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ABSTRACT 

 

 

 

SOME PROPERTIES AND CONSERVED QUANTITIES OF THE 

SHORT PULSE EQUATION 

 

 

Erbaş, Kadir Can 

M.S., Department of Physics 

Supervisor: Prof. Dr. Ayşe Karasu 

 

February 2008, 54 pages 

 

Short Pulse equation derived by Schafer and Wayne is a nonlinear partial differential 

equation that describes ultra short laser propagation in a dispersive optical medium 

such as optical fibers. Some properties of this equation e.g. traveling wave solution 

and its soliton structure and some of its conserved quantities were investigated. 

Conserved quantities were obtained by mass conservation law, lax pair method and 

transformation between Sine-Gordon and short pulse equation. As a result, loop 

soliton characteristic and six conserved quantities were found. 

 

 

Keywords: short pulse, nonlinear optics, soliton, conserved quantities, Lax pair 
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ÖZ 

 

 

 

KISA ATMA DENKLEMİNİN BAZI ÖZELLİKLERİ VE 

KORUNAN NİCELİKLERİ 

 

 

Erbaş, Kadir Can 

Yüksek Lisans, Fizik Bölümü 

Tez Yöneticisi: Prof. Dr. Ayşe Karasu 

 

Şubat 2008, 54 sayfa 

 

 

Schafer ve Wayne tarafından bulunan kısa atma denklemi dağıtıcı optik ortamlardaki 

ultra kısa lazer yayılmasını açıklayan lineer olmayan bir diferansiyel denklemdir. Bu 

denklemin, ilerleyen dalga çözümü yoluyla soliton yapısı gibi özellikleri ve bazı 

korunan değerleri bulundu. Korunan değerler bulunurken; kütle korunumu denklemi, 

Lax çiftleri ve Sine-Gordon ile kısa atma denklemi arasındaki dönüşüm kuralları 

kullanıldı.  

 

Anahtar Kelimeler: kısa atma, lineer olmayan optik, soliton, korunan değerler, Lax 

çiftleri 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Fiber optic communication provides transmitting huge amount of data by sending 

light pulses through an optical fiber. Compared with electrical system based on 

copper wires, fiber optic communication has some advantages. First, the data 

transmission capacity is huge. For example, even if hundreds of thousands telephone 

channels are used with full capacity, a single silica fiber can replace them. 

Particularly, low bandwidth in communication is a very serious problem of our time. 

Second fiber optic transmission loss is small therefore there is no need to amplify the 

signal in a fiber for many tens of kilometers. Third it is very safe and economical. 

Because of light transferring rather than electrical current, there is no risk of spark 

and its cost per transported bit is very low [1]. 

 

Although it has serious advantages, there are some obstacles in using fiber 

technology. The transmission capacity of a fiber depends on the fiber length. 

Dispersion reduces the achievable transmission rate.  

 

One of the important problems of nonlinear pulse propagation is the dispersive pulse 

broadening effect. It prevents very high data transmission via optical fibers. As a 

solution to this problem, Hasegawa and Tappert [2] suggested that the dispersive 

spreading can be balanced by a weak nonlinearity of the index of refraction in the 

optical fiber. By means of the growth in optical fiber and laser technology, necessary 

conditions for soliton pulse propagation were reached. Finally, in 1980, the first 

experimental observation of optical solitons was made. 
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Recently, Schafer and Wayne [3] proposed an alternative model to approximation of 

a very short pulse in nonlinear media. Chung, Jones, Schafer and Wayne [3] proved 

numerically that as the pulse length shortens, the nonlinear Schrödinger equation 

approximation becomes less and less accurate while the short pulse equation 

provides a better and better approximation to the solution of Maxwell’s equation. 

Nonlinear Schrödinger Equation (NLSE) assumes that the pulses spectrum is 

localized around the carrier frequency while short pulse equation assumes the pulse 

is as short as few cycles of the central frequency [4]. 

 

The short pulse equation (SPE) examined in this study was derived by Schafer and 

Wayne [3] to describe the ultra short pulse propagation in nonlinear media such as 

optical fibers that is, 

( )3

xt
xx

1
u u u

6
= +                                              (1.1) 

where subscript denotes partial derivative. 

 

Sakovich and Sakovich studied short pulse equation from the standpoint of its 

integrability [4]. They showed that the short pulse equation is integrable and 

possesses a Lax pair. The Lax pair is the most fundamental object in the theory of 

integrable systems. It is the starting point for using the inverse scattering method on a 

given integrable equation that is very special because it can be solved analytically.  

 

They also proved that through a chain of transformations the SPE can be related to 

the sine-Gordon equation. Using this property Sakovich and Sakovich [5] obtained 

the exact loop and pulse solutions of the SPE from the well known kink and breather 

solutions of the sine-Gordon equation. 

 

Later Brunelli [6], [7] studied the Hamiltonian structures and obtained the conserved 

quantities of SPE. Multi soliton solutions and periodic solutions of SPE [8] are found 

by Parkes very recently.  
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In this work we studied some properties of SPE and derived the conserved quantities 

by using mass conservation law, its Lax operators and transformation from sine-

Gordon Equation. 
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CHAPTER 2 

 

 

NONLINEAR OPTICS 

 

 

 

A dielectric medium can be polarized if an electrical field is executed. The polar 

molecules behave like electric dipoles and possess electrical dipole moment. If there 

is no external electrical field, these dipole moments directions are random. 

 

The sum of all dipole moment vectors in an infinitesimal volume element is called as 

polarization vector P
�

. It gives a quantity of polarization of dielectrics and it is 

affected by external electric field. Polarization depends on both external field and 

optical properties of the medium. Therefore it can be seen as the total response of the 

medium to the external electrical field. 

 

Like the external field, light can also polarize dielectrics. The medium where the 

light propagates can also be polarized by the electric field component of 

electromagnetic wave. However, this electric field varies in time. The time lag 

between electric field E and the response of the medium due to the electrical inertia 

must be taken into account [9]. 

 

Incoherent optics, e.g. laser radiation, assumed that optical characteristics of the 

medium do not depend on the intensity of light propagating in it. That is, the 

frequency and polarization of light determines the optical properties such as 

refractive index. The reason for this assumption is that non-laser radiation does not 

carry enough electrical field components with respect to inter-atomic and atomic 

field strength of the medium. After the advent of laser, a light wave becomes an 

intensive enough to affect atomic fields and the optical properties of the medium [9].  
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When an optical material is induced by the light with high intensity, nonlinear 

changes in refractive index of the medium are seen. This phenomenon is known as 

the optical Kerr effect. This effect leads to the nonlinearity for the pulse propagation 

in the medium. After the discovery of laser, it was observed and the new type of 

optics was called as nonlinear optics, while pre-laser optics was called as linear 

optics [19]. 

 

Nonlinear transportation by using soliton pulses is a kind of method which is used 

for solving the limiting effects of chromatic dispersion. Soliton is a solution of NLSE 

describing the non-dispersive transmission of an optical pulse in a dispersive 

medium.  

 

The nonlinear optics was originated in the early 1960’s. Discovery of laser offered 

more amplified light beam with high directionality. It is also more monochromatic, 

bright and has more degenerate photon. The interaction of laser with nonlinear media 

leads to some kind of new effects which is studied by nonlinear optics. Classically, in 

linear medium, polarization vector P
�

 is considered to be linearly proportional to the 

electric field E.  

E.P
��

χε= 0                                                (2.1) 

χ  is the susceptibility of the medium. So the Maxwell equations contained only the 

first power of electrical field strength E
�

. It means that no coherent radiation at a new 

frequency will be generated when there are some electromagnetic waves with 

different frequencies. However, in some types of media, it was seen that this 

assumption was violated. 

 

The term nonlinear comes from the dependence of electrical susceptibility to electric 

field strength of a light wave. The susceptibility χ  is a nonlinear function of electric 

field strength E. Consequently the equation for polarization becomes: 

 

(1) (2) (3)

0P E : EE EEE....... = ε χ ⋅ + χ + χ 
� � � � � � �

�                        (2.2) 
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If the electric field strength is sufficiently small, this equation can be approximated 

as; 

E.P
��

χε= 0                                                  (2.3) 

as in linear optics. 

 

The susceptibilities (coefficients) depend on the material and they are tensors in 

general. When it is substituted into Maxwell equations, nonlinear differential 

equations were found. If the light intensity is low, the linear approximation with a 

first coefficient gives the correct results approximately. This is a topic of linear 

optics but the intensity of light is high, like a short pulse laser, nonlinear higher order 

coefficients must be included as in nonlinear optics. Some observation confirmed the 

nonlinear optics theories. These are the discovery of frequency mixing effects, 

optical second and third harmonic generation, sum frequency generation, optical 

difference frequency generation and optical rectification [10]. 

 

If there are no free charges and currents, Maxwell equations in a nonmagnetic 

dielectric material become: 

B
E

t

∂
∇× = −

∂

�
� �

           
D

H
t

∂
∇× =

∂

�
� �

              H 0∇ =
� �
i            D 0∇ =

� �
i           (2.4) 

0

0

B
H and D .E P= = ε +

µ

�
� � �

.                                      (2.5) 

P
�

 is the polarization vector of the medium and 0 0 2

1

c
µ ε =  

Therefore the second equation can be written as:  

0 0 0

E P
B .

t t

∂ ∂
∇× = µ ε + µ

∂ ∂

� �
� �

                                           (2.6) 

When combined with the first equation after differentiating with respect to time, we 

obtain; 

2 2

0 0 02 2

E P
E .

t t

∂ ∂
−∇×∇× = µ ε + µ

∂ ∂

� �
� � �

                                       (2.7) 
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2 2
2

02 2 2

1 E P
E ( E)

c t t

∂ ∂
∇ − ∇ ∇ = + µ

∂ ∂

� �
� � � �

i                                   (2.8) 

2 2
2

02 2 2

1 E P
E

c t t

∂ ∂
∇ − = µ

∂ ∂

� �
�

                                            (2.9) 

If D 0∇ =
�
i , then ( )0E P 0∇ ε + =

� � �
i .  Since there are no free charges and currents, 

E P 0∇ = −∇ =
� � � �
i i . In conclusion, equation (2.9) is obtained. For one dimensional case, 

if a new parameter is defined as 0 xp .P= µ , the result is: 

2 2 2

2 2 2 2

1 p
E

x c t t

 ∂ ∂ ∂
− = 

∂ ∂ ∂ 
                                      (2.10) 

This final equation is the starting point of Schafer and Wayne for the short pulse 

equation [3]. When the susceptibility of the material is affected by electric field 

strength, that is, electric field is as high as to change electrical properties of the 

medium; susceptibility becomes a nonlinear function of the electrical field. This 

nonlinearity makes the equation difficult to solve so some approximations are 

necessary.  After imposing nonlinear polarization p in (2.10), they obtained (2.11) 

with some constants c1 and c2. 

