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ABSTRACT

TIME DOMAIN SCATTERING FROM SINGLE AND MULTIPLE OBJECTS

Azizoglu, Siiha Alp
Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. S. Sencer Kog

March 2008, 112 pages

The importance of the T-matrix method is well-known when frequency domain
scattering problems are of interest. With the relatively recent and wide-spread
interest in time domain scattering problems, similar applications of the T-matrix
method are expected to be useful in the time domain. In this thesis, the time domain
spherical scalar wave functions are introduced, translational addition theorems for
the time domain spherical scalar wave functions necessary for the solution of
multiple scattering problems are given, and the formulation of time domain
scattering of scalar waves by two spheres and by two scatterers of arbitrary shape is
presented. The whole analysis is performed in the time domain requiring no inverse
Fourier integrals to be evaluated. Scattering examples are studied in order to check

the numerical accuracy, and demonstrate the utility of the expressions.

Keywords: Multiple Scattering, Spherical Wave Functions, T-Matrix Method, Time

Domain Scattering, Translational Addition Theorems.
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BIR VE BIRDEN FAZLA SACICILARDAN SACILIMIN ZAMAN UZAMINDA
INCELENMESI

Azizoglu, Siiha Alp
Doktora, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi : Dog. Dr. S. Sencer Ko¢

Mart 2008, 112 sayfa

T-matris metodunun O©Onemi frekans uzami sacilim problemlerinde cok iyi
bilinmektedir. Zaman uzami sacilim problemlerine olan yogun ilgiden dolayi, T-
matris metodunun benzer uygulamalarimin zaman uzaminda da yararli olacagi
beklenmektedir. Bu tezde, zaman uzami skalar kiiresel dalga fonksiyonlari
tanimlanmis, birden fazla sagicidan sacilim problemlerinin ¢oziimii igin gerekli olan
zaman uzami kiiresel skalar dalga fonksiyonlar1 icin Oteleme adisyon teoremleri
bulunmustur ve skalar dalgalarin iki kiireden ve kiiresel olmayan iki sagicidan
saciliminin formulasyonu zaman uzaminda yapilmistir. Biitiin analiz, ters Fourier
entegrallerinin ~ hesaplanmasina  gerek  duyulmaksizin  zaman  uzaminda
gergeklestirilmistir. Bulunan ifadeleri niimerik olarak test etmek ve ifadelerin

yararin1 gdstermek i¢in sagilim problemleri ¢oziilmiistiir.

Anahtar Kelimeler: Birden Fazla Sagicidan Sag¢ilim, Kiiresel Dalga Fonksiyonlari,

Oteleme Adisyon Teoremleri, T-Matris Metodu, Zaman Uzaminda Sagilim.
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CHAPTER 1

INTRODUCTION

The time domain analysis and computation have become appealing in dealing with
broadband signals since short pulses and wide bandwidths are being used
increasingly in communication and radar systems. The simplicity in handling time
variatians, the use of time gating, and straightforward approach in time domain
modelling makes the time domain preferrable. The time domain analysis is
indispensible in order to be able to model the field of moving sources and targets and
to be able to assess the physical validity. The advantages and applications of the time
domain electromagnetics can be found extensively in Bennett er al. [1]. With this
motivation, the solution of multiple scattering is constructed in the time domain in
this work. The time domain spherical scalar wave functions are defined, translational
addition theorems for the time domain spherical scalar wave functions necessary for
the solution of multiple scattering problems are presented, and the time domain
solutions of the scattering of scalar waves by two spheres and by two scatterers of
arbitrary shape are constructed using an equivalent of the T-matrix method
formulated in the time domain. In the given solutions, the positions of the scatterers
are arbitrary, i.e., no simple special case of translation is chosen for them. The
present approach is that of stating, formulating, and solving the problem entirely in
the time domain, i.e., requiring no inverse Fourier integrals to be evaluated.

Certain physical phenomena can be described using the scalar wave equation, for
example, acoustic waves and Schrodinger waves. In certain situations,
electromagnetic waves can also be described by the scalar wave equation, Chew [2].
The solution to the scalar wave equation in terms of spherical wave expansions and
expansions of Green's functions in terms of orthogonal wave functions are well
known to be useful in the frequency domain in the analytical solutions of scattering

problems and expansions of fields radiated by general sources, Jones [3], Harrington



[4], Jackson [5], Bowman et al. [6], and Felsen [7]. Such expansions have also
proved to be useful in the time domain, Davidon [8], Heyman et al. [9], Marengo et
al. [10], Hansen [11] and [12], Buyukdura et al. [13], Azizoglu et al. [14], [15], and
[16], Azizoglu [17], and Koc et al. [18].

The T-matrix method, Waterman [19], is a well-known and powerful method in
the frequency domain provided that the shape of the scattering object is smooth, i.e.,
satisfying the Rayleigh condition. The T-matrix method is also known as the null-
field approach, and it is an alternative to solve the surface integral equation. For a
given frequency and scatterer, the T-matrix needs to be calculated once, and can be
used for any illumination. Once the T-matrices for a set of scatterers are found, they
can be used easily to construct the solution of multiple scattering from this set of
scatterers. When more than one scatterer is present, there exists multiple scattering
between the scatterers, and the translational addition theorems for the spherical wave
functions should be applied for the solution, Chew [2], Twersky [20], Marnevskaya
[21], Peterson et al. [22], and Gaunaurd et al. [23] and [24]; a similar approach is
also possible for electromagnetic waves, Chew [2], Twersky [25], Liang et al. [26],
Bruning et al. [27] and Peterson et al. [28].

Some of the earlier related work in the time domain is as follows, time domain
scattering of scalar waves by a single soft sphere in free-space is given in Buyukdura
et al. [13], and the application of the T-matrix method to the problem of time domain
scattering of scalar waves by a single object of arbitrary shape in free-space is
presented in Koc et al. [29]. For the T-matrix formulation in the time domain, one
needs a time domain free-space Green’s function in the form of an expansion in
terms of wave functions which are orthogonal over spherical surfaces centered at the
coordinate origin. The spherical wave expansion of the time domain scalar free-space
Green’s function is provided in Buyukdura et al. [13], and it is used in the
formulation of scattering of scalar waves in the present work. For vector scattering
problems, the spherical wave expansion of the time domain free-space dyadic
Green’s function provided in Azizoglu et al. [14], [15], and [16], and Azizoglu [17],
and the time domain spherical vector wave functions available in Azizoglu et al. [14]
can be used similarly.

The translational addition theorems are useful in the solution of multiple



scattering problems. They express wave functions in one coordinate system in terms
of the wave functions of another coordinate system translated from the first one,
Friedman et al. [30], Stein [31], Cruzan [32], Danos et al. [33], Wittmann [34], Chew
[35], Chew et al. [36], and Varadan et al. [37]. The translational addition theorems
for the frequency domain spherical scalar wave functions are derived in Friedman et
al. [30], and improved and extended to vector waves in Stein [31] and Cruzan [32].
In the present work, the time domain spherical scalar wave functions and the
translational addition theorems given in Azizoglu et al. [38] and [39] are improved,
and convergence and numerical properties are discussed.

In Chapter 2, the translational addition theorems for the spherical scalar wave
functions are given in the frequency domain, and then the time domain spherical
scalar wave functions are defined and translational addition theorems are obtained.
The convergence and numerical properties of the translational addition theorems are
also discussed in this chapter. In Chapter 3, first, scattering of scalar waves by a
single soft sphere in free-space is reviewed both in the frequency and in the time
domain, then, the formulation and numerical results of the well-known frequency
domain scattering by two soft spheres is given. As an application of the derived time
domain translational addition theorems, formulation of the time domain scattering of
scalar waves by two spheres in free-space is presented, and the numerical results are
checked with the frequency domain solution. Chapter 5 provides the time domain
scattering by an object, scatterer of arbitrary shape, in free-space using the T-matrix
method. The non-spherical surface, for which the T-matrix is not diagonal, is
simulated by a shifted sphere whose center is displaced from the coordinate origin
and the surface integrals necessary to find the matrix entries are evaluated
numerically. Time domain scattering by two scatterers of arbitrary shape is presented
in the second part of Chapter 5 using the time domain isolated-scatterer T-matrix of
the single object and the time domain multiple scattering formulation. Chapter 5
gives the concluding remarks. Appendix A and B include the time domain T-matrix
formulation and direct matrix deconvolution algorithm, respectively, and the
formulation necessary for the numerical evaluation of the surface integrals in the T-
matrix method for the shifted sphere , whose center is displaced from the coordinate

origin, is given in Appendix C.



Throughout the thesis, ¢’” time convention is used in the frequency domain
expressions and suppressed. The velocity of waves in free space is represented by c.
(R,0,¢) are the familiar spherical coordinates of the point of observation with
reference to the first coordinate system with origin 0, and (R’,8’,¢") are the
spherical coordinates of the same point with reference to the second coordinate

system with origin 0", where 0" has the coordinates (R,,8,,¢,) with respectto 0.



CHAPTER 2

TRANSLATIONAL ADDITION THEOREMS FOR

THE TIME DOMAIN SPHERICAL SCALAR WAVE FUNCTIONS

This chapter deals with the addition theorems for the spherical scalar wave functions
under coordinate translation. In Section 2.1, the translational addition theorems for
the spherical scalar wave functions are described in the frequency domain. In Section
2.2, first the time domain spherical scalar wave functions are defined, and then, a
time domain representation of a plane wave propagating in an arbitrary direction is
found in terms of elementary spherical waves about a fixed center. This
representation is, then, used in the derivation of the translational addition theorems
for the time domain spherical scalar wave functions. The derived expressions are

checked numerically in Section 2.3.

2.1 Translational Addition Theorems for the Spherical Scalar Wave Functions

in the Frequency Domain

The spherical scalar wave functions ¢, (kR) are defined as

@V (kR) = z\" (kR)P" (cos 8)e ™ (2.1

o'V (kR) = 'Y (kR)P" (cos B)e”™ , (2.2)

for —n<m<n, and 0<n<oo, where ¢ (kR) and @'’ (kR) represent the

incoming and outgoing wave functions, respectively. R stands for the position

vector from the origin O, denoting the observation point, and k is the free-space



wavenumber, k = @/c where @ is the angular frequency and ¢ is the velocity of
waves in free-space. z\"(kR) and z'" (kR) denotes the spherical Bessel functions of

order n and the spherical Hankel functions of the second kind of order n,

respectively, Abramowitz et al. [40], i.e.,
z"(kR) = j,(kR) , 2.3)
2 (kR) = h'” (kR) . (2.4)

The spherical Bessel functions are related to the half-integer order Bessel functions

through

; _ |
Ju(kR) = SR J oy (KR) (2.5)

and they are finite at R =0. The spherical Hankel functions of the second kind are

related to the half-integer order Hankel functions of the second kind through

RO kRy=.|-2— H® (kR) . 2.6
DR =\ HE () 2.6)

and they satisfy the radiation condition. P"(x) are the Associated Legendre

Functions of the first kind with order n and degree m, Abramowitz et al. [40], and

they are defined for nonnegative integer values of n and m as,

m

P = (D" a-x) 4 p () @.7)
dx™

where P, (x) are the Legendre polynomials, which can be obtained using Rodrigues'

formula,



1 d"

B =

(x> =" (2.8)

For m<0, P (x) is defined as

(n+m)!

P = (D" o

P (x) . (2.9)

The set of functions @ (kR) are orthogonal over a spherical surface and they

satisfy the scalar Helmholtz equation,

V*+k>) @, (KR)=0 . (2.10)

The spherical scalar wave functions, @ (kR) defined in Egs. (2.1) and (2.2),

can also be expressed in terms of the Tesseral harmonics as

P (kR) = 7" (kR)Y,,, (0,9) , 2.11)

where the Tesseral harmonics are defined as

Y, (8,¢)=P"(cosB)e™’ , (2.12)

and they are well known to be orthogonal over a spherical surface, i.e.,

dz(n+m)!
Cn+D(m-m! ™ "™’

[ Y (0.0)Y,,.6.0)sin0 d6 dp = 2.13)

where Y, (0,¢) is the complex conjugate of Y, (6,9), and J,, is the Kronecker

delta, i.e.,



0, =1 n=n
=0, n#n'

(2.14)

Translational addition theorems express @'

nm

(kR), with reference to the origin

0, in terms of the spherical scalar wave functions with reference to the origin 0,

where 0" has the coordinates (R,,6,,4,) with respect to 0. The set of spherical
coordinates (R’,8’,¢") is introduced with respect to 0", such that the polar axis,
@ =0, and the azimuth axis, ¢’ =0, are, respectively, parallel to the corresponding

axes, @ =0 and ¢ =0. This is a rigid translation of the coordinate system, i.e.,

R=R,+R’, 2.15)

which is illustrated in Figure 2.1.

Figure 2.1 Coordinate translation.



The spherical scalar wave functions ¢, defined in Eqgs. (2.1) and (2.2) can be

expressed with respect to this new coordinate system using the addition theorems,

given in Friedman et al. [30], Stein [31], and Cruzan [32], as

@ (kR)P!" (cos B’ = i 2 2{(—1)”(j)”*p‘” @+ almn|-pv|p)

v=0 y=—v p
X j, (kR.) z,"" (kR,) P} (cos6_) P, (cos8,)

X e]/u¢<e](m_,u)¢> },

(2.16)

where

R, = R, R. =R,

6. =6, 6. =6, when R'>R,, (2.17)

¢> = ¢,’ ¢< - ¢0
and

R.=R,, R = R’

6.=6,, 6.=6 when R'<R, . (2.18)

¢> = ¢0 > ¢< = ¢’

It can be shown that either Eq. (2.17) or Eq. (2.18) may be used for the incoming

wave function, (pf”l,z (kR), without restriction on the relative size of R’ and R,,

Cruzan [32]. Eq. (2.16) is valid for n >0, —n < m < n, and the summation over p is

finite covering the range |n—V n—V|+2, ....,(n+v). The coefficients

b

a(m, n | y78% | p) are defined by the linearization expansion,

P (x) PA(x) =Y almn| v | )P (x) (2.19)

P



and may be identified with a product of two Wigner 3 — j symbols, Wigner [41], as

(n=m)! (v — ) (p+m+ p)!

><nvpn 14 P
000|m u -m-u|

12
dm.n| v p)= (—1>"’+”<2p+1>{(”+m)’WWWP—m—mt}

(2.20)

Ji 2 I3
m; m, n

where { } is the Wigner 3— j symbol which is related to the Clebsch-

Gordan Coefficients as, Abramowitz et al. [40],

Ji JaJ (=i oL
P :,—(J1m1]2m2|J1J2J3’_m3)' (2.21)
m, m, m 2j, +1

The Wigner 3-j symbol is expressed explicitly by the Racah formula, Messiah
[42],

{]1 J2 J3 } — (_l)jl_jz_m3 (5m1+m2+m3,0)

mym, ms

X\/(jﬁjz—jg)!(jl—jz+jg>!<—jl+jz+jg>!
i+ 1o+ 5 + D!

