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ABSTRACT

STUDY OF ONE DIMENSIONAL POSITION DEPENDENT EFFECTIVE MASS
PROBLEM IN SOME QUANTUM MECHANICAL SYSTEMS

Bucurgat, Mahmut

Ph.D., Department of Physics

Supervisor : Prof. Dr. Ramazan Sever

February 2008, 52 pages

The one dimensional position dependent effective mass problem is studied
by solving the Schrödinger equation for some well known potentials, such
as the deformed Hulthen, the Mie, the Kratzer, the pseudoharmonic, and
the Morse potentials. Nikiforov-Uvarov method is used in the calculations
to get energy eigenvalues and the corresponding wave functions exactly. By
introducing a free parameter in the transformation of the wave function,
the position dependent effective mass problem is reduced to the solution
of the Schrödinger equation for the constant mass case. At the same
time, the deformed Hulthen potential is solved for the position dependent
effective mass case by applying the method directly. The Morse potential
is also solved for a mass distribution function, such that the solution can
be reduced to the constant mass case.

Keywords: Schrödinger Equation, Nikiforov-Uvarov Method, Position Dependent Mass,

Morse Potential, Hulthen Potential, Mie Potential, Kratzer Potential, Pseudoharmonic

Potential
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ÖZ

BAZI KUVANTUM MEKANİK SİSTEMLERDE TEK BOYUTLU KONUMA
BAĞLI EFEKTİF KÜTLE PROBLEMİ ÇALIŞMASI

Bucurgat, Mahmut

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Ramazan Sever

Şubat 2008, 52 sayfa

Tek boyutlu konuma bağlı efektif kütle problemi deforme Hulthen, Mie, Kratzer,
psüdoharmonik ve Morse gibi bilinen bazı potansiyeller için Schrödinger denklemi
çözülerek çalışıldı. Enerji öz değerleri ve ilgili dalga fonksiyonlarının hesaplamalarında
Nikiforov-Uvarov metodu kullanıldı. Dalga fonksiyonu transformasyonunda yeni bir
serbest parametre tanımlanarak konuma bağlı efektif kütle problemi sabit kütleli
Schrödinger denkleminin çözüm durumuna indirgendi. Aynı zamanda doğrudan bu
metot uygulanarak deforme Hulthen potansiyeli konuma bağlı efektif kütle durumu
için çözüldü. Morse potansiyeli de sonucun sabit kütle durumuna indirgenmesini
sağlayacak bir kütle dağılım fonksiyonu için çözüldü.

Anahtar Kelimeler: Schrödinger Denklemi, Nikiforov-Uvarov Metodu, Konuma Bağlı Kütle,

Morse Potansiyeli, Hulthen Potansiyeli, Mie Potansiyeli, Kratzer Potansiyeli, Psüdoharmonik

Potansiyel
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CHAPTER 1

INTRODUCTION

The concept of position dependent effective mass (PDEM) is known to play an impor-

tant role in different branch of nonrelativistic and relativistic physics. This formalism

has been extensively used in nuclei, quantum liquids, quantum wells, graded alloys,

semiconductor heterostructures, 3He and metal clusters. Special applications of these

subjects are carried out in the investigation of electronic properties of semiconductors

such as quantum wells and quantum dots [1-5], lasers [6], 3He clusters [7], quantum

liquids [8], graded alloys and semiconductor heterostructures [9-18].

The PDEM applications stimulated a lot of work in the literature on the develop-

ment of methods for studying systems with mass that depends on position. These

methods are applied in the application of various physical, shape invariant and PT-

symmetric potentials. Besides these, many authors attempted to approach PDEM

problem with point canonical transformation [19-23], supersymmetry [24-36], series

solution [37-39], transfer matrix [40, 41], Green’s Function [42, 43] and Lie algebra

[44-46] methods. Furthermore, several classes of solvable PT-symmetric potentials are

also studied [47-56] in a PDEM background. The equivalence of a PDEM Hamiltonian

to a non-Hermitian PT-symmetric one was shown in [57] and PDEM systems with

Dirac equations for PT-symmetric potentials are are found in [58-61].

The nonrelativistic Hamiltonian of PDEM systems is always under the constraint of

ordering ambiguity in the kinetic energy term. On the other hand, its relativistic

counterpart, the relativistic Dirac equation, does not suffer from such ambiguity [62]

and the ordering ambiguity problem of the kinetic energy operator with PDEM is
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resolved in [57]. The Dirac equation with PDEM is solved by using the basic con-

cepts of the supersymmetric quantum mechanics formalism and the functional analy-

sis method for the relativistic problem of neutral fermions subject to PT-symmetric

trigonometric potential in [58]. On the other hand, it is approximately solved for the

generalized Hulthén potential in the case of the smooth step mass distribution [63]

and also for a charged particle with a spherically symmetric singular mass distribution

in the Coulomb field in [64-66] and for PT-symmetric and non-PT-symmetric poten-

tials [59, 60]. The Kepler problem for a particle whose potential energy and mass are

inversely proportional to the distance from the force center [67] is also studied within

the framework of the Dirac PDEM equation. Klein-Gordon equation with PDEM is

studied with vector and scalar Hulthen type potential [68], with Coulomb like scalar

plus vector potentials [69], with vector and scalar exponential type potentials [70],

with scalar and vector Rosen-Morse-type potential [71], with linear scalar potential

[72], the generalized Hulthen potential [73] and for the Woods-Saxon potential in the

case of an exponentially mass distribution in [74]. Duffin-Kemmer-Petiau equation is

also studied with a PDEM for a system with an external smooth potential [75].

The exact solution of the one dimensional Schrödinger equation (SE) with PDEM is

studied for some physical potentials in this thesis. The deformed Hulthen potential

is solved with a coordinate transformation involving mass term with a power of η.

As a second type of solution, by choosing an appropriate value of η in the coordinate

transformation, all the PDEM wave equations are transformed into the solution of

the constant mass form of SE for the Mie, the Kratzer, the pseudoharmonic and the

Morse potentials and the energy eigenvalues and the corresponding wave functions are

obtained analytically. The Nikiforov-Uvarov method (NUM) is used generally in the

both computations.

The contents of the thesis are as follows, the PDEM Schrodinger equation is intro-

duced in chapter 2. In chapter 3, brief introduction of the one dimensional molecular

potentials are given. In chapter 4, the solutions of the Schrodinger equation for some

potentials are given for constant and PDEM. In the last chapter, the results are dis-

cussed.
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CHAPTER 2

METHOD

In dealing with quantum mechanical systems one aims at determining the wave func-

tion of a single electron or of the whole system. The wave function in quantum me-

chanics is sufficient to describe a particle or even a system of particles. In other words,

if the wave function of an electron system in a solid is known, all of the macroscopic

parameters that define the electronic performance of an electronic device element, i.e.

diode, can be calculated. Thus, one of the main tasks of the quantum mechanics is to

find exact solutions to the SE for certain potentials.

The wave function Ψ(x, t) of an electron or an electron system satisfies the time

dependent SE,

ih̄
∂Ψ(x, t)

∂t
−HΨ(x, t) = 0 (2.1)

where H is the Hamiltonian operator of the system,

H = − h̄2

2m

d2

dx2
+ V (x) (2.2)

where h̄ is the Plank’s constant divided by 2π, m is mass and V (x) is the potential

energy. The form of Eq. (2.1) is that of a wave function and its solutions are ex-

pected to be wavelike in nature. If V (x) is time independent, one may separate the

dependencies on the time and spatial coordinates:

Ψ(x, t) = e−iEt/h̄ψ(x) (2.3)
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where ψ is a function of only spatial coordinates. Substituting Eq. (2.3) into Eq. (2.1),

the time independent SE is obtained:

[
− h̄2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (2.4)

where E is the energy of a particle or a system of particles.