( )
2 2 2

(3) 3

2 2 2 2 2

1 2

E 1 E 1
E E

x c t c t

∂ ∂ ∂
= + + χ

∂ ∂ ∂
                                   (2.11) 

By defining a new parameter ε  and function A0 and A1, a multiple scale ansatz was 

made by Schafer and Wayne in the form of 2.12 and 13 [3]. 

2

0 1 2 1 1 2E(x, t) A ( , x , x ,....) A ( , x , x ,....) ....= ε φ + ε φ +                  (2.12) 

n

n

t x
, x x

−
φ = = ε

ε
                                        (2.13) 

After equating equal powers of ε , equation 2.14 was obtained by the term with the 

order of 1ε . In (2.14), (3)χ  is the third order susceptibility and c2=1.59 mµ . 

(3) 2 3

x1 0 0 02

2

1
2 A A A 0

c
φ φ∂ ∂ + + χ ∂ =                                        (2.14) 

Equation (2.14) is the short pulse equation of Schafer and Wayne, and it can be 

transformed by Robelo transformation with the help of (2.15)-(2.16). 

0 1

1 t
A u, x, x= φ = =

εθεα
                                   (2.15) 
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(3) 2 2

2

1
, c

3 2

αθ
χ = −ε = −

εθ
                                        (2.16) 

After this transformation (2.14) becomes: 

( )3

xt
xx

1
u u u

6
= +                                                  (2.17) 

(2.17) is known as the Schafer Wayne short pulse equation which was searched in 

this study. The subscripts mean partial derivative and u represents the electrical field 

of the pulse. 

 

When an electromagnetic wave penetrates into a dielectric, its respond depends on 

frequency ω . Namely the medium’s refractive index is a function of the frequency. 

This property is called as chromatic dispersion. Fiber dispersion is very important for 

the propagation of short optical pulses because different frequency components in the 

pulse travel at different speeds v=c/n( ω). This dispersive pulse broadening effect is a 

big problem for optical communication with fibers. When short optical pulses 

ranging from 10 ns to 10 fs propagate through a fiber, both dispersive and nonlinear 

effects affect the pulse’s shape and spectrum [11]. 

 

Usually pulse propagation in optical fibers was described by cubic nonlinear 

Schrödinger equation (NLSE).  It can be derived from Maxwell equations if the pulse 

width is large with respect to oscillations in carrier frequency (central frequency). 

Schafer and Wayne used the idea that the short pulse is broad in the Fourier domain 

and studied the propagation of very short pulses in Maxwell equations. Since 

technology achieved very short pulses in nonlinear media, NLSE does not represent 

these pulses any more [12]. 

 

In 1961 researchers observed the second harmonic generation at an optical frequency 

in a piezoelectric crystal [10]. After that several frequency mixing effects were 

observed such as third harmonic generation, sum-frequency generation and 

difference frequency generation. It was deduced that the linear term in Maxwell 

equations was invalid and they offered new nonlinear terms by new susceptibilities.  
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Nonlinear partial differential equations are differential equations with some nonlinear 

terms. Although linear differential equations can be solved as a superposition of 

linearly independent solutions, nonlinear differential equations cannot be solved by a 

superposition.  

 

One of the methods to solve nonlinear partial differential equations is to change the 

variables for simplicity. The original equation may be transformed into a new 

equation which is ordinary and linear. Another tactic is the scale analysis in which 

some negligibly small terms may be ignored and some approximations may be made. 

In this tactic, general equation is tried to simplify by neglecting small terms as in 

Navier-Stokes equation which describes the motion of fluids [13]. 
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CHAPTER 3 

 

 

NONLINEAR DIFFERENTIAL EQUATIONS AND 

INTEGRABILITY 

 

 

 

An integrable model refers to a physical model or set of differential equations whose 

exact solution may be calculated analytically in terms of elementary or special 

functions. As an adjective, integrable therefore means solvability of a differential 

equation. The study of completely integrable non-linear partial differential equation 

began with the discovery of solitons by Zabusky and Kruskal in the Korteweg-de 

Vries equation (KdV) in 1965. KDV equation is the first and therefore maybe the 

most popular nonlinear differential equation which is proven to be completely 

integrable. Other examples of integrable non-linear models include the KP equation, 

the non-linear Schrödinger equation, the sine-Gordon equation and the Toda lattice 

[13]. 

 

Many exactly solvable models have soliton solutions which are self-reinforcing 

waves (wave packets or pulses) that maintain their shape while they travel at constant 

speed. Before the discovery of solitons, mathematicians believed that nonlinear 

partial differential equations could not be solved exactly. The soliton solutions are 

obtained by the inverse scattering transform and Lax representation. Therefore the 

inverse scattering transform is a very important method for integrable nonlinear 

differential equations. 

 

“In mathematics, the inverse scattering transform is a procedure for integrating 

certain nonlinear partial differential equations (PDEs) by first converting them into a 

system of linear ordinary differential equations (ODEs). The basic idea is not unlike 
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the Fourier transform. It applies to potentials that are rapidly decaying at infinity” 

[13]. These potentials are seen in time independent linear Schrödinger equation. In 

this equation potential is represented by u(x). 

 

1xx 1 1u(x)ψ + ψ = λψ                                                 (3.1) 

 

The potential u(x) is the function that satisfies the nonlinear partial differential 

equation which will be solved. The inverse scattering transform (IST) may be used 

for exactly solvable models such as the Korteweg-de Vries equation (KDV), the 

nonlinear Schrödinger equation (NLSE), and the sine-Gordon equation. Solutions 

typically consist of solitons and some background radiation.  

 

The integrability of a nonlinear partial differential equation depends on finding its 

Lax pair. Lax pairs are based on an abstract formulation of evolution equations [14]. 

They associate certain nonlinear evolution equations with linear equations and they 

are the starting point for using the inverse scattering method in a given integrable 

equation. 

 

Let u be a function of x and t satisfying the nonlinear evolution equation 

( )x xx xtF u, u , u , u .... 0=                                          (3.2) 

Lax pairs are pair of linear matrix operators X and T satisfying the equation: 

 

x Xψ = ψ                                                       (3.3) 

t Tψ = ψ                                                       (3.4) 

ψ  is a function of vector form ( 1ψ  and 2ψ ) depending on the function u, its 

derivatives and the spectral parameter λ . Differentiating equation (3.3) and (3.4) 

with respect to t and x respectively  

 

xt t tX Xψ = ψ + ψ                                                 (3.5) 

tx x xT Tψ = ψ + ψ                                                 (3.6) 

are obtained. 
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Since x and t derivative operators commute with each other, equations (3.5) and (3.6) 

are equal to each other. 

xt t t x xX X T Tψ = ψ + ψ = ψ + ψ                                   (3.7) 

 

Writing (3.3) and (3.4) into (3.7) gives: 

 

t xX XT T TXψ + ψ = ψ + ψ                                      (3.8) 

In terms of operator form: 

t xX T TX XT− = −                                           (3.9) 

[ ]t xX T T, X− =                                             (3.10) 

 

This is a commutation relation with Lax operators. X and T operators depend on the 

function u in the differential equation that will be examined so the commutation 

relation given in equation (3.10) satisfies the differential equation. If a pair of 

operators X and T whose compability condition satisfies the equation, the operators 

are said to be the Lax pair of this differential equation.  

 

After finding the Lax pair, exact solutions of the differential equation can be tried or 

some conserved quantities can be evaluated. The inverse scattering transform method 

implies three steps to find solutions of a differential equation. First one is finding the 

Lax pair. Second one is determining the time evolution of the eigenvalues λ, the 

norming constants, and the reflection coefficient. Finally, the last one is performing 

the inverse scattering procedure by solving the Marchenko equation. 

 

In order to find conserved quantities of a differential equation via Lax representation, 

the x dependence of the eigenfunction ψ  is found from equation (3.3). Since ψ  is an 

eigenfunction it must have a constant value at infinity. This leads to the Ricatti 

equation to be solved by a series ansatz. This procedure is defined in Chapter 5 in 

detail when the conserved quantities of the short pulse equation are being found. 
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A conserved quantity of a differential equation corresponds to a functional of the 

unknown function and its derivatives that does not vary in time. For example, let a 

differential equation is of the form 

 

( )x t xtF u, u , u , u ... 0=                                               (3.11) 

 

Any functions of u and its derivatives, say Hn, satisfying the equation, 

( )n x t xtH u, u , u , u ... dx cons tan t

∞

−∞

=∫                                  (3.12) 

Hn are called the conserved quantities of the differential equation (3.11). That is, the 

value of the integral gives the same value for all time measure of t. There are several 

ways for finding the conserved quantities of differential equations. The methods we 

have emphasized in this study are using Lax pair, Hamiltonian structure of a 

differential equation and mass conservation law. 

