAP (SMAP-efdc) estimator: 

 ( ) ( ) ( ) ( )[ ] 1
zwzSMAP CCCArAz −

+=⋅= ρρρρ ˆˆˆwhereˆˆ . (4.2) 

ρ̂  is the estimated ρ . The complete block diagram of the MAP estimator is 

shown in Figure 4.2. 
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Figure 4.2 Block diagram of SMAP-efdc estimator 

 

 

 

The instantaneous channel frequency response correlation values are calculated 

from the estimated fading by averaging neighbor subchannel correlations. Thus, 

the instantaneous correlation is found as 

 
2

1,

2

2,

2

1,
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+++
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=

NSMAPSMAPSMAP

NSMAPNSMAPSMAPSMAPSMAPSMAP
ins

zzz

zzzzzz

L

L
ρ   (4.3) 

The instantaneous correlation estimates are noisy, therefore an alpha tracker [57] 

can be used for averaging the instantaneous values: 

 ( ) ins
ii ραραρ ˆ1ˆˆ 1 −+= −  (4.4) 

where 10 << α  is the tracking parameter and i is the symbol number. An alfa 

tracker with a high tracking parameter value will performs better, but obviously 

tracking time will be longer. 

zSMAP 

ρ estimation 

MAP estimator r 

ρ̂
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4.1.2 Performance 

4.1.2.1 MSE Performance 

For a channel with exponential frequency domain correlation, recognizing that 

matrix A is modeled as ( )ρA , MSE expression of MAP estimator given in (3.34) 

becomes as below: 

 
( ) ( ) ( )[ ] ( ) ( )[ ]

( )ρσ

ρρρρρ

A

IACIAACAMSE H
z

H
w

2
w=

−−+=
. (4.5) 

Analytical results of rms error (square root of error variances) of channel 

estimation, channel amplitude and phase estimation versus correlation (ρ) for 

N=128, SNR=10 dB ( ( )22
10log10SNR wz σσ= ) are shown in Figure 4.3, Figure 

4.4, and Figure 4.5, respectively. In the plots, it is assumed that the channel has an 

exponential frequency domain correlation and ρ is known exactly. As seen from 

the figures, rms error gets smaller as the correlation between the subchannels 

increases. The improvement is more prominent for 19.0 << ρ . Note that the 

outer curves are for the edge subchannels (n=0 and n=N-1) estimation errors, the 

inner ones are for middle subchannels (n=N/2), and the others are for the 

remaining. The subchannels at the edges have largest error variances, while the 

variances of middle subchannels are the smallest, as expected. The error variances 

of subchannels in between decrease as the subchannels get closer to the center. 

We have also investigated the effect of SNR on the rms error of center tap in 

Figure 4.6, for N=128. The channel has an exponential frequency domain 

correlation, with known ρ. The rms error decreases as SNR inreases, which is the 

expected result. 
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Figure 4.3 Channel MAP estimate rms error versus subchannel correlation (ρ), 
N=128, SNR=10 dB, channel with exponential frequency domain correlation. 
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Figure 4.4 Channel amplitude MAP estimate rms error versus subchannel 
correlation (ρ), N=128, SNR=10 dB, channel with exponential frequency domain 

correlation. 
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Figure 4.5 Channel phase MAP estimate rms error versus subchannel correlation 
(ρ), N=128, SNR=10 dB, channel with exponential frequency domain correlation. 
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Figure 4.6 Channel MAP estimate rms error (center tap) versus subchannel 
correlation (ρ), N=128, SNR=0, 10 and 20 dB, channel with exponential 

frequency domain correlation. 
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We have done simulations for channels with known correlation ρ’s to investigate 

the accuracy of estimation of ρ. We assume that the channel response is slowly 

time varying, that is, the channel correlation stays constant throughout the 

estimation process. The simulation parameters are selected as SNR=10 dB, α=0.9 

and number of iterations is 1000. In Table 4.1, actual and estimated values of the 

correlation are given for various subchannel numbers. Slightly overestimation in 

the correlation parameter is observed and this deviation increases as N increases. 

 

 

 

Table 4.1 Real and estimated correlation (ρ) values of channels with exponential 
frequency domain correlation, N=64, 128 and 256. 

Estimated correlation ( ρ̂ ) Correlation 
(ρ) N=64 N=128 N=256 

0 -0.0040 -0.0012 0.0005 

0.20 0.2064 0.2133 0.2169 

0.40 0.4159 0.4265 0.4319 

0.60 0.6233 0.6366 0.6433 

0.70 0.7252 0.7391 0.7460 

0.80 0.8246 0.8381 0.8447 

0.90 0.9189 0.9299 0.9350 

1 1.00 1.00 1.00 

 

 

 

4.1.2.2 Sensitivity Analysis 

In what follows, we analyze the sensitivity of the SMAP-efdc estimator. For a 

channel with exponential frequency domain correlation, it is assumed that 2
wσ  is 

known and ρ  is estimated. Then, the MSE in (3.34) becomes: 
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 ( ) ( ) ( )[ ] ( )[ ]H
z

H
w IACIAACAMSE −−+= ρρρρ ˆˆˆˆ . (4.6) 

Figure 4.7, Figure 4.8 and Figure 4.9 give the graphs of center tap rms error of 

SMAP-efdc estimator versus ρ̂ , for N=128, SNR=10 and 20 dB, 

999.0and97.0,5.0=ρ , respectively. The proposed estimator is not sensitive to 

correlation estimation errors for low correlation, but it is very sensitive for 

9.0≥ρ . 
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Figure 4.7 SMAP-efdc estimator rms error (center tap) versus estimated 
correlation ( ρ̂ ), 5.0=ρ , N=128, SNR=10 and 20 dB. 
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Figure 4.8 SMAP-efdc estimator rms error (center tap) versus estimated 
correlation ( ρ̂ ), 97.0=ρ , N=128, SNR=10 and 20 dB. 
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Figure 4.9 SMAP-efdc estimator rms error (center tap) versus estimated 
correlation ( ρ̂ ), 999.0=ρ , N=128, SNR=10 and 20 dB. 
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Similarly, for a channel with known ρ and estimated 2
wσ , the MSE of SMAP-efdc 

estimator is: 

 ( ) ( ) ( )[ ] ( )[ ]H

z
H

w IACIAACAMSE −−+= 2222 ˆˆˆˆ wwww σσσσ . (4.7) 

Figure 4.10, Figure 4.11 and Figure 4.12 give the graphs of center tap rms error of 

SMAP-efdc estimator versus 2ˆ wσ , for N=128, SNR=0,10 and 20 dB, and ρ=0.5, 

0.9 and 0.999, respectively. As seen from the figures, the proposed estimator is 

rather insensitive to the errors in 2ˆ wσ , especially when SNR is high and/or channel 

is highly correlated especially if error occurs as underestimation. For low SNRs, 

and for low correlated channels the proposed estimator is sensitive to errors. Rms 

error increases dramatically if noise variance is fairly overestimated for highly 

correlated channels. 
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Figure 4.10 SMAP-efdc estimator rms error (center tap) versus estimated noise 

variance ( 2ˆ wσ ), 5.0=ρ , N=128, SNR=0, 10 and 20 dB. 
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Figure 4.11 SMAP-efdc estimator rms error (center tap) versus estimated noise 

variance ( 2ˆ wσ ), 9.0=ρ , N=128, SNR=0, 10 and 20 dB. 
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Figure 4.12 SMAP-efdc estimator rms error (center tap) versus estimated noise 

variance ( 2ˆ wσ ), 999.0=ρ , N=128, SNR=0, 10 and 20 dB. 
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4.1.3 Approximate SMAP-efdc 

The proposed SMAP-efdc estimator has a lower complexity compared to the 

MAP estimator, but it is still complicated because of matrix inversion in its 

expression. However, notice that when we assume that the covariance matrix is 

exponential as given in (4.1), the inverse of the covariance matrix is a tridiagonal 

matrix, i.e., 
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Then, the matrix A (matrix of the SMAP-efdc estimator) is the inverse of a 

tridiagonal matrix. Thus, 
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 (4.9) 

The need to find the inverse of tridiagonal matrices arises in many scientific and 

engineering applications and has been investigated for a few decades with an 

attempt to find a simple and explicit analytic expression for the inverse [62], [63]. 

For an NxN tridiagonal matrix T given by 
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the inverse of the matrix T is given by [64], [65] 
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where iθ ’s and iφ ’s verify the recurrence relation, 
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Observe that T=Nθ , the determinant of the matrix. The inverse of tridiagonal 

matrix can be computed in 772 −+ NN  arithmetic operations [64], [65]. 