X\/(jl +m1)!(j1 _m1)!(j2 +m2)!(j2 _mz)!(j3 +m3)!(j3 _m3)!

xZ{(—l)* !

X!(jl +j2 _j3 —X)!(jl —m —)C)!

1
X b
(J, +my =)(js— j, +tm +)!(j; — j, —m, +x)!}
(2.22)
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and is nonzero only if m,=-m —m,, |jl —j2|S Jj3<Jj +Jj,, and if

|ml|Sj1,

m2| < Jss m3| < j;. The summation in Eq. (2.22) is over all integers x,
such that the factorials all have non-negative arguments. As seen, Wigner 3— j
symbol involves summations of multitudes of factorials. Therefore, straightforward
calculation using Eq. (2.22) is very inefficient. A recursion relation for the
coefficients a(m,n| y78% | p), in which only the index p cycles, is highly desirable,
especially for machine computation. Such relations exist and can be found in
Peterson et al. [22], Bruning et al. [27], Cruzan [32], Danos et al. [33], and Wittman
[34].

Eq. (2.16) can be written in a compact form as

PO R =Y D S0 () @v 1) almn | - v | p)

v=0 u=—v p

x P (R g9 (kR,)}, R <R,

= i z Z{(—l)”(j)”p_" 2v+1) a(m,n| /A | p)

u==v p

x 9 (kR,) gV (kR)}, R’ >R,.

p(m—pt)

(2.23)

The translational addition theorems can also be written in the form similar to Chew

[2] as

POGR) =YY Blm.n

v=0 yu=—v

1vik) gl (kR (2.24)

11



POUR) =S almn

v=0 u=-v

wvik)pl)(kR),  R'<R,

w,vik) o) (kR'), R >R,

=33 Blnn

v=0 u=-v

(2.25)

where the translation coefficients are given by

,B(m,n

wvik)= DA v 1) YA almon | =1y | p) 00 GRS,
P
(2.26)

a(m, n

wvik)= (=D Gy v+ S almn | - v | p) ol R},
P
2.27)

Eq. (2.24) and Eq. (2.25) for R’ < R, follow directly from Eq. (2.16), and Eq. (2.25)
for R">R, can be obtained from Eq. (2.15) by interchanging the orders of
summation, substituting new indices, and using the properties of the Wigner
coefficients and Associated Legendre functions, Stein [31].

The interpretation of the addition theorems is as follows; Eq. (2.24) expands the
incoming wave functions with reference to the origin 0 in terms of the incoming

wave functions with reference to the origin 0". Eq. (2.25) for R’ <R, (inside the
circle R”= R, in Figure 2.2) expresses the outgoing wave functions with reference to

the origin O in terms of the incoming wave functions with reference to the origin 0 ;

and in the region R’ > R, (outside the circle R'= R, in Figure 2.2), the outgoing

wave functions with reference to the origin 0 are expressed in terms of the outgoing
wave functions with reference to the origin 0". On the boundary R’ =R,, the
outgoing wave functions are singular.

The spherical scalar wave functions in Egs. (2.1) and (2.2) could also have been

cos m¢@

chosen in terms of | |
sin m¢

] harmonics instead of ¢’ , however, such a choice

12



would result in more complicated expressions for the addition theorems, Varadan et
al. [37].

For the efficient computation of the addition theorems, recurrence relations for
the translation coefficients ,B(m,n |ﬂ,v;k) and a’(m,n |ﬂ,v;k), Chew [35] and Chew
et al. [36], can be used as an alternative to the recurrence relations for the

coefficients a(m,n| J7R% | p).

yA

Figure 2.2 R’ = R, circle on the transverse xy plane.

2.2 Formulation of the Translational Addition Theorems for the Time Domain

Spherical Scalar Wave Functions

In this section, first the time domain spherical scalar wave functions are defined; next
an impulsive plane wave coming in along an arbitrary direction is expressed in terms
of spherical waves with center at the origin in the time domain. Along with this

expansion, following similar steps and using the time domain equivalents of the

13



identities in Friedman er al. [30], but now entirely in the time domain, the

translational addition theorems are obtained.

The time domain spherical scalar wave functions @, (R,?) are defined as

@ (R,1)=S5, (E,tan’" (cos@)e’? (2.28)
C
@ A (R \pm jmo
®Y(R,1)=0,] =, |P"(cosB)e™ , (2.29)
C

for —n<m<n, and 0<n<o, where ® (R,r) and ®'”(R,f) represent the
incoming and outgoing wave functions, respectively. The set of functions

® V@ (R, 1) are orthogonal over a spherical surface and they satisfy the scalar wave

equation,
, 192

&V (R,r) are obtained using the inverse Fourier transforms given in

Buyukdura et al. [13], and related to the well known spherical scalar wave functions

as,

S (E,tanm (cos@)e™ =2 F{j (kR)P" (cos@)e™}, (2.31)
C

0 (E’tj P"(cos@)e™ =—j"F{jon® (kR)P" (cos )™} . (2.32)
C

It is worth noting that the inverse transform of the Bessel functions are found easily,

Abramowitz et al. [40], however the inverse transform of the Hankel functions exist

14



in the sense that for any function G(@) whose inverse Fourier transform is g(7), if
""" G(w) remains bounded as @ — 0, then the inverse Fourier transform of the
product (—j@)h” (@)G(w) is given by the convolution of g(f) and j"O,(l,1),
Buyukdura et al. [13], Azizoglu et al. [14], and Azizoglu [17].

The standing wave functions, S, , are defined as,

S (R,t):%Pn(Efjp(—tj , (2.33)

R

where p(-) is a pulse equal to unity when its argument is between —1 and 1, and
vanishes elsewhere; and O, represents the outgoing wave functions, Azizoglu et al.

[14],1.e.,
O,(R t)—l§(t—R)
o\ t) = R >
1 1
OI(R’t):E&t_R)JrFu(t_R)’

0,(R,1) =%5(t—R) +%u(t—R)+%(t—R)u(t—R) ,

_8(t-R) (n+10)! (t—R)"™
0. (kD=4 +;2"i!(i—1)!(n—i)! g WU R

(2.34)

where J(:) is the Dirac delta function, and u(-) stands for the unit step (Heaviside)
function. In general, O, (R/ c,t) consists of a delta function striking at ¢ = R/c and

an (n—1)th order polynomial in (f — R/c) for t > R/c. It is possible to express O, as,

15



0. (R,1) = %%{Pn [%ju(t - R)} : (2.35)

and it is related to U, of Buyukdura ef al. [13] as

U (Rt
0 (Rpy=Ta R0 (2.36)
It is also shown in Buyukdura et al. [13] that
1 R*+R?—-t") (t—R ,
P =(-D"S (R,t)®0, (R,1) , 2.37
RR,{ ( TG jp( = ﬂ -1)"S,(R,1)®0,(R,1) (2.37)

where ® stands for the convolution operation.

In order to derive the translational addition theorems for the time domain
spherical scalar wave functions, first an impulsive plane wave coming in along an
arbitrary direction should be expanded in terms of spherical waves with center at the

origin in the time domain. Consider the impulsive plane wave, 1i.e.,
w'(R,t) = 8(t + Rcos y/c) coming along the direction # = and ¢ = B. Here y is
the angle between the directions (a,f) and (6,4) so that
cos ¥ = cos @ cos a + sin @sin & cos(¢ — ) . The incident field can be written in terms

of spherical waves with center at the origin 0 as

v RD=Y L ®DY R . (2.38)

n=0 m=—n

In order to find the convolving function f,fm (1) (we would call it coefficient if we

were in the frequency domain), consider a point source, b(z)6(R —R”); the incident

field due to this point source located at R” can be written as

16



v, (R1)=— j . j “m 2o (R.R":t —7)b(7)0(R"—R")drdv” | (2.39)

where V is the region occupied by the source and g, is simply the inverse Fourier

transform of the well known expression for the closed form Green’s function in the

frequency domain, Chew [2], i.e.,

- jk|R-R|
G,(RLRk)=————, 2.40
and
(R,R’:t) = SR -R/c) (2.41)
ST T ZR-R] '
Eq. (2.39) can be written as
v, (R,1)=-b(1)® g, (R, R%1) . (2.42)

In order to obtain a plane wave we let R — oo, and approximate the field at the

origin due to the point source as,

W, (R=0,1)=-b(1)®

S(r—R'/c) (2.43)
4R '

Now adjust the amplitude and delay (or rather, advance) such that the field at the

origin is,
v, (R=0,1)= o) . (2.44)

Thus we have,

17



b(t)=—4mR'5(t+ R'/c) . (2.45)

Now, in Eq. (2.42) use the eigenfunction expansion for g, given in Buyukdura et al.

[13], also given in Eq. (A.3),

c

__ LR o ol P! (n—m!es (R R
v, (R1)= b(t)®8ﬂ022{( 1) (2n+1)(n+m)!Sn(c,tj®On( ,tj

n=0 m=—n

X P" (cos @)e’"’ P" (cos 0' )e‘”w} .

(2.46)
Using the large argument form of 4”(kR), one can obtain
lim O, (ﬁ,tj = M : (2.47)
R e c R'/c

Upon substituting Egs. (2.45) and (2.47) in Eq. (2.46), expansion of the impulsive
plane wave coming in along an arbitrary direction can be written in terms of the time

domain spherical wave functions as,

R n

St +Rcosy/c)= %Z z {(—1)”(2n+1)$;—m)!sn(£’tj

m)! c

n=0 m=—n

X P (cos &) P" (cos @)e ™" P9 } )

(2.48)

These results agree with the result obtained using inverse Fourier transformation of

the well known frequency domain expression, i.e.,

18



. e — | )
T 23N () 2n+1) E" + ’";; j. (kR)P" (cos @) P" (cos @)e " #~) |
n+m).

n=0 m=-n

(2.49)
Now, we first obtain the translational addition theorem for @' (R,#). Consider a

point P which has the spherical coordinates (R,8,¢) with respect to the origin 0.

From the expansion of Eq. (2.48), an integral representation of elementary spherical

wave functions can be obtained. Multiplying both sides of the equation by
P" (cos a)e’™ , and using the orthogonality property of the Tesseral Harmonics over

a spherical surface, Eq. (2.13),

S [5, tan’” (cos@)e’? = b7
c 2z

X j;: ”70 S(t+Rcosy/c)P" (cosa)e™ sina dar dff .

(2.50)

is obtained. Introduce a new origin 0", where 0" has the coordinates (R,,6,.9,)
with respect to 0 (Figure 2.1), and let (R’,8’,¢") be the spherical coordinates of the
point P with respect to 0. We shall now obtain an expansion for a standing

spherical wave around O such as S, (R/c,t)P"(cos@)e’ in terms of standing

spherical waves around 0" such as S, (R”/c,t)P" (cos@")e’? . It can be shown that,

Friedman et al. [30],
Rcosy=R'cosy’ + R, cosy, . (2.51)

Here §  is the angle between the directions (a, ) and (6’,¢"), while ¥, is the
angle between the directions (a, ) and (6,,4,) .

Using Eq. (2.51) in Eq. (2.50) we have
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H™

27

S, [5 , tan’” (cos B)e’™’ =
c

27 7 , ,
Xjﬁzoja:0{§(t+R cos ¥'/c+ R, cos ¥, /c)

X P" (cosa)e’™ sina da d,B}.
(2.52)

For the term &(f + R’ cos 7//c), the expansion corresponding to Eq. (2.48) can be

used, i.e.,

0 |4

eSS oot £
v=0 u=—v .

X P* (cos &) P* (cos §")e P } :

(2.53)

It is assumed that when the above expansion is substituted into Eq. (2.52), the order

of summation and integration may be interchanged, Friedman et al. [30]. Therefore,

—-n oo

Sn(ﬁ,sz;"(cose)ef’w = Z{( N @v+1) YA

c v=0 pu=—v ( )'

R’ N ind
xSv(—,tij‘ (cos@)e
c

® IZO J-::O 5t + R, cos 7, /c)P" (cos @) P* (cos &)

xe! "™ sina dor dﬁ} .

(2.54)

In writing Eq. (2.54), the following relation is used,

20



St +Rcosy/c)=5(t+R,cosy,/c)®S(t+R cosy'/c) . (2.55)

Using Eq. (2.19) in Eq. (2.54) results in

S (R,t)P" (cos @)e™ = (e

4r
SN v (V — ;u)'
X (-1’ (2v +1) alm,n| v | p)
2, 2.2, { Y aaatad
R u N, il m
xS,| —.t |P/(cos@)e ®Ip’ ,
c
(2.56)
where [ ;,‘ " are integrals of the form
2r o7 i Y .
5" = jﬁzojazo 8(t+ R, cosy,/c) P (cosa) e’ P sinar dar df .
(2.57)
It is possible to evaluate these integrals directly using Eq. (2.50), Stratton [43],
wm p R, mep j(m+ )9,
157" =22(-1)"S,| —,1 |[P;""(cos ,)e: °. (2.58)
c

By substituting Eq.(2.58) into Eq.(2.56), the expansion of a spherical wave with
respect to one origin, in terms of the spherical waves with respect another origin is

obtained as,

21



=

R m mg _ l N _\vHp-n (v=mw)!
Sn( . ,tan (cosB)e > ;ﬂz;{( D2V +1) ot alm,n | v | 0)

R ’
xSp(—O,tj(@Sv(i,tj
C C

X P} (cos 6, )P} (cos @")e ™" e "% } ,

(2.59)

which can equivalently be written as

S, (E,tjpnm (cos@e™ =13y Z{(—l)””‘”“‘ Qv +Dalm,n| -uv | p)
C

2 v=0 u=—v p

R ’
xSp(—O,tj(@Sv(i,tj
C C

X P} (cos 6,) P} (cos §)e " /" i } ,

(2.60)

using Eq.(2.9).
In order to obtain the addition theorems for the outgoing spherical functions

®(R,1), the integral representation for this function must first be obtained. The

representation of the spherical wave functions in terms of plane waves, Stratton [43],

in the time domain is,

c 1 oz paf2-je , .
Eé(”Rl/C):gIﬁ-oL-o] 5(t+R, cosy,/c)sina da dff | (2.61)

where ¢ is the derivative of the Dirac delta function, i.e. the unit doublet and

(R,,6,,9,) are the spherical coordinates of a point P, with respect to the origin 0, .
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Now let the point P, have spherical coordinates (R,6,¢) with respect to the origin

0, and let 0, have coordinates (R’,8°,¢°) with respect to 0. Similar to Eq. (2.51),
Rcosy=R"cos ¥’ + R, cosy, , (2.62)

and similar to Eq. (2.48), 8(t — R° cos 7°/c) can be expanded as

St -R° cos;/o/c)zéi 3 {(2n+1) (n=m!g (R_,t]

(n+m)! "

P"(cos@)P!" (cos 9° )ejm(ﬁ_%)

H_J

(2.63)
We also have the formula, Stratton [43], for R® < R as,
- “ZZ 1 @nen B (R ®0(5J
R1 nOm_n ( m)‘n C, n c,
P" (cos 6° )P (cos g)efm<¢—¢°) } .
(2.64)

Using Eq.(2.62) and Eq.(2.63) in Eq.(2.61) and comparing with Eq.(2.64), the

integral representation can be found as

o, (E,tan’” (cos @)’ = j jﬂ/z {8 (¢ + Rcos 7/c)
c

275

x P" (cosar)e’™ sinar da dp}.
(2.65)
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Now let the point P have spherical coordinates (R’,8’,¢") with reference to another
origin 0", where 0" has coordinates (R,,6,,4,) with respect to 0, Figure 2.1. Using

Eq. (2.51) and Eq. (2.53) in Eq.(2.65) along with
8t +Rcosy/c)=08"(t+ R, cosy,/c)®(t+ R cosy/c) , (2.66)

it can be shown that it is possible to interchange the order of summation and

integration provided that R’ < R, Friedman et al. [30]. Therefore we have

|4

On(ﬁ,tjpnm (cos g)e‘jmj = —(_41—%2 Z{(_l)v(zv n 1) 4 —,U)'
c

T v=0 u=—v (V + ﬂ)'

R’ g
XS, [— , tjPV” (cos@)e
c

® | . ] T+ R, cos 7, /)P (cos @) P (cos )

£=0J a=0

xe! ™8 sina da dﬂ} , R'<R,.