 

Soliton is a wave packet or pulse caused by nonlinear and dispersive effects of the 

medium and maintains its shape while it travels constant speed [13]. It does not 

represent a periodic wave, but the propagation of a single isolated symmetrical hump 

of unchanged form. Thus its inventor, John Scott Russel, called at “great wave of 

translation” [14] 

 

Drazin and Johnson [15] described three properties of solitons: they have a 

permanent form, they are localized in a region and they can interact with other 

solitons and emerge from the collision unchanged. Sometimes some phenomena 

which do not show these properties may be called soliton as in light bullets of 

nonlinear optics that lose their energy during propagation. 

 

Typically speed of a soliton depends on its amplitude. For example, water waves in 

shallow water can produce solitons. For water wave, the speed of wave is dependent 

on the depth of the water. If the water is as deep as its amplitude can be neglected, 

the speed of water remains constant and does not depend on the amplitude. However, 
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when the water is shallow, it means that the amplitude affects the depth of the water 

and its speed. In this situation, speed (c) is a function of amplitude (a). 

 

c g(h a)= +                                                      (3.13) 

Therefore, the wave profile z is given as: 

     

( )2z (x, t) a sec h (x ct)= ζ = β −     where  2 24h (h a) / 3a−β = +              (3.14) 

In these equations; g is gravitational acceleration, h is the undisturbed depth of water, 

a is the amplitude of wave and c is the speed of wave. In equation (3.14) it is seen 

that higher waves travels faster. Both Boussinesq (1871) and Rayleigh (1876) used 

the John Scott Russell’s formula (3.13). they deduced the Russell’s formula from the 

equations of motion for an inviscid incompressible fluid. They also decided the 

solitary wave profile in equation (3.14) for any a>0 and a / h 1� . However these 

scientists did not find any differential equation whose soliton solution is equation 

(3.14). The differential equation corresponds to their solution was found by Korteveg 

de Vries in 1895. This famous nonlinear partial differential equation is known as 

Korteveg de Vries (KDV) equation in the literature is given by  

 

1/ 2 1/ 2

t X XXX

3 g 1 g
where X t

2 h 3 h

     
ζ = ζζ + σζ = χ + ε     

     
                        (3.15) 

 

where, χ   is a coordinate chosen to be moving with the wave [16]. 

 

As an example of the shape of soliton from equation (3.15), the graph of equation 

(3.16) with 5 and a 3β = =  is shown in the figure (3.1). 

( )2z (x, t) 3sec h 5w where w x ct= ζ = = −                             (3.16) 

 



 15 

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

-1

1

2

3

w

z

 

Figure 3.1. Plot of the Function (3.16) with 5β =  and a=3. 

 

One of the important properties of solitons is their stability. They travel at constant 

speed and with constant shape. When they collide with each other, they superpose 

and merge into a single wave packet then, they separate without any change in their 

original shape. This stability is due to the balance of nonlinearity and dispersion 

because they have complementary effect on each other. Nonlinearity makes the wave 

more concentrated and narrower but dispersion spreads it and makes it wider. If these 

two effects balance each other, soliton becomes stable [17]. 

 

In optics, soliton refers to optical field that does not change during its propagation 

due to the stability caused by balance of nonlinearity and dispersion [13]. 

Electromagnetic field of light can change the refractive index of the medium. This 

leads to the change of the speed of light in the medium. Because of this effect, like 

shallow water waves, soliton phenomenon can be observed in optical waves. Akira 

Hasegawa [13] suggested that solitons can exist in optical fibers and made important 

contributions to optical telecommunication by leading soliton based transmission 

system. 
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CHAPTER 4 

 

 

PROPERTIES OF THE SHORT PULSE EQUATION 

 

 

 

4.1   Integrability 

 

Sakovich and Sakovich [4] proved that the Schafer-Wayne short pulse equation 

(SWSPE) is integrable. After a chain of transformations, SWSPE is related to the 

sine-Gordon equation. We used this transformation to find some of the conserved 

quantities of SPE. This transformation will be discussed on the Chapter 5 in detail. 

Sakovich and Sakovich derived an exact solitary wave solution of the short pulse 

equation with the help of transformations to the sine-Gordon equation. They try a 

zero curvature representation (ZCR) in order to find the Lax Pair of short pulse 

equation. 

 

 Finally, they obtained the Lax pair of SPE [4] as: 

 

x

x

u
X(u, )

u

λ λ 
λ =  

λ −λ 
                                           (4.1.1) 

2 2

x

2 2

x

1 1
u u u u

2 4 2 2
T(u, )

1 1
u u u u

2 2 2 4

λ λ 
+ − λ

λ =  
λ λ + − − 

λ 

                            (4.1.2) 

 

Since SPE has a Lax pair, it is integrable. Brunelli has supported the integrability of 

SPE through its bi-Hamiltonian structure in Ref. [7]. 
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4.2   Bi-Hamiltonian Structure 

 

Brunelli [7] found the conserved Hamiltonians of the SPE and supported its 

integrability thorough bi-Hamiltonian structure. Victor Thomas and Kofane [18] 

constructed N soliton solutions of SPE by means of the Wadati-Kono-Ichikawa 

method. They also showed that collision process of similar solitons behaved 

differently from collision of dissimilar solitons. They observed that the interaction 

type depended on the ratio of the eigenvalues. 

 

We shortly discuss the results of Brunelli’s study [7] because he deals with 

conserved quantities of short pulse equation which is our topic. In his study, finding 

the Lagranian of the short pulse equation is explained in Equation (4.2.1) – Equation 

(4.2.6). 

 

( )3

xt
xx

1
u u u

6
= +                                              (4.2.1) 

( )1 3

t
x

1
u u u

6

−= ∂ +                                              (4.2.2) 

1 2

t x

1
u u u u

2

−= ∂ +                                              (4.2.3) 

Let xu = φ                                                  (4.2.4) 

2

xt x xx

1

2
φ = φ + φ φ                                              (4.2.5) 

2 4

x t x

1 1 1
L

2 2 24
= φ φ + φ − φ                                        (4.2.6) 

 

By using the Dirac’s theory of constraints, he obtained the Hamiltonians and the 

Hamiltonian operators for short pulse equation. These Hamiltonians are given below 

as: 

2

0 xH 1 u dx= − +∫                                              (4.2.7) 
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2

1

1
H u dx

2
= ∫                                                (4.2.8) 

( )
2

4 1

2

1 1
H u u dx

24 2

− 
= − ∂  ∫                                  (4.2.9) 

( ) ( ) ( )
2 2

6 2 2 3 1 2

3

1 1 1 1
H u u u u u u dx

720 2 6 4

− − − 
= + ∂ + ∂ − ∂  ∫              (4.2.10) 

 

 

 

4.3   Loop Soliton Solution 

 

Most partial differential equations have a soliton solution like KDV equation, sine-

Gordon equation etc. The solitary solution of short pulse equation can be found by 

using traveling wave solution. We will introduce the traveling wave solution of short 

pulse equation shortly and in terms of some special conditions. Short pulse equation 

shows loop soliton characteristics. Several researches with different perspectives 

have done to try its solitary solution form. We also tried to a simple special soliton of 

short pulse equation in this chapter. More detailed solutions were achieved by Ref. 

[5], [8], [18]. 

 

SPE equation that we studied is: 

3

xt xx

1
u u (u )

6
= +                                             (4.3.1) 

It can be written as: 

2
2

xt x xx

u
u u(1 u ) u

2
= + +                                         (4.3.2) 

In order to convert this equation to ordinary differential equation, we can choose a 

left traveling wave and write: 

z x ct= +                                                    (4.3.1) 

After this transformation, equation 4.3.2 becomes: 

2
2

zz z zz

u
cu u(1 u ) u

2
= + +                                       (4.3.3) 

After some calculations, an appropriate form to take integral can be obtained. 
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zz

2 2

z

u 2u

1 u u 2c

−
=

+ −
                                            (4.3.4) 

By using the relation, it is obtained that: 

zz z z
zz z

z

u .u du
u u

u du
= =                                          (4.3.5) 

z z

2 2

z

u du 2u
du

1 u u 2c

−
=

+ −
                                          (4.3.6) 

 

When integrating both sides of equation (4.3.6), we get  

 

2 2

z

1
ln(1 u ) A ln(u 2c)

2
+ = − −                                 (4.3.7) 

with an integration constant A. 

 

Equation (4.3.7) can be written without logarithmic form: 

2

z 2

B
1 u

u 2c
+ =

−
                                            (4.3.8) 

2
2

z 2 2

B
u 1

(u 2c)
= −

−
                                          (4.3.9) 

Then, for the derivative of u with respect to z is found as a function of u. 

 

2 2 4 2 2

z 2 2 2 2

B B u 4cu 4c
u 1

(u 2c) (u 2c)

− + −
= ± − = ±

− −
              (4.3.10) 

 

The ±  notations imply that there are two solutions for z. 

 

2 4 2 2

2

du B u 4cu 4c

dz u 2c

− + −
= ±

−
                              (4.3.11) 

2

2 4 2 2

u 2c
dz du

B u 4cu 4c

−
= ±

− + −
                              (4.3.12) 
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Now, the integral in equation (2.3.13) will give the solutions of z with respect to u in 

terms of several choice of B which is integration constant. This integration can be 

evaluated in terms of elliptic integrals of the first and second kind. (The integrator.  

http://integrals.wolfram.com/index.jsp) 

 

2

2 4 2 2

u 2c
z du

B u 4cu 4c

−
= ±

− + −∫                                  (4.3.13) 

 

Such integration like (4.3.13) can be evaluated by means of elliptic integrals. 

