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ABSTRACT 
 

 

ANALYSIS AND DESIGN OF MICROSTRIP PRINTED STRUCTURES 

ON ELECTORMAGNETIC BANDGAP SUBSTRATES 

 

 

 

GÜDÜ, Tamer 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Lale Alatan 

 

 

March 2008, 124 pages 

 

 

 

In the first part of the thesis, the 2-D structures in stratified media are analyzed 

using an efficient MoM technique. The method is used to optimize transmitted or 

reflected electric fields from the 2-D structures. The genetic algorithm is used in 

the optimization process. In the second part a 3-D MoM technique is implemented 

to analyze multilayered structures with periodically implanted material blocks. 

Using the method, the dispersion and reflection characteristics of the structure are 

calculated for different configurations. The results are compared with the results 

found in the literature and it is seen that they are in good agreement. Asymptotic 

Waveform Evaluation (AWE) technique is utilized to obtain the Pade 

approximation of the solution in terms of frequency. The high order derivatives 

that are required by the AWE technique are calculated through Automatic 

Differentiation technique. Using the AWE method, the dispersion diagram and 

reflection characteristics of the periodic structures are obtained in a shorter time. 

The results are compared with the ones obtained through direct calculation and it 



 v 

is seen that they are in perfect agreement. The reflection coefficients that are 

obtained from the 3-D MoM procedure are used to calculate Green’s functions 

that approximate electric field of an infinitesimal dipole on the periodically 

implanted substrate. Using the calculated Green’s functions and the spectral 

domain MoM procedure, dispersion characteristics of a microstrip line on the 

periodically implanted substrate are obtained.  

 

 

 

Keywords: periodic structures, electromagnetic bandgap, method of moment, 

Green’s functions, microstrip structures 
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ÖZ 
 

 

ELEKTROMANYETİK BANT ARALIKLI KATMAN ÜZERİNDEKİ 

BASKILI MİKROŞERİT YAPILARIN ANALİZ VE TASARIMI 

 

 

 

GÜDÜ, Tamer 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doçent Dr. Lale Alatan 

 

 

Mart 2008, 124 sayfa 

 

 

 

Bu tezin ilk kısmında öncelikle iki boyutlu mikroşerit yapılar verimli bir moment 

metodu kullanılarak analiz edilmiştir. Bu method bu yapılardan yansıyan ve 

iletilen eletrik alanı optimize etmek için kullanılmıştır. Optimizasyon işleminde 

genetik algortitma kullanılmıştır. İkinci kısımda içinde tekarlı olarak gömülü 

yalıtkan bulunan çok katmanlı yapıları analiz etmek üzere bir üç boyutlu moment 

tekniği uygulaması yapılmıştır. Bu metod kullanılarak bu yapıların dispersiyon ve 

yansıma karakteritikleri hesaplanmıştır. Bulunan sonuçlar literatürdeki sonuçlar 

ile karşılaştırılmış ve mükemmel bir uyum içinde olduğu görülmüştür. Dispersion 

ve yansıma karakteristiklerini daha kısa bir zamanda elde etmek amacıyla 

asimptotik dalga hesaplama (AWE) methodu önerilmiştir. AWE metodu için 

gerekli olan yüksek dereceli türevler otomatik türev alma teorisi kullanılarak 

hesaplanmıştır. AWE metodu kullanılarak söz konusu tekrarlı yapıların 

karateristikleri daha kısa sürede hesaplanmıştır. Elde edilen sonuçlar doğrudan 

hesaplama yöntemi ile elde edilen sonuçlar ile karşılaştırılmış ve mükemmel bir 
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uyum içinde olduğu gözlenmiştir. Üç boyutlu moment metodu ile elde edilen 

yansıma katsayıları, içinde tekrarlı olarak gömülü yalıtkan bulunan katman 

üzerindeki küçük dipollerin Green fonksiyonlarını hesaplamak üzere 

kullanılmıştır. Hesaplanan bu Green fonksiyonları ve spektral alan yaklaşımlı 

moment tekniği kullanılarak yalıtkan gömülü katman üzerindeki bir mikroşerit 

transmissyon hattının dispersiyon karakteristikleri elde edilmiştir. 

 

 

 

Anahtar kelimeler: tekrarlı yapılar, elektromanyetik bant aralığı, moment metodu, 

Green fonksiyonları, mikroşerit yapılar. 
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CHAPTER 1  

 

 

INTRODUCTION 
 

 

 

Periodic structures that prohibit the propagation of electromagnetic and light 

waves at some frequencies have been widely used in electromagnetics. Frequency 

selective surfaces (FSS) are the planar versions of such structures used in filters 

and antennas extensively for many years. Generally speaking, FSS are surfaces 

designed by putting periodic metallic patch elements on a dielectric substrate or 

aperture elements on a metallic screen. At some resonance frequencies FSSs 

totally reflect or transmit the incoming waves and behave as planar 

electromagnetic filters. A typical FSS geometry is shown in Fig. 1.1. 

 
 
 

b

a

Periodic Cell

 

 

Fig. 1.1 General geometry of frequency selective surfaces 
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Planar gratings used in the design of leaky wave antennas are another type 

of frequency selective structure used for many years in electromagnetics. 

However, with the invention of Yablonovitch [1] in the late 1980’s periodic 

structures have received much more attention than in the past. In his paper [1], 

Yablonovitch showed that 3-D face centered cubic cell structures prohibit the 

transmission of light at some frequency bands and this invention opened new 

possibilities to use periodic structures in optical applications. Due to the structural 

and behavioral resemblance to the bandgap structures in semiconductors, such 

materials are given a name as “Photonic Bandgap structures (PBG)”. Note that 

some authors also use the term “Photonic Crystals(PC)” instead of PBG. The term 

PBG generally refers to the periodic structures operating at optical frequencies. To 

define the structures operating in microwave frequencies another term 

Electromagnetic Bandgap structures (EBG) is used. However there is no strict 

distinction between the two terms and PBG term is also very commonly used to 

define periodic structures operating in microwave frequency regime.  

The definition of EBG structures is given in [2] as:  

 

“Electromagnetic Band-gap structures (EBG) are 3-D periodic objects 

that prevent the propagation of the electromagnetic waves in a specified 

band of frequency for all angles of arrival and for all polarization states 

of electromagnetic waves”  

 

The definition given above refers to ideal EBG structures. In practice it is 

difficult to obtain 3-D periodic structures with a complete bandgap such that they 

prevent the radiation for all angles of arrival and all polarizations. Most EBG 

materials that are used in practice have partial bandgap, such that they prevent the 

radiation not for all angles but some angles and polarizations. As an example the 

artificial dielectrics used as antenna substrates have partials bandgaps. The 

periodic substrates that are analyzed in this work also have partial bandgaps. The 

complete bandgap is easily obtainable in 2-D structures but notice that the term 2-

D also includes an abstract idealism because there is no 2-D object in reality. Due 
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to the reasons listed above through this work the term “Electromagnetic Band-gap 

Structures (EBG)” is used to define 3-D objects that prevent propagation of 

electromagnetic waves in a specified  band of frequency for some angles and 

some polarization states. 

“Metamaterials” is another term generally used to refer periodic structures. 

“Meta” means beyond in Greek and the term “metamaterials” often refers to 

artificial materials, that exhibit the electromagnetic properties that are not 

observed in nature [3]. The history of metamaterials is older than the history of 

electromagnetic bandgap structures and starts in 1968 with the question asked by 

Veselago: “What happens if there is a material in nature with negative permittivity 

and permeability?” [4]. In nature the ordinary materials have positive permittivity 

and positive permeability. Although there are some materials with negative 

permittivity, there is not any material in nature with negative permeability. In [4] 

Veselago showed that in a material with negative permittivity and permeability, 

the phase velocity and group velocity have different directions. In such materials 

Snell’s Law and Doppler effect are reversed. Therefore by using a material with 

negative permittivity and permeability, it is possible to use a flat slab as a 

superlens since it refracts the light in the negative direction. In year 2000, Smith 

et. al. [5] discovered that negative permittivity and permeability can be obtained 

by forming a periodic structure in a similar way that a matter is composed in terms 

of atoms. In macroscopic scale these structures show material properties that are 

not found in nature [6], hence they are called metamaterials. These materials are 

sometimes referred as “Left-Handed Materials (LHM)”, and/or “Double Negative 

Materials (DNG)”, as well.  The detailed history of metamaterials is given in [7].  

Although some authors attempted to make clear definitions of 

“metamaterials” [8] and “electromagnetic bandgap structures (EBG)” [2], still 

there is not complete agreement on the proper usage of these terms. It is difficult 

to make a clear distinction between metamaterials and EBG structures because 

both of the terms refer to periodic structures composed of wires and dielectrics. 

Also the authors are contradicts with each other. [2] and [8] are two of the 

references among many other examples which show that a consensus about the 
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classification of periodic structures has not been reached by the researchers of the 

field. Similar periodic structures are classified under the terminology of EBG in 

[2], whereas they are referred as metamaterials in. [8]. 

Generally, the distinction between metamaterials and EBG structures are 

based on two concepts: The distance between periodic elements compared to the 

wavelength and the electromagnetic properties of the periodic structure as far as 

the specific application is concerned.  

When the wavelength is comparable to the distance between the periodic 

elements, complex scattering and refraction take place in the structure. If the 

structure is properly designed partial or complete bandgaps are observed. The 

local parameters of the periodic elements such as their shape and dimension play 

an important role in the scattering process. Therefore to predict the 

electromagnetic properties of such structures, rigorous and full-wave analysis 

methods that consider the whole structure should be preferred. EBG structures are 

fall into this category. However, when the wavelength is much longer than the 

periodicity, the overall structure resembles  an ordinary material with atoms 

periodically arranged in it. For this case the macroscopic properties such as 

effective permittivity and permeability are more important than the scatterings and 

refractions that occur in the microscopic scale. Therefore approximate methods 

like effective medium theory or homogenization approach that replaces the 

periodic structure with a homogeneous medium, can be used to analyze the 

electromagnetic characteristics of such structures. Metamaterials fall into this 

category. 

Another distinction between the metamaterials and EBG-related structures 

can be made by looking at the properties used in the applications. For applications 

where the metamaterials are used macroscopic properties like effective 

permittivity and permeability are the main parameters of interest. On the other 

hand for EBG structures, the important parameters are the frequency range where 

the propagation is prohibited as explained in the next section. 
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1.1 Applications of EBG Structures 

EBG structures allow us to control and manipulate the propagation of 

electromagnetic waves. This property of the structures is incorporated into several 

applications in electromagnetics and photonics, such as high efficiency antennas, 

wideband filters, high Q resonators, waveguides, lasers etc.  

Microstrip patch antennas are widely used in communication systems due to 

their unique features such as the ease of fabrication, being light weight, having 

small dimensions, and the adaptability to aero dynamical and wearable systems 

that require conformal antennas. Microstrip patch antenna is basically a half 

wavelength resonant cavity which is open circuited at two ends. When the antenna 

is excited by some means, most of the power is radiated via fringing electric fields 

at the edges. Patch antennas are narrow band and lower gain antennas compared 

to other antenna types. The radiation efficiency of the patch antennas might be 

degraded when the surface waves propagating through the antenna interfere with 

the fields radiated from the end points. Recently it has been shown that these 

drawbacks of the microstrip antennas can be eliminated by using electromagnetic 

bandgap structures to design efficient antennas with good radiation characteristics 

and smaller dimensions [9]-[11]. Such an antenna is manufactured by drilling 

periodic holes around the patch [10].  

In two-dimensional photonic bandgap structures, within bandgaps, no 

modes of propagation are allowed. However, by perturbing the structure we can 

permit some set of modes inside the bandgap. This property of EBG structures can 

be used to make directive resonator antennas. Such an antenna design has been 

demonstrated by Cheype et al [12]. It has been reported that with the use of EBG 

structure, the gain of the conventional patch antenna is increased from 7 dB to 

20.5 dB. 

The EBG structures are also applicable to other antenna types. Thevenot has 

presented a photonic reflector antenna built with seven dielectric dishes separated 

with a slab of air [13]. It has been shown that PBG reflector antenna has equal 

gain with conventional metallic antenna over the bandgap of the reflector. Such an 
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antenna design enables filtering of unwanted electromagnetic signals outside the 

operation frequency. 

The application of EBG structures to dipole antenna is given in [14]. In this 

work the dipole antenna is mounted on PBG substrate to prevent spurious 

radiation in terahertz imaging arrays used in astronomy. 

EBG structures can be used to guide light or electromagnetic waves in sharp 

bends. This is achieved by etching holes in the guiding direction. In the bandgap 

region wave is trapped in the channel and cannot be scattered through the EBG 

structure [15]. Such a waveguide could be used in RF designs to reduce the area 

of printed circuit boards. 

EBG technology, allows the production of high Q filters with high isolation, 

low insertion loss and wideband. Recently resonators and filters that use EBG 

technology have been proposed as an alternative to the current technologies for 

optic and electromagnetic applications [16]-[18].  

1.2 Numerical Modeling of Electromagnetic Bandgap Structures 

Initially, in the design of EBG structures cut and try method was applied 

because of lack of reliable analysis methods. With the theoretical description of 

Maxwell’s equation in periodic structures, several techniques have been proposed 

to analyze EBG structures. 

The most commonly used methods for the analysis of EBG structures are 

plane-wave-expansion [19][20], multiple scattering theory [21]-[23], transfer 

matrix method [24], finite difference method [25][26], finite difference time 

domain method (FD-TD) [27][28], finite element method (FEM) [29]-[31]  and 

method of moments (MoM) [32]-[35]. 

Plane wave expansion method starts with the Maxwell’s equations in a 

generalized eigenvalue form: 

H
c

Hx
r

x
2

2

)(

1 ω

ε
=








∇∇    (1.1) 

Thereafter the magnetic field is written in terms of plane wave basis 

functions using the periodicity of the crystal and Bloch theorem. The resulting 
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eigenvalue problem is solved with an appropriate method to obtain eigenvalues 

and eigenvectors. This method has found widespread use because it is a simple 

and computationally efficient method. To obtain good convergence, large number 

of plane waves should be used and this makes the analysis of complex structures 

difficult. A good explanation of the method is given by Johannopoulos [19].  

Multiple scattering theory is an analytical method used to obtain 

transmission characteristics in 2D arrays of rigid cylinders. The basic idea behind 

the multiple scattering theory is as follows: In response to the incident field from 

the source and scattered waves from the other objects, each object scatters waves 

repeatedly. These scattered waves can be expressed in terms of modal series of 

partial waves. Considering these scattered waves as an incident wave to other 

scatterers, a set of equations can be obtained and computed. The total wave at any 

spatial point is the summation of direct waves from the source and scattered 

waves from the other scatterers [23]. It is generally used to model 2-D photonic 

crystals and Negative Refraction Index Materials (NRIM). Analytical formulation 

of scatterings in 3-D complex structures is difficult and the method is not suitable 

to analyze such structures. 

In the transfer matrix method firstly Maxwell’s equations are solved for a 

single unit of the structure. The field is then transferred throughout the structure 

by applying Maxwell’s equations to obtain the scattering matrix of the structure. 

Using the method, transmission and reflection coefficients can be obtained [24]. 

In the finite difference method (FD), discretized Maxwell’s equations are 

solved in frequency domain. The derivatives are calculated through difference 

formulas. Due to numerical calculation of derivatives the accuracy of the method 

is not sufficient for structures with sharp resonances. To increase the accuracy, 

number of discretizations should be increased but this increases the computation 

time also.  

In the finite-difference time-domain (FD-TD) method,  Maxwell’s equations 

are solved in time domain by using the marching-on-in-time procedure. The 

derivatives involved in Maxwell’s equations are calculated via finite differencing. 

With a single run it characterizes broadband response of the structure so it can be 
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computationally efficient when the broadband response is required. The 

application of the method to EBG structures is similar to the conventional 

structures. To increase the computational efficiency, the method is applied to unit 

cell of the EBG structure using periodic boundary conditions.[28]. It has been 

demonstrated that the method is useful for the prediction of the bandgap 

characteristics. However according to Maagt [24], it is not sufficiently accurate 

compared to others methods. Due to this reason the analysis of resonance 

structures can take relatively long time.  

MoM and FEM are two well known numerical techniques used in 

electromagnetic theory. The FEM procedure starts with dividing the entire volume 

into sub-volumes. The unknown functions are represented by interpolation 

functions. Thereafter, the weak formulation of the Helmholtz equation that 

includes the boundary conditions is solved in spatial domain following the 

Rayleigh-Ritz approach. To increase the computational efficiency in the analysis 

of electromagnetic bandgap structures, the periodicity of the structure can be 

utilized and the problem can be reduced to a unit cell.  

The FD, FD-TD and FEM methods are versatile methods that could be 

easily applied in the analysis of arbitrary 3-D geometries . Therefore, they 

received much attention in the development of commercial simulation packages. 

For instance the Ansoft Corporation announced that starting from version seven; 

HFSS with Optimetrics engine is capable to solve EBG structures [36]. The 

program uses FEM technique and linked boundary conditions to solve periodic 

structures. Complex structures involving arbitrarily shaped inhomogeneous 

regions could be easily analyzed by using finite methods.  However, since these 

methods require discretization of whole volume of interest, the number of 

unknowns might be quite large for such complex structures. Although the storage 

of the resulting large matrix does not cause a severe memory problem due to the 

sparse nature of the matrix, matrix solution time could be rather long for complex 

structures with large number of unknowns. Moreover, these finite methods are 

applicable to only closed structures with predefined boundary conditions on the 

surface that enclose the solution space. Therefore, in the analysis of open radiating 
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structures like microstrip antennas, the solution space should be limited by 

introducing artificial boundaries like perfectly matched layers. The inclusion of 

such boundaries adds some approximation errors to the analysis. These errors 

could be minimized by placing the artificial boundaries far from the radiating 

elements. But this would result in a larger solution space which increases the 

number of unknowns. 

Method of moments (MoM) is the most frequently used technique for the 

analysis of open field problems, especially printed geometries in planar stratified 

media [37]. In this method the integral equation is transformed into a matrix 

equation by approximating the unknown function in terms of basis functions and 

then by applying the weighted residual technique.  The unknown functions are 

generally the equivalent surface and/or volume currents. Therefore, only the 

surface currents on electric or magnetic conductors and the equivalent volume 

currents that replace an inhomogeneous region are discretized in MoM whereas 

the whole solution space is discretized in finite methods. Consequently MoM 

results in a smaller matrix equation compared to finite methods. However, MoM 

matrix is a dense matrix as opposed to the sparse matrices obtained in finite 

methods. Moreover, MoM procedure requires the evaluation of the Green’s 

functions associated with the problem under investigation. In spite of these 

drawbacks, when the analysis of open structures is considered, MoM turns out to 

be computationally more efficient compared to finite methods due to the smaller 

matrix size. The method enables the analysis of aperiodic microwave structures on 

periodic substrates, such as microstrip lines on EBG substrates [38]. As far as the 

author’s knowledge currently, there is no other appropriate computational scheme 

for the field solution of printed structures build on artificial periodic materials. 

