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ABSTRACT

HIGHER ORDER LEVELABLE MRF ENERGY MINIMIZATION VIA

GRAPH CUTS

Karcı, Mehmet Haydar

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mübeccel Demirekler

February 2008, 80 pages

A feature of minimizing images of a class of binary Markov random field energies

is introduced and proved. Using this, the collection of minimizing images of lev-

els of higher order, levelable MRF energies is shown to be a monotone collection.

This implies that these images can be combined to give minimizing images of the

MRF energy itself. Due to the recent developments, second and third order bi-

nary MRF energies of the mentioned class are known to be exactly minimized by

maximum flow/minimum cut computations on appropriately constructed graphs.

With the aid of these developments an exact and efficient algorithm to minimize

levelable second and third order MRF energies, which is composed of a series of

maximum flow/minimum cut computations, is proposed and applications of the

proposed algorithm to image restoration are given.

Keywords: Markov Random Fields, Image Restoration, Network Flows, Graph

Cuts, Maximum Flow, Minimum Cut, Levelable Energies
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ÖZ

ÇİZGE KESİLERİ TEMELLİ YÜKSEK DERECELİ DÜZEYLENEBİLİR

MRA MİNİMİZASYONU

Karcı, Mehmet Haydar

Doktora, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mübeccel Demirekler

ŞUBAT 2008, 80 sayfa

İkili Markov rasgele alan enerjilerinin bir türünü küçülten görüntülerin bir özelliği

sunuldu ve ispatlandı. Bu özellik kullanılarak yüksek dereceli, düzeylenebilir

MRA enerjilerinin düzeylerini küçülten görüntüler yığınının monoton bir yığın

olduğu ve bu görüntülerin MRA enerjisini küçültmek üzere birleştirilebileceği

gösterildi. Bahsi geçen ikili MRA enerjilerinin ikinci ve üçüncü dereceden olan-

larının uygun tasarlanmış çizgeler üzerinde uygulanan maksimum akış/minimum

kesi algoritmalarıyla kesin ve etkili biçimde küçültülebileceği son gelişmelerle bi-

linmektedir. Bunların yardımıyla ikinci ve üçüncü dereceden düzeylenebilir MRA

enerjilerini küçülten ve bir dizi maksimum akış/minimum kesi hesaplamasından

oluşan bir algoritma önerildi ve bu algoritmanın görüntü iyileştirme üzerine bazı

uygulamaları sunuldu.

Anahtar Kelimeler: Markov Rasgele Alanları, Görüntü İyileştirme, Ağ Akışları,

Çizge Kesileri, Maksimum Akış, Minimum Kesi, Düzeylenebilir Enerjiler
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CHAPTER 1

INTRODUCTION

Many image processing problems are essentially estimation (inversion) problems.

Denoising problem viewed as estimation of the original image before contami-

nation by noise or moving object tracking problem viewed as estimation of the

motion vectors are examples. Estimation on the other hand, always goes in hand

with optimization. In statistical inversion [20] for example, estimation is almost

immediately recast into maximization of a probability density function. In ad-

dition, many estimation problems are presented as optimization problems at the

very beginning. Least-squares methods, as examples of deterministic approaches

to inversion, are commonly formulated as optimization problems themselves.

This approach relies on a cost (energy) function which encodes our information

about the estimatee and minimization of it to gather the best solution. We re-

fer to the text books [9, 2] for examples of optimization or energy minimization

based methods in various fields of image processing.

One important issue in energy minimization framework is the construction of

the energy function. Energy function should summarize our information about

the estimated quantity and, since we deal with minimizing it, should be a mea-

sure of how far a candidate is from the desired solution. Traditionally energy

functions are presented in two parts, data fidelity and prior. The data fidelity

part forces the solution to keep close to the observed data and the prior, which

typically does not depend on the data, forces it to obey the restrictions which

summarize our prior information about it. Apart from the expressiveness of

them, energy functions should be constructed regarding computational issues as

1



well. Existence and uniqueness of minimizers or ease of minimization are also

important aspects of the problem. Minimization of the energy function, despite

the fact that there is a whole optimization theory literature to the assistance, is

also an effortful part of the energy minimization framework. One of the prob-

lems here is the scarcity of global minimization algorithms. Most optimization

algorithms are impaired with the possibility of getting stuck with local minima.

Another problem is the efficiency which becomes very crucial especially with

large scale and time critical problems which are typical in image processing.

In the third chapter, we are going to introduce an algorithm which minimizes

the following energy function

F (x) =
∑

i∈Σ

fi(xi, yi) +
∑

i,j∈Σ

fij(xi, xj) +
∑

i,j,k∈Σ

fijk(xi, xj, xk) (1.1)

for certain types of functions fi, fij and fijk
1. Here Σ denotes the lattice of

pixels, x and y denote the estimated and observed images, and the intensities

associated to ith pixel of the images x and y are denoted by xi and yi respectively.

Minimization of the energy function above can be used in various fields of image

processing like restoration, inpainting etc. In Section 3.2.5, when we present

numerical examples of our method, we are going to deal with denoising problems.

We encounter energy functions like the one given in (1.1) in the theory of

Markov Random Fields, MRFs hereinafter, where the maximum a posteriori

estimation is equivalent to an energy minimization. Hence as we are going to

review in the following chapter, MRFs provide the Bayesian justification of the

energy minimization framework, so we prefer to refer to the energy function (1.1)

as MRF energy. Besides that, MRF formulation is not essential for the rest of

the material in this thesis.

We assume that the intensities of the noisy and the estimated images are

integers. Due to the operation of image sensing devices, it is common practice

to assume integer valued intensities for noisy images. Assuming integer values

1 Our intention is to give a rather informal introduction in this chapter. We leave the details
of the notation to Chapter 2 and Section 3.2.1.
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for the intensities of the estimated images is also encouraged by the image dis-

playing devices, however it is not as common. Usually the intensities of the

estimated images are assumed to be real numbers and they are rounded to in-

tegers for displaying. In the sequel we assume that the estimated images are

also composed of integer intensities. This places the minimization problem in

a highly complicated and, in some aspects, harder class of problems, namely

integer programming. However quite surprisingly, recent devolopments lead to

efficient minimization schemes of a class of MRF energies of this kind with the

assistance from a seemingly unrelated area, network flow theory. The methods

which depend on this collaboration are said to be graph-cuts methods. We are

going to give an overview of graph-cuts based devolopments in image processing

in the next chapter.

Graph-cuts methods can be roughly categorized into two classes, exact and

approximate. As we already pointed out that graph-cuts methods apply for only

a class of MRF energies and one can correctly guess that exact methods require

more restrictions on the energy functions compared to approximate ones. Some

of the exact methods require smaller graphs than the others to provide more

efficient algorithms. Needless to say these more efficient algorithms apply for a

highly restricted class of MRF energies.

In this thesis we study exact and efficient minimization of MRF energies

using graph-cut techniques. Second chapter is an introduction to MRFs, where

we introduce the related notation and definitions. We also introduce some new

(up to our knowledge) structures in this chapter. In the third chapter we propose

an efficient algorithm which exactly minimizes MRF energies with convex data

fidelity terms and levelable prior terms. In the introductory section of the third

chapter we start with an overview of the graph-cuts literature and we summarize

our contribution to the subject. The following section, Section 3.2 is devoted

to binary MRFs. We first present an overview of the literature where network

flow theory and minimization of binary MRF energies meet. Then we start

our treatment of binary MRFs with introducing a new notation and a set of

3



definitions in Section 3.2.1. With the aid of these, we present Theorem 3.15, a

new feature of minimizers of higher order, regular binary MRF energies in the

following Section 3.2.2. In this section we also give a notation which substantially

simplifies dealing with higher order functions. We start Section 3.2.3 introducing

a partial ordering of functions of binary variables. This is going to help us to

give a generalization of a known property, namely monotonicity, of minimizers

of binary MRF energies.

In Section 3.2.4 we make use of the theory developed in Section 3.2. Here we

define levelable functions and introduce our algorithm which minimizes levelable,

higher order MRF energies. Finally we provide applications of our algorithm to

image denoising in Section 3.2.5. We are going to conclude and discuss possible

future directions in Chapter 4.

To summarize, this thesis contributes to the subject in terms of

• introducing a useful notation and providing new, comprehensive definitions,

• presenting a new feature of minimizers of binary MRF energies, which we think

may be of further use even on its own,

• introducing an abstraction to the theory of binary MRFs and generalization

of monotonicity property of minimizers of binary MRF energies to higher order

energies,

• introducing an algorithm which efficiently minimizes higher order, levelable

MRF energies and

• providing applications of higher order, levelable priors to image restoration.
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CHAPTER 2

AN INTRODUCTION TO MRF MODELS

We justify our energy minimization approach by estimation of MRFs. Since

in MRF modelling maximum a posteriori estimation is equivalent to an energy

minimization [25], once we model image signals as instances MRFs, energy min-

imization becomes our natural choice for estimation. Besides, another class of

methods, namely variational methods in image processing [9], can easily be cast

into the MRF framework [20] after discretization. Hence the MRF framework

is a fairly general one for image processing and has attracted great attention

in almost all fields of image processing. For extensive treatments of MRFs see

[7, 24, 32] and see [27] for a review. The text books [9, 20] also have sections on

MRFs.

In this chapter we give a very brief introduction to MRFs following the texts

[7, 24] to which we refer for the details we skip. For the following assume that L

is a positive, finite integer.

Definition 2.1 We define the set ΛL = {0, .., L − 1}, which we call the in-

tensity space. Let Σ be a non-empty, finite set of elements called pixels. The

family ΛΣ
L = {x : Σ → ΛL} is called the configuration space and each x ∈ ΛΣ

L

is called an image. Each item in the intensity space ΛL is said to be a intensity.

The terminology given above is not standard. Usually the terms site, phase

space and configuration are used instead of pixel, intensity space and image

respectively.

Notation 2.2 For any nonnegative integer n, we use Λn
L to denote the set of

5



n-tuples of intensities. Note that Λ0
L = ∅.

Notation 2.3 We set Σ = {1, ..,M}, hence ΛΣ
L = ΛM

L with no loss of general-

ity. Therefore, each image x ∈ ΛΣ
L is denoted by the M-tuple (x1, .., xM ) where

xs = x(s) for s = 1, ..,M . We denote x(S) = (xs)s∈S for a given subset S of Σ.

Definition 2.4 A neighborhood system on Σ is a family N = {Ns}s∈Σ of

subsets of Σ so that

i. s /∈ Ns

ii. s ∈ Nt ⇐⇒ t ∈ Ns

for any s, t ∈ Σ. The set Ns is said to be the neighborhood of the pixel s. We

denote Ñs = Ns ∪ s. The couple (Σ,N ) is called a topology.

We define the following topology related structures for future reference. The

last two are new as far as we know.

Definition 2.5 Given a topology (Σ,N ), the boundary ∂S of S ⊂ Σ is defined

as

∂S = (
⋃

s∈S

Ns) \ S

Definition 2.6 Given a topology (Σ,N ), any two pixels s and t in S ⊂ Σ are

said to be connected in S, if there exists a collection of pixels {si}
r
i=0 in S,

where s = s0 and t = sr such that

si+1 ∈ Ñsi

for 0 ≤ i < r − 1. A set S ⊂ Σ is called connected if any two pixels in S are

connected in S.

Definition 2.7 Given a topology (Σ,N ) and an image x ∈ ΛΣ
L. Any connected

set C ∈ Σ is said to be a component with respect to x if xs = xt for any s, t ∈ C.

Then we say xC = xs, for any s ∈ C, is well defined.

In the sequel, any image in the configuration space is going to be assumed an

instance of a random field, which we define next.

Definition 2.8 A random field X on Σ with intensities in ΛL is a collection

X = (X1, .., XM ) of random variables which take values in ΛL.

6



According to the definition above, for each pixel s ∈ Σ, xs is an instance of the

random variable Xs. However, a random field can also be viewed as a random

variable taking values in the configuration space. With this interpretation each

instance of a random field is an image.

Notation 2.9 We define X(S) = (Xs)s∈S for a given subset S of Σ.

Definition 2.10 A random field on Σ is called a Markov random field

(MRF) with respect to the neighborhood system N if

i. P (X = x) > 0

ii. P (Xs = xs |X(Σ \ s) = x(Σ \ s)) = P (Xs = xs |X(Ns) = x(Ns))

for all s ∈ Σ and x ∈ ΛΣ
L.

The first equation above is called the positivity condition [24] and is a technical

requirement. Among the various versions, to avoid unnecessary details and since

it causes no essential loss of generality for our purposes, we stick to this one.

The second equation makes MRFs valuable for signal processing. According to

it, statistics of any pixel may depend on any other pixel however this dependence

can only be through its neighbor pixels. Futhermore this compromise between

accuracy and simplification can be fine tuned by the neighborhood structure.

Definition 2.11 Given a topology (Σ,N ), a set π ⊂ Σ is called clique if either

π is a singleton or any pixel in π is a neighbor of any other pixel in π.

We discriminate cliques with the number of elements they have. An n-clique or

a clique of order n refers to a clique of n pixels. The collection of cliques of Σ is

determined when a neigborhood system on Σ is given. Conversely if a family of

cliques of Σ is given, a feasible neighborhood system can be identified. Indeed,

for the trivial neighborhood system, where any pixel is a neighbor of any other

pixel, all subsets of Σ are cliques.

Notation 2.12 We denote the family of all n-cliques on Σ by Πn(Σ) or shortly,

by Πn.

Definition 2.13 A Gibbs potential on ΛΣ
L relative to the neighborhood system

7



Figure 2.1: Two commonly used topologies. The circles represent pixels. Black
circles are neighbors of the circle in the middle. The topologies in the first column
are called 4-neighborhood topology and 8-neighborhood topology respectively.
The associated cliques, up to rotation, are given on the right.

N is a collection {gπ}π⊂Σ, of functions gπ : ΛΣ
L → R, where

i. gπ ≡ 0, if π is not a clique (2.1)

ii. x(π) = y(π) =⇒ gπ(x) = gπ(y) (2.2)

for all x,y in ΛΣ
L and all π ⊂ Σ.

The following theorem is known as Hammersley-Clifford theorem. Its proof

may be found in the texts [7, 32].