Using these results for our case, and noting that the matrix given in (4.9) is also 

symmetric, it follows that bccbb NN ====== −− 1111 LL , and the inverse 

formula will simplify to 
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where 
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We conclude that, we may eliminate matrix inversion and thus A can be computed 

analytically, but this requires recursive calculations. This can be computationally 

expensive, especially for large N values. As a further simplification, we used 

series expansion of the matrix entries with respect to ρ, and took the first terms for 

an approximation. We realized that, only three diagonals are effective, especially 

when correlation is small and SNR is high. Because the others contain order of 4 

or higher ρ and 2
wσ . Then, the final simplified matrix can be written as 
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Figure 4.13 shows the rms error (center tap) of the approximate SMAP-efdc 

estimator given in (4.16) and (4.17) for α=0.9, N=128 and SNR=10 dB, for an 
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exponential frequency domain correlation channel assuming that ρ and 2
wσ  are 

known exactly. The rms error of exact MAP estimator is drawn with solid lines 

for comparison. As seen from the figure, Approximate SMAP-efdc estimator 

gives highly accurate results for 95.00 ≤≤ ρ . But, for higher correlation there is 

a notable degradation. 
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Figure 4.13 Approximate SMAP-efdc estimator rms error (center tap) versus 
subchannel correlation (ρ), N=128, SNR=10 dB, channel with exponential 

frequency domain correlation. 
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4.2 Exponential Power Delay Profile Assumption 

4.2.1 Proposed Estimator (SMAP-epdp) 

It is convenient to find the frequency response correlation from the power delay 

profile, which is the inverse Fourier transform of spaced frequency correlation 

function. Generally, in the literature a model is assigned to the power delay 

profile. Smulders’ and exponential power delay profile models are the most 

common and realistic ones. For the Smulders’ model, which is widely used for 

Rician channels, the power delay profile is [60], [61] 
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where κ  is the normalized power of the direct path (which is 0 for the Rayleigh 

channel), Π  is the normalized power density of the constant level part, 1τ  is the 

duration of the constant level part and γ is the decay component of the decaying 

part. The Smulders’ model power delay profile figure is given in Figure 4.14. 

The spaced frequency correlation function is given by [60], [61]: 
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Generally 01 ≈τ  is used in (4.18), which yields the exponential decaying power 

delay profile. As stated in the literature, exponentially decaying power delay 

profile is a good approximation for most practical channels. 
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Figure 4.14 The Smulders’ power delay profile model. 

 

 

 

Then, for Rayleigh channel, 

 ( ) { } ( )τττ
τ

τ urms

rms

z −=Φ exp
1

 (4.20) 

where rmsτ  is the absolute rms delay spread of the channel, and the spaced 

frequency correlation function for an OFDM system with N subcarrier is given by 

[62], [63] 

 ( )
( ) Nmnj

mn
c −+

=
πτ21

1
,zC . (4.21) 

where n, m are subchannel indices and Trmsc ττ =  is the rms delay spread 

normalized to the duration T of the OFDM symbol. ∞=cτ  corresponds to perfect 

independent fading while 0=cτ  means flat fading. For the channel 
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where Lp is the total number of paths, ai and iτ  are the complex amplitude and the 

delay of the ith path, respectively. Absolute rms delay spread can be calculated as 

[62] 
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For a channel with exponential power delay profile, Figure 4.15 shows the plot of 

frequency domain correlation of the center tap (n=512) with the other taps for 

N=1024 and cτ =1, 5, and 50. As cτ  increases, subchannel correlation decreases. 
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Figure 4.15 Frequency domain correlation of middle subchannel (n=512) with 
others, N=1024, channel with exponential power delay profile. 
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An approximation of (4.21) can be made when subchannels are almost 

independent. Thus, if ( ) 12 >>− Nmncπτ , then subchannel correlation is 

 ( )
( ) Nmnj

mnC
c

z
−

≈
πτ2

1
, . (4.24) 

Similarly, for highly correlated (nearly flat fading) channels cτ  is small. Thus, 

1
2

<<
N

cπτ
. Then 

( )mn

c

N

−








 πτ2
is negligibly small for (n-m)=2,3,…,N-1. The 

correlation function simplifies to 

 ( )
( )( )mn

c Nj
mn

−
+

≈
πτ21

1
,zC . (4.25) 

Indeed, this is equivalent to the assumption that the channel frequency domain 

correlation is exponential, but the correlation coefficient is complex. i.e., 

Nj cπτ
ρ

21

1

+
= . 

We propose the following simplified MAP (SMAP-epdp) estimator: 

 ( ) ( ) ( ) ( )[ ] 1
zwzSMAP CCCArAz −

+=⋅= cccc ττττ ˆˆˆwhereˆˆ  (4.26) 

where cτ̂  is the estimated cτ . Thus, once cτ is estimated, it is fed to the MAP 

channel estimator. Accordingly, the block diagram of the estimator becomes the 

one shown in Figure 4.16. 
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Figure 4.16 Block diagram of SMAP-epdp estimator 

 

 

 

cτ  is estimated from the instantaneous channel frequency response correlation 

values. Details will be given in section 4.2.1.1. Since the detected values fluctuate 

from packet to packet (or OFDM symbols), they may not yield a good statistic, 

which may be a problem especially when the number of carriers is low. In 

addition, the use of detected values for correlating the received samples provides 

poor results when operating at low SNR values. Therefore, an alpha tracker [57] is 

used for averaging: 

 ( ) insc
i
c

i
c ,

1 ˆ1ˆˆ τατατ −+= −  (4.27) 

where 10 << α  is the tracking parameter and i is the symbol number. The 

sensitivity of the alpha tracker can be increased, if the value of α is increased, by 

paying the price of increased tracking time which can be a problem in relatively 

fast fading channels. 

4.2.1.1 Estimation of the Correlation Parameter 

The sample covariance matrix (classical optimal ML estimation procedure) for 

independent samples is well known [66] to be 

cτ̂  

r MAP estimator 

 

cτ  estimation  

SMAPẑ  



 
72 

 ∑
=

=
M

iM 1

1ˆ H
iiz rrC , (4.28) 

where iii wzr +=  and M is the number of observations. Then, when we assume 

an unstructured covariance matrix, insc,τ̂  is obtained from the instantaneous 

channel frequency response correlation values, which are, in turn, found from the 

received instantaneous subchannel tap values. i.e., 

 ( )
2

1

2

3

2

2

*
1

*
32

*
212,1

−

−

+++

⋅++⋅+⋅
=

N

NN
z

rrr

rrrrrr
C

L

L
 (4.29) 

Then, insc,τ̂ can easily be found using (4.29) and (4.21). 

The covariance matrix of a stationary signal is Hermitian and Toeplitz. However, 

the sample covariance matrix obtained from a finite number of observations 

seldom has this structure and to improve the precision it is necessary to make M 

as large as possible. However, in practice M cannot exceed a certain value because 

the observation time is limited. Further, the description of the samples as a set of 

independent random vector variables is an idealization and the question is whether 

it is possible to neglect this dependence, because when samples are dependent, the 

estimate (4.28) is no longer optimal. As it is shown in [66], the standard deviation 

of the estimate in this situation monotonically increases when the correlation 

coefficient between the samples becomes larger. 

Estimating structured covariance matrices is of particular interest in a variety of 

applications [67-72]. Since the exact ML estimation of a Hermitian Toeplitz 

covariance matrix has no closed-form solution [71], the ML methods proposed in 

the literature are iterative and computationally involved, yet they are not 

guaranteed to yield the global optimal solution. This limits the interest in using the 

exact ML structured covariance matrix estimate in practical applications. 

The exact ML estimate of cτ  is obtained by maximizing the likelihood function 

[73]: 
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 ( )cc L
c

ττ
τ

maxargˆ =  (4.30) 

where  

 
( ) ( )

rCrC

r
1

r/τr/τ cc

−−−−=

=

lnln

/ln
N

cc pL

π

ττ
 (4.31) 

and ( ) wzr CCC += cc
ττ/ . Then, we can find the ML estimate insc,τ̂  numerically, 

using (4.31). 

If we impose no structure on the covariance matrix except for the Hermitian 

symmetry then it is known that the ML estimate is given by sample covariance 

matrix zĈ , whereas if we observe the structure of zC  is implied by the 

parameterization of ( )cτzC , the ML estimate of zC  is given by ( )cτ̂zC . 

Asymptotically, ( )cτ̂zC  will have better accuracy than zĈ . However, solving for 

the ML solution for structured covariance matrix turns out to be very complicated 

because of the nonlinearity of the cost function. 

Figure 4.17 gives simulation results of cτ  estimation, for comparison of structured 

and unstructured covariance matrix assumption, for 100and50,10=cτ . An 

alpha-tracker is used with both methods. The initial value of cτ̂  is set to the actual 

value for the iterations. Obviously, this is for clarity in the presentation. Actually, 

arbitrary initial values will be more realistic. As seen in the figure, structured 

matrix estimation method (solid line) finds cτ  nearly exactly, while unstructured 

matrix estimation (dotted line) overestimate cτ , with an error about %12. 
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Figure 4.17 ML estimation of cτ  versus iteration number, with structured and 

unstructured matrix, 100and50,10=cτ , SNR=10 dB, N=1024. 

 

 

 

4.2.1.2 Estimation of Noise Variance 

Noise variance is needed by the MAP estimator for optimal performance. Noise 

variance estimation for OFDM systems is a well investigated topic in the literature 

[74-77]. MMSE (minimum mean square error) and ML based noise variance 

estimators use channel estimates whereas moment based algorithms are blind, as 

well as many ad-hoc algorithms. 