There are some approximation techniques that replace the periodic structures with 

an effective medium. However, the approximate formulas used to calculate the 

constitutive parameters of the effective medium are accurate only for lower 

frequencies [35].  



 10 

1.3 Summary of the present work 

This study has two purposes. The first purpose is to develop an efficient 

method of moment procedure to analyze EBG materials that are used as a 

substrate for microwave structures. The multilayered structures with periodically 

implanted blocks are an example to those structures and considered throughout the 

thesis. The structures can be manufactured by drilling holes into a multilayered 

slab and they are used to design efficient microstip antennas, resonators etc. The 

second purpose of the study is to propose a method for the analysis of microstrip 

structures those are aperiodically positioned on periodic EBG substrates.  

As a starting point of the thesis firstly 2-D planar structures in stratified 

media is analyzed using efficient MoM procedure proposed by Aksun et. al [39]. 

Such geometries can be used in the design of superlenses, leaky wave antennas, 

frequency selective surfaces. Using the method the geometries are optimized to 

increase or decrease electric field in a predefined region. This is a previously 

started study by M.I. Aksun and M. Küçükgöz. It has been completed and 

extended to analyze TE mode electromagnetic fields. The optimization of 2-D 

structures is the first contribution of the thesis, that is made in cooperation with 

M. I. Aksun and M. Küçükgöz. The second chapter is devoted to this study. In this 

chapter the method is briefly explained and then several optimization examples 

are presented.  

In Chapter 3 the theory and implementation of MoM procedure to analyze 

3-D EBG structures is given. The method is originally proposed by Yang [33]. In 

this method, the embedded dielectric materials are replaced by equivalent currents 

through volume equivalence theorem. The coefficients of these currents in one 

unit cell are obtained following the regular MoM technique. The dispersion and 

reflection parameters are calculated and the implementation is verified by 

comparing the results to those results found in the literature. 

The method given in Chapter 3 is computationally slow and not suitable in 

obtaining dispersion diagrams and spectral response of reflection coefficients. To 

increase the computational efficiency of the method the asymptotic waveform 
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evaluation technique (AWE) is applied. The difficulty in the application of AWE 

technique to stratified media lies behind the calculation of high order derivatives 

of the complex Green’s functions. In this study the required derivatives are 

calculated through automatic differentiation theory (AUTODIFF). The automatic 

differentiation is a relatively new concept and it has been applied to complex 

mechanical problems in recent years. The theory and application of AWE 

technique to the present problem is given in Chapter 4. 

In Chapter 5 a method is proposed to analyze microstrip lines on EBG 

substrates. Previously a two step procedure called Double Vector Integral 

Equation (DOVIE) method was proposed by Yang to analyze aperiodic structures 

build on periodic substrates [38].  In the first step of DOVIE method, 2D array of 

electric dipoles are placed on a substrate with material gratings. The periodicity of 

the array is chosen to be same as the periodicity of material gratings. Then the 

equivalent volume currents within the material gratings are calculated by using 3D 

MoM procedure. In the second step, the numerical solution found in the first step 

is used in conjunction with the array scanning method to obtain the Green’s 

function of a single dipole placed on the PBG structure. Finally, the current 

distribution on the printed structure is solved by using this Green’s function in 

traditional MoM procedure. The main drawback of this method is the long 

computation time due to the numerical evaluation of the Green’s function for 

every scan angle considered in the array scanning method. Therefore in this thesis, 

an alternative method to DOVIE method is proposed. In the proposed method an 

approximate Green’s function for the EBG substrate is obtained by replacing the 

generalized Fresnel reflection coefficient expressions appearing in the spectral 

domain Green’s function of a multilayered structure, with the numerical reflection 

coefficient values of the EBG substrate computed via the 3D MoM solution 

explained in Chapter 3. Once the approximate Green’s function for the 

periodically implanted substrate is obtained, the dispersion characteristics of 

microstrip lines, build on such substrates, are calculated through the use of 

spectral domain MoM procedure and compared with the literature. The results are 

discussed at the end of the chapter. 
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The thesis ends with the conclusion part that includes the planned study as a 

future work. 
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CHAPTER 2  

 

 

OPTIMIZATION OF 2-D GEOMETRIES USING THE EFFICIENT MOM 

TECHNIQUE 

 

 

 

2.1 Introduction 

It was recently demonstrated that 2-D geometries in stratified media could 

be analyzed efficiently using generalized pencil-of-functions (GPOF) [40] method 

in conjunction with the spectral domain MoM technique [39]. This makes the 

method suitable to be used in the optimization of 2-D geometries. In this study we 

extend the previous work and use it to optimize reflected and transmitted electric 

fields from 2-D slab geometries. In the considered problems, the optimization goal 

is to accurately define the electric fields anywhere above or below the slab 

geometry. Such an optimization could be useful in the design of frequency 

selective surfaces, antenna arrays, superlenses in photonics, increasing the electric 

field strengths in corridors of a building etc. Although there is no inherent 

preference of the method towards any type of optimization algorithms, a genetic 

optimization algorithm is employed in conjunction with the method. This chapter 

starts with the brief overview of the spectral-domain MoM using GPOF given in 

Section 2.2. The optimization algorithms and procedures are presented in Section 

2.3. In Section 2.4 three examples are given and the results are demonstrated.  

2.2 Brief Overview of the Efficient MoM 

Application of the MoM to 2-D planar multilayer geometries results into a 

matrix equation whose entries are double integrals over finite domains in the 

spatial domain formulation, and single integrals over infinite domain in the 
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spectral domain formulation. Hence, the matrix fill time in the application of 

MoM is mainly determined by the evaluation of the integrals. However the 

integration in the later process can be eliminated with the use of generalized 

pencil-of-functions (GPOF) method and matrix entries can be written in terms of 

finite summation of Hankel functions. This significant improvement in the 

computational efficiency makes the method a good candidate to be used in the 

optimization of 2-D geometries. The details of the method are given in [39], for 

the sake of completeness the method will be explained briefly. 

 
 
 

z

x
1rε

0rε

2rε

)( mrε

)1( −mrε

M etal S trips

inc
TETME ,

0=z

1dz =

2dz =

1−= mdz

 

Fig. 2.1 2-D conductors embedded in multilayer medium. 

 
 

Consider the sample 2.5D multilayer geometry shown in Fig. 2.1, where it is 

assumed that the layers extend to infinity in the transverse directions( x̂  and ŷ ). 

An electromagnetic wave that is transverse electric (TE) or transverse magnetic 

(TM) to ŷ  is incident upon the structure. Each layer is considered to have 

different electric and magnetic properties (εri , µri) and thickness (di). Finite extend 
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perfect electric conductors that are infinite in ŷ  direction are embedded in the 

structure. 

The spectral domain representations of the scattered fields are given as: 
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where ~ denotes the spectral-domain representation, E

xxG
~

and A

yyG
~

represent Green’s 

functions for the electric field and vector potential, respectively, and xJ
~

and yJ
~

 are 

the unknown current densities on the conductors. To find the current densities on 

the conductors, first total tangential electric field on the plane of conductors are 

written and then boundary conditions are implemented as: 
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The incident plane wave in layer-i is written in the spatial domain as: 

( )zjkii

TMxz

zjk

xz

xjk

i

i

i

TE
zizix eRkzkxekzkxeHE

−−+++−= 1,~
)ˆˆ()ˆˆ(

1

ωε
  (2.3.a) 

( )zjkii

TE

zjkxjk

i

i

TM
zizix eReeEyE

−−+= 1,~
ˆ       (2.3.b) 

The tangential components of the incident plane wave in the spectral 

domain are as follows: 
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where 22
zixi kkk += , θ= sinix kk , θcosizi kk = , and the angle of incidence θ  is 

defined with respect to the direction of normal at z=0 plane. TMTE RR
~

,
~

 are 

generalized TE and TM mode reflection coefficients respectively [41]. It should 

be noted that the generalized reflection coefficients are defined with respect to ẑ . 

On the other hand in the formulations above TE and TM electric fields are defined 

with respect to ŷ  because of the 2-D nature of the structure. Therefore, the TE 
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fields are obtained in terms of TM reflection coefficients and TM field are 

obtained in terms of TE reflection coefficients.  

To find the unknown current density xJ
~

, yJ
~

 on the conductors due to a line 

source or incident plane wave excitation, a well-known approach, the method of 

moments (MoM) in the spectral domain, is employed. The main step in the 

application of MoM is to write the unknown function in terms of known 

expansion (basis) functions with unknown coefficients.  
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where )(xBn  is the basis function, and nI  is the unknown coefficient. 
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Fig. 2.2 Basis functions used in the analysis of 2-D strips. (a) Pulse type basis functions used 
for TM excitation (b) Triangular basis functions used for TE excitation. 

 
 

For TE excitation the current density is zero at the edges of the conductor 

(transverse currents) whereas, it goes to infinity when the conductor is excited by 

a TM mode field (longitudinal currents). To accurately model the behavior of the 

current densities at the edges of the conductor triangular and pulse type functions 

are chosen as the basis functions for xJ and yJ  respectively. (Fig. 2.2) 
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The Fourier transform of the basis functions are as follows: 
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Substituting the Fourier transform of (2.5) into (2.2), and implementing the 

boundary condition on  the conductors in integral sense via taking the inner 

product of the resulting equation with testing functions (chosen to be same as the 

basis functions, the Galerkin’s method), the following set of linear equations are 

obtained: 
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for TM excitation and 
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for TE excitation. 

The Fourier-transform like integral in (2.9) and (2.12) can be evaluated 

analytically by implementing the GPOF method. To be more specific, the 

integrand except for the first term (the exponential kernel of the Fourier 

transform) is approximated in terms of complex exponentials divided by zik . This 

approximated expression enables the use of the following integral identity. 
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Hence, the matrix entries are written as a finite summations of Hankel 

functions with the explicit terms of the indices of basis and testing functions n and 

m, and the observation and source planes z  and z′  , respectively. For the case of 

TE excitation a general matrix entry is obtained as: 
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where, 
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pC ’s and pα ’s are obtained from the GPOF method as the coefficients and 

exponents of the complex exponentials used to approximate the parts of the 

integrand of (2.9) and (2.12). It is worth emphasizing that having m, n, z, and z′  
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explicitly in the end result (2.15) provides the one and only one closed-form 

expression for the entire entries of the linear equations given in (2.8) and (2.11). 

In other words, (2.15) represents all of the interactions between the conductors in 

a 2D geometry. In addition, if some additional conductors are needed to satisfy the 

design criteria, one does not need to re-formulate or re-derive (2.15), just to 

evaluate the same expression with proper choices of z, z′ , m and n for each 

additional conductor. Therefore, with just one expression, (2.15), one can analyze 

and optimize any 2D structure very efficiently. 

2.3 Optimization Problems and Algorithms 

When an efficient EM simulation algorithm is developed it is important to 

demonstrate its use in design problems, to verify its efficiency and ease to use in 

conjunction with optimization algorithms. For this purpose the developed method 

is combined with an optimization algorithm to use in design problems. Although 

there is no inherent preference of the method towards any type of optimization 

algorithms, a genetic optimization algorithm (GA) is employed in conjunction 

with the method. GA’s solve problems by emulating the natural evolution process. 

In a genetic algorithm the parameters to be optimized are encoded into binary 

string called as genes or individuals. A set of individuals constitutes a population 

and it evolves from generation to generation as in the natural evolution process, 

through predefined genetic operations like reproduction, crossover, selection, 

mutation [42]. Since GA’s are well documented in the literature details of the 

algorithms will not be discussed. The further details of the genetic algorithms are 

covered in [43].  

The first problem discussed in this study is optimization of conductor 

positions in a 2-D geometry to obtain desired field strengths at specified points. 

Consider the structure in Fig. 2.1. For this geometry the field strengths over user-

defined points could be optimized by placing fixed width conductors at proper 

locations. In this problem it is assumed that conductor locations are permitted over 

a range such that no conductors can be located outside the range. The excitation 

for such a geometry could be linesource or TE, TM mode plane wave. Such a 
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design problem could be useful in synthesizing transmission or reflection 

characteristics of single or multiple slab geometries.  

The optimization process starts with the calculation of pC  and 

pα coefficients via GPOF method for the discrete points over the permitted 

conductor locations. Using these coefficients the matrix entries are calculated. 

Since the matrix entries contains only summation of Hankel function terms matrix 

filling is performed in an efficient manner. As it is emphasized before, the 

coefficients and matrix entries are explicit terms of m, n, z, and z′  so it is 

sufficient to compute them at the beginning of the process to increase 

computational efficiency. Thereafter, individual chromosomes are generated as 

random binary strings that represent the conductor positions. The conductor 

positions are encoded into binary strings as follows: 

 

43421LLL4342143421

condthNof
positionx

condndof
positionx

condstof
positionx

0001010100000011100000011

2.1

 

 

The number of conductors and conductor widths are specified by the user 

initially but the optimization algorithm is implemented such that they are changed 

during the optimization process if there is an overlapping between the conductors. 

For example, consider two conductors have a width of 3 cm. If the first conductor 

position is 8.8 cm, second conductor position is 11.2 cm is obtained, these two 

conductors are merged into one conductor have a width of 5.4 cm located at x=8.8 

cm. The electric field strengths for each individual are obtained via the MoM 

procedure described in the previous section. Least square norm of the electric field 

strengths over the goal positions are used to calculate fitness values. Following the 

conventional GA process selection, crossover and mutation operations are 

performed to generate fittest individuals until the convergence is reached. As a 

selection strategy tournament selection is used. In tournament selection a 

subpopulation of N individuals, where N is the tournament size, are selected from 
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the population randomly. Among these individuals the one with the highest fitness 

value is the winner of the tournament and it is selected for the next generation.   

2.4 Results and Discussions 

In this section to illustrate the efficiency of the method combined with an 

optimization algorithm some results are presented.  
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Fig. 2.3 The conductor located at the dielectric interface illuminated by a TE mode incident 
field.  

 
 
First a simple example is chosen to demonstrate the accuracy in the 

calculation of electric field intensity by making intuitive discussions based on the 

physical nature of the problem. Consider the geometry shown in Fig. 2.3. In the 

figure a conductor is located at the interface between dielectric with 4=rε  and 

free space. A TE field is incident upon the conductor with a Brewster angle, 

οθ 43.63=b , so no transmission occurs at the dielectric interface. The frequency 

of operation is 30 Ghz so cm1=λ . The conductor is located between x=12-18 cm 

has a width of 6 cm which is electrically large in the frequency of operation. The 
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scattered field is calculated at z=3 cm which is the near field of the conductor. For 

this case it is expected that the conductor reflects the incident field and scattered 

field is observed at the other side of the conductor with a maximum between 

x=18-24 cm range. The calculated electric field magnitude agrees with this 

expectation as shown in Fig. 2.4. In Fig. 2.4 magnitude of the scattered field is 

plotted versus x position. As shown in the figure magnitude of the scattered 

electric field have an increased magnitude at x=18-24 cm range with a maximum 

at x=21 cm. 

 
 
 

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x(cm)

ηη ηη
o|E

xs |/|
H

in
c |

 

Fig. 2.4 Normalized magnitude of the transmitted electric field for geometry shown in Fig 
2.3, at z=3 cm, θi=-63.43o.  

 
 
Next the optimization capability of the developed software is demonstrated 

by the following experiment. From the previous example it is known that when a 

strip is located at x=12-18 cm range, a scattered electric field is observed at z=3 

cm with a maximum value between x=18-24 cm range. If we reverse the process 
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and start with an initial position of the conductor anywhere on the slab and 

optimize the conductor position to obtain a maximum scattered electric field in the 

x=18-24 cm range the program should give the conductor position at x=12-18 cm 

range. We perform such an optimization and after the optimization the program 

gives the conductor position at x=11.75-17.75 cm range which assesses the correct 

implementation of the optimization process. 

As a second example consider the dielectric slab with εr = 4.0, d = 3 cm 

located in free space as shown in Fig. 2.5.  
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Fig. 2.5 The one slab geometry 

 
 

The slab is illuminated by an incident field at incidence angle θ=0o. The 

frequency of operation is f=1 GHz. In this example the goal is to maximize the 

field strength over user-defined coordinates with the help of eight conductors with 

an initial width of 3 cm, positioned anywhere over the ranges of x = 0-30 cm at 

z=0 cm and z = 3 cm  planes. The user-defined coordinates for the field strengths 

are chosen at x = 20-21 cm range at 30 cm below the slab. The main parameters of 

the genetic algorithm are chromosome length, population size, and tournament 

size. They are chosen as 80, 100 and 16, respectively. The discretization size in 

MoM algorithm is set to 0.2 cm so 15 basis functions are used on each conductor. 
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Fig. 2.6 and Fig. 2.7 show the normalized magnitude of the total electric field 

strengths after the optimization for TE and TM incident plane waves respectively. 

Fig. 2.8 and Fig. 2.9 show optimized electric field strengths for the incidence 

angle θ = -45o for the same goal ranges. As seen from the figures there is a 

significant improvement in the electric field strengths over the goal positions. 

Table 2.1 shows the optimized conductor positions. It should be noted that 

the number of conductors and the widths were set to 8 cm and 3 cm respectively 

at the beginning of the process. After the optimization it is observed that some 

conductors are merged and the widths are changed by the algorithm due to the 

reasons explained in Section 2.3. Starting from the initial conductor positions it 

took thirteen generations to converge, each generation requires 130-140 s CPU 

time on a PC with Pentium- III 733 MHz. 

The optimization process is completed approximately in 25 minutes which 

is considerably a short time. CPU times for the evaluation of matrix entries, 

solution of matrix equations are given in Table 2.2. 
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Fig. 2.6 Normalized magnitude of the transmitted electric field with (solid line) and without 
(dashed line) conductors for TM mode incidence, θi=0o. 
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Fig. 2.7 Normalized magnitude of the transmitted electric field with (solid line) and without 
(dashed line) conductors for TE mode incidence, θi=0o

. 
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Fig. 2.8 Normalized magnitude of the transmitted electric field with (solid line) and without 
(dashed line) conductors for TM mode incidence, θi=-45o 
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Fig. 2.9 Normalized magnitude of the transmitted electric field with (solid line) and without 
(dashed line) conductors for TE mode incidence, θi=-45o 
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Table 2.1 Conductor positions for one slab geometry after optimization. The conductor 

positions are optimized for maximum transmission between x=20-21 cm at z=-30 cm plane. 

