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ABSTRACT

USING ZIPF FREQUENCIES AS A REPRESENTATIVENESS MEASURE IN
STATISTICAL ACTIVE LEARNING OF NATURAL LANGUAGE

Çobano§lu, Onur

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Hüseyin Cem Boz³ahin

June 2008, 72 pages

Active learning has proven to be a successful strategy in quick development of corpora

to be used in statistical induction of natural language. A vast majority of studies in

this �eld has concentrated on �nding and testing various informativeness measures for

samples; however, representativeness measures for samples have not been thoroughly

studied. In this thesis, we introduce a novel representativeness measure which is, being

based on Zipf's law, model-independent and validated both theoretically and empiri-

cally. Experiments conducted on WSJ corpus with a wide-coverage parser show that

our representativeness measure leads to better performance than previously introduced

representativeness measures when used with most of the known informativeness mea-

sures.

Keywords: Active Learning, Grammar Induction, Natural Language Processing.
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ÖZ

DO�AL D�LLER�N �STAT�ST�KSEL ETK�N Ö�RENMES�NDE Z�PF
SIKLIKLARININ B�R TEMS�L�YET ÖLÇÜSÜ OLARAK KULLANILMASI

Çobano§lu, Onur

Yüksek Lisans, Bilgisayar Mühendisli�gi Bölümü

Tez Yöneticisi: Doç. Dr. Hüseyin Cem Boz³ahin

Haziran 2008, 72 sayfa

Etkin ö§renme, do§al dillerin istatistiksel edinimi amac�yla kullan�lan külliyatlar�n h�zl�

derlenmesinde ba³ar�l� bir strateji oldu§unu ispatlam�³t�r. Bugüne kadar bu alandaki

çal�³malar�n büyük bir ço§unlu§u, örnekler için çe³itli bilgilendiricilik ölçüleri bulma ve

bunlar� s�namaya odaklanm�³t�r; fakat örnekler için temsiliyet ölçüleri etra��ca ara³t�r�l-

mam�³t�r. Bu tezde, Zipf yasas�na dayand�§�ndan ötürü modelden ba§�ms�z ve hem

kuramsal hem de deneysel olarak geçerli yeni bir temsiliyet ölçüsünü ortaya koymak-

tay�z. Geni³ kapsaml� bir ayr�³t�r�c� ile WSJ külliyat� üzerinde yap�lan deneyler, or-

taya koydu§umuz temsiliyet ölçüsünün, bilinen bilgilendiricilik ölçülerinin ço§uyla kul-

lan�ld�§�nda daha önce ortaya at�lm�³ temsiliyet ölçülerinden daha iyi sonuç verdi§ini

göstermektedir.

Anahtar Kelimeler: Etkin Ö§renme, Gramer Edinimi, Do§al Dil �³leme.
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CHAPTER 1

INTRODUCTION

Existence of computational models for natural languages is potentially a valuable source

for many NLP tasks such as question-answering, information extraction and machine

translation. Creation of such models by human computational linguists, however, re-

mains to be a challenging problem due to the inherent complexity of human languages.

The di�culty of this problem led many researchers to investigate the option of com-

puters' inducing such models from corpus. Induction of statistical language models

has been an active research �eld after Gold's negative learnability results for exact

models (Gold, 1967) and Horning's probably approximately correct (PAC) learnability

results for probabilistic context free grammars (Horning, 1969). Today, wide coverage

statistical parsers have reached satisfactory accuracy levels in the existence of tree-

banks, including enormous amount of annotated data (parse trees, dependencies, etc.)

prepared by human experts (see (Collins, 1997; Charniak, 1997; Charniak, 2000)).

However, building a treebank is a �Herculean task� (Charniak, 1997). For instance,

creating the �rst version of Penn Treebank, which included about 4.8 million words,

all of which were part-of-speech (POS) tagged and about an half of which had skeletal

syntactic trees (Marcus, Marcinkiewicz, and Santorini, 1993) required 12 person-years

to be completed. Today there are only a few languages for which a treebank su�cient

for wide-coverage parsing is built, and existing treebanks may fail to satisfy some needs

due to absence of necessary kind of linguistic data.

In order to avoid the heavy burden of huge amount of human annotation, many al-

ternatives of fully supervised learning have been tried. One of the most successful

1



approaches among them is active supervised learning (or active learning, referring to

its most widely used name),1 which is a relatively new stream in machine learning.2 In

active learning, contrary to classical supervised learning in which training samples are

sampled randomly according to an input distribution, learner has control over training

data stream. The motivation behind the discovery of active learning was the obser-

vation that random samples could (and in general did) contain redundant data. If a

statistical learner had the ability of sampling the training data itself, it could be used

to eliminate redundancy by sampling only informative data (or data which is expected

to be informative in training).

Such an approach, though proven to be successful (see Chapter 2), has one impor-

tant drawback: Since there is no longer randomness in sampling, we do not have the

assurance that samples re�ect the underlying statistical characteristics of the popula-

tion from which the samples are drawn. Consequences of this problem have been seen

in practice as well: Some researchers in the �eld of active learning of natural language

have reported that since sentences with rare linguistic phenomena are found to be most

informative by an active learner, active learning process tends to select outliers (see

(Becker, 2003; Tang, Luo, and Roukos, 2002)). Becker (2008) gives the exaggerated

example that a French sentence would be perceived to be very informative for an En-

glish parser, since training data of that parser would not possibly have included such

a sentence before.

This is a general problem in active learning (not speci�c to statistical grammar in-

duction domain). The problem could be solved optimally if the learner could know

the exact probability distribution from which the samples are drawn, no estimate of

which has been found in any domain of real-life active learning problems. Nevertheless,

active learning researchers have exploited any information they could �nd about how
1We emphasized the term �active supervised learning� since active learning term is also used for

active reinforcement learning methods based on exploration-exploitation. Such methods are designed
in the spirit of agent-based AI and have almost nothing in common with active learning methods used
in pattern recognition problems.

2Actually it is not new, for decades it has been considered as an option in machine learning litera-
ture. However, this consideration had been theoretical in general and emergence of its application to
real-life machine learning tasks is relatively recent.
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representative a sample is in the underlying probability distribution.

Of course, such information is often domain-speci�c; and some representativeness mea-

sures derived from such information have been proposed in natural language domain

previously. In our work, we contribute to this line of research with a novel represen-

tativeness measure, based on a modi�cation of Zipf's Principle of Least E�ort (Zipf,

1949). We found this method especially compelling, since Zipf's laws � in general,

hence including Principle of Least E�ort � have been empirically the most successful

sensible theories explaining the statistical characteristics of a language.

Since representativeness is orthogonal to informativeness conceptually, we conjec-

ture that the comparison of various representativeness measures are meaningful only

when they are compared with the same informativeness measure. Experiments con-

ducted with C&C parser � a wide coverage CCG parser � on WSJ corpus have shown

that, when used with most of the known informativeness measures in the literature,

our measure leads to better performance than alternative representativeness measures.

With some informativeness measures, our measure brings insigni�cant improvement;

however, its performance never falls behind the performance of alternative representa-

tiveness measures.

1.1 Contributions of the Thesis

Novel contributions introduced by this thesis are as follows:

A Novel Computational Method for Calculating Tree Entropy In Both Gen-
erative and Discriminative Models

Tree entropy, introduced by Hwa (2000), has been perhaps the most widely used infor-

mativeness measure in the literature of active learning of probabilistic grammars. To

the best of our knowledge, there is not a single work in the literature of active learning

of natural language which is not using tree entropy as a comparison benchmark. Hwa

(2000) introduces a CKY-based dynamic programming algorithm to calculate tree en-

tropy over an exponential number of parses produced by a PCFG in polynomial time.

We introduce an alternative algorithm, again based on CKY, which can calculate the

tree entropy of a sentence having an exponential number of parses in polynomial time.

3



Our algorithm has advantages and disadvantages compared to Hwa's method, in the

form of a time-space trade-o�, which are described in Appendix A.

Testing and Comparison of Single-Learner Active Learning Methods In
C&C Parser Domain

As we will review in detail in Section 2.2, there are several informativeness measures

proposed for active learning in statistical grammar induction domain, and some of them

are tested in various domains. However, to the best of our knowledge, no experimental

results are evaluated for combinatory categorial grammar domain. In this work, we test

the performance of known single-learner based informativeness measures and random

sampling on WSJ corpus with C&C parser, which is a wide-coverage statistical parser

based on CCG and conditional log-linear models. Results are presented in terms of la-

beled and unlabeled precision, recall and F1 score of the recovery of predicate-argument

dependencies from CCGbank (Hockenmaier and Steedman, 2005).

A Novel Representativeness Measure for Active Learning of Natural Lan-
guage

As implied by the title of this thesis, this is the main contribution of our work. We

propose to use a known frequency estimator for English sentences, which is based on a

revision of Zipf's Principle of Least E�ort (Zipf, 1949), as a representativeness measure

for active learning of natural language. This estimator has the following desirable

properties:

� The estimator has a theoretical basis (Zipf, 1935; Sigurd, Eeg-Olofsson, and van

Weijer, 2004). Moreover, experiments on Brown Corpus (Ku�cera and Francis,

1967) have shown that estimated frequencies exhibit a very good �t to the ob-

served frequencies (see Chapter 3).

� Since estimations are done only using sentence length, the measure is invariant

from the parser used, underlying statistical model or state of the model/parser

at any stage of active learning. Besides preventing de�ciencies of the temporal

state (or essence) of the parser/model from skewing representativeness estimates,

this property provides another advantage: Our representativeness measure can

4



be used in active learning of other NLP tasks such as POS-tagging, supertagging

etc.

1.2 Structure of the Thesis

The remainder of this thesis is structured as follows:

� In Chapter 2, we present a literature review on using active learning in sta-

tistical grammar induction domain. Firstly, after giving a general de�nition of

active learning, types of active learning and three main active learning measures

(informativeness, representativeness and diversity), along with active learning

evaluation criteria are described. In addition, known theoretical results on the

performance of active learning is presented. Finally, active learning measures for

statistical parser training domain proposed up to now and their recorded experi-

mental performances are presented.

� In Chapter 3, we explain the novel representativeness measure we mentioned in

Section 1.1 in detail. This chapter is a quick review of a part of the work of

Sigurd, Eeg-Olofsson, and van Weijer (2004). Mathematical formulation of the

estimator, theoretical motivation and experimental results on Brown Corpus are

presented.

� In Chapter 4, CCGbank corpus and C&C parser, which are used in all experi-

ments in this thesis, are presented. This chapter is a quick review of (Clark and

Curran, 2004b) and (Clark and Curran, 2007).

� In Chapter 5, tested active learning methods, experimental setup and results are

presented. Information on experimental setup includes parser/model settings,

pool information, batch construction speci�cs, performance evaluation metrics

and sample selection schemes combining the information coming from our rep-

resentativeness measure and tested informativeness measures. Presented results

are comparative performances of single-learner active learning methods and com-

parative performances of each informativeness measure applied with other repre-

sentativeness measures and our representativeness measure.

� In Chapter 6, the results are discussed and some possible research directions based

on this thesis are proposed.

5



CHAPTER 2

ACTIVE LEARNING OF STATISTICAL
GRAMMARS: A REVIEW

2.1 Active Learning

2.1.1 De�nition and Types of Active Learning

Considering the variety of active learning studies done so far, we think that the best

de�nition of active learning is that given in (Tong, 2001). In this de�nition, active

learning is a supervised learning setting in which the learner can ask queries to an

oracle and receive answers to its queries. Oracles are human trainers in general, but

do not have to be humans. Queries can be requests for any kind of information that

the oracle may respond. It can be, for example, the value of a feature of a sample

(Liu, Motoda, and Yu, 2004). A more sophisticated example is found in (Angluin,

1987): When trying to learn a DFA, the learner can propose a DFA which the learner

expects to be the target DFA. If it is not, then the learner may get a counterexample

from oracle, which is a string accepted by the target DFA and rejected by the proposed

DFA. New queries can be formed and asked by the learner, based on the information

from previous query answers.