In section 4.2.2.2, it will be shown that the proposed SMAP estimator is quite 

insensitive to noise variance estimation errors. Therefore, in the rest of this report 

it is assumed that noise variance is estimated correctly. For the sake of 

completeness, below we give the MMSE estimation of noise variance and no 

further details are given related to this topic. 
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The MMSE estimation of noise variance 2
wσ , using the estimated channel 

coefficients, is given by [77], 

 
( ) ( )

( ) ( )zrzr

zrzrC

H

H
w,MMSE

ˆˆ
1

ˆ

ˆˆˆ

−−=

−−=

N
2
w,MMSEσ

 (4.32) 

The graph of MMSE noise variance estimation for N=1024, 100and50,10=cτ  

and 1and1.0,01.02 =wσ  is given in Figure 4.18. The channel has an exponential 

power delay profile and cτ  is known. The initial value of 2ˆ wσ  is set to the actual 

value 2
wσ  for the iterations for the clarity in the presentation. As seen from the 

figure, (4.32) always underestimates the values. Estimation error increases as the 

noise variance decreases or as the channel correlation decreases, i.e. cτ  increases. 
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Figure 4.18 MMSE estimation of 2
wσ  ( 2ˆ wσ ) versus iteration number, 

01.0and1.0,12 =wσ , 100and50,10=cτ , SNR=10 dB, N=1024. 
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4.2.2 Performance 

4.2.2.1 MSE Performance 

For a channel with exponential power delay profile, it is assumed that 2
wσ  and cτ  

are known. Then, the MSE in (3.34) becomes: 

 
( ) ( ) ( )[ ] ( ) ( )[ ]

( )cw

ccccc

τσ

τττττ

A

IACIAACAMSE H
z

H
w

2=

−−+=
. (4.33) 

Figure 4.19 shows the graph of the MAP estimator rms error (square root of error 

variances) versus cτ , for N=1024 and SNR=10 dB ( ( )22
10log10SNR wz σσ= ), 

assuming the channel is exponential and cτ  is exactly known. As seen from the 

figure, the rms error gets larger as the correlation of the channel decreases ( cτ  

increases). It should be noted that, the outer curves are for the edge subchannels 

(n=0 and n=N-1) estimation errors, the inner ones are for middle subchannels 

(n=N/2), and the others are for the remaining. The subchannels at the edges have 

largest error variances, while the variances of center subchannels are the smallest, 

as expected. The error variances of subchannels in between decrease as the 

subchannels get closer to the center. 

Next, we have investigated the effect of SNR on the rms error. The graph of the 

rms error of the center tap versus cτ  for SNR=0, 10 and 20 dB (N=1024), for 

exponential power delay profile channels with known cτ  is given in Figure 4.20. 
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Figure 4.19 Channel MAP estimate rms error versus cτ , SNR=10 dB, N=1024, 

channel with exponential power delay profile. 
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Figure 4.20 Channel MAP estimate rms error (center tap) versus cτ , SNR=0, 10 

and 20 dB, N=1024, channel with exponential power delay profile. 



 
78 

In Figure 4.21, for exponential power delay profile channels with known cτ  we 

provide the graph of rms error of the center tap as a function of N, the number of 

subchannels (SNR=10 dB). The results are consistent with the expressions given 

in (3.38) and (3.39). Thus, the rms error for independent fading does not depend 

on N, while for highly or fully correlated case, the error decreases as N increases, 

yielding very significant advantages for practical OFDM systems. 
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Figure 4.21 Channel MAP estimate rms error (center tap) versus number of 
subcarriers (N), SNR=10 dB, channel with exponential power delay profile. 
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4.2.2.2 Sensitivity Analysis 

The MSE of SMAP-epdp estimator (for exponential power delay profile channels 

with cτ  is estimated and 2
wσ  is known) is given by: 

 ( ) ( ) ( )[ ] ( )[ ]H
z

H
w IACIAACAMSE −−+= cccc ττττ ˆˆˆˆ . (4.34) 

Figure 4.22 - Figure 4.24 give the graphs of rms error of SMAP-epdp estimator 

versus cτ̂ , for N=1024, SNR=10, 20 dB, and 100and50,10=cτ , respectively. As 

seen, the proposed estimator is not much sensitive to the estimation errors in cτ̂ , 

especially if the error occurs as an over-estimation. Therefore, we conclude that 

there is no need to estimate cτ  exactly, e.g., by structured matrix estimation by 

paying the price of high complexity. 
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Figure 4.22 SMAP-epdp estimator rms error (center tap) versus estimated cτ  ( cτ̂ ), 

10=cτ , N=1024, SNR=10 and 20 dB. 
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Figure 4.23 SMAP-epdp estimator rms error (center tap) versus estimated cτ  ( cτ̂ ), 

50=cτ , N=1024, SNR=10 and 20 dB. 
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Figure 4.24 SMAP-epdp estimator rms error (center tap) versus estimated cτ  ( cτ̂ ), 

100=cτ , N=1024, SNR=10 and 20 dB. 
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For exponential power delay profile channels with known cτ , but 2
wσ  is estimated, 

the MSE of SMAP-epdp estimator is: 

 ( ) ( ) ( )[ ] ( )[ ]H

z
H

w IACIAACAMSE −−+= 2222 ˆˆˆˆ wwww σσσσ . (4.35) 

Figure 4.25, Figure 4.26 and Figure 4.27 give the graphs of rms error of SMAP-

epdp estimator versus 2ˆ wσ , for N=1024, SNR=0,10 and 20 dB, and 

100and50,10=cτ , respectively. As seen from the figures, the proposed SMAP-

epdp estimator is rather insensitive to the errors in 2ˆ wσ , especially when SNR is 

high and/or channel is highly correlated. Rms error increases dramatically if noise 

variance is fairly overestimated. 

 

 

 

10
-2

10
-1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

estimated σ
w
2

S
M

A
P

 e
s
ti
m

a
to

r 
rm

s
 e

rr
o
r,

 c
e
n
te

r 
ta

p

τc
=10

σw
2 =1

σw
2 =0.1

σ
w
2 =0.01

 

Figure 4.25 SMAP-epdp estimator rms error (center tap) versus estimated noise 

variance ( 2ˆ wσ ), 10=cτ , N=1024, SNR=0, 10 and 20 dB. 
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Figure 4.26 SMAP-epdp estimator rms error (center tap) versus estimated noise 

variance ( 2ˆ wσ ), 50=cτ , N=1024, SNR=0, 10 and 20 dB. 
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Figure 4.27 SMAP-epdp estimator rms error (center tap) versus estimated noise 

variance ( 2ˆ wσ ), 100=cτ , N=1024, SNR=0, 10 and 20 dB. 
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In order to investigate the sensitivity of SMAP-epdp to rms delay spread and 

noise variance estimation errors together, we analyze MSE of SMAP-epdp 

estimator when both cτ  and 2
wσ  are estimated. Thus, 

 ( ) ( ) ( )[ ] ( )[ ]H

z
H

w IACIAACAMSE −−+= 2222 ˆ,ˆˆ,ˆˆ,ˆˆ,ˆ wcwcwcwc στστστστ . (4.36) 

Figure 4.28, Figure 4.29 and Figure 4.30 give the graphs of rms error of SMAP-

epdp estimator versus 2ˆ wσ  and cτ̂ , for SNR=10dB, and 100and50,10=cτ , 

respectively. 
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Figure 4.28 SMAP-epdp estimator rms error (center tap) versus estimated noise 

variance ( 2ˆ wσ ) and estimated cτ  ( cτ̂ ), 10=cτ , 1.02 =wσ , N=1024. 
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Figure 4.29 SMAP-epdp estimator rms error (center tap) versus estimated noise 

variance ( 2ˆ wσ ) and estimated cτ  ( cτ̂ ), 50=cτ , 1.02 =wσ , N=1024. 
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Figure 4.30 SMAP-epdp estimator rms error (center tap) versus estimated noise 

variance ( 2ˆ wσ ) and estimated cτ  ( cτ̂ ), 100=cτ , 1.02 =wσ , N=1024. 
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4.2.2.3 Time Varying Channel Tracking 

In this section, the performance of SMAP-epdp estimator under time varying 

channel conditions, i.e., cτ  is changing 2, is investigated. When we say 
cτ  is 

changing, this may be possible for a mobile receiver in rapidly changing 

environment. For example, for a car traveling from a crowded city to outside, to 

the rural area (e.g. from bad urban to rural area) cτ  will change. In such a 

situation cτ  is expected to change slightly. 

The simulation result for the channel where initially 10=cτ , then 50=cτ  and 

finally 100=cτ , for N=1024, SNR=10 dB and α=0.9 is given in Figure 4.31. 

Indeed cτ  will change slightly in a real case, but in the simulations the difference 

between cτ ’s are selected quite large to test the estimator performance. As seen 

from the figure, SMAP-epdp estimator can follow the variation in cτ  if there is 

enough time for iterations. The time needed for reaching the new value depends 

on the difference in cτ  value and selected α value. 

 

                                                 

 
2 Note that, this is somehow different than the known time varying channel, i.e., 

cτ  is almost 

constant but the channel impulse response is varying by time. Channel impulse response changes 
when the receiver is stationary but environment (traffic, weather etc.) is varying. Another possible 
scenario is that the receiver is mobile, but its motion is in a range that the channel structure does 
not change so much, thus 

cτ  is stable (i.e., a car travelling in a rural area). 
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Figure 4.31 Estimated cτ  ( cτ̂ ) versus iteration number, SMAP-epdp estimator, 

N=1024, SNR=10 dB, cτ  varying channel ( 100and50,10=cτ ). 