 TE TM 

θ z (cm) x 

(cm) 

width 

(cm) 

z (cm) x (cm) width 

(cm) 

0o 0 10.2 5.8 0 8.8 5.4 

 0 16.4 4.8 0 23.2 3 

 3 13.8 3 0 28 2 

 3 17 6.6 3 12 3 

    3 18.2 3 

    3 23.6 3.6 

-45o 0 24.6 5 0 8.6 3 

 3 22 7.6 0 18.2 6 

 3 2.4 5.2 3 19 3.6 

    3 24.2 3.4 

 

Table 2.2 CPU times 

Process CPU Time (sec) 

Approximation of Green’s function 

via GPOF 

1.462 

Calculation of matrix entries 0.791 

Matrix fill time <0.01 

Matrix solution time 8.111 

 
 
 
 

To check the optimization results intuitively, the optimized conductor 

positions obtained for TM field incident upon the structure in the normal direction 

is illustrated in Fig. 2.10. There are two main components that contribute to the 

electric field at the optimization points. The first component is due to the radiation 

of conductors in the lower half space (z<0) when they are excited by the incident 

field. The second contribution comes from the radiation of conductors at z=0 cm 
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plane in the positive ẑ  direction. The waves radiated from these conductors in the 

positive ẑ  direction reflect from the conductors in z=3 cm plane, that results an 

increase in the electric field strengths at the optimization points.  
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Fig. 2.10 The illustration of optimized conductor positions for TM incidence , θi=0o. 

 
 

As a third example, consider the optimization of reflected field from the one 

slab geometry. In this example the magnitude of the reflected field from the one 

slab geometry is tried to be minimized with the help of conductors having an 

initial width of 3 cm.  The conductors are permitted to be within x=0-30 cm range 

at z= 0 cm and z=3 cm planes. The optimization range to minimize the electric 

field is x=0-30 cm at a plane 30 cm above the slab. The angle of incidence is 

θ=0o. The Fig. 2.11 and Fig. 2.12 show the magnitude of the electric field 

strengths after the optimization for TM and TE cases respectively. As seen from 

the figures, using conductors, the reflected electric field is reduced nearly two-

three times over the specified goal positions. Table 2.3 shows the conductor 

positions obtained from the optimization.  Such a design problem could be useful 

in the elimination of unwanted radiation from the dielectric interfaces.  
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Fig. 2.11 Normalized magnitude of the reflected electric field with (solid line) and without 
(dashed line) conductors for TM mode incidence, θi=0o. 
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Fig. 2.12 Normalized magnitude of the reflected electric field with (solid line) and without 

(dashed line) conductors for TE mode incidence, θi=0o 
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Table 2.3 Conductor positions for one slab geometry after optimization. The conductor are 

positions optimized for minimum reflection between x=0-30 cm at z=30 cm plane. 

TM TE 

z (cm) x (cm) width (cm) z (cm) x (cm) width (cm) 

0 0.4 4.2 3 0.2 3 

0 7.2 5.6 3 6.4 3.8 

0 16.4 5.8 3 19.6 3 

0 23.6 4 3 25.4 3.8 

   0 29.4 0.6 
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Fig. 2.13 The slab illuminated by a linesource. 

 
 

As a last example consider the one slab geometry as shown in the Fig. 2.13. 

For this case the slab is illuminated by a line source infinite in the y direction and 

located at 30 cm above the slab. The magnitude of the transmitted field is 

maximized over x=14-16 cm ranges, 30 cm below the slab with the aid of five 

conductors having a width of 3 cm. As in the previous example the conductors are 

permitted to be positioned within x=0-30 cm range at z=0 cm and z=3 cm planes. 

The frequency of operation is 1GHz. Table 2.4 shows the conductor positions 
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after the optimization. Fig. 2.14 plots the magnitude of the transmitted electric 

fields over the optimization range with and without conductors. As shown in the 

figure, using conductors the magnitude of the electric field is increased about five 

times compared to the case without conductors.  

 
 
 

Table 2.4 Conductor positions for one slab geometry after optimization. The slab is 

illuminated by a line source located at 30 cm above the slab. The conductor positions are 

optimized for maximum transmission between x=14-16 cm below the slab . 

 

Linesource 

z (cm) x (cm) width (cm) 

0 0 3 

0 26 3 

3 0.1 3 

3 14.6 3 

3 27.2 2.8 

 

 

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x(cm)

|E
yto

t |/|
E

in
c |

w/cnd

wo/cnd

 

Fig. 2.14 Normalized magnitude of the transmitted electric field with (solid line) and without 
(dashed line) conductors for linesource illumination 
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CHAPTER 3  

 

 

THE ANALYSIS OF MULTILAYERED STRUCTURES WITH 

IMPLANTED PERIODIC MATERIAL BLOCKS USING METHOD OF 

MOMENT TECHNIQUE 

 

 

 

3.1 Introduction 

The thin film structures with periodically implanted material blocks have 

found wide applications including filters, leaky wave antennas, frequency 

selective layers, absorbing materials etc. [2]. They are also used as microstrip 

antenna substrates to eliminate unwanted surface waves penetrating into the 

structure [10]. Such structures are formed by periodically implanting dielectric 

blocks into a slab with a dielectric constant different than the slab. The periodic 

implants can be in one or two directions depending on the application. If such 

structures are used as microstrip antenna substrate the backside is a ground plane. 

The analysis of 3-D doubly periodic structures is important in the design of 

microstrip structures on EBG substrates. 

In this chapter a three dimensional formulation in conjunction with method 

of moment is applied to the multilayered structures with periodically implanted 

material blocks. Such a structure is seen in Fig. 3.1 where a, b are unit cell sizes, L 

,W are dimensions of implanted dielectric blocks, h is the thickness of the slab. 

The formulation is based on the paper by Yang [33], [34]. In the formulation 

implanted materials are replaced by volume equivalent currents through volume 

equivalence theorem. The method of moment formulation is applied to obtain 

equivalent currents. The full set of dyadic electric field Green’s functions is used 

in the analysis.  
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Fig. 3.1 The 3-D structure with periodically implanted dielectric blocks 

 

3.2 The 3-D MoM Procedure 

Due to the implanted dielectric blocks the electromagnetic analysis of the 

structure is difficult without converting it to the equivalent problem. However 

volume equivalence theorem enables us to replace implanted dielectric materials 

with equivalent volume currents as shown in Fig. 3.2. The detailed derivation of 

the volume equivalence theorem is given in Appendix-A 
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Fig. 3.2 The volume equivalent problem 
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The theorem says that if the electric source J  and magnetic source M  

radiate into a medium represented by (εm, µm) in  the presence of embedded 

scattering object represented by (εe, µe). The scattering object can be replaced by 

equivalent sources given by: 

 
( )

( )HjM

EjJ

meeq

meeq

µµω

εεω

−=

−=
    (3.1) 

where, E, H are the total fields in the medium. 

For the equivalent problem, the electric field in the structure is given by the 

volume integral equation as: 

)'()'()].',([)( )(
rEvdrJrrGrE

i

eq
v

+′= ∫∫∫    (3.2) 

where, )(iE is the incident field, [G] is the full set of dyadic electric field Green’s 

functions for homogenous substrate and given by: 
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Since the structure is periodic the Floquet’s (or Bloch’s) theorem [44] can 

be utilized and the problem can be simplified by expressing the whole structure in 

terms of unit cells as shown in Fig. 3.3. Floquet theorem states that, for periodic 

structures from one unit cell to another, the solution differs only by a phase 

variation a0β , where 0β  is the propagation constant and a is the period of the 

structure. Using the theorem one can write the equivalent currents as: 

yx
jnbjma

eqeq eezyxJznbymaxJ
ββ −−=++ ).,,(),,(   (3.4) 

The use of Floquet’s theorem has two implications. Firstly, it determines the 

electromagnetic boundary conditions by stating that the solution is periodic 

through the structure. Secondly, there is no need to search the solution through the 

entire structure, the solution in one unit cell is sufficient to characterize overall 

structure.  
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Fig. 3.3 The unit cell 

 
 

Using Floquet’s theorem and Poisson’s summation formula the Green’s 

function for doubly periodic structure is derived as [45]: 

∑ ∑
∞
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−∞=
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m n

yyjkxxjk

yxuvuv
yx eezzkkG

ab
rrG

)()(),,,(
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where, yyxx bnkamk βπβπ +=+= /2,/2 , uvG
~

is the û  component of the 

spectral domain electric field Green’s function in terms of zzkk yx
′,,, , for a 

v̂ directed electric dipole. The expressions for the spectral domain Green’s 

functions are given in Section 3.3. The derivation of (3.5) is given in Appendix-B. 

To calculate the electric field in the structure the unknown equivalent 

current densities should be obtained. These currents could be calculated through 

volume integral equation and 3-D MoM procedure. Following the MoM 

procedure the implanted material volumes are discretized into small cells and 

equivalent current densities are expanded in terms of 3-D basis functions and 

unknown coefficients as: 
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where, 
zyx mmmJ ,, is the vector of unknown coefficients, zyx MMM ,,  are number of 

subdomains inside the implanted material blocks in zyx ˆ,ˆ,ˆ  directions respectively, 

),,( zyxf
zyx mmm  is the basis function. The basis function should be selected such 
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that it should satisfy the boundary conditions and represent the current variation 

accurately. For the considered problem, current is periodic through the structure, 

therefore the basis function should not vanish at the end points. On the other hand 

because of the complexity of the problem the basis functions should be selected as 

simple as possible. By considering these issues, as a basis function 3-D pulse basis 

function is chosen. The pulse type basis function is given by: 
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where, ∆x, ∆y, ∆z are discretization sizes in respective directions. 

If we substitute (3.5) and (3.6) into the volume integral equation given in 

(3.2) we obtain: 
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(3.8) 

Following the Galerkin’s procedure, the following equation is obtained after 

taking the inner product integral of both sides of (3.8) with the testing functions. 
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in

i

n ETe ,= , zyxv ∆∆∆=∆ . 

(3.10) can be written in matrix form as: 

][]][[][ iEJgJ +=    (3.11) 

where, the dimension of J matrix is 3xMxxMyxMz. This is the characteristic 

equation of the structure. From this equation the coefficients of the current 

densities can be calculated as: 

. ][][][ 1 i
EgIJ

−−=    (3.12) 

where [I] represents the identity matrix. 

In the next two sections first spectral domain Green’s functions for 

multilayer structures will be presented, then the numerical problems associated 

with the solution of the characteristic equation will be discussed. 

3.3 Formulations of Spectral Domain Green’s Functions 
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Fig. 3.4 Line source embedded in a multilayer geometry 
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The solution of (3.11) requires extensive use of full set of dyadic electric 

field Green’s functions. These functions are derived by using plane wave 

representation of sources and boundary conditions. For the multilayered geometry 

shown in Fig. 3.4, explicit expressions of these functions are given as [37]: 

For horizontal electric dipole (HED): 
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For vertical electric dipole (VED): 
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and R and R
~

 are Fresnel and generalized reflection coefficients, respectively, for 

which the subscripts TE and TM represent the polarization of the wave with 

respect to z axis, and superscripts (i,i-1) and (i,i+1) show the layer numbers. The 

expressions for generalized reflection coefficients are recursive relations and 

calculated starting from the bottom layer to the top layer, recursively. 

Note that, 
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The derivations of the electric field Green’s functions are given in 

references [37], [46]. However, the derivation of E

zzG
~

 requires special attention 

due to discontinuity term, the second term of (3.17). The z component of the 

electric field Green’s function for vertical dipole has a singularity at 'zz =  due to 

double derivative of zE with respect to ẑ and this should be examined carefully in 

the calculation of this Green’s function. If the singularity term is not included in 

the formulation, erroneous results will be produced [35], [47]. Therefore 

derivation of E

zzG
~

 will be presented in this part. 

Starting from the Maxwell’s equations the electric field for a vertical dipole 

can be derived as [37]: 
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where, 

)'()'('||)',( zzjke

v

zzjke

v

zzjk

TM
zzz eBeAezzF

−−−−− ++=   (3.24) 

The first term in (3.24) represents the direct wave, second and third terms 

represent up-going and down-going waves respectively. e

vA  and e

vB  are the 

coefficients of down-going and up-going waves due to reflections and can be 

obtained by matching up-going and down going waves at the interfaces. These 

coefficients can be found as: 
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Equation (3.23) is a Fourier transform like integral and from this equation 

the spectral domain Green’s function due to VED can be written as: , 
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At this point it should be noticed that  



 41 

( ) '||2'||

2

2
zzjk

z

zzjk zz eke
z

−−−− −≠
∂

∂
 

Using the distribution theory [48]: 
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Therefore using (3.27) and (3.28), E
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~

 is written as: 
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where, the last term accounts for the singularity. If coefficients given in (3.25) and 

(3.26) are substituted into (3.29), (3.17) can be easily obtained. 

A special attention should also be given when calculating the integrals on 

the Green’s functions. The characteristic matrix that is obtained through the 

solution of volume integral equation contains a convolution integral on the basis 

functions and an inner product integral on the testing function. These integrals 

should be carefully examined; otherwise they may cause erroneous results. The 

following integral should be splitted into two parts by considering the absolute 

value on the direct wave terms: 
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3.4 Determination of Dispersion Relations 

Dispersion relations determine the phase velocity and number of modes 

propagating in the structure. By determining the propagation constant for various 

frequencies dispersion diagrams can be obtained. Dispersion diagrams are 

especially important for periodic structures because by inspecting them it is 

possible to observe the bandgaps in the structure.  
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3.4.1 Numerical Considerations 

Recall that the matrix equation (3.11) represents the relation between the 

coefficient of the unknown equivalent currents and the incident field. If there is no 

incident field term on the right hand side, an eigenvalue equation which 

determines the dispersion characteristics of the structure is obtained. That is: 

0][][ =−
321

C

gIJ    (3.31) 

where, C is the characteristic matrix of the structure. The propagation constant of 

the structure can be obtained by setting the determinant of the characteristic 

matrix to zero as: 

0]det[ =C      (3.32) 

 

If the determinant of the matrix was a smoothly changing function it would 

be easy to find the point where it reaches to zero by using a proper root finding 

algorithm. However this is not the case for this problem. In Fig. 3.5 the real part 

of the determinant calculated for the sample geometry is plotted versus βx/k0. As 

seen from the figure the determinant contains singularities and steep gradients. 

Also it is a very small number and the search is sensitive to round off errors. In 

general, without human intervention it is not easy to find the propagation constant 

by looking at only the determinant value.  

The singularities are related to the poles in the formulation and causes 

fluctuations in the determinant. This problem is extensively discussed in the 

literature [49]-[52]. In [49] a pole free formulation is suggested to obtain 

dispersion characteristics of the strip lines. In [50] firstly eigenvalue 

decomposition is applied to the characteristic matrix as: 

]][[][][ *
aa

T

a VVC Λ=    (3.33) 

where, aΛ , aV are the eigenvalues and eigenvectors respectively. The point at 

which one of the eigenvalue crosses the origin is searched by scanning the 

spectrum. At this point the determinant is equal to zero therefore it gives the 
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propagation constant. The method is implemented but satisfactory results could 

not be obtained.  
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Fig. 3.5 The real part of the determinant versus βx/k0 calculated for the grounded slab with 
implanted periodic material blocks, εs=10, εe=1, a=b=5 mm, h=2 mm, W=3 mm, L=2.5 mm, 

z0=1.5 mm, T=0.5 mm, f=20.0 GHz. 

 
 

Alternatively minimum singular value can be used to find the points where 

the determinant is zero [51]. The singular value decomposition of the matrix is 

given by [53]: 

TVSWC ]][][[][ =     (3.34) 

where, S is a diagonal matrix formed by singular values in decreasing order, the 

columns W and V are left and right singular vectors of A. Notice that because S is 

a diagonal matrix, the determinant is zero when the minimum singular value is 

zero. The calculation of minimum singular value is insensitive to round off errors. 

In Fig. 3.6 the minimum singular value calculated for the sample geometry is 

plotted versus βx/k0. As seen from the figure, the variation of the minimum 
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singular value with respect to  phase constant contains no singularities and has 

sharp peaks which can easily be detected.  
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Fig. 3.6 The minimum singular value versus βx/k0 calculated for the grounded slab with 
implanted periodic material blocks, εs=10, εe=1, a=b=5 mm, h=2 mm, W=3 mm, L=2.5 mm, 

z0=1.5 mm, T=0.5 mm, f=20.0 GHz. 

 
 

Using the singular value of the determinant the propagation constant can be 

determined using a line search algorithm; however still two questions remain to be 

answered. The first question is: “How many roots exist in the interested range?”. 

The second question is: “What should be the starting point for the line search 

algorithm?”. Because, line search algorithms require an initial point to find local 

minima. The roots can be obtained by directly scanning the spectrum step by step. 

This technique does not need an initial point and all roots can easily be extracted. 

However to extract closely spaced roots accurately, very fine scanning is required 

and this increases the computation time. For these reasons a hybrid method is 

applied. Firstly, the spectrum is scanned with coarse steps and possible root 
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locations, below a threshold level are determined. Then those possible root 

locations are given to the optimization algorithm as an initial point to find the 

exact locations of the roots.  

It was found that for this problem direct search method by Hooke-Jeeves 

[54] is suitable to use as an optimization algorithm. It can extract the optimum 

point of a function that has “sharp valleys” and fast fluctuations. This method can 

solve the optimization problems where the classical methods do not work. With 

the Hooke’s words “The optimization approach that we called direct search was 

born because of a problem that didn’t respond to classical methods.” 

The method is an unconstrained minimization method. In our case we are 

looking for roots in a predetermined range and the limit of the optimization should 

be determined. To give such constraints to the problem the penalty and barrier 

methods are used. 

The basic algorithm is as follows [55]: 

Let d1.........dn be the coordinate directions. Choose a scalar ε>0 to be used 

for terminating the algorithm. Furthermore choose an initial step size ∆≥ε and an 

acceleration factor α>0. Choose a starting point x1, let y1=x1, let k=j=1 and go to 

the main step. 

 

The Algorithm: 

1. If f(yj+∆dj)<f(yj), the trial is termed a success; let yj+1=yj+∆dj and go to 

step2. If however, f(yj+∆dj) ≥f(yj), the trial is termed as a failure. In this 

case, if f(yj-∆dj) <f(yj), let yj+1=yj-∆dj, and go to step2; if f(yj-∆dj) ≥f(yj), let 

yj+1=yj, and go to step2. 

2. if j<n replace j by j+1, and repeat step 1. Otherwise, go to step 3 if 

f(yn+1)<f(xk), and go to step 4 if f(yn+1) ≥f(xk). 

3. Let xk+1=yn+1, and let y1=xk+1+α(xk+1-xk). Replace k by k+1, let j=1, and 

go to step1. 

4. ∆≤ε, stop; xk is the solution. Otherwise, replace ∆ by ∆/2. Let y1= xk+1, 

xk+1=xk, replace k by k+1, let j=1, and repeat step1. 
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The direct search algorithm performs two types of search. The first is called 

as exploratory search and second is called as pattern search. The exploratory 

search performed in steps 1-2 is a trial search and aims to obtain the information 

on another trial point. The pattern search aims to find the minimum on the next 

trial point. It is called as pattern search because for multidimensional search it 

searches minimum by following a pattern but for a one dimensional system, it is 

simply a one dimensional search. The algorithm could be best understood by the 

diagram given by Hooke as follows:  
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Fig. 3.7 Flow diagram of the pattern search [54]. 