(2.67)
Using Eq. (2.19) in Eq.(2.67) results in
R m im (_1)_" - < v (V_ﬂ)'
O |—,t|P"(cos@e’? = —~—— - Qv+1)—=
(Lo =-S5 35 e eran i
R’ 4 n iup
><a(m,n| ,u,v|,0)SV —,t |Pf(cos@)e™’
c
®K/‘j”" } R'<R,,
(2.68)
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where K ;‘ "™ are integrals of the form

K4m = .[ZO .[Zz—jm 8t + R, cos , [c) P/ (cos @) e’ " *F sinar dex dp.
(2.69)
These integrals can be evaluated directly, using Eq.(2.65), as
m P R m+p J(m+u) ¢,
K" ==2z(-1)"0, P (cosd,) e v (2.70)
c

Substituting Eq. (2.70) into Eq. (2.68) leads to

0 (5 tjp’"(cose)e"w 1y zz{( Do @+ ) Y | v | p)

vOy v p ( )'

! R,
xSV[R j@O ( jP”(cosQ)P”’”‘(cosQ )
c c
Xe_jm¢'e‘i(m+ﬂ)¢°} , R < Ro )
2.71)
When R, < R’, the resulting expansion would be the above equation with (R’,6’,¢")

interchanged with (R,,6,,9,) . Using the relation in Eq.(2.9) and using the notation

defined in Egs. (2.17) and (2.18), the expansion for the spherical wave ®(R,?)

about one origin can be written in terms of spherical waves around another origin as,
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0 |4

0, (ﬁ,sz;" (cos @)e’" = %Z > Z{(—l)””‘"“‘ @v+1) almn| - uv | p)
C

v=0 yu=—v p

S, ( R, ,tj ®0, ( R, ,tjPV” (cos )P, (cosb,)

e‘iﬂ¢< e‘i(m—ﬂ)ﬂk } ,
(2.72)

Finally, the translational addition theorems for both the incoming and the

outgoing wave functions can be written as

dVW(R,1) = %i Z S v+ almn| - v | p)

v=0 u=—v p

VR, HODVY (R0}, R <R,

p(m—pt)

:%i > DA Qv 1) almn| - v | p)

v=0 y=—v p

PV (R, NODPVY (RN},  R>R

p.(m—u 0>

(2.73)

in which wave functions with R dependence is expressed in terms of wave functions
with R, dependence convolved with wave functions with R” dependence. Similar to
the frequency domain expression, Eq. (2.23), either the first or the second line may
be used with CIfo,zl (R,1), without restriction on the relative size of R” and R,, and
@Y (R,t) is singular across the boundary R’ = R,, Figure 2.2. Eq. (2.73) can be

written in the form similar to Eqgs. (2.24) — (2.27) as

O R=YY Bl

v=0 pu=-v

;1)@ (R, 1), (2.74)
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wvit)® dV([Rr), R <R,

Vi

O (R, 1) = i Z alm,n

v=0 yu=—v

pLvit)® @R, R >R,,

=33 Blnn

v=0 u=-v

(2.75)

where the time domain translation convolving functions are

,B(m,n

1
povt)= D@ DY (D almn| - v | p) @, R0
P

(2.76)

a(m, n

1
U, vit) = SEDT v DY D2almn|-pmv|p)@, . (R,.0).
P

2.77)

The expressions derived in this section for the time domain translational addition
theorems are in agreement with the results obtained using inverse Fourier
transformation of the frequency domain expressions given in the previous section.
Also, note that the interpretation of the addition theorems given in the previous
section for the frequency domain expansions is still valid for the time domain

expansions.

2.3 Numerical Properties of the Translational Addition Theorems for the Time

Domain Spherical Scalar Wave Functions

The wave functions, ®“ (R, 1), are discontinuous in time, so for numerical check,
nm

both sides of Eq. (2.73) are convolved by a smooth function, which is chosen to be
the Gaussian waveform in this study; and then each side is evaluated for various n,

m, R and R, for comparison. The logarithmic error, expressed in dB, and the

percent error are defined as
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error = 10log M , (2.78)
lg(®)
percent error = Mx 100 , (2.79)
lg@)
where
le] =] [e| ar . (2.80)

In these equations, g(t) is the left hand side of Eq. (2.73), and g () represents the

approximating function which is defined by the expansion on the right hand side and
truncated to include N terms depending on the required accuracy .

In the numerical computations, the Gaussian waveform is chosen to be eS0T

which is roughly of duration 27 =17 ns provided the wave velocity is that of light in
vacuum, and the convolution operations encountered are all achieved by using
Gaussian integration, Abramowitz et al. [40], in order to obtain accurate results. In
order to accelerate the computations, the Associated Legendre functions are
computed using their tabulated coefficients, the functions obtained by this method

are checked to be accurate up to the order n =16.

Consider first the expression for the incoming wave functions, <I>illn)1 (R,1).
Although frequency domain expansion has no singularities; R=0, R, =0, and
R’ =0 are singularities for the time domain expansion.

In order to check the expansion in Eq. (2.73), specific values of n and m , and a
specific translation is taken. Both sides are convolved with the waveform, and the
real and the imaginary parts are compared for the desired observation point. Figures
2.3 and 2.4 depict the excellent agreement for n =4, m =2, when the specific

observation point is (R=5,49=7z/2,¢=7[/6), and the specific translation is
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(R,=4,6,=7/2,8,=x/4). The error is -45 dB, which corresponds to percent

error less than 0.01 %, when 6 terms are included in the series expansion.
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Figure 2.3 Real parts of the incoming wave function ®'” (R,?), left hand side and its
expansion, right hand side, in Eq. (2.73) for n=4, m=2,
(R=5,0=x/2,p=r/6),and (R, =4,6,=7/2, ¢, =7/4), 6 terms are included
in the series expansion.
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Figure 2.4 Imaginary parts of the incoming wave function @' (R,?), left hand side
and its expansion, right hand side, in Eq. (2.73)for n=4, m=2,
(R=5,0=x/2,9=x/6),and (R, =4,6,=7/2, ¢, =7/4), 6 terms are included
in the series expansion.

In order to picture the error with the variation of the observation point, n =4,
m=2, (R,=4,6,=x/2,¢,=xr/4) is chosen, and R is varied on the
transverse xy plane, error in dB is plotted by including at most 7 terms in the
expansion, Figure 2.5. Except at the singularities and the points in the vicinity of the
origin 0, i.e., R=0, error of -20 dB, corresponding to 1 % percent error, can be
achieved. In Figure 2.5, it is clearly seen that error is very small in the vicinity of the
origin 0" which has the coordinates (R, =4, 6, =x/2, ¢, = #/4) with reference to
0 , where R’ is very small. The error can be reduced, which means the light colored
region in Figure 2.5 can be shrunk approaching the origin 0, in most cases by

including more terms in the series expansion, so one can conclude that reducing R,
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i.e. narrowing the pulse on the left hand side of Eq. (2.73), increase the number of
terms that should be included in the expansion for a particular numerical accuracy.
The contour plot of Figure 2.5 does not show perfect circular symmetry around the
origins 0 and 0" , which is theoretically expected, due to the numerical errors

depending on the direction and magnitude of the translation.

dB

-10 -5 0 5 10

Figure 2.5 Contour plot of error in dB for the expansion of the incoming wave
function, ®'V (R, ), in Eq. (2.73), on the transverse xy plane for n=4, m=2, and

nm

(R, =4.6,= 7[/ 2,9, = 7[/ 4), at most 7 terms are included in the series expansion.

The observations made after the study of many cases are given in the following
discussion. In the tabulated results, the error criterion is chosen to be 1 % percent

error. Table 2.1 is an example which shows that increasing the order and degree of
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the wave functions, n, m, respectively, while keeping R” and R, constant increase

the number of terms that should be included in the wave function expansion.

Table 2.1 Number of terms retained in the wave function expansion of ® (R,?),

N , with respect to n and m for 1 % percent error, for the case
(R=3,0=7x/8,p=x/2) and (R,=2.5,6,=0,¢, =7/2).

S

N W W W NN NN NN = = O
N O WO N = O = O o 3
< R W R W W N N =

It is also observed that one has to include more terms in the series expansion, as

min{R',R, } gets larger for fixed n, m, R, and numerical accuracy, Table 2.2.
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Table 2.2 Number of terms retained in the wave function expansion of <I>illn)1 (R,1),
N , with respect to min{R',Ro} for 1 % percent error, for the case n=2, m=2,
(R=5,0=x/2,¢=0),and (6, =7/2,4,=0).

min{R‘,Ro },m N
0.1 1

0.5 2

1 3

2 4

2.5 4

The effect of the pulse width of the waveform used in smoothing, 27, on N can be
seen in Table 2.3. The pulse width, 27, corresponds to the duration of the Gaussian

-5.652/ 7

waveform, e , provided the wave velocity is that of light in vacuum. As 7 is

decreased, N should be increased in order to obtain the same accuracy.

Table 2.3 Number of terms retained in the wave function expansion of ® (R,?),

N, with respect to 7 for 1 % percent error, for the case n=2, m=2,
(R=5,0=7/2,¢=0),and (R, =1,6,=7/2,9,=0).

7,18 N
17 2
8.5 3

4.25 4

For the incoming wave function,@if,; (R,?), both lines in Eq. (2.73) are valid
without restriction on the relative size of R’ and R,, however with different

numerical behavior. Using the first line when R"< R, and the second when R’ > R,
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decreases the number of terms that should be included in the series expansion as
compared to doing vice versa.
In the same manner, one can check the expansion for the outgoing wave

4)

functions, @'V (R,?). Figures 2.6 and 2.7 depict the agreement of both sides of Eq.

(2.73) for n=4, m=2, when the specific observation point is
(R=25,0=x/2,9=7/6), and the specific translation is
(R,=2,6,=7/2,8,=x/4). The error in dB is -31.4, which corresponds to

percent error less than 0.1 %, when 5 terms are included in the series expansion. One
can get even better results, in which the waveforms show excellent agreement, than

Figures 2.6 and 2.7, for smaller translations, i.e., R, < 2.
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Figure 2.6 Real parts of the outgoing wave function ®'" (R, ¢),left hand side and its
expansion, right hand side, in Eq. (2.73) for n=4, m=2,
(R=25,0=x/2,¢=x/6),and (R, =2,6,=7/2,¢, =7/4), 5 terms are
included in the series expansion.

34



0 bosssss S right hand side ||
% x  left hand side

> 0.1
©
C
2
£ -0.2+
=
i)
‘g -0.31
=
o
% 0 4 -
; - .
(@]
c
‘©
2 -0.5¢
>
o

-0.61

75 80 85 90 95 100 105 110

time (ns)

Figure 2.7 Imaginary parts of the outgoing wave function ®'" (R, ¢)left hand side
and its expansion, right hand side, in Eq. (2.73)for n=4, m=2,
(R=25,0=7x/2,p=x/6),and (R,=2,6,=7/2,¢,=7/4),5 terms are
included in the series expansion.

The numerical error for the expansion of the outgoing wave functions, CIDf;‘,f (R,1),
for n=4,m=2,and (R, =2,6,=7/2, ¢, =7/4) is depicted in Figure 2.8. R is
taken on the transverse xy plane, and error in dB is plotted by including at most 4
terms in the expansion. CIDf;‘,f (R,?) on the left hand side of Eq. (2.73) is defined
outside a circular region at the origin 0 with radius depending on the required
accuracy. When the first line of Eq. (2.73) is valid, i.e., R" < R,, the outgoing wave

functions, @;‘2 (R,?), with reference to the origin 0 is expanded in terms of the

incoming wave functions with reference to the origin 0"; and the error for the

expansion is small inside a circular region centered at the origin 0" with radius
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depending on the number of terms included and the required accuracy (the small dark

region around the origin 0" in Figure 2.8). When the second line of Eq. (2.73) is

valid, i.e., R">R,, the outgoing wave functions, ®'¥(R,¢), with reference to the

origin 0 is expanded in terms of the outgoing wave functions with reference to the
origin 0", and the error for the expansion is small outside a circular region centered
at the origin 0" with radius depending on the number of terms included and the
required accuracy (the outer dark region in Figure 2.8). This comment on Figure 2.8
is in agreement with the interpretation of the addition theorems, using Figure 2.2,
given at the end of Section 2.1. The contour plot of Figure 2.8 does not show perfect
circular symmetry around the origins 0 and 0" , which is theoretically expected, due

to the numerical errors depending on the direction and magnitude of the translation.

dB

-10 -5 0 5 10

Figure 2.8 Contour plot of error in dB for the expansion of the outgoing wave

function, CID;‘:; (R,?), in Eq. (2.73), on the transverse xy plane for n =4, m=2, and

(Ry=2,6, = /2, o, = 7/4), at most 4 terms are included in the series expansion.
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Study of many cases showed that; increasing the order and degree of the wave
functions, n, m, respectively, tend to increase N , the number of terms that should
be included in the series expansion, for a particular numerical accuracy; however,

they are not as effective as in the case of the incoming wave functions, Table 2.4.

Table 2.4 Number of terms retained in the wave function expansion of @;‘2 (R,1),

N, with respect to n and m for 1 % percent error, for the case
(R=15,0=x/8,¢=x/2) and (R,=1,6,=0,¢, =7/4).