 

 

 

4.2.3 Approximate SMAP-epdp 

The proposed SMAP-epdp estimator has a reduced complexity compared to the 

conventional MAP estimator. However, since it involves a matrix inversion, the 

implementation is still complicated. Therefore, we have developed further 

approximations to avoid inversion. 

Using Taylor series expansion of matrix ( )cτ̂A , 

 ( )
( ) ( )

( )k

c
k

k

c
k

0
0

0 ˆ
!

ˆ ττ
τ

τ −=∑
∞

=

A
A  (4.37) 
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where 0τ  is the center point of the Taylor series, k! is the factorial of k and 

( )( )0τkA  denotes the kth derivative of A at the point 0τ , we obtain the 

Approximate SMAP-epdp estimator equation below: 

 ( ) ( ) ( )( ) ( ) ( )
( )

rAAAz SMAP ⋅











+

−
+−+= L

2

ˆ
ˆˆ

2
0

0
2

00
1

0

ττ
τττττ c

c  (4.38) 

Thus, we have expressions that can be implemented with only a limited number of 

computations, without the need for matrix inversion. 

As another approach, recalling that SMAP-epdp estimator is not much sensitive to 

estimation errors in cτ , we suggest to keep an array of matrices for a set of cτ  

values and update the matrix A as cτ  changes significantly only. Then, we obtain 

the approximate estimator formula below: 

 ( ) rAz SMAP ⋅= 0ˆ τ , (4.39) 

where 0τ  is the selected value which is the closest to the estimated cτ . The set of 

0τ  is selected noticing that SMAP-epdp estimator is tolerable to approximately 

20% underestimation and 50% overestimation in cτ  estimation. Accordingly, the 

set we use is: 

 [ ]10070453020151075310 =τ . (4.40) 

Note that the upper limit can be changed according to the channel that the 

Approximate SMAP-epdp estimator will operate, or the set elements can be 

selected more frequently for finer performance, which will increase the memory 

used. 

In Figure 4.32 and Figure 4.33, for exponential power delay profile channels with 

12=cτ  and 50=cτ , the histograms of 0τ  selection with 1000 samples are given 

for several SNR values, respectively (N=1024). As seen from the figure, for low 
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SNRs, overestimation is more probable, therefore higher values of 0τ  are selected. 

As SNR increases, the estimation gets closer to the real value of cτ , but still 

slightly overestimation is observed. Thus, selecting 150 =τ  is more probable 

compared to selecting 100 =τ  for 12=cτ . For a channel with 50=cτ  channel, 

although overestimation occurs, since it is closer, 450 =τ  is selected. 
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Figure 4.32 Histogram of 0τ  selection, Approximate SMAP-epdp estimator, 

channel with exponential power delay profile, 12=cτ , N=1024. 
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Figure 4.33 Histogram of 0τ  selection, Approximate SMAP-epdp estimator, 

channel with exponential power delay profile, cτ =50, N=1024. 

 

 

 

4.2.4 Computational Complexity 

It is useful to compare the complexity of the proposed algorithm with existing 

estimators. As the ML estimator performance is not comparable to MAP based 

estimators, it is more relevant to make a comparison with respect to the exact 

MAP estimator. 

The computational complexity of the channel estimators can be anticipated by the 

total number of multiplications required in a symbol time. 
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� The MAP estimator requires approximately O(N3+N2+N2) multiplications. 

(First terms are for the MAP estimator, the third one is for covariance matrix 

estimation.) 

� The proposed SMAP-epdp estimator needs O(N3+N2+N) multiplication. 

Since we still take the inverse of the matrix, the first term is the same. 

� For both of the Approximate SMAP-epdp, O(N2+N) operation is needed. 



 
91 

CHAPTER 5  

 

 

SIMULATION RESULTS 

 

 

 

In this chapter, we evaluate the performance of the estimators using computer 

simulations. In order that the simulations are as realistic as possible, we use the 

DVB-T standards [78] as our guideline and use the COST 207 [41] and DVB-T 

channel models, which are widely accepted as good models in the community. 

5.1 DVB-T Standards [78] 

According to the DVB-T standard, the transmitted signal is organized in frames, 

which consist of 68 OFDM symbols. Each symbol is constituted by a set of 

carriers and transmitted with a duration composed of two parts, a data part and a 

guard interval. All symbols contain data and reference information. Since the 

OFDM signal comprises many separately modulated carriers, each symbol can in 

turn be considered to be divided into cells, each corresponding to the modulation 

carried on one carrier during one symbol. 

The numerical values for the OFDM parameters for the 2k mode are given in 

Table 5.1 for 8 MHz channels. The values for the various time related parameters 

are given in multiples of the elementary period and in microseconds. 
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Table 5.1 Numerical values of the OFDM parameters for DVB-T 2k mode. 

Number of active carriers K 1705 

Value of carrier number [Kmin, Kmax] [0,1705] 

Number of data carriers Kd 1512 

Elementary period T 7/64 µs 

Symbol period Ts=N.T 224 µs 

Carrier spacing 1/Ts 4464 Hz 

Spacing between carriers Kmin and Kmax (K-1)/Ts 7,61 MHz 

 

 

 

5.2 Channel Models 

5.2.1 DVB-T Channels 

We have chosen two different multipath channels taken from the literature for the 

simulations. The first channel model is a 30-path multipath Rayleigh model, 

which is noted to be suitable for wireless systems operating at the outdoor 

dispersive environment [17]. The second channel has 20 path, and is taken from 

ETSI EN 300 744 final draft document [78]. 

Model parameters delay iτ (µs), amplitude iρ  and phase iθ (rad) are listed in 

Table 5.2. 
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Table 5.2 Parameters of DVB-T channels, 20 and 30-path models. 

Channel 1 Channel 2 Path 

no Delay 
(µs) 

Amp-
litude 

Phase 
(rad) 

Delay 
(µs) 

Amp-
litude 

Phase 
(rad) 

1 0.0120 0.4213 5.9010 1,003019 0,057662 4,855121 

2 0.2892 0.1543 0.2147 5,422091 0,176809 3,419109 

3 0.5593 0.4401 3.9968 0,518650 0,407163 5,864470 

4 0.6919 0.4380 4.6862 2,751772 0,303585 2,215894 

5 1.0266 0.1864 4.4331 0,602895 0,258782 3,758058 

6 1.2347 0.0669 1.1484 1,016585 0,061831 5,430202 

7 1.3056 0.0809 4.0282 0,143556 0,150340 3,952093 

8 1.9643 0.1647 3.3214 0,153832 0,051534 1,093586 

9 2.0906 0.1503 4.0649 3,324866 0,185074 5,775198 

10 2.3076 0.1714 3.8432 1,935570 0,400967 0,154459 

11 2.3907 0.1289 2.8815 0,429948 0,295723 5,928383 

12 2.8962 0.2123 2.8152 3,228872 0,350825 3,053023 

13 3.7334 0.3531 5.0859 0,848831 0,262909 0,628578 

14 3.7415 0.0982 6.2326 0,073883 0,225894 2,128544 

15 3.7630 0.0808 0.7662 0,203952 0,170996 1,099463 

16 4.0452 0.1157 5.6671 0,194207 0,149723 3,462951 

17 5.4348 0.2199 2.3719 0,924450 0,240140 3,664773 

18 5.5246 0.2016 6.0266 1,381320 0,116587 2,833799 

19 5.9653 0.1228 5.1854 0,640512 0,221155 3,334290 

20 6.6460 0.2004 1.1537 1,368671 0,259730 0,393889 

21 6.8295 0.2102 1.3142 

22 7.5086 0.2630 4.4436 

23 7.9602 0.1199 6.0964 

24 8.2400 0.3210 5.0876 

25 8.8824 0.1907 1.4835 

26 9.7827 0.2379 4.7438 

27 10.1142 0.1800 0.1396 

28 11.1587 0.2539 1.8221 

29 17.6513 0.2767 1.7052 

30 18.3765 0.1208 5.3582 
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The following time invariant multipath model was employed for the channel 

impulse response: 

 ( ) i

p

j
ii

L

i
ii eaaz θρττδτ =−=∑

=

and)(
1

, (5.1) 

where iρ  and iθ  are the amplitude and phase of the path associated with the delay 

iτ  and pL  is the number of paths. The random variables ia ’s are zero mean 

complex valued Gaussian and are mutually independent. The actual amplitudes 

and phases are determined from the samples taken from the amplitude and the 

phase spectra of the dispersive channel, 
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Figure 5.1 depicts amplitude and phase response of DVB-T channels, for N=2048, 

Ts=224 µs. 
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Figure 5.1 Amplitude and phase response of DVB-T channels versus subcarrier 
index (n), N=2048. 
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5.2.2 COST 207 Channels 

Specifications of the sample multipath channel models according to COST 207 

for the four propagation areas, namely rural area, typical urban, bad urban and 

hilly terrain are given in Table 5.3 - Table 5.6, respectively [41]. 