 
 

3.4.2 Results and Discussions 

To illustrate some results the phase constants of the structure are calculated 

at different frequencies. The parameters of the structure are mma 3= , mmb 3= , 

mmh 3= , 10=sε , 1=eε , mmWL 1== , mmT 3= , mmz 00 = . The direction 

of propagation is x̂ . To calculate propagation constant in this direction yβ  is set 
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to zero and xβ  is calculated using the procedure explained above. The results are 

compared with the ones calculated by Yang using MoM and theory of effective 

medium [33]. To observe the effects of material gratings on the waveguiding 

characteristics of the dielectric substrate, the propagation constants of the surface 

wave contributions of the grounded slab without the implants are given in the fifth 

column of the Table 3.1. It is seen that the results are in a good agreement. 

Moreover, it is observed that at lower frequencies the periodic materials gratings 

has no significant effect on the propagation modes of the grounded dielectric slab. 

Therefore the propagation constant of the periodic structure and the surface wave 

modes of the homogenous structure are very close to each other. But when the 

frequency is increased, the size of the periodic elements becomes comparable with 

the wavelength that results in a considerable variation in the propagation modes of 

the guiding structure. It is also observed that effective medium theory gives more 

accurate results at lower frequencies as expected.  

 
 
 

Table 3.1 Phase Constant Comparison (Mx=My=Mz=3, No. of Floq.=529) 

Frequency 

(GHz) 

)( 0kβ  )( 0kβ
(Yang.) 

)( 0kβ  

(eff. medium) 

)( 0kβ  

(surf. wave) 

Calc. Time  

(s) 

2 1.00668 1.007 1.007 1.00699 215.059 

4 1.03425 1.035 1.035 1.03800 212.65 

6 1.12478 1.124 1.123 1.161433 179.368 

8 1.43459 1.430 1.422 1.62779 168.933 

10 1.065 

1.914 

1.061 

1.910 

1.050 

1.896 

1.25192 

2.16062 

198.33 

 
 
 
 

To understand the effect of the grid size the propagation constant for the 

structure is calculated using different number of cells, as listed in Table 3.2. The 
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computational error with respect to the reference result obtained by the smallest 

mesh size (Mx=3, My=3, Mz=3) is also shown in the table. As it is expected, as the 

number of basis functions, that are used in the construction of the system matrix, 

increases the accuracy also increases. It is deduced from the table that the number 

of cells in the vertical direction is more crucial. Discretization in x̂  and ŷ  

directions does not change accuracy effectively but increases computation time. 

This condition is clearly seen if the first and fifth rows are compared. 

 
 
 

Table 3.2 Effect of mesh size on the calculation of phase constant (f=8 GHz, No. of. Floq=529) 

Mx,My,Mz   )( 0kβ  Rel. 

err 

Calc. Time 

(s) 

1,1,1 1.4621 1.92% 12.287 

2,2,1 1.4658 2.18% 14.621 

1,1,2 1.4426 0.56% 43.903 

2,2,2 1.4407 0.43% 52.765 

1,1,3 1.4377 0.22% 97.35 

2,2,3 1.4356 0.08% 116.757 

3,3,3 1.4345 - 196.052 

 
 
 
 
The effect of the number of Floquet modes used in the calculation is shown in 

Table 3.3. In the table the relative error obtained when different number of 

Floquet modes used in the calculation is given as the reference solution 45x45 

Floquet modes are considered. It is observed from the table that the first five 

summation terms are dominant. The other modes have a minor effect and 21x21= 

441(n=10, m=10) number of Floquet terms are sufficient for most of the 

calculations.  
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Table 3.3 Effect of number of Floquet modes in the calculation of phase constant (f=8 GHz, 

Mx=My=Mz=3) 

Number of 

Floq. Modes  

)( 0kβ  Rel. 

err 

Calc. Time 

(s) 

n=m=2 1.4835 3.64% 1.201 

n=m=3 1.4439 0.87% 13.719 

n=m=5 1.4408 0.66% 43.001 

n=m=10 1.4345 0.22% 168.933 

n=m=22 1.4314 - 838.385 

 
 
 
In the theory of EBGs/PBGs the dispersion relation is represented in terms 

of dispersion diagrams. These diagrams give valuable information about the 

electromagnetic bandgaps. By looking at the dispersion diagrams it is possible to 

see the bandgaps where the propagation of the wave is prohibited. In dispersion 

diagrams, variation of frequency with respect to the variations in the wave vector 

is plotted versus in the first “Brillouin zone” which is also called “reduced 

Brillouin zone” [44].  

One of the important conclusions of the Floquet’s (Bloch’s) theorem is that 

a mode with a wave vector β  and a mode with a wave vector k+β  give rise to 

same field solution if k  is a corresponding lattice vector in spectral domain such 

that π2. mak = , where a is the lattice vector, so, incrementing β  by k results in 

the same field solution. This means that wave vectors that differ by a multiple of 

a/2π should be regarded as  same wave vectors since they give rise to same 

solution. Therefore, for complete set of wave vectors, different solutions are 

obtained if these vectors are limited to a zone, called as the Brillouin zone. The 

location of a zone with a/2π  range can be selected freely. However, due to 

symmetry considerations first Brillouin zone is defined as ]/,/[ aa ππ−  range. 

The smallest region within the Brillouin zone for which the β directions are not 

related by symmetry is called the irreducible Brillouin zone. As a result of this, in 
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dispersion diagrams frequency is plotted with respect to the phase constants (or 

wave vectors) only in the first Brillouin zone. 

In Fig. 3.8 dispersion diagram of a sample dielectric slab with periodic 

implants are plotted. In the Fig. 3.8.a frequency is plotted with respect to the 

propagation in x direction in the first reduced Brillouin zone. To obtain the 

diagram yβ  is set to zero and xβ is calculated. In the figure the points at which 

surface waves turn into leaky waves are indicated as “light line” and above this 

line, propagation of surface waves in the structure are not allowed. As it can be 

remembered from the solution of the homogenous dielectric slab [56], the surface 

waves become leaky waves when 

c

f
k

π
β

2
0 ==    (3.35) 

The bandgap in the propagation direction is clearly visible in the figure 

between frequencies ≈18.2-19.8 GHz. 

To observe the surface and leaky wave characteristics Fig. 3.8.b shows the 

variation of the normalized propagation constant with frequency of operation, 

where the normalization is done with respect to 0k . As seen from the figure up to 

18 GHz only surface wave modes exist in the structure. After this point the surface 

waves turns into leaky waves and radiates into space. Using the structure it is 

possible to design a leaky wave antenna. The beam of the antenna is simply given 

by: 

0

1
0 sinsin

k
k x

x

β
θβθ −=⇒=    (3.36) 
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(b) 

Fig. 3.8 Dispersion diagrams for modes in the grounded slab with implanted periodic 
material blocks, εs=10, εe=1, a=b=5 mm, h=2 mm, W=3 mm, L=2.5 mm, T=0.5 mm, z0=1.5 mm. 
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3.5 Reflection properties of the EBG Structure 

At some frequencies, electromagnetic bandgap materials prohibit the 

propagation of waves through the structure. At these frequencies such materials 

reflect all waves incident to the structure and because of this property they are 

used as “frequency selective layers (FSL)”. In the design of FSL’s accurate 

determination of reflection coefficient is important to characterize stop band 

regions. In this section the calculation of reflection coefficients from the structure 

is explained. 

3.5.1 Calculation of the Reflection Coefficient 

When an EBG structure is illuminated with a plane wave, due to the 

discontinuity of dielectric constants in the structure, volume equivalent currents 

occur, which results in an additional reflected field component. The scattered field 

has two components. One is due to Fresnel reflection principle and the other is 

due to the volume equivalent currents.   
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Fig. 3.9 Incident plane wave in kDB coordinate system 
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Let’s assume that a dielectric slab with implanted material block is excited 

by a time harmonic plane wave. The plane is defined by: 

rkj

ivih

rkj

i

i ii eveheePE
−− +== )ˆˆ(    (3.37) 

where iP  is the polarization of incident wave, ik  is the wavenumber in the 

direction of propagation. As shown in Fig. 3.9. The unit vectors are defined in 

terms of spherical angles ( ),φθ  as: 
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For reflected wave these unit vectors are given as: 
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This coordinate systems is called as kDB coordinate system and composed 

of wave vector, k̂ , electric and flux density vectors , D, B [35] 

Let’s assume that the polarization of the incident electric field is horizontal. 

For this case there is no electric field component in the ẑ  direction and the TE 

incident fields with respect to ẑ  direction are given by:  

rkj

ii

i

TE
ieEhE

−= 0
ˆ     (3.40) 

rkj

i

i

i

i

TE
ieEvH

−= 0

1
ˆ

η
    (3.41) 

If the structure is illuminated by a plane wave magnetic field with horizontal 

polarization, TM incident fields with respect to ẑ  direction are given by: 
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The electric fields reflected from the slab due to Fresnel reflection principle 

are given by: 
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 are generalized TE and TM mode reflection coefficients respectively 

[41]. 

The total electric fields incident to implanted dielectrics blocks are the 

summation of incident and reflected field from the slab and given by: 
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It should be noted that the electric field expressions are given for air and 

these fields should be transferred to the observation layer when they are used to 

calculate the volume equivalent currents. The amplitude coefficients that relate the 

fields between adjacent layers are given by: 
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where −
jA , −

−1jA are amplitudes of the down-going waves in j and j-1 respectively. 

Similarly amplitudes of up-going waves can be written as: 
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In (3.12) a matrix equation that relates the coefficients of the volume 

equivalent currents to the incident field is derived in Section 3.2. Using this matrix 

equation and incident field expression with amplitude transfer relations given in 

(3.47) and (3.48), the volume equivalent current can be obtained. If the volume 

equivalent currents are substituted into the volume integral equation we obtain: 
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where, G represents the electric field Green’s function in the slab, ∆x, ∆y 

represents the mesh size in x, y directions respectively. The total scattered electric 

field from the slab is the summation of scattered field and reflected field and 

given by: 
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The specular TE, TM reflection coefficients are calculated at the far field by 

using the following formula: 

)(

)(

,

,
.

rE

rE
ti

TMTE

ts

TMTE

TMTE =Γ     (3.52) 

3.6 Results and Discussions 

The calculation procedure is verified using, a PBG substrate with fill ratio 

equal to 1, that is a/W=b/L=1. In this case the reflection coefficients should be 

equal to the generalized Fresnel reflection coefficients because the structure 

becomes homogenous. Fig. 3.10 shows the real and imaginary part of the TM 

reflection coefficients calculated for the structure when the fill ratio is 1. The 

dielectric constants of the slab and implanted blocks are 4=sε  and 10=eε  

respectively. The other parameters are, cmWLba 1==== , cmTh 2.0== , 

°= 0θ , number of Floquet modes are 23x23=569. The number of basis functions 

for each component of the equivalent current is 3x3x3=27. The calculation of the 

reflection coefficient at 100 number of frequency points takes approximately 937 

seconds on a PC with a 1.6 Pentium mobile processor. The generalized reflection 

coefficients are also plotted on the same figure for comparison. As seen from the 

figure up to 10 GHz the calculated reflection coefficients are almost 

indistinguishable from the generalized reflection coefficients. After that the error 

increases and at 14 GHz reaches to 1%. As it is explained in the previous section 

the mesh size that is used in z direction is a crucial parameter in the calculations. 

At 14 GHz it corresponds to λ30 . To reduce the errors after that point more basis 

functions with smaller mesh sizes should be used.  
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Fig. 3.10 TM reflection coefficient versus frequency when fill ratio is one. 
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Fig. 3.11 TM reflection coefficient versus incidence angle when the fill ratio is one 
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The variation of the reflection coefficient with the angle of incidence is 

given in Fig. 3.11. As seen from the figure for incidence angles up to 40o the 

results are in a good agreement. After that point the error in the calculation 

increases and reaches to 2%. This condition can be explained insufficient 

modeling of z-variation of the structure for large incidence angles. To reduce the 

error the number of cells in the ẑ  direction should be increased.  

To demonstrate the accuracy of the developed software the reflection 

coefficients for a structure with fill ratio different than one is studied and the 

results are compared with the ones presented in [34]. The cell dimensions are 

cmWLcmba 1,2 ====  and other parameters are same with the previous 

example. Fig. 3.12 plots the reflection coefficient versus frequency for three 

angles of incidence, ooo 30,15,0=θ . As seen from the plot the results are in a 

good agreement with the results calculated by Yang. 
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Fig. 3.12 Specular reflection coefficient of a TM plane wave from a dielectric slab with 
periodically implanted material blocks 
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It should be noted that although the solution procedure is developed for 3-D 

structures, 2-D structures (infinite in one direction) could be easily analyzed by 

this program without any modification. Only the fill ratio (a/W or b/L) in the 

infinite direction should be set to 1. Therefore with the developed program we can 

also solve the 2-D PBG slab problems.  

3.7 Conclusions 

In this chapter a 3-D moment method to analyze multilayered structures 

with periodically implanted materials has been presented. The method requires 

extensive use of full dyadic spectral domain Green’s function. The full set of 

spectral domain Green’s functions has been formulated for stratified media. Using 

the method the propagation constants have been calculated. It has been seen that 

the automatic determination of propagation constants is not an easy task. An 

hybrid technique, that uses singular value of the characteristic matrix and direct 

search algorithm is developed to overcome difficulties. The dispersion diagram of 

the structure has been obtained and seen that the periodic structure has bandgaps 

in some directions. The reflection properties of the structure are examined using 

the method. Using the volume equivalent currents the specular reflection 

coefficient has been calculated. It has been seen that at some frequencies the 

structure behaves as a frequency selective layer. The results are compared with the 

literature and a perfect agreement has been observed. In the examples the 

structures with cubical implants has been examined. The method can be extended 

to analyze arbitrary geometries but such structures require finer meshes and large 

number of basis functions that increases the computation time. Modifications in 

the analysis method are required to analyze complex structures efficiently.  
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CHAPTER 4  

 

USE OF ASYMPTOTIC WAVEFORM EVALUATION TECHNIQUE IN 

THE ANALYSIS OF MULTILAYERED STRUCTURES WITH 

IMPLANTED PERIODIC MATERIAL BLOCKS 

 

 

 

4.1 Introduction 

In the previous chapter, a dielectric slab with periodically implanted 

material blocks was analyzed using volume equivalence principle and method of 

moment technique. The method is robust and applicable to the periodic structures 

in stratified media. Although the method is relatively slow due to the double 

summation of Floquet modes it is useful in obtaining the reflection coefficient and 

the propagation constant of the periodic structure. 

The EBG materials are generally used as frequency selective layers in optics 

and electromagnetics. For such applications, the reflection coefficient is the main 

parameter of interest. To extract the point where the stop band occurs, the 

reflection coefficient should be calculated at more than 200 frequency points, 

around the resonance.  The dispersion diagrams are also important in the analysis 

of EBG materials. To calculate dispersion diagrams, fine frequency scanning is 

necessary to accurately characterize stop band. For such analyses propagation 

constant should be calculated at more than 1000 frequency points. When the 

dispersion diagram or full frequency response of the reflection coefficient is 

required, the studied method becomes inefficient due to its computational cost. In 

this chapter asymptotic waveform evaluation (AWE) technique is suggested to be 

utilized to obtain reflection and band response of EBG materials in a shorter time. 

This chapter starts with the overview of the AWE technique given in Section 4.2. 

In Section 4.3 the difficulties in the implementation of AWE technique is 
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discussed and in Section 4.4 the automatic differentiation technique which is 

suggested as a solution for these problems is explained. In Section 4.5 the 

reflection coefficient results obtained through AWE technique is presented. In 

Section 4.6 the use of AWE technique to obtain dispersion relations are given and 

some results are presented. This chapter ends with the conclusion section, Section 

4.7.  

4.2  Asymptotic Waveform Evaluation Technique (AWE) 

Asymptotic Waveform Evaluation Technique (AWE) is initially proposed to 

obtain transient response of the complex circuits from initial conditions [57], later 

it is extended to numerical solution of electromagnetic problems [58]. Recently, it 

was shown that the technique can be used successively to obtain radiation 

properties of microstrip structures in stratified media [59]. 

One of the disadvantages of the spectral/spatial domain MoM and FEM 

techniques is that to obtain the full frequency response of the structure the solution 

has to be repeated at each frequency. For resonant systems, the number of 

frequency points to capture the resonance can be very large. For such problems, 

AWE enables to predict the full frequency response from the solution at a single 

point. The AWE technique is also used to estimate radiation pattern characteristics 

[60]. Use of AWE in the solution of periodic structures is firstly proposed by 

Davidovitz [61]. In the formulation of periodic structures, full phase response is 

necessary to obtain radiation properties, which is a time consuming process. In 

[61] the technique is used to estimate full phase response, from the single point. 

By this way the computation time is considerably reduced. The formulation of the 

AWE is as follows. 

In this section, the application of the AWE technique to the MoM solution 

will be presented. In MoM technique the final impedance matrix equation is 

obtained in the form of: 

][][][ 1 VZJ −=  

where, [J] is the column vector for the unknown amplitudes of the basis functions, 

[V] is the excitation vector and [Z] is the impedance matrix of the structure.  The 
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unknown vector can be expanded in terms of Taylor series around the complex 

parameter oφ  as: 
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where, nM  is the n th moment vector and is given by 
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The moment vector includes the derivative of the inverse of the matrix Z, 

which is difficult to compute. Fortunately the moments can be evaluated by the 

following recursive relation as [59]: 
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with the initial vector  

VZM
1

00 )]([ −= φ     (4.4) 

Taylor approximation contains infinite number of summation terms and it is 

valid only within the radius of convergence around 0φ . To approximate the current 

vector with a finite number of terms and to overcome the radius of convergence 

problem, the Pade approximation from circuit theory can be utilized. Using Pade 

approximation, J vector can be expressed as the ratio of two polynomials: 
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By matching the two sides of (4.5), the coefficients in the numerator and the 

denominator of are obtained as: 
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where, pr ,,1,0 K= . 

In Fig. 4.1 Pade approximation of )sin(x function is plotted up to fourth 

order. The function is expanded at 0=x . As seen from the Figure, the fourth order 

Pade approximation exactly approximates one period of the function around the 

expansion point. As the order of the approximation is increased more information 

about the behavior of the function is gathered from the higher order derivative 

values at the expansion point, therefore a better approximation is achieved. 
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Fig. 4.1 Pade approximation of Sin(x) up to fourth orders 

 
 
Above, formulation for the one dimensional AWE technique is given. For 

some cases like the calculation of matrix elements in (4.6), require the use of two 

dimensional AWE method. The two dimensional AWE technique is firstly 

proposed in [63] to evaluate the electric field response of a microstrip antenna 

with respect to frequency and dielectric constant. The formulation procedure is 
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similar to one dimensional case, the difference lies in the use of two dimensional 

Taylor approximations on the right hand side of equation (4.5). Following the 

procedure, the two dimensional approximation for J is obtained as: 
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where, the coefficients of the approximation can be obtained by matching the 

coefficients as in (4.5). 

