ON THE ALGEBRAIC STRUCTURE OF RELATIVE HAMILTONIAN DIFFEOMORPHISM GROUP

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALİ SAİT DEMİR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
 THE DEGREE OF DOCTOR OF PHILOSOPHY
 IN
 MATHEMATICS

ON THE ALGEBRAIC STRUCTURE OF RELATIVE HAMILTONIAN DIFFEOMORPHISM GROUP

submitted by ALİ SAİT DEMİR in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Department, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Zafer Nurlu
Head of Department, Mathematics
Prof. Dr. Yıldıray Ozan
Supervisor, Mathematics Dept., METU

Examining Committee Members

Prof. Dr. Turgut Önder
Mathematics Dept., METU

Prof. Dr. Yıldıray Ozan
Mathematics Dept., METU

Prof. Dr. Cem Tezer
Mathematics Dept., METU

Assoc. Prof. Dr. S. Feza Arslan
Mathematics Dept., METU

Assist. Prof. Dr. Ferit Öztürk
Mathematics Dept., Boğaziçi University

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name : Ali Sait Demir

Signature

ABSTRACT

ON THE ALGEBRAIC STRUCTURE OF RELATIVE HAMILTONIAN DIFFEOMORPHISM GROUP

Demir, Ali Sait
Ph. D., Department of Mathematics
Supervisor: Prof. Dr. Yıldıray Ozan
January 2008, 61 pages

Let M be smooth symplectic closed manifold and L a closed Lagrangian submanifold of M. It was shown by Ozan that $\operatorname{Ham}(M, L)$: the relative Hamiltonian diffeomorphisms on M fixing the Lagrangian submanifold L setwise is a subgroup which is equal to the kernel of the restriction of the flux homomorphism to the universal cover of the identity component of the relative symplectomorphisms.

In this thesis we show that $\operatorname{Ham}(\mathrm{M}, \mathrm{L})$ is a non-simple perfect group, by adopting a technique due to Thurston, Herman, and Banyaga. This technique requires the diffeomorphism group be transitive where this property fails to exist in our case.

Keywords: Hamiltonian Diffeomorphisms, nontransitive diffeomorphism groups, Lagrangian submanifolds

ÖZ

RÖLATIF HAMILTON DIFEOMORFIZMALARIN CEBIRSEL YAPISI

Demir, Ali Sait
Doktora, Matematik Bölümü
Tez Yöneticisi: Prof. Dr. Yıldıray Ozan

Ocak 2008, 61 sayfa

M simplektik bir manifold ve L, M'in kapalı bir Lagrange alt manifoldu olsun. L'i kümece sabit brakan M üzerindeki Hamilton difeomorfizmalarının oluşturdug̃u $\operatorname{Ham}(\mathrm{M}, \mathrm{L})$ kümesinin, akı homomorfizmasının, rölatif simplektomorfizmaların birim bileşenine kısıtlanışının çekirdek grubu oldug̃u Ozan tarafından 2005 yılında gösterilmişti. Bu tezde, $\operatorname{Ham}(\mathrm{M}, \mathrm{L})$ grubunun basit olmayan mükemmel bir grup oldug̃u, Thurston, Herman ve Banyaga tarafindan geliştirilmiş bir teknig̃in uyarlanmasıyla gösterilmiştir. Teknik, grubun transitif olmasını gerektirirken $\operatorname{Ham}(\mathrm{M}, \mathrm{L})$ grubu transitif deg̃ildir.

Anahtar Kelimeler: Hamilton difeomorfizmaları, transitif olmayan gruplar, Lagrange alt manifoldları

To Sultan of my heart, for love and patience...

ACKNOWLEDGMENTS

It is a pleasure for me to express my sincere gratitude to my thesis supervisor Prof. Dr. Yıldıray Ozan for his belief, patience, encouragement and guidance throughout the study. I greatly appreciate his share in every step taken in the development of the thesis.

I would also like to thank to the members of my Thesis Examining Committee, Prof. Dr. Turgut Önder, Prof. Dr. Cem Tezer, Assoc. Prof. Dr. S. Feza Arslan, Assist. Prof. Dr. Ferit Öztürk, for guidance and encouragement. I am grateful to them for editing the manuscript and directioning me in improving the thesis.

I have to appreciate my dear friends Haydar Alıc1, for mathematical discussions and for sketching the Figure 4.5; Halil Ibrahim Çetin, for his technical support, encouragements and suggestions; Aslı Pekcan, for typing some parts of the manuscript and for proof reading; and Faruk Polat, for his patience and for sharing his tea with me for years. They were there whenever I needed them.

Ibrahim Erkan, Seçil Gergün, Celalettin Kaya, Arda Bug̃ra Özer, Bülent Tosun, Enes Yılmaz and all of my friends have been helpful, considerate and supporters. I am also indebted to them.

Finally, I will also never forget the unending support and love my family has provided me all my life. I would like to thank especially to my sister Beyhan Aksoy, for everything she has done during her stay in Ankara.

This study has partially been supported by TÜBİTAK-BDP program. I would like to express my appreciation to Prof. Dr. Turgut Onder, for initiating a group, to be supported under this program.

TABLE OF CONTENTS

ABSTRACT iv
ÖZ V
DEDICATION vi
ACKNOWLEDGMENTS vii
TABLE OF CONTENTS viii
CHAPTER
1 INTRODUCTION 1
1.1 From Perfectness to Simplicity 2
1.2 Main Results 4
2 PRELIMINARIES 6
2.1 The Lie group of C^{r}-diffeomorphisms 6
2.1.1 The compact-open C^{r} topology 7
2.1.2 \quad Smooth structure on $\operatorname{Diff}^{r}(M)$ 7
2.2 The Group of Symplectomorphisms 11
2.2.1 Symplectic Manifolds 12
2.2.2 Symplectic and Hamiltonian Diffeomorphisms 14
2.2.3 $\operatorname{Ham}(\mathrm{M})$ and Flux Homomorphism 15
2.2.4 Algebraic aspects of $\operatorname{Symp}(M, \omega)$ and $\operatorname{Ham}(M, \omega)$ 16
3 THE RELATIVE HAMILTONIANS 18
3.1 Relative Calabi Homomorphism 19
3.2 Relative Weinstein Charts 21
3.3 The Fragmentation Lemma 22
4 THE DEFORMATION LEMMA 26
4.1 Transitivity properties 26
4.1.1 A Special Open Cover 27
4.2 Proof of Deformation Lemma 35
5 THE RELATIVE HERMAN THEOREM 40
5.1 Relative Herman Theorem 40
5.2 Relative Flux of Torus $\left(T^{2 n}, T^{n}\right)$ 42
5.3 Proof of the Main Theorem 46
REFERENCES 46
APPENDICES 49
A THE GROUP $\operatorname{Sp}(2 n, n)$ 49
B PALAMADOV OPERATOR 52
C THE SIMPLICIAL SET $B \bar{G}$ 53
D HERMAN-SERGERAERT THEOREM 56
VITA 61

CHAPTER 1

INTRODUCTION

From the time that Poincare suggested the notion of a differentiable manifold as the phase space in mechanics, there have been many developments in mathematical physics. The modeling for mechanics, consisting of a symplectic manifold together with a Hamiltonian vector field (or global system of differential equations preserving the symplectic structure) replaced analytical methods by differential topological ones in the study of the phase portrait. This modeling had its own settings and developed the theory of Symplectic Topology.

Just as symplectic manifolds stood for configuration (or phase) spaces of Hamiltonian Mechanical Systems, there are some infinite dimensional Lie groups that take the roles of configuration spaces in fluid dynamics, plasma physics or in quantization. In this respect diffeomorphism groups and their subgroups play an important role in dynamical systems both as phase spaces and as symmetry groups. For example the configuration space of a homogeneous ideal fluid contained in a container M is $\operatorname{Diff}(M)$: the group of self diffeomorphisms on M, and if the fluid is incompressible it is Diff vol (M) : the group of volume preserving diffeomorphism of M to itself. Another set of examples come from the MaxwellVlasov equations of plasma physics, which is an infinite dimensional system on a space of symplectomorphisms.

The study of diffeomorphism groups and some certain subgroups may be classified in many different aspects. Most basically one can consider geometric or algebraic properties or their homotopy types.

In this thesis we deal with some algebraic properties of a subgroup of the diffeomorphism group; namely the relative Hamiltonian diffeomorphisms that leave a lagrangian submanifold invariant on a closed symplectic manifold. The main result of this thesis is that this group is perfect. We adopt a technique due to Thurston, Herman and Banyaga that was used to show that some of these groups are simple or at least perfect. We made inevitable modifications to overcome the lack of some properties in the relative group.

1.1 From Perfectness to Simplicity

One of the main problems in the study of diffeomorphism groups is whether a group of diffeomorphisms and/or its certain subgroups is perfect, simple. The simplicity of the commutator subgroup [$\operatorname{Diff}_{0}^{r}(M), \operatorname{Diff}_{0}^{r}(M)$] of $\operatorname{Diff}_{0}^{r}(M)$ was shown by Epstein in 1970 [6]. Whether the group $\operatorname{Diff}_{0}^{r}(M)$ is perfect is a harder question and was shown for $M=T^{n}, r=\infty$ by Herman in 1971 [8]. Then Thurston used this result to generalize it for arbitrary manifolds [22]. He also developed a machinery, now called the "Thurston tricks", to yield the simplicity of $\operatorname{Diff}_{0}^{\infty}(M)$. Here we will briefly explain this technique.

Remark 1.1. Although we consider closed manifolds, i.e. compact without boundary, most of the results are valid on a non-compact manifold if one replaces diffeomorphisms or isotopies by the compactly supported ones. We will make it explicit if even such considerations are not sufficient.

We first start with some definitions. Let $G \subseteq \operatorname{Diff}^{\infty}(M)$ be a group of diffeomorphisms.

Definition 1.2. 1. G is said to have the fragmentation property if for any open cover $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ and any $g \in G$, there are $g_{1}, g_{2}, \ldots, g_{s} \in G$ with $\operatorname{supp}\left(g_{k}\right) \subset U_{i(k)}$ for $k=1, . ., s$ where $i(k) \in I$ and $g=g_{1} g_{2} \ldots g_{s}$.
2. G is said to be strongly n-fold transitive if given a pair $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ of distinct points on M, there exist n diffeomorphisms $g_{i} \in G$ such that $g_{i}\left(x_{i}\right)=y_{i}, i=1, . ., n$ and $\operatorname{supp}\left(g_{i}\right) \cap \operatorname{supp}\left(g_{j}\right)=\emptyset, \forall i \neq j$.
3. The subgroup $G_{U} \subseteq G$ denotes the subgroup consisting of diffeomorphisms which have compact support in the open subset U of M.

Theorem 1.3. [22](Thurston's trick) Let $G \subseteq \operatorname{Diff}_{0}^{\infty}(M)$ be a group of diffeomorphisms which is strongly 2-fold transitive, has the fragmentation property and such that G_{U} is perfect for each open set $U \subset M$. Then G is simple.

Remark 1.4. 1. Since the original paper of Thurston is unpublished one can find the proof of this theorem, for instance, in [2].
2. There is a more direct and shorter proof for the simplicity of $\operatorname{Diff}_{0}^{r}(M)$, for $1 \leq r \leq \infty$, due to Epstein and Mather [7, 12]. Since their method involves shrinking and expanding volume of subsets, it can not be generalized to volume-preserving and symplectic diffeomorphisms.

For the rest of this section let G denote the identity component of C^{∞} diffeomorphisms on a closed smooth manifold M, i.e. $G=\operatorname{Diff}_{0}^{\infty}(M)$. One can easily verify that G is strongly 2 -fold transitive and has the fragmentation property. See [2]. As Theorem 1.3 suggests, to show the simplicity of G we need to show perfectness of G_{U}. We now briefly explain how G_{U} is shown to be perfect. Recall that the perfectness of a topological group G is equivalent to $H_{1}(G)$ being trivial, in other words

$$
H_{1}(G)=G /[G, G]=0 \text { if and only if } G \text { is perfect. }
$$

Let U be an open subset of a smooth manifold M such that $\bar{U} \subset V$, where V is the domain of a local chart $\phi: V \rightarrow \mathbb{R}^{n}$. The conjugation of elements of G_{U} by the charts ϕ induces an isomorphism $G_{U} \approx \operatorname{Diff}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. In other words the local picture of diffeomorphism groups are the same as diffeomorphism group of \mathbb{R}^{n}. Moreover, this local picture is exactly the same picture of the whole group of diffeomorphisms if one considers the abelianizations.

Lemma 1.5. (Deformation Lemma) Let U be an open subset of a smooth manifold M^{n} such that $\bar{U} \subset V$, where V is the domain of a local chart $\phi: V \rightarrow \mathbb{R}^{n}$. Then the inclusion $G_{U} \subset G$ induces an isomorphism: $H_{1}\left(G_{U}\right) \approx H_{1}(G)$.

To conclude that Diff ${ }_{0}^{\infty}\left(M^{n}\right)$ is simple, as the above lemma suggests, we need to find just one manifold for which $\operatorname{Diff}_{0}^{\infty}\left(M^{n}\right)$ is perfect. Herman's result that $\operatorname{Diff}_{0}^{\infty}\left(T^{n}\right)$ is perfect proves that $\operatorname{Diff}_{0}^{\infty}\left(M^{n}\right)$ is simple. We will need a similar result with Herman's and come back to this again in the last chapter.

1.2 Main Results

Let (M, ω) be a connected, closed, symplectic manifold and L a closed Lagrangian submanifold. Let $\operatorname{Symp}(M, L, \omega)$ denote the subgroup of $\operatorname{Symp}(M, \omega)$ consisting of symplectomorphisms leaving the Lagrangian submanifold L invariant and $\operatorname{Symp}_{0}(M, L, \omega)$ the path component of $\operatorname{Symp}(M, L, \omega)$ containing the identity. The relative symplectomorphism group was introduced by Ozan [16]. In this paper he defined a relative version of the flux homomorphism:

$$
\text { Flux : } \widetilde{\operatorname{Symp}}_{0}(M, L, \omega) \rightarrow H^{1}(M, L, \mathbb{R})
$$

and showed that its kernel gives the relative Hamiltonian group $\widetilde{\operatorname{Ham}}(M, L)$, similar to the absolute case.

In this thesis, we will examine some topological and algebraic aspects of these relative groups. The main result will be the perfectness of the group of relative

Hamiltonian diffeomorphism.
Theorem 1.6. Let M be a connected, closed, symplectic manifold, $L \subset M a$ connected, oriented Lagrangian submanifold such that $M \backslash L$ is connected. Then, $\operatorname{Ham}(M, L)$ is a non-simple perfect group.

In the third chapter we analyze this group in detail. We outline some topological properties of this group first discovered by Ozan.

The relative versions of deformation lemma and the ideas to overcome the lack of transitivity is explained in the fourth chapter. Mainly we prove
Theorem 1.7. The natural map $\rho: B \overline{\operatorname{Ker} R_{U, U \cap L}} \longrightarrow B \overline{\operatorname{Ham}(M, L)}$ induces an isomorphism

$$
\phi: H_{1}\left(B \overline{\operatorname{Ker} R_{U, U \cap L}} ; \mathbb{Z}\right) \longrightarrow H_{1}(B \overline{\operatorname{Ham}(M, L)} ; \mathbb{Z})
$$

Here $R_{U, U \cap L}$ denotes the Calabi homomorphism defined for open subsets of closed manifolds, whose details are given in the third chapter. The topological space $B \bar{G}$ of a group G will be reviewed in the appendix. We remark here the relation $H_{1}(B \bar{G}) \approx \tilde{G} /[\tilde{G}, \tilde{G}] \approx H_{1}(\tilde{G})$ and address the appendix for the details. The last chapter involves a proof that $\operatorname{Ham}\left(T^{2 n}, T^{n}\right)$ is perfect. We adopt the original proof of Herman's for the absolute case. This is a fundamental step on the way to perfectness of all relative Hamiltonian groups.

CHAPTER 2

PRELIMINARIES

In this chapter we recall some basic properties of classical diffeomorphism groups. We follow mainly Banyaga [2] and Schmid [20].

2.1 The Lie group of C^{r}-diffeomorphisms

Let M, N be finite dimensional smooth manifolds. Denote by $C^{r}(M, N)$ the space of all C^{r} mappings $f: M \rightarrow N$, for $1 \leq r \leq \infty$. The topological and smooth structure of the diffeomorphism groups are induced from those on $C^{r}(M, M)$: C^{r} automorphisms of the manifold. So we recall these structures on $C^{r}(M, N)$ first.

Definition 2.1. A C^{r} diffeomorphism of a smooth manifold M is an invertible element $\phi \in C^{r}(M, M)$ such that ϕ^{-1} is a C^{r} map.

The set of all C^{r} diffeomorphisms is denoted by $\operatorname{Diff}^{r}(M)$. The composition of mappings in $C^{r}(M, M)$ gives $\operatorname{Diff}^{r}(M)$ a group structure and we have the natural inclusions:

$$
\operatorname{Diff}^{1}(M) \supset \operatorname{Diff}^{2}(M) \supset \cdots \supset \operatorname{Diff}^{r}(M) \supset \cdots \supset \operatorname{Diff}^{\infty}(M)
$$

where $\operatorname{Diff}^{\infty}(M)$ is the group of all C^{∞} diffeomorphisms. Indeed, $\operatorname{Diff}^{r}(M)$ is a topological group with compact open topology induced from $C^{r}(M, M)$.

2.1.1 The compact-open C^{r} topology

Let $f \in C^{r}(M, N)$ with $r \leq \infty$. Let (U, ϕ) and (V, ψ) be local charts of M and N respectively such that $f(K) \subset V$, where K is some compact subset of U. For $\epsilon \geq 0$ define $\mathcal{N}^{r}(f,(U, \phi),(V, \psi), \epsilon, K)$ to be the set of all $g \in C^{r}(M, N)$ such that $g(K) \subset V$ and if

$$
\bar{f}=\psi f \phi^{-1}, \quad \bar{g}=\psi g \phi^{-1}
$$

then:

$$
\left\|D^{k} \bar{f}(x)-D^{k} \bar{g}(x)\right\|<\epsilon
$$

for all $x \in \phi(K)$ and $0 \leq k \leq r$.
The sets $\mathcal{N}^{r}(f,(U, \phi),(V, \psi), \epsilon, K)$ form a subbasis for a topology on $C^{r}(M, N)$, called the compact-open C^{r} topology. A neighborhood of f in this topology is any finite intersection of the sets of type $\mathcal{N}^{r}(f,(U, \phi),(V, \psi), \epsilon, K)$. The C^{∞} compact-open topology on $C^{\infty}(M, N)$ is the topology induced by the inclusions $C^{\infty}(M, N) \subset C^{r}(M, N)$ for r finite.

The group Diff ${ }^{r}(M)$ with this topology is a topological group. It is metrizable and has a countable basis [10]. However, if M is not compact there is no control of what happens at "infinity". We have to restrict to mappings with compact supports to overcome this difficulty. Then, the topology on the group $\operatorname{Diff}_{c}^{r}(M)$ of C^{r} diffeomorphisms with compact supports is given by the direct limit topology induced from $C_{c}^{r}(M, M)$ for $r \leq \infty$.