The most common type of queries that have been used in the literature so far is

membership queries, with which the learner asks the label (or class, or concept, al-

ternatively) of a sample to the oracle. The sample may be synthetic � built by the

learner from scratch; but more often the sample is selected from a relatively large pool

6



U is a set of unlabeled candidates
L is a set of labeled training examples
C is the current hypothesis

C ← Train(L) {Initialize}
repeat
N ← Select(n,U,C, fselect)
U ← U −N
L← L ∪ Label(N)
C ← Train(L)

until C = Ctrue or U = ∅ or human stops

Figure 2.1: The algorithm for selective sampling

of unlabeled samples, an approach which has generally been called selective sampling

in the literature. Usually, an initial seed training data, which is sampled randomly,

is used to estimate an initial model for the learner, which is used in selection of new

samples from pool later. As new samples are added to the training data, the model

of the learner is updated accordingly and new model is used in reranking of remaining

unlabeled samples for selection. Algorithm of the process can be found in Figure 2.1,

which is taken from (Hwa, 2000) and slightly modi�ed.

Selective sampling has dominated the active learning research up to now. Building

synthetic samples has lost its popularity in active learning research generally since the

study of Lang and Baum (1992), in which a learner trained in OCR domain was shown

to build freakish samples resembling neither of the known numerical characters in 10-

base. While there have been some works proposing smarter queries (as we mentioned

above), designing queries other than those inspecting membership is still an open area

of research.

2.1.2 Sample Selection Criteria

As can be guessed from Figure 2.1, the aim of research in selective sampling is �nding

good fselect and Select() functions. Actually it is the aim of research in membership

query learning in general, since there should be some criteria to distinguish queries with

higher expected contribution to the current hypothesis. In (Dan, 2004), three distinct

criteria for a sample to be used by an active learning are identi�ed:
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� Informativeness: The idea of active learning is meaningful as long as the learner

may determine the samples including useful information to improve current hy-

pothesis. The learner cannot know the informational contribution of an unlabeled

sample exactly beforehand, so it selects a sample according to some expectation

of informational contribution of the sample. These expectations are called infor-

mativeness measures, and a vast majority of active learning research is focused

on �nding useful informativeness measures. There are so many distinct informa-

tiveness measures developed so far that they may easily �ll a textbook.

� Representativeness: As we mentioned in Chapter 1, while abandoning ran-

domness in selecting samples we take the risk of selecting exceptional samples

which do not exhibit statistical characteristics of the population from which sam-

ples are drawn. This risk grows when samples are built from scratch � in selec-

tive sampling, we at least select a subsample of a random sample. The learner

(even the oracle) cannot know the exact underlying distribution, so the best a

learner can do is using an expectation of representativeness of a sample (namely,

a representativeness measure). The dominating approach in developing represen-

tativeness measures have been using density estimation methods (see (McCallum

and Nigam, 1998; Tang, Luo, and Roukos, 2002; Dan, 2004)), which requires a

metric of similarity between samples. Of course, for such an approach to work,

the learner must have access to a random sample (either labeled or unlabeled).

Success of such an approach heavily depends on the quality of the similarity

metric.

� Diversity: Unless the learner uses an online learning algorithm (in which case

this criterion does not apply), active learner must retrain its internal model with

samples selected at the previous stage. Considering the running time of machine

learning algorithms and realistic data set sizes, selecting samples one by one is

infeasible. As a result, all o�ine active learners select a batch of samples at each

iteration of the active learning algorithm. This scheme brings the problem of

selecting similar samples for the batch at an iteration. For example, the current

labeled training data may be lacking samples including an unfamiliar event. In

such a situation, an active learner �nds the samples including that event to be

most informative. However, if the learner �lls the batch with only such samples,

8



it will be ine�cient since only several such examples would su�ce for learner

to get familiar with them. So, in o�ine active learning, a measure of diversity

of samples may help the learner select di�erent kinds of samples for the batch.

Recently, some works have appeared considering diversity of samples in active

learning (see (Tang, Luo, and Roukos, 2002; Brinker, 2003; Dan, 2004)).

2.1.3 Theory of Active Learning

There have been many studies on the theoretical contribution of active learning, but

many of them are domain and algorithm speci�c. There are too few general theoretical

results that apply to a class of domains and methods.

In his seminal work, Gold (1967) introduced the concept of �identi�ability in the limit�,

which is a general framework for learning a formal language. In this work, active learn-

ing is considered as an option and proved to be useless in the sense that if a language

cannot be identi�ed in the limit, it cannot be identi�ed in the limit by utilizing active

learning either.

In VC theory setting (Vapnik, 1999), more positive results have been found. The

most trivial example is locating a boundary on the unit line interval ([0, 1]). Assuming

uniform distribution of samples along unit line, O(1
ε ln

1
ε ) random samples are required

to detect the boundary with an expected convergence error ε, while O(ln1
ε ) membership

queries are su�cient for the same task. Dasgupta (2004) showed that the worst case

sample complexity of �nding the target linear seperator for m samples distributed on

the unit sphere in Rd still requires querying the label of all m samples; however, the

average sample complexity drops to O(log m). The most generic theoretical result was

found in (Eisenberg, 1992), a result which is shown to be valid for all dense-in-itself

concept classes. According to its de�nition, dense-in-itself concept classes include half-

spaces of Rn, rectangles in the plane and thresholding function. The result shows that,

if the learner has no prior knowledge about the probability distribution from which

the samples come, then the ability of using membership queries improves the lower

bound on the samples needed to PAC-learn a dense-in-itself concept class only by a

constant factor, whatever the underlying probability distribution is. Only when the

9



learner knows a priori that the probability distribution generating samples is smooth1,

then the upper bound on the number of samples to learn a half space in n-dimensional

unit simplex becomes n2(log(s/ε)+4) while the lower bound on the number of samples

to learn the same concept is (1/4ε)ln(1/δ) with only random sampling, where ε and δ

are general PAC-learning parameters and s is a constant depending on the probability

distribution of samples.

2.1.4 Evaluation Criteria for Active Learning

The ultimate aim of active learning is either to reduce the cost of labeled data to reach

a �xed performance level or to reach a better performance level with the same cost of

labeled data. Cost of labeling a data set D is de�ned as the human e�ort needed to

label all data in D. This quantity is surely directly relational with the amount of data

to be labeled (which is itself a nontrivial concept), but not necessarily directly propor-

tional. So the �rst step in evaluating an active learning method must be determining

a realistic cost function. Some works have utilized experiments on human annotators

labeling a given data set to determine or empirically validate cost functions (Hachey,

Alex, and Becker, 2005; Baldridge and Osborne, 2008).

There are two general metrics used to evaluate active learning systems in general:

Data utilization ratio (DUR) is the ratio of the cost of the data that active learning

uses to the cost of the data that random sampling uses in order to reach a speci�ed

accuracy (accuracy is a performance metric for the classi�er). Percentage error reduc-

tion (PER) is the measure of error reduction that active learning provides over random

sampling, keeping the annotation cost �xed. It can be measured at a speci�c cost level,

or can be averaged over all cost values. The lower the DUR is, or the higher the PER

is, the better an active learning method is said to perform.

In the active learning literature, evaluation �gures are generally given in terms of

percentage reduction in the cost of data sampled actively, compared to the cost of data

sampled randomly, in order to reach a certain accuracy level. This value is 1 � DUR,
1Mathematical de�nition of a smooth probability distribution function is given in (Eisenberg, 1992).

For our purposes, it is enough to say that in a smooth p.d.f., there is a limit on accumulation of
probability density to a small region, so the p.d.f is not highly irregular.
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but it's so widely used that we will give it a seperate name, Percentage Reduction in

Utilized Data (PRUD), and will use this name in the rest of the paper.

2.2 Active Learning in Statistical Parser Training

To the best of our knowledge, all works of active learning in statistical parser training

has been in the selective sampling form. Using queries other than membership are pro-

posed, like queries about local parse decisions proposed in (Hwa, 2004) and by Jason

Baldridge in personal communication, but none has been realized yet. Using alterna-

tive queries is still an open research problem in this �eld. Building synthetic samples

have not been proposed or tried up to now.

In this review, we classify the previous works according to their contribution to the

literature of basic three active learning measures:

2.2.1 Proposed Informativeness Measures

2.2.1.1 Tree Entropy

Tree entropy, �rst proposed by Hwa (2000), is the Shannon entropy de�ned over prob-

abilities of parses assigned by a probabilistic grammar to a sentence. More formally,

given probabilistic grammar G and sentence s, tree entropy fte(s,G) is de�ned as:

fte(s,G) = −
∑

v∈V
p(v|s,G) log2 p(v|s,G) (2.1)

Where V is the set of possible parses that G generates for s and p(v|s,G) is the

probability of a parse v conditioned on s and G.

Obviously, tree entropy is a very natural information-theoretic metric indicating the un-

certainty of a stochastic parser for a given sentence. The motivation behind uncertainty-

based methods � like tree entropy � is the expectation that the more a parser is uncertain

about parses it assigns to a sentence, the more the actual parse of the sentence will

possibly reveal some useful information for the parser. Selecting sentences having high

tree entropies is an instance of Maximum Entropy Sampling (Shewry and Wynn, 1987),

which is a generic active learning algorithm for probabilistic classi�ers, dictating the
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selection (or construction) of samples having highest classi�cation entropies. Com-

putation of tree entropy is straightforward if the probabilistic grammar G generates

a tractable number of parses, which is often not the situation. Fortunately, a CKY-

variant algorithm is supplied for computing tree entropy, which can work with any

CKY-parsable grammar. In Appendix A, we propose an alternative algorithm for cal-

culating tree entropy, which is again a CKY-variant and works with any probabilistic

parser based on CKY. Our algorithm has advantages and disadvantages, compared to

Hwa's method, which are explained in detail in Appendix A.

Since longer sentences tend to have more possible parses, they tend to have higher

tree entropies; so it is conjectured that considering only tree entropy may lead to an

unfair treatment of sentences with di�erent lengths. To prevent this, Hwa �rst pro-

posed to normalize the tree entropy of a sentence with the length of the sentence, since

maximal tree entropy of a sentence having length l is O(l) bits (Hwa, 2000). In her

later work, Hwa (2001) proposed to use the binary logarithm of the number of possible

parses of the sentence (which is the maximum possible tree entropy of the sentence as

well) as the normalization factor, which normalizes tree entropy to [0,1] interval.

Tree entropy is the most widely tested informativeness measure in the literature of

active learning of probabilistic grammars (see Table 2.1). First results came from Hwa

herself (Hwa, 2000): Experiments conducted on WSJ corpus with Probabilistic Lexical-

ized Tree Insertion Grammar (PLTIG) (Schabes and Waters, 1993; Hwa, 1998) showed

that tree entropy based active learning provides a PRUD varying between 27% and 36%

according to the size of unlabeled sample pool (smaller pools lead to smaller PRUD).

Used cost function is the total number of brackets (constituents) in the training data

and consistent bracketing metric is used (the percentage of brackets in the proposed

parse not crossing brackets of the true parse (Pereira and Schabes, 1992)) to measure

parsing accuracy. Sentence length is used as the normalization factor in these experi-

ments.
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Hwa (2001) conducted experiments on WSJ corpus again with PLTIG and Model

2 Collins parser (Collins, 1997). Experiments showed that using tree entropy based

active learning provided 23% PRUD to achieve 88.7% labeled F1 score with Collins 2

parser and 33% PRUD to achieve the best performance achieved by random sampling

with PLTIG parser (cost function was the total number of constituents). When sam-

ples selected by a Collins 2 parser trained simultaneously are used to train the PLTIG

parser, 15% PRUD is observed to achieve the best performance achieved by random

sampling. In this work, binary logarithm of the number of possible parses of the sen-

tence is used as the normalization factor.