4.3 Difficulties and Solutions 

The AWE method enables to obtain the system response very efficiently, if 

the higher order derivatives of the solution (Z matrix for this case) are available, if 

not the derivatives should be calculated by some means. The calculation of 

derivatives is the major drawback of the method, because for some complex 

functions it is not easy. 

In this study the calculation of the derivatives is the keystone to calculate 

reflection parameters using AWE. At the first phase of the study, we tried to 

reduce the complexity of the Green’s function by approximating it in terms of 

complex exponentials by using the Generalized Pencil of Functions Method 

(GPOF). When the Green’s functions are approximated by complex exponentials, 

the calculation of derivatives would be straightforward. 

The periodic electric field Green’s functions, those constitute the basis of 

our kernel equation are given by:   
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To approximate this expression using GPOF, the spectral domain Green’s 

function should be sampled along the real axis. On the other hand, Green’s 

functions contain singularities around surface wave poles and branch points. 

When we tried to approximate the Green’s functions by using samples along the 
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real axis, erroneous results are obtained for modes around the surface wave 

singularities and branch points. Due to this reason, we were not able to 

approximate the periodic Green’s functions correctly and decided to calculate 

derivatives directly.  

There are especially three ways to compute derivatives of expressions with 

respect to some specific variables with the aid of computers [64]. 

 

Approximation by finite differences: This is a well known numerical method, 

based on the calculation of derivatives by using the value of the function 

evaluated at discrete points spaced by ∆. This method is applicable if the function 

is simple and there are no steep gradients in the function. If this is not the case, the 

results strongly depend on the selection of the step size, ∆, so the solution is not 

stable numerically. In the electromagnetic theory the kernel formulations have 

steep gradients around the resonance points therefore the method produces large 

errors in the solution of such problems. 

Symbolic Calculations: This method is essentially “differentiation by hand” 

method with the exception that the derivatives are calculated symbolically by a 

computer package like MatlabTM, MapleTM. For simple functions, the method is an 

effective way to compute derivatives but for high order derivatives of complex 

functions three problems arises. Firstly the symbolic computation of high order 

derivatives of complex functions requires generation of long intermediate 

expressions. During the computation, a large memory space is allocated for each 

of these variables, which cannot be used until the end of execution. Due to this 

reason, the program may crash when the available memory on the computer 

becomes smaller than a predefined level. Our experiences with MatlabTM show 

that the derivatives of the Green’s functions can be calculated up to third or fourth 

order depending on the computer. The higher order derivatives may cause 

memory problems. The second problem is the long and cumbersome expressions 

generated by symbolic compilers. As an example, the fourth order derivative of 

the Green’s function expression with respect to kx is about 230000 characters long 

when calculated with MatlabTM. The generated result is huge, illegible and needs a 
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very good optimizing compiler in order to eliminate all the common sub 

expressions. Even if we assume that we have a good optimizing compiler another 

problem occurs related to iterative processes (like the calculation of generalized 

reflection coefficients) and non-trivial control structures (like the chose of kz 

branch). When using symbolic differentiation packages it is not clear how to 

manage conditional branches and iterative loops symbolically.  

Automatic Differentiation: This is the preferred method in this study to calculate 

derivatives of kernel formulations. The theory of automatic differentiation relies 

on the chain rule or Taylor’s arithmetic depending on the technique that is used. 

Unlike symbolic calculations the method utilizes standard computer arithmetic. 

The calculation of derivatives is achieved by using numbers not symbolic 

expressions. Using the method the higher order derivatives of extremely 

complicated functions can be calculated exactly.  

In automatic differentiation, the calculation of function expression and the 

derivatives are performed in parallel. Because it uses standard computer 

arithmetic, iterative expressions and conditional branches can easily be managed. 

The symbolic packages should unfold the loops to obtain the functional 

expressions symbolically whereas, this is not the case for automatic 

differentiation. For complicated expressions with many loops and conditional 

branches automatic differentiation is an efficient way to compute derivatives. 

Versatility of the programs is another key issue that is important in the 

development of commercial simulation programs. To utilize AWE in a 

commercial electromagnetic simulation package the code that computes the 

derivatives should be independent of the kernel function and it should give the 

possibility to differentiate with respect to different variables with a single change 

of parameters. Versatility is another advantage of the automatic differentiation 

over another two methods because both in numerical and symbolic differentiation 

the computation of derivatives strongly depend on the function to be differentiated 

and structural changes are required when the function changes. 

In the field of mathematical modeling, extensive amount of research has 

been carried out on the theory of automatic differentiation. The studies of several 
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workgroups around the world are gathered and published in a web site [65]. In this 

web site there are also several software packages available through internet in 

Fortran, Ada, C++ languages. Among these software packages the TADIFF 

package developed by Claus Bendtsen and Ole Stauning [66] is a fast and easily 

manageable package which is written in C++ language. Throughout this study, 

this code is used to calculate derivatives of the functions. The theory of automatic 

differentiation is explained in details in the following section. 

4.4 The Theory of Automatic Differentiation (AUTODIFF) 

In the theory of automatic differentiation, basically there are three ways to 

compute derivatives. These are Forward Automatic Differentiation (FAD), 

Backward Automatic Differentiation (BAD) and Taylor Automatic Differentiation 

(TADIFF). All these methods require operator overloading, hence it is easy to 

implement these methods in languages with operator overloading such as C++, 

Ada, Pascal. Among these three methods Taylor’s method is the most efficient 

method in terms of computation time. The major drawback of the Taylor’s method 

is that the differentiation with respect to only one variable is possible, which 

means that the partial derivatives cannot be calculated.  

Forward and Backward methods rely on the same principle: “chain rule”. 

In forward method the derivatives are calculated from the lowest order to the 

highest order and in backward method the derivatives are calculated from the 

highest order to the lowest order using backward substitution. These two methods 

are well documented in [67] and will not be discussed in here. 

The Taylor’s differentiation method is completely different from FAD and 

BAD techniques and it relies on Taylor’s arithmetic. The computer package that is 

used in this study uses Taylor’s differentiation and it is explained in detail as 

follows [66].  

The Taylor’s expansion of a function is given by: 
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This relationship can be used to derive following elementary formulas: 
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The above elementary operations constitute the basis for Taylor’s arithmetic 

and other operations are obtained from these rules. The list of rules for other 

operations, those might arise in the functions are given without the derivation as 

follows: 
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Above we define the operators that might arise in any function expression. 

Using these operators and “operator overloading”, derivatives of an arbitrary 

function can be calculated. “Operator overloading”, means calling a function 

instead of the default operation. For example when computer sees multiplication 

operator (*) it calls (4.15) instead of default multiplication routine.  

To understand the calculation of Taylor’s coefficient clearly, let’s assume 

that the function we want to expand is given by tttf )2sin()( = . First the function 

is decomposed as: 

ttf

t

.)(

),cos()(

),sin()(

,.2)(

2

13

12

1

τ

τττ

τττ

ττ

=

=

=

=

    (4.28) 

To calculate the derivatives, first the zero order coefficients are calculated, 

then the Taylor’s expansion coefficients are obtained recursively as follows: 
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Note that using Taylor’s differentiation, Taylor expansion coefficients are 

obtained, not the derivatives. This is an advantage for us to use this technique in 

Pade approximation, because Pade approximation requires the calculation of 

Taylor expansion coefficients. 
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Fig. 4.2 The DAG used to calculate Taylor coefficients of tttf )2sin()( =  

 
 
 

As seen from the above example, to calculate the derivatives first the 

function should be written in terms of basic functions. For this purpose a 

computational graph is composed. This computational graph contains the 

information of dependent variables in terms of independent variables defined by 

the user at the initial execution of the program. The composed graph should be an 

acyclic graph, which means that the variables should depend on the previous 

values of other variables, therefore the graph is called as directed acyclic graph 
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(DAG). As an example the DAG for the function tttf )2sin()( =  is given in Fig. 

4.2. 

4.5 Results and Discussions 

In the previous chapter, a dielectric slab with periodically implanted 

material blocks was analyzed using the developed software and the specular 

reflection coefficient of the structure was calculated. The calculated results were 

compared with the literature and it was seen that they are in good agreement. At 

this time reflection coefficient of the same structure is calculated using AWE 

method and compared with the direct calculation results. Fig. 4.3 shows the 

calculated TM reflection coefficient using AWE and direct methods for a sample 

geometry. In this case the incidence angle is taken as θ=0o
 and the equivalent 

currents are approximated in terms of frequency as: 
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Direct calculation results correspond to the calculation of the current at each 

frequency point without making any approximation. On the other hand, AWE 

method refers to the case that the variation of current with respect to frequency is 

approximated as in (4.30) by using the moments calculated at the expansion point. 

The AWE approximation is calculated at fa=9 GHz which is the midpoint of 

the interested frequency band. Three different orders, q=p=1,2,3 are used to see 

the effect of the approximation order on the accuracy of the approximation. As 

seen from the figure when first order approximation is used AWE fails to 

accurately represent the reflection coefficient around the resonance point. The 

second order approximation gives somehow good results but still there is no 

perfect agreement with the results obtained using direct calculation. When the 

current is approximated with a third order Pade polynomial the agreement is 

perfect between 5-14.5 GHz band. After 14.5 GHz the deviations are observed.  
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Fig. 4.3 Specular TM reflection coefficient of the periodically implanted dielectric slab versus 
frequency εs=4, εe=10, a=b=2 cm, L=W=1 cm, h=T=0.2 cm, θ=0o

, fa=9 GHz. 

 
 

In Fig. 4.4 again the reflection coefficient is plotted versus frequency but 

this time as an expansion point fa=5 GHz is used. The first and the second order 

derivatives at fa=5 GHz contains less information on the behavior of the frequency 

band and higher order derivatives should be used to approximate the currents. 

From the experiments it is observed that first and second order approximations do 

not accurately represent the current therefore in Fig. 4.4 AWE results are plotted 

starting from third order approximation. As seen from the figure third order 

approximation fails to approximate reflection coefficient around the resonance 

point, because of the distance between the expansion point and the resonance 

frequency. The fourth order approximation gives satisfactory results but still there 

is some error. When the fifth order approximation is used a perfect agreement is 

obtained.  
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Fig. 4.4 Specular TM reflection coefficient of the periodically implanted dielectric slab versus 
frequency. The parameters are same as in Fig 4.3. except , fa=5 GHz. 

 
 

Up to this point multilayer structures with at most three layers including the 

ground plane examined. The AWE technique gives accurate results also for more 

complicated geometries. To demonstrate the versatility of the method five layer 

geometry shown in Fig. 4.5 is considered. The middle layer of the structure is 

periodically implanted with dielectric blocks with εe=10. Fig. 4.6 shows the 

reflection coefficient of the structure obtained through AWE method  and 

compared with the direct calculation results. For AWE method, the reflection 

coefficient is calculated by approximating the current at f=23.9 GHz. As seen 

from the figure a perfect agreement is obtained even with the first order 

approximation. 
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Fig. 4.5 The geometry of five layer dielectric structure 
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Fig. 4.6 Specular TM reflection coefficient of the periodically implanted five layer 

dielectric structure. The geometry is given in Fig. 4.5.  

 
 
 

The AWE approximation can also be used to calculate angular response of 

the reflection coefficient. For this purpose the frequency is fixed and equivalent 

currents are approximated in terms of incidence angle as: 
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To calculate the coefficients at this time, the derivatives with respect to 

incidence angle should be calculated at the expansion point. With the computer 

package that are used in this study it is an easy task and only thing that should be 

done is to indicate the differentiation variable.  

In Fig. 4.7 the TM reflection coefficient at f=9 GHz is plotted versus 

incidence angle. All parameters of the structure are same as the previous 

examples. The currents are approximated at θa=45o and results are obtained for 

approximation orders p=1,2,3. As seen from the figure even with first order 

approximation a good matching is obtained, especially after 45o. However the 

agreement is not perfect between 0o and 45o. The reason is the fast variation of the 

reflection coefficient at the expansion point. To obtain a perfect agreement higher 

order approximations can be used but this slows down the operation of the 

program. For this reason the expansion point is changed to θa=0o and reflection 

coefficient is calculated again.  
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Fig. 4.7 Specular TM reflection coefficient of the periodically implanted dielectric slab versus 
incident angle, εs=4, εe=10,a=b=2 cm, L=W=1 cm, h=T=0.2 cm, f=9 GHz, θa=45o 
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Fig. 4.8 shows the reflection coefficient obtained using θa=0o
. As seen from 

the figure for this case first order approximation is sufficient and perfect 

agreement is obtained. The structure is symmetric therefore there is no need to 

calculate results for scan angles -90o
-0o range and it can be said that using first 

order AWE approximation, full angular response of the structure can be obtained. 

Since full scan angles are between -900 and 900, 00 is the midpoint of the 

interested range, therefore better results are obtained for this expansion point.  
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Fig. 4.8 Specular TM reflection coefficient of the periodically implanted dielectric slab versus 
incident angle. The parameters are same as in Fig 4.7 except, θa=0o. 

 
 

In this study our motivation in implementing AWE method in the analysis 

of PBG structures was to reduce the computation time. Table 4.1 shows the 

computation times for different number of Floquet modes(Nf). As seen from the 

table the AWE method has a very short current computation time but a long 

derivative computation time. When the derivatives are obtained, AWE calculates 
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the reflection parameters very fast, because the computation time of current is 

almost zero. However long computation times devoted for the computation of 

derivatives decrease the efficiency of the method. If the reflection coefficient will 

be calculated for a few number of sample points, the direct method is faster than 

AWE method. But if the reflection coefficient should be calculated at many points 

AWE is a more efficient method. For our case if results at more than 

1793.99/21.39=84 points are necessary, AWE calculates the reflection coefficient 

in a shorter time. In general, to accurately characterize the reflection coefficient 

around resonance, more than 100 points are necessary. Consequently, we can say 

that AWE is an efficient method for analyzing such structures.  

 
 

Table 4.1 Computation times for reflection coefficient, Mx=My=Mz=3 

Direct AWE Computation Times(s) 

Nf=529 Nf=2025 Nf=529 Nf=2025 

Current Calc. Time 5.09 21.39 ~0 0.02 

Ref. Coeff. Calc. Time 12.468 51.945 12.448 50.593 

Derivative Calc. Time   413.795 1793.99 

 
 
 

The efficiency of the AWE method can be increased by decreasing 

derivative computation times. The alternative techniques will be searched to 

compute derivatives in a shorter time. 

4.6 Determination of Dispersion Relations Using AWE 

As it is explained in the previous chapter the MoM solution of the periodic 

structures results in a matrix equation in the form of: 

0]][[ =ZJ      (4.32) 

The nontrivial solution of this equation exists, if the determinant of the 

characteristic matrix is zero. Therefore the propagation constant of the structure is 

obtained by setting the determinant of the characteristic equation to zero. 
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0]}det{[ =Z      (4.33) 

The propagation constant which gives zero determinant value is obtained 

using direct search techniques. This is a time consuming process and requires the 

calculation of characteristic equation at every search points. Typically 200 number 

of points should be searched to find the points where the determinant is zero. 

At this point, the Pade approximation can be used to determine propagation 

constants. For this purpose firstly, the entries of the Z matrix is approximated in 

the form of Pade polynomials as: 
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When the entries of the Z matrix are written as a ratio of two polynomials 

the searching for zero determinant value can be performed in a second, because of 

the simplicity of the expression. 

It should be noted that to calculate propagation constant this time the 

characteristic matrix is approximated not the current. To be able to calculate 

propagation constant accurately, the Pade approximation should accurately 

represent the determinant of the matrix. To verify, this, the determinant is 

calculated by using Pade approximation and approximate results are compared to 

direct calculation results.  

In Fig. 4.9 the real part of the determinant is plotted with respect to the 

phase constant in x̂  direction for a grounded slab with implanted air blocks. The 

approximation is performed at βx/k0=1.4377 for orders p=1,2,3. As seen from the 

figure, when the third order approximation is used a perfect agreement is 

obtained. This figure implies that the characteristic matrix can be approximated 

through Pade approximation and the zero determinant values can be searched 

using this approximation to calculate propagation constants. In the figure the 

determinant is plotted for the range βx/k0=1-1.9377. Because the lower limit 

corresponds to k0 (light line) and upper limit corresponds to Brillouin zone (π/a). 

After Brillouin zone, due to the periodicity of the structure, same behavior is 

observed. Below k0 the surface waves becomes leaky waves.  
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Fig. 4.9 The real part of the determinant versus βx/k0 calculated for the grounded slab with 
implanted periodic material blocks, εs=10, εe=1, a=b=5 mm, h=2 mm, W=3 mm, L=2.5 mm, 

T=0.5 mm, z0=1.5 mm, f=15.5 GHz. 

1 1.1 1.2 1.3 1.4 1.5
-4

-3

-2

-1

0

1

2

3

4

5
x 10

-4

β
x
/k

0

R
e
(D

e
te

rm
in

a
n
t)

direct
p=1
p=2
p=3

 

Fig. 4.10 The real part of the determinant versus βx/k0 calculated for the grounded slab with 
implanted periodic material blocks, all parameters are same with the previous figure except, 

f=20 GHz. 
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In the calculation of band diagrams only the propagation constants of the 

surface waves are important in order to observe the bandgaps so there is no need 

to calculate propagation constants below k0. However if the propagation constants 

below k0 are needed, another approximation should be performed using an 

expansion point in this region, because the Green’s function has a singularity at k0 

and the function is not analytic. In Fig. 4.10 the real part of the determinant versus 

phase constant is plotted for f=20 GHz. As in the previous figure, the determinant 

is perfectly matched when third approximation is used. 

If the Pade approximation is applied directly to the characteristic matrix, the 

propagation constant in the structure can be obtained by searching the point where 

minimum singular value of the matrix is zero, using a direct search algorithm. 

Using Pade approximation very fine scanning is possible because there is no need 

to calculate characteristic matrix each time. However, the extraction of roots is not 

easy using a direct search algorithm because the variation of the singular value is 

not well defined. Especially when the roots are closely spaced it is difficult to 

decide whether there are two distinct roots or not without human intervention. A 

more robust method for the extraction of roots is possible by applying Pade 

approximation to the inverse of the characteristic matrix instead of the matrix 

itself. From the basic linear algebra the inverse of the matrix is given by: 

Z

Zadj
Z

det

)(1 =−      (4.35) 

From (4.35) it is seen that when the determinant of the matrix is zero each 

term in Z-1 goes to infinity. This condition is satisfied if the denominator of the 

Pade approximant of Z-1 equal to zero. This means that the propagation constant 

in the structure can be obtained by extracting the poles of the Pade approximant of 

Z-1. The Pade approximation of Z-1 can be obtained using the same procedure used 

to obtain the approximation of equivalent currents in the structure. This time there 

is no incident field and therefore voltage matrix, [V], is set to identity matrix. The 

poles are extracted by computing the roots of the denominator polynomial. There 

are robust and well defined polynomial root finding techniques based on the 

solution of an eigenvalue problem [53]. Therefore extracting the poles of the Pade 
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approximant is more easy and robust than searching the point that makes the 

determinant zero.  