However, in this study the exact solution of the short pulse equation is not our main 

topic. To simplify we accepted the asymptotic condition that uz goes to zero when u 

goes to zero. It means that B
2
=4c

2
 in the equation (4.3.9). Therefore we can modify 

the integral in (4.3.13) as: 

2

2

u 2c
z du

u 4c u

−
= ±

−∫                                      (4.3.14) 

 

When taking the integral by the integrator (http://integrals.wolfram.com/index.jsp), 

we get: 

2 2
2

0
2

u 2c 4c u 2 c
z du c ln 4c u z

cuu 4c u

 − − −
= ± = ± − + 

 −  ∫ ∓       (4.3.15) 

with z0=0  

 

Finally, we obtain two special solutions for z as: 

 

2
24c u 2 c

z c ln 4c u
cu

 − −
= + − − 

 
 

                    (4.3.16) 

2
24c u 2 c

z c ln 4c u
cu

 − −
= − + − 

 
 

                     (4.3.17) 

 

These solutions for z were drawn separately by Graph (Version 4.0.1). We selected 

c=1 in the figure (4.3.1) – (4.3.3). 
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Figure 4.3.1 is graph of the function (4.3.16). 
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Figure 4.3.2 is graph of the function (4.3.17). 
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Figure 4.3.3. is the graph of the function (4.3.15) 

 

In figure (4.3.3) two solutions are seen at the same coordinate axes. However this 

graph belongs to the function z(u). In order to obtain the function u(z) in the 

differential equation, we should take its inverse function so the coordinate axes in the 

figure (4.3.3) must be rotated 90 degrees.  

 

 

Figure 4.3.4. is the graphical representation of the soliton solution of short pulse 

equation. 
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After the rotation, figure (4.3.4) was obtained. This is a loop soliton which intersects 

with itself. Since we choose z=x+ct , the solitary wave propagates to the left with a 

speed c. 

 

E.J. Parkes [8] also found periodic and traveling wave solutions of SPE. He 

concludes that “There is one type of periodic-wave solution that propagates in the 

positive x-direction. There are several types of periodic-wave solution and one type 

of solitary-wave solution that propagate in the negative x-direction; there are places 

on the wave profile of these solutions where the slope goes infinite. Each solution 

has a corresponding solution that propagates in the same direction and is a mirror 

image in the x axis.”  

 

Sakovich and Sakovich [5] have found short pulse’s solitary wave solution via 

transformation to the sine-Gordon equation. The kink solution of the sine-Gordon 

equation is known as: 

 

( )z 4arctan exp y t = +                                   (4.3.18) 

 

According to the transformation, they obtain loop soliton solution of short pulse 

equation which moves from the right to the left with constant shape and unit speed 

as: 

 

( )
2

u
cosh y t

=
+

                                       (4.3.19) 

( )x y 2 tanh y t= − +                                   (4.3.20) 

 

The two-loop solution and loop-antiloop solution of SPE with different t values and 

their graphs can be seen in their study [5]. 

 

Kuetche and others [18] studied the propagation of loop and hump soliton solutions 

of the short pulse equation. They found the corresponding N-soliton solutions by 

means of an inverse scattering method. Performing a more detailed analysis, the 
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properties of the one- and two-soliton solutions have been studied. According to their 

studies when two-soliton solutions of the previous equation with ‘similar’ or 

‘dissimilar’ amplitudes collide, they always shift backwards except when one of 

them has negative amplitude. With those special soliton solutions, the interaction 

type depends on the ratio of the two eigenvalues involved. They have also shown that 

the two basic collision processes with similar and dissimilar amplitudes, respectively, 

depend strongly upon a critical value of the ratio of the two eigenvalues. 

 

 

4.4   Transformation to Sine-Gordon Equation 

 

Short pulse equation can be examined by using the similarities with other equations 

via some change of transformations. Sakovich and Sakovich transformed the short 

pulse equation to sine-Gordon equation. 

 

ytz sin z=                                                  4.4.1 

tu(x, t) z (y, t)=                                               4.4.2 

2

y t t

1
x w(y, t) w cos z w z

2
= = = −                              4.4.3 

( )
1/ 2

2

xv(x, t) 1 u
−

= +                                            4.4.4 

yv(x, t) w (y, t)=                                              4.4.5 

yz(y, t) arccos w=                                              4.4.6 

 

We used these transformations to get some conserved quantities of the short pulse 

equation. This procedure will be explained in chapter 5. 
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CHAPTER 5 

 

 

CONSERVED QUANTITIES OF THE SHORT PULSE 

EQUATION 

 

 

 

5.1   Conserved Quantities by Mass Conservation Law 

 

Conserved quantities are very important in mathematical physics. They are the 

quantities which do not vary in time. Many conserved quantities can be found in 

nonlinear partial differential equations. One of the methods to find conserved 

quantities is derived from the equation of mass conservation. Let us consider a well 

known example of this in one dimensional fluid dynamics.  

 

Suppose g(x,t) is the flux of the fluid and f(x,t) is density. Therefore the relation 

between f and g is: 

                                                       
f g

0
t x

∂ ∂
+ =

∂ ∂
                                                 (5.1.1) 

According to mass conservation law, it must be true that g(x,t) has constant values at 

infinity. That is: 

                                             
x
lim g(x, t) co n s tan t

→∞
=                                          (5.1.2) 

By using (5.1.1) we can obtain g(x,t) alone and use (5.1.2). 

 

                             
d

g(x, t) f (x, t)dx 0
dt

∞
∞

−∞
−∞

 
= − = 

 
 ∫                                         (5.1.3) 

 

From this equation we can conclude that: 
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                                   f (x, t)dx cons tan t

∞

−∞

=∫                                                   (5.1.4) 

It represents the conservation of total mass of the fluid. More generally, if any 

functions f(u(x,t), ux(x,t),….) and g(u(x,t), ux(x,t),….) can be written in the form of 

(5.1.1), then a conserved quantity of the differential equation of u(x,t) is: 

 

                        x xxc f[u(x, t), u (x, t), u (x, t),.....]dx

∞

−∞

= ∫                                   (5.1.5) 

 

As an example we can find a conserved quantity for the short pulse equation: 

 

                    
2

3 2

xt xx xt x xx

1 u
u u (u ) or u u(1 u ) u

6 2
= + = + +                              (5.1.6) 

 

Let us assume that f be only a function of ux for simplicity. That is f=f(ux). 

 

2
2x x

xt x xx

x x x

f (u ) uf f f u
u u(1 u ) u

t u t u u 2

 ∂ ∂∂ ∂ ∂
= = = + + 

∂ ∂ ∂ ∂ ∂  
 

2 2
2 2x
x x

x x x

uf u f f u f
u(1 u ) u(1 u )

u 2 u x u 2 x

∂∂ ∂ ∂ ∂
+ + = + +

∂ ∂ ∂ ∂ ∂
 

Therefore  

                                         
2

2

x

x

f u f g
u(1 u )

u 2 x x

∂ ∂ ∂
+ + = −

∂ ∂ ∂
                                      (5.1.7) 

must be satisfied. In order to satisfy (5.1.7), it must be possible that the left hand-side 

of the equation is an exact derivative of multiplication of two functions.  Therefore; it 

can be considered as derivative of a multiplication. 

 

                                            
2 2

2

x

x x

f u f u
u(1 u ) f

u 2 x 2

 ∂ ∂
+ + =  

∂ ∂  
                         (5.1.8) 

 

If equation (5.1.8) will be satisfied, it must be true that 
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2

x x

x

f
uu f u(1 u )

u

∂
= +

∂
                                      (5.1.9) 

x
x2

x

u df
du

(1 u ) f
=

+
                                         (5.1.10) 

 

Equation (5.1.10) is consistent with our assumption f=f(ux). This simple differential 

equation for f can be integrated with an integration constant c. 

 

2

x

1
ln(1 u ) c ln f

2
+ = +                                        (5.1.11) 

2

xf A 1 u= +                                              (5.1.12) 

 

Equation (5.1.12) is a general solution for f with a constant A. Therefore a conserved 

quantity has been found as: 

2

x1 u .dx const.

∞

−∞

+ =∫                                      (5.1.13) 

2
2 2

x x
t

x

u
1 u 1 u

2

  + = +    
 

This is the first conserved quantity of short pulse equation. We also found this 

quantity by using different methods like Lax pairs and sine-Gordon transformation. 

Brunelli has also obtained this conserved quantity by using Hamiltonian structure of 

the short pulse equation. 

 

Another conserved quantity has been found by this method. Now let us assume the 

function f in the equation 5.1.1 depend on just u, that is, f=f(u). Therefore the time 

derivative of f can be written as: 

f (u) f u
.

t u t

∂ ∂ ∂
=

∂ ∂ ∂
                                                  (5.1.14) 

where 

( )3

t xt
xx

u 1
u u dx u u dx

t 6

∂  
= = = + ∂  ∫ ∫                                (5.1.15) 
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2
1

t x

u
u u u

2

−= ∂ +                                          (5.1.16) 

where 1−∂  operator represents the integration with respect to x. Combining equations 

5.1.14 and 5.1.16 yields: 

2
1

x

f (u) f u
. u u

t u 2

− ∂ ∂
= ∂ + 

∂ ∂  
                                    (5.1.17) 

 

We define another parameter w as: 

1

xu w u w−∂ = ⇔ =                                          (5.1.18) 

so equation 5.1.17 becomes: 

2

x
xx

x

wf f
w w

t w 2

 ∂ ∂
= + 

∂ ∂  
                                        (5.1.19) 

2

x

x

wf f f
w

t w 2 x

∂ ∂ ∂
= +

∂ ∂ ∂
                                            (5.1.20) 

According to equation 5.1.1, the time derivative of f must be equal to x derivative of 

another function.  

 

2

x

x

wf f g
w

w 2 x x

∂ ∂ ∂
+ = −

∂ ∂ ∂
                                            (5.1.21) 

 

This equation can be satisfied if equation 5.1.22 and 5.1.23 are assumed to be valid. 