0 0 AN AN NN =, = O =
0 O A O N = O = o o =3
N W A MWW W W W W=

It is observed that, convergence is mainly determined by min{R',R,}, and R should
be chosen large enough with respect to min{R',RO}. Table 2.5 is an example which
shows that one has to include more terms in the series expansion, as min{R’, Ro} gets

larger for fixed n, m and R, and numerical accuracy.
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Table 2.5 Number of terms retained in the wave function expansion of @;‘2 (R,1),
N , with respect to min{R',Ro} for 1 % percent error, for the case n=2, m=2,
(R=20,60=x/2,¢4=0),and (6, =7/2,4,=0).

min{R', R, }, m N
0.1 1

0.5 2

1 3

1.5 5

The effect of the pulse width of the waveform used in smoothing, 7, on N can be
seen in Table 2.6. As 7 is decreased, N should be increased in order to obtain the

same accuracy which is similar to the results of the incoming wave functions.

Table 2.6 Number of terms retained in the wave function expansion of @;‘2 (R,1),

N, with respect to 7 for 1 % percent error, for the case n=2, m=2,
(R=20,0=7x/2,¢=0),and (R, =0.75,6,=7/2,¢4,=0).

7,18 N
12.75 2
8.5 3
5.7 4

The translational addition theorems for the time domain spherical scalar wave
functions are also checked numerically by inverse Fourier transforming the well-
known frequency domain expressions.

As a concluding remark, numerical accuracy for the expansions of the incoming

and outgoing wave functions in the time domain, i.e., Eq. (2.73), can be interpreted
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in a similar way with that in the frequency domain, but there are also additional

requirements suchas R#0, R, #0, and R #0.

In this chapter, the addition theorems for the spherical scalar wave functions
under coordinate translation are described in the frequency domain and derived in the
time domain. The derived time domain expressions, which are also checked
numerically in this chapter, will be used in solving multiple scattering problems in

the following chapters.

39



CHAPTER 3

TIME DOMAIN SCATTERING OF SCALAR WAVES BY

TWO SPHERES IN FREE-SPACE

In this chapter, first scattering of scalar waves by a single sphere in free-space is
reviewed both in the frequency and in the time domain, Section 3.1, then the well-
known frequency domain scattering by two spheres is given in Section 3.2. As an
application of the time domain translational addition theorems, derived in the
previous chapter, formulation and numerical results of the time domain scattering of
scalar waves by two spheres in free-space is presented in Section 3.3. The numerical
results of the frequency domain scattering are verified with the results given in the

literature, Marnevskaya [21], Peterson et al. [22], Gaunaurd et al. [23] and [24], and

Varadan et al. [37]. Note that, in those work e ’” time convention is used and the
incident plane wave is propagating in the + zdirection, which should be paid
attention in comparing with the present work. The numerical results of the frequency

domain scattering problem are then used in checking the time domain results.

3.1 Scattering of Scalar Waves by a Soft Sphere in Free-Space

Generally, the incident field can be written in the frequency domain as

V' (R)=Y 3D, F, ¢ (kR) . G.1)

n=0 m=—n

where
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_ = Jk@2n+1)(n—m)!
 4Ax(n+m)!

(3.2)

nm

and @' (kR) is the incoming spherical scalar wave function given in Eq. (2.1). For a

known incident field l//i , or for a known impressed source, the coefficients F n’m are

known. Consider the scattering geometry in Figure 3.1,

()

Sources

Figure 3.1 A scatterer in the presence of an incident field and surfaces for the T-
matrix method.

the total field in the vicinity of the scatterer can be expanded as

y' (kR) = ZZ . 9L (kR') (3.3)

v=0 pu=-v

and the incident and total field coefficients are related through

i Z nmvu V/l ’ (3.4)
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which can be written in matrix form as

F =QF'. (3.5)

F' and F' are column vectors containing F,, and F, in some proper sorting,

respectively. Q is a matrix with elements Q,.,, Which can be shown to be
— 4) kR’ d ©) kR’ d ’ 3.6
Qoo = [ Pl R~ 9L (R s, (3.6)

by using the orthonality of Tesseral harmonics and the spherical wave expansion of

the scalar free-space Green’s function, Eq. (2.40), i.e.,

G,R.R50) =3 3D, j, (kROK® (kR.)Y,, (8.0, (6..0.)} (3.7)

n=0 m=—n
In Eq. (3.6), d ¢, (kR") /dn' corresponds to the directional derivative of ¢}, (kR’)
along dn’, defined in Eq. (C.6), and i’ is the unit normal outward from the scatterer

as depicted in Figure 3.1.

The scattered field can be written in terms of the outgoing wave functions as

v R =Y YD, Fl ol (R) (3.8)

n=0 m=—n

and the scattered field coefficients can be related to the total field coefficients

through

Fi =308 FL . (3.9)

v=0 u=-v
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which can be written in matrix form as
F'=Q F'. (3.10)

e
nmyvu °

. . . ~N¢ . . .
F’ is a column vector containing F, and Q is a matrix with elements Q

05 =—f PLUR)-L gl

0 (kR") ds” . (3.11)

The inspection of Eqgs.(3.6) and (3.11) shows that
Q' =-Re{Q}, (3.12)

where Re implies the “regular part of”’, in other words, Re{a } will convert all the

Hankel functions in (_2 into Bessel functions, Chew [2]. The T-matrix can now be

defined to relate the scattered field coefficients to the incident field coefficients as

F'=TF'. (3.13)
where
T=Q'Q ,
——Re{a} 6_1
(3.14)

Eq. (3.14) indicates that (_Qe does not need to be filled separately, i.e., it suffices to

fill 6 in order to get the T-matrix, T. Once the T-matrix is obtained for a given
frequency and a scatterer, it can be used for any illumination.

Consider a plane wave incident from the + z axis (from € =0), which can be
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expanded, using Eq. (2.49), as

v (kR) = e’

NgE

J"2n+1)j (kR)P, (cos®).

Il
[=)

n

(3.15)

Let this incident wave insonifies a soft sphere of radius a centered at the origin, the

scattered field can be expressed as
w' (kR)=Y" j"(2n+)F, h” (kR)P, (cos 6). (3.16)
n=0

where the scattered field coefficients, F’, can be found by imposing the Dirichlet

boundary condition on the sphere, i.e.,

' +y') =0, (3.17)
‘ J, (ka)
T ) (3.18)

Note that the orthogonality of the wave functions implies that they are linearly
independent; and this property enables to interpret Eq. (3.17) as a term-by-term
equality, leading to Eq. (3.18). Hence, the T-matrix for the soft sphere centered at the

origin is a diagonal matrix given by

A
nmyvg h(z) (ka) wYmu

(3.19)

The normalized scattering cross section for a scatterer is defined as

44



4 1
=41 R’ ‘ — > (3.20)
‘W’ wa
and the normalized backscattering cross section is
o,=0(0=0). (3.21)

The plot of the normalized backscattering cross section for acoustically soft sphere of
radius a with respect to the normalized frequency ka, which is in agreement with
Varadan et al. [37], is given in Figure (3.2). The observation point in the

backscattering direction is chosen in the far field, (R =1000,8=0,¢=0), and at

least 30 terms should be retained in the series expansion as ka goes up to 20.

N

normalized backscattering cross section
N
(6)]

—
o

10 15 20
ka

Figure 3.2 Normalized backscattering cross section for acoustically soft sphere of
radius a with respect to the normalized frequency ka .
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Now, consider the time domain scattering, the time domain T-matrix formulation
is given in Appendix A. The specific application of this formulation, which is the
scattering by an acoustically soft sphere, is given in Buyukdura et al. [13], and can
be summarized as follows.

The impulsive plane wave incident from the + z axis (from 8 =0), i.e., d(t + z),

can be expanded as,
i 1 - n R
v (R,t)zEZ(—l) 2n+1)S,| —.t |P, (cosf) , (3.22)
n=0 4

which can be deduced from Eq. (2.48). The scattered field due to this incident field

can be written as,

v (R,1) = —%i(—l)"(Zn +e, ()®S, (ﬁ,tj ®0, (ﬁ,szn (cosb) |,
C C

n=0

(3.23)

where the convolving function, ¢, (¢), can be found by imposing the boundary

condition on the sphere which implies

c,)®0,(afc,t)=8@) . (3.24)

Note that, this equation is in the form of Eq. (A.27) and the Q matrix, a(t), 18
diagonal with diagonal entries O, (a/c,t). The convolving functions, ¢, (¢), can be

found using direct deconvolution. When Eq. (3.23) is expressed according to

Eq.(A.21), it is clear that the matrix, (_Qe(t), is diagonal with diagonal entries

S, (a/c,t) and appropriate coefficients. As a(t) and ae(t) is found, the time

domain T-matrix for single sphere can be defined as

Tt)=-S.(t)®O.(t) , (3.25)
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where

0.()®0.(1)=d(1) , (3.26)

and g(t) is a diagonal matrix containing d(¢) in each diagonal entry and 0. () and
S.(t) are diagonal matrices containing O, (a/c,t) and S, (a/c,t), respectively.

As a numerical example, the plane wave with the Gaussian pulse waveform,
defined in Section 2.3, incident from the + z axis on a soft sphere of radius a =1m
is considered. In order to find the scattered field in response to such an incident field,
we simply convolve the waveform with Eq. (3.23). Shown in Figure 3.3 are two
solutions to the scattered field in the backscatter direction at a distance of R =3m
where the field intensity is plotted versus time. The solid curve is obtained using the
present time domain formulation (direct deconvolution is used in finding the
scattered field convolving functions), while the cross marks are obtained by inverse
Fourier transforming the well-known frequency domain solution. Both solutions are
obtained by including 5 terms in the series expansion. An observation made on the
time domain solution is that the solution converges rapidly if the dimension of the
scatterer is small compared to the wavelength at the highest frequency component of
the incident field, which is similar to the case in the solution of problems in the

frequency domain.
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Figure 3.3 Scattered field intensity vs. time at the backscatter direction,
(R=3,0=0,¢=0), due to a Gaussian pulse waveform incident from the + z axis

on a soft sphere of radius @ =1m.

3.2 Scattering of Scalar Waves by Two Soft Spheres in Free-Space in the

Frequency Domain

The scattering of scalar waves by two spheres is well known in the frequency
domain, Marnevskaya [21], Gaunaurd et al. [23] and [24]. The present formulation is
developed similarly, however more general in the sense that the positions of the
spheres are arbitrary, i.e., no simple special case of translation is chosen for the

scatterers. Consider the scattering geometry in Figure 3.4.
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Scatterer 2
Scatterer 1

1

Figure 3.4 Two spheres in the presence of an incident field.

The incident field can be expanded as

y' (kR) = Z Z oL (kR) | (3.27)

n=0 m=—n

with reference to the origin 0. The scattered wave from scatterer 1 of radius a can

be expanded in terms of the outgoing wave functions expressed in its self-
coordinates as

v (kR,) = zzFu oY (kR,) (3.28)

n=0m=-n
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The scattered wave from scatterer 2 of radius b can be expanded similarly in its self-

coordinates as

w2 (kR,) = ZZFYZ P (kR,) . (3.29)

n=0 m=—n

The total scattered field is then,
v’ (kR) =y (kR,))+y¥’* (kR,) , (3.30)

where the coefficients F'' and F'’ are, as yet, unknown and can be found by

imposing the boundary conditions on the surfaces of both spheres. Using the
translational addition theorems given in Section 2.1, i.e., Eqgs. (2.24) - (2.27), the
total field on the surface of the scatterer 1 can be expressed in the coordinate system

1 as

v;k)p (kR )}

vR)-3 3 {F,;‘mi S {5l

n=0 m=—n v=0 yu=—v

FEL OO UR) + F2Y Z{au m,n

vk ) (le)}}

v=0 yu=—v
(3.31)
where
By im,n | vik) = (=D* () " (2v +1)
Z{(])p a(m’"| -V | p) (ozl)m y)(kRo,IO)}’
P
(3.32)
and
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a, (m,n |p,vik) = (=D* ()" Qv +1)

S {7 almn| -wv | p) ot (R, )}
P

(3.33)

Also, note that R, represents the translation from origin 0 to 0, and R,,, the

translation from origin 0, to 0,, i.e.,

R=R,, +R, , (3.34)

R,=R,,+R, . (3.35)

In Eq. (3.31), first term is the incident field written in the coordinate system 1,
second term is the scattered field from the scatterer 1 in its self coordinates, and the
third term is the scattered field from the scatterer 2 written in the coordinate system
1. The first and the third terms can be viewed as the incident field impinging on the
scatterer 1.

Similarly, the total field on the surface of the scatterer 2 can be expressed in the

coordinate system 2 as

12, K) @l (IR )}

l//r(kRZ):ii{ zz{ﬂzomn

n=0 m=—n v=0 p=—v

+FYIZZ{a21mn

v=0 pu=—v

U, vik ¢v(/14) (kRz)}+ F;{Yrj qor(ljz) (kRz)} >

(3.36)

where
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Bo lman|pa.vik) = (1" ()" (@v +1)

S {7 almn| - wv | p) gl . GR, )},
P

(3.37)

and

1Vik)= (=D* () " (v +1)

0(21(m,n
DA almn| = v | p) @5 R, ).
P
(3.38)
Note that R, ,, represents the translation from origin 0 to 0, and R_,, the
translation from origin 0, to 0,, i.e.,
R=R , +R,, (3.39)

R, =R, +R, . (3.40)

For the case of soft spheres, imposing the Dirichlet boundary conditions on the

surface of each sphere, ¥’ e = 0, and ¥’ oy 0, and using the orthogonality of

the Tesseral harmonics over a spherical surface, the following two coupled equations

for the coefficients are obtained,

~ F b ka) = j (a) . 3y Biolom.n

n=0 m=—n

’ 7
m,n;k)

m k)

+ j, (ka) i ian a, (m,n

n=0 m=—n

(3.41)
and
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’ 7
m,n;k)

—F32 h'Y (kb) = j . (kb) i ZFm B (m.n

n=0 m=-n

+ j . (kb) i iF;ﬂlL a21(m,nm',n';k)
n=0 m=—n
(3.42)
It is worth noting that
a, (m,n |p,vik)= D" ay, (m,n |, vik) (3.43)

as R ,, and R, are backwards translations.

The coupled relations, Egs. (3.41) and (3.42) can be written in matrix notation as

F' =T (B, F +anF?), (3.44)

F2 =T, F +ax F"), (3.45)

where T, is the isolated-scatterer T-matrix for the i-th scatterer defined in Eq.

(3.19), and B,,. B,. @. and @ are matrices containing S, (m.nm’,n’;k),

B (m, n

respectively.

m’,n';k), a, (m,nm’, n’;k), and a'21(m,nm’,n';k) in some proper sorting,

The simultaneous solution of the coupled equations, Egs. (3.44) and (3.45), yield

the scattered field coefficients as

—_ = = = 1] —

F' = (i—T1 an T (121) T, (610 +an T BZO)Fi , (3.46)
F? = (i—fz o Tian )_1 T (Ezo +au T Blo)Fi s (3.47)

which check with Chew [2]. In these equations, I is the identity matrix, and the T-
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matrices, T;, are diagonal if the scatterers are spheres. If the incident field is a plane

JkR 0 €08 8, ;o

wave, then E . 1s diagonal with entries containing the phase term, e , with

appropriate coefficients, where R, represents the translation from origin 0 to 0,.