Note that in the tables, alternative 6-path channel models as well as more 

complex, but therefore more exact, 12-path channel models have been presented. 

 

 

 

Table 5.3 Parameters of COST 207 Rural Area channels, 4 and 6-path models. 

Channel 1 Channel 2 
Path no 

Delay (µs) Power Delay (µs) Power 

1 0 1 0 1 

2 0.2 0.63 0.1 0.4 

3 0.4 0.1 0.2 0.16 

4 0.6 0.01 0.3 0.06 

5 0.4 0.03 

6 
 

0.5 0.01 

 

 

 

 

Table 5.4 Parameters of COST 207 Typical Urban channels, 6 and 12-path 
models. 

Channel 1 Channel 2 Channel 3 Channel 4 
Path 
no Delay 

(µs) 
Power 

Delay 
(µs) 

Power 
Delay 
(µs) 

Power 
Delay 
(µs) 

Power 

1 0 0.5 0 0.5 0 0.4 0 0.4 

2 0.2 1 0.2 1 0.2 0.5 0.1 0.5 
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3 0.6 0.63 0.5 0.63 0.4 1 0.3 1 

4 1.6 0.25 1.6 0.25 0.6 0.63 0.5 0.55 

5 2.4 0.16 2.3 0.16 0.8 0.5 0.8 0.5 

6 5 0.1 5 0.1 1.2 0.32 1.1 0.32 

7 1.4 0.2 1.3 0.2 

8 1.8 0.32 1.7 0.32 

9 2.4 0.25 2.3 0.22 

10 3 0.13 3.1 0.14 

11 3.2 0.08 3.2 0.08 

12 

  

5 0.1 5 0.1 

 

 

 

 

Table 5.5 Parameters of COST 207 Bad Urban channels, 6 and 12-path models. 

Channel 1 Channel 2 Channel 3 Channel 4 
Path 
no Delay 

(µs) 
Power 

Delay 
(µs) 

Power 
Delay 
(µs) 

Power 
Delay 
(µs) 

Power 

1 0 0.5 0 0.56 0 0.2 0 0.17 

2 0.4 1 0.3 1 0.2 0.5 0.1 0.46 

3 1 0.5 1 0.5 0.4 0.79 0.3 0.74 

4 1.6 0.32 1.6 0.32 0.8 1 0.7 1 

5 5 0.63 5 0.63 1.6 0.63 1.6 0.59 

6 6.6 0.4 6.6 0.4 2.2 0.25 2.2 0.28 

7 3.2 0.5 3.1 0.18 

8 5 0.79 5 0.72 

9 6 0.63 6 0.69 

10 7.2 0.2 7.2 0.21 

11 8.2 0.1 8.1 0.1 

12 

  

10 0.03 10 0.03 
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Table 5.6 Parameters of COST 207 Hilly Terrain channels, 6 and 12-path models. 

Channel 1 Channel 2 Channel 3 Channel 4 
Path 
no Delay 

(µs) 
Power 

Delay 
(µs) 

Power 
Delay 
(µs) 

Power 
Delay 
(µs) 

Power 

1 0 1 0 1 0 0.1 0 0.1 

2 0.2 0.63 0.1 0.71 0.2 0.16 0.1 0.16 

3 0.4 0.4 0.3 0.35 0.4 0.25 0.3 0.25 

4 0.6 0.2 0.5 0.18 0.6 0.4 0.5 0.4 

5 15 0.25 15 0.16 0.8 1 0.7 1 

6 17.2 0.06 17.2 0.02 2 1 1 1 

7 2.4 0.4 1.3 0.4 

8 15 0.16 15 0.16 

9 15.2 0.13 15.2 0.13 

10 15.8 0.1 15.7 0.1 

11 17.2 0.06 17.2 0.06 

12 

  

20 0.04 20 0.04 

 

 

 

Multipath characteristic (channel amplitude and phase response as explained in 

(5.2)) of COST 207 channels are shown in Figure 5.2 - Figure 5.8, for N=2048 

and Ts=224 µs. An arbitrary instance of the stochastic model is generated using a 

computer program to make the plots. Phase is uniformly distributed in the interval 

[0,2π). As seen, frequency selectivity increases as we go from rural area to hilly 

terrain. A typical rural area channel is very close to a flat fading channel, while a 

hilly terrain channel is closer to a channel with a noisy correlation. i.e., a 

correlated channel is multiplied with an independent fading channel. This is 

because of the separately placed two exponential in the power delay profile. 
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Figure 5.2 Amplitude and phase response of COST 207 rural area channels versus 
subcarrier index (n), N=2048. 
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Figure 5.3 Amplitude and phase response of COST 207 typical urban channels (1 
and 2) versus subcarrier index (n), N=2048. 
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Figure 5.4 Amplitude and phase response of COST 207 typical urban channels (3 
and 4) versus subcarrier index (n), N=2048. 

 

 

 

0 500 1000 1500 2000
0

1

2

3

4

n

a
m

p
lit

u
d
e

bad urban channel 1

0 500 1000 1500 2000
-4

-2

0

2

4

n

p
h
a
s
e

0 500 1000 1500 2000
0

1

2

3

4

n

a
m

p
lit

u
d
e

bad urban channel 2

0 500 1000 1500 2000
-4

-2

0

2

4

n

p
h
a
s
e

 

Figure 5.5 Amplitude and phase response of COST 207 bad urban channels (1 and 
2) versus subcarrier index (n), N=2048. 
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Figure 5.6 Amplitude and phase response of COST 207 bad urban channels (3 and 
4) versus subcarrier index (n), N=2048. 
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Figure 5.7 Amplitude and phase response of COST 207 hilly terrain channels (1 
and 2) versus subcarrier index (n), N=2048. 
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Figure 5.8 Amplitude and phase response of COST 207 hilly terrain channels (3 
and 4) versus subcarrier index (n), N=2048. 

 

 

 

5.2.3 Frequency Domain Correlation 

We have used autocorrelation method [54] to estimate correlation matrix, which 

results with a biased, positive definite Toeplitz matrix. According to 

autocorrelation method, with Ns data points [ ] [ ] [ ]1,1,0 −sNxxx K , to estimate a 

PxP correlation matrix (for sNP ≤ ) we form the matrix 
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This data matrix X is of size (Ns+P-1)xP. The columns of X contain the entire 

data sequence [ ] [ ] [ ]1,1,0 −sNxxx K  successively displaced and zero-padded. The 

rows contain the data samples that would appear under a sliding window just P 

samples long that moves along the data sequence. (These samples are in reverse 

order.) The correlation matrix estimate is then given by 

 XXC H
x

sN

1ˆ =  (5.4) 

Figure 5.9 gives the correlation of the middle subchannel with the other 

subchannels computed by autocorrelation method for DVB-T channels. Note that 

in the figure Ns=P=N. Similarly, Figure 5.10 - Figure 5.13 give subchannel 

correlation for COST 207 rural area, typical urban, bad urban and hilly terrain 

channels, respectively. As seen, although all channels are somewhat correlated, 

the rural area correlation is the highest. Note that, if we classify according to 

frequency domain correlation, DVB-T channel 1 can be called as a bad urban 

channel while channel 2 is a typical urban channel according to COST 207 

channel classifications. 
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Figure 5.9 Frequency domain correlation of middle subchannel (n=1024) with 
others versus subcarrier index (n), N=2048, DVB-T channels. 
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Figure 5.10 Frequency domain correlation of middle subchannel (n=1024) with 
others versus subcarrier index (n), N=2048, COST 207 rural area channels. 
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Figure 5.11 Frequency domain correlation of middle subchannel (n=1024) with 
others versus subcarrier index (n), N=2048, COST 207 typical urban channels. 
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Figure 5.12 Frequency domain correlation of middle subchannel (n=1024) with 
others versus subcarrier index (n), N=2048, COST 207 bad urban channels. 
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Figure 5.13 Frequency domain correlation of middle subchannel (n=1024) with 
others versus subcarrier index (n), N=2048, COST 207 hilly terrain channels. 

 

 

 

5.3 SMAP-efdc Results 

Following, the performance of SMAP-efdc channel estimator with the DVB-T 

and COST 207 channels is investigated. SMAP-efdc estimator assumes that the 

channel has an exponential frequency domain correlation, and estimate the 

correlation between subchannels. Then, it computes the covariance matrix and use 

it for MAP estimation (details are given in section 4.1). 

5.3.1 Real Channel Simulations 

Estimated ρ values for DVB-T and COST 207 channels are given in Table 5.7, for 

SNR=10 dB, N=2048, K=1705, α=0.9. For the simulations, it is assumed that the 

channels are stationary during channel estimation. Initial values of ρ̂  are set to 
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the 0.99 for simplicity. Estimated values are computed as the mean of 1000 runs. 

As seen, all channels are highly correlated, 97.0>ρ  and rural area channels are 

found to be almost flat i.e., 1≈ρ . 

 

 

 

Table 5.7 Estimated correlation ( ρ̂ ) values of DVB-T and COST 207 channels, 

found using SMAP-efdc channel estimator. 

