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ABSTRACT 
 

IDENTIFICATION OF HANDLING MODELS FOR ROAD 

VEHICLES 
 

 

ARIKAN, KUTLUK BİLGE 

Ph.D. Mechanical Engineering Department 

Supervisor: Prof. Dr. Y. Samim ÜNLÜSOY 

 

March 2008, 143 pages 

 

This thesis reports the identification of linear and nonlinear handling models 

for road vehicles starting from structural identifiability analysis, continuing 

with the experiments to acquire data on a vehicle equipped with a sensor set 

and data acquisition system and ending with the estimation of parameters using 

the collected data. The 2 degrees of freedom (dof) linear model structure 

originates from the well known linear bicycle model that is frequently used in 

handling analysis of road vehicles. Physical parameters of the bicycle model 

structure are selected as the unknown parameter set that is to be identified. 

Global identifiability of the model structure is analysed, in detail, and 

concluded according to various available sensor sets. Physical parameters of 

the bicycle model structure are estimated using prediction error estimation 

method. Genetic algorithms are used in the optimization phase of the 

identification algorithm to overcome the difficulty in the selection of initial 

values for parameter estimates. Validation analysis of the identified model is 
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also presented. Identified model is shown to track the system response 

successfully. Following the linear model identification, identification of 3 dof 

nonlinear models are studied. Local identifiability analysis is done and optimal 

input is designed using the same procedure for linear model structure 

identification. Practical identifiability analysis is performed using Fisher 

Information Matrix. Physical parameters are estimated using the data from 

simulated experiments. High accuracy estimates are obtained. Methodology for 

nonlinear handling model identification is presented. 

 

Keywords: Bicycle Model, Structural Identifiability, Practical Identifiability, 

Parameter Estimation, Prediction Error, Genetic Algorithm, Input Design 
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ÖZ 

 

YOL TAŞITLARI İÇİN DÖNÜŞ MODELLERİ 

TANILANMASI 

 

 
ARIKAN, KUTLUK BİLGE 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Y. Samim ÜNLÜSOY 

 
Mart 2008, 143 sayfa 

 
Bu tezde, yol taşıtları için doğrusal ve doğrusal olmayan dönüş modellerinin 

tanılanmaları, yapısal tanılanabilirlik analizinden başlamış, algılayıcı ve veri 

toplama sistemi ile donanmış fiziksel araç üzerinde yapılan deneyler ve bu 

deneylerde elde edilen veri kullanılarak gerçekleştirilen parameter kestirimleri 

ile sonuçlandırılmıştır. Tanılanan 2 serbestlik dereceli doğrusal model, 

taşıtların dönüş dinamikleri ile ilgili çalışmalarda yaygın olarak kullanılan tek 

izli araç modelinden faydalanarak kurulmuştur. Tek izli araç modelinde yer 

alan fiziksel parametreler, kestirilecek parameter kümesi içinde yer almaktadır. 

Bu modelin genel tanılanabilirliği, algılayıcı kümeleri seçeneklerine gore 

detaylıca incelenmiştir. Fiziksel parametreler, öngörü hatası kestirimi yöntemi 

ile elde edilmişlerdir. Eniyileme yöntemi olarak genetic algoritma kullanılarak, 

kestirimlerin doğru değerlere yakınsamasında engel olabilecek ilk değer 

sorununun giderilmesi sağlanmıştır. Tanılanan modelin geçerliliği sınanmış, 
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modelin gerçek sistemin tepkisini başarılı bir şekilde takip ettiği görülmüştür. 

Doğrusal model yapılarının tanılanmasının ardından, 3 serbestlik dereceli 

doğrusal olmayan model yapılarının tanılanmaları üzerinde çalışılmıştır. Yerel 

tanılanabilirlik analizleri doğrusal olmayan model yapıları üzerinde yapılmıştır. 

Eniyi girdi tasarımı da doğrusal model yapılarının tanılanmaları için 

faydalanılan eniyi girdi tasarımı yaklaşımı kullanılarak gerçekleştirilmiştir. 

Uygulamada tanılanabilirlik analizleri de doğrusal olmayan model yapısı 

üzerinde, Fisher Bilgi Matrisi marifetiyle tatbik edilmiştir. Fiziksel 

parametreler, deney benzetimlerinden elde edilen veri kullanılarak kestirilmiş, 

başarılı sonuçlar elde edilmiştir.  

 

Anahtar Kelimeler: Tek İzli Araç Modeli, Yapısal Tanılanabilirlik, 

Uygulamada Tanılanabilirlik, Parametre Kestirimi, Öngörü Hatası, Genetik 

Algoritma, Girdi Tasarımı 
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CHAPTER I 
 

INTRODUCTION 
 

In recent years, identification and estimation studies on vehicle dynamics 

research appear in literature more frequently. Identified mathematical models 

of road vehicles provide for comprehensive analysis of the handling 

characteristics and assists ongoing design and development studies. Linear 

bicycle model is a well known and frequently used model for studying vehicle 

handling dynamics. Estimating the physical parameters of model structures 

based on linear bicycle model enables the engineers to directly use the model 

in real vehicle simulations. Some typical applications published in literature are 

presented in references [1-5]. Various models and identification techniques are 

utilized in these studies.  

 

Identification process can be carried out using either parametric or 

nonparametric models [6]. Parametric models may have black-box or grey-box 

structures. Black box structures utilize appropriate mathematical functions to 

describe the input and output relationship. On the other hand, grey box models 

employ the physical relationships describing system dynamics [7-9]. Use of 

grey box models may reduce the number of parameters to be estimated. 

However, in this case, reaching optimum parameter estimates becomes more 

complex due to the increased number of local minima.  

 

In order to end up with reliable models, identification experiments should be 

designed prior to the collection of input/output data during tests. Experiment 
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design can be regarded in two stages, namely, the qualitative design and the 

quantitative design [10]. Qualitative experiment design includes the selection 

of input ports and output ports from which the data will be collected. This 

selection should be made based on the structural identifiability of the 

parameters to be estimated. In other words, inputs and outputs should be 

selected in such a way that the desired parameters become identifiable. If the 

identifiability of the structure is ensured, estimation of a unique set of 

parameters can then be expected. This will also improve the performance of the 

optimization algorithm [11]. Quantitative part of the experiment design focuses 

on reaching parameter estimates with low uncertainty [10]. It is desired to get 

the maximum information from the collected data. So as to extract maximum 

information, optimal inputs should be designed employing a suitable criterion. 

Input design concerns the shape, amplitude, duration, and frequency content of 

the input signal, and sampling time implemented during the identification 

experiments. Use of optimal inputs increases the accuracy of the parameter 

estimation.  

 

In this thesis, it is aimed to identify 2 degrees of freedom (dof) and 3 dof 

handling models for road vehicles. Former ones have linear mathematical 

model structures, whereas latter ones have both linear and nonlinear structures. 

2 dof models are mainly based on the linear bicycle model composed of 

physical parameters. On the other hand, both black-box and grey-box structures 

are desired to be identified for 3 dof dynamics identification.  

 

In this study, an experimental work using a vehicle equipped with a sensor set 

and data acquisition system is also described. Collected data are then imported 

in the identification algorithm and the physical parameters of the bicycle model 

structure are estimated using prediction error estimation method. In the case of 

physical parameter estimation, initial values of the estimates become more 

critical due to the local minima problem. To overcome this difficulty, genetic 
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algorithms are utilized in the optimization process. Validation analysis of the 

identified model is also presented.  

The experimental part is carried out with support from TOFAŞ. Acquired data 

during these experiments is utilized for the purpose of 2 dof model 

identification.  
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CHAPTER 2 

 

ESTIMATION AND IDENTIFICATION IN VEHICLE 

DYNAMICS RESEARCH 
 

Developments in sensor technology and digital technology accelerate the 

improvements in automotive industry. By the use of new materials, design of 

higher performance engines, tires result in extreme vehicles in today’s world. 

However, these high power and high performance components require complex 

control systems, complex mathematical models and advanced identification 

routines. That is why, in the first sentence the importance of the improvements 

in sensor and digital technologies are emphasized.  

 

Considering the trend of development above, one can find many research 

studies about estimation and identification practices about vehicle dynamics. 

Before classification of the studies in literature, it would be better to give some 

basics about parameter and state estimation and system identification. 

 

2.1 State Estimation 

 

In 1963, David G. Luenberger initiated the theory of observers for state 

reconstruction of linear dynamical systems. Since then, owing to its utility and 

its intimate connection with fundamental system concepts, observer theory 

continues to be a fruitful area of research and has been substantially developed 

in many different directions. In view of this, the observer has come to take its 
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pride of place in linear multivariable control alongside the optimal linear 

regulator and the Kalman filter [12].  

 

The major thrust in the development of observers for multivariable linear 

causal systems came from the introduction of state-space methods in the time 

domain by Kalman in 1960. The immediate impact of state-space methods was 

the strikingly direct solution of many longstanding of control in a new 

multivariable system context. The designed control systems are normally of the 

linear state feedback type and, if they are to be implemented, call for the 

complete availability of the state vector of the system. It is frequently the case, 

however, that even in low-order systems it is either impossible or in 

appropriate, from practical considerations, to measure all the elements of the 

system state vector. This problem is to be overcome to retain many useful 

properties of linear feedback control. The observer provides an elegant and 

practical solution to this problem.  

 

The need for state reconstruction or observation is not limited to deterministic 

systems only. In many engineering applications, it is necessary to estimate a 

single or multi-dimensional signal, embedded in a stochastic noise process, 

either continuously or at distinct time points over an observation interval [13]. 

Generally, at any given time point, an estimate can be formed from 

measurements by solution of a known mathematical relationship describing the 

behavior of the system. Often in practical estimation problems, a reliance on 

either measurements or a mathematical description of the system behavior 

alone provides state estimates with insufficient accuracy to satisfy the 

application’s requirements. Therefore, it is of considerable practical interest to 

study optimal strategies that can be used to combine signal measurements and 

mathematical descriptions of the system behavior in a wide class of state 

estimation and signal estimation problems. It is of particular interest to 

determine an optimal estimation strategy satisfying a minimum variance of 

error cost function for a wide class of state estimation problems in which the 
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signals or states to be estimated are embedded in a stochastic noise process. 

Estimation problems of this type were first evaluated by N. Wiener in 1942. 

The development of data processing methods for dealing with random 

variables can be traced to Gauss, who invented the technique of deterministic 

least-squares and employed it in a relatively simple orbit measurement problem 

[15]. The next significant contribution to the broad subject of estimation theory 

occurred more than 100 years later when Fisher, working with probability 

density functions, introduced the approach of maximum likelihood estimation. 

Utilizing random process theory, Wiener set forth a procedure for the 

frequency domain design of statistically optimal filters. 

 

Wiener’s study led to a great amount of activity in the field of signal estimation 

and it has importance in bringing the statistical point of view into 

communication and control theory. Under very general conditions, for a wide 

class of problems with signals embedded in stochastic noise systems, Wiener 

presented an optimal linear minimum variance of error (least-squares) 

estimation strategy to combine measurements with a mathematical description 

of signal behavior. For estimation problems of this type, Wiener determined 

the form of an optimal linear minimum variance of error estimation filter in 

terms of frequency-domain concepts such as transfer functions and spectral 

densities. This optimal estimation filter takes the form of a continuous-time 

linear filter, called Wiener filter. This filter is not easily modified for discrete-

time systems, and when modified, it does not provide a recursive, 

computationally efficient algorithm. Further, the Wiener filter can be 

complicated when the signal is multi-dimensional, and it requires that the noise 

and signal processes be statistically stationary.  

 

In 1960, R. E. Kalman reformulated the problem in terms of state-space 

concepts. Under a general set of conditions, for systems described by a state-

space model, Kalman described the form of an optimal linear minimum 

variance estimation filter for the optimal estimation of the current system state 
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from a blend of system dynamics and measurements on the system. This 

estimation filter takes the form of a computationally efficient sequential and 

recursive discrete-time algorithm called the discrete-time Kalman filter. In 

1961, Kalman and Bucy presented a similar solution for the continuous-time 

state estimation problem, called the continuous-time Kalman filter. The earliest 

applications of the Kalman filter dealt with satellite orbit determination. Today, 

Kalman filters are commonly found in navigation, tracking, and industrial 

control problems as well [13]. 

 

For linear systems, observing the state of a dynamical system has been 

extensively studied. For nonlinear systems, the theory of observers is not 

nearly as complete or successful as it is for linear systems. Applying linear 

observer theory to nonlinear problems has had success, but has by no means 

closed the book on nonlinear observer design. Instead, attempts continue to be 

made to construct nonlinear observers using tools from nonlinear systems 

theory [16].  

 

Kalman filtering methods are also applied to nonlinear systems. When the 

Kalman filter is applied to the linear representation of a nonlinear system it is 

called a linearized Kalman filter. In some Kalman filtering applications, where 

divergence occurs due to significant nonlinearity in the system dynamics, 

satisfactory results can be obtained by using a near-optimal state estimation 

filter called the extended Kalman filter. The extended Kalman filter is obtained 

applying the generalized Kalman filter algorithm to a linearized system model, 

where in this case the nonlinear system is linearized about the Kalman filter’s 

estimated trajectory rather than a recomputed nominal trajectory. 

 

In cases where system models are uncertain or ill-defined, fuzzy and neural 

network estimators can be used instead of the conventional estimation 

techniques. They can be used within a hybrid solution for estimation problem 

together with a Kalman filter [14].  
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2.1.1 Estimation for Stochastic Systems 

 

Estimation is the process of extracting information from data. Data can be used 

to infer the desired information and may contain errors. Modern estimation 

methods use known relationships to compute the desired information from the 

measurements, taking account of measurement errors, the effects of 

disturbances and control actions on the system, and prior knowledge of the 

information. These methods are based on the statistical estimation theory [13]. 

 

The principles of statistical estimation theory are employed, generally, to 

determine structures and methods that allow for parameter estimation to be 

performed, in some sense, optimally. The Kalman filter is an application of 

statistical estimation theory, or estimation theory, which has been applied to 

numerous practical estimation problems.  

