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ABSTRACT 

 

 

THE MULTIPLE RETAILER INVENTORY ROUTING PROBLEM WITH 
BACKORDERS 

 

 

 

Alişan, Onur 

M.S., Department of Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Haldun Süral 

 

July 2008, 179 pages 

 

 

In this study we consider an inventory routing problem in which a supplier 

distributes a single product to multiple retailers in a finite planning horizon. 

Retailers should satisfy the deterministic and dynamic demands of end 

customers in the planning horizon, but the retailers can backorder the demands 

of end customers considering the supply chain costs. In each period the 

supplier decides the retailers to be visited, and the amount of products to be 

supplied to each retailer by a fleet of vehicles. The decision problems of the 

supplier are about when, to whom and how much to deliver products, and in 

which order to visit retailers while minimizing system-wide costs. We propose 

a mixed integer programming model and a Lagrangian relaxation based 

solution approach in which both upper and lower bounds are computed. We 

test our solution approach with test instances taken from the literature and 

provide our computational results.    

 

Keywords: Inventory Routing Problem, Lagrangian Relaxation, Backordering.  
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ÖZ 

 

 

ÇOKLU PERAKENDECİLERDEN OLUŞAN GEÇ TESLİMATLI 
ENVANTER ROTALAMA PROBLEMİ 

 

 

 

Alişan, Onur 

Yüksek Lisans, Endüstri Mühendisliği Bölümü  

               Tez Yöneticisi: Doç. Dr. Haldun Süral 

 

Temmuz 2008, 179 sayfa 

 

 

Bu çalışmada tek tedarikçi ve perakendecilerden oluşan bir tedarik zincirinde, 

tek ürünlü, çok dönemli ve geç teslimatın kabul edilebildiği bir envanter-

rotalama problemi işlenmiştir. Perakendecilerin, müşterilerden gelen tahmin 

yoluyla belirlenmiş talepleri planlama dönemi içinde karşılanmaktadır. Ancak, 

perakendeciler toplam zincir maliyetlerini gözeterek geç teslimat 

yapabilmektedir. Tedarikçi, her dönemde kime, ne kadar mal dağıtacağına 

karar verip, bir araç filosu ile bu dağıtımı yapmaktadır. Problem, tedarikçinin 

ne zaman, kime, ne kadar mal dağıtacağına ve dağıtım esnasında 

perakendecileri hangi sırada ziyaret edeceğine, toplam zincir maliyetlerini en 

azlayarak karar vermesi problemidir. Bu problem için karışık tam sayılı bir 

model önerilmiş ve model için Lagrange gevşetme yaklaşımına dayalı bir 

çözüm yöntemi geliştirilmiştir. En iyi çözüm değerleri için bu yolla alt ve üst 

sınırlar hesaplanmıştır. Çözüm yöntemi literatürden alınan problemlerle test 

edilmiş, sayısal deney sonuçları verilmiştir. 

 

Anahtar Kelimeler: Envanter-rotalama Problemi, Lagrange Gevşetme 

Yaklaşımı, Geç Teslimat. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

In this thesis, we study an inventory routing problem where there are multiple 

retailers in a supply chain and their replenishments over a finite planning 

horizon are planned and realized by a single source (a supplier’s depot or a 

supplier’s crossdock facility). In every period, a fleet of (non-) homogenous 

vehicles departs from the facility and serve a (sub) set of geographically 

dispersed retailers on a route and comes back to the starting facility. The 

demands of end customers which are realized at the retailers are dynamic and 

deterministic in nature. Those retailers which are not replenished in a period 

satisfy the demands of end customers from inventory or by backlogging. The 

basic aim of the problem is to minimize the system-wide costs consisting of 

transportation costs (fixed vehicle dispatching cost, fixed arc usage cost, 

variable arc usage cost depending on the amount carried on each arc), retailers’ 

inventory holding cost and retailers’ backlogging cost while deciding in each 

period on how many vehicles to dispatch, which retailers to visit, how much to 

deliver to each retailer to be visited and in which order to visit these retailers. 

The retailers have capacity limitation on the amount of inventory stocked. It is 

assumed that during the planning horizon the supplier should satisfy all the 

demand, while backordering is possible for any period’s demand except the last 

period’s demand.  
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1.1 Motivation 

 

In inventory routing problems, basic decisions are about inventory 

management and distribution of products to the customers at different levels of 

the supply chain. There exists a great deal of studies on inventory and 

distribution management to optimize the related expenditures, but the 

distribution problem in any period is difficult to solve since it involves a well 

known NP-hard problem, called Traveling Salesman Problem (TSP). 

Therefore, the amalgamation of these two management problems leads to a 

problem difficult to solve.   

 

Since inventory routing problems constitute the subject of many works done in 

the literature, different solution procedures and algorithms are applied to come 

up with reasonable outcomes. In most of the studies, minimization of the 

inventory holding costs and the transportation costs is considered as the major 

objective of the supply chain. Without routing constraints the distribution 

problem can be formulated as the NP-hard joint replenishment problem 

considered in Joneja (1990) in which a joint ordering cost for all parties in 

addition to individual ordering costs is incurred for orders given in any period. 

These costs are similar to the fixed vehicle dispatching cost and fixed arc usage 

costs in the inventory routing problem. However, joint replenishment problem 

does not consider backorders and sequence dependent fixed arc usage costs. 

Moreover, none of the finite horizon models with deterministic demand, 

reviewed in later on, except Chien et al. (1989) and Abdelmaguid and 

Dessouky (2006), considers backordering as an alternative option for supply 

chains. Chien et al. (1989) consider a single period problem where the aim is to 

maximize sales revenue. The single period problem starts with a predetermined 

inventory quantity and the best possible delivery schedule is tried to be found 

with respect to transportation and backlogging costs. They apply a Lagrangian 

Relaxation based solution approach and come up with less than 3% gaps. 
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However, they did not present the performance of their approach for multi-

period problem settings. Abdelmaguid and Dessouky (2006) consider a finite 

horizon planning problem where variable transportation costs are not included; 

moreover, their solution approach is different from ours. We propose a 

Lagrangian Relaxation based solution approach whereas Abdelmaguid and 

Dessouky (2006) present a heuristic procedure based on backordering 

decisions and transportation cost estimates, to solve the problem. They come 

up with upper bounds that deviate about 20% from the upper bounds calculated 

with CPLEX solver, but they do not calculate lower bounds on the optimal 

solutions.  

 

1.2 Outline of the study 

 

The chapters of this thesis are organized as follows. 

 

In Chapter 2, we present a review of related literature on inventory routing 

problems. In Section 2.1, a classification scheme concerning number of 

suppliers and retailers, length of the planning horizon, vehicle capacity, 

demand structure, cost structure, inventory policy and performance measures is 

presented. Then in Section 2.2, we present the literature review, and according 

to the planning horizon and vehicle routing aspects, another classification 

scheme is given. 

 

In Chapter 3, we state the characteristics of our inventory routing problem 

(INVROP) according to the classification scheme presented in Chapter 2. Then 

in Section 3.1, we mention the differences of the INVROP with Chien et al. 

(1989) and Abdelmaguid and Dessouky (2006) and state the assumptions of the 

INVROP. In Section 3.2 a mixed integer formulation (MIP) for the INVROP is 

presented. Since the INVROP is NP-hard it is almost impossible solving even 

moderate-sized instances in reasonable times; therefore, complicated (hard to 
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satisfy) constraints are relaxed with the Lagrange multipliers and added to the 

objective function. In Section 3.3, the Lagrangian based solution approach is 

presented. In Section 3.4 and Section 3.5, lower bound and upper bound 

calculation methods using Lagrangian Relaxation are explained in detail. In 

Section 3.6, a subgradient optimization algorithm for updating Lagrange 

multipliers is presented. 

 

In Chapter 4, we present the computational results of the proposed approach. In 

Section 4.1, we present our computational experiment settings. In Section 4.2, 

we give the details of basic test instances, which are taken from the literature. 

In Section 4.3, the performance measures used for the tests are introduced. The 

results of basic test instances are presented in Section 4.4. Then, in Section 4.5, 

we present the results obtained when best parameter settings, determined in 

Section 4.4, are applied to larger settings. Lastly, in Section 4.6, for 

benchmarking purposes, we present the results obtained when the proposed 

Lagrangian Relaxation based solution algorithm is applied to the problems of 

Abdelmaguid and Dessouky (2006).  

 

In Chapter 5, a generalized version of the INVROP is presented as single 

supplier multiple retailer inventory routing problem with backorders 

(SSMRIRB), in which we let supplier keep inventories. In Section 5.1, the 

assumptions of the SSMRIRB are stated. In Section 5.2, mixed integer 

programming formulation for the SSMRIB is given. In Section 5.3, a 

Lagrangian based solution approach is presented. The SSMRIRB is 

decomposed into three subproblems as supplier subproblem (SSP), retailer 

subproblem (RSP) and distribution subproblem (DSP). Solution methods that 

can be used in solving these three subproblems are explained in detail. Then 

how to use these three problems in the lower bound and upper bound 

computations are defined.  
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In Chapter 6, we conclude the study, present our contributions, and discuss 

possible directions for future works. 
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CHAPTER 2 

 

 

LITERATURE REVIEW ON INVENTORY 

ROUTING PROBLEM 

 

 

 

In inventory routing problems, decisions that enclose the routing of vehicles 

and the inventory policies of suppliers and retailers are combined together, in 

order to decrease system-wide costs. Importance given to each aspect can be 

different. For example, there are cases in which only direct shipments are 

considered since the importance is given to the inventory side, or that an 

inventory policy is adopted according to the least cost vehicle tours. 

 

In this chapter, we present a classification scheme for classifying previous 

studies on inventory routing problem in the literature. Then the classification of 

previous work -ordered with respect to publication year- is presented in detail. 

 

2.1 Classification scheme 

 

In order to classify the related literature, a similar system with Baita, Ukovich, 

Pesenti, and Favaretto (1998) and Pinar (2005) is used. It consists of ten 

elements. The elements of the classification scheme are defined below. 

 

2.1.1 Start point-End point (E): 

 

The first parameter denotes the number of suppliers (or depot) and the second 

parameter denotes the number of retailers. 

 



• E(1,1): One-to-one. 

• E(1,M): One-to-many. 

• E(M,M): Many-to-many. 

 

2.1.2 Planning horizon (P): 

 

Shows the number of periods the model is designed for. 

 

• P(1): Designed for single period. 

• P(T): Designed for a finite number (T) of periods. 

• P(∞ ): Designed for infinite horizon. 

 

2.1.3 Vehicle (V): 

 

It denotes the capacities of the vehicles and the number of vehicles available. 

 

• C: Homogeneous fleet of vehicles (each vehicle has the same capacity). 

• CV: Heterogeneous fleet of vehicles (each vehicle v has different 

capacity). 

• 1: Single vehicle. 

• M: Multiple vehicles. 

• NC: There is no constraint on number of vehicles. 

• DV: Number of vehicles is a decision variable in the model. 

 

2.1.4 Demand structure: 

 

• Dynamic: Demands may change over the planning horizon. 

• Stationary: Demands do not change and are constant over the entire 

horizon. 

• Deterministic: Demands are assumed to be known a priori. 
  

 
22 

 



  
 

23 
 

• Stochastic: Demands are not known a priori. 

 

2.1.5 Inventory (I): 

 

Whether the supplier(s) and the retailers hold inventory or not is depicted. The 

first parameter is defined for the supplier(s) and the second is defined for 

retailers. 

 

• Y: Holding inventory is allowed. 

• N: Holding inventory is not allowed. 

 

2.1.6 Backordering (B): 

 

Whether backordering is allowed or not is depicted. The first parameter is 

defined for the supplier(s) and the second is defined for retailers. 

 

• Y: Backordering is allowed. 

• N: Backordering is not allowed. 

 

2.1.7 Ordering (O): 

 

Whether fixed ordering (setup for production) cost is applied or not. The first 

parameter is defined for the supplier(s) and the second is defined for retailers. 

 

• Y: Fixed ordering (setup) cost is applied. 

• N: Fixed ordering (setup) cost is not applied. 
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2.1.8 Inventory policy: 

 

This component is set in order to specify the inventory control policy of the 

problem. If there is no specific policy defined and the model output specifies 

when to replenish and to whom to replenish, then it is written “endogenous” in 

that section. 

 

2.1.9 Transportation cost: 

 

• Fixed: Fixed dispatching or usage cost of vehicles is applied. 

• Distance: Transportation cost is applied based on the distance traveled. 

• Amount: Transportation cost is applied based on the amount of 

products carried. 

 

2.1.10 Performance measures: 

 

How the effectiveness or the powerful aspects of a solution approach are 

measured in the study; i.e. the gap between the lower and upper bounds, 

comparisons of model solutions with benchmarked results, or reasonable cost 

reductions (decrements in total cost or transportation cost) etc.  

 

2.2 Literature review 

 

In the study of Federgruen and Zipkin (1984) summarized in Table 2.1, an 

integrated problem of allocating given supply among several locations and 

their routing is considered. Distinctive feature of the study is that demand is 

stochastic.  

 

A mathematical formulation of the problem and an algorithm that can be 

adapted to deterministic-demand case are presented. First, the inventory 
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allocation problem is solved with relaxing vehicle capacity constraints. Second, 

the routing problem is solved by generating cuts. Finally, 3-opt heuristic is 

used in order to improve the results. Improvement stage has two phases, in the 

first phase only the switches between adjacent routes are considered whereas in 

the second stage all possible switches are considered.  

According to the results, the algorithm yields 6-7% savings in operating costs 

and 20% reduction in the number of vehicles required. 

 

 

 

Table 2.1 Federgruen and Zipkin (1984) in Operations Research 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(1) 

Vehicle(s) V(CV, M) 

Demand Structure Stochastic 

Inventory I(N, Y) 

Backordering B(N, Y) 

Ordering O(N, N) 

Inventory Policy Endogenous 

Transportation Cost Distance   

Performance Measure(s) % Cost reduction (relative to the benchmarked results) 

 

 

 

In the study of Burns, Hall, Blumenfeld (1985) summarized in Table 2.2, direct 

shipping and peddling strategies are compared.  

 

In direct shipping trucks visit only one customer and in peddling trucks visit 

more than one customer. 

 



An economic order quantity (EOQ)-like solution method is applied such that 

the closed form of the solutions is derived as in the case of EOQ. 

 

It is found that sending EOQ for direct shipping strategy and full truck load for 

peddling strategy are economical. 

 

 

 

Table 2.2 Burns, Hall, Blumenfeld and Daganzo (1985) in Operations 

    Research 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(C, NC) 

Demand Structure Stationary, Deterministic 

Inventory I(N, Y) 

Backordering B(N, N) 

Ordering O(N, Y) 

Inventory Policy EOQ 

Transportation Cost Fixed + Distance  

Performance Measure(s) 
Effects of parameters on total cost, inventory cost, 

distribution cost 

 

 

 

In the work of Blumenfeld, Burns, Diltz and Daganzo (1985) summarized in 

Table 2.3, transportation, inventory holding and production setup costs are 

considered in a deterministic environment. The cost tradeoffs between 

inventory holding and transportation costs, and setup and inventory costs are 

examined for three different network structures. In direct shipment setting 

vehicles go from suppliers to retailers directly. In “via consolidation terminal 

setting”, vehicles must visit a cross-docking terminal.  
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According to the authors, for the case in which production and transportation 

scheduling are independent, the total costs can be minimized by determining 

optimal shipment sizes using EOQ methods for each link separately. For the 

case in which production and transportation scheduling are synchronized, the 

shipment sizes on different links that are interdependent must be optimized 

simultaneously with production scheduling decisions.  

 

 

 

Table 2.3 Blumenfeld, Burns, Diltz and Daganzo (1985) in Transportation 

 Research 
Component Characteristic 

Start Point-End Point E(M, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(C, NC) 

Demand Structure Stationary, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(Y, N) 

Inventory Policy EOQ 

Transportation Cost Fixed 

Performance Measure(s) Minimization of total costs 

 

 

 

The problem considered in Benjamin (1989) summarized in Table 2.4, is a 

combination of lot sizing problem and transportation problem. It essentially 

does not deal with routing aspect. Direct shipment -proportional to the amount 

shipped- is used. One-to-many environment is decomposed in to one-to-one 

problem for each retailer and EOQ-like solution approach is used for solving 

the inventory problem of retailers. Also the problem is modified to m-

suppliers, n-retailers case in which a simultaneous solution procedure GINO, 
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which is a generalized reduced gradient algorithm, is applied. Linear 

programming relaxation solution is used as lower bound on the optimal 

solution value.  

 

Moreover, a heuristic algorithm, which is based on sequentially solving 

separate sets of variables as opposed to simultaneously solving all, i.e. using 

GINO, is presented. It is observed that GINO yields improvements between 

0.02% and 80% over sequential solutions. When GINO and heuristic are 

compared, the solution value of heuristic is 0.2% better than the solution value 

of GINO.   

 

 

 

Table 2.4 Benjamin (1989) in Transportation Science 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(NC, NC) 

Demand Structure Stationary, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(Y, Y) 

Inventory Policy EOQ 

Transportation Cost Distance  

Performance 

Measure(s) 
Total cost (production, distribution, inventory holding) 

 

 

 

The problem in Chien, Balakrishnan and Wong (1989) summarized in Table 

2.5, is a single period revenue maximization problem. The costs considered are 

transportation costs and backordering cost. A fixed amount of product (given 
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as a problem parameter) is distributed to a set of customers that are 

geographically dispersed in order to maximize profit, which is equal to the 

difference between sales revenue and total cost. Our study is similar to Chien et 

al. (1989) in the sense of structure and variable definitions; all the similarities 

and distinctions will be presented in the next chapter. 

 

 

 

Table 2.5 Chien, Balakrishnan and Wong (1989) in Transportation Science 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(1) 

Vehicle(s) V(CV, M) 

Demand Structure Stationary, Deterministic 

Inventory I(N, N) 

Backordering B(N, Y) 

Ordering O(N, N) 

Inventory Policy Endogenous 

Transportation Cost Fixed (vehicle specific) + Distance (vehicle specific)  

Performance Measure(s) % Gap between UB and LB, CPU time 

 

 

 

A mixed integer formulation of the problem and its Lagrangian relaxation 

based solution algorithm are provided. The problem is decomposed into two 

subproblems; inventory allocation subproblem and customer 

assignment/vehicle utilization subproblem. Former one is solved using a 

greedy heuristic, and the latter one is also solved with a similar heuristic after 

the subproblem is further decomposed into continuous knapsack problems. For 

each retailer, the heuristic finds the best alternative customer to go in order to 

maximize profit by assigning the maximum amount (that is, the minimum 

between truck capacity and demand to the least cost customer). The solutions 
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obtained are used as upper bounds on the objective of mixed integer 

formulation. In order to get lower bounds (feasible solutions), an add-drop 

heuristic is applied after obtaining upper bound solutions. Flow variables 

directed from depot determine the number of vehicles used. The customers that 

have positive flow variables are designated as visiting customers and assigned 

to the same vehicle. Tour costs are calculated according to the previous 

assignments. Then a feasibility check is done according to vehicle capacity. If 

capacity of a vehicle is exceeded the excess amount is deducted from the 

customer with least profit. If a vehicle has excess capacity, the customer with 

the highest profit is assigned to that vehicle if any unassigned customers exist. 

 

The authors come up with results that are close to the optimal solutions with 

only 3% gap.  

 

In the study of Gallego and Simchi-Levi (1990) summarized in Table 2.6, a 

lower bound on the long-run average cost (ordering, holding and transportation 

costs) over all inventory-routing strategies is given. Upper bound is found by 

using direct shipments with fully loaded truck loads. 

 

In the study, effectiveness, which is defined as the “100% times the ratio of the 

infimum of the long-run average cost over all strategies to the long-run average 

cost of the strategy in question,” is used as performance measures. It is stated 

that if the economic lot size over all retailers is more than 71% of truck 

capacity, direct shipping is at least 94% effective. 

 

Anily and Federgruen (1990) summarized in Table 2.7, is dealing with fixed-

partitioning policies, which help to partition demand points into a set of 

regions. Anily and Federgruen (1990) tries to find upper bounds on the 

minimal long-run average costs among all strategies in the class of 

replenishment strategies and heuristic solutions for the setting in consideration.  



Table 2.6 Gallego and Simchi-Levi (1990) in Management Science 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(C, M) 

Demand Structure Stationary, Deterministic 

Inventory I(N, Y) 

Backordering B(N, N) 

Ordering O(N, Y) 

Inventory Policy Endogenous 

Transportation Cost Distance  

Performance 

Measure(s) 
Effectiveness 

 

 

 

Table 2.7 Anily and Federguen (1990) in Management Science 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(C, NC) 

Demand Structure Stationary, Deterministic 

Inventory I(N, Y) 

Backordering B(N, N) 

Ordering O(N, N) 

Inventory Policy EOQ 

Transportation Cost Fixed (per route) + Distance (unit magnitude)  

Performance 

Measure(s) 
Gap between UB and LB, CPU Time 

 

 

 

Rather than considering all distribution strategies, a subset of strategies in 

which collection of regions (set of retailers) is specified to cover all retailers is 
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considered. Depending on that, if a retailer belongs to more than one region, 

then each fractional portion is also assigned to each of these regions. If a 

retailer in a given region is supplied, all the other retailers assigned to that 

region are also supplied.  

 

In the experimentation part, a set of randomly generated test instances is used. 

Eight different settings are tested and these include several variants of the 

original problem such as, uncapacitated and capacitated cases. According to the 

results, the gap between upper and lower bounds ranges from 1% to 19% for 

the original model and from 0.1% to 42% for the scenarios considered. 

 

 

 

Table 2.8 Chandra (1993) in Journal of Operational Research Society 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(T) 

Vehicle(s) V(C, NC) 

Demand Structure Dynamic, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(Y, N) 

Inventory Policy Endogenous 

Transportation Cost Fixed + Distance  

Performance 

Measure(s) 

% Reduction of inventory holding, ordering and 

transportation costs 

 

 

 

In the study of Chandra (1993) summarized in Table 2.8, a coordination of 

customer and warehouse replenishment decisions is investigated. Coordinated 

decisions involve replenishment quantities of both retailers and supplier and 



the distribution routes. A mixed-integer formulation of the problem is 

presented. It is decomposed into two subproblems: multi-product, multi-period 

warehouse ordering problem and distribution planning problem. 

 

The solution algorithm starts with solving two subproblems sequentially. First 

the ordering problem is solved and then the distribution problem is solved. 

Distribution problem is solved until no further improvement is obtained by 

using insertion, nearest neighbor, and swap heuristics. In the decoupled 

approach, it is observed that replenishment amounts are not affected by the 

solutions obtained from distribution subproblem; however, in the consolidation 

process supply quantities are adapted according to the results obtained from 

distribution subproblem. 

 

In the experiments on randomly generated problem instances, it is observed 

that, on average, consolidation process yields better results than decoupled 

approach ranging from 3% to 11% improvement over the decoupled approach. 

 

 

 

Table 2.9 Anily and Federgruen (1993) in Operations Research 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(C, NC) 

Demand Structure Stationary, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(Y, N) 

Inventory Policy Endogenous 

Transportation Cost Fixed + Distance  

Performance 

Measure(s) 
%Gap between UB and LB 
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In the study of Anily and Federgruen (1993) summarized in Table 2.9, a 

variation of their previous work given in Table 2.6 is examined. Depot is 

allowed to keep inventory; therefore, central stock keeping is possible.  

 

A similar solution strategy with their previous work is used, such that lower 

bounds are computed by using external partitioning algorithm. Upper bounds 

are computed by using modified circular regional partitioning algorithm. When 

the regions are partitioned, the problem turns into EOQ. 

 

The gap between upper and lower bounds ranges between 6% and 12%. For the 

set of partitioning strategies in which regions cover all retailers, the gap 

between the proposed strategy (after applying external partitioning algorithm, a 

modified circular regional partitioning algorithm is used and finally a rounding 

procedure is applied) and the lower bound is less than 6% for problems with 

large number of retailers. 

 

 

 

Table 2.10 Anily (1994) in EJOR 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(C, NC) 

Demand Structure Stationary, Deterministic 

Inventory I(N, Y) 

Backordering B(N, N) 

Ordering O(Y, N) 

Inventory Policy Endogenous 

Transportation Cost Fixed (per tour) + Distance  

Performance 

Measure(s) 
%Gap between UB and LB 
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In the work of Anily (1994) summarized in Table 2.10, the same problem in 

Anily and Federgruen (1990) is studied and generalizes the results obtained for 

the case in which holding costs are retailer specific. Partitioning of retailers 

into regions is done by taking retailer specific holding cost into account.  

 

The experiments show that the gap between upper and lower bounds is always 

less than 10%. Moreover, the solutions found by the heuristic defined, 

converge to a lower bound when the number of retailers is increased to infinity.  

 

In the study of Chandra and Fisher (1994) summarized in Table 2.11, 

production, inventory and distribution decisions are considered together. 

Making production and distribution decisions separately and making 

coordinated decisions are compared. 

 

 

 

Table 2.11 Chandra and Fisher (1994) in EJOR 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(T) 

Vehicle(s) V(C, NC) 

Demand Structure Dynamic, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(Y, N) 

Inventory Policy Endogenous 

Transportation Cost Fixed (vehicle specific) + Variable (route specific)  

Performance 

Measure(s) 

% Reduction of inventory holding, ordering and 

transportation costs 
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In the decoupled approach, first a production schedule is determined in order to 

minimize the costs of production and inventory holding. Then a distribution 

problem is solved with given supply amounts. In the coordinated approach, it is 

allowed to change production schedule depending on the distribution schedule. 

The cost reduction obtained by coordinating production and distribution 

decisions ranges from 3% to 20%.   

 

In the study of Viswanathan and Mathur (1997) summarized in Table 2.12, 

designed for distribution of multiple products. A new replenishment policy, 

called stationary nested joint replenishment policy, is defined. The authors use 

“stationary policy term” if replenishing items are equally spaced points in time; 

and “nested policy term” when replenishment times of an item are the 

multiples of the replenishment times of items that have smaller replenishment 

intervals. In order to use multiple intervals, power-of-two policies, in which the 

replenishment intervals are the power-of-two multiples of the base planning 

period, are adopted. The objective is to come out with replenishment intervals 

and quantities for each item and vehicle routes in order to minimize inventory 

holding and transportation costs.  

 

Heuristic algorithms are developed for both uncapacitated and capacitated 

problem settings. At first, the marginal setup cost of adding an item to the 

existing set of items is calculated. A modified version of standard EOQ 

formula, where marginal costs are treated as setup costs, is used to find 

approximated replenishment intervals. In the last step, the item with the lowest 

replenishment interval is added to the set of items to be replenished. 

 

The results of the heuristic algorithm are compared with Anily and Federgruen 

(1990)’s heuristic. It is observed that in most cases the heuristic gives better 

results. However, as the problem size gets larger, the Anily and Federgruen 

heuristic improves significantly. 



Table 2.12 Viswanathan and Mathur (1997) in Management Science 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(C, NC) 

Demand Structure Stationary, Deterministic 

Inventory I(N, Y) 

Backordering B(N, N) 

Ordering O(N, Y) 

Inventory Policy Endogenous 

Transportation Cost 
Fixed (vehicle usage)+ Distance + Fixed (customer 

specific)  

Performance Measure(s) Average cost and CPU time 

 

 

 

In the study of Chan, Federgruen and Simchi-Levi (1998) summarized in Table 

2.13, fixed partition policies in which retailers are partitioned into a number of 

regions that are supplied separately are considered. Zero inventory ordering 

policies in which retailers are supplied only if their inventory level reaches to 

zero are also considered. Lower bounds on the cost of any feasible solution are 

also presented. 

 

Moreover, an alternative mathematical programming based heuristic is 

presented where a partition of regions is generated and then each region is 

assigned to a vehicle. Vehicles visit all retailers in regions at equidistant epochs 

for identifying close-to-optimal fixed partitioning policies. 