To demonstrate the accuracy of the method the inverse of the characteristic 

matrix of sample geometry is approximated and the poles are extracted. Table 4.2 

shows the extracted poles for the sample geometry. The frequency of operation is 

15.5 GHz. The approximation is performed at the midpoint of the interested range 

( 4377.1/ 0 =kxβ ). In Table 4.2 there are six distinct roots. The imaginary parts of 

these roots are very close to zero this means that they represent the propagating 

waves. Among these roots five of them are closely spaced and the distance 

between these roots are less than 0.004%. As a result we can say that there are two 

propagating modes in the structure with phase constants are given as 1.8318k0 and 

1.1652k0. The propagation constants that are obtained through direct calculation 

procedure without making any approximations are 1.8321k0 and 1.1654k0.  If the 

Pade approximation is directly applied to Z and zero minimum singular value is 

searched these propagation constants are found as 1.8321k0, 1.1652k0. 

 
 
 

Table 4.2 Poles of the Pade approximant of Z-1. All parameters for the geometry are same as 

in Fig. 4.9. Mx=My=1, Mz=3. The poles are given in terms of k0.  

0.6968+0.0431i 2.0673-0.0224i 1.8311+0.0020i 

0.6983+0.0458i 2.0668-0.0239i 1.8311+0.0020i 

0.7003+0.0488i 2.0661-0.0253 1.8312+0.0020i 

2.7524+0.0038i 0.6247-0.0031i 1.1652-0.0000i 

2.7529+0.0042i 0.6299-0.0035i 1.1652-0.0000i 

2.7536+0.0047i 0.6360-0.0039i 1.1652-0.0000i 

0.4485+0.0089i 2.1657+0.0466i 1.8364-0.0022i 

-5.3428-2.3517i 2.0441-0.0109i 1.8318-0.0005i 

0.8214+0.0662i 1.9620-0.0136i 1.8251+0.0043i 
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In Fig. 4.11 the propagation constant in x̂  direction is plotted with respect 

to frequency using Pade approximation. The structure parameters are same as the 

previous example. To obtain the results with Pade, two approximation points are 

used. The propagation constant above light line is calculated by approximating the 

characteristic matrix at (π/a+k0)/2 that is the midpoint of the range between 

Brillouin zone and dashed line. To calculate the propagation constant below light 

line the matrix is approximated at k0/2. As seen from the figure Pade 

approximation gives accurate results. 
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Fig. 4.11 Dispersion diagram for modes in the grounded slab with implanted periodic 

material blocks, εs=10, εe=1, a=b=5 mm, h=2 mm, W=3 mm, L=2.5 mm, T=0.5 mm, z0=1.5 mm. 

 
 

Table 4.3 shows the computation times required to find all roots at f=16 

GHz. The computation times are listed for different number of Floquet modes. In 

AWE method, most of the computation time is devoted to the calculation of 

derivatives. The computation time for finding the roots are very small, in the order 
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of 3-5 s. As seen from the table AWE is four times faster than direct calculation 

method, but this depends on the number of scan points that is necessary to extract 

all roots. In this case 200 number of points are scanned, but in same cases with 

closely spaced roots more than 200, about 1000, scan points are required. For such 

cases, superiority of AWE becomes more clear, because as the number of 

evaluation points is increased, the computation time required for the direct method 

increases proportionally whereas the time for AWE does not change. 

 
 
 

Table 4.3 Computation times required to calculate propagation constants at f=16 GHz. 

Mx=My=Mz=3. 

Direct AWE  

Nf=529 Nf=2025 Nf=529 Nf=2025 

Computation Times(s) 1878.13 7058.67 433 1368.92 

 
 

4.7 Conclusions 

In this chapter the use of AWE/Pade approximation techniques in the 

analysis of structures with periodic implants has been presented. It has been 

shown that using AWE technique the fast parameter sweep is possible without 

losing the accuracy. The difficulty in the application AWE to such structures lies 

behind the computation of high order derivatives of the complicated kernel 

function which includes the expressions of Green’s functions for multilayer 

media. The automatic differentiation theory has been used to compute these 

derivatives. The theory is an efficient and versatile method for computing high 

order derivatives exactly. It has been shown that automatic differentiation theory 

can be confidently used in the solution of advanced electromagnetic problems 

whenever higher order derivatives of complicated functions with conditional 

branches are required. In this study one dimensional AWE procedure is used. The 

automatic differentiation theory enables the computation of partial derivatives 
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with respect to several variables. Two dimensional AWE procedure can be 

applied to the periodic structures for fast sweep of two parameters, such as 

frequency and incidence angle, which is considered as a future work.  
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CHAPTER 5  

 

 

MOM ANALYSIS OF MICROSTRIP LINES ON ELECTROMAGNETIC 

BANDGAP SUBSTRATES 

 

 

 

5.1 Introduction 

The dimensions and weight are two important parameters that play a leading 

role in the design of microstrip antennas for mobile communication systems. In 

order to reduce the weight and dimensions of the antenna, dielectric substrates 

with high permittivity are preferred. On the other hand when an antenna is placed 

substrate with high dielectric constant some power may couple into the substrate 

because of the surface waves resulting in radiation inefficiency. EBG substrates 

prevent the excitation of surface wave modes and offer a real solution to this 

problem. When they are used as antenna substrates they increase the radiation 

efficiency and eliminate the spurious radiation [14]. EBG substrates are also used 

at the input stage of an antenna to suppress unwanted harmonics and improve 

return loss. Such a microstrip circuit is formed by placing a microstrip line on an 

EBG substrate [68]. 

Traditionally the microstrip structures on EBG substrates are simulated 

using commercial 3-D electromagnetic simulation packages like HFSS. In such an 

analysis EBG substrates are modeled with the inclusion of finite number of 

periodic material blocks into the substrate. Typically 3-5 cells are used to model 

substrates [10]. The simulation of microstrip structures on EBG substrates that are 

periodic with infinite number of cells is not possible with such simulation 

packages because these software packages cannot analyze aperiodic structures on 

periodic substrates. 
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The analysis of microstrip structures on periodic substrates is difficult, 

because the problem cannot be reduced to single unit cell as opposed to analysis 

of periodic materials. The MoM solution of microstip lines on artificial periodic 

substrates is firstly proposed by Yang [38]. In this method first the microstrip line 

is divided into segments. To calculate the interaction between the segments and 

the dielectric material blocks, the volume equivalent currents in the substrate 

should be calculated. Due to aperiodic nature of the problem the volume 

equivalent currents cannot be calculated directly. Instead of solving the problem 

directly, first the volume equivalent currents in the structure are calculated when 

the structure is excited by infinite phased array of microstrip segments. For this 

case the problem is periodic and the MoM solution of volume equivalent currents 

can be obtained through volume integral equation. After obtaining these 

equivalent sources, the field due to the array  of segments is calculated. To 

calculate the electric field created by one segment of the microstrip structure, 

array scanning method (ASM) [69] is used to transform fields. In the second 

stage, electric field due to each microstrip segment is used to obtain the current 

distribution on the microstrip line through electric field integral equation and 

spectral domain MoM technique. To find the propagation constant of the 

microstrip line the determinant of characteristic matrix that is obtained in the 

second stage is equated to zero. In this method two integral equations, namely 

volume integral equation and electric field integral equation are solved 

simultaneously and therefore it is called as double-vector-integral equation 

method (DOVIE).  

The DOVIE method is computationally expensive and unpractical. The 

reason is the double infinite Floquet mode summations and Fourier integrals that 

arise in the formulation. The Fourier integrals that arise in the formulation cannot 

be calculated analytically due to iterative nature of the method and by this reason 

they are calculated through a numerical integration procedure resulting in a 

computationally inefficient procedure. The calculation of Floquet series and 

Fourier integrals should be repeated for each microstrip segment, which makes the 

method prohibitively slow.  
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As an alternative to DOVIE method, if the electric field Green’s functions for 

a dipole on EBG substrate can be obtained by some means, the fast analysis of 

microstrip line can be achieved as if the substrate is homogenous. At this point the 

question is: “How can we calculate the Green’s functions for EBG substrates?”  

In this chapter an alternative method to DOVIE that is developed to analyze 

microstrip lines on EBG substrates will be explained. The chapter starts with this 

introduction section. In Section 5.2 the developed analysis technique is 

formulated. The results and discussions are given in Section 5.4. This chapter ends 

with the conclusion, Section 5.4. 

5.2 The Analysis Technique 

The microstrip line on the EBG substrate is shown in the Fig. 5.1. The 

multilayered dielectric substrate is implanted periodically with material blocks 

that have dielectric constant different than the dielectric constant of the host 

substrate. The width of the microstrip line is, w and it is assumed to be narrow, 

such that only longitudinal currents flow on the line.  
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Fig. 5.1 Microstrip line on EBG substrate 

 
 

The idea to calculate the propagation constant is simple. In the first stage the 

full set of electric field Green’s function for the periodically implanted substrate is 
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calculated. Then using these Green’s functions the propagation constant of the 

microstrip line is calculated as if the substrate is homogenous. To implement the 

idea first the Green’s functions for the periodically implanted substrate should be 

calculated by some means. 

Recall that, the spectral domain expression of the electric field Green’s 

functions are derived using the spectral decomposition technique [37]. In the 

derivation, first the field radiated from an infinitesimal dipole is decomposed into 

plane waves through Weyl identity [41] and an equation is formulated that relates 

the plane waves going in upward direction to plane waves going in downward 

direction as [37]: 
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The coefficients of the plane waves going in upward and downward 

directions are obtained by imposing the boundary conditions. As a result the 

spectral domain Green’s functions are obtained in the form of:  
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where TMTER ,

~
 are generalized reflection coefficients. Different from the Fresnel 

reflection coefficients, the generalized reflection coefficients account for the 

multiple reflections from the multilayered structure. 

Let’s consider the infinitesimal dipole on EBG substrate. Similar to the 

previous case, the decomposed plane waves going in downward direction are 

reflected from the substrate and continue their way in the upward direction. For 
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this case the substrate is not homogenous and there are periodic material gratings. 

Therefore, the scattered field at the interface will not be a single plane wave. On 

the contrary, the field at the interface will be composed of infinite number of 

Floquet modes. However the major contribution comes from the fundamental 

Floquet mode. With this assumption the fundamental Floquet mode can be used to 

calculate reflection coefficient at the interface. The assumption is valid when the 

periodicity of the structure is large and implanted elements are small compared to 

wavelength. With this assumption the Green’s function expression obtained for 

the EBG substrate is same as the homogenous substrate but for this case the 

generalized reflection coefficients should be replaced by the reflection coefficients 

of the EBG substrate. The reflection coefficients can be obtained through 3-D 

MoM procedure as explained in the previous chapters. The Green’s functions are 

obtained by replacing the generalized reflection coefficients with the calculated 

reflection coefficients.  The resulting Green’s function approximates electric field 

of the infinitesimal dipole on the periodic structure. 

Using these Green’s functions the propagation constant of the microstrip 

line could be calculated using the spectral domain MoM procedure as if the 

substrate is homogenous. 

5.3 Calculation of Propagation Constant of Microstrip Line Using Spectral 

Domain Approach (SDA) 

The propagation constant of a microstrip line can be calculated in the 

spectral domain or the spatial domain. There are several methods in literature 

proposed to calculate dispersion characteristics of microstrip lines [70]-[73].  

An alternative computationally efficient spatial domain approach is 

proposed during this study and the details of the proposed method are presented in 

Appendix-C. However the developed procedure requires spatial domain Green’s 

functions that are expressed in terms of complex images through the use of 

Generalized Pencil of Functions (GPOF) method. Recall that the reflection 

coefficient of the periodic structure involves some sharp variations at frequencies 

corresponding to bandgap of the structure. These sharp variations may cause some 



 89 

numerical problems during the calculation of spatial domain Green’s functions in 

terms of complex images. Consequently, the more robust spectral domain 

approach presented in [70] is chosen to be implemented in this study. This well-

known procedure is summarized here for the sake of completeness. 

Consider the microstrip line on uniform substrate as shown in Fig. 5.2. 

Assume that the width of the line is small so that there is only ŷ  directed current 

and the effect of x̂ directed current is negligible. 

 
 
 

Layer i

Layer i+1

Layer i-1

Layer i+2

W
i

ε

1−i
ε

i
d

1−i
d

G round

z

x

y

 

Fig. 5.2 Microstrip line on uniform substrate 

 
 

The current on the conductor can be written as: 
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where )(xBm is the basis function. The Fourier transform of the current is 

given by: 
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The Fourier transform of the electric field is written as: 
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By taking the inner product integral with the Fourier transform of the testing 

function we obtain: 
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Using the Galerkin’s method the matrix entries can be written as: 
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Using the even symmetry of the imaginary part of the exponential function, 

(5.8) can also be written as: 
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To calculate the propagation constant, yβ  value that makes the determinant 

of the characteristic matrix zero, is searched using a line search algorithm such as 

bisection method [53]. 

The indefinite integral in (5.9) can be calculated numerically using 

Simpson’s rule or Gaussian quadrature method. To avoid the singularities 

associated with the surface wave poles of the structure the following integration 

path is used for integration: 
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Fig. 5.3 Integration path on kx 
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5.4 Calculation of Propagation Constant of Microstrip Line on EBG 

Substrate 

To calculate the propagation constant of a microstrip line on EBG substrate 

the following algorithm that implement the proposed method is used:  

 

1. Take an initial value for the phase constant as, 
0yy ββ =  according to line 

search algorithm. As a line search algorithm bisection method is used. 

2. Determine the quadrature points on the integration path in terms of kx. For 

each kx value, calculate the angle of incident wave as follows: 
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For each incident angle (may be complex as well) TE and TM reflection 

coefficients are calculated through 3-D MoM procedure. To calculate the 

reflection coefficients only the fundamental Floquet mode is taken into 

account.  

3. Substitute calculated reflection coefficient values into the Green’s function 

and find the characteristic matrix, Z . 

4. Calculate the determinant. If 0.0|| ≠ZDet  chose another yβ  and repeat 

the procedure. 

 

5.5 Results and Discussions 

The implementation of the SDA method is verified by calculating the 

propagation constant of a microstrip line on a uniform substrate and comparing 

the results with the literature. As seen from Table 5.1 the results are in good 

agreement with literature and error is below 1%. In the calculations only one basis 

function is used. The accuracy can be increased using more basis functions.  
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Table 5.1 Calculated propagation constants of a microstrip line with, εs=8, (w/h)=1. 

h/λ 
effε  

(Simpson’s Rule) 

effε  

(Gauss’s Quad.) 

effε  

[73] 

0.005 5.43808 5.4424 5.467 

0.05 6.08747 6.0796 6.122 

0.1 6.7029 6.7799 6.75 

0.3 7.6535 5.77 7.66 

  
 
 
 

After the verification of the SDA procedure, the behavior of the reflection 

coefficients is inspected, because the functionality of the proposed method 

strongly depends on the correct calculation of the reflection coefficients. To verify 

that the reflection coefficients are calculated correctly for all xk  values a slab with 

a fill ratio equal to 1 is considered. The reflection coefficients are calculated for a 

sample slab using 3-D MoM procedure for different xk  values and compared with 

the generalized reflection coefficients calculated for the homogenous slab. The 

dielectric constant of the slab is 10=sε . The thickness of the slab is mmh 1= . 

The implanted material block sizes are mmWL 3== with a dielectric constant 

2=eε . The cell sizes are mmba 3== . The substrate is actually a uniform 

substrate with 2=sε . The comparison of reflection coefficients are given in Fig. 

5.4 and Fig. 5.5 for TM and TE cases, respectively. To obtain these figures the 

implanted cells are divided into 27 unit boxes and 529 number of Floquet modes 

is used. As seen from the figures the reflection coefficients are in perfect 

agreement up to 03k , and after this point the small deviations are observed. The 

difference increases as xk  increases. However the major contribution to the 

integral given in (5.8) comes from the lower xk values and the deviations at high 
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xk  values do not have considerable effect on the calculation of impedance matrix 

and propagation constant. 

Fig. 5.6 plots the TM reflection coefficients versus xk  for different fill 

ratios, where the fill ratio is defined as the ratio of the volume of the implanted 

blocks to the volume of the unit cell. The slab is same with the slab used in the 

previous example. When the fill ratio is one the effective dielectric constant of the 

slab is 2. As the fill ratio decreases the effective dielectric constant of the slab 

increases. The increase in effective dielectric constant increases the reflection 

coefficient as observed in the magnitude plot.  
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Fig. 5.4 The comparison of TM reflection coefficients calculated for the slab with fill ratio 
equal to one.  
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Fig. 5.5 The comparison of TE reflection coefficients calculated for the slab with fill ratio 
equal to one.  
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Fig. 5.6 TM reflection coefficients calculated for periodically implanted substrate with 
different fill ratios (p) 
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After it is seen that the reflection coefficients are calculated correctly, the 

proposed method is verified using a microstrip line on a periodic substrate. When 

the fill ratio is 1, the substrate is actually homogenous substrate with dielectric 

constant equal to the dielectric constant of the implanted cell. This enables the 

verification of the procedure with the SDA approach. Therefore in the first 

example, the fill ratio is chosen to be 1. Table 5.2 lists the propagation constant 

calculated for a sample microstrip line on multilayered EBG substrate with a fill 

ratio equal to 1. The microstrip line is 1mm wide and the substrate parameters are: 

a=L=3mm, b=W=3mm, T=0.5mm, h=1 mm, z0=0.0 mm, 4=sε , 10=eε  

The substrate is essentially a two layer structure with top layer 4=ε  and 

bottom layer 10=ε  and each has a thickness of 0.5 mm. The propagation 

constant calculated using DOVIE method [38] and SDA are also given in the table 

for comparison. As seen from the table the agreement with the DOVIE method is 

surprisingly perfect. For lower frequencies the results are in coincidence up to 

three digits. As the frequency increases slight deviations are observed. This 

observation can be explained with insufficient modeling of equivalent volume 

currents at high frequencies. The accuracy of the results can be increased by using 

more basis functions to model the currents. 

 
 

Table 5.2 The validity check of the calculated of propagation constant. 

Freq. 