 

Estimation theory is a field of statistics concerned with the technique for 

estimating the value of a set of unknown parameters, x, from a set of 

measurements Y containing information about x. In estimation theory, 

estimates for x, denoted by x̂  are formed from Y by using an estimation rule 

called an estimator. An optimal estimator, in some sense, is tried to be found 

for x. The essential estimation problem, then, is to find an estimator for x that 

acts upon a set of observations Y, containing information about x, to provide in 

some sense good or optimal estimates for x. To select an optimal estimator, the 

relative performance evaluation of different estimators has led to statistical 

notion of loss or cost. 

 

The most popular optimality criterion for estimation is the Bayes criteria. The 

Bayes criteria, for any given estimation problem, selects the optimal estimator 

to be the estimator that minimizes expectations of the loss function. An 

estimator that satisfies the Bayes criteria for a given estimation problem is said 

to be a Bayes estimator for the problem. Bayes estimators with squared-error 
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loss functions are called minimum variance of error estimators. When the loss 

function for the Bayes criteria is the squared-error loss function, the optimal 

linear estimator is called a linear minimum variance (LMV) of error estimator 

[13].  

 

2.1.2. Estimation Filters 

 

In practical engineering problems, estimation is typically performed as an 

ongoing process in which measurements are continuously updated in time and 

input to an estimation filter where parameter estimation is performed 

repeatedly in time. An estimation filter provides at time t an estimate, 

)t|t(x̂ α+ , for the value of signal x at some time t+α, which is an estimate for 

x(t+α). When α is greater than zero, the estimation filter is called a predictive 

filter. When α is less than zero, the estimation filter is called a smoothing filter. 

When α is equal to zero, the estimation filter is called as a filter.  

 

A linear minimum variance of error estimation filter is an estimation filter that 

at any given time is a linear minimum variance of error estimator. A linear 

minimum variance of error estimation filter is a minimum variance of error 

estimation filter over the class of all linear filters [13].  

 

There are assumptions in the derivation of the Kalman filter. The Kalman filter 

should be used under the consideration of these assumptions. The process and 

measurement noise random processes, are uncorrelated zero mean white noise 

random processes with known auto covariance functions. The initial system 

state is a random vector that is uncorrelated to both the process and 

measurement noise random processes. The initial system state has a known 

mean and known covariance matrix. Under the Gaussian restrictions, the 

Kalman filter is a linear estimation filter that also minimizes the variance of 

error from among all estimation filters, linear or nonlinear, that is the Kalman 
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filter is not simply an LMV estimation filter for the estimation of the system 

state, but it is a minimum variance of error estimation filter as well. 

Consider the stochastic model of a discrete time system 
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where 

 

xk  state vector 

zk  measurement vector 

uk  deterministic system input 

wk process noise (plant disturbance)  

vk    measurement noise 

Q    process noise covariance  

R    measurement noise covariance  
−
kP   priori estimate error covariance 

Pk   posteriori estimate error covariance 

 

The discrete Kalman filter equations are as follows [13] 

 

Time update equations (predict): 
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Measurement update equations (correct): 
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The discrete Kalman filter equations can be derived from different ways. 

Derivation from the orthogonality principle and derivation from the 

innovations approach are two of them.  

 

2.1.2.1 Alternate forms and extensions of the Kalman filter algorithm 

 

o The discrete Kalman filter was developed for systems with a known 

linear state-space model. However, in practical applications there often 

exists great uncertainty about some of the system model parameters. In 

some applications an incorrect system model may lead to divergence. 

Several extensions of the conventional Kalman filter algorithm that use 

the incoming measurements to either identify the unknown system 

model parameters or to otherwise minimize the effect of an incorrect 

system model on the Kalman filter algorithm. These types of filters are 

called adaptive (or self learning) Kalman filters. Generally, when an 

adaptive Kalman filter is applied to an incorrect system model it 

provides an estimate that is more optimal (that is, that has a smaller 

variance of error) than the estimate provided by the conventional 

Kalman filter algorithm under the incorrect system model assumption. 

And in many cases when divergence is due to system modeling errors, 

the application of an adaptive Kalman filter can provide satisfactory 

results from an otherwise divergent filter [13], [17].  

 

o In some situations it may be necessary to apply Kalman filtering 

methods to system models with system disturbance and measurement 

noise processes with known, but not necessarily zero, means. Kalman 

filtering algorithm can be modified to provide an optimal LMV 

estimation filter for such situations. This modified recursive algorithm 

is called the generalized Kalman filter. In addition to this generalized 

assumption, the case where the plant disturbance and measurement 

noise random processes may be correlated at the same time point can be 
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also considered. Generalized Kalman filter algorithm is modified to 

handle the described case. This sequential and recursive algorithm for 

the optimal LMV estimate provides the most general form of discrete 

Kalman filter and is called the general discrete Kalman filter. 

Continuous-time Kalman filter can be extended in a similar manner and 

the general continuous-time Kalman filter can be obtained [13].  

 

o Kalman filter has found many applications with nonlinear systems. In 

many Kalman filtering applications, an approximate linear system 

model is assumed for a nonlinear system, and this approximate linear 

system model then forms the basis for the Kalman filter utilization. 

When the Kalman filter algorithm is applied to such a linear 

representation of a nonlinear system, it is called a linearized Kalman 

filter. However, sometimes the linear approximation leads to 

divergence. In these situations, where divergence occurs due to 

significant nonlinearity in the system dynamics, satisfactory results can 

sometimes be obtained by using a Kalman filter algorithm modification 

called the extended Kalman filter [12], [13], [17]. In this case, the 

nonlinear system is linearized about the Kalman filter’s estimated 

trajectory.  

 

o The unscented Kalman filter is proposed as a derivative free alternative 

to the extended Kalman filter in the frame work of state estimation. The 

unscented Kalman filter consistently outperforms extended Kalman 

filter in terms of prediction and estimation errors [18].  

 

Besides the conventional observers and filters fuzzy and neuro-fuzzy 

estimators are also used. Such an estimator is useful in cases where system 

model is either uncertain or ill-defined. An example in the literature uses 

multiple fuzzy models to track the motion of a target, which performs a priori 

unknown maneuver, based upon uncertain measurements [14]. 
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2.2 System Identification 

 

As a definition, system identification deals with the problem of building 

mathematical models of dynamical systems based on the observed data from 

the systems [11]. The construction of a model from data involves the following 

basics 

 

o The data: The input-output data are sometimes recorded during a 

specifically designed identification experiment, where the user may 

determine which signals to measure and when to measure them and 

may also choose the input signals. The object with experiment design is 

thus to make these choices so that the data become maximally 

informative, subject to constraints. In other cases user may not have the 

possibility to affect the experiment, but must use data from the normal 

operation of the system. 

 

o The set of models: A set of candidate models is obtained within a 

collection of models. This is the most important and, at the same time, 

the most difficult choice of the system identification procedure. 

Sometimes the model set is obtained after careful modeling. Then a 

model with some unknown physical parameters is constructed from 

basic physical laws and other well-established relationships. In other 

cases standard linear models may be employed, without reference to the 

physical background. Such a model set, whose parameters are basically 

viewed as vehicles for adjusting the fit to the data and do not reflect 

physical considerations in the system, is called a black box. Model sets 

with adjustable parameters with physical interpretation may, 

accordingly, be called gray boxes. 
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o Determining the best model in the set: This is the identification method. 

The assessment of model quality is typically based on how the models 

perform when they attempt to reproduce the measured data.  

 

After having settled the on the preceding three choices, at least implicitly, a 

particular model has been arrived. That is the one in the set that best describes 

the data according to the chosen criterion. It then remains to test whether this 

model is good enough, that is, whether it is valid for its purpose. Such tests are 

known as model validation. They involve various procedures to assess how the 

model relates to observed data, to prior knowledge, and to its intended use. 

Deficient model behavior in these respects makes the model to be rejected, 

while good performance will develop a certain confidence in the model. A 

model can never be accepted as a final and true description of the system. 

Rather, it can at best be regarded as a good enough description of certain 

aspects that are interested in.  

 

The identification procedure has a logical flow of collecting data firstly, then 

choosing a model set, then picking the best model in this set. If the model first 

obtained will not pass the model validation tests, then steps of the procedure 

are revised. 

 

The model may be deficient for a variety of reasons: 

 

o The numerical procedure failed to find the best model according to the 

criterion. 

 

o The criterion was not well chosen. 

 

o The model set was not appropriate, in that it did not contain any “good 

enough” description of the system. 
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o The data set was not informative enough to provide guidance in 

selecting good models. 

 

The major part of an identification application in fact consists of addressing 

these problems. 

 

2.2.1 Parameter Estimation Methods 

 

A set of candidate models has been selected, and it is parametrized as a model 

structure using a parameter vector. The search for the best model within the set 

then becomes a problem of determining or estimating that parameter vector. 

There are many different ways of organizing such a search and also different 

views on what one should search for. 

 

The ability of the models to describe the observed data should be evaluated. 

Thus the prediction error is formulated. A good model is one that is good at 

predicting, that is, one that produces small prediction errors when applied to 

the observed data. Note that there is considerable flexibility in selecting various 

predictor functions, and this gives a corresponding freedom in defining good 

models in terms of prediction performance. 

 

The error in the estimate of unknown parameters θ−θ=θ ˆ~  provides the 

quantity having the greatest interest in an estimation problem. Since it is a 

random vector, its value is generally unknown and must be described 

probabilistically. Certainly, the most desirable estimate is one for which the 

estimation error equals zero. In general, an estimator cannot be expected to be 

the best in this sense because Cramer-Rao inequality provides a lower bound 

on the covariance of the estimation error. Since the bound is not necessarily 

equal to the zero matrix, any estimator, based on a finite amount of data, must 

be expected to contain some error. Then, it is reasonable to attempt to define 

estimators which minimize the estimation error in some prescribed sense.  
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2.2.1.1 Least Squares Estimation 

 

Least squares can be regarded as a deterministic approach to the estimation 

problem. Suppose n parameters, denoted as the n dimensional vector x, are to 

be estimated from M measurements, denoted as the M dimensional vector z. 

The parameters x and measurements z are assumed to be related according to 

 

z = H x + v. 

 

The (Mxn) matrix H is assumed to be known and the number of measurements 

is at least as large as the number of unknown parameters. In addition, H has 

maximal rank n. The vector v represents unknown errors that occur in the 

measurement of x.  

 

For least squares estimation the estimator is chosen to minimize the sum of the 

square of the errors. More precisely, LSx̂  is defined as the least squares 

estimator of x given the data z if it minimizes  
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Since H has been assumed to have maximal rank, the inverse of (HT H) exists 

and the least squares estimator is found to be 

 

LSx̂ = (HT H)-1 HT z 

 

The error in the estimator is a linear function of the measurement errors v and 

it has mean value of zero. Therefore, LSx̂  is called as unbiased estimator. This 
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seems to be a desirable property. However, biased estimators also arise and can 

provide advantages relative to unbiased estimators.  

 

The least squares cost function can be generalized by introducing a symmetric, 

positive definite weighting matrix W. 

 

( ) ( )xHzWxHz
2
1L T −−=  

 

The elements of W can be chosen to emphasize (or deemphasize) the influence 

of specific measurements upon the estimate LSx̂ . 

 

The error covariance matrix provides a measure of the behavior of the 

estimator. It is natural to attempt to determine the estimator that will minimize 

the error variances. An important performance index, which can be regarded as 

the probabilistic version of least squares, is provided by the mean square error 

 

( ) ( )[ ]x̂xx̂xEL T −−=  

 

For nonlinear systems, this performance index can yield results which are 

substantially different than the least squares index. Unbiased estimators which 

are linear and minimize the mean square error are referred to as best, linear, 

unbiased estimators and denoted BLUE [19]. 

 

Many other topics could be discussed in conjunction with least squares. Also, 

other forms and extensions of least squares estimation exists. 

 

Considering the estimators such as least squares estimators, the properties that 

characterize the class of good estimators are as follows 

 

o The estimator should be based upon all available data. 
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o The estimate should be acceptable (i.e., when evaluated with any data 

set, it should always yield an estimate that represents a possible value 

of the parameter). 

 

o The estimator should be consistent so that the estimate converges in 

probability to the parameter. 

 

o The estimator commonly should be unbiased (although biased 

estimators may sometimes be useful). 

 

o The estimator should be efficient in the sense that its error covariance is 

as small as possible. 

 

The latter two properties are often required only in asymptotic sense as the 

number of data samples becomes large. In addition, it is desirable that the 

probability distribution of the estimator error be asymptotically Gaussian. 

Then, the analysis of the performance of the estimator is made simpler.  

 

2.2.1.2 Maximum a posteriori and maximum likelihood estimators 

 

An estimator proposed by Pearson around 1900 is obtained by the method of 

moments. The idea behind the method is simple and intuitively appealing. It is 

practical in the sense that it frequently leads to a computationally realizable 

estimator. However, it has little theoretical justification with the result that its 

appeal is primarily intuitive.  

 

The method of moments is based on the preceding observation regarding the 

consistency of the sample moments. Thus, for large samples, it is reasonable to 

expect that the sample moment provides a good approximation of the moments 

of the distribution. In fact, the method of moments is generally inefficient and 

so is not utilized except in the absence of better estimators [11], [19]. 
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Consider the density function f(z|θ) where z is the measurement vector and θ is 

the vector of parameters to be estimated. Regarding it as a function of unknown 

parameter θ, it is reasonable to choose as an estimator of θ that maximizes 

f(z|θ). This estimator can be interpreted as providing the value of θ that makes 

the measurement most likely.  

 

The density function f(z|θ) is called the likelihood function. Because of the 

exponential character of many density functions, it is convenient to deal with 

the log likelihood function ln[f(z|θ)]. Certainly, f(z|θ) is maximized by 

choosing θ to maximize ln[f(z|θ)].  

 

The maximum likelihood estimator is intuitively appealing. Unlike the 

intuitively appealing method of moments, the maximum likelihood approach 

can be shown to exhibit many theoretical properties that confirm that it is a 

good estimator. Maximum likelihood estimators can be shown, under 

reasonable conditions, to be consistent and asymptotically efficient. Also, the 

probability distribution of the estimator is asymptotically normal.  