In computational experimentations on a set of randomly generated problem 

instances, the gap between heuristic solution and lower bound is found to be 

less than 19%. 
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Table 2.13 Chan, Federgruen and Simchi-Levi (1998) in Operations 

        Research  
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(C, NC) 

Demand Structure Stationary, Deterministic 

Inventory I(N, Y) 

Backordering B(N, N) 

Ordering O(N, N) 

Inventory Policy Endogenous 

Transportation Cost Fixed + Distance  

Performance 

Measure(s) 
% Gap between Heuristic result and LB 

 

 

 

In the study of Fumero and Vercellis (1999) summarized in Table 2.14, 

production and distribution decisions are incorporated. Lagrangian relaxation is 

used to break constraints in order to obtain easy-to-solve subproblems. Four 

subproblems are obtained by the relaxation, production, inventory, distribution, 

and routing. Solutions of these four subproblems give lower bound to the 

objective of the original problem. Upper bound is the feasible solution with the 

minimum cost value, generated by a heuristic. Two approaches that are 

synchronized (i.e. Lagrangian relaxation solution procedure) and decoupled are 

tested in the study. In the latter approach, production decisions are carried out 

independently, while in the former approach, production plan affects other 

decisions and is affected by them.  

 

Randomly generated test instances are used in experimentations. On the 

average, the gap between upper and lower bounds is 5.5%. It should be noted 

that they measure the variation from the upper bound unlike other problems 
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measuring the variation from the lower bound. Average improvement gained 

by relaxation as compared to the continuous Linear programming relaxation is 

15%.  

 

 

 

Table 2.14 Fumero and Vercellis (1999) in Transportation Science 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(T) 

Vehicle(s) V(C, M) 

Demand Structure Dynamic, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(Y, N) 

Inventory Policy Endogenous 

Transportation Cost Fixed + Distance + Amount  

Performance Measure(s) 
% Gap between UB and LB, % Gap between VR

* and 

VC
*

* VR is the Lagrangian lower bound and VC is the optimal value of linear 

programming relaxation 

 

 

 

In the work of Kim and Kim (2000) summarized in Table 2.15, a multi-period 

inventory management and distribution planning problem is considered. 

Distinctive feature of the problem is that vehicles can make several trips in a 

time period. However, the study is not dealing with the routing aspect; rather 

direct deliveries are considered for distribution planning.  

 

Mixed integer formulation of the problem is presented. Main problem is 

decomposed into two subproblems by Lagrangian relaxation: one is making 
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schedules of vehicles and the other one is determination of delivery quantities 

and inventory levels at retailers. Vehicle scheduling problem can further be 

decomposed into many single period, single vehicle scheduling problems. Each 

of these problems has the knapsack problem characteristic and is solved by 

dynamic programming algorithm. The second subproblem which is a 

production planning problem with LP structure can be solved easily. For 

establishing feasible solutions, a two phase heuristic is used. In the first phase 

the second subproblem is solved and then the first subproblem is solved. If 

there are retailers whose demands are not satisfied, the number of trips is 

increased. In the second phase, in order to reduce total costs, the number of 

trips is adjusted while maintaining the feasibility of solutions. 

 

 

 

Table 2.15 Kim and Kim (2000) in Journal of Operational Research Society 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(T) 

Vehicle(s) V(CV, M) 

Demand Structure Dynamic, Deterministic 

Inventory I(N, Y) 

Backordering B(N, N) 

Ordering O(N, N) 

Inventory Policy Endogenous 

Transportation Cost Distance + Amount  

Performance Measure(s) % Gap between UB and LB, CPU Time  

 

 

 

In the study 120, randomly generated test instances are generated. The overall 

average percentage gap between upper and lower bounds is 1.04% and as the 

number of retailers increases the gap decreases. Maximum CPU time is 648.71 
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minutes for the largest test instance considering 50 vehicles and 140 retailers. 

In order to the compare the solutions gathered from the proposed heuristic and 

best feasible solutions values found by CPLEX, 20 small sized test instances 

are generated and average percentage error is 0.26%. 

 

In the work of Cachon (2001) summarized in Table 2.16, three inventory 

control policies are considered for managing a retailers shelf space while 

considering transportation costs. In the system, multiple products of single 

retailer are examined. Demand of the retailer of each product is stochastic; 

therefore, should be estimated in advance. Retailer pays per unit of self space 

required, holding cost for the inventory kept and shortage cost for the 

unsatisfied demand of end customer. The objective is to minimize the total 

expected costs (transportation costs, shelf space costs, inventory holding costs, 

shortage costs) per unit time. 

 

Three inventory control policies are minimum quantity continuous review 

policy (Q, S); full service periodic review policy (S, T); and minimum quantity 

periodic review policy (Q, S|T). In the minimum quantity policy inventory is 

reviewed continuously and a truck is dispatched when Q units of products have 

been ordered. In the full service periodic review policy, the inventory status of 

the retailer is reviewed in every T units of time and enough trucks are 

dispatched in order to replenish all the shelves of the retailer. In this policy, self 

space is minimized but truck utilization is decreased since a truck may be 

dispatched for one unit of product. In the minimum quantity periodic review 

policy, in every T units of time the retailer reviews its inventory status and a 

truck is dispatched if at least Q units are ordered. In this setting, T is an 

exogenous parameter, and if the retailer does not have the ability to determine 

that parameter, this policy (controlling the Q variable) is applicable. This 

policy may cause lost sales of some products due to Q parameter; therefore, the 

retailer should determine the portion of demand of each product to satisfy. 



Table 2.16 Cachon (2001) in Manufacturing and Service Operations 

      Management 
Component Characteristic 

Start Point-End Point E(1, 1) 

Planning Horizon P(∞ ) 

Vehicle(s) V(C, NC) 

Demand Structure Stochastic 

Inventory I(N, Y) 

Backordering B(N, Y) 

Ordering O(N, N) 

Inventory Policy (Q, S), (S, T), (Q, S|T) 

Transportation Cost Fixed  

Performance Measure(s) 
Ratios of costs of three inventory policies with respect 

to optimal values  

 

 

 

It is stated that minimum quantity continuous review policy provides a cost that 

is not much greater than the lower bound if there is a long lead time or if the 

ration of shortage penalty cost to the self space cost is small where the lower 

bound is the optimal policy under demand allocation.  

 

Two EOQ-like heuristic methods are used to estimate Q and S variables which 

are order quantity and self space amount, respectively. In both heuristics the 

stochastic variables in the cost functions are replaced with their means.  

 

In order to test the findings, 972 randomly generated scenarios are used. For 

each scenario optimal (Q, S) policy is evaluated. Q-heuristic and S-heuristic 

results are compared and it is observed that Q-heuristic provides good 

performance with respect to S-heuristic. On the average Q-heuristic gives 3.7% 

higher results than the optimal whereas S-heuristic gives 15.7% higher results.  
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Among the feasible policies considered, continuous review policy gives the 

best results. But the quality of results of periodic review policies increases 

when T and transportation costs are low.  

 

In the work of Kleywegt, Nori and Savelsbergh (2002) summarized in Table 

2.17, the supplier is ought to make decisions regarding which customers to 

serve, how much to deliver to each customer to be served, how to combine the 

customers into vehicle routes and to assign vehicles to the routes in order to 

maximize expected discounted value (revenues minus costs) over an infinite 

horizon. Retailers are responsible from inventory holding cost and shortage 

penalty for unsatisfied demand. A distinctive feature of the study is that 

unsatisfied demand is treated as lost sales and could not be satisfied in future 

periods. The problem is formulated as a discrete time Markov decision process 

where the states are the current inventory levels of the retailers and the action 

space consists of all possible decisions satisfying vehicle capacity constraints 

and the storage capacities of the retailers.  

 

In order to solve the Markov decision process three computational tasks should 

be done: estimation of the optimum value of the value function, estimation of 

the expected value necessary for the estimation of the value function, and the 

maximization problem defined in the value function. Since the problem is NP-

hard, a special case of this problem, inventory routing problem with direct 

deliveries is examined. The routes consist of single customer and must satisfy 

the workload, time window and capacity constraints. For this special case, in 

order to estimate value function the problem is decomposed into customer 

subproblems. These subproblems are solved optimally and then combined by 

using a knapsack formulation to find a good approximation. Four different 

algorithms for approximation are presented.  

 

 



Table 2.17 Kleywegt, Nori and Savelsbergh (2002) in Transportation 

     Science 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(C, M) 

Demand Structure Stochastic 

Inventory I(N, Y) 

Backordering B(N, Y) 

Ordering O(N, N) 

Inventory Policy Endogenous 

Transportation Cost Distance 

Performance Measure(s) 
Comparison of the optimal values with approximation 

policies  

 

 

 

10 benchmarked test instances are used to compare results obtained and 

parametric value approximation yields the best results.  

 

In the work of Bertazzi, Paletta and Speranza (2002) summarized in Table 

2.18, an order-up-to-level inventory policy is examined. According to the 

minimum and maximum inventory levels that are predetermined, the retailers 

are supplied with a single vehicle. The problem is defined for multiple 

products; however, a single product case is solved in the computations. 

 

The order-up-to-level inventory policy is such that each retailer is supplied 

before the retailer reaches its minimum inventory level with an amount filling 

its inventory level up to its maximum. 
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Table 2.18 Bertazzi, Paletta and Speranza (2002) in Transportation Science 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(T) 

Vehicle(s) V(C, 1) 

Demand Structure Dynamic, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(N, N) 

Inventory Policy Order up-to-level 

Transportation Cost Distance  

Performance 

Measure(s) 
Total cost, number of visits, delivery quantity 

 

 

 

A two-step heuristic method is suggested for the solution. In the first step, 

retailers are listed according to nondecreasing order of average number of time 

units needed to consume the maximum inventory. Then an iterative procedure 

is applied. In each iteration, a retailer is inserted in the solution, and a network 

representing the incremental cost due to the insertion of the specified retailer is 

created. And the shortest path of the network is found at the end of first step. In 

the second step, the solution obtained in the first step is improved if possible. 

 

Results of the algorithm is compared with every and latest heuristics (every- 

heuristic tends to supply each retailer in every time period, and latest heuristic 

tends to supply the retailers that will be in stock-out position in the next period 

if not supplied in the current period). On average, every-heuristic yields 14% 

and latest-heuristic yields 5% error with respect to the heuristic solution 

presented. 



Moreover, several results under different objectives such that transportation 

cost, inventory cost at retailers, transportation cost plus inventory cost at 

supplier, etc. are investigated.  

 

In the work of Bertazzi and Speranza (2002) summarized in Table 2.19, 

minimization of transportation and inventory holding costs of multiple 

products for the single link problem is examined. In the problem it is tried to 

determine when to make shipments, how much of each product to ship and 

how much starting inventory is needed for both the supplier and the retailer at 

time zero. 

 

 

 

Table 2.19 Bertazzi and Speranza (2002) in Transportation Science 
Component Characteristic 

Start Point-End Point E(1, 1) 

Planning Horizon P(∞ ) 

Vehicle(s) V(C, NC) 

Demand Structure Stationary, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(N, N) 

Inventory Policy Endogenous 

Transportation Cost Fixed 

Performance 

Measure(s) 
Total cost 

 

 

 

Three cases of the problem are defined, the continuous case, the discrete case 

with given frequencies and the case with discrete shipping times. In the 

continuous case all products are shipped at a unique frequency and a single 
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vehicle is used to ship all products. In order to determine the unique frequency, 

a nonlinear constrained optimization model, which has closed form solution, 

should be solved.  

 

In the discrete case with given frequencies, it is assumed that shipments can be 

made only with given frequencies so that time between these shipments is 

integer. Moreover, it is assumed that for each frequency the quantity of each 

product shipped at every shipment is constant. Although resulting problem is 

NP-hard due to the integrality constraints, an exact algorithm of Speranza and 

Ukovich (1996) which is able to solve up to 10,000 products and 15 

frequencies is used.  

 

In the case with discrete shipping times, the set of shipping times is integer and 

finite. The quantity of each product to ship, the number of vehicles to use and 

the initial inventory levels at time zero should be calculated. This problem is 

also NP-hard. 

 

16 randomly generated test instances are generated to see the effect of 

discretization of the shipping times and the cost difference between time based 

strategies and frequency based strategies. According to the results, 

discretization of the shipping times can have an influence on total cost with an 

average increase of 20%. On average, time based strategies generate 1.2% 

lower total costs than frequency based shipping strategies. 

 

In the work of Tang, Yung and Ip (2004) summarized in Table 2.20, the 

problem of integrating decisions of production lot sizing, ordering and 

transportation is considered. The related costs are setup costs of suppliers, 

inventory holding costs of suppliers, holding costs of retailers, ordering costs 

of retailers, and transportation costs. The problem is separated into two layers, 

where in the first layer combined decisions of assigning production and lot size 



to suppliers are made, in the second layer combined decisions of transportation 

and order quantity with multiple products are made. More specifically, in the 

first layer the amount of each type of products to be produced and the lot size 

for each supplier to meet the total demand from the destinations at the 

minimum total production costs are computed. In this layer a two step 

assignment heuristic is used. In the first step of the heuristic, the individual 

production lot size for each type of product and each supplier is determined. In 

the second step of the heuristic, solutions of the first step is combined using 

assignment problem. 

 

 

 

Table 2.20 Tang, Yung and Ip (2004) in Journal of Manufacturing Systems 
Component Characteristic 

Start Point-End Point E(M, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(NC, NC) 

Demand Structure Dynamic, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(Y, Y) 

Inventory Policy Endogenous 

Transportation Cost Distance  

Performance Measure(s) Total cost, CPU Time 

 

 

 

In the second layer, the solutions of the first layer are used. The amounts of 

units shipped annually and the order quantity per time between the suppliers 

and the destinations at the minimum total cost of transportation, inventory 

holding and ordering within the capacities are computed. Upper bound for that 

problem can be obtained by solving a transportation problem which is 
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constructed by the modification of some constraints of the combined 

transportation and order quantity problem with the transportation simplex 

method. Transportation heuristic used in the second layer starts with the 

solutions obtained from the upper bound. Thens in an iterative manner, flow 

variables of order quantity and shipping quantity are calculated. When the 

order quantities are calculated, remaining problem is an LP and easy to solve.  

 

The overall procedure can be summarized as follows; the combined assignment 

of production and lot size problem is solved with an assignment heuristic. 

Then, annual production amounts that are obtained from the first problem are 

used in the solution of combined transportation and order quantity problem 

with a transportation heuristic. Finally, solutions of two problems are used to 

calculate the objective function value. 

 

Two-layer-decomposition method is compared with the nonlinear 

programming Quasi Newton Method for eight randomly generated settings. In 

all settings, proposed method gives better results in both total cost and CPU 

time. It saves 2% to 9% cost over than Quasi Newton Method. 

 

In the study of Bertazzi, Paletta and Speranza (2005) summarized in Table 

2.21, a variant of order-up-to-level policy, called fill-fill-dump policy, in which 

order-up-to-level quantity is shipped to all but the last retailer on each delivery 

route and the quantity supplied to the last retailer is the minimum of order-up-

to-level quantity and the remaining vehicle capacity. Production setup costs 

defined in this paper can be treated as ordering costs in inventory routing 

problem. 

 

Two decomposition procedures for the model are stated. The first one consists 

of separating the production problem from the distribution problem, while the 

second one consists of the same setting by moving the variable production 
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costs from the production subproblem to the distribution subproblem. Two 

heuristic algorithms are presented where the order of problems solved in the 

procedure differs only in the two heuristics: either production subproblem or 

distribution subproblem is solved firstly. 

 

 

 

Table 2.21 Bertazzi, Paletta and Speranza (2005) in Journal of Heuristics 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(T) 

Vehicle(s) V(C, NC) 

Demand Structure Dynamic, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(Y, N) 

Inventory Policy Order up-to-level 

Transportation Cost Fixed + Distance  

Performance Measure(s) Total cost, number of vehicles, number of visits 

 

 

 

According to the results, fill-fill-dump policy obtains better results with respect 

to order-up-to-level policy. On 73% of the test instances, fill-fill-dump policy 

generates the best solution values.  

   

In the study of Pinar and Sural (2006) summarized in Table 2.22, the problem 

introduced in Bertazzi, Paletta and Speranza (2002) is considered where the 

available amount of product at the supplier is constant. They propose a 

Lagrangian relaxation based solution procedure. It is the first study to develop 

a mixed integer programming formulation for the problem in Bertazzi, Paletta 

and Speranza (2002). 
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The upper bounds obtained are better than those of “every” heuristic. However, 

the upper bounds of Bertazzi et al. are slightly better than the upper bounds of 

Pinar and Sural (2006) with an average of 4%. 

 

 

 

Table 2.22 Pinar and Sural (2006) in Proceedings of the Material Handling 

Research Colloquium 
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(T) 

Vehicle(s) V(C, 1) 

Demand Structure Dynamic, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(N, N) 

Inventory Policy Order up-to-level 

Transportation Cost Distance  

Performance Measure(s) % Gap, CPU time, Total cost 

 

 

 

In the study of Abdelmaguid and Dessouky (2006) summarized in Table 2.23, 

backordering is considered as distinctive feature of the model. In each period 

deliveries are made only if any retailer’s inventory level reaches to zero. If a 

retailer carries inventory to the next period, it is not served. 

 

In the algorithm, transportation cost of each retailer is calculated such that a 

retailer’s transportation cost is the reduction in cost if that retailer is removed 

from the delivery tour. Inventory and backorder decision subproblems are 

solved given these transportation costs. Then how much to deliver to each 

customer is determined by solving a vehicle routing problem. 
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Table 2.23 Abdelmaguid and Dessouky (2006) in International 

                              Journal of Production Research         
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(T) 

Vehicle(s) V(CV, M) 

Demand Structure Dynamic, Deterministic 

Inventory I(N, Y) 

Backordering B(N, Y) 

Ordering O(N, Y) 

Inventory Policy Endogenous 

Transportation Cost Fixed  + Distance  

Performance 

Measure(s) 
Total cost and CPU time 

 

 

 

The solution values computed with the proposed heuristic algorithm deviates at 

most 20% from the upper bounds calculated by trying to solve the original 

mixed integer programming model with CPLEX solver.  

 

In the work of Lei, Liu, Ruszczynski and Park (2006) summarized in Table 

2.24, integrated problem of production, inventory and transportation is 

examined. The objective of the problem is the determination of the operation 

schedules to coordinate production, inventory holding and transportation so 

that the customer demand, transportation travel times, vehicle capacity 

constraints, plant production and storage constraints are all satisfied while the 

remaining operational cost over the planning horizon is minimized. 

 

In the problem, since backordering is not allowed, the suppliers are able to use 

outsourcing when the capacities of its vehicles are insufficient. Moreover, 

vehicles can make multiple trips in each period.  
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Table 2.24 Lei, Liu, Ruszczynski and Park (2006) in IIE Transactions 
Component Characteristic 

Start Point-End Point E(M, M) 

Planning Horizon P(T) 

Vehicle(s) V(CV, M) 

Demand Structure Dynamic, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(N, N) 

Inventory Policy Endogenous 

Transportation Cost Amount + Time 

Performance 

Measure(s) 
Total cost and CPU time 

 

 

 

The mixed integer formulation of the problem is presented. Authors solve this 

model with a two-phase approach. In phase one, a restricted version of the 

main problem is solved in the sense that only direct deliveries are allowed. 

Since solution to that problem is always feasible to the main problem, a set of 

solution values for quantities to be produced, kept as inventory and transported 

per time period are obtained. 

 

In the second phase, a heuristic transporter routing algorithm, called load 

consolidation is used. The algorithm removes all less-than-truck-load 

assignments of phase one, and consolidates those assignments subject to 

transporter capacities and time window constraints.  

 

Load consolidation algorithm is compared with the results obtained by solving 

the first problem with CPLEX and the second problem with load consolidation 

algorithm. For small problem settings, the average deviation is 1.98%, for 

larger settings load consolidation algorithm yields better results.  
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The solution values of the load consolidation algorithm are also compared with 

the solutions obtained by solving the whole model with CPLEX. In 34 of the 

48 cases, load consolidation yields the same or better results in one minute, 

whereas CPLEX is run for 2 hours.  

 

In the work of Yung, Tang, Ip and Wang (2006) summarized in Table 2.25, 

multi-product case of Tang, Yung and Ip (2004) is examined. As in the single 

product case, multi-product problem is decomposed into two layers; however, 

in the multi-product decomposition Lagrange multipliers are used. In the first 

layer annual production amounts of suppliers, transportation flows and 

production lot sizes are determined. This layer is decomposed into two 

subproblems, where in the first one allocating production capacity among 

product types for each supplier and assigning transportation flows between the 

suppliers and retailers are determined, in the second one given a certain 

assigned production for each type of product lot sizes are determined. The 

assignment heuristic used in this layer starts with an initial feasible solution by 

solving an upper bound linear program. Then, closed form formulations are 

used to find local optimal solutions. Until the termination condition is satisfied, 

in an iterative manner, local optimal solutions are computed. The optimal 

solution is the minimum of all local optimal solutions. 

 

In the second layer annual transportation quantity of each product and quantity 

per order for individual supplier retailer pair are determined. In this layer 

revision of the heuristic defined in Benjamin (1989) is used. Like the 

assignment heuristic, this heuristic starts with an initial solution and continues 

iteratively.  

 

 

 

 



Table 2.25 Yung, Tang, Ip and Wang (2006) in Transportation Science 
Component Characteristic 

Start Point-End Point E(M, M) 

Planning Horizon P(∞ ) 

Vehicle(s) V(NC, NC) 

Demand Structure Stationary, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(Y, Y) 

Inventory Policy Endogenous 

Transportation Cost Amount 

Performance 

Measure(s) 
Total cost and CPU time 

 

 

 

11 randomly generated test instances of the same size are used to compare the 

Lagrangian relaxation with heuristics results with the results obtained by 

Fmincon, a traditional nonlinear programming technique and the algorithm 

used in Tang, Yung and Ip (2004). In all cases, proposed algorithm yields the 

same or better results. Moreover, 7 randomly generated test instances of 

different sizes are used to test the quality of the results in different settings. The 

proposed algorithm saves 1.5% to 8% cost and requires less CPU time.  

 

The study of Solyali and Sural (2007) summarized in Table 2.26, considers a 

variant of Bertazzi, Paletta and Speranza (2002) and differs with cost structure 

from Fumero and Vercellis (1999). In Fumero and Vercellis (1999), 

transportation costs are proportional to the amount shipped and distance 

traveled whereas transportation costs only depend on distance traveled in 

Solyali and Sural (2007). 
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On average, a Lagrangian based solution approach in Solyali and Sural (2007), 

yields better results than “every” and “latest” heuristics given in Bertazzi, 

Paletta, and Speranza (2002). 

 

 

 

Table 2.26 Solyali and Sural (2007) in Technical Report of Department of 

Industrial Engineering, METU   
Component Characteristic 

Start Point-End Point E(1, M) 

Planning Horizon P(T) 

Vehicle(s) V(C, M) 

Demand Structure Dynamic, Deterministic 

Inventory I(Y, Y) 

Backordering B(N, N) 

Ordering O(Y, N) 

Inventory Policy Order up-to-level 

Transportation Cost Fixed + Distance  

Performance Measure(s) % Gap and CPU time 

 

 

 

In the study of Savalsbergh and Song (2008) summarized in Table 2.27, more 

realistic assumptions than the prior works such that limited product 

availabilities at facilities and prohibition of out-and-back tours are applied. 

They present MIP formulation of the problem. For solving the problem, they 

tried to reduce the problem size by using connectivity lists and adding valid 

inequalities to the formulation. In order to do that, they determine the delivery 

and non-delivery periods for each customer, and transportation availability of 

each location. They solve CVRPs by two separation heuristics. One is integer 

connected components separation heuristic and the other is connected 

components separation heuristic. In prior heuristic, they detect delivery cover 
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inequalities that are violated and adding these inequalities to the problem. The 

latter heuristic, which is used only when the prior heuristic fails to detect 

violated inequalities, seeks the violation for each supernode where supernodes 

in a period are defined as the nodes included in the tour of the respective 

period. 

 

They tested their algorithm on three data sets. More specifically they seek the 

effect of delivery cover inequalities. They show that it takes less time (on 

average 111 seconds) when cover inequalities are used than the default setting 

(on average 4823 seconds). 

 

On average, the %IP gap is 4.06% and the %LP gap is 17.66% of the algorithm 

where %IP gap is the gap between the IP solution calculated by CPLEX and 

the heuristic solution; and %LP gap is the gap between the LP relaxation result 

and the heuristic solution. 

 

 

 

Table 2.27 Savalsbergh and Song (2008) in Computers & Operations Research 
Component Characteristic 

Start Point-End Point E(M, M) 

Planning Horizon P(T) 

Vehicle(s) V(C, M) 

Demand Structure Dynamic, Deterministic 

Inventory I(N, Y) 

Backordering B(N, N) 

Ordering O(N, N) 

Inventory Policy Endogenous 

Transportation Cost Distance 

Performance 

Measure(s) 
CPU time, %IP Gap and %LP Gap 

 



The studies related with inventory routing concept in the literature that are 

listed in this chapter can be classified into three groups according to planning 

horizon. The groups are exhibited in Table 2.28. 

 

 

 

Table 2.28 Classification of reviewed studies according to planning horizon 

and route cost estimation 
Planning 

Horizon 
Table number of articles 

P(1) 1 (R), 5 (R) 

P(T) 8 (R), 11 (R), 14 (R), 15, 18 (R), 21 (R), 22 (R), 23 (R), 24 (R), 26 (R), 27 (R) 

P(∞ ) 2, 3, 4, 6, 7, 9, 10, 12, 13,16, 17, 19, 20, 25 

 

 

 

In the table, (R) denotes that in the related article routing aspect is specifically 

considered, in the other articles only estimates of delivery routes are made or 

direct deliveries that cover single customer in each route are used.  

 

It is observed that when the planning horizon is infinite, routing problems are 

naturally relaxed by estimating routing costs or using direct deliveries; 

however, the finite horizon models consider routing problem in detail. 
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CHAPTER 3 

 

 

THE MULTIPLE RETAILER INVENTORY ROUTING PROBLEM 
WITH BACKORDERS 

 

 

 

In this chapter, we first describe the multiple retailer inventory routing problem 

with backorders, called INVROP, and then present its classification scheme. 

Next we list our assumptions related with the INVROP. Then, we formulate the 

INVROP as a mixed integer programming model, compare our model 

M(INVROP) (model of inventory routing problem) with previous work in the 

literature, namely, Chien et al. (1989) and Abdelmaguid and Dessouky (2006), 

and then state the assumptions we made in this mathematical formulation. 

Since INVROP is NP-hard, we use Lagrangian relaxation for solving the 

problem. The suggested relaxation on the mixed integer formulation of the 

problem is discussed at the end of the chapter. 

 

The INVROP integrates inventory and routing decisions. In each period, the 

supplier decides whether to dispatch vehicles for distribution so as to serve a 

set of geographically dispersed retailers or not. Since the supplier is dealing 

with only dispatching, it can be considered as a crossdock unit in the problem. 

The supplier is assumed to be able to satisfy the demand in the system, but the 

system may let retailers backlog their external demands.  The main control 

mechanism is to decide whether to satisfy the end customer demand from the 

current distribution, or from the inventory at the retailers, or by backlogging so 

that service is given in some future period. The inventory and distribution 

decisions are considered together and given to minimize system wide costs. 

The costs consist of retailer specific holding cost and backlogging cost, vehicle 

specific dispatching cost, distance and amount based transportation cost. 
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In this setting, each vehicle distributes specified amounts to the retailers, which 

are listed to be served for the period in consideration. The lists of customers to 

be served are prepared by the supplier. Any retailer that is not in the list (i.e. 

not to be served by a vehicle in that period) will not be visited in the associated 

period. If a vehicle is dispatched in any period, a fixed cost of dispatching is 

incurred. Transportation costs are calculated proportional to the Euclidean 

distances on the links between the stop points. Fixed charges are known in 

advance according to the links.  Since Euclidean distances are used; the 

shortest distance going from one point to another does not include another 

distinct point (a third point).   

 

Any retailer can hold inventory with the retailer specific holding cost for each 

unit held per period; and any retailer can backlog the end customer demand 

with the retailer specific backordering cost for each unsatisfied unit per period.  

 

 

 

Table 3.1 Classification scheme of the INVROP 
Component Characteristic 

End Point E(1,M) 

Planning Horizon P(T) 

Vehicle(s) V(Cm,M) 

Demand Structure Dynamic, Deterministic 

Inventory I(N,Y) 

Backordering B(N,Y) 

Ordering O(N,Y) 

Inventory Policy Endogenous 

Transportation Cost Fixed (vehicle specific) + Distance  

Performance Measure(s) Minimizing total costs of inventory holding, 

backordering and transportation 
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The properties of the problem with respect to the classification scheme 

presented in Chapter 2 are given in Table 3.1. 

 

This problem is similar to the problem in Chien et al. (1989), and Abdelmaguid 

and Dessouky (2006). The differences between our problem and its ancestors 

can be stated as follows. 