2.1 One dimensional Schrödinger Equation with Position Dependent

Effective Mass

The motivation for obtaining exact solutions of the wave equation with PDEM comes

from the wide range of applications of these solutions in various areas of material

science and condensed matter in the framework of the effective mass theory which is

proposed to describe impurities in crystals [76]. The study of quantum mechanical

systems with PDEM raises some important conceptual problems, such as the order-

ing ambiguity of the momentum and mass operators in the kinetic energy term, the

boundary conditions at abrupt interfaces characterized by discontinuities in the mass

function, and the Galilean invariance of the theory [77,78].

The growing interest in semiconductor physics parallel to the modern development

in fabricating nanostructure technology creates a renewed attention to study the be-

haviour of one dimensional eigenvalue equation

H(x)ψ(x) ≡ [T (x) + V (x)]ψ(x) = Eψ(x) (2.5)

from a theoretical standpoint [78]. In this equation T (x) is the kinetic energy operator

and ψ(x) is the wave function (also known as envelope wave function in the literature

[80, 81]). In order to have the special properties of the eigenvalue equation Eq. (2.5),

the first step is certainly to choose a suitable form of the Hermitian kinetic energy

operator arising from non-commutativity of momentum operator

p ≡ −ih̄
d

dx
(2.6)
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and the coordinate operator. Different forms had been proposed in the literature,

most of which may be written as a special class of the general two-parameter family

proposed in [15]:

T (x) =
1
4

(
mαpmβpmγ + mγpmβpmα

)
(2.7)

with the constraint α + β + γ = −1 over the ordering parameters.

Considerable efforts were made to remove the non-uniqueness of the kinetic energy

operator Eq. (2.7) or, in other words, to fix the values of the ordering parameters

α, β, γ:

1. In [82] a step potential and a step mass were considered, and it was shown that

α = γ is the only physical choice for an abrupt heterojunction.

2. Later in an attempt to fix β, two different conclusions were drawn, namely β = 0

for a one-dimensional model and β = −1 for a three-dimensional model [83].

3. On the other hand, in a series of works [84-86], the authors concluded that

α = γ = 0, β = −1 for an abrupt heterojunction. Among these works, [86]

deserves to be mentioned separately because it presented the first example of a

continuous function m(x) across the heterojunction.

4. A new kind of kinetic energy operator was proposed [10] for strained heterostruc-

ture, which is not included in Eq. (2.7), in general, for position dependent lattice

constant. It should be mentioned that the choice α = γ = 0, β = −1 gives rise

to the kinetic energy operator T = p( 1
2m)p which was first proposed in [87].

5. Choosing the same operator some interesting pedagogical models were considered

[86] to show the qualitative differences in quantum mechanical observables (e.g.

reflection and transmission coefficient, band-structure, etc) between PDEM and

constant mass case.

6. Many other forms of kinetic energy operator have also been proposed; e.g.,

α = −1, β = 0 and γ = 0 which gives from Eq. (2.7), T = 1
4mp2 + p2 1

4m [12],

α = γ = −1/2, β = 0 which T = (1/2
√

m)p2(1/2
√

m) [88], etc.
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7. A different variation was derived, via path-integral formalism [89], which comes

from Eq. (2.7) for the following values: α = (−√2+i)

3
√

2
, β = −1

3 , γ = α.

In previous studies [2, 19, 26-29, 30, 31, 37, 40, 42, 45, 90-95] authors either started

from a preferred ad hoc choice for α, β, γ or they kept them arbitrary. In both cases

attention had been paid to solvability for various smooth functional forms of V (x)

and m(x) by employing the existing tools like supersymmetry [10, 24, 25, 29, 30, 40,

81, 84, 96], Lie-algebraic approach [44, 45, 91, 92], shape-invariance [93, 94], etc. The

connection between solvability and the ordering parameters in equations Eq. (2.5) and

Eq. (2.7) was discussed in [97]. Smooth functions (in the sense that m′ and m′′ are also

continuous) were chosen for the first time in [90], where the authors however concluded

again that α = γ = 0, β = −1 by comparing their results with a limiting case where

the potential and mass become abrupt. It may be mentioned that in several works [26,

45, 91] mass function was kept arbitrary and thus the solutions provided there were

only formal. In contrast, in most cases where smooth functional forms were chosen

for m(x), we note that m(x) → 0 as |x| → ∞. One possible way of eliminating this

nonphysical situation is to consider the variation of the mass in a finite region (being

constant outside), which is also natural on realistic grounds. Of course, this correction

will force one to obtain correct matching conditions for the model.

The study of semiconductor heterostructures, or more generally of inhomogeneous

crystals, has given rise to an extended discussion concerning the use of simple PDEM

model descriptions, which are related to the envelope function approximations, for the

dynamics of electrons in such systems. The PDEM problem arises from the boundary

conditions at abrupt interfaces, where the discontinuities in the solid cause the spatial

dependence of the mass function m(x).

Generally, the mass is taken as a constant and so that the form of the kinetic energy

Hamiltonian is defined as

H(x) =
p̂2

2m(x)
+ V (x) (2.8)

Here, m(x) is the PDEM and p̂ is the momentum operator. As momentum operator

and PDEM function do not commute, the PDEM Hamiltonian written in this form

becomes non-Hermitian. The kinetic energy Hamiltonian can be written in the form

6



H =
1
4

(
mαpmβpmγ + mγpmβpmα

)
(2.9)

with the constraint α + β + γ = −1 as introduced by Von Roos [15]. As a result, one

of the correct forms of the kinetic energy Hamiltonian can be written as

H(x) = p̂
1

2m(x)
p̂ + V (x) (2.10)

Now, the SE with PDEM is defined in one dimension as

[
d

dx

(
1

m(x)

)
d

dx

]
ψ(x) +

2
h̄2 [E − V (x)]ψ(x) = 0 (2.11)

The first term can be rewritten by acting the derivative operator:

[
d

dx

(
1

m(x)

)
d

dx

]
=

[
d

dx

(
1

m(x)

)]
d

dx
+

1
m(x)

d2

dx2

= −m′(x)
m2(x)

d

dx
+

1
m(x)

d2

dx2

(2.12)

where m′(x) denotes the derivative with respect to x. When the result of Eq. (2.12)

is substituted into Eq. (2.11), the SE with a variable mass becomes:

1
m(x)

d2ψ(x)
dx2

− m′(x)
m2(x)

dψ(x)
dx

+
2
h̄2 [E − V (x)]ψ(x) = 0 (2.13)

or by multiplying each term with m(x), the final form of the equation becomes:

d2ψ(x)
dx2

− m′(x)
m(x)

dψ(x)
dx

+
2m(x)

h̄2 [E − V (x)]ψ(x) = 0 (2.14)

2.2 The Nikiforov-Uvarov Method

The Nikiforov-Uvarov method (NUM) [98] provides an exact solution for the SE. This

method is developed for constructing solutions of the general second-order linear dif-

ferential equation which are special orthogonal polynomials. It is well known that any

given one-dimensional or radial SE can be written as a second-order linear differential

7



equation and then the equation is reduced to the hypergeometric type one with an

appropriate coordinate transformation x = x(s).

d2Ψ(s)
ds2

+
τ̃(s)
σ(s)

dΨ(s)
ds

+
σ̃(s)
σ2(s)

Ψ(s) = 0 (2.15)

where σ(s) and σ̃(s) are polynomials with at most second degree, and τ̃(s) is a poly-

nomial with at most first degree. Ψ(s) can be written as

Ψ(s) = φ(s) y(s), (2.16)

Then, the Eq. (2.15) becomes,

σ(s)
d2y(s)
ds2

+ τ(s)
dy(s)
ds

+ λy(s) = 0, (2.17)

where λ is a constant and σ(s) is defined as

σ(s) = π(s)
d

ds
[ln φ(s)], (2.18)

and τ(s) is

τ(s) = τ̃(s) + 2π(s). (2.19)

λ is given as

λ = λn = −nτ ′ − [n(n− 1)σ′′]
2

, n = 0, 1, 2, . . . (2.20)

and it is also defined as

λ = k + π′(s) (2.21)

where the energy eigenvalues can be calculated by equating Eq. (2.20) with Eq. (2.21).