2.1.2 Smooth structure on $\operatorname{Diff}^{r}(M)$

After the work of Arnold ([1]), showing that, if we assume that the group of diffeomorphisms has the properties of a Lie group we can use these properties to get a better understanding of hydrodynamics, people have tried to show that
$\operatorname{Diff}^{r}(M)$ is an infinite dimensional Lie group. Especially Omori's studies enlighted the theory in this direction. The details can be found in $[2,20]$.

Let $f \in C^{r}(M, N)$ and $\gamma: I \subset \mathbb{R} \rightarrow C^{r}(M, N)$ be a curve with $\gamma(0)=f$. $\dot{\gamma}(0)$ will be a tangent vector to $C^{r}(M, N)$ at the point f, i.e.

$$
\dot{\gamma}(0)=\left.\frac{d \gamma(t)}{d t}\right|_{t=0} \in T_{f} C^{r}(M, N) .
$$

This should be interpreted as follows: For each $x \in M$, let $\gamma_{x}: I \subset \mathbb{R} \rightarrow N$ be the curve in N given by $\gamma_{x}(t)=\gamma(t)(x)$. Then $\gamma_{x}(0)=f(x)$ and $\dot{\gamma}(0) \in$ $T_{f(x)} N$, in other words $\dot{\gamma}(0)$ is a tangent vector to N at the point $f(x)$. Identify $\dot{\gamma}(0) \equiv \dot{\gamma}(0)(x)$; hence $\dot{\gamma}(0)$ can be regarded as a map $\dot{\gamma}(0): M \rightarrow T N$ such that $\dot{\gamma}(0) \in T_{f(x)} N$. This means $\dot{\gamma}(0)$ is a vector field along f. Thus the tangent space of $C^{r}(M, N)$ at f is

$$
T_{f} C^{r}(M, N)=\left\{\xi_{f} \in C(M, T N) \mid \tau_{N} \circ \xi_{f}=f\right\} .
$$

Here $\tau_{N}: T N \rightarrow N$ is the canonical projection. We can identify $T_{f} C^{r}(M, N)$ with the space $\Gamma^{r}\left(f^{*} \tau_{N}\right)$ of sections of the pull-back bundle $f^{*} \tau_{N}$; i.e. $T_{f} C^{r}(M, N) \cong \Gamma^{r}\left(f^{*} \tau_{N}\right)$ which is an infinite dimensional vector space.

Remark 2.2. If $r=\infty$ then the space $\Gamma^{\infty}\left(f^{*} \tau_{N}\right)$ of C^{∞} sections with the uniform C^{∞}-topology is a Frechet space; (a metrizable topological vector space), defined by the sequence of seminorms $\left(\left|\left.\right|_{p}\right)_{p \in \mathbb{N}}\right.$

Here ξ_{i} is the local representative of $\xi \in \Gamma^{\infty}\left(f^{*} \tau_{N}\right)$ in a chart U_{i} of M. If $0 \leq r<\infty$ then $\Gamma^{r}\left(f^{*} \tau_{N}\right)$ is a Banach space with norm $\|\xi\|=\max _{0 \leq p<r}|\xi|_{p}$, with $|\xi|_{p}$ as above. So to do analysis on $\operatorname{Diff}^{\infty}(M)$ one has to refine things. But to a topologist this fact is not too much annoying. Structures in which a kind of inverse function theorem works, namely Nash-Moser type implicit function
theorem, still do exist. Omori presents $\operatorname{Diff}^{\infty}(M)$ as an ILH (inverse limit of a Hilbert space) manifold.

To define the local charts $\Phi_{f}: \mathcal{V}(f) \subset C^{r}(M, N) \longrightarrow W \subset T_{f} C^{r}(M, N)$ around a neighborhood $\mathcal{V}(f)$ of $f \in C^{r}(M, N)$, we first start with choosing a Riemannian metric g on N in order to get an exponential mapping $\exp _{x}: U_{x} \subset$ $T_{x} N \rightarrow N$ on some neighborhood U_{x} of zero in $T_{x} N$. For each $v_{x} \in T_{x} N$, there is a unique geodesic α_{x} through x whose tangent vector at x is v_{x}, i.e. $\alpha_{x}(0)=x$ and $\dot{\alpha_{x}}(0)=v_{x}$. Then define

$$
\exp _{x}\left(v_{x}\right):=\alpha_{x}(1), \quad v_{x} \in T_{x} N
$$

In general $\exp _{x}$ is a local diffeomorphism from a neighborhood of $0 \in T_{x} N$ onto a neighborhood of $x \in N$; i.e. there is an open ball $D_{x}^{\lambda(x)} \subset U_{x}$ centered at 0 with radius $\lambda(x)$ onto an open neighborhood \mathcal{N}_{x} of x in N. There exists a $\delta(x) \geq 0$ such that $\mathcal{N}_{x} \subset B(x, \delta(x))$, where $B(x, \delta(x))$ is the d-ball in N centered at x with radius $\delta(x)$. Here d is the metric on N induced by the Riemannian metric g. If N is compact, there exists a uniform δ and a uniform λ such that for any $x \in N \exp _{x}\left(D_{x}^{\lambda}\right) \subset B(x, \lambda)$. Moreover $\exp _{x}$ can be extended to a map exp : TN $\rightarrow N$ such that the map

$$
\operatorname{Exp}:=\left(\tau_{N}, \exp \right): T N \rightarrow N \times N, \quad \operatorname{Exp}\left(v_{x}\right)=\left(x, \exp _{x}\left(v_{x}\right)\right)
$$

is a diffeomorphism from a neighborhood $\mathcal{O}(0)$ of the zero section in $T N$ onto a neighborhood $\mathcal{U}(\Delta)$ of diagonal $\Delta \subset N \times N$.

Let $\mathcal{V}(f)=\left\{g \in C^{r}(M, N) \mid \sup _{x \in N} d(f(x), g(x)) \leq \delta\right\}$. This defines a C^{0} neighborhood of f. Note that if f is the identity map $i d: M \rightarrow M$ then

$$
\mathcal{V}\left(i d_{M}\right)=\left\{f \in C^{r}(M, M) \mid \operatorname{graph}(f) \subset \mathcal{U}(\Delta)\right\}
$$

For any $g \in \mathcal{V}(f)$, define $\Phi_{f}(g) \in T_{f} C^{r}(M, N)$ by

$$
\Phi_{f}(g)=\exp _{f(x)}^{-1}(g(x)),
$$

which is a bijection of $\mathcal{V}(f)$ with an open neighborhood \mathcal{W} of $0 \in T_{f} C^{r}(M, N)$, for all $x \in M$. Its inverse is given by

$$
\begin{aligned}
\overline{\exp }: \mathcal{W} \subset T_{f} C^{r}(M, N) & \longrightarrow C^{r}(M, N) \\
\rho & \longmapsto \exp \circ \rho
\end{aligned}
$$

which is a homeomorphism, hence is a local chart. One can show that the transition map between two overlapping charts is "smooth" [20].

Example 2.3. 1. For the case $N=M$ and $f=i d_{M}, T_{f} C^{r}(M, N)$ is just the set of C^{r} vector fields on M. Hence $\operatorname{Diff}^{r}(M)$ is a smooth manifold modeled on $\chi^{r}(M)$ of C^{r} vector fields on M which is a Banach space. If $r=\infty, \operatorname{Diff}^{\infty}(M)$ is still a manifold on $\chi(M)$ of C^{∞} vector fields on M, however the latter is a Frechet space as we mentioned in Remark 2.2.
2. Let $R_{\alpha} \in \operatorname{Diff}_{0}^{\infty}\left(T^{n}\right)$ denote the rotation by $\alpha \in T^{n}$. If $\pi: \mathbb{R}^{n} \rightarrow T^{n}$ denotes the covering map and $\tilde{\beta} \in \mathbb{R}^{n}$ is a lift of $\beta \in T^{n}$, then $R_{\alpha}(v)=\pi(\tilde{\alpha}+\tilde{v})$. Let $\lambda \in T^{n}$ be close enough to α so that $R_{\lambda} \in \mathcal{V}\left(R_{\alpha}\right)$. If $\Phi_{R_{\alpha}}: \mathcal{V}\left(R_{\alpha}\right) \rightarrow$ $T_{R_{\alpha}} C^{\infty}\left(T^{n}, T^{n}\right)$ denotes the chart near R_{α}, then $\Phi_{R_{\alpha}}\left(R_{\lambda}\right): T^{n} \rightarrow \mathbb{R}^{n}$ is the map given by $\Phi_{R_{\alpha}}\left(R_{\lambda}\right)(x)=\tilde{x}+\tilde{\lambda}-\tilde{\alpha}$.

Proposition 2.4. $\operatorname{Diff}^{r}(M)$ and $\operatorname{Diff}_{c}^{r}(M)$ are locally contractible. Hence they are locally connected by smooth arcs.

Although $\operatorname{Diff}^{r}(M)$ is an infinite dimensional Lie group with Lie algebra $\chi^{r}(M)$, the nice relations between a finite dimensional Lie group G and its Lie algebra \boldsymbol{g} may fail to exist for $\operatorname{Diff}^{r}(M)$. For instance, the exponential mapping is neither one-to-one nor onto near the identity. (See [2, pp.8-9] for examples). It is still important to know the structure of the Lie algebra, because we can use this knowledge to construct interesting 1-parameter groups inside the Lie group and deduce information about the structure of the entire Lie group.

It is well-known that any C^{∞} vector field X on M with compact support
generates a flow $\phi_{t} \in \operatorname{Diff}{ }_{c}^{\infty}(M)$. We get the family of diffeomorphisms ϕ_{t} as the trajectories of the time-dependent differential equation:

$$
\frac{d}{d t} \phi_{t}(x)=X\left(\phi_{t}(x)\right), \quad \phi_{0}(x)=x .
$$

The diffeomorphism ϕ_{1} is called the time one map of the flow. The correspondence $X \mapsto \phi_{1}$ is a well defined map Exp : $\chi_{c}(M) \rightarrow \operatorname{Diff}_{c}^{\infty}(M)$ called the exponential map of the Lie group $\operatorname{Diff}_{c}^{\infty}(M)$. When a smooth manifold M is equipped with some interesting geometric structure, there exists a distinguished class of vector fields which generate a local 1-parameter group of diffeomorphisms preserving the structure. If M is oriented, for instance, $\operatorname{Diff}_{+}(M) \subset \operatorname{Diff}_{c}^{\infty}(M)$ is the subgroup of orientation preserving diffeomorphisms on M. For a fixed volume form ω on $M \operatorname{Diff}_{\omega}(M)_{c}$ is the group of volume preserving diffeomorphisms with compact support, i.e. $\operatorname{Diff}_{\omega}(M)_{c}=\left\{\phi \in \operatorname{Diff}_{c}^{\infty}(M) \| \phi^{*} \omega=\omega\right\}$. The group of diffeomorphisms that preserve the symplectic structure on a symplectic manifold M is the next important set of examples.

2.2 The Group of Symplectomorphisms

Let $\left(M^{2 n}, \omega\right)$ be a symplectic manifold, i.e. ω is a closed 2 -form such that $\omega^{n}(\neq 0)$ is a volume form on M. The group of symplectomorphisms

$$
\operatorname{Symp}(M, \omega)=\left\{\phi \in \operatorname{Diff}^{\infty}(M) \mid \phi^{*} \omega=\omega\right\}
$$

is of fundamental importance for the study of Symplectic Topology (in addition to its role in plasma physics). For example the symplectic rigidity theorem, being the basis of symplectic topology, states that $" \operatorname{Symp}(M, \omega)$ is C^{0}-closed in $\operatorname{Diff}(M)$ ". Or, for instance, one can consider the Arnold conjecture which estimates bounds for the fixed points of Hamiltonian symplectomorphisms.

2.2.1 Symplectic Manifolds

In this section we first recall some fundamentals of Symplectic Topology, basic definitions and examples. For more details one can see McDuff and Salamon's book [14] or da Silva's survey [5]. The followings are the classical examples of symplectic manifolds.

Example 2.5. 1. Let $M=\mathbb{R}^{2 n}$ with the coordinates $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$. Then the 2-form defined by $\omega_{s t}=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$ is called the standard symplectic form on $\mathbb{R}^{2 n}$.
2. The 2 -sphere S^{2}, with the standard symplectic form on S^{2} is induced by the standard inner (dot) and exterior (vector) products: $\omega_{p}(u, v):=<p, u \times$ $v>$, for $u, v \in T_{p} S^{2}=\{p\}^{\perp}$. This is the standard area form on S^{2} with total area 4π. In terms of cylindrical polar coordinates $0 \leq \theta<2 \pi$ and $-1 \leq z \leq 1$ away from the poles, it is written $\omega=d \theta \wedge d z$. Since $[\omega] \in H^{2}(M, \mathbb{R})$ is a non-zero class for a symplectic manifold $(M, \omega), S^{n}$ is symplectic only for $n=2$.
3. (Cotangent Bundles) Let $\left(U, x_{1}, . ., x_{n}\right)$ be a coordinate chart of a smooth manifold M such that $\left(T^{*} U, x_{1}, . ., x_{n}, \xi_{1}, . ., \xi_{n}\right)$ becomes a coordinate chart for $T^{*} M$: the cotangent bundle of M. Then, if $\alpha=\sum_{i=1}^{n} \xi_{i} d x_{i}$ is the Liouville 1-form, the canonical symplectic form on the cotangent bundle is given by $\omega_{\text {can }}=-d \alpha=\sum_{i=1}^{n} d x_{i} \wedge d \xi_{i}$.
4. Let (M, ω) be a symplectic manifold. Then the product manifold $M \times M$ is also symplectic with the symplectic form $(-\omega) \oplus(\omega)$.

Symplectic manifolds have special submanifolds that arise naturally both in physics and geometry.

Definition 2.6. $L^{n} \subset M^{2 n}$ is a Lagrangian submanifold of a symplectic manifold
(M, ω), if $\left.\omega\right|_{T L}=0$.
Example 2.7. 1. $L=\left\{\left(x_{1}, . ., x_{n}, 0, . ., 0\right) \mid x_{i} \in \mathbb{R}\right\} \subset \mathbb{R}^{2 n}$ is a Lagrangian submanifold.
2. Any 1-dimensional submanifold of a symplectic surface is Lagrangian.
3. The zero section $M_{0}=\left\{(x, \xi) \in T^{*} M \mid \xi=0\right.$ in $\left.T_{x}^{*} M\right\}$ diffeomorphic to M is a Lagrangian submanifold of the cotangent bundle of any smooth manifold M. Hence any smooth manifold is a Lagrangian submanifold!
4. The diagonal $\Delta=\{(p, p) \mid p \in M\} \subset(M \times M,(-\omega) \oplus(\omega))$ diffeomorphic to M is a Lagrangian submanifold. Indeed, this is a particular case of the following, which is due to Weinstein.

Theorem 2.8. [23] Let (M, ω) be a symplectic manifold and $\psi: M \rightarrow M$ be a diffeomorphism. Then ψ is a symplectomorphism if and only if its graph

$$
\operatorname{graph}(\psi)=\{(p, \psi(p)) \mid p \in M\} \subset M \times M
$$

is a Lagrangian submanifold of $(M \times M,(-\omega) \oplus(\omega))$.
Example 2.7.4 is the case $\psi=i d_{M}$ of the above theorem. The following result, due to Weinstein, classifies Lagrangian embeddings up to local symplectomorphism.

Theorem 2.9. (Weinstein Tubular Neighborhood Theorem) Let (M, ω) be a symplectic manifold, L a compact Lagrangian submanifold, $\omega_{\text {can }}$ the canonical symplectic form on $T^{*} L, i_{0}: L \hookrightarrow T^{*} L$ the Lagrangian embedding as the zero section, and $i: L \hookrightarrow M$ the Lagrangian embedding given by the inclusion. Then there are neighborhoods U_{0} of L in $T^{*} L, U$ of L in M, and a diffeomorphism $\varphi: U_{0} \rightarrow U$ such that $\varphi^{*} \omega=\omega_{\text {can }}$ and $\varphi \circ i_{0}=i$.

2.2.2 Symplectic and Hamiltonian Diffeomorphisms

$\operatorname{Symp}(M, \omega)$ is by definition equipped with C^{∞}-topology and as first observed by Weinstein in [23] it is locally path connected. Let $\operatorname{Symp}_{0}(M, \omega)$ denote the path component of $i d_{M} \in \operatorname{Symp}(M, \omega)$. For any $\psi \in \operatorname{Symp}_{0}(M, \omega)$, let $\psi_{t} \in$ $\operatorname{Symp}(M, \omega)$ for all $t \in[0,1]$, such that $\psi_{0}=i d_{M}$ and $\psi_{1}=\psi$. There exists a unique family of vector fields (corresponding to ψ_{t})

$$
\begin{equation*}
X_{t}: M \longrightarrow T M \quad \text { such that } \frac{d}{d t} \psi_{t}=X_{t} \circ \psi_{t} . \tag{2.1}
\end{equation*}
$$

The vector fields X_{t} are called symplectic since they satisfy $\mathcal{L}_{X_{t}} \omega=0$, where $\mathcal{L}_{X_{t}} \omega$ denotes the Lie derivative of the form ω along the vector field X_{t}. By Cartan's formula

$$
\mathcal{L}_{X_{t}} \omega=i_{X_{t}}(d \omega)+d\left(i_{X_{t}} \omega\right) .
$$

Hence X_{t} is a symplectic vector field if and only if $i_{X_{t}} \omega$ is closed for all t. If moreover $i_{X_{t}} \omega$ is exact, that is to say $i_{X_{t}} \omega=d H_{t}, H_{t}: M \rightarrow \mathbb{R}$ a family of smooth functions, then X_{t} are called Hamiltonian vector fields. In this case the corresponding diffeomorphism ψ is called a Hamiltonian diffeomorphism and H_{1} is a Hamiltonian for ψ. The Hamiltonian diffeomorphisms form a group as a subgroup in the identity component of the group of symplectomorphisms, $\operatorname{Ham}(M, \omega) \subseteq \operatorname{Symp}_{0}(M, \omega)$. Thus we have a sequence of groups and inclusions:

$$
\operatorname{Ham}(M) \hookrightarrow \operatorname{Symp}_{0}(M) \hookrightarrow \operatorname{Symp}(M) \hookrightarrow \operatorname{Diff}^{\infty}(M)
$$

The most important elementary theorems in Symplectic Topology, the Darboux's theorem and the Moser's theorem, tell us the first observations about the groups $\operatorname{Ham}(M)$ and $\operatorname{Symp}(M)$.

Theorem 2.10. (Darboux's Theorem) Every symplectic form is locally diffeomorphic to the standard symplectic form $\omega_{s t}=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$ on $\mathbb{R}^{2 n}$.

Theorem 2.11. (Moser's Theorem) Any path $\omega_{t}, t \in[0,1]$ of cohomologous symplectic forms on a closed manifold M is induced by an isotopy $\Phi_{t}: M \rightarrow M$ of the underlying manifold, i.e. $\Phi_{t}^{*}\left(\omega_{t}\right)=\omega_{0} \Phi_{0}=i d$.