 

x

x

f
w

w

∂
=

∂
                                                  (5.1.22) 

x
x xx

x

wf f
w .w

x w x

∂∂ ∂
= =

∂ ∂ ∂
                                      (5.1.23) 

 

Then equation 5.1.21 becomes: 

 

3 42

x x
x xx

x

w ww
w .w w

2 2 8

 
+ = + 

 
                             (5.1.24) 
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Consequently, equation 5.1.1 was satisfied if and only if equation 5.1.22 is true. The 

function f can be found by 5.1.22 

2

x x

x

f 1
w f w

w 2

∂
= ⇔ =

∂
                                       (5.1.25) 

2f (u) u=                                              (5.1.26) 

( )
2

2
2 1

t
x

u
u u

4

− 
  = ∂ +  

 
 

One can try mass conservation law 5.1.1 for 5.1.26. If it replaces in 5.1.1, it is seen 

that f=u
2
 is a density function for short pulse equation. As a consequence the 

quantity: 

2u dx

∞

−∞

∫                                              (5.1.27) 

is a conserved quantity for the short pulse equation. This conserved quantity can also 

result by other techniques. u
2
 is proportional to the intensity which is the average 

power per unit area transported by an electromagnetic wave. The integration in 

(5.1.27) means that total power transported by the wave remains constant. 

 

 

5.2   Conserved Quantities of the Short Pulse Equation by Use of Lax Pair 

 

Conserved quantities can also be calculated by the help of Lax pairs. The Lax pairs 

of the short pulse equation found by Sakovich and Sakovich [4] are given below: 

 

x

x

u
X(u, )

u

λ λ 
λ =  

λ −λ 
                                           (5.2.1) 

2 2

x

2 2

x

1 1
u u u u

2 4 2 2
T(u, )

1 1
u u u u

2 2 2 4

λ λ 
+ − λ

λ =  
λ λ + − − 

λ 

                            (5.2.2) 

 

Lax equations with these linear operators are:  
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x tX and Tψ = ψ ψ = ψ                                      (5.2.3) 

1 1xx

x

x 2 2x

u
X

u

ψ ψλ λ     
ψ = ψ ⇒ =    

λ −λ ψ ψ    
                         (5.2.4) 

1 x 2 1xuλψ + λ ψ = ψ                                 (5.2.5) 

x 1 2 2xuλ ψ − λψ = ψ                                         (5.2.6) 

The linear equations can be solved for 1Ψ  

 

1x 1 1xx 1x 1x 1
2 2x xx xx2 2

x x x x x

, u u
u u u u u

ψ − λψ ψ ψ ψ ψ
ψ = ψ = − − +

λ λ λ
           (5.2.7) 

1x 1 1xx 1x 1x 1
x 1x xx xx2 2

x x x x x

u u u
u u u u u

ψ − λψ ψ ψ ψ ψ
λ ψ − λ = − − +

λ λ λ
                  (5.2.8) 

2 2 2xx xx
xx x x

x x

u u
( u ) 0

u u
ψ − ψ + λ − λ − λ ψ =                         (5.2.9) 

 

5.2.9 is a linear differential equation for ψ . To solve this equation, we can try a 

solution as: 

x (x, )eλ +θ λψ =                                        (5.2.10) 

 

Since ψ  is an eigenfunction, its behavior at infinity should not be exponential 

growth. Therefore 

x
lim (x, )

→∞
θ λ = constant.                                          (5.2.11) 

If we substitute ψ  into the equation, we get; 

 

x (x, ) 2 2 2xx
xx x x x x

x

u
e 2 u 0

u

λ +θ λψ = ⇒ θ + θ + λθ − θ − λ =                (5.2.12) 

 

This is the Ricatti equation that may be solved by series ansatz.  

3n 2
x 0 1n 1 2

n 0

cc c
Let ( c c .......)

∞

−

=

θ = = λ + + + +
λ λ λ∑                    (5.2.13) 
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(where cn are functions of u, ux, uxx etc.) 

 

The functions cn can be find by equating equal powers o λ . 

 

2 2 2

0 0 xfor : 2c c u 0λ + − =                                         (5.2.14) 

xx
0,x 1 0 1 0

x

u
for : c 2c 2c c c 0

u
λ + + − =                              (5.2.15) 

0 2 xx
1x 1 0 2 2 1

x

u
for : c c 2c c 2c c 0

u
λ + + + − =                              (5.2.16) 

2

0 xc 1 1 u= − +∓                                               (5.2.17) 

xx
0 0,x

x
1

0

u
c c

u
c

2(1 c )

−

=
+

                                                 (5.2.18) 

2xx
1 1x 1

x
2

0

u
c c c

u
c

2(1 c )

− −

=
+

                                              (5.2.19) 

�

�
 

This algorithm can be formulized as: 

 

n

xx
n n,x k n k 1

x
k 1

n 1

0

u
c c c c

u
c if n 1

2(c 1)

− +

=
+

− −

= ≥
+

∑
                       (5.2.20) 

 

In order to find c1, we must calculate c0x. 

 

x xx
0x

2

x

u u
c

1 u
=

+
∓                                             (5.2.21) 

 

If 5.2.17 and 5.2.21 are written in 5.2.18, c1 is obtained as: 
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xx
1 2 2

x x x

u 1 1
c

2u 1 u 1 u

 
 = ±
 + + 

                                  (5.2.22) 

 

Since this term is an exact derivative, it cannot be a conserved quantity. Now let us 

calculate c2 for both c0 values in 5.2.17 according to 5.2.19. 

 

2

0 xfor c 1 1 u= − + +                                          (5.2.23) 

xx
1 2 2

x x x

u 1 1
c

2u 1 u 1 u

 
 = −
 + + 

                                      (5.2.24) 

( ) ( )

2 2

xxx xx xx
1x 3/ 2 22 2 2 2 2

x x x x x x

u u u1 1 1 2
c

2u 2u 1 u 21 u 1 u 1 u

      = − − + −    + +  + +   

        (5.2.25) 

( ) ( ) ( )

2
2 xx
1 2 3/ 22 22 2

x xx x

u 1 1 2
c

4u 1 u1 u 1 u

 
 = + −
 ++ + 

                           (5.2.26) 

 

When equations (5.2.23)-(5.2.26) are written in (5.2.19), c2 is obtained as in (5.2.27). 

 

( ) ( ) ( )
2 2

3/ 2 1 5/ 2 2 3/ 2 1 5/ 2 2xx xxx xx
2 2

x x

u u u
c 3v 4v v 2v v v 2v v

8u 4u 4

− − − − − − − −= − − + + − + + −     (5.2.27) 

 

Let us try another value of c2 for a different value of c0. 

 

2

0 xfor c 1 1 u= − +                                         (5.2.28) 

 

xx
1 2 2

x x x

u 1 1
c

2u 1 u 1 u

 
 = +
 + + 

                                (5.2.29) 

( ) ( )

2 2

xxx xx xx
1x 3/ 2 22 2 2 2 2

x x x x x x

u u u1 1 1 2
c

2u 2u 1 u 21 u 1 u 1 u

      = − + − −    + +  + +   

        (5.2.30) 
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( ) ( ) ( )

2
2 xx
1 2 3/ 22 22 2

x xx x

u 1 1 2
c

4u 1 u1 u 1 u

 
 = + +
 ++ + 

                           (5.2.31) 

 

If (5.2.29)-(5.2.31) and (5.2.19) are combined for c2, it gives  

 

( ) ( ) ( )
2 2

3/ 2 1 5/ 2 2 3/ 2 1 5/ 2 2xx xxx xx
2 2

x x

u u u
c 3v 4v v 2v v v 2v v

8u 4u 4

− − − − − − − −= − − + + + + − +     (5.2.32) 

 

Simply c2 is: 

( )
( )

2
3/ 2 1xx xx

2 5/ 2
2

x x x

u u
c v v

4u 8 1 u

− − 
= ± + ± 
  +

 

 

When c3 is calculated, it will be an exact derivative. Therefore, c4 should be 

calculated. Because c4 is too long for practical purpose, we ignore the next conserved 

quantities. Consequently we have found three conserved quantities by the help of 

Lax Pair. They are seen in (5.2.33)-(5.2.35). 

 

2

x1 u dx

∞

−∞

+∫                                              (5.2.33) 

( ) ( ) ( )
2 2

3/ 2 1 5/ 2 2 3/ 2 1 5/ 2 2xx xxx xx

2

x x

u u u
3v 4v v 2v v v 2v v dx

8u 4u 4

∞

− − − − − − − −

−∞

 
− − + + + + − + 

 ∫     (5.2.34) 

( ) ( ) ( )
2 2

3/ 2 1 5/ 2 2 3/ 2 1 5/ 2 2xx xxx xx

2

x x

u u u
3v 4v v 2v v v 2v v dx

8u 4u 4

∞

− − − − − − − −

−∞

 
− − + + − + + − 

 ∫     (5.2.35) 

 

(5.2.33) has been obtained by using different methods such as mass conservation, 

transformation and Hamilton in this study. After some calculations, (5.2.34) and 

(5.2.35) can be written as: 

 



 34 

( )

2

xx

5/ 2
2

x

u
dx

1 u

∞

−∞
+∫                                           (5.2.36) 

 

and the mass conservation law is 

 

( ) ( ) ( )

2 2 2

xx xx

5/ 2 5/ 2 1/ 2
2 2 2

x x x
t x

u u u 2

1 u 2 1 u 1 u

   
   = −
   + + +   

                (5.2.37) 

 

5.3 Conserved Quantities of the Sine-Gordon Equation by Use of Lax Pair 

 

Other conserved quantities for the short pulse equation were derived from sine-

Gordon equation via transformations found by Sakovich. These transformations are 

explained in section 2.4. Sine-Gordon and short pulse equations are  

 

Zyt = sin z    (SGE)                                         (5.3.1) 

uxt = u + 1/6(u
3
)xx       (SPE)                             (5.3.2) 