In (Tang, Luo, and Roukos, 2002), both non-normalized tree entropy and tree en-

tropy normalized with sentence length are tested, both alone and along with some

representativeness and informativeness measures (see Section 2.2.2 and 2.2.3), with

shallow semantic parser CLASSER (Davies et al., 1999) on the DARPA Communica-

tor domain. They used the percentage of exact matches between parses assigned by

the human annotator and the learner as accuracy measure and the number of sentences

as the cost measure. Performance of tree entropy varied with whether it is used with

representativeness and diversity metrics or whether it is normalized, but on average

approximately 67% PRUD is achieved. Normalized tree entropy performed worse than

non-normalized tree entropy, justi�cation of which given by the authors is that the nor-

malized tree entropy is unnaturaly high in short sentences (contrary to non-normalized

version). Their experiments show that when diversity is considered as well, normal-

ized and non-normalized tree entropy perform almost equally, since longer sentences

are considered as well in this setting even if they have lower normalized tree entropy

scores. We conjecture that the tendency of normalized tree entropy to be unnaturally

high in shorter sentences is not surprising, considering that when sentence length is

used as the normalization factor, longer sentences are unfairly penalized since the ac-

tual number of parses may be far less than the maximum possible number of parses in

longer sentences. We conjecture that using binary logarithm of actual number of parses

as the normalization factor will not penalize any sentence unfairly because of its length.

Baldridge and Osborne (2003) applied active learning to parse disambiguation (or

parse selection, equivalently) domain, rather than grammar induction domain. Aim
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of the work was extending Redwoods treebank (Oepen et al., 2002), which was a cor-

pus including automatically created parses of sentences according to English Resource

Grammar (ERG) (Flickinger, 2000), which was a hand-crafted broad coverage HPSG

grammar of English, along with the true (or preferred) parse(s) of each sentence among

all alternatives created by ERG. Motivation behind the creation of the Redwoods was

supplying annotated material for training of statistical models used in disambiguation

of HPSG parses created by ERG. As the performance measure, number of sentences

with exactly true parse selections is taken (when sentence is ambiguous and there are

m true parses, if model selects one of the true parses score of this is counted as 1/m).

Cost function is the number of sentences. Experiments conducted with conditional

log-linear models on Redwoods showed that tree entropy (normalized with sentence

length) provided 51.7% PRUD at the performance level achieved by random sampling

with the largest training data used in experiments. Combining tree entropy with an

active ensemble learning method (preferred parse disagreement) provide 60% PRUD

at the same performance level. Consistent with the reported results in (Hwa, 2001),

training a model with samples selected by another simultaneously trained model gave

lower PRUD values, though still introducing improvement over random sampling per-

formance.

In (Osborne and Baldridge, 2004), tree entropy is tested again (apparently in non-

normalized way) on the same Redwoods-HPSG-ERG domain, but this time ensemble

models along with a novel and more realistic cost metric named discriminant cost, de-

tails of which can be found in the paper, are utilized. Experiments showed that with

ensemble models, tree entropy based sampling provided up to 58.4% PRUD, compared

to the random sampling counterparts using same models.

In (Hwa, 2004), tree entropy is tested with PLTIG and Model 2 Collins parser on WSJ

corpus again. PLTIG annotations included phrasal boundaries of the POS-tagged sen-

tence. Cost function was the total number of labeled consituents for Collins parser and

the total number of labeled brackets for PLTIG parser. Accuracy metric was consistent

bracketing metric for PLTIG parser and labeled F1 score for Collins parser. Tree learn-

ing provided 50% PRUD in PLTIG induction and 27% PRUD in training Collins parser.

Author explains this di�erence with more lexicalized nature of the Collins parser.
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In (Becker and Osborne, 2005), tree entropy is tested with nearly the same experimen-

tal setting, accuracy and cost functions as in (Hwa, 2004); however, it is reported that

purely tree entropy based sample selection leads to -5.7% PRUD (that is, it performs

worse than random sampling). In these experiments tree entropy is not normalized,

however, it is used along with length balanced sampling (LBS) (see Section 2.2.2 below).

In (Baldridge and Osborne, 2008), tree entropy is tested again in Redwoods 5-HPSG-

ERG domain, with various feature sets and their ensembles. Performance of tree en-

tropy varied dramatically with the used feature set, on average 24% PRUD is reported.

2.2.1.2 Unparsed

Unparsed method gives priority to sentences that cannot be parsed by the current state

of the parser while selecting samples. If sentences are selected one by one it is trivial;

but if a batch of sentence is selected at a step, then there should be a secondary se-

lection criterion in case the sentences that cannot be parsed do not su�ce and more

sentences are required to �ll the batch.

Though proposed as early as 1999 for an ILP-based natural language parser (Thomp-

son, Cali�, and Mooney, 1999), unparsed had not been tried in statistical parser train-

ing domain until 2005 (Becker and Osborne, 2005). In (Becker and Osborne, 2005),

two schemes of �lling the rest of the batch (in case the number of unparsed sentences

falls below the batch size) are introduced: One is �lling the rest by random sampling

(a method which authors called unparsed, but we will call it unparsed/random for

clarity) and the other is �lling the rest with sentences having highest tree entropies

(a method which authors called unparsed/entropy). These methods were tested with

Collins 2 parser on WSJ corpus, with F1 score as the accuracy metric and number of

constituents as the cost metric. Length balanced sampling was used as the represen-

tativeness measure (see Section 2.2.2). In these experimental setup, 29.4% PRUD was

achieved by unparsed and 30.6% PRUD was achieved by unparsed/entropy to reach

80% F1 score (results are summarized in Table 2.2)
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Table 2.2: Reported performances of unparsed based selective sampling

Reported In Domain Accuracy Metric Cost Metric Secondary Selection PRUD
Becker2005 Collins 2-WSJ F1 # of constituents random 29.4%
Becker2005 Collins 2-WSJ F1 # of constituents tree entropy 30.6%

2.2.1.3 Lowest Best Probability (LBP)

First proposed in (Osborne and Baldridge, 2004), lowest best probability method selects

samples having the lowest probability values for their most probable parses. More

formally, given a sentence s and probabilistic grammar G, the lowest best probability

metric flbp(s,G) is de�ned as:

flbp(s,G) = maxv∈V P (v|s,G) (2.2)

Where V is the set of parses of s found by G. Authors conjecture that flbp is a good

measure of uncertainty, like tree entropy (hence it is an uncertainty-based method).

Summary of test results are listed in Table 2.3. First test reports of lowest best proba-

bility appeared on the paper in which this metric is proposed for the �rst time (Osborne

and Baldridge, 2004). Experiments are conducted in Redwoods-HPSG-ERG domain,

with number of discriminants as the cost metric and percentage of exactly true parse

selections as the accuracy metric. It is reported that LBP based selective sampling

provided up to 55.9% PRUD, compared to the random sampling counterparts using

the same model.

In (Hwa, 2004), lowest best probability is tested (in the paper, error-driven evalua-

tion is used instead of the term LBP, but essence is the same) on WSJ corpus with

PLTIG and Collins 2 parsers. PLTIG annotations included phrasal boundaries of the

POS-tagged sentence. Cost function was total number of labeled consituents for Collins

parser and total number of labeled brackets for PLTIG parser. Accuracy metric was

consistent bracketing metric for PLTIG parser and labeled F1 score for Collins parser.

LBP provided 45% PRUD to reach 80% accuracy with PLTIG parser and 17% PRUD

to reach 88% accuracy with Collins 2 parser.
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Table 2.3: Reported performances of lowest best probability based selective sampling

Reported In Domain Accuracy Metric Cost Metric PRUD
Osborne2004 Redwoods-HPSG-ERG True Selection (%) # of discriminants 55.9%
Hwa2004 PLTIG-WSJ Consistent Bracketing # of brackets 45%
Hwa2004 Collins 2-WSJ Labeled F1 # of constituents 17%

Baldridge2008 Redwoods-HPSG-ERG Exact Match (%) # of discriminants 28% (avg.)

In (Baldridge and Osborne, 2008), LBP is tested again in Redwoods 5-HPSG-ERG

domain, with various feature sets and their ensembles. Performance of LBP varied

dramatically with the used feature set, on average 28% PRUD is reported.

2.2.1.4 Two-Stage Active Learning

Conjecturing that tree entropy based uncertainty sampling fails to catch informative

samples when selection decision requires statistics about low frequency events, Becker

and Osborne (2005) proposes a two-stage approach in order to incorporate samples

including low frequency events into selective sampling process. In the �rst stage, avail-

able samples are �rst parsed by a bagged parser (Breiman, 1996) and sentences that

cannot be parsed by bagged parser are selected for sampling by the learner. If un-

parsable sentences fail to �ll the batch, as a second stage remaining of the batch is

�lled by remaining sentences having highest tree entropies. Since bagged training set is

expected to be relatively free of low frequency events, sentences that cannot be parsed

by bagged parser are likely to include low frequency events, which are conjectured to

be more informative than samples selected according to uncertainty.

Two-stage active learning is tested with Collins 2 parser on WSJ corpus, as reported

in (Becker and Osborne, 2005), with F1 score as the accuracy metric and number of

constituents as the cost metric. Length balanced sampling was used as the representa-

tiveness measure (see Section 2.2.2). In this setting, two-stage active learning provides

32.6% PRUD to reach 85.5 F score.
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Table 2.4: Reported performances of sentence length based selective sampling

Reported In Domain Accuracy Metric Cost Metric PRUD
Hwa2000 PLTIG-WSJ Consistent Bracketing # of brackets 9%

Baldridge2003 Redwoods-HPSG-ERG True Selection (%) # of sentences 12%
Osborne2004 Redwoods-HPSG-ERG True Selection (%) # of discriminants -55.4%
Hwa2004 PLTIG-WSJ Consistent Bracketing # of brackets 26%
Hwa2004 Collins 2-WSJ Labeled F1 # of constituents 10%

Baldridge2008 Redwoods-HPSG-ERG Exact Match (%) # of discriminants -315% (avg.)

2.2.1.5 Sentence Length

Sentence length has been considered as an informativeness measure with the assump-

tion that longer sentences tend to be more complex, hence tending to include more

information. One appealing feature of this metric is the ease of its computation.

Sentence length based sample selection is tested �rst in (Hwa, 2000) (for a summary

of all results, see Table 2.4), with the same setting with which tree entropy was tested

in the same paper. Sentence length provided 9% PRUD in this setting.

In (Baldridge and Osborne, 2003), sentence length is tested (again, experimental

setup is the same as described above). 12% PRUD is observed in this setting. How-

ever, the same experimental setup led to -55.4% PRUD later in (Osborne and Baldridge,

2004). Authors conjecture that this di�erence stems from that number of sentences is

used in the �rst work, and number of discriminants is used in the second work.

In (Hwa, 2004), sentence length is tested on WSJ corpus with PLTIG and Collins

2 parsers (experimental setup is the same as described above for the same paper). Ex-

periments show that sentence length provides 26% reduction to reach 80% accuracy

level with PLTIG parser and approximately 10% reduction to reach 88% F score level

with Collins 2 parser.

In (Baldridge and Osborne, 2008), sentence length is tested (with the same experi-

mental setup as described above for the same paper) to see -315% PRUD on average

19



(as claimed for (Osborne and Baldridge, 2004), the di�erence in results despite the

usage of the same experimental setup is claimed to stem from the di�erence in used

feature sets and machine learning algorithm).

2.2.1.6 Change Of Entropy

Change of entropy method was proposed in (Tang, Luo, and Roukos, 2002). In this

approach, the informativeness of a sample is measured by how much it changes the

entropy of the model. In decision tree models used in (Tang, Luo, and Roukos, 2002),

this is calculated with the expected change in total weighted entropy at the leaves of

decision trees, normalized with the number of possible parse actions. Authors claim

that this is a measure of how much the new sample surprises the model.

Change of entropy metric is only tested in (Tang, Luo, and Roukos, 2002). Exper-

imental setup and domain of this work is described above. On average, a PRUD of

67% is provided.

2.2.1.7 Word Co-occurance Statistics

Using word co-occurance statistics in active learning is �rst proposed in (Hwa, 2004).

According to these method, sentences including previously unseen word co-occurances

are prioritized in sample selection. Such samples are prioritized according to the func-

tion flex(w, G), which is:

flex(w, G) =

∑
wi,wj∈w

new(wi, wj)× coocc(wi, wj)

length(w)
(2.3)

Where w is the sentence, G is the current model, new(wi, wj) becomes 1 if wi and

wj have not been seen together before and 0 otherwise, coocc(wi, wj) is the number

of times wi and wj co-occurs in the candidate pool. In this scheme, sentences having

highest flex values are selected �rst.