Theorem 2.14 A random field is an MRF with respect to the neighborhood

system N if and only if its joint density function p(x) : ΛΣ
L → (0, 1) is given by

p(x) =
1

Z
exp(−

1

T
F (x)) (2.3)

where T , Z are constants and F : ΛΣ
L → R is a function given by

F (x) =
∑

π⊂Σ

gπ(x) (2.4)

where the collection {gπ}π⊂Σ is a Gibbs potential relative to N .

Remarks

1. The constant T is called temperature. Other constant Z is a normalizing

constant and is called partition function. We call F (x) the MRF energy of

x and each gπ, π ⊂ Σ, a potential function.

8



2. Let K denote the maximum number of pixels a clique can have, given the

topology. Then because of (2.1) we can rewrite (2.4) as

F (x) =
K∑

k=1

∑

π∈Πk

gπ(x)

Thence Equation (2.2) implies that

F (x) =
K∑

k=1

∑

π∈Πk

fπ(xπ1 , .., xπk
) (2.5)

where, for any clique π ⊂ Πn, x(π) is denoted by (xπ1 , .., xπn
) and the function

fπ : Λn
L → R is defined as

fπ(xπ1 , .., xπn
) = gπ(x)

For MRF energies we prefer to use the form given by (2.5) and for any π ∈ Πn

we call each fπ an n-th order potential function. We also refer to MRF energies

with the order of the largest clique, thus for instance, the one given in (2.5) is a

K-th order MRF energy. �

The following example demonstrates how MRFs are used in a typical image

processing problem, denoising.

Example 2.15 Let z = (z1, .., zM ), where zs ∈ ΛL for 1 ≤ s ≤ M , be a given

image. Assume that z is a degraded and then quantized version of an image

x = (x1, .., xM ) which we want to estimate. Say, we presume the 4-neighborhood

topology (see Figure 2.1) for x and pose the following energy function.

F (x) =
∑

π∈Π1

fπ(xπ1) +
∑

π∈Π2

fπ(xπ1 , xπ2)

As F is an MRF energy, the joint density of x is given by Equation (2.3). Hence

a maximum a posteriori estimate of x is a maximizer of (2.3) or equivalently, a

minimizer of F .

This observation gives a hint about how to choose the functions fπ. Usually

if π ∈ Π1, fπ is chosen to be a high-pass function which penalizes deviations

between xπ1 and zπ1 . On the other hand the second term of F does not depend

9



on the noisy observation and somehow reflects the characteristics of the image

signal up to our information or inclination. The scope of this thesis does not

cover the issue of how to embed the prior information or inclination in the energy

function. For additional information about this topic one can see [20].

Usually, the part of F which depends on measured data is called the data

fidelity energy and the part of F which depends on the estimated signal only is

called the prior energy. Although of course, there is no theoretical obligation to

separate these terms. �

Denoising is one of the typical estimation problems in image processing. Any

estimation problem, which can be put as a minimization of an energy function

like the one we have given in (2.5), therefore, is an MRF problem hence falls in

the scope of this thesis. However, in the sequel we are going to have to limit

ourselves to certain data fidelity and prior energies.

Notation 2.16 We define V n
L = {f : Λn

L → R | f(0, .., 0) = 0} for positive n.

Note that as we are concerned with minimizing (2.5), assuming f(0, .., 0) = 0

causes no loss of generality. Any function f of n variables in (2.5) can safely be

replaced with f̂ defined as

f̂(x1, .., xn) = f(x1, .., xn) − f(0, .., 0)

In fact for the rest of this text, the assumption f(0, .., 0) = 0 is an unessential

detail.

10



CHAPTER 3

MINIMIZATION OF MRF ENERGIES

In the previous chapter we justified our energy minimization approach with the

aid of MRF modelling of image signals. In this chapter we deal with the min-

imization of MRF energies. In the following section we present a survey of

graph-cuts based MRF energy minimization literature and we give a summary

of our contribution in Section 3.1.1. The following section, Section 3.2 is the

core of this work. In this section we start with a review of the equivalence of the

binary MRF energy minimization and maximum flow problems. Then we intro-

duce an additional notation in 3.2.1 and introduce a new feature of minimizers of

binary MRF energies in 3.2.2. Next we deal with the monotonicity property of

minimizers in 3.2.3 and in 3.2.4 we extend the theory to general MRF energies.

We finally give some numerical examples in image denoising in Section 3.2.5.

3.1 Introduction

One class of MRF energy minimization problems is of special importance, bi-

nary MRF energy minimization. Minimization of a class of this type of energy

functions is known to be equivalent to the maximum flow problem [1, 3] in an

appropriately defined graph since 1970’s [28, 17]. The maximum flow formulation

of such problems lead to exact and efficient algorithms for energy minimization

for binary MRFs, in contrast to the other existing algorithms which lacked either

of these properties. See [17] for a comparison of a maximum flow based approach

with two traditional algorithms, simulated annealing [14] and ICM [4] in binary
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image restoration1. As the scope of these algorithms was underestimated to cover

only binary image processing, their utilization was limited.

The results of [28, 17] are recently extended by Kolmogorov et al. in [22] where

the class of binary MRF energies which can be represented by an appropriate

graph is called graph representable and necessary and sufficient conditions for

graph representability of second and third order MRF energy functions are given.

Later, their results are reestablished with simpler algebraic arguments in [13]. In

[22] the graph constructions for the second and third order graph representable

MRF energies are also given. The case with higher order energies is addressed

in both of these papers and also in [26, 34]. In the sequel we deal with a class

of MRF energies of any finite order which can be decomposed into binary MRF

energies of the same order. For the minimization of the resulting binary MRF

energies we just refer to [22]. Thus for the applications we are limited up to third

order energies for the time being. However our algorithm does not depend on

the order of the energy, so the adaptation of it for energies of order higher than

three is trivial.

Today, efficent MRF energy minimization algorithms exist and a variety of

them is based on maximum flow formulation. The revival of maximum flow

based algorithms for MRF energies is due to the recognition of the fact that

MRF energies could be rewritten, decomposed or recast in terms of maximum

flow problems. MRF energy minimization methods depending on this recognition

are called, by convention, graph-cut methods [6]. See [31] for a comparison of

MRF energy minimization methods, including graph-cut based methods.

The first class2 of graph-cut implementations are due to [29] and [19] for stereo

and image restoration respectively. These implementations base on rewriting a

class of second order MRF energies as maximum flow problems3 on appropriately

defined graphs. That representation however, requires a huge graph, typically

1 See [14] for simulated annealing, [4] for ICM or [27] for a review of both.
2 This simple classification is not chronological and is meant to be according to the simi-

larities of the implementations.
3 In [29] there is no explicit reference to MRFs though.
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one node for each possible intensity level for each pixel in [19] for example, so

its implementation is not as effective. Similar treatments can also be found in

[11, 33].

The second class of implementations [10, 18, 8, 33, 16] addresses the huge

graph issue. There, a class of MRF energies is decomposed into several binary

MRF energies. Then using the minimizers of these binary MRFs, a minimizer of

the initial MRF energy is constructed. This approach required several maximum

flow implementations on much smaller graphs; for a comparison, typically one

node for each pixel, to build more effective implementations of highly limited

number of MRF energies.

The first two classes of graph-cut methods share an important property that

they provide exact minimizers of MRF energies. This is not the case for the

third class of methods presented in [6] where Boykov et al. presented two descent

like iterative minimization schemes. In each iteration they recast the problem

of finding the maximum amount of descent in the energy as a maximum flow

problem. The ensuing algorithms are not exact, however in [6] they also show

that exact minimization problem of even some of the most basic MRF energies

is NP hard, hence virtually impossible. The class of energies for which these

methods could be applied is much wider than those of the other two classes of

methods. The size of the required graph and the number of times a maximum

flow calculation is performed depend on the case.

We base our approach on the paper [10] of Darbon and Sigelle, hence the

second class of methods. Recall that similar algorithms also developed in [18, 8,

33, 16]. In order to clarify our contribution to the subject, we would like to give

a little detail of their work.

Recall that Σ = {1, ..,M} is the configuration space, i.e., a finite lattice

of pixels. Remember that L denotes the number of intensity levels, which is

typically 256, and ΛL = {0, .., L−1} denotes the intensity space. Then the MRF
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energy function is given by (2.5)

F (x) =
K∑

k=1

∑

π∈Πk

fπ(xπ1 , .., xπk
)

where Πk denotes the family of cliques of order k. For any π = {π1, .., πk} ∈ Πk,

fπ is the associated potential function. The variable x = (x1, .., xM ) ∈ ΛΣ
L denotes

an image. The integer K denotes the order of the largest cliques. The aim is to

find a minimizer of F .

In [10], Darbon and Sigelle developed an algorithm to minimize a variant of

F . They took K = 2 and they assumed

i. fπ is a convex function for which f(0) = 0 holds4, if π ∈ Π1

ii. fπ(xπ1 , xπ2) = aij|xπ1 − xπ2 | if π ∈ Π2 and aij ≥ 0

The idea behind the algorithm is to decompose F into levels as follows

F (x) =
L−2∑

i=0

F i(xi)

=
L−2∑

i=0

(
∑

π∈Π1

[fπ(i + 1) − fπ(i)]xi
π1

+
∑

π∈Π2

aij|x
i
π1

− xi
π2
|)

where for any nonnegative integer y < L

yi =





1 : i < y

0 : i ≥ y

for i = 0, .., L − 25. Note that for each i, F i is a binary MRF in terms of the

level sets xi of the image x. They proved that there exists minimizers of F i for

i = 0, .., L − 2, which are the level sets of a minimizer of F . They calculated

each minimizer of F i using a maximum flow computation on an appropriately

designed graph as proposed in [22] to construct a minimizer of F . They also

gave a binary search type implementation which required log(L) maximum flow

computations.

The possibility of such a decomposition is due to the levelability of the abso-

lute value of differences of integer pairs into levels, i.e., for nonnegative integers

4 The f(0) = 0 requirement is appended by us just for the sake of the clarity of the notation.
5 This notation is a slightly altered version of the one given in [10].
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y, z < L

|y − z| =
L−2∑

i=0

|yi − zi|

Indeed, the method given by [10] applies to any second order potential fπ as long

as it is levelable, i.e.,

i. fπ(xπ1 , xπ2) =
L−2∑

i=0

f i
π(xi

π1
, xi

π2
)

ii. f i
π = f j

π for 0 ≤ i, j ≤ L − 2 (3.1)

The definition of levelability is in fact due to a later paper of the same authors

[11]. Moreover in their definition they did not assume (3.1). However the imple-

mentation they gave for the levelable functions for which (3.1) does not hold, is

not the one they gave in their first paper [10] and is not as efficient.

3.1.1 Our Contribution

In this work we follow a generic approach. We start with a property of minimizers

of regular binary MRFs. Using it we reach a generalization of the method given

in [10] in two aspects.

i. We generalize the method to higher order MRFs.

ii. We relax the notion of levelability, namely the Equation (3.1), such that

the same method still applies for minimization of the MRF energy.

To our knowledge the issue of higher order potentials has never been addressed

for this class of graph-cut based methods. For the other classes of graph cut based

methods, the issue of higher order energies is addressed in [34, 21]. We think,

quite reasonably that, using higher order priors better representation of image

signals may be acquired. As we previously mentioned, the relaxed levelability

has also been considered by Darbon and Sigelle in [11], but the implementation

they gave falls into the first class of graph-cut based methods rather than the

second.
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3.2 Binary Markov Random Fields

In the previous section we introduced MRFs and how they are utilized in esti-

mation problems in image processing. In Section 3.2.4 we are going to present

an algorithm which efficiently minimizes a class of MRF energy functions. This

algorithm is going to be based some properties of minimizers of binary MRFs

hence first we have to deal with them.

We first present an overview of minimization of binary MRFs via maximum

flow algorithms. Our aim is only to provide an intuition how these two seemingly

unrelated problems are equivalent. We refer to the text books [1, 3] for detailed

treatments of maximum flow/minimum cut problems and to the papers [22,

13] for rigorous establishment of equivalence of binary MRF minimization and

maximum flow problems.

The main objects of interest in network flow theory are directed graphs. A

(directed) graph G(V,A) consists of

• a finite set of nodes, V ,

• a set of ordered pairs of nodes, A.

We assume that there are two distinguished terminal nodes in the graph, de-

noted by s and t. We denote V = {s, t, 1, ..,M}, where M is a positive integer

denoting the number of non-terminal nodes. Each item (u, v) ∈ A is said to

be an arc and is associated with a nonnegative capacity c(u, v)6. A flow on

G(V,A) is a mapping p : A → Z for which the following conditions hold

i. 0 ≤ p(u, v) ≤ c(u, v), for any (u, v) ∈ A

ii.
∑

(u,v)∈A

p(u, v) −
∑

(v,u)∈A

p(v, u) = 0, for any u ∈ V \ {s, t}

The quantity
∑

(s,u)∈A p(s, u) is said to be the value of the flow. A pair of disjoint

sets of nodes (S, T ) for which S ∪ T = V holds, is said to be a cut if s ∈ S and

t ∈ T . The capacity of the cut c(S, T ) is defined as

c(S, T ) =
∑

(u,v)∈A
u∈S,v∈T

c(u, v)

6 We assume integer capacities with no essential loss of generality.
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Figure 3.1: A simple graph and a flow defined on it. The pairs of integers
accompanying the arcs are the associated flows p(u, v) and the capacities c(u, v)
in this order.

Determination of the maximum possible value of the flow on a given graph is

the celebrated maximum flow problem in integer programming. There exist effi-

cient, polynomial time algorithms for maximum flow problems. One important

thing to note is that, those algorithms also solve another important problem in

integer programming, namely the minimum cut problem which deals with iden-

tifying the cut with the minimum capacity on a given graph. Minimum cut

problem constitutes the connection between the maximum flow problem and the

minimization of binary MRF energies as follows7.

Let x ∈ ΛΣ
2 and consider the following second order binary MRF energy

function.