Since there are no local invariants of symplectic structures, by Darboux's theorem, these groups are infinite dimensional. Due to Moser's theorem $\operatorname{Symp}(M, \omega)$ and $\operatorname{Ham}(M, \omega)$ depend only on the diffeomorphism class of the form ω. In fact when ω_{t} varies along a path of cohomologous forms the topological or algebraic properties of these groups do not change.

2.2.3 $\operatorname{Ham}(\mathrm{M})$ and Flux Homomorphism

Since Hamiltonian diffeomorphisms can not be described as diffeomorphisms preserving some certain structure, there are some complications that one encounters while studying this group. For instance, it was not known until very recently that the Flux conjecture is true:

Flux Conjecture: On a closed, symplectic manifold the limit of a C^{∞} convergent sequence of Hamiltonian diffeomorphisms in $\operatorname{Symp}(M, \omega)$ is a Hamiltonian diffeomorphism.

The proof of this theorem is due to Ono [15]. There is a useful characterization of Hamiltonian diffeomorphisms as the kernel of a group homomorphism and the name of the above conjecture will now be appearent.

Definition 2.12. Let $\psi_{t}, t \in[0,1]$, be a loop of symplectomorphisms on a smooth symplectic manifold M. Then the flux homomorphism Flux $: \widetilde{\operatorname{Symp}_{0}}(M, \omega) \rightarrow$ $H^{1}(M, \mathbb{R})$ is given by

$$
\widetilde{\operatorname{Flux}}\left(\left\{\psi_{t}\right\}\right)=\int_{0}^{1}\left[i_{X_{t}} \omega\right] d t \in H^{1}(M, \mathbb{R}),
$$

where X_{t} is defined by $\frac{d}{d t} \psi_{t}=X_{t} \circ \psi_{t}$.
Recall that the universal cover of a space is just the set of equivalence classes
of paths in that space with fixed ends. The notation $\left\{\psi_{t}\right\}$ denotes the equivalence class of homotopic isotopies that have fixed ends $\psi_{0}=i d, \psi_{1}=\psi$. Further, if we let

$$
\Gamma=\widetilde{\operatorname{Flux}}\left(\pi_{1}\left(\operatorname{Symp}_{0}(M, \omega)\right)\right) \subset H^{1}(M, \mathbb{R})
$$

then, $\widetilde{\text { Flux }}$ induces a well defined homomorphism on $\operatorname{Symp}_{0}(M, \omega)$, also called the Flux:

$$
\text { Flux : } \operatorname{Symp}_{0}(M, \omega) \rightarrow H^{1}(M, \mathbb{R}) / \Gamma
$$

The group Γ is called the Flux group, and the flux conjecture is equivalent to Γ being discrete [18]. The following theorem due to Banyaga exhibits the relation between $\operatorname{Ham}(\mathrm{M})$ and the Flux homomorphism.

Theorem 2.13. Let $\psi \in \operatorname{Symp}_{0}(M)$. Then ψ is a Hamiltonian symplectomorphism if and only if there exists a symplectic isotopy $\psi_{t} \in \operatorname{Symp}_{0}(M), t \in[0,1]$ such that $\psi_{0}=i d, \psi_{1}=\psi, \operatorname{Flux}\left(\left\{\psi_{t}\right\}\right)=0$. Moreover, if $\operatorname{Flux}\left(\left\{\psi_{t}\right\}\right)=0$ then $\left\{\psi_{t}\right\}$ is isotopic with fixed end points to a Hamiltonian isotopy.

2.2.4 Algebraic aspects of $\operatorname{Symp}(M, \omega)$ and $\operatorname{Ham}(M, \omega)$

Theorem 2.13 gives first informations about the algebraic structure of $\operatorname{Symp}_{0}(M)$ and $\operatorname{Ham}(M) . \operatorname{Symp}_{0}(M)$ can no longer be simple since $\operatorname{Ham}(M)$ is a normal subgroup. Indeed $\operatorname{Symp}_{0}(M)$ is not even perfect unless M is simply connected. We have the following commutative diagram.

In [3] Banyaga showed that $\operatorname{Ham}(M)$ is simple. Therefore any other "natural" homomorphism from $\operatorname{Symp}_{0}(M)$ to an arbitrary group G must factor through the flux homomorphism. The proof relies on symplectic versions of Thurston's arguments that we introduced in the first chapter.

CHAPTER 3

THE RELATIVE HAMILTONIANS

Let (M, ω) be a connected, closed symplectic manifold, L a Lagrangian submanifold of M. We choose L to be connected so that the relative flux homomorphism is onto:

$$
\text { Flux }_{\text {rel }}: \widetilde{\operatorname{Symp}}_{0}(M, L, \omega) \rightarrow H^{1}(M, L ; \mathbb{R}) .
$$

Here $\widetilde{\operatorname{Symp}}_{0}(M, L, \omega)$ is the universal cover of the identity component of the group of symplectomorphisms of M that leave L setwise invariant. The Flux ${ }_{\text {rel }}$ is defined as

$$
\operatorname{Flux}_{r e l}(\{\psi\})=\int_{0}^{1}\left[i_{X_{t}} \omega\right] d t
$$

where $\left\{\psi_{t}\right\} \in \widetilde{\operatorname{Symp}}_{0}(M, L, \omega)$ and X_{t} is the vector field given by

$$
\frac{d}{d t} \psi_{t}=X_{t} \circ \psi_{t}
$$

Note that since ψ_{t} leaves L invariant, for any $p \in L, X_{t}(p) \in T_{p} L$.
Remark 3.1. We use Flux for all versions of the flux homomorphisms, e.g. absolute, relative. The homomorphism should be understood from the context. If the symplectic form is once mentioned we generally drop ω in $\operatorname{Symp}_{0}(M, L, \omega)$ etc. and write $\operatorname{Symp}_{0}(M, L)$.

Notation: Let M be a manifold, $L \subset M$ a submanifold. If f is meant to be a map of M that leave L setwise invariant then we write $f:(M, L) \rightarrow(M, L)$.

Let $\operatorname{Ham}(M, L) \subset \operatorname{Symp}_{0}(M, L)$ be the subgroup consisting of symplectomorphisms ψ such that there is a Hamiltonian isotopy $\psi_{t}:(M, L) \rightarrow(M, L)$, $t \in[0,1]$ such that $\psi_{0}=i d, \psi_{1}=\psi$; i.e. ψ_{t} is a Hamiltonian isotopy of M such that $\psi_{t}(L)=L$ for any $t \in[0,1]$. So if X_{t} is the vector field associated to ψ_{t} we have $i_{X_{t}} \omega=d H_{t}$ for $H_{t}: M \rightarrow \mathbb{R}$. Since L is Lagrangian $\left(\left.w\right|_{L}=0\right)$, H_{t} is locally constant on L. We have the following characterization.

Theorem 3.2. [16] $\psi \in \operatorname{Symp}_{0}(M, L)$ is a Hamiltonian symplectomorphism iff there exists a symplectic isotopy $\psi_{t}:[0,1] \rightarrow \operatorname{Symp}_{0}(M, L)$ such that $\psi_{0}=i d$, $\psi_{1}=\psi$ and $\operatorname{Flux}\left(\left\{\psi_{t}\right\}\right)=0$. Moreover, if $\operatorname{Flux}\left(\left\{\psi_{t}\right\}\right)=0$ then $\left\{\psi_{t}\right\}$ is isotopic with fixed end points to a Hamiltonian isotopy through points in $\operatorname{Symp}_{0}(M, L)$.

3.1 Relative Calabi Homomorphism

Let (M, ω) be a noncompact symplectic manifold. If $h_{c}(M)$ is the subalgebra of hamiltonian vector fields with compact support then for each $X \in h_{c}(M)$ there is a unique function f_{X} with compact support such that

$$
i_{X} \omega=d f_{X}
$$

Proposition 3.3. Let $X \in h_{c}(M)$, then $X \longmapsto \int_{M} f_{X} \cdot \omega^{n}$ is a surjective homomorphism of Lie algebras $r: h_{c}(M) \rightarrow \mathbb{R}$.

The natural place of this infinitesimal version of the Calabi homomorphism is the universal cover of the compactly supported Hamiltonian diffeomorphism. Definition 3.4. Let (M, ω) be a non-compact symplectic manifold, $\widetilde{\operatorname{Ham}}_{c}(M)$ be the universal cover of the compactly supported Hamiltonian diffeomorphisms on M. Then the Calabi homomorphism $\tilde{R}: \widetilde{\operatorname{Ham}}_{c}(M) \rightarrow \mathbb{R}$ is defined by

$$
\left\{\phi_{t}\right\} \longmapsto \int_{0}^{1} \int_{M} H_{t} \omega^{n} d t
$$

where H_{t} is given by $i_{X_{t}} \omega=d H_{t}$ and $\frac{d}{d t} \phi_{t}=X_{t} \circ \phi_{t}$.

Recall that an element $\left\{\phi_{t}\right\}$ of $\widetilde{\operatorname{Ham}}_{c}(M)$ is an equivalence class of homotopic Hamiltonian isotopies with fixed ends.

A local version of the Calabi homomorphism for compact manifolds may be defined by the above formulation i.e.

$$
\tilde{R_{U}}:{\widetilde{\operatorname{Ham}_{U}}}^{(M)_{c}} \rightarrow \mathbb{R}
$$

Here $\widetilde{\operatorname{Ham}}_{U}(M)_{c}$ denotes the universal cover of the compactly supported Hamiltonian diffeomorphisms, whose supports are contained in a contractible open subset U of M.

The relative Calabi diffeomorphism may be defined by the same formula. Let $\left(M^{2 n}, \omega\right)$ be a noncompact symplectic manifold and $L^{n} \subset M^{2 n}$ be a Lagrangian submanifold i.e. $\left.\omega\right|_{L}=0$. If $\operatorname{Ham}_{c}(M, L)$ is the group of Hamiltonian diffeomorphisms of M that leave L invariant, then

$$
\begin{aligned}
& \tilde{R}_{r e l}: \widetilde{\operatorname{Ham}}_{c}(M, L) \rightarrow \mathbb{R} \\
& \left\{\Phi_{t}\right\} \longmapsto \int_{0}^{1} \int_{M} H_{t} \omega^{n} d t
\end{aligned}
$$

is the relative Calabi homomorphism. That this homomorphism is a well-defined surjective homomorphism can be proved almost the same as the absolute case (see, for example Banyaga [2, p.103]).

Similarly, the relative Calabi homomorphism can be defined for compact manifolds. Namely, if $\widetilde{\operatorname{Ham}}_{U, U \cap L}(M, \omega)_{c}$ denotes the universal cover of Hamiltonian diffeomorphisms supported in U that leave the Lagrangian submanifold L invariant then

$$
\begin{aligned}
\tilde{R}_{U, U \cap L} & : \widetilde{\operatorname{Ham}}_{U, U \cap L}(M, \omega) \rightarrow \mathbb{R} \\
\left\{\Phi_{t}\right\} & \longmapsto \int_{0}^{1} \int_{M} H_{t}(\omega)^{n} d t
\end{aligned}
$$

is again a surjective homomorphism. (Here H_{t} is given by $i_{\dot{\Phi}_{t}} \omega=d H_{t}$.)

Remark 3.5. If $\tilde{R}_{*}: \tilde{G}_{*} \rightarrow \mathbb{R}$ denotes versions of the Calabi homomorphisms in the universal cover setting, then we can write the induced homomorphisms for the underlying groups. Namely, if Λ denotes the image of $\pi_{1}\left(G_{*}\right)$ under \tilde{R}_{*}, then

$$
R_{*}: G_{*} \rightarrow \mathbb{R} / \Lambda
$$

is a well-defined homomorphism.

3.2 Relative Weinstein Charts

In order to show perfectness of in $\operatorname{Ham}(M, L)$, we first establish that it has the fragmentation property. This needs some technical preperation. We first recall the relative versions of Weinstein forms and charts.

Let $\psi \in \operatorname{Symp}_{0}(M, L)$ be sufficiently C^{1}-close to the identity. Then there corresponds a closed 1-form $\sigma=C(\psi) \in \Omega^{1}(M)$ defined by $\Psi(\operatorname{graph}(\psi))=$ $\operatorname{graph}(\sigma)$. Here $\Psi: \mathcal{N}(\Delta) \rightarrow \mathcal{N}\left(M_{0}\right)$ is the symplectomorphism between the tubular neighborhoods of the Lagrangian submanifolds diagonal $(\Delta \subset(M \times$ $M,(-\omega) \oplus \omega))$ and the zero section $\left(M_{0} \subset\left(T^{*} M, \omega_{\text {can }}\right)\right)$ of the tangent bundle with $\Psi^{*}\left(\omega_{\text {can }}\right)=(-\omega) \oplus \omega$. Note that since $\psi \in \operatorname{Symp}_{0}(M, L)$ the corresponding 1 -form vanish on $T L$, i.e. $\left.\sigma\right|_{T q L}=0$ for any $q \in L$.

As a consequence we have the following due to Ozan:
Lemma 3.6. [16] If $\psi \in \operatorname{Symp}_{0}(M, L, \omega)$ is sufficiently C^{1}-close to the identity and $\sigma=C\left(\psi_{t}\right) \in \Omega^{\prime}(M)$ then $\psi \in \operatorname{Ham}(M, L)$ iff $[\sigma] \in \Gamma(M, L)$.
$\Gamma(M, L)$ is the relative flux group defined as the image of the fundamental group of $\operatorname{Symp}_{0}(M, L, \omega)$ under the flux homomorphism.

$$
\Gamma(M, L)=\widetilde{\operatorname{Flux}}\left(\pi_{1}\left(\operatorname{Symp}_{0}(M, L, \omega)\right)\right) \subseteq H^{1}(M, L, \mathbb{R})
$$

Definition 3.7. The correspondence

$$
C: \operatorname{Symp}_{0}(M, L, \omega) \rightarrow Z^{1}(M, L)
$$

$$
h \longmapsto C(h)
$$

is called a Weinstein chart of a neighborhood of $i d_{M} \in \operatorname{Symp}_{0}(M, L, \omega)$ into a neighborhood of zero in the set of closed 1-forms that vanish on $T L$. The form $C(h)$ is called a Weinstein form.

With these definitions in mind we have the following.
Corollary 3.8. Let (M, ω) be a symplectic manifold, L a Lagrangian submanifold. Any $h \in \operatorname{Ham}(M, L)$ can be written as a finite product of $h_{i} \in \operatorname{Ham}(M, L)$ close enough to $i d_{M}$ to be in the domain of the Weinstein chart and such that their Weinstein forms are exact.

Proof. As the above lemma suggests, every smooth path $\psi_{t} \in \operatorname{Ham}(M, L)$ is generated by Hamiltonian vector fields. Let h_{t} be any isotopy in $\operatorname{Ham}(M, L)$ to the identity such that $\frac{d}{d t} h_{t}=X_{t}\left(h_{t}\right)$ where $i_{X_{t}} \omega=d f_{t}, h_{0}=i d_{M}, h_{1}=h$ and $f_{t}: M \rightarrow \mathbb{R}$ are Hamiltonians for all $t \in[0,1]$. Let N be an integer large enough so that

$$
\Phi_{t}^{i}=\left[h_{\left(\frac{N-i}{N}\right) t}\right]^{-1} h_{\left(\frac{N-i+1}{N}\right) t}
$$

is in the domain of the Weinstein chart. If we let $h_{i}=\Phi_{1}^{i}$ then we have $h=$ $h_{N} h_{N-1} \ldots h_{1}$. The mapping $t \longmapsto\left[C\left(\Phi_{t}^{i}\right)\right]$ is a continuous map of the interval $[0,1]$ into the countable group $\Gamma(M, L)[16]$. Hence it must be constant. Thus $\left[C\left(\Phi_{t}^{i}\right)\right]=0$.

3.3 The Fragmentation Lemma

We are ready to state the relative symplectic fragmentation lemma.
Lemma 3.9. Let $\mathcal{U}=\left(U_{j}\right)_{j \in I}$ be an open cover of a compact, connected, symplectic manifold (M, ω) and h be an element of $\operatorname{Ham}(M, L)$ for a Lagrangian submanifold L of M. Then h can be written

$$
h=h_{1} h_{2} \ldots h_{N}
$$

where each $h_{i} \in \operatorname{Ham}_{c}(M, L), i=1, . ., N$ is supported in $U_{j(i)}$ for some $j(i) \in I$. Moreover, if M is compact, we may choose each h_{i} such that $R_{U_{i}, U_{i} \cap L}\left(h_{i}\right)=0$, where we made the identification $U_{j(i)}:=U_{i}$.

Proof. We use the notation of Corollary 3.8. By Corollary 3.8 any $h \in$ $\operatorname{Ham}(M, L)$ can be written as $h=h_{1} \ldots h_{N}$ where each $h_{i} \in \operatorname{Ham}(M, L)$ is close to $i d_{M}$ to be in the domain V of the Weinstein chart

$$
C: V \subset \operatorname{Symp}_{0}(M, L) \rightarrow C(V) \subset Z^{1}(M, L)
$$

and such that $C\left(h_{i}\right)$ is exact.
Start with an open cover $\mathcal{U}=\left(U_{i}\right)_{i \in \mathbb{N}}$ of M and a partition of unity $\left\{\lambda_{i}\right\}$ subordinate to it. Let K be a compact subset of M containing the support of h. Let $\mathcal{U}_{k}=\left\{U_{0}, \ldots, U_{N}\right\}$ be the finite subcover for K such that $U_{i} \cap U_{i+1} \neq \emptyset$. Then consider the functions

$$
\mu_{0}=0 \quad, \quad \mu_{j}=\sum_{i \leq j} \lambda_{i}
$$

for $j=1,2, \ldots, N$. Note that for any $x \in K \mu_{N}(x)=1$ and $\mu_{i}(x)=\mu_{i-1}(x)$ for $x \notin U_{i}$.