 

• In our problem, the objective is to minimize system wide costs, which 

is the same as Abdelmaguid and Dessouky (2006); however, the 

objective in Chien et al. (1989) is to maximize profit while not 

considering inventory holding cost. 

 

• Our problem consists of T time periods as in Abdelmaguid and 

Dessouky (2006); however, Chien et al. (1989) considers a single 

period problem. 

 

• Since Chien et al. (1989) has a single period problem, unlike 

Abdelmaguid and Dessouky (2006) and ours, holding inventory makes 

no sense. In all three problems, backordering is allowed.  

 

• In our problem backordering in the last period is not allowed; therefore, 

all the demand of end customers must be satisfied during the planning 

horizon. However, in Abdelmaguid and Dessouky (2006), backordering 

in the last period is allowed. Since Chien et al. (1989) considers a single 

period problem and backordering is allowed, it is different from our 

problem. 

 

• Chien et al. (1989) charges transportation costs depending on the total 

amount of product carried on the links between the points. In 

Abdelmaguid and Dessouky (2006), the cost is independent of the 
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amount carried on the links, but is based on the links’ fixed usage 

charge. In our problem transportation cost consists of both fixed arc 

usage cost and variable transportation cost depending on the amount 

carried on these arcs. 

 

• We assume that the supplier has unlimited inventory at its depot. 

However, Chien et al. (1989) assumes a predetermined amount Q in the 

beginning of period. 

 

• Abdelmaguid and Dessouky (2006) assumes that a retailer is served if 

and only if its inventory level reaches zero. However, we do not have 

such a simplifying assumption which may not be the optimal allocation 

policy. 

 

We use the same variable definitions in formulating the problem 

mathematically as it is formulated in Chien et al. (1989). Whereas, 

Abdelmaguid and Dessouky (2006) develops a different model to formulate 

the problem in consideration. 

 

3.1 Assumptions of the INVROP  

 

We state the assumptions of the INVROP below. 

 

• The external demand or the demands of end customers occur at the 

retailers. 

 

• Required amount to be distributed is assumed to be available at the 

supplier (depot) in each period. 
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• Depot cannot hold inventory or backorder, but decides about the 

vehicles to be dispatched, the retailers to be served, and the amounts to 

be distributed in these visits. It is actually a crossdock facility. 

 

• We assume that there is an underlying network that hosts the system’s 

transportation structure. In this network, nodes represent supplier and 

retailer sites. The arcs (links) represent connections between these 

nodes. 

 

• Each vehicle of the fleet can make at most one trip in each period. Each 

trip starts from the depot and ends at the depot. Subtours not including 

the depot are not allowed. 

 

• The amount carried by each vehicle is constrained by the vehicle 

capacity. 

 

• There is no lead time for both depot and retailers. Products to be 

distributed to each retailer are ready at the beginning of each period and 

can be used to satisfy the demands of end customers at the beginning of 

the period. Therefore, the next period’s inventory level (positive, zero, 

or negative) is carried from the beginning of current period.  

 

• Backordering and keeping inventory are allowed at the retailers. 

 

• The amount of product that can be stored at each retailer is constrained 

by the retailer’s storage capacity. 

 

• Initial inventory levels and initial backordered demands of all retailers 

are zero. 

 



• Backordering in the last period is not allowed. 

 

3.2 Mixed integer formulation of the INVROP 

 

In this section, a mathematical model of the INVROP is presented. We first 

state indices, parameters, and definitions of the variables. Then, we explain the 

objective function and constraints of the model. 

Indices of the model are as follows. 

 

t     : Time index (discrete time periods): 1, 2, …, T and T = T . ∪ { }0

i, j : Node index : 0, 1, …, N (i = 0 denotes depot ). N denotes the set of 

retailers and N = N ∪ { }0 . 

 k    :  Retailer index: 1, 2,  …, N.  

 v    :  Vehicle index: 1, 2, …, V. 

 

Parameters of the model are as follows. 

 

N     : Number of locations (retailers).   

V      : Number of vehicles. 

T      : Number of time periods. 

vK     : Capacity of vehicle v.  

kImax   : Storage capacity of retailer k. 

ktd     : Demand of the end customer of retailer k in period t. 

ijvtf    : Fixed cost for vehicle v in period t to use arc (i,j) for going from    

location i to location j. 
k
ijvtc    : Variable cost of carrying one unit of product by vehicle v in period t on 

arc (i,j) for going from location i to location j for the designated 

customer k. 
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tO     : Fixed vehicle dispatching cost in time period t. 

kth     : Unit holding cost for retailer k in period t. 

ktb     : Unit backordering cost for retailer k in period t. 

 

Notice that parameters N, V and T will denote both index sets and the 

cardinality of the corresponding sets. The meaning will be clear from the 

context of use. 

 

Decision variables of the model are as follows: 

 

⎪
⎩

⎪
⎨

⎧

otherwise 0
 perodin     

 ),(  arc using location    tolocation   from  travels  vehicleif 1
:    t

jijiv
yijvt  

k
ijvtx   : Amount of product destined to retailer k, which is transported from           

o                location i to location j by vehicle v in period t. 

ktI       : Amount of product held by retailer k in period t. 

ktB      : Amount of product backordered by retailer k in period t. 

ktS       : Amount of product supplied to retailer k in period t.  

 

Note that an illustrative example for the flow variables is presented in 

Appendix A. 

 

M(INVROP): 
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The objective function (3.1) consists of fixed arc usage cost (first term), retailer 

specific holding cost and backordering costs (second term in summation), fixed 

vehicle dispatching cost (third term) and variable transportation cost depending 

on the amount of product carried (fourth term). 

 

Constraint set (3.2) satisfies the vehicle capacity restriction. The total amount 

sent to the retailers on a specified arc should be less than or equal to the 

capacity of the vehicle that traverses that arc. It thus links binary variables of 

arc usage (yijvt) and flow variables representing the amounts carried on these 

arcs (xk
ijvt).  

 

Constraint set (3.3) is for the commodity flow conservation equations. The set 

is defined for depot and all retailers. For the depot, the cumulative product 

going out is equal to the total amount to be distributed to retailers by a vehicle 

in a period. For retailers, the difference between the amount coming into 

retailer k and the amount going out of retailer k is the amount supplied to 

retailer k with a vehicle in a period. 

 

Constraint set (3.4) is for the commodity flow conservation equations, which is 

defined for the retailers that are not designated customers. The difference 

between the amount coming into a retailer who is not to be served and the 

amount going out of that retailer is equal to zero; therefore, it is ensured that a 

retailer that is not in the list in a period is not served in that period. 

 

Constraint sets (3.5) and (3.6) limit the movements of vehicles. By set (3.5), it 

is ensured that a vehicle that visits a retailer (or depot) in a specified period 

must leave that retailer (or depot). By set (3.6), it is ensured that a vehicle can 

visit a retailer (or depot) at most once in a period. Therefore, it is assumed that 

a vehicle starting from the depot will turn back and each vehicle can make at 
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most one trip in every period. Note that the formulation eliminates possible 

subtours that are excluding the depot.  

 

Constraint set (3.7) is the inventory balance equations for the retailers. 

Incoming inventory of a retailer minus the amount backordered in the previous 

period minus the amount to be hold at the end of a period plus the amount 

backordered in that period plus the amount supplied in that period is equal to 

the demand of that retailer in that period. Hereby, it is obvious that in each 

period the system has three options: holding inventory, backordering and 

satisfying the demand.  

 

Constraint set (3.8) is related with the limitation on the stocking amount at the 

retailers. A retailer cannot hold more inventories than its storage capacity. 

 

Constraint set (3.9) restricts the amount carried for a designated customer on 

each arc with the minimum of vehicle capacity or the sum of the cumulative 

demand and maximum inventory level. Constraint set (3.14) also restricts the 

amount carried for a designated customer on each arc by with the supply 

amount to that customer. These two constraint sets are redundant for the 

original formulation but it will be helpful for developing a bounding procedure. 

For relaxations, these constraints help to make the formulation stronger. 

 

Constraint set (3.10) is used not to start with backorders. Constraint set (3.11) 

is used to set the initial inventory levels of the retailers to zero. Constraint set 

(3.12) is used to prohibit backordering in the last period. 

 

Constraint set (3.13) is the redundant supply equations. These constraints are 

redundant for the original model. However, they would be useful when a 

relaxation is applied to solve the model. 
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Constraint sets (3.15) and (3.16) are the non-negativity and integrality 

constraints, respectively.  

 

M(INVROP) is a mega model representing possible combinations of cost 

applications. We can apply both flow independent and flow dependent cost 

components. In more specific, the formulation is able to handle realistic 

assumptions such as transportation cost depends not only on distance traveled 

and vehicles used, but also the amount carried. Moreover, in our preliminary 

experiments we observed that the flow dependent cost representation strengths 

the formulation by adding importance on the flow variables.  

 

M(INVROP) is a huge mixed integer model. Solving the model optimally in 

reasonable time is not possible for even moderate size instances. The model 

consists of N3VT + 2N2VT + NVT + 3NT + 2N variables in total. N2VT + 

NVT many of these variables are integer and the rest are continuous. Also the 

model has 2N3VT + 4N2VT + 2NVT + 4NT + 2VT + 2N + 4T + T many 

constraints. For a possible problem (taken from the literature) with {N=15, 

T=7, V=2} there exist 54,105 variables (3,360 integer variables) and 108,035 

constraints. 

 

3.3 Lagrangian relaxation based solution approach 

 

Since the INVROP is hard to solve in reasonable times we propose a 

Lagrangian relaxation based approach in order to obtain tight lower bounds and 

good upper bounds (feasible solutions). In this section we give the details of 

the Lagrangian relaxation based solution approach applied to M(INVROP). 

 

The Lagrangian relaxation is a strong tool used in the literature to find “good” 

solutions (optimal solutions are not guaranteed) for the difficult problems. 

Basics of the method consist of generating the original model, choosing 
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constraints that are to be relaxed, attaching the Lagrange multipliers to these 

constraints and adding them to the objective function, and solving resulting 

(relaxed) model. Most crucial part of the method is choosing the constraint(s) 

to be relaxed. Beasley (1993) advices considering the following aspects in a 

relaxation: 

 

• The number of Lagrange multipliers needed. 

• The computational effort required to solve the relaxed problem. 

• Whether the relaxed problem has integrality property or not. 

 

While leaving the first two aspects, in this application, we relax those 

constraints whose removals abolish the integrality property of the relaxed 

problem. Therefore, we can say that our lower bounds will be better than any 

of others satisfying integrality property and the LP (Linear Programming) 

relaxation (in theory). 

 

After choosing the constraints to be relaxed, relevant Lagrange multipliers are 

attached to these constraints and these constraints are added to the objective 

function. Multipliers can be seen as a penalty for violating the selected 

constraints. The model tries to minimize these violations so that the value of 

the objective function of the relaxed problem comes closer to the optimal value 

of the original problem’s objective function. The solution obtained by solving 

relaxed problem –not necessarily feasible- gives a lower bound on the original 

problem’s objective function. Moreover, the Lagrangian solutions are used to 

obtain good upper bounds for the original problem. If the solution of the 

relaxed problem is not feasible, for example, by applying a simple heuristic, a 

feasible solution can be obtained and this solution constitutes an upper bound. 

In order to close the gap between these two bounds and to update the 

Lagrangian multipliers, usually subgradient optimization is applied iteratively. 

Basically in each step, subgradients (differences of right-hand-sides and left-



hand-sides of the relaxed constraints) are calculated, and the Lagrange 

multipliers are adjusted according to these subgradients. These steps will be 

covered in the “Subgradient Search” section.  

 

The overall algorithm is terminated if any user defined stopping condition is 

satisfied. Some well-known stopping conditions are: 

 

• Reaching a maximum iteration number (user defined). 

• Upper bound = lower bound (optimal solution is found). 

• The gap between the upper bound and the lower bound is below a 

reasonable value (user defined). 

• Reaching a computation time limit (user defined). 

• Reaching the minimum value of step size used in the subgradient 

optimization method (user defined). 

 

For applying the Lagrangian relaxation method to M(INVROP), constraint sets 

(3.3), (3.4), and (3.5) are chosen since these constraints are the most 

complicating constraints of the problem. Recall that these constraints prohibit 

subtours and provide complete routes. Since the problem of finding the 

minimum cost tour for each period for each vehicle is a well-known NP-hard 

problem in the literature, relaxing these constraints simplifies the solution to 

the remaining problem.  

Lagrange multipliers used are: 

 

•    ; for constraint set (3.3). k
itα kiori == 0

•   ; for constraint set (3.4). k
ivtβ kiandi ≠≠ 0

• ivtγ    for constraint set (3.5). 

 

The relaxed problem (REP) is given below: 

  
 

71 
 



Minimize (1) + ∑∑  +             ∑∑ ∑∑
= = = = = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

N

k

T

t

N

j

V

v

N

j

V

v

k
vtj

k
jvtkt

k
t xxS

1 1 1 1 1 1
000α

∑∑ ∑∑ ∑∑
= =

≠
= =

≠
= = ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+

N

k

T

t

N

kj
j

V

v

N

kj
j

V

v

k
jkvt

k
kjvtkt

k
kt xxS

1 1 0 1 0 1
α  +  + 

                                                                   (3.17)                             

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−∑ ∑∑∑∑∑

≠
=

≠
== = =

≠
=

N

ij
j

N

ij
j

k
jivt

k
ijvt

N

i

V

v

T

t

N

ik
k

k
ivt xx

0 01 1 1 1
β

∑∑ ∑∑∑
= =

≠
=

≠
== ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

N

i

V

v

N

ij
j

jivt

N

ij
j

ijvt

T

t
ivt yy

0 1 001
γ

 

Subject To  

ijvtv

N

k

k
ijvt yKx ≤∑

=1
      TtVvjiNji ∈∈≠∈∀  ,  ,  ,,                                           (3.2) 

1
0

≤∑
≠
=

N

ij
j

ijvty        TtVvNi ∈∈∈∀  , ,                                                               (3.6) 

ktktktktktkt dSBIBI =++−− −− 11      NkTt ∈∈∀  ,                                         (3.7) 

k
kt II max≤       NkTt ∈∈∀  ,                                                                           (3.8) 

ijvtv
k

t

r
kr

k
ijvt yKIdx

⎭
⎬
⎫

⎩
⎨
⎧

+≤ ∑
=

 ,min max
1

      
Nk

TtVvjiNji
∈

∈∈≠∈∀  , ,  ,  ,,              (3.9) 

00 =kB                                                                     (3.10) Nk ∈∀

00 =kI                                                                     (3.11) Nk ∈∀

0=kTB                                                                     (3.12) Nk ∈∀

∑∑
==

≤
V

v
v

N

k
kt KS

11
                                                                             (3.13) Tt ∈∀ 

  kt
k
ijvt Sx ≤    NkTtVvjiNji ∈∈∈≠∈∀   , ,  ,  ,,                                       (3.14) 

0  , , , ≥k
ijvtktktkt xBIS      NkTtVvjiNji ∈∈∈≠∈∀  , ,  ,  ,,                        (3.15) 

}{ 1,0∈ijvty      TtVvjiNji ∈∈≠∈∀  ,  ,  ,,                                                 (3.16) 
  

 
72 

 



The objective (3.17) can be written as in the form below. 
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We rearrange the objective function of REP (3.18) and define new coefficients 

for the commonly used variables as follows: 
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Let REP denote the following modified Lagrangian relaxed problem: 
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Note that without the constraint set (3.14), the REP actually decomposes into 

the following two subproblems. 

 
• Retailer Subproblem (RESP). 

 
• Distribution Subproblem (DISP). 

 
 
The two subproblems (RESP and DISP) and the associated lower and upper 

bounds calculated by using these two subproblems are explained in detail in 

Appendix B. Since the bounds calculated by using these two subproblems are 

poor, we do not use this relaxation anymore. 

 

3.4 Computation of lower bound from REPWCUT 

 

We impose valid inequalities to the REP and transform into a stronger form 

REPWCUT. The valid inequalities are as follows. 
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Constraint set (3.20) limits the flow variables coming into retailer k that are 

designated for retailer k by its supply amount in each period t. 

 

Constraint set (3.21) limits the flow variables leaving the depot and designated 

for retailer k by the supply amount of that retailer k. 

 

Moreover, the constraint set (3.9) and (3.14) are used if they are not redundant 

for REP, i.e. the valid inequalities of (3.20) and (3.21) cover some of the 

constraint set (3.14) and they become redundant. For the periods in which 

vehicle capacity is more than the sum of total demand of each customer from 

the very beginning of the planning horizon to the current period, the maximum 

inventory keeping allowed constraint set (3.9) is used. For the other periods in 

which the flow variables are bounded by vehicle capacity constraint set (3.2) is 

enough. The necessary part of constraint set (3.14) after insertion of valid 

inequalities (3.20) and (3.21) is as follows.  

 

   kt
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ijvt Sx ≤    kjkiNkTtVvjiNji ≠≠∈∈∈≠∈∀   ,  ,  , ,  ,  ,,                 (3.22) 

 

The formulation of REPWCUT is given below, Z(REPWCUT) denotes the 

solution value of REPWCUT and give a lower bound on the objective function 

of the INVROP. 
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3.5 Computation of upper bound 

 

After solving the REPWCUT, the values of supply variables *Skt are known. It 

implies that the total amount to be shipped in each period is known. Since the 

amount to be shipped in a period cannot exceed the fleet capacity, a feasible 
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schedule, i.e. allocation of shipment amount to the vehicles, is obtained by 

solving a capacitated vehicle routing problem (CVRP). In short, given the set 

of *Skt variables for each time period t a CVRP(t) is solved. Summation of 

CVRP(t)’s over all time periods is used to generate an upper bound. 

 

3.5.1 Capacitated vehicle routing problem 

 

The capacitated vehicle routing problem is formulated in a similar way of 

Chien et al. (1989). The problem which is solved for each time period t  ( t  

denotes specific time period t) is given below. 
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The constraint sets (3.24), (3.25), (3.26) and (3.27) are the decompositions of 

the constraint sets (3.2), (3.3), (3.4) and (3.5) into time periods respectively. 

Constraint set (3.28) ensures that if there is no delivery planned for a particular 

customer k, there will be no shipment to that customer. For further 

improvements of the problem with single vehicle, we add the following 

constraints, in which new variables ui’s are defined. 

 

iu      : Amount of product leaving location i. 
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Constraint set (3.31) ensures that if the supply amount, which is calculated in 

lower bound section, of a retailer is positive, the vehicle visits that retailer. 

Constraint set (3.32) ensures that the vehicle must leave the customers that are 

visited. Constraints (3.33) and (3.34) ensure that a tour is started and ended at 

depot if there is any customer demand in that period. Constraint set (3.35) 

limits the total products leaving a location by total supply amount (which is 

less than or equal to the vehicle capacity). Constraint set (3.36) ensures that the 

amount of product leaving location i should cover the supply of the succeeding 

location j and the amount of product leaving location j. Constraint set (3.37) 

limits the flow variables leaving location i by the total demand of succeeding 

locations.   

 

Given that the optimal values of yijvt (y*
ijvt) and xk

ijvt (x*k
ijvt) are obtained with 

respect to *Skt values, and using (*Ikt, *Bkt) values that are obtained from the 

solution of REPWCUT, an upper bound for the original problem is computed. 

Note that *Skt, *Ikt, *Bkt, *yijvt and *xk
ijvt denote the variables computed in the 

lower bound section, y*
ijvt and x*k

ijvt denote the variables computed in the upper 

bound section. 

 

An algorithmic representation of upper bound computation is as follows. 

 

Begin. 

  

 Get *Skt, 
*Ikt and *Bkt values of REPWCUT from lower bound section; 

  

 for k = 1 to N do 
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  for t = 1 to T do  

   if (*Skt > 0)  

                                         {Add customer k to the list of customers to be  

visited in period t;} 

 else  

      {Do not visit customer k in period t;} 

 endfor 

 endfor 

  

 for t = 1 to T do 

   {Solve CVRP(t`) and obtain y*
ijvt  and x*k

ijvt values;} 

 endfor 

 

Upper_Bound = Z(INVROP(*Skt, *Ikt, *Bkt, y*
ijvt, x*k

ijvt)); 
 

End. 

 

3.6 Solution of the Lagrangian dual problem 

 

We use standard subgradient optimization algorithm to solve LADUP 

(Lagrangian Dual Problem) =  Initial values of the 

Lagrange multipliers are set to the optimal values of dual variables of the 

Linear Programming Relaxation of the INVROP (which is shown below as 

M(INVROPLP)), and in each iteration Lagrangian multipliers are updated.  

.
,,

REPWCUTMaximize
γβα

 

M(INVROPLP): 
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The updating procedure of multiplier values and the step size through our 

iterations are as follows. Let *Z  be the best known feasible solution (the upper 

bound) up to the mth iteration, and  be the solution of LADUP in mm
LRZ th 

iteration.  Let  is the step size scalar in the mmπ th iteration such that 

. If the algorithm does not yield better results for a specified 

number of iterations, the step size scalar is halved. 

20 ≤≤ mπ

 

Let the gradients of constraint sets (3.3) if i=0, (3.3) if i=k, (3.4) and (3.5) in 

the mth iteration be , respectively. These gradients are 

calculated by summing up the squared differences between the right hand sides 

and the left hand sides of the respective constraints as follows. 
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Let  be the step size in the mmρ th iteration. The step size is calculated as 

follows. 

 

mρ  =   
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The new values of the Lagrangian multipliers are computed as follows. 
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Note that in order to indicate the iteration number m, we have defined a new 

index for the variables and parameters in (3.40), (3.41), (3.42) and (3.43) as 

follows. 

 

   **
kt

m
kt SS =   in the mNkTt ∈∈∀  , th iteration. 

k
ijvt

m
ijvtk xx **     =   NkTtVvjiNji ∈∈∈≠∈∀  , ,  , ,,   in the mth iteration. 

ijvt
m
ijvt yy **   =   TtVvjiNji ∈∈≠∈∀  ,  , ,,  in the mth iteration. 

k
it

m
itk αα =     NkTtNi ∈∈∈∀  , ,  in the mth iteration. 
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k
ivt

m
ivtk ββ =   ikNkTtVvNi ≠∈∈∈∈∀  , , ,  ,  in the mth iteration. 

ivt
m
ivt γγ =   TtVvNi ∈∈∈∀  ,  ,  in the mth iteration. 

 

The flowchart of the algorithm applied to M(INVROP) is given in Figure 3.1. 
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Initialize the algorithm 
-Solve M(INVROPLP) 
-Lagrange Multipliers are      
set to optimal dual values of 
M(INVROPLP) 
-Iteration number m = 1 

Figure 3.1 Flowchart of the Lagrangian Relaxation based algorithm 
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CHAPTER 4 

 

 

COMPUTATIONAL RESULTS 

 

 

 

In this chapter we present our computational results using the Lagrangian 

Relaxation based solution approach on different test instances taken from the 

literature. We first describe our computational framework. Then, present the 

results of preliminary experiments on small test instances. We next present the 

results obtained by applying Lagrangian Relaxation based solution approach on 

larger instances. Lastly we present benchmarking results. 

 

4.1 Computational setting 

 

There are three parts of our experimentation. In the first part, we use small 

problem instances in order to decide on best parameters that are to be set in the 

succeeding experiments. In this part the solution algorithm is repeated for 250 

iterations and implemented for different parameters of the subgradient 

optimization algorithm. The parameter setting is tested as follows.  

 

• Dividing the scalar π by two (i) after 5 consecutive non-improving 

iterations, or (ii) after 20 consecutive non-improving iterations.  

 

• Initializing the lagrange multipliers by equating them (i) to zero or (ii) 

to the optimal dual variable values of the linear programming relaxation 

of the model. 
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The improvements that can be achieved by application of the valid inequalities 

that are presented in Chapter 3 are also tested by solving the problems by 

adding these inequalities to the problem formulation and by excluding them 

from the problem formulation. Moreover, the tolerance gap, which is the gap 

between the best integer solution found and the lower bound on the optimal 

solution of the relaxed mixed integer problem, at different levels are used as 

termination criterion for solving the relaxed problem optimally. In this part we 

computed the upper bound in each of the iterations of the proposed algorithm. 

 

In the second part, we implement the best parameter values obtained in the first 

part and solve the larger problems with these parameters.  

 

In the last part, for benchmarking, we revise our model and solve some of the 

original problems of Abdelmaguid and Dessouky (2006). The revised model is 

presented in the Appendix D. 

 

While presenting our test instances we use notation NTVADk. Here, N denotes 

the number of retailers, T denotes the number of time periods, V denotes the 

number of vehicles available, AD represents that the problem setting is taken 

from Abdelmaguid and Dessouky (2006) and k denotes the problem instance 

number. 

   

While presenting the algorithms with different parameters we use notation 

“LR(a, n, l, c, d, u)”, where “LR” denotes the Lagrangian Relaxation based 

solution algorithm, “a” denotes the number of consecutive non-improving 

iterations in which the subgradient optimization scalar π is halved, “n” denotes 

the number of iterations, “l” denotes whether tolerance gap limit or time limit 

is used or not, and if it is used the size of the limit is given (with “t” for time 

limit and “g” for gap limit, i.e. 15t denotes that 15 minutes of time limit is 

applied and 15g denotes 15% of gap limit is applied), “c” denotes whether the 
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valid inequalities are used or not (1 if used, 0 otherwise), “d” denotes whether 

optimal dual values of linear programming relaxation is used for the initial 

values of lagrange multipliers or not (in the latter case all are initialized at zero) 

and “u” denotes whether time limit is applied in upper bounding procedure (for 

each vehicle routing problem) or not, and if it is used the size of the time limit 

is given in minutes (0 if not used).  For instance, LR(20, 250, 5g, 1, 1, 15) 

means we use the Lagrangian Relaxation based solution approach with halving 

the scalar after 20 consecutive non-improving iterations, running the algorithm 

for 250 iterations, applying 5% gap limit, using valid inequalities, initializing 

multipliers by the optimal dual values, and applying 15 minutes of time limit 

for calculating upper bounds. The initial value of subgradient optimization 

scalar π is taken as two. 

 

All the algorithms are coded in C++ programming language. For the solutions 

of linear programming problems as well as the mixed integer programming 

problems Callable Library of CPLEX 10.1 is embedded into the C++ code. 

Moreover, CONCORDE is called from the C++ code for solving TSPs. All the 

experiments are conducted on Pentium Core 2 Duo 2.33 ghz PCs with 1 GB 

RAM.  

 

4.2 Basic test instances 

 

All test instances used in this study are taken from the literature, which are 

developed by Abdelmaguid and Desouky (2006) with the following 

characteristics. 

 

• Number of retailers (N): (5, 10, 15) 

 

• Time horizon (T): (5, 7) 
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• Number of vehicles (V): (1, 2) 

 

• Total vehicle capacity: (150, 300, 450) for N = (5, 10, 15) respectively. 

For the multi-vehicle settings, total vehicle capacity is allocated 

equally.  

 

• Amount of product demanded from retailer k at time t (dkt): Dynamic 

over time. Randomly generated using a uniform distribution from 5 to 

50. Demand values are rounded up to the nearest integer value.  

 

• Maximum amount of inventory per retailer k per time period t: Constant 

over time and is set as 120 units. We revise the maximum inventory 

levels of all retailers as 50 units per period.  

 

• Beginning inventory level: Nil. 

 

• Inventory holding cost at retailer k: Constant over time. Randomly 

generated using a normal distribution with a mean of 0.1 and a standard 

deviation of 0.02. 

 

• Shortage cost at retailer k: Constant over time. Randomly generated 

with a normal distribution with a mean of 3 and a standard deviation of 

0.5.  

 

• Transportation cost per unit distance traveled: Constant over time, 2 

units of cost. 

 

• Coordinates of each retailer k: Randomly generated using a uniform 

distribution from 0 to 20. Coordinates are rounded to the nearest integer 

value. 



• Coordinates of depot: (10, 10). 

 

• Distance between two nodes (i,j): Rounded Euclidean distance  between 

two nodes calculated with the formula:   

 

Distij
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
= −+− 22 )()( jiji yyxx  

 

where (xi, yi) denotes the coordinates of node i on the x-axis and the y-

axis, respectively. 

 

• Fixed transportation cost between two nodes (i,j): Constant over time, 

2*Distij. 

 

• Variable transportation cost of carrying one unit of item on arc (i,j): 

Constant over time, 0.05*Distij.   

 

• Fixed vehicle dispatching cost (Ot): Constant over time 10 units of cost 

per vehicle. 