The π(s) function is defined as

π(s) =
(σ′ − τ̃)

2
±

√(
σ′ − τ̃

2

)2

− σ̃ + kσ. (2.22)
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Here, π(s) is a polynomial with the parameter s and prime factors denote the differ-

entials at first degree. The determination of k is the essential point in the calculation

of π(s). It is simply defined as by setting the discriminant of the square root to zero.

As a result of this, a general quadratic equation for k is obtained.

In order to write the wave function, the Rodriguez relation can be defined by consid-

ering Eq. (2.18) as

yn(s) =
Bn

ρ(s)
dn

dsn
[σn(s) ρ(s)] , (2.23)

where Bn is normalizable constant and the weight function ρ(s) satisfy the following

relation

d

ds
[σ(s) ρ(s)] = τ(s) ρ(s). (2.24)

where
φ′

φ
=

π

σ
. (2.25)

Eq. (2.23) refers to the classical orthogonal polynomials. It has many important

properties such as orthogonality relation which can be defined as

∫ b

a
yn(s)ym(s)ρ(s) ds = 0, m 6= n. (2.26)
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CHAPTER 3

MOLECULAR POTENTIALS IN ONE DIMENSION

3.1 The Basic Structure of Diatomic Molecules

A simple molecule consists of two atoms bonded together by forces. The empirical

results of molecular spectroscopy show that the energy of the molecule (aside from

translational energy) consist of three parts [99]. They are called the electronic energy,

vibrational energy and the rotational energy. The energy levels fall into widely sepa-

rated groups. They correspond to the different electronic states of the molecule [100].

For a given electronic state, the levels are again divided into groups, which follow one

another at nearly equal intervals. These correspond to successive states of vibration

of the nuclei. This is the fine structure due to the different states of rotation of the

molecule. The successive rotational energy levels are being separated by larger and

larger intervals with increasing rotational energy. The simple structure of the energy

levels suggests a method of approximate solution of the wave equation involving three

separable equations. The first one deals with the motion of the electrons, the second

deals with the vibrational motion of the nuclei, the last one is related to the rotational

motion of the nuclei. Just for an atomic system, the Hamiltonian for a diatomic or

polyatomic molecule is the sum of the kinetic energy and the potential energy. For

a molecule, the kinetic energy consists of two parts. The contributions to the energy

come from the motions of the electrons and nuclei. Molecules can absorb, or emit ra-

diation not only as a result of changes in their rotational and vibrational energies but

also changes in electronic energy [101]. The energy changes involved in a transition

from one electronic state of a molecule to another are very large. They also corre-

spond to the radiation in visible or ultraviolet regions. Diatomic molecules exhibit

many different excited electronic states. The energy of these states is deduced from
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electronic transitions. In fact, in the analysis of electronic bands of diatomic molecules,

the vibrational and rotational structures are considered. These bands contain a large

amount of fine structure. The analysis of the electronic spectra of diatomic molecules

can be specialized to study of electronic spectra of polyatomic molecules like benzene

or ions.

3.2 Molecular Potentials

Intermolecular forces are important as they are required to solve a wide class of prob-

lems in physics, chemistry and biology. In physics, they are used to determine the

properties of crystals, the binding energy, phonon spectra, etc. In biology, they are

accounted for the stability of important compounds such as DNA and RNA and they

also play an essential role in muscle contraction. In chemistry, intermolecular in-

teractions are involved in the formation of complicated chemical complexes, such as

charge-transfer and hydrogen-bond complexes [102].

Intermolecular forces are not measured directly in any experiment. They are deter-

mined indirectly by measuring some other characteristics which are related with the

intermolecular forces. The experimental procedures used to determine these forces

are:

• scattering experiments in atomic-molecular beams

• spectroscopic measurements (vibrational-rotational spectra, etc.)

• data on thermophysical properties of gases and liquids (virial coefficients, vis-

cosity and transport coefficients, etc.)

• data on crystal properties (elastic constants, phonon spectra, etc.)

• experiments on the formation of radioactive defects in solids

• nuclear magnetic resonance experiments in solids and liquids (the time of spin

and spin-lattice relaxations)

After getting data from the experiments, some semiemprical model potentials are used

to fit these data. The choose of the model potential depends on the studied problem.
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The potential describing the interaction between two molecules is represented by a

potential curve depending only on one variable, if the interaction is averaged over

all molecular orientations in space. This potential, V (R), where R is the distance

between the centers of masses of the molecules, is named the potential of intermolec-

ular interaction, or briefly, the intermolecular potential. The types of intermolecular

interactions are shown in Figure 3.1. They are classified according to the three ranges

of interatomic separation for a typical interatomic potential.

Figure 3.1: The classification of intermolecular interactions

These three ranges are:

I At short distances the potential has a repulsive nature and the electronic ex-

change, due to the overlap of the molecular electronic shells, dominates.

II At intermediate distances the repulsive and attractive forces are in balance.

III At large distances, the electronic exchange is negligible and the intermolecular

forces are attractive.

A consistent theory of intermolecular forces can only be developed on the basis of

quantum mechanical principles. Because of the quantum nature of the electronic and
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nuclear motions, the solution of the intermolecular interaction problem reduces to

solving the SE. The problem under study can be solved analytically by the SE for a

physical potential. There are various model potentials used in the molecular dynamics

and Monte Carlo simulation studies of condensed matter physics, i.e., for determining

the properties of crystal structures [102]. Some of the most interested ones are the

Morse, Kratzer’s, Pöschl-Teller and Mie potentials.

3.3 The Morse Potential

The Morse potential was proposed by Morse [103] for defining the vibrational energy

levels of diatomic molecules. It is much used in spectroscopic applications as it is

possible to solve SE for this system. The functional form of the potential has two

exponential terms:

V (R) = D
[
e−2α(R−Rm) − 2e−α(R−Rm)

]
(3.1)

where D is the electronic energy and Rm defines the minimum as shown in the Fig-

ure 3.2. At R = 0 the potential becomes finite, that is,

V (0) = DeαRm
[
eαRm − 2

]
(3.2)

The energy levels observed experimentally and described by the formula

Eν = −D + h̄ω0

[(
ν +

1
2

)
− a

(
ν +

1
2

)2
]

(3.3)

where ω0 is the vibrational frequency and n indicates the vibrational levels and a is a

constant. Morse fitted the three parameters a, D and Rm on the basis of spectroscopic

data. The Morse potential does not work at large distances. At R = 0 the potential

has a finite value which is not correct. However, it describes the vibrational levels

quite satisfactorily.
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Figure 3.2: The Morse Potential

3.4 The Pseudoharmonic Potential

The pseudoharmonic potential [104] is a type of exactly solvable potential like Mie-

type potentials other than the Coulombic and anharmonic oscillator. The potential

has the form

V (x) = V0

(
x

x0
− x0

x

)2

(3.4)