The scattered field coefficients when used in Egs. (3.28) — (3.30) give the total
scattered field in the presence of two scatterers.

In order to check the above formulation, numerical results are compared with
some results given in the literature. Consider two soft spheres, oriented as shown in
Figure 3.5, illuminated by a plane wave incident from the + z axis, ¢’*. The radii of

the spheres are chosen as ka =1 and kb=1.

v

Figure 3.5 Two spheres placed on the z axis, symmetrically with respect to the
transverse xy plane, and

illuminated by a plane wave incident from the + z axis, (end-on incidence).

2
as a function of @ in the far field with reference to 0 for various values of the

v

separation of the spheres, kR ,, denoted by kd , is illustrated in Figure 3.6, where 10
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terms are retained in the series expansion of the scattered field.

| field intensity | 2

0 20 40 60 80 100 120 140
theta, degrees

Figure 3.6 ‘ v’ * vs. @ in the far field with reference to 0 , due to a plane wave

incident from the + z axis in the presence of two scatterers (ka =1, kb =1) for
various values of the separation of the spheres, kR, denoted by kd , scatterers are

placed on the z axis, symmetrically with respect to the transverse xy plane.

The plot in Figure 3.6 is in agreement with the plot given in Marnevskaya [21], note
that the incident plane wave is propagating in the + zdirection in there and this
should be taken into account in comparing with the present plot in which the incident

wave propagates in the opposite direction. Figure 3.6 illustrates the fact that as the

\

v

oscillates more and

separation of the spheres, kR ,, denoted by kd, increases,

more and it increases on going from the illumination zone to the geometric shadow

zone.
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Vv

v

O—FA—=

Figure 3.7 Two spheres placed on the y axis, symmetrically with respect to the

transverse xz plane, and
illuminated by a plane wave incident from the + z axis, (broadside incidence).

In Figure 3.7, the spheres are placed on the y axis, symmetrically with respect to

2

the transverse xz plane, and ‘ v'| is plotted as a function of @ in the far field at

¢=0 and ¢ = /2 with reference to 0, Figures 3.8 and 3.9, respectively. Again the
radii of the spheres are chosen as ka =1 and kb =1, and the separation between the

spheres is kR, ,, =100.
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x107°

| field intensity | 2
(6)] »

N

1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
theta, degrees

’ vs. @ in the far field at ¢ =0 with reference to 0, due to a plane

Figure 3.8 ‘ v’

wave incident from the + z axis in the presence of two scatterers (ka =1, kb =1) for
kR,,, =100, scatterers are placed on the y axis, symmetrically with respect to the

transverse xz plane.
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| field intensity | 2

0 20 40 60 80 100 120 140 160 180
theta, degrees

Figure 3.9 ‘ v’ * vs. 6 in the far field at ¢ = z/2 with reference to 0, due to a plane

wave incident from the + z axis in the presence of two scatterers (ka =1, kb =1) for
kR,,, =100, scatterers are placed on the y axis, symmetrically with respect to the

transverse xz plane.

The normalized backscattering cross section, Egs. (3.20) and (3.21), for two soft
spheres with radii ka =2 and kb =2 placed on the x axis, symmetrically with
respect to the transverse yz plane is plotted as a function of the separation between
the scatterers in Figure 3.10. Note that, the scatterers placed on the y axis,
symmetrically with respect to the transverse xz plane, Figure 3.7, would yield the
same result. The illumination is incident from the +z axis and only 5 terms are

retained in the series expansion of the scattered field.
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Figure 3.10 Normalized backscattering cross section for two soft spheres vs. the
separation between the spheres, kR, ,, denoted by kd, the spheres are of radii ka =2,

kb =2, and placed on the x axis, symmetrically with respect to the transverse yz
plane, the illumination is incident from the + z axis, (broadside incidence).

The normalized backscattering cross section of two soft spheres, Figure 3.10 which
checks with the plot of Peterson et al. [22], oscillates around four times that of a
single soft sphere with ka =2 which is shown with the dashed line.

Consider the scattering geometry in Figure 3.11 where scatterer 1 is of radius
ka =2 located at (2.25/ k.6, ,0) with reference to 0 and scatterer 2 is of radius
kb =2 located at (2.25/k , w— 6, , 0) with reference to 0, where 6, = theta* 7/180.

The illumination is incident from the + z axis.
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v

X lI

Figure 3.11 Scatterer 1 is of radius ka =2, located at (2.25/ k.6, ,0) with
reference to 0 and scatterer 2 is of radius kb = 2, located at (2.25/ k,7-6 ,0)
with reference to 0, where 6, = theta * 71'/ 180, the illumination is incident from the
+ z axis.

The normalized backscattering cross section is plotted as a function of theta in
Figure 3.12 and it checks with the plot of Peterson et al. [22]. Only 5 terms are

retained in the series expansion of the scattered field.

60



1 O T T T T T T

normalized backscattering cross section
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Figure 3.12 Normalized backscattering cross section for two soft spheres vs.
theta , the spheres are of radii ka =2, kb =2, located at (2.25/ k.6, ,0) with

reference to 0 and (2.25/ k, -6, ,0) with reference to 0, respectively, where
0, =theta* 71'/ 180, the illumination is incident from the + z axis.

The form function is defined as, Gaunaurd et al. [23],

f = 2_R"”_ (3.48)
a ‘1//’

and plotted with respect to the normalized frequency ka for end-on incidence
(scatterers placed as in Figure 3.5) in Figure 3.13, where the separation between the

spheres is R, =20, and the observation is in the far field. In the series expansion

0,

of the scattered field, again 10 terms are retained.
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2.5

form function

0.5

Figure 3.13 Form function for two soft spheres vs. the normalized frequency ka,
the spheres are placed on the z axis, symmetrically with respect to the transverse xy

plane with separation R, ,, =20, the illumination is incident from the + z axis (end-

on incidence).

Note that in Figure 3.13, oscillations have approximately unit mean amplitude
and peak envelopes around twice the form function value for a single soft sphere at
the particular ka value. The form function is plotted with respect to the normalized
frequency ka for broadside incidence (scatterers placed as in Figure 3.7) in Figure

3.14, where again the separation between the spheres is R, ,, =20, and observation

0,

is in the far field. In the series expansion of the scattered field, 10 terms are retained.

62



form function

Figure 3.14 Form function for two soft spheres vs. the normalized frequency ka,
the spheres are placed on the y axis, symmetrically with respect to the transverse xz

plane with separation R, ,, =20, the illumination is incident from the + z axis
(broadside incidence).

Note that in Figure 3.14, the form function oscillates around twice the form function
value for a single soft sphere at the particular ka value. These observations made for
the form function of two spheres for the cases of end-on and broadside incidence are
similar to Gaunaurd er al. [23] and [24], where two rigid spheres, satisfying the
Neumann boundary conditions, are worked on.

In order to figure out the effect of coupling between the two spheres on the
waveform of the scattered field, scattering of scalar waves by two spheres is solved
in the frequency domain using the present formulation and the time domain scattered
field is obtained by inverse Fourier transforming the frequency domain solution.

Then the result is compared with the results when the effect of coupling is ignored,

1.e., two isolated spheres, where o and a2 are taken to be zero in Egs. (3.44) and
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(3.45). Consider the scattering geometry of Figure 3.7, let scatterer 1 be of radius
a=025m and 0, has the coordinates (3, 7/2,—x/2) with reference to 0, and
scatterer 2 be of radius »=0.25m and 0, has the coordinates (3, 7/2, x/2) with
reference to 0. In Figure 3.15, two solutions to the scattered field, normalized to the
peak of the excitation waveform, observed at R, (10, 7[/ 2, 71'/ 2) with reference to
0, are plotted with respect to time. The solid curve is obtained by inverse Fourier
transforming the present frequency domain formulation, while the cross marks are
obtained by inverse Fourier transforming the frequency domain solution with
coupling ignored. Both solutions are obtained by including only 2 terms in the series

expansion.

0-005 T T T T T T T

—-0.005

-0.01

-0.015

-0.02

field intensity

-0.025

-0.03

—-0.035

two spheres
x  summation of two isolated spheres

_0-04 Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80

time (ns)

Figure 3.15 The effect of coupling, scattered field intensity vs. time at
10, 7[/ 2, 71'/ 2) with reference to 0 due to a Gaussian pulse waveform incident from

the + z axis in the presence of two scatterers, scatterer 1 is of radius a = 0.25m,
located at (3, 7[/ 2,— 7[/ 2) with reference to 0, and scatterer 2 is of radius

b=0.25m, located at (3, /2, 7/2) with reference to 0.
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3.3 Formulation and Numerical Results for the Time Domain Scattering of

Scalar Waves by Two Soft Spheres in Free-Space

Consider scattering by two spheres in free-space as shown in Figure 3.4. The

expansion of the incident field in the time domain is given in Eq. (2.38). For a known
incident field, or for a known impressed source, f. (¢) are known. The scattered

wave from scatterer 1 of radius a can be expanded in terms of the outgoing wave

functions expressed in its self-coordinates as

VI R0=3 S OB R, (3.49)

n=0 m=—n

and the scattered wave from scatterer 2 of radius b can be expanded similarly in its

self-coordinates as

vrR,.0=Y S f2(0) @D R,.1) . (3.50)

n=0 m=—n

The total scattered field is then,
v R=y" R, D+y>R,,1) , (3.51)

where the convolving functions f!(#) and f:’(¢) are, as yet, unknown and can be

found by imposing the boundary conditions on the surfaces of both spheres. Using
the translational addition theorems given in Section 2.2, i.e., Eqs. (2.74) - (2.77), the
total field on the surface of the scatterer 1 can be expressed in the coordinate system

1 as
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;1)@ (R, 1)

v R.D=S {003 Y B lm.n

n=0 m=—n v=0 u=-v

+ fon (D@ P (R, 1)

+fnin2(t)®i ian(m’nﬂ"’;t)@q)tZ(Rpt) } >
v=0 yu=—v
(3.52)
where
1 _
By lm,nlp,vit) = 5(—1)“ QY +1)
XZ (_l)pa(’"’"| _/"V|p)q’$,)<m—m(Ro,1o’t) ;
P
(3.53)
and
a, (m, nu, v;t) = %(—1)"_"”‘ 2v+1)
x> (=Dfalmn| -wyv|p)@L, ) (R, ,.0)
P
(3.54)

Note that, R,,, and R ,, are as given in Egs. (3.34) and (3.35). Similar

interpretation with the frequency domain is valid for Eq. (3.52) as, first term is the
incident field written in the coordinate system 1, second term is the scattered field
from the scatterer 1 in its self coordinates, and the third term is the scattered field
from the scatterer 2 written in the coordinate system 1. The first and the third terms
can be viewed as the incident field impinging on the scatterer 1.

Similarly, the total field on the surface of the scatterer 2 can be expressed in the

coordinate system 2 as
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v R,.0=Y Y003 Y flmn

n=0 m=—n v=0 u=—v

vit) ® @0 (R,,1)

+ £ ®i iam(m,nﬂ,v;t)@d)(vz (R,.1)

v=0 p=—v

(3.55)
where
1 _
Boo (m,nlae, v;t) = 5(—1)V QY +1)
XZ (—1)”a(m,n| —HiV | p)q)ial,)(m—ﬂ) (R, 0.0
P
(3.56)
o, (m, nl, vit) = %(—1)“’”*‘ v +1)
xz (—1)pa(m,n| A% | p)@;‘fzm_ﬂ) R0
P
(3.57)

and where R ,, and R, represent the translations from origin 0 to 0,, and 0, to
0,, respectively.

Now, as the scatterers are soft spheres, impose the Dirichlet boundary conditions
on the surface of each sphere, y' fima =0, and y' foh =0, and use the orthogonality

of the Tesseral harmonics over a spherical surface yielding the following two

coupled equations for the scattering convolving functions,
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—fihm®o, [%zj = S(gtj ® i Z Fin @ ® By (m,

n=0 m=—n

’ ’
m,n;t)

+ Sn,[g,tj ® i ify;j H®«a, (m,nm',n';t) ,
c n=0 m=—n
(3.58)
and
-2 0®0, [é,tj =5, [é,tj ®F 11 (1) ® By ', n'st)
C Cc n=0 m=—n
+ Sn(é,tj ® i i il ea,, (m,n m’,n’;t)
c n=0 m=—n
(3.59)

The last two relations, Eqgs. (3.58) and (3.59), can be written more compactly using

the notation of matrix convolution as

~0,®f" =S, ®p,, Of +S, ®an OF? (3.60)
~0, ®f? =S, ®p,, Of +S;, ®ar OF" . (3.61)

In Egs. (3.60) and (3.61), 64, 61;, §a, and §b are diagonal matrices containing
0, (a/c,t), O,(b/c.t), S, (alc,t), and S, (b/c,t), respectively; £, £, and £** are
column vectors containing f! (¢), f:'(t), and f.>(t), respectively; and Blo, Bzo’

ap, and @2 are matrices containing ,Blo(m,n

7 7 ’ ’
m,n ;t), ,Bzo(m,nm N} ;t),

a,, (m,nlm’,n’;t), and &, (m,n

m’, n';t), in some proper sorting, respectively. In order

to solve for £*'and f'*, as in Eqgs. (3.26) and (A.27), let

0.®0,=95, (3.62)
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0,®0,=5, (3.63)

where & is a diagonal matrix containing J(f) in each diagonal entry. The definition

of the time domain isolated-scatterer T-matrix, Eq. (3.25), is used for each sphere to

write
T, =-S.®0, , (3.64)
T,=-S,®0, . (3.65)

Convolving Egs. (3.60) and (3.61) with 0. and 6;], respectively, from the left; and
using Egs. (3.64) and (3.65), the coupled equations, Egs. (3.60) and (3.61), can be

rewritten as

£ =T, ®(p, ®f +an ®1?), (3.66)
£2 =T, 0, Of +ax Of"). (3.67)
Solving Egs. (3.66) and (3.67) simultaneously yield the final expressions,
(3-T'®0r®T: ®0x |JOf" =T ®(B,, +0» ®T ®B,, )OF ,  (3.68)
(5-T>®ax ®T ®up )OF? =T @B, +0n ®T, ®P,, O .  (3.69)
Expressions in Egs. (3.66) — (3.69) are in similar form with the frequency domain
relations, Eqgs. (3.44) — (3.47). Using direct matrix deconvolution given in the
Appendix B, find the diagonal matrices 0®, and O, from Egs. (3.62) and (3.63),

respectively; and then using Egs. (3.64) and (3.65) determine the T-matrices, T, and

T,, and finally, solve the matrix equations Eqs. (3.68) and (3.69) for £*' and f°?,
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again using direct matrix deconvolution. These scattered field convolving functions

when used in Egs. (3.49) — (3.51) give the total scattered field in the presence of two
scatterers. The time domain T-matrices, T; , are diagonal if the scatterers are spheres.
If the incident field is a plane wave, then Bio is diagonal with entries containing the
delay (or advance) term, O (t +R,;,co86, / c), with appropriate coefficients, where
R, represents the translation from origin 0 to 0, .