Let $\tilde{\mu}_{i}$ be defined as in the Equation B.1. Since this operator is bounded there is an open neighborhood $V_{0} \subset V$ of $i d \in \operatorname{Symp}_{c}(M, L)$ with

$$
\tilde{\mu_{i}}(C(h)) \in C(V)=W \text { for all } i=1, \ldots, N \text { and } h \in V_{0}
$$

We will fragment such $h \in V_{0}$. Consider

$$
\psi_{i}=C^{-1}\left(\mu_{i}(\tilde{C}(h))\right) \in \operatorname{Ham}(M, L)
$$

Note that $\psi_{i-1}(x)=\psi_{i}(x)$ for $x \notin U_{i}$ since $\mu_{i-1}(x)=\mu_{i}(x)$ in that case. Therefore $\left(\psi_{i-1}^{-1} \psi_{i}\right)(x)=x$ if $x \notin U_{i}$. Hence, $h_{i}=\left(\psi_{i-1}\right)^{-1}\left(\psi_{i}\right)$ is supported in U_{i}. On K we have $\mu_{N}=1, \mu_{0}=0, \psi_{N}=h$, and $\psi_{0}=i d$. Therefore

$$
h=\psi_{N}=\left(\psi_{0}^{-1} \psi_{1}\right)\left(\psi_{1}^{-1} \psi_{2}\right) \ldots\left(\psi_{N-1}^{-1} \psi_{N}\right)=h_{1} h_{2} \ldots h_{N} .
$$

For the second statement define the isotopies $h_{t}^{i}=\psi_{i-1}(t) \psi_{i}(t)$ where $\psi_{i}(t)=$ $C^{-1}\left(t \mu_{i}(\tilde{C}(h))\right)$. A classical result due to Calabi states that the Lie algebra of locally supported Hamiltonian diffeomorphisms is perfect [4]. Since for each $t, \dot{h_{t}^{i}}$ is a Hamiltonian vector field parallel to L, we can write \dot{h}_{t}^{i} as a sum of commutators. In other words we have

$$
\dot{h}_{t}^{i}=\sum_{j}\left[X_{t}^{j i}, Y_{t}^{j i}\right],
$$

where $X_{t}^{j i}$ and $Y_{t}^{j i}$ are again Hamiltonian vector fields (not necessarily parallel to $L)$. By the cut-off lemma below $X_{t}^{j i}$ and $Y_{t}^{j i}$ can be chosen to vanish outside of an open set whose closure contain U_{i}. If u_{t}^{i} is the unique function supported in U_{i} with $i_{h_{t}^{i}} \omega=d u_{t}^{i}$ then $d u_{t}^{i}=\sum_{j} \omega\left(X_{t}^{j i}, Y_{t}^{j i}\right)$ since both functions above have the same differential and both have compact supports. Therefore

$$
\int_{U_{i}} u_{t}^{i} \omega^{n}=\int_{M} u_{t}^{i} \omega^{n}=\sum_{j} \int \omega\left(X_{t}^{j i}, Y_{t}^{j i}\right) \omega^{n}=0
$$

Therefore

$$
\int_{0}^{1} \int_{U_{i}} u_{t}^{i} \omega^{n}=R_{U_{i}, U_{K} \cap L}\left(h_{i}\right)=0 .
$$

The cut-off lemma we used in the proof of the fragmentation lemma is as follows.

Lemma 3.10. Let $\varphi_{t} \in \operatorname{Ham}(M, L)$ be an isotopy of a smooth symplectic manifold (M, ω) leaving a Lagrangian submanifold L invariant. Let $F \subset M$ be a closed subset and $U, V \subset M$ open subsets such that $U \subset \bar{U} \subset V$ with $\cup_{t \in[0,1]} \varphi_{t}(F) \subset U$. Then there is an isotopy $\overline{\varphi_{t}} \in \operatorname{Symp}(M, L)$ supported in V and coincides with φ_{t} on U.

Proof. We choose a smooth function $\lambda_{t}(x)=\lambda(x, t)$ which equals to 1 on $U \times[0,1], 0$ outside of $V \times[0,1]$. Let f_{t} denote the family of Hamiltonians corresponding to φ_{t}, i.e. $i_{\dot{\varphi}_{t}} \omega=d f_{t}$. Define $\bar{X}(x, t)=X_{\left(\lambda_{t} \cdot f_{t}\right)}+\partial / \partial t$ on $M \times[0,1]$
where $X_{\left(\lambda_{t} \cdot f_{t}\right)}$ is the Hamiltonian vector field given by $i_{X_{\left(\lambda_{t} \cdot f_{t}\right)} \omega} \omega=d\left(\lambda_{t} \cdot f_{t}\right)$.The desired isotopy is the integral curves of the vector field $\bar{X}(x, t)$.

CHAPTER 4

THE DEFORMATION LEMMA

In this chapter, the main step in the proof of perfectness of $\operatorname{Ham}(M, L)$ will be shown. Namely the Deformation Lemma will be proved. Roughly speaking, Deformation Lemma says that the local picture of the Hamiltonian diffeomorphisms is the same as the global one as far as the first homologies are concerned. Since locally supported diffeomorphisms are the same for all manifolds we can conclude that $\operatorname{Ham}(M, L)$ is perfect for all M, if it is perfect for just one manifold. We remark here that in the absolute case of the differential category, i.e. for $\operatorname{Diff}_{0}^{r}(M)$ Deformation Lemma is true for all levels of homology. See Mather for proofs, [11] and [13].

The proof of deformation lemma needs some technical preparation.
Throughout this chapter we work with a closed, connected, symplectic manifold M; a closed, connected, oriented Lagrangian submanifold $L \subset M$ such that $M \backslash L$ is still connected. Note that, if M has dimension at least 4 , then $M \backslash L$ is connected for any Lagrangian submanifold L.

4.1 Transitivity properties

Since any element of $\operatorname{Diff}^{r}(M, L)$ leaves L invariant, the groups $\operatorname{Diff}^{r}(M, L)$, $\operatorname{Symp}(M, L)$, or $\operatorname{Ham}(M, L)$ can not be transitive. Nevertheless, we have the
following.
Lemma 4.1. Let M be a connected, closed, symplectic manifold, $L \subset M$ a connected, oriented Lagrangian submanifold such that $M \backslash L$ is connected. For each $x \in M \backslash L$ and $y \in M \backslash L$ there exists an isotopy $\phi_{t} \in \operatorname{Ham}(M, L)$ such that $\phi_{t}(x)=y$. Similarly for each $x \in L$ and $y \in L$ such ϕ_{t} exists.

Proof. First we assume $x \in L$ and $y \in L$ are arbitrarily close inside the domain U of a Darboux chart $\varphi: U \rightarrow \mathbb{R}^{2 n}$. Let V be the vector $V=\varphi(y)-\varphi(x) \in \mathbb{R}^{2 n}$ and $h: M \rightarrow \mathbb{R}$ be the smooth function defined by $d h=i_{V} \omega$. Let U_{1} be an open set such that $U \subset \bar{U} \subset U_{1}$. Choose a smooth function $\lambda: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ such that $\left.\lambda\right|_{U}=\|V\|$ and $\left.\lambda\right|_{\mathbb{R}^{2 n} \backslash U_{1}}=0$. Consider the map $f=\lambda h$, which coincides with h on U and 0 on $\mathbb{R}^{2 n} \backslash U_{1}$. Then the desired isotopy ϕ_{t} is the image of the isotopy that can be found by integrating the smooth family of the vector fields X_{t} where $X_{0}=0$ and $X_{1}=X_{f}$ with $d f=i_{X_{f}} \omega$ under φ.

For the other case, i.e. for $x, y \notin L$ choose U such that $U \cap L=\emptyset$, the above arguments apply equally well. If the points x and y are apart, choose a continuous path $c:[0,1] \rightarrow M$ such that $c(0)=x$ and $c(1)=y$. Subdivide $[0,1]$ into subintervals $\left[s_{k}, s_{k+1}\right], k=1, \ldots, N$ so that each consecutive points $c\left(s_{j}\right)$ and $c\left(s_{j+1}\right)$ are within the domain of a Darboux chart. Hence there is a hamiltonian diffeomorphism h_{j} isotopic to identity with support in a small neighborhood of $c\left(s_{j}\right)$ and $c\left(s_{j+1}\right)$ such that $h_{j}\left(c\left(s_{j}\right)\right)=c\left(s_{j+1}\right)$. The diffeomorphism $h=$ $h_{N} h_{N-1} \ldots h_{1}$ maps x to y.

4.1.1 A Special Open Cover

With the above result in mind, the following crucial lemma will be a key in the proof of the deformation lemma. Let $S y m p_{U, U \cap L}$ denote the group of symplectic diffeomorphisms that are supported on an open set $U \subset M$ of a symplectic
manifold M, leaving a Lagrangian submanifold L invariant.
Lemma 4.2. Let (M, ω) be a closed, connected, symplectic manifold, L an oriented, connected Lagrangian submanifold such that $M \backslash L$ is connected, $U \subset M$ an embedded symplectic ball with $L \cap U \neq \emptyset$. Then M has a finite open cover $\mathcal{V}=\left\{V_{i}\right\}$ by balls such that if $V_{i} \cap V_{j} \neq \emptyset$ then $V_{i} \cap V_{j}$ is diffeomorphic to a ball. Furthermore, for each i and j there are symplectic isotopies $\phi_{t}^{i} \in \operatorname{Ham}(M, L)$ and $H_{t}^{i, j} \in \operatorname{Symp}_{U, U \cap L}$ such that $\phi_{1}^{i}\left(V_{i}\right) \subset U, H_{1}^{i, j}\left(\phi_{1}^{i}\left(V_{i} \cap V_{j}\right)\right)=\phi_{1}^{j}\left(V_{i} \cap V_{j}\right)$.

Note that if $V_{i} \cap L=\emptyset$ then $\phi_{t}^{i}\left(V_{i}\right) \cap L=\emptyset$ and if $V_{i} \cap L \neq \emptyset$ then $\phi_{t}^{i}\left(V_{i}\right) \cap L \neq \emptyset$. In order to prove this lemma we need some results about isotopies of relative symplectic embeddings.

Definition 4.3. An embedding $f: M \rightarrow M^{\prime}$ of two symplectic manifolds $(M, \omega),\left(M^{\prime}, \omega^{\prime}\right)$ is a symplectic embedding if $f^{*} \omega^{\prime}=\omega$. Two such embeddings f, f^{\prime} are isotopic if there exists a smooth family $f_{t}: M \rightarrow M^{\prime}$ of symplectic embeddings such that $f=f_{0}, f^{\prime}=f_{1}$.

Let $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$ be coordinates on $\mathbb{R}^{2 n}$ and $\omega_{s t}$ denote the standard symplectic structure $\omega_{s t}=\sum d x_{i} \wedge d y_{i}$. Then $L=\mathbb{R}^{n}$ given by $y_{1}=y_{2}=\ldots=y_{n}=0$ is a Lagrangian submanifold of $\left(\mathbb{R}^{2 n}, \omega_{s t}\right)$.

Definition 4.4. Let $S p(2 n)$ denote the group of symplectic matrices. It is well known that this group is connected. Now let $S p(2 n, n) \subset S p(2 n)$ be the subgroup of symplectic transformations $\left(\mathbb{R}^{2 n}, L\right) \rightarrow\left(\mathbb{R}^{2 n}, L\right)$, where L is as above. A typical element X of $S p(2 n, n)$ is of the form:

$$
X=\left[\begin{array}{ll}
A & B \\
0 & C
\end{array}\right]
$$

Remark 4.5. The group $S p(2 n, n)$ has two connected components. See Appendix for a proof of this result. An element $X \in S p(2 n, n)$ as above is in the identity component if and only if $\operatorname{det}(A)>0$.

It is a well known result that any symplectic embeddings of the unit ball into \mathbb{R}^{n} are isotopic. See [2] for instance. The relative version of this result is the following.

Lemma 4.6. Let B be the unit ball in $\mathbb{R}^{2 n}$ equipped with the standard symplectic structure $\omega_{\text {st }}$. Then any two symplectic embedding of the pairs $(B, B \cap L)$ into $\left(\mathbb{R}^{2 n}, L\right)$ are isotopic through isotopies in $\operatorname{Symp}\left(\mathbb{R}^{2 n}, L\right)$ if and only if the orientations on $B \cap L$ induced by the embeddings and the orientations obtained from the orientations of L are the same.

Proof. Let $f:(B, B \cap L) \rightarrow\left(\mathbb{R}^{2 n}, L\right)$ be a symplectic embedding. Assume first that $f(B) \cap L \neq \emptyset$. It suffices to show that f is isotopic to the natural embedding $i: B \hookrightarrow \mathbb{R}^{2 n}$ if and only if it preserves the orientation on L. Note that, by setting $\bar{f}=T \circ f$, where T is the translation such that $T(f(0))=0$, we can assume that f is isotopic to a symplectic embedding \bar{f} which fixes the origin. For each $t \in[0,1]$, let $R_{t}(x)=t x, x \in \mathbb{R}^{2 n}$. If ω is the restriction of $\omega_{s t} \in \Omega^{2}\left(\mathbb{R}^{2 n}\right)$ into $B \cap L \neq \emptyset$, then $R_{t}^{*} \omega=t^{2} \omega$. Therefore, $R_{t}^{-1} \circ \bar{f} \circ R_{t}: B \rightarrow \mathbb{R}^{2 n}$ becomes a symplectic embedding for all $t \in(0,1]$. We have

$$
\bar{f}^{\prime}(0)=\lim _{t \rightarrow 0} \frac{\bar{f}(t x)}{t}=\lim _{t \rightarrow 0}\left(R_{t}^{-1} \circ \bar{f} \circ R_{t}\right)(x)
$$

Thus,

$$
H_{t}=\left\{\begin{array}{cc}
R_{t}^{-1} \bar{f} R_{t} & 0<t \leq 1 \\
\bar{f}^{\prime}(0) & t=0
\end{array}\right.
$$

is a continuous family of symplectic embeddings with $H_{1}=\bar{f}$. Note that for any $x \in L$ and any $t \in(0,1]$ we have $H_{t}(x) \in L$. Hence $H_{0} \in S p(2 n, n)$. Since f preserves the orientation on L, H_{0} is in the identity component of $S p(2 n, n)$. Therefore there is a smooth path $G_{t} \in S p(2 n, n)$ from $i d$ to H_{0}. So composing these isotopies and smoothing via change of parameters (see [2] proof of Corollary 1.2.2, page 5), if necessary, gives the desired isotopy.

If $B \cap L=\emptyset$ then the result follows immediately from the absolute case.
Next, we show that the support of the isotopies between two symplectic embeddings of the ball have some precision.

Lemma 4.7. Let $V \subset B_{r / 8}$ be an open convex subset of $\mathbb{R}^{2 n}$, where $B_{r / 8}$ is the ball centered at 0 with radius $r / 8$. There is an $\epsilon>0$, such that if a symplectic embedding $h:(V, V \cap L) \rightarrow\left(B_{r / 8}, B_{r / 8} \cap L\right)$ satisfies

$$
\begin{equation*}
1-\epsilon \leq \frac{\left\|h^{\prime}(x)(y)\right\|}{\|y\|} \leq 1+\epsilon \quad \text { for all } x, y \in V \tag{4.1}
\end{equation*}
$$

then there exists a symplectic isotopy H_{t} of $\mathbb{R}^{2 n}$ with support in B_{r} and such that $H_{1 \mid V}=h$.

Proof. We will prove the proposition for the case $h(V) \cap L \neq \emptyset$ and make use of the previous isotopy introduced for this case. If $h(V) \cap L=\emptyset$, then the proof of the absolute version of this proposition works equally well. See [2], pp120-121. Assume $h(0)=0$. Mean value theorem and the condition (4.1) imply that

$$
\left\|\frac{h(t x)}{t}\right\| \leq\|x\|(1+\epsilon) \text { for all } x \in V t \in[0,1]
$$

Thus $\frac{h(t x)}{t} \in B_{r / 4}$, for all $x \in V, t \in(0,1]$ and as a result $h^{\prime}(0)(V) \in B_{r / 4}$. Due to inequality (4.1), $h^{\prime}(0)$ is close to $U(2 n, n) \subset S p(2 n, n)$: the maximal compact subgroup of $S p(2 n, n)$. Let $p: T(U(2 n, n)) \rightarrow U(2 n, n)$ be a C^{∞} tubular neighborhood around $U(2 n, n)$ in $S p(2 n, n)$. Identifying $T(U(2 n, n))$ with a neighborhood of $U(2 n, n)$ in $S p(2 n, n)$, we may think $h^{\prime}(0) \in T(U(2 n, n))$. We can get an isotopy $g_{t} \in S p(2 n, n)$ from $h^{\prime}(0)$ to the identity, by composing the paths a_{t}, b_{t}, where a_{t} is the shortest ray joining $h^{\prime}(0)$ to $p\left(h^{\prime}(0)\right)$ in $T(U(2 n, n))$ and b_{t} joins $p\left(h^{\prime}(0)\right)$ to the identity in $U(2 n, n)$. This lets $g_{t}(V) \subset B_{r / 2}$. Let now G_{t} be the isotopy from h to the identity obtained by composing the isotopy from h to $h^{\prime}(0)$ of previous lemma and the path g_{t} above. Let \tilde{G}_{t} be the smoothing of this isotopy via change of parameters. Clearly $\tilde{G}_{t}(V) \subset B_{r / 2}$.

Figure 4.1: Isotopies carrying W_{x}

Now let H_{t} be the symplectic isotopy with compact support such that $\dot{H}_{t}=$ $u \cdot f_{t}$ where u is a smooth function equal to 1 on $B_{r / 2}$ and 0 outside of B_{r} and f_{t} is a hamiltonian of the isotopy \tilde{G}_{t}. Clearly $\operatorname{supp}\left(H_{t}\right) \subset B_{r}$ and $H_{\left.1\right|_{V}}=h$.

Proof. (of Lemma 4.2) We start with a choice of a hermitian metric g compatible with ω. Without loss of generality assume y, the center of U, is on L (take a smaller ball inside U centered at a point on L if necessary). For each $x \in L$ there exists a symplectic isotopy $\Phi_{t}^{x} \in \operatorname{Ham}(M, L)$ such that $\Phi_{1}^{x}(x)=y$ by Lemma 4.1. Since $M \backslash L$ is connected, for any $x \in M \backslash L$ there is an isotopy $\Psi_{t}^{x} \in \operatorname{Ham}(M, L)$ to a generic point $z \in U \backslash L$ with $\Psi_{1}^{x}(x)=z$, whose support is away from L. Since these isotopies were constructed by successive compositions of translations in local charts we may assume that the differentials $d x\left(\Phi_{1}^{x}\right)$ and $d x\left(\Psi_{1}^{x}\right)$ send the hermitian metric of $T_{x} M$ to that of $T_{y} M$ and $T_{z} M$. Let $x \in M$ and W_{x} be a geodesic ball centered at x with radius δ_{x}. We choose δ_{x} small enough so that $\Phi_{1}^{x}\left(W_{x}\right) \subset U$ and $\Psi_{1}^{x}\left(W_{x}\right) \subset U$. Clearly $W_{x} \cap W_{x^{\prime}}$ is diffeomorphic to an open ball. For $x \in M \backslash L$ choose δ_{x} smaller, if necessary, so that $W_{x} \cap L=\emptyset$.