F (x) =
∑

π∈Π1

fπ(xπ1) +
∑

π∈Π2

fπ(xπ1 , xπ2) (3.2)

Note that we can write

fπ(xπ1 , xπ2) = fπ(0, 0)(1 − xπ1)(1 − xπ2) + fπ(0, 1)(1 − xπ1)xπ2

+ fπ(1, 0)xπ1(1 − xπ2) + fπ(1, 1)xπ1xπ2

for any π ∈ Π2 and

fπ(xπ1) = fπ(0)(1 − xπ1) + fπ(1)xπ1

7 We adapt the following argument from [13] to which we refer for the full treatment.
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for any π ∈ Π1. Thence

F (x) =
∑

π∈Π2

[fπ(0, 0) + fπ(1, 1) − fπ(0, 1) − fπ(1, 0)]xπ1xπ2 + L

=
∑

π∈Π2

[fπ(0, 1) + fπ(1, 0) − fπ(0, 0) − fπ(1, 1)]xπ1(1 − xπ2) + L′

where L and L′ are affine functions of x. Let us rewrite F as follows

F (x) =
∑

π∈Π2

aπxπ1(1 − xπ2) +
∑

i∈Σ

aixi + c (3.3)

where for any π ∈ Π2

aπ = fπ(0, 1) + fπ(1, 0) − fπ(0, 0) − fπ(1, 1)

ai is appropriately defined for any i ∈ Σ8 and c is a constant. Assume that

aπ ≥ 0 for any π ∈ Π2.

Now let us construct a graph with one node for each pixel in Σ in addition

to two terminal nodes and enumerate non-terminal nodes with the indices of the

corresponding pixels. Match any given cut to an image according to the following

rule.

• For any node u ∈ S, set the intensity of the corresponding pixel to 0

• For any node v ∈ T , set the intensity of the corresponding pixel to 1

This way any cut is associated with a unique image and vice versa. For any

π ∈ Π2 append an arc (π2, π1) to the graph with capacity aπ
9. For any i ∈ Σ

append an arc (s, i) with capacity ai if ai > 0 and append an arc (i, t) with

capacity −ai if ai ≤ 0. Let (S, T ) be any cut in this graph. Notice that due

to the definition of a cut, for any π ∈ Π2, the contribution of the arc (π2, π1)

to the capacity of the cut is nonzero only if xπ2 = 0 and xπ1 = 1. Therefore

for any π ∈ Π2, the contribution of the arc (π2, π1) to the capacity of the cut is

aπxπ1(1−xπ2). On the other hand the contribution of the arc (s, i) to the capacity

of the cut is aixi if ai > 0 and zero otherwise10. Similarly the contribution of the

8 For the following we do not need the explicit form of ai.
9 This is why we require aπ ≥ 0.

10 We maintain here that an arc with zero capacity is equivalent to a non existant arc.
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arc (i, t) to the capacity of the cut is −ai(1 − xi) if ai ≤ 0 and zero otherwise.

To sum up we have

c(S, T ) =
∑

π∈Π2

aπxπ1(1 − xπ2) +
∑

i∈Σ:ai>0

aixi +
∑

i∈Σ:ai≤0

−ai(1 − xi)

which is equal to the MRF energy given in (3.3) up to a constant. This verifies

that minimization of the binary MRF energy function given by (3.3) or by (3.2)

is equivalent to the minimum cut problem on the graph we defined. In turn, this

problem is already known to be equivalent to the maximum flow problem on the

same graph. In the sequel we are going to decompose a given non-binary MRF

energy into binary MRF energies. When we need to minimize each binary MRF

energy to minimize the given non-binary energy we started with, we are going

to use this equivalence.

In the following section we shall present our notation and give some defini-

tons. In the next section our aim is to explore a characteristic of the minimizers

of binary MRF energies. The trailing section is devoted to a very important

property of minimizers of binary MRFs, monotonicity. Thanks to this property

we are going to be able to decompose a class of MRF energies in terms of binary

MRF energies and construct the aforesaid algorithm in the last section.

3.2.1 Notation and Definitions

Although the concepts we describe are simple, the notation we have to use can

get assorted and hard to follow. As a remedy for this, after the definitions or

results which may seem complicated, we present examples which hopefully reduce

the complication.

Throughout this section let n be a positive integer and for any y ∈ Λ2, let y′

denote the negation of y, i.e., y′ = 1 − y. We also denote In = {1, .., n}.

Definition 3.1 Define integers p, q, m so that 0 ≤ p ≤ n, p + q = n and

0 ≤ m ≤ q. Let {q1, .., qm} be a set of nonnegative integers such that
∑m

i=1 qi = q.

Define the ordered collection of integers α0 = {α0
1, .., α

0
p} and define the sets of

integers αi = {αi
1, .., α

i
qi
} with i = 1, ..,m, so that the collection {α0, .., αm}
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disjointly splits In, i.e.

αi ∩ αj = ∅, 0 ≤ i 6= j ≤ m

m⋃

i=0

αi = In

Then we call the ordered collection {α0; α1, .., αm}, a (p; q1, .., qm) partition of

In.

Although we used the set notation for α0, we have to emphasize that α0 is an

ordered collection of integers from In, i.e., we distinguish between same sets with

different orderings for α0. This makes no difference for this definition but is

important for the following. For the sets αi with i > 0 ordering is not important.

Similarly, note that the collection of sets {α0; α1, .., αm} is also defined to be an

ordered collection.

Example 3.2 The ordered collection {α0; α1, α2}, where α0 = {4}, α1 = {1, 2}

and α2 = {3}, is a (1; 2, 1) partition of I4. Note that the word ordered is impor-

tant, as for example neither {α0; α2, α1} nor {α1; α0, α2} is a (1; 2, 1) partition

of I4. �

Example 3.3 The ordered collection {α0; α1, α2}, where α0 = ∅, α1 = {1, 2}

and α2 = {3}, is a (0; 2, 1) partition of I3. �

The following definition is an extended version of the one given in [22]. It

simply formalizes the notion of projection of a function of n variables into a

function of m variables with m ≤ n. We split the arguments of the function into

m + 1 groups. We keep the items in the first group constant and constrain the

items in the other groups mutually equal. The latter constraint is going to be of

use when we define regularities of functions of binary variables.

Definition 3.4 Let the collection {α0; α1, .., αm} be a (p; q1, .., qm) partition of

In. Given a = (a1, .., ap) ∈ Λp
L, we define the operator

P
(a1..ap)

α0;α1,..,αm : V n
L → V n

L

such that

P
(a1..ap)

α0;α1,..,αm(f)(ŷ1, .., ŷm) = f(y1, .., yn)
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where

yα0
k

= ak, k = 1, .., p

yαj
k

= ŷj, j = 1, ..,m, k = 1, .., qj

We say P
(a1..ap)

α0;α1,..,αm(f) is the (p; q1, .., qm) projection of f in m degrees of freedom

onto sets α0, .., αm with respect to (a1, .., ap).

If p = 0, we denote the (0; q1, .., qm) projection of f with P∅

∅;α1,..,αm(f).

Example 3.5 Let f ∈ V 5
2 . The function P (a1a2)

α0;α1,α2(f) with

P (a1a2)

α0;α1,α2(f)(ŷ1, ŷ2) = f(ŷ1, a1, ŷ1, ŷ2, a2)

is the (2; 2, 1) projection of f in two degrees of freedom onto sets α0 = {2, 5},

α1 = {1, 3}, α2 = {4} with respect to a = (a1, a2). Note that if β0 = {5, 2}, i.e.,

the same set as α0 with altered ordering, then

P (a1a2)

β0;α1,α2(f)(ŷ1, ŷ2) 6= P (a1a2)

α0;α1,α2(f)(ŷ1, ŷ2)

in general. �

Example 3.6 Let f ∈ V 3
L . The function P∅

∅;α1,α2(f) with

P∅

∅;α1,α2(f)(ŷ1, ŷ2) = f(ŷ1, ŷ2, ŷ1)

is the (0; 2, 1) projection of f onto sets α0 = ∅, α1 = {1, 3} and α2 = {2}. �

Next, we define the regularities of a function of binary variables. In a way, a

regularity is a spatial measure of how high-pass the function in consideration is.

Definition 3.7 Let the collection {α0; α1, α2} be a (p; q1, q2) partition of In, let

a = (a1, .., ap) ∈ Λp
2 and f ∈ V n

2 . We define the operator

R
(a1..ap)

α0;α1,α2 : V n
2 → R

as

R
(a1..ap)

α0;α1,α2(f) = f̂(0, 1) + f̂(1, 0) − f̂(0, 0) − f̂(1, 1)

where f̂ = P
(a1..ap)

α0;α1,α2(f). The quantity R
(a1..ap)

α0;α1,α2(f) is said to be the (p; q1, q2)

regularity of f onto sets α0, α1, α2 with respect to (a1, .., ap).
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If p = 0 we use the notation R∅

∅;α1,α2(f). Note that if either of the sets α1 or α2

is empty, R
(a1..ap)

α0;α1,α2 = 0. Thus all regularities of functions of single variable are

necessarily zero.

Example 3.8 The quantity

R(a1)

α0;α1,α2(f) = f(0, 0, 1, a1) + f(1, 1, 0, a1) − f(0, 0, 0, a1) − f(1, 1, 1, a1)

is the (1; 2, 1) regularity of f ∈ V 4
2 onto sets α0 = {4}, α1 = {1, 2}, α2 = {3}

with respect to a = (a1). �

Functions which have nonnegative regularities is of greater importance.

Definition 3.9 A function f ∈ V n
2 is said to be regular if all regularities of f

are nonnegative.

Remarks

1. Functions of single variable are, by definition, regular.

2. This definition of regularity of functions of binary variables is equivalent to

the one given in [22]. We prove this in Appendix A. �

3.2.2 A Property of Minimizers

Definition 3.10 For a given set S ⊂ Σ we define the inversion operator

κS : ΛΣ
2 → ΛΣ

2 as follows

z = κS(x) , κS · x ⇐⇒





zi=xi : i /∈ S

zi=x′
i : i ∈ S

We denote composition κS ◦ κT of two operators κS, κT by κST .

Recall the MRF energy

F (x) =
K∑

k=1

∑

π∈Πk

fπ(xπ1 , .., xπk
)

For the following analysis, we need to split the above energy to smaller pieces.

First we define

F k(x) =
∑

π∈Πk

fπ(xπ1 , .., xπk
)
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Therefore the cliques involved in F k(x) are k-cliques only.

Notation 3.11 Let m be a positive integer. For any given collection of disjoint

subsets S1, .., Sm of Σ and a collection of nonnegative integers u1, .., um such that

k = u1 + .. + um, we define Πku1..um

S1,..,Sm
to be the set of all k-cliques exactly uj pixels

of which belong to Sj with j = 1, ..,m.

π 1 π 2
π 3 : ∂S

: C

: T

Figure 3.2: An illustration of Notation 3.11 for example 3.12

Example 3.12 See Figure 3.2, where we assumed S = C ∪ T and C ∩ T = ∅.

Therefore, π1 ∈ Π651
C,∂S, π2 ∈ Π4211

C,T,∂S , π3 ∈ Π211
T,∂S . �

The following notation helps us to simplify the notation a bit further.

Notation 3.13 We define

eku1..um

S1,..,Sm
=

∑

π∈Π
ku1..um
S1,..,Sm

fπ(x(π))

and we introduce the following convention. If either of the sets, Si for instance,

is primed in the above notation, this would mean that the image x underwent the

inversion κSi
before the function evaluation. For example

eku1..ui..um

S1,..,S′
i,..,Sm

=
∑

π∈Π
ku1..um
S1,..,Sm

fπ((κSi
· x)(π))

From now on, assume that the summation indices types of which are not clear

in the context, are nonnegative integers. Let S be a subset of Σ, define

F k
S (x) =

∑

u+v=k
u6=0

ekuv
S,∂S

and

F k
S̄ (x) = F k(x) − F k

S (x)
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Notice that F k
S̄
(x) is comprised of all and only the terms of F k(x) which are not

related to the pixels in S 11. Define

F k
S′(x) = F k(κS · x) − F k

S̄ (x)

hence

F k
S′(x) =

∑

u+v=k
u6=0

ekuv
S′,∂S

Therefore we have

FS(x) ,

K∑

k=1

F k
S (x) =

K∑

k=1

∑

u+v=k
u6=0

ekuv
S,∂S

and

FS′(x) ,

K∑

k=1

F k
S′(x) =

K∑

k=1

∑

u+v=k
u6=0

ekuv
S′,∂S

Note that for any pair of images x, y, we have

F (y) − F (x) = F (κS · x) − F (x)

= FS′(x) − FS(x)

since there exists some subset S of Σ for which y = κS · x.

Definition 3.14 We define gain due to S, ∆FS(x), as the amount of energy

increase caused by inverting the intensities of the sites in S ⊂ Σ, i.e.

∆FS(x) = FS′(x) − FS(x)

In the sequel, we are going to investigate the term ∆FS(x) in finer details. To

this end we shall decompose the gain ∆FS(x) in terms of ∆FC(x) and ∆FT (x),

where the sets C and T disjointly split S. First we deal with F k
S (x)

F k
S (x) =

∑

u+v=k
u6=0

ekuv
S,∂S

=
∑

u+v=k
u6=0

∑

u′+v′=u

eku′v′v
C,T,∂S (3.4)

11 Note also that F k

Σ\S
(x) 6= F k

S̄
(x) in general.
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Notice that for k = u + v

ekuv
C,∂C =

v∑

v′=0

e
kuv′(k−u−v′)
C,T,∂S

therefore

eku0v
C,T,∂S = ekuv

C,∂C −
v∑

v′=1

e
kuv′(k−u−v′)
C,T,∂S

and similarly

eku0v
T,C,∂S = ekuv

T,∂T −
v∑

v′=1

e
kuv′(k−u−v′)
T,C,∂S

Note that eku′v′v
C,T,∂S = ekv′u′v

T,C,∂S as long as u = u′ + v′, thus rewriting (3.4) we have

F k
S (x) =

∑

u+v=k
u6=0

{eku0v
C,T,∂S + ek0uv

C,T,∂S +
∑

u′+v′=u

u′ 6=0
v′ 6=0

eku′v′v
C,T,∂S}

=
∑

u+v=k
u6=0

{ekuv
C,∂C + ekuv

T,∂T} + Ik
S,C,T (x)

= F k
C(x) + F k

T (x) + Ik
S,C,T (x) (3.5)

where

Ik
S,C,T (x) =

∑

u+v=k
u6=0

{
∑

u′+v′=u

u′ 6=0
v′ 6=0

eku′v′v
C,T,∂S −

v∑

v′=1

(
e

kuv′(k−u−v′)
C,T,∂S + e

kuv′(k−u−v′)
T,C,∂S

)
}

=
∑

u+v=k
u6=0

∑

u′+v′=u

u′ 6=0
v′ 6=0

eku′v′v
C,T,∂S −

∑

u+v=k
u6=0

v∑

v′=1

(
e

kuv′(k−u−v′)
C,T,∂S + e

kuv′(k−u−v′)
T,C,∂S

)

=
∑

u+v=k
u>1

∑

u′+v′=u

u′ 6=0
v′ 6=0

eku′v′v
C,T,∂S −

k−1∑

u=1

k−u∑

v′=1

(
e

kuv′(k−u−v′)
C,T,∂S + e

kuv′(k−u−v′)
T,C,∂S

)

For the first term in the equation above note that, if u = 1 = u′ + v′, either one

of u′, v′ has to be zero. For the second term in the last equation, note that for

u = k, the corresponding summation in the preceding equation does not exist.