ρ̂  

COST 207 

Channel 
no DVB-T 

channels Rural 
area 
channels 

Typical 
urban 
channels 

Bad 
urban 
channels 

Hilly 
terrain 
channels 

1 0.977 1 0.999 0.994 1 
2 0.998 1 0.999 0.995 1 
3 0.998 0.993 0.999 
4 

  
0.999 0.992 1 

 

 

 

Simulation results for the rms error versus subchannel index for the real channels 

are given in Figure 5.14 - Figure 5.18, with the given parameter values above. The 

dashed line (--) is the MAP estimator rms error, with covariance matrix computed 

by autocorrelation method [54] that uses channel coefficients, and the dotted line 

(…) is for SMAP-efdc estimator performance. It is concluded that, the proposed 

estimator can be used safely for typical urban and bad urban channels. The rms 

error of SMAP-efdc is lower than the ML estimator’s, but the performance is poor 

compared to MAP estimator with computed covariance matrix. This is because for 

highly correlated case, SMAP-efdc estimator is very sensitive to ρ estimation 

error, as shown in section 4.1.2.2. Thus, a small variation in estimation causes a 

large deviation in the error variance. Unfortunately, rural area and hilly terrain 
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area simulations give intolerable results. Rural area channels are estimated to be 

flat fading (indeed they are not), which causes very high rms errors. 
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Figure 5.14 SMAP-efdc channel estimator rms error versus subcarrier index (n), 
SNR=10 dB, DVB-T channels. 
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Figure 5.15 SMAP-efdc channel estimator rms error versus subcarrier index (n), 
SNR=10 dB, COST 207 rural area channels. 
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Figure 5.16 SMAP-efdc channel estimator rms error versus subcarrier index (n), 
SNR=10 dB, COST 207 typical urban channels. 
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Figure 5.17 SMAP-efdc channel estimator rms error versus subcarrier index (n), 
SNR=10 dB, COST 207 bad urban channels. 
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Figure 5.18 SMAP-efdc channel estimator rms error versus subcarrier index (n), 
SNR=10 dB, COST 207 hilly terrain channels. 

 

 

 

5.4 SMAP-epdp Results 

In this section we have investigated the performance of SMAP-epdp channel 

estimator with the DVB-T and COST 207 channels. This estimator assumes that 

power delay profile of the channel is exponential, and estimate cτ , rms delay 

spreads relative to the sampling interval Ts of the OFDM system. Then, it 

computes the covariance matrix and use it for MAP estimation (details are in 

section 4.2). 

5.4.1 Real Channel Simulations 

For DVB-T and COST 207 channels, cτ ’s are calculated using (4.21) and 

presented in Table 5.8. Note that, when we compute cτ , we assume that the 



 
110 

channel is exponential. For the same channels the estimated values of cτ  ( cτ̂ ), are 

also presented in the same table for comparison. Simulation parameters are 

selected to be SNR=10 dB, N=2048, K=1705, α=0.9. For the simulations, it is 

assumed that the channels are stationary during channel estimation. Initial values 

of cτ̂  are set to the computed values for simplicity. Estimated values given are the 

mean of 1000 runs. (Note that tracking parameter α is selected high, therefore the 

deviation of estimation is low.) Generally estimated values are slightly different 

from the computed ones, but since SMAP-epdp is not much sensitive to 

estimation errors, dramatic degradation in the rms error performance is not 

expected. Since hilly terrain channels do not have exponential power delay profile 

(combinations of two exponential) computed and estimated cτ  differs 

dramatically. 

Simulation results of rms error versus subchannel index for DVB-T and COST 

207 channels are given in Figure 5.19 - Figure 5.23, for the same parameter values 

given above. The dashed line is the rms error of the MAP estimator with 

computed covariance matrix using autocorrelation method [54]. MSE of the 

proposed estimator is very low compared to ML estimator and nearly the same 

with the performance of MAP estimator with computed covariance, except for 

hilly terrain channels. Since the channel data is randomly generated, the computed 

covariance matrix is not equal to the actual one obtained by using expectation. 

Therefore, the performance of estimator with a computed covariance matrix will 

not give the exact MSE. Thus, the proposed estimator performance may come out 

to be better than that of MAP procedure, as in the case of rural area and typical 

urban channels. For hilly terrain channels, as stated before, since they do not fit to 

exponential power delay profile well, higher errors occur. But still SMAP-epdp 

estimator can be used as a crude approximation. 
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Table 5.8 Calculated and estimated rms delay spread ( cτ ) values of DVB-T and 

COST 207 channels, found using SMAP-epdp channel estimator. 

Channels Ch. no Computed cτ  Estimated cτ  

1 43.58 48.15 
DVB-T channels 

2 11.34 16.48 

1 1.15 1.05 Rural area 
channels 2 0.90 0.90 

1 9.71 6.45 

2 9.71 7.18 

3 9.15 8.35 

Typical 
urban 
channels 

4 9.38 9.83 

1 21.87 22.18 

2 22.02 20.58 

3 22.15 26.90 
Bad urban 
channels 

4 23.26 25.98 

1 45.73 17.80 

2 36.35 14.41 

3 45.59 31.48 

COST 
207 

Hilly 
terrain 
channels 

4 46.63 24.92 
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Figure 5.19 SMAP-epdp channel estimator rms error versus subcarrier index (n), 
SNR=10 dB, DVB-T channels. 

 



 
112 

0 500 1000 1500
0

0.1

0.2

0.3

channel 1

n

rm
s
 e

rr
o
r

0 500 1000 1500
0

0.1

0.2

0.3

channel 2

n

rm
s
 e

rr
o
r

ML

MAP
SMAP

ML

MAP
SMAP

 

Figure 5.20 SMAP-epdp channel estimator rms error versus subcarrier index (n), 
SNR=10 dB, COST 207 rural area channels. 
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Figure 5.21 SMAP-epdp channel estimator rms error versus subcarrier index (n), 
SNR=10 dB, COST 207 typical urban channels. 
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Figure 5.22 SMAP-epdp channel estimator rms error versus subcarrier index (n), 
SNR=10 dB, COST 207 bad urban channels. 
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Figure 5.23 SMAP-epdp channel estimator rms error versus subcarrier index (n), 
SNR=10 dB, COST 207 hilly terrain channels. 
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According to DVB-T standards [78], in addition to the transmitted data, an OFDM 

frame contains scattered pilot cells and continual pilot carriers. The pilots can be 

used for frame synchronization, frequency synchronization, time synchronization, 

channel estimation, transmission mode identification and can also be used to track 

the carrier phase noise. For the symbol of index l (ranging from 0 to 67), scattered 

pilots are the carriers for which index k belongs to the subset 

( ) [ ]{ }maxminmin ,,0,integer|124mod*3 KKkppplKk ∈≥++= . 

We have investigated the performance of the SMAP-epdp estimator using 

scattered pilots. Simulation results for the DVB-T channels with pilots placed 

according to DVB-T 2k mode are given in Figure 5.24. In the simulations, the 

parameters are taken to be SNR=10 dB, N=2048, K=1705, α=0.9 and 1000 runs. 

As seen from the figure, there are some degradations in the performances (the rms 

error of the estimates is higher than the full training sequence case). For DVB-T 

channel 2, which has a higher correlation, the performance of the proposed 

estimator is still much better than ML, but for channel 1 the performance degrades 

to ML’s. Therefore, we conclude that using SMAP-epdp with pilots is profitable 

only for highly correlated channels. 
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Figure 5.24 SMAP-epdp channel estimator rms error versus subcarrier index (n), 
SNR=10 dB, DVB-T channels, pilot aid channel estimation. 
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5.4.2 Approximate SMAP-epdp Simulations 

The performance of Approximate SMAP-epdp estimator which uses Taylor series 

approximate expression (4.38) for the matrix inversion with DVB-T channel 2 

data ( 34.11=cτ ), for SNR=10 dB, N=2048, K=1705, α=0.9 and 1000 runs, is 

given in Figure 5.25. In the graph, we have used 2nd degree Taylor polynomial and 

the center point 0τ  is selected to be 10, 50 and 100. Closed-form analytic 

equations for the derivative of the matrix A could not be found using Mathematica 

tool, therefore we have calculated the nth derivative of A at the point 0τ  

numerically. The results were found to be in good agreement with those obtained 

by simulations, when the center point is selected well. As the center point deviates 

from the real value, the rms error becomes larger. However, we note that tolerance 

on 0τ is quite relaxed. As an alternative approach, after estimating cτ , the center 

point and matrices used can be selected to increase the performance. 
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Figure 5.25 Approximate SMAP-epdp channel estimator rms error versus 
subcarrier index (n), DVB-T channel 2 (calculated 34.11=cτ ), 2nd order Taylor, 

SNR=10 dB. 
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The performance of the second Approximate SMAP-epdp estimator given in 

(4.39) with the same DVB-T channel 2 data ( 34.11=cτ ) is presented in Figure 

5.26. Recall that in this approximation, instead of matrix inversion for each 

symbol, we have suggested to keeping an array of matrices for a set of cτ  values 

and updating the matrix as cτ  changes significantly only. The parameters are 

selected to be the same as given above. In the graph, 0τ  is set to be 10, 15, 20 and 

100, in order to see the performance loss due to variations in 0τ . The simulation 

results of approximate SMAP-epdp estimator were found to be in good agreement 

with those obtained for SMAP-epdp estimator, when 0τ  is selected well. As 0τ  

deviates from the true value, the rms error becomes larger. However, we note that 

the tolerance on 0τ is quite relaxed, even for 0τ =100 the rms error is still lower 

than ML estimator. Indeed, in true operation since cτ  is estimated to be about 16, 

0τ =15 will occur more frequently, and 0τ =10 and 0τ =20 are rarely observed. 