 

Bayes’ rule states that the a posteriori density function f(θ|z) is related to the a 

priori density f(θ) according to  

 

f(θ|z) = f(z|θ) [f(θ)/f(z)] 

 

Following the discussion of maximum likelihood estimation, it is reasonable to 

consider choosing an estimator that maximizes the a posteriori density given 

the measurements z. 

 

The maximum a posteriori and the maximum likelihood estimators are seen to 

have an obvious relationship. Suppose that the a priori density f(θ) is uniform 

over the range of values of θ for which f(z|θ) is significantly greater than zero. 

Then, f(θ|z) is maximized by the same value of θ which maximizes the 
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likelihood function f(z|θ). This case arises when there is no a priori information 

about θ available. Thus, the maximum a posteriori estimator differs from the 

maximum likelihood estimator when a priori density f(θ) is available and 

causes the maximum of the likelihood function in f(z|θ) to shift.  

 

There are other parameter estimation techniques available in literature. In the 

previous chapters only the popular ones are explained briefly. 

 

2.2.2 Nonlinear System Identification 

 

When changing from a linear to nonlinear model, it may occur that the 

nonlinear model, if it is not chosen flexible enough, performs worse than the 

linear one. A good strategy for avoiding this undesirable effect is to use a 

nonlinear model architecture that contains a linear model as a special case. 

Overall model output is the sum of the linear and the nonlinear model parts. 

This strategy is very appealing because it ensures that the overall nonlinear 

model performs better than the linear model [20].  

 

Modeling and identification of nonlinear dynamic systems is a challenging task 

because nonlinear processes are unique in the sense that they do not share 

many properties. A major goal for any nonlinear system modeling and 

identification scheme is universalness: that is, the capability of describing a 

wide class of structurally different systems.  

  

External dynamics strategy is by far the most frequently applied nonlinear 

dynamic system modeling and identification approach [20]. It is based on the 

nonlinear input/output model. The name “external dynamics” stems from the 

fact that the nonlinear dynamic model can be clearly separated into two parts: a 

nonlinear static approximator and an external dynamic filter bank. In principle, 

any model architecture can be chosen for the approximator. However, from the 

large number of approximator inputs it is obvious that the approximator should 
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be able to cope with relatively high dimensional mappings, at least for high 

order systems. Typically, the filters are chosen as simple time delays. Then 

they are referred to as tapped-delay lines, and if the approximator is chosen as 

a neural network the whole model is usually called a time delay neural 

network. Many properties of the external dynamics approach are independent 

of the specific choice of the approximator.  

 

When widening the focus to also include black box identification of nonlinear 

dynamic systems, the problem of selecting model structures becomes 

increasingly difficult. Neural networks are used for constructing such black 

box models [3], [19]. Multilayer perceptron (MLP) network is good at learning 

nonlinear relationships from a set of data. Thus, in the pursuit for a family of 

model structures suitable for identification of nonlinear dynamic systems, it is 

natural to bring up MLP networks. By making this choice, the model structure 

selection is basically reduced to dealing with the following issues; selecting the 

inputs to the network and selecting an internal network architecture. An often 

used approach is to reuse the input structures from the linear models while 

letting the internal architecture be feedforward MLP network. This approach 

has several following attractive advantages 

 

o It is a natural extension of the well known linear model structures 

 

o The internal architecture can be expanded gradually as a higher 

flexibility is needed to model more complex nonlinear relationships. 

 

o The structural decisions required by the user are reduced to a level that 

is reasonable to handle. 

 

o Suitable for design of control systems. 
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Recurrent or real time identification is also available in neural network 

dynamic system models. Real time recurrent learning algorithm, also known as 

simultaneous backpropagation, has been proposed in literature [18].  

 

Fuzzy system models and neuro-fuzzy architectures are also available in 

literature [14], [20].  

 

Least squares estimation is also applied for estimation of parameters of 

nonlinear system models [21]. Its solution is seen to require the solution of a 

system of nonlinear algebraic equations which call for orthogonality between 

the residual and the matrix of first partial derivatives of the observation 

equation relative to the unknown parameters. Linearization of the observation 

equation led to the definition of an iterative search procedure called the Gauss 

method. Alternatively, approximating the cost function by a quadratic leads to 

another iterative procedure called the Newton method. Extended Kalman filter 

is a well known method for estimating the parameters from nonlinear 

measurements that are generated in real time [22]. In some cases, extended 

Kalman filter may have some convergence problems and least squares 

estimation of different form may give better results compared to the extended 

Kalman filter estimates [22].  

 

2.3 Estimation and Identification Studies about Vehicles 

 

There are many applications available including estimation and system 

identification in vehicle research studies. In this thesis, identification of vehicle 

handling dynamics and estimation of related physical parameters of road 

vehicles are focused. Before discussing the studies on this subject, a rough 

classification is given below.  

 

- Estimation of vehicle states: Estimated states depend on the form of the 

mathematical model and the available measurements. Forward velocity, yaw 
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velocity, side slip angle, roll velocity are some of the estimated states, [1, 2, 23, 

24, 25, 26, 27]. Estimated states are used to monitor some variables or to use as 

feedback signals in control systems.   

 

- Estimation of tire/road surface friction coefficient: This parameter is essential 

to optimize the control systems such as ABS and TCS, [25, 28, 29, 30].  

 

- Estimation of tire forces: It is used to generate mathematical models for tires 

and it can also be used for control purposes, [25, 28, 29].  

 

- Moment of inertia estimation: Inertia tensor may be identified by using 

special test setups or by utilizing the collected data from vehicle during the 

special maneuvers, [31, 32]. Inertial parameters are basic for simulations and 

control system design. 

 

- Estimation of cornering stiffness: It is a key parameter for both simulation 

and controller design purposes. It may be estimated to generate mathematical 

models for tires, [1, 27, 33].   

 

- Estimation of suspension parameters: In the mathematical modeling of 

coupled handling and roll dynamics, it is essential to use roll damping and 

stiffness of suspension system within the parameters. Estimation of them may 

be required for controller design purposes also. Ride comfort models also 

utilize suspension parameters, [2, 3, 34, 35]. 

 

Some other estimation practices include the estimation of terrain parameters, 

road grade, aerodynamic drag, lift coefficient, road bank angle, wind gust, 

rolling resistance, driver model parameters, etc.  

 

Considering the identification of handling dynamics, most of the studies 

employ extended Kalman filter to estimate parameters together with the states. 
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This type of parameter estimation requires defining the parameters as 

additional states. Linear bicycle model is the commonly utilized model 

structure in most of the applications. Optimal input design is not considered in 

general. It is also seen that validation tests are generally limited in these 

studies.  

 

In addition, identifiability and observability analysis are generally missing in 

these applications. On the other hand some studies carry sensitivity analysis to 

check the identifiability [36, 37]. Besides, genetic algorithm based optimization 

technique is not so usual in the identification practices of vehicle dynamics 

applications. These items may be considered as some of the motivating points 

in this thesis. 

 

2.4 Utilized Hardware in the Identification of Vehicle Dynamics 

 

Since the identification requires experimental input-output data, some tests 

should be conducted on the vehicle equipped with some special kind of 

hardware. Sensors, data acquisition system, some actuators, indicators, etc. are 

employed hardware components during the experiments. 

 

- Data Acquisition System: In order to acquire the data during the experiment 

data acquisition system is required, figure 1. For identification purposes, 

applied inputs and sensor outputs should be acquired during the tests with the 

appropriate resolution. These systems need some types of software to process 

the data, make settings, etc. In some experiments data acquisition system 

should also be able to generate some actuation signals.  
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Figure 1 Data acquisition system [38] 

 

- Steering Wheel angle and Torque Measurement System: In order to measure 

the steering input and applied steering wheel torque, a sensor system is 

required. Such systems are mounted in the steering system by replacing the 

existing steering wheel. In basic handling models steering input is the single 

input to the system. Besides, for constant forward velocity models of coupled 

roll and handling, it is also the only input to the system. 

 

 

Figure 2 Steering wheel measurement system 

 

 - Wheel Speed Measurement System: Measurement of rotational wheel speeds 

may be used to detect the wheel slip that is used in tire models. Wheel speed 
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measurement is required if longitudinal and lateral force interactions are 

included in tire force modeling part.  

 

 - Wheel Torque and Force Measurement System: Applied torque to the wheels 

is an input to the system. In addition, the forces on wheels are important 

variables of vehicle dynamics. Such sensor systems measure the vertical load 

on wheels and forces and moments generated by tires. These may be used for 

the identification of tire models of the vehicle by the experimental data 

acquired during road tests. 

 

 

Figure 3 Wheel torque and tire force measurement system [39] 

 

- Velocity Sensors: Measuring forward and lateral velocities is critical in 

experiments, fig. 4. Forward velocity may be kept constant in experiments such 

that it becomes a parameter of the system. Side slip velocity has small 

amplitude compared to the forward velocity. Output of the lateral velocity 

sensor might be conditioned by amplification to match the sensor output to 

A/D converter’s input range. 

 

- Inertial Measurement Units: Accelerations, rotational velocities, and 

orientations of the vehicle are required variables in most of the experiments. 
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Inertial measurement units are employed to measure these quantities, fig. 5. 

These units include 3 axes accelerometers, 3 axes gyroscopes, mostly 

magnetometers, and software to estimate some variables and filter out some 

undesired noise components. These units build up the basic sensor sets utilized 

in physical tests to acquire data for identification purposes. 

 

- Steering Robot: Designed steering inputs can be applied to the vehicle by 

using steering robots. Figure 6 shows the one of the most popular steering 

robots used in physical experiments [42]. Closed loop experiments can also be 

conducted using inertial measurement systems together with this robot. 

Experiments may be designed to excite the vehicle with desired amplitude of 

roll or yaw motion using the feedback from inertial measurement unit.  

 

In addition some inertial measurement units may include global positioning 

sensors (GPS). Closed loop experiments may be conducted using position 

feedback and vehicle can follow a predefined or designed path during the tests 

by the actuation of steering robots.  

 

 

 

Figure 4 Optical velocity sensor [40] 
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Figure 5 Inertial measurement unit [41] 

 

 

 

Figure 6 Steering robot [42] 
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CHAPTER 3 

 

SCOPE OF THE THESIS 
 

The study is focused on the identification of the handling and cornering 

dynamics of an automobile. The complicated mathematical model of an 

automobile will be calculated using experimental data of driving tests.  

 

The need for an identified mathematical model is stated as follows. 

 

3.1 Analysis of the handling dynamics  

 

Straight road stability and performance of the vehicles were analyzed and 

improved in the previous years. Firstly braking scenarios were studied and 

researchers focused on the design of control systems to improve the stability 

and performance of the vehicles during braking. Anti blockage system (ABS) 

was the control system designed for this purpose. After the performance of 

such systems had reached a certain level, researchers began to deal with the 

case of accelerating on a straight road. Traction control systems (TCS) were 

designed to improve the vehicle performance  

 

Next, researchers have been interested in cornering performance of vehicles. 

Control systems such as vehicle dynamics control (VDC), electronic stability 

control (ESP) have been designed to improve the cornering and handling 

stability and performances. The vehicle has the most complex dynamics when 
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both steering and driving/braking inputs are applied. The analysis of such a 

motion requires complicated mathematical models, simulations and some road 

tests. Complex control systems for this dynamics can be designed and 

implemented using mathematical models describing the coupled dynamics of 

the vehicle. In the design stage of the vehicle mathematical models and 

computer simulations are used. However, all the parameters cannot be known 

in many cases. Therefore, identification of the mathematical models after 

manufacturing might be required and useful for analysis and design stages. 

This will enable to get higher performance and reach the available potential of 

the vehicle. 

 

3.2 Replacement of impossible and/or dangerous road tests with 

simulations 

 

The performance of a vehicle can be tested on special test areas. Some special 

inputs are applied to the vehicle by test pilots. The limits of the vehicle might 

be observed during these tests. However, such experiments might be dangerous 

for the pilot in the test vehicle.  

 

Even in standard tests, the pilot cannot apply the same inputs on the same road 

for each trail throughout the experiment. This might affect the results and 

performance of the experiments. For example, testing the performance of a 

new part or modifications may not be achieved in the desired manner. 

Comparisons may not be healthy in such cases. Mathematical models of the 

vehicle can be used in the simulations of the road tests that are dangerous or 

difficult to repeat for each time.  

 

In addition to this, test areas for all kinds of driving experiments are not 

available in our country. Vehicles have to be sent abroad for these tests to be 

carried out or they might be altogether ignored in some cases. Therefore, it 

becomes a necessity to carry these tests in computer simulations to minimize 
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the numbers of actual road tests. The mathematical model for these simulations 

can be identified using available and relatively simple road experiments but 

these models should reflect the limiting behavior and characteristics of the 

vehicle. 

 

3.3 Design and modification of systems 

 

Road conditions and constraints in Turkey are quite different from those of 

other countries. Vehicles designed for European conditions are manufactured 

and sold for use in our country. In such cases, some systems need to be 

modified. In particular, suspension systems require some modifications to suit 

the roads and improve the ride comfort of the passengers. It should be 

mentioned that the suspension system also has some affects on the tractive and 

handling performances. Modifications in suspension parameters to improve the 

ride comfort may disturb the handling performance. Therefore, vehicle 

parameters should be optimized considering both ride and handling dynamics. 

This brings a need to use a mathematical model reflecting the effects of 

suspension parameters on ride and handling responses.  

 

Considering these needs and applications, it is desired to identify and calculate 

mathematical model(s) of a designed and manufactured vehicle 

 

- to be used in handling dynamics and cornering performance analysis, 

- to be able to simulate road tests realistically, 

- to be used in suspension optimization. 

 

It is also desired to perform qualitative and quantitative design of the 

experiments considering the identifiability analysis and optimal input design. 