 

In the preliminary experiments we have used the settings of 551ADk and 

552ADk where each setting has 5 different problems (k=1, 2, 3, 4 and 5). 

 

4.3 Performance measures 

 

In this section we present the performance measures used in the preliminary 

experiments applied on 10 test problems.  

 

• %MIP: The percentage gap between the best feasible solution (UB) 

calculated by CPLEX in specified time limit and the optimal solution 
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value of linear programming relaxation calculated by CPLEX, i.e. 

%(CPLEX_UB-LPR)/LPR. 

 

• %LGAP: The percentage gap between the lower bound calculated 

with the LR and the optimal solution value, i.e. %(Opt-LB)/Opt. 

 

• %UGAP: The percentage gap between the upper bound calculated 

with the LR and the optimal solution value, i.e. %(UB-Opt)/Opt. 

 

• %LRGAP: The percentage gap between the upper bound and the 

lower bound calculated with the LR, i.e. %(UB-LB)/LB. 

 

• CPU X: CPU time in minutes to solve X, where X will be the LR 

(Lagrangian Relaxation), CPUB (CPLEX upper bound) and LPR 

(Linear Programming Relaxation of M(INVROP)).  

 

4.4 Part 1 (Preliminary experiments) 

 

In this part the LR algorithm is run for 250 iterations in all settings except the 

settings in which we applied the valid inequalities and the relaxed problem is 

solved optimally for 100 iterations since in these settings too much CPU time 

is required to solve 250 iterations. In 250 iterations we have tried to obtain the 

best parameters that can be applied to the larger settings.   

 

In Tables 4.1 - 4.7 we show the results obtained when the parameter π  is 

halved after 5 or 20 consecutive non-improving iterations. Note that we did not 

give CPU LPR since CPLEX solves the LP models in less than 5 seconds. All 

of the CPLEX-UB values stated in this section are the optimal solution values 

of the respective problems. We observed that at the initial iterations -up to 100 

iterations-, halving π after 5 consecutive non-improving iterations yields 
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better results according to the performance measures other than CPU time; 

however, as the iteration number increased from 100 to 150 and to 250, halving 

π after 20 consecutive non-improving iterations yields significantly better 

results in all performance measures stated.  For 150 iterations, on average, 

%LRGAP decreases from 36.54% to 33.35%, %UGAP decreases from 6.2% to 

5.25%, %LGAP decreases from 22.03% to 20.9% and CPU LR decreases from 

19.4 minutes to 16.8 minutes. 

 

 

 

Table 4.1 Results of LR(5, 25, 0, 0, 0, 0) ∗

CPLEX UB CPUB LPR %MIP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1* 1430.64 0.52 847.75 68.76 1594.98 990.24 2.00 30.78 11.49 61.07
551AD2 1531.68 0.09 908.02 68.68 1682.75 1156.27 1.92 24.51 9.86 45.53
551AD3 1184.78 0.08 785.64 50.80 1223.64 925.26 2.45 21.90 3.28 32.25
551AD4 1460.41 0.11 844.35 72.96 1584.43 1072.08 2.00 26.59 8.49 47.79
551AD5 1392.00 0.09 940.41 48.02 1511.54 1045.57 2.24 24.89 8.59 44.57
Average 0.18 61.85 2.12 25.74 8.34 46.24
552AD1 1145.32 0.85 868.57 31.86 1232.80 806.70 2.20 29.57 7.64 52.82
552AD2 1505.19 18.89 1194.32 26.03 1553.71 1138.82 2.25 24.34 3.22 36.43
552AD3 1138.87 11.68 918.77 23.96 1241.90 736.29 2.13 35.35 9.05 68.67
552AD4 1138.62 3.31 908.59 25.32 1221.70 769.84 2.23 32.39 7.30 58.70
552AD5 1204.92 6.15 959.35 25.60 1347.04 782.27 2.35 35.08 11.79 72.20
Average 8.18 26.55 2.23 31.34 7.80 57.76
Overall Average 4.18 44.20 2.18 28.54 8.07 52.00

MIP Model  LR(5, 25, 0, 0, 0, 0)
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∗ Note that we revised the demand figures of the setting 551AD1 in order to obtain feasibility 
with respect to total vehicle capacity. 



Table 4.2 Results of LR(5, 50, 0, 0, 0, 0) and LR(5, 75, 0, 0, 0, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1552.20 1060.11 5.30 25.90 8.50 46.42 1552.20 1071.80 9.90 25.08 8.50 44.82
551AD2 1663.45 1232.00 4.85 19.57 8.60 35.02 1663.45 1242.74 8.40 18.86 8.60 33.85
551AD3 1221.24 971.53 6.31 18.00 3.08 25.70 1221.24 977.53 10.72 17.49 3.08 24.93
551AD4 1571.65 1184.43 5.09 18.90 7.62 32.69 1571.65 1196.92 8.94 18.04 7.62 31.31
551AD5 1477.90 1109.15 5.46 20.32 6.17 33.25 1474.75 1121.42 9.54 19.44 5.94 31.51
Average 5.40 20.54 6.79 34.62 9.50 19.78 6.75 33.28
552AD1 1206.80 865.20 4.49 24.46 5.37 39.48 1206.80 872.10 7.04 23.86 5.37 38.38
552AD2 1553.71 1204.14 4.49 20.00 3.22 29.03 1553.71 1208.10 6.95 19.74 3.22 28.61
552AD3 1212.01 803.34 4.41 29.46 6.42 50.87 1212.01 813.70 6.83 28.55 6.42 48.95
552AD4 1186.85 847.57 4.50 25.56 4.24 40.03 1168.04 858.55 6.96 24.60 2.58 36.05
552AD5 1341.70 877.65 4.79 27.16 11.35 52.87 1333.08 893.35 7.56 25.86 10.64 49.22
Average 4.54 25.33 6.12 42.46 7.07 24.52 5.65 40.24
Overall Average 4.97 22.93 6.46 38.54 8.29 22.15 6.20 36.76

LR(5, 50, 0, 0, 0, 0) LR(5, 75, 0, 0, 0, 0)

 
 

 

 

Table 4.3 Results of LR(5, 100, 0, 0, 0, 0) and LR(5, 150, 0, 0, 0, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1552.20 1073.13 15.10 24.99 8.50 44.64 1552.20 1073.27 25.77 24.98 8.50 44.62
551AD2 1663.45 1244.13 12.38 18.77 8.60 33.70 1663.45 1244.45 20.60 18.75 8.60 33.67
551AD3 1221.24 978.29 15.36 17.43 3.08 24.83 1221.24 978.47 24.54 17.41 3.08 24.81
551AD4 1571.65 1197.57 13.06 18.00 7.62 31.24 1571.65 1197.66 21.36 17.99 7.62 31.23
551AD5 1474.75 1123.53 13.86 19.29 5.94 31.26 1474.75 1124.09 23.04 19.25 5.94 31.20
Average 13.95 19.70 6.75 33.14 23.06 19.68 6.75 33.11
552AD1 1206.80 873.14 9.79 23.76 5.37 38.21 1206.80 873.31 15.83 23.75 5.37 38.19
552AD2 1553.71 1208.79 9.70 19.69 3.22 28.53 1553.71 1208.92 15.40 19.68 3.22 28.52
552AD3 1212.01 815.80 9.48 28.37 6.42 48.57 1212.01 816.04 14.86 28.35 6.42 48.52
552AD4 1168.04 860.01 9.72 24.47 2.58 35.82 1168.04 860.17 15.54 24.46 2.58 35.79
552AD5 1333.08 895.03 10.48 25.72 10.64 48.94 1333.08 895.44 17.02 25.68 10.64 48.87
Average 9.83 24.40 5.65 40.02 15.73 24.38 5.65 39.98
Overall Average 11.89 22.05 6.20 36.58 19.39 22.03 6.20 36.54

LR(5, 100, 0, 0, 0, 0) LR(5, 150, 0, 0, 0, 0)
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Table 4.4 Results of LR(5, 250, 0, 0, 0, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1552.20 1073.28 46.81 24.98 8.50 44.62
551AD2 1663.45 1244.48 36.63 18.75 8.60 33.67
551AD3 1221.24 978.47 42.92 17.41 3.08 24.81
551AD4 1571.65 1197.67 38.45 17.99 7.62 31.23
551AD5 1474.75 1124.12 41.04 19.24 5.94 31.19
Average 41.17 19.68 6.75 33.10
552AD1 1206.80 873.34 28.87 23.75 5.37 38.18
552AD2 1553.71 1208.92 26.47 19.68 3.22 28.52
552AD3 1212.01 816.07 25.60 28.34 6.42 48.52
552AD4 1168.04 860.17 27.29 24.46 2.58 35.79
552AD5 1333.08 895.44 30.04 25.68 10.64 48.87
Average 27.65 24.38 5.65 39.98
Overall Average 34.41 22.03 6.20 36.54

LR(5, 250, 0, 0, 0, 0)

 
 

 

 

Table 4.5 Results of LR(20, 25, 0, 0, 0, 0) and LR(20, 50, 0, 0, 0, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1526.99 694.47 1.81 51.46 6.73 119.88 1526.99 964.97 3.98 32.55 6.73 58.24
551AD2 1649.41 850.13 1.73 44.50 7.69 94.02 1649.41 1134.77 3.74 25.91 7.69 45.35
551AD3 1248.96 680.84 1.98 42.53 5.42 83.44 1219.77 924.52 4.66 21.97 2.95 31.94
551AD4 1584.43 895.76 1.83 38.66 8.49 76.88 1584.43 1116.65 4.27 23.54 8.49 41.89
551AD5 1541.92 728.08 2.17 47.70 10.77 111.78 1462.57 1040.41 5.09 25.26 5.07 40.58
Average 1.90 44.97 7.82 97.20 4.35 25.85 6.19 43.60
552AD1 1207.87 606.51 2.07 47.04 5.46 99.15 1207.87 757.01 4.22 33.90 5.46 59.56
552AD2 1589.70 843.98 2.15 43.93 5.61 88.36 1563.17 1050.86 4.25 30.18 3.85 48.75
552AD3 1274.40 584.90 2.09 48.64 11.90 117.88 1227.22 663.25 4.27 41.76 7.76 85.03
552AD4 1239.40 574.63 2.12 49.53 8.85 115.69 1191.80 732.77 4.26 35.64 4.67 62.64
552AD5 1284.69 510.09 2.16 57.67 6.62 151.86 1284.69 756.85 4.48 37.19 6.62 69.74
Average 2.12 49.36 7.69 114.59 4.30 35.74 5.67 65.14
Overall Average 2.01 47.17 7.75 105.89 4.32 30.79 5.93 54.37

LR(20, 25, 0, 0, 0, 0) LR(20, 50, 0, 0, 0, 0)

 
 

 

 

Table 4.6 Results of LR(20, 75, 0, 0, 0, 0) and LR(20, 100, 0, 0, 0, 0) 
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LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1526.99 1022.03 6.66 28.56 6.73 49.41 1526.99 1063.92 10.12 25.63 6.73 43.52
551AD2 1646.07 1211.66 6.21 20.89 7.47 35.85 1646.07 1236.06 8.99 19.30 7.47 33.17
551AD3 1219.77 962.83 7.88 18.73 2.95 26.69 1219.77 985.44 11.78 16.82 2.95 23.78
551AD4 1578.65 1159.41 7.02 20.61 8.10 36.16 1578.65 1186.51 10.68 18.76 8.10 33.05
551AD5 1462.12 1123.62 8.64 19.28 5.04 30.13 1462.12 1135.26 13.12 18.44 5.04 28.79
Average 7.28 21.62 6.06 35.65 10.94 19.79 6.06 32.46
552AD1 1207.87 857.22 6.40 25.15 5.46 40.91 1202.61 875.19 8.61 23.59 5.00 37.41
552AD2 1561.30 1145.11 6.37 23.92 3.73 36.34 1561.30 1182.69 8.51 21.43 3.73 32.01
552AD3 1216.20 787.56 6.48 30.85 6.79 54.43 1216.20 814.55 8.69 28.48 6.79 49.31
552AD4 1188.39 817.39 6.48 28.21 4.37 45.39 1188.39 842.31 8.68 26.02 4.37 41.09
552AD5 1284.69 873.20 6.89 27.53 6.62 47.12 1284.69 902.75 9.29 25.08 6.62 42.31
Average 6.53 27.13 5.39 44.84 8.76 24.92 5.30 40.43
Overall Average 6.90 24.37 5.73 40.24 9.85 22.35 5.68 36.44

LR(20, 75, 0, 0, 0, 0) LR(20, 100, 0, 0, 0, 0)

 



Table 4.7 Results of LR(20, 150, 0, 0, 0, 0) and LR(20, 250, 0, 0, 0, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1526.99 1081.77 19.60 24.39 6.73 41.16 1526.99 1088.90 48.38 23.89 6.73 40.23
551AD2 1646.07 1257.87 16.30 17.88 7.47 30.86 1646.07 1262.71 38.57 17.56 7.47 30.36
551AD3 1219.77 991.16 20.42 16.34 2.95 23.07 1219.77 994.45 40.88 16.06 2.95 22.66
551AD4 1564.16 1206.68 19.77 17.37 7.10 29.63 1564.16 1211.76 43.32 17.03 7.10 29.08
551AD5 1445.32 1148.70 25.10 17.48 3.83 25.82 1445.32 1153.49 57.92 17.13 3.83 25.30
Average 20.24 18.69 5.62 30.11 45.81 18.33 5.62 29.53
552AD1 1202.61 888.46 13.49 22.43 5.00 35.36 1202.61 892.89 24.53 22.04 5.00 34.69
552AD2 1561.30 1211.82 13.13 19.49 3.73 28.84 1561.30 1221.33 24.60 18.86 3.73 27.84
552AD3 1216.20 829.14 13.36 27.20 6.79 46.68 1210.93 835.06 23.39 26.68 6.33 45.01
552AD4 1165.01 870.91 13.14 23.51 2.32 33.77 1165.01 875.23 23.15 23.13 2.32 33.11
552AD5 1284.69 928.77 14.25 22.92 6.62 38.32 1284.69 934.84 24.77 22.41 6.62 37.42
Average 13.48 23.11 4.89 36.59 24.09 22.62 4.80 35.61
Overall Average 16.86 20.90 5.25 33.35 34.95 20.48 5.21 32.57

LR(20, 150, 0, 0, 0, 0) LR(20, 250, 0, 0, 0, 0)

 
 

 

 

In Tables 4.8 - 4.10, we present the test results obtained by changing the 

initialization. The Lagrangian multipliers are now initialized with the optimal 

dual values of the linear programming relaxation of the model. In these tests 

we use only 20 consecutive non-improving iterations to halve the scalarπ.  

 

 

 

Table 4.8 Results of LR(20, 25, 0, 0, 1, 0) and LR(20, 50, 0, 0, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1565.08 951.78 1.34 33.47 9.40 64.44 1517.02 1077.58 2.78 24.68 6.04 40.78
551AD2 1637.83 1052.75 1.40 31.27 6.93 55.58 1637.83 1271.80 3.03 16.97 6.93 28.78
551AD3 1274.59 930.54 1.46 21.46 7.58 36.97 1221.24 1030.94 3.23 12.98 3.08 18.46
551AD4 1572.37 1077.60 1.49 26.21 7.67 45.91 1565.86 1234.48 3.19 15.47 7.22 26.84
551AD5 1487.56 1095.45 1.46 21.30 6.86 35.79 1462.12 1194.10 3.19 14.22 5.04 22.45
Average 1.43 26.74 7.69 47.74 3.08 16.86 5.66 27.46
552AD1 1212.56 886.94 2.15 22.56 5.87 36.71 1206.34 953.78 4.37 16.72 5.33 26.48
552AD2 1622.79 1182.32 2.17 21.45 7.81 37.25 1569.75 1261.10 4.32 16.22 4.29 24.47
552AD3 1269.06 918.77 2.17 19.33 11.43 38.13 1230.86 918.77 4.45 19.33 8.08 33.97
552AD4 1226.91 903.59 2.18 20.64 7.75 35.78 1175.24 955.98 4.35 16.04 3.22 22.94
552AD5 1312.39 961.49 2.17 20.20 8.92 36.50 1312.39 1038.72 4.48 13.79 8.92 26.35
Average 2.17 20.84 8.36 36.87 4.39 16.42 5.97 26.84
Overall Average 1.80 23.79 8.02 42.31 3.74 16.64 5.81 27.15

LR(20, 25, 0, 0, 1, 0) LR(20, 50, 0, 0, 1, 0)
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Table 4.9 Results of LR(20, 75, 0, 0, 1, 0) and LR(20, 100, 0, 0, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1517.02 1164.84 4.61 18.58 6.04 30.23 1517.02 1185.20 6.90 17.16 6.04 28.00
551AD2 1637.83 1331.38 5.07 13.08 6.93 23.02 1637.83 1343.32 7.71 12.30 6.93 21.92
551AD3 1221.10 1060.76 5.34 10.47 3.07 15.12 1221.10 1072.77 7.71 9.45 3.07 13.83
551AD4 1560.29 1280.56 5.37 12.32 6.84 21.84 1560.29 1296.78 8.34 11.20 6.84 20.32
551AD5 1446.16 1242.45 5.30 10.74 3.89 16.40 1446.16 1255.61 7.63 9.80 3.89 15.18
Average 5.14 13.04 5.35 21.32 7.66 11.98 5.35 19.85
552AD1 1206.34 1008.35 6.98 11.96 5.33 19.64 1206.34 1018.30 10.36 11.09 5.33 18.47
552AD2 1567.35 1293.81 6.46 14.04 4.13 21.14 1567.35 1320.80 8.71 12.25 4.13 18.67
552AD3 1224.69 957.90 6.87 15.89 7.54 27.85 1201.59 976.11 10.05 14.29 5.51 23.10
552AD4 1175.24 995.49 6.59 12.57 3.22 18.06 1175.24 1007.31 8.91 11.53 3.22 16.67
552AD5 1312.39 1063.99 6.83 11.70 8.92 23.35 1312.39 1082.41 9.31 10.17 8.92 21.25
Average 6.75 13.23 5.83 22.01 9.47 11.87 5.42 19.63
Overall Average 5.94 13.13 5.59 21.66 8.56 11.92 5.39 19.74

LR(20, 75, 0, 0, 1, 0) LR(20, 100, 0, 0, 1, 0)

 
 

 

 

Table 4.10 Results of LR(20, 150, 0, 0, 1, 0) and LR(20, 250, 0, 0, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1517.02 1202.25 13.18 15.96 6.04 26.18 1517.02 1207.45 32.09 15.60 6.04 25.64
551AD2 1637.83 1361.61 15.84 11.10 6.93 20.29 1637.83 1365.77 37.24 10.83 6.93 19.92
551AD3 1221.10 1078.41 13.02 8.98 3.07 13.23 1221.10 1080.21 25.01 8.83 3.07 13.04
551AD4 1560.29 1309.20 15.97 10.35 6.84 19.18 1560.29 1313.01 36.78 10.09 6.84 18.83
551AD5 1446.16 1266.50 13.80 9.02 3.89 14.19 1446.16 1269.57 29.45 8.80 3.89 13.91
Average 14.36 11.08 5.35 18.61 32.11 10.83 5.35 18.27
552AD1 1206.34 1034.06 20.74 9.71 5.33 16.66 1206.34 1036.95 53.79 9.46 5.33 16.34
552AD2 1567.35 1330.40 14.07 11.61 4.13 17.81 1567.35 1333.53 36.10 11.40 4.13 17.53
552AD3 1185.12 984.86 17.59 13.52 4.06 20.33 1185.12 987.05 34.08 13.33 4.06 20.07
552AD4 1175.24 1012.92 14.07 11.04 3.22 16.02 1175.24 1015.66 28.53 10.80 3.22 15.71
552AD5 1312.39 1092.96 14.48 9.29 8.92 20.08 1312.39 1097.33 26.57 8.93 8.92 19.60
Average 16.19 11.04 5.13 18.18 35.81 10.79 5.13 17.85
Overall Average 15.28 11.06 5.24 18.40 33.96 10.81 5.24 18.06

LR(20, 75, 0, 0, 1, 0) LR(20, 100, 0, 0, 1, 0)

 
 

 

 

According to the results, initializing the lagrange multipliers by equating them 

to the optimal dual values yields better results in all of the test instances. For 

instance, on average for ten instances solved with 150 iterations, %LRGAP 

decreases from 33.35% to 18.40%, %UGAP decreases from 5.25% to 5.24%, 

%LGAP decreases from 20.09% to 11.06% and the CPU LR decreases from 

16.8 minutes to 15.28 minutes. The greatest improvement is achieved by 

closing the %LGAP, meaning that usage of dual variables at initialization 

increases lower bound quality, which is a desired outcome. 
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We present two examples of convergence graphs in which we decided on the 

maximum number of iterations in Figures 4.1 and 4.2. Figure 4.1 is related to 

551AD1, Figure 4.2 is related to 552AD1 and both instances are solved with 

LR(20, 250, 0, 0, 1, 0). All convergence graphs are given in Appendix D. We 

observe that the algorithm mostly finishes at about 150 iterations; therefore, we 

will run our algorithm for 150 iterations. 
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In Tables 4.11 and 4.12 we give the results obtained with the insertion of valid 

inequalities. Due to the computation time considerations, this time we 

terminate our algorithm after 100 iterations. Valid inequalities greatly improve 

our bounds. However, it takes too much computation time. For instance, on 

average for ten instances solved for 100 iterations, %LRGAP decreases from 

19.74% to 6.81%, %UGAP decreases from 5.39% to 2.69%, %LGAP 

decreases from 11.92% to 3.84%. However, CPU LR increases from 8.56 

minutes to 44.74 minutes. Therefore, we also perform a test using a tolerance 

gap limit in solution rather than solving the relaxed problem optimally. In these 

settings CPLEX starts solving the relaxed problem with valid inequalities and 

terminates when the gap between best feasible integer solution and the lower 

bound drops below a specified value. We take the lower bound that CPLEX 

calculated as the objective function value of the relaxed problem.  

 

 

 

Table 4.11 Results of LR(20, 25, 0, 1, 1, 0) and LR(20, 50, 0, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1472.77 1254.47 1.98 12.31 2.94 17.40 1472.77 1304.98 4.46 8.78 2.94 12.86
551AD2 1599.98 1423.30 1.56 7.08 4.46 12.41 1573.40 1469.21 3.52 4.08 2.72 7.09
551AD3 1227.76 1081.09 1.09 8.75 3.63 13.57 1198.27 1120.64 2.80 5.41 1.14 6.93
551AD4 1528.33 1323.41 1.49 9.38 4.65 15.48 1476.11 1376.21 3.19 5.77 1.08 7.26
551AD5 1425.51 1220.39 1.43 12.33 2.41 16.81 1425.51 1323.01 3.30 4.96 2.41 7.75
Average 1.51 9.97 3.62 15.13 3.46 5.80 2.06 8.38
552AD1 1194.07 1063.97 2.50 7.10 4.26 12.23 1185.14 1103.50 9.45 3.65 3.48 7.40
552AD2 1539.62 1407.83 2.55 6.47 2.29 9.36 1534.38 1444.71 5.55 4.02 1.94 6.21
552AD3 1212.37 1017.03 2.60 10.70 6.45 19.21 1212.37 1071.72 9.75 5.90 6.45 13.12
552AD4 1181.27 1044.29 2.49 8.28 3.75 13.12 1176.08 1082.35 7.75 4.94 3.29 8.66
552AD5 1265.93 1107.65 4.00 8.07 5.06 14.29 1265.93 1169.45 16.05 2.94 5.06 8.25
Average 2.83 8.13 4.36 13.64 9.71 4.29 4.04 8.73
Overall Average 2.17 9.05 3.99 14.39 6.58 5.04 3.05 8.55

LR(20, 25, 0, 1, 1, 0) LR(20, 50, 0, 1, 1, 0)
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Table 4.12 Results of LR(20, 75, 0, 1, 1, 0) and LR(20, 100, 0, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1472.77 1318.27 7.03 7.85 2.94 11.72 1472.77 1325.08 10.13 7.38 2.94 11.15
551AD2 1573.40 1481.94 5.68 3.25 2.72 6.17 1573.40 1485.39 7.42 3.02 2.72 5.93
551AD3 1198.27 1126.28 4.82 4.94 1.14 6.39 1198.27 1128.70 7.27 4.73 1.14 6.16
551AD4 1476.11 1388.72 5.13 4.91 1.08 6.29 1476.11 1391.39 7.47 4.73 1.08 6.09
551AD5 1425.51 1340.80 5.62 3.68 2.41 6.32 1425.51 1347.17 9.10 3.22 2.41 5.82
Average 5.65 4.93 2.06 7.38 8.28 4.62 2.06 7.03
552AD1 1180.58 1113.18 30.31 2.81 3.08 6.05 1180.58 1115.53 66.22 2.60 3.08 5.83
552AD2 1534.38 1449.49 9.19 3.70 1.94 5.86 1534.38 1452.71 13.53 3.49 1.94 5.62
552AD3 1199.03 1089.89 43.16 4.30 5.28 10.01 1199.03 1093.49 154.58 3.98 5.28 9.65
552AD4 1176.08 1093.93 24.56 3.92 3.29 7.51 1176.08 1098.18 103.66 3.55 3.29 7.09
552AD5 1265.93 1181.24 33.52 1.97 5.06 7.17 1241.30 1184.98 68.03 1.65 3.02 4.75
Average 28.15 3.34 3.73 7.32 81.20 3.06 3.32 6.59
Overall Average 16.90 4.13 2.89 7.35 44.74 3.84 2.69 6.81

LR(20, 75, 0, 1, 1, 0) LR(20, 100, 0, 1, 1, 0)

 
 

 

 

In Tables 4.13 - 4.15 we present the results obtained with a gap limit of 3%. In 

Tables 4.16 - 4.18 we give the results with the application of 5% gap limit. 