It may be used for the energy spectrum of linear and nonlinear systems. It is generally

used for discussion of molecular vibrations. One of the advantages of the pseudohar-

monic potential over the harmonic oscillator is that it can be treated exactly in three

as well as in one dimension. The Morse potential is commonly used for an anharmonic

oscillator. However, its wave function does not vanish at the origin, but the Mie type

and the pseudoharmonic potentials do. The Mie type potential has the general fea-

tures of the true interaction energy, interatomic and intermolecular and dynamical

properties of solids. This potential may be considered as an intermediate potential

between the harmonic oscillator potential and anharmonic potentials, as the Morse

oscillator potential, which is a more realistic potential, in good agreement with the

experimental spectroscopical data.
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3.5 The Kratzer Potential

Kratzer proposed his potential in 1920 [105] to describe the vibrational-rotational

energy levels in diatomic molecules. The potential has the form:

V (x) = − a

x + x0
+

b

(x + x0)
2 (3.5)

where x0 is not a free parameter, it is expressed via a and b, x0 = 2b/a. The Kratzer

potential is a two parameter potential with a minimum at x = 0, V (0) = −a2/4b =

−D. It tends to infinity as x → −x0 and converges to zero as x → ∞ as shown in

Figure 3.3. When Kratzer potential is compared with the others, the curve seen in

figure has to be shifted by x0 along the x-axis. So that, R = x + x0 is introduced

and when V (R = 0) ≡ V (x = −x0) = ∞ and V (R = x0) ≡ V (x = 0) = −D. The

point R = x0 corresponds to a minimum, denoted as Rm. The SE can also be solved

analytically for the Kratzer potential as Morse and Pöschl-Teller potentials.

Figure 3.3: The Kratzer’s Potential

3.6 The Mie Potential

The Mie potential was introduced by Mie [106] which is used to study the dynamical

properties of solids. It is a special kind of exactly solvable power-law and inverse

15



power-law potentials other than the Coulombic and harmonic oscillator. The wave

functions of the potential vanish at the origin and it is given by

V (x) = ε

[
k

l − k

(a

x

)l
− l

l − k

(a

x

)k
]

(3.6)

where ε is the interaction energy between two atoms in a solid at x = a, and l > k is

always satisfied. When l = 2k and by choosing the special case k = 1, corresponding

to a Coulombic-type potential with an additional centrifugal potential barrier, the

form of the potential shown in Figure 3.4 can be simplified. The maximum depth of

the potential is ε.

Figure 3.4: The Mie Potential

The Mie potential plays an important role in many fields, such as condensed matter

physics, because it is of central importance for the general understanding of the be-

haviour and the application of a condensed matter. The Mie potential of crystalline

solids have been deeply investigated [107-108]. There are some applications of Mie

type potentials such as bulk metallic glass[109], and other applications in solid state

physics [110, 111], molecular spectroscopy [112], fluid mechanics [113], the interatomic

interaction potential in molecular physics [114-117], 1/rn potential in three dimensions

[118].
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CHAPTER 4

APPLICATIONS AND CALCULATIONS

4.1 Solution of the Schrödinger Equation with Constant Mass

There are several applications involving the SE with constant mass in nonrelativistic

form with some well known potentials like ring-shaped [119, 120], non-central [121] and

central [122], Woods-Saxon [123-126], Morse [127, 128], Hulthen [129], symmetrical

[130] and deformed hyperbolic [131, 132] potentials. In relativistic form [133, 134]

there are applications of the Klein-Gordon [135], the Duffin-Kemmer-Petiau [136] and

the Dirac equation for the Hulthen [137] and the Woods-Saxon [138, 139] potentials

with various methods. In this section some selected physical potentials are solved by

using NUM. These solutions are used in the solution of the SE with PDEM.

4.1.1 The Mie Potential

As a first application, Mie potential is studied [140]. The Mie-type potentials are

given by

V (r) = ε

[
k

`− k

(a

r

)`
− `

`− k

(a

r

)k
]

(4.1)

where ε is the interaction energy between two atoms in a solid at r = a, and ` >

k is always satisfied. One-dimensional Mie potential [106] is solved with ` = 2k

combination. By choosing the special case k = 1, corresponding to a Coulombic-type

potential with an additional centrifugal potential barrier, we get the following form:
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V (r) = V0

[
1
2

(a

r

)2
−

(a

r

)]
; V0 = 2εk (4.2)

where V0 is the dissociation energy and a is the positive constant which is strongly

repulsive at shorter distances. The radial part of the SE for a diatomic molecule

potential is

[
− h̄2

2µ

1
r2

d

dr

(
r2 d

dr

)
+

`(` + 1)h̄2

2µr2
+ V (r)

]
Rn`(r) = En`Rn`(r) (4.3)

where µ is the reduced mass of the diatomic molecules. n denotes the radial quantum

number (n and ` are named as the vibration-rotation quantum numbers in molecular

chemistry). r is the internuclear separation. Substituting the explicit form of V (r),

d2Rn`(r)
dr2

+
2
r

dRn`(r)
dr

+
2µ

h̄2

[
En` − V0

(
1
2

(a

r

)2
− a

r

)]
Rn`(r)

− `(` + 1)h̄2

2µr2
Rn`(r) = 0 (4.4)

is obtained. By defining the following variables:

ε2 = E (4.5)

β = −2µ

h̄2 V0a (4.6)

γ =
2µ

h̄2

(
1
2
V0a

2 +
`(` + 1)h̄2

2µ

)
(4.7)

The SE takes the simple form:

[
d2

dr2
+

2
r

d

dr
+

1
r2

(
ε2r2 − βr − γ

)]
Rn`(r) = 0 (4.8)

From Eq. (4.8), it is clear that

σ(r) = r (4.9)
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τ̃ = 2 (4.10)

σ̃ = ε2r2 − βr − γ (4.11)

π(r) becomes

π(r) = −1
2
±





iεr + 1
2

√
4γ + 1, k1 = −β + ε

√−1− 4γ

iεr − 1
2

√
4γ + 1, k2 = −β − ε

√−1− 4γ
(4.12)

and τ(r) can be written as

τ(r) =





1 + 2iεr +
√

4γ + 1, k1 = −β + ε
√−1− 4γ

1− 2iεr +
√

4γ + 1, k2 = −β − ε
√−1− 4γ

(4.13)

For appropriate solutions τ
′
(r) < 0 [98]. Therefore,

k2 = −β − ε
√
−1− 4γ (4.14)

π2 = −1
2
− iεr − 1

2

√
1 + 4γ (4.15)

are used, and

τ(r) = 1− 2iεr +
√

1 + 4γ (4.16)

for obtaining eigenvalues and eigenfunctions. Using Eqs. (2.20-2.21) we find energy

spectrum as

En = −
(

2µV0a

h̄2

)2

2n + 1 +

√
1 +

8µ

h̄2

(
V0a2

2
+

`(` + 1)h̄2

2µ

)

−2

(4.17)

The wave function is calculated from Eqs. (2.23-2.25).
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φ(r) = r
1
2
(−1+

√
1+4γ)e−iεr (4.18)

and

ρ(r) = r
√

1+4γe−2iεr (4.19)

and the radial part of the wave function becomes

Rn,` = Cnr
1
2
(−1+

√
1+4γ)e−iεrL

√
1+4β

n (2iεr) (4.20)

If Eq. (4.17) is rewritten in atomic units,

En = −V 2
0 a2

(
2n + 1 +

√
(2` + 1)2 + 2V0a2

)−2
(4.21)

is obtained. The calculated energy eigenvalues of the Mie potential for N2, CO, NO

and CH diatomic molecules with different values of n and ` in eV are given in Figure

4.1. The data for the potential parameters are taken from [141] and the values shown

in Figure 4.1 are similar to the calculations given in [142] with the same parameters

[141] for the given quantum numbers n = 0, 1, 2, 3, 4, 5.