 

The procedure is summarized in the following figure [6]. 
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CHAPTER 4 
 

IDENTIFICATION OF 2 DEGREES OF FREEDOM 

HANDLING MODELS  
 

The presentation of this chapter is organized in two parts. Firstly, structural 

global identifiability of a mathematical model, the classical linear bicycle 

model, with physical parameters is analyzed. In particular, identifiability of the 

physical parameter sets using individual sensors and different sets of sensors is 

examined in detail. In the second part, experiments carried on a vehicle 

equipped with a sensor set and data acquisition system and the use of measured 

data within the identification algorithm are described. Physical parameters of 

the bicycle model structure are estimated using prediction error estimation 

method. Genetic algorithms are used in the optimization phase of the 

identification algorithm to overcome the difficulty in the selection of initial 

values for parameter estimates. Validation analysis of the identified model is 

also presented.  

 

A linear model of a vehicle has certain limitations, such as low lateral 

accelerations, say below 0.3g’s. However, it still gives valuable information 

about the basic handling behavior of a vehicle without extensive measurements 

on the vehicle, and once identified can be used in simulations without need to 

carry out further tests on the road. To be able to simulate the motion of the 

vehicle at higher lateral accelerations, however, a somewhat more complicated 

nonlinear model will be necessary.  

 



 34

Linear bicycle model represents the motion of the vehicle under the following 

conditions; constant forward speed, low lateral acceleration, say below 0.3g’s, 

and rigid suspensions [32]. These conditions result in the generation of linear 

tire cornering forces with the following relations. 

 

rrcr

ffcf

CF
CF

α=
α=

 (1) 

 

Figure 8 shows the schematic representation of the bicycle model. A set of 

moving axes is attached to the center of gravity of the vehicle. The plane 

motions of the vehicle are represented in terms of the forward, side slip, and 

yaw velocities.  

 

 

Figure 8 Schematic representation of bicycle model 

 

By applying the Newton’s laws of motion, continuous-time state equations for 

the bicycle model are derived and given below.  

 

δ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

−
−+

=⎥
⎦

⎤
⎢
⎣

⎡

J
Ca
m
C

r
v

UJ
CbCa

UJ
CbCa

U
Um

CbCa
Um
CC

r
v

f

f

r
2

f
2

rf

rfrf

 (2) 

 



 35

4.1 Output equations 

 

In order to complete state-space model of the vehicle, output equations should 

be given. Three sensors are assumed to be placed on the vehicle to represent 

the output of the system; an accelerometer to measure the lateral acceleration, a 

gyroscope to measure the yaw rate, and a velocity sensor to measure the side 

slip velocity. Locations of the sensors on the vehicle determine the format of 

the output equations. It is assumed that the position of the vehicle center of 

gravity is unknown. Therefore the accelerometer for lateral acceleration is 

assumed to be placed at some point P on the body fixed x-axis. Its position 

with respect to the front axle is given by parameter d in figure 1. The output 

equation for the accelerometer is given below. 
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In this equation, the coefficients of the state vector and the steering input are 

given by : 
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The gyroscope can be placed anywhere on the vehicle under the constraint that 

its measurement axis is perpendicular to the body x-y plane. Output equation 

for the gyroscope can be written as follows: 
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Velocity sensor can be placed at the rear end of the vehicle that is placed a 

distance c away from the rear axle, at point Q, as illustrated in figure 1. Output 

equation is given as below: 
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State-space model of the vehicle is completed by the output equations of the 

corresponding sensors or sensor sets. Unknown parameters of the model to be 

estimated are {a, J, Cf, Cr}. Other parameters {m, U, d, c} are either easy to 

measure or known. Once the parameter set to be identified is selected, the 

answers must be found to the questions: 

 

-Which sensors should be used in the experiments to reach this set correctly?  

 

-Is the available set of sensors sufficient to estimate the selected parameters 

uniquely?  
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Answers to these questions require a detailed identifiability analysis of the 

model structure and they constitute the frame of the qualitative experiment 

design for identification.  

 

4.2 Structural identifiability analysis 

 

There are various techniques to analyse the identifiability of the model 

structures [10, 11, 43, 44]. For linear model structures (i.e. linear in input) there 

are two main techniques to check the structural identifiability. The first one is 

the transfer function method and the second one is based on the similarity 

transformation approach [10]. In this study the former approach is employed. 

However, the latter should also give same results due to the linearity of the 

model. The basic definitions for structural identifiability are provided below 

[43]. 

 

Definition 1: The parameter θi is structurally globally identifiable for the input 

class U  if, and only if, for almost any θ ∈ DM one has 

 

θ* ∈ DM 

y*(θ*, t) ≡ y(θ, t), ∀t ∈ IR+ , ∀u ∈ U 

 

where u is the input to the model and y is the output of the model. 

 

Definition 2: The model M(θ) is structurally globally identifiable if, and only 

if, all its parameters θi are structurally globally identifiable. 

 Since the model is linear, definitions above can be regarded as follows. 

Model structure G(s,θ) is globally identifiable at θ* if  

 

G(s,θ) = G(s,θ*), θ ∈  DM  ⇒  θ = θ* (10) 

 

where G(s) is the transfer function between the input and the output.  

⇒  θi
* = θi 
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Identifiability analysis is first carried for each individual sensor. Parameters 

that are identifiable by the use of each sensor are determined. G1(s), G2(s) and 

G3(s) are the transfer functions of the system between the steering input and 

lateral acceleration at point P, yaw rate, and side slip velocity at point Q, 

respectively. All relevant nonlinear equation sets in identifiability analysis are 

analysed by linearising them about point θ*. Jacobian matrix of the equation set 

with respect to θ is formed. Uniqueness of the solution is concluded by the 

determinant of the Jacobian. A detailed analysis is given in following sections. 

Also, each nonlinear equation system is solved by MatLab and/or Maple 

symbolic solvers. According to the uniqueness of solutions, global 

identifiabilty of the structures are concluded.  

 

4.2.1 Accelerometer at point P 

 

For the accelerometer, the analysis of structural identifiability starts as given 

below using the definitions: 
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Coefficients ci, i=1,..,5 are nonlinear functions of the physical variables.  
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Equation (12) gives 5 nonlinear algebraic equations in terms of the physical 

parameters of the system. These nonlinear equations are generated as follows. 
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Equations (18) can be written in terms of the physical parameters.  
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If there exists a unique solution for the parameter set such that θ = θ*, then 

model structure in Equation (12) is structurally globally identifiable. In fact, 

there are 5 equations and 4 unknowns considering the equation system above. 

It means one additional parameter can be included in the parameter set θ. Let’s 

assume that the forward velocity of the vehicle, U, is unknown. Determinant of 



 40

the Jacobian of the system formed by Equations (19) to (23) is nonzero. 

Therefore a unique solution should be expected for the system. These equations 

are solved and a unique solution in the following form resulting in an 

identifiable model structure is obtained. 

 
*aa = , *JJ = , *

ff CC = , *
rr CC = , *UU =  

 

Similarly, instead of forward velocity, parameter d that specifies the location of 

the accelerometer can be set as an unknown parameter. Parameter set to be 

identified becomes { }d,C,C,J,a rf=θ . Nonzero determinant of the Jacobian 

indicates the existence of a unique solution and the nonlinear set of equations 

gives a unique solution in the following form resulting in a globally identifiable 

model structure. 

 
*aa = , *JJ = , *

ff CC = , *
rr CC = ,  *dd =  

 

4.2.2 A Gyro  

 

Identifiability analysis for a single gyro employs the following equations. 

 
*

M
*

22 D),,s(G),s(G θ=θ⇒∈θθ=θ  (24) 

 

where { }rf C,C,J,a=θ . 
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Coefficients ci, i=4,..,7 are nonlinear functions of the physical variables. c4 and 

c5 are given in Equations (16) and (17), and c6 and c7 are given below. 
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Equation (25) gives 4 nonlinear algebraic equations in terms of the physical 

parameters of the system. These nonlinear equations are generated as follows. 
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In terms of the physical parameters, Equations (28) can be written in the form 

of nonlinear algebraic equations as follows.  
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There are 4 equations and 4 unknowns in the expressions. Determinant of the 

Jacobian of the system formed by related equations is nonzero. Therefore a 

unique solution should be expected for the system. These equations are solved 

and they give unique solution in such a form that θ = θ* resulting in identifiable 

model structure. Therefore the model structure in Equation (25) is globally 

identifiable. Similar to the single accelerometer case, theoretically a single gyro 

may be enough to reach a unique set of the physical parameter set.  
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4.2.3 Velocity sensor at point Q 

 

Identifiability analysis for a single velocity sensor results in the following 

equations. 
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where { }rf C,C,J,a=θ . 
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Coefficients ci, i=4, 5, 8, 9 are nonlinear functions of the physical variables. c4 

and c5 are given by Equations (16) and (17), and the expressions for c8 and c9 

are given below. 
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Equation (32) gives 4 nonlinear algebraic equations in terms of the physical 

parameters of the system. These nonlinear equations are generated as follows. 

 

ck – ck
* = 0, k=4,5,8,9  (35) 

 

Equation set is modified in such a way that numerators of the nonlinear 

equations above form the new nonlinear algebraic equation system.  Each 

denominator of the original system contains parameter J, resulting in a 

condition that J should not be equal to zero. Nonlinear equations are solved by 
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Maple and there exists 4 solutions for the system. Each solution has J = 0 term 

and none of them gives θ = θ*. J = 0 makes the determinant of the Jacobian of 

the new equation system zero. Therefore this model structure consisting of the 

given output equation is not globally identifiable with the parameter set θ. 

 

Parameter set is reduced to have 3 physical parameters. All alternatives with 3 

equations and 3 unknowns are analysed and no unique solution of nonlinear 

equation set is reached. It is of interest to note that at most two parameters can 

be identifiable. Thus, in order to have globally identifiable parameters using a 

single velocity sensor at point Q, following combinations are possible.  

 

{Cr, a} are assumed to be known (in addition to m, U, and c): Then {Cf, J} are 

identifiable. 

 

{Cf, a} are assumed to be known (in addition to m, U, and c): Then{Cr, J} are 

identifiable. 

 

{a, J} are assumed to be known (in addition to m, U, and c): Then {Cf, Cr} are 

identifiable. 

 

{Cf, Cr} are assumed to be known (in addition to m, U, and c): Then {a, J} are 

identifiable. 

 

4.2.4 Accelerometer at point P and a gyro  

 

It is seen that the use of a single accelerometer or a single gyro is sufficient to 

have an identifiable model structure when the mass and the forward speed of 

the vehicle are known, and d is measured. If both an accelerometer and a gyro 

are used together in identification experiments, there exist 7 nonlinear 

algebraic equations that come from the transfer functions in the identifiability 

analysis. In this case, one may question if it is possible to estimate some other 
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parameters, in addition to the 4 physical parameters previously selected. In 

order to answer this question and to discover the potential of such a sensor set, 

it is assumed that the mass of the vehicle, forward speed, and the distance of 

the point P to the front axle are also unknown. Using an accelerometer and a 

gyro forms the most probable sensor set that can be used in the practical 

applications and experiments due to the in market sensor sets combining 

accelerometers and gyros.  

 

In such a case, equations (19) to (23), (29), and (30) form the set of nonlinear 

algebraic equations that are used for the identifiability analysis of the modified 

parameter set: 

 

θ = {m, a, J, Cf, Cr, U, d} 

 

To analyse the set of equations they are linearised about θ*.  
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where JM is the Jacobian matrix and jθ is the jth element of θ.  

 

The linearized system can be written as 

 
*T

M cJ =θ   

 

where T*
7

*
1

* }c,,c{c = . 



 45

For the given θ, it can be shown that determinant of the Jacobian matrix, JM, is 

zero. This may result in inconsistency or infinitely many solutions for the 

linearized system. It is thus not suprising to see that the nonlinear symbolic 

solver in MatLab™/Maple™ gives infinitely many solutions for the 7 

equations-7 parameters system above. 

 

Considering the linearized system a 6x6 (6 equations, 6 parameters) subsystem 

is searched within the equation system. All of the 6x6 submatrices are formed 

and determinants of each of 49 submatrices are summarized in the following 

matrix. 
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where ijd  represents the determinant of the submatrix formed by removing the 

ith row and jth column of J. It is indicated below whether the determinant of 

each 6x6 subsystem is zero (Z) or nonzero (NZ).  
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For example if the first row (first equation) is rejected and the first parameter, 

mass, is assumed to be known; the determinant of the related submatrix is 

nonzero, in equation (38). Thus there exists a possibility of a unique solution 
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for the 6x6 system. This nonlinear system has a unique solution when the mass 

is known and m = m*.  

 

*aa = , *
*

m
mJJ = , *

*
ff m

mCC = , *
*

rr m
mCC = , *UU = , *dd =  

 

It is concluded that when mass is known and m = m*, then the rest of the 

parameters are identifiable. The model structure is structurally identifiable for 

all θ*. Therefore it is globaly identifiable.  

 

Sdet provides some interesting results. For example, if the third element in the 

parameter set is known, and any one of the equations is eliminated; then the 

model structure is globally identifiable. The same conclusion is reached if 

either Cf or Cr is known. If only U or d is known, however, then the remaining 

parameter set is not identifiable.  

 

4.2.5 Velocity sensor at Q and a gyro  

 

A combination of a velocity sensor at point Q and a gyro is now considered. 

Transfer functions related to these sensors present six nonlinear algebraic 

equations, equations (22), (23), (29), (30), c8 = c8
* and c9 = c9

*. Therefore the 

parameter set is enlarged to include 6 parameters,  

 

θ = {m, a, J, Cf, Cr, U}. 

 

A similar analysis as in the previous part shows that if the mass of the vehicle 

is known, the remaining parameters can be determined uniquely and the model 

structure is globally identifiable.  
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4.3 Steering input 

Steering angle of the front wheels is the only input to the bicycle model 

structure. It has a major impact on the quality of the data to be collected. The 

input should be rich enough to excite all the necessary modes of the system 

[45-47]. While considering the richness of the input, output and input 

amplitudes should be limited so as to assure the validity of the proposed linear 

model.  

During the experiments, an experienced test pilot applied the steering inputs 

with different shapes and amplitudes. No attempt has been made to optimize 

the applied steering inputs used in the experimental runs. However, the 

richness of the inputs are checked according to [6] and [48].  