 

 

 

Table 4.13 Results of LR(20, 25, 3g, 1, 1, 0) and LR(20, 50, 3g, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1463.78 1209.32 1.59 15.47 2.32 21.04 1463.78 1272.36 3.30 11.06 2.32 15.04
551AD2 1608.41 1363.61 1.43 10.97 5.01 17.95 1581.52 1429.82 3.02 6.65 3.25 10.61
551AD3 1222.77 1047.15 1.46 11.62 3.21 16.77 1207.58 1088.80 2.99 8.10 1.92 10.91
551AD4 1550.75 1243.03 1.45 14.88 6.19 24.76 1523.27 1342.58 2.98 8.07 4.30 13.46
551AD5 1424.69 1206.50 1.40 13.33 2.35 18.08 1412.31 1293.60 2.99 7.07 1.46 9.18
Average 1.47 13.25 3.81 19.72 3.05 8.19 2.65 11.84
552AD1 1185.14 1040.55 2.21 9.15 3.48 13.90 1180.58 1076.64 4.58 6.00 3.08 9.65
552AD2 1560.74 1361.25 2.12 9.56 3.69 14.65 1534.64 1420.38 4.25 5.63 1.96 8.04
552AD3 1204.87 991.84 2.26 12.91 5.80 21.48 1204.87 1050.03 5.00 7.80 5.80 14.75
552AD4 1195.58 987.80 2.24 13.25 5.00 21.03 1163.68 1056.94 4.54 7.17 2.20 10.10
552AD5 1264.04 1069.48 2.44 11.24 4.91 18.19 1264.04 1132.00 5.45 6.05 4.91 11.66
Average 2.25 11.22 4.57 17.85 4.76 6.53 3.59 10.84
Overall Average 1.86 12.24 4.19 18.79 3.91 7.36 3.12 11.34

 LR(20, 25, 3g, 1, 1, 0)  LR(20, 50, 3g, 1, 1, 0)
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Table 4.14 Results of LR(20, 75, 3g, 1, 1, 0) and LR(20, 100, 3g, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1463.78 1288.35 5.29 9.95 2.32 13.62 1463.78 1288.35 7.35 9.95 2.32 13.62
551AD2 1581.52 1440.04 4.77 5.98 3.25 9.82 1581.52 1444.30 6.54 5.70 3.25 9.50
551AD3 1207.58 1097.65 4.61 7.35 1.92 10.02 1206.91 1101.08 6.35 7.06 1.87 9.61
551AD4 1476.11 1357.74 4.60 7.03 1.08 8.72 1476.11 1357.74 6.27 7.03 1.08 8.72
551AD5 1412.31 1310.08 4.68 5.89 1.46 7.80 1412.31 1316.01 6.42 5.46 1.46 7.32
Average 4.79 7.24 2.01 10.00 6.58 7.04 1.99 9.75
552AD1 1180.58 1085.98 7.00 5.18 3.08 8.71 1180.58 1091.39 9.46 4.71 3.08 8.17
552AD2 1534.64 1426.15 6.38 5.25 1.96 7.61 1533.59 1430.74 8.51 4.95 1.89 7.19
552AD3 1204.87 1056.20 9.01 7.26 5.80 14.08 1204.87 1061.39 15.36 6.80 5.80 13.52
552AD4 1162.95 1068.78 7.09 6.13 2.14 8.81 1162.95 1073.11 9.77 5.75 2.14 8.37
552AD5 1260.86 1145.46 8.93 4.93 4.64 10.07 1258.85 1151.11 13.37 4.47 4.48 9.36
Average 7.68 5.75 3.52 9.86 11.29 5.34 3.47 9.32
Overall Average 6.23 6.50 2.76 9.93 8.94 6.19 2.73 9.54

 LR(20, 75, 3g, 1, 1, 0)  LR(20, 100, 3g, 1, 1, 0)

 
 

 

 

Table 4.15 Results of LR(20, 150, 3g, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1463.78 1291.35 12.00 9.74 2.32 13.35
551AD2 1556.33 1450.20 10.28 5.32 1.61 7.32
551AD3 1206.91 1105.88 9.80 6.66 1.87 9.14
551AD4 1476.11 1360.02 9.59 6.87 1.08 8.54
551AD5 1412.31 1316.45 10.16 5.43 1.46 7.28
Average 10.36 6.80 1.67 9.12
552AD1 1180.53 1093.18 14.59 4.55 3.07 7.99
552AD2 1531.34 1436.72 12.73 4.55 1.74 6.59
552AD3 1204.87 1065.99 36.01 6.40 5.80 13.03
552AD4 1162.95 1075.25 15.14 5.57 2.14 8.16
552AD5 1258.85 1154.62 23.40 4.17 4.48 9.03
Average 20.37 5.05 3.44 8.96
Overall Average 15.37 5.93 2.55 9.04

 LR(20, 150, 3g, 1, 1, 0)
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Table 4.16 Results of LR(20, 25, 5g, 1, 1, 0) and LR(20, 50, 5g, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1484.17 1178.13 1.51 17.65 3.74 25.98 1475.93 1257.00 3.08 12.14 3.17 17.42
551AD2 1583.71 1356.34 1.35 11.45 3.40 16.76 1583.71 1409.66 2.78 7.97 3.40 12.35
551AD3 1211.81 1038.51 1.41 12.35 2.28 16.69 1211.81 1076.36 2.86 9.15 2.28 12.58
551AD4 1561.76 1232.53 1.37 15.60 6.94 26.71 1495.34 1324.97 2.75 9.27 2.39 12.86
551AD5 1425.51 1149.20 1.36 17.44 2.41 24.04 1416.72 1270.46 2.82 8.73 1.78 11.51
Average 1.40 14.90 3.75 22.04 2.86 9.45 2.60 13.34
552AD1 1188.95 1023.76 2.11 10.61 3.81 16.14 1188.90 1071.83 4.24 6.42 3.81 10.92
552AD2 1539.68 1382.45 2.14 8.15 2.29 11.37 1532.25 1417.91 4.27 5.80 1.80 8.06
552AD3 1205.45 998.32 2.12 12.34 5.85 20.75 1205.45 1024.81 4.40 10.02 5.85 17.63
552AD4 1195.12 1024.04 2.21 10.06 4.96 16.71 1176.08 1056.78 4.45 7.19 3.29 11.29
552AD5 1278.93 1082.45 2.28 10.16 6.14 18.15 1278.93 1116.57 4.59 7.33 6.14 14.54
Average 2.17 10.27 4.61 16.62 4.39 7.35 4.18 12.49
Overall Average 1.79 12.58 4.18 19.33 3.62 8.40 3.39 12.92

 LR(20, 25, 5g, 1, 1, 0)  LR(20, 50, 5g, 1, 1, 0)

 
 

 

 

Table 4.17 Results of LR(20, 75, 5g, 1, 1, 0) and LR(20, 100, 5g, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1474.22 1265.11 4.69 11.57 3.05 16.53 1465.44 1271.84 6.38 11.10 2.43 15.22
551AD2 1561.25 1419.51 4.23 7.32 1.93 9.99 1533.30 1432.30 5.74 6.49 0.11 7.05
551AD3 1206.91 1081.95 4.38 8.68 1.87 11.55 1206.91 1086.99 6.01 8.25 1.87 11.03
551AD4 1495.34 1343.94 4.14 7.98 2.39 11.27 1494.38 1343.94 5.58 7.98 2.33 11.19
551AD5 1411.94 1292.19 4.35 7.17 1.43 9.27 1411.94 1295.14 5.90 6.96 1.43 9.02
Average 4.36 8.54 2.13 11.72 5.92 8.16 1.63 10.70
552AD1 1188.90 1084.53 6.40 5.31 3.81 9.62 1188.86 1086.17 8.55 5.16 3.80 9.45
552AD2 1532.25 1427.16 6.36 5.18 1.80 7.36 1526.86 1428.37 8.47 5.10 1.44 6.90
552AD3 1205.45 1046.71 6.85 8.09 5.85 15.17 1205.45 1048.00 9.39 7.98 5.85 15.02
552AD4 1176.08 1058.63 6.67 7.03 3.29 11.09 1164.00 1064.70 8.86 6.49 2.23 9.33
552AD5 1262.30 1137.16 7.01 5.62 4.76 11.00 1262.30 1140.08 9.52 5.38 4.76 10.72
Average 6.66 6.25 3.90 10.85 8.96 6.02 3.62 10.28
Overall Average 5.51 7.40 3.02 11.28 7.44 7.09 2.62 10.49

 LR(20, 75, 5g, 1, 1, 0)  LR(20, 100, 5g, 1, 1, 0)
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Table 4.18 Results of LR(20, 150, 5g, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1465.44 1274.03 9.91 10.95 2.43 15.02
551AD2 1533.30 1433.80 8.81 6.39 0.11 6.94
551AD3 1199.44 1091.61 9.21 7.86 1.24 9.88
551AD4 1494.38 1348.63 8.52 7.65 2.33 10.81
551AD5 1411.94 1300.06 9.09 6.60 1.43 8.61
Average 9.11 7.89 1.51 10.25
552AD1 1188.81 1090.50 12.87 4.79 3.80 9.02
552AD2 1526.86 1431.97 12.70 4.86 1.44 6.63
552AD3 1197.74 1051.08 14.55 7.71 5.17 13.95
552AD4 1162.95 1068.06 13.26 6.20 2.14 8.88
552AD5 1230.75 1142.39 14.51 5.19 2.14 7.73
Average 13.58 5.75 2.94 9.24
Overall Average 11.34 6.82 2.22 9.75

 LR(20, 150, 5g, 1, 1, 0)

 
 

 

 

With the valid inequalities and 5% gap limit (for the average of the ten test 

instances run for 100 iterations) %LRGAP is 9.75%, which was 6.81% for the 

case where gap limit was not applied and 19.74% where neither cuts nor the 

gap limit was applied. Average %UGAP of the case with 5% gap limit is the 

smallest among three cases with 2.22%. The average %UGAP was 2.69% for 

the case with valid inequalities and 5.39% for the case where neither valid 

inequalities nor gap limit was applied. Average %LGAP is 6.82%, which was 

3.84% for the case with valid inequalities and no gap limit, 11.92% for the case 

where neither gap limit nor the valid inequalities were applied. Average CPU 

time of the case with 5% gap limit is the smallest with 8.56 minutes; the 

average CPU times of the former cases were 11.34 minutes and 44.74 minutes. 

Since we obtain good bounds in reasonable time with the case where we apply 

both valid inequalities and gap limit, we have decided to use is this setting for 

the larger instances. Note that we have chosen to start the algorithm with the 

optimal dual values and 20 as the number of consecutive non-improving 

iterations to halve the subgradient optimization scalar. All of the results 

obtained in the preliminary experiments are presented in Appendix E. 
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4.5 Part 2 (Main experiments) 

 

In this section we present the results of the algorithm applied to the larger 

problem settings. Note that we will use time limit instead of gap limit because 

we have observed a bottleneck iteration in large instances taking too much 

computation time to reach the desired gap limit, and the other iterations taking 

relatively less amount of computation time. Therefore, we sacrifice the 

information gathered from the bottleneck iterations and terminate these 

iterations in pre-determined time limits.  

 

We calculate an upper bound each iteration for the instances with 5 retailers, 

once in 5 iterations for 10 retailers and once in 20 iterations for 15 retailers. 

 

Since we were not able to obtain the optimal solution values of the larger 

problem instances we use a slightly different performance measure, then the 

new performance measure is as follows. 

 

• Relative Error (RE): The ratio of the gap of the Lagrangian 

Relaxation based solution approach to the gap between MIP and LP 

relaxation solutions, i.e. %LRGAP/%MIP 

 

Note that in the following tables there exits a column called “Opt”. We insert 

“Y” for the problems that CPLEX has found an optimal solution in 60 (180) 

minutes for the problems with 5 (10 and 15) retailers.   

 

In Tables 4.19 – 4.30 we present the results obtained by applying the 

algorithmic parameters decided in Section 4.4.  

 

 

 



Table 4.19 Results of LR(20, 150, 5g, 1, 1, 0) for 551ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
551AD1 Y 1430.64 0.52 847.75 0.01 68.76 1465.44 1274.03 9.91 15.02 0.22
551AD2 Y 1531.68 0.09 908.02 0.01 68.68 1533.30 1433.80 8.81 6.94 0.10
551AD3 Y 1184.78 0.08 785.64 0.01 50.80 1199.44 1091.61 9.21 9.88 0.19
551AD4 Y 1460.41 0.11 844.35 0.01 72.96 1494.38 1348.63 8.52 10.81 0.15
551AD5 Y 1392.00 0.09 940.41 0.01 48.02 1411.94 1300.06 9.09 8.61 0.18
Average 0.18 0.01 61.85 9.11 10.25 0.17

 LR(20, 150, 5g, 1, 1, 0)MIP Model

 
 

 

 

Table 4.20 Results of LR(20, 150, 5g, 1, 1, 0) for 552ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
552AD1 Y 1145.32 0.85 868.57 0.01 31.86 1188.81 1090.5 12.87 9.02 0.28
552AD2 Y 1505.19 18.89 1194.32 0.01 26.03 1526.86 1431.97 12.70 6.63 0.25
552AD3 Y 1138.87 11.68 918.77 0.01 23.96 1197.74 1051.08 14.55 13.95 0.58
552AD4 Y 1138.62 3.31 908.59 0.01 25.32 1162.95 1068.06 13.26 8.88 0.35
552AD5 Y 1204.92 6.15 959.35 0.01 25.60 1230.75 1142.39 14.51 7.73 0.30
Average 8.18 0.01 26.55 13.58 9.24 0.35

MIP Model LR(20, 150, 5g, 1, 1, 0)

 
 

 

 

Table 4.21 Results of LR(20, 150, 5g, 1, 1, 0) for 571ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
571AD1 Y 1723.29 0.41 1082.24 0.01 59.23 1781.61 1621.52 17.42 9.87 0.17
571AD2 Y 1431.37 0.10 1030.68 0.01 38.88 1450.15 1370.33 13.38 5.82 0.15
571AD3 Y 1199.18 0.31 779.07 0.01 53.92 1199.18 1101.22 12.75 8.90 0.16
571AD4 Y 1661.59 0.37 1043.34 0.01 59.26 1688.03 1568.87 12.77 7.60 0.13
571AD5 Y 1566.38 1.91 939.07 0.01 66.80 1607.26 1427.75 17.74 12.57 0.19
Average 0.62 0.01 55.62 14.81 8.95 0.16

MIP Model  LR(20, 150, 5g, 1, 1, 0)
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Table 4.22 Results of LR(20, 150, 5g, 1, 1, 0) for 572ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
572AD1 1685.00 60.01 1300.60 0.01 29.56 1732.55 1593.8 19.57 8.71 0.29
572AD2 1751.34 60.03 1320.22 0.01 32.66 1816.83 1623.73 18.23 11.89 0.36
572AD3 Y 1580.88 14.76 1223.34 0.01 29.23 1618.17 1494.46 18.98 8.28 0.28
572AD4 Y 1647.73 34.23 1300.87 0.01 26.66 1694.08 1547.85 21.05 9.45 0.35
572AD5 Y 1625.45 23.17 1239.01 0.01 31.19 1687.68 1510.61 22.56 11.72 0.38
Average 38.44 0.01 29.86 20.08 10.01 0.33

MIP Model  LR(20, 150, 5g, 1, 1, 0)

 
 

 

 

Table 4.23 Results of LR(20, 100, 10g, 1, 1, 0) for 1051ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
1051AD1 2630.36 180.00 1289.4 0.02 104.00 2861.54 1945.99 274.55 47.05 0.45
1051AD2 2209.24 180.00 1461.27 0.04 51.19 2270.43 1873.57 53.61 21.18 0.41
1051AD3 3195.71 180.00 1626.9 0.05 96.43 3585.04 2411.66 126.46 48.65 0.50
1051AD4 2574.72 180.00 1595.81 0.04 61.34 2740.53 2012.58 215.22 36.17 0.59
1051AD5 2897.20 180.00 1594.76 0.04 81.67 3168.89 2219.18 92.07 42.80 0.52
Average 180.00 0.04 78.93 152.38 39.17 0.50

MIP Model LR(20, 100, 10g, 1, 1, 0)

 
 

 

 

Table 4.24 Results of LR(20, 100, 10g, 1, 1, 0) for 1052ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
1052AD1 2505.07 180.00 1582.04 0.06 58.34 2663.46 2168.21 207.96 22.84 0.39
1052AD2 2084.02 180.00 1547.19 0.09 34.70 2206.31 1783.62 211.21 23.70 0.68
1052AD3 2326.01 180.00 1499.80 0.08 55.09 2430.18 1996.53 292.61 21.72 0.39
1052AD4 1851.85 180.00 1408.77 0.08 31.45 1918.52 1632.99 111.49 17.49 0.56
1052AD5 2456.36 180.00 1509.87 0.08 62.69 2606.97 2052.71 825.18 27.00 0.43
Average 180.00 0.08 48.45 329.69 22.55 0.49

MIP Model LR(20, 100, 10g, 1, 1, 0)
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Table 4.25 Results of LR(20, 100, 10g, 1, 1, 0) for 1071ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
1071AD1 4118.08 180.00 2111.37 0.05 95.04 4311.57 3096.8 215.06 39.23 0.41
1071AD2 4023.24 180.00 2263.62 0.06 77.73 4558.38 3288.11 513.99 38.63 0.50
1071AD3 3557.83 180.00 1848.37 0.06 92.48 3951.17 2599.99 239.53 51.97 0.56
1071AD4 4192.71 180.00 2346.31 0.06 78.69 4644.54 3298.35 192.67 40.81 0.52
1071AD5 3850.9 180.00 1998.42 0.06 92.70 4047.6 2811.45 804.30 43.97 0.47
Average 180.00 0.06 87.33 393.11 42.92 0.49

MIP Model LR(20, 100, 10g, 1, 1, 0)

 
 

 

 

Table 4.26 Results of LR(20, 100, 10g, 1, 1, 0) for 1072ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
1072AD1 2860.50 180.00 2011.50 0.09 42.21 3143.11 2579.39 215.06 21.85 0.52
1072AD2 3344.50 180.00 2317.77 0.12 44.30 3593.82 2961.26 513.99 21.36 0.48
1072AD3 3136.73 180.00 2226.76 0.12 40.87 3487.16 2785.52 239.53 25.19 0.62
1072AD4 3263.66 180.00 2303.17 0.12 41.70 3398.79 2828.17 192.67 20.18 0.48
1072AD5 2743.09 180.00 1859.54 0.12 47.51 2916.36 2369.8 804.30 23.06 0.49
Average 180.00 0.11 43.32 393.11 22.33 0.52

MIP Model LR(20, 100, 10g, 1, 1, 0)

 
 

 

 

Table 4.27 Results of LR(20, 75, 15t, 1, 1, 15) for 1551ADk∗

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
1551AD1* 5581.38 180.00 2139.87 0.02 160.83 5948.05 2892.59 1529.18 105.63 0.66
1551AD2 5652.59 180.00 2096.42 0.14 169.63 5943.89 2634.75 1604.38 125.60 0.74
1551AD3 5328.09 180.00 2093.25 0.14 154.54 5533.23 2701.07 1536.29 104.85 0.68
1551AD4 4793.59 180.00 2514.65 0.15 90.63 5939.70 3318.31 1314.95 79.00 0.87
1551AD5 6163.32 180.00 2717.25 0.15 126.82 6903.48 3597.58 1496.91 91.89 0.72
Average 180.00 0.12 140.49 1496.34 101.39 0.73

MIP Model LR(20, 75, 15t, 1, 15)
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∗ We revised the demand figures of the setting 1551AD1 in order  to obtain feasibility with 
respect to total vehicle capacity 



Table 4.28 Results of LR(20, 75, 15t, 1, 1, 15) for 1552ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
1552AD1 3099.34 180.00 1993.20 0.20 55.50 3275.27 2332.62 1352.39 40.41 0.73
1552AD2 3039.26 180.00 1916.37 0.28 58.59 3225.74 2312.6 1248.26 39.49 0.67
1552AD3 3586.25 180.00 2384.47 0.28 50.40 3747.39 2656.49 1117.42 41.07 0.81
1552AD4 4527.98 180.00 2610.90 0.29 73.43 4779.21 3228.37 1357.56 48.04 0.65
1552AD5 3963.60 180.00 2190.01 0.28 80.99 4167.38 2633.04 1343.09 58.27 0.72
Average 180.00 0.27 63.78 1283.74 45.45 0.72

MIP Model LR(20, 75, 15t, 1, 15)

 
 

 

 

Table 4.29 Results of LR(20, 75, 15t, 1, 1, 15) for 1571ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
1571AD1 6889.90 180.00 3023.01 0.18 127.92 6658.52 3641.57 1454.28 82.85 0.65
1571AD2 6305.04 180.00 2616.28 0.20 140.99 6045.42 3279.75 1506.08 84.33 0.60
1571AD3 7388.25 180.00 3180.58 0.20 132.29 6986.96 3761.78 1483.25 85.74 0.65
1571AD4 7499.02 180.00 3296.98 0.21 127.45 7825.82 4064.24 1477.80 92.55 0.73
1571AD5 7640.19 180.00 3465.09 0.20 120.49 8895.47 4651.15 1637.58 91.25 0.76
Average 180.00 0.20 129.83 1511.80 87.34 0.68

MIP Model LR(20, 75, 15t, 1, 15)

 
 

 

 

Table 4.30 Results of LR(20, 75, 15t, 1, 1, 15) for 1572ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE
Problem Opt
1572AD1 4670.31 180.00 3185.86 0.29 46.59 5069.42 3415.03 1463.81 48.44 1.04
1572AD2 4867.26 180.00 2454.12 0.40 98.33 4990.38 2901.26 1766.87 72.01 0.73
1572AD3 6047.26 180.00 3094.41 0.39 95.43 5646.43 3513.25 1659.03 60.72 0.64
1572AD4 4345.58 180.00 2866.07 0.39 51.62 4908.62 3102.66 1504.80 58.21 1.13
1572AD5 6000.86 180.00 3039.68 0.40 97.42 5755.25 3843.34 1637.58 49.75 0.51
Average 180.00 0.37 77.88 1606.42 57.82 0.81

MIP Model LR(20, 75, 15t, 1, 15)
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For the 5-retailer instances the average Lagrangian gap is 9.61% and MIP gap 

is 43.47%. The average relative error, which is the ratio of Lagrangian gap to 

MIP gap, is 0.25. It shows the performance of Lagrangian relaxation based 

algorithm over the MIP solution by CPLEX. It can be said that our algorithm 



  
 

96 
 

closes the gap between bounds 3 times better than the MIP solution. For the 5-

retailer instances with single vehicle, the average Lagrangian gap is 9.6% and it 

is 9.63% for multiple vehicle case. 

 

For the 10-retailer instances, the average Lagrangian gap is 31.74%; whereas 

average MIP gap is 64.51% and average relative error is 0.5. The Lagrangian 

relaxation based algorithm is able to close half of the MIP gap. For the 10-

retailer instances with single vehicle, the average Lagrangian gap is 41.05% 

and it is 22.44% for the multiple vehicle case. 

 

For the 15-retailer instances, the average Lagrangian gap is 73%; whereas 

average MIP gap is 102.99% and average relative error is 0.73. Our algorithm 

is able to cover 36% of the MIP gap. The single (multiple) vehicle case yields 

an average Lagrangian gap of 94.37% (51.64%).  

 

As the number of retailers in the system increases the algorithm’s performance 

gets worse since both relaxed NP-hard problem and NP-hard CVRP need more 

solution times. Some iterations took days of CPU time and could not be solved 

optimally.  

 

For 5-retailer instances the average gap of single and multiple vehicle cases are 

almost the same; whereas, for the 10-retailer and 15-retailer instances the 

average gap of single vehicle cases are almost the double of the multiple ones. 

This is due to the elimination of routing constraints while applying Lagrangian 

relaxation. For the multiple vehicle case the formulation is tighter than the 

formulation of single vehicle case. This observation is valid for the CVRP’s. 

For the same number of retailers, without the valid inequalities presented in 

section 3.5.1, it takes much more time to solve single vehicle CVRP than 

multiple vehicle CVRP. 
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On overall average, the Lagrangian relaxation based solution algorithm yields 

38.12% gap, which is 70.32% for CPLEX’s MIP solution. The average relative 

error is 0.5; the Lagrangian relaxation based algorithm can cover half of the 

gap calculated by CPLEX. The average Lagrangian gap is 48.34% for single 

vehicle settings and 27.90% for multiple vehicle settings. Therefore, we can 

conclude that Lagrangian relaxation based algorithm yields better bounds than 

CPLEX solutions for all the cases, but the performance gets better for smaller 

instances and multiple vehicle settings. Although the overall algorithm takes 

too much CPU time as the size of the problems gets larger, CPLEX is not able 

to find even a feasible solution in compatible time limits.  

 

4.6 Part 3 (Benchmarking) 

 

In this section, for benchmarking purposes, we present the results of the 

algorithm applied on the problem instances using the revised model in 

Appendix D. In the revised model, backordering in the last period is allowed; 

therefore, supplier does not have to fulfill entire demand in the planning 

horizon. Moreover, transportation cost is not based on the amount supplied but 

on the distance traveled only. In Tables 4.31 – 4.34 we present the results 

obtained with our solution algorithm and the results in Abdelmaguid and 

Dessouky (2006).  

 

In the last two columns of Tables 4.31 – 4.34, we present the upper bounds 

found by the heuristic algorithm given in Abdelmaguid and Dessouky (2006), 

and the gap between upper bound and the LP relaxation lower bound, namely 

%ABGAP (i.e. %ABGAP = %(Abdel_UB - LPR)/LPR). Note that CPLEX 

upper bounds are calculated in 60 minutes. 

 

 

 



Table 4.31 Results of LR(20, 100, 5g, 1, 1, 15) for 551ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE Abdel_UB %ABGAP
Problem Opt
551AD1 Y 649.80 0.67 334.22 0.01 68.76 655.95 601.45 160.60 9.06 0.13 687.83 105.80
551AD2 Y 468.00 0.05 217.33 0.01 68.68 468.36 437.03 18.17 7.17 0.10 537.27 147.22
551AD3 Y 400.00 0.13 221.76 0.01 50.80 400.44 363.64 66.18 10.12 0.20 406.85 83.47
551AD4 Y 475.29 0.15 218.12 0.01 72.96 476.03 426.52 36.11 11.61 0.16 475.95 118.21
551AD5 Y 426.01 0.22 234.77 0.01 48.02 442.67 370.82 87.64 19.38 0.40 481.87 105.25
Average 0.24 0.01 61.85 73.74 11.47 0.20 111.99

Abdelmaguid and Dessouky LR(20, 100, 5g, 1, 1, 15)MIP Model

 
 

 

 

Table 4.32 Results of LR(20, 100, 5g, 1, 1, 15) for 552ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE Abdel_UB %ABGAP
Problem Opt
552AD1 Y 522.82 44.68 356.40 0.01 46.69 550.25 458.081 15.83 20.12 0.43 550.13 54.36
552AD2 940.47 60.00 736.97 0.01 27.61 947.93 873.434 10.84 8.53 0.31 991.78 34.58
552AD3 512.44 60.00 370.13 0.01 38.45 532.02 435.402 18.59 22.19 0.58 578.56 56.31
552AD4 537.37 60.00 392.79 0.01 36.81 569.5 463.627 10.06 22.84 0.62 555.34 41.38
552AD5 553.20 60.00 394.59 0.01 40.20 563.26 485.063 32.65 16.12 0.40 576.96 46.22
Average 56.94 0.01 37.95 17.59 17.96 0.47 46.57

Abdelmaguid and DessoukyMIP Model LR(20, 100, 5g, 1, 1, 15)

 
 

 

 

Table 4.33 Results of LR(20, 100, 5g, 1, 1, 15) for 571ADk  

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE Abdel_UB %ABGAP
Problem Opt
571AD1 Y 522.97 2.17 258.34 0.01 102.43 532.47 463.739 281.11 14.82 0.14 640.65 147.98
571AD2 Y 557.89 0.09 357.51 0.01 56.05 562.03 515.443 161.08 9.04 0.16 580.81 62.46
571AD3 Y 434.86 0.71 221.09 0.01 96.69 441.8 397.765 40.30 11.07 0.11 510.92 131.09
571AD4 Y 536.42 2.68 254.67 0.01 110.64 558.42 466.331 90.01 19.75 0.18 647.07 154.08
571AD5 Y 498.08 6.64 240.51 0.01 107.10 511.2 437.994 66.86 16.71 0.16 582.22 142.08
Average 2.46 0.01 94.58 127.87 14.28 0.15 127.54

Abdelmaguid and DessoukyMIP Model  LR(20, 100, 5g, 1, 1, 15)

 
 

 

 

Table 4.34 Results of LR(20, 100, 5g, 1, 1, 15) for 572ADk 

CPLEX UB CPUB LPR CPULPR %MIP LR UB LR LB CPU LR %LRGAP RE Abdel_UB %ABGAP
Problem Opt
572AD1 798.45 60.00 538.45 0.02 48.29 800.02 694.918 307.56 15.12 0.31 980.06 82.02
572AD2 855.79 60.00 572.59 0.02 49.46 878.41 742.847 18.08 18.25 0.37 1042.90 82.14
572AD3 726.68 60.00 510.06 0.02 42.47 753.85 658.832 71.86 14.42 0.34 960.04 88.22
572AD4 786.53 60.00 577.97 0.02 36.08 824.16 691.599 30.95 19.17 0.53 936.11 61.96
572AD5 771.35 60.00 516.52 0.02 49.34 800.13 682.465 89.26 17.24 0.35 930.36 80.12
Average 60.00 0.02 45.13 103.54 16.84 0.38 78.89

Abdelmaguid and DessoukyMIP Model  LR(20, 100, 5g, 1, 1, 15)
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According to the results, on average, Lagrangian relaxation based algorithm 

yields 15.14% gap within 80.69 minutes; whereas the heuristic results of 

Abdelmaguid and Dessouky (2006) that are calculated within a minute deviates 

91.25% from the solutions of LP relaxation. This gap figure is in a sense 

inflated because Abdelmaguid and Dessouky (2006) do not compute lower 

bounds and we give respective gaps with the LP relaxation results. The gap of 

15.14% is larger than the average gap of (9.61%) settings presented in previous 

section because of the lack of variable transportation costs depending on the 

amount carried, but it is still plausible compared to the results of Abdelmaguid 

and Dessouky (2006). 
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CHAPTER 5 

 

 

SINGLE SUPPLIER MULTIPLE RETAILER INVENTORY ROUTING 
PROBLEM WITH BACKORDERS 

 

 

 

In this chapter, we first present a generalized version of our model 

M(INVROP). Next the Lagrangian relaxation of the model and resulting 

decomposed problems are specified. Then, the solution approaches of 

decomposed problems are discussed, and a general solution approach for the 

problem is given.   

 

5.1 SSMRIRB 

 

In this model depot is not only a coordination point or a cross-dock facility, but 

also an uncapacitated stock keeper. In this case the depot may hold inventory. 