In experiments conducted on Collins 2 parser (see experimental setup speci�cs above),
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it is seen that this method performs slightly worse than random sampling (an exact

�gure is not provided in the paper).

2.2.1.8 A Comparison of Single-Learner Active Learning Methods

We compiled the comparative performances of some single-learner active learning meth-

ods in Table 2.5. Note that we included results of only tree entropy, lowest best proba-

bility, unparsed, unparsed/entropy and two-stage active learning, because these will be

the only informativeness measures that will be covered in Chapter 5, so it may provide

ease to the reader in comparing reported and novel experimental results. Along with

PRUD values of two di�erent informativeness measures tested on the same domain,

relative PRUD values of these measures (i.e. the PRUD that the informativeness mea-

sure in the �Inf. Meas. 1� column provides over the informativeness measure in the

�Inf. Meas. 2� column) are presented for comparison purposes.
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2.2.1.9 Multi-Learner and Ensemble Active Learning

Active learning methods incorporating multiple models have a rich literature. Some of

the most popular ones used in statistical parser training domain is as follows:

� Preferred Parse Disagreement: Sentences for which two di�erent models get

two di�erent most likely parses are prioritized in sample selection.

� Query By Committee: First proposed by Argamon-Engelson and Dagan

(1999), query by committee is used in statistical parser training �rst time by Os-

borne and Baldridge (2004). The idea is selecting samples on which a committee

of learners disagree most. One measure of disagreement is vote entropy, which is

de�ned as:

fveqbc(s, τ) = − 1
logmin(n, |τ |)

∑
t∈τ

V (t, s)
n

log
V (t, s)
n

(2.4)

Where n is the number of committee members, τ is the set of parses proposed by

committee members and V(t, s) is the number of committee members proposing

the parse t for sentence s. Another measure of disagreement is Kullback-Leibler

Divergence to the Mean (abbreviated as kl-div), which is de�ned as:

fkl−divµ (s, τ) =
1
|µ|

∑

M∈µ
D(PM , Pavg) (2.5)

Where �µ denotes the set of ensemble models, Pavg is the mean distribution over

ensemble members in µ, Pavg =
∑

M PM (t|s)/|µ|, and D(., .) is KL-divergence�

(Becker and Osborne, 2005).

� An alternative to multi-learner setting is constructing an ensemble from multiple

models, which behaves like a single-learner during the active learning process.

There are di�erent ways of creating and ensemble like directly combining feature

sets of multiple models into a single monolithic feature set (Baldridge and Os-

borne, 2008), product-of-experts formulation (Osborne and Baldridge, 2004) and

logarithmic opinion pool formulation (Baldridge and Osborne, 2008).

We will not review the literature on multiple model active learning thoroughly, since

our experiments do not cover multiple model methods (see Chapter 5)
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2.2.2 Proposed Representativeness Measures

2.2.2.1 Length Balanced Sampling (LBS)

Length Balanced Sampling (LBS) was proposed in (Becker and Osborne, 2005). LBS

can be used in any selective sampling setting and works in the following way:

� Before beginning active learning, b samples are selected randomly from the pool

of unlabeled sentences, where b is the batch size to be used during active learning.

� Sentence length statistics of these b samples are recorded in a histogramH, where:

H = (e1, e2, . . . , e|H|) (2.6)

Here each ei denotes the number of occurences of i words long sentences in the

samples. Histogram size (i.e. number of entries in the histogram) may be set

arbitrarily (as long as it is not less than the maximum sentence length appearing

in the random sample), but sums of values recorded in the histogram must sum

up to b

� At any step of active learning, the current sample pool is partitioned into |H|
equivalence classes according to the sentence length and from each equivalence

class including i words long sentences, the most informative ei sentences are

selected for batch (whatever the used informativeness measure is).

It is conjectured that since the samples for the histogram are drawn randomly

from the pool to be used in active learning, this random sample re�ects the statistical

characteristics of the pool with respect to sentence length, hence any batch constructed

according to the histogram will represent the statistical characteristic of the pool with

respect to sentence length.

LBS is tested in (Becker and Osborne, 2005) with tree entropy, two-stage active

learning, unparsed and unparsed/entropy informativeness measures. Histogram size is

set as 40 in this work. However, LBS is not compared with any other representativeness

measure or a random baseline (i.e. the scheme of selecting only the most informative

samples everytime) in (Becker and Osborne, 2005). Experimental results of (Becker

and Osborne, 2005) can be found in the �Proposed Informativeness Measures� section.
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2.2.2.2 Sample Density

Sample density is a density estimation based representativeness measure, �rst proposed

in (Tang, Luo, and Roukos, 2002). Given a set of sentences S = {S1, . . . , SN}, density
of a sample sentence Si is de�ned as:

ρ(Si) =
N − 1∑

j 6=i
dM (Si, Sj)

(2.7)

Where dM is the distance metric or similarity measure de�ned according to the

modelM . ρ(Si) is the multiplicative inverse of the average distance to Si, and e�ectively

corresponds to the notion of density of a sample. The dM used in (Tang, Luo, and

Roukos, 2002) was the edit distance between the most likely parses of two sentences.

Since the edit distance function they de�ned was model-speci�c, dM is not generic.

Any successor study that would like to employ sample density should implement its

own dM . Besides, since dM depends onM , it should be recalculated at each iteration of

active learning. Note that the success of this method critically depends on the modeling

strength of M . If the model is a weak one or it has not su�cient data to estimate the

underlying sample distribution, this method will give false predictions of the densities

of samples.

This representative method is tested in conjunction with tree entropy (normalized

with sentence length) in (Tang, Luo, and Roukos, 2002), with the same experimental

setup and domain described above. Authors measured PER instead of DUR, and they

report 22.3% PER compared to using only normalized tree entropy (and no represen-

tativeness measures) after 1000 sentences.

2.2.3 Proposed Diversity Measures

2.2.3.1 K-Means Clustering

First tried in statistical parser training domain by Tang, Luo, and Roukos (2002), k-

means clustering is a generic diversity incorporation method used in active learning.

The main idea is that after clustering, similar samples will tend to gather in the same

cluster; so by selecting samples from di�erent clusters, the learner can get diverse

samples for the batch. Of course, the success of such an approach vitally depends on

the distance metric used in clustering process.
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In (Tang, Luo, and Roukos, 2002), dM is used as the distance metric (see �Sample

Density� topic in Section 2.2.2) and number of clusters is equal to the batch size. At

each iteration of active learning, clusters are recalculated (since dM is updated at each

iteration) and one sample is selected from each cluster. Experiments show that change

of entropy metric is not a�ected from whether k-means clustering is employed or not.

Non-normalized tree entropy does a little bit worse; however, tree entropy normalized

with sentence length shows a clear PER of 20% after 1000 sentences when clustering is

employed.
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CHAPTER 3

PROPOSED REPRESENTATIVENESS
MEASURE

Principle of Least E�ort, as formulated by Zipf (1949), roughly says that people try to

express themselves in the most economic way possible. In (Zipf, 1935), Zipf says �In

view of the evidence of the stream of speech we may say that the length of a word tends

to bear an inverse relationship to its relative frequency�. In a footnote, he adds: �Not

necessarily proportionate; possibly some non-linear mathematical function�. There is

no reason for this logic not to be valid for sentences as well, and indeed, empirical

observation on Brown corpus (Ku�cera and Francis, 1967) shows that this claim is true

down to a certain length. In the corpus, empirical frequencies of the words begin to fall

after three letters as predicted by Zipf; however, frequencies of one-letter and two-letter

words are less than the frequency of three-letter words. In a similar way, empirical fre-

quencies of the sentences begin to fall after 16 words while they rise until 16 words.

Sigurd, Eeg-Olofsson, and van Weijer (2004) explained this predictive failure of Prin-

ciple of Least E�ort for short words by conjecturing that two con�icting tendencies

govern the frequencies of words according to their lengths: As more letters are avail-

able, more di�erent words may be constructed by these letters; hence frequencies of

longer words tend to rise. On the other hand, long words are uneconomic, hence fre-

quencies of longer words tend to fall. Authors model rising tendency originating from

expressivity as a polynomial function of word length, and falling tendency as an expo-

nential decay function of word length. So they give the approximate frequency function
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as:

f(L) = a× Lb × cL (3.1)

Where f(L) is the relative frequency of words of L letters, a, b and c are real

constants where 0 < c < 1. This formula actually gives a Gamma distribution and

successfully models the empirical phenomena: Since for little L values, polynomial

term dominates in determining the rate of change (in an increasing way); however,

as L gets larger exponential decay term eventually prevails in determining the rate of

change (in a decreasing way). When they �t the parameters a, b and c, they saw that

model and data gave the correlation coe�cient 0.978 for English. In addition, data

shows that sentence length seems to obey the same formula. Authors argue that it's

not surprising, since the same theoretical reasoning is applicable for sentences as well

(when letters are substituted with words). When they �t the parameters for sentence

length, the model �ts the data with the correlation coe�cient 0.992 for English (you

can see the quality of the �t in Figure 3.1, which is taken from (Sigurd, Eeg-Olofsson,

and van Weijer, 2004)). The �tted model (which we will call fzipf−eng from now on) is

reported as:

fzipf−eng(s) = 1.1× L1 × 0.90L (3.2)

Gamma distribution based on length seems to exhibit characteristics of many lin-

guistic structures. Empirical �ts for syllables in German and phonemes in Swedish are

reported in (Sigurd, Eeg-Olofsson, and van Weijer, 2004), while morpheme lengths are

reported to �t good in Finnish (Creutz, 2003).

Using fzipf−eng as a representativeness measure in active learning is especially ap-

pealing because of the following reasons:

1. fzipf−eng is model-independent, so its decisions are not a�ected from the de�-

ciencies of the current model, unlike density estimation based representativeness

measures like sample density. This property brings another advantage: First, it

can be used in active learning of other NLP tasks such as POS-tagging, supertag-

ging etc. and second, it can be used on synthetic samples (hence it can be used

in settings other than selective sampling).
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Figure 3.1: Observed and predicted sentence frequencies on the basis of sentence length

in words (L) in the entire Brown corpus

2. fzipf−eng is based on a sound theory which is empirically validated. Predictions

on a large corpus have been very successful (again, see Figure 3.1).

3. Since it is a numerical value, it can be combined with quantitative informativeness

measures to give quantitative sample selection metrics (a few such combination

functions are introduced in Chapter 5). The ability of de�ning alternative com-

bination functions provides a �exible framework in active learning, bringing the

opportunity to determine and understand the contributions of informativeness

and representativeness terms mathematically.

Of course, since fzipf−eng is determined by only sentence length, it can be criticized

for not being a �ne-grained representativeness measure, since it does not consider any

syntactic or semantic feature of the sentence. As a simple example, it will assign the

same probability value to two sentences having the same length; but one of them may

include linguistically more rare events. Although we accept that this is a drawback of

our method, to the best of our knowledge there is not a successful �ne-grained frequency

estimator for sentences proposed up to now.
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CHAPTER 4

TEST DOMAIN

In this chapter we describe our experimental domain. Since the fzipf−eng formula is

valid for English and�to the best of our knowledge�there is not empirical �tting studies

for languages other than English for now, we will test Zip�an sampling on an English

corpus and parser. For purposes described later in Section 4.3, we chose Clark and

Curran's combinatory categorial grammar parser (abbreviated as �C&C Parser� (Clark

and Curran, 2004b; Clark and Curran, 2007)) as a wide coverage parser to be used in

tests. Since we work with a CCG parser, we naturally use CCG Bank (Hockenmaier

and Steedman, 2005) as the annotated English corpus.

4.1 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Ades and Steedman, 1982; Steedman, 2000),

which is an extension of classical categorial grammars (Bar-Hillel, 1953), is a radically-

lexicalized type-driven theory of grammar. Unlike top-down generative models (like

context-free grammars) in which derivations are controlled mainly by rules and there

are relatively many rules for that, categorial grammars are characterized by that there

are few rules and derivations are controlled mainly by types of lexical entries. Types are

in the form of functors or arguments; but functor types include type and directionality

of their arguments as well. At the beginning of a derivation, each word is assigned a

type (or category, as this is the common name used in categorial grammar literature),

either a functor or an argument, and these categories combine according to some com-

binatory rules to give new categories, wither functor or argument. Combinatory rules,
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along with directionality and categorial constraints in the functor categories, enforce

the word order constraints.