It is known that the applied input is persistently exciting of order n, if the 

power spectrum is different from zero at, at least, n points in the interval            

-π < ω ≤ π. Assume that the model is given in transfer function form and the 

numerator and the denominator of the model structure have the same degree n; 

then the input should be persistently exciting of order 2n+1. This requires that 

the power spectrum should be nonzero at 2n+1 points in the interval -π < ω ≤ π 

[6, 18]. However, rich inputs are not necessarily optimum.  
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Richness of the applied input that is used in the identification algorithm, shown 

in Figure 9a, is checked using its power spectrum in Figure 9b. It is seen that 

the power spectrum satisfies the condition of persistent excitation.  

 

 

 

Figure 9.a Sample rich steering input 

Figure 9.b Power spectrum of the sample 
steering input 
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4.4 Experiments 

Test vehicle is instrumented with the following sensors:  

i) Inertial platform that contains three accelerometers and three 

gyroscopes, figure 3. Only one of the accelerometers and one of the gyroscopes 

are employed for the identification purposes. Remaining sensors are utilized to 

check test conditions. 

ii) Forward velocity sensor.  

iii) Steering wheel sensor to measure the input.  

 

 

               Figure 10 Inertial platform at point P on the experimental vehicle 

 

Steering wheel provides the input to the system and it should be measured. 

Forward velocity is kept constant during experiments and becomes a parameter 

of the model. Therefore, in addition to the accelerometer and the gyroscope, a 

steering wheel angle sensor and a forward velocity sensor are mounted on the 
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vehicle as shown in Figures 11 and 12. The data acquisition system is shown in 

Figure 13. 

 

 

Figure 11 Forward and lateral velocity sensors, at point Q, on the experimental vehicle 

 

 

Figure 12 Steering wheel system on the experimental vehicle 



 51

 

Figure 13 Data acquisition system 

 

Limitations of the road restrict the input shape to be applied during the tests. 

Tests require a certain straight region of the test circuit to collect data for 

identification. Length of the straight region determines the duration of the test. 

Data is collected with a sampling frequency of 100 Hz. This is far away from 

the expected bandwidth of the yaw and lateral dynamics of the vehicle that is 

less than 4 Hz. Experiment durations are between 30 to 50 seconds.  

During the experiments various constant forward velocities are set. As the 

selected constant forward velocity is increased, the amplitude of the steering 

input is reduced to stay within the conditions for which the linear bicycle 

model is valid.  

 

Designed steering inputs have not been used in the experiments. Because there 

is not an actuation system available that tracks the designed inputs via 

computer. It has been aimed to generate persistent inputs to the vehicle by the 

test pilot and use of some indications on the steering wheel, fig. 12. Pilot has 

tried to apply periodic inputs to the system by using 4 or 5 indicated steering 
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angles (to track a combination of 2 or 3 sinusoids as much as possible!). The 

persistence of excitation can be checked by the power spectrum of the input 

signal [6], [48].  

A sample set of the input and the corresponding measurements are given in 

Figures 14 to 21.  

 

 

Figure 14 Steering input 

 

Figure 15 Lateral acceleration 

 

 

 

Figure 16 Yaw rate 

 

Figure 17 Lateral velocity at point Q 

 



 53

 

Figure 18 Roll rate 

 

Figure 19 Pitch rate 

 

 

 

Figure 20 Forward acceleration 

 

Figure 21 Forward velocity 

 

 

4.5 Identification algorithm 

Outputs of the accelerometer to measure the lateral acceleration and gyro 

placed at point P are processed in the identification algorithm to estimate 

parameters. Three cases, namely; use of a single accelerometer, a single gyro 

and a sensor set composed of an accelerometer and a gyro are considered 

separately in experimental measurements for the identification algorithm. 

Output equation for each case is given below.  
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Prediction error method is used to identify the models. This method requires 

the representation of a predictor model in the form [6]: 

 

( ) ( )1t
m Zf1ttŷ −=−  (39) 

 

with the input-output data { })N(y),N(u...,),2(y),2(u),1(y),1(uZN = . 

 

The predictor is parameterized in the following form: 

 

( ) ( )θ=θ − ,Zftŷ 1t
m  (40) 

Here, θ is the set of the parameters to be estimated. The estimation problem is 

transformed into a minimization problem of the following type : 
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The utilized predictor in this study is a discrete time state space model in 

directly parameterized innovations form.  

 

[ ]
)t(u)(D),t(x̂)(C)t(ŷ

)t(u)(D),t(x̂)(C)t(y)(K)t(u)(B)t(x̂)(A),1t(x̂
θ+θθ=θ

θ−θθ−θ+θ+θ=θ+
 (42) 

)t(u)(D),t(x̂)(C)t(y)t(e:errorprediction θ−θθ−=  (43) 

In the foregoing predictor, matrices A, B, C, and D are discrete time 

approximations of the matrices in continuous time bicycle model equations.  

K matrix is the Kalman gain which depends on the matrices A and C together 

with the covariances of process and measurement noise. Instead of using those 

parameters, K can be parameterized directly in terms of θ. Predictor then 

becomes a much simpler function of θ. In the use of a single accelerometer 

Kalman gain matrix is given as K = [k11 k21]T. Similarly, in identification using 

a single gyro, Kalman gain becomes K = [k11 k21]T. Finally, using 

accelerometer and gyro together, K takes the following form.  

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

kk
kk

K  

Parameter sets to be estimated in the predictors are given as: 

- using a single accelerometer: θ = {a, J, Cf, Cr, k11, k21}, 

- using a single gyro: θ = {a, J, Cf, Cr, k11, k21}, 

- using accelerometer and gyro together: θ = {a, J, Cf, Cr, k11, k12, k21, k22}. 

The cost function to be minimized is given in equation (3): 
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where e1(.) and e2(.) are the elements of prediction error vector.  

Determination of the initial values for the numerical optimization algorithms 

presents an important problem in such cases. In addition, estimation of the 

physical parameters increases the local minima and the optimization surface 

becomes more complex [8, 9]. Strong dependence of the estimate values on the 

initial values and the presence of local minima problem have necessitated the 

use of the genetic algorithm (GA) for optimization purposes. GA requires 

many trials for the selection of size and range of initial population, cross over 

fraction, type of mutation, etc., so as to converge to some solution. However, 

even when the identifiability of the parameter set is guaranteed and GA is 

utilized, local minima still generate problems in the optimization process 

dealing with noisy data. Constraints and limits should be specified for the 

values of the parameters to be identified to ease the solution of convergence 

problems. This brings the need for prior information on the parameter set. 

 

4.6 Estimated parameters 

 

Values of parameter estimates using accelerometer and gyro data together are 

given in Table 1.  

 
Table 1 Estimated parameters using both accelerometer and gyro data 

Cf  [N/rad] Cr [N/rad] a [m] J [kg.m2] k11 [s] k12 [m] 
k21 

[rad.s/m] 
k22 

-39170  -24380 0.82  1900 -0.28 -0.44 -0.06 1.05

 



 57

Data used in the identification algorithm is compared with the output of the 

identified predictor and continuous time bicycle model in Figures 22 and 23.  

 

Figure 22 Comparison of predictor response, continuous model response and 

accelerometer output - both accelerometer and gyro 

 
 

 

Figure 23 Comparison of predictor response, continuous model response and gyroscope 

output - both accelerometer and gyro 
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Data in the first 10 seconds is used in identification algorithm. Remaining data 

in the figures are used in the verification of the identified predictor. It is seen 

that the predictor response tracks the actual measurements very well 

throughout the identification duration. 

 

Table 2 lists the estimated parameters using a single accelerometer. Some 

differences between the parameter estimates in Tables 1 and 2 are observed. It 

is noted that the cost functions obtained in 2 cases are also different. Cost 

function in case of using accelerometer and gyro together is about 9.6x10-4 

whereas it is approximately 1x10-3 for the use of single accelerometer case. 

This situation is attributed to the presence of local minima which is more 

difficult to avoid with one sensor even though GA is used. Using accelerometer 

and gyro measurements together in identification algorithm improves the 

accuracy of the estimates.  

 

Table 2 Estimated parameters using a single accelerometer 

Cf Cr a J k11 k21 

-37600 N/rad -35970N/rad 0.98 m 1500 kg m2 -0.30 0.17 

 

Data used in the identification algorithm is compared with the output of the 

identified predictor and continuous time bicycle model in Figure 24. 
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Figure 24 Comparison of predictor response, continuous model response and 

accelerometer output - single accelerometer 

Finally estimated parameters of the vehicle model using a single gyro are given 

in Table 3. 

 

Table 3 Estimated parameters using a single gyro 

Cf Cr a J k11 k21 

-56350 N/rad -48480 N/rad 0.80 m 1320 kg m2 1.03 1.72 

 

 

Genetic algorithm allows the use of a population as initial guesses for the 

parameter estimates. It has the ability to evaluate many points in the parameter 

space. However, it carries a drawback in the convergence side of the 

optimization problem. The difference in values of estimated parameters in 

Tables 1-3 is mainly due to this property of genetic algorithm. The accuracy of 

the estimated parameters for each sensor set can be improved by combining 

genetic algorithm based optimization with gradient based techniques. Starting 

to search with genetic algorithm and then switching to a gradient based search 
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algorithm is accessible to overcome both the initial value problem and 

subsequent local minima problems and the convergence problem. The 

characteristic of input may also outcome the difference in the values of 

parameters in Tables 1-3. The input is not designed to be optimal for estimation 

of parameters of concern.  

 

Data used in the identification algorithm is compared with the output of the 

identified predictor and continuous time bicycle model in Figure 25. 

 

Figure 25 Comparison of predictor response, continuous model response and gyroscope 

output- single gyro 

 

4.7 Model validation 

Identified model is verified comparing its response with a measurement that 

has not been used within the identification algorithm. The response of the 

continuous time linear bicycle model with estimated parameters is compared 

with the measured data and predictor response in Figures 25 and 26 for the case 

of using accelerometer and gyro together. Validation data set belongs to a test 
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with constant forward speed of 7 m/s which is different from the identification 

set which has been obtained at a constant forward speed of 5.6 m/s. 

 

Figure 25 Comparison of predictor response, continuous time model response, and 

accelerometer output - both accelerometer and gyro 

 

 

Figure 26 Comparison of predictor response, continuous time model response, and gyro 

output - both accelerometer and gyro 
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Identified predictor and corresponding continuous time model responses in 

case of using a single accelerometer are also compared with the validation data 

set in Figure 27.  

 

Figure 27 Comparison of predictor response, continuous time model response, and 

accelerometer output –single accelerometer 

 

Identified predictor and corresponding continuous time model responses in 

case of using a single gyroscope are also compared with the validation data set 

in Figure 28.  
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Figure 28 Comparison of predictor response, continuous time model response, and 

gyroscope output – single gyro 

 

4.8 Optimal Input Desıgn 

 

Qualitative part of the experiment design deals with the inputs and outputs 

regarding the identifiability property. On the other hand design of the inputs is 

the subject of quantitative design. Shape and duration of the inputs, sampling 

time, limitations and constraints on the amplitudes are all determined in this 

stage. In order to design an optimal input generally nominal values for the 

parameters –apriori information about the system- are utilized.  

 

Steering input to the wheels is the only input to the model. It has a major 

impact on the quality of the data. The input should be rich enough to excite all 

necessary modes of the system [45], [69]. While considering the richness of the 

input, some constraints should be kept in mind also. Output and input 

amplitudes should be limited so as to assure the validity of the proposed model.  
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In literature there are some alternative methods to optimize inputs for 

identification [6], [45], [48], [50]. Information content of the data is expressed 

in some kind of matrices such as Fisher’s information matrix. Errors in 

parameter estimates are related with these matrices. The cost function to be 

minimized is expressed in terms of the elements of the information matrix.  

 

In this report the methodology given is based on the study of Morelli that is 

achieved at NASA for the identification of high performance aircrafts [46, 49]. 

In that study the input is designed so that sensitivities of the model outputs to 

parameters are high and correlations among the sensitivities are low. Constant 

experiment duration is taken. Limitations on amplitudes are imposed. Square 

wave inputs are generated. As an example, in this part sum of sinusoids type of 

input is optimized. The technique is explained below. 

 

The system model is given as 

 

N,..,1i),i(v)i(y)i(z
)u,,x(hy
)u,,x(fx

=+=
θ=
θ=

 (45) 

 

0)}i(v{E =  

ijv
T R})j(v)i(v{E δ=  assumed Gaussian.  (46) 

 

Constraints on input and output amplitudes are given as 

 

okk

ijj

n,,1kt)t(y

n,,1jt)t(u

…

…

=∀ς≤

=∀μ≤
  (47) 

 

Matrix of output sensitivities to the parameters is S(i) 
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θ=θ
θ∂

∂
=

ˆ

)i(y)i(S  (48) 

 

Information matrix M defined as 

∑ −= )i(SR)i(SM 1
v

T  (49) 

expresses the information content of an experiment. Dispersion matrix, D is 

equal to the inverse of information matrix M. Cramer-Rao lower bounds for the 

parameter standard errors are computed as the square root of the diagonal 

elements of D. They are the minimum achievable standard errors of the 

parameters using an asymptotically unbiased and efficient estimator. Cost 

function to be minimized for constant experiment duration is the sum of the 

squares of the Cramer-Rao bounds for parameter standard errors.  

 

Output sensitivity for the jth parameter appears as the jth column of the 

sensitivity matrix. They are computed as 
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In order to find optimum inputs, nominal values for the parameters should be 

used to solve the foregoing equations with the state equations. To achieve this, 
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estimated values of the parameters from experiments without optimal inputs 

may be used within the model.  

 

Following additional states, outputs and matrices are defined to solve the 

system. 
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Augmented state space matrices become as follows 
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The new state vector and output vector are as follows 

 

[ ]T10987654321a xxxxxxxxxxx =  (70) 

 

[ ]T10987654321a yyyyyyyyyyy =  (71) 

 

State equations become 

 

uDxCy
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 (72) 

 

with 

 

xa(0)=0. 

 

Sensitivity matrix is given as 
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Optimization is carried with genetic algorithm implemented in MatLab. Below 

is the form of the proposed steering wheel input.  