 

The transformation rules: 

( )
1/ 2

2

x

y

y

(x, t) u 1 ,

x (y, t), (x, t) (y, t),

z(y, t) arccos

−

υ = +

= ω υ = ω

= ω

                             (5.3.3) 

t

2

t t

u(x, t) z (y, t), x (y, t) :

1
z

2

= = ω

ω = −
                              (5.3.4) 

 

The conserved quantities of sine-Gordon equation in (5.3.1) can be found by Lax 

representation. The Lax operators of SGE are seen in (5.3.5)-(5.3.6). 
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y

y

1
i z

2
X(z, )

1
z i

2

 
− λ − 

λ =  
 λ 
 

                                     (5.3.5) 

i i
cos z sin z

4 4
T(z, )

i i
sin z cos z

4 4

 
 λ λ

λ =  
 − 

λ λ 

                                 (5.3.6) 

 

Lax equations with these linear operators are:  

 

y tX and Tψ = ψ ψ = ψ                                (5.3.7) 

 

According to (5.3.7) the matrix equation for 1ψ  and 2ψ  are: 

 

y
1y1

y

2 2y
y

1
i z

2
X

1
z i

2

 
− λ −  ψ ψ 

ψ = ψ ⇒ =      ψ ψ    λ 
 

                  (5.3.8) 

1 y 2 1y

1
i z

2
− λψ − ψ = ψ                                         (5.3.9) 

y 1 2 2y

1
z i

2
ψ + λψ = ψ                                         (5.3.10) 

 

In order to combine (5.3.9) and (5.3.10), 2ψ  and 2xψ  should be obtained as: 

 

( )2 1y 1

y

2
i

z
ψ = − ψ + λψ                                         (5.3.11) 

( ) ( )yy

2y 1y 1 1yy 1y2

y y

2z 2
i i

z z
ψ = ψ + λψ − ψ + λψ                           (5.3.12) 

 

If (5.3.11) and (5.312) are written in (5.3.10), an equation depending on only 1ψ  is 

obtained as (5.3.13). 
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( ) ( ) ( )yy

y 1 1y 1 1y 1 1yy 1y2

y y y

2z1 2 2
z i i i i

2 z z z
ψ − λ ψ + λψ = ψ + λψ − ψ + λψ           (5.3.13) 

 

(5.3.14) is a linear differential equation for 1ψ  depending on y, t and λ . 

 

yy yy 2 2

1yy 1y y 1

y y

z z 1
i z 0

z z 4

 
ψ − ψ − λ − − λ ψ = 

  
                       (5.3.14) 

 

This eigenfunction equation can be solved by trying a solution of the form in 

(5.3.15). 

 

i y (y, )

1 e− λ +θ λψ =                                         (5.3.15) 

 

If (5.3.15) is replaced in (5.3.14) a differential equation with (x, t, )θ λ  is obtained in 

(5.3.16). Meanwhile it is necessary to recall that θ  goes to a constant value when y 

goes to infinity. 

 

y
lim (y, t, )

→∞
θ λ = constant 

 

yy 2 2

yy y y y

y

z 1
2i z 0

z 4

 
θ − + λ θ + θ + =  

 
                                        (5.3.16) 

 

To solve this equation a series solution for yθ  like (5.3.17) can be tried. In the 

equation, cn’s represent functions of y and t. 

 

( )
n

y n 1

n 0

c (y, t)

2i

∞

+

=

θ =
λ∑                                         (5.3.17) 
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( )
n,y

yy n 1

n 0

c (y, t)

2i

∞

+

=

θ =
λ∑                                         (5.3.18) 

( ) ( )
2 k n
y k 1 n 1

k 0 n 0

c c

2i 2i

∞ ∞

+ +

= =

θ =
λ λ∑ ∑                                  (5.3.19) 

 

When (5.3.17)-(5.3.19) are placed into (5.3.16) equation (5.3.20) is obtained. 

 

( ) ( ) ( )

n 1

n,y yy 2n k n 1 k
yn 1 n 1 n 1

y
n 0 n 0 n 1 k 0

c (y, t) z c (y, t) c c 1
2i z 0

z 42i 2i 2i

∞ ∞ ∞ −

− −
+ + +

= = = =

 
− + λ + + =  λ λ λ 

∑ ∑ ∑∑       (5.3.20) 

 

The solutions of cn’s for different powers of λ  give the values of cn’s. They will be 

the conserved quantities of SGE because of the asymptotic behavior of θ . This 

asymptotic behavior is 

 

y
lim (y, t, )

→∞
θ λ = constant                                      (5.3.21) 

 

so θ  can be defined as: 

y

y(y, t, ) (y, t, )dy

−∞

θ λ = θ λ∫                                    (5.3.22) 

y
y
lim (y, t, ) (y, t, ) dy

∞

→∞

−∞

θ λ = θ λ∫ =constant                         (5.3.23) 

nc (y, t, ) dy

∞

−∞

λ∫ =constant                                          (5.3.24) 

 

Calculating cn for different values of λ  gives: 

 

0 2

0 y

1
for : c z 0

4
λ − + =                                           (5.3.25) 
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yy1

0y 0 1

y

z
for : c c c 0

z

−λ − − =                                       (5.3.26) 

yy2 2

1y 1 0 2

y

z
for : c c c c 0

z

−λ − + − =                                       (5.3.27) 

�  

n 2

yyn

(n 1)y n 1 n k n k 2

y
k 0

z
for (n 2) : c c c c c 0

z

−

−
− − − −

=

λ ≥ − − + =∑                  (5.3.28) 

2

0 y

1
c z

4
=                                                  (5.3.29) 

1 y yy

1
c z z

4
=                                               (5.3.30) 

4

2 y yyy y

1 1
c z z z

4 16
= +                                         (5.3.31) 

�  

n 2

yy

n (n 1)y n 1 k n k 2

y
k 0

z
c c c c c

z

−

− − − −

=

= − +∑                             (5.3.32) 

3

3 y 4y y yy

1 5
c z z z z

4 16
= +                                       (5.3.33) 

3 2 2 6

4 y 5y y yyy y yy y

1 7 11 1
c z z z z z z z

4 16 16 32
= + + +                           (5.3.34) 

 

Equation (5.3.29)-(5.3.34) are conserved integrals of the SGE but the integration of 

c1 and c3 give exact derivatives. Therefore, just functions with even index produce a 

conserved quantity. 

 

For a conserved quantity f,  

 

                                                       
f g

0
t y

∂ ∂
+ =

∂ ∂
                                                 (5.3.35) 

                                   f (y, t)dy

∞

−∞∫ =constant                                        (5.3.36) 
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For this reason c0 must satisfy (5.3.35) with an appropriate function g. Of course, if 

c0 is a conserved quantity, there must be a function g according to (5.3.35).  

 

20
y y yt

t

c 1 1
z z z

t 4 2

∂  
= = 

∂  
                                      (5.3.37) 

 

By the help of (5.3.1), zyt can be written in (5.3.37) and (5.3.38) is obtained. 

 

2

y y yt y

t

1 1 1
z z z z sin z

4 2 2

 
= = 

 
                                 (5.3.38) 

y

y

1 1
z sin z cos z

2 2

 
= − 
 

                                      (5.3.39) 

2

y

t y

1 1
z cos z

4 2

   
=   

   
                                       (5.3.40) 

 

According to equation (5.3.40), equation (5.3.41) is a conserved quantity of sine-

Gordon equation. 

2

y

1
z dy

4

∞

−∞

∫ =constant                                          (5.3.41) 

 

Because sine-Gordon equation in (5.3.1) is symmetric for y and t, independent 

variables (y and t) in (5.3.40) can be interchanged with each other. That is (5.3.42) is 

also valid. 

 

( )2

t t
y

1
z 1 cos z

2

 
= − 

 
                                       (5.3.42) 

 

It means that (5.3.43) is also a conserved quantity. 

 

(1 cos z).dy

∞

−∞

−∫ =constant                                      (5.3.43) 
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We can use this symmetry in all conserved quantities of SGE.  

 

The conserved coefficient c2 (5.3.31) can be simplified by use of derivation rule for 

multiplication. The multiplication zyzyyy can be written as: 

 

( ) 2

y yyy y yy yyy
z z z z z= −                                        (5.3.44) 

 

Since ( )y yy x
z z  is an exact derivative, it can be omitted from conserved quantity. For 

this reason, the corresponding conserved quantity becomes: 

 

4 2

y yy

1 1
( z z ).dy
16 4

∞

−∞

−∫ =constant                                    (5.3.45) 

 

That is, (5.3.35) is valid for c2 with an appropriate function g. Taking derivative of c2 

with respect to t, derivative of g with respect to y will appear. T derivative of c2 is: 

 

4 2 3

y yy y yt yy yyt

t

1
z z z z 2z z

4

 
− = − 

 
                                    (5.3.46) 

 

It is known that ytz sin z=  and yyt yz z cos z= . So t derivative becomes: 

 

( )4 2 3 2

y yy y yy y y
y

t

1
z z z sin z 2z z cos z z cos z

4

 
− = − = − 

 
               (5.3.47) 

( )4 2 2

y yy y
y

t

1
z z z cos z 0

4

 
− + = 

 
                                    (5.3.48) 

 

We can use y and t symmetry for SGE in (5.3.48) so the independent variables are 

replaced with each other as (5.3.49). 
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( )4 2 2

t tt t
t

y

1
z z z cos z 0

4

 
− + = 

 
                                    (5.3.49) 

 

Because of the equation (5.3.49), equation (5.3.50) is a conserved quantity for SGE.  

 

2

tz cos z dy

∞

−∞

=∫ constant                                       (5.3.50) 

 

As for c4, we can use the rule for derivative for multiplication again in order to 

simplify it. The first term in (5.3.51) is modified as seen in (5.3.52)-(5.3.54) so it can 

be changed from the conserved quantity. 