Choose a coordinate system $\alpha: U \rightarrow \mathbb{R}^{2 n}$ such that $d_{y} \alpha: T_{y} M \rightarrow \mathbb{R}^{2 n}$ and $d_{z} \alpha: T_{z} M \rightarrow \mathbb{R}^{2 n}$ give a hermitian frame (We can choose z close onough to y if necessary). Then for any $x \in M, d_{x}\left(\alpha \circ \Phi_{1}^{x}\right): T_{x} M \rightarrow \mathbb{R}^{2 n}\left(\right.$ or $d_{x}\left(\alpha \circ \Psi_{1}^{x}\right)$) becomes
a hermitian frame. Note that, if x^{\prime} is close to x, then $d_{x^{\prime}}\left(\alpha \circ \Phi_{1}^{x}\right): T_{x^{\prime}} M \rightarrow \mathbb{R}^{2 n}$ (or $d_{x^{\prime}}\left(\alpha \circ \Psi_{1}^{x}\right)$) is still close to a hermitian map. Therefore, if W_{x} is sufficiently small and $p \in W_{x} \cap W_{x^{\prime}}$, the mapping

$$
\begin{gathered}
f_{x x^{\prime}}(p)=d_{\left(\alpha \circ \Phi_{1}^{x}(p)\right)}\left(\alpha \cdot \Phi_{1}^{x^{\prime}} \cdot\left(\Phi_{1}^{x}\right)^{-1} \cdot \alpha^{-1}\right) \\
\left(\text { or } f_{x x^{\prime}}(p)=d_{\left(\alpha \circ \Psi_{1}^{x}(p)\right)}\left(\alpha \cdot \Psi_{1}^{x^{\prime}} \cdot\left(\Psi_{1}^{x}\right)^{-1} \cdot \alpha^{-1}\right)\right.
\end{gathered}
$$

is close to a hermitian map. To see this, note that for all $x \in M$, there is a positive $\delta_{x}^{\prime} \leq \delta_{x}$ such that if $r\left(W_{x}\right) \leq \delta_{x}^{\prime}$ for all $u \in W_{x} \cap W_{x^{\prime}}$

$$
1-\epsilon \leq \frac{\left\|f_{x x^{\prime}}(p)(u)\right\|}{\|u\|} \leq 1+\epsilon .
$$

The existence of such ϵ was shown in Lemma 4.7. We will construct the special open cover out of such geodesic ball of radius less than δ_{x}^{\prime}.

Clearly, $\left\{W_{x}\right\}_{x \in L}$ is an open cover for the compact submanifold L. Then this has a finite subcover $\left\{W_{i}\right\}_{i=1}^{N}$ for L. Choose a tubular neighborhood \mathcal{V} for L so that $\mathcal{V} \subset \cup_{i=1}^{N} W_{i}$. Since $M \backslash \mathcal{V}$ is also compact, we can let $\left\{W_{i}\right\}_{i=N+1}^{K}$ to be the finite subcover for $M \backslash \mathcal{V}$ of $\left\{W_{x}\right\}_{x \in M \backslash L}$. Then the special open cover for M is $\left\{W_{i}\right\}_{i=1}^{K}$. Let x_{i} denote the center of W_{i} and let ϕ_{t}^{i} be the symplectic isotopies corresponding to the W_{i} such that $\phi_{1}^{i}\left(W_{i}\right) \subset U$ and let $f_{i j}(p)$ be the change of coordinates

$$
f_{i j}(p)=d_{\left(\alpha \phi_{1}^{i}(p)\right)}\left(\alpha \cdot \phi_{1}^{j} \cdot\left(\phi_{1}^{i}\right)^{-1} \alpha^{-1}\right) .
$$

We have three cases to consider depending on whether x_{i} or x_{j} belongs to L. For the first case, let $x_{i}, x_{j} \in M \backslash L$. See Figure 4.2.

Note that in this case, both $\phi_{1}^{i}\left(W_{i} \cap W_{j}\right)$ and $\phi_{1}^{j}\left(W_{i} \cap W_{j}\right)$ are diffeomorphic to balls embedded inside a ball centered at $z \in M$ away from L. Recall that by Lemma 4.6 any two symplectic embeddings of the relative unit balls in $\mathbb{R}^{2 n}$ are isotopic. Hence there is a symplectic isotopy $\tilde{H}_{t}^{i j} \in \operatorname{Symp}\left(\mathbb{R}^{2 n}, \mathbb{R}^{n}\right)$, such that $\tilde{H}_{1}^{i j}\left(\alpha \phi_{1}^{i}\left(W_{i} \cap W_{j}\right)\right)=\alpha \phi_{1}^{j}\left(W_{i} \cap W_{j}\right)$. In other words $\tilde{H}_{1}^{i j}$ equals $\alpha \phi_{1}^{j}\left(\phi_{1}^{i}\right)^{-1} \alpha^{-1}$ on

Figure 4.2: Isotopies carrying W_{i} and W_{j} when $x_{i}, x_{j} \in M \backslash L$
$\alpha \phi_{1}^{i}\left(W_{i} \cap W_{j}\right)$. The condition on $f_{i j}(p)=d_{\left(\alpha \phi_{1}^{i}(p)\right)}\left(\alpha \cdot \phi_{1}^{j} \cdot\left(\phi_{1}^{i}\right)^{-1} \alpha^{-1}\right)$ with Lemma 4.7, implies that $\tilde{H}_{t}^{i j}$ can be assumed to be supported in $\alpha(U)$. Therefore setting

$$
H_{t}^{i j}=\alpha^{-1} \tilde{H}_{t}^{i j} \alpha \in \operatorname{Symp}_{U, U \cap L}
$$

gives the desired isotopy.
Next, consider $x_{i} \in M \backslash L$ and $x_{j} \in L$ as in Figure 4.3.

Figure 4.3: Isotopies carrying W_{i} and W_{j} when $x_{i} \in M \backslash L$ and $x_{j} \in L$

In this case, note that we have chosen W_{i} to be away from L hence $W_{i} \cap W_{j}$ is also away from L. Since $\phi_{t}^{j} \in \operatorname{Ham}(M, L)$ for all $t, \phi_{1}^{j}\left(W_{i} \cap W_{j}\right)$ does not intersect L and hence $\phi_{1}^{i}\left(W_{i} \cap W_{j}\right)$ and $\phi_{1}^{j}\left(W_{i} \cap W_{j}\right)$ can be contained in a ball $V \subset U$. Now the isotopy of the previous case works equally well in this case.

The isotopies in the above two cases are the isotopies of the absolute version. In other words, any isotopy of the symplectic embeddings of the unit balls $\phi_{1}^{i}\left(W_{i} \cap\right.$ $\left.W_{j}\right)$ and $\phi_{1}^{j}\left(W_{i} \cap W_{j}\right)$, one can construct the desired one, as long as it is supported in a set not intersecting L.

Finally, consider the case in which $x_{i}, x_{j} \in L$. See the Figure 4.4 below. In this case both $\phi_{1}^{i}\left(W_{i} \cap W_{j}\right)$ and $\phi_{1}^{j}\left(W_{i} \cap W_{j}\right)$ are in a ball centered at y, the center of U.

Figure 4.4: Isotopies carrying W_{i} and W_{j} when $x_{i}, x_{j} \in L$

The isotopy will be constructed out of the isotopy of Lemma 4.6, namely $\tilde{H}_{t}^{i j} \in \operatorname{Symp}\left(\mathbb{R}^{2 n}, \mathbb{R}^{n}\right)$. As in the previous cases, we let

$$
H_{t}^{i j}=\alpha^{-1} \tilde{H}_{t}^{i j} \alpha \in \operatorname{Symp}_{U, U \cap L} .
$$

This proves Lemma 4.2.

4.2 Proof of Deformation Lemma

Let (M, ω) be a connected closed symplectic manifold, $L \subset M$ a closed Lagrangian submanifold. Define a subcomplex $B \overline{\operatorname{Ham}(M, L)}$ of $B \overline{\operatorname{Symp}(M, L)}$ as usual: an n-simplex c of $B \overline{\operatorname{Ham}(M, L)}$ is a smooth map $c: \Delta^{n} \rightarrow \operatorname{Symp}(M, L)$ such that for any path $\gamma:[0,1] \rightarrow \Delta^{n}$, if $\tilde{c}=c \circ \gamma$, then $\dot{\tilde{c}}_{t}$ is a family of Hamiltonian vector fields parallel to L. This implies that the class $\left[\tilde{c}_{t}\right]$ is an element of $\operatorname{Ham}(M, L)$. Let U be a fixed embedded symplectic ball in M with $U \cap L \neq \emptyset$, and $\operatorname{Symp}_{U, U \cap L}$ be the subgroup of $\operatorname{Symp}(M, L)$ consisting of elements with compact supports in U and leaving $U \cap L$ invariant. Similarly we define the subcomplex $B \overline{\operatorname{Ker} R_{U, U \cap L}}$ of $B \overline{\operatorname{Symp}_{U, U \cap L}}$: An n-simplex c of $B \overline{\operatorname{Ker} R_{U, U \cap L}}$ is a smooth map $c: \Delta^{n} \rightarrow \operatorname{Symp}_{U, U \cap L}$ such that $c \circ \gamma(t) \in \operatorname{Ker} R_{U, U \cap L}$ for any smooth $\operatorname{map} \gamma:[0,1] \rightarrow \Delta^{n}$.

Definition 4.8. Support of an n-simplex $c: \Delta^{n} \rightarrow \operatorname{Diff}(M)$, denoted by $\operatorname{supp}(c)$, is the set $\left\{x \in M \mid c(\sigma)(x) \neq x\right.$ for some $\left.\sigma \in \Delta^{n}\right\}$

We are ready to state the relative symplectic deformation lemma.
Remark 4.9. In what follows we work with an open cover $\mathcal{U}=\left\{U_{i}\right\}$ such that if $U_{1}, U_{2} \in \mathcal{U}$ are not disjoint then $U_{1} \cup U_{2} \subset V_{i}$, where V_{i} is an element of the special open cover \mathcal{V} of Lemma 4.2. The existence of such U_{i} can be seen as follows. Since \mathcal{V} is an open cover for a compact manifold the Lebesgue number δ of \mathcal{V} is well defined. Let $\mathcal{U}=\left\{U_{i}\right\}$ be an open cover of M such that each U_{i} is a ball of radius $\delta / 2$. Now if $x \in U_{1} \cap U_{2}$, we have $U_{1} \cup U_{2} \subset B(x, \delta) \subset V_{i}$.

Theorem 4.10. The natural map $\rho: B \overline{\operatorname{Ker} R_{U, U \cap L}} \longrightarrow B \overline{\operatorname{Ham}(M, L)}$ induces an isomorphism

$$
\rho_{*}: H_{1}\left(B \overline{\operatorname{Ker} R_{U, U \cap L}} ; \mathbb{Z}\right) \longrightarrow H_{1}(B \overline{\operatorname{Ham}(M, L)} ; \mathbb{Z})
$$

Proof. To show the surjectivity of ρ_{*} we let $\alpha \in \mathrm{H}_{1}(\mathrm{~B} \overline{\operatorname{Ham}(M, L)}, \mathbb{Z})$ be represented by an isotopy Φ_{t} in $\operatorname{Ham}(M, L)$. Let $\mathcal{V}=\left\{V_{i}\right\}$ be the open cover in

Lemma 4.2 so that there exist a diffeomorphism $h_{i} \in \operatorname{Ham}(M, L)$ with $h_{i}\left(V_{i}\right) \subset$ U.

By the relative symplectic fragmentation lemma we can write $\Phi_{t}=\Phi_{t}^{1} \ldots \Phi_{t}^{N}$ where $\Phi_{t}^{i} \in \operatorname{Ham}(M, L)$ is supported in V_{i} and $R_{V_{i}, V_{i} \cap L}\left(\Phi_{t}^{i}\right)=0$ for all $t \in[0,1]$. Note that $R_{V_{i}, V_{i} \cap L}\left(h_{i} \Phi_{t}^{i} h_{i}^{-1}\right)=0$.

Let $\beta_{i} \in \mathrm{H}_{1}\left(\overline{\mathrm{KKerR}}_{U, U \cap L}, \mathbb{Z}\right)$ be the class of the isotopy $h_{i} \Phi_{t}^{i} h_{i}^{-1}$. Then $\alpha=$ $\rho_{*}\left(\beta_{1}+\beta_{2}+\ldots+\beta_{N}\right)$ since Φ_{t}^{i} and $h_{i} \Phi_{t}^{i} h_{i}^{-1}$ are homologous in $\mathrm{B} \overline{\operatorname{Ham}(M, L)}$ by Proposition C.2.

For the injectivity we first divide Δ^{2} into $\frac{m(m+1)}{2}$ little squares and triangles as in Figure 4.5 below. Let

$$
\begin{array}{ll}
\mu_{i_{1}}=\sum_{j \leq i_{1}} \lambda_{j}, \quad 0 \leq i_{1} \leq m, \quad \mu_{0}=0 \\
\mu_{i_{2}}=\sum_{j \leq i_{2}} \lambda_{j}, \quad 0 \leq i_{2} \leq m \tag{4.3}
\end{array}
$$

Here λ_{i} is a partition of unity subordinate to the cover of \mathcal{U} of the Remark 4.9. Define a mapping $f: \Delta^{2} \times M \rightarrow \Delta^{2} \times M$ as follows: for $0 \leq i_{1}, i_{2} \leq m$ and $x \in M$

$$
f\left(\left(\frac{i_{1}}{m}, \frac{i_{2}}{m}\right), x\right)=\left(\left(\mu_{i_{1}}(x), \mu_{i_{1}}(x)\right), x\right)
$$

If one defines

$$
\begin{align*}
& \mu_{s}=\left(-m s+\left(1+i_{1}\right)\right) \mu_{i_{1}}+\left(m s-i_{1}\right) \mu_{i_{1}+1} \tag{4.4}\\
& \mu_{t}=\left(-m t+\left(1+i_{2}\right)\right) \mu_{i_{2}}+\left(m t-i_{2}\right) \mu_{i_{2}+1} \tag{4.5}
\end{align*}
$$

we see that

$$
\tilde{f}(s, t)=\left(\left(\mu_{s}(x), \mu_{t}(x)\right), x\right)
$$

extends f linearly to all of $\Delta^{2} \times M$ for $(s, t) \in \Delta^{2}$, where

$$
\frac{i_{1}}{m} \leq s \leq \frac{i_{1}+1}{m}, \quad \frac{i_{2}}{m} \leq t \leq \frac{i_{2}+1}{m}
$$

(We use f again for the extension \tilde{f} if it is understood from the context.) Let z be a 1-cocycle of $B \overline{\overline{\mathrm{KerR}}_{U, U \cap L}}$ such that $\rho_{*}([z])=0 \in H_{1}(B \overline{\operatorname{Ham}(M, L)}, \mathbb{Z})$. This implies that z bounds a 2 -chain on $B \overline{\operatorname{Ham}(M, L)}$. For the injectivity we must show that z bounds a 2 -chain in $B \overline{\operatorname{Ker} R_{U, U \cap L}}$.

Suppose z bounds the 2 -chain $c=\sum_{j=1} c_{j}, c_{j}: \Delta^{2} \rightarrow \operatorname{Ham}(M, L)$. We can assume that each c_{j} maps Δ^{2} inside a small neighborhood of $i d_{M}$. We can do this by taking m large enough so that each subdivision is sufficiently small. In that case by Corollary 3.8 the Weinstein form of each $c_{j}(\sigma)$ is exact (i.e. $\left.\left[C\left(c_{j}(\sigma)\right)\right]=0 \forall \sigma \in \Delta^{2}\right)$. Since $C\left(c_{j}(\sigma)\right)$ are exact 1-forms we can choose a smooth family of functions $u_{j}(\sigma)$ such that

$$
C\left(c_{j}(\sigma)\right)=d u_{j}(\sigma) \text { for all } \sigma \in \Delta^{2}
$$

as Palamodov's theorem suggests (see Equation B. 1 and remarks thereof). Consider the 1-forms $C\left(c_{j}(\sigma)\right)$ as forms on $\Delta^{2} \times M$ and define a 2-chain $\tilde{c}(\sigma)=$ $C^{-1}\left(f^{*} C\left(c_{j}(\sigma)\right)\right)$. Here f is the map defined above. So if $\sigma=(s, t)$ and $C\left(c_{j}(s, t)\right)=d u_{j}(s, t)$ then $f^{*} C\left(c_{j}(s, t)\right)=d u\left(\mu_{s}(x), \mu_{t}(x)\right)$. Note that $d c_{j}=d \tilde{c}_{j}$.

Let's denote the inclusion of $K_{i_{1} i_{2}} \times M$ or of $L_{i_{k}} \times M$ into $\Delta^{2} \times M$ by j, where $K_{i_{1} i_{2}}$ is the little square and $L_{i_{k} \mathrm{~S}}$ are the little triangles in Figure 4.5. Define $c_{i_{1} i_{2}}^{j}$ to be the 2-chain

$$
c_{i_{1} i_{2}}^{j}(\sigma)=C^{-1}\left(j^{*} f^{*} C(c(\sigma))\right)\left(C^{-1}\left(j^{*} f^{*} C\left(c\left(\frac{i_{1}}{m}, \frac{i_{2}}{m}\right)\right)\right)\right)^{-1}
$$

Similarly, define 2-chain $c_{i_{k}}^{j}$. This gives $\tilde{c_{j}}=\sum c_{i_{1} i_{2}}^{j}+c_{i_{k}}^{j}$. Therefore

$$
z=d\left(\sum_{j} \sum_{i_{1}, i_{2}} c_{i_{1} i_{2}}^{j}+c_{i_{k}}^{j}\right) .
$$

The definition of f forces $\operatorname{supp}\left(c_{i_{1} i_{2}}^{j}\right) \subset U_{i_{1}+1} \cup U_{i_{2}+1}$ and if $U_{i_{1}+1} \cap U_{i_{2}+1}=$ \emptyset then $d c_{i_{1} i_{2}}^{j}=0$. If we denote the subset of the 2 -simplices $c_{i_{1} i_{2}}^{j}$ such that $U_{i_{1}+1} \cap U_{i_{2}+1} \neq \emptyset$ to which we add the simplices $c_{i_{k}}^{j}$ by $\left\{\bar{c}_{i_{1} i_{2}}^{j}\right\}$ then we see that

Figure 4.5: Subdivision of Δ^{2}
$z=d c=\sum \bar{c}_{i_{1} i_{2}}^{j}$. Therefore z bounds a 2 -chain consisting of sum of 2 -simplices which have supports in the union of two intersecting open sets of the cover \mathcal{V} of Lemma 4.2. According to this lemma \mathcal{U} has an open set containing $V_{k} \cup V_{j}$ if $V_{k} \cap V_{j} \neq \varnothing$. Hence z bounds a 2 chain $c^{\prime}=\sum c_{i}^{\prime}$ where $\operatorname{supp}\left(c_{i}^{\prime}\right) \subset V_{l(i)}=V_{i}$. For $K=0,1,2$ let ∂_{K} be the face operator so that

$$
z=d c^{\prime}=\sum_{K, j}(-1)^{K} \tau_{j}^{K}
$$

where $\tau_{j}^{K}=\partial_{K} c_{j}^{\prime}$. Let $h_{j}^{K} \in \operatorname{Ham}(M, L)$ be such that $h_{j}^{K}\left(s u p p \tau_{j}^{K}\right) \subset U$. Existence of such diffeomorphism are shown in Lemma 4.2. We may take $h_{j}^{K}=i d_{M}$ if $\operatorname{supp}\left(\tau_{j}^{K}\right) \subset U$. (U is the open set fixed since the beginning of the proof $)$. Let ${\overline{\tau_{j}}}^{K}=h_{j}^{K} \tau_{j}^{K}\left(h_{j}^{K}\right)^{-1}$, then $\operatorname{supp}\left({\overline{\tau_{j}}}^{K}\right) \subset U$ and $z=\sum_{j, K}(-1)^{K}{\overline{\tau_{j}}}^{K}$. Since $C_{1}(B \bar{G})$ is the free abelian group over 1 -simplices the chain $h_{j}^{K}+\tau_{j}^{K}-h_{j}^{K}$ is the same as τ_{j}^{K}

Let $g_{j} \in \operatorname{Ham}(M, L)$ such that $g_{j}\left(V_{j}\right) \in U$, whose existence is shown in

Lemma 4.2. We need to show that

$$
\sum_{K=0}^{2}(-1)^{K}{\overline{\tau_{j}}}^{K} \quad \text { and } \quad d\left(g_{j} c_{j}^{\prime} g_{j}^{-1}\right)
$$

are homologous in $B \overline{\overline{\mathrm{Ker} R_{U, U \cap L}}}$ to finish injectivity. Let ${\widetilde{h_{j}}}^{K}$ and \widetilde{g}_{j} be restrictions of h_{j}^{K} and g_{j} to V_{j}. By Lemma 4.2 a diffeomorphism $H_{j}^{K} \in G_{U, U \cap L}$ such that

$$
H_{j}^{K} \circ \widetilde{h}_{j}^{K}\left(V_{j}\right)=\widetilde{g}_{j}\left(V_{j}\right)
$$

exists. This yields

$$
\widetilde{h}_{j}^{K} \tau_{j}^{K}\left(\widetilde{h}_{j}{ }^{K}\right)^{-1}=h_{j}^{K} \tau_{j}^{K}\left(h_{j}{ }^{K}\right)^{-1}
$$

and

$$
g_{j} \tau_{j}^{K} g_{j}^{-1}=\widetilde{g}_{j} \tau_{j}^{K} \widetilde{g}_{j}^{-1}=H_{j}^{K}\left({\widetilde{h_{j}}}^{K} \tau_{j}^{K}\left(\widetilde{h}_{j}^{K}\right)^{-1}\right)\left(H_{j}^{K}\right)^{-1}=H_{j}^{K}\left(\widetilde{\tau}_{j}^{K}\right)\left(H_{j}^{K}\right)^{-1}
$$

According to Proposition C.2, $H_{j}^{K}\left(\widetilde{\tau}_{j}^{K}\right)\left(H_{j}^{K}\right)^{-1}$ and $\widetilde{\tau}_{j}{ }^{K}$ are homologous in $B \overline{\operatorname{Ker} R_{U, U \cap L}}$. Thus

$$
d\left(g_{j} c_{j}^{\prime} g_{j}^{-1}\right)=\sum_{K=0}^{2}(-1)^{K} g_{j} \tau_{j}^{K} g_{j}^{-1}
$$

is homologous to $\sum_{K=0}^{2}(-1)^{K} \widetilde{\tau}_{j}{ }^{K}$.