 

)tsin(a)tsin(a)tsin(a)t( 332211SW ω+ω+ω=δ  (74) 

 

Optimization algorithm will give the optimum amplitude and frequency values 

of the sinusoids. Amplitude constraints are imposed on them not to violate the 

linear model assumption. Frequencies are limited within such a region that the 

interested modes are included. In literature, it is said that full amplitude square 

type inputs will give better results [46, 49].  
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Figures 29 to 32 give the examples for the test inputs applied to the system 

during the experiments. 

 

 

Figure 29 Sample steering input 

 

Figure 30 Sample steering input 

 
 
 
 

 

Figure 31 Sample steering input 

 

Figure 32 sample steering input 

 

The input design technique described above can also be utilized to design 

optimal inputs for the experiments of 3 dof model structure identification. 

 

A sample optimal input is given in Figure 33.  
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Figure 33 An optimal steering input 
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CHAPTER 5 
 

IDENTIFICATION OF 3 DOF HANDLING MODELS  
 

In addition to lateral dynamics and yaw dynamics, rolling motion of the vehicle 

has sensible affect on the handling characteristics. In addition, the limited 

range of the linear bicycle model makes researchers use more complicated 

models. The coupled dynamics of lateral, yaw and the roll motions can thus be 

modeled using a 3 dof linear and nonlinear model structures.  

 

Various types of mathematical models are utilized for the purpose of the thesis. 

5 dof and 4 dof nonlinear models are used to design and simulate the 

experiments. These models are employed to present simulated acquired data 

prior to the tests performed on the real vehicle.  

 

5 dof simulation model is composed of longitudinal, lateral, yaw, roll, and the 

pitch dynamics. Eliminating the pitch motion gives the 4 dof nonlinear 

simulation model. Since that, handling dynamics is of the primary concern; 

forward acceleration/deceleration may be disregarded. Constant forward 

velocity assumption can be valid. Elimination of longitudinal dynamics by 

constant forward velocity assumption reveals 3 dof model structures. Grey-box 

model structures in this chapter are based on these 3 dof model structures. Both 

linear and nonlinear models are constructed.  

 

Coupled longitudinal and handling dynamics has a really complex nature due 

to the characteristics of tires [51]. Force generation nature of pneumatic tires 
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depends mainly on the generated slip angle and longitudinal slip values. In case 

of pure longitudinal motion or pure cornering motion with constant speed, one 

can eliminate the affect of slip angle on the longitudinal dynamics or 

longitudinal slip on the handling dynamics [51]. In order to be able to use pure 

side slip conditions to model the force generation of tires, forward velocity 

during cornering is assumed to be constant.  

 

In both 4 dof and 5 dof simulation models, Magic Formula tire model is used to 

model the cornering force generation characteristics of pneumatic tires [51, 52, 

53]. The original Magic Formula tire model outputs steady-state lateral tire 

force to the normal force and side slip angle inputs. However, due to the 

characteristics of the maneuvers in experiments, transient forces are needed. 

Therefore, the modified form of the Magic Formula tire model is used to reflect 

the generated transient forces in simulation models [51, 54].  

 

5.1 Nonlinear Simulation Models 

 

Lagrange equations are used to derive the equations of motion of the system 

[51, 55]. Figures 34.a, 34.b, and 34.c show the simplified physical model and 

schematic representation of the vehicle below.  

 

Initial generalized coordinates are; X, Y, Ψ, φ, θ. However, to get a better 

format in wiriting the output equations based on employed sensor set, 

generalized coordinates shall be modified. Modified generalized coordinates 

are; u, v, r, φ, θ. To write the Lagrange equations in terms of modified 

coordinates, Equations 48-52 are utilized. X and Y are the coordinates of point 

A with respect to inertial reference frame, Ψ is the yaw angle, and θ is the pitch 

angle. 
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(34.a) 

 

 

 
(34.b) 

 

kφ 

cφ 
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(34.c) 

Figure 34 Axes and velocities on physical model 
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Equations of motion of the system are derived using the equations below.  
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Generalized forces, Qi, are composed of only tire forces and aerodynamic 

forces.  

 

∑ ∂
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j i
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r
FQ , :qi ith generalized coordinate, :rj  position vector to jth force in 

inertial reference frame. 

 

)FF()sin()FF()cos()FF(Q L2xR2xL1yR1yL1xR1xu ++δ+−δ+=  (88) 

 

)FF()cos()FF()sin()FF(Q L2yR2yL1yR1yL1xR1xv ++δ++δ+=  (89) 
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)FF(b)cos()FF(a)sin()FF(aQ L2yR2yL1yR1yL1xR1xr +−δ++δ+=  (90) 

 

0Q =θ  (91)  

 

aeaL2yR2y

aL1yR1y

aL2xR2x

F))cos()sin(b)sin()sin(h)(FF(
))sin()sin(h)cos()sin(a)(FF(

))cos(h)sin(b)(FF(Q

+θφ−θφ+

+θφ+θφ+

+θ+θ+=φ

 (92) 

 

Note that, Qθ above is written for Fx1R,L=0. 

Fae: aerodynamic force resisting to motion in -xG axis = 2
fae uSC

2
1F ρ=  

where  

 

Cf: Aerodynamic coefficient,  

ρ: Air density 

S: Surface area of vehicle normal to air flow in -xG axis. 

 

It is assumed that the complete mass of the vehicle rolls about the roll axis 

given in Figure 34. This assumption reduces the number of parameters 

necessary for both simulation and identification.   

 

T: Kinetic energy of the system 

Ue: Potential energy of the system 

F: Rayleigh’s dissipation function 
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ωω−ω

+ω+ω+++=
 (93) 
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Due to the symmetry of the vehicle, product of inertia terms, Ixy and Iyz, are 

assumed to be zero. 

 

GGxV ,
GGyV ,

GGzV : components of absolute velocity of mass center G in body 

reference frame (G, xG, yG, zG).  

 

Gxω , 
Gyω , 

Gzω : components of absolute angular velocity of vehicle in body 

reference frame (G, xG, yG, zG).  

 

))cos()(sin(h)sin()sin(v)cos(uV
GGx θφ+φ−φθ+θ=  (94) 

 

φθ+φθ−φ= )cos(h)cos()sin(hr)cos(vV rGyG
 (95) 

 

)sin()cos(v)sin(uV
GGz φθ−θ=  (96) 

 

θr: inclination angle of roll axis ≅ (h2 - h1)/L 

 

φ+θ−≅θφ+φθ−=ω r)cos(r)cos()sin( rxG
 (97) 

 

θ+φ≅θφ+φ=ω r)cos(r)sin(
Gy  (98) 

 

θφ−θφ−≅θφ−θφ−φθ=ω rrz r)sin()sin(r)cos()cos(
G

 (99) 

 

Rayleigh’s dissipation function is given below. 

 

( ) ( ) 2
2

2
1

22
21 cbca

2
1cc

2
1F θ++φ+= θθφφ  (100) 

 

cφ1,2: Resulting roll damping coefficients about roll axis 
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cθ1,2: Front and rear suspensions resulting linear damping coefficients 

 

Potential energy function is given below. 

 

( ) ( ) 22
2

2
1

22
21e hgm

2
1kbka

2
1kk

2
1U φ−θ++φ+= θθφφ  (101) 

 

kφ1,2: Resulting roll stiffness coefficients about roll axis 

kθ1,2: Front and rear suspensions resulting linear stiffness coefficients 

 

5.1.1 Magic Formula Tire Model 

 

In nonlinear simulation models, Magic Formula tire model with transient slip 

angles are utilized [53]. Models are derived considering 4 wheels unlike the 

bicycle model. Below are the equations for slip angles and tire’s lateral force. 

 

ssttu
α=α+α

σ   (102) 

 

where 

tα : transient slip angle 

ssα : steady-state value of the slip angle 

 

U
rav

11ss
+

−φε+δ=α  (103) 

U
rbv

22ss
−

−φε=α  (104) 

 

where 

2,1ssα : steady-state slip angles for front and rear wheels. They are used in the 

tire model where necessary. 
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)tan( ty α=α  (105) 

 

0z

0zz
z F

FFdf −
=  (106) 

 

1cyy pC =  (107) 

 

zyy FD μ=  (108) 

 

z2Dy1Dyy dfpp +=μ  (109) 

 

))sgn(p1)(dfpp(E y3Eyz2Ey1Eyy α−+=  (110) 
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⎞
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⎝

⎛
=  (111) 

 

Fy is the generated lateral force of tire. 

 

( )( )( )[ ]yyyyyyyyyy BarctanBEBarctanCsinDF α−α−α=  (112) 

 

yyy DCB is the cornering stiffness term; 

 

0y

y
yyy

y

F
DCB

=α
α∂
∂

=  (113) 
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5.1.2 4-Dof and 5-Dof Simulation Models in MatLab/Simulink 

 

4 and 5 dof simulation models are utilized for analyzing the vehicle dynamics, 

couplings and nonlinearities present in vehicle dynamics. Simulated 

experiments are achieved on these models. These models are constructed in 

MatLab/Simulink, fig. 35 and fig. 36.  

 

Nonlinear dynamics of the vehicle is presented in models by using Embedded 

MatLab Functions and m-file S-functions mainly. In fact, it is known that there 

exist some alternatives about construction of models in Simulink. It is desired 

to run the models in real-time. However, due to the usage of m-file S-functions 

it is not possible. It is desired to change the m-file S-functions with other 

alternatives such as C S-functions.  

 

Magic Formula tire model is utilized in these models as nonlinear tire models. 

Dynamic tire model is employed due to the concerned maneuvers for system 

identification. Pure slip condition is assumed. It means during maneuvers, tire 

generates cornering forces and negligible amount of traction/braking force. 

This simplifies the structure of the Magic Formula model, reduces the number 

of parameters necessary for simulations, and the interaction due to the 

longitudinal and lateral force generation can be neglected. However, for the 

future studies it is also desired to add the interaction of concern and generate a 

more general model.  

 

A simple driver model is also placed in the 4 and 5 dof models. It is desired to 

represent the constant velocity condition of experiments. In real experiments, it 

is not so easy to keep the forward velocity constant during maneuvers. 

Therefore there might be some unavoidable variations in the magnitude of 

velocity. This is simulated by use of a PID controller to keep the velocity 

constant as a driver.  
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5.2 3-Dof Simulation and Identification Model Structures 

 

In addition to the 4 dof and 5 dof nonlinear simulation models, 3 dof linear and 

nonlinear model structures are derived based on the similar Lagrange equations 

given above. These models are used for simulations and they also form basic 

structures in identification practices.  

 

5.2.1 3-Dof Linear Simulation and Identification Model Structures 

 

Using the Lagrange equations above, one can find the resulting linear model 

with states {v, r, φ, dφ/dt}T. It is constructed in MatLab/Simulink, fig. 37. 

Linearized slip angles and tire forces are used. 

 

 
Figure 37 3-dof linear model in Simulink 
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Parameter set of the model structure is given below. 

 

{ }212a1a212121xzzxlin ,,C,C,c,c,k,k,h,h,h,I,I,I,a εε=θ φφφφ  (114) 

 

Ca1,2: Front and rear axle linear cornering stiffness 

2,1ε : Front and rear axle roll-steer coefficient 

 

Parameters that are outside the set above are easy to measure. This can be used 

as the largest set to be estimated in identification algorithm. Details of the 

experiment design and identification practices for linear 3 dof model structures 

are not discussed in this thesis. They are left for future reports and papers.  

 

5.2.2 3-Dof Nonlinear Simulation and Identification Model Structures 

 

2 dof linear bicycle model has some limitations as discussed in the previous 

chapters. In literature it is also stated that estimation of physical parameters 

based on this model may result velocity dependent parameter estimates. In 

other words, values of estimated parameters may change with the forward 

velocity [56]. 

 

In addition, it is experienced that even in the experimental conditions of 2 dof 

model identification, the roll motion is apparent also. However, its affect is 

ignored by the use of 2 dof linear model structure.  

 

Considering the scope of the thesis and points above, nonlinear model 

structures including roll dynamics that is coupled with side slip and yaw 

dynamics are constructed. Nonlinear 3 dof model structures may be also 

employed to estimate the parameters of nonlinear tire models, and analyze their 

affect on handling response.  
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All purposes and needs that are discussed above are also shaped with the 

available identifiability analysis techniques and identification algorithms that 

are to be employed. The nonlinear model structure should carry details enough 

for the desired purposes and it should be as simple as possible to be processed 

by a structural identifiability algorithm. To meet the requirements, the model 

has 8 states with nonlinear dynamic tire models. States are as follows; 

 

x = {v, r, φ, φ , Fy1R, Fy1L, Fy2R, Fy2L}T. (115) 

 

Due to the large amount of equations that arise in the identifiability analysis, 

the nonlinear tire model is reduced into following form. 

 

Cornering stiffness term:  

yyy
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z
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z
0z1Kyyy Fp

Farctan2sinFpKF  (117) 

 

This makes the system give response to the load transfers in cornering. Load 

transfers change the lateral force produced by the tire. Therefore, nonlinear 

model with 4 wheels is constructed.  

 

Transient tire forces are employed by using the following state equations. 

 

α
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 (118) 
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The parameter set of this model structure is given below.  

 

{ }2Ky1Ky21212121xzzxnonlin p,p,,,c,c,k,k,h,h,h,I,I,I,a εε=θ φφφφ  (119) 

 

Parameters that are outside the set above are easy to measure. This is can be 

used as the largest set to be estimated in identification algorithm. However, it 

will be reduced according to the identifiability analysis method.  