4.1.2 The Pseudoharmonic Potential

In this section, one-dimensional SE with pseudoharmonic potential is solved with

NUM. The radial part of the SE for a diatomic molecular potential is given as

[
− h̄2

2µ

1
r2

(
d

dr
r2 d

dr

)
+

`(` + 1)h̄2

2µr2
+ V (r)

]
Rn,`(r) = En,`Rn,`(r) (4.22)

where µ is reduced mass of the diatomic molecules, r is the intermolecular separation,

n, ` are the vibration-rotation quantum numbers in molecular chemistry. For the

pseudoharmonic potential [143]

V (r) = V0

(
r

r0
− r0

r

)2

(4.23)
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Figure 4.1: The energy eigenvalues of the Mie potential.

Eq. (4.22) turns to be

d2Rn,`(r)
dr2

+
2
r

dRn,`

dr
+

2µ

h̄2

[
En,` − V0

(
r

r0
− r0

r

)2

− `(` + 1)h̄2

2µr2

]
Rn,` = 0 (4.24)

By defining the coordinate transformation

r2 = s (4.25)

and using the following dimensionless parameters

α2 =
V0

r2
0

µ

2h̄2 (4.26)

ε =
µ

2h̄2 (En,` + 2V0) (4.27)

and
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β =
µ

2h̄2

[
V0r

2
0 +

`(` + 1)h̄2

2µ

]
(4.28)

d2R

ds2
+

3/2
s

dR

ds
+

1
s2

(−α2s2 + εs− β)R(s) = 0 (4.29)

is obtained. The energy eigenvalue solution is given as [143]

ε =

(
2n + 1 + 2

√
β +

1
16

)
α (4.30)

which can also be written in the form

En` = −2V0 +
h̄

r0

√
2V0

µ


2n + 1 + 2

√
µ

2h̄2

(
V0r2

0 +
`(` + 1)h̄2

2µ

)
+

1
16


 (4.31)

and the wave function is obtained as

Rn,` = Bns−
1
4
+
√

β+1/16e−αsL
2
√

β−1/16
n (2αs) (4.32)

The energy eigenvalues of pseudoharmonic potential for N2, CO, NO and CH di-

atomic molecules with different values of n and ` in eV are given in Figure 4.2. The

data for potential parameters are taken from [141] and the values shown in Figure 4.2

are similar to the calculations given in [142] with the same parameters [141].

4.1.3 The Morse Potential

The SE is given as

ψ′′(x) +
2µ

h̄2 (E − V )ψ(x) = 0 (4.33)

When the Morse potential

V (x) = V1e
−2λx − V2e

−λx (4.34)

is substituted to the SE and by using the following variable
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Figure 4.2: The energy eigenvalues of pseudoharmonic potential.

s =
√

V1e
−λx (4.35)

reduces to [144]

d2ψ

ds2
+

1
s

dψ

ds
− 1

s2

(
2µs2

h̄2λ2
− 2µV2s

h̄2λ2
√

V1

− 4µE

2h̄2λ2

)
ψ = 0. (4.36)

Defining

ε2 = − µE

2h̄2λ2
(4.37)

and
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γ2 =
2µ

h̄2λ2
(4.38)

Eq. (4.36) becomes

d2ψ

ds2
+

1
s

dψ

ds
− 1

s2
(γ2s2 − γ2as + 4ε2)ψ = 0 (4.39)

where a = V2√
V1

. From Eq. (4.39), it is clear that

σ(s) = s (4.40)

τ̃(s) = 1 (4.41)

σ̃(s) = −γ2s2 + γ2as− 4ε2 (4.42)

By using the same procedure followed from Eq. (4.12) to Eq. (4.21) the energy eigen-

value and the wave function solutions [144] are are given as

En = −λ2

4

(
2n + 1− V2

λ
√

V1

)2

(4.43)

and

ψn(s) = Cns2εe−γsL4ε
n (2γs) (4.44)

Here, both the energy eigenvalue and the wave function depend on the potential

parameters λ, V1 and V2. L4ε
n (2γs) stands for associated Laguerre polynomials. The

ground state wave function behaves as ψ0(s → 0) → 0.

4.1.4 The Kratzer Potential

The modified Kratzer potential is given as [141]

V (r) = De

(
r − re

r

)2

(4.45)
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where De is the dissociation energy and re is the equilibrium internuclear separation.

The radial part of the SE for a diatomic molecular potential is given as

[
− h̄2

2µ

1
r2

(
d

dr
r2 d

dr

)
+

`(` + 1)h̄2

2µr2
+ V (r)

]
Rn,`(r) = En,`Rn,`(r) (4.46)

When Eq. (4.45) is substituted into Eq. (4.46) and by using the coordinate transfor-

mation

r = s (4.47)

d2Rn,`

ds2
+

2
s

dRn,`(s)
ds

+
1
s2

(ε2s2 − βs− γ)Rn,`(s) = 0. (4.48)

is obtained where

ε2 =
2µ(En,` −De)

h̄2 (4.49)

β = −4µDere

h̄2 (4.50)

and

γ =
2µ

h̄2

(
Der

2
e +

`(` + 1)h̄2

2µ

)
(4.51)

When Eq. (4.48) is solved the energy eigenvalue becomes [141]

ε2 = −β2(2n + 1 +
√

1 + 4γ)−2 (4.52)

or

En` = De − h̄2

2µ




(
4µDere

h̄2

)2
(

2n + 1 +

√
1 + 4

(
2µDer2

e

h̄2 + `(` + 1)
))−2


 (4.53)

and the wave function is
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Rn,`(r) = An,`υ
− 1

2
(1−√1−4γ)e−

1
2
(1−√1−4γ)L1+4γ

n (υ) (4.54)

where

υ(s) = 2iεs (4.55)

Figure 4.3: The energy eigenvalues of the Kratzer potential.

The computed energy eigenvalues for N2, CO, NO and CH molecules with different

values of n and ` in eV are given in Figure 4.3 [141] and the numerical calculations in

Figure 4.3 are similar to the calculations given in [141].

4.2 Solution of the Schrödinger Equation with PDEM

In this next section, first the PDEM hamiltonian is introduced and then, the effective

potential is defined with the sum of the physical potential and the sum of the ambiguity

parameters. The Hamiltonian introduced at Eq. (2.9) is used and then the one-

dimensional PDEM Hamiltonian becomes [139]
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Heff = − d

dx

[
1

M(x)
d

dx

]
+ Veff (x) (4.56)

where Veff (x) is defined as

Veff (x) = V (x) +
1
2
(β + 1)

M
′′

M2
− [α(α + β + 1) + β + 1]

M
′2

M3
(4.57)

where α and β are ambiguity parameters and γ = 0, h̄ = 1. The SE for the PDEM

Hamiltonian given in Eq. (4.56) becomes:

(
− 1

M

d2

dx2
+

M
′

M2

d

dx
+ Veff − E

)
ϕ(x) = 0. (4.58)

4.2.1 The Deformed Hulthen Potential

The Hulthen potential is a short range potential which behaves like a Coulomb poten-

tial for small values of r and decreases exponentially for large values of r. The Hulthen

potential is a special case of the Eckart potential which has been used in many dif-

ferent areas like nuclear, atomic, solid state and chemical physics and its bound-state

and scattering properties have been investigated by a variety of techniques and the

SE for this potential can be solved exactly for constant mass for l 6= 0 by applying a

number of methods.