CHAPTER 5

THE RELATIVE HERMAN THEOREM

In order to prove the perfectness of the group of relative symplectic hamiltonians, we need to show that this is true at least for a manifold. As in the absolute versions of both the smooth and the symplectic category the n-torus is the candidate. The aim of this chapter is to prove that $\operatorname{Ham}\left(T^{2 n}, T^{n}\right)$ is perfect. We will adopt the proof for the absolute case due to Herman-Sergeraert and Banyaga. Perfectness of $\operatorname{Ham}\left(T^{2 n}, T^{n}\right)$ needs the smooth version for the torus.

5.1 Relative Herman Theorem

Definition 5.1. A point $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{R}^{n}$ is said to satisfy the diophantine condition if there exist $c, d>0$ such that for any $\left(k_{0}, k_{1}, \ldots, k_{n}\right) \in \mathbb{Z} \times\left(\mathbb{Z}^{n}-\{0\}\right)$ we have

$$
\left|k_{o}+\sum_{i=1}^{n} k_{i} \gamma_{i}\right| \geq \frac{c}{\left(\sum_{i=1}^{n}\left|k_{i}\right|\right)^{d}} .
$$

We say that $\alpha \in T^{n}$ satisfies a diophantine condition if some lift $\tilde{\alpha} \in \mathbb{R}^{n}$ satisfies a diophantine condition. The proof of the following theorem will be discussed in the appendix. For the absolute version see [9]. Throughout this chapter, by an element $\alpha \in\left(T^{2 n}, T^{n}\right)$ we mean that α is of the form $\alpha=\left(\alpha_{1}, 0, \alpha_{3}, o, \ldots, \alpha_{2 n-1}, 0\right)$, where $\alpha_{i} \in S_{i}^{1}$ of factors of $T^{2 n}=S_{1}^{1} \times \ldots \times S_{2 n}^{1}$.

Theorem 5.2. Let $\alpha \in\left(T^{2 n}, T^{n}\right)$ satisfy a diophantine condition. There is a neighborhood U of the identity in $\operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right)$ and a smooth map $s: U \rightarrow$ $\operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right) \times\left(T^{2 n}, T^{n}\right)$ such that if

$$
s(\varphi)=(\psi, \lambda), \quad \varphi \in U
$$

then

$$
\varphi=R_{\lambda} \psi R_{\alpha} \psi^{-1}
$$

Therefore

$$
\varphi=R_{\lambda+\alpha} R_{\alpha}^{-1} \psi R_{\alpha} \psi^{-1}=R_{\lambda+\alpha}\left[R_{\alpha}^{-1}, \psi\right] .
$$

This yields the Relative Herman theorem in the smooth category below.
Theorem 5.3. Diff $_{0}^{\infty}\left(T^{2 n}, T^{n}\right)$ is perfect
Proof. By the above theorem any small diffeomorphism φ of the torus is the composition of a rotation and a commutator. Hence it is enough to show that any rotation is a product of commutators. Note that a rotation $R_{\lambda} \in \operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right)$ means that $R_{\lambda} \in \operatorname{Diff}_{0}^{\infty}\left(T^{2 n}\right)$ is a rotation with $\lambda=\left(x_{1}, 0, x_{3}, 0, \ldots, x_{2 n-1}, 0\right) \in$ $T^{2 n}$. So the proof of the absolute Herman theorem (see [2] for instance) works perfectly well in the relative case. We include the proof of Herman for the sake of completeness.

The natural embedding of S^{1} into $T^{2 n}=S^{1} \times \ldots \times S^{1}$ allows us to write any rotation $R_{\lambda}, \lambda \in T^{2 n}$ as $R_{\lambda}=R_{\lambda_{1}} \circ \ldots \circ R_{\lambda_{2 n}}$, where $\lambda_{i} \in S^{1}$. So it is enough to show that rotations of circles are product of commutators.

If H is the group of biholomorpic transformations of the disk $D=\{Z \in$ $\mathbb{C} \mid\|Z\|<1\}$, the Schwars lemma says any $g \in H$ can be written as:

$$
z \mapsto g(z)=\frac{\alpha(z-a)}{1-\bar{a} z}, \quad z \in \Delta, \quad \alpha \in \partial D=S^{1}, \quad \text { and } \quad a \in \Delta .
$$

Such g extends uniquely into a diffeomorhism of S^{1}. Therefore we get an injective homomorphism $H \hookrightarrow \operatorname{Diff}_{0}^{\infty}\left(T^{1}\right)$. Note that $H \approx P S L(2, \mathbb{R})$ and hence
H is perfect. For $a=0, g$ is just a rotation. Hence the group of rotations of S^{1} injects into H and therefore any $R_{\lambda}, \lambda \in S^{1}$ is a product of commutators in $H \hookrightarrow \operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right)$.

Remark 5.4. Rybicki showed that the above theorem is true for all (M, N), where M is a smooth manifold and $N \subset M$ a submanifold in [19].

5.2 Relative Flux of Torus $\left(T^{2 n}, T^{n}\right)$

Recall that the m-torus T^{m} is the quotient of \mathbb{R}^{m} by \mathbb{Z}^{m}. Denote by $p: \mathbb{R}^{m} \rightarrow T^{m}$ the canonical projection. For each $x \in T^{m}$ denote its lift in \mathbb{R}^{m} by \tilde{x} i.e. $p(\tilde{x})=x$. Then $R_{x}(\theta)=p(\tilde{x}+\tilde{\theta})$ is the rotation by x, which is a symplectomorphim.

If $x=\left(x_{1}, 0, x_{3}, 0, \ldots, x_{2 n-1}, 0\right) \in\left(T^{2 n}, T^{n}\right)$, then $R_{x} \in \operatorname{Symp}\left(T^{2 n}, T^{n}\right)$. Hence $\left(T^{2 n}, T^{n}\right)$ is a subgroup of $\operatorname{Symp}\left(T^{2 n}, T^{n}\right)$. In fact the natural map

$$
j:\left(\mathbb{R}^{2 n}, \mathbb{R}^{n}\right) \rightarrow \widetilde{\operatorname{Symp}}\left(T^{2 n}, T^{n}\right)
$$

given by $x \mapsto j(x)=R_{p(t x)} t \in[0,1]$, covers the injection $\left(T^{2 n}, T^{n}\right) \rightarrow \operatorname{Symp}\left(T^{2 n}, T^{n}\right)$.

As was shown by Ozan the relative flux maps $\widetilde{\operatorname{Symp}}\left(T^{2 n}, T^{n}\right)$ surjectively to $H^{1}\left(T^{2 n}, T^{n}, \mathbb{R}\right) \cong \mathbb{R}^{n}$ and $\Gamma\left(T^{2 n}, T^{n}\right) \subset H^{1}\left(T^{2 n}, T^{n}, \mathbb{Z}\right) \cong \mathbb{Z}^{n}$ is a subgroup. To see that $\Gamma\left(T^{2 n}, T^{n}\right)=H^{1}\left(T^{2 n}, T^{n}, \mathbb{Z}\right) \cong \mathbb{Z}^{n}$, let $x \in\left(\mathbb{R}^{2 n}, \mathbb{R}^{n}\right)$. Consider a basis $\left\{c_{1}, \ldots, c_{n}\right\}$ of $H_{1}\left(T^{2 n}, T^{n}, \mathbb{Z}\right)$, where each c_{i} is represented by the loops in ($T^{2 n}, T^{n}$) which rotate each odd factor i.e. the projection on $T^{2 n}$ of the following curves in $\mathbb{R}^{2 n}$

$$
c_{i}(t)=(0, \ldots, 0, t, 0, \ldots, 0) \quad i=1,3, \ldots, 2 n-1,
$$

(t at the ith factor).
Then relative flux is given by

$$
\int_{0}^{1} \int_{0}^{1}\left(c_{i} \circ j(t x)\right)^{*} w d s d t
$$

where $\left(c_{i} \circ(j(t x))\right)(s, t)=p\left(t_{x_{1}}, \ldots, t_{x_{i-1}}, t_{x_{i}}+s, t_{x_{i+1}}, \ldots, t_{x_{2 n}}\right)$. Thus $\widetilde{\operatorname{Flux}}(j(x))=\left(0, x_{1}, 0, x_{3}, \ldots, 0, x_{2 n-1}\right) \in\left(\mathbb{R}^{2 n}, \mathbb{R}^{n}\right) \cong \mathbb{R}^{n}$.

Proposition 5.5. The restriction of relative flux to
$\left(T^{2 n}, T^{n}\right) \cong T^{n} \subset \operatorname{Sym}\left(T^{2 n}, T^{n}\right)$ is the identity isomorphism $J: T^{n} \rightarrow T^{n}$.

$$
\begin{array}{cc}
\left(\mathbb{R}^{2 n}, \mathbb{R}^{n}\right) \hookrightarrow & \widetilde{\operatorname{Symp}}\left(T^{2 n}, T^{n}\right) \rightarrow \\
\downarrow & H^{1}\left(T^{2 n}, T^{n} ; \mathbb{Z}\right) \\
\downarrow & \downarrow \\
\left(T^{2 n}, T^{n}\right) & \hookrightarrow \operatorname{Symp}\left(T^{2 n}, T^{n}\right) \rightarrow H^{1}\left(T^{2 n}, T^{n} ; \mathbb{Z}\right) / \Gamma\left(T^{2 n}, T^{n}\right) \\
\| & \| \\
T^{n} & \longrightarrow
\end{array}
$$

The absolute version of the following theorem is due to Banyaga [2]. Now we are ready to prove the main theorem of this section.
Theorem 5.6. $H_{1}\left(B \overline{\operatorname{Ham}\left(T^{2 n}, T^{n}, \mathbb{Z}\right)}\right)=0$.
Proof. We first show that

$$
\widetilde{\operatorname{Ham}}\left(T^{2 n}, T^{n}\right)=\operatorname{ker}\left(\text { Flux }_{\text {rel }}\right)=\left[\widetilde{\operatorname{Symp}}\left(T^{2 n}, T^{n}\right), \widetilde{\operatorname{Symp}}\left(T^{2 n}, T^{n}\right)\right] .
$$

To do this we must establish $\left.\widetilde{\operatorname{Ham}}\left(T^{2 n}, T^{n}\right) \subset \widetilde{\operatorname{Symp}}\left(T^{2 n}, T^{n}\right) \widetilde{\operatorname{Symp}}\left(T^{2 n}, T^{n}\right)\right]$. Let $\alpha \in\left(T^{2 n}, T^{n}\right)$ satisfying a diophantine condition. Then by Theorem 5.2 there is a neighborhood V of the rotation R_{α} in $\operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right)$, being the domain of a smooth map $s: V \rightarrow \operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right) \times\left(T^{2 n}, T^{n}\right)$, such that if $\Phi \in V$ and $s(\Phi)=(\psi, \beta)$, then $\Phi=R_{\beta} \psi R_{\alpha} \psi^{-1}$. If $\left\{\Phi_{t}\right\} \in \widetilde{\operatorname{Ham}}\left(T^{2 n}, T^{n}\right)$ such that Φ_{t} is an isotopy in $\operatorname{Ham}\left(T^{2 n}, T^{n}\right)$, small enough to be in V, then there are smooth families $\psi_{t} \in \operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right)$ and $\beta_{t} \in\left(T^{2 n}, T^{n}\right)$ satisfying

$$
\Phi_{t}=R_{\beta_{t}}\left(\phi_{t}\right) R_{\alpha} \psi_{t}^{-1}
$$

We have $w=\Phi_{t}^{*} w=\left(\psi_{t}^{-1}\right)^{*}\left(R_{\alpha}^{*}\left[\left(\psi_{t}\right)^{*} w\right]\right)$, hence $\psi_{t}^{*} w=R_{\alpha}^{*}\left(\psi_{t}\right)^{*} w$.
The diophantine condition on α implies that R_{α} is an irrational rotation and hence has a dense orbit. Since $\psi_{t}^{*} w$ is invariant by this rotation with dense orbit it must be a constant form, i.e.

$$
w_{t}=\psi_{t}^{*} w=\sum_{i \leq j} a_{i j}^{t} d x_{i} \wedge d x_{j}
$$

where $a_{i j}^{t}$'s are constant. Since w_{t} and w have the same periods, $a_{i j}^{t}=\delta_{i j}$. Hence $\left(\psi_{t}^{-1}\right)^{*} w=w$ and thus we see that $\psi_{t} \in \operatorname{Symp}\left(T^{2 n}, T^{n}\right)$. Since $\Phi_{t} \in$ $\operatorname{Ham}\left(T^{2 n}, T^{n}\right)$ we have

$$
\begin{aligned}
0=\operatorname{Flux}\left(\left[\Phi_{t}\right]\right) & =\operatorname{Flux}\left(R_{\beta_{t}}\right)-\operatorname{Flux}\left(\left[\psi_{t}\right]\right)+\operatorname{Flux}\left(R_{\alpha}\right)+\operatorname{Flux}\left(\left[\psi_{t}\right]\right) \\
& =\operatorname{Flux}\left(R_{\beta_{t}}\right)+\operatorname{Flux}\left(R_{\alpha}\right)=j\left(\beta_{t}+\alpha\right)=\beta_{t}+\alpha .
\end{aligned}
$$

Therefore $\beta_{t}=-\alpha$ for all t hence $\Phi_{t}=R_{\alpha}^{-1} \psi_{t} R_{\alpha} \psi_{t}^{-1}$. This shows that $\left.\widetilde{\operatorname{Ham}}\left(T^{2 n}, T^{n}\right)=\widetilde{\operatorname{Symp}}\left(T^{2 n}, T^{n}\right), \widetilde{\operatorname{Symp}}\left(T^{2 n}, T^{n}\right)\right]$ and fixing the parameter t to be 1 gives $\operatorname{Ham}\left(T^{2 n}, T^{n}\right)=\left[\operatorname{Symp}\left(T^{2 n}, T^{n}\right), \operatorname{Symp}\left(T^{2 n}, T^{n}\right)\right]$.

Consider the setting

$$
\begin{aligned}
& b_{t}=\text { JFlux }\left(\psi_{t}\right) \\
& u_{t}=-\alpha+b_{t} \\
& \bar{\psi}_{t}=R_{b_{t}}\left(\psi_{t}\right)^{-1} \\
& \hat{\psi}_{t}=\left(R_{b_{t}}\right)^{-1} \psi_{t}
\end{aligned}
$$

With this we have

$$
\begin{aligned}
& \phi_{t}=R_{u_{t}} \hat{\psi}_{t} R_{u_{t}}^{-1} \bar{\psi}_{t} \\
& \hat{\psi}_{t}=R_{b_{t}}\left(\bar{\psi}_{t}\right)^{-1} R_{b_{t}}^{-1}
\end{aligned}
$$

Clearly $\hat{\psi}_{t}$ is Hamiltonian. Therefore by fragmentation lemma there are relative symplectic isotopies $\psi_{t}^{j}, j=1, \ldots, N$ supported in the ball U_{j} of any open cover
$\mathcal{U}=\left\{U_{i}\right\}$ such that $\hat{\psi}_{t}=\psi_{t}^{1} \psi_{t}^{2} \ldots \psi_{t}^{N}$. Then

$$
\phi_{t}=\left(\prod_{i=1}^{N} R_{u_{t}}^{-1} \psi_{t}^{i} R_{u_{t}}\right)\left(\prod_{i=1}^{N} R_{b_{t}}\left(\psi_{t}^{N+1-i}\right)^{-1} R_{b_{t}}^{-1}\right)
$$

There exists balls B_{j} and B_{j}^{\prime} such that

$$
U_{j} \cup R_{u_{t}}^{-1}\left(U_{j}\right) \subset B_{j}, U_{j} \cup R_{b_{t}}\left(U_{j}\right) \subset B_{j}^{\prime}
$$

since $R_{u_{t}}$ and $R_{b_{t}}$ are close to the identity. By Lemma 3.10 there are relative symplectic isotopies f_{t}^{i} and g_{t}^{i} supported in D_{j} and D_{j}^{\prime} respectively and equal to $R_{u_{t}}$ on B_{j} and to $R_{b_{t}}$ on B_{j}^{\prime} respectively. Recall that we require $\bar{B}_{j} \subset D_{J}$ nd $\bar{B}_{j}^{\prime} \subset D_{j}^{\prime}$. Since supported in balls f_{t}^{i} and g_{t}^{i} are Hamiltonian indeed. This gives

$$
R_{u_{t}}^{-1} \psi_{t}^{i} R_{u_{t}}=\left(f_{t}^{i}\right)^{-1} \psi_{t}^{i} f_{t}^{i}
$$

since their supports are contained in $R_{u_{t}}^{-1}\left(U_{i}\right)=\left(f_{t}^{i}\right)^{-1}\left(U_{i}\right)$, and the above diffeomorphisms coincide. Therefore,

$$
\phi_{t}=\left(\prod_{i=1}^{N}\left(f_{t}^{i}\right)^{-1} \psi_{t}^{i} f_{t}^{i}\right)\left(\prod_{i=1}^{N}\left(g_{t}^{N+1-i}\right)^{-1}\left(\psi_{t}^{N+1-i}\right)^{-1}\left(g_{t}^{N+1-i}\right)\right.
$$

Note that all the isotopies in above equation are Hamiltonian. Changing the order of the terms in the final expression of ϕ_{t} results in $i d_{M}$. This means that the image of ϕ_{t} in $H_{1}(\widetilde{\operatorname{Ham}}(M, L))$ by the canonical mapping $\left.\widetilde{\operatorname{Ham}}\left(T^{2 n}, T^{n}\right) \rightarrow \widetilde{\operatorname{Ham}}\left(T^{2 n}, T^{n}\right), \widetilde{\operatorname{Ham}}\left(T^{2 n}, T^{n}\right)\right]$ is trivial.
Thus $H_{1}\left(\widetilde{\operatorname{Ham}}\left(T^{2 n}, T^{n}\right)\right)=0$.
Since $H_{1}\left(\widetilde{\operatorname{Ham}}\left(T^{2 n}, T^{n}\right)\right)=H_{1}\left(B \overline{\operatorname{Ham}\left(T^{2 n}, T^{n}\right)}, \mathbb{Z}\right)$ the proof is complete.