Simplifying further we have

Ik
S,C,T (x) =

k∑

u′+v′=2
u′ 6=0
v′ 6=0

eku′v′v
C,T,∂S −

k∑

u+v′=2
u6=0
v′ 6=0

(
e

kuv′(k−u−v′)
C,T,∂S + e

kuv′(k−u−v′)
T,C,∂S

)
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Therefore since u, v, u′ and v′ are dummy variables

Ik
S,C,T (x) = −

k∑

u+v=2
u6=0
v 6=0

e
kuv(k−u−v)
T,C,∂S

Therefore we can rewrite (3.5) as

F k
S (x) = F k

C(x) + F k
T (x) −

k∑

u+v=2
u6=0
v 6=0

e
kuv(k−u−v)
T,C,∂S

Our aim is to decompose ∆F k
S (x) , F k

S′(x) − F k
S (x) hence recall F k

S′(x)

F k
S′(x) =

∑

u+v=k
u6=0

ekuv
S′,∂S

=
∑

u+v=k
u6=0

∑

u′+v′=u

eku′v′v
C′,T ′,∂S

=
∑

u+v=k
u6=0

{eku0v
C′,T ′,∂S + ek0uv

C′,T ′,∂S +
∑

u′+v′=u

u′ 6=0
v′ 6=0

eku′v′v
C′,T ′,∂S} (3.6)

Once again for k = u + v

ekuv
C′,∂C =

v∑

v′=0

e
kuv′(k−u−v′)
C′,T,∂S

therefore

eku0v
C′,T,∂S = ekuv

C′,∂C −
v∑

v′=1

e
kuv′(k−u−v′)
C′,T,∂S

and

eku0v
T ′,C,∂S = ekuv

T ′,∂T −
v∑

v′=1

e
kuv′(k−u−v′)
T ′,C,∂S

before using these in (3.6) note that eku0v
C′,T,∂S = eku0v

C′,T ′,∂S and eku0v
T ′,C,∂S = eku0v

T ′,C′,∂S,

so we have

F k
S′(x) = F k

C′(x) + F k
T ′(x) + Ik

S′,C,T (x) (3.7)
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where, skipping the exact index modifications we did before,

Ik
S′,C,T (x) =

∑

u+v=k
u6=0

{
∑

u′+v′=u

u′ 6=0
v′ 6=0

eku′v′v
C′,T ′,∂S −

v∑

v′=1

(
e

kuv′(k−u−v′)
C′,T,∂S + e

kuv′(k−u−v′)
T ′,C,∂S

)
}

=
k∑

u+v=2
u6=0
v 6=0

(
e

kuv(k−u−v)
C′,T ′,∂S − e

kuv(k−u−v)
C′,T,∂S − e

kuv(k−u−v)
T ′,C,∂S

)

Therefore combining (3.5) with (3.7) we have

∆F k
S (x) = ∆F k

C(x) + ∆F k
T (x) + ∆Ik

C,T (x)

hence

∆FS(x) = ∆FC(x) + ∆FT (x) + ∆IC,T (x) (3.8)

where

∆IC,T (x) =
K∑

k=2

∆Ik
C,T (x)

and for any k = 2, .., K, the correction term ∆Ik
C,T (x) = Ik

S′,C,T (x) − Ik
S,C,T (x) is

given by

∆Ik
C,T (x) =

k∑

u+v=2
u6=0
v 6=0

(
e

kuv(k−u−v)
T,C,∂S + e

kuv(k−u−v)
C′,T ′,∂S − e

kuv(k−u−v)
C′,T,∂S − e

kuv(k−u−v)
T ′,C,∂S

)

=
k∑

u+v=2
u6=0
v 6=0

(
e

kuv(k−u−v)
C,T,∂S + e

kuv(k−u−v)
C′,T ′,∂S − e

kuv(k−u−v)
C′,T,∂S − e

kuv(k−u−v)
C,T ′,∂S

)

Here last equation followed due to the symmetry between the indices.

Notice that any clique π? involved in ∆Ik
C,T (x) is from Π

kuv(k−u−v)
C,T,∂S with pos-

itive u and v, therefore any pixel in s ∈ π? ∩ C belongs to ∂T and any pixel in

s ∈ π? ∩ T belongs to ∂C. Hence the following must be clear.

∆Ik
C,T (x) = ∆Ik

C∩∂T,T (x) = ∆Ik
C,T∩∂C(x) = ∆Ik

C∩∂T,T∩∂C(x) (3.9)

and similarly

∆IC,T (x) = ∆IC∩∂T,T (x) = ∆IC,T∩∂C(x) = ∆IC∩∂T,T∩∂C(x) (3.10)
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We now give the most important result of this section as it provides the core

for the following sections.

Theorem 3.15 Consider the MRF energy given by

F (x) =
K∑

k=1

∑

π∈Πk

fπ(x(π))

which is regular, i.e., for any π ⊂ Σ, fπ is a regular function. Let x ∈ ΛΣ be an

image, S ⊂ Σ and C0 ⊂ S be a component with respect to x such that ∆FU(x) ≥ 0

for any set U ⊂ T0 = Σ \C0. Then there exists a component C with respect to x

such that C0 ⊂ C ⊂ S and ∆FC(x) ≤ ∆FS(x), hence F (κC · x) ≤ F (κS · x).

Proof Consider the following algorithm.

1. Set i = 0.

2. If ∆FCi
(x) ≤ ∆FS(x), set C = Ci and terminate.

3. Pick a pixel t ∈ ∂Ci ∩ Ti such that x(t) = xCi
. Notice that, since Ci is a

component with this reconstruction, xCi
is well defined. If no such t exists,

set C = Ci and terminate. Otherwise set i = i + 1.

4. Set Ci = Ci−1 ∪ {t}, Ti = S \ Ci. Goto step 2.

Notice that because of the way we expand it, the set Ci always remains a com-

ponent with respect to x which includes C0. It is evident that the algorithm

terminates after |T0| steps at most. Let n denote the loop index i when the algo-

rithm terminates. If the algorithm terminates at the second step, we are done.

If it terminates at the third step we have two possibilities.

i. Tn = ∅, which means that S itself is a component and C = Cn = S hence

∆FC(x) = ∆FCn
(x) = ∆FS(x).

ii. there exists no pixel t ∈ ∂Cn ∩ Tn such that x(t) = xCn
. Then, however,

xTn∩∂Cn
= xCn

′ is well defined. Recall (3.8)

∆F k
S (x) = ∆F k

Cn
(x) + ∆F k

Tn
(x) + ∆Ik

Cn,Tn
(x) (3.11)
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Recall (3.9) and denote C̄ = Cn ∩ ∂Tn and T̄ = Tn ∩ ∂Cn, then

∆Ik
Cn,Tn

(x) = ∆Ik
C̄,T̄ (x)

=
k∑

u+v=2
u6=0
v 6=0

(
e

kuv(k−u−v)

C̄,T̄ ,∂S
+ e

kuv(k−u−v)

C̄′,T̄ ′,∂S
− e

kuv(k−u−v)

C̄′,T̄ ,∂S
− e

kuv(k−u−v)

C̄,T̄ ′,∂S

)

Define

∆ikuv
C̄,T̄ (x) = e

kuv(k−u−v)

C̄,T̄ ,∂S
+ e

kuv(k−u−v)

C̄′,T̄ ′,∂S
− e

kuv(k−u−v)

C̄′,T̄ ,∂S
− e

kuv(k−u−v)

C̄,T̄ ′,∂S

Recall from the Notation 3.13 that ∆ikuv
C̄,T̄

(x) is given by

∑

π∈Π
kuv(k−u−v)

C̄,T̄ ,∂S

fπ(x(π)) + fπ(κC̄T̄ (x)(π)) − fπ(κC̄(x)(π)) − fπ(κT̄ (x)(π)) (3.12)

For any clique π ∈ Π
kuv(k−u−v)

C̄,T̄ ,∂S
, define

α1 = {j ∈ Ik : πj ∈ C̄}

α2 = {j ∈ Ik : πj ∈ T̄}

let α0 = Ik \ (C̄ ∪ T̄ ) and denote aj = xπ
α0

j

for j = 1, .., k − u − v. Observe that

R
(a1..ak−u−v)

α0;α1,α2 (fπ) = fπ(x(π)) + fπ(κC̄T̄ (x)(π)) − fπ(κC̄(x)(π)) − fπ(κT̄ (x)(π))

is nonnegative by the hypothesis. However this and (3.12) imply that ∆ikuv
C̄,T̄

(x),

∆Ik
Cn,Tn

(x) and ∆ICn,Tn
(x) are nonnegative as well. Recalling (3.11) and the

fact that ∆FTn
(x) ≥ 0 by the hypothesis, this proves ∆F k

Cn
(x) ≤ ∆F k

S (x) and

completes the proof. �

The following example demonstrates how we are going to use this theorem in

the sequel.

Example 3.16 Let an image x? be a minimizer of

F (x) =
K∑

k=1

∑

π∈Πk

fπ(x(π))

where, for any clique π ⊂ Σ fπ is regular. Pick a 1-clique (or pixel) π? ⊂ Σ and

define

F̂ (x) = F (x) − fπ?(x(π?)) + f̂π?(x(π?))
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where f̂π? ∈ V 1
L . Assume that x? is not a minimizer of F̂ . Then our aim is to

find a minimizer x̂? of F̂ starting from x?. Hence we look for a minimizing set

Ŝ, i.e.

Ŝ = arg min
S⊂Σ

∆F̂S(x?)

to assign x̂? = κŜ ·x
?. Since x? is not a minimizer of F̂ we have Ŝ 6= ∅. Moreover

since x? is a minimizer of F , therefore

∆F̂T (x?) = ∆FT (x?) ≥ 0

for any set T ⊂ Σ\π?, we need to have π? ⊂ Ŝ. Hence Theorem 3.15 asserts that

Ŝ should be a component with respect to x?. This assertion is going to prove to

be very useful in the following section. �

3.2.3 Monotonicity of Minimizers

The monotonicity property of minimizers of binary MRFs is going to be the

building block of our algorithm. Before introducing it we need to present yet

another notation.

Definition 3.17 Let f, g ∈ V n
2 be two functions. We denote g ≥ f , if for any

(p; q) partition {α0; α1} of In and for any a = (a1, .., ap) ∈ Λp
2 we have

P
(a1..ap)

α0;α1 (g)(0) − P
(a1..ap)

α0;α1 (g)(1) ≥ P
(a1..ap)

α0;α1 (f)(0) − P
(a1..ap)

α0;α1 (f)(1) (3.13)

If neither g ≥ f nor f ≥ g holds, f and g are said to be incomparable.

Example 3.18 Let f, g ∈ V 2
2 for which g ≥ f holds. Thence (3.13) amounts

to

g(0, 0) − g(0, 1) ≥ f(0, 0) − f(0, 1)

for α0 = {1}, α1 = {2} and a = (0), or

g(0, 0) − g(1, 1) ≥ f(0, 0) − f(1, 1)

for α0 = ∅ and α1 = {1, 2}. �
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For solely the sake of completeness we state the following proposition which

asserts that the relation ≥ defined above is a partial ordering in V n
2 . We leave

the proof to Appendix B.

Proposition 3.19 The family V n
2 with the relation ≥ given by Definition 3.17

is a partially ordered set, i.e.

i. f ≥ f

ii. g ≥ f and f ≥ g =⇒ g = f

iii. g ≥ f and f ≥ h =⇒ g ≥ h

for any f, g, h ∈ V n
2 .

We leave the proof of the following to Appendix C.

Proposition 3.20 Let f, g ∈ V n
2 . If for any (n − 1; 1) partition {α0; α1} of In

and for any a = (a1, .., an−1) ∈ Λn−1
2 we have

P (a1..an−1)

α0;α1 (g)(0) − P (a1..an−1)

α0;α1 (g)(1) ≥ P (a1..an−1)

α0;α1 (f)(0) − P (a1..an−1)

α0;α1 (f)(1)

then g ≥ f .

Definition 3.21 Let x, y ∈ ΛΣ
2 be two images. We say x ≥ y, if for any i ∈ Σ

we have xi ≥ yi. If neither x ≥ y nor y ≥ x holds, images x and y are said to

be incomparable.

Notice that ΛΣ
2 is partially ordered with ≥.

Proposition 3.22 Let f, g ∈ V n
2 be two functions, then g ≥ f if and only if

for any x, y ∈ Λn
2 such that x ≤ y we have

g(x) − g(y) ≥ f(x) − f(y)

Proof Assume g ≥ f and let x, y ∈ Λn
2 be any two n-tuples such that x ≤ y.

Define a partition {α0; α1} of In as follows

α0 = {α0
1, .., α

0
p} = {i ∈ In : xi = yi}

α1 = In \ α0
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and define aj = xα0
j

= yα0
j

for j = 1, .., p where p is the number of indices for

which xi = yi, i = 1, .., n. Then certainly

f(x) = P
(a1..ap)

α0;α1 (f)(0) g(x) = P
(a1..ap)

α0;α1 (g)(0)

f(y) = P
(a1..ap)

α0;α1 (f)(1) g(y) = P
(a1..ap)

α0;α1 (g)(1)

hence g ≥ f implies

g(x) − g(y) ≥ f(x) − f(y)

Conversely let {α0; α1} be a (p; q) partition of In and let a = (a1, .., ap) ∈ Λp
2.