The scattered wave from scatterer 1 and scatterer 2 expressed in its self-
coordinates could also have been expanded in the form of Eq. (3.23), instead of Egs.

(3.49) and (3.50), as

vIR,N=D Y g,;'}n(z)®5n[ﬁ,tj®¢;‘};(kl,z) , (3.70)
n=0 m=—n c

viR,ND=> Y g;;(t)®Sn(9,tj®q>;‘:3(R2,t). (3.71)
n=0 m=—n c

Then, the coupled equations would be

(—aa +alz ®§b ®6b ®621 ®§a)®gS1 :EIO f' —alz ®§b ®6b ®EZO ®f' ,
(3.72)

(-0s +axn ®S, ®0, ®an ®S,)0g> =p,, Of —a: ®S, ©0, ®P,, OFf .
(3.73)

The column vectors g*' and g*> which contain g'! () and g:>(¢), respectively, can

be solved by deconvolution and used in Egs. (3.70) and (3.71) in order to get the
same scattered field which is obtained through Egs. (3.68), (3.69), (3.49), and (3.50).
The coupled equations, Egs. (3.68) and (3.69), are more general in the sense that they
can be used for any scatterers once the T-matrices for the scatterers are known, while

Eqgs. (3.72) and (3.73) are valid only for soft spheres.
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As a multiple scattering example, the scattering by two soft spheres in free-space
in response to a plane wave incident from the +z axis (from 6 =0) is given. The

-5.65¢%/ 7

incident field is of the Gaussian waveform, e , and the convolving function in

Eq. (2.38) for this particular incident field is
Fio® =3 (17 Qa1 (3.74)

Note that m =0 and the field is independent of ¢ . In order to find the scattered field
in response to such an incident field, the formulation given above is used. Consider
the geometry in Figure 3.7. Let scatterer 1 be of radius a =0.25m and 0, has the
coordinates (3,75/2,—75/ 2) with reference to 0, and scatterer 2 be of radius
b=0.25m and 0, has the coordinates (3, 7/2, #/2) with reference to 0. In Figure
3.16, two solutions to the scattered field, normalized to the peak of the excitation
waveform, observed at R, (10, 7/2,7/2) with reference to 0, are plotted with

respect to time and good agreement is observed. The solid curve is obtained using the
present time domain formulation, while the cross marks are obtained by inverse
Fourier transforming the well-known frequency domain solution. Both solutions are

obtained by including only 2 terms in the series expansion.
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Figure 3.16 Scattered field intensity vs. time at (10, n'/ 2, n'/ 2) with reference to 0
due to a Gaussian pulse waveform incident from the + z axis in the presence of two
scatterers, scatterer 1 is of radius a = 0.25m, located at (3, 7/2, — x/2) with

reference to O, and scatterer 2 is of radius b = 0.25m, located at (3, 7[/ 2, 7[/ 2) with

reference to 0.

As a second example consider the geometry in Figure 3.17.
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R

Figure 3.17 Scattering geometry for two spheres, scatterer 1 of radius a =0.25 is at
the origin 0 with and scatterer 2 of radius 5 =0.75 is at 0, which has the
coordinates (3, 7, 0) with reference to 0, the observation point, denoted by R, is
at (10,0, 0) with reference to 0.

Let scatterer 1 be of radius a =0.25m and O, has the coordinates (0, 0,0) with
reference to 0 coinciding with the origin 0, and scatterer 2 be of radius »=0.75m
and 0, has the coordinates (3,7 ,0) with reference to 0. In Figure 3.18, two

solutions to the scattered field, normalized to the peak of the excitation waveform,
observed at the backscatterer direction R, (10,0,0) with reference to 0, are
plotted with respect to time. The solid curve is obtained using the present time
domain formulation, while the cross marks are obtained by inverse Fourier
transforming the well-known frequency domain solution. Both solutions are obtained

by including 3 terms in the series expansion.
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Figure 3.18 Scattered field intensity vs. time at (10, 0, 0) with reference to 0 due to

a Gaussian pulse waveform incident from the + z axis in the presence of two
scatterers, scatterer 1 is of radius a = 0.25m, located at the origin 0, and scatterer 2
is of radius b =0.75m, located at (3, 7, 0) with reference to 0.

In the computation of the numerical examples, Egs. (3.62) and (3.63) are solved
by treating the O(r) terms separately, Azizoglu [17], Koc et al. [18], and Appendix
B; however, in solving the scattered field convolving functions, Egs. (3.72) and
(3.73), this approach becomes very complicated, so an easier way, which is
convolving both sides of the equations by the Gaussian waveform (with narrower
pulse width compared to the waveform of the incident field), in order to smoothen
the J(¢) terms before the deconvolution, is chosen. In this approach, the waveform
should be truncated in order to make the first sample nonzero in the deconvolution

algorithm, and this introduces some error, the error in the time domain solutions of
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the above examples at the falling edges of the pulses. Figure 3.19 illustrates this fact

where the solid line is the solution for f(¢) in
g(t—0.65® f(t)=g(t-3)®h(t-3), (3.75)
using the direct deconvolution where
g(t)=e e (3.76)
h(t)=e " 3.77)

The pulse width of the test function g(¢) is chosen as 7, =7, /2, i.e., g(t) with
wider bandwith than A(¢z) in order to avoid the filtering. The rising edge of the
Gaussian, g(t—0.65), on the left hand side is truncated at =0 in the direct
deconvolution algorithm, and the exact solution, which is f(#) = h(t —5.35), is

plotted using cross marks. Note that the error encountered is similar to the error in
the scattering examples, Figures 3.16 and 3.18. The error in the peak of the
waveform can be corrected by brute force, or it can be decreased by truncating the
test function less, however this makes the deconvolution algorighm unstable due to
the numerical errors caused by matrix inversion and the recursion. The error due to

the recursive nature of the algorithm becomes dominant as time increases.
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Figure 3.19 Illustration of the error encountered in direct deconvolution.

Alternative methods to the direct deconvolution, such as using system identification
techniques, Goodwin et al. [44], can be used to solve the deconvolution problem
more accurately.

In addition to the direct deconvolution algorithm, the plenty of convolution
operations and the numerical properties of the addition theorems described in
Chapter 2 are the possible causes of error in the numerical computation of the time
domain solution. If the number of terms retained in the series expansion, i.e. the
matrix dimensions in Egs. (3.68), (3.69), (3.72), and (3.73), are increased, then the
time step in the numerical computation should be decreased, and this increases the
simulation time.

In order to illustrate the physical phenomenon of multiple scattering more clearly,
consider again the geometry in Figure 3.7. Let scatterer 1 be of radius a = 0.5m and

0, has the coordinates (3, 7/2,—7z/2) with reference to 0, and scatterer 2 be of
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radius 5 =0.5m and 0, has the coordinates (3, 7/2, 7/2) with reference to 0. The
scattered field is observed at R, (2, 7/2, z/2) with reference to 0, which is in
between the scatterers. In Figure 3.20, the solid curve is obtained using the present
time domain formulation, the cross marks are obtained by inverse Fourier
transforming the well-known frequency domain solution, and the dotted line indicate
the summation of two isolated spheres (where coupling between the spheres are
ignored). The solutions are obtained by including only 2 terms in the series

expansion.

field intensity

time domain
—0.45} x  frequency domain -
summation of two isolated spheres
_05 1 1 1 1 1 1 1 1
-10 0 10 20 30 40 50 60 70 80

time (ns)

Figure 3.20 Scattered field intensity vs. time at (2, 7/2 , 7/2) with reference to 0
due to a Gaussian pulse waveform incident from the + z axis in the presence of two
scatterers, scatterer 1 is of radius a = 0.5m, located at (3, 7/2, — z/2) with

reference to 0, and scatterer 2 is of radius b = 0.5m, located at (3, /2, 7/2) with
reference to 0.
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The first pulse which is approximately centered at t =1.6ns may be viewed as
the wave scattered from scatterer 2, while the second pulse which is approximately
centered at ¢ =14.5 ns may be viewed as the wave scattered from scatterer 1. In order
to depict the second and higher order scattering, Figure 3.20 is zoomed for ¢ >18ns

in Figure 3.21.
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Figure 3.21 Zoomed view of Figure 3.20 in order to depict the second and higher
order scattering.

The pulse which is approximately centered at ¢ =21.3ns may be viewed as the
second order scattering, the wave scattered by scatterer 1, then by scatterer 2.
Similarly, the pulse which is approximately centered at ¢ = 32.9 ns may be viewed as
the second order scattering, the wave scattered by scatterer 2, then by scatterer 1. The

third order scattering is also clear in Figure 3.21, the pulses approximately centered
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at t=40ns and ¢ =51.7ns. The time of arrivals for the pulses due to first, second,
third, and higher orders scattering are as expected from the geometry of the scatterers
and the observation point.

An observation made on the time domain solution is that the solution converges
rapidly if the dimensions and the separation of the scatterers are small compared to
the wavelength at the highest frequency component of the incident field, which is
similar to the case in the solution of problems in the frequency domain.

The time domain multiple scattering formulation given in this chapter can also be
used for scatterers of arbitrary shape in which the T-matrices are not necessarily
diagonal, and this will be illustrated in the next chapter. Once the time domain
isolated-scatterer T-matrices are known for each of the two scatterers of arbitrary
shape, the scattered field convolving functions can be solved using Eqgs. (3.68) and
(3.69) by direct deconvolution, and then can be used in Egs. (3.49) — (3.51), in order
to obtain the total scattered field.
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CHAPTER 4

TIME DOMAIN SCATTERING OF SCALAR WAVES BY

TWO OBJECTS IN FREE-SPACE

The time domain scattering of scalar waves by an object in free-space using the T-
matrix method, Koc et al. [29], is reviewed using the formulations of Appendices A,
B, and C and then, time domain scattering by two objects is presented using the time
domain isolated-scatterer T-matrix of the single object and the time domain multiple
scattering formulation of the previous chapter, Egs. (3.49) — (3.51) and Egs. (3.68)
and (3.69). In order to simulate a non-spherical surface, for which the T-matrix is not
diagonal, a shifted sphere whose center is displaced from the coordinate origin is
used and the surface integrals necessary to find the matrix entries are evaluated

numerically.

4.1 Time Domain Scattering of Scalar Waves by an Object in Free-Space

The time domain T-matrix formulation given in Appendix A can be used to find the
scattered field from a scatterer of arbitrary shape. The shifted sphere whose center is
displaced from the coordinate origin, Figure 3.1, can simulate the non—spherical
surface as its T-matrix defined with respect to the coordinate origin (not the center of

the sphere) is not diagonal.
In order to find the scattered field, first the matrix a(t) is filled by Eq. (A.19),
where surface integrals are evaluated numerically. The formulation necessary for the

evaluation of the surface integrals is given in Appendix C. Then, f'(¢) can be found

by direct deconvolution in Eq. (A.20) where f'(¢) is known. After filling the matrix

Q () again by the numerical evaluation of the surface integrals, Eq. (A.23), the

80



scattered field convolving functions f’(#) can be found using Eq. (A.24). Once £’ (¢)

is known, the scattered field can be found by Eq. (A.21).

Figure 4.1 A sphere displaced from the coordinate origin.

Equivalent to the procedure described above, without finding f' (), the T-matrix

can be found using Egs. (A.26) and (A.27) after filling the matrices a(t) and ae(t) ,

and then it can be used in Eq. (A.25) yielding f°(¢), which gives the scattered field
by Eq. (A.21). In the direct deconvolution problem, algorithm given in Egs. (B.7)
through (B.13) is used.

As a numerical example, the plane wave with the Gaussian pulse waveform,
defined in Section 2.3, incident from the +z axis on a soft sphere of radius
a=0.5m displaced by (- al 4) on the +z axis is considered. Shown in Figure 4.2
are two solutions to the scattered field in the backscatter direction at a distance of
R =3 m where the field intensity is plotted versus time. The solid curve is obtained
using the present time domain T-matrix formulation, while the cross marks are
obtained by the exact solution. The exact solution can either be obtained by inverse

Fourier transforming the frequency domain solution or directly by the time solution.
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In the exact solution, the translational addition theorems given in Chapter 2 can be
used in conjunction with the formulation and numerical simulation for the centered
sphere given in Section 3.1; or simply by intuition, the scattered field in the presence

of the centered (with respect to the coordinate origin) sphere can be observed at

R =(3+a/4)m and an extra time delay of (a/(4c))m/s can be introduced.

-0.02

-0.04

-0.06

field intensity

-0.08

-0.12

T—-matrix

X exact

~0.14— : : :
0 5 10 15 20 25 30 35

time (ns)

Figure 4.2 Scattered field intensity vs. time at the backscatter direction,
(R=3,0=0,¢=0), due to a Gaussian pulse waveform incident from the + z axis

on a soft sphere of radius a = 0.5m displaced by (— al 4) on the + z axis.

Both solutions are obtained by including 4 terms in the series expansion, and good
agreement is worth noting. It is observed that the solution converges rapidly if the
dimension of the scatterer is small compared to the wavelength at the highest

frequency component of the incident field, and the displacement of the sphere, d,
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should be kept around a/4, i.e., d cannot approach O or exceed a because of the

numerical errors encountered in the evaluation of the surface integrals.

The T-matrix for a scatterer is symmetric in the frequency domain, Chew [2], and
this must also be true in the time domain, however, it is observed that the time
domain T-matrix is not exactly equal to its transpose in the above example because

of the numerical errors encountered.

4.2 Solution for the Time Domain Scattering of Scalar Waves by Two Objects in

Free-Space

Once the time domain isolated-scatterer T-matrices are known for each of the two
scatterers of arbitrary shape, the total scattered field can be found with the aid of the
translational addition theorems. Hence, the coupled equations in terms of the T-
matrices, Egs. (3.66) and (3.67), developed for the scattering by two spheres in
Chapter 3, can be used for scatterers of arbitrary shape. The scattered field
convolving functions can be solved using Egs. (3.68) and (3.69) by direct
deconvolution, and then used in Egs. (3.49) — (3.51), in order to obtain the total
scattered field.

The time domain isolated-scatterer T-matrix for an object can be found using the

formulation given in Appendix A. First fill the matrix, a(t), by evaluating the
surface integrals, Eq. (A.19), and then solve for @ in Eq. (A.27) using direct matrix
deconvolution. Matrix convolution of ae(t) , which is again filled by evaluating the

surface integrals by Eq. (A.23), with ) yields the time domain isolated-scatterer T-
matrix, Eq. (A.26). After obtaining the T-matrices for each of the scatterers, solve the
matrix equations Egs. (3.68) and (3.69) for the scattered field convolving functions,
f*' and f**, again using direct matrix deconvolution. The scattered field convolving
functions when used in Egs. (3.49) — (3.51) give the total scattered field in the
presence of two scatterers.