In this section, the general form of PDEM SE is obtained by using a more general

transformation of the wave function as ϕ = Mη(x)ψ(x). NUM is adapted to this

general equation. Then, using an appropriate mass function, it is solved for the

deformed Hulthen potential within this generalization. Energy eigenvalues and the

corresponding wave functions are obtained. The one-dimensional PDEM Hamiltonian

of the SE is written as Eq. (4.56) with effective potential Veff in Eq. (4.57). Then the

SE is obtained as Eq. (4.58). After making the transformation

ϕ(x) = Mη(x) ψ(x) (4.59)

the SE takes the form

27



−d2ψ

dx2
− (2η − 1)

M
′

M

dψ

dx
− [η(η − 2) + α(α + β + 1) + β + 1]

(
M

′

M

)2

ψ

+
[
1
2
(β + 1)− η

]
M

′′

M
ψ + M(V − E)ψ = 0 (4.60)

The deformed Hulthen potential is given by [137]

V (x) = −V0
e−λx

1− qe−λx
(4.61)

Here, V0 is the compact form of the three parameters which are atomic number,

screening parameter and the deformation parameter q which determine the range

for the potential. The deformed Hulthen potential reduces to the general deformed

Hulthen form for q = 1, to the standard Wood-Saxon potential for q = −1 and to

the exponential potential for q = 0. The following parameters are introduced for

Eq. (4.60):

A = α(α + β + 1) + β + 1 (4.62)

M(x) = m0m(x), where m0 has a mass unit and taken as m0 = 1 where

m(x) = (1− qe−λx)−1 (4.63)

m
′

m
= −qλ

e−λx

1− qe−λx
(4.64)

m
′′

m
= qλ2e−λx 1 + qe−λx

(1− qe−λx)2
(4.65)

and then the transformation

s =
1

1− qe−λx
(4.66)

is applied to Eq. (4.60) and if Eqs. (4.61)-(4.66) are substituted into Eq. (4.60), then

it becomes
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[
d2

ds2
+

2η − (2η + 1)s
s(1− s)

d

ds
+

1
s2(1− s)2

(−ξ1s
2 + ξ2s− ξ3)

]
ψ = 0 (4.67)

where

−ξ1 = [η(η − 2) + A]− 2
[
1
2
(β + 1)− η

]
+

V0

qλ2
(4.68)

ξ2 = −2 [η(η − 2) + A] + 3
[
1
2
(β + 1)− η

]
− V0

qλ2
+

E

λ2
(4.69)

−ξ3 = η(η − 2) + A−
[
1
2
(β + 1)− η

]
(4.70)

and V (s) = V0
q (1 − s). Now, NUM is applied starting from its standard form as it is

introduced in Eq. (2.15). When Eqs.(4.67) and (2.15) are compared

σ = s(1− s),

τ̃(s) = 2η − (2η + 1)s,

σ̃(s) = −ξ1s
2 + ξ2s− ξ3

(4.71)

are obtained. After applying the procedure explained from Eq.(2.16) and to Eq.(2.26)

and using z = 1
2(1− 2η), one obtains

π = z(1− s)±




(
√

ξ1 − ξ2 + ξ3 −
√

ξ3 + z2)s +
√

ξ3 + z2 k1 = ξ2 − 2ξ3 + 2ζ;

(
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2)s−
√

ξ3 + z2 k2 = ξ2 − 2ξ3 − 2ζ.
(4.72)

where ζ =
√

ξ3(ξ1 − ξ2 + ξ3 + z2)− z2(ξ2 − ξ1). Now, τ(s) can be introduced as,

τ(s) =





1− 2s + 2((
√

ξ1 − ξ2 + ξ3 −
√

ξ3 + z2)s +
√

ξ3 + z2)

1− 2s− 2((
√

ξ1 − ξ2 + ξ3 −
√

ξ3 + z2)s +
√

ξ3 + z2)

1− 2s + 2((
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2)s−
√

ξ3 + z2)

1− 2s− 2((
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2)s−
√

ξ3 + z2)

(4.73)

Derivative of τ(s) is obtained as
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τ
′
=





−2 + 2(
√

ξ1 − ξ2 + ξ3 −
√

ξ3 + z2)

−2− 2(
√

ξ1 − ξ2 + ξ3 −
√

ξ3 + z2)

−2 + 2(
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2)

−2− 2(
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2)

(4.74)

Here, first derivative of τ should be τ
′
< 0 in order to obtain physical solutions. Thus,

k and related functions are chosen which help to derive the energy eigenvalues and

eigenfunctions:

k = ξ2 − 2ξ3 − 2
√

ξ3(ξ1 − ξ2 + ξ3 + z2)− z2(ξ2 − ξ1) (4.75)

τ = 1− 2s− 2[(
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2)s−
√

ξ3 + z2] (4.76)

π = z(1− s)− [(
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2)s−
√

ξ3 + z2] (4.77)

τ
′

= −2− 2(
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2). (4.78)

Using Eq. (2.21), the relation given below

λ = z2 − z + ξ1 − (
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2)2 − (
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2) (4.79)

is obtained. With the aid of Eq. (2.20), this equality can be written:

λ = λn = −n[−2− 2(
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2)] + n(n− 1) (4.80)

Substituting Λ =
√

ξ1 − ξ2 + ξ3 +
√

ξ3 + z2, Λ can be written

Λ =
1
2

[
−(2n + 1)±

√
1 + 4γ

]
(4.81)

where γ = ξ1 + z(z − 1). Now two cases can be considered with respect to the sign of

Λ.
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Case 1:

√
ξ1 − ξ2 + ξ3 +

√
ξ3 + z2 =

1
2

[
−(2n + 1) +

√
1 + 4γ

]
(4.82)

then, ξ3 is obtained as

ξ3 =
[

ξ2 − ξ1 + z2

2n + 1−√1 + 4γ
+

1
4

(
2n + 1−

√
1 + 4γ

)]2

(4.83)

Using the definitions of ξ1, ξ2 and ξ3, En is given by

En = −λ2

4

(
2n + 1−

√
1 + 4γ − 2

√
−η(η − 1)−A∗ +

β + 1
2

)2

−λ2(η− 1
2
)2 (4.84)

Case 2:

√
ξ1 − ξ2 + ξ3 +

√
ξ3 + z2 =

1
2

[
−(2n + 1)−

√
1 + 4γ

]
(4.85)

then, ξ3 becomes

ξ3 =
[

ξ2 − ξ1 + z2

2n + 1 +
√

1 + 4γ
− 1

4

(
2n + 1 +

√
1 + 4γ

)]2

(4.86)

Energy eigenvalues can be written:

En =
λ2

4

(
2n + 1 +

√
1 + 4γ + 2

√
−η(η − 1)−A∗ +

β + 1
2

)2

− λ2(η − 1
2
)2 (4.87)

Using Eqs.(2.24) and (2.25), φ and ρ are obtained as

φ = sz+
√

ξ3+z2
(1− s)

√
ξ1−ξ2+ξ3 (4.88)

and

ρ(s) = s2
√

ξ3+z2
(1− s)2

√
ξ1−ξ2+ξ3 (4.89)
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Solution of y can be obtained from Eq. (2.23):

yn(s) = P
(2
√

ξ3+z2,2
√

ξ1−ξ2+ξ3)
n (1− 2s) (4.90)

Hence, the wave function has the following form:

ψn = sz+
√

ξ3+z2
(1− s)

√
ξ1−ξ2+ξ3P

(2
√

ξ3+z2,2
√

ξ1−ξ2+ξ3)
n (1− 2s) (4.91)

If z +
√

ξ3 + z2 < 0 and
√

ξ1 − ξ2 + ξ3 > 0, it is required that |z +
√

ξ3 + z2| ≥
√

ξ1 − ξ2 + ξ3 and if
√

ξ1 − ξ2 + ξ3 < 0, z +
√

ξ3 + z2 > 0, |√ξ1 − ξ2 + ξ3| ≥ z +
√

ξ3 + z2 for physical solutions.