 

3 2 2 6

4 y 5y y yyy y yy y

1 7 11 7
c z z z z z z z

4 16 16 16
= + + +                            (5.3.51) 

( )y 5y y 4y yy 4yy
z z z z z z= −                                      (5.3.52) 

( )yy 4y yy 3y 3y 3yy
z z z z z z= −                                        (5.3.53) 

( ) 2

y 5y y 4y yy 3y 3yy
z z z z z z z= − +                                    (5.3.54) 

 

The second term can be modified as: 

 

( )3 3 2 2

y yyy y yy y yy
y

z z z z 3z z= −                                     (5.3.55) 

 

With this modification, by omitting exact derivatives and multiplying by 32, the 

conserved quantity c4 is written as: 

 

( )2 2 2 6

3y y yy y8z 20z z z dy

∞

−∞

− + =∫ constant                                (5.3.56) 
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If (5.3.56) is true, (5.3.57) can be written for this conserved quantity. This equation 

satisfies the sine-Gordon equation. 

 

( ) ( )2 2 2 6 4 2 3

3y y yy y y yy y yy
t yt

y

2 16
8z 20z z z z 8z cos z z z 0

3 3

  
− + + − + =  

  
     (5.3.57) 

 

( ) ( )2 6 2 2 2 4 2

3y y y yy yy y yy y
t y

8z z 20z z 8z cos z 6z cos z 16z z sin z+ − = − −          (5.3.58) 

 

 

( ) ( )2 6 2 2 2 4 2

3t t t tt tt t tt t
y t

8z z 20z z 8z cos z 6z cos z 16z z sin z+ − = − −            (5.3.59) 

 

From (5.3.57), the symmetric form (5.3.59) can be deduced. 

 

( ) ( )2 2 2 6 4 2 3

3t t tt t t tt t tt
y ty

t

2 16
8z 20z z z z 8z cos z z z 0

3 3

  
− + + − + =  

  
     (5.3.60) 

 

According to (5.3.60), another conserved quantity is written as: 

 

( )4 2

t ttz 12z cos z dy

∞

−∞

−∫ =constant                                 (5.3.61) 

 

As a result, the conserved quantities of SGE are listed as controlled in the book of 

Drazin & Johnson “Solitons: an introduction. P. 119”. 

 

2

yz dy

∞

−∞

∫ = constant                                        (5.3.62) 

(1 cos z).dy

∞

−∞

−∫ = constant                                   (5.3.63) 
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4 2

y yy(z 4z ).dy

∞

−∞

−∫  =constant                                  (5.3.64) 

2

tz cos z dy

∞

−∞

=∫ constant                                       (5.3.65) 

( )2 2 2 6

3y y yy y8z 20z z z dy

∞

−∞

− + =∫ constant                           (5.3.66) 

( )4 2

t ttz 12z cos z dy

∞

−∞

−∫ =constant                              (5.3.67) 

 

 

5.4 Finding Conserved Quantities of SPE by Transforming from SGE 

 

Transformation rules in chapter 4 can be modified as:  

 

zyt = sin z    (SGE)                                         (5.4.1) 

uxt = u + 1/6(u
3
)xx       (SPE)                             (5.4.2) 

 

2

x

x 1
cos z

y 1 u

∂
= =

∂ +
                                      (5.4.3) 

2 2

t

x 1 1 x
z u and cos z

t 2 2 y

∂ ∂
= − = − =

∂ ∂
                          (5.4.4) 

 

Applying the transformation (3.3.3) and (3.3.4) to the conserved quantities in 

(5.3.62)-(5.3.67), we can obtain the other conserved quantities of the short pulse 

equation.  

 

Let us start with (5.3.62). zy represents the derivative of z with respect to y so we 

transform it a function of u in terms of x variable. In (5.4.3) we can differentiate both 

sides with respect to y and we get (5.4.5). 
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( )
x xy

y 3/ 2
2

x

u u
z sin z

1 u
− = −

+
                                      (5.4.5) 

x x
xy xx

u u x
u u cos z

y x y

∂ ∂ ∂
= = =

∂ ∂ ∂
                               (5.4.6) 

 

With the help of (5.4.6) we can write: 

( )
x

y xx3/ 2
2

x

u
z sin z u cos z

1 u
− = −

+
                                 (5.4.7) 

By trigonometric identities, (5.4.3) can be described by (5.4.8). 

xtan z u=                                                  (5.4.8) 

Then zy is defined in terms of u and x as: 

( )
xx

y 3/ 2
2

x

u
z

1 u
=

+
                                              (5.4.9) 

From (5.4.3), dy can be written as: 

 

2

xdy 1 u dx= +                                             (5.4.10) 

 

Finally, the conserved quantity of SGE in (5.3.62) is transformed for short pulse 

equation as seen in equation (5.4.11). 

2
2 xx
y 2 5/ 2

x

u1
.z .dy .dx

2 2(1 u )

∞ ∞

−∞ −∞

⇒
+∫ ∫                                      (5.4.11) 

2

xx

2 5/ 2

x

u
.dx cons tan t

(1 u )

∞

−∞

=
+∫                                       (5.4.12) 

 

Since (5.4.12) is a conserved quantity for the short pulse equation, it can be verified 

by mass conservation law in (3.1.1). That is, the time derivative of the function in 

(5.4.12) must be and exact derivative of any function with respect to x. We tried to 

verify and found the result as: 
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( ) ( )
2 2

5/ 2 1/ 2
2 2 2xx
xx x x2 5/ 2

x xt

u u
u . 1 u 2 1 u

(1 u ) 2

− −   
= + − +   

+   
             (5.4.13) 

 

The second conserved quantity of SGE is (5.3.63). If cos z and dy in (5.4.3) and 

(5.4.10) are written in (5.3.63), it is obtained that 

 

2

x(1 cos z).dy ( 1 u 1).dx

∞ ∞

−∞ −∞

− ⇒ + −∫ ∫                         (5.4.14) 

 

Therefore another conserved quantity of SPE is: 

 

2

x1 u .dx

∞

−∞

+∫                                                (5.4.15) 

 

This quantity was found by mass conservation law in section 3.1 in equation (3.1.13). 

 

Equation (5.3.64) is another conserved quantity of SGE. We have found zy in (5.4.9). 

For zyy, we differentiate it with respect to y again.  

 

( )
1/ 2y 2xx

yy x2 3/ 2

x x

z ux
z . 1 u

x y (1 u )

−∂  ∂
= = + 

∂ ∂ + 
                       (5.4.16) 

( )
2

1/ 2
2xxx x xx

yy x2 3/ 2 2 5/ 2

x x

u 3u u
z . 1 u

(1 u ) (1 u )

− 
= − + 

+ + 
                       (5.4.17) 

2

xxx x xx
yy 2 2 2 3

x x

u 3u u
z

(1 u ) (1 u )
= −

+ +
                                         (5.4.18) 

 

If (5.4.9) and (5.4.18) are replaced (5.3.45), we find a new conserved quantity for 

SPE as: 
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2 2 4 2
4 2 x xx xxx xxx xx x
y yy 2 9/ 2 2 7 / 2 2 11/ 2

x x x

24.u .u u 4u u (1 36u )
(z 4z ).dy .dx

(1 u ) (1 u ) (1 u )

∞ ∞

−∞ −∞

 −
− ⇒ − + 

+ + + ∫ ∫        (5.4.19) 

 

( )
2

3 3 3x xx xxx x x x
xx xx xx2 9/ 2 2 9 / 2 2 9/ 2 2 9/ 2x

x x x xx x

2

x xx x xx

2 9/ 2 2 9/ 2 2 11/ 2

x x xx

2
3 3x xx xxx x xx
xx xx2 9/ 2 2 9 / 2

x x x

24u u u 8u 8u u
u u 8u

(1 u ) (1 u ) (1 u ) (1 u )

u u 9u u

(1 u ) (1 u ) (1 u )

24u u u 8u u
u 8u

(1 u ) (1 u ) (

   
= = −   

+ + + +   

 
= − 

+ + + 

 
= − 

+ + 

2

x xx

2 9/ 2 2 11/ 2

x x

9u u

1 u ) (1 u )

 
− 

+ + 

   (5.4.20) 

 

 

2 2 4 2
3 xx x xx xxx xx x
xx 2 9/ 2 2 11/ 2 2 7 / 2 2 11/ 2

x x x x

u 9u u 4u u (1 36u )
8u dx

(1 u ) (1 u ) (1 u ) (1 u )

∞

−∞

   −
− − − +  

+ + + +  ∫        (5.4.21) 

 

2 4 2

xxx xx x

2 7 / 2 2 11/ 2

x x

4u 7u (1 4u )
dx

(1 u ) (1 u )

∞

−∞

 −
+ = 

+ + ∫ constant            (5.4.22) 

 

The proof of (5.4.22) is given by the mass conservation law: 

 

2 4 2

xxx xx x

2 7 / 2 2 11/ 2

x x t

2 2 2 2 3 2 4 2

xxx xx x xx xx x

2 7 / 2 2 11/ 2

x x x

4u 7u (1 4u )

(1 u ) (1 u )

2u u 4u (1 6u ) 8uu 7u u (1 4u )

(1 u ) 2(1 u )

 −
+ = 

+ + 

 + + + −
+ 

+ + 

           (5.4.23) 

 

Equation (5.3.65) can also be transformed for SPE by the help of (5.4.3) and (5.4.4). 

It is very easy to see (5.4.24) is a conserved quantity of SPE. 