Depot’s supplier, supplies whatever needed in the beginning of each period. 

Retailers may hold inventory and the system may let retailers backorder the 

demands of end customers in order to minimize the total costs. However, all 

demand must be satisfied during the planning horizon. The total costs consists 

of fixed ordering cost and variable ordering costs at both retailers and the 

depot, retailer specific holding and shortage costs, supplier’s holding cost, 

fixed vehicle dispatching cost, distance and amount dependent transportation 

costs.  

 

In this setting, each vehicle distributes the specified amounts to the retailers in 

each period while satisfying the vehicle capacity, storage capacity and demand 

fulfillment limitations. Classification scheme of the single supplier, multiple 
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retailer inventory routing problem with backorders, is given in the table 5.1 

below. 

 

 

 

Table 5.1 Classification scheme of SSMRIRB 
Component Characteristic 

End Point E(1,M) 

Planning Horizon P(T) 

Vehicle(s) V(Cm,M) 

Demand Structure Dynamic, Deterministic 

Inventory I(Y,Y) 

Backordering B(N,Y) 

Ordering O(Y,Y) 

Inventory Policy Endogenous 

Transportation Cost Fixed (vehicle specific) + Distance + Amount 

Performance Measure(s) Minimizing total costs 

 

 

 

5.2 Assumptions of SSMRIRB  

 

• The external demand or the demands of end customers occur at the 

retailers and the demands of retailers occur at the depot. 

 

• Required amount to be distributed is supplied by the supplier’s supplier 

to the depot in each period in addition to the inventory kept at the 

depot. 

 

• The depot not only decides the vehicles to be dispatched, the retailers to 

be served and the amounts to be distributed in these visits, but also the 

amount of item ordered and the amount of inventory to keep in every 

period. In INVROP presented in Chapter 3, the depot is assumed to act 
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as a crossdocking point that does not keep inventory; however, in 

SSMRIRB depot has the alternative to keep inventory for future 

periods. 

 

• We assume that there is an underlying network that hosts the system’s 

transportation structure. In this network nodes represent the supplier 

and the retailer sites. The arcs (links) represent the connections between 

these nodes. 

 

• Each vehicle can make at most one trip in each period. Each trip starts 

from the depot and ends at the depot. Subtours not including the depot 

are not allowed. 

 

• The amount carried by each vehicle is constrained by its capacity. 

Vehicle fleet is either homogeneous or heterogeneous; therefore, 

vehicle capacity may vary. 

 

• There is no lead time for both the depot and the retailers. Products to be 

distributed to each retailer are ready at the beginning of each period and 

can be used to satisfy the demands of end customers at the beginning of 

the period. Therefore, next period’s inventory level (positive, zero, or 

negative) is carried from the beginning of current period.  

 

• Backordering and keeping inventory are allowed for retailers; whereas 

depot can only hold inventory. 

 

 

 



• The amount of product that can be stored at each retailer is constrained 

with storage capacity of respective retailer; however, depot does not 

have storage capacity. 

 

• Backordering in the last period is not allowed. 

 

5.3 Mixed integer formulation of SSMRIRB 

 

Indices of the model are as follows: 

 

 t      : Time index (discrete time periods): 1, 2, …, T and T = T . ∪ { }0

i, j    : Node index : 0, 1, …, N (i = 0 denotes depot ). N denotes the set of 

retailers and N = N ∪ { }0 . 

 k      :  Retailer index: 1, 2,  …, N.  

 v      :  Vehicle index: 1, 2, …, V. 

 

Parameters of the model are as follows: 

 

N       : Number of locations (retailers).   

V       : Number of vehicles. 

T       : Number of time periods. 

vK     : Capacity of vehicle v.  

kImax    : Storage capacity of retailer k. 

ktd     : Demand of the end customer of retailer k at period t. 

ijvtf    : Fixed cost for vehicle v in period t to use arc (i,j) for going from    

location i to location j. 
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k
ijvtc     : Variable cost of carrying one unit of product by vehicle v in period t on 

arc (i,j) for going from location i to location j for the designated 

customer k. 

tO       : Fixed vehicle dispatching cost in time period t. 

tg       : Fixed ordering cost for the depot in time period t. 

tp0      : Unit variable cost charged to the depot in time period t.  

th0       : Unit holding cost of the depot in period t. 

ktA      : Fixed ordering cost charged to retailer k in period t. 

ktp      : Unit procurement cost of retailer k in time period t. 

kth       : Unit holding cost for retailer k in period t. 

ktb       : Unit backordering cost for retailer k in period t. 

M      : A large number defined for the depot’s fixed payment constraints. 

U      : A large number defined for the retailers fixed payment constraints. 

 

Notice that parameters N, V and T denote both index sets and the cardinality of 

the corresponding sets. 

 

Decision variables of the model are as follows. 

 

⎪
⎩

⎪
⎨

⎧

otherwise  0
  periodin      

),(  arc using location    tolocation   from  travels  vehicleif 1 
:    ijvt t

jijiv
y  

k
ijvtx    : Amount of product destined to retailer k, which is transported from 

location i to location j by vehicle v in time period t. 

tz       :   
⎩
⎨
⎧

otherwise 0
  periodin order an  givesdepot   if 1 t
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ktr       :  
⎩
⎨
⎧

otherwise 0
  periodin order an   gives retailer  if 1 tk

tQ      : Amount of product ordered by depot in period t. 

tW     : Total amount to be shipped by depot to retailers in period t. 

tI0      : Amount of product held by depot in period t. 

ktI      : Amount of product held by retailer k in period t. 

ktB     : Amount of demand backordered by retailer k in period t. 

ktS     : Amount supplied to retailer k in period t.  

 

M(SSMRIRB): 
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The objective function (5.1) consists of fixed arc usage cost (first term), 

variable arc usage cost depending on the amount carried on that arc (second 

term), fixed ordering cost of the depot (third term), variable procurement cost 

of the depot (fourth term), inventory holding cost of depot (fifth term), retailer 

specific holding cost and backordering cost (sixth term), retailer specific 

procurement cost (seventh term), retailer specific fixed ordering cost (eighth 

term), period specific fixed vehicle dispatching cost (ninth term). 
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Constraint set (5.2) is used for keeping track of the flow variables initiated 

from the depot. The sum of the flow variables initiated from the depot is 

treated as the demand to the depot in each period. 

 

Constraint set (5.3) is the inventory balance equations of the depot. Since 

inventory holding is possible for the depot, the amount supplied to the retailers 

may be different from the amount supplied to the depot.  

 

Constraint set (5.4) forces the depot to pay fixed ordering cost if an order is 

made in any period.  

 

Constraint set (5.5) satisfies the vehicle capacity restriction. The total amount 

sent to the retailers on a specified arc should be less than or equal to the 

capacity of the vehicle that traverses that arc. It thus links binary variables of 

arc usage (yijvt) and flow variables representing the amounts carried on these 

arcs (xk
ijvt).

 

Constraint set (5.6) is for the commodity flow conservation equations. The set 

is defined for depot and all retailers. For the depot, the cumulative product 

going out is equal to the total amount to be distributed to retailers by a vehicle 

in a period. For retailers, the difference between the amount coming into 

retailer k and the amount going out of retailer k is the amount supplied to 

retailer k with a vehicle in a period. 

 

Constraint set (5.7) is for the commodity flow conservation equations, which is 

defined for the retailers that are not designated customers. The difference 

between the amount coming into a retailer who is not to be served and the 

amount going out of that retailer is equal to zero; therefore, it is ensured that a 

retailer that is not in the list in a period is not served in that period. 
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Constraint sets (5.8) and (5.9) limit the movements of vehicles. By set (5.8) it 

is ensured that a vehicle that visits a retailer (or depot) in a specified period 

must leave that retailer (or depot). By set (5.9) it is ensured that a vehicle can 

visit a retailer (or depot) at most once in a period. Therefore, it is assumed that 

a vehicle starting from the depot will turn back and each vehicle can make at 

most one trip in every period. Note that the formulation eliminates possible 

subtours that are excluding the depot. 

 

Constraint set (5.10) is the inventory balance equations for the retailers. 

Incoming inventory of a retailer minus the amount backordered in the previous 

period minus the amount to be hold at end of a period plus the amount 

backordered in that period plus the amount supplied in that period is equal to 

the demand of that retailer in that period. Hereby, it is obvious that in each 

period the system has three options: holding inventory, backordering and 

satisfying the demand.  

 

Constraint set (5.11) is related with the limitation on the stocking amount at the 

retailers. A retailer cannot hold more inventories than its buffer capacity. 

Constraint set (5.12) is used to prohibit backordering in the last period. 

 

Constraint set (5.13) is the redundant supply equations for the original model. 

However, they would be useful for obtaining reasonable solutions when 

relaxation is applied to solve the model, which will be discussed later on. 

 

Constraint set (5.14) is used to force each retailer pay fixed procurement cost if 

an order is made. 

 

Constraint set (5.15) is the supply limitation equations. Total amount supplied 

in each period should be less than the total vehicle capacity. 

 



Constraint set (5.16) is related with initial inventory of the system (depot and 

the retailers). If there is any initial inventory at the depot or at any retailers, the 

total amount supplied will be equal to the difference between the total demand 

of retailers and the initial inventory in the system, due to the assumption that 

dictates the total demand should be satisfied during the planning horizon.  

 

Constraint sets (5.17) and (5.18) are the non-negativity and integrality 

constraints respectively.  

 

The M(SSMRIRB) is a huge model, and since it is a generalized version of 

M(INVROP) it is also NP-hard. M(SSMRIRB) consists of N3VT + 2N2VT + 

NVT + 4NT + 2N + 3T many variables and N2VT + NVT + NT + T many of 

these variables are integer and the rest are continuous. Moreover, the number 

of constraints is N3VT + 3N2VT + 2NVT + 5NT + 2VT + N + 4T + 1. In order 

to make a comparison it could be stated that for a similar setting of 

M(INVROP) with parameters {N=15, T=7, V=2} the number of variables is 

54,231 (3,472 integer variables) and the number of constraints is 54,372.  

 

5.4 Lagrangian relaxation based solution approach 

 

Constraint sets (5.2), (5.6), (5.7), (5.8) and (5.15) are relaxed and added to the 

objective function. Lagrange multipliers used in the model are as follows: 

 

• tλ   for constraint set (5.2), 

•    ; for constraint set (5.6), k
itα kiori == 0

•   ; for constraint set (5.7), k
ivtβ kiandi ≠≠ 0

• ivtγ    for constraint set (5.8), 

• tδ  for constraint set (5.15), .0≥tδ  
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RELAXED PROBLEM (RP) 

 

The relaxed problem with the above Lagrangian multipliers is stated as 

follows. 

Minimize (5.1) + ∑  + 

 +  

 +  + 

 +                 (5.19) 
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Subject To 
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Rearranging the cost components in the objective function by redefining 

original parameters of the model, we come up with RPN. New parameters are 

defined below. 
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Mathematical formulation of RPN is as follows. 

 

Minimize ∑∑∑∑  +  +  +  + 
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Subject To 

tttt WIQI =−+− 010       Tt∈∀                                                                       (5.3) 
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∈∈≠∈∀  , ,  ,  ,,                   (5.17) 

}{ 1,0  ,  , ∈kttijvt rzy        NkTtVvjiNji ∈∈∈≠∈∀  , ,  ,  ,,                        (5.18) 

 

Relaxed problem RPN can be decomposed into three subproblems. 

 

• Supplier Subproblem (SSP). 

• Retailer Subproblem (RSP). 

• Distribution Subproblem (DSP). 

 

These subproblems are defined in the next section. 

 

5.4.1 Computation of lower bound  

 

These three subproblems are solved with the methods given below and the 

summation of objective function value (5.20) gives us a lower bound on the 

value of original objective function (5.1).  

 

5.4.2 Supplier subproblem (SSP) 
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0  ,  , 0 ≥ttt WQI     NkTtVvjiNji ∈∈∈≠∈∀  , ,  ,  ,,                               (5.22) 

}{ 1,0∈tz        NkTtVvjiNji ∈∈∈≠∈∀  , ,  ,  ,,                                      (5.23) 

 

SSP is a variation of standard uncapacitated lot sizing problem consisting of 

fixed ordering cost, variable procurement cost, inventory holding cost and sales 

revenue (a component added due to Lagrangian relaxation).   

 

Observation: Depot orders in a single period and sells (distributes) the entire 

ordered amount in a single period in the optimal solution of the SSP. It can be 

formulated as a maximization problem given in (5.24). 
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Where; 
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This formulation tries to find the specific period r in which depot sells the 

entire demand such that in the other periods depot does no sales. Note that in a 
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single period r≤η  depot orders the entire amount. Finding maximum of such 

a series has a complexity of  ).( 2TO

 

Proof: If the total amount is sold in two discrete periods (t1 and t2) and 

ordered in two discrete periods ( 1µ  and 2µ ) given in Figure 5.1, the resulting 

optimization problem can be formulated as follows (note that 1122 µµ ≥≥≥ tt  

without loss of generality). 
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                1µ   t1  2µ           t2 

 

 

If we assume that 1µ =0, t2 = T and initial inventory level of the depot is zero, 

the problem can be stated in two cases. 

 

Case 1: No inventory is carried to the second order period 2µ  . ⎟
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If no inventory is carried to the second order period the problem can 

formulated as follows. 
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Figure 5.1 Order periods 
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Case 2: A positive amount of inventory is carried to the second order period 

2µ  . ⎟
⎠

⎞
⎜
⎝

⎛
>∑

=

0
1

1

N

k
ktI

 

If a positive amount of inventory is carried to the second order period the 

problem can be formulated as follows. 
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If we subtract the objective of Case 2 from Case 1 we come up with the 

following formulation. 
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Therefore, whatever the marginal revenues of ordering in two periods are, 

carrying inventory does not make sense noting that the holding costs are 

positive. The supplier distributes the entire amount ordered, and does not carry 

inventory from order period 1 to order period 2. 
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If we define X as the total amount ordered in period ,1µ  Y as the total amount 

ordered in period 2µ , and Ht as the total holding cost up to period t from the 

last order period, we can write the above summation as follows. 

 

Maximize ( ) ( )⎟⎠
⎞

⎜
⎝
⎛

−−−−− ελε µ
µ X

gHpX tt
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1101 + 

( ) ( )⎟⎠
⎞

⎜
⎝
⎛

+−−−+ ελε µ
µ Y

gHpY tt
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2202  

 

where, ε is a very small positive real number. 

 

Replacing Y with (K-X) yields (5.25). 
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⎞

⎜
⎝
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2202               (5.25) 

 

By rearranging the terms in (5.25) we come up with (5.26). 
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(5.26)                 

Y                                                                                                                  (5.26) 
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If marginal revenue of the first order period (second order period) is strictly 

greater than the marginal revenue of the second order period (first order 

period), (5.26) is maximized by ordering the entire amount in the first period 

(second period). 

 

5.4.3 Retailer subproblem (RSP) 

 

RSP differs from RESP (stated in Appendix B), with integer variables (rkt). 

Fortunately, RSP can be reformulated with additional variables in strong form. 

The formulation of RSP is similar to the uncapacitated inventory lot sizing 

problem with backorders. The only difference is that there exists a fixed 

shipment cost, but it is equivalent to the purchasing cost in the classical model.  

The mixed-integer formulation of RSP is given below.  
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Subject To 

ktktktktktkt dSBIBI =++−− −− 11      NkTt ∈∈∀  ,                                       (5.10) 

k
kt II max≤       NkTt ∈∈∀  ,                                                                         (5.11) 

0=kTB                                                                     (5.12) Nk ∈∀

ktkt rUS  ≤       NkTt ∈∈∀  ,                                                                        (5.14) 

0  ,  , ≥ktktkt BIS     NkTt ∈∈∀  ,                                                                (5.28) 

}{ 1,0 ∈ktr                                                                              (5.29) NkTt ∈∈∀  , 

 

RSP can be decomposed into k subproblems, since there is no link between 

retailers and no capacity limitation that binds them, each subproblem RSP-k 

can be represented as follows: 
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k
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}{ 1,0 ∈ktr                                                                                         (5.36) Tt∈∀ 

 

In order to solve the subproblem RSP-k, the shortest path reformulation given 

in Pochet and Wolsey (2006) is used.   
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Where; 

1,, =ttkω  if the demand of retailer k of period t is supplied in period t 

1,, =tk σφ  if the amount supplied in periodσ  includes the future demand  up to 

period t≥ σ  

1,, =tk σψ  if the amount supplied in periodσ  includes backlogged demand 

from period t σ≤  

and,  is the cumulative demand of retailer k from period t to period l. ltkd ,,

 

Pochet and Wolsey (2006) shows that if , the strong reformulation 

can be solved in polynomial time. While using the shortest path reformulation, 

if below inequalities are added to the formulation, a tighter formulation is 

obtained according to Pochet and Wolsey (2006). 

∞→kI max

 

1=ktθ  if the demand of retailer k, dkt is satisfied from stock, 

1=ktϑ  if the demand of retailer k, dkt is satisfied from backlog, 
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The sum of the optimal solution values of RSP-k, k=1, …, N, gives us the 

objective function value of RSP. 

 

5.4.4 Distribution subproblem (DSP) 

 

The distribution subproblem is shown below. 
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The objective function in this subproblem consists of modified fixed cost and 

modified variable cost of each arc. Note that the fixed cost term includes 
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original fixed cost of arc usage and attached Lagrange multipliers’ values 

whereas modified variable cost is considers the amount carried on that arc and 

the Lagrange multipliers’ values.  

 

Although the subproblem DISP is a mixed integer problem, it can be 

decomposed into nodes (i). The decomposition is performed as follows. For a 

given node ( i ), vehicle ( v ), and time period ( t ) the model reduces to 

DISPDEC tvji * where only a single 
tvji

y *  can take the value of 1 because of the 

constraint set (5.9). This suggests that we can fix tvjiy  to 1 for particular j, and 

then we easily solve a bounded continuous knapsack problem by using a 

greedy procedure. In this procedure, the variable costs of customers k ( k
tvjiĉ ) 

are listed in a nondecreasing order. If the related cost is negative, the flow 

variable k
tvjix  is set to the minimum value specified in constraint set (5.13). 

Otherwise, it is set to zero. This is repeated for all the variables on the list until 

the capacity is exhausted. By repeating the entire procedure for all j’s for a 

given i , v , t  triple, we determine the best 
tvji

y * , as illustrated below.  

 

{ }  Z,0 min* tvjijtvji
Z =                                                                                    (5.53) 

 

The bounded continuous knapsack problem for each Nj∈ , DISPDEC tvji * , is 

as follows.
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For each set of node i, vehicle v, and time period t, DISPDEC tvji * must be 

solved -meaning that (N+1)NVT many problems would be solved- and the best 

solution value to DSP can be obtained by (5.57). 

  

Z (DSP) = ∑∑∑
≠
= = =

N

ji
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V
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Z
*

0 1 1
*                                                                            (5.57) 

 

 

5.4.5 Algorithmic representation of lower bound computation 

 

Begin: 

Solve SSP; 

for k=1 to N do 

{Solve RSP-k;} 

Get optimal values of objective functions of SSP and RSP-k’s ; 

 Distribution_cost = 0; 

 for i = 0 to N do 

  for v = 1 to V do 

   for t = 1 to T do 

    for j = 0 to N do  

  Sort variable costs of customers in nondecreasing 

order l=1,…,N;    

   for l = 1 to N do 

   if (Variable cost of customer k is less       

            than zero;) 
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{Assign the maximum possible amount 

to that customer according to the 

constraint set (5.13); 

Update vehicle capacity;   

Calculate cost due to delivery of the 

assigned amount to that customer l;} 

 else  

                                                                 {Assign zero to that customer;} 

             endfor   

 minimum = 0; 

 if  ( tvjiZ  < minimum) 

     {minimum = tvjiZ ; 

         j* = j; 

                              Visit location j* after location i  by vehicle v  

in time period t ;} 

 else    

{Do not visit location j after location i  

vehicle v  in time period t ;}        

 endfor 

  {Distribution_cost = Distribution_cost +
tvji *Z } 

  endfor 

  endfor 

endfor 

Lower_Bound = Distribution_cost + Z(RSP) + Z(SSP); 

End. 
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5.4.6 Computation of upper bound 

 

Finding a feasible solution gives us an upper bound for the P(SSMRIRB). 

Since it is hard to solve original problem optimally, a heuristic algorithm that 

yields good feasible solutions in reasonable times should be used. The heuristic 

algorithm that can be used in further researches should include an efficient 

allocation algorithm that would assign the customers to the vehicles and satisfy 

vehicle capacities while fulfilling the entire demand of end customers during 

the planning horizon.  
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CHAPTER 6 

 

 

CONCLUSION 

 

 

 

In this study, an inventory routing problem with backorders (INVROP) has 

been analyzed and a mixed integer mathematical formulation has been 

developed for solving the INVROP. For the small sized problem instances we 

have identified optimal solutions and for larger instances we have computed 

lower and upper bounds. 

 

The INVROP is NP-hard because of the embedded CVRP’s (capacitated 

vehicle routing problems) and the joint replenishment problem. Considering 

the difficulties in finding the optimal solutions in such cases, we have 

developed a Lagrangian relaxation based solution algorithm that computes both 

lower and upper bounds in the Lagrangian relaxation based approach, we have 

relaxed flow balance equations and movement restriction equations that work 

as subtour elimination constraints. Because of our problem characteristics we 

have taken test instances from the literature and revised some of them in order 

to achieve feasibility. We have tested our algorithm with small instances for 

which the optimal solutions are possibly found. In the preliminary experiments 

we have decided on the parameters of the algorithm and applied these 

parameters in the solution procedure of the larger problem instances. 

 
The main contributions of this thesis are to develop a mathematical model for 

the INVROP and identify lower bounds on the optimal solution. None of the 

finite horizon models with deterministic demand in the literature has 

considered backordering as an option for the supply chain other than Chien et. 

al. (1989) and Abdelmaguid and Dessouky (2006). Chien et. al. (1989) 
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presented both lower and upper bounds for only a single period problem. 

Abdelmaguid and Dessouky (2006) considers multiple periods, but not 

compute lower bounds only upper bounds. They did not consider variable 

transportation costs either.  

 

Our mathematical formulation is a mega model that could handle several cost 

structures such as fixed and variable transportation costs, fixed dispatching 

costs, inventory holding and backordering costs. For implementation any of 

these costs could be removed or added to the problem (in the INVROP we used 

all these cost structures). 

 

We also presented an algorithm for the generalized version of INVROP, which 

is more complicated. Further improvements may be possible by examining the 

generalized version of INVROP. In the solution algorithm, we used valid 

inequalities that strengthen the formulation which definitely improves the 

computational results. We have observed that much of the CPU time was 

consumed by upper bounding procedure that solves CVRP’s. In our knowledge 

the things that can be done to improve CVRP’s are limited; therefore, some 

heuristics like cheapest insertion or using genetic algorithms to calculate upper 

bounds, could be helpful.  

 

We presented a Lagrangian relaxation method without valid inequalities and 

compared our results with the results obtained by this method. We observed 

that insertion of valid inequalities significantly improves the solutions; 

however, the lower bounds would further be improved since the average 

Lagrangian gap between upper and lower bounds is 38.12% and the gap is 

mostly due to the lower bounds. A hybrid approach that incorporates 

Lagrangian relaxation and Bender’s decomposition would be an alternative to 

find better cuts and thus better lower bounds.   
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During the steps of Lagrangian relaxation based algorithm we have updated the 

Lagrangian multipliers by general subgradient optimization technique. 

However, we did not apply different updating procedures which may be a way 

to improve the results.  

 

The endogenous inventory policy is one part that gives room for extension. 

Different inventory policies may be adapted to the problem and the 

deterministic structure may be shifted to a stochastic case, which is more 

realistic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

129 
 

REFERENCES 

 

 

Abdelmaguid, T.F. and Dessouky, M.M. 2006. A genetic algorithm approach 

to the integrated inventory-distribution problem. International Journal of 

Production Research 44 (21) 4445-4464.  

 

Anily, S., and A. Federgruen. 1990. One warehouse multiple retailer systems 

with vehicle routing costs. Management Science 36 (1) 92-114. 

 

Anily, S., and A. Federgruen. 1993. Two-echelon distribution systems with 

vehicle routing costs and central inventories. Operations Research 41 37-47. 

 

Anily, S. 1994. The general multi-retailer EOQ problem with vehicle routing 

costs. European Journal of Operational Research 79 451-473. 

 

Archetti, C., L. Bertazzi, G. Laporte, M.G. Speranza. 2007. A branch-and-cut 

algorithm for a vendor-managed inventory-routing problem. Transportation 

Science 41 (3) 382-391. 

 

Baita, F., W. Ukovich, R. Pesenti, and D. Favaretto. 1998. Dynamic routing-

and-inventory problems: A review. Transportation Research A 32 (8) 585-598. 

 

Beasley, J., 1993. Lagrangean Relaxation. Modern Heuristic Techniques for 

Combinatorial Problems, edited by C.R. Reeves. Blackwell Scientific 

Publications, 243-303. 

 

Bell, W.J., L. Dalberto, M. Fisher, A. Greeenfield, R. Jaikumar, P. Kedia, R. 

Mack, and P. Prutzman. 1983. Improving the distribution of industrial gases 



  
 

130 
 

with an on-line computerized routing and scheduling optimizer. Interfaces 13 

4-23. 

 

Benjamin, J. 1989. An Analysis of Inventory and Transportation Costs in a 

Constrained Network. Transportation Science. 23 177-183. 

 

Bertazzi, L. 2008. Analysis of direct shipping policies in an inventory-routing 

problem with discrete shipping times. Management Science 54 748-762.  

 

Bertazzi, L., G. Paletta, and M.G. Speranza. 2002. Deterministic order-up-to 

level policies in an inventory routing problem. Transportation Science 36 (1) 

119-132. 

 

Bertazzi, L., and M.G. Speranza. 2002. Continuous and discrete shipping 

strategies for single link problem. Transportation Science 36 (3) 314-325. 

 

Bertazzi, L., G. Paletta, and M.G. Speranza. 2005. Minimizing the total cost in 

an integrated vendor-managed inventory system. Journal of Heuristics  11 393-

419. 

 

Blumenfeld, D.E., L.D. Burns, J.D. Diltz, and C.F. Daganzo. 1985. Analyzing 

trade-offs between transportation, inventory and production costs on freight 

networks. Transportation Research 19B (5) 361-380. 

 

Blumenfeld, D.E., L.D. Burns, C.F. Daganzo, M.C. Frick, and R.W. Hall. 

1987. Reducing logistics costs at General Motors. Interfaces 17 (1) 26-47. 

 

Burns, L.D., R.W. Hall, D.E. Blumenfeld, and C.F. Daganzo. 1985. 

Distribution strategies that minimize transportation and inventory costs. 

Operations Research 33 (3) 469-490. 



  
 

131 
 

Cachon, G. 2001. Managing a retailer’s shelf space, inventory, and 

transportation. Manufacturing & Service Operations Management 3 (3) 211-

229.  

 

Campbell, A., L. Clarke, A. Kleywegt, and M.W.P. Savelsbergh. 1998. The 

inventory routing problem. T.G.Crainic, G.Laporte, eds. Fleet Management 

and Logistics. Kluwer Academic Publishers, London, UK. 95-113. 

 

Chan, L.M.A., A. Federgruen, and D. Simchi-Levi. 1998. Probabilistic analysis 

and practical algorithms for inventory-routing models. Operations Research 46 

(1) 96-106. 

 

Chandra, P. 1993. A dynamic distribution model with warehouse and customer 

replenishment requirements. Journal of Operations Research Society 44 (7) 

681-692. 

 

Chandra, P., and M.L. Fisher. 1994. Coordination of production and 

distribution planning. European Journal of Operational Research 72 (3) 503-

517. 

 

Chien, T.W., A. Balakrishnan, and R.T. Wong. 1989. An integrated inventory 

allocation and vehicle routing problem. Transportation Science 23 (2) 67-76. 

 

Dror, M., and M. Ball. 1987. Inventory / Routing: Reduction from an annual to 

a short-period problem. Naval Research Logistics 34 891-905. 

 

Erenguc, S.S., Tufekci, S. 1988. A transportation type aggregate production 

model with bounds on inventory and backordering. European Journal of 

Operational Research 35 414-425. 

 



  
 

132 
 

Federgruen, A., and P. Zipkin. 1984. A combined vehicle routing and 

inventory allocation problem. Operations Research 32 (5) 1019-1037. 