As a multiple scattering example, scattering by two objects (two soft spheres,

each displaced from its self-coordinate origin) in free-space in response to a plane
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wave incident from the + z axis (from 8 =0) is given. The incident field is of the

. _ 2 2
Gaussian waveform, e >%/°

, and the convolving function for this particular
incident field is given in Eq. (3.74). In order to find the scattered field in response to
such an incident field, the formulation described above is used. Consider the
geometry in Figure 3.7, but now with spheres replaced by scatterers of arbitrary
shape, i.e., shifted spheres. Let scatterer 1 be of radius a =0.25m displaced by

(—a/4) on the +z axis and 0, has the coordinates (3, 7/2,—7/2) with reference
to 0, and scatterer 2 be of radius b =0.25m displaced by (- b/ 4) on the +z axis
and 0, has the coordinates (3, 7z/ 2, 7z/ 2) with reference to 0. In Figure 4.3, two
solutions to the scattered field, normalized to the peak of the excitation waveform,
observed at R, (10, 7[/ 2, 71'/ 2) with reference to 0, are plotted with respect to time.
The solid curve is obtained using the present time domain formulation, while the
cross marks are obtained by inverse Fourier transforming the frequency domain
solution in which the scatterers are spheres placed at their coordinate origins (the
coordinate origins of the scatterers are translated such that they coincide the centers

of the spheres, R, ,, and R, are changed compared to the former solution, and the

fields are expanded with respect to the new coordinate origins). The former is the
time domain solution evaluated by the T-matrix method, while the latter is the exact
solution obtained by inverse Fourier transforming the frequency domain solution of
two spheres. Both solutions are obtained by including only 2 terms in the series

expansion.
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Figure 4.3 Scattered field intensity vs. time at (10, 7z/ 2, 7[/ 2) with reference to 0
due to a Gaussian pulse waveform incident from the + z axis in the presence of two
scatterers, scatterer 1 is of radius @ = 0.25m displaced by (- al 4) on the + 7, axis,

located at (3, 7[/ 2,— 7[/ 2) with reference to 0, and scatterer 2 is of radius
b =0.25m displaced by (~b/4) on the + z, axis, located at (3, 7/2, 7/2) with
reference to 0.

It is observed that the solution converges rapidly if the dimensions and separation
of the scatterers are small compared to the wavelength at the highest frequency
component of the incident field. The formulation for scattering by two objects uses
the same formulation for scattering by two spheres, but now the T-matrices of the
scatterers are the T-matrices for scatterers of arbitrary shape and are not diagonal, so
the numerical errors in the solution of the scattering by two spheres, and the solution
of the scattering by an object are all encountered in this solution. Hence, the radii and
the displacements of the spheres are chosen small (compared to the wavelength at the

highest frequency component of the incident field) in order to keep the number of
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terms retained in the series expansion for the desired accuracy, small, avoiding the

numerical errors caused by large matrix sizes.
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CHAPTER 5

CONCLUSION

The time domain spherical scalar wave functions, which are useful for the solution of
time domain scattering, are introduced. The translational addition theorems for these
wave functions are derived and numerically checked, the convergence properties are
discussed. It is observed that, numerical accuracy for the the translational addition
theorems in the time domain can be interpreted in a similar way with that in the
frequency domain, but with some additional requirements, depending on the required
accuracy, such as the observation point should not be in the vicinity of the coordinate
origins, the first coordinate origin and the second which is translated from the first
one, and the translation of the coordinate origins with respect to each other should
not approach zero.

The translational addition theorems derived for the time domain spherical scalar
wave functions are applied to multiple scattering problems and time domain
scattering of scalar waves by two scatterers in free-space is formulated. As an
application of the formulation, scattering by two soft spheres and scattering by two
objects (scatterers of arbitrary shape whose T-matrices are not diagonal) in free-
space are solved entirely in the time domain, and the utility of the formulation is
demonstrated.

It is observed that the solutions converge rapidly if the dimensions and the
separation of the scatterers are small compared to the wavelength at the highest
frequency component of the incident field. Numerical results are found to be in
agreement with those obtained by inverse Fourier transforming the well-established
frequency domain solutions. The possible causes of the numerical errors encountered
in the time domain solution are the direct deconvolution algorithm used, the plenty of
convolution operations, and the numerical properties of the addition theorems. If the

number of terms retained in the series expansion of the field is kept small (small
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matrix dimensions in the governing equations), which is possible for electrically
small scatterers, then adequate results can be obtained within reasonable simulation
time. For electrically large scatterers in which the number of terms retained in the
series expansion has to be increased, one must use accurate and efficient time
domain numerical algorithms, also, alternative methods to the direct deconvolution
such as using system identification techniques can be used in the deconvolution
problem, and the convolution integrals can be evaluated by Gaussian integration in
order to obtain more accurate results.

The time domain approach of the present work is not proposed as an alternative
to the frequency domain approach; however, there are cases where the time domain
is indispensable, such as the modeling of the field in the presence of moving sources
and targets. Therefore, the significance of this work is the contribution of the time
domain formulation of multiple scattering to the literature. It is believed that, the
present time domain formulation also provides physical insight into the wave
propagation and scattering mechanism, and is suitable for time domain applications
such as time gating and time domain modeling.

Finally, it is foreseen that the time domain T-matrix formulation given here can
be generalized for n -scatterers and, as well as that, the present work can be extended

to vector electromagnetic scattering problems.

88



REFERENCES

[1] C. L. Bennett and G. F. Ross, “Time-domain electromagnetics and its
applications,” Proc. IEEE, vol. 66, pp.299-318, March 1978.

[2] W. C. Chew, Waves and Fields in Inhomgeneous Media. New York: IEEE Press,
1995.

[3] D. S. Jones, Acoustic and Electromagnetic Waves. New York: Oxford U. P.,
1986.

[4] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York: McGraw-
Hill, 1961.

[5]J. D. Jackson, Classical Electrodynamics. New York: Wiley , 1962.

[6] J. J. Bowman, T. B. A. Senior and P. L. E. Uslenghi, Electromagnetic and
Acoustic Scattering by Simple Shapes. Amsterdam: North Holland, 1969.

[7] L. B. Felsen, “Alternative field representations in regions bounded by spheres,
cones, and planes,” IRE Trans. Antennas Propagat., vol. AP-5, pp. 109-121, Jan.
1957.

[8] W. C. Davidon, “Time-dependent multipole analysis,” J. Phys. A: Math., Nucl.
Gen., vol. 6, pp. 1635-1646, Nov. 1973.

[9] E. Heyman and A. J. Devaney, “Time-dependent multipoles and their application
for radiation from volume source distributions,” J. Math. Phys., vol. 37, pp. 682-692,
Feb. 1996.

[10] E. A. Marengo and A. J. Devaney, “Time-dependent plane wave and multipole
expansions of the electromagnetic field,” J. Math. Phys., vol. 39, pp. 3643-3660, July
1998.

89



[11] T. B. Hansen, “Spherical expansions of time domain acoustic fields: Application
to near-field scanning,” J. Acoust. Soc. Am., vol. 98, pp. 1204-1215, Aug. 1995.

[12] T. B. Hansen, “Formulation of spherical near-field scanning for electromagnetic
fields in the time domain,” IEEE Trans. Antennas Propagat., vol. 45, pp. 620-630,
Apr. 1997.

[13] O. M. Buyukdura and S. S. Koc, “Two alternative expressions for the spherical
wave expansion of the time domain scalar free-space Green’s function and an
application: Scattering by a soft sphere,” J. Acoust. Soc. Am., vol. 101, pp. 87-91,
Jan. 1997.

[14] S. A. Azizoglu, S. S. Koc, and O. M. Buyukdura, “Spherical wave expansion of
the time domain free-space dyadic Green’s function,” [EEE Trans. Antennas
Propagat., vol. 52, pp. 677-683, March 2004.

[15] S. A. Azizoglu, S. S. Koc, and O. M. Buyukdura, “Spherical wave expansion of
the time domain free-space dyadic Green’s function,” in Proc. Ultra-Wideband,
Short-Pulse Electromagnetics 5. New York: Kluwer Academic/Plenum Publishers,
2002, pp. 83-88.

[16] S. A. Azizoglu, S. S. Kog, O. M. Biiyiikdura, “Zaman uzaminda bosluk diadik
Green fonksiyonunun kiiresel dalga fonksiyonlari ile a¢ilimi icin bir ifade,” TMMOB
Elektrik Miihendisleri Odast Elektrik-Elektronik Bilgisayar Miihendisligi 8. Ulusal
Kongresi, Gaziantep, Tiirkiye, 1999, pp. 240-243.

[17] S. A. Azizoglu, “Spherical wave expansion of the time domain free-space
dyadic Green’s function,” M.S. thesis, Dept. Electrical and Electronics Engineering,
Middle East Tech. Univ., Ankara, Turkey, 1999.

[18] S. S. Koc, O. A. Civi, and O. M. Buyukdura, “Near-field scanning in the time
domain on a spherical surface — a formulation using the free-space Green’s
function,” J. Acoust. Soc. Am., vol. 110, pp. 1778-1782, Oct. 2001.

[19] P. C. Waterman, “New formulation of acoustic scattering,” J. Acoust. Soc. Am.,
vol. 45, number 6, pp. 1417-1429, 1969.

90



[20] V. Twersky, “Multiple scattering by arbitrary configurations in three
dimensions,” J. Math. Phys., vol. 3, pp. 83-91, Jan. - Feb. 1962.

[21] L. Marnevskaya, ‘‘Diffraction of a plane scalar wave by two spheres,”” Sov.
Phys. Acoust., vol. 14, pp. 356-360, Jan. — March 1969.

[22] B. Peterson and S. Strom, “Matrix formulation of acoustic scattering from an
arbitrary number of scatterers,” J. Acoust. Soc. Am., vol. 56, pp. 771-780, Sept. 1974.

[23] G. C. Gaunaurd, H. Huang, H. C. Strifors “Acoustic scattering by a pair of
spheres,” J. Acoust. Soc. Am., vol. 98, pp. 495-507, July 1995.

[24] G. C. Gaunaurd, H. Huang, H. C. Strifors “Acoustic scattering by a pair of
spheres: Addenda and corrigenda,” J. Acoust. Soc. Am., vol. 101, pp. 2983-2985,
May 1997.

[25] V. Twersky, “Multiple scattering of electromagnetic waves by arbitrary
configurations,” J. Math. Phys., vol. 8, pp. 589-610, March 1967.

[26] C. Liang and Y. T. Lo, “Scattering by two spheres,” Radio Sci., vol. 2, pp. 1481-
1495, December 1967.

[271 J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres - Part
I: Multipole expansion and ray-optical solutions,” and “Multiple scattering of EM
waves by spheres - Part II: Numerical and experimental results,” IEEE Trans.
Antennas Propagat., vol. 19, pp. 378-390 and-391-400, May 1971.

[28] B. Peterson and S. Strom, “T matrix for electromagnetic scattering from an
arbitrary number of scatterers and representation of E(3),” Phys. Rev. D, vol. 8, pp.
3661-3678, Nov. 1973.

[29] S. S. Koc, O. A. Civi, and O. M. Buyukdura, “An application of the T-matrix
method to time-domain scattering,” in Proc. IEEE Int. Antennas and Propagation
Symp. and URSI Radio Science Meeting, Proc. URSI, Boston, MA, July 8-13, 2001,
p. 336.

91



[30] B. Friedman and J. Russek, “Addition theorems for spherical waves,” Quart.
Appl. Math., vol. 12, pp. 13-23, 1954.

[31] S. Stein, “Addition theorems for spherical wave functions,” Quart. Appl. Math.,
vol. 19, pp. 15-24, 1961.

[32] O. R. Cruzan, “Translational addition theorems for spherical vector wave
functions,” Quart. Appl. Math., vol. 20, pp. 33-40, 1962.

[33] M. Danos and L. C. Maximon, “Multipole matrix elements of the translation
operator,” J. Math. Phys., vol. 6, pp. 766-778, May 1965.

[34] R. C. Wittmann, “Spherical wave operators and the translation formulas,” IEEE
Trans. Antennas Propagat., vol. 36, pp. 1078-1087, Aug. 1988.

[35] W. C. Chew, “Recurrence relations for three-dimensional scalar addition
theorem,” J. Electromag. Waves Appl., vol. 6, pp. 133-142, 1992.

[36] W. C. Chew and Y. M. Wang, “Efficient ways to compute the vector addition
theorem,” J. Electromag. Waves Appl., vol. 7, pp. 651-665, 1993.

[37] V. V. Varadan, A. Lakhtakia and V. K. Varadan, Field Representations and
Introduction to Scattering. Amsterdam: North Holland, 1991.

[38] S. A. Azizoglu and S. S. Koc, “Translational addition theorems for the time
domain spherical scalar wave functions,” in Proc. IEEE Int. Antennas and
Propagation Symp., Albuquerque, NM, July 9-14, 2006, pp. 943-946.

[39] S. A. Azizoglu, S. S. Kog, “Zaman uzam skalar kiiresel dalga fonksiyonlar: i¢in
oteleme adisyon teoremleri,” [2. Elektrik, Elektronik, Bilgisayar, Biyomedikal
Miihendisligi Ulusal Kongresi ve Fuari, Eskisehir, Tiirkiye, 2007.

[40] M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions. New
York: Dover, 1972.

[41] E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of
Atomic Spectra. New York: Academic Press, 1959.

92



[42] A. Messiah, Quantum Mechanics, Vol. 2. Amsterdam: North Holland, 1962.

[43] J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941.

[44] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

93



APPENDIX A

TIME DOMAIN T-MATRIX FORMULATION

The T-matrix method is also known as the extended boundary condition (EBC)
method or the null field approach, and it is an alternative to solve the surface integral
equation. In this method, the integral equations are imposed not on the surface §,

but on some surfaces S, and S, away from S as shown in Figure 3.1, in order to

simplify the solutions. The frequency domain formulation can be found in Chew [2],

and it is developed similarly in the time domain as follows.

Assume that we want to find the scattered field in v,, the volume outside S,
created by a known incident field or by some localized source distribution, f(R,?)

enclosed by a closed surface 2., in the presence of a scatterer. The total field satisfies
, 1 0° _
\% RSy y(R,1)=f(R,0), (A.D)

subject to boundary conditions on §. If the scatterer were not present, the solution

would be

v RN=-] FRN®g RR:DA (A2)

where ' (R,?) is the incident field, vy 1s a volume enclosing all the sources; and

2,(R,R’;1) is the free-space Green’s function, i.e.,
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GRR5N=13 Y {dm Sn(R< J]@On(& ,r]Ym 0.0, <9>,¢>>},
C C

n=0 m=—n c

(A.3)

where

_=D"2n+D(n—m)!
B 8z(n+m)!