In CCG, argument types are considered as basic categories. Examples of basic categories

are S (for sentences), N (for nouns), NP (for noun phrases) and PP (for prepositional

phrases). In realistic grammars, basic categories are rich types including syntactic fea-

tures like gender, number, case, tense etc. Functor categories are considered as complex

categories. For example, in English transitive verbs are assigned the category:

(1) bought := (S\NP)/NP

Which means that the transitive verb (here, bought) is assigned a functor (complex)

category, which takes an NP argument to the right, takes an NP argument to the

left (exactly in this order) and results in an S category. Combinatory rules used in

combining functor and arguments (or transforming a category to another, which are

called unary rules). Two most basic combinatory rules used in classical categorial

grammars are function application rules, which are:

(2) (X /Y ) Y ⇒ X (>)

(3) Y (X \Y ) ⇒ X (<)

Where X and Y denotes any kind of categories. Forward application rule (>) says

that at a stage of parsing, when a sequence of words (or tokens, in more general sense)

having the category Y follows immediately to the right of another sequence of words

having the category (X /Y ), these two word sequences combine to a single sequence

having the category X. Backward application rule (<) is similar, but this time the word

sequence having the argument category must follow immediately to the left of the se-

quence having the functor category, since directionality of the slash is reversed this time.

Since classical categorial grammars use only the application rules, their expressive

power is rather limited (actually their class is shown to be weakly equivalent to the

class of context-free grammars (Bar-Hillel, Gaifman, and Shamir, 1960)). For this rea-

son, Steedman introduced (2000) additional rules stemming from combinatory logic.

(4) (X /Y ) (Y /Z ) ⇒ (X /Z ) (>B)
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(5) (Y \Z ) (X \Y ) ⇒ (X \Z ) (<B)

(6) (X /Y ) (Y \Z ) ⇒ (X \Z ) (>B×)

(7) (Y /Z ) (X \Y ) ⇒ (X /Z ) (<B×)

(8) ((X /Y )/Z ) (Y /Z ) ⇒ (X /Z ) (>S)

(9) (Y \Z ) ((X \Y )\Z ) ⇒ (X \Z ) (<S)

(10) ((X /Y )\Z) (Y \Z ) ⇒ (X \Z ) (>S×)

(11) (Y /Z ) ((X \Y )/Z ) ⇒ (X /Z ) (<S×)

(12) X ⇒ T/(T\X ) (>T)

(13) X ⇒ T\(T/X ) (<T)

In literature, rules (>B) and (<B) are called as forward and backward composition

rules respectively, rules (>B×) and (<B×) are called as forward and backward crossed

composition rules respectively, rules (>S) and (<S) are called as forward and back-

ward substitution rules respectively, rules (>S×) and (<S×) are called as forward and

backward crossed substitution rules respectively and rules (>T) and (<T) are called as

forward and backward type-raising rules respectively. A sample derivation using some

of these rules can be seen in Figure 4.1. In time new rules have been derived (Hoyt

and Baldridge, 2008), or existing ones have been modi�ed (Baldridge, 2002), as long as

the proposed rules comply a set of principles (Steedman, 2000). These principles limit

the expressive power of the formalism; however it is still more expressive than context-

free grammars. (Vijay-Shanker and Weir, 1994) proved that combinatory categorial

grammar is mildly context-sensitive (Joshi, 1985).

As noted in (Clark and Curran, 2007), CCG has several features making itself

appealing to be used in wide-coverage statistical natural language parsing:

� Being mildly context-sensitive, it enables the capturing of limited kinds of, but

unboundedly many cross-serial dependencies, while still being parsable in poly-

nomial time.
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The company that Marks wants to buy

NP/N N (NP\NP)/(S/NP) NP (S\NP)/(S\NP) (S\NP)/(S\NP) (S\NP)/NP
> > T > B

NP S/(S\NP) (S\NP)/NP
> B

(S\NP)/NP
> B

S/NP
>

NP\NP
<

NP

Figure 4.1: A sample CCG derivation

� It provides a very natural interpretation of many linguistic phenomena common in

general natural language texts, such as long-range dependencies, non-constituent

coordination, gapping, scrambling etc. These phenomena are predicted by CCG

derivations naturally, i.e. without using any extra assumptions, movements and

transformations etc.

� Since Principle of Categorial Type Transparency (one of the principles setting

constraints on possible lexical categories in a grammar instance) dictates that

the syntactic category of a lexical item must be a re�ection of the semantic type

of that lexical item, syntax-semantics interface is completely transparent and

syntactic derivation itself is the process of recovery of the underlying predicate-

argument structure in one sense.

4.2 CCGbank

CCGbank (Hockenmaier and Steedman, 2005) is the collection CCG analyses of WSJ

corpus sentences, which are semi-automatically derived from Penn Treebank (Marcus,

Marcinkiewicz, and Santorini, 1993). Penn Treebank phrase-structure trees are trans-

lated to CCG analyses with an algorithm (Hockenmaier, 2003), with some manual

corrections.

Sentence categories (S ) in CCGbank carry features indicating the sentence/clause type

(declarative, interrogative, 'for' clause etc.) or verb phrase properties (bare in�nitive,

'to' in�nitive, past participle in passive mode etc.).

In addition to standard CCG rules for English, CCGbank introduces a number of
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unary rules (or type changing rules). A complete list of unary rules is available in

(Hockenmaier, 2003). In general, these rules change a verb phrase into a modi�er to

handle situations like relative pronoun drop etc. Here are some examples of these rules

(examples are taken from (Clark and Curran, 2007), type-changing rule is applied to

the bracketed expression in each example):

� S[pss]\NP ⇒ NP\NP (pss corresponds to past participle in passive mode)

workers [exposed to it]

� S[adj]\NP ⇒ NP\NP (adj corresponds to adjectival phrase)

a forum [likely to bring attention to the problem]

� S[ng]\NP ⇒ NP\NP (ng corresponds to -ing form)

signboards [advertising imported cigarettes]

� S[ng]\NP ⇒ (S\NP )\(S\NP )

became chairman [succeeding Ian Butler]

� S[dcl]\NP ⇒ NP\NP (dcl corresponds to declarative)

the millions of dollars [it generates]

� N ⇒ NP transfer [money]

Some binary rules which are not in CCG's standard rule set are employed to handle

punctuation, for example:

� , S[dcl] ⇒ S[dcl]

� , X ⇒ X\X

Associativity of combination operators causes spurious ambiguity in CCG, because

of which the same result can be obtained by di�erent analyses. An example of spurious

ambiguity is as follows:

(14) a. Mary saw John

NP (S\NP)/NP NP
>

S\NP
<

S
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b. Mary saw John

NP (S\NP)/NP NP
> T

S/(S\NP)
> B

S/NP
>

S

Due to spurious ambiguity, a sentence can have more than one correct analyses. In

order to prevent confusion, all analyses in the CCGbank are in a kind of normal form,

such that a CCGbank derivation includes type-raising and composition only when it is

necessary.

Besides the CCG derivations, CCGbank presents the list of predicate-argument de-

pendencies for each sentence. This is especially important for parser evaluation and

training parsers relying on dependency modeling.

Finally, we should note that CCGbank is not one-to-one translation of Penn Treebank.

Coverage of the conversion algorithm is reported as 99.44% and many corrections are

made on the original Penn Treebank data before conversion (mostly POS-tag assign-

ments).

4.3 Clark and Curran Parser

C&C Parser (Clark and Curran, 2004b; Clark and Curran, 2007) was a project which

began as a part of the Edinburgh wide-coverage CCG parsing project (2000-2004) and

developed later independently by Stephen Clark and James Curran. The motivation of

the project was developing a wide-coverage parser having both high coverage of linguis-

tic constructions that could be found in CCGbank and high e�ciency for large-scale

NLP tasks. In almost all design decisions for the parser, this trade-o� is considered.

4.3.1 The CCG Implementation

C&C Parser does not use multi-modal extension of CCG (Baldridge, 2002), hence it

follows Steedman's classic analysis of English (Steedman, 2000). In this analysis ap-

plication (< and >), composition (<B and >B), backward cross composition (<B×)
and type raising (<T and>T) are allowed. Forward cross composition (>B×) is disal-
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lowed complying to Steedman's analysis and all substitution (S) rules are ignored since

their contribution to the coverage of the parser did not worth the reduction in speed.

Besides these rules, all the rules that are manually added to CCGbank derivations (see

Section 4.2) are included in the parser as well.

C&C parser set restrictions on categories to which CCG rules can be applied. For

example, again following Steedman, there is a restriction on backward cross composi-

tion rule (<B×) that Y in (7) cannot be N or NP. Type raising is applied only to the

categories NP, PP and S[adj]\NP .

Optionally, in order to increase e�ciency of the parser (hence success of the training),

the parser may employ two types of constraints for rule applications: One is allowing

two categories to combine only if they are seen to be combined in the training data,

and second is Eisner's normal-form constraint (Eisner, 1996). Eisner's normal-form

constraint dictates that a category produced by a forward composition rule instance

cannot serve as the primary (left) functor in a forward composition or application rule

instance and similarly, a category produced by a backward composition rule instance

cannot serve as the primary (right) functor in a backward composition or application

rule instance. This constraints cannot ensure normal-form derivation in a grammar us-

ing type-raising, nonetheless, they are reported to prune the parse space dramatically

(Clark and Curran, 2007).

4.3.2 Modeling Predicate-Argument Dependencies and Head-Lexicalized
Derivations

As we noted, lexical items in a realistic CCG include features. In C&C parser, in addi-

tion to the categorial features introduced in CCGbank, lexical items include head-word

and predicate-argument dependency information encoded in their syntactic categories.

An example category is:

(15) bought := (S [dcl]bought\NP1)/NP2

Where dependency slots are enumerated from left to right. Clark and Curran use a

kind of uni�cation based grammar, hence two categories can combine only if they are

uni�able. Using co-indexing with uni�cation, a kind of head passing mechanism can be
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employed. Head passing is useful for determining multiple heads and extraction of non-

local dependencies. For example, consider the following category for the object-control

verb persuade:

(16) persuade := ((S [dcl]persuade\NP1)/(S [to]2\NPX))/NPX,3

Via variable X, uni�cation passes the head of the object to the subject of the

in�nitival, so the head of the in�nitival complement's subject can be determined by

the head of the object. In a similar way, long-range object-extraction from a relative

clause can be identi�ed using the following category for a relative pronoun:

(17) who := ((NPX\NPX,1)/(S [dcl]2\NPX))

The head-driven and uni�cation-based version of the CCG derivation given in Fig-

ure 4.1 can be found in Figure 4.2 (taken from (Clark, Hockenmaier, and Steedman,

2001), features on sentence categories are discarded to save space and head-words are

reduced to the �rst letter). Whenever an argument slot is �lled during the derivation, a

new dependency is created by the parser. Formally, a predicate-argument dependency

is a �ve-tuple 〈hf , f, s, ha, l〉, where hf is the head word of the functor, f is the func-

tor category, s is the number of the �lled argument slot, ha is the head-word of the

argument and l encodes whether the dependency is local or non-local. For example,

consider the following derivation:

(18) Mary saw John

NPMary (S[dcl]saw\NP1)/NP2 NPJohn
>

S[dcl]saw\NP1
<

S[dcl]saw
In the �rst step of derivation in (18), the following dependency is created by the

parser:

(19) 〈saw2, (S[dcl]saw\NP1)/NP2, 2, John3,−〉

Subscripts on the lexical items indicate sentence position and the �nal �eld (−)
indicates that the dependency is a local one. The set of dependencies created during a

derivation constitute the predicate-argument structure (PAS) of the sentence and it is

one of the outputs of the C&C Parser.
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4.3.3 Statistical Model, Parsing and Training

The underlying CCG parser used is a variant of CKY algorithm described in (Steedman,

2000). Statistical model and training method are an instance of Stochastic Uni�cation

Based Grammar (SUBG) framework proposed in (Johnson et al., 1999). The parser

assigns probabilities to each parse that it �nds according to the following conditional

log-linear model:

P (ω|S) =
eλ·f(ω)

Z(S)
(4.1)

Where ω is a parse, f(ω) is the vector including counts of features associated with

the parse, λ is the vector including weights of features and Z(S) is a normalizing

constant ensuring that P (ω|S) is a probability distribution:

Z(S) =
∑

ω′∈ρ(S)

eλ·f(ω
′) (4.2)

Where ρ(S) is the set of possible parses of S. The notion of 'parse' depends on

the model used by the parser: In derivation model, a parse is a (derivation,PAS) pair

where the speci�ed derivation leads to the speci�ed PAS. In normal-form model, a

parse is simply a head-lexicalized derivation. The features that are allowed to appear

in a parse vary with the model as well. Since we do use only normal-form model in our

experiments (because of the reasons we will explain in Section 4.3.5), we will not review

any details associated with dependency model from now on. The features associated

with the normal-form model are as follows:

� Lexical category assignments to words and POS-tags.