4.2.2 The Morse Potential

Case I: M(x) = m0

(1−κe−λx)2

The Morse potential is solved by following two ways by reducing the PDEM solution

to constant mass one. In the first way, the solution generally depends on the wave

function transformation parameter η and the mass function parameters. The one-

dimensional PDEM Hamiltonian of the SE is written as Eq. (4.56) with effective

potential Veff in Eq. (4.57). Then, the SE is obtained as Eq. (4.58). After making

the transformation

ϕ(x) = Mη(x) ψ(x) (4.92)

the SE takes the form

d2ψ(x)
dx2

+ (2η − 1)

(
M

′

M

)
dψ(x)

dx
+ A1

(
M

′

M

)2

ψ(x)

− A2

(
M

′′

M

)
ψ −M(V − E)ψ(x) = 0 (4.93)

where

32



A1 = [η(η − 2) + α(α + β + 1) + β + 1]

A2 =
[
1
2
(β + 1)− η

] (4.94)

with

M(x) = m0m(x) (4.95)

and

m(x) =
1

(1− κe−λx)2
(4.96)

h̄ and m0 are taken equal to 1 and m0 has a mass unit, where κ is a dimensionless

parameter. The Morse potential is given as

V (x) = V0e
−2λx − V1e

−λx (4.97)

When the transformation s = e−λx is used to apply NUM with the necessary deriva-

tions of m(x) in Eq. (4.93), it becomes

ψ
′′
(s) +

[
1 + (4ηκ− 3κ)

s(1− κs)

]
ψ
′
(s)

+

[
(4A1κ

2 − 4A2κ
2 − V0

λ2 )s2 + (V1
λ2 − 2A2κ)s + E

λ2

[s(1− κs)]2

]
ψ(s) = 0 (4.98)

Eq. (4.98) is in the form of

[
d2

ds2
+

α1 − α2s

s(1− α3s)
d

ds
+
−ξ1s

2 + ξ2s− ξ3

[s(1− α3s)]2

]
ψ = 0 (4.99)

When Eq. (4.99) is compared with Eq. (2.15)

τ̃ = α1 − α2s (4.100)
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σ = s(1− α3s) (4.101)

σ̃ = −ξ1s
2 + ξ2s− ξ3 (4.102)

When Eqs. (4.100)-(4.102) are substituted into Eq. (2.22)

π(s) = α4 + α5s±
√

(α6 − kα3)s2 + (α7 + k)s + α8 (4.103)

where

α4 =
1
2
(1− α1) (4.104)

α5 =
1
2
(α2 − 2α3) (4.105)

α6 = α2
5 + ξ1 (4.106)

α7 = 2α4α5 − ξ2 (4.107)

α8 = α2
4 + ξ3 (4.108)

In Eq. (4.103), the function under square root must be the square of a polynomial

according to the NUM, so that

k1,2 = −(α7 + 2α3α8 ± 2
√

α8α9). (4.109)

Here,

α9 = α3α7 + α2
3α8 + α6 (4.110)

For each k, the following π’s are obtained. When
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k = −(α7 + 2α3α8)− 2
√

α8α9 (4.111)

π becomes:

π = α4 + α5s− [(
√

α9 + α3
√

α8)s−√α8] (4.112)

For the same k, from Eq. (2.20), Eq. (4.100) and Eq. (4.112)

τ = α1 + 2α4 − (α2 − 2α5)s− 2 [(
√

α9 + α3
√

α8)s−√α8] (4.113)

and

τ ′ = −(α2 − 2α5)− 2(
√

α9 + α3
√

α8)

= −2α3 − 2(
√

α9 + α3
√

α8) < 0 (4.114)

is obtained. When Eq. (2.21) is used with Eq. (4.111) and Eq. (4.112) the following

equation is derived:

α2n− (2n + 1)α5 + (2n + 1)(
√

α9 + α3
√

α8) + n(n + 1)α3

+ α7 + 2α3α8 + 2
√

α8α9 = 0 (4.115)

This equation gives the energy spectrum of the problem. The wave function can be

derived by using Eq. (2.23) as

ρ(s) = sα10−1(1− α3s)
α11
α3

−α10−1 (4.116)

and when this equation is used in Eq. (2.16)

yn = P
(α10−1,

α11
α3

−α10−1)

n (1− 2α3s) (4.117)
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is obtained, where

α10 = α1 + 2α4 + 2
√

α8 (4.118)

α11 = α2 − 2α5 + 2(
√

α9 + α3
√

α8) (4.119)

Using Eq. (2.25)

φ(s) = sα12(1− α3s)
−α12−α13

α3 (4.120)

is obtained and as the general solution equation is

ψ = φ(s)y(s) (4.121)

it becomes

ψ = sα12(1− α3s)
−α12−α13

α3 P
(α10−1,

α11
α3

−α10−1)

n (1− 2α3s) (4.122)

Here,

α12 = α4 +
√

α8 (4.123)

α13 = α5 − (
√

α9 + α3
√

α8) (4.124)

By using the definitions from Eq. (4.99) to Eq. (4.124) and the terms in Eq. (4.98),

the corresponding ξ and α parameters can be listed as follows:

ξ1 = −
(

4A1κ
2 − 4A2κ

2 − V0

λ2

)

ξ2 =
(

V1

λ2
− 2A2κ

)

ξ3 = −E

λ2

(4.125)

and
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α1 = 1 (4.126)

α2 = κ(3− 4η) (4.127)

α3 = κ (4.128)

α4 =
1
2
(1− α1)

= 0 (4.129)

α5 =
1
2
(α2 − 2α3)

=
κ

2
(1− 4η) (4.130)

α6 = α2
5 + ξ1

= [
κ

2
(1− 4η)]2 + ξ1 (4.131)

α7 = 2α4α5 − ξ2

= −ξ2 (4.132)

α8 = α2
4 + ξ3

= −E

λ2
(4.133)

α9 = α3α7 + α2
3α8 + α6

= ξ1 − κξ2 − E

λ2
κ2 +

[κ

2
(1− 4η)

]2
(4.134)
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α10 = α1 + 2α4 + 2
√

α8

= 1 + 2

√
−E

λ2
(4.135)

α11 = α2 − 2α5 + 2(
√

α9 + α3
√

α8)

= 2κ

+ 2




√
−κξ2 − E

λ2
κ2 +

[
−1

2
(4ηκ− κ)

]2

+ ξ1 + κ

√
−E

λ2


 (4.136)

α12 = α4 +
√

α8

=

√
−E

λ2

=
√

ξ3 (4.137)

α13 = α5 − (
√

α9 + α3
√

α8)

=
[
1
2
(−4ηκ + κ)

]

−



√
−κξ2 − E

λ2
κ2 +

[
−1

2
(4ηκ− κ)

]2

+ ξ1 + κ

√
−E

λ2


 (4.138)

The substitution of the related parameters into Eq. (4.115), the energy eigenvalue can

be written as

En = −λ2

[
1
4(2n + 1)2κ + ξ2 + (−2η + 3

4)κ− (2n + 1)
√

(2η − 1)2κ2 + ξ1

−(2n + 1)κ + 2
√

(2n− 1)2κ2 + ξ1

]2

(4.139)

and the wave function can be written from Eq. (4.122) as
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ψ(s) = s
√

ξ3(1− κs)−
√

ξ3− 1
κ

[
1
2
(−4ηκ+κ)−(

√
ξ1−κξ2+κ2ξ3+ 1

4
(1−4η)2κ2+κ

√
ξ3)

]

P

[
2ξ3, 2

κ
−

[
κ+

√
ξ1−κξ2+ 1

4
(1−4η)2κ2+κ

√
ξ3

]
−2
√

ξ3
]

n (1− 2κs)

(4.140)

Here, both the wave function and the energy eigenvalue depend on the mass and

potential function parameters. One can choose a suitable η for the wave function

transformation and this changes the solution parameter. These solutions can be re-

duced to constant mass form by choosing κ → 0, i.e. the energy eigenvalue becomes

En = −λ2

4

(
2n + 1− V1

λ
√

V0

)2

(4.141)

The above energy eigenvalue equation is identical with the solution obtained for the

constant mass case.