(A4)

nm

and Y, (8,9) are the Tesseral harmonics, given in Eq. (2.12), and R_ stands for the

larger of R and R’, whereas R_ stands for the smaller. The free-space Green’s

function satisfies

{vz -ia_} g,(R,R:)=-86(R-R)6@) , (A.5)
c” ot

and can also be written in the alternate form using Eq. (2.37) as

, o (D R>+R’>-c**) (ct—-R
R,R;1) = d P|—=—— >
8o ) R.R 2, zﬂ 2R_R. Pl7g

>t n=0 m=- <

X Ynm (0< s ¢< )Y:m (0> s ¢> )} .
(A.6)

Convolving Eq. (A.1) by g,(R,R’#) and Eq. (A.5) by —w(R,r), adding and

integrating over v, yields
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2 2

19 13
OV —g, ®—— Y-y ®Vig +y®—— g |dv
J, {go V=8, O 5oy -y OV, +y Oy,

= [ [¢,® f+y ®SR-R) 5(1) | dv
(A7)

Noting,

R 0’
g, @Y =2 [o

d’g,
ar> o’ o (A.8)

ot*

Qy]=

(A.7) simplifies to
[ sy ®RRDOVIYR.H-yRHO Vg, RR0)]av

=y R0+ [ [PRN®SR-R"]dv
(A.9)

It can be shown that Green’s second identity is valid if multiplication is replaced by

convolution, i.e.,

[ s, RR.DOVIYR.N-y(R.HOVg,RR 1) av

=I go(R,R’,t)®iW(R,t)-W(R,t)®igo(R,R’,t) ds’,
s an, an,

(A.10)

since convolution is an operation on the time variable and V operates only on space
space variables. Finally, interchanging R and R’ and using the symmetry property

of the Green’s function, g, (R,R’,r)=g, (R,R,?), yields
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[v®R.H® 9 g (RR'1)- g, (RR.HO-L y(R1) | ds
$ on on

wR,)-¥' (R,1), Routside S

-y’ (R,t), RinsideS .
(A.11)
Note that, n” and n_ are the unit normal outward and inward from the scatterer,

respectively. Now, assume the Dirichlet boundary condition, ¥ (R,#) =0 on § (soft

boundary condition), then

v'(R,t), Routside S
y(R',1)ds" = (A.12)
—w'(R,t), RinsideSs .

’

, d
—ISgO(R,R,t)®a

Let

v RD=Yd, f1,O®S, [ﬁ,thnmw, 9 . (A.13)

n=0 m=-n

Using the second line of Eq. (A.11), where R”> R, yields

—iidnmf;mu)@s,,(g,tjymw,@ [ {%Z 5 { (R,tj

n=0 m=—n c

0
on’

®0, (5 o anm 6.9)Y,, (', ¢')} ®
C

w(R’, t)}ds' )

(A.14)

Changing the order of integration and summation on the right hand side of this
equation and using the orthogonality of the expansions, which implies term by term

equality, gives
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’
n

fn"m )= I lOH (itj ® J y(R, DY, (0.9 |ds. (A.15)
S| ¢ c 0
Now, expand the total field as

I//(R',t)=i > va(t)®Sv(R JJYW(G',W) ; (A.16)

v=0 u=-v ¢

and use it in Eq. (A.15) to get

Fn® =], {% 0, (%tj ® ai, {Z > £ @S, (’%tJY @. ¢’>}

v=0 yu=-v

XY (6,9 ds’} .
(A.17)

In this relation, the order of integration and summation can be changed to get the

form,
£ ©0=330,.,08 f,0 (A18)
v=0 u=-v
where

1 (R \or .o oo O R’ ;o ,
Qnm,vﬂ(t):js{;On(7’thnm(6’¢)®an/{sv(?’thyﬂ(0’¢)j|}ds
(A.19)

The relation in Eq. (A.18) can be written in matrix form as
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f'6)=Q@)®Ff'(t) , (A.20)

where f'(¢) and f'(#) are column vectors containing f,fm (t) and fv’ﬂ (1) in some

proper sorting, respectively. (_)(t) is a matrix with elements Q

nm,vu

(t) which relates

the incident and total field convolving functions. In Eq. (A.20), f'(r) and a(t) are

known and f'(z) is to be solved. This is a deconvolution problem which can be
solved either by direct deconvolution, Appendix B, or by using system identification
techniques, Goodwin et al. [44].

The scattered field can be written using the first line of Eq. (A.12). Replacing the
expansion of the total field given in Eq. (A.16) and the Green’s function expansion
given in Eq. (A.3) where R, =R and R_=R’, and also changing the order of

integration and summation yields

v RN=Y Y d, f,0O®O0, (ft}Y 6.9) . (A21)
MOE i D06 O® [, (1) (A.22)
v=0 u=—v
where

1 R 5 oot g 0 R’ ;o ,
Q;fm,v,u(t):_Is{_sn(?’thnm(e’¢)®an,|:sv(7’thm(6 ,¢)j|}ds .

c
(A.23)
Eq.(A.22) can be written in matrix form as
£°0)=Q ()®f'(t) , (A.24)

99



where f’(f) is a column vector containing f, () and (_)e(t) is a matrix with

e
nm,vu

elements Q () which relates the scattered and total field convolving functions. In

Eq. (A.24), f'(t) and ae(t) are known and f°(z) is to be solved by matrix

convolution, which can be achieved similar to matrix multiplication, but now
multiplication replaced by convolution as defined in Appendix B . Using Egs. (A.20)

and (A.24), and inspired by the definition of the frequency domain T-matrix, the time

domain T-matrix can be defined in order to relate £*(¢) to £'(¢) as

() =TNO®F (), (A.25)
where

T()=Q (1) ®O() . (A.26)
and

0N ®Q() =d(1) , (A27)

where g(t) is a diagonal matrix containing J(¢) in each diagonal entry. Hence, the

scattered field from a scatterer can be found for any illumination by Eq. (A.25) once

the T-matrix for that scatterer is known.
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APPENDIX B

DIRECT MATRIX DECONVOLUTION

Direct deconvolution algorithm given in Koc et al. [18] can be generalized for

matrices containing functions of time. The solution for C,,.  (#) is to be found in

the equation of the form

Anm,V/A (t) = Z'o: i Qnm,n'm' (t) ® Cn'm',v,u (t) ’ (B 1)

n'=0m'=—n"

where A, (7) and O .(t) are known functions of time. The relation in Eq. (B.1)

nm,n'm

can be written in matrix form as
AD=QN®C() , (B.2)

where K(t), G(t), and E(t) are matrices containing A, . (@), O, . (@), and

C () in some proper sorting, respectively. All the functions that appear in Eq.

n'm',v,u
(B.1) are band limited and the sampling is assumed to be fast enough to determine

these functions at any time. If we take samples at 7 intervals and define
A, =K(iT), 6; =6(iT), and C; =E(iT), the continuous time system may be
approximated by a discrete time system as

A=Q,®C: , (B.3)

where @ denotes the convolution sum, i.e.,
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A =3Q,C; (B.4)

which is equivalent to evaluating the convolution integral as a Riemann sum. The

first few terms of Ki can be written as

Al :6061 +6160 )

A 26062 +6161 +6260 ,

(B.5)

which shows that at each step one sample of the unknown function can be

determined as

Co =60_1 Ao,

€ =Q," (A-Q,Co),

C: = 60_1 (XZ - (61(_:1 +(_22(_:0 ))’

(B.6)
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Note that only the inverse of 60 is needed, and since a(t) can not be identically

zero, one can shift the time origin so that the first sample 60 is non-singular.

Unfortunately, the recursive nature of this approach causes numerical problems.

The algorithm explained above can also be used to solve for ¢(¢) in the equation

a(t)=Q()®c(t), where a(z) and c(¢) are column vectors containing a,, (t), and
¢, (t) in proper sorting, respectively, and a(t) is a matrix with elements Q,, . (¢) .

When the matrices K(t) and (_Q(t) contain terms proportional to the unit impulse

function J(¢) (and indeed does in the numerical example of the time domain
scattering by an object in Chapter 4), i.e., K(t) =X J(r) and G(t) =Y o) +Z(t),

the solution is in the form of E(t) =V o)+ W(t) , where Eq. (B2) becomes
X 50 =Y 6()+Z1))®(V 61) + W) , (B.7)

and leads to two matrix equations from which the unknown matrix E(t), i.e., V and

W(t) can be solved,
X=YV, (B.8)
—ZOV=ZH WD) +YW() . (B.9)
The solution to Eq. (B.8),

V=Y X . (B.10)

can be used in Eq. (B.9) to solve for W(t). Eq. (B.9) can be written in the form

U =ZO®OWH+YW() , (B.11)
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where
U@ =-Z1)V . (B.12)

The solution to Eq. (B.11) for W(t) can be found in a similar way to Eq. (B.6) as

Wo = (Zo +?)_1 ﬁo ,
W1 = (Zo +§)_1 (61 —21W0),

Wz = (Zo +§)_1 (ﬁz - (Z1W1 +22W0 )),

(B.13)

This approach can be used to solve for @(¢) in the equation 6(t) ®6(t) = g(t) ,

by handling the J&(z) terms separately as explained above, where 5 isa diagonal
matrix containing d(¢) in each diagonal entry. Solving for ®(¢) in the time domain

in such an equation would correspond to matrix inversion if we were in the

frequency domain.
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APPENDIX C

FORMULATION FOR THE EVALUATION OF THE SURFACE
INTEGRALS IN THE TIME DOMAIN T-MATRIX METHOD

In order to obtain the time domain T-matrix for an object, the matrices, a(t) and
Q' (1), have to be filled by Egs. (A.19) and (A.23), respectively. The T-matrix is
then obtained by Egs. (A.26) and (A.27). The entries of the matrices, a(t) and

(_26 (1), involve surface integrals which have to be evaluated. Below, the formulation

necessary for the numerical evaluation of these surface integrals for a shifted sphere,

whose center is displaced from the coordinate origin, with the assumption of ¢

symmetry is given.

Figure C.1 Geometry for the shifted sphere.
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For the particular case of the plane wave incident from the + z axis, which is used in

the scattering problems of the present work, m =0 as the field is independent of ¢

variation; and Eq. (A.19) becomes

Q,, 1= 275.[:{% o, (R%/,tan (cos @)

® aa - {SV (ﬁ,tij (cos 0')} R’*sin 0'} de’
n

c
(C.1)

Consider Figure C.1, for a point on the sphere

R =—dcos® +~a*—d*sin® @’ , (C.2)

where a is the radius of the sphere, R is the magnitude of the position vector from

the origin O to a point on the sphere, and 0O, is the center of the sphere. The unit

normal outward from the surface of the sphere, i, can be written as

i (R+a(0)), (C.3)

in spherical coordinates where R’ and 6’ are the unit vectors along the directons of

R’ and 0’, respectively, and

A(e,):dsniﬁ (_14_ dcos@ j’ (C.4)
R \/az—dzsinzé?'
d*sin’ @’ dcosd’ ’
B(#)= 1+—,2(—1+ j : (C.5)
R Ja? —d?*sin® @’
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The directional derivative of a scalar function f along dn’ is defined as

I f)i (C.6)
dn

where V denotes the gradient operator. Using Eq. (C.6) for the scalar function

defining the surface of the shifted sphere and

V'{SV (K,IJPV (cos 0')} _ 4 {SV (K,IHPV (cos@)R’
c dR c

1 (R \d A
+ R,Sv(7, ]ﬁ[PV (cos8)] &

(C.7)
the integrand in Eq. (C.1), which is denoted by Int, can be written as
. 7 / R, /’ 4
Int =sin@ P, (cos 8 )Un(—,tj ®{ C,(0)P, (cos &)
c
2
x| - e Pv[c—t,jp( Ctj —L,Pv(a,jp[c—t,j
R? |d(ct/R)| "\R" )"\ R R "R )R
, /) d , C ct ct
-C,(#)sin6 P, (cos&) | =P, | — |p| — :
d(cos @) R R R
(C.8)

where the definition of S,, Eq. (2.33), and the relation between O, and U, , Eq.

(2.36), is used along with

C,(0)= , (C.9)
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and

C,(6)= . (C.10)

U,(R’,t) can be represented as the summation of an impulse striking at = R” and a
right-sided signal s(z, R") starting from ¢ = R’, Egs. (2.34) and (2.36), Azizoglu [17],

as
U,(R,t)=06(t-R)+s(t,R) . (C.11)

Using

wom e A e A ()

ct

+ PV(R j[§(t +R/c)-6(t—R/c)] .

(C.12)

Eq.(C.8) can be rewritten as
Int =sin @’ P, (cos 9’){ s(t, R)/c)®[h(t,Rc,0)+h,(t,Rc.6)]

+h(t—R/c,R/c,0)+h,(t—R/c,R/c.0)

+ %Cl (6')P, (cos 0')[(—1)” s(t+ R/c,Rc)+s(t—2Rc, R'/c)]

’

+ R%cl ()P, (cos@)|(=1)" 5(¢)+ 5 —2R/c)] }

(C.13)
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Note that

(C.14)
h(t,R,6')=~C,(6)sing' P, (ij p(i,j 4 p(cosd) (C.15)
R R )R ) dcos®)
and
P (=1, (C.16)
P, (-)=(-1)" . (C.17)

The integrand Int, given in Eq. (C.13), has to be evaluated numerically in order
to fill the matrix (_Q(t). The last term containing & terms, can however be exploited

more as follows. Integrating it and denoting the result by /,,

/, = ZEIO”{R'EQ') C,(0)P, (cos&")P, (cosH")

x|=D" 8()+ 8(c —2R"()/c)|sin &’ }d@’ ,

(C.18)

and changing the variables as u = cos@’, du =(—sin 8’d8’), Eq. (C.18) becomes
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c

R'(u)

1,=2z(-1)" () { C,()P, WP, (u)}du

+27 _Z{R,C(u)cl ()P, w)P, w)S(t—2R (u) c)}du

(C.19)

The first term has to be evaluated numerically, and the second term denoted by 7,,

can be evaluated analytically, changing the variables in Eq. (C.18) as

u=(t-2R(8)/c), du=(-2dR’/c), leads to

l,, =27

I t=2(d+a)/c C2 Cl (M)Pn (u)Pv (u)a(u) du . (CZO)

t+2(d-a)/c R’ 4
(M)Zd 14 dcos@

Ja* —d*sin* @’

As R'(@")=ct/2, when u=0,and R, =a—d, R, =a+d, I, is nonzero only

when 2(a—d)/c <t <2(a+d)/c resulting in

¢ C,(0)P, (cos&)P, (cos b))
R(9) dcosd’ }
+
Ja’ —d’sin® ¢

§rmcosl| A& =)=t
41d

(C.21)

The entries of the matrix Q' (z) can be filled similarly. For m=0, Eq. (A.23)

becomes
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’

;) ==2z" {% Sn(i,tjpn (cos &)

c

® J ,{SV (ﬁ,tij (cos 6?')} R’ sin 6'} ae’
c

on
(C.22)

and the integrand of Eq. (C.22), which is denoted by /nt‘ and to be evaluated

numerically, can be written as

Int® =sin @’ P, (cos 0’){ P, [1%) p( ;t,j ®[n(t,Rc.60')+h,(t,R/c.0)

’

. ct ct ct ct
x{(—l) PH(R’+IJP(R,+1J+PH(R’ 1jp(R, lﬂ}

+ R% C,(0)P, (cos&’)

(C.23)
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