� Final resulting category in bare form, with its head word and with POS-tag of

the head.

� A rule instantiation in its bare form, with its dependent word, with POS-tag of

the dependant, with both head and dependant words/POS tags.

� Distance of occuring dependencies with their rule instantiation, dependant words

and POS-tags of the dependant.

Included instances of the above are those observed in the gold-standard derivations

in the CCGbank at least with a pre-determined frequency. This lower bound on the
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frequency of a feature is called frequency cuto� for that feature.

Estimating the log-linear normal-form model parameters is done by maximizing the

objective function L′(Λ), which is:

L′(Λ) = L(Λ)−G(Λ) (4.3)

= log
m∏

j=1

PΛ(dj |Sj)−
n∑

i=1

λ2
i

2σ2
i

(4.4)

(4.5)

Where L(Λ) is the log-likelihood of the model Λ, G(Λ) is the regularization term

(alternatively called Gaussian prior term) used to prevent over�tting, n is the number

of features, m is the number of sentences in the training data, dj is the gold standard

derivation for the sentence Sj , λi is the weight of the ith feature and σi is the smoothing

parameter (also called Gaussian prior) for the ith feature. In practice, for all i σi = σ.

Optimization is done by moving in the feature space with a steepest-ascent strategy

and L-BFGS algorithm (Nocedal and Wright, 1999) is used for this purpose. L-BFGS

is an e�cient search algorithm since it calculates only �rst partial derivatives of the

objective function with respect to feature weights and estimates second partial deriva-

tives according to the changes in the �rst partial derivatives during a �xed number of

previous steps, hence evading calculating the Hessian, which is computationally very

expensive. Calculating �rst partial derivatives requires calculating empirical feature

counts (i.e. the number of times a feature appear in the training data) and expected

empirical feature counts (i.e. the expected number of times the feature may appear ac-

cording to the current model Λ). Calculating expected empirical feature counts require

parsing all sentences in the training data, and reparsing the whole training set in each

iteration can be computationally expensive. To overcome this problem, charts of all

training sentences are kept in memory. Since it may require a huge amount of RAM in

practice, Beowulf clusters are employed in order to supply the necessary memory.

Parsing is done using packed charts. Packed charts are common in parsing, in which

equivalent individual entries are collected into equivalence classes. Two individual en-

tries are said to be equivalent when they lead to the generation of the same subsequent

parse structure (i.e. they behave exactly same in subsequent parse actions). In C&C
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parser, two individual entries are equivalent if they have the same span, same category,

identical head and the same list of un�lled dependencies. In this way, equivalent en-

tries lead to the same derivation and PAS. Individual entries are either leaves of CCG

derivations (lexical item/category pairs) or obtained by combining the canonical rep-

resentatives of two equivalence classes via a binary rule or applying a unary rule to the

canonical representative of an equivalence class. For conceptual ease, Clark and Curran

use the abstraction of feature forests, which is a graph of conjunctive and disjunctive

nodes. The notion of conjunctive node corresponds to individual entries and the notion

of disjunctive node corresponds to equivalence classes. Equivalence classes at the root

of CCG derivation trees are called root disjunctive nodes.

Packed charts and binary nature of CCG derivations make CKY algorithm applicable

for parsing. Via CKY, inside and outside scores can be calculated (and tree entropy

as well, see Appendix A). In normal-form model it also enables employing Viterbi

decoder to �nd the most probable parse. Actually since spurious ambiguity cannot

be eliminated completely (even with Eisner's constraints), it is not guaranteed that

Viterbi decoder will return the most probable parse since non-normal forms of a parse

can arise in the chart and 'steal' some of the probability belonging to the normal form

of the parse1. However, since the model is trained discriminatively and the probability

of the gold-derivation (which is always in normal form) of each sentence is maximized

against the alternative parses, authors conjecture that the parser will typically assign

low probabilities to non-normal form derivations in general.

4.3.4 POS-Tagger and Supertagger

For generalization purposes, a maximum entropy POS-tagger described in (Curran and

Clark, 2003) is used for POS-tagging. One of the most important components of the

parser is the supertagger (Clark and Curran, 2004a). Supertagger works identical to

the POS-tagger described in (Ratnaparkhi, 1996), but it assigns CCG categories to

lexical items instead of POS tags. The probability of the assignment of a category

to a lexical item is determined according to a log-linear model, features of which are
1Same problem a�ects the calculation of tree entropy in such a way that monolithic probabilities

belonging to an equivalence class of parses can be scattered among normal and non-normal form
derivations of the class, boosting the calculated value of tree entropy above its actual value.
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the words and POS tags in the local 5-word window and the two previously assigned

categories immediately to the left.

Since supertagger is too restrictive, authors implemented a multitagger, which is able

to assign multiple CCG categories to a word. Flexibility of the multitagger in assigning

categories is determined by an ambiguity parameter β: Only categories whose prob-

abilities are within β of the highest probability category are assigned to the lexical

item. Besides β, the supertagger has an additional parameter limiting the categories

that can be assigned to a lexical item: The dictionary cuto� level, which is set to some

integer k. For words seen at least k times in the training data, the supertagger can

only assign the categories seen with the word in the training data. For words seen less

than k times in the training data, the POS tag of the word is used in such a way that

the supertagger can only assign the categories seen with the POS tag of the word in

the training data. β and dictionary cuto� level e�ectively determines the number of

categories that can be assigned to a lexical item.

The motivation for using supertagger is the fact that using all possible lexical item/category

assignments as leaves of CCG derivations is infeasible due to memory (hence time) con-

straints. Supertagger functions as a �lter on categories that can be assigned to words

and 'permeability' of the �lter can be changed via playing with β and dictionary cuto�

level. In practice, dictionary cuto� level is not changed frequently, it is the β deter-

mining the restrictivity: Higher β values are more restrictive and lead to assignment

of less categories. Supertagger operates adaptively with the parser in the following

way: In the �rst parsing attempt, β value is set to a relatively high value (hence it's

most restrictive). If the parser cannot �nd any derivation leading to a root, β value

is reduced and attempt is repeated, and so on (of course, number of attempts are lim-

ited). In this way, the parser operates at a very high speed without sacri�cing accuracy.

The supertagger is vital in the training process as well, since memory requirements for

training are infeasible without a supertagger even using a cluster. In the training pro-

cess, a reverse strategy is followed in tuning ambiguity: The parser begins with low β

values and β is increased if the chart gets too large. Low β values are more desirable in

training process, since high β values lead to a less number of parses and training algo-

rithm cannot �nd enough incorrect derivations to discriminate against. Consequently,
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accurracy deteriorates with training done with high β values.

The whole process can be summarized as follows: POS tagger takes raw input words

as input and outputs (POS tag,word) pairs. Supertagger takes the output of the POS

tagger as input and outputs several (category,POS tag,word) triples for each (POS

tag,word) pair. Finally, parser takes the output of the supertagger and outputs a

(derivation,PAS) pair.

4.3.5 Why Do We Use C&C Parser?

C&C Parser is a wide-coverage parser with high performance on WSJ corpus. We

wanted a realistic setting for our experiments, and high performance of the passive

learner is paramount for the performance of active learner counterpart (see (Baldridge

and Osborne, 2004)). The parser has an open source implementation, which provides

ease for us. Besides these properties which can be found in other parsers (like Collins

parser (Collins, 1997)), one important advantage of C&C Parser distinguishing it from

the alternatives is its speed: The parser is able to parse approximately 30 sentences

per second on average on the hardware we use. In this way active learning experiments

could be completed very fast.

Among the two models C&C Parser implemented, we chose normal-form model over

dependency model for similar reasons: Training of the normal-form model is faster

and uses less memory. Besides, Viterbi decoding cannot be employed to �nd the most

probable PAS in the dependency model (instead authors use a method �nding the PAS

with maximum expected recall), so we cannot employ some active learning algorithms

like LBP with dependency model.
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CHAPTER 5

EXPERIMENTS

5.1 Scope of Experiments

Since we introduce a novel representativeness measure, conducted experiments are ex-

pected to test the performances of the novel method and previously proposed represen-

tativeness measures comparatively, possibly with various informativeness and diversity

measures. We do this; however, because of the following reasons, we could not cover

all measures presented in Section 2.2:

� We did not cover any multi-learner or ensemble style active learning methods,

although they are shown to perform much better than single-learner methods if

used models are diverse enough, since introducing diverse models in C&C Parser

domain is not trivial. In (Becker and Osborne, 2005), multiple models needed

for KL-div/unparsed algorithm was created by multiple bagging; however, we

believe that it does not create su�ciently diverse models (a view which is backed

by the observation that KL-div/unparsed did not do better than the single-learner

method two-stage active learning). Using the two di�erent models implemented

in C&C parser (maybe even the third one, the �hybrid dependency model�) could

be a solution, but even these two models have a signi�cantly large base common

set of features. Although we believe that multi-model methods are too important

to ignore, we believe that specifying multiple methods in C&C parser domain

is a broad study and it should be handled in a separate work. Hence we leave

multi-model methods out of the scope of experiments.
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� Another untrivial task is specifying similarity measures like those described in

Section 2.2.2 and 2.2.3 in C&C Parser domain. As pointed out in (Becker, 2008),

the best approach to density estimation is not clear. To make the approach

of applying edit distance variation on parses (as proposed in (Tang, Luo, and

Roukos, 2002)) work empirically, determining useful edit distance parameters

that can be derived from C&C parser outputs is necessary; hence we again think

that this should be the topic of a separate study and density estimation methods

are ignored in our experiments.

� Some informativeness measures either are too model-speci�c to be applied (like

change of entropy proposed in (Tang, Luo, and Roukos, 2002)) or introduce

insigni�cant or negative improvement reportedly (like sentence length and word

co-occurence statistics proposed in (Hwa, 2004)), so we do not cover them in our

experiments.

Although these constraints prune many methods, a vast majority of the most clas-

sical methods are still available for testing. Tested informativeness measures are tree

entropy, unparsed/entropy, two-stage active learning and lowest best probability.

Since all diversity measures proposed up to now are based on density estimation

methods, none of the known diversity measures could be incorporated in our exper-

iments. The same constraint also rules out sample density based representativeness

measures introduced in Section 2.2.2, leaving only length balanced sampling as a repre-

sentativeness measure, which is itself based on sentence length as well, for comparison.

It can be unsatisfactory to compare our novel method with only one alternative; how-

ever, it should be noted that the literature on representativeness already is quite poor.

In addition, we make random sampling experiments in order to measure PRUD values

of active learning methods, as all studies in the �eld do.
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5.2 Experimental Setup

5.2.1 Parser Settings

We used default settings of the C&C parser set in the distribution for fair evaluation.

Maximum number of allowed chart entries is limited to 300,000. Maximum number

of words allowed in a sentence to be parsed is 250. Supertagger is employed with �ve

ambiguity levels in which β levels are 0.075, 0.03, 0.01, 0.005, 0.001, respectively and

dictionary cuto� levels 20, 20, 20, 20, 150, respectively. Gaussian prior σ used in reg-

ularization of likelihood function is set to 1.3. Only rules that are seen in the training

data are applied and Eisner normal-form constraints are employed during the parsing

process. Question rules are not employed during the experiments. These settings are

claimed to improve accuracy without degrading parsing speed signi�cantly whenever

possible, or to be a reasonable compromise between speed and accuracy otherwise (see

C&C Tools website). Used POS-tagger settings are default as well, details of which

can be found in C&C Tools website. As we noted in Section 4.3.3, we use normal-form

model of the C&C parser in our experiments.