 

5.3 Simulation Results of the Models 

 

Model structures are simulated in single lane change maneuvers. First one is a 

more severe maneuver with higher lateral acceleration. Second one is a 

relatively moderate maneuver. Following figures show the assumed 

measurements during the experiments. It is assumed that the vehicle is 

equipped with a steering wheel sensor to measure the input to the system, an 

accelerometer placed at point P to measure the lateral acceleration (see Figure 

28.a), an inertial platform to measure the angular velocity Gzω , angular 

velocity Gxω , roll angle φ, and a velocity sensor to measure the side slip 

velocity at point Q, (see Figure 34.a). 
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Figure 38 Steering input for maneuver 1 

 
 
 
 

 

Figure 39 Stering input for maneuver 2 
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Figure 40 Lateral acc. at P for maneuver 1 

 

 

 

 

 

Figure 41 Lateral acc. at P for maneuver 2 
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Figure 42 Angular vel. about zG axis for maneuver 1 

 

 

 

 

 

Figure 43 Angular ve. about zG axis for maneuver 2 
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Figure 44 Angular vel. about xG axis for maneuver 1 

 

 

 

 

 

Figure 45 Angular vel. about xG axis for maneuver 2 
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Figure 46 Roll angle for maneuver 1 

 

 

 

 

 

Figure 47 Roll angle for maneuver 2 
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Figure 48 Slip vel. at point Q for maneuver 1 

 

 

 

 

 

Figure 49 Slip vel. at point Q for maneuver 2 
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These plots are used to analyze nonlinearites and affects of pitch and forward 

dynamics on simulated measurements during experiments. 3 dof nonlinear 

model structure with the assumptions above, give compatible responses 

according to the 4 dof and 5 dof models.  

 

5.4 Structural Identifiability Analysis 

 

Structural identifiability analysis given in linear model identification part is a 

straight forward technique for model structures linear in input. However, 

identifiability analysis techniques for nonlinear (in input) model structures are 

not so clear. Implementation of each technique is case dependent, i.e. each case 

brings its own problems to be solved. Generally large numbers of nonlinear 

equations are reached as a result and even with today’s computation power it 

may not be possible to solve them and comment about the identifiability of the 

model structure. Therefore, concerned model structure is processed with 

alternative forms of tire force generation model to simplify the resultant 

equations.  

 

Selected tire model is generated using the cornering stiffness term of Magic 

Formula model. This stiffness term also depends on normal load. Therefore, 

cornering force is a function of slip angle and normal force. 

 

α
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=α=

0z2Ky

z
0z1Kyyyss Fp

F
arctan2sinFpKF  (120) 

 

yssyy FFF
u

=+
σ  (121) 

 

To process the model in identifiability analysis algorithm, Fyss is replaced by its 

second order Taylor Series approximation. It has such a mathematical form: 
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Fyss = - (A Fz + B) α (120) 

 

 

Figure 50 Tire model and its approximation for different normal loads on tire 

 

This approximate form is especially suitable for identifiability analysis with 

differential algebra techniques. Structural identifiability of nonlinear model 

structures can be analyzed by the following techniques [11, 43, 44, 56, 57]. 

 

1 - Linearization of the model structure and the use of transfer function and 

similarity transformation techniques. By linearizing the model, identifiability 

of some parameters may be lost. It is known that nonlinear model structures are 

generally more identifiable compared to linear model structures [57]. 

 

2 - Taylor Series expansion method. It is generated by using the Taylor series 

expansion of measurement equations. Since measurement vector is unique, all 

its derivatives are unique. The coefficients of the expansion term are used to 

check the identifiability. If the solutions for the parameter set are uncountable 

then the system is unidentifiable. It is locally identifiable if the solutions are 

countable and it is globally identifiable if there is a unique solution. This 
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technique gives sufficient condition of the identifiability analysis. In addition, 

the coefficients are very large to solve for the parameters [56, 60]. 

 

3 - Vajda’s approach based on the local state isomorphism. It is generally used 

to check the structural identifiability of control systems. 

 

4 - Differential algebraic methods. It is based on the elimination of state 

variables in measurement equations [11]. Finding characteristic set of ideal 

defined by the state-space model of the system is required. Ljung‘s approach 

tries to rearrange the model structure as a linear regression. Today, many 

alternative forms and techniques of differential algebraic type of analysis are 

generated to check structural identifiability. In this study, one of the differential 

algebraic techniques developed by Xia and Moog is employed for the 

identifiability analysis [58, 59, 60]. 

 

5.4.1 Outline of the Identifiability Analysis Method 

 

The nonlinear model structure is given as follows [58].  

 

0x),0(x
)u,,x(hy
)u,,x(fx

=θ
θ=
θ=

 (123) 

 

where qpmn and,y,u,x ℜ∈θℜ∈ℜ∈ℜ∈ . 

 

It is assumed that,  

 

rank p
x

)u,,x(h
=

∂
θ∂  
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This assumption presents that measurements are linearly independent. 

Therefore, observable representations could be assumed to be generated.  

 

The system is said to be algebraically identifiable if there exist a T > 0, a 

function  

 

Φ: Rq x R(k+1)m x R(k+1)p → Rq  such that 

 

det 0≠
θ∂
Φ∂  

 

and 

 

0)y,,y,y,u,,u,u,( )k()k( =θΦ ……   (124) 

 

hold on [0,T], for all )y,,y,y,u,,u,u,( )k()k( ……θ .  

 
)k()k( y,,y,yand,u,,u,u ……  are the derivatives of input and output. The input 

is continuous and k-times differentiable on [0, T].  

 

The proposed methodology checks for the algebraic identifiability, i.e. the 

parameters can be represented as functions of inputs, outputs and their 

successive derivatives. Xia and Moog prove that algebraic identifiability 

implies structural identifiability. It means if a system is algebraically 

identifiable, then it is structurally identifiable [58].  

 

Practical implementation of their method requires successive generation of 

time derivatives of measurement equations till there exist enough equations to 

eliminate state variables. This technique is mainly heuristic in nature. There 

exist more systematic elimination algorithms such as Rosenfeld-Groebner 
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algorithm to reach observable representation as characteristic set of the system 

equations. In such techniques, ranking of the variables is critical. The 

complexity of the coefficients of the characteristic set or computation time 

depends on the type of ranking. This is one of the most critical points in 

differential algebraic methods. The same results may be reached but the 

resultant equations may be more and more complex.  

 

5.4.2 Implementation of the Identifiability Analysis Method 

 

In order to reduce the difficulty of dealing with algebraic equations of very 

complex nature, the number of output equations is increased in this study. It is 

assumed that there are 9 sensors available to measure the following variables 

(see Figure 28): 

 

y1 : lateral acceleration at point P, 

y2 : yaw velocity, 

y3 : roll angle, 

y4 : roll velocity, 

y5 : lateral velocity at point Q, 

y6 : Fy1R, cornering force at front right tire, 

y7 : Fy1L, cornering force at front left tire, 

y8 : Fy2R, cornering force at rear right tire, 

y9 : Fy2L, cornering force at rear left tire. 

 

Remember that state variables are (see Figure 28);  

 

x1 : side slip velocity at point A, 

x2 : yaw velocity, 

x3 : roll angle, 

x4 : roll velocity, 

x5 : Fy1R, cornering force at front right tire, 
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x6 : Fy1L, cornering force at front left tire, 

x7 : Fy2R, cornering force at rear right tire, 

x8 : Fy2L, cornering force at rear left tire. 

 

The sensor set is possible by considering the available hardware components in 

previous chapters. It is also a feasible question to ask what if there is a limited 

sensor set. Reaching an observable representation by using the successive 

derivatives may not be possible due to the very large and complex amount of 

coefficients. Pages of terms for a single coefficient may cause an out of 

memory problem during the process. Similar computational problem is faced in 

the use of Groebner algorithm. Therefore, such a sensor set and simplified 

model structure are generated to have reduced number of output derivatives to 

eliminate the state variables. One example of the observable map is given 

below.  

 

4aP22PQP511 y)hL(yUy)DDL(yy: −−−−+−−Φ  (125) 

 

Other observable representations are derived from the other measurement 

equations. The general structure of the observable functions is given below. 

 

+β

+β++β++β++β+β+β+βΦ

fnijz

ijz
2

ijb5js24j23j12j11jj

yyy

yuyyyyyy:
 (126) 

 

jiβ ’s are coefficients of the observable functions and they are nonlinear 

functions of physical parameters.  

 

Let [ ]Tij11 ββ=Β …  is the vector of all coefficients obtained in the 

complete set of observable representations of 9 output equations. The number 

of coefficients is around 100 for the case in this analysis. 
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According to the implicit function theorem, if 

 

det 0≠
θ∂
Β∂  (127) 

 

one can locally solve B with respect to θ.  

 

The parameter set that is required to be estimated by the identification of 3 dof 

nonlinear model structure is given below. 

 

{ }212211axzxz ,,,B,A,B,A,h,k,c,h,I,I,I,a εεσ=θ φφ  (128) 

 

So as to reduce the number of parameters, some assumptions are utilized. For 

example, Ai and Bi are assumed to be same for the tires on the same axle, σ is 

same for all tires, roll axis is parallel to the road surface, etc. 

 

Implementation of the theory states that parameter set,θ, with 15 parameters is 

identifiable with the given sensor set. In fact, at the beginning, the parameter 

set, with 17 elements, contains roll damping and roll stiffness terms separate 

for front and rear axles, i.e., 

{ }2122112122axzxz ,,,B,A,B,A,h,k,k,c,c,h,I,I,I,a εεσ=θ φφφφ  (129) 

 

 where 

 

21 ccc φφφ +=  and 21 kkk φφφ += . 

 

By the idetifiability analysis, 

 

rank 15=
θ∂
Β∂ . (130) 
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It means 15 of 17 parameters are identifiable. When the state and output 

equations are analyzed, it is seen that roll stiffness and roll damping terms 

always exist in 21 cc φφ +  and 21 kk φφ +  forms. Rearranging the parameter set 

by using total roll stiffness and total roll damping of the vehicle 15 of 15 

parameters are identifiable. This may be improved by using complete normal 

load equations which are trimmed to simplify the state equations.  

 

In fact some other parameters that are not included in the parameter set, θ, can 

also be identifiable using the available coefficients. For example, forward 

velocity, U, which is constant during the experiments, is also identifiable with 

the given sensor set.  

 

5.5 Optimal Input Design  

 

As discussed in the previous parts, experiment design for system identification 

also requires design of optimal inputs to excite the relevant modes of the 

system [47, 49]. The aim of designed inputs is to maximize the information 

content of the acquired data. In order to achieve this, the similar procedure is 

employed that was experienced in the 2 dof model structure identification 

practice. It is based on the generation of Fisher Information Matrix. Inverse of 

this matrix is known as the dispersion matrix of whose diagonal elements 

contain the Cramer-Rao lower bounds for the parameter standard errors. 

Employed cost function to be minimized is the sum of the squares of the 

Cramer-Rao bounds for parameter standard errors.   

 

Fisher Information Matrix requires generating the sensitivities of outputs to 

parameter changes. System model is given below. 

 

N,..,1i),i(v)i(y)i(z
)u,,x(hy
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=+=
θ=
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 (131) 
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where “v” is the measurement noise.  

 

0)}i(v{E =  (132) 

ijv
T R})j(v)i(v{E δ=  assumed Gaussian. (133) 

 

Matrix of output sensitivities to parameters is 

 

θ=θ
θ∂

∂
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ˆ

)i(y)i(S  (134) 

 

Fisher Information Matrix is formed as below. 

 

∑ −= )i(SR)i(SM 1
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T . (135) 

 

In order to find sensitivities, additional states, state equations and outputs are 

defined.  
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In order to overcome the computational problems due to the large number of 

parameters, the parameter set is reduced once more. The final form that is used 
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in input optimization and identification is given below. Other parameters are 

easy to measure or estimated by some other means. 

 

{ }212211 ,,,B,A,B,A,h,k,c εεσ=θ φφ  (139) 

 

There are 10 parameters, 8 states, and 9 outputs of concern. In order to find the 

sensitivities of outputs with respect to parameters, an augmented system is 

constructed with 88 states and 99 outputs!  Additional states are defined below. 
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The additional outputs in the augmented system are given below. 
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Sensitivity matrix is formed as below. 
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It is required to select an input signal form and a single or a couple of 

parameters of the form that are calculated by the optimization routine. For 

nonlinear model identification, generally an input type that covers the whole 

operating range is preferred. In this study chirp type of input signal is selected. 

That varies within a certain range and it is a typical form of input that is 

implemented to analyze the real physical vehicle in frequency domain. Its 

amplitude and final frequency are the arguments of the optimization algorithm 

to minimize the cost function. There may be some other forms of input 

structures that can be utilized in optimal input studies. In this study it is just 

presented to explain the input design for optimal identification experiments.  

 

To solve the augmented system and optimize the input signal, following 

Simulink model, Figure 51, is employed within an m-file that runs the 



 109

optimization algorithm. Similar to the previous input design application for 2 

dof model identification, genetic algorithm based optimization is preferred.  

 

It is known that A1, B1, A2, and B2 are nonlinear functions of pyk1 and pyk2 that 

are parameters of Magic Formula. It is seen that A’s and B’s are identifiable 

with the concerned sensor set. It is also interesting to analyze the identifiability 

of pyk1 and pyk2 with the known A and B values. Using the implicit function 

theorem to check for a unique solution of the parameters, it is found that only 

one of pyk1 and pyk2 is identifiable.  

 

3 DOF NONLINEAR 
SIMULATION

MODEL

run define_parameters_for_3dof_nonlin_model.m first, then
run nonlin_3dof_model_sensitivity_FIM.m to see the inverse of FIM.

G

steering wheel 
ratio

nonlin_d3_sens

nonlinear state equations
lateral, yaw, and roll dynamics, 

and output sensitivities

-K-

deg2rad

nonlinear_sens_inp.mat

To File1

nonlinear_sens.mat

To File

79

Gain1Chirp Signal

 

Figure 51 Model used in optimal input design and sensitivity analysis 

 

5.6 Practical Identifiability 

 

Sensitivities of outputs with respect to parameters include a lot of information. 

Considering nominal values, examples of sensitivity responses are given in the 

following figures. Figure 52 shows the steering input utilized in the simulation 

to generate sensitivities. 
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Figure 52 Steering input used in sensitivity analysis 

 

 

 

 

 

Figure 53 Sensitivity of outputs with respect to h 
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Figure 54 Sensitivity of outputs with respect to relaxation length 

 

Structural or theoretical identifiability searches if it is possible to estimate the 

values of parameters by using noise-free measurements and an exact model 

structure. Although necessary, structural identifiability is not sufficient to 

guarantee successful parameter estimation from noisy data. The concept of 

practical identifiability covers the identifiability property of the model 

considering number of acquired data and affect of measurement noise. 