 

Federgruen, A., and D. Simchi-Levi. 1995. Analysis of vehicle routing and 

inventory-routing problems. M.O. Ball et al., eds., Handbooks in OR &MS, vol. 

8, Chapter 4. 

 

Fisher, M.L. 1981. The Lagrangian relaxation method for solving integer 

programming problems. Management Science 27 (1) 1-18. 

 

Fisher, M.L., and R. Jaikumar. 1981. A generalized assignment heuristic for 

vehicle routing. Networks 11 (2) 109-124.   

 

Fisher, M.L. 1985. An applications oriented guide to Lagrangian relaxation. 

Interfaces 15 (2) 10-21. 

 

Fumero, F., and C. Vercellis. 1999. Synchronized development of production, 

inventory, and distribution schedules. Transportation Science 33 (3) 330-340. 

 

Gallego, G., and D. Simchi-Levi. 1990. On the effectiveness of direct shipping 

strategy for the one-warehouse multi-retailer R-systems. Management Science 

36 (2) 240-243. 

 

Geoffrion, A.M., 1974. Lagrangean Relaxation for Integer Programming. 

Mathematical Programming Study 2, 82-114. 

 

Georgia Institute of Technology. March 2005. Concorde TSP Solver. Available 

from website http://www.tsp.gatech.edu/concorde, last accessed date: 

07.12.2008. 

 



  
 

133 
 

Hvvatum, L.M., A. Lĝkketangen. 2008. Using scenario trees and progressive 

hedging for stochastic inventory routing problems. Journal of Heuristics 

doi:10.1007/s10732-008-9076-0. 

 

Joneja, D. 1990. The joint replenishment problem: New heuristics and worst 

case performance bounds. Operations Research 38 (4) 711-723. 

 

Kim, J-U., Kim, Y-D. 2000. A Lagrangian relaxation approach to multi-period 

inventory/distribution planning. Journal of the Operational Research Society 

51 364-370. 

 

King, R.H., and R.R. Love. 1980. Coordinating decisions for increased profits. 

Interfaces 10 (6) 4-19. 

 

Kleywegt, A.J., V.S. Nori, and M.W.P. Savelsbergh. 2002. The stochastic 

inventory routing problem with direct deliveries. Transportation Science 36 (1) 

94-118. 

 

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. 1985. The 

traveling salesman problem: A guided tour of combinatorial optimization. John 

Wiley & Sons. 

 

Lei, L., Liu, S., Ruszczynski, A., Park, S. 2006. On the integrated production, 

inventory, and distribution routing problem. IIE Transactions 38 955-970. 

 

Lippman, S.A. 1969. Optimal inventory policy with multiple set-up costs. 

Management Science 16 (1) 118-138. 

 



  
 

134 
 

Martin, C.H., D.C. Dent, and J.C. Eckhart. 1993. Integrated production, 

distribution and inventory planning at Libbey-Owens-Ford. Interfaces 23 (3) 

68-78.  

 

McClain J.O., Thomas, J.L., Weiss, E.N. 1989. Efficient solutions to a linear 

programming model for production scheduling with capacity constraints and 

no initial stock. IIE Transactions 21 (2) 144-152. 

 

Moin, N.H., Salhi, S. 2006 Inventory routing problems: a logistical overview. 

Journal of Operational Research Society 1-10. 

 

Pınar, O., and Süral, H. 2006. Coordinating inventory and transportation in 

vendor managed systems. Meller, R. et al. (eds.). Proceedings of the Material 

Handling Research Colloquium 2006, 459-474. 

 

Pochet, Y., Wolsey, L.A. 2006. Production Planning by Mixed Integer 

Programming. Springer.  

 

Quadt, D., Kuhn, H. 2008. Capacitated lot-sizing with extensions: a review. A 

Quarterly Journal of Operations Research 6 61-83. 

 

Sarmiento, A.M., and R. Nagi. 1999. A review of integrated analysis of 

production-distribution systems. IIE Transactions 31 1061-1074. 

 

Savelsbergh, M., J.H. Song. 2007. Inventory routing with continuous moves. 

Computers & Operations Research 34 1744-1763. 

 

Savelsbergh, M., J.H. Song. 2008. An optimization algorithm for the inventory 

routing with continuous moves. Computers & Operations Research 35 2266-

2282. 



  
 

135 
 

Solyalı, O., and Süral, H. 2007. A relaxation based solution approach for the 

inventory control and vehicle routing problem in vendor managed systems. 

Technical Report 07-10, Department of Industrial Engineering, METU, 

Ankara. 

 

Tang, J., Yung, K.L., Ip, A.W.H. 2004. Heuristics based integrated decisions 

for logistics network systems. Journal of Manufacturing Systems 23 (1) 1-13.

 

Thomas, D.J., and P.M. Griffin. 1996. Coordinated supply chain management. 

European Journal of Operational Research 94 1-15. 

 

Viswanathan, S., and K. Mathur. 1997. Integrating routing and inventory 

decisions in one-warehouse multi-retailer multiproduct distribution systems. 

Management Science 43 (3) 294-312. 

 

Vyve, M.V. 2006. Linear programming extended formulations for single-item 

lot-sizing problem with backlogging and constant capacity. Mathematical 

Programming 108 (1) 53-77. 

 

Wagner, H.M., and T.M. Whitin. 1958. Dynamic version of the economic lot 

size model. Management Science 5 (1) 89-96. 

Wolsey, L.A. 1995. Progress with single-item lot-sizing. European Journal of 

Operational Research 86 395-401. 

 

Yung, K.L., Tang, J., Ip, A.W.H., Wang, D. 2006. Heuristics for joint decisions 

in production, transportation, and order quantity. Transportation Science 40 (1) 

99-116.

 

Zhao, Q.H., S.Y. Wang, K.K. Lai. 2007. A partition approach to 

inventory/routing. European Journal of Operational Research 177 786-802. 



 APPENDIX A 
 

 

AN EXAMPLE ILLUSTRATING THE FLOW VARIABLES 

 

 

 

In this section we illustrate the specifications of the flow variables (xkijvt) by 

the optimal solution of the test problem 551AD1. The data of this problem is 

given in Figure A1 and Tables A1-A3.  

 

10, 10

8, 6

8, 19

9, 9

7, 1

20, 10

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25

x-coordinates

y-
co

or
di

na
te

s

 

Retailer 2 

Depot

Retailer 3

Retailer 5 

Retailer 1

Retailer 4 

Figure A.1 The coordinates of the retailers and the depot 
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Table A.1 The distance matrix 
0 1 2 3 4 5

0 -
1 9 -
2 19 26 -
3 3 7 21 -
4 19 11 37 17 -
5 20 26 30 23 32 -  

 

 

 

Note that fixed arc usage cost is 2*Distij and variable transportation cost per 

unit is 0.1*Distij and fixed vehicle dispatching cost is 10 units per vehicle. 

 

 

 

Table A.2 Demand figures of end customers observed at retailers  

1 2 3 4 5
1 20 12 13 27 38
2 48 39 11 27 35
3 8 34 24 49 18
4 38 29 29 49 39
5 47 19 16 37 40

R
et

ai
le

r

Period
Demand

 
 

 

 

Table A.3 Cost figures of the retailers 
Holding cost per unit per period Backordering cost per unit per period

1 0.13 3.35
2 0.09 2.09
3 0.13 2.19
4 0.1 3.33
5 0.12 2.51

R
et

ai
le

r
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Its optimal solution is 1430.64 and the solution values of the variables yijvt, xk
ijvt 

and Skt are given in Tables A.5-A.7, respectively. 

 

 

 

Table A.4 Optimal solution values of binary variables 
Variable name Solution value

y0111 1
y0312 1
y0313 1
y0314 1
y0315 1
y1411 1
y1413 1
y1415 1
y2012 1
y2015 1
y3113 1
y3115 1
y3212 1
y3514 1
y4013 1
y4215 1
y4511 1
y5011 1
y5014 1  

 

 

 

Table A.5 Optimal solution values of supply variables
Variable name Solution value

S11 25
S13 47
S15 38
S22 109
S25 51
S32 41
S33 25
S34 49
S35 18
S1 67

S43 78
S45 39
S51 58
S54 101  
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Table A.6 Optimal solution values of flow variables 
Variable name Solution value

x1
0111 25

x4
0111 67

x5
0111 58

x2
0312 109

x3
0312 41

x1
0313 47

x3
0313 25

x4
0313 78

x3
0314 49

x5
0314 101

x1
0315 38

x2
0315 51

x3
0315 18

x4
0315 39

x4
1411 67

x5
1411 58

x4
1413 78

x2
1415 51

x4
1415 39

x1
3113 47

x4
3113 78

x1
3115 38

x2
3115 51

x4
3115 39

x2
3212 109

x5
3514 101

x2
4215 51

x5
4511 58  
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As defined in the M(INVROP) yijvt variables show whether an arc (i,j) is used 

by vehicle v, in period t. xk
ijvt  variables denote the amount of product carried on 

arc (i,j) for designated retailer k, by vehicle v in period t. Skt corresponds to the 

total amount of product distributed to retailer k in period t. From the y variables 

given in Table A.5 we know the retailers that are visited and the order on the 

tour, which is given in Table A.8. Depot is indexed with 0 and is included in 

each tour, but is not shown in Table A.8. 

 

 

 

Table A.7 Lists of retailers visited in each time period 

Time period The retailers that are visited
1  1, 4, 5
2  3, 2
3  3, 1, 4
4  3, 5
5  3, 1, 4, 2  

 

 

 

The optimal tours of each of the five periods are represented in Figures A.1- 

A.5, respectively. Note that the arrows in the figures show the directions of the 

tour starting from the depot and ending at depot. 
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Figure A.2 The optimal tour in period 1 
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Figure A.3 The optimal tour in period 2 
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Figure A.4 The optimal tour in period 3 
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Figure A.5 The optimal tour in period 4 
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Figure A.6 The optimal tour in period 5 

 

 

 

The flows on arcs that are labeled in Figures A.1-A.5, are shown in Tables A.9-

A.13, respectively (the flows on the last arcs that are arriving at the depot are 

not shown since zero units are carried on these arcs). Skt values denote the 

amounts supplied to retailer k in period t. 

 

 

 

Table A.8 Flows on arcs in Figure A.1 

S11 25 S41 67 S51 58
x01111 25 x14114 67 x45115 58
x01114 67 x14115 58 Total 58
x01115 58 Total 125
Total 150

1 2 3
Arc number

 
 

 

 



Table A.9 Flows on arcs in Figure A.2 

S41 67 S51 58
x14114 67 x45115 58
x14115 58 Total 58
Total 125

1 2
Arc number

 
 

 

 

Table A.10 Flows on arcs in Figure A.3 

S33 25 S13 47 S43 78
x03131 47 x31131 47 x14134 78
x03133 25 x31134 78 Total 78
x03134 78 Total 125
Total 150

1 2 3
Arc number

 
 

 

 

Table A.11 Flows on arcs in Figure A.4 

S45 39 S25 51
x14152 51 x42152 51
x14154 39 Total 51
Total 90

Arc number
1 2
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Table A.12 Flows on arcs in Figure A.5 

S35 18 S15 38 S45 39 S25 51
x03151 38 x31151 38 x14152 51 x42152 51
x03152 51 x31152 51 x14154 39 Total 51
x03153 18 x31154 39 Total 90
x03154 39 Total 128
Total 146

1
Arc number

2 3 4

 
 

 

 

It can be observed that the sum of the flow variables arriving a retailer is equal 

to the supply of that retailer and the supply amount of the succeeding retailers. 

The supply amount is left at that retailer and the vehicle arrives the retailer with 

the total supply of succeeding retailers.  
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APPENDIX B 

 

 

LAGRANGIAN RELAXATION WITHOUT VALID INEQUALITIES 

 

 

 

B.1 Lower bound computation method 

 

In this section we provide an easy method that can be applied to M(INVROP) 

for calculation of lower and upper bounds on the optimal solution. Without the 

constraint set (3.14) presented in Chapter 3, M(INVROP) can be decomposed 

into two subproblems that are retailer subproblem and distribution subproblem. 

These subproblems are defined in the next section. 

 

B.1.1 Retailer subproblem (RESP) 

 

This subproblem consists of inventory balance equations and total vehicle 

capacity restriction. 

 

Minimize   +                                           (B.1) ( )∑∑
= =

+
N

k

T

t
ktktktkt BbIh

1 0
∑∑
= =

N

k

T

t
ktkt Sp

1 1

  

Subject To 

ktktktktktkt dSBIBI =++−− −− 11      NkTt ∈∈∀  ,                                         (B.2) 

k
kt II max≤       NkTt ∈∈∀  ,                                                                           (B.3) 

00 =kB                                                                      (B.4) Nk ∈∀

00 =kI                                                                      (B.5) Nk ∈∀
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0=kTB                                                                      (B.6) Nk ∈∀

∑∑
==

≤
V

v
v

N

k
kt KS

11
                                                                               (B.7) Tt ∈∀ 

0 , , ≥ktktkt BIS      NkTt ∈∈∀  ,                                                                  (B.8) 

 

It is a linear programming problem and it is solved in polynomial time. Several 

versions of this problem are studied in the literature. In McClain, Thomas and 

Weiss (1989), the objective of the model consists of holding, production and 

overtime costs. McClain et al. (1989) show that the model can be solved in 

polynomial time with the assumptions of no initial inventory and zero setup 

times and costs.  In Erenguc and Tufekci (1988), the objective of the model 

consists of production, holding and backordering costs. Moreover, Erenguc and 

Tufekci (1988) have bounds on inventory as our model RESP. They show that 

the model has a network flow structure and can be solved in polynomial time. 

In Hax (1978), a multi-item linear programming formulation for aggregate 

production planning is given. In addition to the cost components of holding, 

backordering and production; overtime, hiring and firing costs are presented. 

This model can also be solved in polynomial time.  In the M(INVROP) 

constraint set (B.7) is redundant. However, it is useful for RESP. Because, the 

solutions obtained without the total vehicle capacity limitation will possibly be 

far away from giving useful information. Besides, if demands and inventory 

limits in the RESP are integer, the model will always yields integer solutions 

for shipment, inventory and backorder variables. 

 

B.1.2 Distribution subproblem (DISP) 

 

Minimize   + ∑∑∑∑∑                              (B.9) ∑∑∑∑
=

≠
= = =

N

i

N

ij
j

V

v
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=

≠
= = = =
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N
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Subject To 
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  ,min max
1

   
Nk

TtVvjiNji
∈

∈∈≠∈∀  , ,  ,  ,,             (B.12) 

0≥k
ijvtx      NkTtVvjiNji ∈∈∈≠∈∀  , ,  ,  ,,                                          (B.13) 

}{ 1,0∈ijvty  TtVvjiNji ∈∈≠∈∀  ,  ,  ,,                                                    (B.14) 

 

 

The objective function in this subproblem consists of modified fixed costs and 

modified variable costs of arc usages. Note that the fixed cost term includes 

original fixed cost of arc usage and attached Lagrange multiplier values 

whereas modified variable cost is paid upon the amount carried on that arc.  

 

Although the subproblem DISP is a mixed integer problem, it can be 

decomposed into nodes (i). The decomposition is performed as follows. For a 

given node ( i ), vehicle ( v ), and time period ( t ) the model reduces to 

DISPDEC tvji * where only a single 
tvji

y *  can take the value of 1 because of 

constraint set (B.11). This suggests that we can fix tvjiy  to 1 for particular j, 

and then we easily solve a bounded continuous knapsack problem by using a 

greedy procedure. In this procedure, the variable costs of customers k ( k
tvjiĉ ) 

are listed in a nondecreasing order. If the related cost is negative, the flow 

variable k
tvjix  can be set equal to the minimum value specified in constraint set 

(B.12). Otherwise, it is set to zero. This is repeated for all the variables on the 
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list until the capacity is exhausted. By repeating the entire procedure for all j’s 

for a given i , v , t  triple, we determine the best 
tvji

y * , as illustrated below.  

   

{ }  Z,0 min* tvjijtvji
Z =                                                                                   (B.15) 

 

Chien et al. (1989) applied a similar algorithm but for a single period problem.  

 

The bounded continuous knapsack problem for each Nj∈ , DISPDEC tvji * , is 

as follows.

 

Minimize    ( ) k
tvji

N

k

k
tvjitvjitvjitvji xcfyZ ∑
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+==
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ˆˆ1                                           (B.16) 
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                                                                                                (B.17) 
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For each set of node i, vehicle v, and time period t, DISPEC tvji * must be solved 

-meaning that (N+1)NVT many problems would be solved- and the best 

solution value to DISP can be obtained from,  

 

Z (DISP(LowerBound)) = ∑∑∑
= = =

N

i

V

v

T

t
tvji

Z
0 1 1

*                                                            (B.19) 
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B.1.3 Algorithmic representation (pseudo code) of lower bound 

computation 

 

Begin: 

Solve RESP with CPLEX; 

Get optimal objective function value and *Skt values from RESP; 

 Distribution_cost = 0; 

 for i = 0 to N do 

  for v = 1 to V do 

   for t = 1 to T do 

    for j = 0 to N do  

  Sort customers according to variable costs in 

nondecreasing order l=1,…,N;  

   for l = 1 to N do 

   if (variable cost of customer l is less       

            than zero;) 

    

{Assign the maximum possible amount 

to that customer according to the 

constraint set (B.18); 

Update vehicle capacity;   

Calculate cost due to delivery of 

assigned amount to that customer;} 

 else  

                                                                 {Assign zero to that customer;} 

             endfor   

 minimum = 0; 

 if  ( tvjiZ  < minimum)  

     {minimum = tvjiZ ; 

         j* = j; 
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                              visit location j* after location i in time period 

t by vehicle v; } 

 else    

{Do not visit location j (customer or depot) 

after location i by vehicle v in period t;} 

       

 endfor 

   Distribution_cost = Distribution_cost + 
tvji

Z * ;

  endfor 

  endfor 

endfor 

Lower Bound = Distribution_cost + Z(RESP); 

End. 

 

B.2 Upper bound computation method (Knapsack based heuristic) 

 

In order to calculate upper bounds for the Lagrangian relaxation without valid 

inequalities we differentiated problems according to the number of vehicles 

available in the system. For multiple vehicles, upper bounds are calculated with 

the same method provided in Chapter 3. However, for the single vehicle case, 

we solve a Traveling Salesman Problem (TSP) in each period due to the time 

considerations. Each TSP is solved with CONCORDE which is an efficient 

program that is commercially available.  

   

In each period we determine the customers that are included in the list of 

customers to be served by using *Skt variables calculated in the lower bound 

section. Then we solve a TSP for each set of customers. However, 

M(INVROP) considers not only the fixed arc usage costs but also the costs 

paid upon the amount carried on each arc. Since the amounts carried on arcs 

are not considered in TPS formulation, we inserted carriage costs after 
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obtaining the feasible tours by TSP. For each tour, other than the fixed arc 

usage costs, the greatest cost component is occurred at the arcs leaving the 

depot, since the full amount to be distributed has to be carried on the first arc 

leaving the depot. However, for the returning arcs to the depot only fixed arc 

usage costs are applied, sine the amount to be carried on these arcs should be 

zero. Therefore, the resulting problem is an Asymmetric Traveling Salesman 

Problem (ATSP), in which the two arcs connecting two nodes have different 

cost values. Fortunately, an ATSP could be formulated as a TSP by duplicating 

the nodes, where the arcs leaving duplicated and the original nodes represent 

the different cost components, and the arcs that are connecting a duplicated 

node and its original node having cost of zero. Therefore, the model must use 

the zero valued arcs. In our model we only duplicated depot, since we were not 

able to know the amounts carried between nodes, which constitutes a dynamic 

cost matrix. The duplication of depot is shown in Figure B.1 

 

In the Figure B.1, “Cost Depot-Retailer k” represents the cost of carrying the 

whole amount to be distributed and the fixed arc usage cost; “Cost Depot`-

Depot” represents the cost of using the dummy arc and it is zero; “Cost 

Customer k-Depot” represents the fixed cost of using the arc while arriving at 

depot.  

 

After converting ATSP to TSP we use CONCORDE to solve each TSP, then 

using the feasible tours obtained, the cost of carriage on arcs are calculated 

according to the values of Skt; then we add the backordering and inventory 

holding costs and obtained upper bounds. 
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Depot Retailer 1 Cost Depot-Retailer k 

Retailer 2 

Retailer 3 

Figure B.1 Conversion of ATSP to TSP 

 

 

 

B.2.1 Algorithmic representation of upper bound computation method 

 

Begin: 

 Get *Skt,, 
*Ikt and *Bkt values of lower bound section; 

 for k = 1 to N do 

  for t = 1 to T do  

   if (*Skt > 0)  

                                         {Add customer k to the list of customers to be  

visited in period t;} 

 else  

      {Do not visit customer k in period t;} 

 endfor 

 endfor 

. 

. 

. 

. 

. 

. 

Retailer N 

Retailer 1 

Retailer 2 

Retailer 3 

Retailer N 

Cost Depot`-Depot 

Depot` 
Cost Retailer k-Depot` 
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 if (V>1) 

  for t = 1 to T do 

{Solve CVRP(t) with CPLEXand obtain y*
ijvt  and x*k

ijvt values;} 

  endfor 

 else 

  for t = 1 to T do 

  {Convert ATSP(t) to TSP(t); 

  Solve TSP(t) with CONCORDE and obtain a tour; 

Obtain y*
ijvt and x*k

ijvt values with respect to the tour obtained;} 

  endfor 

Upper_Bound = Z(INVROP(*Skt, *Ikt, *Bkt, y*
ijvt, x*k

ijvt)); 

End. 

 

The flowchart of the algorithm applied to M(INVROP) by Lagrangian 

relaxation without valid inequalities is given in Figure B.2. 
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Figure B.2 Flowchart of the Lagrangian Relaxation without valid inequalities 
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B.3 Experimentation 

 

In this section we present the results obtained with the knapsack problem based 

relaxation. 

 

In the Tables B.1 – B.8 we used the following notations. 

 

• KN UB denotes the upper bound calculated with knapsack problem 

based relaxation. 

• CPU KN denotes the CPU time used by the knapsack problem based 

relaxation in minutes. 

• %KNGAP denotes the gap between the knapsack problem based 

heuristic solution and linear programming relaxation 

(%KNGAP=%(KN UB – LPR)/LPR). 

• RE is the ratio of the %KN GAP and %MIP. 

 

where, LPR denotes the optimal solution value of the linear programming 

relaxation of the problems. Since lower bounds computed with the Lagrangian 

relaxation without valid inequalities are not better than the linear programming 

relaxation solutions, we used linear programming relaxation solutions as lower 

bounds. 

 

Note that in the settings with 5 retailers, we calculated an upper bound in each 

iteration. In the settings with 10 retailers we separated the problems according 

to the number of vehicles. In single vehicle settings we calculated an upper 

bound in each iteration; whereas, in two vehicle settings we calculated an 

upper bound once in every five iterations. 

 

 

 



Table B.1 Results of knapsack problem based relaxation for 551ADk 

CPLEX UB CPUB LPR CPULPR %MIP KN UB CPU KN %KNGAP RE
Problem Opt
551AD1 Y 1430.64 0.52 847.75 0.01 68.76 2474.11 0.75 191.84 2.79
551AD2 Y 1531.68 0.09 908.02 0.01 68.68 2191.55 0.73 141.35 2.06
551AD3 Y 1184.78 0.08 785.64 0.01 50.80 1596.59 0.74 103.22 2.03
551AD4 Y 1460.41 0.11 844.35 0.01 72.96 2111.19 0.75 150.04 2.06
551AD5 Y 1392.00 0.09 940.41 0.01 48.02 2101.05 0.73 123.42 2.57
Average 0.18 0.01 61.85 0.74 141.98 2.30

MIP Model KNAPSACK Heuristic

 
 

 

 

Table B.2 Results of knapsack problem based relaxation for 552ADk 

CPLEX UB CPUB LPR CPULPR %MIP KN UB CPU KN %KNGAP RE
Problem Opt
552AD1 Y 1145.32 0.85 868.57 0.01 31.86 1228.13 2.81 41.40 1.30
552AD2 Y 1505.19 18.89 1194.32 0.01 26.03 1632.4 3.93 36.68 1.41
552AD3 Y 1138.87 11.68 918.77 0.01 23.96 1257.82 2.47 36.90 1.54
552AD4 Y 1138.62 3.31 908.59 0.01 25.32 1215 3.63 33.72 1.33
552AD5 Y 1204.92 6.15 959.35 0.01 25.60 1329.34 4.36 38.57 1.51
Average 8.18 0.01 26.55 3.44 37.45 1.42

MIP Model Knapsack based heuristic

 
 

 

 

Table B.3 Results of knapsack problem based relaxation for 571ADk 

CPLEX UB CPUB LPR CPULPR %MIP KN UB CPU KN %KNGAP RE
Problem Opt
571AD1 Y 1723.29 0.41 1082.24 0.01 59.23 2040.89 1.01 88.58 1.50
571AD2 Y 1431.37 0.10 1030.68 0.01 38.88 2100.41 1.01 103.79 2.67
571AD3 Y 1199.18 0.31 779.07 0.01 53.92 1816.51 1.01 133.16 2.47
571AD4 Y 1661.59 0.37 1043.34 0.01 59.26 2416.98 1.04 131.66 2.22
571AD5 Y 1566.38 1.91 939.07 0.01 66.80 2503.4 1.03 166.58 2.49
Average 0.62 0.01 55.62 1.02 124.75 2.27

MIP Model Knapsack based heuristic
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Table B.4 Results of knapsack problem based relaxation for 572ADk 

CPLEX UB CPUB LPR CPULPR %MIP KN UB CPU KN %KNGAP RE
Problem Opt
572AD1 1685.00 60.01 1300.60 0.01 29.56 1834.25 3.39 41.03 1.39
572AD2 1751.34 60.03 1320.22 0.01 32.66 1957.64 4.93 48.28 1.48
572AD3 Y 1580.88 14.76 1223.34 0.01 29.23 1887.38 6.21 54.28 1.86
572AD4 Y 1647.73 34.23 1300.87 0.01 26.66 1885.11 4.54 44.91 1.68
572AD5 Y 1625.45 23.17 1239.01 0.01 31.19 1875.43 3.98 51.37 1.65
Average 38.44 0.01 29.86 4.61 47.97 1.61

MIP Model Knapsack based heuristic

 
 

 

 

Table B.5 Results of knapsack problem based relaxation for 1051ADk 

CPLEX UB CPUB LPR CPULPR %MIP KN UB CPU KN %KNGAP RE
Problem Opt
1051AD1 2630.36 180.00 1289.4 0.02 104.00 2942.76 0.85 128.23 1.23
1051AD2 2209.24 180.00 1461.27 0.04 51.19 2949.81 0.80 101.87 1.99
1051AD3 3195.71 180.00 1626.9 0.05 96.43 3279.49 0.85 101.58 1.05
1051AD4 2574.72 180.00 1595.81 0.04 61.34 2912.78 0.82 82.53 1.35
1051AD5 2897.20 180.00 1594.76 0.04 81.67 3272.64 0.85 105.21 1.29
Average 180.00 0.04 78.93 0.83 103.88 1.38

MIP Model Knapsack based heuristic

 
 

 

 

Table B.6 Results of knapsack problem based relaxation for 1052ADk 

CPLEX UB CPUB LPR CPULPR %MIP KN UB CPU KN %KNGAP RE
Problem Opt
1052AD1 2505.07 180.00 1582.04 0.06 58.34 2832.77 227.46 79.06 1.36
1052AD2 2084.02 180.00 1547.19 0.09 34.70 2396.84 112.33 54.92 1.58
1052AD3 2326.01 180.00 1499.80 0.08 55.09 2673.4 191.08 78.25 1.42
1052AD4 1851.85 180.00 1408.77 0.08 31.45 2038.52 72.50 44.70 1.42
1052AD5 2456.36 180.00 1509.87 0.08 62.69 2737.6 399.07 81.31 1.30
Average 180.00 0.08 48.45 200.49 67.65 1.42

MIP Model Knapsack based heuristic
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Table B.7 Results of knapsack problem based relaxation for 1071ADk 

CPLEX UB CPUB LPR CPULPR %MIP KN UB CPU KN %KNGAP RE
Problem Opt
1071AD1 4118.08 180.00 2111.37 0.05 95.04 4525.88 1.17 114.36 1.20
1071AD2 4023.24 180.00 2263.62 0.06 77.73 4859.29 1.13 114.67 1.48
1071AD3 3557.83 180.00 1848.37 0.06 92.48 4248.14 1.21 129.83 1.40
1071AD4 4192.71 180.00 2346.31 0.06 78.69 5547.64 1.11 136.44 1.73
1071AD5 3850.9 180.00 1998.42 0.06 92.70 3286.25 1.14 64.44 0.70
Average 180.00 0.06 87.33 1.15 111.95 1.30

MIP Model Knapsack based heuristic

 
 

 

 

Table B.8 Results of knapsack problem based relaxation for 1072ADk 

CPLEX UB CPUB LPR CPULPR %MIP KN UB CPU KN %KNGAP RE
Problem Opt
1072AD1 2860.50 180.00 2011.50 0.09 42.21 3401.27 167.11 69.09 1.64
1072AD2 3344.50 180.00 2317.77 0.12 44.30 3954.41 307.26 70.61 1.59
1072AD3 3136.73 180.00 2226.76 0.12 40.87 3867.34 299.72 73.68 1.80
1072AD4 3263.66 180.00 2303.17 0.12 41.70 3901.91 260.72 69.41 1.66
1072AD5 2743.09 180.00 1859.54 0.12 47.51 3015.73 245.65 62.18 1.31
Average 180.00 0.11 43.32 256.09 68.99 1.60

MIP Model Knapsack based heuristic

 
 

 

 

Average gap of the Lagrangian relaxation without valid inequalities for the 

settings with single vehicle is 120.64%, CPU time is 0.94 minutes and RE 

(relative error) is 1.81; whereas, gap of the settings with two vehicles is 

55.52%, CPU time is 116.16 minutes and RE is 1.51. The great difference 

between the CPU times and gaps is due to the upper bounding method. In the 

settings with single vehicle we use CONCORDE and it solves the TPSs in less 

than a second; however, in the two vehicle settings we solved CVRPs with 

CPLEX with five minutes time limit for each CVRP. For the 10 retailers case 

CPLEX used the entire time for each problem. The upper bounding procedure 

that uses CVRPs yields better results than the one uses TPSs with respect to the 

gap of upper and lower bounds, but significantly takes more computation time. 
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On overall average, Lagrangian relaxation without valid inequalities yields 

88.08% gap and 1.7 RE (relative error). That is to say the gap between CPLEX 

upper bound and LP relaxation is 70% smaller than the gap between the upper 

bounds calculated with knapsack problem based heuristic and LP relaxation. 