(GHz) 

Proposed 

Method 

DOVIE [38] SDA 

4 1.887 1.887 1.895 

6 1.900 1.899 1.908 

8 1.914 1.914 1.923 

10 1.930 1.930 1.939 

12 1.946 1.947 1.957 

14 1.964 1.965 1.975 

16 1.980 1.984 1.994 

18 1.996 2.003 2.013 

20 2.013 2.023 2.033 
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Fig. 5.7 shows the calculated propagation constant of a microstrip line on 

periodically implanted substrate with a fill ratio equal to 0.011. In the figure the 

results are compared with [38] as well as effective medium theory (EMT). In 

effective medium theory the effective dielectric constant of the periodic substrate 

is calculated using the following formula [74]: 
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where, p is the fill ratio. 
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Fig. 5.7 Propagation constant of a microstrip line on periodically implanted substrate. The 
parameters are εs=10, εe=2, a=b=3 mm, L=W= 0.5 mm, h=1 mm, T=0.4 mm, z0=0.3 mm, w=1 

mm. 
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As seen from the figure, propagation constant values obtained by using our 

procedure are in good agreement with the other results, except the bandgap 

region. The results that are obtained using our procedure are very close to the 

results obtained through effective medium theory, which can be attributed to the 

fact that only the dominant Floquet mode is considered during the calculation of 

reflection coefficients. Both the proposed method and the effective medium theory 

assume the single plane wave behavior of the scattered wave at the interface. 

Therefore similar results are obtained as expected.  

The bandgap formation that is observed with the DOVIE method could not 

be observed with the developed procedure. In the developed procedure to 

calculate the plane wave reflection coefficients only the fundamental Floquet 

modes are used. Other Floquet modes are not included in the calculation of 

reflection coefficients because their zk  values are different than the incident wave. 

The evanescent waves those are not included in our developed procedure is the 

reason why bandgap formation is not observed  

5.6 Conclusions 

Above a MoM procedure has been proposed to analyze a microstrip line on 

a periodically implanted substrate. The method is based on the idea of calculating 

the reflection coefficients using 3-D MoM procedure and inserting them into the 

Green’s functions to calculate the dispersion characteristics of microstrip 

structures. Firstly, the proposed method has been verified using a substrate with a 

fill ratio equal to 1. Perfect agreement has been observed with the propagation 

constants calculated using the proposed procedure and SDA. Then a substrate 

with a fill ratio different than one is considered used and good agreement has been 

observed with the results found in the  literature. The error is smaller than error in 

the effective medium theory. However the bandgap formation that is reported in 

the literature has not been observed. On the other hand, the method proposed here 

is computationally much more efficient than the DOVIE method that accurately 

predicts the bandgap. As a result it can be said that the proposed calculation 
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scheme is an alternative to the effective medium theory with more accurate 

modeling of the periodic substrates 

.
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CHAPTER 6  

 

 

CONCLUSIONS 
 

 

 

In the first part of the thesis 2-D metal conductors in stratified media has 

been analyzed using the efficient method of moment technique. Using the method, 

reflection and transmission characteristics of the structure are calculated in less 

than 10 s. It has been shown that the method is fast compared to conventional 

numerical analysis techniques and suitable for optimization. The method has been 

used to calculate conductor positions to optimize the reflected and transmitted 

electric fields. The genetic algorithm has been used as an optimization algorithm. 

As shown in Chapter 2 using 2-D conductors, the reflected and transmitted 

electric fields at a specified region can be increased or decreased 2-3 times. Such 

an optimization is useful in the design of backscatterers or leaky wave antennas. 

Using the method the radar cross section of an object can be reduced by placing 2-

D metallic strips on it. The optimization procedure can be easily modified to 

optimize the radiation pattern and to design directive leaky wave antennas. The 

method can also be used in the design of superlenses to optimize the electric field 

at the focal point as shown in the last example of Chapter 2.  

In the second part, a 3-D method of moment technique to analyze 

multilayered structures with embedded dielectric blocks has been presented. Such 

structures show the electromagnetic bandgap (EBG) material properties and they 

are used in the design of efficient microstrip antennas, frequency selective layers 

(FSLs) etc. In the method the volume equivalence theorem has been used to 

replace dielectric blocks with equivalent currents and method of moment 

technique has been applied to calculate unknown current coefficients. The full set 

of dyadic electric field Green’s functions for the stratified media are formulated 
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and used. With this form of Green’s functions, it is possible to analyze geometries 

when the dielectric blocks are placed in different layers.  

The dispersion characteristics of the structure has been obtained using the 

method and compared with the literature. It has been shown that the results are in 

perfect agreement. The determination of the propagation modes in the structure is 

not an easy task due to odd behavior of determinant of the characteristic matrix. 

Using minimum singular value of the matrix instead of its determinant, 

propagation constants can easily be calculated. To obtain the propagation 

constants in the structure, a hybrid procedure that uses the direct scanning of the 

spectrum and direct search technique has been developed. Using the procedure the 

propagation constants has been determined accurately.  

The effect of the disretization of the unit cell has been inspected. The 

discretization in the vertical direction is crucial to reduce the error in the 

calculation. The discretization in the horizontal plane has not a major role on the 

accuracy but increases the calculation time. Therefore 3 basis function in vertical 

direction and 1-2 basis function in horizontal directions are sufficient to calculate 

dispersion characteristics with an error below 0.5%. The effect of number of 

Floquet modes used in the calculations has also been inspected. It has been seen 

that 441 Floquet modes are sufficient to obtain an error below 0.5%. Using the 

calculated propagation constants the dispersion diagram of the structure is plotted.  

The specular reflection coefficient of the structure has also been calculated 

using the method. The result has been verified by using a sample structure with a 

fill ratio equal to one. The results are also compared with the literature and it is 

been seen that they are in perfect agreement. To accurately determine the 

resonance characteristics, the reflection coefficient should be calculated at more 

than 200 frequencies.  

The 3-D method presented in Chapter 3 is slow to obtain dispersion and 

reflection characteristics. To extract the characteristics of the structure the 

parameters should be calculated at many points and this makes the method 

computationally inefficient. To increase the computational efficiency of the 

method use of Asymptotic Waveform Evaluation (AWE) method has been 
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proposed. This is the first application of the AWE method to this problem. AWE 

method enables to obtain full response of the structure from the calculation at a 

single point. By this way the dispersion diagrams and spectral/angular response of 

reflection coefficients can be calculated in a shorter time. The AWE method 

requires the calculation of high order derivatives of Green’s functions. The regular 

numeric differentiation methods are not suitable to calculate these derivatives. As 

an alternative, automatic differentiation technique has been used to calculate the 

derivatives.  

Using AWE method frequency response of the reflection coefficient has 

been obtained. The result has been compared with the result obtained through 

direct calculation. When the third order AWE method is used the results are in 

perfect agreement in the interested frequency band. The effect of the expansion 

point is inspected. It is seen that a better approximation is obtained, when the 

expansion frequency is close to the midpoint of the interested frequency range. 

The response of the reflection coefficient with respect to the incidence angle has 

also been obtained through AWE and compared with the results obtained using 

the direct calculation. A perfect match has been observed.  

AWE method requires the calculation of derivatives of Green’s functions at 

the expansion point. The calculation of these derivatives takes major part of the 

CPU time. When these derivatives are calculated, the rest of the procedure to 

evaluate reflection coefficients is fast. To compensate the derivative calculation 

time, the analysis should be required at many points. The experiments have shown 

that if the reflection coefficients at more than 84 points are required, AWE 

method is computationally more efficient than direct calculation.  

By comparing the determinant plots of the characteristic matrices, it has 

been shown that AWE can also be used to obtain dispersion diagrams. The 

dispersion characteristics have been calculated and band diagram of the structure 

has been plotted using AWE. It is shown that the dispersion diagram between the 

light line (the boundary between surface wave modes and leaky waves) and 

Brillouin zone can be obtained efficiently through the use of Pade approximation 
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calculated at single point. To approximate the response below leaky wave zone 

another approximation at a different expansion point is necessary. 

When the CPU times required for calculation of band diagrams are 

compared it has been seen that AWE method is 3 times more efficient than direct 

calculation procedure. The computational efficiency of AWE can be increased by 

calculating derivatives in a shorter time. The research is going on to evaluate 

derivatives in a shorter time. 

In Chapter 5 a method is presented to analyze microstrip lines on 

periodically implanted substrates. In this method firstly the reflection coefficients 

of the substrate are calculated. Those reflection coefficients are inserted into the 

Green’s function expressions of homogenous substrate to obtain Green’s functions 

of the periodically implanted substrate. Using those Green’s functions, the 

microstrip line has been analyzed as if the substrate is homogenous. 

The proposed method is verified using a substrate with a fill ratio equal to 

one. The propagation constant of a microstrip line on periodically implanted 

substrate is calculated using the proposed method. The results are compared with 

the ones that are obtained for the homogenous substrate as well as with the 

literature. It has been seen that the results are in perfect agreement. 

The propagation constants of a microstrip line on a substrate with different 

fill ratios have also been calculated. The results are compared with the literature 

and the ones obtained using effective medium theory. It has been seen that using 

the proposed method a good approximation is obtained. The proposed method 

gives similar results with effective medium theory. Using the proposed method 

the bandgap formation that is reported in the literature could not be observed. The 

reason lies behind the plane wave approximation used in the method. In the 

method it has been assumed that major contribution of the substrate comes from 

the fundamental Floquet mode. For this reason only fundamental mode has been 

used to calculate the reflection coefficients and other modes have been discarded. 

It has been seen that those discarded Floquet modes plays an important role in the 

formation of bandgap region. 
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As a consequence, the proposed method can be used as an alternative to the 

effective medium theory to model microstrip lines on EBG substrates when the 

bandgap information has no importance, i.e. to calculate far field radiation. 

Future Work 

In Chapter 2 a procedure has been developed for the fast analysis and 

optimization of 2-D metallic structures. In this procedure the electric field at a 

predefined position is optimized through genetic algorithm. The proposed method 

can easily be modified to optimize far field pattern of the structure. With this 

modification the optimization procedure can be used to synthesize 2-D leaky wave 

antennas. 

In Chapter 2 aperiodic microstrip structures has been analyzed and 

optimized. The periodic 2-D microstrip structures can also be analyzed and 

optimized with the available computer code. For this purpose the Green’s function 

should be replaced with the periodic Green’s functions. With this modification the 

procedure can be used to design 2-D frequency selective surfaces and EBG 

structures.  

In Chapter 3 a 3-D MoM procedure has been presented. In Chapter 4 the use 

of AWE method has been suggested to increase the computational efficiency of 

the procedure. In this work one dimensional AWE procedure has been used to 

obtain the reduced order model of the structure. This enables obtaining full 

response of the structure over one sweep parameter. To obtain the model of the 

structure with respect to two sweep parameters, two dimensional AWE procedure 

can be applied as in [63]. Using two dimensional AWE procedure, the variation of 

reflection coefficient with respect to azimuthal and elevation angles can be 

calculated at the same time. Two dimensional AWE procedure can also be used to 

obtain a model of the solution with respect to propagation constant and frequency. 

This will enable fast computation of band diagrams. For this purpose we have to 

calculate the partial derivatives of the kernel function. Using Taylor’s 

differentiation method (TADIFF) it is not possible because it enables to calculate 

the derivative of a function can be calculated with respect to one variable. 
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However, the partial derivatives with respect to. several variables can be 

calculated through Forward Differentiation (FAD) and Backward Differentiation 

(BAD) methods [67].  

In Chapter 5 a method has been suggested to analyze aperiodic microstrip 

structures on EBG substrates as an alternative to the effective medium theory. 

Using the method it is not possible to obtain bandgaps in the structure. For this 

purpose a new Green’s function formulation that includes contribution of all 

Floquet modes is required. To develop a more accurate procedure the research 

should go in the direction to formulate such a new Green’s function that models 

the interaction of aperiodic electric dipole with the periodic substrate. If such a 

Green’s function can be formulated, the more accurate analysis of the structure 

would be possible using the procedure explained in Chapter 5. 

The method proposed in Chapter 5 can also be used to obtain scattering 

characteristics of microstrip lines on EBG substrates. For this purpose the 

procedure explained in Chapter 2 can be combined with the procedure explained 

in Chapter 5. The reflection coefficients of the substrate are calculated through 3-

D MoM procedure and inserted into Green’s functions. The complex exponentials 

are obtained using GPOF method and currents on the conductors are calculated 

following the procedure explained in Chapter 2. 

 



 107 

REFERENCES 
 

 

 

[1] E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and 
electronics,” Phys. Rev. Lett., vol.58, pp. 2059-2062, May 1987. 

[2] Y. Rahmat-Samii, “The marvels of electromagnetic bandgap (EBG) 
structures: Novel microwave and optical applications,” in Microwave and 

Optoelectronics Conference, 2003, vol. 1, pp.265–275. 

[3] G. Eleftheriades, Y, Vardaxoglou, “Editorial note,” IET Microwave 

Antennas Propagat. : Special Issue on Metamaterials LHM, vol. 1, no.1, pp. 
1-3, February 2007. 

[4] V. G. Veselago, “The electrodynamics of substances with simultaneously 
negative values of ε and µ,” Sov. Phys. Uspekhi, vol. 10, no. 4, pp. 509-514, 
January 1968. 

[5] D. R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser and S, Schultz, 
“Composite medium with simultaneously negative permeability and 
permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184-4187, May 2000. 

[6] M. Lapine, S. Tertyakov, “Contemporary notes on metamaterials,” IET 

Microwave. Antennas Propagat. : Special Issue on Metamaterials LHM, 
vol. 1, no.1, pp. 1-3, February 2007. 

[7] E. Shamonina, L. Solymar, “Metamaterials: How the subject started,” 
Metamaterials 1, pp.2-11, February 2007. 

[8] Ari Sihvola, “Metamaterials in electromagnetics,” Metamaterials 1, pp.2-11, 
February 2007. 

[9] M. J. Vaughan, K. Y. Hur, R. C. Compton, “Improvement of microstrip 
patch antenna radiation patterns,” IEEE Trans. Antennas Propagat., vol. 42, 
pp. 882-885, June 1994. 

[10] R. Gonzalo, P. de Maagt, M. Sorolla, “Enhanced patch-antenna performance 
by suppressing surface waves using photonic-bandgap substrates,” IEEE 

Trans. Microwave Theory Tech., vol. 47, pp. 2131-2138, November 1999. 

[11]  P. Salonen, M. Keskillami, L. Sydanheimo, “A Low-cost 2.45Ghz photonic 
bandgap patch antenna for wearable systems,” in IEE 11

th
 International 

Conference on Antennas and Propagat., 2001, no. 480, pp. 719-723. 



 108 

[12] C. Cheype, M. Thevenot, R. T. Monodiere, A. Reineix, B. Jecko, “An 
electromagnetic bandgap resonator antenna,” IEEE Trans. Antennas 

Propagat., vol. 50, pp.1285-1290, September 2002. 

[13] M. Thevenot, C. Cheype, A. Reineix, B. Jecko, “Directive photonic-
bandgap antennas,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 
2115-2121, November 1999. 

[14] R. Gonzalo, I. Ederra, C. M. Mann, P. de Maagt, “Radiation properties of 
terahertz dipole antenna mounted on photonic crystal,” Electronic Lett., vol. 
37, pp. 613-614, May 2001. 

[15] V. Radisic, Y. Qian, R. Coccioli, T. Itoh, “Novel 2-D photonic bandgap 
structure for microstrip lines,” IEEE Microwave and Guided Wave Lett., 
vol. 8, pp. 69-71, February 1998. 

[16] T. Y. Yun, K. Chang, “Uniplanar one-dimensional photonic-bandgap 
structures and resonators,” IEEE Trans. Microwave Theory Tech., vol. 49, 
pp.549-553, November 2001. 

[17] W. J. Chappel, X. Gong, “Wide bandgap composite EBG substrates,” IEEE 
Trans. Antennas Propagat., vol. 51, pp.2744-2750, October 2003. 

[18] T. Euler, J. Papapolymerou, “Silicon micromachined EBG resonator and 
two-pole filter with improved performance characteristics,” IEEE 

Microwave and Wireless Components Lett., vol. 13, pp.373-375, September 
2003. 

[19] S. G. Johnson, J. D. Joannopoulos, Photonic Crystals: The Road from 

Theory to Practice, chap. 8., Boston: Kluwer Academic Publishers,2002. 

[20] K. M. Ho, C. T. Chan, C. M. Soukoulis, “Existence of a photonic gap in 
periodic dielectric structures,” Phys. Rev. Lett., vol. 65, pp.3152-3155, 
December 1990. 

[21] V. Twersky, “Multiple scattering of electromagnetic waves by arbitrary 
configurations,” Journal of Mathematical Phys., vol. 8, pp. 589-610, 1967. 

[22] Y.-Y. Chen, Z. Ye, “Acoustic attenuation by two-dimensional arrays of 
rigid cylinders,” Phys. Rev. Lett., vol. 87, pp. 3011-3015 , October 2001. 

[23] C.-H Kuo, Z. Ye, “Optical transmission of photonic crystal structures 
formed by dielectric cylinders: Evidence for non-negative refraction,” Phys. 

Rev.  E., vol. 70, pp. 6081-6084, 2004. 

[24] P. de Maagt, R. Gonzalo, J. Vardaxooglou, J. M. Baracco, “Review of 
electromagnetic-bandgap technology and applications,” Radio Science 

Bulletin, no. 309, pp. 11-25, June 2004. 



 109 

[25] H. Y.D. Yang, “Finite difference analysis of 2-D photonic crystals,” IEEE 

Trans. Microwave Theory Tech., vol. 44, no.12, pp.2688-2695, 1996. 

[26] W. Sun, K. Liu, and C. Balanis, “Analysis of singly and doubly periodic 
absorbers by frequency-domain finite difference method,” IEEE Trans. 

Antennas Propagat., vol. 44, pp. 798-805, June 1996. 

[27] J. A. Roden, S. D. Gedney, M. P. Kesler, J. G. Maloney, P. H. Harms, 
“Time-domain analysis of periodic structures at oblique incidence: 
orthogonal and nonorthogonal FDTD implementations,” IEEE Trans. 

Microwave Theory Tech., vol. 46, pp.420-426, April 1998. 

[28] P. Harms, R. Mittra, W. Ko, “Implementation of periodic boundary 
condition in the finite-difference time-domain algorithm for FSS structures,” 

IEEE Trans. Antennas Propagat., vol. 42, no.9, pp. 1317-1324, June 1994. 

[29] Z. Lou, J-M. Jin, “Analysis of 3-D frequency selective structures using a 
higher order finite element method,” Microwave and Optical Technology 

Lett., vol. 38, no.4, pp. 259-263, 2003. 

[30] L. Zhang, N. G. Alexopoulos, D. Sievenpiper, E. Yablonovitch, “An 
efficient finite element method for the analysis of photonic bandgap 
materials,” IEEE M.T.T. Symposium Digest, 1999, pp. 1703-1706,. 

[31] T. F. Eibert, J. L. Volakis, D. R. Wilton, D. R. Jackson, “Hybrid FE/BI  
modeling of 3-D doubly periodic structures utilizing triangular prismatic 
elements and MPIE formulation accelerated by the Ewald transformation,” 
IEEE Trans. Antennas Propagat., vol. 47, no. 5, pp. 843-850, May 1999. 