Therefore, practical identifiability is as important as the structural 

identifiability of model structure.  

 

In the practical identifiability analysis, sensitivities of outputs with respect to 

the parameters are employed. If the sensitivity functions are linearly dependent 

the model is not practically identifiable. This represents a high correlation 

between the parameter estimates [61, 62, 63]. If two parameters are highly 

correlated, the change in the model output due to a change in one of the 

parameters can be compensated by an appropriate change in the other 

parameter value. This condition prevents determining unique parameter 

estimates even the model output is highly sensitive to the changes in individual 
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parameters. Fisher Information Matrix can be used to check the practical 

identifiability of the system [64, 65, 66, 67]. If the determinant of the Fisher 

Information Matrix is not zero, i.e. not singular, then the model is identifiable. 

If the inverse of the matrix cannot be obtained, i.e. if it is singular, then the 

model is not identifiable. This means that sensitivity equations show linear 

dependence.  

 

Using the output of the model in Figure 51, practical identifiablity test is also 

generated within this study. Since Fisher Information Matrix is generated by 

the Simulink model and the related m-file, then its rank can be checked easily. 

It is seen that Fisher Information Matrix has full rank for the measurement and 

parameters sets with the employed input discussed above.  

 

5.7 Estimation of Parameters 

 

Identifiability analysis and input design are the qualitative and quantitative 

parts of experiment design for the system identification. In this study no real 

experiment on physical vehicle is achieved for the purpose of nonlinear model 

identification. Simulated experiments are achieved on mathematical models 

and sensor outputs that are corrupted with noise are stored together with the 

applied input during the simulated experiment. These data are utilized in 

identification algorithm to find the parameter estimates.  

 

The cost function minimized during identification algorithm is given below. 
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where,  

 

)i(y)i(y)i(e mjj −= , j = 1 ,.., 9 and i = 1 ,.., N (162) 
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)i(y j  : measured jth output, 

)i(y jm  : jth output of model (estimated output by model). 

 

The parameter estimates are obtained by 

 

( ))ˆ(Vminargˆ
NN θ=θ θ . (163) 

 

Parameter estimates take the values minimizing the cost function )(VN θ .  

 

This cost function is normed root mean square output error [68]. It is very 

suitable for comparing different model structures. Genetic algorithm is used as 

an optimization tool to find the parameter estimates. A small population with 7 

genes is used in the identification example given below. In fact such a small 

size of population is not common in optimization with genetic algorithm. This 

is preferred to speed up the algorithm. In identification practices with real 

experimental data, population size of about 50 will be chosen. 

 

The simulated experiment has duration of 20 seconds. This duration is 

relatively small compared to the previous physical experiments. Duration is 

limited to reduce the computational time in computer and force the algorithm 

to get the estimates from the experiments with designed optimal inputs. The 

input in the experiment is designed by the procedure explained above. 

Following figures show the input and a typical set of acquired sensor data 

during the experiments. 
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Figure 55 Steering input of the simulated experiment 

 

 

 

 

 

Figure 56 Lateral acceleration at point P 
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Figure 57 Yaw response 

 

 

 

 

 

Figure 58 Roll angle 
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Figure 59 Roll rate 

 

 

 

 

 

Figure 60 Side slip velocity at point Q 
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Figure 61 Lateral forces generated at tires 

 

The identification algorithm has revealed a set of parameters with a cost 

function of approximately 6% normed root mean square error which is 

acceptable for such applications. Further improvements may be reached if the 

algorithm processes with a larger data set and larger population in the 

optimization algorithm.  

 

Estimated parameters are compared with the actual ones used in the 

simulations of experiments shown in table below.  

 

Table 4 Actual and estimated parameters of nonlinear model identification 

 
cφ 

[N.m/(rad/s)]

kφ  

[N.m/rad] 

h 

[m] 
ε1 ε2 

Actual 5100 41000 0.54 0.074 0.01 

Estimated 4533 37700 0.44 0.061 0.03 

 A1 [1/rad] B1 [N/rad] A2 [1/rad] B2 [N/rad] σ [m] 

Actual -7.4 -16620 -9 -13660 0.09 

Estimated -6.3 -16700 -8.7 -15600 0.12 
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Identified model responses are compared with the measurements used for 

identification purpose in the following figures.  

 

 

Figure 62 Lateral accelerations at point P 

 

 

 

 

Figure 63 Yaw responses 



 119

 

Figure 64 Roll angles 

 

 

 

 

 

Figure 65 Roll rates 
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Figure 66 Side slip velocities at point Q 

 

 

 

 

 

Figure 67 Lateral forces at tire 1R 
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Figure 68 Lateral forces at tire 1L 

 

 

 

 

 

Figure 69 Lateral tire forces at 2R 
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Figure 70 Lateral tire force at 2L 

 
Figures above show that some outputs track the experimental data worse than 

others. It might be due to the sensitivity of the outputs with respect to 

parameters. Errors in parameter estimates make such differences on the model 

outputs.  

 

In addition to the comparisons above, responses of the identified model are 

also compared with the validation data set. Following figures present the 

validation of the identified model. In those figures, deterministic model 

response, of whose outputs are corrupted with noise and assumed as acquired 

experimental data, are also plotted to compare with the noisy data and 

estimated outputs.  
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Figure 71 Steering input in validation data set 

 
 

 

 

 

Figure 72 Lateral acceleration at point P 
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Figure 73 Yaw rates 

 

 

 

 

 

Figure 74 Roll angles 
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Figure 75 Roll rates 

 

 

 

 

 

Figure 76 Side slip velocities at point Q 
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Figure 77 Lateral forces at tires 1R 

 

 

 

 

 

Figure 78 Lateral forces at tires 1L 
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Figure 79 Lateral tire forces at 2R 

 

 

 

 

 

Figure 80 Lateral tire forces at 2L 
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It seen that validation data set is successfully tracked by the identified model 

responses. In addition, there are no biases with the deterministic model 

responses and identified model responses.  
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CHAPTER 6  

 

CONCLUSION and DISCUSSION 
 

This study is based on the research to identify linear and nonlinear handling 

models of a physical vehicle that is equipped with sensors and a data 

acquisition system. It is desired to implement the identification methodology 

on vehicle dynamics area from experiment design stage to the optimization 

phase. Starting model is linear bicycle model and the final structure is the 

nonlinear handling model with coupled roll, yaw and side slip dynamics to 

expose the affects of roll motion on handling characteristics. 

 

After the linear 2 dof model structure is shaped, identifiability analysis of the 

handling model is performed for individual sensors and sets of sensors using 

the transfer function technique. Global identifiability is searched within the 

analysis. The analysis shows that even a single accelerometer or a gyro is 

sufficient to make physical parameters of interest identifiable. However, to 

improve the accuracy of the estimates, a sensor set consisting of an 

accelerometer and a gyro is utilized as the output in the identification 

algorithm. Improving the accuracy of the estimates is also critical due to the 

existence of process and measurement noises. In the model, the position of the 

accelerometer need not be known as it can also be identified. It can be placed 

somewhere on the body y axis. This simplifies the design of experiments. 

Structural identifiability analysis forms the qualitative design stage of the 

experiment design for identification purpose. Results of this study have been 
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implemented in the identification procedure to estimate the physical parameters 

of a passenger car model based on linear handling models. 

In the application part of the study, a vehicle is instrumented and experiments 

are carried out such that data can be collected for the identification of linear 

predictor parameters based on linear bicycle model. 

So as to improve the accuracy of the estimates, a sensor set consisting of an 

accelerometer and a gyro is utilized as the system output and the input for the 

identification algorithm. Physical parameters of the model are estimated using 

the prediction error estimation method. In order to overcome the problems 

arising due to the selection of the initial value for the parameters and local 

minima, GA is utilized as the optimization technique. Selection of GA 

parameters is also critical. It affects the values of estimated parameter. 

Constraint optimization is achieved by using upper and lower bounds for the 

parameter values. This brings the need of prior information about the values of 

parameters.  

Genetic algorithm makes use of a population as initial guesses for the 

parameter estimates. This makes the optimization algorithm overcome the 

problems about initial values of parameter estimates. On the other hand, it has 

a weakness in the convergence performance. It is desired to start the 

optimization with genetic algorithm and then to go on with a gradient based 

search algorithm to overcome both the initial value problem and subsequent 

local minima problems and the convergence problem in the further 

identification study of more complicated handling models. 

Identified model structure can also be used for state estimation purposes. It can 

be shown that using a single gyro or an accelerometer guarantees the 

observability of the system. Therefore, identified Kalman predictor using a 

single gyro (or accelerometer) enables the estimation of states, namely v and r. 
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Identified predictors and linear model structures are validated by using data 

sets that are not utilized for identification purposes. It is seen that the identified 

linear bicycle model and the predictor simulate the actual vehicle very well. 

Even though the estimated parameter values differ in using different sensor sets 

due mostly to the use of pure genetic algorithm, local minima, and use of 

suboptimal inputs, validation tests show that using a single accelerometer or a 

single gyro may provide acceptable predictors and models. It is also desired to 

use optimal inputs that are designed for the experiments by use of a steering 

robot in the following identification study of complicated handling models. 

This will also improve the accuracy of estimated parameters.  

2 dof linear handling model can be improved by adding some terms reflecting  

affects of load transfers without the abusing the linearity. Used methodology 

can also be implemented on such models. It is interesting to analyze the 

identifiability of the modified model structure with the available sensor set.  

 

Design of the experiments for nonlinear model identification is also studied in 

the thesis. Structural identifiability analysis for nonlinear model structures is 

not as clear and systematic as in the case of identifiability analysis of linear 

model structures. Taylor series expansion and differential algebraic methods 

are focused. Former gives the sufficient condition for identifiability. This 

means using very high orders of derivatives of outputs may show that the 

model structure is identifiable. However, the order is not certain and those 

derivatives may reveal very complex coefficients to solve. Therefore Taylor 

Series expansion is not favored and latter one is preferred in the thesis study.  

 

Employed identifiability method is based on differential algebraic point of 

view. It requires the elimination of state variables from the output equations by 

using the successive derivatives of the outputs. The common problem of 

identifiability analysis of nonlinear systems again limits the study. Even with 

today’s computational power such equations with huge number and amount of 
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coefficients cannot be handled and solved by symbolic computation packages. 

So as to overcome such extreme equations, model structure is simplified by 

considering some assumptions, and modifications of the terms. For example 

trigonometric terms are replaced by their series expansion approximates. 

Sensor set is also enriched to reduce the computational problem. These factors 

reduced the size of the observable representations that are used to reach the 

coefficients that are nonlinear functions of physical parameters. This technique 

shows that 15 parameters of the vehicle model structure are structurally locally 

identifiable using the discussed sensor set. This means that these parameters 

can be represented by input, outputs and their derivatives.  

 

In addition the structural identifiability, practical identifiability of the system 

model is also discussed. Even the structure is theoretically identifiable, the 

identifiablity of the parameters is not guaranteed due to the existence of noisy 

measurements and characteristics of the inputs. The sensitivities of outputs to 

system parameters are derived for the optimal input design purpose. These 

sensitivities are also important in practical identifiability analysis of the 

system. High correlation of the estimated parameters is not desired. It degrades 

the practical identifiability of the system. Rank of Fisher Information Matrix is 

used to check the the practical identifiability of the system. If it is not full rank, 

linear dependencies exist within the sensitivity functions. In fact, the practical 

identification analysis techniques and algorithms are easier to evaluate when 

compared to structural identiability analysis techniques.  

 

Considering the optimal input design and practical identifiability, necessary 

algorithms are generated in MatLab Simulink environments. These algorithms 

generate a systematic way that can be utilized in the identification practices 

using real experimental data from a physical vehicle and in real experimental 

conditions with reduced sensor set.  
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The practical identifiability analysis techniques, sensitivity functions will be 

studied in the further studies of vehicle dynamics identification and analysis. 

This may reduce the experiment design phase of the identification procedure. 

Also, the parameters and settings of the genetic algorithm used in optimization 

stage may be discussed and studied in the further applications to improve the 

accuracy of the estimated parameters. 

 

As the identifiability analysis techniques reach computationally simpler forms, 

nonlinear model structure used in this thesis might be improved and trimmed 

terms may be replaced to analyze more complex model structures. Reducing 

the sensor set and analyzing the identifiablity of the system is also an 

interesting study. Similar to the relevant chapter of 2-dof model structures, 

identifiability of parameters in case of a use of possible sensor combinations or 

single sensors may be observed. Additional measurement of normal forces on 

tires, or direct measurement of slip angles may reveal important results in 

identifiability analysis and identification applications. 

 

Black-box model structures may also be utilized for the identification of 

vehicle handling dynamics. In this study, just NNARX type model structures 

are utilized, however, more suitable black-box structures such as state-space 

neural networks may be employed in future studies.  

 

Identifed parametric model structures may also be utilized in fault diagnosis 

practices in handling dynamics research. 

 

Report of 2 dof model identification part, Identification of linear handling 

models for road vehicles, is submitted to Vehicle System Dynamics journal. It is 

accepted and expected to be published in 2008.  
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Other journal and conference papers belonging to the thesis study are listed 

below. 

 

- Arıkan, K., B., Ünlüsoy, Y. S., Araç Dinamiğinin Tek İzli Araç Modeli 
Yardımıyla Tanılanması, Makina Tasarım ve İmalat Dergisi, Cilt 6, Sayı 2, pp. 
1-10, 2004.  

 

- Arıkan, K., B., Ünlüsoy, Y. S., Tek İzli Araç Modelinde Fiziksel 
Parametrelerin Kestirimi, Otomatik Kontrol Türk Milli Komitesi Otomatik 
Kontrol Kongresii, TOK’05, 2005. 

 

- Arıkan, K., B., Ünlüsoy, Y. S., Çelebi, A., O., Korkmaz, İ., Identification of 
Linear Bicycle Model of an Automobile Using Experimental Data, 3. Otomotiv 
Teknolojileri Kongresi, OTEKON’06, 2006. 
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