Training parameters are default as well. Supertagger is trained with BFGS algorithm

and employed during the training with β levels 0.01, 0.05 and 0.1 and dictionary cuto�

level 20. Eisner normal-form constraints are employed while parsing the training data.

Frequency cuto� for features in the training is set to 1, Gaussian prior σ is set to 1.3

and frequency cuto� for lexical categories is set to 10 (resulting in 425 categories in

total).

5.2.2 Training Data and Active Learning Settings

We use CCGbank annotations WSJ Sections 02-21 as the global training data pool

(which is the source of initial seed training set as well), including a total of 39604 sen-

tences. To ensure statistical signi�cance of the results, we conducted 5 experiments for

each sample selection scheme (see Section 5.2.4 for sample selection schemes). In each

experiment, 500 randomly sampled (with replacement) sentences are used as the seed

training set and in each iteration of active learning 100 new sentences selected from the

remaining of the global pool and added to the the training data (with replacement),

until training set size becomes 2000.
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At each step of active learning, the remaining of the data pool is parsed with the

current state of the parser (to update the values of the informativeness metric for sen-

tences in the rest of the pool). Remember that parser consists of three components:

POS-tagger (using raw data as input), supertagger (using word/POS-tag pairs as input)

and CCG parser (using word/POS-tag/category triples as input). At a step of active

learning, supertagger and CCG parser components are trained with the training data

coming from the previous iteration; however, POS-tagger component is always trained

with the initial global pool (that is, with the all of the initial 39604 sentences). The

experiments would be more realistic if we trained the POS-tagger component with the

same data used by supertagger and CCG parser components; but amounts of training

data are not su�cient to train the POS-tagger in such a setting.

As done in (Clark and Curran, 2007), we did not include sentences, during parsing

of whose the maximum chart size is exceeded even at the largest β value of the su-

pertagger.

For length-balanced sampling, a random sample of 100 sentences is needed to construct

the histogram (sampling for histogram is done from the initial global pool without re-

placement). For statistical signi�cance of results, we drew 5 such random samples and

for each sample selection scheme based on LBS, each experiment used a histogram

constructed with a di�erent sample.

5.2.3 Evaluation

With initial seed set and after each iteration of active learning, the resulting model

is tested on WSJ Section 23, consisting of 2407 sentences. As the cost metric, we

used the number of brackets appearing in the training data. In CCGbank, a bracket

corresponds to either a word-category assignment, an unary rule application or a binary

rule application. Since CCGbank is constructed semi-automatically (and in large part,

automatically) from Penn Treebank (Marcus, Marcinkiewicz, and Santorini, 1993), we

do not have any experimental study on the annotation times of sentences in CCGbank

style; however, we conjecture that the number of brackets is a realistic cost metric,

since it covers all possible CCG derivation decisions. Complying (Clark and Curran,
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2007), we use the labeled and unlabeled F score, precision and recall of recovery of

predicate-argument dependencies as possible parsing accuracy metrics.

5.2.4 Sample Selection Schemes

5.2.4.1 Length Balanced Sampling

In LBS, we did not set a constraint on histogram sizes and considered the whole pool

in random sampling. E�ective histogram size is 63 on average, and maximum 84 (in 5

samples).

LBS is applied with unparsed/entropy (Becker and Osborne, 2005), tree entropy and

LBP informativeness metrics in a trivial way. Unlike Becker and Osborne (2005), we

normalized tree entropies in these experiments with the binary logarithm of the number

of parses. We did it for comparison purposes, since tree entropies are normalized in

Zip�an sampling experiments as well. Application of two-stage active learning slightly

di�ers from (Becker and Osborne, 2005), in that among sentences that cannot be parsed

by the bagged parser, sentences that can be parsed by the full parser are prioritized in

sample selection (since Becker and Osborne (2005) showed that tree entropy is espe-

cially useless in such samples). As in (Becker and Osborne, 2005), the rest of the batch

is �lled according to non-normalized tree entropy.

5.2.4.2 Zip�an Sampling

Employing fzipf−eng (see Chapter 3) is straightforward with tree entropy, as it is done

by selecting the sentences having highest fzipf−entropy values such that:

fzipf−entropy(s) = fzipf−eng(s)
fte(s,G)
log2|V | (5.1)

Where G is the current model and V is the set of parses of s found by G.

LBP can be combined with fzipf−eng in a similar way. However, lower LBP values

are more desired (i.e. expected to be informative), hence we cannot directly multiply

flbp with fzipf−eng. We should use a function of flbp, which will give higher values for

more desired samples. There can be many ways to do it; in this study we will comply to

the method introduced in (Hwa, 2004) which uses 1−flbp. So in the combined method,
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sentences having highest fzipf−lbp values are selected such that:

fzipf−lbp(s) = fzipf−eng(s)(1− flbp(s,G)) (5.2)

Where G is the current model.

In unparsed/entropy, unparsed sentences having the highest fzipf−eng values are se-

lected �rst. If the batch cannot be �lled with such sentences, the rest of the batch is

�lled with the sentences having highest fzipf−entropy values.

In two-stage active learning, batch is �lled according to the following priority

scheme:

1. First priority is given to sentences that cannot be parsed by the bagged parser and

can be parsed by the full parser. Such sentences are prioritized again according

to their fzipf−eng values (higher values bring higher priority).

2. Second priority is given to sentences that cannot be parsed by both the bagged

and full parsers. Such sentences are prioritized again according to their fzipf−eng
values (higher values bring higher priority).

3. Third priority is given to sentences having highest fzipf−entropy values.

5.3 Experimental Results

Complying to the convention of previous studies, we report performance as PRUD

values.

5.3.1 Comparison of Informativeness Measures

In the �rst run of experiments, we compared the performances of informativeness mea-

sures, keeping used representativeness measure �xed. The learning curves of random

sampling and informativeness measures using Length Balanced Sampling can be seen

in Figure 5.1 (although we give the results in terms of unlabeled F score, using other

accuracy metrics do not signi�cantly alter the results). As can be seen from the �gure,

all active learning methods perform better than the random baseline. Two stage active
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learning performs worse among all active learning methods and entropy seems to bring

the highest PRUD. Performances of unparsed/entropy and LBP are nearly identical.

Performance comparison and DUR values with Length Balanced Sampling for unla-

beled F score levels near 84.9% is given in Table 5.1.

Similarly, the learning curves of random sampling and informativeness measures us-

ing Zip�an sampling can be seen in Figure 5.2. In this �gure, horizontal gaps between

topmost points of learning curves are more distinctive. Ordering is almost the same

and more de�nite, except that LBP performs visibly better than unparsed/entropy.

Performance comparison and DUR values with Zip�an Sampling for unlabeled F score

levels near 84.68% is given in Table 5.2.
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Table 5.3: Performances of representativeness measures used with two-stage active

learning near 84.68% unlabeled F score values

Rep. Meas. UF(%) LF(%) Brackets PRUD(%) RelPRUD(%)
Random 84.65 73.94 44051 N/A N/A

LBS 84.74 74.09 39150 11.13 N/A

Zipf 84.69 74.05 38159 13.38 2.53

5.3.2 Comparison of Representativeness Measures

These are the ultimate experiments in the sense that, the performance of our novel

measure is compared to its alternative, Length Balanced Sampling.

Again, PRUD values are compared at a certain unlabeled F score level. Compar-

ative results of representativeness measures with two-stage active learning is shown

in Figure 5.3. Although Zip�an sampling strictly dominates LBS, improvement is not

signi�cant. Exact �gures and relative PRUD introduced by Zip�an sampling over LBS

for unlabeled F score levels near 84.68% is presented in Table 5.3. In this table (and

other tables in this section), precision and recall values are omitted for the sake of

place. Comparative results with unparsed/entropy is shown in Figure 5.4. Here it can

clearly be seen that our method dominates, providing a relative PRUD of 8.65% over

LBS near 84.86% F score level (see Table 5.4). Domination persists with entropy and

LBP (see Figure 5.5 and Figure 5.6), as our method provides relative PRUDs 14.88%

and 12.27% over LBS with entropy and LBP, respectively, near 84.95% F score level

(see Table 5.5 and Table 5.6).
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Figure 5.1: Comparative performances of informativeness measures used with Length

Balanced Sampling

Table 5.4: Performances of representativeness measures used with unparsed/entropy

near 84.86% unlabeled F score values

Rep. Meas. UF(%) LF(%) Brackets PRUD(%) RelPRUD(%)
Random 84.87 74.38 46277 N/A N/A

LBS 84.79 74.20 38129 17.61 N/A

Zipf 84.86 74.33 34859 24.67 8.65
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Figure 5.2: Comparative performances of informativeness measures used with Zip�an

Sampling

Table 5.5: Performances of representativeness measures used with entropy near 84.95%

unlabeled F score values

Rep. Meas. UF(%) LF(%) Brackets PRUD(%) RelPRUD(%)
Random 84.95 74.50 47495 N/A N/A

LBS 84.92 74.44 37371 19.24 N/A

Zipf 84.99 74.46 31811 33.02 14.88
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Figure 5.3: Comparative performances of representativeness measures used with Two-

Stage Active Learning

Table 5.6: Performances of representativeness measures used with LBP near 84.95%

unlabeled F score values

Rep. Meas. UF(%) LF(%) Brackets PRUD(%) RelPRUD(%)
Random 84.95 74.50 47495 N/A N/A

LBS 84.90 74.51 38352 19.25 N/A

Zipf 85.01 74.67 33646 29.16 12.27
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Figure 5.4: Comparative performances of representativeness measures used with un-

parsed/entropy
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Figure 5.5: Comparative performances of representativeness measures used with en-

tropy
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Figure 5.6: Comparative performances of representativeness measures used with LBP
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CHAPTER 6

DISCUSSION AND FUTURE WORK

In this thesis, we introduced a novel representativeness measure for statistical active

learning of natural language based on a revision of Zipf's Principle of Least E�ort and

successfully applied it to the CCGbank and C&C Parser domain. Experimental results

show that our method outperforms the alternative representativeness measure (Length

Balanced Sampling) consistently, signi�cantly with most of the tried informativeness

measures. We also tested the most widely-used informativeness measures for statistical

active learning of natural language in C&C Parser/CCGbank domain and reported

the results. Besides, we introduced an alternative method for calculating tree entropy

metric, which is an important informativeness measure for statistical parser training

tasks.

Experiments show that two-stage active learning methods performs worse than en-

tropy or unparsed/entropy, contrary to the reported results. It is also observed that

our method does not provide signi�cant improvement with two-stage active learning

method. The only plausible explanation we come up with to explain this phenomena is

that using unparsed sentences in active learning decisions is unreliable, since supertag-

ger failures can fool the active learner by directing it to selecting sentences which it

could parse correctly if it had the true category assignment sequence. Selecting such

examples can improve the supertagger accuracy but do not contribute much to the

information about model parameters.

As we noted in Section 5.1, we had to exclude multi-learner active learning methods
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and density estimation based measures from our experiments, for the reasons explained

in the same section. In our opinion, testing and comparing Zip�an sampling with these

methods and measures is the most urgent thing to do along this line of research.

We use English as the language of the experimental domain in this thesis since Zip�an

frequency estimation has been done only for this language so far; however, annotated

data resources are abundant in English and other languages need active learning much

more than English does. Zip�an frequency estimation studies in other languages will

enable applying our method in these languages. Such studies are easy to do in a short

time.
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APPENDIX A

COMPUTING TREE ENTROPY IN
CLARK & CURRAN'S CCG PARSER

In (Hwa, 2000), a dynamic programming method for computing tree entropy of a sen-

tence given a probabilistic context free grammar (PCFG) is given, based on a variant

of CKY parsing algorithm (Cocke and Schwartz, 1970; Kasami, 1965; Younger, 1967).

Although the method can be modi�ed to work in any log-linear model, we developed

an alternative method for computing tree entropy, based on CKY algorithm and the

generalized grouping and additivity properties of Shannon entropy.