[32] C.F. Yang, W.D. Burnside, R.C. Rudduck, “A double periodic moment 
method solution for the analysis and design of an absorber covered wall,”, 
IEEE Trans. Antennas Propagat., vol. 41, pp. 600-601, May 1993 

[33] H.Y. Yang, “Characteristics of guided and leaky waves on multilayer thin-
film structures with planar material gratings,” IEEE Trans. Microwave 

Theory Tech., vol. 45, no. 3, pp. 428-435, March 1997. 

[34] H. Y. Yang, “Reflection and transmission of waves from multilayer 
structures with planar-implanted periodic material blocks,” Journal of 

Optical Society of America,  vol. 14, no. 10, pp. 2513-2521, October 1997. 

[35] J. D. Shumpert, “Modeling of Periodic Dielectric Structures,” Ph. D. Thesis, 
University of Michigan, Michigan, U.S.A, 2001. 

[36] I. Bardi, Z. Cendes, “New directions in HFSS for designing microwave 
devices,” Microwave Journal, vol. 41, no. 8, pp. 22-36, 1998. 



 110 

[37] N. Kinayman, M. I. Aksun, Modern Microwave Circuits, Boston: Artech 
House, 2005. 

[38] H. Y. Yang, “Theory of microstrip lines on artificial periodic substrates,” 
IEEE Trans. Microwave Theory Tech., vol. 47, no. 5, pp. 629-635, May 
1999. 

[39] M. I. Aksun, F. Çalıskan, and Levent Gürel, “An efficient method for 
electromagnetic characterization of 2-D geometries in stratified media,” 
IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1264-1274, May 2002. 

[40] Y. Hua, T. K. Sarkar, “Generalized pencil-of-function method for extracting 
poles of an EM system from its transient response,” IEEE Trans. Antennas 

Propagat., vol. 37, pp.229-234, Feb.1989. 

[41] W. C. Chew, Waves and Fields in Inhomogeneous Media. New York: Van 
Nostrand Reinhold, 1990. 

[42] L. Alatan, M. I. Aksun, K. Leblebicioglu, and T. Birand, “Use of 
computationally efficient method of moments in the optimization of printed 
antennas,” IEEE Trans. Antennas Propagat., vol. 40, pp. 725-732, April 
1999. 

[43] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine 

Learning, Massachusetts:  Addison-Wesley Publishing Co., 1989. 

[44] R. F. Pierret, Modular Series on Solid State Devices Volume IV: Advanced 

Semiconductor Fundamentals, Massachusetts: Addison-Wesley Publishing 
Co., 1985. 

[45] D. M. Pozar, Benedikt D. H.Schaubert, “Scan blindness in infinite phased 
arrays of printed dipoles,” IEEE Trans. Antennas Propagat., vol. 32, no.6, 
pp.602-610, June1984. 

[46] G. Dural, M.I. Aksun, “Closed-form Green’s functions for general sources 
and stratified media,” IEEE Trans. Antennas Propagat., vol. 43, no. 7, pp. 
1545-1552, July 1995. 

[47] Y. Rahmat-Samii, “On the question of computation of the dyadic Green’s 
function at the source region in waveguide cavities,” IEEE Trans. 

Microwave Theory Tech., vol. 23, no. 9, pp. 762–765, Sept. 1975. 

[48] J. Arsac, Fourier Transforms and The Theory of Distributions, New Jersey: 
Prentice-Hall, 1966.  

[49] G. Cano. F. Mesa, F. Medina, M. Horno, “Systematic computation of the 
modal spectrum of boxed microstrip, finline and coplanar waveguides via an 



 111 

efficient SDA,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 4, pp. 
866-872, April 1995. 

[50] M. Bozzi, S. Germani, L. Minelli, L. Perregrini, P. de Maagt, Efficient 
calculation of the dispersion diagram of planar electromagnetic bandgap 
structures by the MoM/BI-RME method,” IEEE Trans. Antennas Propagat., 
vol. 53, no.1, pp.29-35, January 2005. 

[51] V. A. Labay, J. Bornemann, “Matrix singular value decomposition for pole-
free solutions of homogeneous matrix equations as applied to numerical 
modeling methods,” IEEE Microwave and Guided Wave Lett., vol. 2, no. 2, 
pp. 49-51, February 1992. 

[52] S. Amari, J. Bornemann, R. Vahldieck, “A technique to locate minima in 
singular-value decomposition for eigenvalue problems in electromagnetics,” 
Microwave and Optical Tech. Lett., vol. 14, no. 6, April 1997. 

[53] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical 

Recipes in C, New York: Cambridge University Press, 1992. 

[54] R. Hooke, T.A. Jeeves, “Direct search solution of numerical and statistical 
problems,” Journal of the Association for Computing Machinery, vol. 8, pp. 
212-229, April 1961. 

[55] M. S. Bazaara, H. D. Sherali, C. M. Shetty, Nonlinear Programming: 

Theory and Algorithms, New York: John Willey & Sons., 1993. 

[56] K. Sakoda, Optical Properties of Photonic Crystals, ch. 8, Berlin: Springer-
Verlag, 2001. 

[57] L.T. Pillage, R. A. Rohrer, “Asymptotic waveform evaluation for timing 
analysis,” IEEE Trans. Computer-Aided Design ,  vol. 9, no. 4,  pp. 352-
366, April 1990. 

[58] E. K. Miller, “Model-Based parameter estimation in electromagnetics: Part 
I. background and theoretical development,” IEEE Trans. Antennas 

Propagat. Mag. , vol.40, no.1, pp.42-52, 1998. 

[59] F. Ling, D. Jiao, J. M. Jin, “Efficient electromagnetic modeling of 
microstrip structures in multilayer media,” IEEE Trans. Microwave Theory 

Tech., vol. 47, no. 9, pp. 1810-1818, September 1999. 

[60] E. K. Miller, “Model-Based parameter estimation in electromagnetics: Part 
II. applications to EM observables,” IEEE Trans. Antennas Propagat. Mag., 
vol.40, no.2, pp.51-65, 1998. 



 112 

[61] M. Davidovitz, “Approach to model order reduction for angular response 
calculations in periodic structures,” Electronic Lett., vol.38, no.8, pp.357-
358, April 2002. 

[62] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical 

Recipes in C, New York: Cambridge University Press, 1992. 

[63] Y. Xiong, D. G. Fang, F. Ling, “Two-Dimensional AWE technique in fast 
calculation of microstrip antennas,” in 3

rd
 Int. Conf. on Microwave 

Millimeter Tech. Proc., 2002, pp.393-396. 

[64] J. Karczmarczuk, “Functional Differentiation of Computer Programs”, in 
Int. Conference on Functional Programming, 1998, pp. 195-203. 

[65] RWTH Aachen University Inst. for Scientific Computing, Community 

Portal for Automatic Diff., [Online]. Available: http://www.autodiff.org, 
[Accessed May 2007]. 

[66] C. Bendtsen, O. Stauning, “TADIFF, a flexible C++ package for automatic 
differentiation using Taylor series expansion,” Department of Mathematical 
Modeling, Technical University of Denmark, Denmark, IMM-REP-1997-
07, 1997. 

[67] C. Bendtsen, O. Stauning, “FADBAD, a flexible C++ package for automatic 
differentiation using forward and backward methods,” Department of 
Mathematical Modeling, Technical University of Denmark, Denmark,  
IMM-REP-1996-17, 1996. 

[68] A. S. Andrenko, Y. Ikeda, O. Ishida, “Application of PBG microstrip 
circuits for enhancing the performance of high density substrate patch 
antennas,” Microwave and Opt. Tech. Lett., vol. 32, no. 5, pp. 340-344, 
January 2002. 

[69] J. Paul Skinner, Benedikt A. Munk, “Mutual coupling between parallel 
columns of periodic slots in a ground plane surrounded by dielectric slabs,” 
IEEE Trans. Antennas Propagat., vol. 40, no.11, pp.1324-1335, November 
1992. 

[70] T. Itoh, R. Mittra, “Spectral domain approach for calculating the dispersion 
characteristics of microstrip lines,” IEEE Trans. Microwave Theory Tech., 
vol. 21, no. 7, pp. 496-499, July 1973. 

[71] T. Güdü, L. Alatan, “A Non-Galerkin spatial domain approach for efficient 
calculation of the dispersion characteristics of microstrip lines,” submitted 
to 2008 IEEE Antennas and Propagation Society International Symposium. 



 113 

[72] J. Bernal, F. Medina, R.R. Boix and M. Horno, “Fast full-wave analysis of 
multistrip transmission lines Based on MPIE and complex image theory,” 
IEEE Trans. Microwave Theory Tech., vol. 48, pp.445–452, March 2000. 

[73] T.H.Ng, L. Ooi and P.S. Kooi, “A Non-Galerkin method of computing the 
dispersion characteristic of microstrip lines using spectral-domain analysis,” 
Microwave and Optical Technology Lett., vol. 27, pp, 72-77, October 2000. 

[74] C. J. F. Bottcher and P. Bordewijk, Theory of Electric Polarization. New 
York: Elsevier, 1978, vol. 2, pp. 476-491. 

[75] M. I. Aksun, “A robust approach for the derivation of closed form Green’s 
functions,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 651–658, 
May 1996. 

[76] M. Kobayashi and F. Ando, “Dispersion characteristics of open microstrip 
lines,” IEEE Trans. Microwave Theory Tech., vol. 35, pp. 101–105, 
February 1987. 

[77] C. Shih, R.B. Wu, S.K. Jeng and C.H. Chen, “A Full-wave analysis of 
microstrip lines by variational conformal Mapping technique,” IEEE Trans. 

Microwave Theory Tech., vol. 36, pp. 576–581, March 1988 



 114 

APPENDIX-A 

 
VOLUME EQUIVALENCE THEOREM 

 

 

 

Consider the scattering problem in Fig. A.1. In the figure the medium has 

permittivity and permeability constants 00 , µε respectively. A scattering object 

with aa µε , is placed in the medium. The sources MJ , radiate into medium and 

generate fields HE , .  
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Figure A.1 the scattering problem 

 
 

The electric and magnetic field satisfies: 
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Let’s define the disturbance fields as: 

isis HHHEEE −=−= ,    (A.2) 

The disturbance fields also satisfy the Maxwell’s Equations: 
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The equations (A.3) and (A.4) reveal that the scattering object in the original 

problem could be replaced with equivalent sources, eqeq MJ , such that, 
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    (A.5) 

The equivalent problem is shown in Fig. A-2. 
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Figure A.2 The volume equivalent problem 
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APPENDIX-B 

 
DERIVATION OF GREEN’S FUCTION FOR PERIODIC STRUCTURES 

 

 

 

The component’s of space domain Green’s function which represents the 

electric field from infinitesimal dipole is equal to the inverse Fourier transform of 

the spectral domain counterparts, given by: 

∫ ∫
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where, uvG
~

is the component of the spectral domain electric field Green’s function 

in terms of zzkk yx
′,,, . 

 The Floquet’s theorem says that for doubly periodic structures the dipole 

currents in a doubly periodic structure must be phased as: 

yx
jnbBjmaB

eezyxJznbymaxJ
−−=++ ).,,(),,(   (B.2) 

Therefore the Green’s function for the periodic structure is written as: 
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(B.3) 

(B.3) can be thought of as a Green’s function of an infinite phased array of 

infinitesimal dipoles in stratified media. With this from the equation is not 

computationally usable because of double integration on the spectral domain 

Green’s function terms. Using the Poisson’s sum formula, the expression can be 

written in more simplified and computationally usable form [45]. Poisson’s 

formula is written as: 

∑ ∑ +=
m m

tjm
mTtfTmFe )()( 0

0 ωω    (B.4) 

Let tj
ethtf 1)()( ω= . Then )()( 1ωωω −= HF  and (B.4) is written as: 
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∑ ∑ ++=−
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Substituting the explicit expression of )( 10 ωω −mH into (B.5), we can write: 

∑∫∑ +
∞

∞−

−− +=
m

mTtjtmj

m

tjm
emTthTdtethe

)(')( 1100 )(')'( ωωωω  (B.6) 

If the (B.3) is compared with (B.6) the similarities can be seen. By letting vt β= , 

vkt =' , a=0ω , '1 xx −=ω , uvGh
~

=  and applying (B.6) twice, (B.3) can be written 

as: 
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where, yyxx bnkamk βπβπ +=+= /2,/2 .  
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APPENDIX-C 

 
A NON-GALERKIN SPATIAL-DOMAIN APPROACH FOR EFFICIENT 

CALCULATION OF THE DISPERSION CHARACTERICTICS OF 

MICROSTRIP LINES 

 

 

 

Introduction 

In the analysis of dispersion characteristics of microstrip lines, spectral 

domain approaches have been preferred as opposed to the spatial domain 

calculations since the spatial domain Green’s functions corresponding to the 

microstrip structure require the numerical evaluation of inverse Fourier transform 

integrals which are computationally expensive. However as demonstrated in [72], 

the discrete complex image representation of the spatial domain Green’s functions 

eliminates the need for the evaluation of numerical integrals and renders the 

spatial domain method to be more efficient compared to the spectral domain 

approach.  When the discrete complex image method (DCIM) is used, the matrix 

entries of the eigenvalue problem involve double integrations in the spatial 

domain. One of them is the convolution integral with the basis function, the other 

one is the inner product integral with the testing function to impose the boundary 

conditions.  In case a Galerkin approach with basis functions satisfying the edge 

conditions on the conducting strips is preferred as in [72], these integrals need to 

be evaluated numerically. However, if a non-Galerkin approach with pulse type 

testing functions is adopted, one of the integrals could be evaluated analytically 

and a single numerical integration is required. In this study, the non-Galerkin 

method is utilized and the accuracy of the method is demonstrated by comparing 

the results of dispersion characteristics to the ones found in the literature.  
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Formulation 

Consider an infinite microstrip line embedded in a multilayered medium as 

shown in Figure C-1. By denoting the unknown propagation constant as β, a 

common phase factor yj
e

β−  is assumed for fields and currents, and it is 

suppressed. By enforcing the boundary condition for the tangential components of 

the electric field at the surface of the conductor, an integral equation is obtained in 

terms of the unknown surface currents on the strip. Then, the unknown currents 

are expanded in terms of known basis functions. 

 
 
 

 

Figure C-1 Geometry of the microstrip line 

 
 

In this study, only one basis function is assumed for the longitudinal current 

( (x)By ) and the transverse current is neglected ( 0(x)Bx = ), to explore the 

accuracy limits of the proposed method in the dispersion analysis of microstrip 

structures with parameters (w,d,ε) that are widely used in practical applications. 

Although the formulation is easily applicable for both longitudinal and transverse 

current components as given in [72], here it will be presented only for the 

longitudinal component for the sake of brevity. The inner product integral of the 
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testing function and the y-component of the electric field are written in the 

following form: 

∫∫ −−=

BT D

y

E

yy

D

yyy dxxBxxGxdxTjxExT ')'()'()()(),( ω     (C.1) 

the space domain Green’s function for the electric field ( E

yyG ) can be written in 

terms of the Green’s functions for the vector ( A

yyG ) and scalar potentials ( q

yG ) as 

follows: 
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The contribution of surface wave poles ( ρpk ) are extracted from the spectral 

domain Green’s functions; and the remaining part is cast into a summation of 

complex exponentials by using the two-level approximation scheme employing 

GPOF method [75]. Then, the 2D space domain Green’s functions are expressed 

in the following closed form: 
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where 22

t βkk
i

−= , 2

ρp

2 kβα −= , ik  is the wave number of the observation 

layer, N is the number of complex exponentials used to approximate the spectral 

domain Green’s functions, ai and bi are the coefficients and exponents of the 

complex exponentials, respectively; Np is the number of surface wave poles and 

Res denotes the residue of the corresponding pole. 

By changing the order of integrations in equation (C.1), the convolution 

integral between the basis function and the Green’s function can be transferred 

into a correlation integral between the basis and testing functions as: 
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The following basis function that satisfies the singularity condition at the 

edges of the strip is chosen: 
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When pulse type testing function is used, the correlation integral in (C.2) 

can be evaluated analytically as: 
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Finally, the single integral left in equation (C.3) is evaluated numerically 

after subtracting the singularity of the Hankel function at u=0, and then adding its 

contribution analytically. A code is written in MATLAB to find the β value that 

makes the result of this integration zero. 

Simulation results and conclusions 

To verify the accuracy of the proposed method, the β values obtained for the 

fundamental mode of a microstrip line are compared to the ones presented in [72]. 

In [72], it is mentioned that four quadrature points are used for numerical 

integrations. During the simulations, it is observed that our results converge for 

larger number of quadrature points. Therefore, the results for two different cases 

are presented. Case A: 4 quadrature points, Case B: numerical integration 

converges. The results are given in Table C.1 

 
 

Table C.1 Comparison of ββββ/k0 results (w=3.0mm, d=0.635mm, εεεεr=9.8) 

f (GHz) 20 25 30 35 40 45 50 

From [72] 2.977 3.006 3.026 3.042 3.054 3.064 3.071 

Our results 

(A) 

2.987 3.011 3.028 3.052 3.062 3.071 3.078 

Our results 

(B) 

2.994 3.017 3.035 3.048 3.058 3.067 3.074 
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The results given in [72] are obtained by using 3 basis functions for the 

longitudinal current and 2 basis functions for the transverse current. However in 

our analysis, only one basis function is used for the longitudinal current and 

transverse current is neglected. The only difference between the two approaches is 

the choice of testing functions. In [72], Galerkin approach is used so the testing 

functions also posses an edge singularity like the basis functions. The agreement 

in the results obtained by using a smaller number of basis functions may be due to 

the pulse type testing function used in this study that gives equal importance to 

each point on the strip while imposing the boundary conditions, as opposed to the 

testing function used in [72] that emphasizes the boundary conditions at the edges. 

A last example is studied to explore the accuracy limits of the proposed 

method for electrically wide microstrip lines build on electrically thick substrates. 

The results are compared to the ones reported in [73], [76], [77], and summarized 

in Table C.2. To make a fair comparison, from [73] only the results corresponding 

to one basis function is included in the table. From Table C.2, it can be observed 

that by using the proposed method very satisfactory results are obtained even for 

wide microstrip lines which are not generally preferred in practical applications. 

 
 
 

Table C.2 Comparison of the effective dielectric constant (εεεεr=8, w/d=1) 

h/λλλλ0 From [76] From [77] From [73] Our results 

0.005 5.468 5.471 5.467 5.476  

0.05 6.124 6.130 6.122 6.145 

0.1 6.742 6.753 6.750 6.785 

0.3 7.62 7.654 7.660 7.674 

 
 
 

In summary, an efficient non-Galerkin spatial domain method is proposed to 

analyze the dispersion characteristics of microstrip lines build in multilayer 

substrates. The efficiency of the method is due to the utilization of discrete 
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complex images in obtaining the 2D space domain Green’s functions and the 

choice of pulse type testing functions that eliminates one of the numerical 

integrations. It is also observed that very satisfactory results are obtained even 

with a single basis function. This may be attributed to the better conformity of the 

boundary conditions achieved by the choice of pulse type testing function.   
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