5.3 Proof of the Main Theorem

$\operatorname{Ham}(M, L)$ is not simple because of the following. Consider the sequence of groups and homomorphisms:

$$
0 \longrightarrow \operatorname{Ker} \varphi \longrightarrow \operatorname{Ham}(M, L) \xrightarrow{\varphi} \operatorname{Diff}^{\infty}(L) \longrightarrow 0,
$$

where φ is just restriction to L. Therefore $\operatorname{Ker} \varphi$ consists of Hamiltonian diffeomorphisms of M that are identity when restricted to L. Clearly, $\operatorname{Ker} \varphi$ is a closed subgroup.

For the perfectness, we need to show that $H_{1}(\operatorname{Ham}(M, L))=0$, where M is a connected, closed, symplectic manifold, $L \subset M$ a connected, oriented Lagrangian submanifold such that $M \backslash L$ is connected. This is equivalent to $H_{1}(\widetilde{\operatorname{Ham}}(M, L))=0$, where $\widetilde{\operatorname{Ham}}(M, L)$ is the universal cover of $\operatorname{Ham}(M, L)$. As noted in Appendix B, we have $H_{1}(B \overline{\operatorname{Ham}}(M, L), \mathbb{Z})=H_{1}(\widetilde{\operatorname{Ham}}(M, L))$. By the Deformation Lemma $4.10 H_{1}(B \overline{\operatorname{Ham}}(M, L), \mathbb{Z})$ is the same for any (M, L) satisfying above properties. Hence, if $H_{1}(\operatorname{Ham}(M, L))=0$ for just one pair (M, L), then it is true for all (M, L). Now the result follows from the Theorem 5.2.

Corollary 5.7. The commutator subgroup $\left[\operatorname{Symp}_{0}(M, L), \operatorname{Symp}_{0}(M, L)\right]$ is perfect and equals to $\operatorname{Ham}(M, L)$.

Proof. $\quad\left[\operatorname{Symp}_{0}(M, L), \operatorname{Symp}_{0}(M, L)\right] \subset \operatorname{Ham}(M, L)$, since
$\operatorname{KerFlux}_{r e l}=\operatorname{Ham}(M, L)$. Since $\operatorname{Ham}(M, L)$ is perfect we have

$$
\operatorname{Ham}(M, L)=[\operatorname{Ham}(M, L), \operatorname{Ham}(M, L)] \subset\left[\operatorname{Symp}_{0}(M, L), \operatorname{Symp}_{0}(M, L)\right]
$$

REFERENCES

[1] Arnold, V.I.,Sur la geometrie differentielle des groupes de Lie de dimension infinite et ses applications a l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Grenoble, 16 (1966), 319-361.
[2] Banyaga, A., The Structure of Classical Diffeomorphism Groups, Kluwer., Dortrecht, 1997.
[3] Banyaga, A., Sur la structure du groupe des difféomorphismes qui preservent une forme symplectique, Comment. Math. Helvetici, 53 (1978), 174-227.
[4] Calabi, E., On the group of automorphisms of a symplectic manifold, Problems in analysis, A symposium in honor of S. Bochner, 1-26, Princeton University Press, Princeton, 1970.
[5] da Silva, A.C., Symplectic Geometry; Overview written for the Handbook of Differential Geometry, vol. 2.
[6] Epstein D.B.A., The simplicity of certain groups of homeomorphisms, Compos. Math. 22 (1970), 165-173.
[7] Epstein, D.B.A.,Commutators of C^{∞} diffemorphisms, Comment. Math. Helv. 59 (1984), 111-122.
[8] Herman, M., Simplicité du groupe des difféomorphismes de classe C^{∞}, isotopes à l'identité, du tore de dimension n, (French) C. R. Acad. Sci. Paris Sr. A-B 2731971 A232-A234.
[9] Herman, M. and Sergeraert, F. Sur un théorème d'Arnold et Kolmogorov, (French) C. R. Acad. Sci. Paris Sér. A-B 2731971 A409-A411.
[10] Hirsch, M., Differential Topology, Graduate Texts in Math, 33, Springer, NY.
[11] Mather, J.N., Integrability in codimension 1, Comment. Math. Helv. 48, (1973),195-233, MR 55, No. 4205.
[12] Mather, J.N., Commutators of diffeomorphisms I and II, Comment. Math. Helv. 49 and 50, (1974) and (1975).
[13] Mather, J.N., On the Homology of Haefliger's classifying spaces, Course given at Varenna, 1976, C.I.M.E., Differential Topology, Leguore editore, Napoli, (1979), 73-116.
[14] McDuff, D. and Salamon, D., Introduction to Symplectic Geometry, Oxford Mathematical Monographs, Oxford, (1995).
[15] Ono, K., Floer-Novikov Cohomology and the Flux conjecture, Geom. funct. anal. 16 (2006), 9811020.
[16] Ozan, Y. Relative Flux Homomorphism in Symplectic Geometry, Proc. Amer. Math. Soc., 133 (2005), no. 4, 1223-1230.
[17] Palamodov, V.P., On a Stein manifold the Dolbeault complex splits in positive dimensions, Math. Sbornik 88(130) no2 (1972) 289-316.
[18] Polterovich, L. The Geometry of Symplectic Diffeomorphisms, Lectures in Math, ETH, Birkhauser (2001).
[19] Rybicki, T. On the group of diffeomorphisms preserving a submanifold, Demonstratio Math. 31 (1998), no. 1, 103110.
[20] Schmid R., Infinite dimensional Lie Groups with applications to mathematical physics, JGSP, 1(2004), 1-67.
[21] Sergeraert, F., Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications, (French) Ann. Sci. École Norm. Sup. (4) 5 (1972), 599-660.
[22] Thurston, W.P., On the structure of volume preserving diffeomorphisms, unpublished.
[23] Weinstein, A., Symplectic manifolds and their Lagrangian submanifolds, Advances in Mathematics, 6 (1971), 329-346.

APPENDIX A

THE GROUP $\operatorname{Sp}(2 n, n)$

The aim of this chapter is to show that the group $S p(2 n, n)$ of has two components.

Let $w=d x_{1} \wedge d y_{1}+\ldots+d x_{n} \wedge d y_{n}$ denote the standard symplectic bilinear form on $\mathbb{R}^{2 n}$. Let P be a typical element of $S p(2 n, n)$.

$$
P=\left[\begin{array}{ll}
A & B \\
0 & C
\end{array}\right]
$$

Let $(P x)_{i}$ denote the $\mathrm{i}^{t} h$ component of the image of $x=\left(x_{1}, . ., x_{n}, y_{1}, . ., y_{n}\right) \in$ $\mathbb{R}^{2 n}$. Then $(P x)_{1}=a_{11} x_{1}+\ldots+a_{n 1} x_{n}, \ldots,(P x)_{n}=a_{1 n} x_{1}+\ldots+a_{n n} x_{n}$ (or $P x_{i}=$ $A x_{i}=a_{1 i} x_{1}+\ldots+a_{n i} x_{n}$, for all $i \in\{1,2, \ldots, n\}$ and $(P y)_{1}=b_{11} x_{1}+\ldots+b_{n 1} x_{n}+c_{11} y_{1}+\ldots+c_{n 1} y_{n}, \ldots,(P y)_{n}=b_{1 n} x_{1}+\ldots+b_{n n} x_{n}+$ $c_{1 n} y_{1}+\ldots+c_{n n} y_{n}$
(or, $(P y)_{i}=b_{1 i} x_{1}+\ldots+b_{n i} x_{n}+c_{1 i} y_{1}+\ldots+c_{n i} y_{n}$, for all $\left.i \in\{1,2, \ldots, n\}\right)$. We calculate $d(P x)_{k} \wedge d(P y)_{k}$ to check the conditions on P to be symplectic.

We have, $d(P x)_{k} \wedge d(P y)_{k}=\sum_{i, j=1}^{n}\left(a_{i k} b_{j k}\right) d x_{i} \wedge d x_{j}+\sum_{i, j=1}^{n}\left(a_{i k} c_{j k}\right) d x_{i} \wedge d y_{j}$ $\sum_{k=1}^{n} d(P x)_{k} \wedge d(P y)_{k}=\sum_{i, j, k=1}^{n}\left(a_{i k} b_{j k}\right) d x_{i} \wedge d x_{j}+\sum_{i, j, k=1}^{n}\left(a_{i k} c_{j k}\right) d x_{i} \wedge d y_{j}$ Hence we must have, for fixed $i<j, \sum_{k=1}^{n}\left(a_{i k} b_{j k}-a_{j k} b_{i k}\right) d x_{i} \wedge d x_{j}=0$
for fixed $i<j, \sum_{k=1}^{n} a_{i k} c_{j k}=0$
for $i=j, \sum_{k=1}^{n} a_{i k} c_{i k}=1$.
In other words, $\sum_{k=1}^{n} a_{i k} c_{j k}=\left\{\begin{array}{ll}0, & i<j \\ 1, & i=j\end{array}\right.$.
$\sum_{k=1}^{n} a_{i k} c_{j k}=0$ and $\sum_{k=1}^{n} a_{i k} c_{i k}=1$ for all $i<j$ and all i respectively implies that $A C^{T}=I$ and hence $C=\left(A^{T}\right)^{-1}$. Also, $\sum_{k=1}^{n}\left(a_{i k} b_{j k}-a_{j k} b_{i k}\right)=0$ implies that $\sum_{k=1}^{n}\left(a_{i k} b_{k j}^{T}-a_{j k} b_{k i}^{T}\right)=0 . A \in G L(n, \mathbb{R})^{+}(i . e . \operatorname{det} A>0)$.
$\left(A B^{T}\right)_{i j}=\left(A B^{T}\right)_{j i}$ for all i, j, hence $A B^{T}$ is symmetric.
Thus,

$$
P=\left[\begin{array}{cc}
A & B \\
0 & \left(A^{T}\right)^{-1}
\end{array}\right]
$$

is in $S p(2 n, n)$ with $A B^{T}=B A^{T}$ (If A is in $O(n)$ then $B=A B^{T} A$.)
Since $A \in G L(n, \mathbb{R})^{+}$, let $\gamma(t) \in G L(n, \mathbb{R})^{+}, \gamma(0)=I, \gamma(1)=A$. Let $D=A B^{T}$ and note that since D is symmetric, $t D$ is also symmetric for all t.

Let $\beta=t D^{T}\left(\gamma(t)^{-1}\right)^{T}$, which gives $\beta(0)=0, \beta(1)=B A^{T}\left(A^{-1}\right)^{T}=B$. Hence

$$
P(t)=\left[\begin{array}{cc}
\gamma(t) & \beta(t) \\
0 & \left(\gamma(t)^{T}\right)^{-1}
\end{array}\right]
$$

is in $S p(2 n, n)$ for all t, and

$$
P(0)=I_{2 n}=\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
$$

$$
P(1)=P=\left[\begin{array}{cc}
A & B \\
0 & \left(A^{T}\right)^{-1}
\end{array}\right] .
$$

Thus we have found a path from the identity matrix I to an arbitrary matrix $P \in S p(2 n, n)$ provided that its first $n \times n$ block matrix A has positive determinant. This is equivalent that while P leaves a Lagrangian subspaces $L \subset \mathbb{R}^{2 n}$ invariant, it does not change its orientation either. Therefore we have proved:

Proposition A.1. $S p(2 n, n)$ has two components:

$$
\left\{\left.\left[\begin{array}{cc}
A & B \\
0 & \left(A^{T}\right)^{-1}
\end{array}\right] \right\rvert\, \operatorname{det} A>0, A B^{T}=B A^{T}\right\}
$$

and

$$
\left\{\left.\left[\begin{array}{cc}
A & B \\
0 & \left(A^{T}\right)^{-1}
\end{array}\right] \right\rvert\, \operatorname{det} A<0, A B^{T}=B A^{T}\right\}
$$

APPENDIX B

PALAMADOV OPERATOR

The following arguments belong to Banyaga [2]. We include these into the thesis for the sake of completeness.

Let $f: M \rightarrow \mathbb{R}$ be a smooth function that is locally constant on the Lagrangian submanifold L of the symplectic manifold M. Denote the set of such functions as $C_{L}^{\infty}(M)$. Such f induces a continuous linear operator $\tilde{f}: B^{1}(M, L) \rightarrow B^{1}(M, L)$ as follows: A classical result due to Palamadov [17] asserts that there is a continuous linear map $\sigma_{p}: B^{p}(M) \rightarrow \wedge^{p-1}(M)$ such that $\omega=d\left(\sigma_{p}(\omega)\right)$ for all $\omega \in B^{p}(M)$, where $p=0,1, \ldots, \operatorname{dim} M$. In particular the case $p=1$ gives

$$
\sigma: B^{1}(M) \rightarrow C^{\infty}(M)
$$

If we denote the set of exact 1 -forms that evaluates zero on $T L$ by $B^{1}(M, L)$ then the above map induces

$$
\sigma_{\text {rel }}: B^{1}(M, L) \rightarrow C_{L}^{\infty}(M) .
$$

Then define the linear functional \tilde{f} as

$$
\begin{equation*}
\tilde{f}(\xi)=d\left(f \sigma_{r e l}(\xi)\right) \tag{B.1}
\end{equation*}
$$

Note that this operator is bounded.

APPENDIX C

THE SIMPLICIAL SET $B \bar{G}$

The Deformation Lemma is proved on a topological group $B \bar{G}$ constructed out of a discrete group G. We include this section whose original is due to Banyaga [2], to make the thesis a complete, readable manuscript.

Let G be a connected group. Define $S(G)$, the singular complex of G as $S(G)=\left\{G_{n}\right\}$ where G_{n} is the set of continuous mappings $f: \Delta^{n} \rightarrow G$. Here Δ^{n} is the standard n-simplex in \mathbb{R}^{n}. Then G acts on the right on $S(G)$ by $(c, g) \mapsto c \cdot g^{-1}$ where $c \in G_{n}, \quad\left(c g^{-1}\right)(x)=c(x) \cdot g^{-1} \quad x \in \Delta^{n}$. The quotient space $B \bar{G}=S(G) / G$ is a simplicial set whose n-simplices $(B \bar{G})_{n}$ can be identified with continuous mappings $c: \Delta^{n} \rightarrow G$ with $c\left(v_{0}\right)=e$, where e is the neuter element of G. We have the usual face and the degeneracy operations :
satisfying

$$
\begin{array}{rlrl}
\partial_{i}:(B \bar{G})_{n} & \rightarrow(B \bar{G})_{n-1} & & s_{i}:(B \bar{G})_{n} \rightarrow(B \bar{G})_{n+1} \\
& & 0 \leq i \leq n \\
\partial_{i} \partial_{j} & =\partial_{j-1} \partial_{i} & & i \leq j \\
s_{i} s_{j} & =s_{j+1} s_{i} & & i \leq j \\
\partial_{i} s_{j} & =s_{j-1} \partial_{i} & & i \leq j \\
\partial_{j} s_{j} & =i d=\partial_{j+1} s_{j} & & i \geq j+1
\end{array}
$$

$B \bar{G}$ is, moreover, a Kan complex: for any $n+1$ n-simplices,
$x_{0}, \cdots, x_{k-1}, x_{k+1}, \cdots, x_{n+1} \in(B \bar{G})_{n}$ such that $\partial_{i} x_{j}=\partial_{j-1} x_{i}, i \leq j, i \neq k, j \neq$ k there exists an $(n+1)$-simplex x such that $\partial_{i} x=x_{i}, i \neq k$. Two simplices
$x, x^{\prime} \in(B \bar{G})_{n}$ are said to be homotopic, $x \sim x^{\prime}$, if $\partial_{i} x=\partial x^{\prime}$ for $0 \leq i \leq n$ and there exists an ($\mathrm{n}+1$)-simplex y, called a homotopy between x and x^{\prime} such that $\partial_{n} y=x, \partial_{n+1} y=x^{\prime}$ and $\partial_{i} y=s_{n-1} \partial_{i} x=s_{n-1} \partial_{i} x^{\prime}$ for $0 \leq i \leq n$. This is an equivalence relation. If one denotes the unique element of $(B \bar{G})_{0}$ with \emptyset then $B \bar{G}_{n}(\emptyset)$ to be the set of n-simplices of $B \bar{G}$) which are homotopic to $s_{n-1} s_{n-2} \ldots s_{1} s_{0}(\emptyset)$. Denote this element again by \emptyset. The quotient group $B \bar{G}_{n}(\emptyset) / \sim$ is called the $n^{\text {th }}$ homotopy group of $B \bar{G}$ and denoted by $\pi_{n}(B \bar{G}, \emptyset)$. Since $B \bar{G}_{1}(\emptyset)=B \bar{G}_{1}$ $\left((B \bar{G})_{0}\right.$ having a unique element), we have $\pi_{1}(B \bar{G}, \emptyset)=(B \bar{G})_{1} / \sim$. Recall that $\sigma_{1}, \sigma_{2}: \Delta^{1}=[0,1] \rightarrow G$ are homotopic if and only if there is a continuous map; $H: \Delta^{2} \rightarrow G$ with $H(0)=e, \partial_{1} H=\sigma_{1}, \partial_{2} H=\sigma_{2}, \partial_{0}=\emptyset$. The last equation means that H is a homotopy between the paths $\sigma_{1}(t)$ and $\sigma_{2}(t)$ with fixed extremities $\sigma_{1}(0)=\sigma_{2}(0)=e$ and $\sigma_{1}(1)=\sigma_{2}(1)$. Indeed, for t in the face [1, 2] of $\Delta^{2},\left(\partial_{0} H\right)(t)=H(t) H\left(1^{-1}\right)=e$. In particular $H(2)=H(1)$.