Thus, the performance degradation will be quite tolerable. 
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Figure 5.26 Approximate SMAP-epdp channel estimator rms error versus 
subcarrier index (n), DVB-T channel 2 (calculated 34.11=cτ ), SNR=10 dB. 
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5.4.3 SER Performances 

We have analyzed error probability performance of OFDM with QPSK 

modulation over Rayleigh fading channels, in the presence of channel estimation 

errors. Approximate SMAP-epdp, which assumes channel power delay profile is 

exponential, keeps an array of matrices for a set of cτ  values and updates the 

matrix as cτ  changes significantly only, is used for channel estimation. We have 

used exact BER formulas derived in Chapter 3 and simulation results, and 

quantified the performance loss due to channel estimation error. Channel data 

used in the simulations are generated randomly from channels that have 

exponential power delay profiles. The correctness of our analysis is verified by the 

fact that the system performance predicted by analysis given in section 3.4.2 (Pe is 

given in equation 3.55) and computer simulation (Monte Carlo simulations) yields 

almost the same result. The SER graphs are investigated in the cases of channel 

estimation with training sequence, decision feedback or pilot carriers. 

5.4.3.1 Channel Estimation with Training Sequence 

In this section, it is assumed that the channel is estimated periodically by a 

training sequence, thus the channel coefficients are estimated from all subcarriers 

(Details are given in section 3.3.). Figure 5.27 shows the graph of SER of 

Approximate SMAP-epdp estimator versus SNR for N=512, cτ =12 and 50. The 

dotted lines (--) are the simulation results and the stars (*) are used for the 

analytical results. Approximate SMAP-epdp estimator SER expressions are 

calculated as eP2 3, where Pe is found using (3.58) and (3.55) and by replacing A 

matrix with ( )0τA . Pe is computed for each 0τ  value used, and then total Pe is 

found considering the percentage of 0τ  selection. For example, when histograms 

                                                 

 
3 Note that it is a valid approximation for gray coded QPSK, especially when the bit error is small. 
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of 0τ  selection for an exponential power delay profile channel with cτ =12 are 

investigated; it is observed that for low SNR over-estimation is more probable, 

therefore higher values of 0τ  are selected. As SNR increases, the estimation gets 

closer to the real value of cτ , but still slightly over-estimation is observed. Thus, 

for SNR=20 dB, we have 20% of the total occurrences consisting of 0τ =10 and 

80% for 0τ =15. Then, for SNR=20 dB, we computed Pe from 

 15,10, 00
8.02.0 == += ττ eee PPP

. (5.5) 

We note that analytical results perfectly match the simulation results. 
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Figure 5.27 SER of Approximate SMAP-epdp estimator versus SNR, N=512, 

cτ =12 and 50, using training sequence for channel estimation (--:simulation 

results, *:analytical results). 
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Figure 5.28 shows the graph of analytical SER of Approximate SMAP-epdp 

estimator versus SNR for N=512, cτ =0, 12, 50 and 100. For comparison, the plots 

of analytic SER when there is no fading (AWGN), with perfect channel estimation 

and simulation result of SER when ML estimator is used are also presented in the 

same graph. As seen, if the channel is flat fading, the performance of the proposed 

estimator is essentially identical to that of the case when the channel is perfectly 

estimated (denoted by * in the graph). If the channel is highly correlated, the 

performance of the proposed estimator is very close to the case when the channel 

is perfectly estimated. As the correlation decreases the performance of 

Approximate SMAP-epdp estimator comes closer to the ML estimator 

performance, as expected. Note that, for low SNRs the performance improvement 

compared to ML estimator is more significant. 
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Figure 5.28 SER of Approximate SMAP-epdp estimator versus SNR, N=512, 

cτ =0, 12, 50 and 100, using training sequence for channel estimation. 
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Finally, Figure 5.29 shows the graph of analytical SER of Approximate SMAP-

epdp estimator with Taylor series expansion versus SNR for N=512, cτ =0, 12 and 

50. In the figure, stars (*) are used for SMAP-epdp estimator and circles (o) are 

used for Approximate SMAP-epdp obtained using 2nd order Taylor series 

expansion, with SNR=10 dB. For the plot, we have assumed that the center point 

0τ  is selected close enough, thus we can observe the effect of estimation error in 

noise variance on SER performance. When we compare the performance of 

Approximate SMAP-epdp with SMAP-epdp estimator’s, the performance is 

exactly the same when SNR is smaller than 20 dB. For higher SNR’s, 

Approximate SMAP-epdp is worse, and as the correlation decreases, the 

degradation in the performance is more specific. Indeed, Taylor series coefficients 

should be updated for this value of SNR. Sensitivity graphs have shown that, 

when the correlation is low, and SNR is underestimated too much, the error can 

increase considerably. 
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Figure 5.29 SER of Approximate SMAP-epdp estimators versus SNR, N=512, 

cτ =0, 12 and 50, using training sequence for channel estimation. 
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5.4.3.2 Channel Estimation with Decision Feedback 

Monte Carlo simulation results for SER performance of a QPSK modulated 

OFDM system where a training sequence is sent once per 50 symbols and 

decision directed channel estimation is performed between training symbols are 

given in Figure 5.30 and Figure 5.31. Other parameters are: N=1024, cτ =12 and 

50 and α=0.9. To model the time variations, the Jakes Doppler spectrum [39] is 

used at a Doppler frequency of fm=40 Hz and fm=80 Hz, respectively. The channel 

correlation is: 

 { } ( )( )
( ) Nmnj

TlkfJ
zzE

c

sm
mlnk

−+

−
=⋅

πτ

π

21

20*  (5.6) 

where n, m are subcarrier indices, k, l are symbol indices and J0 is the Bessel 

function of the first kind of order zero. We conclude that SER performance of the 

proposed channel estimator with decision feedback is always better than the ML 

estimator and quite satisfactory especially for highly correlated channels. 
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Figure 5.30 SER of Approximate SMAP-epdp estimator versus SNR, N=1024, 

cτ =12 and 50, fm=40 Hz, using training sequence and decision feedback for 

channel estimation, Monte Carlo simulation. 
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Figure 5.31 SER of Approximate SMAP-epdp estimator versus SNR, N=1024, 

cτ =12 and 50, fm=80 Hz, using training sequence and decision feedback for 

channel estimation, Monte Carlo simulation. 
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Figure 5.32 and Figure 5.33 show the SER performance of Approximate SMAP-

epdp and ML channel estimation methods as a function of Doppler frequency, for 

SNR=10 dB and SNR=30 dB, respectively. Other parameters are the same as in 

the previous case. The general behavior of the graphs is that SER increases as the 

Doppler spread increases. When SNR is high, the degradation in the SER 

performance is more pronounced. 
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Figure 5.32 SER of Approximate SMAP-epdp estimator versus Doppler 
frequency (fm), N=1024, cτ =12 and 50, SNR=10 dB, using training sequence and 

decision feedback for channel estimation, Monte Carlo simulation. 
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Figure 5.33 SER of Approximate SMAP-epdp estimator versus Doppler 
frequency (fm), N=1024, cτ =12 and 50, SNR=30 dB, using training sequence and 

decision feedback for channel estimation, Monte Carlo simulation. 

 

 

 

5.4.3.3 Channel Estimation with Pilot Carriers 

When pilots are used for channel estimation, although estimating the channel 

responses at data locations may involve a nonlinear interpolating polynomial, the 

derived data channel estimate is still linear combinations of ML or MAP 

estimates. (MAP estimated channel response is also a linear function of ML 

estimates, thus, the resulting estimate is a linear function of the ML estimate.) In 

summary, for a general class of linear channel estimates, we can express the 

channel response estimate as [32] 

 pip ApBrBz =⋅= andˆ , (5.7) 
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where rp is the received signal in the pilots, pi is the interpolation polynomial and 

Ap is the matrix A (recall that this is the MAP estimator matrix) but with pilot 

locations only. For ML estimation Ap is the identity matrix. Then, analytical SER 

expressions for Approximate SMAP-epdp estimator are found similarly as in the 

training sequence case, using (3.58), by replacing the estimator matrix A with B. 

Similarly, Pe is computed for each 0τ  value used, and then total Pe is found 

considering the percentage of 0τ  selection. 