Case II: M(x) = m0e
−2λx

In the second way, the PDEM problem for the Morse potential is again reduced to

its constant mass solutions with a different approach. First, the SE in Eq. (4.58)

is introduced with the effective potential Eq. (4.57). Then, the transformation in

Eq. (4.59) is applied to Eq. (4.58) and this gives Eq. (4.60). The Morse potential is

defined as

V (x) = V0e
2λx − V1e

λx (4.142)

and the mass function is defined as M(x) = m0m(x) and m0 has a mass unit and

taken as equal to 1 with

m(x) = e−2λx (4.143)

When Eq. (4.142) and Eq. (4.143) are substituted into Eq. (4.60)
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− ψ
′′ − 2λ(2η − 1)ψ

′ − 4ηλ2(η − 1)ψ

+
[
V0 − V1e

−λx −Ee−2λx + 2(β + 1)λ2 − 4A∗λ2
]
ψ = 0 (4.144)

is obtained. The transformation s = e−λx in Eq. (4.144) leads to

d2ψ

ds2
+

3− 4η

s

dψ

ds

+
1
s2

[
E

λ2
s2 +

V1

λ2
s− V0

λ2
− 2(β + 1) + 4A∗ + 4η(η − 1)

]
ψ = 0 (4.145)

where A∗ = α(α+β +1)+β +1. The parameters of the coefficient of ψ in Eq. (4.145)

can be defined as

ξ1 = −E

λ2

ξ2 = −V1

λ2

−ξ3 =
V0

λ2
+ 2(β + 1)− 4A∗ − 4η(η − 1)

(4.146)

Then, Eq. (4.145) turns to be

d2ψ

ds2
+

3− 4η

s

dψ

ds
− ξ1s

2 + ξ2s− ξ3

s2
ψ = 0 (4.147)

Eq. (4.147) is the transformed PDEM equation for the Morse potential. Now, if

η = 1/2 and if this equation is compared with the constant mass form of the Morse

potential in Eq. (4.39) it is seen that

ξ1 = γ2

ξ2 = − V2√
V1

γ2

ξ3 = −4ε2

(4.148)

Thus, the solution of the PDEM equation Eq. (4.147) is straightforward. The constant

mass energy eigenvalue and the wave function solutions are given in Eq. (4.43) and
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Eq. (4.44), respectively. The PDEM solutions can be found by substituting the ξ1 and

ξ3 into Eq. (4.43) and Eq. (4.44) where γ and ε are seen. The method is summarized

in Figure 4.4.

Figure 4.4: The solution of PDEM problem by using constant mass results.

4.2.3 The Pseudoharmonic Potential

The SE with constant mass for pseudoharmonic potential in s transformed form is

already given in Eq. (4.29). Now, if η = 3
8 is set and then, when this equation is

compared with Eq. (4.147) the equal parameters can be listed as

ξ1 = α2

ξ2 = −ε

ξ3 = −β

(4.149)

The solution of Eq. (4.29) for the energy eigenvalue and the wave function is given

in Eq. (4.30) and Eq. (4.32), respectively. Thus, the solution of the PDEM problem

of pseudoharmonic potential can easily be found by substituting the parameters in

Eq. (4.149) to Eq. (4.30) and Eq. (4.32).

4.2.4 The Mie Potential

The SE with constant mass for the Mie potential in s transformed form is already

given in Eq. (4.8). Now, if η = 1
4 is set and then, when this equation is compared with

Eq. (4.147) the equal parameters can be listed as
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ξ1 = −ε2

ξ2 = β

ξ3 = −γ

(4.150)

where ε, β and γ are already defined in Eq. (4.5), Eq. (4.6) and Eq. (4.7), respectively.

The constant mass wave function of the Mie potential is given in Eq. (4.20). The

PDEM wave function solution of the Mie potential can be obtained by substituting ε,

β and γ parameters in terms of ξ1, ξ2 and ξ3 where they are introduced in Eq. (4.146).

4.2.5 The Kratzer Potential

The SE with constant mass for the Kratzer potential in s transformed form is already

given in Eq. (4.48). Now, if η = 1
4 is set and then, when this equation is compared

with Eq. (4.147) the equal parameters can be listed as

ξ1 = −ε2

ξ2 = β

ξ3 = −γ

(4.151)

where the ε, β and γ parameters are defined in Eq. (4.49), Eq. (4.50) and Eq. (4.51),

respectively. Then it is clear that the PDEM energy eigenvalue and the wave function

solution of the Kratzer potential can easily be determined by substituting to the

constant mass solutions defined in Eq. (4.52) and Eq. (4.54).
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CHAPTER 5

CONCLUSION

In this thesis, the one dimensional PDEM problem is studied by solving the SE for

some well known potentials, such as the deformed Hulthen, the Mie, the Kratzer, the

pseudoharmonic, and the Morse potentials. The Nikiforov-Uvarov method is used

in the calculations to get energy eigenvalues and the corresponding wave functions

exactly. By introducing a free parameter in the transformation of the wave function,

the PDEM is reduced to the solution of the SE for the constant mass case. At the same

time, the deformed Hulthen potential is solved for the PDEM case by applying the

method directly. The Morse potential is also solved for a mass distribution function,

such that the solution can be reduced to the constant mass case.

Two different ways are followed for the determination of PDEM problem solutions.

In the first way, the SE with PDEM for the deformed Hulthen potential is solved.

The Hamiltonian introduced by von Roos [15] is used with the ambiguity parameters

α, β, γ. Various numerical combinations for these three parameters are tried in the

literature. However, in this study these three constants are used in closed form. A

coordinate transformation with a mass term having a power of η is applied to the SE. In

the solution of the deformed Hulthen potential, this power factor is also used in closed

form. The arbitrary choice of the variable mass function and s transformation for

NUM are dependent on the exponential form of the potential to make the calculations

easier. The NUM is applied for the first time in the solution of the PDEM SE with

the deformed Hulthen potential in this study [145]. In the second way, the solutions of

the SE with PDEM are reduced to constant mass solutions for the Mie, the Kratzer,

the Morse and the pseudoharmonic potentials with the appropriate choice of η in the
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coordinate transformation, so that the PDEM equation similar to the constant mass

solution in NU form. For the Morse potential η is equal to 1/2, for the pseudoharmonic

potential it is 3/8 and for the Mie potential it is 1/4. In the constant mass case, first,

the Mie potential is studied in one dimension and the analytical solution of the SE for

the Mie potential is obtained. By using a special case of Mie potential l = 2k and k = 1

is selected. The energy eigenvalues and the corresponding eigenfunctions are obtained

by NUM. This is the first application of NUM for the solution of the Mie potential

[140]. Similarly, the pseudoharmonic, the Morse and the Kratzer potentials are solved.

The numerical values of the energy eigenvalues for N2, CO, NO and CH diatomic

molecules with different values of principal and angular quantum numbers n and `,

respectively are computed in eV and presented for the Mie, the pseudoharmonic and

the Kratzer potentials. The Morse potential has exact solution of the SE for angular

quantum number l = 0. However, one needs to make some approximations to the SE

to have analytical solutions for l 6= 0 cases. In this study, the SE is solved for l = 0 case

and by using NUM, the exact solutions of the SE are obtained. The obtained energy

eigenvalue not only has a real spectrum as the other potentials mentioned before, but

also it is dependent on the potential parameters V1 and V2. Moreover, in the special

case for λ = 1, En = −(A− n)2 is obtained.
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