Define x = (x1, .., xn) and y = (y1, .., yn) as follows

xα0
j

= yα0
j

= aj, for j = 1, .., p

xα1
j

= 0, for j = 1, .., q

yα1
j

= 1, for j = 1, .., q

Certainly x ≤ y and

g(x) − g(y) ≥ f(x) − f(y)

implies that

P
(a1..ap)

α0;α1 (g)(0) − P
(a1..ap)

α0;α1 (g)(1) ≥ P
(a1..ap)

α0;α1 (f)(0) − P
(a1..ap)

α0;α1 (f)(1)

and completes the proof. �

Recall the MRF energy function

F (x) =
K∑

k=1

∑

π∈Πk

fπ(xπ1 , .., xπk
)

where for any clique π ⊂ Σ, fπ is regular. Let x? ∈ ΛΣ
2 be a minimizer of F . Let

us slightly alter the MRF energy and define

G(x) = F (x) − fπ?(xπ?) + gπ?(xπ?) (3.14)

where π? ⊂ Σ is an n-clique and gπ? ∈ V n
2 is a regular function. Our aim is to

find a minimizer of G in terms of x?.
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First observe that either x? is a minimizer of G or there should exist a subset

S of Σ such that κS · x? minimizes G. Note that for any image x ∈ ΛΣ
2

G(x?) = F (x?) − fπ?(x?
π?) + gπ?(x?

π?)

≤ F (x) − fπ?(x?
π?) + gπ?(x?

π?)

= G(x) − gπ?(xπ?) + fπ?(xπ?) − fπ?(x?
π?) + gπ?(x?

π?)

= G(x) + (fπ?(xπ?) − fπ?(x?
π?)) − (gπ?(xπ?) − gπ?(x?

π?)) (3.15)

Note that for both of the following cases

i. gπ? ≥ fπ? and xπ? ≤ x?
π?

ii. fπ? ≥ gπ? and x?
π? ≤ xπ?

we have, due to the Proposition 3.22, that

gπ?(xπ?) − gπ?(x?
π?) ≥ fπ?(xπ?) − fπ?(x?

π?)

However, using this in (3.15) gives

G(x?) ≤ G(x)

hence shows that there should exist a minimizer y? of G such that either y? and

x? are incomparable or either of the following holds.

i . gπ? ≥ fπ? and y? ≥ x?

ii. gπ? ≤ fπ? and y? ≤ x?
(3.16)

Our next aim is to prove that for any minimizer x? of F there exists a minimizer

of G which is not incomparable with x?.

This is indeed quite straightforward if π? is a 1-clique. If π? is a 1-clique

and if x? is not a minimizer of G there should exist some subset S of Σ, for

which π? ∈ S, so that κS · x? minimizes G. Note that for any U ⊂ S \ π?,

∆GU(x?) = ∆FU(x?) ≥ 0 since x? is a minimizer of F . Then, however, as

Theorem 3.15 asserts, there exists a component C such that π? ⊂ C ⊂ S and

G(κC · x?) ≤ G(κS · x?)
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This proves that, y? = κC · x?, which is not incomparable with x?, minimizes

G. Using this argument along with (3.16) as many times as needed proves the

following.

Theorem 3.23 Consider the MRF energy functions

F (x) =
K∑

k=1

∑

π∈Πk

fπ(xπ1 , .., xπk
)

G(x) =
K∑

k=1

∑

π∈Πk

gπ(xπ1 , .., xπk
)

where for any clique π ⊂ Σ, fπ and gπ are regular functions and

gπ ≥ (≤)fπ, for π ∈ Π1

gπ = fπ, for π ∈ Πk, k > 1 (3.17)

holds. Then for any minimizer x? of F , there exists a minimizer y? of G for

which y? ≥ (≤)x? holds.

This is what we call the monotonicity property of minimizers of binary MRFs.

This property also appears in [10, 8, 33, 18] for K = 2. Our presentation provides

an obvious generalization and abstraction. In the rest of this section we are going

further generalize this result by relaxing Equation (3.17). Before doing that

however we need to explore a few more properties of minimizers of F . Again we

assume that x? is a minimizer of F and π? is an n-clique where n > 1.

Consider the energy F (x̄) where x̄ is a constrained variable for which x̄π? ≥

xπ? holds. We are going to show that there exists a minimizer x̄? for the energy

F (x̄) such that x̄? ≥ x? holds. Similarly for the energy F (x̃) where x̃ is con-

strained such that x̃π? ≤ xπ? , we are going to prove that there exists a minimizer

x̃? such that x̃? ≤ x? holds. To prove it, we are not going to use the constrained

variables though, instead we are going to employ a different approach.

Let α0 = {α0
1, .., α

0
p} ⊂ In be an arbitrary set of indices. Define α1 =

{α1
1, .., α

1
q1
} ⊂ (In \ α0) and α2 = {α2

1, .., α
2
q2
} ⊂ (In \ α0) so that {α0; α1, α2}
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is a (p; q1, q2) partition of In and the following holds.

x?
π?

α1
i

= 0, for 1 ≤ i ≤ q1

x?
π?

α2
i

= 1, for 1 ≤ i ≤ q2

Define a = (a1, .., an) ∈ Λn
2 , b = (b1, .., bn) ∈ Λn

2 and c = (c1, .., cn) ∈ Λn
2 such

that

aα0
j

= bα0
j

= cα0
j

= x?
π?

α0
j

, for 1 ≤ j ≤ p

a′
α1

j
= b′α1

j
= cα1

j
= x?

π?

α1
j

= 0, for 1 ≤ j ≤ q1

a′
α2

j
= bα2

j
= c′α2

j
= x?

π?

α2
j

= 1, for 1 ≤ j ≤ q2

Notice that b ≥ a ≥ c, b ≥ x?
π? ≥ c and that x?

π? and a are not comparable unless

x?
π? = a which holds when q1 = q2 = 0. For the following we assume q1 + q2 > 0.

Example 3.24 Let π? be a 5-clique, x?
π? = (0, 1, 0, 0, 1) and α0 = {2, 3}.

Therefore α1 = {1, 4} and α2 = {5}. Then a = (1, 1, 0, 1, 0), b = (1, 1, 0, 1, 1)

and c = (0, 1, 0, 0, 0). �

View each pixel π?
i , i ∈ In, as a 1-clique in Σ and for each j = 1, .., p define

functions of single variable f̂π?

α0
j

as

f̂π?

α0
j

(x?
π?

α0
j

′) = ∞

f̂π?

α0
j

(x?
π) = fπ?

α0
j

(x?
π)

Here ∞ denotes a sufficiently large number. Since, for any clique π ⊂ Σ, fπ is

defined to be finite and Σ is defined to be a finite set, as we progress, it is going

to be clear that this definition of ∞ is unambiguous. The reason why we cannot

use the conventional infinity is the first requirement in Definition 2.10. Define

F̂ (x) = F (x) −
∑

i∈α0

fπ?
i
(xπ?

i
) +

∑

i∈α0

f̂π?
i
(xπ?

i
)

Since F̂ (x?) = F (x?) ≤ F (x) ≤ F̂ (x) for any image x, x? is a minimizer of F̂ .
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For each j = 1, .., q1 define functions of single variable f̄π?

α1
j

as

f̄π?

α1
j

(0) = ∞

f̄π?

α1
j

(1) = fπ?

α1
j

(1)

Construct the following MRF energy

F̄ (x) = F̂ (x) −
∑

i∈α1

fπ?
i
(xπ?

i
) +

∑

i∈α1

f̄π?
i
(xπ?

i
)

Note that for any π ∈ Π1 we have

f̄π(0) − f̄π(1) ≥ f̂π(0) − f̂π(1)

therefore f̄π ≥ f̂π and for any π ∈ Πk, with k > 1, we have f̄π = f̂π. Thus we

know from Theorem 3.23 that there exists a minimizer x̄? of F̄ for which x̄? ≥ x?.

Notice moreover that

x̄? = arg min
xπ?=b

F (x)

Similarly defining functions of single variable f̃π?

α2
j

as

f̃π?

α2
j

(1) = ∞

f̃π?

α2
j

(0) = fπ?

α2
j

(0)

for each j = 1, .., q2 we construct the MRF energy

F̃ (x) = F̂ (x) −
∑

i∈α2

fπ?
i
(xπ?

i
) +

∑

i∈α2

f̃π?
i
(xπ?

i
)

Observe that for any π ∈ Π1 we have

f̃π(0) − f̃π(1) ≤ f̂π(0) − f̂π(1)

therefore f̃π ≤ f̂π and for any π ∈ Πk, with k > 1, we have f̃π = f̂π. Hence

another call to Theorem 3.23 asserts that there exists a minimizer x̃? of F̃ for

which x̃? ≤ x? and

x̃? = arg min
xπ?=c

F (x)
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Since the set α0 was arbitrary, we proved

Lemma 3.25 Consider the MRF energy function

F (x) =
K∑

k=1

∑

π∈Πk

fπ(xπ1 , .., xπk
)

where for any clique π ⊂ Σ, fπ is regular. Let π? ⊂ Σ be an n-clique and x? ∈ ΛΣ
2

be a minimizer of F . Let b, c ∈ Λn
2 for which b ≥ x?

π? ≥ c hold. Then there exist

images x̄? and x̃? so that

x̄? = arg min
xπ?=b

F (x)

x̃? = arg min
xπ?=c

F (x)

and x̄? ≥ x? ≥ x̃?.

Next we show that F (x̄?) ≤ F (x̌?) and F (x̃?) ≤ F (x̌?), where x̌? denotes the

minimizer of F (x̌) where x̌ is constrained to satisfy the condition that x̌π? = a.

Construct the following MRF energy

F̌ (x) = F̄ (x) −
∑

i∈α2

fπ?
i
(xπ?

i
) +

∑

i∈α2

f̃π?
i
(xπ?

i
)

Note that for any minimizer x̌? of F̌ we have

x̌? = arg min
xπ?=a

F (x)

However

min F̌ (x) ≥ min F̄ (x) = min
xπ?=b

F (x)

Thus

min
xπ?=b

F (x) ≤ min
xπ?=a

F (x) (3.18)

Similarly, we also have

F̌ (x) = F̃ (x) −
∑

i∈α1

fπ?
i
(xπ?

i
) +

∑

i∈α1

f̄π?
i
(xπ?

i
)
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Since

min F̌ (x) ≥ min F̃ (x) = min
xπ?=c

F (x)

We similarly end up with

min
xπ?=c

F (x) ≤ min
xπ?=a

F (x) (3.19)

Now define

G(x) = F (x) − fπ?(xπ?) + gπ?(xπ?) (3.20)

where gπ? ∈ V n
2 is a regular function. Note that by this definition

x̌? = arg min
xπ?=a

G(x)

Let y ∈ ΛΣ
2 be an image so that yπ? = a, then

G(y) ≥ G(x̌?)

= F (x̌?) − fπ?(a) + gπ?(a) (3.21)

Let gπ? ≥ fπ? , then due to the Proposition 3.22 and the fact that b ≥ a we

have

gπ?(a) − gπ?(b) ≥ fπ?(a) − fπ?(b)

using this and (3.18) in (3.21) gives

G(y) ≥ F (x̄?) − fπ?(b) + gπ?(b)

= G(x̄?) (3.22)

On the other hand if gπ? ≤ fπ? , since a ≥ c we have

fπ?(c) − fπ?(a) ≥ gπ?(c) − gπ?(a)

due to the Proposition 3.22. Using this and (3.19) in (3.21) gives

G(y) ≥ F (x̃?) − fπ?(c) + gπ?(c)

= G(x̃?) (3.23)
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Note that since the set α0 was arbitrary, the inequalities (3.22) and (3.23) prove

that there exists a minimizer x̂? of G such that

i. x̂?
π? ≥ x?

π? if gπ? ≥ fπ?

ii. x̂?
π? ≤ x?

π? if gπ? ≤ fπ?

hold.

So assume that gπ? and fπ? are comparable so that there exists a minimizer

x̂? of G such that x̂?
π? and x?

π? are comparable. Since, by definition

x̂? = arg min
xπ?=x̂?

π?

G(x)

Equation (3.20) implies that

x̂? = arg min
xπ?=x̂?

π?

F (x)

However thanks to Lemma 3.25 we know that there exists a minimizer y? of F

which not only has the property that

y? = arg min
xπ?=x̂?

π?

F (x) = arg min
xπ?=x̂?

π?

G(x)

but also is comparable with x?. Arguing the same way as many times as necessary

we finally proved

Theorem 3.26 Consider the MRF energy functions

F (x) =
K∑

k=1

∑

π∈Πk

fπ(xπ1 , .., xπk
)

G(x) =
K∑

k=1

∑

π∈Πk

gπ(xπ1 , .., xπk
)

where for any clique π ⊂ Σ, fπ and gπ are regular functions and gπ ≥ (≤)fπ.

Then for any minimizer x? of F , there exists a minimizer y? of G for which

y? ≥ (≤)x? holds.

3.2.4 Extensions

We finally present our algorithm to minimize MRF energies in this section. The

algorithm is going to be evident once we extend the results of previous section

to L-ary MRFs.
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Notation 3.27 For any x ∈ ΛL and j = 0, .., L − 2 we denote

xj =





1 : j < x

0 : j ≥ x

Notice that for x ∈ ΛL, we have x =
∑L−2

i=0 xi and xi ≥ xj if i ≤ j. Conversely

for any (a0, .., aL−2) ∈ ΛL−2
2 , for which ai ≥ aj when i ≤ j, we have an integer

a ∈ ΛL for which a =
∑L−2

i=0 ai and ai = ai holds.

Definition 3.28 Let x = (x1, .., xM ) ∈ ΛΣ
L be an L-ary image. We call the

binary image xi = (xi
1, .., x

i
M ) ∈ ΛΣ

2 , the i-th level set of x.

Note that by this definition we have xi ≥ xj whenever i ≤ j for any image x.