Before proceeding, the reader is encouraged to read the introduction part of Chap-

ter 4, Sections 5.1 and 5.3 from (Clark and Curran, 2007).

Since a disjunctive node can be imagined to contain a group of equivalent sets of

parses (where each such set corresponds to a distinct conjunctive daughter node), tree

entropy Hd of a disjunctive node d is calculated as:

Hd = H(
φc1
φd

,
φc2
φd

, . . . ,
φcn
φd

) +
n∑

i=1

φci
φd
Hci (A.1)

Where c1, c2, . . . , cn ∈ γ(d), φ is the inside score function de�ned on nodes and Hci is

the tree entropy of the conjunctive daughter node ci.

A conjunctive node c corresponds to either a leaf node, or a node obtained by applying
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a unary rule to a sub-parse, or a node obtained by applying a binary combination rule

to two independent sub-parses (where sub-parses correspond to disjunctive daughter

functions). If it is a leaf node, then there can be only a single parse leading to it, hence

its tree entropy is 0. If it is a node derived using a unary or binary rule, its tree entropy

Hc is:

Hc =
∑

d∈δ(c)
Hd (A.2)

If there is a single disjunctive node, then there is no increase in the number of al-

ternative parses rooted at c hence there is no increase in tree entropy: Tree entropy

value is directly inherited from the disjunctive daughter. If there are two disjunctive

daughters, then the number of alternative parses is the product of numbers of alterna-

tive sub-parses and the probability of each alternative parse is directly proportional to

the product of probabilities of sub-parses leading to it. Hence, the tree entropy of the

parse rooted at the conjunctive node is the sum of entropies of independent sub-parses

(disjunctive daughters).

Since the set of all parses is partitioned into root disjunctive nodes, the tree entropy of

a sentence S can be calculated as:

HS = H(
φr1
Z(S)

,
φr2
Z(S)

, . . . ,
φrn
Z(S)

) +
n∑

i=1

φri
Z(S)

Hri (A.3)

Where r1, r2, . . . , rn ∈ R (R is the set of root disjunctive nodes), φ is the inside

score function, Hri is the tree entropy of the root disjunctive node ri and Z(S) is the

normalizing constant used in (Clark and Curran, 2007), which is basically the sum of

scores of all parses of S.

We prove that tree entropy is calculated correctly by applying the equations A.1, A.2

and A.3. Before beginning the proof, we would like to remind the generalized grouping

and additivity properties of the Shannon entropy:

De�nition 1 (Generalized Grouping Property). Let P = {p1, ..., pn} be a set of real

numbers in the interval [0,1] and
n∑

i=1

pi = 1. Let {A1, ..., Ak} be a partition over P
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and let Ai = {pi1 , ..., pim} for all i. Let p(Ai) be the sum of elements of Ai. Then

generalized grouping property says that:

H(p1, ..., pn) = H(p(A1), ..., p(Ak)) +
k∑

i=1

p(Ai) ∗H(pi1/p(Ai), ..., pim/p(Ai)) (A.4)

De�nition 2 (Additivity Property). Let P1 = {p11, ..., p1n} and P2 = {p21, ..., p2m} be
sets of real numers in the interval [0,1],

n∑

i=1

p1i = 1 and
m∑

i=1

p2i = 1. Then additivity

property says that:

H(p11p21, ..., p11p2m, p12p21, ..., p1np2m) = H(p11, ..., p1n) +H(p21, ..., p2m) (A.5)

In equations A.4, A.5 and throughout the rest of the proof, H() function gives the

Shannon entropy de�ned over the probability distribution denoted by the argument

vector.

Proof:

Theorem 1. Let S be a sentence, ρ(S) is the set of derivations found for S in the

feature forest of S. Let Z(S) be the normalization constant de�ned in Section 4.3.3,

{r1, . . . , rn} be the set of root disjunctive nodes of ρ(S), φ be the inside score function,

ψ be a function from subderivations (or derivations) to real numbers giving the total

score accumulated in the subderivation (or derivation), that is, ψω = eλf(ω) and let

{ωi1, . . . , ωik} be the set of derivations collected in the root disjunctive node ri. Then:

−
X

ω∈ρ(S)

ψω

Z(S)
log(

ψω

Z(S)
) = H(

φr1

Z(S)
, . . . ,

φrn

Z(S)
) +

nX

i=1

φri

Z(S)
H(

ψωi1/Z(S)

φri/Z(S)
, . . . ,

ψωik/Z(S)

φri/Z(S)
) (A.6)

This equation is a direct implication of the generalized grouping property (GGP,

see equation A.4), since each ψω/Z(S) is a real number between [0,1], they sum up to

1 and root disjunctive nodes actually create a partition over set of all ω s. Using this

equation, we can calculate the tree entropy of the sentence by just calculating right

hand side of the equation. We know that Z(S) and φri for all i is calculable via CKY

parsing; so if we can calculate H(ψωi1/Z(S)

φri/Z(S) , . . . ,
ψωik

/Z(S)

φri/Z(S) ) e�ciently for all i, then we

can calculate tree entropy e�ciently (assuming a tractable number of root disjunctive

nodes).
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Now, let's de�ne functions Hd and Hc such that:

Hd = H(
ψd1

φd
, . . . ,

ψdk

φd
) (A.7)

Hc = H(
ψc1

φc
, . . . ,

ψck

φc
) (A.8)

Where d is a disjunctive node, {d1, . . . , dk} is the set of all subderivations leading

to d, c is a conjunctive node and {c1, . . . , ck} is the set of all subderivations lead-

ing to c. Notice that H(ψωi1/Z(S)

φri/Z(S) , . . . ,
ψωik

/Z(S)

φri/Z(S) ) is actually Hri (when we get rid of

1/Z(S)'s found in both numerators and denominators). So, if we can show that we can

e�ciently calculate Hd for all d, then we can say that we can calculate allHri e�ciently.

We claimed that Hd and Hc for any disjunctive node d and conjunctive node c can

be calculated with equations A.1 and A.2, respectively. So, what we need to prove is

that for all disjunctive nodes d and conjunctive nodes c the following equations hold:

H(
ψd1

φd
, . . . ,

ψdk

φd
) = H(

φc1
φd

,
φc2
φd

, . . . ,
φcn
φd

) +
n∑

i=1

φci
φd
Hci (A.9)

H(
ψc1

φc
, . . . ,

ψck

φc
) =

∑

d∈δ(c)
Hd (A.10)

Where {c1, . . . , cn} are conjunctive daughters of d in equation A.9 and δ(c) is the

set of disjunctive daughters of c in equation A.10.

We prove equation A.10 �rst: In a CKY variant parser, there are three possibilities

for a conjunctive node c: It can be either (1) a leaf, (2) a conjunctive node with one

disjunctive daughter and (3) a conjunctive node with two disjunctive daughters. If it's

a leaf, then there will be only one subderivation leading to c, hence left hand side of

the equation A.10 will be 0. Since it's a leaf, it cannot have any disjunctive daughters,

so right hand side of the equation A.10 will be 0 as well.

In condition (2), a unary rule is applicable to all trees leading to daughter disjunc-

tive node of c. So for each tree ci leading to c, there is a sub-tree sub(ci) leading to

daughter disjunctive node d1 satisfying the following equation:

ψci = ϕc ∗ ψsub(ci) (A.11)
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Where ϕc = eλf(c) and f(c) is the vector of counts of occurences of features at

conjunctive node c. Observe that {sub(c1), ..., sub(ck)} = {d1
1, . . . , d

k
1}. Moreover,

φc = ϕcφd1 . So:

H(
ψc1

φc
, . . . ,

ψck

φc
) = H(

ϕcψsub(c1)

ϕcφd1
, . . . ,

ϕcψsub(ck)

ϕcφd1
) (A.12)

= H(
ψsub(c1)

φd1
, . . . ,

ψsub(ck)

φd1
) (A.13)

= H(
ψd11
φd1

, . . . ,
ψdk

1

φd1
) (A.14)

= Hd1 (A.15)

So left hand side is equal to Hd1 . Right hand side is also equal to Hd1 , since there

is a single daughter disjunctive node, which is d1.

In condition (3), a binary rule is applicable to all tree pairs (c1i, c2j), where c1i is

a tree leading to left disjunctive daughter d1 (stands for left sub-tree) and c2j is a

tree leading to right disjunctive daughter d2 (stands for right sub-tree). Assume that

there are m left sub-trees and n right sub-trees, then {c11, . . . , c1m} = {d1
1, . . . , d

m
1 }

and {c21, . . . , c2n} = {d1
2, . . . , d

n
2}. In addition, for all i:

ψci = ϕcψc1jψc2k (A.16)

Where c1j is the left sub-tree of ci and c2k is the right sub-tree of ci. Besides that,

φc = ϕcφd1φd2 . So:

H(
ψc1

φc
, . . . ,

ψck

φc
) =

τ11
c

φc
, . . . ,

τ1n
c

φc
,
τ21
c

φc
, . . . ,

τmn
c

φc
) (A.17)

= H(
τ11
c

ϕcφd1φd2

, . . . ,
τ1n
c

ϕcφd1φd2

,
τ21
c

ϕcφd1φd2

, . . . ,
τmn
c

ϕcφd1φd2

) (A.18)

= H(
ψc11

φd1

ψc21

φd2

, . . . ,
ψc11

φd1

ψc2n

φd2

,
ψc12

φd1

ψc21

φd2

, . . . ,
ψc1m

φd1

ψc2n

φd2

) (A.19)

Where τ ijc = ϕcψc1iψc2j . Now, observe that all ψ
c1j

φd1
s and ψ

c2k

φd2
s are real values in

[0,1],
m∑

j=1

ψc1j

φd1
= 1 and

n∑

k=1

ψc2k

φd2
= 1; hence we can apply additivity property (equa-

tion A.5) to �nd that:

H(
ψc11

φd1

ψc21

φd2
, . . . ,

ψc1m

φd1

ψc2n

φd2
) = H(

ψc11

φd1
, . . . ,

ψc1m

φd1
) +H(

ψc21

φd2
, . . . ,

ψc2n

φd2
)(A.20)
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= H(
ψd11
φd1

, . . . ,
ψdm

1

φd1
) +H(

ψd12
φd2

, . . . ,
ψdn

2

φd2
) (A.21)

= Hd1 +Hd2 (A.22)

So, equation A.10 is satis�ed for condition (3) as well.

For proof of equation A.9, observe that conjunctive daughters c1, . . . , ck of a dis-

junctive node d creates a partition over the set of parses d1, ..., dn leading to d, such

that any two parses di and dj is in the same group if and only if they belong to the

same conjunctive daughter. Assume that {c1i , . . . , cmi } is the set of parses leading to

conjunctive daughter ci and {c1i , . . . , cmi } = {di1, ..., dim}, then
m∑

j=1

ψdij = φci . So GGP

(equation A.4) says that:

H(
ψd1

φd
, . . . ,

ψdk

φd
) = H(

φc1
φd

, . . . ,
φck
φd

) +
k∑

i=1

φci
φd
H(

ψdi1/φd
φci/φd

, . . . ,
ψdim/φd
φci/φd

) (A.23)

Dropping 1
φd
s found in both numerators and denominators and substituting each

dij with cji , the last term becomes:

H(
ψc1i
φci

, . . . ,
ψcmi
φci

) (A.24)

Which is exactly Hci according to equation A.8. So proof of equation A.9 is over.

Since Hd or Hc of a node is calculable using H function values of daughters, inside

scores of daughters and itself, and since base case is the leaf conjunctive nodes whose

Hc values are 0 , Hc and Hd of all nodes are calculable via CKY variants.

Our method has the same complexity with Hwa's method (2000), but it has pros

and cons compared to Hwa's method. Unlike our method which does normalization

at each node to obtain a valid entropy value, Hwa's method does normalization at the

end of the algorithm. It introduces many additional division operators at each step

in our method. However, our method guarantees that Hd and Hc are always positive.

It is important since upper bound on tree entropy grows as Catalan numbers with

respect to sentence length, and it may be necessary to use the logarithm of this value

in the implementation. Since the H values in Hwa's method are not guaranteed to be

positive, their logarithms can be unde�ned, which can boost memory requirements.
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