Figure 5.34 shows the graph of analytical SER versus SNR graph of a QPSK 

modulated OFDM receiver with pilot aided channel estimation for N=1024, L=8, 

cτ =1 and 5. In our work, we have used a second order polynomial interpolation 

[4] in estimating channel responses of data tones, for its acceptable computational 

complexity. Then, channel estimates obtained using interpolation is given by 

 
( ) ( )

( ) ( ) ( )1ˆˆ1ˆ

ˆˆ

101 −+++=

+=

− mcmcmc

lmLk

ppp zzz

zz
, (5.8) 

where pẑ  is the estimations of pilot subchannels, m = 0,1,…, Np-1, l = 0,1,…,L-1 

and 
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. (5.9) 

The dashed lines are used for the ML estimator and the dotted lines are for 

Approximate SMAP-epdp estimator. We conclude that, in pilot aid channel 

estimation, Approximate SMAP-epdp estimator provides a noteworthy advantage 

when the channel is highly correlated (slowly fading) at low and medium SNRs. 

The performance advantage of Approximate SMAP-epdp estimator decays and 

SER comes closer to the ML estimator’s as SNR increases towards large values. 
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Figure 5.34 SER of Approximate SMAP-epdp estimator versus SNR, N=1024, 
L=8, cτ =1 and 5, pilot aided channel estimation. 

 

 

 

Figure 5.35 shows the graph of analytical SER of Approximate SMAP-epdp 

estimator versus SNR for N=1024, cτ =1, 12, and L=4, 8. As expected, the 

performance of the pilot assisted channel estimation is much worse than that of 

the training sequence based channel estimation. As the correlation decreases, 

increasing L results in much higher errors. We conclude that, using pilots is 

acceptable when the channel is highly correlated (slowly fading). 
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Figure 5.35 SER of Approximate SMAP-epdp estimator versus SNR, N=1024, 
L=4 and 8, cτ =1 and 12, pilot aided channel estimation. 

 

 

 

Finally, when we compare the SER performances of training sequence, pilot 

assisted and decision directed channel estimation schemes, we conclude that the 

training sequence scheme has the lowest SER, as expected. When the channel is 

sufficiently slowly time varying, a training sequence with decision feedback is a 

good choice for estimation. For slowly fading (highly correlated) channels, using 

pilot carriers for channel estimation is an alternative method and the performance 

of the proposed estimator is shown to be advantageous especially for low to 

moderate SNRs. 
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CHAPTER 6  

 

 

CONCLUSIONS 

 

 

 

This thesis is composed of two major topics. In the first part of the thesis, we have 

investigated the average channel capacity of adaptively loaded OFDM systems 

under frequency selective slowly fading channel conditions. Using the optimum 

power distribution, we evaluated the average channel capacity under Rayleigh, 

Rician, Nakagami-m, Hoyt, Weibull and Lognormal channels, assuming that the 

channel state information is available at the transmitter and receiver. Following, 

we dealt with a lower bound for channel capacity, which assumes uniformly 

distributed power. It has been shown by simulations that this approach gives tight 

bounds for all fading channels except for lognormal channel with large variance. 

We have also considered the capacity under Rician fading with ideal MRC 

diversity at the receiver. Closed form expressions for the lower bounds with and 

without MRC diversity for Rician channel using series expansion have been 

derived. We observed that the reception always reduces to the case of AWGN 

regardless of the degree of fading, as the number of diversity L approaches 

infinity. Increasing L improves the channel capacity, especially for small values of 

K, Rician factor. For the high SNR case, further approximations have been 

derived for Rayleigh, Rician, Nakagami-m, Weibull and Lognormal channels. We 

conclude that these approximations are highly accurate when the average SNR is 

greater than 20 dB. 

As a second topic, we proposed two novel channel estimation methods for OFDM 

systems under Rayleigh fading channels and investigated their performances 
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thoroughly. We have developed adaptive, simplified MAP estimators for the 

channel taps, to be used in OFDM systems where typically the subcarrier channel 

taps are highly correlated. First, we have assumed that the channel frequency 

correlation is exponential and proposed an estimator. We used a single parameter 

MAP estimator block for which the parameter is estimated by a simple procedure. 

We have investigated the sensitivity of the simplified MAP estimator to 

correlation parameter and noise variance estimation errors. It has been seen that 

the proposed estimator is quite insensitive to the noise variance estimation errors, 

if SNR and/or correlation are high. It is not sensitive to correlation estimation 

errors for weakly correlated channels, but dramatic errors occur for highly 

correlated channels. Simulations done with real channel data matched well with 

this result. It has been shown that this estimator works well if the channel fits the 

assumption and if the subchannel correlation is not high. Degradation in MSE 

performance is observed for highly correlated real channel estimations. 

Additionally, for practical use, further approximations are presented to avoid 

matrix inversion, which makes the implementation complicated. 

Following, exponential power delay profile is assumed, which is known to be a 

good model for most practical channels in the literature. This model shows better 

performance compared to the previous one. The MSE performance of this channel 

estimator has been found to be very good, especially for the systems with a large 

number of subcarriers, when the subchannels are highly correlated. Although 

there is a degradation compared to the MSE performance with training, the 

performance of the estimator when pilots are used for channel estimation was also 

shown to be satisfactory especially when subchannels are highly correlated. 

Furthermore, the proposed channel estimator is shown to be quite insensitive to 

parameter estimation errors. It has been shown that the proposed estimator is also 

quite insensitive to the rms delay spread estimation errors, especially if the rms 

delay spread is over estimated. We conclude that, we do not have to estimate the 

rms delay spread exactly by paying the price of high complexity. We have also 

shown that the estimation error in noise variance is not so important, especially 

when SNR is high and/or the subchannels are substantially correlated. The 
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proposed estimator rms error increases considerably only when noise variance is 

over estimated significantly. 

We have developed approximations to avoid the matrix inversion in the proposed 

simplified MAP estimator, using Taylor series expansion. The MSE performance 

of this approximate estimator was found to be satisfactory and this approximate 

estimator is quite insensitive to the selection of its initial parameters. Another 

approximation depending on the fact that the proposed estimator is insensitive to 

rms delay spread estimation errors is developed, which approximately yields 

MAP estimates of the channel taps with an acceptable complexity. We suggested 

keeping an array of matrices for a set of rms delay spread values and updating the 

matrix that is used in the estimator as the parameter changes significantly only. 

Thus, we have developed methods that can be implemented with only a limited 

number of computations, without the need for matrix inversion. We have 

computed the computational complexity of the proposed estimator: Compared to 

the exact MAP estimator, the Approximate SMAP estimator complexity is 

reduced considerably, without a noticeable degradation in the performance. 

Additionally, the SER performance of the proposed Approximate SMAP 

estimator has been investigated for channel estimation with training sequence, 

decision feedback and pilot subcarriers. It is concluded that the proposed 

estimator always outperforms the ML estimator and the performance 

improvement is more significant for highly correlated channels. Thus, when the 

correlation is high enough, the performance of the proposed estimator is nearly 

equal to the case that the channel is perfectly estimated, and as the channel gets 

closer to independent fading, the performance of the proposed estimator comes 

closer to the ML estimator performance. When we compare the estimation 

methods, as expected, channel estimation with training sequence gives the best 

performance, but we pay the price of decreasing useful bit rate. If the channel is 

sufficiently slowly time varying, channel estimation with a training sequence and 

decision feedback is a good choice. For slowly fading (highly correlated) 

channels, using pilot aided channel estimation is an alternative method, because 
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the performance of the proposed estimator is shown to be advantageous for such 

channels especially for low to moderate SNRs. 

Among the areas that seem to promise fruitful future work in the context of 

channel estimation for multicarrier systems are: 

• The frequency selective radio channel may severely attenuate the data 

symbols transmitted on one or several subcarriers, leading to bit errors. 

Spreading the coded bits over the bandwidth of the transmitted system, an 

efficient coding scheme can correct the erroneous bits and thereby exploit 

the wideband channel’s frequency diversity advantage. Therefore, the 

proposed estimator performance with coded OFDM can be analyzed. 

• Multiple transmit and receive antennas are a strong choice to improve the 

capacity in OFDM systems. Channel estimation is an important issue for the 

MIMO-OFDM systems since computational complexity increases rapidly 

with the increase in the number of antennas, and any estimation error 

becomes crucial since the system becomes more sensitive to parameter 

errors. Therefore, the work done in this thesis may be extended to suit the 

requirements of MIMO systems. 
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APPENDIX A 

 

 

FINDING PHASE PDF OF A COMPLEX RANDOM 
VECTOR 

 

 

For a real random vector, the Gaussian density function has a form [54]: 
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where N is the dimension of x. This density function is the generalization of the 

one-dimensional Gaussian density for real random variables and is completely 

characterized by the mean vector mx and the covariance matrix Cx. For a complex 

random vector the Gaussian density has the slightly different form [54] 
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where in this case z assumed to be complex random vector. Then, for a complex 

Gaussian vector 

 yxz j+= , (A.3) 

with covariance matrix Cz and assuming that { } [ ]0zz T =E , it is known that [54] 
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Then, density functions of real and imaginary parts are written as 
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where mx and my are the mean vectors of x and y, respectively. Assuming real and 

imaginary parts are independent, i.e., 
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Noting that 
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=
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it is known that the polar form is [56]: 
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where J is the Jacobian of the transformation. Then 
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which simplifies to 
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Then, we reach the final equation 
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For a real covariance matrix Cz, Cx=Cz/2. Then, 
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To find the pdf of phases, we integrate (A.13) over r, i.e., 
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Then we can find pdf of each subchannel phase seperately by integrating over the 

other phases. i.e., 
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