Definition 3.29 A function f ∈ V n
L is called levelable if

f(x1, .., xn) =
L−2∑

i=0

f i(xi
1, .., x

i
n) (3.24)

where for any nonnegative i, j ≤ L − 2,

i. f i ∈ V n
2 is regular (H1)

ii. f i ≥ f j if i ≤ j (H2)

Example 3.30 Let C ∈ ΛL and let f ∈ V n
L be defined as

f(x1, .., xn) = c · max(C, x1, .., xn) − c · C

for some nonnegative c ∈ R. We obviously have

f(x1, .., xn) =
L−2∑

i=0

f i(xi
1, .., x

i
n)

where f i ∈ V n
2 for 0 ≤ i ≤ L − 2 is defined as

f i(a1, .., an) = c · max(C i, a1, .., an) − c · C i

for any a1, .., an ∈ Λ2. Note that f i(a1, .., an) = 0 when C i = 1 and otherwise

f i(a1, .., an) = c·max(a1, .., an). Therefore for any (p; q1, q2) partition {α0; α1, α2}

of In and any sequence of binary constants a1, .., ap we have

P (a1..ap)
α0;α1,α2

(f i)(0, 1) = P (a1..ap)
α0;α1,α2

(f i)(1, 0) = P (a1..ap)
α0;α1,α2

(f i)(1, 1) = P (a1..ap)
α0;α1,α2

(f i)(0, 0)
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if C i = 1 and

P (a1..ap)
α0;α1,α2

(f i)(0, 1) = P (a1..ap)
α0;α1,α2

(f i)(1, 0) = P (a1..ap)
α0;α1,α2

(f i)(1, 1) ≥ P (a1..ap)
α0;α1,α2

(f i)(0, 0)

otherwise. This verifies that f i is regular. To check H2, let i ≥ j and note that

f i = f j if C i = Cj. On the other hand C i 6= Cj implies that 1 = Cj ≥ C i = 0.

Let {α; β} be a (p; q) partition of In and let a1, .., ap be a given set of binary

numbers. Then we have

P
(a1..ap)
α;β (f j)(0) − P

(a1..ap)
α;β (f j)(1) = 0

P
(a1..ap)
α;β (f i)(0) − P

(a1..ap)
α;β (f i)(1) = c · max(a1, .., ap) − c ≤ 0

hence f j ≥ f i holds. This proves that f is a levelable function.

A very similar argument shows that f ∈ V n
L defined as

f(x1, .., xn) = −c · min(C, x1, .., xn)

=
L−2∑

i=0

−c · min(C i, xi
1, .., x

i
n)

for some C ∈ ΛL and nonnegative c ∈ R is also a levelable function. �

For functions of single variable, levelability is equivalent to convexity as we

show next.

Proposition 3.31 Let f ∈ V 1
L be a convex function, i.e.

2f(x) ≤ f(x + 1) + f(x − 1)

for 1 ≤ x ≤ L − 2, then f is levelable.

Proof Note that for any f ∈ V 1
L and any x ∈ ΛL the following holds.

f(x) =
L−2∑

i=0

(f(i + 1) − f(i))xi

Recall that f(0) = 0. For any nonnegative i ≤ L − 2, define f i ∈ V 1
2 as

f i(a) = (f(i + 1) − f(i))a
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for a ∈ Λ2. Since any function of single variable is regular, f i is a regular function.

Since f is convex on the other hand, for 1 ≤ i ≤ L − 2 we have

f i−1(1) = f(i) − f(i − 1) ≤ f(i + 1) − f(i) = f i(1)

however as f i(0) = 0 for any 0 ≤ i ≤ L − 2

f i−1(0) − f i−1(1) ≥ f i(0) − f i(1)

which in turn means that f i−1 ≥ f i. This verifies H2 and proves the claim. �

The following proposition is quite obvious.

Proposition 3.32 Sum of levelable functions is levelable.

Example 3.33 Let f1, .., fn ∈ V 1
L be levelable functions, then the function

f ∈ V n
L defined by

f(x1, .., xn) = f1(x1) + .. + fn(xn)

is levelable. For example for some C ∈ ΛL and nonnegative constants c1, .., cn ∈ R

f(x1, .., xn) = c1(x1 − C)2 + .. + cn(xn − C)2 − nC2

is a levelable function. �

Recall the MRF energy function

F (x) =
K∑

k=1

∑

π∈Πk

fπ(xπ1 , .., xπk
)

and assume that F is levelable, i.e for any π ∈ Πk, fπ ∈ V k
L is a levelable

function. We have

F (x) =
K∑

k=1

∑

π∈Πk

L−2∑

i=0

f i
π(xi

π1
, .., xi

πk
)

=
L−2∑

i=0

K∑

k=1

∑

π∈Πk

f i
π(xi

π1
, .., xi

πk
)

=
L−2∑

i=0

F i(xi)
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where each F i is a binary MRF energy. Our aim is simply to minimize each F i

to obtain x?i and construct the minimizer x? of F out of x?0, .., x?L−2 by adding

them up, i.e

x?
s =

L−2∑

i=0

x?
s
i

for any s ∈ Σ. However this procedure applies only if the collection of binary

minimizers constitute a monotone sequence of minimizers, i.e.

x?j ≥ x?i when i ≥ j (3.25)

Thanks to Theorem 3.26, we know that there exist minimizers x?0, .., x?L−2 of

F 0, .., F L−2 respectively, which satisfy the monotonicity condition (3.25). Hence

an algorithm reveals itself; we pick an integer i, such that 0 ≤ i ≤ L − 2, we

minimize F i to obtain x?i, we then find out other minimizers making sure that

the monotonicity condition (3.25) holds. Note that we are free to select the first

level i and any of the minimizers of F i, however for any other level j we need to

pick an appropriate minimizer of F j so that monotonicity is not broken. Note

moreover that we need to perform L − 1 binary MRF minimizations for this

algorithm.

Example 3.34 Let L = 4 and Σ = {1, 2, 3}. Presume the trivial neighborhood

system hence any subset of Σ is a clique. Define, for first order cliques

f{1}(x1) = (x1 − 3)2 − 9

f{2}(x2) = (x2)
2

f{3}(x3) = (x3 − 1)2 − 1

for second order cliques

f{1,2}(x1, x2) = max(3, x1, x2) − min(3, x1, x2) − 3

f{2,3}(x2, x3) = f{1,3}(x1, x3) = 0

and for the third order clique

f{1,2,3}(x1, x2, x3) = max(x1, x2, x3) − min(x1, x2, x3)
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Define the MRF energy

F (x) = f{1}(x1) + f{2}(x2) + f{3}(x3) + f{1,2}(x1, x2) + f{1,2,3}(x1, x2, x3)

Then we have

F i(xi) = f i
{1}(x

i
1) + f i

{2}(x
i
2) + f i

{3}(x
i
3) + f i

{1,2}(x
i
1, x

i
2) + f i

{1,2,3}(x
i
1, x

i
2, x

i
3)

where for first order cliques

f i
{1}(x

i
1) = [f{1}(i + 1) − f{1}(i)]x

i
1 = [(i + 1 − 3)2 − (i − 3)2]xi

1

f i
{2}(x

i
2) = [f{2}(i + 1) − f{1}(i)]x

i
2 = [(i + 1)2 − i2]xi

2

f i
{3}(x

i
3) = [f{3}(i + 1) − f{3}(i)]x

i
3 = [(i + 1 − 1)2 − (i − 1)2]xi

3

for second order cliques

f i
{1,2}(x

i
1, x

i
2) = max(3i, xi

1, x
i
2) − min(3i, xi

1, x
i
2) − 3i

= max(1, xi
1, x

i
2) − min(1, xi

1, x
i
2) − 1

and f i
{2,3}(x

i
2, x

i
3) = f i

{1,3}(x
i
1, x

i
3) = 0, for the third order clique

f i
{1,2,3}(x

i
1, x

i
2, x

i
3) = max(xi

1, x
i
2, x

i
3) − min(xi

1, x
i
2, x

i
3)

Thus denoting maxmin(x1, .., xn) = max(x1, .., xn) − min(x1, .., xn) we have

F 0(x0) = −5x0
1 + x0

2 − x0
3 + maxmin(1, x0

1, x
0
2) − 1 + maxmin(x0

1, x
0
2, x

0
3)

F 1(x1) = −3x1
1 + 3x1

2 + x1
3 + maxmin(1, x1

1, x
1
2) − 1 + maxmin(x1

1, x
1
2, x

1
3)

F 2(x2) = −x2
1 + 5x2

2 + 3x2
3 + maxmin(1, x2

1, x
2
2) − 1 + maxmin(x2

1, x
2
2, x

2
3)

It is simple to check that, the minimizers of each binary MRF energy is given as

follows

x?0 = (1, 1, 1)

x?1 = (1, 0, 0)

x?2 = (0, 0, 0) , x?2 = (1, 0, 0)
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Note that there exist two minimizers for F 2 and that this scheme gives two

minimizers of the energy F

x? = (2, 1, 1) , x? = (3, 1, 1)

both of which give the minimum energy −8. �

The algorithm we propose is not the one we described above. Instead we

employ an obvious improvement. For the first layer we pick i = L/2 − 1. Note

that the minimizer x?L/2−1 of FL/2−1 provides the most significant bits of a

minimizer of F . We then construct another MRF with a narrower intensity

space Λ = {0, .., L/2 − 1} as follows

G(x) =
K∑

k=1

∑

π∈Πk

gπ(xπ1 , .., xπk
)

where for any clique π ∈ Πk

gπ(xπ1 , .., xπk
) = fπ(2Nx?L/2−1

π1
+ xπ1 , .., 2

Nx?L/2−1
πk

+ xπk
)

where N = log(L)−1. We proceed to find the binary minimizer of GL/4−1, hence

the second most significant bits of the minimizer of F and so on. More formally

the following is the algorithm we propose.

1. Assign N = log(L) − 1. Set x?
s = 0 for s ∈ Σ.

2. If L = 1 terminate, the image x? is the minimizer. Otherwise set

F (x) =
K∑

k=1

∑

π∈Πk

fπ(x?
π1

+ xπ1 , .., x
?
π1

+ xπk
)

Calculate the minimizer y? of FL/2−1.

3. Reset the image x? as follows

x?
s = x?

s + 2Ny?
s

for any s ∈ Σ. Reset L = L/2, N = N − 1 and go to step 2.
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Note that, this algorithm holds only if all of the shifted potentials fπ of the

modified MRF energy of step 2 given as

F (x) =
K∑

k=1

∑

π∈Πk

fπ(x?
π1

+ xπ1 , .., x
?
π1

+ xπk
)

are levelable.

Example 3.35 We demonstrate the algorithm with the same MRF energy as

we gave in example 3.34. Recall that up to a constant

F (x) = (x1 − 3)2 + x2
2 + (x3 − 1)2 + maxmin(3, x1, x2) + maxmin(x1, x2, x3)

we initialize x?
1 = x?

2 = x?
3 = 0 and N = log(L) − 1 = 1. We already found

the minimizer y? of FL/2−1 = F 1 in example 3.34 as y? = (1, 0, 0). So we set

x?
s = 2Ny?

s , for s = 1, 2, 3. Thus x? = (2, 0, 0).

We reassign L = 2, N = 0 and construct

F (x) = (x?
1 + x1 − 3)2 + (x?

2 + x2)
2 + (x?

3 + x3 − 1)2

+ maxmin(3, x?
1 + x1, x

?
2 + x2)

+ maxmin(x?
1 + x1, x

?
2 + x2, x

?
3 + x3)

= (2 + x1 − 3)2 + x2
2 + (x3 − 1)2 + maxmin(3, 2 + x1, x2)

+ maxmin(2 + x1, x2, x3)

Now we need to check the levelability of each potential above. The first order

potentials are obviously levelable. Note that since x1, x2, x3 ∈ ΛL = Λ2, for the

second and the third order potentials we have

maxmin(3, 2 + x1, x2) = 3 − x2

maxmin(2 + x1, x2, x3) = 2 + x1 − min(x2, x3)

Thus we have, up to a constant

F (x) = (2 + x1 − 3)2 + x1 + x2
2 − x2 + (x3 − 1)2 − min(x2, x3)

which is a levelable MRF energy of order two. Note that, F L/2−1 = F 0 = F

is minimized by two binary images (0, 1, 1) and (1, 1, 1). We can pick any of
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them. If we pick y? = (0, 1, 1), we recalculate x?
s = x?

s + 2Ny?
s = x?

s + y?
s for

s = 1, 2, 3. Thus we have x? = (2, 1, 1). If we pick y? = (1, 1, 1) on the other

hand, we recalculate x?
s = x?

s + y?
s for s = 1, 2, 3 to get x? = (3, 1, 1). We reassign

L = L/2 = 1 and terminate at the step 2. Thus the minimizers of the initial

MRF energy are found as (3, 1, 1) and (2, 1, 1) as expected. In applications, we

do not aim to find all minimizers of an MRF, we just pick any one of them. �

Until now we have not addressed how to minimize binary MRFs. For this

issue we refer to [22] where it is proved that the problem of minimization of

a regular binary MRF of order up to three is equivalent to a maximum flow

computation [1, 3] on an appropriately defined graph. For the details, including

how the graph is constructed, we refer to [22].

In [10, 18, 8, 33] similar algorithms for second order MRF energies are pre-

sented. For a comparison, in those references basically it is assumed that if

i. fπ is convex if π ∈ Π1

ii. fπ is given by fπ(xπ1 , xπ2) = cπ|xπ1 − xπ2 | if π ∈ Π2 (3.26)

where cπ ∈ R is nonnegative for any π ∈ Π2, the MRF energy F given by

F (x) =
∑

π∈Π1

fπ(xπ1) +
∑

π∈Π2

fπ(xπ1 , xπ2)

can be minimized by similar algorithms. Note that for any π ∈ Π2 the second

order potentials defined by (3.26) are levelable. Moreover the potentials given

by (3.26) are valuable for image processing, as they are used to discretize the

total variation prior [10] which is widely used in various fields of image processing

[9, 2]. Hence we contributed to the subject by showing that the algorithm can

be used to minimize MRF energies with an extended number of priors, including

higher order priors. In the second part [11] of the paper [10], a definition for

levelable functions without the conditions H1 and H2 is given. However the

algorithm given for a class of MRF energies with levelable functions is not the

one given in [10] and is similar to the one given in [19] and requires larger graphs.

We need to point out that the algorithm we proposed is slightly different

than the one given in [10] and almost the same as the one given in [8]. It has
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an additional advantage that one can terminate the iterations early to find a

predefined number of most significant bits of a minimizer. This scheme can be

used for faster, inexact minimization.