2 2

t(z .cos z).dy u .dx

∞ ∞

−∞ −∞

⇒∫ ∫                                 (5.4.24) 
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2u .dx cons tan t

∞

−∞

=∫                                           (5.4.25) 

 

(5.4.25) has also been obtained by mass conservation law in section 3.1. As for the 

conserved quantity in (5.3.67), we must find ztt in terms of u, x and t. From (5.4.4) it 

can be deduced that zt=u so 1

ttz u−= ∂ . 

t

2

tt t x t x

1

tt

z (y, t) u(x, t)

x 1
z u u u u u

t 2

z u−

=

∂
= + = −

∂

= ∂

                           (5.4.26) 

( )
4

2
4 2 1

t tt

1 4 u 4
( z z ).cos z dy u .dx
9 3 9 3

∞ ∞

−

−∞ −∞

 
− ⇒ − ∂ 

 ∫ ∫                   (5.4.27) 

( )
2

4 1u 12 u .dx cons tan t

∞

−

−∞

 − ∂ =
  ∫                              (5.4.28) 

(5.4.28) is a conserved quantity of SPE. It is also proven by the mass conservation 

law as follows.  

( ) ( )
2 2

4 1 2 6

t x

u 12 u u u− −   − ∂ = ∂ +
      

                         (5.4.29) 

 

Finally we derived the last conserved quantity from the transformation by 

transforming (5.3.66). 

 

yy yy yy

yyy
2

x

z z zx 1
z

y x y x 1 u

∂ ∂ ∂∂
= = =

∂ ∂ ∂ ∂ +
                                  (5.4.30) 

3 2 3

xxxx xx x xx xxx x xx
yyy 2 5/ 2 2 7 / 2 2 9/ 2

x x x

u 3u 10u u u 18u u
z

(1 u ) (1 u ) (1 u )

+
= − +

+ + +
                  (5.4.31) 

 

zy, zyy and zyyy are given in (5.4.9), (5.4.18) and (5.4.31) respectively. If they are 

replaced in (5.3.66), the last conserved quantity is obtained as:   
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( )

( )

( ) ( )

2 9/ 2 6 13/ 2 15/ 2 17 / 2

4x xx

2 2 11/ 2 13/ 2 11/ 2

xx 3x x xx 3x 4x

3 11/ 2 13/ 2 4 15/ 2 13/ 2

xx 4x x xx 3x

8u v u 1800v 4500v 2773v

u u 800v 820v 160u u u u v dx

u u 240v 288v u u u 3000v 2400v

− − − −

∞

− − −

− − − −−∞

 + − +
 
 + − −
 
 − + − 

∫        (5.4.32) 

 

With some calculations, (5.4.32) can be expressed as: 

 

( )

( )

2 9/ 2 3 11/ 2 2 2 13/ 2 11/ 2

4x x 3x xx 3x

6 13/ 2 15/ 2 17 / 2

xx

8u v 80u u v 12u u 77v 60v

dx const.11
u 1080v 3276v 2275v

5

− − − −∞

− − −

−∞

 + + −
 

= 
+ − +  
∫          (5.4.33) 

where 2

xv 1 u= +  

 

The last conserved quantity can be written as derivative form as: 

 

( )

( )

( )

2 9/ 2 3 11/ 2 2 2 13/ 2 11/ 2

4x x 3x xx 3x

6 13/ 2 15/ 2 17 / 2

xx

t

4 9/ 2 11/ 2 13/ 2 2 3 11/ 2 5 11/ 2 13/ 2

xx x 3x xx

2 6 13/ 2

xx

8u v 80u u v 12u u 77v 60v

11
u 1080v 3276v 2275v

5

42u 40v 96v 55v 40u u u v 864uu v v

11
u u 1080v

10

− − − −

− − −

− − − − − −

−

 + + −
 

= 
+ − + 
 

 − + − + − + 

( )15/ 2 17 / 2 2 9/ 2 2 2 9/ 2

x xx 3x 4x

2 9/ 2 2 2 13/ 2 7 / 2 9/ 2

3x xx xx
x

3276v 2275v 30fu u u v 4u u v

u 80uu v 462u u v 80v 72v

− − − −

− − − −

 
 
 

− + + + 
 
  + + + −  

  (5.4.34) 

 

where 2

xv 1 u= +  
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CHAPTER 6 

 

 

CONCLUSION  

 

 

 

In this study, we investigated some properties and tried to find some conserved 

quantities of the Schafer-Wayne short pulse equation. In order to find the solitary 

properties of the short pulse equation, a traveling wave solution was tried by defining 

a new parameter z. The parameter z was taken as z=x+ct due to the assumption that 

the soliton was a left going wave with speed c. After the change of variables, an 

ordinary nonlinear differential equation was obtained in (4.3.6). Integrating this 

equation, uz was obtained as a function of u as in (4.3.11). After integration, z was 

found as a function of u for a left going soliton with speed c (4.3.15). 

 

Some researchers e.g. Sakovich [5], Victor [18], Parkes [8] have searched its solitary 

solution by numerical methods. In this study, the shape of its soliton was shown by 

graphical and analytical methods. When the graph of equation (4.3.15) was drawn, 

the general soliton shape was obtained as Figure (4.3.4) which is a loop soliton. 

 

The conserved quantities of short pulse equation were investigated by three ways: 

mass conservation law, from Lax equations and transformation from sine-Gordon 

equation. By mass conservation law a conserved quantity f, which is a function of u 

and its derivatives, was calculated directly from the relation (5.1.1). 

 

In (5.1.1) g is also a function of u and its derivatives. Shortly it can be said that if the 

time derivative of the function f(u, ux, uxx, ..) is equal to x derivative of another 

function g(u, ux, uxx, ..), f is a conserved quantity of the differential eaquation. 
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It was assumed that f is a function of ux, then f was calculated by inspection. From 

this assumption, first conserved quantity in (5.1.27) was found. 

 

In a similar way, f was considered as a function of only u and second conserved 

quantity was calculated by the help of (5.1.27) as: 

 

As a second method, Lax equation of the short pulse equation was used in order to 

find the conserved quantities. In this method, Lax equations from Lax pairs were 

written eigenfunction equation was solved by a series ansatz. These solutions for the 

series ansatz for different powers of eigenvalues gave the conserved quantities of the 

short pulse equation. The conserved quantities in (5.2.33)-(5.2.36) was found from 

Lax pair. 

 

Another method for conserved quantities used in this study is transformation from 

sine-Gordon equation to short pulse equation which was found by Sakovich and 

Sakovich [4]. With this method, conserved quantities of sine-Gordon equation were 

found first by using Lax equations like short pulse equation. After finding three 

conserved quantities from Lax pair. Three more conserved quantities were found by 

the symmetrical property of independent variables of the sine-Gordon equation. 

These six conserved quantities found by sine-Gordon transformation are listed in the 

appendix. 

 

In conclusion, it is deduced that short pulse equation has a loop soliton solution and 

six conserved quantities were found. These conserved quantities were confirmed by 

mass conservation law and some of them are the same with the conserved quantities 

found by Brunelli who used Hamiltonian methods [7]. 
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APPENDIX 

 

 

LIST OF CONSERVED QUANTITIES 

 

 

 

2

x1 u dx const.

∞

−∞

+ =∫  

2u dx const.

∞

−∞

=∫  

( )
2

4 1u 12 u dx const.

∞

−

−∞

 − ∂ =
  ∫  

2

xx

2 5/ 2

x

u
dx const.

(1 u )

∞

−∞

=
+∫  

2 4 2

xxx xx x

2 7 / 2 2 11/ 2

x x

4u 7u (1 4u )
dx const.

(1 u ) (1 u )

∞

−∞

 −
+ = 

+ + ∫  

 

( )

( )

2 9/ 2 3 11/ 2 2 2 13/ 2 11/ 2

4x x 3x xx 3x

6 13/ 2 15/ 2 17 / 2

xx

8u v 80u u v 12u u 77v 60v

dx const.11
u 1080v 3276v 2275v

5

− − − −∞

− − −

−∞

 + + −
 

= 
+ − +  
∫  

2

xv 1 u= +  
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CONSERVED QUANTITIES IN THE DERIVATIVE FORM 

 

 

 

2
2 2

x x
t

x

u
1 u 1 u

2

  + = +    
 

 

( )
2

2
2 1

t
x

u
u u

4

− 
  = ∂ +  

 
 

 

( ) ( )
2 2

5/ 2 1/ 2
2 2 2xx
xx x x2 5/ 2

x xt

u u
u . 1 u 2 1 u

(1 u ) 2

− −   
= + − +   

+   
 

 

( ) ( )
2 2

4 1 2 6

t x

u 12 u u u− −   − ∂ = ∂ +
      

 

 

2 4 2 2 2 2 2 3 2 4 2

xxx xx x xxx xx x xx xx x

2 7 / 2 2 11/ 2 2 7 / 2 2 11/ 2

x x x xt x

4u 7u (1 4u ) 2u u 4u (1 6u ) 8uu 7u u (1 4u )

(1 u ) (1 u ) (1 u ) 2(1 u )

   − + + + −
+ = +   

+ + + +   
 

 

( )

( )

2 9/ 2 3 11/ 2 2 2 13/ 2 11/ 2

4x x 3x xx 3x

6 13/ 2 15/ 2 17 / 2

xx

t

8u v 80u u v 12u u 77v 60v

11
u 1080v 3276v 2275v

5

− − − −

− − −

 + + −
 
 

+ − + 
 

= 

( )

( )

4 9/ 2 11/ 2 13/ 2 2 3 11/ 2 5 11/ 2 13/ 2

xx x 3x xx

2 6 13/ 2 15/ 2 17 / 2 2 9/ 2 2 2 9/ 2

xx x xx 3x 4x

2 9/ 2 2 2 13/ 2 7 / 2 9 / 2

3x xx xx

42u 40v 96v 55v 40u u u v 864uu v v

11
u u 1080v 3276v 2275v 30fu u u v 4u u v

10

u 80uu v 462u u v 80v 72v

− − − − − −

− − − − −

− − − −

 − + − + − + 

− + + +

 + + + − 
x

 
 
 
 
 
 
 

 

 

2

xv 1 u= +  