Proposition C.1. For any path connected topological group $G, \pi_{1}(B \bar{G})=\tilde{G}$: the universal covering of G.

The homology of $B \bar{G}$ is defined in a standard way: Let $C_{n}(B \bar{G})$ be the free abelian group generated by n-simplices. Define a differential

$$
d=\sum_{i=0}^{n}(-1)^{i} \partial_{i}: C_{n}(K) \longrightarrow C_{n-1}(K)
$$

Then $C(B \bar{G})=\left(\oplus C_{n}(B \bar{G}), d\right)$ is a chain complex whose homology is $H_{*}(B \bar{G}, \mathbb{Z})$. $H_{*}(B \bar{G}, K)$ for any abelian group K is defined as the homology of $C(B \bar{G}) \otimes K$. As usual we have $H_{1}(B \bar{G}, \mathbb{Z})=\pi_{1}(B \bar{G}, \emptyset) /\left[\pi_{1}(B \bar{G}, \emptyset), \pi_{1}(B \bar{G}, \emptyset)\right]=H_{1}(\tilde{G})$ is the abelianization of \tilde{G}. This means that a path $h:[0,1] \rightarrow G$ with $h(0)=$ e determines the zero element in $H_{1}(B \bar{G}, \mathbb{Z})$ if and only if $h(t)$ is homotopic relatively to ends to a path $g(t)$ of the form $g(t)=\left[u_{1}(t), v_{1}(t)\right] \ldots\left[u_{m}(t), v_{m}(t)\right]$, where u_{i}, v_{i} are continuous paths in G starting at e. The following remark will be used in the proof of the deformation lemma.

Proposition C.2. If $v:[0,1] \rightarrow G$ is a 1-simplex of $B \bar{G}$, where G is a path connected topological group, and $g \in G$ then the 1-simplices $I_{g}(v): t \mapsto g \cdot v(t) \cdot g^{-1}$ and $v: t \mapsto v(t)$ are homologous

Proof. Equivalently we show $t \mapsto g \cdot v(t) \cdot g^{-1} \cdot v(t)^{-1}=[g, v(t)]$ is homologous to zero. Since G is path connected we consider the 1 -simplex in G given by a path from g to e, i.e. $t v(t)]$ and $t \mapsto\left[g_{t}, v(t)\right]$ are homologous. Define a homotopy $H_{(s, t)},(s, t) \in[0,1] \times[0,1]$ between them with fixed extremities. Setting $H_{(s, t)}=$ $\left[g_{s+t-s t}, v(t)\right]$ yields $H_{(0, t)}=\left[g_{t}, v(t)\right], \quad H_{(1, t)}=[g, v(t)], \quad H_{(s, 0)}=\left[g_{s}, v(0)\right]=$ $\left[g_{s}, e\right]=e, H_{(s, 1)}=[g, v(1)]$.

Remark C.3. Let G be a topological group and G_{δ} be the underlying discrete group (i.e. with discrete topology). Then $i: G_{\delta} \rightarrow G$ identity map is continuous. Since any continuous map can be turned into a fibration denote by \bar{G} the homotopy fiber of this map. Then $B \bar{G}$ is nothing than the classifying space $B(\bar{G})$ of \bar{G}. See [2] for a discussion.

APPENDIX D

HERMAN-SERGERAERT THEOREM

In this section we include the proof of the relative Herman Sergeraert theorem, which is exactly the same proof for the absolute case of Herman and Sergeraert. We include this proof for the sake of completeness, following Banyaga's book [2]. The proof relies on Nash-Moser-Sergeraert implicit function theorem. The details can be found in Sergeraert's thesis [21]. The category in which the proof works is called the " \mathcal{L} category".

Definition D.1. An object \mathcal{L} is a quadriple (E, B, η, ρ) where
(i) E is a Frechet space and B is an open set of E.
(ii) $\eta=\left(|,|_{i}\right)_{i \in \mathbb{N}}$ is an increasing family of semi-norms defining the topology of E.
(iii) $\rho=\left(\left(S_{t}\right)_{t \in(0, \infty)}\right)$ is an increasing family of smoothing operators $s_{t}: E \rightarrow E$ such that

$$
\begin{gathered}
\left|S_{t} x\right|_{i+k} \leq t^{k}|x|_{i} \\
\left|x-S_{t} x\right|_{i} \leq C_{i k}|t|^{-k}|x|_{i+k} .
\end{gathered}
$$

An object (E, B, η, ρ) simply denoted (E, η, ρ) is called an \mathcal{L}-Frechet space. If η and ρ are understood, we say simply that E is an \mathcal{L}-Frechet space.

Definition D.2. Let (E, B, η, ρ) be an \mathcal{L}-object and $F_{1}, \ldots, F_{q}, G \mathcal{L}$-Frechet spaces. A mapping $f: B \times F_{1} \times \ldots \times F_{q} \rightarrow G$ is called a $C^{r}(0 \leq r \leq \infty)$
$q-\mathcal{L}$-morphism if
(i) f is linear in the last q variables.
(ii) $\forall k, 0 \leq k \leq r+1, \exists d_{k}>0$ (independent of i) such that $\forall i \in \mathbb{N}$, the map

$$
f:\left(B \times F_{1} \times \ldots \times f_{q},|\cdot|_{i+d_{k}}\right) \rightarrow\left(G,|\cdot|_{i}\right)
$$

is C^{k}.
(iii) if $d^{k} f$ denotes the $k t h$-derivative of f with respect to the first variable, then

$$
d^{k} f: B \times F_{1} \times \ldots \times F_{q} \times E^{k} \rightarrow G
$$

satisfies

$$
\begin{aligned}
&\left|\left(d^{k} f\right)\left(x ; y_{1}, \ldots, y_{q}, \ldots, \tilde{x}_{1}, \ldots, \tilde{x}_{k}\right)\right|_{i} \leq C_{i, k}\left(1+|x|_{i+d_{k}}\right)\left|y_{1}\right|_{0 \ldots}\left|y_{q}\right|_{0}\left|\tilde{x}_{1}\right|_{0} \ldots\left|\tilde{x}_{k}\right|_{0} \\
&+\left.\left.\sum_{i=1}^{q}\left|y_{1}\right|_{0 \ldots \mid} \ldots y_{i-1}\right|_{0}\left|y_{i}\right|_{l+d_{k}}\left|y_{i+1}\right|_{0 \ldots} \ldots y_{q}\right|_{0}\left|\tilde{x}_{i}\right|_{0 \ldots}\left|\tilde{x}_{k}\right|_{0} \\
&+\left.\sum_{i=1}^{k}\left|y_{i}\right|_{0 \ldots}\left|y_{q}\right|_{0}\left|\tilde{x}_{i}\right|_{0 \ldots}\left|\tilde{x}_{i-1}\right|_{0}\left|\tilde{x}_{i}\right|_{l+d_{k} \ldots} \ldots \tilde{x}_{i+1}\right|_{0}\left|\tilde{x}_{k}\right|_{0}
\end{aligned}
$$

where

$$
x \in B, y_{i} \in F_{i}, 1 \leq l \leq q, \tilde{x}_{i} \in E_{i}, 1 \leq l \leq k
$$

An $\mathcal{L}-\mathcal{O}$-morphism is simply called an \mathcal{L}-morphism. If in the definition above, d_{k} depends on i, we say that f is a weak- \mathcal{L}-morphism.

Theorem D.3. [8] Let (E, B, η, ρ) be an \mathcal{L}-object and F an \mathcal{L}-Frechet space. Let $f: B \rightarrow F$ be a $C^{r}(2 \leq r \leq \infty) \mathcal{L}$-morphism. Let $x_{0} \in B, y_{0}=f\left(x_{0}\right)$. Assume there exists $C^{p}(0 \leq p \leq r-1) 1-\mathcal{L}$-morphism. $L: B \times F \rightarrow E$ such that if $x \in B, y \in F, d f(x, L(x, y))=y$. Then there exists an \mathcal{L}-object $(F, C, \tilde{\eta}, \tilde{\rho})$ and a C^{p} weak- \mathcal{L}-morphism $s: C \rightarrow B$ such that $f \circ s=i d_{C}$.

Remark D.4. Throughout this section we will use the identification
$T^{n} \approx\left(T^{2 n}, T^{n}\right)$ i.e. an element $\alpha \in T^{n}$ must be understood as an element of the
form

$$
\alpha=\left(\alpha_{1}, 0, \alpha_{2}, 0, \ldots, \alpha_{2 n-1,0}\right) \in\left(T^{2 n}, T^{n}\right) \approx T^{n}
$$

Proof. (of Theorem 5.2) In our situation we must show that the map

$$
\begin{gathered}
\Phi_{\alpha}: \operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right) \times T^{n} \rightarrow \operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right) \\
(\psi, \lambda) \longmapsto R_{\lambda} \psi R_{\alpha} \psi^{-1}
\end{gathered}
$$

is a $C^{\infty} \mathcal{L}$-morphism between the C^{∞}, \mathcal{L}-groups $\operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right) \times T^{n}$ and $\operatorname{Diff}_{0}^{\infty}\left(T^{2 n}\right)$ and that its differential at $\left(i d_{T^{2 n}}, 0\right)$ has an inverse in the \mathcal{L}-category. Recall that $\alpha \in\left(T^{2 n}, T^{n}\right)$ satisfies a diophantine condition.

Writing ϕ_{α} and its differential in local coordinates near the identity in $\operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right)$ we get

$$
\begin{gathered}
\tilde{\Phi}_{\alpha}: X^{\infty}\left(T^{2 n}, T^{n}\right) \times T^{n} \rightarrow T_{R_{\alpha}} C^{\infty}\left(\left(T^{2 n}, T^{n}\right),\left(T^{2 n}, T^{n}\right)\right) \\
(\xi, \lambda) \longmapsto(1+\xi)^{-1} \circ R_{\alpha} \circ(1+\xi)+\lambda-\alpha
\end{gathered}
$$

$(1+\xi)$, here denotes the diffeomorphim $x \longmapsto x+\xi(x)$ of $\mathbb{R}^{2 n}$ for ξC^{1}-small. Denote by $1+\mu$ its inverse $(1+\xi)^{-1}$. One can verify that Φ_{α} is a $C^{\infty} \mathcal{L}$-morphism.

To show that its differential is invertible near $i d$ we first write its differential. If $d_{x} f: T_{x} M \rightarrow T_{f(x)} N$ denotes the differential of $f: M \rightarrow N$ then for $(\xi, \lambda) \in$ $X^{\infty}\left(T^{2 n}, T^{n}\right) \times T^{n}$ one gets

$$
\begin{gathered}
d_{(\xi, \lambda)} \tilde{\Phi}_{\alpha}: X^{\infty}\left(T^{2 n}, T^{n}\right) \times \mathbb{R}^{n} \rightarrow T\left(T_{R_{\alpha}} C^{\infty}\left(\left(T^{2 n}, T^{n}\right),\left(T^{2 n}, T^{n}\right)\right)\right) \\
\approx T_{\left(R_{\alpha}\right)}\left(C^{\infty}\left(\left(T^{2 n}, T^{n}\right),\left(T^{2 n}, T^{n}\right)\right)\right)
\end{gathered}
$$

and for $x \in\left(T^{2 n}, T^{n}\right), \hat{\xi} \in X^{\infty}\left(T^{2 n}, T^{n}\right), \hat{\lambda} \in \mathbb{R}^{n}$ we have

$$
\begin{gathered}
\left(\left(d_{(\xi, \lambda)} \Phi_{\alpha}\right), \hat{\xi}, \hat{\lambda}\right)(x)=\left(d_{\left[\left(R_{\alpha} \circ(1+\xi)\right)(x)\right]}(1+\mu)\right)(\hat{\xi}(x)) \\
-\left(d_{\left[\left(R_{\alpha} \circ(1+\xi)\right)(x)\right]}(1+\mu)\right)(\hat{\xi}(x))\left(\xi\left((1+\mu) \circ R_{\alpha} \circ(1+\xi)\right)(x)\right)+\hat{\lambda} .
\end{gathered}
$$

In particular $\left(d \Phi_{\alpha}\right)(0,0)(\hat{\xi}, \hat{\lambda})=\hat{\xi}-\left(\hat{\xi} \circ R_{\alpha}\right)+\hat{\lambda}$. To find an \mathcal{L}-section of $d \hat{\Phi}_{\alpha}$ in a neighborhood of $(0,0)$ we have to solve for $\hat{\xi}, \hat{\lambda}$

$$
d \hat{\Phi}_{\alpha}(\xi, \lambda)(\hat{\xi}, \hat{\lambda})=\eta
$$

for given ξ and η. To simplify this equation we multiply on the right by $1+\mu$ and on the left by $(d(1+\mu)) \circ(1+\mu) \circ R_{\alpha}$. Setting

$$
\begin{aligned}
\tilde{\xi} & =\hat{\xi} \circ(1+\mu) \\
\tilde{\eta} & =d(1+\mu) \circ(1+\mu) \circ R_{\alpha} \circ \eta \circ(1+\mu) \\
\chi(\xi) & =d(1+\mu) \circ(1+\mu) \circ R_{\alpha}
\end{aligned}
$$

Then we have to solve

$$
\tilde{\xi}-\tilde{\xi} \circ R_{\alpha}=\tilde{\eta}-\chi(\xi) \cdot \hat{\lambda}
$$

or $\tilde{\xi}(x)-\tilde{\xi}(x+\alpha)=\tilde{\eta}(x)-\chi(\xi)(x) \cdot \hat{\lambda}$
for all $x=\left(x_{1}, \ldots, x_{n}\right) \in T^{n}$.
Consider the Haar measure $d x$ on T^{n}. The equality $\int_{T^{n}} \tilde{\xi}(x) d x=\int_{T^{n}} \tilde{\xi}(x+\alpha) d x$ gives

$$
\int_{T^{n}} \tilde{\eta}(x) d x=\left(\int_{T^{n}} \chi(\tilde{\xi})(x) d x\right) \cdot \hat{\lambda} .
$$

Since ξ is C^{1}-close to zero, the matrix $A=\int_{T^{n}} x(\tilde{\xi}) d x$ is close to the identity, so it is invertible. Thus we can get $\hat{\lambda}=\frac{1}{A} \int_{T^{n}} \tilde{\eta}(x) d x$.

We will use the Fourier expansion of $\tilde{\eta}(x)-\chi(\xi)(x) d \hat{\lambda}=\sum_{k \in \mathbb{Z}^{n}-\{0\}} b_{k} e^{2 i \pi<k, x>}$ to compute the Fourier expansion of $\tilde{\xi}(x)=\sum_{k \in \mathbb{Z}^{n}-\{0\}} a_{k} e^{2 i \pi<k, x>}$, where $a_{k}, b_{k} \in$ $\mathbb{C}^{n}, a_{-k}=\bar{a}_{k} ; b_{-k}=\bar{b}_{k}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$, $<x, k>=\sum_{i=1}^{n} k_{i} x_{i}$. The choice of $\hat{\lambda}$ forces b_{0} to be zero. Plugging these into the equation to solve we get $a_{0}=0$ and $a_{k}=\frac{b_{k}}{1-e^{2 i \pi}\langle k, \alpha>}$, for $k \neq 0$. This with the diophantine condition on α imply

$$
\left|a_{k}\right| \leq C\left|b_{k}\right||k|^{d},
$$

where C is a constant depending only on α. Let $L^{2}\left(T^{n}, d x, \mathbb{R}^{n}\right)$ denote the space of mappings $f: T^{n} \rightarrow \mathbb{R}^{n}$, which are square integrable with respect to the Haar measure $d x$. Let $a_{k}(f)$ denote the $k^{t h}$ Fourier coefficient of $f \in L^{2}\left(T^{n}, d x, \mathbb{R}^{n}\right)$. For C^{r} maps from $T^{n} \rightarrow \mathbb{R}^{n}$ let

$$
H^{r}\left(T^{n}, \mathbb{R}^{n}\right)=\left\{f \in L^{2}\left(T^{n}, d x, \mathbb{R}^{n}\right) ; \sum_{k \in \mathbb{Z}^{n}}\left(1+|k|^{2}\right)^{n}\left|a_{k}(f)\right|^{2}<\infty\right\}
$$

Let $C_{0}^{r}\left(T^{n}, \mathbb{R}^{n}\right)$ resp $H_{0}^{r}\left(T^{n}, \mathbb{R}^{n}\right)$ denote the subset consisting of elements with $a_{0}(f)=0$. The inequality $\left|a_{k}\right| \leq C\left|b_{k}\right||k|^{d}$ implies that the map

$$
L: \sum_{k \in \mathbb{Z}^{n}-\{0\}} b_{k}(f) e^{2 i \pi<k, x>} \longmapsto \sum_{k \in \mathbb{Z}^{n}-\{0\}}\left(\frac{b_{k}(f)}{1-e^{2 i \pi<k, x>}}\right) e^{2 i \pi<k, x>}
$$

maps $H_{0}^{r}\left(T^{n}, \mathbb{R}^{n}\right)$ into $H_{0}^{r-d}\left(T^{n}, \mathbb{R}^{n}\right)$. Hence, by Sobolov embedding theorem L maps $C_{0}^{r}\left(T^{n}, \mathbb{R}^{n}\right)$ into $C_{0}^{r-s}\left(T^{n}, \mathbb{R}^{n}\right)$ where $s=d+\lfloor n / 2\rfloor+1$. Hence, we have solved for a_{k} and got $\tilde{\xi}$.

This shows that the linear mapping $L: C_{0}^{r}\left(T^{n}, \mathbb{R}^{n}\right) \rightarrow C_{0}^{r-s}\left(T^{n}, \mathbb{R}^{n}\right)$ is a 1-\mathcal{L}-morphism. Now, Theorem D. 3 implies that there exists a neighborhood U of the rotation R_{α} in $\operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right)$ and a smooth map $s: U \rightarrow \operatorname{Diff}_{0}^{\infty}\left(T^{2 n}, T^{n}\right) \times$ ($T^{2 n}, T^{n}$) such that $\phi_{\alpha} \circ s=\left.i d\right|_{U}$.

VITA

PERSONAL INFORMATION

Surname, Name: DEMIR, Ali Sait
Nationality: Turkish (T.C.)
Date and Place of Birth: 14 November 1977, Keban
Marital Status: Single
Phone: +90 5325842006
email: asdemir@gmail.com

EDUCATION

Degree	Institution	Year of Graduation
MS	METU Mathematics	2003
BS	METU Mathematics	2001
High School	A.K. Bengi Anad. High Sc., Tarsus	1995

WORK EXPERIENCE

Year	Place	Enrollment
2008 -Present	Bilkent University Mathematics	Instructor
$2001-2008$	METU Mathematics	Research Assistant
$2000-2001$	TED Ankara College	Researcher
FOREIGN LANGUAGE		

Advanced English
FIELD OF STUDY
Major Field: Symplectic Topology, Diffeomorphism Groups.