In [18] another improvement to our minimization scheme is provided. There,

the author proposed a minimization scheme, to minimize log(L) binary MRFs,

with complexity of just one binary MRF minimization. An implementation of

the proposed scheme is given in [16] with comparisons with the algorithm given

in [10]. We did not implement that scheme.

3.2.5 Numerical Results

In this section we are going to give some applications of the results of the previous

sections to image denoising. As usual we set L = 256 and N = log(L) = 8,

hence our method basically is composed of 8 maximum flow computations. As

we previously mentioned, the scope of this work is not aimed to cover either

the theory or the implementation of maximum flow problems. For the details

of those, we refer to the texts [1, 3], which we find more comprehensible among

various similar books on the subject.

We also did not implement any maximum flow algorithms, we instead used

the BOOST Graph Library [30], BGL hereinafter, for this purpose. We need to

mention that, although one would expect that this is a well written library, it

is not intended to be used in image processing. Therefore it is not optimized

howsoever as an image processing library hence can not be considered to be

the ultimate tool for our purposes. As we shall soon see however, the imple-

mentations given in the BGL help us to compare the available maximum flow

algorithms and they are likely to be starting points for faster implementations.

To be able to use the BGL one needs an appropriate interface to the library.

We encountered such an application in MATLAB File Exchange web site, the

MatlabBGL library [15] provided by David Gleich. We used MatlabBGL to in-

terface the graphs we constructed to the BGL. As we previously mentioned, we

used the perscription given in [22] for graph construction. We wrote a C++
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library which we built as a mex file12. This way we were able to use MATLAB

essentially as a user interface tool which can handle jobs which are not time

critical. We used Microsoft Visual Studio 2005 as the C++ compiler and MAT-

LAB R2007b on a Windows XP PC with Intel Pentium 4 at 2800 MHz and 1GB

memory. We also employed built-in profile guided optimization tool of Visual

Studio 2005.

We are going to demonstrate the results using two different topologies; one

with first and second order cliques only and another one with first and third

order cliques only, see Figure 3.3.

Figure 3.3: The cliques of the topologies used for the examples.

In the sequel we assume that any clique mentioned is one of the cliques

sketched in Figure 3.3. For any second or third order clique π, we are going to

use the potential function

fπ(xπ1 , .., xπn
) = a · (max(xπ1 , .., xπn

) − min(xπ1 , .., xπn
))

Here of course n is either 2 or 3 and a is a nonnegative integer. Notice that when

n = 2, the equation above becomes

fπ(xπ1 , xπ2) = a · |xπ1 − xπ2 |

We denote the noisy image by y and we denote the estimatee by x. We

performed our tests on the test images given in Figure 3.4. All images are of size

256x256. In the Figure 3.5 the noisy versions of the images are given. The noise

12 The libraries which are built as mex files are accessible by MATLAB
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is white Gaussian with zero mean and standard deviation 10 and is calculated

by MATLAB’s appropriate tools.

We need to recall here that our method is composed of 8 steps. We initialize

every pixel of the image x with zero intensities and at the first step we recover the

most significant bits of intensities of each pixel, at the second step we recover the

second most significant bits of intensities of each pixel and so forth. Therefore

for the sake of timing one can terminate the iterations at an earlier step than

the 8th, to obtain an image intensities of each pixels of which are composed of

the first few bits of those of the minimizer image. This is a nonexact approach

of course.

We are going to deal with the following MRF energies

F (x) =
∑

π∈Π1

(xπ1 − yπ1)
2 +

∑

π∈Π2

a1|xπ1 − xπ2 | (3.27)

G(x) =
∑

π∈Π1

(xπ1 − yπ1)
2 +

∑

π∈Π3

a2(max(xπ1 , xπ2 , xπ3) − min(xπ1 , xπ2 , xπ3))

(3.28)

with a1 = 11 and a2 = 6. We have to mention a point here. Recall that the

coefficients a1 and a2 determine the capacities of the arcs when we construct the

appropriate graphs for maximum flow computations and recall that we would

like to have integer capacities for arcs. This is the general practice for maximum

flow computations although theoretically they apply for graphs with arcs of non-

integer capacities. We are going to stick with the common practice and deal with

integer coefficients for numerical examples.

The images given in Figure 3.6 are the minimizers of F given by (3.27). We

plot the associated residual images in Figure 3.7 which are intentionally biased

for easy visual perception. Similarly the minimizers of G given by (3.28) and

the associated residual images are plotted in the Figures 3.8 and 3.9 respectively.

Note the excellent restoration performances of both vertical and horizontal edges

especially on the Checker Board image. In general the restored edges do not suffer

from blurring. However notice also that the texture parts of the natural images

are substantially smoothed out. Note also the sketchy character of the smooth

50



Figure 3.4: Test images. The Checker Board on the first row left, the Pipes on
the first row right, the Test Pattern on the second row left, the Cameraman on
the second row right and Lena at the bottom.
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Figure 3.5: Images contaminated by white Gaussian noise of zero mean and 10
standard deviation.
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sections of both minimizers. The restoration performances of minimizers of G

are slightly superior to those of minimizers of F .

The images given in Figure 3.10 and 3.12 are the results of early termination,

i.e., the most significant 6 bits of the minimizers of F and G respectively. The

associated residual images are plotted in Figure 3.11 and Figure 3.13 respec-

tively. Note that it is hardly possible to discriminate these images among the

corresponding minimizer images.

There exist three maximum flow algorithms in the BGL. Two of them are

Edmunds-Karp and push-relabel algorithms [1, 3, 30]. The last algorithm by

Kolmogorov [5], is a newer one. In fact the current 1.34 release of the BGL does

not contain an implementation of it, however it is available in the Internet13.

The performance of Edmunds-Karp implementation in the BGL was so slow that

we do not give its evaluations here. In Table 3.1 and Table 3.2, we tabulated

the PSNR, energy and timing figures related to the minimization of the energy

function F given in (3.27) and the energy function G given in (3.28) respectively.

The PSNR figures are calculated according to the following formula.

PSNR(x) = 10log(
2552

( 1
M

∑
i∈Σ (xi − zi)2)

)

where z denotes the corresponding original image and M is the number of pix-

els in Σ. One thing we immediatiely notice is that, the Kolmogorov algorithm

clearly outperforms push-relabel algorithm. This is interesting, since the Kol-

mogorov algorithm is merely a variant of Edmunds-Karp algorithm which has

a greater complexity than that of the push-relabel algorithm [5]. For both al-

gorithms timing figures heavily depend on the test images and the coefficients.

This is reasonable since the execution times of maximum flow algorithms typi-

cally depend on the dynamic range of the capacities of the arcs in the graphs.

We need to stress that minimization of F is faster than minimization of G when

a1 = a2. This is expected since there are more arcs in the graph associated to

G. However when a2 < a1 timing performances of two minimization tasks may

13 The MatlabBGL library has an implementation. A few other places may be found upon
a Google Code Search.
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Figure 3.6: The minimizers of F given in Equation (3.27).

54



Figure 3.7: The residual images associated with the minimizers of the energy F
given in Equation (3.27).
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Figure 3.8: The minimizers of G given in Equation (3.28).
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Figure 3.9: The residual images associated with the minimizers of the energy G
given in Equation (3.28).
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Figure 3.10: The most significant 6 bits of the minimizers of the energy function
F given in Equation (3.27).
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Figure 3.11: The residual images associated with the most significant 6 bits of
the minimizers of the energy F given by Equation (3.27).
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Figure 3.12: The most significant 6 bits of the minimizers of the energy function
G given in Equation (3.28).
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Figure 3.13: The residual images associated with the most significant 6 bits of
the minimizers of the energy G given by Equation (3.28).
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become comparable.

Another interesting point is that, the algorithm barely needs to be run to the

end. The most significant 6 or 7 bits always give accurate estimates according

to the energy, PSNR figures and subjective opinion. According to the PSNR

figures minimizers of F are superior to the minimizers of G. This is not in

accordance with our observations. However we can not claim that energy function

G is substantially superior to F in terms of the restoration performances either.

Their performances are similar and minimizers of G are slightly more pleasant

than those of F . We found that the PSNR figures are not always reliable, for

example observe that for Test Pattern image, the PSNR figures of minimizers of

both energies are smaller than the PSNR of the noisy image.

Finally we would like to present a comparison of the denosing performance of

our methods with that of a simple averaging and another denoising algorithm.

For averaging we use a 3x3 Gaussian kernel with standard deviation 0.5 gener-

ated by suitable MATLAB tools. We also compare our results with the denoising

results of the anisotropic LPA-ICI recursive denoising algorithm proposed in the

paper [12]. We did not implement this algorithm. Instead we use the perfor-

mance figures given in the cited web site. We tabulated PSNR figures of the

denoising methods in 3.3. We used the Cameraman image for this experiment.

We picked PSNR wise best set of coefficients a1 and a2 for energy functions F

and G respectively. This table shows that minimizers of both energy functions

are vastly superior to simple averaging according to PSNR figures. This is also

justified by our subjective decision. Moreover notice that according to PSNR

figures the performance of LPA-ICI is comparable to ours. We need to mention

that employing adaptation schemes on the coefficients a1 and a2 could enhance

the denoising performance of our methods. We do not have the timing figures of

the LPA-ICI method so we can not provide the corresponding comparison.

As a result we can claim that the denoising scheme via minimization of MRF

energies F and G bring a certain quality to the denosing results. Observe that

MRF energy minimization scheme is inherently space variant, i.e., one can tune
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Noisy Image 6 7 8

PSNR 30.11 33.98 33.54 33.65
Energy Rate 01.67 01.01 01.00 01.00

Checker Box
Time-PR n/a 07.25 11.42 15.05

Time-KOL n/a 01.20 02.00 02.66
PSNR 28.67 34.97 36.20 36.37

Energy rate 02.49 01.02 01.00 01.00
Pipes

Time-PR n/a 07.79 10.27 14.15
Time-KOL n/a 01.37 01.81 02.38

PSNR 30.60 28.55 29.01 29.05
Energy rate 01.25 01.00 01.00 01.00

Test Pattern
Time-PR n/a 06.89 09.47 15.52

Time-KOL n/a 01.31 01.75 02.59
PSNR 28.27 29.18 29.32 29.35

Energy rate 02.14 01.01 01.00 01.00
Cameraman

Time-PR n/a 07.54 10.43 13.59
Time-KOL n/a 01.47 02.01 02.57

PSNR 28.13 29.37 29.56 29.59
Energy rate 02.10 01.01 01.00 01.00

Lena
Time-PR n/a 09.44 11.89 14.70

Time-KOL n/a 01.57 02.00 02.43

Table 3.1: The PSNR, energy and timing figures for the minimization of the
energy function F given by Equation (3.27). The last three columns represent
the images constructed using the most significant 6, 7 and 8 bits of the intensities
of the associated minimizer. Energy rate is the energy of the corresponding image
divided by the energy of the minimizer. Time-PR is the total time necessary for
calculation of the images if push-relabel algorithm is used for maximum flow
computation. Time-KOL is the corresponding time if Kolmogorov algorithm is
used. Timing figures are in seconds. The noise is white Gaussian with zero mean
and 10 standard deviation.
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Noisy Image 6 7 8

PSNR 30.17 34.04 33.52 33.61
Energy Rate 01.48 01.01 01.00 01.00

Checker Box
Time-PR n/a 06.89 10.33 13.16

Time-KOL n/a 01.77 02.94 03.94
PSNR 28.68 34.88 36.01 36.13

Energy rate 02.05 01.02 01.00 01.00
Pipes

Time-PR n/a 07.45 10.12 12.83
Time-KOL n/a 01.93 02.67 03.46

PSNR 30.65 28.35 28.93 28.99
Energy rate 01.18 01.00 01.00 01.00

Test Pattern
Time-PR n/a 06.86 09.34 13.06

Time-KOL n/a 01.78 02.40 03.47
PSNR 28.28 29.61 29.78 29.81

Energy rate 01.83 01.01 01.00 01.00
Cameraman

Time-PR n/a 07.56 10.44 13.25
Time-KOL n/a 02.67 03.69 04.71

PSNR 28.11 29.63 29.83 29.86
Energy rate 01.79 01.01 01.00 01.00

Lena
Time-PR n/a 09.21 11.58 14.09

Time-KOL n/a 02.92 03.69 04.46

Table 3.2: The PSNR, energy and timing figures for the minimization of the
energy function G given by Equation (3.28). The last three columns represent
the images constructed using the most significant 6, 7 and 8 bits of the intensities
of the associated minimizer. Energy rate is the energy of the corresponding image
divided by the energy of the minimizer. Time-PR is the total time necessary for
calculation of the images if push-relabel algorithm is used for maximum flow
computation. Time-KOL is the corresponding time if Kolmogorov algorithm is
used. Timing figures are in seconds. The noise is white Gaussian with zero mean
and 10 standard deviation.
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PSNR
Standard

Noisy Minimizer of Minimizer of
Deviation

Image
Averaging

F G
LPA-ICI

5 34.15 32.54 36.84 36.78 37.74
10 28.12 29.93 32.62 32.32 33.35
15 24.61 27.54 30.17 29.85 31.09
20 22.11 25.55 28.61 28.22 29.74
25 20.13 23.85 27.39 26.92 28.68
30 18.62 22.47 26.37 25.92 27.76
35 17.24 21.22 25.46 25.04 26.94
50 14.17 18.44 23.43 23.03 24.92

Table 3.3: PSNR figures of various denoising methods. The first column tabu-
lates the standard deviation of the white Gaussian noise used in each experiment.

the coefficients a1 or a2 in a pixel dependent manner accroding to the spatial

features of the image in consideration. This would presumably enhance the

performance of the method.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

We propose an efficient and exact energy minimization algorithm which is based

on the novel graph-cuts techniques. The main contribution of our work is the

introduction of the use of higher order cliques into image restoration using second

class of algorithms1. We note that for the third class of methods there has been

an attempt in [21] for higher order cliques. We take an abstract approach to

the problem and provide a fairly detailed investigation of binary MRFs. We

think that the definitions and the notation we introduced for the study of binary

MRFs may be of further use, perhaps for other fields too. Moreover we give a

property of minimizers of regular binary MRFs, namely Theorem 3.15 which we

think may be further utilized in its own.