Due to the poor results obtained, we tried to solve optimally the relaxed 

problem given in Chapter 3. 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX C 

 

 

ADOPTED MODEL FOR BENCHMARKING 

 

 

 

In this appendix we present an adopted version of M(INVROP) namely 

M(INVROPAB) in order to test our Lagrangian relaxation based algorithm on 

benchmarked results. The M(INVROPAB) is the same model with 

Abdelmaguid and Dessouky (2006) by different variable definitions.  

 

All of the assumptions stated in Chapter 3 except the prohibition of 

backordering in the last period are valid for M(INVROPAB). 

 

Indices of the model are as follows. 

 

t     : Time index (discrete time periods): 1, 2, …, T and T = T ∪ . { }0

i, j : Node index : 0, 1, …, N (i = 0 denotes depot ). N denotes the set of 

retailers and N = N ∪ { }0 . 

 k    :  Retailer index: 1, 2,  …, N.  

 v    :  Vehicle index: 1, 2, …, V. 

 

Parameters of the model are as follows. 

 

N     : Number of locations (retailers).   

V      : Number of vehicles. 

T      : Number of time periods. 

vK     : Capacity of vehicle v.  
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kImax   : Storage capacity of retailer k. 

ktd     : Demand of the end customer of retailer k in period t. 

ijvtf    : Fixed cost for vehicle v in period t to use arc (i,j) for going from    

location i to location j. 
k
ijvtc    : Variable cost of carrying one unit of product by vehicle v in period t on 

arc (i,j) for going from location i to location j for the designated 

customer k. 

tO     : Fixed vehicle dispatching cost in time period t. 

kth     : Unit holding cost for retailer k in period t. 

ktb     : Unit backordering cost for retailer k in period t. 

 

Decision variables of the model are as follows: 

 

⎪
⎩

⎪
⎨

⎧

otherwise 0
 perodin     

 ),(  arc using location    tolocation   from  travels  vehicleif 1
:    t

jijiv
yijvt  

k
ijvtx   : Amount of product destined to retailer k, which is transported from           

location i to location j by vehicle v in period t. 

ktI       : Amount of product held by retailer k in period t. 

ktB      : Amount of product backordered by retailer k in period t. 

ktS       : Amount of product supplied to retailer k in period t.  

 

M(INVROPAB): 
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ijvt Sx ≤    NkTtVvjiNji ∈∈∈≠∈∀   , ,  ,  ,,                                       (C.13) 

0  , , , ≥k
ijvtktktkt xBIS      NkTtVvjiNji ∈∈∈≠∈∀  , ,  ,  ,,                       (C.14) 

}{ 1,0∈ijvty      TtVvjiNji ∈∈≠∈∀  ,  ,  ,,                                                (C.15) 

 

Note that all the constraint definitions given in Chapter 3 are valid for 

M(INVROPAB). The differences between M(INVROP) and M(INVROPAB) 

can be stated as follows. 
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• In M(INVROP) backordering in the last period is not allowed; 

however, in M(INVROPAB) backordering in the last period is allowed. 

 

• In M(INVROP) variable transportation cost upon amount of products 

carried on each arc is due; however, in M(INVROPAB) variable 

transportation cost is not considered. 

 

In order to apply Lagrangian relaxation based solution algorithm we relaxed 

constraint sets (B.3), (B.4) and (B.5) and added to the objective function. Then 

the same solution procedure with M(INVROP) presented in Chapter 3 is 

applied. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX D 

 

 

CONVERGENGENCE GRAPHS OF PRELIMINARY EXPERIMENTS 

 

 

 

In this appendix we present the convergence graphs of preliminary experiments 

on the test settings 551ADk and 552ADk. 
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Figure D.1 Convergence graph of LR(5, 250, 0, 0, 0,0) for 551ADk 
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Figure D.2 Convergence graph of LR(20, 250, 0, 0, 0,0) for 551ADk 
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Figure D.3 Convergence graph of LR(5, 250, 0, 0, 1,0) for 551ADk 
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Figure D.4 Convergence graph of LR(20, 250, 0, 0, 1,0) for 551ADk 
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Figure D.5 Convergence graph of LR(5, 250, 3p, 1, 1,0) for 551ADk 
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Figure D.6 Convergence graph of LR(20, 250, 3p, 1, 1,0) for 551ADk 
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Figure D.7 Convergence graph of LR(5, 250, 5p, 1, 1,0) for 551ADk 
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Figure D.8 Convergence graph of LR(20, 250, 5p, 1, 1,0) for 551ADk 
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Figure D.9 Convergence graph of LR(5, 250, 0, 0, 0,0) for 552ADk 
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Figure D.10 Convergence graph of LR(20, 250, 0, 0, 0,0) for 552ADk 
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Figure D.11 Convergence graph of LR(5, 250, 0, 0, 1,0) for 552ADk 
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Figure D.12 Convergence graph of LR(20, 250, 0, 0, 1,0) for 552ADk 
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Figure D.13 Convergence graph of LR(5, 250, 3p, 1, 1,0) for 552ADk 
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Figure D.14 Convergence graph of LR(20, 250, 3p, 1, 1,0) for 552ADk 
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Figure D.15 Convergence graph of LR(5, 250, 5p, 1, 1,0) for 552ADk 
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Figure D.16 Convergence graph of LR(20, 250, 5p, 1, 1,0) for 552ADk 
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APPENDIX E 

 

 

DETAILED RESULTS OF PRELIMINARY EXPERIMENTS 

 

 

 

In Section 4.4, we presented the results obtained with the parameter of halving 

π  after 20 consecutive non-improving iterations and in this appendix we 

present the results obtained when π  is halved after 5 consecutive non-

improving iterations on the test settings 551ADk and 552ADk.  

 

 

 

Table E.1 Results of LR(5, 25, 0, 0, 1, 0) and LR(5, 50, 0, 0, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1466.75 1133.95 1.57 20.74 2.52 29.35 1466.75 1181.48 3.94 17.42 2.52 24.15
551AD2 1661.40 1256.48 1.51 17.97 8.47 32.23 1661.40 1337.66 3.86 12.67 8.47 24.20
551AD3 1236.41 1021.54 1.57 13.78 4.36 21.03 1236.41 1050.60 3.57 11.33 4.36 17.69
551AD4 1575.86 1246.53 1.65 14.65 7.91 26.42 1575.86 1293.54 3.40 11.43 7.91 21.83
551AD5 1493.62 1200.04 1.57 13.79 7.30 24.46 1474.75 1235.05 3.46 11.28 5.94 19.41
Average 1.58 16.18 6.11 26.70 3.65 12.82 5.84 21.45
552AD1 1229.34 973.53 2.25 15.00 7.34 26.28 1220.21 1012.15 4.86 11.63 6.54 20.56
552AD2 1574.00 1282.80 2.17 14.77 4.57 22.70 1574.00 1310.51 4.43 12.93 4.57 20.11
552AD3 1243.22 952.70 2.23 16.35 9.16 30.49 1220.13 977.35 4.71 14.18 7.14 24.84
552AD4 1212.83 976.80 2.22 14.21 6.52 24.16 1173.56 1005.35 4.49 11.70 3.07 16.73
552AD5 1333.06 1039.34 2.31 13.74 10.63 28.26 1333.06 1075.44 4.90 10.75 10.63 23.95
Average 2.24 14.81 7.64 26.38 4.68 12.24 6.39 21.24
Overall Average 1.91 15.50 6.88 26.54 4.16 12.53 6.11 21.35

LR(5, 25, 0, 0, 1, 0) LR(5, 50, 0, 0, 1, 0)
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Table E.2 Results of LR(5, 75, 0, 0, 1, 0) and LR(5, 100, 0, 0, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1466.75 1186.69 7.50 17.05 2.52 23.60 1466.75 1187.28 11.21 17.01 2.52 23.54
551AD2 1661.40 1346.89 7.19 12.06 8.47 23.35 1661.40 1348.09 10.58 11.99 8.47 23.24
551AD3 1236.41 1057.75 5.94 10.72 4.36 16.89 1236.41 1058.86 8.36 10.63 4.36 16.77
551AD4 1564.16 1302.79 5.00 10.79 7.10 20.06 1564.16 1303.83 6.56 10.72 7.10 19.97
551AD5 1474.75 1239.87 5.72 10.93 5.94 18.94 1474.75 1240.83 8.09 10.86 5.94 18.85
Average 6.27 12.31 5.68 20.57 8.96 12.24 5.68 20.47
552AD1 1220.21 1017.30 8.43 11.18 6.54 19.95 1220.21 1018.16 12.56 11.10 6.54 19.84
552AD2 1574.00 1313.70 6.85 12.72 4.57 19.81 1574.00 1314.49 9.55 12.67 4.57 19.74
552AD3 1220.13 980.16 7.42 13.94 7.14 24.48 1220.13 980.44 10.12 13.91 7.14 24.45
552AD4 1173.56 1008.90 7.05 11.39 3.07 16.32 1173.56 1009.30 9.84 11.36 3.07 16.27
552AD5 1333.06 1081.03 8.05 10.28 10.63 23.31 1333.06 1081.69 12.05 10.23 10.63 23.24
Average 7.56 11.90 6.39 20.78 10.82 11.85 6.39 20.71
Overall Average 6.91 12.11 6.03 20.67 9.89 12.05 6.03 20.59

LR(5, 75, 0, 0, 1, 0) LR(5, 100, 0, 0, 1, 0)

 
 

 

 

Table E.3 Results of LR(5, 150, 0, 0, 1, 0) and LR(5, 250, 0, 0, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1466.75 1187.36 18.48 17.00 2.52 23.53 1466.75 1187.36 32.31 17.00 2.52 23.53
551AD2 1661.40 1348.30 18.01 11.97 8.47 23.22 1661.40 1348.30 32.30 11.97 8.47 23.22
551AD3 1221.24 1059.02 13.40 10.61 3.08 15.32 1221.24 1059.02 23.85 10.61 3.08 15.32
551AD4 1561.76 1304.05 9.63 10.71 6.94 19.76 1561.76 1304.07 15.76 10.71 6.94 19.76
551AD5 1474.75 1240.98 12.94 10.85 5.94 18.84 1474.75 1241.01 22.72 10.85 5.94 18.83
Average 14.49 12.23 5.39 20.13 25.39 12.23 5.39 20.13
552AD1 1220.21 1018.25 20.01 11.09 6.54 19.83 1220.21 1018.25 35.18 11.09 6.54 19.83
552AD2 1574.00 1314.59 15.26 12.66 4.57 19.73 1574.00 1314.62 26.69 12.66 4.57 19.73
552AD3 1220.13 980.48 15.51 13.91 7.14 24.44 1220.13 980.48 26.26 13.91 7.14 24.44
552AD4 1173.56 1009.38 15.63 11.35 3.07 16.27 1173.56 1009.39 27.23 11.35 3.07 16.26
552AD5 1333.06 1081.80 21.15 10.22 10.63 23.23 1333.06 1081.81 40.38 10.22 10.63 23.22
Average 17.51 11.85 6.39 20.70 31.15 11.85 6.39 20.70
Overall Average 16.00 12.04 5.89 20.42 28.27 12.04 5.89 20.42

LR(5, 150, 0, 0, 1, 0) LR(5, 250, 0, 0, 1, 0)

 
 

 

 

 

 

 

 

 

 

 

 

  
 

175 
 



Table E.4 Results of LR(5, 25, 0, 1, 1, 0) and LR(5, 50, 0, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1472.77 1302.90 1.94 8.93 2.94 13.04 1472.77 1320.20 5.44 7.72 2.94 11.56
551AD2 1623.99 1453.56 1.60 5.10 6.03 11.73 1597.56 1471.50 3.91 3.93 4.30 8.57
551AD3 1227.76 1098.20 1.62 7.31 3.63 11.80 1221.24 1117.56 3.77 5.67 3.08 9.28
551AD4 1553.20 1342.99 1.52 8.04 6.35 15.65 1526.10 1384.83 3.50 5.18 4.50 10.20
551AD5 1478.05 1283.80 1.45 7.77 6.18 15.13 1460.96 1307.90 3.49 6.04 4.95 11.70
Average 1.63 7.43 5.03 13.47 4.02 5.71 3.96 10.26
552AD1 1222.88 1092.81 3.48 4.58 6.77 11.90 1222.88 1105.70 16.31 3.46 6.77 10.60
552AD2 1572.36 1429.58 2.82 5.02 4.46 9.99 1572.36 1443.76 6.66 4.08 4.46 8.91
552AD3 1237.08 1077.69 7.93 5.37 8.62 14.79 1229.90 1091.17 91.18 4.19 7.99 12.71
552AD4 1192.51 1069.91 4.39 6.03 4.73 11.46 1192.51 1086.37 42.97 4.59 4.73 9.77
552AD5 1322.38 1154.89 5.90 4.15 9.75 14.50 1311.80 1169.08 29.74 2.97 8.87 12.21
Average 4.90 5.03 6.87 12.53 37.37 3.86 6.57 10.84
Overall Average 3.26 6.23 5.95 13.00 20.70 4.78 5.26 10.55

LR(5, 25, 0, 1, 1, 0) LR(5, 50, 0, 1, 1, 0)

 
 

 

 

Table E.5 Results of LR(5, 75, 0, 1, 1, 0) and LR(5, 100, 0, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1472.77 1321.03 9.91 7.66 2.94 11.49 1472.77 1321.16 14.41 7.65 2.94 11.48
551AD2 1595.77 1472.33 6.51 3.87 4.18 8.38 1595.77 1472.44 9.17 3.87 4.18 8.38
551AD3 1221.24 1120.29 6.26 5.44 3.08 9.01 1221.24 1120.75 8.93 5.40 3.08 8.97
551AD4 1523.65 1386.51 6.18 5.06 4.33 9.89 1523.65 1386.72 9.00 5.05 4.33 9.87
551AD5 1431.64 1311.80 6.18 5.76 2.85 9.14 1431.64 1312.13 9.09 5.74 2.85 9.11
Average 7.01 5.56 3.48 9.58 10.12 5.54 3.48 9.56
552AD1 1222.88 1106.97 33.79 3.35 6.77 10.47 1222.88 1107.05 41.61 3.34 6.77 10.46
552AD2 1572.36 1444.87 11.69 4.01 4.46 8.82 1572.36 1445.00 16.86 4.00 4.46 8.81
552AD3 1229.90 1093.26 295.53 4.00 7.99 12.50 1229.90 1093.71 611.29 3.97 7.99 12.45
552AD4 1192.51 1088.11 240.55 4.44 4.73 9.59 1192.51 1088.45 594.44 4.41 4.73 9.56
552AD5 1309.85 1171.82 123.64 2.75 8.71 11.78 1288.15 1172.29 290.11 2.71 6.91 9.88
Average 141.04 3.71 6.53 10.63 310.86 3.68 6.17 10.23
Overall Average 74.02 4.63 5.01 10.11 160.49 4.61 4.83 9.90

LR(5, 75, 0, 1, 1, 0) LR(5, 100, 0, 1, 1, 0)
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Table E.6 Results of LR(5, 25, 3p, 1, 1, 0) and LR(5, 50, 3p, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1472.77 1263.48 1.59 11.68 2.94 16.56 1472.77 1285.32 3.50 10.16 2.94 14.58
551AD2 1623.79 1410.05 1.46 7.94 6.01 15.16 1597.56 1440.04 3.12 5.98 4.30 10.94
551AD3 1223.12 1068.68 1.50 9.80 3.24 14.45 1220.51 1087.85 3.15 8.18 3.02 12.19
551AD4 1524.74 1332.49 1.44 8.76 4.40 14.43 1524.74 1344.56 2.96 7.93 4.40 13.40
551AD5 1482.92 1241.90 1.40 10.78 6.53 19.41 1454.94 1267.93 2.94 8.91 4.52 14.75
Average 1.48 9.79 4.63 16.00 3.13 8.23 3.84 13.17
552AD1 1211.22 1073.68 2.16 6.26 5.75 12.81 1211.22 1084.08 4.42 5.35 5.75 11.73
552AD2 1568.63 1406.89 2.19 6.53 4.21 11.50 1539.10 1418.49 4.38 5.76 2.25 8.50
552AD3 1200.09 1044.98 2.30 8.24 5.38 14.84 1200.09 1059.29 6.32 6.99 5.38 13.29
552AD4 1211.12 1043.93 2.24 8.32 6.37 16.02 1194.85 1061.89 4.55 6.74 4.94 12.52
552AD5 1331.66 1122.20 2.57 6.87 10.52 18.67 1273.89 1137.30 5.72 5.61 5.72 12.01
Average 2.29 7.24 6.45 14.77 5.08 6.09 4.81 11.61
Overall Average 1.89 8.52 5.54 15.38 4.11 7.16 4.32 12.39

LR(5, 25, 3p, 1, 1, 0) LR(5, 50, 3p, 1, 1, 0)

 
 

 

 

Table E.7 Results of LR(5, 75, 3p, 1, 1, 0) and LR(5, 100, 3p, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1472.77 1285.32 5.62 10.16 2.94 14.58 1472.77 1285.49 7.70 10.15 2.94 14.57
551AD2 1597.56 1440.27 4.80 5.97 4.30 10.92 1597.56 1440.28 6.46 5.97 4.30 10.92
551AD3 1220.51 1091.60 4.82 7.86 3.02 11.81 1220.51 1092.58 6.51 7.78 3.02 11.71
551AD4 1524.74 1347.87 4.56 7.71 4.40 13.12 1519.58 1347.87 6.16 7.71 4.05 12.74
551AD5 1454.94 1271.70 4.51 8.64 4.52 14.41 1454.94 1273.05 6.11 8.55 4.52 14.29
Average 4.86 8.07 3.84 12.97 6.59 8.03 3.77 12.84
552AD1 1211.22 1085.23 6.76 5.25 5.75 11.61 1211.22 1085.87 9.09 5.19 5.75 11.54
552AD2 1539.10 1423.36 6.56 5.44 2.25 8.13 1539.10 1423.79 8.74 5.41 2.25 8.10
552AD3 1200.09 1061.95 11.36 6.75 5.38 13.01 1200.09 1061.95 16.40 6.75 5.38 13.01
552AD4 1194.85 1062.09 6.93 6.72 4.94 12.50 1194.85 1062.52 9.32 6.68 4.94 12.45
552AD5 1273.89 1137.30 9.47 5.61 5.72 12.01 1268.70 1137.30 13.58 5.61 5.29 11.55
Average 8.21 5.95 4.81 11.45 11.43 5.93 4.72 11.33
Overall Average 6.54 7.01 4.32 12.21 9.01 6.98 4.24 12.09

LR(5, 75, 3p, 1, 1, 0) LR(5, 100, 3p, 1, 1, 0)
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Table E.8 Results of LR(5, 150, 3p, 1, 1, 0) and LR(5, 250, 3p, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1472.77 1285.49 11.96 10.15 2.94 14.57 1472.77 1285.49 20.53 10.15 2.94 14.57
551AD2 1597.56 1440.40 9.78 5.96 4.30 10.91 1597.56 1440.40 16.50 5.96 4.30 10.91
551AD3 1220.51 1092.83 9.90 7.76 3.02 11.68 1220.51 1093.87 16.66 7.67 3.02 11.58
551AD4 1503.21 1347.87 9.38 7.71 2.93 11.52 1503.21 1347.87 15.93 7.71 2.93 11.52
551AD5 1446.16 1273.05 9.30 8.55 3.89 13.60 1446.16 1274.01 15.64 8.48 3.89 13.51
Average 10.06 8.02 3.42 12.46 17.05 7.99 3.42 12.42
552AD1 1211.22 1086.08 13.71 5.17 5.75 11.52 1204.86 1087.12 22.94 5.08 5.20 10.83
552AD2 1539.10 1423.79 13.09 5.41 2.25 8.10 1539.10 1423.79 21.81 5.41 2.25 8.10
552AD3 1200.09 1061.95 26.72 6.75 5.38 13.01 1200.09 1061.95 46.74 6.75 5.38 13.01
552AD4 1194.85 1063.28 14.15 6.62 4.94 12.37 1194.85 1063.28 23.76 6.62 4.94 12.37
552AD5 1268.70 1138.97 21.83 5.47 5.29 11.39 1268.70 1139.29 42.53 5.45 5.29 11.36
Average 17.90 5.88 4.72 11.28 31.56 5.86 4.61 11.13
Overall Average 13.98 6.95 4.07 11.87 24.30 6.93 4.01 11.78

LR(5, 150, 3p, 1, 1, 0) LR(5, 250, 3p, 1, 1, 0)

 
 

 

 

 

Table E.9 Results of LR(5, 25, 5p, 1, 1, 0) and LR(5, 50, 5p, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1516.03 1258.42 1.50 12.04 5.97 20.47 1504.65 1271.11 3.06 11.15 5.17 18.37
551AD2 1607.67 1385.22 1.34 9.56 4.96 16.06 1586.07 1417.75 2.81 7.44 3.55 11.87
551AD3 1223.12 1061.93 1.43 10.37 3.24 15.18 1216.84 1074.15 3.01 9.34 2.71 13.28
551AD4 1526.82 1325.00 1.37 9.27 4.55 15.23 1506.43 1346.32 2.75 7.81 3.15 11.89
551AD5 1462.66 1234.40 1.35 11.32 5.08 18.49 1450.11 1258.51 2.77 9.59 4.17 15.22
Average 1.40 10.51 4.76 17.09 2.88 9.07 3.75 14.13
552AD1 1208.32 1070.06 2.13 6.57 5.50 12.92 1208.32 1082.72 4.31 5.47 5.50 11.60
552AD2 1559.16 1405.59 2.16 6.62 3.59 10.93 1559.16 1416.64 4.31 5.88 3.59 10.06
552AD3 1227.03 1029.09 2.13 9.64 7.74 19.23 1204.18 1048.75 4.45 7.91 5.73 14.82
552AD4 1195.58 1049.53 2.24 7.82 5.00 13.92 1194.85 1054.87 4.46 7.36 4.94 13.27
552AD5 1309.45 1112.38 2.27 7.68 8.68 17.72 1309.45 1132.19 4.60 6.04 8.68 15.66
Average 2.19 7.67 6.10 14.94 4.43 6.53 5.69 13.08
Overall Average 1.79 9.09 5.43 16.01 3.65 7.80 4.72 13.61

LR(5, 25, 5p, 1, 1, 0) LR(5, 50, 5p, 1, 1, 0)
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Table E.10 Results of LR(5, 75, 5p, 1, 1, 0) and LR(5, 100, 5p, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1504.65 1271.78 4.68 11.10 5.17 18.31 1504.65 1271.78 6.28 11.10 5.17 18.31
551AD2 1586.07 1419.66 4.32 7.31 3.55 11.72 1582.62 1419.66 5.82 7.31 3.33 11.48
551AD3 1211.75 1075.67 4.60 9.21 2.28 12.65 1211.75 1075.67 6.23 9.21 2.28 12.65
551AD4 1506.43 1346.32 4.10 7.81 3.15 11.89 1506.43 1346.32 5.47 7.81 3.15 11.89
551AD5 1450.11 1266.87 4.25 8.99 4.17 14.46 1450.11 1266.87 5.74 8.99 4.17 14.46
Average 4.39 8.89 3.67 13.81 5.91 8.89 3.62 13.76
552AD1 1205.34 1083.82 6.46 5.37 5.24 11.21 1205.34 1083.82 8.60 5.37 5.24 11.21
552AD2 1559.16 1417.51 6.48 5.83 3.59 9.99 1559.16 1417.51 8.65 5.83 3.59 9.99
552AD3 1204.18 1048.75 6.83 7.91 5.73 14.82 1204.18 1050.43 9.23 7.77 5.73 14.64
552AD4 1194.85 1055.98 6.68 7.26 4.94 13.15 1194.85 1056.06 8.86 7.25 4.94 13.14
552AD5 1309.45 1134.80 6.94 5.82 8.68 15.39 1309.45 1134.80 9.26 5.82 8.68 15.39
Average 6.68 6.44 5.63 12.91 8.92 6.41 5.63 12.87
Overall Average 5.53 7.66 4.65 13.36 7.41 7.65 4.63 13.32

LR(5, 75, 5p, 1, 1, 0) LR(5, 100, 5p, 1, 1, 0)

 
 

 

 

Table E.11 Results of LR(5, 150, 5p, 1, 1, 0) and LR(5, 250, 5p, 1, 1, 0) 

LR UB LR LB CPU LR %LGAP %UGAP %LRGAP LR UB LR LB CPU LR %LGAP %UGAP %LRGAP
Problem
551AD1 1504.65 1271.78 9.54 11.10 5.17 18.31 1504.65 1271.78 15.99 11.10 5.17 18.31
551AD2 1582.62 1424.27 8.79 7.01 3.33 11.12 1582.62 1424.27 14.77 7.01 3.33 11.12
551AD3 1211.75 1076.65 9.48 9.13 2.28 12.55 1211.75 1076.65 15.92 9.13 2.28 12.55
551AD4 1506.43 1346.32 8.21 7.81 3.15 11.89 1506.43 1346.32 13.45 7.81 3.15 11.89
551AD5 1450.11 1266.87 8.72 8.99 4.17 14.46 1450.11 1266.87 14.52 8.99 4.17 14.46
Average 8.95 8.81 3.62 13.67 14.93 8.81 3.62 13.67
552AD1 1205.34 1083.97 12.94 5.36 5.24 11.20 1205.34 1084.65 21.65 5.30 5.24 11.13
552AD2 1539.36 1417.51 12.97 5.83 2.27 8.60 1539.36 1417.51 21.88 5.83 2.27 8.60
552AD3 1204.03 1050.88 14.04 7.73 5.72 14.57 1204.03 1050.88 23.55 7.73 5.72 14.57
552AD4 1194.85 1056.09 13.35 7.25 4.94 13.14 1194.85 1056.09 22.32 7.25 4.94 13.14
552AD5 1269.33 1135.08 13.93 5.80 5.35 11.83 1269.33 1135.15 23.47 5.79 5.35 11.82
Average 13.45 6.39 4.70 11.87 22.57 6.38 4.70 11.85
Overall Average 11.20 7.60 4.16 12.77 18.75 7.59 4.16 12.76

LR(5, 250, 5p, 1, 1, 0)LR(5, 150, 5p, 1, 1, 0)
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