We also give a generalization of the monotonicity property of minimizers

of binary MRFs [10, 8, 18, 33] which has been known for several years. This

property may also be helpful for construction of minimization algorithms for

new, more accurate energy functions.

Graph-cuts based techniques are still evolving. As opposed to their novelty

in the image processing, they have attracted great attention in almost all fields

in image processing. This is partly because of the efficiency and accuracy they

provide and partly due to the generality of the energy minimization framework.

However currently it is not still possible to build real time applications using

them.

1 Please see the introductory section of Chapter 3 for the second and third classes of graph-
cuts based methods.
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The main reason for this is the bulding blocks of the graph-cuts based meth-

ods, maximum flow computations. As we mentioned before, maximum flow

problem is one of the most studied problems in network flow theory and inte-

ger programming. However, either because of the graph sizes encountered in

those areas are smaller or because of the lack of demand to real time algorithms,

apperently not enough effort has been made to speed up the existing algorithms2.

The main difficulty in implementing maximum flow algorithms is the inherent

misuse of the memory. To update any information of a node or edge, a typical

maximum flow algorithm requires the information from virtually any node or

edge of the graph. This requires frequent caching and uncaching of memory

which degrades the performance of the implementation. This may be unavoid-

able too, however for fast image processing algorithms, especially for embedded

applications for which memory resources are scarce, making good use of the cache

is vital. This is the first point we need to mention for future directions. The

need for cache friendly algorithms is also pointed out by the authors in [5], where

they offered preflow based algorithms [3] for cache directed improvements3. How-

ever they gave an improvement to the augmenting path based algorithms [1] and

gathered a substantial uplift. We note that they did not offer any cache aware

implementation either.

Apart from cache directed improvements, there is one more way of speed

improvement which is proposed in [18] and implemented in [16]. In [18] a similar

method to ours, which hold for second order cliques only, is proposed. Further,

an improvement of that method is offered which could accomplish the work done

by 8 consecutive maximum flow computations at once in single maximum flow

computation complexity. The implementation in [16] proved the improvement

though in only moderate levels. That kind of an implementation has not been

done yet for higher order cliques.

An obvious drawback of our algorithm is the highly small number of priors

2 This statement is up to our knowledge of course.
3 The push relabel algorithm of the BGL is a preflow based algorithm.
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we can use, highly limited number of levelable functions there exist. The reason

we have very few number of levelable functions is our definition of levelability,

namely Equation (3.24). It is indeed possible to decompose any function into

functions of binary levels of variables [34]4. However this decomposition is cou-

pled, i.e., each function in the decomposition is in terms of mixed levels of the

variables. We refer the reader to [34] for the details. To be able to use this

decomposition efficiently, one requires a more powerful result than monotonicity.

4 Exactly the same way we decomposed functions of single variables.
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APPENDIX A

Regularity of Functions

Definition A.1 For any f ∈ V n
2 , we say f is two-regular if all (p; q1, q2)

regularities of f are nonnegative when 0 ≤ q1, q2 ≤ 1.

The following is obvious.

Theorem A.2 Any projection of a two-regular function is two-regular.

In [22], authors defined regular functions as the ones which are two-regular. It

is obvious that our definition of regularity implies two-regularity. The following

proves that the converse is also true.

Theorem A.3 Any two-regular function f ∈ V n
2 is regular.

Proof If n = 1 or n = 2 two-regularity of f ∈ V n
2 obviously implies regularity

of f . We start an induction; we set a positive integer n > 2 and assume that

two-regularity of f ∈ V n̄−1
2 implies regularity of f for n̄ ≤ n. Let f ∈ V n

2 be

two-regular, we shall prove that f is regular.

Let the collection {α0; α1, α2} be a (p; q1, q2) partition of In and assume that

a = (a1, .., ap) ∈ Λp
2 is given. If 0 ≤ q1, q2 ≤ 1, there is nothing to prove so

assume q1 ≥ 2. Let

ᾱ0 = {α0
1, .., α

0
p, α

1
1}

ᾱ1 = α1 \ {α1
1}

define ā ∈ Λp+1
2 as follows

ā = (ā1, .., āp+1) = (a1, .., ap, 1)
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and define f̄ ∈ V n−1
2 as

f̄ = P
(ā1..āp+1)

ᾱ0;ᾱ1,α2 (f)

Due to Theorem A.2, f̄ is two-regular, therefore regular due to the induction

hypothesis. Thus

f̄(1, 0) + f̄(0, 1) − f̄(0, 0) − f̄(1, 1) ≥ 0 (A.1)

Now, let

α̃0 = {α0
1, .., α

0
p, α

1
2, .., α

1
q1
}

α̃1 = {α1
1}

define ã ∈ Λp+q1−1
2 as

ã = (ã1, .., ãp+q1−1) = (a1, .., ap,

q1 − 1 times︷ ︸︸ ︷
0, .., 0 )

and define f̃ ∈ V n−q1+1
2 as follows

f̃ = P
(ã1..ãp+q1−1)

α̃0;α̃1,α2 (f)

Again, due to Theorem A.2, f̃ is two-regular, therefore regular due to the induc-

tion hypothesis. Thus

f̃(1, 0) + f̃(0, 1) − f̃(0, 0) − f̃(1, 1) ≥ 0 (A.2)

Notice that for any b ∈ Λ2

f̄(0, b) = f̃(1, b)

Define

f̂ = P
(a1..ap)

α0;α1,α2(f)

and notice due to definitions of f̄ and f̃ that

f̂(1, b) = f̄(1, b)

f̂(0, b) = f̃(0, b)
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Therefore adding up equations (A.1) and (A.2) gives

f̂(1, 0) + f̂(0, 1) − f̂(0, 0) − f̂(1, 1) ≥ 0

and proves the claim. �

Example A.4 We are going to demostrate the proof given above for a func-

tion f ∈ V 3
2 . Let f be a two-regular function and pick a (0; 2, 1) partition

{∅; {1, 2}, {3}} of I3. Following the notation described in the proof, f̄ ∈ V 2
2 and

f̃ ∈ V 2
2 , defined as

f̄(x1, x2) = f(1, x1, x2)

f̃(x1, x2) = f(x1, 0, x2)

are regular, hence

f̄(0, 1) + f̄(1, 0) − f̄(0, 0) − f̄(1, 1) ≥ 0

implies

f(1, 0, 1) + f(1, 1, 0) − f(1, 0, 0) − f(1, 1, 1) ≥ 0 (A.3)

and

f̃(0, 1) + f̃(1, 0) − f̃(0, 0) − f̃(1, 1) ≥ 0

implies

f(0, 0, 1) + f(1, 0, 0) − f(0, 0, 0) − f(1, 0, 1) ≥ 0 (A.4)

addition of Inequalities (A.3) and (A.3) gives

f(1, 1, 0) + f(0, 0, 1) − f(1, 1, 1) − f(0, 0, 0) ≥ 0

which means

f̂(0, 1) + f̂(1, 0) − f̂(0, 0) − f̂(1, 1) ≥ 0

The same approach holds for any partition of I3. �
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APPENDIX B

The proof of the Proposition 3.19

Let us restate the Proposition 3.19.

Proposition B.1 The family V n
2 with the relation ≥ given by Definition 3.17

is a partially ordered set [23], i.e.

i. f ≥ f

ii. g ≥ f and f ≥ g =⇒ g = f

iii. g ≥ f and f ≥ h =⇒ g ≥ h

for any f, g, h ∈ V n
2 .

Proof The conditions i and iii are immediate. For ii, let b = (b1, .., bn) ∈ Λn
2

and define the partition {α0; α1} of In as follows

α0 = {α0
1, .., α

0
p} = {i ∈ In : bi = 0}

α1 = In \ α0

where of course p is the number of zeros in b. Define a = (a1, .., ap) ∈ Λp
2 such

that ai = 0 for i = 1, .., p. Then obviously we have

P
(a1..ap)

α0;α1 (f)(1) = f(b1, .., bn)

P
(a1..ap)

α0;α1 (g)(1) = g(b1, .., bn)

and

P
(a1..ap)

α0;α1 (f)(0) = P
(a1..ap)

α0;α1 (g)(0) = f(0, .., 0) = g(0, .., 0) = 0
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for any f, g ∈ V n
2 . Therefore g ≥ f implies

P
(a1..ap)

α0;α1 (g)(0) − P
(a1..ap)

α0;α1 (g)(1) ≥ P
(a1..ap)

α0;α1 (f)(0) − P
(a1..ap)

α0;α1 (f)(1)

and as a result

−g(b1, .., bn) ≥ −f(b1, .., bn)

On the other hand f ≥ g similarly implies

−f(b1, .., bn) ≥ −g(b1, .., bn)

Thus g ≥ f and f ≥ g implies f(b1, .., bn) = g(b1, .., bn) and proves the claim. �
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APPENDIX C

The proof of the Proposition 3.20

Let us first restate the Proposition 3.20.

Proposition C.1 Let f, g ∈ V n
2 . If for any (n − 1; 1) partition {α0; α1} of In

and for any a = (a1, .., an−1) ∈ Λn−1
2 we have

P (a1..an−1)

α0;α1 (g)(0) − P (a1..an−1)

α0;α1 (g)(1) ≥ P (a1..an−1)

α0;α1 (f)(0) − P (a1..an−1)

α0;α1 (f)(1)

then g ≥ f .

Proof Let {β0; β1} be a (p; q) partition of In and b = (b1, .., bp) ∈ Λp
2. For

q = 0, 1 there is nothing to prove so let q ≥ 2. For j = 1, .., q, define

γ0j = {β1
1 , .., β

1
j−1, β

0
1 , .., β

0
p , β

1
j+1, .., β

1
q}

γ1j = {β1
j }

and

cj = (cj
1, .., c

j
n−1)

= ( 1, .., 1︸ ︷︷ ︸
j − 1 times

, b1, .., bp, 0, .., 0︸ ︷︷ ︸
q − j times

)

Define

f̂j = P
(cj

1..cj
n−1)

γ0j ;γ1j (f)

ĝj = P
(cj

1..cj
n−1)

γ0j ;γ1j (g)

Note that

f̂1(0) = P
(b1,..,bp)

β0;β1 (f)(0) f̂q(1) = P
(b1,..,bp)

β0;β1 (f)(1)

ĝ1(0) = P
(b1,..,bp)

β0;β1 (g)(0) ĝq(1) = P
(b1,..,bp)

β0;β1 (g)(1)
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Notice that for j = 1, .., q − 1, f̂j(1) = f̂j+1(0) which implies

q∑

j=1

(f̂j(0) − f̂j(1)) = f̂1(0) − f̂q(1)

= P
(b1..bp)

β0;β1 (f)(0) − P
(b1..bp)

β0;β1 (f)(1)

Similarly since ĝj(1) = ĝj+1(0) for j = 1, .., q − 1, we have

q∑

j=1

(ĝj(0) − ĝj(1)) = ĝ1(0) − ĝq(1)

= P
(b1..bp)

β0;β1 (g)(0) − P
(b1..bp)

β0;β1 (g)(1)

Therefore since the hypothesis of the proposition implies that

ĝj(0) − ĝj(1) ≥ f̂j(0) − f̂j(1)

for any j = 1, .., q, we have

P
(b1..bp)

β0;β1 (g)(0) − P
(b1..bp)

β0;β1 (g)(1) ≥ P
(b1..bp)

β0;β1 (f)(0) − P
(b1..bp)

β0;β1 (f)(1)

which finishes the proof. �

Example C.2 This example demonstrates the proof given above for a simple

case. Let f, g ∈ V 5
2 , p = 3, q = 2 and b = (b1, b2, b3). Let {β0; β1} be a (p; q)

partition of I5, where β0 = {1, 3, 4} and β1 = {2, 5}. Then

γ01 = {1, 3, 4, 5} γ02 = {2, 1, 3, 4}

γ11 = {2} γ12 = {5}

and c1 = (b1, b2, b3, 0), c1 = (1, b1, b2, b3). Note that

P (b1b2b30)

γ01;γ11 (f)(0) = f(b1, 0, b2, b3, 0) = P (b1b2b3)

β0;β1 (f)(0)

P (1b1b2b3)

γ02;γ12 (f)(1) = f(b1, 1, b2, b3, 1) = P (b1b2b3)

β0;β1 (f)(1)

and similarly

P (b1b2b30)

γ01;γ11 (g)(0) = g(b1, 0, b2, b3, 0) = P (b1b2b3)

β0;β1 (g)(0)

P (1b1b2b3)

γ02;γ12 (g)(1) = g(b1, 1, b2, b3, 1) = P (b1b2b3)

β0;β1 (g)(1)
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Note moreover that

P (b1b2b30)

γ01;γ11 (f)(1) = f(b1, 1, b2, b3, 0) = P (1b1b2b3)

γ02;γ12 (f)(0)

P (b1b2b30)

γ01;γ11 (g)(1) = g(b1, 1, b2, b3, 0) = P (1b1b2b3)

γ02;γ12 (g)(0)

The hypothesis of the proposition gives

P (b1b2b30)

γ01;γ11 (g)(0) − P (b1b2b30)

γ01;γ11 (g)(1) ≥ P (b1b2b30)

γ01;γ11 (f)(0) − P (b1b2b30)

γ01;γ11 (f)(1)

P (1b1b2b3)

γ02;γ12 (g)(0) − P (1b1b2b3)

γ02;γ12 (g)(1) ≥ P (1b1b2b3)

γ02;γ12 (f)(0) − P (1b1b2b3)

γ02;γ12 (f)(1)

thus

g(b1, 0, b2, b3, 0) − g(b1, 1, b2, b3, 0) ≥ f(b1, 0, b2, b3, 0) − f(b1, 1, b2, b3, 0)

g(b1, 1, b2, b3, 0) − g(b1, 1, b2, b3, 1) ≥ f(b1, 1, b2, b3, 0) − f(b1, 1, b2, b3, 1)

and adding them up gives

P (b1b2b3)

β0;β1 (g)(0) − P (b1b2b3)

β0;β1 (g)(1) ≥ P (b1b2b3)

β0;β1 (f)(0) − P (b1b2b3)

β0;β1 (f)(1)

The same procedure applies for any partition of In and any sequence b of binary

numbers. �
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